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Abstract 

 

 

 

Transactions have long been used as a mechanism for ensuring the consistency of 

databases. Databases, and associated transactional approaches, have always been an 

active area of research as different application domains and computing architectures 

have placed ever more elaborate requirements on shared data access. As transactions 

typically provide consistency at the expense of timeliness (abort/retry) and resource 

(duplicate shared data and locking), there has been substantial efforts to limit these two 

aspects of transactions while still satisfying application requirements. In environments 

where clients are geographically distant from a database the consistency/performance 

trade-off becomes acute as any retrieval of data over a network is not only expensive, 

but relatively slow compared to co-located client/database systems. Furthermore, for 

battery powered clients the increased overhead of transactions can also be viewed as a 

significant power overhead. However, for all their drawbacks transactions do provide 

the data consistency that is a requirement for many application types. In this Thesis we 

explore the solution space related to timely transactional systems for remote clients and 

centralised databases with a focus on providing a solution, that, when compared to 

other's work in this domain: (a) maintains consistency; (b) lowers latency; (c) improves 

throughput. To achieve this we revisit a technique first developed to decrease disk 

access times via local caching of state (for aborted transactions) to tackle the problems 

prevalent in real-time databases. We demonstrate that such a technique (rerun) allows a 

significant change in the typical structure of a transaction (one never before considered, 

even in rerun systems). Such a change itself brings significant performance success not 

only in the traditional rerun local database solution space, but also in the distributed 

solution space. A byproduct of our improvements also, one can argue, brings about a 

"greener" solution as less time coupled with improved throughput affords improved 

battery life for mobile devices. 
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Glossary 

 

 

Transaction A sequence of operations (reads and writes) executed to 

perform a single logical task. 

 

ACID Properties of transaction, including Atomicity, Consistency, 

Isolation and Durability. 

 

Database A database is an organized collection of data items; each 

could be in the form of a record, page, data structure, 

picture, text, etc. 

 

Real-Time database A database which maintains traditional database 

requirements (logical consistency); and also satisfies time-

constraints (temporal consistency). 

 

Ubiquitous Database A small database existing in mobile devices. 

 

Distributed Database A database physically stored across multiple computers in 

multiple locations which are connected to each other via a 

network, yet operate logically as a single database. 

 

DBMS Database Management System - a special application 

designed to interact with users. 

 

Serializability A well-known correctness criteria which means that there is 

at least one serial schedule which leads to the same final 

state of the database. 

 

CC Concurrency Control, a mechanism for coordinating 

Simultaneous access to shared data. 
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OCC Optimistic Concurrency Control, provide a mechanism 

whereby simultaneously executing transactions validate 

with one another to determine whether a conflict has 

occurred, It is a well-known method due to the properties of 

non-blocking and deadlock-free execution.  

 

  

FOCC 

 

 

Forward Optimistic Concurrency Control, OCC based on 

checking the intersection between the write set of a 

validating transaction and the read sets of currently 

executing transactions. 

 

BOCC Backward Optimistic Concurrency Control, OCC based on 

checking the intersection between the read set of a 

validating transaction and the write sets of currently 

executing transactions. 

 

FBOCC Forward and Backward Optimistic Concurrency Control, an 

OCC algorithm suitable for mobile transactions in wireless 

broadcast environments. It consists of two validation stages, 

one involving backward validation at the client, and the 

other forward validation at the server. 

 

2PL  Two-phase locking protocol, CC technique based on locks, 

which are divided into growing and shrinking phases in 

each transaction. In the growing phase, a transaction can 

request locks, but in the shrinking phase a transaction 

should unlock all locks that have been made in the first 

phase. 

  

  

 



1. Introduction 

 

1 

 

 

Chapter 1  

 

Introduction 

 

1.1 Introduction 

This thesis is concerned with improving performance in shared client access to database 

systems. In particular, a measure of performance is quantified in terms of client request 

throughput. If client requests simultaneously update the same data, then erroneous 

behaviour in the overall system may result. The basic method to overcome this would 

be via the use of transactions. Therefore, the transactional style of access is used as the 

basic construct for modelling client requests.  

 

1.2 The Concept of the Transaction 

Transactions are a sequence of read and write operations executed in performing a 

single logical task. Transactions have four properties: atomicity, consistency, isolation 

and durability (ACID) [1][2]. These properties are described below. 

1. Atomicity: this means that all operations involved in a transaction should be seen as 

one single operation. If one action belonging to a transaction fails, then the entire 

transaction fails.  

2. Consistency: this is a general term used to signify that data must meet all of the 

validation rules that applications expect. 

3. Isolation: this means that any concurrently running transactions do not affect each 

other at the time of execution. As an example, if T1, T2 and T3 are transactions running 

concurrently, they should have some equivalent serial order. 

4. Durability: this refers to a guarantee that, if a transaction completes, then its effects 

persist in the database and it is never lost, even if the system crashes.  Nevertheless, 

durability does not imply a permanent state of the database; other transactions may 

overwrite changes made in current transactions without undermining durability. 
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Executing transactions in the presence of concurrency requires a concurrency 

control mechanism to coordinate access to shared data. In such a setting, the main goal 

of a concurrency control algorithm is the creation of an ordering of read/write access 

that ensures database consistency. 

 

1.3 Concurrency Control Approaches 

Concurrency control has been extensively studied in the literature, resulting in various 

ways of implementing transactions to maintain database consistency. The two main 

categories are  pessimistic and optimistic approaches [2][3]. 

 

1.3.1 Pessimistic Concurrency Control 

A straightforward solution to coordinate access to shared data is to simply lock data 

while it is being accessed by one client, preventing any possible conflict from other 

clients occurring [4]. Locks are controlled by the concurrency control manager in order 

to ensure that: 

1. Every transaction cannot read or write any element unless it previously 

requested a lock on that element and has not yet released it. 
 

2. If a transaction locks an element then it must release it later. 

3. No more than one transaction can lock the same element at any time. 

A two-phase locking protocol (2PL) is a pessimistic approach proposed by Eswaran et 

al. [5]. In 2PL, locks are divided into growing and shrinking phases in each transaction. 

In the growing phase, a transaction can request locks, but in the shrinking phase a 

transaction should unlock all locks that have been made in the first phase. Therefore, for 

each transaction, all lock requests must precede all unlock requests. Although the 2PL 

protocol grants serializability, it is considered to be too constrained. The general 

weaknesses of locking approaches can be summarised as following [6][7][8]. 

1. It is required to always use locking to ensure consistency, even if most of the 

transactions do not overlap. However, locking is only actually needed in certain 

cases. 
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2. Lock maintenance adds an unnecessary overhead to read-only transactions even 

though these do not affect the consistency of the database and constitute the 

majority of system transactions [23]. 
  

3. When a large part of a database resides in a secondary storage, locking 

frequently accessed data items significantly decreases concurrency due to the 

waiting time needed for secondary storage access. 
 

4. Keeping locks in place until the end of the execution of transactions in order to 

avoid cascading aborts causes a further decline in concurrency.  
 

5. Deadlock problems make 2PL inappropriate in distributed database systems, 

since current deadlock detection techniques for distributed systems are complex 

and ineffective. 
 

6. The significantly increased numbers of transactions occurring in distributed 

database systems increases locks’ overhead and the probability of lock conflict. 

Furthermore, communication delays lead to a worsening of the situation due to 

increasing lock-hold duration, which makes the probability of lock conflicts 

even higher. This results in a substantial decline in performance in distributed 

database systems. 

 

1.3.2 Optimistic Concurrency Control (OCC)  

Kung and Robinson proposed the use of optimistic approach methods via the execution 

of  transactions in three phases as shown in Figure 1.1 in order to avoid the problems 

pointed out in the previous section [8]. During the read phase, transactions access data 

without restrictions and make their own private copies of such data. All computation 

carried out by a transaction occurs on a private copy. When a write is requested, it is 

enacted on the private copy. During the validation phase, resolution policy is enacted 

where, in principle, other executing transactions are considered to determine whether or 

not the write requests can be satisfied without invalidating the correctness of the overall 

read/write schedule. If the writes are valid, the write phase is enacted which commits 

the changes to persistent storage. Alternatively, the transaction may abort if a valid 

schedule is not possible, and a renewed attempt is made later. If a transaction has no 

write operation, then the write phase is not required, with commitment being enacted to 

bring the transaction to a logical end.  
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Figure 1.1 OCC phases. 

 

The optimistic approach can overcomes the weaknesses of pessimistic 

approaches, and works well in low contention environments especially when read 

operations outnumber writes. However, rollback is a considerable drawback in 

optimistic approaches when conflict rates are high.  

 
 

1.3.3 Pessimistic vs Optimistic 

In conventional databases, a pessimistic approach is better than an optimistic approach 

in high contention environments, particularly when physical resources are limited. In 

such environments, an optimistic approach results in considerable numbers of 

transactional aborts, which leads to substantial waste of resources. However, the 

optimistic approach is more convenient in low contention environments, particularly 

when the amounts of wasted resources involved are tolerable, and the optimistic 

approach provides a higher degree of concurrent executions [2][9][10].  In contrast, the 

optimistic approach works better than the pessimistic approach in real-time databases 

even given high data contention over a wide range of resource availability levels. This is 

because, in the optimistic approach, conflict resolution is delayed until the times at 

which transactions commit, which helps in making better conflict decisions. So, 

optimistic algorithms ensure that no transactions which are likely to miss their deadlines 

prevent other transacting execution in the system [2][11][12][13][14]. 

 

1.4 Cost of Aborted Transactions 

Aborted transactions run again, and this requires them to retrieve data again from the 

database. The state of the database may by then have changed, and so it is necessary to 

request data again to prevent transactions from using inconsistent data. Accessing 

storage devices is expensive and aborted transactions that run again are, in essence, 

duplicating information retrieval. However, sometimes only a small proportion of the 

re-retrieved data has changed. Retrieving data that has not changed is, therefore, a waste 

Read phase 
Write 

phase 

Validation 

phase 
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of disk access. This is more serious in distributed databases when the data to be 

retrieved does not exist in the same machine, and is therefore more expensive in terms 

of incurring communication costs.  

To improve performance, technique has been developed to only retrieve those 

items of data that have changed. Such a technique is called virtual execution, which 

allows an aborted transaction to continue reading the data it requires, and that data is 

cached locally so that upon rerun it does not need to waste resources reading the data 

again. Using this ”pre-fetched” data can lead to significant performance improvements, 

as there should be no disk I/O overhead involved in rerunning a read transaction where 

the data is already cached. However, there is now an issue with consistency when 

considering a transaction that is rerunning with pre-fetched data. Clearly some of the 

pre-fetched data may have been modified at the server since it was read to the local 

cache, which would result in the transaction running with inconsistent data. 

Concurrency control techniques must be applied to overcome this problem [15]. 

 

1.5 Research Contributions 

This thesis introduces a novel Read-Write-Validate transactional phase sequence 

combined with virtual execution to render the conventional OCC approach appropriate 

for mobile device environments. The proposed approach presented in two contexts: 
 
 

 Firstly, it is show that implementing the proposed approach on the mobile 

devices themselves can improve contention issues with shared resources on that 

device, such as the solid-state disk. [16][17]. 

 Secondly, it is further shown that the implementation of the proposed approach 

in client-server model based on a broadcast datacycle approach for wireless 

environment is efficient [18]. 

 

 The results show that, with the proposed approach, overall system performance is 

improved, and the number of transactions that miss their deadlines due to concurrency 

issues is reduced. The number of transactions requiring a restart is reduced, and so less 

energy is used in re-accessing a resource or in retransmitting data a second time 

[17][18].  
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The benefits gained by the contribution made in this thesis are  summarised below. 

1. Transaction Lifespan Minimization 

 

The lifespan of a transaction is the time between the start of a transaction and 

when it commits or the end of the write phases. The validation phase adds a non-

deterministic timing period to the lifespan of the transaction. Therefore, the 

reordering of phases in the proposed approach removes from the transaction’s 

lifespan  the non-deterministic timing of the validation phase. 

 

2. The Blocking of Concurrent Transactions is Eliminated 

 

In the conventional OCC approach, non-conflicted transactions executing in the 

read phase will eventually be blocked after having been validated while the 

validating transaction executes in the validation and write phases. This 

temporary blocking is essential to prevent non-conflicted transactions from 

entering a conflict state. Using the proposed approach, none-conflicted 

transactions no longer have to be blocked from progressing and yet database 

consistency is still maintained. 

 

3. Newly Starting  Transactions are Never Blocked 

 

Newly starting transactions are those which may start execution while another 

transaction is executing in the validation or write phase. In the conventional 

OOC approach, such transactions will be temporally blocked until the validating 

transaction commits, in order to prevent them from entering a conflict state. In 

the proposed approach, newly starting transactions no longer have to be blocked 

from progressing and yet database consistency is still maintained. 

 

4. Earlier Visible Updates 

 

In the proposed approach, write operations become visible to concurrent 

transactions earlier, affording more likelihood of reading up-to-date data and 

thus reducing the opportunity for conflict to occur. This is because the 

reordering of the validation and write phases guarantees that all new updates 

have already been made before the validation phase starts. 

5. Energy Efficiency Improvement 
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Virtual execution allows those transactions that have been aborted to re-execute 

using in-memory values as opposed to reading directly from the persistent 

storage. This improves the proposed approach, because accessing a conventional 

hard disk drive is expensive in terms of power usage given that the disk must 

attain read speed and the appropriate data sector mist be found. Even solid-state 

drives are significantly more expensive to access compared to local memory. So, 

the reduction made in disk access leads to a reduction in energy consumption. 

The energy savings will be even greater if the transaction reads from a remote 

server over a wireless connection. 

 

6. Reduction of Risk  of Conflict  

 

Rerunning transactions is quicker than those in their initial run since there is no 

persistent storage access which in turn increases the chance of transaction 

commitment. This is because transactions in rerun become ready to enter the 

critical section for write and validation phases in a shorter time. The shorter read 

phase in a rerun reduces the risk of conflict with other transactions occurring. 

 

1.6 Publications 

The contributions made in this thesis have been published in two conference papers, one 

workshop paper and one poster. One of the conference papers won the (best paper 

award) at The 13th International Conference on Algorithms and Architectures for 

Parallel Processing (ICA3PP), 2013. In addition, a journal paper is produced and invited 

to be submitted to Information Sciences journal, and a survey paper is in preparation. 

Details of the poster and the published papers are given below: 

 

1.  K. Solaiman, M. Brook, G. Ushaw, and G. Morgan, “Optimistic Concurrency 

Control for Energy Efficiency in the Wireless Environment” in the 13th International 

Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), pp. 115-

128. Springer International Publishing, 2013.  

 

2.  K. Solaiman, M. Brook, G. Ushaw, and G. Morgan, “A Read-Write-Validation 

Approach  to Optimistic Concurrency Control for Energy Efficiency of Resource-

Constrained Systems”, in the 9th International Wireless Communication and Mobile 

Computing Conference (IWCMC), IEEE, pp. 1424-1429, 2013. 
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3. K. Solaiman and G. Morgan, “Later Validation/Earlier Write: Concurrency Control 

for Resource-Constrained Systems with Real-Time Properties,” in 30
th

 Symposium on 

Reliable Distributed Systems Workshops (SRDS), IEEE, pp. 9-12, Oct. 2011. 

 

4. K. Solaiman and G. Morgan, “Later Validation/Earlier Write: Concurrency Control   

for Resource-Constrained Systems with Real-Time Properties”, Poster Session at 

Computing Department, Newcastle University, 2012. 

 

1.7 Thesis Structure 

The rest of this thesis is organised as follows: 

 Chapter 2 covers the background to the proposed approach. It starts with a 

description of concurrency control problems, and the concept of database 

consistency, and introduces centralized, distributed, mobile and real-time 

database types. Then previous research related to the proposed approaches is 

discussed, focussing on optimistic concurrency control techniques and aspects. 

Finally, an introduction to mobile computing, including caching and broadcast 

datacycle, is provided.  

 

 Chapter 3 describes the proposed approach in detail and extensively discusses 

its advantages and disadvantages. Then the Read-Write-Validation protocol and 

its pseudo code algorithm are presented to describe how the protocol works. 

The Read-Write-Validation protocol deals with concurrently running 

transactions accessing shared data at a single mobile device. Then the 

Distributed Read-Write-Validation protocol is presented including pseudo code 

algorithms, to describe how the proposed protocol works. The Distributed 

Read-Write-Validation protocol is designed to control numerous mobile 

transactions accessing a centralised database at the server. 

 

 Chapter 4 provides a description of the implemented simulations used to 

evaluate the performance of both proposed protocols, the Read-Write-

Validation protocol and the Distributed Read-Write-Validation protocol. In 

addition, the results collected from the simulation experiments are provided.  

 

 Chapter 5 draws the conclusions of the thesis and suggests. 
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Chapter 2 

 

 

 Background and Related Work 

 

This chapter introduces the background and concepts necessary to understand the 

contribution of the thesis. The present study is primarily concerned with improving 

performance via the concurrency control mechanisms employed to govern the 

read/write ordering of concurrent transactions. The research covers both local and 

geographically dispersed clients, and so the architectures and the techniques employed 

within them to achieve improved transactional performance are described. Since 

performance impacts more acutely on those databases that have time requirements (real-

time), one section is devoted to these approaches. This chapter starts with an 

introduction to database consistency, and then presents information concerning 

centralized, distributed, mobile and real-time databases. After that, caching and rerun 

policy enhancements are explained. This is followed by a discussion of the previous 

research relevant to the proposed approach. A description of optimistic concurrency 

control techniques is followed by a discussion of the trade-off of optimistic concurrency 

control aspects considered in the literature. Finally, mobile computing and broadcast 

wireless environments are introduced. 

 

2.1 Database Consistency 

A database is an organized collection of data items; each item could be in the form of a 

record, page, data structure, picture, or text (the general term data item is used 

throughout this thesis). Each single data item has a unique identifier, and the database is 

managed by a database management system (DBMS), which is a special application 

designed to interact with the users. In order to improve performance, applications in real 

life are allowed to run concurrently which may lead to multiple accesses to shared data 

simultaneously. Such multiple accesses are not secure and may lead to unexpected 

results. Two examples of these database anomalies are explained below: 
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Examples of Database Anomalies 

This section illustrates two examples of database anomalies described in the literature 

[19][6]. Both examples explain the process of accessing one bank account for deposit 

and withdrawal operations by multiple users. 

Example 1:  Lost Updates 

 Consider that two customers - C1 and C2 - deposit money in the same bank account at 

approximately the same time. The deposit method works as follows: 

Deposit (amount, account_number) { 

temp = read(accounts[account_number]; 

temp= temp+ amount; 

write(accounts[account_number],temp); 

} 

  As illustrated in Figure 2.1, C1 reads the balance of the account (£200) and then 

adds £ 150 to the local copy of the balance (temp) to make it £350. C2 read the balance 

as well, which was still £200, and adds £50 to C2’s local copy, making it £250. Then, 

C1’s update of £350 was written back to the original database. Subsequently, C2’s 

update of £250 was also written back to the original database (the same account). At 

this point, an incorrect state has resulted and £150 has been lost: the correct balance 

should be £400. 

 

 

 

 

 

 

 

 

Figure 2.1 Lost update anomaly [6] 
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Example 2:  Inconsistent Retrievals 

Suppose that the two customers C1 and C2 simultaneously execute the following 

transactions T1 and T2 respectively: 

1. T1 transfers £1000 from a checking account to the same person’s saving 

account. 

2. T2 prints the total balance of the both accounts (checking and savings). 

  As illustrated in Figure 2.2, T1 reads the balance of £1200 from the checking 

account and subtracts £1000 from it; the result is that £200 will be written back to the 

database. Then, at approximately the same time, T2 reads the balances of both accounts 

and then prints the total. T1 continues and reads the balance of the savings transaction 

and adds the £1000 to the previous balance. The new balance of the savings account 

will be £1500, which will be updated to the original database. This time, the final result 

placed in the database is correct, but the execution is incorrect because the total balance 

printed by T2 is £700, whereas the real total balance is £1700. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Inconsistent retrievals [6] 
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When all operations of a transaction are executed before or after all other 

transaction operations, the execution is called serial and database consistency is 

maintained. However, if the operations of more than one transaction are interleaved, 

their execution may lead to a state of inconsistency. Interleaved operations of one or 

more transactions are called schedules.   

2.1.1 Serial Schedule 

A schedule is serial if its operations consist of all the operations of one transaction, then 

all the operations of another transaction, and so on. Interleaved operations from 

different transactions are not allowed. In other words, if a schedule consists of a number 

of transactions T1, T2, T3,…Tm, then, for every i=1 to m-1, the transaction Ti is 

completed before the next transaction Ti+1 starts. 

Consider the following example:  T1 and T2 are two concurrent transactions. 

 T1 = {R1 (a), R1 (b)} 

T2 = {W2 (a), W2 (b)}. 

 Histories: 

 H1 = {R1 (a), R1 (b), W2 (a), W2 (b)} 

H2 = {W2 (a), W2 (b), R1 (a), R1 (b)} 

H1 and H2 indicate the order of the execution of operations in transactions T1and T2. 

Both H1 and H2 are serial because in both histories no operations were interleaved and 

the effect of the schedule on the database will be equivalent to schedule T1, T2 in the 

case of H1 and T2, T1 in the case of H2. However, in the following history: 

  H3= {R1 (a), W2 (a), W2 (b), R1 (b)} 

 H3 is not serial because here, operation R1 (a) precedes operation W2 (a) through the 

data item a, which means that T1 precedes T2. On the other hand, operation W2 (b) 

precedes operation R1 (b) through the data item b, which means that T2 precedes T1. 

Therefore, H3 is not serial. 

 

2.1.2 Serializable Schedule 

A schedule is serializable if it has the same effect on the database as other serial 

schedule of the same transactions. Therefore, if the serial schedule maintains database 

consistency, then the serializable schedule also maintains database consistency. 
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Consider again the following histories from the previous example:  

H4= {R1 (a), W2 (a), R1 (b), W2 (b)} 

H5= {W2 (a), R1 (a), W2 (b), R1 (b)} 

In H4, operation R1 (a) precedes W2 (a) through data item a, which means that T1 

precedes T2; and R1 (b) precedes W2 (b) through data item b, which means that T1 

precedes T2. Therefore, the effect of the execution of H4 is equivalent to the effect of 

the serial execution H1. Thus, H4 is serializable. 

In H5, operation W2 (a) precedes R1 (a) through data item a, which means that T2 

precedes T1; and W2 (b) precedes R1 (b) through data item b, which means that T2 

precedes T1. Therefore, the effect of the execution of H5 is equivalent to the effect of 

the serial execution H2. Therefore, H5 is serializable as well. 

2.1.3 non-serializable schedule  

H3 in the previous section is an example of non-serializable history: 

  H3= {R1 (a), W2 (a), W2 (b), R1 (b)} 

As stated in the previous section, T1 precedes T2 because of the operation R1 (a) 

precedes operation W2 (a) through the data item a, and T2 precedes T1 because of 

operation W2 (b) precedes operation R1 (b) through the data item b. Therefore, the 

effect of the execution of H3 is not equivalent to the effect of any serial execution, thus, 

H3 is non-serializable. 

  The concept of serializability is a popular correctness criterion that has been 

used in concurrency control field. Serializability means that the effect of certain 

schedules on the database state is equivalent to at least one serial schedule of the same 

transactions [20][19][6]. 

 

2.2 Database Architecture  

A database is an organized collection of data. Depending on the method use to stor such 

data, databases can be classified into three categories: centralized, distributed, and 

mobile databases.   
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2.2.1 Centralized Database 

A centralized database is a database located and maintained in one location, where 

access may be performed via a communications network. Banking systems are an 

example of centralized databases, in which processing is performed in a mainframe, and 

clients use online banking for their transactions.  Reservation systems could be another 

example of centralized databases, due to its advantage of preventing the double booking 

problem [166]. Such systems become more complicated in distributed database 

environments due to double booking issues. 

 

Centralised Database Architecture 

Figure 2.3 illustrates a model of a centralised database architecture, which consists of 

four sites connected via a network, and the database resides at only one site (site 4 in 

this example). Therefore, site 4 will be responsible for database management and 

processing requests from other sites [21]. 

 

 

 

 

 

 

 

 

Figure 2.3 Model of centralized database architecture in a network 
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A distributed database is a database physically stored across multiple computers 

connected to each other via a network, and these computers may be located in the same 
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managed by several database management systems (DDBMSs), where one coordinates 

each remote site.  Therefore, each site of the distributed database system is designated to 

be capable of administering its local database if connections with other sites have failed, 

and this is known as local autonomy. On the other hand, when distributed database sites 
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are successfully connected to each other, the system must provide location transparency, 

which means that users can retrieve or update data from any site without prior 

knowledge of its location, so that all data in the distributed database should appear to be 

one logical database existing at one site.  

 

Distributed Database Architecture 

Figure 2.4 illustrates a model of a distributed database architecture, which consists of 

four sites connected via a network and the database is distributed between these sites. 

Local applications are executed at one site using data stored in the same site, not 

requiring data from other sites. Global applications however require data stored in other 

sites. Sites may have identical software, in which case the system is known as a 

homogeneous DDBMS, or different software in a heterogeneous DDBMS [21][22]. The 

client-server model is a popular modern type of architecture, providing service to clients 

via a communications network. Clients request a server’s content or service functions 

and wait for the server’s response. Other types of distributed models, such peer-to-peer, 

are beyond the scope of this thesis. 

 

 

 

 

 

 

 

 

 

Figure 2.4 Model of distributed database architecture  

 

2.2.3 Mobile Database  

Developments in wireless networks, and mobile computing devices such as smartphones, 

tablets and PDAs have made mobile applications achievable and practical for use as 

stand-alone applications or in accessing remote applications. This has led to the necessity 

for mobile or ubiquitous databases. A mobile database is a small database residing on a 

mobile computing device, giving the ability to handle local queries without connectivity 

[23][24][25].  Due to the limited storage capacity of mobile devices, the entire database 
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is stored in the server. The mobile devices downloading requires data in its local 

storage, so that locally existing desired data will add great benefits to applications 

running on a mobile device. This is especially important in the case of disconnection 

events, either by undesired interference or in an effort to save battery energy. 

Meanwhile, if some local data has been updated by mobile applications, new updates 

have to be transmitted back to the server in order to maintain consistency [26]. 

Nowadays, the primary type of storage used in mobile devices is flash memory, which 

is non-volatile and has several benefits compared to a conventional disk. The rapid 

increase in capacity at affordable prices has made flash memory widely used in mobile 

devices and even in modern notebooks [27]. 

 

However, mobile environments involve substantial constraints in comparison 

with non-mobile environments. Energy consumption is one important issue in modern 

powerful portable devices; as a general rule, the more advances are made in mobile 

hardware and the applications that need to be executed on it, the more energy 

consumption is required. Communication disconnection is another serious challenge in 

mobile computing, where for example, a wireless signal can suffer interference, for 

instance from electronic noise or tall buildings. In addition, the restricted bandwidth of 

wireless networks and limited resources in portable computing devices, add further 

constraints to mobile environments [28][29].   

 

2.3 Real-time Database  

Real-time database systems (RTDBSs) have become very important over the past two 

decades due to their significance use in a wide range of operations. Increases in 

computer speed and capacity have led them to be integrated into our society and to 

employ many different applications, for example in stock markets, banking, reservation 

systems, multi-media, telephone switching systems and military command and control 

management. In many of these examples, real-time databases manage time-constrained 

data and time-constrained transactions. For example, in stock market programs, current 

prices have to always be current, and must be no more than a few seconds old to be 

considered valid. In addition, transactions operated using these data have time-

constraints in terms of reading and analysing information in the database. Therefore, the 

goal in real-time database use not only depends on logical computation carried out as in 

conventional databases, but also requiring the timing constraints of data and 

transactions [30][31][32][33]. 
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By contrast, in conventional database, timeline constraints are not taken into 

account, and correctness depends on logical computation only. The main performance 

criteria in conventional databases are to achieve reasonable throughput or to minimize 

average response time. Meanwhile the scheduling of transactions is achieved by either 

fairness or resource consumption criteria, such as giving priority to transactions which 

have made the most progress toward their end [32][34]. 

2.3.1 Timeline Requirements 

In real-time databases all traditional database requirements are maintained, which 

preserve the logical consistency of data and transactions, for example in granting the 

serializability of transactions and operations on data items. They can also require the 

temporal consistency of transactions and data. These requirements are summarised 

below [30]. 

 Logical Consistency of  Transactions 

This controls the values produced by transactions. For example, serializability, 

as discussed in section 2.1.2, is correctness criteria for the logical consistency of 

transactions and has been widely used in traditional database systems.  

 Logical Consistency of Data 

A range of data constraints require to be maintained in most traditional database 

systems, in order to ensure the logical consistency of data. For instance, database 

items should not have negative values.  

 Temporal Consistency of Transactions 

The temporal consistency of transactions is controlled by timing constraints such 

as start time, period of execution and deadline. These timing constraints can be 

divided into three categories: hard, firm and soft. Failure to satisfy timing 

constraints is considered to be a violation of consistency and an appropriate 

recovery procedure has to be performed by the database management system. 

 Temporal Consistency of Data 

Data temporal consistency concerns the age of data, and whether it is still 

considered to be valid, reflecting the current state of the data, or out of date it 
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might where have changed. In the previous example, prices in stock market 

programs have to be always current, for example, no more than a few seconds 

old, to be considered valid. 

 

2.3.2 Handling Late Transactions  

As previously mentioned, a primary performance measure in real-time databases is 

timeline level and not throughput or response time as in conventional databases. 

Therefore, transaction management becomes a scheduling issue, in which priority is 

considered and attention given to those transactions struggling to meet their deadlines, 

in order to minimize the number of late transactions. Earliest deadline scheduling policy 

is used to give priority to transactions that are closest to expiration [35], which leads to 

noticeable improvements in real-time environments. In addition, several deadline-

cognizant methods have been introduced in the literature in order to achieve optimal 

performance, such as always sacrifice, OPT-wait and no sacrifice policies 

[36][13][37][38][39][6]. 

 

2.4 General Enhancements 

Each access to a conventional hard disk is expensive in terms of both power usage and 

time, as the disk is spun up to speed and the relevant data sector located. Solid-state 

drives are also significantly more costly to access compared to local memory. 

Furthermore, with a soled-state drive, it is not possible to overwritten data straightaway, 

out of place update mechanism is applied. So, to update an data item, the whole block 

where such an item is located must be erased (‘Bulk erase’)  and then the whole block 

rewritten with the new updated item [40]. Such access costs further increase when 

communication costs are incurred in network environments, such as when clients access 

remote data at the server. Therefore, reducing the number of times that a disk is 

accessed will improve performance and reduce the energy consumed. Caching and rerun 

policy are general enhancement methods used for such purposes[15][41]. 

 

2.4.1 Caching 

Caching is an important technique that is used in many areas of computer science, such 

as in the CPU cache, disk cache or web cache. Data is simply stored in a local memory 

for future use. Cached data is usually a replica of the original data located elsewhere 

(EX. server), or it might be values that have been computed earlier. If new data 
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requested exists in the cache, then it will be read from the cache more quickly and 

cheaply.  If new data is requested that does not exist in the cache, then it will need to be 

obtained from the original source or recomputed, which again incurs extra time and cost 

[41][42]. 

1 Cache Replacement Strategy 

Due to cache size limitations on the client’s side, space could be exhausted quickly. A 

replacement strategy is used to clear some space in the cache for new requested data. 

The decision about which data should be removed from the cache could be influenced 

by several factors including the following [43][44]: 
 

 Recency:  period of time since the last reference to the data item. 

 Frequency: number of times that data item has been referenced. 

 Cost of fetching: cost of obtaining data item from the original place. 

 Size: size of data item. 

 Expiration time: period of time before the data becomes out of date. 

 Modification time: period of time since the last modification to the data item. 
 

 (Least recently used) LRU and (least frequently used) LFU are two well-known 

replacement strategies [43][42][45]. LRU looks backward to the history of data stored 

on the cache and removes an item that has not been used for the longest period of time. 

LFU again looks backward to the history of data stored on the cache and removes the 

item that has been least frequently referenced.  
 

2 Client-Server Caching 

Caching data in a client-server architecture is very important for improving 

performance. It can be implemented by two methods: intra-transaction caching and 

inter-transaction caching: In the former, data is stored within a single transaction 

boundary and discarded after the transaction commits. This is a simple method and 

cache management is performed by the clients themselves. In inter-transaction caching, 

data is stored across transaction boundaries, which requires more sophisticated 

techniques to be used in order to maintain the consistency of the cached data 

[46][47][45]. Even though caching incurs extra overheads for maintaining the 

consistency of cached data, it involves many benefits to the system, including the 

following [48][49][43]: 
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 Reduced reliance on the server, a decrease in network traffic and message 

processing time and cost overheads, which consequently leads to a reduction in 

system latency and response time. 
 

 Allows better utilization of resources presented to clients. 
 

 The server can manage a larger number of clients in the system. 

3 Transactional Cache Consistency 

Caching introduces multiple copies of the same data items, and is similar to replication. 

Therefore, consistency between these redundant copies has to be maintained. The 

following are some techniques that have been introduced to ensure the consistency of 

cached data.   
 

Avoidance versus Detection 
 

In avoidance-based approaches, stale or out-of-date data is not allowed to exist in a 

client’s cache. Therefore, transactions never have a chance to read stale data. 

Avoidance-based approaches uses a read one/write all (ROWA) technique to make sure 

that all replicas of updated data items are the same when updated transactions commit. 

Based on the ROWA technique, transactions are read from the local copy in the client’s 

cache and all copies updated in the system. In contrast, in detection-based approaches, 

stale data is allowed to exist temporarily in the client’s cache. Therefore, checking the 

validity of cached data is mandatory and is performed by each transaction before it is 

allowed to commit In comparison with the ROWA technique, the detection-based 

approach is simple, because a consistency action only includes the server and a single 

client [45][50]. 
 

Invalidation versus Propagation  

Two kinds of techniques to maintain cache consistency can be used in a client’s cache 

when a notification update arrives from the server: invalidation and propagation.  

Invalidation is a technique of removing the stale copy from the client cache 

when the original copy at the server is updated. Therefore, invalidated data will be 

inaccessible for any subsequent transaction. Subsequent transactions interested in 

accessing invalidated data have to obtain an up-to-date copy from the server. 

Information needed for cache invalidation is broadcast from the server via invalidation 

messages, and this requires that the commitment of updated transactions is delayed until 

all client caches have been invalidated. This is considered to be a scalability weakness. 
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  Propagation is a technique of sending new updates to clients when updated 

transactions commit at the server; this consequently replaces stale copies with new 

updated copies. Therefore, cached client data will be accessible for any subsequent 

transaction.[50][45] 

 

2.4.2 Virtual Execution 

Virtual execution is a concurrency control technique that allows conflicting concurrently 

running transactions to continue execution virtually, in order to prefetch all required data 

in its private workspace in memory (first run), which is illustrated by the figure 2.5 a. 

When a transaction has finished the virtual execution, it aborts and reruns using the pre-

fetched data stored in the memory from when it first read (rerun), which is illustrated by 

the figure 2.5 b. Then, if transactions enter a state of conflict within the rerun, it 

immediately aborts and reruns again [51] [52][15].  

 

 

 

 

 

 
 

a)  First run in virtual execution environments 

 

 

 

 

 

 
 

b) Rerun in virtual execution environments 

 

Figure 2.5 transactional phases in virtual execution environments 

 

 Analysis has shown that virtual execution techniques that utilize OCC perform better if 

transactions are allowed to reach the end of their read phase before being aborted 

[53][54]. This is intuitively logical, since as transactions that have been aborted early 

would not have retrieved all the required data to be ready locally for the rerun phase.  
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currently executing transactions populate a local buffer to the transaction management 

system. This can improve performance if overheads associated with persistent store 

access are significant. Therefore, distributed data stores [55] and real-time databases [15] 

have made use of such techniques. There is typically no disk I/O overheads required for 

the transaction during rerun, as the data has already been pre-fetched. Therefore, 

considerable battery power savings can be gained by deploying such a technique on 

mobile devices [16][17]. The following two important issues need to be considered in a 

virtual execution environment. 
 

1. An access invariant property has to be guaranteed when using this approach, 

which means that any two executions of the same transaction must always access 

the same data items, even if these executions are separated by other conflicted 

transactions [15][51]. 

2. An issue of consistency arises for a transaction that operates using pre-fetched 

data. It may be that some of the pre-fetched data has since been modified. This 

will result in the rerun transaction operating with inconsistent data. A further 

concurrency control technique is clearly required to overcome this problem. 

[15][51] 

 

      It is important also to mention that, in conventional optimistic concurrency control 

methods, conflict resolution can be classified into two approaches: kill-based or die-

based. 

1. Kill-based approaches resolve conflicts between the validating transaction and 

conflicted concurrently running transactions by aborting conflicted concurrently 

running transactions and preceding the validating transactions to commit. 

 

2. Die-based approaches, in contrast, resolves conflict by aborting the validating 

transaction and continuing the execution of conflicted concurrently running 

transactions. 

 

      When a virtual execution environment is deployed with a kill-based approach, it 

becomes logically equivalent to a die-based approach [51]. That is because the validating 

transaction continues execution towards the write phase as seen in the kill based 

approach, yet at the same time concurrently conflicted running transactions continue 

executions as described in the die-based approach. 
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2.5 Related Work 

 

This section presents a survey of previous studies in the areas of optimistic concurrency 

control and broadcast datacycle approaches. 

 

2.5.1 Optimistic Concurrency Control (OCC) Techniques  

OCC techniques are classified into three categories: forward and backward oriented 

validation, serialization graph and timestamp. These techniques are described below: 

 

1. Forward and Backward Oriented Validation 

Härder [56] proposed two schemes for the validation phase: backward oriented 

optimistic concurrency control (BOCC) and forward oriented optimistic concurrency 

control (FOCC):  

 Backward Oriented Optimistic Concurrency Control. This operates by 

comparing the read set of a validating transaction with the write sets of all 

currently executed transactions that have finished the read phase before the 

validating transaction. If conflict is identified then the only way to resolve it is 

restarting the validating transaction in its entirety. Tv is the validating transaction 

and Ti is the currently running transactions that have finished the read phase 

before Tv. 

 It is important to note that the WSs of the overlapping commit transaction have to be 

saved until their last current transaction has completed. 
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Algorithm 1   Backward Oriented Optimistic Concurrency Control 

 

1:              valid = TRUE; 

2:              for each Ti (i=1,2,…,n)     

3:                    If RS(Tv) ∩ WS(Ti) ≠ {} then     

4:                          Valid = FALSE;   

5:                    Endif;          

6:              Endfor; 

7:              If valid then commit;       

8:                    Else abort; 

9:              Endif; 

RS – read set and WS – write set. 
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iented Optimistic Concurrency Control. This based on comparing the write set 

of a validating transaction with the read sets of all currently runing transactions 

that have yet to finish the read phase. When a conflict is found, FOCC provides 

a degree of flexibility in that a number of resolution policies are possible. These 

may: 

1. Delay the validating transaction and restart the validation phase at a later 

time. 

2. Abort all conflicting transactions and allow the validating transaction to 

commit. 

3. Abort the validating transaction.  

It is this flexibility in resolution policies which has made FOCC the focus of 

further research [57][58][59][60][61][62][63]. 
 

  Tv is the validating transaction and Ti is the active transactions. 

 

 

 

  

 

 

 

  

 

 

 

However, aborting the validating transaction is expensive because such transactions 

have used resources and completed execution. The never abort validating (NAV) 

transaction strategy ensures that these resources will not be wasted by guaranteeing that 

the validating transaction commits [33].  However, a major drawback of FOCC is that 

concurrent transactions have to be blocked in their read phase while the validating 

transaction is executing in the validation and write phases. This blocking significantly 

degrades the performance of the system. 

 

Algorithm 2   Forward Oriented Optimistic Concurrency Control 
 

1:              valid = TRUE; 

2:              for each Ti (i=1,2,…,n)     

3:                   If WS(Tv) ∩ RS(Ti) ≠ {} then 

4:                        Valid = FALSE;        

 5:                  Endif;    

6:              Endfor; 

5:              If valid then commit;       

6:             Else  resolve the conflict; 

RS – read set and WS – write set. 
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2. Timestamp Technique 

Timestamp (TS) is a unique number associated with each transaction at the beginning of 

its execution. TSs do not necessarily reflect the actual times of the generation of 

transactions but are important in that they reflect their order. Therefore, they must be 

issued in ascending order. Two methods could be used to generate TSs. The first 

method is taking the system clock as the TS. This is reasonable, but with this method 

the scheduling should not be quicker than the system clock in ordere to prevent the 

possibility of generating the same TS to two different transactions. The second method 

is to use the counter as the TS generator. Therefore, each new transaction receives the 

previous TS but increased by 1. The rule here is: for each transaction T, if Ti starts after 

Tj then the TS of Ti must be higher than the TS of Tj. 

 

In addition to the data, three pieces of information need to be associated with each 

data item: two TSs (RT and WT) and one additional bit (C) [34]: 

 

1.  RT (a), read time of data item a; this timestamp refers to the highest timestamp 

of the transaction that has read a. 

2. WT (a), write time of data item a; this timestamp refers to the highest timestamp 

of the transaction that has written a. 

3. C (a), commit bit of data item a, which is set to true if the most recent 

transactions that wrote object a have already committed. This information is 

used to eliminate the reading of dirty data [34]. 
 

The timestamp approach has been widely studied in the literature [16-18][19-22]. It 

shows a high degree of concurrency, guarantees a deadlock-free property, and provides 

a relatively smaller number of unnecessary rollback overheads. In contrast, the major 

disadvantage of the timestamp approach is the large overheads associated with 

timestamp management, especially when database is geographically distant from the 

client, communication between clients and the server is needed for every read operation 

to keep track of both read and write timestamp; which further increase timestamp 

overhead [64][21][18].  

 

3. Serialization Graph Testing (SGT) Technique  

The SGT scheduler maintains a serialization graph of the history representing the 

execution it controls. During the execution, the scheduler maintains the SG by adding 

edges between concurrent transaction nodes corresponding to all read and write 
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operations requested, without consideration of SG being acyclic. When a transaction T 

finishes execution and the scheduler receives a request to commit T, then it checks if T 

lies on a cyclic SG. If so, then this indicates that there has been a conflict operation 

inserted into the schedule, and some resolution policy needs to be applied to resolve this 

conflict. If not, then the schedule is still serializable and T can commit safely. The SGT 

scheduler theoretically maintains the serializability of the schedule. However, in 

practice, it is very expensive to maintain SG overheads; and yet, checking for cycles 

adds extra cost to this technique [19][65][66]. 

 

2.5.2 Aspects of Optimistic Concurrency Control 

 

Optimistic approaches have the potential to provide greater performance than pessimistic 

approaches, particularly, in real-time databases even given high data contention over a 

wide range of resource availability levels. This is because, in the optimistic approach, 

conflict resolution is delayed until the times at which transactions commit, which helps 

in making better conflict decisions. Therefore, optimistic algorithms ensure that no 

transactions which are likely to miss their deadlines prevent other transactions execution 

in the system. Therefore, this section devoted to explored fifteen aspects of OCC studied 

in the literature. These include correctness criteria, conflict detection and resolution, 

unnecessary rollback,  transaction length and starvation problems, back-off policy, 

partial rollback, read-only transaction considerations,  transaction arrival rate, database 

granularity, static/dynamic data access schemes, silent/broadcast commit, speculative 

CC, deadline-cognizance and virtual execution.  
 

1. Correctness Criteria  

Serializability is the fundamental approach of correctness criteria to concurrency 

control. The serializability of a schedule means that its outcome, the transformation of a 

database state, is equivalent to at least one serial schedule [19]. Although serializability 

has been widely adopted in concurrency control [19][5][20][6], it is considered to be 

strong correctness criteria in certain circumstances, for instance in some commercial 

applications. Alternative weaker correctness criteria have been proposed in order to 

increase system performance [67][68][69][70][71][72][73][74]. For example, if a list of 

products is retrieved according to price, but which is just about to be updated with a 

new product, the new product may not appear in the list. However, it will appear in the 

list later. 
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2.  Conflict Detection 

 The conflict detection process in concurrency control is classified in two classes: 

pessimistic and optimistic approaches. 

 

 The pessimistic approaches detection may be performed before accessing 

conflicted data item. Here transactions require data items to be locked to before 

read operations. Therefore, if one of these data items has already been locked by 

another transaction, then these two transactions are in conflict and one of them is 

aborted in order to resolve this conflict. Aborting conflicted transactions in the 

early stages, based on this strategy, obviously reduces the amount of wasted work 

and saves resources. On the other hand, aborting transactions early because of 

conflicts with other concurrently running transactions which may abort later is a 

big disadvantage. Some conflicts are reconcilable and may be resolved without 

aborting conflicted transactions[75][6]. 

 

 The optimistic approaches detection is performed after accessing a conflicted 

data item. The transaction reads all required data items in the read phase without 

restriction. Afterwards, in the validation phase, conflicts between transactions 

which have already accessed shared data are detected and resolved. The 

advantages and disadvantages of this strategy are opposite to pessimistic 

approaches. [56][75] [76][77][56] [19]. 
 

3.  Conflict Resolution  

Resolving a conflict by aborting one of two conflicted transactions can be an expensive 

solution if the rate of conflicts is high. In some cases, conflicts can be resolved 

efficiently without aborting either of the conflicting transactions. For example, consider 

two concurrent transactions - T1 and T2: 
 

T1: R1 (a), W1 (a), R1 (b), W1 (b), C1 
 

T2: R2 (b), R2(c), C2 
 

Suppose they execute as in the following history: 
 

H1: R1 (a), W1 (a), R2 (b), R1 (b), W1 (b), C1, R2(c), C2. 
 

Based on the forward validation approach, T2 is conflicted with T1 in a read-write 

conflict (T2 is read-only transactions). However, T2 should not be aborted if there are no 

more conflicts between T1 and T2. Consistency is still maintained with serialization 
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order T2         T1. This kind of conflict is a reconcilable conflict. However, now consider 

the following execution history: 

T2: R2 (b), W2 (b), R(c), C2 
 

 

And the H2: R1 (a), W1 (a), R2 (b), W2 (b), R1 (b), W1 (b), C1, R(c), C2. 
 

In this case, T2 conflicts with T1 with both read-write and write-write conflicts, which is 

irreconcilable, and aborting T2 is necessary to preserve consistency. Therefore, conflicts 

between concurrent transactions can be divided into two types:  reconcilable and 

irreconcilable conflicts [6].  
 

 Reconcilable conflicts are conflicts between two concurrent transactions 

resulting from the occurrence of read-write conflicts only.  Therefore, conflict 

resolution can be performed without aborting conflicted transactions. 
 

 Irreconcilable conflicts are conflicts between two concurrent transactions 

resulting from the occurrence of both read-write and write-write conflicts. 

Therefore, conflict resolution requires the restarting one of the transactions 

involved in this conflict. In this case, transaction priority, length, deadline and 

the amount of transaction execution already completed have to be considered 

when resolving irreconcilable conflicts [78][76][6][79]. 

4.  Unnecessary Rollback 

Rollback overhead is the major problem in the OCC approach. This problem can be 

worsened if the scheduler aborts transactions which should not be aborted which is 

termed unnecessary rollback. This happens when conflicts between concurrent 

transaction and the validating transaction occur after the end of the write phase of the 

validating transaction [57]. For example, consider the scenario of the validation based 

on Kung and Robinson [8], as illustrated in Figure 2.6. 

 

 

 

 

 

 

 

 

Figure 2.5 Illustration of serious and non-serious conflicts 
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Figure 2.6 shows a scenario of three concurrently running transactions: T1, T2 and T3. 

T1 updates data items x, y. T2 and T3 read data items x and y respectively. T2 reads 

data item x before the new update has been written by transaction T1. Therefore, if T1 

has committed, T2 must be aborted to resolve this conflict. This is a so called ‘serious 

conflict’. T3 reads data item y after the new update has been written by transaction T1. 

Therefore, if T1 committed, T3 is still valid in the serialization order T1           T3, and 

T3 should not be aborted. This is a non-serious conflict. As this example illustrates, 

conflicts between transactions which are running can be classified into two categories 

of serious or non-serious conflicts. 

  A serious conflict is one which occurs between the concurrent transaction and 

the validating transaction, before the end of the write phase of the validating 

transaction. This conflict may transform the database into a state of 

inconsistency by producing unexpected results, and conflict resolution has to 

take place to preserve database consistency [57]. 

 A non-serious conflict occurs between a concurrent transaction and the 

validating transaction after the end of the write phase of the validating 

transaction. This conflict does not affect database consistency, and so there is 

no need to perform conflict resolution [57][78][6][64][80].  

5.  Transaction Length and Starvation Problem 

Transaction length indicates the number of data items which need to be accessed during 

the transaction’s execution time. As the length of the transaction increases, the 

probability of conflict increases as well due to the following reasons [77]:  

 A long transaction takes a longer time to execute, which increases the chance 

of becoming conflicted with other concurrently running transactions.  

 A long transaction accesses a larger number of elements, which increases the 

probability of conflicts of these elements with other concurrent transactions.  

High contention and hotspot data items, which are those accessed more 

frequently, also increase the chances of conflict. Therefore, long transactions are likely to 

be repeatedly restarted, which is called starvation. Extra consideration is needed  when 

designing OCC protocols for long transactions in order to have as similar a chance of 

committing as regular ones, [77][57]. A simple solution to the starvation problem is to 
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give priority to starved transactions, or the whole database may be blocked to give a 

chance for a starved transaction to be able to commit [8]. Also, starvation could be 

managed by limiting the number of concurrently running transaction [81][82][83]. Other 

solutions to starvation problems have also been suggested [84][57][85]. 

6.  Back-off Policy 

Restarting conflicted transactions directly may increase the probability of conflict 

occurring again, especially if concurrently running transactions are accessing the same 

hotspot data items. A period of waiting time (back-off) before restarting an aborted 

transaction reduces the probability of the same conflict recurring. However, especially 

in real time systems, a long delay may lead to failure to meet deadlines. Back-off with 

reasonable time allowed for an aborted transaction has shown improvement in some 

concurrency control protocols [86][63][59]. Back-off policy is demonstrated in the 

following example. 

 

 Suppose that four transactions - T1, T2, T3 and T4 - are concurrently running and all 

conflict with each other, as illustrated in Figure 2.7. 

 

 

 

 

 

 

  

                

Figure 2.7 (a)                                                         Figure 2.7 (b) 

             Frequently rolled back scenario                        Transactions backed-off scenario 

In Figure 2.7 (a), transactions T3 and T4 are frequently rolled back before they get the 

chance to commit. This is expensive wasted work and wasted use of resources. 

However, using a back-off policy as illustrated in Figure 2.7 (b), aborted transactions 

are backed off for different appropriate periods of time. This leads to a reduction in the 

number of transaction restarts. 
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7.  Partial Rollback 

Rolling back conflicted transactions increase OCC overheads because they have 

already executed, and the resource usage of the aborted transactions are lost; this is a 

wasted execution. Wasted execution arises if a rolled-back transaction has done most of 

its work and was near to its completion. Partial rollback is a technique which has been 

introduced to reduce the wasted execution caused by restarting a conflicted transaction, 

and involves rolling back only a conflicted part of the conflicted transaction instead of 

rolling back the entire transaction. This consequently reduces the amount of execution  

which needs to be re-performed when a conflict occurs [87]. This can be achieved by 

using checkpoints at the level of the transaction; at these points a transaction can roll 

back and re-establish its execution. Therefore, if a conflict has occurred, a conflicted 

transaction will be partially rolled back from the most recent checkpoint [87][88]. 

8.  Read-only Transaction Considerations 

A read-only transaction, query, is a transaction that does not update the database; in 

other words, it is a transaction whose write set is empty and it has no write phase. For 

example, in a transaction which checks a given balance in a bank, there are no 

withdrawal or deposit operations. Such a transaction is a typical read-only transaction. 

Read-only transactions are very important because they constitute the major proportion 

of typical transactional traffic [57][68][89]. Therefore, giving some flexibility for read-

only transactions can have a great impact on system performance, especially for query 

applications. A simple possible technique is to delay the write phase of an update 

transaction if it conflicts with a read-only transaction. However, this solution might 

produce a long delay in updating transactions. Multiversion is another concept used to 

support read-only transactions, when the system keeps a number of versions of the 

same data items. Therefore, a read-only transaction can always maintain a consistent 

view by reading suitable versions of data items [57]. Further schemes proposed in the 

literature have given special treatment to query transactions [89][90][91][92]. 

9.  Transaction Arrival Rate 

The probability of conflicts between concurrently running transactions will increase as 

the number of them accessing shared data items increases. Therefore, controlling 

transaction arrival rate by minimizing the number of running transactions that retrieve 

the same data will obviously lead to the reduction of conflicts and thus roll-back 
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overheads. This is simply achieved by blocking some of those transactions at the 

beginning of their execution. On the other hand, blocking transactions in real-time 

databases is undesirable. Therefore a good balance has to be struck in order to gain 

optimum performance [93][94]. 

10.  Database Granularity 

Transactions in OCC protocols back up data items in their private workspace in the 

memory.  So, the size of the data will be considered as granular as word, page, or object 

is an important issue concerning the consumption of memory the main space. When a 

smaller data item is used as a granule, more memory space will be saved. A balance 

needs to be found between memory efficiency and database granularity when designing 

OOC protocols [95]. On the other hand, in locking-based concurrency control 

protocols, grouping several data items as one granule could be beneficial in some 

circumstances. For instance, if a transaction needs to access the whole database, then it 

would be better to request one single lock to lock the entire database instead of 

requesting locks for each data item separately, which would consume much more time 

and  resources [96][97].  

11.  Static/Dynamic Data Access Schemes  

In concurrency control, accessing data items can be divided into two schemes: static 

and dynamic data access. 

 In static data access schemes: all required data items will be read at the 

beginning of the transaction’s execution. This gives more flexibility in 

designing a validation mechanism, because all accessed data will be known in 

advance. On the other hand, read data will be held for a longer time, which 

leads to an increase in system contention. [19] [98][99][100] 

 

 Dynamic data access schemes: require data items to be read as they are 

needed during transaction execution. As opposed to static access schemes, 

dynamic schemes reduce data contention because data items are held for 

shorter periods of time. However, dynamic schemes are more complicated 

from the perspective of validation, because the read sets of transactions keep 

changing during transaction execution  [98][99][100]. 
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12.  Silent/Broadcast Commit  

The transaction commit can be divided in to two schemes: silent and broadcast commit. 

 Silent commit scheme: In this scheme, the transaction commit is not advertised 

to other concurrently running transactions. Therefore, the latter continue 

execution until the validation phase, where they become aware of conflicts. 

Delaying the restarting of conflicted transaction leads to an increase in wasted 

transaction executions [98][99][100]. 

 

 Broadcast commit scheme: Conversely, here the, transaction commit is 

advertised to all concurrently running transactions in order to abort conflicted 

transactions earlier and thus reduce wasted executions and available resources. 

The broadcast commit has the advantage that conflicted transactions do not 

continue execution in vain and waste system resources, which consequently 

leads to performance  improvements  [98][99][100]. 

13.  Speculative CC 

Speculative CC techniques use redundant transactions to start as early as possible on an 

alternative schedule if conflict is expected. This redundant transaction is called a 

transaction shadow. If conflict in an original transaction is resolved and the original 

transaction is successfully committed, then the transaction’s shadow must be discarded. 

On the other hand, if the original transaction fails to commit, then the transaction’s 

shadow is adopted instead of restarting the original conflicted transaction from the 

beginning. For example, consider that T1 and T2 are concurrently running transactions 

under a broadcast commit scheme, as illustrated in Figure 2.8. [101] 

 

 

 

 

 

 

 

Figure 2.8 Transaction management  

under an OCC broadcast commit scheme 
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 Figure 2.8 shows a simple scenario of two concurrently running transactions. T2 is 

conflicted with T1 in data item X, and T2 reads an updated value of X made by T1. This 

is unlike the pessimistic approach, which would block T2 until such a conflict is 

resolved, and also unlike an optimistic approach which would ignore the expected 

conflict. A speculative approach would make a copy of T2 (shadow), starting the 

execution at a different time. Both transactions - T2 and T2’s shadow - will be allowed to 

run concurrently at different points of execution, but only one of them is allowed to 

commit. Although both transactions (T2 and its shadow) may see different versions of 

data items in their read operations, both transactions are exact replicas of each other 

because both are performing the same operations.  Figure 2.9 illustrates a scenario when 

T2 reaches the commit time before T1, where T2 successfully commits and T2’s shadow 

aborts. 

 

 

 

 

 

 

 

 

 

Figure 2.9 Schedule with 

 an undeveloped possible conflict. 

 

Figure 2.10 shows another scenario, when T1 reaches the commit first. T2 must 

abort because of a conflict with T1. In this case, T2’s shadow will be adopted and will 

continue execution instead of restarting T2 from the beginning. Speculative concurrency 

control offers a better opportunity for real-time transactions to become committed before 

their deadline expires. However, this advance is not gained at no cost; it requires extra 

memory and processing resources when transactions succeed in committing and other 

shadows are discarded. Speculative concurrency control has been intensively studied in 

the literature [101][102][103][104][105][106][107][108][109][110]. 
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Figure 2.10 Schedule with a developed conflict. 

14.  Deadline-Cognizant   

Timeliness is a primary performance measure in real-time database systems, in contrast 

to conventional database systems which use response time and the throughput as main 

performance measures. The main goal of real-time systems is to minimize the number of 

transactions that cannot meet their deadlines. Therefore, priority is a key factor that 

needs to be taken into account when dealing with scheduling in real-time systems. 

Intensive research studies have been conducted in order to determine the optimal 

deadline-cognizance [6][39][35][38][37][13][36]. Three important policies for deadline-

cognizance are reviewed below. 

 OPT- Sacrifice: When a transaction reaches the validation phase, it starts 

validation operations with all concurrently running transactions. If a conflict is 

detected with at least one transaction with a higher priority, then the validating 

transaction aborts.  Otherwise, the validating transaction proceeds to commit 

and all conflicted transactions must restart. The goal of this strategy is to help 

higher priority conflicted transactions to meet their deadlines [11][111][112] 

[113].  However, two problems arise with the OPT- sacrifice policy: 

 

1. There is a potential problem of wasted work, which results from 

aborting some conflicted transactions on behalf of the validating 

transaction, then aborting the validation transaction itself afterwards. 
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the aborted validating transaction is unnecessarily and the work that 

has been made by these aborted transactions is wasted work [111][11]. 

 

2. A problem of mutual restarts arises when priority reversal is allowed, 

based on a dynamic transaction priority assignment scheme [114]. For 

instance, if transaction T1 restarts on behalf of T2, because T2’s 

priority is currently higher than that of T1, then T2 at a later time 

restarts on behalf of T1, because T1’s priority is now higher than that 

of T2. This fluctuation in transaction priority assignment causes the 

pair of transactions to continue aborting each other, which affects the 

progress of both transactions and consequently degrades the whole 

system performance.[113][6][11] 

 

 OPT-Wait: This scheme is an updated version of OPT-sacrifice, with the 

addition of waiting mechanism. When the transaction reaches the validation 

phase, it starts validating with concurrently running transactions. If conflict 

with a higher priority transaction is detected, the validating transaction does 

not restart immediately as in OPT-sacrifice; instead it is put on hold, waiting 

for a higher priority transaction to commit. The waiting transaction 

consequently restarts if a conflicted higher priority transaction successfully 

commits. But if the latter is aborted, then the waiting transaction will be 

allowed to proceed. OPT-wait has several advantages over OPT-sacrifice, 

including the problem of wasted work as mentioned earlier, because restarts 

occur only at the commit time of a higher priority transaction. In addition, the 

problem of mutual restarts is eliminated, because fluctuations of transaction 

priority do not lead to transactions aborting [111][11][6]. On the other hand, 

OPT-wait also has some negative features which can be summarized as 

follows. 

1. When a waiting transaction successfully commits after a period of waiting 

time, it will abort all lower priority conflicting transactions at a later time; 

this will increase the chance of failure of these transactions in meeting 

their deadlines [11][111]. 
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2. Waiting transactions may develop new conflicts, consequently leading to 

an increase in the number of restarts; this may become significant if the 

data contention rate is high [11][111]. 

 No Sacrifice: in this policy, which is also  known as  the never abort 

validating (NAV) transaction strategy [85], a validating transaction guaranteed 

to commit when it reaches the validation phase mean that all conflicted 

transactions have to be aborted [6]. Although, priority is not considered in this 

policy, it has great benefits as summarized next 

1. A validating transaction has already used all the resources it needs and 

has done all the work. Therefore, aborting a validating transaction will 

be very expensive in terms of resource use and computational costs. 

The NAV strategy guarantees that the resources utilized by a 

validating transaction are not lost [85]. 

2. NAV eliminates the wasted work which results from aborting some 

conflicted transactions on behalf of a validating transaction which 

aborts later, thus avoiding considerable performance degradation [111] 

[11]. 

3. A no sacrifice policy prevents problems related to priority-driven 

scheduling, such as mutual restarts,  the starving of low priority 

transactions, and the extra cost of priority assignment and 

management[6]. 

     No sacrifice policy has been evaluated in previous work [115][113] [116] and the 

results reported were generally relatively good. It outperforms other deadline-cognizant 

polices under a variety of operating conditions [6]. 

 

2.5.3 Data Delivery Choice  

Data is delivered between clients and the server by three different methods: pull-based , 

push-based and hybrid delivery [117][118]. 

 

 



2. Background and Related Work 

 

38 

 

1 Pull-based Delivery 

In pull-based delivery, data transmission between clients and the server is based on a 

request/response structure.  When a client requires a data item not existing in its local 

cache, it sends a request to the server for such an item. In response, when the server 

receives the data request, it retrieves the data item and transmits it to the requesting 

client. This approach is illustrated in Figure 2.11.  

 

 

 

 

 

Figure 2.11 Pull-based delivery [117] 

 
The pull-based approach works well if network disconnections are rare and the number 

of clients of whom the server manages to respond to their requests within the expected 

time intervals is relatively limited. In contrast, pull-based approaches have noticeable 

scalability limitations, which are summarised as follows: 

 Increasing numbers of clients leads to an increased number of requests sent to 

the server, which can exceed the connection limit. 

 

 Increasing numbers of requests transmitted to the server can rapidly lead to a 

bottleneck if the request rate exceeds the upper limit of the server’s service rate. 

 

 The client requires a backchannel to make requests to the server since 

asymmetric environments with uni-directional communication are not suitable. 

This increases the energy consumption needed for upstream communication 

between clients and the server, which significantly drains battery energy in 

battery-powered devices because sending data consumes more energy than 

receiving it. 

 

These limitations mean that push-based delivery is not suitable in mobile computing 

environments where network disconnections frequently occur either due to interference 
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or in order to save battery energy. Moreover, the number of mobile clients who the 

server is required to serve may be relatively enormous. 

 

2 Push-based Delivery 

Here, server is repeatedly cycling through the entire database and broadcasting it to all 

clients. A client needing to instigate a read transaction simply waits for the relevant 

piece of data to come around in the broadcast cycle, and there is thus no need for the 

client to transmit a read request to the server. Equally, the server does not need to 

respond to read requests from clients, as it never receives any, as illustrated in Figure 

2.12. 

 

 

 

 

 

Figure 2.12 Push-based delivery  [117] 
 

 

This approach is particularly applicable when a large number of clients must read a 

relatively small database.  For read transactions, the push-based approach is expandable 

to any number of clients with no degradation of performance. Complications arise when 

write transactions need to be incorporated [119][120]. The following advantages that 

can be gained from a push-based delivery approach. 

 

 Scalability: The load in the network is reduced and becomes independent of the 

number of clients, which gives a greater ability to scale since the server can 

support more clients before overloading.  

 

 Lower bandwidth utilization: avoiding the upstream bandwidth from the client to 

the server makes this approach attractive for asymmetric environments. 

 

 Energy efficiency: preventing requests sent by clients to servers has a big impact 

in saving battery energy in battery-powered devices.  

 

Push-based delivery approaches have fallen out of favour in recent decades as 

efforts were devoted towards synchronous clouds and server farms using pull-based 
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delivery approaches. The rapid developments in computing and communication 

landscapes, and the availability of high-bandwidth links has led to a reevaluation of the 

ways data should be delivered between computers. This is particularly important given 

the innovations in information-feed applications such as traffic information systems, 

stock market monitors, live audio and video telecasts, battlefield applications, news 

delivery, video-on-demand and other entertainment delivery applications [117], which 

usually deal with enormous numbers of clients. In addition, the increased use of mobile 

applications running on portable smart devices has brought attention back to push-based 

delivery approaches.  

 

3 Hybrid Approaches 

These are combinations of pull and push approaches, and are also known as interleaved-

push-and-pull (IIP) approaches [121]. The server regularly broadcasts hot data (that 

frequently used by clients), based on the push approach, and cold data needs to be 

requested by clients via a back-channel, based on the pull approach. The hybrid 

approach represent a compromise between the various advantages and disadvantages of 

previous data delivery approaches [121]. 

 

2.5.4 Broadcast Datacycle Approach 

Broadcast datacycle for asymmetric communication environments continuously 

broadcast all data items in the database to all connected mobile devices, using single or 

multiple wireless channels. Clients listen to this broadcast stream and access the 

required data as it is broadcast, if it does not exist in the local memory or disk.  

Therefore, the number of mobile devices does not affect access time, since it is read-

only. Read transactions are expandable to any number of clients with no degradation of 

performance. Which are outweighing write transactions in many applications in a 

wireless environment. For example, information-feed applications such as an online 

stock-trading application involves far more transactions resulting from a user checking 

or tracking stock prices than those instigated by a user purchasing or selling stock. The 

broadcast datacycle approach [120] is an established solution for this type of 

application, and it has recently been the subject of further work to establish it as a viable 

option for mobile environments [122][123][124][125]. 

  In contrast, conventional concurrency control techniques unsuitable, for many 

reasons [126]. For example, using a concurrency control protocol based on locking 



2. Background and Related Work 

 

41 

 

techniques could lead to the server being swamped with lock requests. Similarly, for 

timestamp-based techniques, communication between clients and the server is needed 

for every read operation in order to keep track of both read and write timestamps; this 

can be unwieldy in broadcast environments. Optimistic concurrency control is found to 

be more convenient in such environments.  

 

2.5.5 Indexing on the Air  

Indexing is a technique used to speed up searching operations. It is widely used in 

traditional database systems and storage.  However, in a broadcasting Datacycle 

approach, air channels support only sequential access. Therefore, clients would need to 

scan all of the data blocks in order to find the desired data item. Without indexing, half 

of the broadcast datacycle will be scanned on average to reach the desired data item, as 

illustrated in Figure 2.13.  
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Figure 2.13 Broadcast datacycle with no indexing [127] 

 

This is inefficient in terms of the energy consumption of mobile devices.  However if 

the client knows in advance where the desired data is located in the broadcast datacycle, 

a CPU could switch to doze mode for most of the time, and only stay active when the 

desired data is expected to arrive. This would lead to considerable energy savings 

because a CPU in active mode consumes much more energy than in doze mode. Two 

important parameters need to be considered when studying indexing in a broadcast 

environment: 

 Access Time: this is the average time from the point that a client requests data 

until the point that the client downloads that data. 
 

 Tuning Time: this is the time spent by the client listening to the channel and 

waiting for desired data. Listening to the channel needs the client to be in 

active mode, consuming more energy.   

Three indexing strategies are summarised below: tune_opt indexing, (1,m) indexing and 

distributed indexing. These can be used in broadcast data cycle environments in order to 

improve performance and  save energy [127][128][129]. 



2. Background and Related Work 

 

42 

 

  Tune_opt indexing 

The index is broadcast at the beginning of every broadcast cycle, as depicted in Figure 

2.14. A client tuning in to the channel at the beginning of the next broadcast needs to be 

able to read the index in order to locate the position of the desired data. This strategy 

provides the longest access time, since the client must wait until the beginning of the 

following broadcast even if the desired data is in front of it [127][128][129]. 
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Figure 2.14 Broadcast datacycle in tune_opt strategy [127] 

 

 (1,m) indexing  

Here the index is broadcast in m time in each broadcast datacycle, and each data block 

has information about the next index allocation, as seen in Figure 2.15. Therefore, when 

a client starts tuning into the current block, it reads the information concerning the 

nearest index allocation. Then it switches to doze mode until the beginning of the next 

index. From the next index, the client reads the relevant data location, and then goes 

into doze mode again until the data of interest has arrived. The (1,m) indexing strategy 

offers great energy savings but has to send the entire index several times which 

increases the broadcast datacycle length [127]. 
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Figure 2.15 Broadcast datacycle in (1,m) strategy [127] 

 

Distributed indexing 

Distributed indexing partially replicates the index with data segments in each datacycle. 

Only a portion of the index attached at the front of each data segment indexes. Unlike 

Index 

Data 
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(1,m) indexing strategy, which attaches the whole index to the front of each data 

segment. This obviously reduces the datacycle length generated by the (1,m) indexing 

strategy. The distributed indexing strategy makes energy savings similar to the (1,m) 

indexing strategy, and it outperforms the (1,m) strategy in terms of access time, 

especially if the size of the index segment is large [127][128]. Many studies on indexing 

strategies  have been published [130][131][132][133][134][135][136][137][138][139]. 

 

2.5.6 Broadcast Disks 

A broadcast disk is a broadcast datacycle technique in which the entire database content 

is repeatedly and continually broadcast from the server to clients. Clients read the 

required data from the broadcast channel as a disk. This is different from a conventional 

broadcast datacycle in the sense that data is broadcast with different disks of varying 

speed and size. Data stored in the faster disks will be broadcast more frequently than 

that stored in slower disks. In a conventional flat approach, as illustrated in Figure 2.16, 

the expected waiting time for any data item is the same, approximately half the 

broadcast period  [119][117].  

 

               

                                                    

                                                             

 

Figure 2.16 Flat broadcast approach 

 

 However, in real-life, data is not accessed uniformly, and a subset of data (hot spots) 

will be accessed more frequently. A server can speculate on the frequency of access to 

data by clients monitoring the previous history of a client’s activity or by generating a 

summary of the client’s intended future use. The server can then broadcast different 

items at different frequencies in order to satisfy client demand. A simple scenario with 

different broadcast programs for three data sets (in this case pages) is illustrated in 

Figure 2.17. Program (a) is a flat broadcast, in which each page is broadcast only once 

Server 

A D C B A D C B A D C B 
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in each broadcast cycle. Program (b) is a skewed broadcast in which page A is broadcast 

twice sequentially, with B and C broadcast once each time cycle. Program (c) is a multi-

disk broadcast in which page A is broadcast twice as often as D and C, but interspersed 

between them. The prosperity of program (c) is equivalent, as if the page A was stored 

on a disk spinning in double speed as the disk in which pages B and C are existing 

[140][117]. Broadcast disks is attractive for information-feed applications such as traffic 

information systems, stock market monitors, live audio and video telecasts, battlefield 

applications, news delivery, video-on-demand and other entertainment delivery 

applications [117], which usually deal with enormous numbers of clients. 

 

 

 

                  

                     a - Flat broadcast                                             b- Skewed broadcast  

 
 

 
 

 

c- Multi-disk broadcast 

 

Figure 2.17 Three different broadcast programs [117] 

 

 

Broadcast Disks Generation Program Example 

A broadcast disks generation program from a previous study [119] is demonstrated in 

Figure 2.18, which  apportions all of the data to three disks. Data in each disk is 

partitioned into chunks, and the chunks in different disks can be of different sizes.  Data 

in the first disk will be broadcast more frequently than the data in the other disks (with 

double the frequency of data in the second disk and four times the frequency of data in 

the third disk). Each datacycle, or major cycle, contains four minor cycles, and each 

minor cycle contains one chunk of each disk. It is important to note that, adding more 

pages to faster disks results in more delay to the pages on the slower disks. Therefore, it 

is preferred for fast disks to have fewer pages than slower disks. 
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                     C1,0    C2,0      C2,1         C3,0                   C3,1                     C3,2               C3,3 
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Figure 2.18 Broadcast disks generation program [119] 

 

 

2.5.7 Fault-tolerance in Broadcast Disks 

Data transmission in wireless environments is not always safe; signals can be affected 

by noise on the air, which may corrupt the data transmitted. If some desired broadcast 

data is corrupted, the client has to wait for the next broadcast data cycle to receive it 

correctly. This causes further delay to data transmission, which may be tolerable in 

conventional applications, but increasing latency in real-time applications may lead to 

deadline being missed. Some ordinary error detection techniques such as cyclic 

redundant code can be used to overcome data transmission failure [141]. However, this 

technique is a relatively simple to implement, but other advanced techniques [142] can 

distinguish between corruption occurring in the data itself and corruption occurring in 

the index buckets along the path of the search. The proposed techniques can overcome 

some types of corruption to indexes and continue searching in the current broadcast data 

cycle, instead of starting the search from scratch in the next broadcast data cycle, this 

maintain considerably lower access time. Various further error detection techniques 

have been introduced in the literature to deal with data transmission failures in 

broadcast environments they can be found in [143][144][145][146]. 
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2.5.8 Forward and Backward OCC (FBOCC) 

The forward and backward OCC (FBOCC) is a distributed concurrency control 

algorithm suitable for governing transactions in wireless broadcast environments 

[147][148]. It consists of three validation stages, the first of which involves partial 

backward validation at a client, and the second and third stages involve forward 

validation and final partial backward validation at the server.  The three validation 

stages are described in detail in the following sections. 

 

 Partial backward validation compares the write set of committed transactions at 

the server with the read set of running mobile transactions at the client at the 

beginning of every datacycle. These include both read-only and updated mobile 

transactions. Any conflicted mobile transaction will be aborted. Successfully 

validated read-only mobile transactions will proceed to commit locally. 

Successfully validated mobile updated transactions are sent to the server to be 

validated globally.   

 

 The pseudo-code for partial backward validation at the client is presented below: 

 

Algorithm 3   Partial backward validation 
 

1:           PartialBackwardValidation(Tm) { 

2:                  if ((CD(Ci) ∩ RS(Tm)) ≠ {}) then 

3:                          abort(Tm) 

4:                  else 

5:                         record the value of Ci,       

6:                         Tm is allowed to continue; 

7:                   endif 

8:               } 

RS – read set and WS – write set. 

Tm – transaction generates and executes at the clients.                        

CD(Ci) – the set of data items which was updated.          

 

 Forward validation is performed at the server between the write set of validating 

transactions at the server (this could be a server transaction or a mobile update 

transaction submitted by a mobile client for global validation), and the read set 
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of transactions at the server (which includes transactions generated and executed 

at the server, and update transactions generated and executed at the clients, then 

sent for global validation at the server). Conflicted transactions at the server will 

be aborted and restarted at the server, and conflicted mobile update transactions 

will be aborted and restarted at the client. If the validating transaction is 

successfully validated then it commits, and its write set will be added to the 

control information table, to be broadcast in the following broadcast cycle.  
 

 The pseudo-code for forward validation is presented bellow using the same notation         

  as explained in the section on partial backward validation. 

 

Algorithm 4   Forward validation  
 

1:           validate(Tv){ 

2:                    if (Tv is a mobile update transaction) then 

3:                            FinalValidation (Tv);    

4:                            If (return fail )then 

5:                                   Abort (Tv); exit;  

6:                             End if 

7:                      End if 

8:                      For each Tj (j= 1,2,.....,n) { 

9:                             if ((WS(Tv) ∩ RS(Tj)) ≠ {}) then 

10:                                     abort (Tj); 

11:                            endif 

12:                      } 

13:              Commit WS(Tv) to database; 

14:                    CD(Ci) = CD(Ci) U WS(Tv); 

15            } 

RS – read set and WS – write set. 

CD(Ci) – the set of data items which was updated.          

 

   Final partial backward validation has to be performed at the server for mobile 

update transactions before starting forward validation. This final partial 

backward validation is needed in cases of existing update transactions 

committed at the server since the last backward validation performed at the 
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client. Final validation results are also broadcast with a control information 

table, as acknowledgement for mobile clients. 

  

The pseudo-code for final validation using the same notation explained in the   

   section on partial backward validation is presented below: 

 

 

Algorithm 5   Final validation  

 

1:           FinalValidation(Tm){ 

2:                 For each Ti ( i= 1,2,...,n) { 

3:                       If (RS(Tm) ∩ WS(Ti) ≠ {}) then   

4:                                   Return fail;   

5:                  }               

6:                  Return success;        

15           } 

 

 

Example of interaction between server and mobile client 

 

Figure 2.19 illustrates the schedule of the following set of transactions: 

Transactions at the server:      U1: r (a) w (a)           U5: r (q) w (q)     U6: r(y) w(y) 

Transaction at mobile client:   Q2: r (a) r (b) r (c)    Q3: r (p) r (q)       U4: r (x) r (y) w (y)  

From Figure 3.19 the following execution scenario is concluded: 

 

 After Q2 has read data items a and b from the broadcast cycle, Ci-1, a is updated 

by U1 before Q2 reads c, which is caught by partial backward validation. 

Therefore Q2 aborts. 

 

 Q3 successfully passes partial backward validation and commits. 

 

 U4 passes the partial backward validation in broadcast cycle Ci and is then sent 

to the server for validation (final and forward validation).  Because Y has been 

updated by U6 before U4 reaches the validation point, U4 fails to pass the final 

validation and aborts. 

 

 U1, U5 and U6 successfully pass the forward validation and commit.  
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Figure 2.19 Transaction execution schedule [147] 

 

 

As a result, all committed transactions based on FBOCC are serializable. FBOCC also 

minimizes the use of the uplink channel. This is because, firstly, validated and 

committed read-only transactions are locally at clients, and these constitute the majority 

of mobile transactions. Secondly, update transactions are validated and aborted locally 

at clients, which means that update transactions are more likely to pass the validation 

and write phases at the server. The FBOCC is suitable for concurrency control in 

wireless broadcast environments for many reasons [126] and is widely deployed 

[147][59][61][60][63].  

 

2.5.9 Discussion  

Serializability is a standard correctness criterion for many mobile applications such as 

mobile stock trading, and the inability to maintain it may lead to serious financial 

consequences [149][150]. However, maintaining serializability in mobile environments 

is facing new challenges due to the resource constraints of mobile computing devices 

and the nature of its use anytime and anywhere. Access efficiency and power limitations 

are the two major challenges in mobile wireless environments. Limited upstream 

communication capacity from a mobile device to the server makes conventional 

concurrency control techniques inappropriate for such environments. Using upstream 

Time 

Client 

Server 

  CD (ci) = {a} CD (ci+1) = {q} 

                      r2 (a)  r2 (b) r3 (p) r4(x) r3 (q)  c3   r4(y)  w4(y) 

Ci-1      r1 (a)   w1 (a) c1   Ci    r5 (q)  w5 (q)  c5  ci+1   r6(y)  w6(y)    c6 

Wireless medium 

Q2 fails the partial backward validation 

because CD (Ci) ∩ CRS (Q2) ≠   {} 

U4 fails the final validation 

because 

WS (U6) ∩ RS (U4) ≠ {} 

Ci; RS (U4); WS (U4)       

     and pre-written     

           values 



2. Background and Related Work 

 

50 

 

communication is also very expensive in terms of battery power consumption 

[147][151]. In addition, disconnection issues mean that mobile devices may struggle to 

cope because of undesired signal interference, or when users seek to reduce energy 

consumption [127]. Furthermore, the cost of validation overhead which, required to be 

relatively low in order to appropriate the mobile resources constraints.  These 

challenges lead conventional concurrency control approaches to be less applicable to 

mobile environments [59][63][126]. The following discussion addressing the weakness 

of the conventional OCC techniques regarding these challenges. 

 

Locking-based concurrency control request locks for each data item read in a 

transaction, including read-only transactions in order to detect data conflicts. In mobile 

environments such techniques would require extensive use of client to server 

communication and would overload the server with lock/unlock requests 

[126][59][63][152]. 

 

 The timestamp based OCC has a relatively expensive validation cost at triple at  

forward and backward oriented validation [64]. Timestamp management also involves 

other large overheads, since each data access requires its timestamp to be updated 

[64][24]. It is therefore infeasible in mobile environments since it requires client to 

server communication, which leads to high levels of inefficiency in terms of resource 

utilization and energy use [126][150][59][126]. 

 

 OCC based on serialization graph testing is very expensive in terms of validation 

costs. In practice it is very expensive to maintain the serialization graphs of concurrently 

running transactions, and further overhead needed for cycle checking which adds even 

more cost and energy drain [19][152][153]. 

 

 Forward validation schemes [56] are a good concurrency control approach for 

mobile environments for many reasons [126], and are widely deployed in wireless 

broadcast environments [147][59][60][63]. It involves relatively low-cost validation, at 

one-third of the timestamp validation cost [7]. In addition, it has the ability to be 

combined with virtual execution environments to reduce the rollback overhead, which is 

a battery-friendly advantage [18][17]. It is therefore argued here that the forward 
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validation scheme is a suitable OCC approach for governing transactions operating in 

mobile environments.  

Conventional OCC protocols were originally designed to work in conventional 

database environments. Mobile environments, however, have different features, which 

mean that conventional OCC protocols are not suitable for mobile environments. 

Therefore, there is still gap in concurrency control for mobile environments need to be 

covered in order to satisfy its requirement. 

 

The contribution made in this thesis involves a novel departure from existing 

techniques by redesigning forward validation schemes in order to make them more 

appropriate for use in mobile environments. In the proposed new approach, the order of 

the traditional transactional phases sequence read-validation-write [8] is changed. The 

write phase now follows the read phase with the validation phase occurring after the 

write phase [16]. The combination of the new order of transactional phases with virtual 

execution can provide a solution appropriate to the constraints of mobile devices and 

mobile broadcast environments. Chapters 3 and 4 demonstrate that the new approach is 

capable of improving overall system performance and the likelihood that transactions 

will complete within their specified deadlines [17][18].  

 

2.6 Summary  

Background information in previous research relevant to this thesis is reviewed in this 

chapter. It introduces databases and showed how their consistency may interfere 

concurrent execution. It is explained how database consistency can be maintained by 

enforcing serializable schedules. In addition, various database types are introduced, 

including centralized, distributed, mobile and real-time databases. Furthermore, caching 

and rerun policies used to enhance system performance are explained. Following this, 

the main existing OCC techniques are reviewed, and significant aspects of OCC are 

investigated to identify the strengths and weakness of existing OCC protocols. Further 

topics regarding mobile environments are covered, including data delivery methods, 

broadcast datacycles and forward and backward OCC. The following two chapters 

introduce the contributions made by this thesis. 
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Chapter 3  

 

The Read-Write-Validate Approach 

 

 

3.1 Introduction  

Millions of smartphones and tablet devices are being used for increasingly complex 

tasks. As mobile applications become achievable and practical for use as stand-alone 

applications or to access remote applications. multiple applications run in parallel on 

mobile devices, raising issues of sharing resources such as processors, memory access, 

solid state disk access and network connections [154]. In addition, many mobile 

applications require asymmetrical channels between clients and the server, whereby the 

frequency of read transactions requested by the client is significantly higher than the 

number of write transactions. Taking the example of a stock trading application; there 

are far more transactions involving a read-only checking of stock prices, compared to 

the number of transactions involving sales or other events requiring update transactions 

(that is, users typically check share prices far more than they buy shares). A common 

implementation of this type of application involves the use of a broadcast disk protocol 

[119], whereby the database is repeatedly broadcast to the clients in its entirety. This 

approach means that there is no requirement for the client to send a read request to the 

server; the client simply waits for the requested piece of data to appear in the cycled 

transmission, and the server does not have to respond to individual client requests to 

send data. Clearly, this greatly reduces the amount of traffic on the network, and the 

number of requests which the server must process. This type of approach is particularly 

useful when a relatively small database must be read by numerous clients. 

 

Conventional OCC is a well-understood solution in this type of situation [8]. 

However, these protocols place a strain on the mobile device’s battery due to the cost of 

validation and of duplicating information retrieval associated with aborted transactions. 

In addition, they tend to involve the heavy use of the network in both directions to 

request and validate read transactions, which renders the approach less applicable to 

mobile networks [126] due to limited uplink bandwidth and battery life. Forward 
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validation schemes [56] provide relatively cheaper validation costs [64]. They have 

been extended so as to be suitable for  mobile broadcast environments [147], and have 

been widely adopted in subsequent research [59][63][61][155][60][156]. Therefore, a 

novel OCC approach that employ forward validation schemes to address the real-time 

requirements of mobile devices and mobile broadcast environments is proposed in this 

thesis.  

The proposed approach is a combination of virtual execution policy and a novel 

transactional OCC phase’s order in which the write phase occurs before the validation 

phase. When transactions are in a rerun state, we can offset their validation until after 

the write phase. There are important benefits of this approach,  for example writes may 

become visible to transactions in the read phase earlier, affording more likelihood of 

reading up-to-date data from disk. Also, overall blocking is reduced (in the original 

OCC protocols, transactions in the read phase need to be blocked as a transaction 

commits changes to the database - such blocking is not required in the proposed 

approach, as out-of-date reads are caught by the later validation step). The proposed 

approach is explored in this chapter in two contexts. Firstly, it is show that 

implementing it on the mobile devices themselves can improve contention problems due 

to shared resources on that device. Secondly, it is further show that the proposed 

protocol represents an efficient implementation for client-server models based on a 

broadcast datacycle for a wireless network, which is now receiving renewed interest due 

to its potential for energy efficiency in the field of mobile communications [122]. The 

results show that with the proposed approach the number of client-server transactions 

which miss their deadlines due to concurrency issues is reduced. The number of 

transactions requiring restarts is also reduced, so less energy is used in retransmitting 

data or in accessing a resource a second time.  

 

This chapter introduces the proposed Read-Write-Validation approach, and 

discusses the correctness justification for reordering the transactional phases. Then, an 

extensive discussion of the advantages and disadvantages of the Read-Write-Validation 

approach are presented, and additional enhancements of the approach are introduced. 

Then, the Read-Write-Validation protocol for governing transactions operating on 

databases residing on mobile devices themselves is explained. Finally, the distributed 

Read-Write-Validation protocol for governing transactions operating in client-server 

models based on wireless broadcast environment is presented.  
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3.2 Read-Write-Validate Approach  

The proposed approach fundamentally changes the order of  the traditional transactional 

phases in conventional OCC [8]. The write phase now follows the read phase, with the 

validation phase occurring afterwards as illustrated in Figure 3.1. Such the transaction 

now commits after the write phase finishes and before validation phase starts. 

 

 

 

 
 

Figure 3.1:  Read-Write-Validate approach phases. 

 

Both write and validation phases are collectively considered a single critical section, 

allowing only one transaction to execute in either phase [8][56]. The validation phase 

executes based on a forward validation scheme [56]. Validation with this scheme is 

achieved by identifying the intersection between the validating transaction’s write set 

WS (Tv) and every read set of all concurrently running transactions RS (Ti): 

 

WS (Tv) ∩ RS (Ti) ≠ {} 

 

If the above holds true (i.e., there is intersection), then a conflict has occurred and a 

resolution policy is needed in order to resolve it. In this approach, The never abort 

validating (NAV) transactions strategy [85] is the only conflict resolution policy that is 

applied. This guarantees that a transaction entering the critical section will commit. This 

requires transactions conflicting with the validating transaction to be aborted. NAV is 

important in the sense that the validating transaction has used the resource and 

completed its execution; it will be very expensive to abort such transaction. In addition, 

NAV gains in importance in the proposed approach because the write phase occurs 

before the validation phase. Therefore, data will be updated and accessible by other 

transactions at the time of validation, which makes aborting validating transactions 

more expensive and more complicated. The new transactional phase’s ordering is 

combined with the virtual execution technique to allow for much greater performance. 

The combination with virtual execution technique will be described in detail in section 

3.6 Read-Write-Validate enhancement.  
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3.3 Justifying the Read-Write-Validate Approach  

Using a critical section around the write and validation phases, the ordering becomes 

trivial as system correctness is guaranteed (as serial schedule) in either scheme. 

However, without using forward validation coupled with the never abort validating 

(NAV) transactions strategy, it would be more costly to employ the Read-Write-

Validate approach; here if a validating transaction is aborted it is expensive to undo the 

changes made during the write phase. This would also result in an increased number of 

conflicts due to other transactions having accessed the same data needing to be aborted. 

Another advantage of this strategy of NAV transactions is that the resources utilized by 

a validating transaction are not wasted [85]. 

 

In, addition, real-time centralized transactional databases need to handle 

transactions with timing constraint in the form of deadlines. Factors such as system 

contention have a direct impact on satisfying transactional deadlines; such factors occur 

during validation. Therefore, it is acknowledged that, in the traditional OCC phase 

ordering, the validation step introduces a degree of non-determinism with regards to 

how long writes will take to become visible in the database (delaying entering the write 

phase).  The validation phase is required to ensure system correctness with regards to 

transactions that are still executing, rather than providing a direct benefit to the 

validating transaction itself. If the write phase occurs before the validation phase then 

non-deterministic timing constraints of the validation phase are removed, allowing a 

transaction to commit sooner.  

 

3.4 Advantages of the Read-Write-Validate Approach 

The Read-Write-Validation approach provides substantial advantages leading to the 

achievement of significant improvements in system performance. These advantages 

including the minimization of transaction lifespan , eliminating the blocking of 

concurrent transactions, newly starting transactions are never blocked and updates are 

visible earlier. The advantages achieved by the Read-Write-Validate approach are 

described in the following sections. 



 3 The Read-Write-Validate  

 

56 

 

3.4.1 Transaction Lifespan  Minimized 

Transaction lifespan is the transaction’s execution time, which is the time between the 

transaction beginning its execution and committing. In conventional OCC approaches, 

the lifespan of transaction T includes the non-deterministic timing of the validation 

phase period, which is the period of validating other concurrently running transactions 

in order to ensure system correctness rather than providing direct benefit to validating 

transaction itself.  The additional non-deterministic timing of the validation phase in 

conventional OCC is illustrated in Figure 3.2 by the line marked in red. 

 

 

 

 

 

Figure 3.2 Transaction 

 lifespan in conventional OCC  

 

In the Read-Write-Validate Approach, the non-deterministic timing of the validation 

phase period is removed from the lifespan of the transaction, as shown in Figure 3.3. 

The validation phase of transaction T executes after it commits. This is an important 

benefit in real-time systems where the validation phase introduces non-deterministic 

timing constraints, which may effect on satisfying transactional deadlines. 

 

 

 

 

 

Figure 3.3 Transaction 

 lifespan in Read-Write-Validate approach 
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3.4.2 Blocking of Concurrent Transactions Eliminated 

 

In the conventional OCC approach, non-conflicted transactions executing in the read 

phase will eventually be blocked while the validating transaction executes in the 

validation and write phases, in order to be prevented from entering a conflict state after 

validation. If non-conflicted concurrently running transactions are allowed to continue 

execution after they have been validated, they may potentially enter a conflicted state. 

This arises if a value read by non-conflicted transactions in the read phase is shared with 

the write set of a validating transaction. As a result, non-conflicted concurrently running 

transactions must be blocked after having been validated, until the validating transaction 

commits, in order to guarantee database consistency. Although non-conflicted 

transactions constitute the majority of transactions contentious workload in OCC 

transactional systems, blocking them continually is considered to be a great weakness of 

conventional OCC. 

 

In the Read-Write-Validate approach, non-conflicted transactions are no longer 

blocked from progressing, and yet database consistency is still maintained, since 

transactions waiting to enter the critical section are not considered blocked.  

Concurrently running transactions are allowed to continue execution while the 

validating transaction execute in both the validating and write phases. If concurrently 

running transactions enter a conflict state while the validating transaction is writing, 

such a conflict will eventually be detected in the deferred validation phase. If non-

conflicted concurrently running transactions do not enter a conflict state while the 

validating transaction is writing, such transactions will successfully pass validation 

along  with the validating transaction, and continue execution without affecting database 

consistency. The following two scenarios illustrate how the blocking of concurrently 

running transactions is removed in the Read-Write-Validate approach. 

 

  Conventional OCC Scenario 

Figure 3.4 shows a scenario where three concurrent transactions, T1, T2 and T3 

are running. T1 finishes the read phase before T2 and T3 and consequently starts 

validation against T2 and T3. T2 is a conflicted transaction because it is reading 

the shared data x and y, and this conflict is detected and T2 is aborted. The non-
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conflicted transaction T3 successfully passes validation, but T3 has to be 

blocked while T1 is completing the rest of its validation phase along with other 

concurrent transactions and its entire write phase in order to ensure that T3 will 

not enter an inconsistent state after having been validated against T1. T3 will 

resume execution after T1 commits and leaves the critical section. Such 

blocking is important when transaction read sets are dynamic, (which means that 

it is not known in advance when the transaction starts. Therefore, the scheduler 

has to block all non-conflicted concurrently running transactions after they have 

been validated, to make sure that none of them will enter a state of 

inconsistency.  

 

 

 

 

 

 

 

 

 

Figure 3.4 The occurrence of  

blocking in the conventional OCC approach 

 

 

 Read-Write-Validate Approach Scenario  

Figure 3.5 shows the same scenario running three concurrent transactions T1, T2 

and T3. The validating transaction T1 starts executing its write phase before the 

validation phase, based on the Read-Write-Validation approach. Both T2 and T3 

continue execution while the validating transaction writes. When T1 starts the 

validation phase, the conflicted transaction T2 will be detected and aborted. If 

T3 enters a conflict state while T1 performs the write phase, that is not a 

problem, since such a conflict will be detected by validation afterwards. 

Otherwise, the non-conflicted transaction T3 will successfully validate against 
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the validating transaction T1, and it continues execution without affecting 

database consistency. Therefore, non-conflicted transactions like T3 will benefit 

from not being blocked during T1’s validation and write phase period.  

  

 

 

 

 

 

 

 

Figure 3.5 Blocking eliminated 

 in Read-Write-Validate approach 

 

3.4.3   Newly Starting Transactions Never Blocked  

Newly starting transactions are those, which may start execution while another 

transaction is executing in the validation or write phases.  

 

In the conventional OCC approach, such transactions will be temporally delayed 

until the validating transaction commits. This is trivial for the following reasons: 

 If the newly starting transaction starts while the validating transaction is 

executing in the validation phase, it will not be in conflict with the validating 

transaction because it has only just started and its read set will be empty. 

However, it has to be blocked to make sure that it will not become involved in a 

state of inconsistency, as described in the previous section. 

 

 If the newly starting transaction starts while the validating transaction is 

exacting in the write phase, obviously this transaction will not have any chance 

to be validated in the future against the currently validating transaction which 

has passed the validation phase already. Therefore, newly starting transactions 
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must be blocked until the current validating transaction finishes the whole 

updating process and commits, in order to guarantee database consistency. 

The Read-Write-Validate approach has the advantage of allowing newly starting 

transactions to continue execution straightway without affecting database consistency. 

This advantage is explained in the following. 

 If the newly starting transaction starts execution while the validating transaction 

running in the validation phase, which takes place after the write phase, at this 

point the database will already be updated. Therefore, newly starting 

transactions will never enter a conflicted state, and no validation is required for 

such new transactions. 

 

  If the newly starting transaction starts execution while the current validating 

transaction is running in the write phase, the newly starting transaction 

continues execution and causes no problem. If the newly starting transaction 

was a conflicting transaction, that is also not a problem because such a conflict 

will be detected later at the validation phase and the conflicted transaction will 

be aborted. If the newly starting transaction was actually a non-conflicting 

transaction, which is in fact expected to constitute the majority of the 

contentious workload in OCC environments, then such a transaction will pass 

the validation phase successfully and benefits from not being blocked while the 

current validating transaction is in its write and validation phases. 

 

The following two scenarios illustrate how newly starting transactions gain these 

benefits from the proposed Read-Write-Validate approach: 

 

 Newly Starting Transactions in the Conventional OCC Scenario 

Figure 3.6 illustrates a scenario where three concurrent transactions, T1, T2 and 

T3 are executing based on conventional OCC. T1 entered the validation phase 

before T2 and T3 were started. T2 started execution while T1 was executing in 

the validation phase. Unfortunately, T2 has to be blocked, as described earlier, 

until T1 commits in order to prevent T2 from entering a state of inconsistency.  
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Figure 3.6 Blocing in newly starting  

transactions in the conventional OCC approach 

 

T3 started execution while T1was executing in the write phase, and it 

also has to be blocked until T1 commits to ensure consistency. If T3 continued 

execution during T1’s write phase, and T3 comes into conflict with it, such a 

conflict will not be detected because T1 has already completed the validation 

phase.  

 

 Newly Starting Transactions in Read-Write-Validate Approach Scenario  

 

Figure 3.7 illustrates an example similar to that discussed in the previous 

section, with an additional transaction T4 and using the Read-Write-Validate 

approach. T1 entered the validation phase before T2, T3 and T4 started. T2 and 

T3 started execution while T1 was still executing in the write phase. As opposed 

to conventional OCC, T2 and T3 will not be blocked, and will continue 

execution during T1’s write phase. Then, at T1’s validation phase which occurs 

afterward, there will be two possibilities as illustrated below: 

 

1. If the newly starting transaction is non-conflicting, such as transaction 

T2 and which constitutes the majority of the contentious workload, it 

benefits from not being blocked during T1’s write phase because it will 

successfully pass validation against the currently validating transaction 

T1 and therefore continue execution.  
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2. If the newly starting transaction is a conflicting transaction such as 

transaction T3, it will be detected in T1’s validation phase and will abort. 

 

 

 

 

 

 

 

 

 

Figure 3.7 New transactions are never 

 blocked in in Read-Write-Validate approach 

 

Transaction T4, which started during T1’s validation phase, continues 

execution without the need for validation, because all of T1’s updates have 

already been transferred to the database. Therefore, T4 will never have the 

chance to become conflicted with T1.  

 

3.4.4 Earlier Visible Updates  

In the Read-Write-Validation approach, writes become visible earlier, affording more 

likelihood of reading up-to-date data and thus reducing the opportunity for conflicts to 

occur. This is because the reordering of the validation and write phases guarantees that 

all new updates are made before the validation phase starts. The following two scenarios 

running two transactions, T1 and T2, based on the conventional OCC approach and the 

Read-Write-Validate approach clarify this issue. 

 

 Late Visible Updates in  Conventional OCC Scenario  

Figure 3.8 illustrates two concurrently running transactions, T1 and T2. T1 

entered the validation phased before T2. T2 was blocked while T1 executed the 
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validation and write phases. After T1 commits, T2 resumes execution and reads 

the new T1 updates of x,y after the blocking period which is equal to 

approximately T1’s validation and write phases.  

 

 

 

 

 

 

 

 

 

Figure 3.8 Late visible  

updates in conventional OCC approach 

 

 Earlier Visible Updates in Read-Write-Validation Approach Scenario  
 

Figure 3.9 shows the same scenario of concurrent transactions T1 and T2 using 

the Read-Write-validation approach. T2 will not be blocked, as described earlier 

in previous sections, while T1 is executing its write and validation phases. T2 

continues execution and reads the new T1 updates of x,y while T1 is still 

running in the validation phase. T2 is not considered to be in conflict with T1 

even if it could read T1’s updates during its validation phase because T1 is 

already committed by that time, and the validation performed by T1 is needed in 

order to keep other concurrently running transactions consistent. Therefore, the 

time of T2’s execution during T1’s write phase and part of T1’s validation phase 

benefits T2 which reaches the operation of reading x,y earlier. This time is 

illustrated in T2’s execution time in the green segment. The fact that T2 does not 

need to wait for the rest of the T1’s validation to be finished (illustrated in T2’s 

execution time in the blue segment), together gives T2 the ability to see and use 

T1’s new updates earlier. 

 

 

Read Validation Write 
T1 

Read 

T2 

write x,y 

read x,y 

Time 



 3 The Read-Write-Validate  

 

64 

 

 

 

 

 

 

 

 

Figure 3.9 Earlier visible updates 

 in the Read-Write-Validate approach 

 

3.5 Disadvantages of Read-Write-Validate Approach 

The advantages of the Read-Write-Validate approach described in the previous section 

are not without cost. There is a price to pay in order to gain these advantages. The cost 

can be summarised in two points. There is a longer wasted execution and a critical 

section constraint, these are discussed below. 

3.5.1 Longer wasted execution 

If a conflicted transaction aborts as soon as the conflict is detected in the validation 

phase, then placing validation phase before the write phase as in the conventional 

approach is beneficial in the sense that conflict detection will occur earlier. In other 

words, there is no need to wait until the entire write phase period is completed to 

identify conflicts. This minimises the amount of wasted work resulting from that 

conflicted transaction, compared to aborting a conflicted transaction after the write 

phase execution period as in the Read-Write-Validate approach. The following two 

scenarios illustrate this problem. 

 Wasted Execution in Conventional OCC Approach 

Figure 3.10 shows the scenario of two concurrently running transactions,T1 and 

T2. T1 entered the validation phase and started validating against T2. Due to a 

conflict with T1, T2 aborts. The amount of work which has been done by T2 is 

Read Validation Write 

T1 

write x,y 

Read 
Write 

T2 

read  x,y 

Time 

T2 validated 

at this time  

Validation 



 3 The Read-Write-Validate  

 

65 

 

considered to be a wasted execution (Marked by the blue segment in T2’s 

execution line).   

 

 

 

 

 

 

 

Figure 3.10 Short period of wasted 

 execution in the conventional OCC approach 

 

 Read-Write-Validation Approach Scenario  

The phase reordering in the Read-Write-Validate approach means the validation 

phase occurs after the write phase. Therefore, conflicted transactions will 

continue execution in the entire period of the write phase before they are 

detected. This consequently increases the amount of wasted execution of 

conflicted transactions, which are shown by the blue and red segments in T2’s 

execution line in Figure 3.11. Phase reordering benefits non-conflicted 

transactions, which constitute the majority of the contentious overload in OCC 

main assumption. In contrast, it a has negative impact in case of conflicted 

transactions, because it gives them the chance to continue execution for a longer 

period before being aborted. 

 

 

 

 

 

 

Figure 3.11 Longer period of wasted  

work in the Read-Write-Validate approach  
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However, this potential disadvantage of the Read-Write-Validate approach is 

solved by combining Read-Write-Validate with virtual execution, which is discussed 

later in this chapter in section 3.6. 

 

3.5.2 Critical Section Constraint  

The critical section constraint of the write and validation phases is considered to be a 

scalability drawback of the Read-Write-Validate approach, which is inherited from the 

original forward and backward validation approaches. It is needed to ensure database 

consistency. If more than one transaction enters the write or validation phase at the 

same time, a state of inconsistency might occur. However, this constraint is also solved  

in the distributed version of the Read-Write-Validate Approach introduced in section 

3.9. 
 

3.6 Read-Write-Validation Enhancement 

The virtual execution approach described in section 2.4.2 is applicable with the Read-

Write-Validate approach. The combination of both approaches is beneficial and fixes 

the problem of longer period of wasted execution discussed previously in section 3.5.1. 

Furthermore, it adds two important advantages to the Read-Write-Validate approach: 

reduces the risk of conflict and improves energy efficiency. These additional advantages 

are described in the following. 

 

 

3.6.1 Energy Efficiency Improvement 

Virtual execution allows those transactions that have been aborted to re-execute using 

in-memory values as opposed to reading directly from the persistent store. Cached 

values from the write sets of committed transactions together with read sets from 

currently executing transactions populate a buffer local to the transaction management 

system.  This improves the proposed approach because accessing a conventional hard 

disk drive is expensive in terms of power usage, as the disk must attain read speed, and 

the appropriate data sector be found. Even solid-state drives are significantly more 

expensive to access compared to the local memory. Clearly, a reduction in the 
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frequency of transactions that must be restart will reduce the number of times a disk is 

accessed, leading to a reduction in energy usage. 

 

3.6.2 Reduction of Conflict Risk   

In virtual execution, rerun transactions are quicker than those in their initial run, as there 

is no access to the persistent store. So, transactions in rerun become ready to enter the 

critical section for the write and validation phases in a shorter time, which increases the 

probability of transaction commitment and obviously reduce the risk of being conflicted 

with other concurrently running transactions  

 

3.6.3 Wasted Execution Elimination 

In the virtual execution environment, a conflicted transaction in the first run does not 

abort directly even if a conflict is detected (as explained previously in section 2.4.2,). 

Instead, it continues execution to prefetch all of the read set data to the main memory. In 

this sense, the problem of increasing wasted execution discussed earlier in section 3.5.1, 

which results from deferring the validation phase until after the write phase, no longer 

exists. In fact, there is no wasted execution in the first phase because such an execution 

will be used to prefetch the read set data. Conflicted transactions only restart in the 

rerun phase. The time at which conflict is detected (whether early or late detection) then 

makes no difference. Such a benefit is illustrated in following scenario. 

 

Figure 3.12 shows two concurrently running transactions T1 and T2, based on 

the Read-Write-Validate approach combined with virtual execution. T1 entered the 

write and validation phases before T2.  T1 detected a conflict with T2 while T2 was still 

executing in the read phase. As opposed to the previous scenarios, T2 will not be 

aborted even if it is a conflicted transaction. T2 continues execution until the end of the 

read phase to prefetch all T2’s read set data, then it aborts and it rerun using the in-

memory data prefetched by T2 and the write set of T1. Therefore, first phase execution 

is not considered wasted work and the conflicted detection time makes no difference in 

the virtual execution environment.  
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Figure 3.12 Wasted executions no longer 

 exist in the virtual execution environment. 

 

3.7 Coping with System Failures  

System failure occurs in a situation when the state of transactions is lost. For instance, 

power loss may cause a complete loss of the main memory content, or software errors 

may overwrite parts of the data in the main memory. In such system failures, the 

following recovery techniques are performed to ensure database consistency: 

 

 Restart all transactions that have not yet been committed from scratch. 

Therefore, they will read from the database directly, as if they were in the initial 

run.  

 If a transaction was executing in the validation phase, then this transaction has 

already committed and written the new updates to the database. Therefore, there 

is no need to execute the validation phase again because concurrently running 

transactions will be restarting, reading the updated data directly from the 

database. 

 If a transaction was executing in the write phase, the recovery of such a 

transaction will use the logging techniques described in a previous study [34].    

 

3.8 Read-Write-Validation Protocol  

The Read-Write-Validate protocol explained in this section is a straightforward 

implementation of the Read-Write-Validate approach. Its aim is to govern concurrent 

transactions running on the mobile devices themselves, in order to improve issues of 
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contention with shared resources on that device, such as the solid-state disk. The Read-

Write-Validate protocol and the pseudo-code of the validation algorithm are illustrated 

below.  

 

3.8.1 Protocol Description 

A transaction that reaches the end of the read phase enters a pre-commit set (PCS). One 

member of the PCS may be chosen by the scheduler to enter the write phase. The 

earliest deadline policy [35] is employed to give priority to transactions that are closest 

to expiration. 

 

Transactions that either are in the read phase or are members of the PCS may be 

aborted and rerun if they are found to be in conflict with a validating transaction. The 

validating transaction is guaranteed to commit. Therefore, any other transactions that 

are in conflict with it must be rerun. A transaction that is in its initial run will complete 

the read phase, regardless of whether or not it is in conflict, and enter the PCS. 

Allowing conflicted transactions to complete the read phase improves performance 

because the persistent data store is only accessed once per read operation [53]. A 

transaction that is rerun will have a local copy of all the required data for it to attempt 

execution again. 

 

A forward validation scheme is employed which, during the validation phase of 

Tv, checks if there is an intersection between the write set WS (Tv) with any read set 

RS (Ti) for all running transactions.  

WS (Tv) ∩ RS (Ti) ≠ {} 

This includes transactions executing in the read phase and members of the PCS. If an 

intersection (i.e., a conflict) is found, then: 

 If the conflicting transaction Ti is in the initial run, it is allowed to proceed to the 

read phase and is marked for rerun. Ti enters the PCS upon completing the read 

phase but is not eligible to enter the write phase. At this point, Ti is updated with 

the values from other transactions it has conflicted with and will be rerun. 
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 If Ti is in rerun then it is aborted. At this point, RS (Ti) is updated with WS 

(Tv), so that it can be rerun again with the updated read set.  

Newly started transactions may start the read phase at any time. The correctness of 

system execution is ensured as follows: 

 If a transaction enters the read phase while the validating transaction is writing, 

there is the possibility of reading inconsistent data. This will be detected when 

the validating transaction finishes the write phase and enters the validation 

phase.  

 

 If a transaction enters the read phase while the validating transaction is 

validating, then any reads are made against the updated values from the 

persistent store (as validation occurs after the write phase). Any transactions 

entering the read phase at this point do not need to be validated against the 

currently validating transaction.  

3.8.2 Pseudo-code 

Pseudo-code illustrating the execution of the validation phase is presented next. 

 

 Conventions used in the pseudo-code 

 Active Transactions (AC) – This is the set of all currently running transactions. 

It includes transactions in the read phase and those waiting to enter the write and 

validation phases. 

 

 Conflicted Set (CS) – CS (Ti) contains the updated read values from any 

validating transactions that Ti has conflicted with. Each item (Ok) in CS (Ti) is 

cached until RS (Ti) can be updated. These values are cached rather than the 

read set of Ti being directly update to make it clear that the writes would not be 

automatically updated. If RS (Ti) are chosen to update directly, RS (Ti) can be 

updated when Ti has finished the initial run or, if it is in rerun, when it is 

aborted. Upon updating, CS (Ti) is discarded.  

 

The assumption is that a transaction executing in the read phase reads the 

required data and performs any required computation. Similarly, a transaction in the 
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write phase updates any values that were written to during its read phase. The scheduler 

handles rerunning identified transactions along with updating the read sets for 

conflicting transactions. 

 The pseudo-code of the validation algorithm is presented below: 

 

Algorithm 6 Validation phase 

 

1:        for each Ti in AC do 

2:             if ((WS(Tv) ∩ RS(Ti)) ≠ {}) then 

3:                  for each Ok in (WS(Tv) ∩ RS(Ti)) do 

4:                         update Ok in CS(Ti); 

5:                  end for 

6:                  if Ti in initial run then 

7:                        mark Ti for rerun; 

8:                  else 

9:                        update Ti with CS(Ti), rerun Ti; 

10:                end if 

11:            end if 

12:      end for 

13:      discard WS(Tv); 

 

3.9 Distributed Read-Write-Validate Protocol  

Section 3.8 showed that this approach is applicable to OCC on resource-constrained 

devices such as smart-phones. Now, this work is extended to the wireless broadcast 

datacycle model for mobile network applications. Earlier studies on transaction 

processing in wireless environments focused on read-only transactions 

[89][157][158][159], which is applicable to conventional information services such as 

weather and traffic information. However, update transactions must be considered as 

well in complex mobile applications such as mobile e-commerce [152]. Therefore, the 

Distributed Read-Write-Validate Protocol aims to improve the overall performance of 

the system, including update transactions. The results in chapter 4 show that, with this 

technique, the overall performance of the system is increased and the number of client-

server transactions which miss their deadline due to concurrency issues is reduced [18].  
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The validation process in the distributed Read-Write-Validate Protocol is 

performed in two stages: the validation stage at the client and the validation stage at the 

server. Both validation stages are described below.  

 

3.9.1 Validation Stage at Client  

The validation stage at the client is performed using partial backward validation for all 

client transactions. All running transactions at the clients (i.e. both read-only and update 

transactions) will be validated at the beginning of every broadcast cycle by performing 

backward validation with the write set of the committed transactions at the server.  

Conflicted transactions will be marked for rerun, but will continue execution until the 

end of the read phase using the rerun policy. When a conflicted transaction reaches the 

end of the read phase, it simply updates the conflicted data items in memory and is 

rerun without accessing the persistent store. Previous studies [160][54] have shown that  

optimistic concurrency control performs better if transactions are allowed to reach the 

end of their read phase before being aborted. This is intuitive, since transactions that 

have been aborted early would not have retrieved all the required data to be ready 

locally for the rerun phase. Read-only transactions which are not conflicted can proceed 

and commit locally at the client. Non conflicted update transactions will be sent to the 

server to be globally validated. 

 

 Partial Backward Validation Pseudo-code 

Conflicted Set (CS) – Given CS(Tm), this contains the updated values from Ci and that 

Tm has been found to conflict with. Each item (Ok) in CS(Tm) is cached until RS(Tm) 

can be updated with these updated values. These values are chosen to be cached rather 

than directly updating the read set of Tm in order to make it clear that the writes would 

not be automatically updated. If RS(Tm) ) are chosen to be updated directly, RS(Tm) can 

be updated when Tm has finished the initial run or, if it is in rerun, when it is aborted. 

Upon updating, CS(Tm) is discarded.  

 

It is assumed that a transaction which is executing in the read phase reads the 

required data and performs any necessary computation. Similarly, a transaction which is 

in the write phase will update any values that were written to during its read phase. The 
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scheduler will handle rerunning transactions that have been marked for rerun, along 

with the process of updating the read sets for conflicting transactions.  

 

The pseudo-code for partial backward validation is presented below: 

 

Algorithm 7   Partial backward validation 

 

1:        PartialBackwardValidation(Tm){ 

2:               if ((ControlInfo(Ci) ∩ RS(Tm)) ≠ {}) then 

3:                    for each Ok in (ControlInfo(Ci) ∩ RS(Tm))  

4:                            update Ok in CS(Tm); 

5:                     if Tm in initial run then 

6:                               mark Tm for rerun; 

7:                      else 

8:                           update Tm with CS(Tm), rerun Tm; 

9:                     endif 

10:               else 

11:                record the value of Ci, 

12:               endif 

13:      } 

Tm – transaction generates and executes at the clients. 

ControlInfo(Ci) – the set of data items which was updated. 

 

3.9.2 Validation Stage at the Server  

The validation stage at the server is performed in two steps: 1) final partial backward 

validation; 2) Read-Write-Validate. Both steps are described below: 

 

 Final Backward Validation Algorithm  

Update transactions have to perform final backward validation with any possibly 

committed transactions after the update transaction has finished partial validation at the 

client, and before starting Read-Write-Validation validation at the server [147][59]. The 
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results of this validation (to commit or abort) will also be included in the information 

table as acknowledgment to the mobile client for further actions. 

The final backward validation pseudo-code is as follows: 

 

Algorithm 8   Final backward validation 

 

1:        FinalValidation(Tm) { 

2:               For each Ti ( i= 1,2,...,n) { 

3:                     If (RS(Tm) ∩ WS(Ti) ≠ {}) then{   

4:                                Return fail; 

5:                                 Break; 

6:                    }    

7:          } 

 

 Read-Write-Validate Algorithm  

One of the transactions which is ready to commit will be chosen to enter the write phase 

by the scheduler. The earliest deadline policy [35] is employed to give priority to 

transactions that are closest to deadline expiration. Once this transaction has completed 

the write phase, it performs forward validation against all concurrently running 

transactions at the server [16][18]. This includes locally generated transactions and 

update transactions that have been received from clients for global validation. Any 

locally generated conflicted transactions will be marked for rerun. They will continue 

executing until the end of the read phase in the first run as described previously 

[18][15][16]. Conflicted updating mobile transactions will be aborted and rerun again at 

the client. When a validating transaction finishes the write and validation phases, the 

write set will be broadcast in the next broadcast datacycle with the control information 

table. The control information table is a table consisting of the write sets of committed 

transactions at the server (new updates), which is used for partial backward validation at 

clients to keep mobile transactions consistent. In addition, it contains final validation 

results of mobile transactions (performed at the server) as acknowledgement to the 

mobile clients for future actions. In other words, control information table provide 

mobile clients with all information it need to maintain consistency. 
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The pseudo-code for Read-Write-Validate uses the same notation explained in the 

section on partial backward validation, and is presented as follows: 

 

Algorithm 9   Read-Write-Validate  validation 

1:        validate(Tv){ 

2:                 if (Tv is a mobile update transaction) then 

3:                      FinalValidation (Tv);   

4:                      If (returen fail )then         

5:                             Abort (Tv); exit; 

6:                       End if 

7:                  End if 

8:                  Commit WS(Tv) to database; 

9:                  ControlInfo(Ci) = ControlInfo(Ci) U WS(Tv); 

10:                  For each Tj (j= 1,2,.....,n) { 

11:                            if ((WS(Tv) ∩ RS(Tj)) ≠ {}) then 

12:                                      if ( Tj is not mobile update transaction) then 

13:                                                 for each Ok in (WS(Tv) ∩ RS(Tj)) { 

14:                                    update Ok in CS(Tj);} 

15:                        if (Tj in initial run) then 

16:                                                           mark Tj for rerun; 

17:                                           else 

18:                                                           update Tj with CS(Tj), rerun Tj; 

19:                                                 endif 

20:                                       else 

21:                                                      abort (Tj); 

22:                                     endif 

23:                              endif 

24:                    } 

25:           } 
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The proposed approach is orthogonal to the back-off method [59] and OCC for the 

broadcast disk scheme [63]. That is to say, both of these approaches can be combined 

with the proposed approach. 

 

3.10 Summary 

 

This chapter has introduced the Read-Write-Validate approach, which involves a novel 

order of transactional phases in OCC. The proposed approach changes the order of the 

traditional read/validation/write phases; write now follows the read phase with 

validation occurring after the write phase. The combination of the proposed approach 

with virtual execution environments brings substantial benefits for resource-constrained 

devices in terms of performance, including throughput, response time and late 

transaction rate, and also in terms of the efficiency of energy use (battery utilization).  

The proposed approach is explored in this chapter in two contexts: 

 Firstly, the Read-Write-Validate protocol is suitable for mobile devices which are 

resource constrained such as smart phones and tablets. The Read-Write-Validate 

protocol improves issues of contention with shared resources on such devices.  

 

 Secondly, it is then adopted in a distributed Read-Write-Validate protocol, which 

is suitable for client-server models based on a wireless broadcast datacycle which 

are receiving renewed interest due to the potential for increased energy efficiency 

in the field of mobile communications. The distributed Read-Write-Validate 

protocol improves issues of contention in both the server and client devices.  

 

This chapter provides clear explanations of the pseudo code of algorithms to show 

how these protocols work. The next chapter concentrates on the evaluation of the 

proposed approach. It includes descriptions of the simulation tool used for the 

evaluation, the system model and settings implemented in the simulation and the results 

gathered from the simulation experiments. 
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Chapter 4   

 

Evaluation 

 

 

The evaluation reported in this thesis focuses on improvement in performance 

associated with the proposed approach, which includes the assessment of throughput, 

response time and miss rate measurements. Energy efficiency evaluation is beyond the 

scope of the thesis and experiments regarding this will be carried out in further work. In 

this chapter, two simulation implementations are performed in order to evaluate the 

contributions provided by the present research. The first simulation is used to evaluate 

the Read-Write-Validate protocol, and the second simulation evaluates the distributed 

Read-Write-Validate protocol. Both simulations are presented below. 

 

4.1 Read-Write-Validate Protocol 

In this section, a brief introduction of the simulation tool used to evaluate the Read-

Write-validate protocol is presented. Then the simulation model which demonstrates the 

Read-Write-validate protocol and the parameters used in the simulation is explained. 

Finally, the results of a comparison between the Read-Write-validate protocol with the 

new ordering of phases (read-write-validation) and the forward validation protocol with 

conventionally ordered phases (read-validation-write) are presented.  

 

4.1.1 Simulation Tool 

The simulation of the Read-Write-Validate protocol was implemented using SimJave, 

which is a simulation package used to build working models of complex systems. It is a 

public source discrete event toolkit produced by Fred Howell and Ross McNab at the 

Department of Computer Science, University of Edinburgh. SimJave consists of three 

packages: eduni.simjava, eduni.simanim and eduni.simdiag.[161][162] 
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 eduni.simjava: The purpose of this package is implementing standalone java 

simulation code.  

 eduni.simanim: this is integrated with the previous package to visualize the 

simulation by providing a skeleton applet.  

 eduni.simdiag. This package’s purpose is to give Simjava the ability to display 

results in graphic form.  

Building a simulation is based on breaking the systems down into different entities, 

and extending Simjava classes to simulate the behavior of such entities. The 

communication between these entities is performed by scheduling events. 

 

4.1.2 Simulation Model and Setting  

A simulation model is produced that matches closely accepted designs published in the 

literature [64][9]. A few modifications are introduced to this design to accommodate the 

rerun of transactions and the format of the proposed protocol. The model investigates 

different performance characteristics of the proposed protocol compared to those of a 

forward validation approach in a virtual execution environment. A range of results are 

presented highlighting the performance benefits of the Write-Read-validate protocol.  

 

The simulation model consists of a single-site database system operating with a 

shared-memory multiprocessor. It contains two disks and two CPUs with a queue per 

disk and a shared queue for the CPUs. The simulation parameters shown in Table 1 

were taken from previous simulation experiments [64][40][163]. The transaction size 

remains the same for every transaction and the write set is assumed to be a subset of the 

read set. When the transaction performs a read, a 36µs cost is incurred to access the disk 

and a further 1.5µs for processing the page. A write costs 200µs with 36µs to read the 

page beforehand. When the transaction enters the write phase, 200µs per write is 

incurred. The disk access probability is used for a page being present inside the buffer. 

For rerun transactions this probability is zero, as the page is present in memory. The 

validation cost is based on the number of transactions that have to be validated, with a 

unit cost of 0.5µs. Deadline assignment, as described elsewhere [78], is controlled by 

the minimum and maximum slack factor parameters that provide a lower and upper 

bound for a transaction’s slack time. The following formula from the study cited above 

[78] is used when calculating a transaction’s deadline: 

 Deadline = AT + uniform (Minimum Slack, Maximum Slack) * ET 
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In the formula, AT and ET denote arrival and execution times respectively. As 

deadlines must be calculated prior to execution, ET is an estimated value based on 

transaction size, disk access and CPU access, which is equal to 1250 µs when 

transactions execute with no contention. 

 

Parameter Value 

Pages in database    5000 

Transaction size 
12-page read set 

 4-pages write set  

disk access (read) 

disk access (write) 

36   µs 

200 µs 

CPU access 1.5   µs 

disk access probability (1st run)  0.5 

disk access probability (rerun)  0 

Minimum slack factor  2 

Maximum slack factor  8 

Validation cost (per transaction)  0.5 µs 

Transaction arrival rate  1 per 1000 µs  to 1 per 200 µs  

 

Table 1. Simulation parameters used in  

the evaluation of the Read-Write-Validate protocol 

 

Each simulation was performed using the same parameters for 10 random 

number seeds. Each run consisted of 10000 transactions. To allow the system to 
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stabilize, the results from the first few seconds were discarded. Mean values are 

presented for the performance metrics analysed in all experiments.  

 

Two experimental sets are presented.  The first set of experiments was based on 

the assumption that 50% of execution transactions are updating transactions. The 

second set of experiments was based on the assumption that 75% of the execution 

transactions are updating transactions. The percentage of update transactions was 

increased in the second set of experiments in order to determine the behavior of the 

proposed approach in high contention environments. Results from each set of 

experiments include the average response time, throughput and number of late 

transactions. In each graph, results are presented for the two protocols. The first is the 

Read-Write-Validate protocol introduced in the previous chapter using the new ordering 

of phases (read-write-validation) which is termed LV in the figures. The other protocol 

is forward validation using the conventional ordering of read-validation-write phases, 

which is abbreviated to FV in the figures.  

 

4.1.3 Simulation Results 

The results of the series of experiments are presented in the following: 

Experimental set 1:   

The first set of experiments was based on the assumption that 50% of transactions are 

updating transactions, and the results are illustrated in Figures 4.1-4.3. 

 

Figure 4.1 shows throughput for an increasing rate of transactions. Throughput 

is measured as the number of committed transactions, with the commit occurring at the 

end of the write phase for both types of phase ordering. All protocols share a common 

progression when contention is low, and are still manageable using the concurrency 

control protocol. Therefore, as the number of transactions input to the system increase, 

the throughput of the system also is increases. However, when the point is reached 

where the level of contention is too high and cannot be handled by concurrency control, 

throughput starts to degrade. The number of transactions missing their deadline, shown 

in Figure 4.3 also has an impact on throughput as these transactions are aborted and will 

never commit. As the rate increases, the number of late transactions increases as 

throughput falls. Figure 4.1 clearly demonstrates that the proposed approach is more 

efficient in handling high level of contention among transactions, reaching its highest 
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point at about 3600 transactions per second. In comparison, the conventional OCC 

approach reaches the highest point at about only 2000 transactions per second.   

 

Figure 4.2 shows the average response time for an increasing rate of 

transactions. The response time is only for transactions that successfully commit and, as 

the rate of transactions input to the system increases, the response time increases due to 

high contention. The results in figure 4.2 illustrate that when the transaction rate is less 

than 1500 per second, both approaches have the same response time due to low 

contention. Then from 1500 to 5000 transactions per second, the proposed approach has 

a lower response time than the conventional approach. This indicates the effect of the 

advantages gained by the proposed approach, as presented in chapter 3 which, including 

that the cost of the validation phase does not affect the transaction’s commit time and 

also that concurrent running transactions do not suffer temporary blocking when another 

transaction is validating.  Above 5000 transactions per second, the average response 

time is similar for both protocols. The response time stabilizes around 4500 

microseconds due to deadline assignment, where only transactions that have a 

sufficiently large deadline will be able to commit. Regardless of the benefits of the 

proposed approach, transactions at this level of contention expire during the initial run 

of the read phase.  

 

Figure 4.3 shows the percentage of transactions which miss their deadlines. All 

protocols have no late transactions if contention is low and they are still manageable 

using concurrency control. When the point is reached where contention is too high and 

can hardly treated adequately using concurrency control, the late transactions rate starts 

to rise. Figure 4.3 illustrates that both protocols have no late transactions when 

transaction contention is low, as the rate of the transactions being input to the system is 

less than 2000 per second. Then, when the rate rises to more than 2000 transactions per 

second, the rate of late transactions with the conventional OCC protocol start to rise, 

which indicates its inefficiency in coping with such level of contention. However, the 

proposed approach manages higher level of transaction contention, with no rise in late 

transactions until about 3700 transactions per second, which indicates its ability to deal 

with high transaction contention. Then each protocol, at its peak, has a high percentage 

(around 80%) of missed deadlines. With high levels of system contention, transactions 

experience longer delays in accessing the disk and the CPU. This results in transactions 
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being more likely to miss their deadlines during the read phase and never entering the 

validation and write phases.  

 

 

 

Figure 4.1: Throughput 

with 50% of update transactions 

 

 

Figure 4.2 Average response 

 times with 50% of update transactions 

 

 

 

Figure 4.3 Late transactions 

with 50% of update transactions 

 

Experimental set 2:   

The second set of experiments was based on the assumption that 75% of execution 

transactions are updating transactions, and the results are illustrated in Figures 4.4-4.7. 

 

Figure 4.4 shows the throughput for increasing rates of transactions. Both 

protocols share a common progression when contention is low and are still controllable 

by the concurrency control protocol. Thereafter, as the number of transactions input to 

the system increases, the throughput of the system increases. However, when the point 

is reached where contention is too high and can hardly be treated properly by 

concurrency control, the throughput starts to degrade. The numbers of late transactions 
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shown in Figure 4.6 strongly impacts on throughput, since these transactions are aborted 

and will never commit. As the transaction rate increases, the number of late transactions 

increases as throughput decreases. However, Figure 4.4 also shows that the proposed 

approach is efficient in coping with higher contention among transactions. It reaches the 

highest point at about 3400 transactions per second, while conventional OCC approach 

only reaches the highest point at about 2600 transactions per second. The plateau shown 

around 3500 transactions per second represents a bottleneck in the critical section in the 

write and validation phases. This is not considered a problem, since in real systems 

read-only transactions constitute the majority of typical transactional traffic [68][14]. 

The graph still illustrates that the Read-Write-Validate protocol sustains a higher level 

of throughput compared to the other approach. 

 

Figure 4.5 shows the average response time for an increasing rate of 

transactions. As the rate increases, transaction response time increases due to high level 

of contention. The figure demonstrates that at rates less than 1500 transactions per 

second, both approaches have the same response time due to low contention. Then, 

from 1500 until 5000 transactions per second, the proposed approach has a lower 

response time than the conventional approach. This demonstrates the effect of the 

advantages gained by the proposed approach, which include that the cost of the 

validation phase does not affect the transaction’s commit time, and that concurrent 

running transactions do not suffer temporary blocking when another transaction is 

validating. Above 5000 transactions per second, the average response time is similar for 

both protocols. The response time stabilizes at around 4500 microseconds due to 

deadline assignment, where only transactions that have a sufficiently large deadline will 

be able to commit. Regardless of the benefits of the proposed approach, transactions 

expire at this level of contention during the initial run in the read phase. The jump at a 

rate of ~3400 and then a decline at ~3700 is explained by the plateau in Figure 4.4. First 

the response times increase because executing transactions need to wait before they are 

able to enter the write and validation phases, and then response times decline due to the 

increased miss rate at that arrival rate as shown in figure 4.6.  

 

Figure 4.6 shows the rate of late transactions for an increasing rate of 

transactions. Both protocols have no late transactions when contention is lower at 2600 

transactions per second. Then, as the transaction rate increase, the number of late 
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transactions with the conventional OCC protocol starts to sharply rise, which indicates 

its inefficiency in dealing with high contention. However, the proposed approach still 

shows no late transactions until about 3500 transactions per second, which indicates its 

ability in dealing with high contention. Each protocol, at its peak, has a high proportion 

of missed deadlines at around 80%. With a high level of system contention, transactions 

experience longer delays in accessing the disk and the CPU. This results in transactions 

being more likely to miss their deadlines during the read phase and thus never entering 

the validation and write phases. 

 

 

 
 

Figure 4.4 Throughput 

 with 75% of update transactions 

 

Figure 4.5 Average response times  

with 75% of update transactions 

 

 

Figure 4.6 Late transactions 

 with 75% of update transactions 

 

From these previous results, it can be concluded that significant improvements 

in throughput, response time and late transaction rates are gained when deploying the 

proposed approach to control transaction contention on mobile devices. 
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4.2 Distributed Read-Write-Validation Protocol 

This section describes experiments using a simulation model carried out in order to 

evaluate the distributed Read-Write-Validate protocol. The simulation is built using 

Simjava, which is the same simulation tool used in the previous evaluation of the Read-

write-validate protocol (section 4.1). Descriptions of the simulation model and the 

parameters used in the simulation are presented first. Then the results are discussed, 

comparing the performance of the proposed simulated model with that of the simulation 

of the original forward and backward optimistic concurrency control (FBOCC) [147].   

 

4.2.1 Simulation Model and Setting  

A simulation model has been developed that is based on the model presented in 

previous studies [147][63][59][126]. The arrival rate of transaction at the server has 

been increased by a factor of 100x to a value representative of current applications. The 

model was also extended slightly in order to accommodate the rerun of transactions and 

the format of the distributed Read-Write-Validate protocol, in order to conduct a 

meaningful comparison. The model investigates the different performance 

characteristics of the proposed protocol versus FBOCC in a virtual execution 

environment. A range of results is presented which highlight the performance benefits 

of the distributed Read-Write-Validate protocol. The simulation model consists of a 

server, a client, and the broadcast disk structure. Only one client was used in the 

simulation, in order to provide a direct comparison with the existing work, which is 

built upon broadcast disk implementations where the read transaction is carried out 

entirely at the client (so that the number of clients is irrelevant), and where mobile 

update transactions are relatively rare. The server executes the server’s transactions 

based on Read-Write-Validate algorithms. Deadline assignment, as explained elsewhere 

[78] is controlled by the minimum and maximum slack factor parameters that provide a 

lower and upper bound for a transaction’s slack time. The deadline of transactions is 

calculated using the following formula [78]: 

Deadline = AT + uniform (minimum slack factor, maximum slack factor) * ET 

In the formula, AT and ET denote arrival and execution times respectively. Execution 

time is estimated using the values of transaction length, CPU time and disk access 

(mean inter-operation delay in mobile transactions). Table 2 shows the parameters 
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which were used during the simulation experiments. The time unit is in bit-time, which 

is the time to transmit a single bit. For a broadcast bandwidth of 64 kbps, 1 M bit-time 

is equivalent to approximately 15s.    

 

Parameter Value 

Server 

Transaction length  8 

Read operation probability  .5 

Disk access time  1000 

Transaction arrival rate  1 per 20000  to 1 per 1667 

Number of database 300 

Concurrency control protocol   Distributed Read-Write-Validate  OCC 

Priority scheduling  Earliest deadline first 

Mobile clients 

Transaction length  4 

Read operation probability  .5 

Fraction of read only transactions 75 % 

Minimum slack factor  2 (uniformly distributed ) 

Maximum slack factor 8 (uniformly distributed ) 

Mean inter-operation delay 65,536 

Mean inter-transaction delay 131.072 

 

Table 2. Simulation parameters in the 

 evaluation of the distributed Read-Write-Validate protocol 

. 
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4.2.2 Simulation Results 

This section presents the results of a series of experiments performed in order to 

benchmark the distributed Read-Write-Validate protocol. The first set of results 

presented in Figures 4.7-4.9 demonstrates the performance of transactions generated on 

the server side. The second set of results presented in Figures 4.10-4.11 demonstrates 

the performance of transactions generated on the client’s side. In each graph, the results 

are presented of the two protocols: the distributed Read-Write-Validation protocol, 

abbreviated to DLVEW and the forward and backward optimistic concurrency control 

protocol termed to FBOCC.       

 

Results set 1:   

The first set of results show the throughput, average response time and late transaction 

rate of transactions generated and performed at the server, which are concatenated with 

the abbreviation S in Figures 4.7-4.9 below.    

 

Figure 4.7 shows throughput for an increasing rate of transactions at the server. 

Throughput is defined as the number of committed transactions at the server, with the 

commit occurring at the end of the write phase for both phase orderings. All protocols 

share a common progression when levels of contention are low. Then throughput starts 

to degrade when contention reaches a level at about .2 * 10e
-3

 transaction per bit-time in 

the FBOCC approach.  In contrast, the proposed approach is more efficient in handling 

the high contention of transactions at the server, and achieves further than 4 * 10e
-3

 

transaction per bit-time. The numbers of late transactions shown in figure 4.9 affect 

throughput, as these transactions are aborted and will never commit. As the transaction 

rate increases, the number of late transactions increases and throughput drops.  

 

Figure 4.8 shows the average response time for an increasing rate of transactions. 

The response time is only included for transactions that successfully commit. As 

transaction rate increases, the transaction response time increases due to high 

contention. It can be seen that, between 1 * (10^-4) and 6 * (10^-4) transactions per bit-

time, the distributed Read-Write-Validate approach has a lower response time than 

FBOCC. This indicates the effect of the advantages gained by the proposed approach, as 

presented in chapter 3 which, including the advantage of offsetting the non-
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deterministic period of the validation phase before the write phase in the proposed 

approach as well as eliminating the temporary blocking of concurrently running 

transactions when another transaction is validating. The response time stabilizes after 

80000 bit-time due to deadline assignment, where only transactions that have a 

sufficiently large deadline will be able to commit. Regardless of the benefits of the 

proposed protocol, transaction at this level of contention, expire during the initial run in 

the read phase.  

 

 

 

 

Figure 4.7 Throughput at the server 

 

 

 

Figure 4.8 Response time at the server 
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Figure 4.9 Late transactions at the server 

 

Figure 4.9 shows the percentage of late transactions for an increasing rate of 

transactions. All protocols have no late transactions when the arrival rate of server 

transactions is low. Then as this rate increases, the percentage of late transactions also 

increases. Between 2 * (10^-4)  and 6 * (10^-4) transactions per bit-time, the distributed 

Read-Write-Validate protocol has a lower miss rate than FBOCC, which indicates the 

efficiency of the proposed approach when dealing with high contention environments. 
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When the transaction arrival rate exceeds 6 *(10^-4) transactions per bit-time, 

transactions experience longer delays in accessing the disk and the CPU. This results in 

transactions being more likely to miss their deadlines during the read phase and never 

entering the validation and write phases. 

 

The results in figures 4.7-4.9 show that adopting the proposed approach at the server 

can significantly improve server transaction performance, including a throughput 

increase and reductions in both response time and number of late transactions.  

 

Results set 2:   

The second set of results show the throughput and miss rate of mobile transactions 

generated at clients. Response time results were similar for both protocols, which is 

satisfactory given the real-time nature of the application domain where applications 

focus on measuring results of late transactions, which miss their deadlines. Throughput 

is another performance metric strongly connected to the rate of late transactions rate. In 

the following figures, mobile transactions are concatenated with the abbreviation 

MROT indicating mobile read-only transactions, and MUT to indicate mobile update 

transactions. These results are illustrated in Figures 4.10-4.13 below. 

 

Results for Mobile Update Transactions (MUT) 

Mobile update transactions are where the read phase is generated and executed on 

mobile devices. Then, they are transmitted to the server for global validation with other 

transactions on the server. The validation and write phases are performed at the server 

in order to maintain database consistency. Therefore, adopting the proposed approach 

on the server will directly advantage mobile update transactions during their write and 

validation phases. Such an assumption is justified by the results presented in Figures 

4.10-4.11. 

  

 Figure 4.10 shows the throughput of mobile update transactions. All protocols share 

a common progression when contention at the server is low. Then the distributed Read-

Write-Validate protocol demonstrates higher throughput whenever the server 

transaction arrival rate increases over 2 * 10e
-4

 transactions per bit-time. This indicates 

the advantage of executing the validation and write phases of mobile update transactions 

under the Read-Write-Validate approach at the server, indicating that the cost of the 
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validation phase does not affect the transactions commit time. The steady changes in 

overall trends result from the constant rate of the number of mobile transactions 

generated at the mobile device, which is specified in table 2. Only the transaction rate at 

the server increases. 

 

 Figure 4.11 shows the rate of late mobile update transactions. All protocols do have 

some late transactions even when the arrival rate of transactions at the server is low, 

which indicates the effect of the transmission delay between the clients and the server 

for those transactions with insufficient deadlines. However, the late transaction rate with 

the distributed Read-Write-Validate protocol is consistently lower than that with the 

FBOCC protocol at all levels of contention. This demonstrates the advantage of 

executing the validation and write phases of mobile update transactions with the Read-

Write-Validate approach at the server. The constant difference shown in the graph 

related to the fact that the number of mobile transactions generated at the mobile device 

is constant, as stated in table 2. Only the transaction rate at the server increase. 

 

 

 

 
 

Figure 4.10 Throughput  

of update transactions at clients 
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Figure 4.11 Late update 

 transactions at clients 

 

These results illustrated in Figures 4.7-4.9 show that adopting the proposed approach at 

the server will directly influence mobile update transactions by increasing throughput 

and reducing the rate of late transactions in the system. This means that the distributed 

Read-Write-Validate protocol is more appropriate for real-time mobile applications.  
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Results for Mobile Read-only Transactions (MROT) 

Read-only transactions are those which do not update the database; in other words, they 

are transactions whose write set is empty and have no write phase. Such transactions do 

not affect database consistency. Therefore, mobile read-only transactions generate, 

execute, and commit locally on mobile devices without needing to be transmitted to the 

server for global validation. As a result, adopting the proposed approach on the server 

will not directly affect these transactions at the clients, as they are validated locally by 

the backward validation algorithm in both protocols. This is indicated by the results 

shown in Figures 4.12-4.13, which present the throughput and late transaction rates of 

mobile read-only transactions. Both figures demonstrate that both the distributed Read-

Write-Validate protocol and the FBOCC protocol give similar results as expected. 

However, the read-only transactions in all protocols will be affected to some extend by 

the increasing rate of database updates at the server, since the new updates will be 

constantly broadcast and used for  the validation of mobile read-only transactions at the 

clients. Therefore, as the frequency of database updates at the server increases, the 

conflict rate among read-only mobile transactions also increases, which consequently 

leads to increased number of transactions aborting. This explains the overall downward 

trend of throughput in figure 4.12 and the overall upward trend of late transactions in 

Figure 4.13. The steady changes in the trends result from the constant rate of the 

number of mobile transactions generated at the mobile device as specified in table 2. 

Only the transaction rate at the server is increased. 
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Figure 4.12 Throughput of read-only 

transactions at clients 
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Figure 4.13 late read-only  

transactions at clients 
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4.3 Summary 

This chapter describes a set of experiments including both centralised and distributed 

versions of the Read-Write-Validate protocols. These experiments were performed in 

order to benchmark the Read-Write-Validate approach proposed in this thesis compared 

to the conventional OCC protocol. The measurements of the performance of the 

protocols were taken as throughput, response time and the late transaction rate.  The 

analysis of the results gathered from the simulation experiments can be summarised as 

follows: 

 

 Significant improvements in throughput, response times and the timeliness of 

the overall system are achieved when the Read-Write-Validate approach is 

deployed to control access to shared data on mobile devices. 

 

 Significant improvements in throughput, response time and the timeliness of the 

overall system are achieved at the server, without disrupting mobile transactions 

running at the clients, when the Read-Write-Validate approach is deployed in 

server-client models based on wireless broadcast environments.  

 

 Observable improvements are found in the number of late mobile update 

transactions that miss their deadline due to concurrency issues, and there is a 

clear increase in mobile update transactions throughput as well when the Read-

Write-Validate approach is deployed on client-server models based on wireless 

broadcast environments. In contrast, read-only mobile transactions running at 

mobile devices show a similar trend in both protocols regardless of the 

enhancements made on the server side.  
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Chapter 5 

 

Conclusions and Future Work 

 

5.1 Introduction 

Transactions which are restarted due to being aborted after a conflict with another 

transaction must access the persistent store more frequently. Each restart represents a 

drain on time, resources and energy. Virtual execution allows the read phase of a 

conflicted transaction to complete, and stores the read data locally for reuse when the 

transaction is aborted. This thesis puts forward the argument that in a virtual 

environment it is fruitful to bring the write phase forward so that it occurs earlier than 

the validation phase. This approach, while seemingly counter-intuitive, improves both 

the throughput and the miss rate of the overall system at the server and clients. Further 

to this, the approach also improves the energy efficiency of the system, since more 

transactions meet their deadlines and fewer must be fully restarted since the read phase 

is often not repeated, and therefore the power consumed in repeating data access is 

reduced.  

 

This idea has been explored in the context of multiple applications accessing a 

shared resource on a mobile device [17][16], and in the context of a client-server model 

based on the broadcast datacycle approach for wireless environments [18]. In both 

cases, a simulation of the technique is deployed and used to compare the results with 

those generated using more established FOCC and FBOCC algorithms, where the 

validate phase occurs entirely prior to the write phase. The results show that the 

proposed approach significantly improves throughput and the timeliness of transactions 

achieving their deadlines in the overall system when compared to the conventional 

approaches. 
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5.2 Contributions of the Thesis 

This thesis introduces a novel Read-Write-Validate sequence of transactional phases 

combined with virtual execution to give a new OCC approach. The proposed approach 

is presented in two contexts: 
 
 

 Firstly, it is shown that implementing it on the mobile devices themselves can 

improve issues of contention with shared resources on these devices [16][17]. 

 Secondly, it is further shown that it is an efficient implementation of a client-

server model based on the broadcast datacycle approach for wireless 

environments [18]. 

 

5.2.1 Advantages Gained by the Present Research 

 

The advantages given by the contributions made in this thesis are summarised below:  

 Transaction Lifespan Minimized 

The lifespan of a transaction is the time between it starting and committing. With the 

proposed approaches, the non-deterministic timing of the validation phase period is 

removed from the transactions lifespan. The validation phase of a transaction executes 

after the transaction commits. This is can be an important benefit in real-time systems 

where the validation phase introduces non-deterministic timing constraints that affect 

transactions satisfactorily meeting their deadline. 

 

 The Blocking of Concurrent Transaction is Eliminated 

In the proposed approaches, non-conflicted transactions no longer have to be blocked 

from progressing in order to guarantee database consistency.  Concurrently running 

transactions are allowed to continue execution while the validating transaction executes 

in both validation and write phases. If concurrently running transactions enter into a 

state of conflict while the validating transaction is writing, such a conflict will 

eventually be detected in the deferred validation phase. If concurrently running 

transactions do not enter a conflict state while the validating transaction is writing, such 

transactions will successfully pass validation against the validating transaction, and will 

continue execution, gaining the benefit of not being temporarily blocked during the 

validating transaction’s write and validation phases.  
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 Newly Starting  Transactions are Never Blocked  

Newly starting transactions are those which may start their execution while another 

transaction is executing in the validation or write phases.  With the proposed approaches 

newly starting transactions can continue execution straightaway without affecting 

database consistency. 

- If newly starting transactions start execution while the validating transaction 

is running in the validation phase, which now is occurs after the write phase, 

then at this point the database will already be updated. Therefore, newly 

starting transactions will never enter a conflicted state, and no validation is 

required for such new transactions. 

 

-  If newly starting transactions start execution while the current validating 

transaction running in the write phase, the newly starting transactions simply 

continue their execution. If a newly starting transaction was a conflicting 

transaction, that is also not a problem because such a conflict will be 

detected later at the validation phase and the conflicted transaction will be 

aborted. If the newly starting transaction was a non-conflicting transaction, 

which usually constitute the majority of the contentious workload, it will 

continue execution and benefit from not being blocked during the validating 

transaction’s write and validation phases.  

 

 Earlier Visible Updates  

In the proposed approach, writes become visible to concurrent transactions earlier, 

affording more likelihood of reading up-to-date data and thus reducing the risk of 

conflict. This is because the reordering of the validation and write phases guarantees 

that all new updates are already made before the validation phases start.  This 

consequently reduces the risk of becoming conflicted with other concurrently running 

transactions, which benefits overall system performance. 

 

 Reduction of Conflict Risk   

Rerun transactions are quicker than those in their initial run, since there is no access to 

the persistent store, which makes transactions in rerun become ready to enter the critical 
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section for the write and validation phases in a shorter time. This reduces the risk of 

becoming conflicted with other concurrently running transactions and increases the 

chances of transactions committing. 

  

 Energy Efficiency Improvement 

Virtual execution improves the proposed approach because accessing a conventional 

hard disk drive is expensive in terms of power usage when the disk must attain read 

speed and the appropriate data sector to be found. Even solid-state drives are 

significantly more expensive to access compared to the local memory. Consequently, 

reducing the number of times that a disk is accessed will reduce the energy consumed.  

Clearly, a reduction in the frequency of transactions that must be restarted will reduce 

the number of times a disk is accessed, leading to a reduction in energy usage. 

 

5.3 Future Work  

The contribution of this thesis is to provide a novel departure from existing optimistic 

concurrency control techniques. It opens new doors for future research using this new 

optimistic concurrency control transactional structure. This section provides suggestions 

for interesting future research directions related to the contribution proposed in this 

thesis.  

 

Energy Efficiency Evaluation 

The rerun policy adopted in the proposed approach provides the advantage of 

minimizing persistent store access, which is expensive in terms of power usage. Clearly, 

a reduction in the frequency of transactions that must be rerun lead to a reduction in 

energy usage, which is very important in resource-constrained mobile devices [17]. 

Although this thesis concentrates on evaluating performance improvement, including 

throughput, response time and late transaction rate, future work should be dedicated to 

benchmarking the energy efficiency and battery utilization improvements gained by 

employing the proposed approach in real implementations.  

 

Thick Client Applications 

In traditional client-server models, clients have limited resources (thin clients). Their 

functionality is restricted to sending requests to the server, which is a powerful 
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computer providing the clients with services.  In such models, clients will share the 

resources of the server. As the number of clients increases, the number of service 

requests sent to the server increases, which can lead to server bottlenecks. 

Developments in computing technology such as multi-core processors and memory 

offered at low cost leads to clients having more powerful hardware (thick clients). Thick 

clients are capable of providing rich functionality independent from the server, which 

reduces network latency by caching data at the clients [45].  Running multiple complex 

tasks in parallel on a thick client’s devices raises issues associated with sharing 

resources such as processors, memory access, solid-state disk access and network 

connections. Therefore, a concurrency control technique is needed to take full 

advantage of the thick client’s resources, which is another future research path in which, 

where the proposed approach can be explored.   

 

Software Transactional Memory Considerations 

Software transactional memory is a concurrency control mechanism for controlling 

concurrent access (read/write) to shared memory. Software transactional memory 

inherits similar properties from conventional database transactions. For instance, 

transactions in software transactional memory also preserve some ACID properties such 

as atomicity and isolation [164]. Data consistency needs to be maintained according to a 

correctness criterion such as serializability in a similar way as in conventional 

databases. Some types of software transactional memory are designed with a non-

blocking property, which adopts the ordering of transaction in conventional optimistic 

concurrency control where transactions need to be validated before they are eligible to 

commit [165][164]. It would be well worth investigating the proposed approach with 

the new transactional phase order in non-blocking software transaction memory, in 

order to achieve further advances in the field. 
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