

Transactional Concurrency Control

for Resource Constrained Applications

Kamal Solaiman

A thesis submitted for the degree of

Doctor of Philosophy

School of Computing Science, Newcastle University

May 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Newcastle University eTheses

https://core.ac.uk/display/153778991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that no parts of the material included in this thesis have previously been

submitted by me for a degree at Newcastle University or any other university.

Parts of the work presented in this thesis have been published in the following:

1. K Solaiman, M. Brook, G Ushaw, G. Morgan, ‘ Optimistic Concurrency Control for

Energy Efficiency in the Wireless Environment’, in the 13th International Conference

on Algorithms and Architectures for Parallel Processing (ICA3PP), pp. 115-128,

Springer International Publishing, 2013. (Best paper award)

2. K Solaiman, M. Brook, G. Ushaw, G. Morgan, ‘A Read-Write-Validation Approach

to Optimistic Concurrency Control for Energy Efficiency of Resource-Constrained

Systems’, in the 9th International Wireless Communication and Mobile Computing

Conference (IWCMC), IEEE, pp. 1424-1429, 2013.

3. K. Solaiman and G. Morgan, ‘Later Validation/Earlier Write: Concurrency control

for Resource-Constrained Systems with Real-Time Properties’, in 30
th

 Symposium on

Reliable Distributed Systems Workshops (SRDS), IEEE, PP. 9-12, Oct. 2011.

4. K. Solaiman and G. Morgan, ‘Later Validation/Earlier Write: Concurrency Control

for Resource-Constrained Systems with Real-Time Properties’, Poster Session at

Computing Department, Newcastle University, 2012.

Dedication

I dedicate this thesis to my beloved daughter (Hdel); she was my infinite resource of

love during my PhD study.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr Graham Morgan for his advice and comments

throughout the work on this thesis and for his support and encouragement during the

difficult times I faced in previous years.

I would like to thank my colleagues and friends in the School of Computing Science at

Newcastle University for their positive discussions and comments, especially Dr. Gary

Ushaw, Matthew Brook and Ayad Keshlaf.

Certainly, I would like to thank my beloved father and mother for their continuous

support throughout my study. Finally, I would like to thank my devoted wife for her

support and patience during my research.

Abstract

Transactions have long been used as a mechanism for ensuring the consistency of

databases. Databases, and associated transactional approaches, have always been an

active area of research as different application domains and computing architectures

have placed ever more elaborate requirements on shared data access. As transactions

typically provide consistency at the expense of timeliness (abort/retry) and resource

(duplicate shared data and locking), there has been substantial efforts to limit these two

aspects of transactions while still satisfying application requirements. In environments

where clients are geographically distant from a database the consistency/performance

trade-off becomes acute as any retrieval of data over a network is not only expensive,

but relatively slow compared to co-located client/database systems. Furthermore, for

battery powered clients the increased overhead of transactions can also be viewed as a

significant power overhead. However, for all their drawbacks transactions do provide

the data consistency that is a requirement for many application types. In this Thesis we

explore the solution space related to timely transactional systems for remote clients and

centralised databases with a focus on providing a solution, that, when compared to

other's work in this domain: (a) maintains consistency; (b) lowers latency; (c) improves

throughput. To achieve this we revisit a technique first developed to decrease disk

access times via local caching of state (for aborted transactions) to tackle the problems

prevalent in real-time databases. We demonstrate that such a technique (rerun) allows a

significant change in the typical structure of a transaction (one never before considered,

even in rerun systems). Such a change itself brings significant performance success not

only in the traditional rerun local database solution space, but also in the distributed

solution space. A byproduct of our improvements also, one can argue, brings about a

"greener" solution as less time coupled with improved throughput affords improved

battery life for mobile devices.

v

Contents

List of Tables …………………..……………………………………………….. ix

List of Figures ……………………………………………………………………. x

List of Algorithms ………………………………………………………………. xiii

Glossary …………………………………………………………………………. xiv

1 Introduction 1

1.1 Introduction …………………………………………………………………. 1

 1.2 The Concept of Transaction ………………………………………….. 1

 1.3 Concurrency Control Approaches ………………..………………….. 2

 1.3.1 Pessimistic Concurrency Control ……….…………………. 2

 1.3.2 Optimistic Concurrency Control (OCC) …………………… 3

 1.3.3 Pessimistic vs Optimistic …………………………………... 4

 1.4 Cost of Aborted Transactions ………………………………………... 4

 1.5 Research Contributions...……………………………………………... 5

1.6 Publications …………………………………………………………………... 7

1.7 Thesis Structure ………………………………...…………………………… 8

2 Background and Related Work 9

 2.1 Database Consistency ……….……...………………………………. 9

 2.1.1 Serial Schedule ………….….……………………………… 12

 2.1.2 Serializable Schedule ….………..…..……………………... 12

 2.1.3 non-serializable schedule ………………………………… 13

 2.2 Database Architecture ……..………………………….……………… 13

 2.2.1 Centralized Database ……………………..………………... 13

 2.2.2 Distributed Database …………………..………………….. 14

 2.2.3 Mobile Database …………………………………………... 15

Contents

vi

 2.3 Real-time Database …………………..….………………………….… 16

 2.3.1 Timelines Requirements .…………………………………... 17

 2.3.2 Handling Late Transactions ………………………………... 18

 2.4 General Enhancement ……………………………………….………... 18

 2.4.1 Caching ……………………………………………………... 18

 2.4.2 Virtual Execution …………………………………………... 21

 2.5 Related Work 22

 2.5.1 Optimistic Concurrency Control Techniques ……................... 22

 2.5.2 Aspects of Optimistic Concurrency Control …..…………….. 26

 2.5.3 Data Delivery Choice ……………………………...………… 38

 2.5.4 Broadcast Datacycle Approach …………………….…..…..... 40

 2.5.5 Indexing on the Air …………………………………………... 41

 2.5.6 Broadcast Disks …………………………………………….... 43

 2.5.7 Fault-tolerant in Broadcast Disks …………………….………. 45

 2.5.8 Forward and Backward OCC (FBOCC) ……………...……… 46

 2.5.9 Discussion ……………………………………………………. 49

 2.6 Summary ………………..………………………………………….…. 51

3 The Read-Write-Validate 52

 3.1 Introduction ……………………………………………...…………… 52

 3.2 Read-Write-Validate Approach ……………………………………… 54

 3.3 Justifying Read-Write-Validate Approach ……………………….…….. 55

 3.4 Advantages of Read-Write-Validate Approach …………………...... 55

 3.4.1 Transaction Lifespan Minimized ……………............................... 56

 3.4.2 Blocking of Concurrent Transactions Eliminated ….……………. 57

 3.4.3 Newly Starting Transactions Never Blocked …………………..... 59

 3.4.4 Earlier Visible Updates ………….……………………………….. 62

Contents

vii

 3.5 Disadvantages of Read-Write-Validate Approach …………….……….. 64

 3.5.1 Longer Wasted Execution ……………………………….………. 64

 3.5.2 Critical Section Constraint ……………………………………… 66

 3.6 Read-Write-Validation Enhancement ………………………….……….. 66

 3.6.1 Energy Efficiency Improvement ……………………….……….. 66

 3.6.2 Reduction of Conflict Risk ……………………………….……… 67

 3.6.3 Wasted Execution Elimination ……………………………..……. 67

 3.7 Coping with System Failures …………………………………………….. 68

 3.8 Read-Write-Validate Protocol …………………………………………. 68

 3.8.1 Protocol Description ……………………………………………… 69

 3.8.2 Pseudo-code ………………………………………………………. 70

 3.9 Distributed Read-Write-Validate Protocol …………………….………. 71

 3.9.1 Validation Stage at Client ………………………….……..……… 72

 3.9.2 Validation Stage at the Server ………………………..…………... 73

 3.10 Summary …………………………………………………..……...……. 76

4 Evaluation 77

 4.1 Read-Write-Validate Protocol ………………………………..………….. 77

 4.1.1 Simulation Tool ……………………………………..…………. 77

 4.1.2 Simulation Model and Setting ……………………..…………… 78

 4.1.3 Simulation Results ………………………………….………….. 80

 4.2 Distributed Read-Write-Validation Protocol ……………….………….... 85

 4.2.1 Simulation Model and Setting …………………….……………. 85

 4.2.2 Simulation Results ……………………………..………………... 87

Contents

viii

 4.3 Summary ……………………………………….…………………….. 92

5 Conclusion and Future Work 93

 5.1 Introduction …………………………………………………………… 93

 5.2 Contributions of the Thesis …………………………………………… 94

 5.2.1 Advantages Gained by the present research …………..…….. 94

 5.3 Future Work ……………………………….……………………….... 96

References 98

ix

List of Tables

1 Simulation Parameters of Read-Write-Validation Protocol 80

2 Simulation Parameters of Distributed Read-Write-Validation Protocol .. 87

x

List of Figures

1.1 OCC algorithms phases ….….…………………………………………... 4

2.1 Lost update anomaly …………………………………………………….. 10

2.2 Inconsistent retrievals ……...…………………………………………… 11

2.3 Model of centralized database architecture in a network …………….…. 14

2.4 Model of distributed database architecture …………………………….... 15

2.5 (a) First run in virtual executions environments ……………………………. 22

2.5(b) Rerun in virtual execution environments ………………………………... 22

2.6 Illustrates serious and non-serious conflicts …..…………………………. 28

2.7 (a) Frequently rolled back scenario ……..…………………………………... 30

2.7 (b) Transactions backed off scenario …….………………………………….. 30

2.8 Transactions management under an OCC broadcast commit scheme ...…. 34

2.9 Schedule with an undeveloped possible conflict ...……………………… 34

2.10 Schedule with a developed conflict ……………………………………… 35

2.11 Pull-based delivery...…………………………………………………… 39

2.12 Push-based delivery …………………………..………………………. 39

2.13 Broadcast datacycle with no indexing …………………………………. 41

2.14 Broadcast datacycle in tune_opt strategy ……………………………... 42

2.15 Broadcast datacycle in (1,m) strategy …………………………………... 43

2.16 Flat broadcast approach …………………………………………………. 44

2.17 Three different broadcast programs ……………………………………... 44

2.18 Broadcast program generation ………………………………………….. 45

2.19 Transaction execution schedule ………………………………………… 49

3.1 Read-Write-Validate approach phases ………………..……………….. 55

3.2 Transaction lifespan in conventional OCC ……………………………… 57

3.3 Transaction lifespan in Read-Write-Validate OCC ……………………... 57

List of Figures

xii

3.4 The occurrence of blocking in the conventional OCC approach...……… 59

3.5 Blocking eliminated in Read-Write-Validate approach …..……………. 60

3.6
Blocking in newly starting transactions in the conventional OCC

approach …………………………………………………………………

62

3.7 New transactions are never blocked in Read-Write-Validate approach … 63

3.8 Late visible updates in the conventional OCC approach ……………..… 64

3.9 Earlier visible updates in the Read-Write-Validate approach ………....... 65

3.10 Short period of wasted execution in the OCC conventional approach …. 66

3.11 Longer period of wasted execution in the Read-Write-Validate approach 66

3.12 Wasted executions no longer exist in the virtual execution environment. 69

4.1 Throughput with 50% of updates transactions …………………….……. 83

4.2 Average response times with 50% of update transactions ……………... 83

4.3 Late transactions with 50% of update transactions ………………….….. 83

4.4 Throughput with 75% of updates transactions ………………………….. 85

4.5 Average response times with 75% of update transactions …………….... 85

4.6 Late transactions with 75% of update transactions ………………….….. 85

4.7 Throughput at the server …………………………………………….…... 89

4.8 Response time at the server ……………………………………………... 89

4.9 Miss Rate at the server …………………………………………………... 89

4.10 Throughput of update transactions at clients ……………………………. 91

4.11 Late update transactions at clients …………………………………….… 91

4.12 Throughput of read only transactions at clients ………………………..... 92

4.13 Late read-only transactions at clients …………………………………..... 92

xiii

List of Algorithms

1 Backward oriented optimistic concurrency control …………………… 23

2 Forward oriented optimistic concurrency control …………………….. 24

3 Partial backward validation (FBOCC) …………………………………… 46

4 Forward validation (FBOCC) ………………………………………….. 47

5 Final validation (FBOCC) ……………………………………………… 48

6 Validation phase (Read-Write-Validate) ….………………………………. 72

7 Partial backward validation (distributed Read-Write-Validate) ……….... 74

8 Final backward validation (distributed Read-Write-Validate) ………….... 75

74 Read-Write-Validation validation (distributed Read-Write-Validate)……. 76

xiv

Glossary

Transaction A sequence of operations (reads and writes) executed to

perform a single logical task.

ACID Properties of transaction, including Atomicity, Consistency,

Isolation and Durability.

Database A database is an organized collection of data items; each

could be in the form of a record, page, data structure,

picture, text, etc.

Real-Time database A database which maintains traditional database

requirements (logical consistency); and also satisfies time-

constraints (temporal consistency).

Ubiquitous Database A small database existing in mobile devices.

Distributed Database A database physically stored across multiple computers in

multiple locations which are connected to each other via a

network, yet operate logically as a single database.

DBMS Database Management System - a special application

designed to interact with users.

Serializability A well-known correctness criteria which means that there is

at least one serial schedule which leads to the same final

state of the database.

CC Concurrency Control, a mechanism for coordinating

Simultaneous access to shared data.

Glossary

xv

OCC Optimistic Concurrency Control, provide a mechanism

whereby simultaneously executing transactions validate

with one another to determine whether a conflict has

occurred, It is a well-known method due to the properties of

non-blocking and deadlock-free execution.

FOCC

Forward Optimistic Concurrency Control, OCC based on

checking the intersection between the write set of a

validating transaction and the read sets of currently

executing transactions.

BOCC Backward Optimistic Concurrency Control, OCC based on

checking the intersection between the read set of a

validating transaction and the write sets of currently

executing transactions.

FBOCC Forward and Backward Optimistic Concurrency Control, an

OCC algorithm suitable for mobile transactions in wireless

broadcast environments. It consists of two validation stages,

one involving backward validation at the client, and the

other forward validation at the server.

2PL Two-phase locking protocol, CC technique based on locks,

which are divided into growing and shrinking phases in

each transaction. In the growing phase, a transaction can

request locks, but in the shrinking phase a transaction

should unlock all locks that have been made in the first

phase.

1. Introduction

1

Chapter 1

Introduction

1.1 Introduction

This thesis is concerned with improving performance in shared client access to database

systems. In particular, a measure of performance is quantified in terms of client request

throughput. If client requests simultaneously update the same data, then erroneous

behaviour in the overall system may result. The basic method to overcome this would

be via the use of transactions. Therefore, the transactional style of access is used as the

basic construct for modelling client requests.

1.2 The Concept of the Transaction

Transactions are a sequence of read and write operations executed in performing a

single logical task. Transactions have four properties: atomicity, consistency, isolation

and durability (ACID) [1][2]. These properties are described below.

1. Atomicity: this means that all operations involved in a transaction should be seen as

one single operation. If one action belonging to a transaction fails, then the entire

transaction fails.

2. Consistency: this is a general term used to signify that data must meet all of the

validation rules that applications expect.

3. Isolation: this means that any concurrently running transactions do not affect each

other at the time of execution. As an example, if T1, T2 and T3 are transactions running

concurrently, they should have some equivalent serial order.

4. Durability: this refers to a guarantee that, if a transaction completes, then its effects

persist in the database and it is never lost, even if the system crashes. Nevertheless,

durability does not imply a permanent state of the database; other transactions may

overwrite changes made in current transactions without undermining durability.

1. Introduction

2

Executing transactions in the presence of concurrency requires a concurrency

control mechanism to coordinate access to shared data. In such a setting, the main goal

of a concurrency control algorithm is the creation of an ordering of read/write access

that ensures database consistency.

1.3 Concurrency Control Approaches

Concurrency control has been extensively studied in the literature, resulting in various

ways of implementing transactions to maintain database consistency. The two main

categories are pessimistic and optimistic approaches [2][3].

1.3.1 Pessimistic Concurrency Control

A straightforward solution to coordinate access to shared data is to simply lock data

while it is being accessed by one client, preventing any possible conflict from other

clients occurring [4]. Locks are controlled by the concurrency control manager in order

to ensure that:

1. Every transaction cannot read or write any element unless it previously

requested a lock on that element and has not yet released it.

2. If a transaction locks an element then it must release it later.

3. No more than one transaction can lock the same element at any time.

A two-phase locking protocol (2PL) is a pessimistic approach proposed by Eswaran et

al. [5]. In 2PL, locks are divided into growing and shrinking phases in each transaction.

In the growing phase, a transaction can request locks, but in the shrinking phase a

transaction should unlock all locks that have been made in the first phase. Therefore, for

each transaction, all lock requests must precede all unlock requests. Although the 2PL

protocol grants serializability, it is considered to be too constrained. The general

weaknesses of locking approaches can be summarised as following [6][7][8].

1. It is required to always use locking to ensure consistency, even if most of the

transactions do not overlap. However, locking is only actually needed in certain

cases.

1. Introduction

3

2. Lock maintenance adds an unnecessary overhead to read-only transactions even

though these do not affect the consistency of the database and constitute the

majority of system transactions [23].

3. When a large part of a database resides in a secondary storage, locking

frequently accessed data items significantly decreases concurrency due to the

waiting time needed for secondary storage access.

4. Keeping locks in place until the end of the execution of transactions in order to

avoid cascading aborts causes a further decline in concurrency.

5. Deadlock problems make 2PL inappropriate in distributed database systems,

since current deadlock detection techniques for distributed systems are complex

and ineffective.

6. The significantly increased numbers of transactions occurring in distributed

database systems increases locks’ overhead and the probability of lock conflict.

Furthermore, communication delays lead to a worsening of the situation due to

increasing lock-hold duration, which makes the probability of lock conflicts

even higher. This results in a substantial decline in performance in distributed

database systems.

1.3.2 Optimistic Concurrency Control (OCC)

Kung and Robinson proposed the use of optimistic approach methods via the execution

of transactions in three phases as shown in Figure 1.1 in order to avoid the problems

pointed out in the previous section [8]. During the read phase, transactions access data

without restrictions and make their own private copies of such data. All computation

carried out by a transaction occurs on a private copy. When a write is requested, it is

enacted on the private copy. During the validation phase, resolution policy is enacted

where, in principle, other executing transactions are considered to determine whether or

not the write requests can be satisfied without invalidating the correctness of the overall

read/write schedule. If the writes are valid, the write phase is enacted which commits

the changes to persistent storage. Alternatively, the transaction may abort if a valid

schedule is not possible, and a renewed attempt is made later. If a transaction has no

write operation, then the write phase is not required, with commitment being enacted to

bring the transaction to a logical end.

1. Introduction

4

Figure 1.1 OCC phases.

The optimistic approach can overcomes the weaknesses of pessimistic

approaches, and works well in low contention environments especially when read

operations outnumber writes. However, rollback is a considerable drawback in

optimistic approaches when conflict rates are high.

1.3.3 Pessimistic vs Optimistic

In conventional databases, a pessimistic approach is better than an optimistic approach

in high contention environments, particularly when physical resources are limited. In

such environments, an optimistic approach results in considerable numbers of

transactional aborts, which leads to substantial waste of resources. However, the

optimistic approach is more convenient in low contention environments, particularly

when the amounts of wasted resources involved are tolerable, and the optimistic

approach provides a higher degree of concurrent executions [2][9][10]. In contrast, the

optimistic approach works better than the pessimistic approach in real-time databases

even given high data contention over a wide range of resource availability levels. This is

because, in the optimistic approach, conflict resolution is delayed until the times at

which transactions commit, which helps in making better conflict decisions. So,

optimistic algorithms ensure that no transactions which are likely to miss their deadlines

prevent other transacting execution in the system [2][11][12][13][14].

1.4 Cost of Aborted Transactions

Aborted transactions run again, and this requires them to retrieve data again from the

database. The state of the database may by then have changed, and so it is necessary to

request data again to prevent transactions from using inconsistent data. Accessing

storage devices is expensive and aborted transactions that run again are, in essence,

duplicating information retrieval. However, sometimes only a small proportion of the

re-retrieved data has changed. Retrieving data that has not changed is, therefore, a waste

Read phase
Write

phase

Validation

phase

1. Introduction

5

of disk access. This is more serious in distributed databases when the data to be

retrieved does not exist in the same machine, and is therefore more expensive in terms

of incurring communication costs.

To improve performance, technique has been developed to only retrieve those

items of data that have changed. Such a technique is called virtual execution, which

allows an aborted transaction to continue reading the data it requires, and that data is

cached locally so that upon rerun it does not need to waste resources reading the data

again. Using this ”pre-fetched” data can lead to significant performance improvements,

as there should be no disk I/O overhead involved in rerunning a read transaction where

the data is already cached. However, there is now an issue with consistency when

considering a transaction that is rerunning with pre-fetched data. Clearly some of the

pre-fetched data may have been modified at the server since it was read to the local

cache, which would result in the transaction running with inconsistent data.

Concurrency control techniques must be applied to overcome this problem [15].

1.5 Research Contributions

This thesis introduces a novel Read-Write-Validate transactional phase sequence

combined with virtual execution to render the conventional OCC approach appropriate

for mobile device environments. The proposed approach presented in two contexts:

 Firstly, it is show that implementing the proposed approach on the mobile

devices themselves can improve contention issues with shared resources on that

device, such as the solid-state disk. [16][17].

 Secondly, it is further shown that the implementation of the proposed approach

in client-server model based on a broadcast datacycle approach for wireless

environment is efficient [18].

 The results show that, with the proposed approach, overall system performance is

improved, and the number of transactions that miss their deadlines due to concurrency

issues is reduced. The number of transactions requiring a restart is reduced, and so less

energy is used in re-accessing a resource or in retransmitting data a second time

[17][18].

1. Introduction

6

The benefits gained by the contribution made in this thesis are summarised below.

1. Transaction Lifespan Minimization

The lifespan of a transaction is the time between the start of a transaction and

when it commits or the end of the write phases. The validation phase adds a non-

deterministic timing period to the lifespan of the transaction. Therefore, the

reordering of phases in the proposed approach removes from the transaction’s

lifespan the non-deterministic timing of the validation phase.

2. The Blocking of Concurrent Transactions is Eliminated

In the conventional OCC approach, non-conflicted transactions executing in the

read phase will eventually be blocked after having been validated while the

validating transaction executes in the validation and write phases. This

temporary blocking is essential to prevent non-conflicted transactions from

entering a conflict state. Using the proposed approach, none-conflicted

transactions no longer have to be blocked from progressing and yet database

consistency is still maintained.

3. Newly Starting Transactions are Never Blocked

Newly starting transactions are those which may start execution while another

transaction is executing in the validation or write phase. In the conventional

OOC approach, such transactions will be temporally blocked until the validating

transaction commits, in order to prevent them from entering a conflict state. In

the proposed approach, newly starting transactions no longer have to be blocked

from progressing and yet database consistency is still maintained.

4. Earlier Visible Updates

In the proposed approach, write operations become visible to concurrent

transactions earlier, affording more likelihood of reading up-to-date data and

thus reducing the opportunity for conflict to occur. This is because the

reordering of the validation and write phases guarantees that all new updates

have already been made before the validation phase starts.

5. Energy Efficiency Improvement

1. Introduction

7

Virtual execution allows those transactions that have been aborted to re-execute

using in-memory values as opposed to reading directly from the persistent

storage. This improves the proposed approach, because accessing a conventional

hard disk drive is expensive in terms of power usage given that the disk must

attain read speed and the appropriate data sector mist be found. Even solid-state

drives are significantly more expensive to access compared to local memory. So,

the reduction made in disk access leads to a reduction in energy consumption.

The energy savings will be even greater if the transaction reads from a remote

server over a wireless connection.

6. Reduction of Risk of Conflict

Rerunning transactions is quicker than those in their initial run since there is no

persistent storage access which in turn increases the chance of transaction

commitment. This is because transactions in rerun become ready to enter the

critical section for write and validation phases in a shorter time. The shorter read

phase in a rerun reduces the risk of conflict with other transactions occurring.

1.6 Publications

The contributions made in this thesis have been published in two conference papers, one

workshop paper and one poster. One of the conference papers won the (best paper

award) at The 13th International Conference on Algorithms and Architectures for

Parallel Processing (ICA3PP), 2013. In addition, a journal paper is produced and invited

to be submitted to Information Sciences journal, and a survey paper is in preparation.

Details of the poster and the published papers are given below:

1. K. Solaiman, M. Brook, G. Ushaw, and G. Morgan, “Optimistic Concurrency

Control for Energy Efficiency in the Wireless Environment” in the 13th International

Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), pp. 115-

128. Springer International Publishing, 2013.

2. K. Solaiman, M. Brook, G. Ushaw, and G. Morgan, “A Read-Write-Validation

Approach to Optimistic Concurrency Control for Energy Efficiency of Resource-

Constrained Systems”, in the 9th International Wireless Communication and Mobile

Computing Conference (IWCMC), IEEE, pp. 1424-1429, 2013.

1. Introduction

8

3. K. Solaiman and G. Morgan, “Later Validation/Earlier Write: Concurrency Control

for Resource-Constrained Systems with Real-Time Properties,” in 30
th

 Symposium on

Reliable Distributed Systems Workshops (SRDS), IEEE, pp. 9-12, Oct. 2011.

4. K. Solaiman and G. Morgan, “Later Validation/Earlier Write: Concurrency Control

for Resource-Constrained Systems with Real-Time Properties”, Poster Session at

Computing Department, Newcastle University, 2012.

1.7 Thesis Structure

The rest of this thesis is organised as follows:

 Chapter 2 covers the background to the proposed approach. It starts with a

description of concurrency control problems, and the concept of database

consistency, and introduces centralized, distributed, mobile and real-time

database types. Then previous research related to the proposed approaches is

discussed, focussing on optimistic concurrency control techniques and aspects.

Finally, an introduction to mobile computing, including caching and broadcast

datacycle, is provided.

 Chapter 3 describes the proposed approach in detail and extensively discusses

its advantages and disadvantages. Then the Read-Write-Validation protocol and

its pseudo code algorithm are presented to describe how the protocol works.

The Read-Write-Validation protocol deals with concurrently running

transactions accessing shared data at a single mobile device. Then the

Distributed Read-Write-Validation protocol is presented including pseudo code

algorithms, to describe how the proposed protocol works. The Distributed

Read-Write-Validation protocol is designed to control numerous mobile

transactions accessing a centralised database at the server.

 Chapter 4 provides a description of the implemented simulations used to

evaluate the performance of both proposed protocols, the Read-Write-

Validation protocol and the Distributed Read-Write-Validation protocol. In

addition, the results collected from the simulation experiments are provided.

 Chapter 5 draws the conclusions of the thesis and suggests.

9

Chapter 2

 Background and Related Work

This chapter introduces the background and concepts necessary to understand the

contribution of the thesis. The present study is primarily concerned with improving

performance via the concurrency control mechanisms employed to govern the

read/write ordering of concurrent transactions. The research covers both local and

geographically dispersed clients, and so the architectures and the techniques employed

within them to achieve improved transactional performance are described. Since

performance impacts more acutely on those databases that have time requirements (real-

time), one section is devoted to these approaches. This chapter starts with an

introduction to database consistency, and then presents information concerning

centralized, distributed, mobile and real-time databases. After that, caching and rerun

policy enhancements are explained. This is followed by a discussion of the previous

research relevant to the proposed approach. A description of optimistic concurrency

control techniques is followed by a discussion of the trade-off of optimistic concurrency

control aspects considered in the literature. Finally, mobile computing and broadcast

wireless environments are introduced.

2.1 Database Consistency

A database is an organized collection of data items; each item could be in the form of a

record, page, data structure, picture, or text (the general term data item is used

throughout this thesis). Each single data item has a unique identifier, and the database is

managed by a database management system (DBMS), which is a special application

designed to interact with the users. In order to improve performance, applications in real

life are allowed to run concurrently which may lead to multiple accesses to shared data

simultaneously. Such multiple accesses are not secure and may lead to unexpected

results. Two examples of these database anomalies are explained below:

2. Background and Related Work

10

Examples of Database Anomalies

This section illustrates two examples of database anomalies described in the literature

[19][6]. Both examples explain the process of accessing one bank account for deposit

and withdrawal operations by multiple users.

Example 1: Lost Updates

 Consider that two customers - C1 and C2 - deposit money in the same bank account at

approximately the same time. The deposit method works as follows:

Deposit (amount, account_number) {

temp = read(accounts[account_number];

temp= temp+ amount;

write(accounts[account_number],temp);

}

 As illustrated in Figure 2.1, C1 reads the balance of the account (£200) and then

adds £ 150 to the local copy of the balance (temp) to make it £350. C2 read the balance

as well, which was still £200, and adds £50 to C2’s local copy, making it £250. Then,

C1’s update of £350 was written back to the original database. Subsequently, C2’s

update of £250 was also written back to the original database (the same account). At

this point, an incorrect state has resulted and £150 has been lost: the correct balance

should be £400.

Figure 2.1 Lost update anomaly [6]

C1 Execution

READ balance

ADD £ 150

Write result

back to database

C2 Execution

READ balance

ADD £ 50

Write result

back to database

200.0

350.0

250.0

200.0

250.0

200.0

350.0

Database

2. Background and Related Work

11

Example 2: Inconsistent Retrievals

Suppose that the two customers C1 and C2 simultaneously execute the following

transactions T1 and T2 respectively:

1. T1 transfers £1000 from a checking account to the same person’s saving

account.

2. T2 prints the total balance of the both accounts (checking and savings).

 As illustrated in Figure 2.2, T1 reads the balance of £1200 from the checking

account and subtracts £1000 from it; the result is that £200 will be written back to the

database. Then, at approximately the same time, T2 reads the balances of both accounts

and then prints the total. T1 continues and reads the balance of the savings transaction

and adds the £1000 to the previous balance. The new balance of the savings account

will be £1500, which will be updated to the original database. This time, the final result

placed in the database is correct, but the execution is incorrect because the total balance

printed by T2 is £700, whereas the real total balance is £1700.

Figure 2.2 Inconsistent retrievals [6]

Database
T1 Execution

READ

Checking balance

SUBTRACT

£1000

Write result back

 to database

READ

Savings balance

ADD £1000

Write result back

 to database

T2 Execution

READ

Checking balance

READ

Savings balance

PRINT Sum

C 1200.0

S 500.0

C 200.0

S 500.0

1200.0

200.0

500.0

1500.0

C 200.0

S 500.0

C 200.0

S 1500.0

Sum =

£ 700.0

2. Background and Related Work

12

When all operations of a transaction are executed before or after all other

transaction operations, the execution is called serial and database consistency is

maintained. However, if the operations of more than one transaction are interleaved,

their execution may lead to a state of inconsistency. Interleaved operations of one or

more transactions are called schedules.

2.1.1 Serial Schedule

A schedule is serial if its operations consist of all the operations of one transaction, then

all the operations of another transaction, and so on. Interleaved operations from

different transactions are not allowed. In other words, if a schedule consists of a number

of transactions T1, T2, T3,…Tm, then, for every i=1 to m-1, the transaction Ti is

completed before the next transaction Ti+1 starts.

Consider the following example: T1 and T2 are two concurrent transactions.

 T1 = {R1 (a), R1 (b)}

T2 = {W2 (a), W2 (b)}.

 Histories:

 H1 = {R1 (a), R1 (b), W2 (a), W2 (b)}

H2 = {W2 (a), W2 (b), R1 (a), R1 (b)}

H1 and H2 indicate the order of the execution of operations in transactions T1and T2.

Both H1 and H2 are serial because in both histories no operations were interleaved and

the effect of the schedule on the database will be equivalent to schedule T1, T2 in the

case of H1 and T2, T1 in the case of H2. However, in the following history:

 H3= {R1 (a), W2 (a), W2 (b), R1 (b)}

 H3 is not serial because here, operation R1 (a) precedes operation W2 (a) through the

data item a, which means that T1 precedes T2. On the other hand, operation W2 (b)

precedes operation R1 (b) through the data item b, which means that T2 precedes T1.

Therefore, H3 is not serial.

2.1.2 Serializable Schedule

A schedule is serializable if it has the same effect on the database as other serial

schedule of the same transactions. Therefore, if the serial schedule maintains database

consistency, then the serializable schedule also maintains database consistency.

2. Background and Related Work

13

Consider again the following histories from the previous example:

H4= {R1 (a), W2 (a), R1 (b), W2 (b)}

H5= {W2 (a), R1 (a), W2 (b), R1 (b)}

In H4, operation R1 (a) precedes W2 (a) through data item a, which means that T1

precedes T2; and R1 (b) precedes W2 (b) through data item b, which means that T1

precedes T2. Therefore, the effect of the execution of H4 is equivalent to the effect of

the serial execution H1. Thus, H4 is serializable.

In H5, operation W2 (a) precedes R1 (a) through data item a, which means that T2

precedes T1; and W2 (b) precedes R1 (b) through data item b, which means that T2

precedes T1. Therefore, the effect of the execution of H5 is equivalent to the effect of

the serial execution H2. Therefore, H5 is serializable as well.

2.1.3 non-serializable schedule

H3 in the previous section is an example of non-serializable history:

 H3= {R1 (a), W2 (a), W2 (b), R1 (b)}

As stated in the previous section, T1 precedes T2 because of the operation R1 (a)

precedes operation W2 (a) through the data item a, and T2 precedes T1 because of

operation W2 (b) precedes operation R1 (b) through the data item b. Therefore, the

effect of the execution of H3 is not equivalent to the effect of any serial execution, thus,

H3 is non-serializable.

 The concept of serializability is a popular correctness criterion that has been

used in concurrency control field. Serializability means that the effect of certain

schedules on the database state is equivalent to at least one serial schedule of the same

transactions [20][19][6].

2.2 Database Architecture

A database is an organized collection of data. Depending on the method use to stor such

data, databases can be classified into three categories: centralized, distributed, and

mobile databases.

2. Background and Related Work

14

2.2.1 Centralized Database

A centralized database is a database located and maintained in one location, where

access may be performed via a communications network. Banking systems are an

example of centralized databases, in which processing is performed in a mainframe, and

clients use online banking for their transactions. Reservation systems could be another

example of centralized databases, due to its advantage of preventing the double booking

problem [166]. Such systems become more complicated in distributed database

environments due to double booking issues.

Centralised Database Architecture

Figure 2.3 illustrates a model of a centralised database architecture, which consists of

four sites connected via a network, and the database resides at only one site (site 4 in

this example). Therefore, site 4 will be responsible for database management and

processing requests from other sites [21].

Figure 2.3 Model of centralized database architecture in a network

2.2.2 Distributed Database

A distributed database is a database physically stored across multiple computers

connected to each other via a network, and these computers may be located in the same

physical location or dispersed in multiple locations. In both cases, the distributed

database will operate logically as a single database. Distributed databases may be

managed by several database management systems (DDBMSs), where one coordinates

each remote site. Therefore, each site of the distributed database system is designated to

be capable of administering its local database if connections with other sites have failed,

and this is known as local autonomy. On the other hand, when distributed database sites

Site 3

Site 4

DB

Site 1

Site 2

DB

2. Background and Related Work

15

are successfully connected to each other, the system must provide location transparency,

which means that users can retrieve or update data from any site without prior

knowledge of its location, so that all data in the distributed database should appear to be

one logical database existing at one site.

Distributed Database Architecture

Figure 2.4 illustrates a model of a distributed database architecture, which consists of

four sites connected via a network and the database is distributed between these sites.

Local applications are executed at one site using data stored in the same site, not

requiring data from other sites. Global applications however require data stored in other

sites. Sites may have identical software, in which case the system is known as a

homogeneous DDBMS, or different software in a heterogeneous DDBMS [21][22]. The

client-server model is a popular modern type of architecture, providing service to clients

via a communications network. Clients request a server’s content or service functions

and wait for the server’s response. Other types of distributed models, such peer-to-peer,

are beyond the scope of this thesis.

Figure 2.4 Model of distributed database architecture

2.2.3 Mobile Database

Developments in wireless networks, and mobile computing devices such as smartphones,

tablets and PDAs have made mobile applications achievable and practical for use as

stand-alone applications or in accessing remote applications. This has led to the necessity

for mobile or ubiquitous databases. A mobile database is a small database residing on a

mobile computing device, giving the ability to handle local queries without connectivity

[23][24][25]. Due to the limited storage capacity of mobile devices, the entire database

Site 3

Site 4
DBSite 1

Site 2 DBDB

DB

2. Background and Related Work

16

is stored in the server. The mobile devices downloading requires data in its local

storage, so that locally existing desired data will add great benefits to applications

running on a mobile device. This is especially important in the case of disconnection

events, either by undesired interference or in an effort to save battery energy.

Meanwhile, if some local data has been updated by mobile applications, new updates

have to be transmitted back to the server in order to maintain consistency [26].

Nowadays, the primary type of storage used in mobile devices is flash memory, which

is non-volatile and has several benefits compared to a conventional disk. The rapid

increase in capacity at affordable prices has made flash memory widely used in mobile

devices and even in modern notebooks [27].

However, mobile environments involve substantial constraints in comparison

with non-mobile environments. Energy consumption is one important issue in modern

powerful portable devices; as a general rule, the more advances are made in mobile

hardware and the applications that need to be executed on it, the more energy

consumption is required. Communication disconnection is another serious challenge in

mobile computing, where for example, a wireless signal can suffer interference, for

instance from electronic noise or tall buildings. In addition, the restricted bandwidth of

wireless networks and limited resources in portable computing devices, add further

constraints to mobile environments [28][29].

2.3 Real-time Database

Real-time database systems (RTDBSs) have become very important over the past two

decades due to their significance use in a wide range of operations. Increases in

computer speed and capacity have led them to be integrated into our society and to

employ many different applications, for example in stock markets, banking, reservation

systems, multi-media, telephone switching systems and military command and control

management. In many of these examples, real-time databases manage time-constrained

data and time-constrained transactions. For example, in stock market programs, current

prices have to always be current, and must be no more than a few seconds old to be

considered valid. In addition, transactions operated using these data have time-

constraints in terms of reading and analysing information in the database. Therefore, the

goal in real-time database use not only depends on logical computation carried out as in

conventional databases, but also requiring the timing constraints of data and

transactions [30][31][32][33].

2. Background and Related Work

17

By contrast, in conventional database, timeline constraints are not taken into

account, and correctness depends on logical computation only. The main performance

criteria in conventional databases are to achieve reasonable throughput or to minimize

average response time. Meanwhile the scheduling of transactions is achieved by either

fairness or resource consumption criteria, such as giving priority to transactions which

have made the most progress toward their end [32][34].

2.3.1 Timeline Requirements

In real-time databases all traditional database requirements are maintained, which

preserve the logical consistency of data and transactions, for example in granting the

serializability of transactions and operations on data items. They can also require the

temporal consistency of transactions and data. These requirements are summarised

below [30].

 Logical Consistency of Transactions

This controls the values produced by transactions. For example, serializability,

as discussed in section 2.1.2, is correctness criteria for the logical consistency of

transactions and has been widely used in traditional database systems.

 Logical Consistency of Data

A range of data constraints require to be maintained in most traditional database

systems, in order to ensure the logical consistency of data. For instance, database

items should not have negative values.

 Temporal Consistency of Transactions

The temporal consistency of transactions is controlled by timing constraints such

as start time, period of execution and deadline. These timing constraints can be

divided into three categories: hard, firm and soft. Failure to satisfy timing

constraints is considered to be a violation of consistency and an appropriate

recovery procedure has to be performed by the database management system.

 Temporal Consistency of Data

Data temporal consistency concerns the age of data, and whether it is still

considered to be valid, reflecting the current state of the data, or out of date it

2. Background and Related Work

18

might where have changed. In the previous example, prices in stock market

programs have to be always current, for example, no more than a few seconds

old, to be considered valid.

2.3.2 Handling Late Transactions

As previously mentioned, a primary performance measure in real-time databases is

timeline level and not throughput or response time as in conventional databases.

Therefore, transaction management becomes a scheduling issue, in which priority is

considered and attention given to those transactions struggling to meet their deadlines,

in order to minimize the number of late transactions. Earliest deadline scheduling policy

is used to give priority to transactions that are closest to expiration [35], which leads to

noticeable improvements in real-time environments. In addition, several deadline-

cognizant methods have been introduced in the literature in order to achieve optimal

performance, such as always sacrifice, OPT-wait and no sacrifice policies

[36][13][37][38][39][6].

2.4 General Enhancements

Each access to a conventional hard disk is expensive in terms of both power usage and

time, as the disk is spun up to speed and the relevant data sector located. Solid-state

drives are also significantly more costly to access compared to local memory.

Furthermore, with a soled-state drive, it is not possible to overwritten data straightaway,

out of place update mechanism is applied. So, to update an data item, the whole block

where such an item is located must be erased (‘Bulk erase’) and then the whole block

rewritten with the new updated item [40]. Such access costs further increase when

communication costs are incurred in network environments, such as when clients access

remote data at the server. Therefore, reducing the number of times that a disk is

accessed will improve performance and reduce the energy consumed. Caching and rerun

policy are general enhancement methods used for such purposes[15][41].

2.4.1 Caching

Caching is an important technique that is used in many areas of computer science, such

as in the CPU cache, disk cache or web cache. Data is simply stored in a local memory

for future use. Cached data is usually a replica of the original data located elsewhere

(EX. server), or it might be values that have been computed earlier. If new data

2. Background and Related Work

19

requested exists in the cache, then it will be read from the cache more quickly and

cheaply. If new data is requested that does not exist in the cache, then it will need to be

obtained from the original source or recomputed, which again incurs extra time and cost

[41][42].

1 Cache Replacement Strategy

Due to cache size limitations on the client’s side, space could be exhausted quickly. A

replacement strategy is used to clear some space in the cache for new requested data.

The decision about which data should be removed from the cache could be influenced

by several factors including the following [43][44]:

 Recency: period of time since the last reference to the data item.

 Frequency: number of times that data item has been referenced.

 Cost of fetching: cost of obtaining data item from the original place.

 Size: size of data item.

 Expiration time: period of time before the data becomes out of date.

 Modification time: period of time since the last modification to the data item.

 (Least recently used) LRU and (least frequently used) LFU are two well-known

replacement strategies [43][42][45]. LRU looks backward to the history of data stored

on the cache and removes an item that has not been used for the longest period of time.

LFU again looks backward to the history of data stored on the cache and removes the

item that has been least frequently referenced.

2 Client-Server Caching

Caching data in a client-server architecture is very important for improving

performance. It can be implemented by two methods: intra-transaction caching and

inter-transaction caching: In the former, data is stored within a single transaction

boundary and discarded after the transaction commits. This is a simple method and

cache management is performed by the clients themselves. In inter-transaction caching,

data is stored across transaction boundaries, which requires more sophisticated

techniques to be used in order to maintain the consistency of the cached data

[46][47][45]. Even though caching incurs extra overheads for maintaining the

consistency of cached data, it involves many benefits to the system, including the

following [48][49][43]:

2. Background and Related Work

20

 Reduced reliance on the server, a decrease in network traffic and message

processing time and cost overheads, which consequently leads to a reduction in

system latency and response time.

 Allows better utilization of resources presented to clients.

 The server can manage a larger number of clients in the system.

3 Transactional Cache Consistency

Caching introduces multiple copies of the same data items, and is similar to replication.

Therefore, consistency between these redundant copies has to be maintained. The

following are some techniques that have been introduced to ensure the consistency of

cached data.

Avoidance versus Detection

In avoidance-based approaches, stale or out-of-date data is not allowed to exist in a

client’s cache. Therefore, transactions never have a chance to read stale data.

Avoidance-based approaches uses a read one/write all (ROWA) technique to make sure

that all replicas of updated data items are the same when updated transactions commit.

Based on the ROWA technique, transactions are read from the local copy in the client’s

cache and all copies updated in the system. In contrast, in detection-based approaches,

stale data is allowed to exist temporarily in the client’s cache. Therefore, checking the

validity of cached data is mandatory and is performed by each transaction before it is

allowed to commit In comparison with the ROWA technique, the detection-based

approach is simple, because a consistency action only includes the server and a single

client [45][50].

Invalidation versus Propagation

Two kinds of techniques to maintain cache consistency can be used in a client’s cache

when a notification update arrives from the server: invalidation and propagation.

Invalidation is a technique of removing the stale copy from the client cache

when the original copy at the server is updated. Therefore, invalidated data will be

inaccessible for any subsequent transaction. Subsequent transactions interested in

accessing invalidated data have to obtain an up-to-date copy from the server.

Information needed for cache invalidation is broadcast from the server via invalidation

messages, and this requires that the commitment of updated transactions is delayed until

all client caches have been invalidated. This is considered to be a scalability weakness.

2. Background and Related Work

21

 Propagation is a technique of sending new updates to clients when updated

transactions commit at the server; this consequently replaces stale copies with new

updated copies. Therefore, cached client data will be accessible for any subsequent

transaction.[50][45]

2.4.2 Virtual Execution

Virtual execution is a concurrency control technique that allows conflicting concurrently

running transactions to continue execution virtually, in order to prefetch all required data

in its private workspace in memory (first run), which is illustrated by the figure 2.5 a.

When a transaction has finished the virtual execution, it aborts and reruns using the pre-

fetched data stored in the memory from when it first read (rerun), which is illustrated by

the figure 2.5 b. Then, if transactions enter a state of conflict within the rerun, it

immediately aborts and reruns again [51] [52][15].

a) First run in virtual execution environments

b) Rerun in virtual execution environments

Figure 2.5 transactional phases in virtual execution environments

 Analysis has shown that virtual execution techniques that utilize OCC perform better if

transactions are allowed to reach the end of their read phase before being aborted

[53][54]. This is intuitively logical, since as transactions that have been aborted early

would not have retrieved all the required data to be ready locally for the rerun phase.

Cached values from the write sets of committed transactions together with read sets from

Read phase
Write

phase

Validation

phase

Time

T

Long read phase because read set is prefetched from disk

Read

phase

Write

phase

Validation

phase

Time

T

Short read phase because read set exists in the

memory.

2. Background and Related Work

22

currently executing transactions populate a local buffer to the transaction management

system. This can improve performance if overheads associated with persistent store

access are significant. Therefore, distributed data stores [55] and real-time databases [15]

have made use of such techniques. There is typically no disk I/O overheads required for

the transaction during rerun, as the data has already been pre-fetched. Therefore,

considerable battery power savings can be gained by deploying such a technique on

mobile devices [16][17]. The following two important issues need to be considered in a

virtual execution environment.

1. An access invariant property has to be guaranteed when using this approach,

which means that any two executions of the same transaction must always access

the same data items, even if these executions are separated by other conflicted

transactions [15][51].

2. An issue of consistency arises for a transaction that operates using pre-fetched

data. It may be that some of the pre-fetched data has since been modified. This

will result in the rerun transaction operating with inconsistent data. A further

concurrency control technique is clearly required to overcome this problem.

[15][51]

 It is important also to mention that, in conventional optimistic concurrency control

methods, conflict resolution can be classified into two approaches: kill-based or die-

based.

1. Kill-based approaches resolve conflicts between the validating transaction and

conflicted concurrently running transactions by aborting conflicted concurrently

running transactions and preceding the validating transactions to commit.

2. Die-based approaches, in contrast, resolves conflict by aborting the validating

transaction and continuing the execution of conflicted concurrently running

transactions.

 When a virtual execution environment is deployed with a kill-based approach, it

becomes logically equivalent to a die-based approach [51]. That is because the validating

transaction continues execution towards the write phase as seen in the kill based

approach, yet at the same time concurrently conflicted running transactions continue

executions as described in the die-based approach.

2. Background and Related Work

23

2.5 Related Work

This section presents a survey of previous studies in the areas of optimistic concurrency

control and broadcast datacycle approaches.

2.5.1 Optimistic Concurrency Control (OCC) Techniques

OCC techniques are classified into three categories: forward and backward oriented

validation, serialization graph and timestamp. These techniques are described below:

1. Forward and Backward Oriented Validation

Härder [56] proposed two schemes for the validation phase: backward oriented

optimistic concurrency control (BOCC) and forward oriented optimistic concurrency

control (FOCC):

 Backward Oriented Optimistic Concurrency Control. This operates by

comparing the read set of a validating transaction with the write sets of all

currently executed transactions that have finished the read phase before the

validating transaction. If conflict is identified then the only way to resolve it is

restarting the validating transaction in its entirety. Tv is the validating transaction

and Ti is the currently running transactions that have finished the read phase

before Tv.

 It is important to note that the WSs of the overlapping commit transaction have to be

saved until their last current transaction has completed.

 F

o

r

w

a

r

d

O

r

Algorithm 1 Backward Oriented Optimistic Concurrency Control

1: valid = TRUE;

2: for each Ti (i=1,2,…,n)

3: If RS(Tv) ∩ WS(Ti) ≠ {} then

4: Valid = FALSE;

5: Endif;

6: Endfor;

7: If valid then commit;

8: Else abort;

9: Endif;

RS – read set and WS – write set.

2. Background and Related Work

24

iented Optimistic Concurrency Control. This based on comparing the write set

of a validating transaction with the read sets of all currently runing transactions

that have yet to finish the read phase. When a conflict is found, FOCC provides

a degree of flexibility in that a number of resolution policies are possible. These

may:

1. Delay the validating transaction and restart the validation phase at a later

time.

2. Abort all conflicting transactions and allow the validating transaction to

commit.

3. Abort the validating transaction.

It is this flexibility in resolution policies which has made FOCC the focus of

further research [57][58][59][60][61][62][63].

 Tv is the validating transaction and Ti is the active transactions.

However, aborting the validating transaction is expensive because such transactions

have used resources and completed execution. The never abort validating (NAV)

transaction strategy ensures that these resources will not be wasted by guaranteeing that

the validating transaction commits [33]. However, a major drawback of FOCC is that

concurrent transactions have to be blocked in their read phase while the validating

transaction is executing in the validation and write phases. This blocking significantly

degrades the performance of the system.

Algorithm 2 Forward Oriented Optimistic Concurrency Control

1: valid = TRUE;

2: for each Ti (i=1,2,…,n)

3: If WS(Tv) ∩ RS(Ti) ≠ {} then

4: Valid = FALSE;

 5: Endif;

6: Endfor;

5: If valid then commit;

6: Else resolve the conflict;

RS – read set and WS – write set.

2. Background and Related Work

25

2. Timestamp Technique

Timestamp (TS) is a unique number associated with each transaction at the beginning of

its execution. TSs do not necessarily reflect the actual times of the generation of

transactions but are important in that they reflect their order. Therefore, they must be

issued in ascending order. Two methods could be used to generate TSs. The first

method is taking the system clock as the TS. This is reasonable, but with this method

the scheduling should not be quicker than the system clock in ordere to prevent the

possibility of generating the same TS to two different transactions. The second method

is to use the counter as the TS generator. Therefore, each new transaction receives the

previous TS but increased by 1. The rule here is: for each transaction T, if Ti starts after

Tj then the TS of Ti must be higher than the TS of Tj.

In addition to the data, three pieces of information need to be associated with each

data item: two TSs (RT and WT) and one additional bit (C) [34]:

1. RT (a), read time of data item a; this timestamp refers to the highest timestamp

of the transaction that has read a.

2. WT (a), write time of data item a; this timestamp refers to the highest timestamp

of the transaction that has written a.

3. C (a), commit bit of data item a, which is set to true if the most recent

transactions that wrote object a have already committed. This information is

used to eliminate the reading of dirty data [34].

The timestamp approach has been widely studied in the literature [16-18][19-22]. It

shows a high degree of concurrency, guarantees a deadlock-free property, and provides

a relatively smaller number of unnecessary rollback overheads. In contrast, the major

disadvantage of the timestamp approach is the large overheads associated with

timestamp management, especially when database is geographically distant from the

client, communication between clients and the server is needed for every read operation

to keep track of both read and write timestamp; which further increase timestamp

overhead [64][21][18].

3. Serialization Graph Testing (SGT) Technique

The SGT scheduler maintains a serialization graph of the history representing the

execution it controls. During the execution, the scheduler maintains the SG by adding

edges between concurrent transaction nodes corresponding to all read and write

2. Background and Related Work

26

operations requested, without consideration of SG being acyclic. When a transaction T

finishes execution and the scheduler receives a request to commit T, then it checks if T

lies on a cyclic SG. If so, then this indicates that there has been a conflict operation

inserted into the schedule, and some resolution policy needs to be applied to resolve this

conflict. If not, then the schedule is still serializable and T can commit safely. The SGT

scheduler theoretically maintains the serializability of the schedule. However, in

practice, it is very expensive to maintain SG overheads; and yet, checking for cycles

adds extra cost to this technique [19][65][66].

2.5.2 Aspects of Optimistic Concurrency Control

Optimistic approaches have the potential to provide greater performance than pessimistic

approaches, particularly, in real-time databases even given high data contention over a

wide range of resource availability levels. This is because, in the optimistic approach,

conflict resolution is delayed until the times at which transactions commit, which helps

in making better conflict decisions. Therefore, optimistic algorithms ensure that no

transactions which are likely to miss their deadlines prevent other transactions execution

in the system. Therefore, this section devoted to explored fifteen aspects of OCC studied

in the literature. These include correctness criteria, conflict detection and resolution,

unnecessary rollback, transaction length and starvation problems, back-off policy,

partial rollback, read-only transaction considerations, transaction arrival rate, database

granularity, static/dynamic data access schemes, silent/broadcast commit, speculative

CC, deadline-cognizance and virtual execution.

1. Correctness Criteria

Serializability is the fundamental approach of correctness criteria to concurrency

control. The serializability of a schedule means that its outcome, the transformation of a

database state, is equivalent to at least one serial schedule [19]. Although serializability

has been widely adopted in concurrency control [19][5][20][6], it is considered to be

strong correctness criteria in certain circumstances, for instance in some commercial

applications. Alternative weaker correctness criteria have been proposed in order to

increase system performance [67][68][69][70][71][72][73][74]. For example, if a list of

products is retrieved according to price, but which is just about to be updated with a

new product, the new product may not appear in the list. However, it will appear in the

list later.

2. Background and Related Work

27

2. Conflict Detection

 The conflict detection process in concurrency control is classified in two classes:

pessimistic and optimistic approaches.

 The pessimistic approaches detection may be performed before accessing

conflicted data item. Here transactions require data items to be locked to before

read operations. Therefore, if one of these data items has already been locked by

another transaction, then these two transactions are in conflict and one of them is

aborted in order to resolve this conflict. Aborting conflicted transactions in the

early stages, based on this strategy, obviously reduces the amount of wasted work

and saves resources. On the other hand, aborting transactions early because of

conflicts with other concurrently running transactions which may abort later is a

big disadvantage. Some conflicts are reconcilable and may be resolved without

aborting conflicted transactions[75][6].

 The optimistic approaches detection is performed after accessing a conflicted

data item. The transaction reads all required data items in the read phase without

restriction. Afterwards, in the validation phase, conflicts between transactions

which have already accessed shared data are detected and resolved. The

advantages and disadvantages of this strategy are opposite to pessimistic

approaches. [56][75] [76][77][56] [19].

3. Conflict Resolution

Resolving a conflict by aborting one of two conflicted transactions can be an expensive

solution if the rate of conflicts is high. In some cases, conflicts can be resolved

efficiently without aborting either of the conflicting transactions. For example, consider

two concurrent transactions - T1 and T2:

T1: R1 (a), W1 (a), R1 (b), W1 (b), C1

T2: R2 (b), R2(c), C2

Suppose they execute as in the following history:

H1: R1 (a), W1 (a), R2 (b), R1 (b), W1 (b), C1, R2(c), C2.

Based on the forward validation approach, T2 is conflicted with T1 in a read-write

conflict (T2 is read-only transactions). However, T2 should not be aborted if there are no

more conflicts between T1 and T2. Consistency is still maintained with serialization

2. Background and Related Work

28

order T2 T1. This kind of conflict is a reconcilable conflict. However, now consider

the following execution history:

T2: R2 (b), W2 (b), R(c), C2

And the H2: R1 (a), W1 (a), R2 (b), W2 (b), R1 (b), W1 (b), C1, R(c), C2.

In this case, T2 conflicts with T1 with both read-write and write-write conflicts, which is

irreconcilable, and aborting T2 is necessary to preserve consistency. Therefore, conflicts

between concurrent transactions can be divided into two types: reconcilable and

irreconcilable conflicts [6].

 Reconcilable conflicts are conflicts between two concurrent transactions

resulting from the occurrence of read-write conflicts only. Therefore, conflict

resolution can be performed without aborting conflicted transactions.

 Irreconcilable conflicts are conflicts between two concurrent transactions

resulting from the occurrence of both read-write and write-write conflicts.

Therefore, conflict resolution requires the restarting one of the transactions

involved in this conflict. In this case, transaction priority, length, deadline and

the amount of transaction execution already completed have to be considered

when resolving irreconcilable conflicts [78][76][6][79].

4. Unnecessary Rollback

Rollback overhead is the major problem in the OCC approach. This problem can be

worsened if the scheduler aborts transactions which should not be aborted which is

termed unnecessary rollback. This happens when conflicts between concurrent

transaction and the validating transaction occur after the end of the write phase of the

validating transaction [57]. For example, consider the scenario of the validation based

on Kung and Robinson [8], as illustrated in Figure 2.6.

Figure 2.5 Illustration of serious and non-serious conflicts

T1

T2

T3

Read

Read

Read

Validation

Validation

Validation

Write

Write

Write

write x, y

read x

read y

2. Background and Related Work

29

Figure 2.6 shows a scenario of three concurrently running transactions: T1, T2 and T3.

T1 updates data items x, y. T2 and T3 read data items x and y respectively. T2 reads

data item x before the new update has been written by transaction T1. Therefore, if T1

has committed, T2 must be aborted to resolve this conflict. This is a so called ‘serious

conflict’. T3 reads data item y after the new update has been written by transaction T1.

Therefore, if T1 committed, T3 is still valid in the serialization order T1 T3, and

T3 should not be aborted. This is a non-serious conflict. As this example illustrates,

conflicts between transactions which are running can be classified into two categories

of serious or non-serious conflicts.

 A serious conflict is one which occurs between the concurrent transaction and

the validating transaction, before the end of the write phase of the validating

transaction. This conflict may transform the database into a state of

inconsistency by producing unexpected results, and conflict resolution has to

take place to preserve database consistency [57].

 A non-serious conflict occurs between a concurrent transaction and the

validating transaction after the end of the write phase of the validating

transaction. This conflict does not affect database consistency, and so there is

no need to perform conflict resolution [57][78][6][64][80].

5. Transaction Length and Starvation Problem

Transaction length indicates the number of data items which need to be accessed during

the transaction’s execution time. As the length of the transaction increases, the

probability of conflict increases as well due to the following reasons [77]:

 A long transaction takes a longer time to execute, which increases the chance

of becoming conflicted with other concurrently running transactions.

 A long transaction accesses a larger number of elements, which increases the

probability of conflicts of these elements with other concurrent transactions.

High contention and hotspot data items, which are those accessed more

frequently, also increase the chances of conflict. Therefore, long transactions are likely to

be repeatedly restarted, which is called starvation. Extra consideration is needed when

designing OCC protocols for long transactions in order to have as similar a chance of

committing as regular ones, [77][57]. A simple solution to the starvation problem is to

2. Background and Related Work

30

give priority to starved transactions, or the whole database may be blocked to give a

chance for a starved transaction to be able to commit [8]. Also, starvation could be

managed by limiting the number of concurrently running transaction [81][82][83]. Other

solutions to starvation problems have also been suggested [84][57][85].

6. Back-off Policy

Restarting conflicted transactions directly may increase the probability of conflict

occurring again, especially if concurrently running transactions are accessing the same

hotspot data items. A period of waiting time (back-off) before restarting an aborted

transaction reduces the probability of the same conflict recurring. However, especially

in real time systems, a long delay may lead to failure to meet deadlines. Back-off with

reasonable time allowed for an aborted transaction has shown improvement in some

concurrency control protocols [86][63][59]. Back-off policy is demonstrated in the

following example.

 Suppose that four transactions - T1, T2, T3 and T4 - are concurrently running and all

conflict with each other, as illustrated in Figure 2.7.

Figure 2.7 (a) Figure 2.7 (b)

 Frequently rolled back scenario Transactions backed-off scenario

In Figure 2.7 (a), transactions T3 and T4 are frequently rolled back before they get the

chance to commit. This is expensive wasted work and wasted use of resources.

However, using a back-off policy as illustrated in Figure 2.7 (b), aborted transactions

are backed off for different appropriate periods of time. This leads to a reduction in the

number of transaction restarts.

Committed transaction

Aborted transaction

T1

T2

T3

T4

T2

T3

T4

Committed transaction

Aborted transaction

T1

2. Background and Related Work

31

7. Partial Rollback

Rolling back conflicted transactions increase OCC overheads because they have

already executed, and the resource usage of the aborted transactions are lost; this is a

wasted execution. Wasted execution arises if a rolled-back transaction has done most of

its work and was near to its completion. Partial rollback is a technique which has been

introduced to reduce the wasted execution caused by restarting a conflicted transaction,

and involves rolling back only a conflicted part of the conflicted transaction instead of

rolling back the entire transaction. This consequently reduces the amount of execution

which needs to be re-performed when a conflict occurs [87]. This can be achieved by

using checkpoints at the level of the transaction; at these points a transaction can roll

back and re-establish its execution. Therefore, if a conflict has occurred, a conflicted

transaction will be partially rolled back from the most recent checkpoint [87][88].

8. Read-only Transaction Considerations

A read-only transaction, query, is a transaction that does not update the database; in

other words, it is a transaction whose write set is empty and it has no write phase. For

example, in a transaction which checks a given balance in a bank, there are no

withdrawal or deposit operations. Such a transaction is a typical read-only transaction.

Read-only transactions are very important because they constitute the major proportion

of typical transactional traffic [57][68][89]. Therefore, giving some flexibility for read-

only transactions can have a great impact on system performance, especially for query

applications. A simple possible technique is to delay the write phase of an update

transaction if it conflicts with a read-only transaction. However, this solution might

produce a long delay in updating transactions. Multiversion is another concept used to

support read-only transactions, when the system keeps a number of versions of the

same data items. Therefore, a read-only transaction can always maintain a consistent

view by reading suitable versions of data items [57]. Further schemes proposed in the

literature have given special treatment to query transactions [89][90][91][92].

9. Transaction Arrival Rate

The probability of conflicts between concurrently running transactions will increase as

the number of them accessing shared data items increases. Therefore, controlling

transaction arrival rate by minimizing the number of running transactions that retrieve

the same data will obviously lead to the reduction of conflicts and thus roll-back

2. Background and Related Work

32

overheads. This is simply achieved by blocking some of those transactions at the

beginning of their execution. On the other hand, blocking transactions in real-time

databases is undesirable. Therefore a good balance has to be struck in order to gain

optimum performance [93][94].

10. Database Granularity

Transactions in OCC protocols back up data items in their private workspace in the

memory. So, the size of the data will be considered as granular as word, page, or object

is an important issue concerning the consumption of memory the main space. When a

smaller data item is used as a granule, more memory space will be saved. A balance

needs to be found between memory efficiency and database granularity when designing

OOC protocols [95]. On the other hand, in locking-based concurrency control

protocols, grouping several data items as one granule could be beneficial in some

circumstances. For instance, if a transaction needs to access the whole database, then it

would be better to request one single lock to lock the entire database instead of

requesting locks for each data item separately, which would consume much more time

and resources [96][97].

11. Static/Dynamic Data Access Schemes

In concurrency control, accessing data items can be divided into two schemes: static

and dynamic data access.

 In static data access schemes: all required data items will be read at the

beginning of the transaction’s execution. This gives more flexibility in

designing a validation mechanism, because all accessed data will be known in

advance. On the other hand, read data will be held for a longer time, which

leads to an increase in system contention. [19] [98][99][100]

 Dynamic data access schemes: require data items to be read as they are

needed during transaction execution. As opposed to static access schemes,

dynamic schemes reduce data contention because data items are held for

shorter periods of time. However, dynamic schemes are more complicated

from the perspective of validation, because the read sets of transactions keep

changing during transaction execution [98][99][100].

2. Background and Related Work

33

12. Silent/Broadcast Commit

The transaction commit can be divided in to two schemes: silent and broadcast commit.

 Silent commit scheme: In this scheme, the transaction commit is not advertised

to other concurrently running transactions. Therefore, the latter continue

execution until the validation phase, where they become aware of conflicts.

Delaying the restarting of conflicted transaction leads to an increase in wasted

transaction executions [98][99][100].

 Broadcast commit scheme: Conversely, here the, transaction commit is

advertised to all concurrently running transactions in order to abort conflicted

transactions earlier and thus reduce wasted executions and available resources.

The broadcast commit has the advantage that conflicted transactions do not

continue execution in vain and waste system resources, which consequently

leads to performance improvements [98][99][100].

13. Speculative CC

Speculative CC techniques use redundant transactions to start as early as possible on an

alternative schedule if conflict is expected. This redundant transaction is called a

transaction shadow. If conflict in an original transaction is resolved and the original

transaction is successfully committed, then the transaction’s shadow must be discarded.

On the other hand, if the original transaction fails to commit, then the transaction’s

shadow is adopted instead of restarting the original conflicted transaction from the

beginning. For example, consider that T1 and T2 are concurrently running transactions

under a broadcast commit scheme, as illustrated in Figure 2.8. [101]

Figure 2.8 Transaction management

under an OCC broadcast commit scheme

T1

T2

write x

read x

commit

abort

x

T2

deadline

2. Background and Related Work

34

 Figure 2.8 shows a simple scenario of two concurrently running transactions. T2 is

conflicted with T1 in data item X, and T2 reads an updated value of X made by T1. This

is unlike the pessimistic approach, which would block T2 until such a conflict is

resolved, and also unlike an optimistic approach which would ignore the expected

conflict. A speculative approach would make a copy of T2 (shadow), starting the

execution at a different time. Both transactions - T2 and T2’s shadow - will be allowed to

run concurrently at different points of execution, but only one of them is allowed to

commit. Although both transactions (T2 and its shadow) may see different versions of

data items in their read operations, both transactions are exact replicas of each other

because both are performing the same operations. Figure 2.9 illustrates a scenario when

T2 reaches the commit time before T1, where T2 successfully commits and T2’s shadow

aborts.

Figure 2.9 Schedule with

 an undeveloped possible conflict.

Figure 2.10 shows another scenario, when T1 reaches the commit first. T2 must

abort because of a conflict with T1. In this case, T2’s shadow will be adopted and will

continue execution instead of restarting T2 from the beginning. Speculative concurrency

control offers a better opportunity for real-time transactions to become committed before

their deadline expires. However, this advance is not gained at no cost; it requires extra

memory and processing resources when transactions succeed in committing and other

shadows are discarded. Speculative concurrency control has been intensively studied in

the literature [101][102][103][104][105][106][107][108][109][110].

T1

T2

write x

read x commit
T2

deadline
T2

shadow

abort

x

2. Background and Related Work

35

Figure 2.10 Schedule with a developed conflict.

14. Deadline-Cognizant

Timeliness is a primary performance measure in real-time database systems, in contrast

to conventional database systems which use response time and the throughput as main

performance measures. The main goal of real-time systems is to minimize the number of

transactions that cannot meet their deadlines. Therefore, priority is a key factor that

needs to be taken into account when dealing with scheduling in real-time systems.

Intensive research studies have been conducted in order to determine the optimal

deadline-cognizance [6][39][35][38][37][13][36]. Three important policies for deadline-

cognizance are reviewed below.

 OPT- Sacrifice: When a transaction reaches the validation phase, it starts

validation operations with all concurrently running transactions. If a conflict is

detected with at least one transaction with a higher priority, then the validating

transaction aborts. Otherwise, the validating transaction proceeds to commit

and all conflicted transactions must restart. The goal of this strategy is to help

higher priority conflicted transactions to meet their deadlines [11][111][112]

[113]. However, two problems arise with the OPT- sacrifice policy:

1. There is a potential problem of wasted work, which results from

aborting some conflicted transactions on behalf of the validating

transaction, then aborting the validation transaction itself afterwards.

In this case, the abortion of the transactions which are conflicted with

T1

T2

write x

read x abort
T2

deadline
T2

shadow

Read x

x

commit

commit

2. Background and Related Work

36

the aborted validating transaction is unnecessarily and the work that

has been made by these aborted transactions is wasted work [111][11].

2. A problem of mutual restarts arises when priority reversal is allowed,

based on a dynamic transaction priority assignment scheme [114]. For

instance, if transaction T1 restarts on behalf of T2, because T2’s

priority is currently higher than that of T1, then T2 at a later time

restarts on behalf of T1, because T1’s priority is now higher than that

of T2. This fluctuation in transaction priority assignment causes the

pair of transactions to continue aborting each other, which affects the

progress of both transactions and consequently degrades the whole

system performance.[113][6][11]

 OPT-Wait: This scheme is an updated version of OPT-sacrifice, with the

addition of waiting mechanism. When the transaction reaches the validation

phase, it starts validating with concurrently running transactions. If conflict

with a higher priority transaction is detected, the validating transaction does

not restart immediately as in OPT-sacrifice; instead it is put on hold, waiting

for a higher priority transaction to commit. The waiting transaction

consequently restarts if a conflicted higher priority transaction successfully

commits. But if the latter is aborted, then the waiting transaction will be

allowed to proceed. OPT-wait has several advantages over OPT-sacrifice,

including the problem of wasted work as mentioned earlier, because restarts

occur only at the commit time of a higher priority transaction. In addition, the

problem of mutual restarts is eliminated, because fluctuations of transaction

priority do not lead to transactions aborting [111][11][6]. On the other hand,

OPT-wait also has some negative features which can be summarized as

follows.

1. When a waiting transaction successfully commits after a period of waiting

time, it will abort all lower priority conflicting transactions at a later time;

this will increase the chance of failure of these transactions in meeting

their deadlines [11][111].

2. Background and Related Work

37

2. Waiting transactions may develop new conflicts, consequently leading to

an increase in the number of restarts; this may become significant if the

data contention rate is high [11][111].

 No Sacrifice: in this policy, which is also known as the never abort

validating (NAV) transaction strategy [85], a validating transaction guaranteed

to commit when it reaches the validation phase mean that all conflicted

transactions have to be aborted [6]. Although, priority is not considered in this

policy, it has great benefits as summarized next

1. A validating transaction has already used all the resources it needs and

has done all the work. Therefore, aborting a validating transaction will

be very expensive in terms of resource use and computational costs.

The NAV strategy guarantees that the resources utilized by a

validating transaction are not lost [85].

2. NAV eliminates the wasted work which results from aborting some

conflicted transactions on behalf of a validating transaction which

aborts later, thus avoiding considerable performance degradation [111]

[11].

3. A no sacrifice policy prevents problems related to priority-driven

scheduling, such as mutual restarts, the starving of low priority

transactions, and the extra cost of priority assignment and

management[6].

 No sacrifice policy has been evaluated in previous work [115][113] [116] and the

results reported were generally relatively good. It outperforms other deadline-cognizant

polices under a variety of operating conditions [6].

2.5.3 Data Delivery Choice

Data is delivered between clients and the server by three different methods: pull-based ,

push-based and hybrid delivery [117][118].

2. Background and Related Work

38

1 Pull-based Delivery

In pull-based delivery, data transmission between clients and the server is based on a

request/response structure. When a client requires a data item not existing in its local

cache, it sends a request to the server for such an item. In response, when the server

receives the data request, it retrieves the data item and transmits it to the requesting

client. This approach is illustrated in Figure 2.11.

Figure 2.11 Pull-based delivery [117]

The pull-based approach works well if network disconnections are rare and the number

of clients of whom the server manages to respond to their requests within the expected

time intervals is relatively limited. In contrast, pull-based approaches have noticeable

scalability limitations, which are summarised as follows:

 Increasing numbers of clients leads to an increased number of requests sent to

the server, which can exceed the connection limit.

 Increasing numbers of requests transmitted to the server can rapidly lead to a

bottleneck if the request rate exceeds the upper limit of the server’s service rate.

 The client requires a backchannel to make requests to the server since

asymmetric environments with uni-directional communication are not suitable.

This increases the energy consumption needed for upstream communication

between clients and the server, which significantly drains battery energy in

battery-powered devices because sending data consumes more energy than

receiving it.

These limitations mean that push-based delivery is not suitable in mobile computing

environments where network disconnections frequently occur either due to interference

Request

Response

Client Server

2. Background and Related Work

39

or in order to save battery energy. Moreover, the number of mobile clients who the

server is required to serve may be relatively enormous.

2 Push-based Delivery

Here, server is repeatedly cycling through the entire database and broadcasting it to all

clients. A client needing to instigate a read transaction simply waits for the relevant

piece of data to come around in the broadcast cycle, and there is thus no need for the

client to transmit a read request to the server. Equally, the server does not need to

respond to read requests from clients, as it never receives any, as illustrated in Figure

2.12.

Figure 2.12 Push-based delivery [117]

This approach is particularly applicable when a large number of clients must read a

relatively small database. For read transactions, the push-based approach is expandable

to any number of clients with no degradation of performance. Complications arise when

write transactions need to be incorporated [119][120]. The following advantages that

can be gained from a push-based delivery approach.

 Scalability: The load in the network is reduced and becomes independent of the

number of clients, which gives a greater ability to scale since the server can

support more clients before overloading.

 Lower bandwidth utilization: avoiding the upstream bandwidth from the client to

the server makes this approach attractive for asymmetric environments.

 Energy efficiency: preventing requests sent by clients to servers has a big impact

in saving battery energy in battery-powered devices.

Push-based delivery approaches have fallen out of favour in recent decades as

efforts were devoted towards synchronous clouds and server farms using pull-based

Push Schedule

Push Schedule

Client Server

2. Background and Related Work

40

delivery approaches. The rapid developments in computing and communication

landscapes, and the availability of high-bandwidth links has led to a reevaluation of the

ways data should be delivered between computers. This is particularly important given

the innovations in information-feed applications such as traffic information systems,

stock market monitors, live audio and video telecasts, battlefield applications, news

delivery, video-on-demand and other entertainment delivery applications [117], which

usually deal with enormous numbers of clients. In addition, the increased use of mobile

applications running on portable smart devices has brought attention back to push-based

delivery approaches.

3 Hybrid Approaches

These are combinations of pull and push approaches, and are also known as interleaved-

push-and-pull (IIP) approaches [121]. The server regularly broadcasts hot data (that

frequently used by clients), based on the push approach, and cold data needs to be

requested by clients via a back-channel, based on the pull approach. The hybrid

approach represent a compromise between the various advantages and disadvantages of

previous data delivery approaches [121].

2.5.4 Broadcast Datacycle Approach

Broadcast datacycle for asymmetric communication environments continuously

broadcast all data items in the database to all connected mobile devices, using single or

multiple wireless channels. Clients listen to this broadcast stream and access the

required data as it is broadcast, if it does not exist in the local memory or disk.

Therefore, the number of mobile devices does not affect access time, since it is read-

only. Read transactions are expandable to any number of clients with no degradation of

performance. Which are outweighing write transactions in many applications in a

wireless environment. For example, information-feed applications such as an online

stock-trading application involves far more transactions resulting from a user checking

or tracking stock prices than those instigated by a user purchasing or selling stock. The

broadcast datacycle approach [120] is an established solution for this type of

application, and it has recently been the subject of further work to establish it as a viable

option for mobile environments [122][123][124][125].

 In contrast, conventional concurrency control techniques unsuitable, for many

reasons [126]. For example, using a concurrency control protocol based on locking

2. Background and Related Work

41

techniques could lead to the server being swamped with lock requests. Similarly, for

timestamp-based techniques, communication between clients and the server is needed

for every read operation in order to keep track of both read and write timestamps; this

can be unwieldy in broadcast environments. Optimistic concurrency control is found to

be more convenient in such environments.

2.5.5 Indexing on the Air

Indexing is a technique used to speed up searching operations. It is widely used in

traditional database systems and storage. However, in a broadcasting Datacycle

approach, air channels support only sequential access. Therefore, clients would need to

scan all of the data blocks in order to find the desired data item. Without indexing, half

of the broadcast datacycle will be scanned on average to reach the desired data item, as

illustrated in Figure 2.13.

Previous

datacycle
Data Items

Next

datacycle

Figure 2.13 Broadcast datacycle with no indexing [127]

This is inefficient in terms of the energy consumption of mobile devices. However if

the client knows in advance where the desired data is located in the broadcast datacycle,

a CPU could switch to doze mode for most of the time, and only stay active when the

desired data is expected to arrive. This would lead to considerable energy savings

because a CPU in active mode consumes much more energy than in doze mode. Two

important parameters need to be considered when studying indexing in a broadcast

environment:

 Access Time: this is the average time from the point that a client requests data

until the point that the client downloads that data.

 Tuning Time: this is the time spent by the client listening to the channel and

waiting for desired data. Listening to the channel needs the client to be in

active mode, consuming more energy.

Three indexing strategies are summarised below: tune_opt indexing, (1,m) indexing and

distributed indexing. These can be used in broadcast data cycle environments in order to

improve performance and save energy [127][128][129].

2. Background and Related Work

42

 Tune_opt indexing

The index is broadcast at the beginning of every broadcast cycle, as depicted in Figure

2.14. A client tuning in to the channel at the beginning of the next broadcast needs to be

able to read the index in order to locate the position of the desired data. This strategy

provides the longest access time, since the client must wait until the beginning of the

following broadcast even if the desired data is in front of it [127][128][129].

Previous

Datacycle
Index Data Items

Next

Datacycle

Figure 2.14 Broadcast datacycle in tune_opt strategy [127]

 (1,m) indexing

Here the index is broadcast in m time in each broadcast datacycle, and each data block

has information about the next index allocation, as seen in Figure 2.15. Therefore, when

a client starts tuning into the current block, it reads the information concerning the

nearest index allocation. Then it switches to doze mode until the beginning of the next

index. From the next index, the client reads the relevant data location, and then goes

into doze mode again until the data of interest has arrived. The (1,m) indexing strategy

offers great energy savings but has to send the entire index several times which

increases the broadcast datacycle length [127].

Previous

datacycle

Next

datacycle

Figure 2.15 Broadcast datacycle in (1,m) strategy [127]

Distributed indexing

Distributed indexing partially replicates the index with data segments in each datacycle.

Only a portion of the index attached at the front of each data segment indexes. Unlike

Index

Data

2. Background and Related Work

43

(1,m) indexing strategy, which attaches the whole index to the front of each data

segment. This obviously reduces the datacycle length generated by the (1,m) indexing

strategy. The distributed indexing strategy makes energy savings similar to the (1,m)

indexing strategy, and it outperforms the (1,m) strategy in terms of access time,

especially if the size of the index segment is large [127][128]. Many studies on indexing

strategies have been published [130][131][132][133][134][135][136][137][138][139].

2.5.6 Broadcast Disks

A broadcast disk is a broadcast datacycle technique in which the entire database content

is repeatedly and continually broadcast from the server to clients. Clients read the

required data from the broadcast channel as a disk. This is different from a conventional

broadcast datacycle in the sense that data is broadcast with different disks of varying

speed and size. Data stored in the faster disks will be broadcast more frequently than

that stored in slower disks. In a conventional flat approach, as illustrated in Figure 2.16,

the expected waiting time for any data item is the same, approximately half the

broadcast period [119][117].

Figure 2.16 Flat broadcast approach

 However, in real-life, data is not accessed uniformly, and a subset of data (hot spots)

will be accessed more frequently. A server can speculate on the frequency of access to

data by clients monitoring the previous history of a client’s activity or by generating a

summary of the client’s intended future use. The server can then broadcast different

items at different frequencies in order to satisfy client demand. A simple scenario with

different broadcast programs for three data sets (in this case pages) is illustrated in

Figure 2.17. Program (a) is a flat broadcast, in which each page is broadcast only once

Server

A D C B A D C B A D C B

Broadcast cycle

2. Background and Related Work

44

in each broadcast cycle. Program (b) is a skewed broadcast in which page A is broadcast

twice sequentially, with B and C broadcast once each time cycle. Program (c) is a multi-

disk broadcast in which page A is broadcast twice as often as D and C, but interspersed

between them. The prosperity of program (c) is equivalent, as if the page A was stored

on a disk spinning in double speed as the disk in which pages B and C are existing

[140][117]. Broadcast disks is attractive for information-feed applications such as traffic

information systems, stock market monitors, live audio and video telecasts, battlefield

applications, news delivery, video-on-demand and other entertainment delivery

applications [117], which usually deal with enormous numbers of clients.

 a - Flat broadcast b- Skewed broadcast

c- Multi-disk broadcast

Figure 2.17 Three different broadcast programs [117]

Broadcast Disks Generation Program Example

A broadcast disks generation program from a previous study [119] is demonstrated in

Figure 2.18, which apportions all of the data to three disks. Data in each disk is

partitioned into chunks, and the chunks in different disks can be of different sizes. Data

in the first disk will be broadcast more frequently than the data in the other disks (with

double the frequency of data in the second disk and four times the frequency of data in

the third disk). Each datacycle, or major cycle, contains four minor cycles, and each

minor cycle contains one chunk of each disk. It is important to note that, adding more

pages to faster disks results in more delay to the pages on the slower disks. Therefore, it

is preferred for fast disks to have fewer pages than slower disks.

A B C A B C A

A B C A

2. Background and Related Work

45

Hot 1 2 3 4 5 6 7 8 9 10 11 cold

1 2 3 4 5 6 7 8 9 10 11

 D1 D2 D3

1 2 3 4 5 6 7 8 9 10 11

 C1,0 C2,0 C2,1 C3,0 C3,1 C3,2 C3,3

1 2 4 5 1 3 6 7 1 2 8 9 1 3 10 11

C1,0 C2,0 C3,0 C1,0 C2,1 C3,1 C1,0 C2,0 C3,2 C1,0 C2,1 C3,3

Figure 2.18 Broadcast disks generation program [119]

2.5.7 Fault-tolerance in Broadcast Disks

Data transmission in wireless environments is not always safe; signals can be affected

by noise on the air, which may corrupt the data transmitted. If some desired broadcast

data is corrupted, the client has to wait for the next broadcast data cycle to receive it

correctly. This causes further delay to data transmission, which may be tolerable in

conventional applications, but increasing latency in real-time applications may lead to

deadline being missed. Some ordinary error detection techniques such as cyclic

redundant code can be used to overcome data transmission failure [141]. However, this

technique is a relatively simple to implement, but other advanced techniques [142] can

distinguish between corruption occurring in the data itself and corruption occurring in

the index buckets along the path of the search. The proposed techniques can overcome

some types of corruption to indexes and continue searching in the current broadcast data

cycle, instead of starting the search from scratch in the next broadcast data cycle, this

maintain considerably lower access time. Various further error detection techniques

have been introduced in the literature to deal with data transmission failures in

broadcast environments they can be found in [143][144][145][146].

Database

Pages

Disks

Chunks

Minor cycle

Major cycle

2. Background and Related Work

46

2.5.8 Forward and Backward OCC (FBOCC)

The forward and backward OCC (FBOCC) is a distributed concurrency control

algorithm suitable for governing transactions in wireless broadcast environments

[147][148]. It consists of three validation stages, the first of which involves partial

backward validation at a client, and the second and third stages involve forward

validation and final partial backward validation at the server. The three validation

stages are described in detail in the following sections.

 Partial backward validation compares the write set of committed transactions at

the server with the read set of running mobile transactions at the client at the

beginning of every datacycle. These include both read-only and updated mobile

transactions. Any conflicted mobile transaction will be aborted. Successfully

validated read-only mobile transactions will proceed to commit locally.

Successfully validated mobile updated transactions are sent to the server to be

validated globally.

 The pseudo-code for partial backward validation at the client is presented below:

Algorithm 3 Partial backward validation

1: PartialBackwardValidation(Tm) {

2: if ((CD(Ci) ∩ RS(Tm)) ≠ {}) then

3: abort(Tm)

4: else

5: record the value of Ci,

6: Tm is allowed to continue;

7: endif

8: }

RS – read set and WS – write set.

Tm – transaction generates and executes at the clients.

CD(Ci) – the set of data items which was updated.

 Forward validation is performed at the server between the write set of validating

transactions at the server (this could be a server transaction or a mobile update

transaction submitted by a mobile client for global validation), and the read set

2. Background and Related Work

47

of transactions at the server (which includes transactions generated and executed

at the server, and update transactions generated and executed at the clients, then

sent for global validation at the server). Conflicted transactions at the server will

be aborted and restarted at the server, and conflicted mobile update transactions

will be aborted and restarted at the client. If the validating transaction is

successfully validated then it commits, and its write set will be added to the

control information table, to be broadcast in the following broadcast cycle.

 The pseudo-code for forward validation is presented bellow using the same notation

 as explained in the section on partial backward validation.

Algorithm 4 Forward validation

1: validate(Tv){

2: if (Tv is a mobile update transaction) then

3: FinalValidation (Tv);

4: If (return fail)then

5: Abort (Tv); exit;

6: End if

7: End if

8: For each Tj (j= 1,2,.....,n) {

9: if ((WS(Tv) ∩ RS(Tj)) ≠ {}) then

10: abort (Tj);

11: endif

12: }

13: Commit WS(Tv) to database;

14: CD(Ci) = CD(Ci) U WS(Tv);

15 }

RS – read set and WS – write set.

CD(Ci) – the set of data items which was updated.

 Final partial backward validation has to be performed at the server for mobile

update transactions before starting forward validation. This final partial

backward validation is needed in cases of existing update transactions

committed at the server since the last backward validation performed at the

2. Background and Related Work

48

client. Final validation results are also broadcast with a control information

table, as acknowledgement for mobile clients.

The pseudo-code for final validation using the same notation explained in the

 section on partial backward validation is presented below:

Algorithm 5 Final validation

1: FinalValidation(Tm){

2: For each Ti (i= 1,2,...,n) {

3: If (RS(Tm) ∩ WS(Ti) ≠ {}) then

4: Return fail;

5: }

6: Return success;

15 }

Example of interaction between server and mobile client

Figure 2.19 illustrates the schedule of the following set of transactions:

Transactions at the server: U1: r (a) w (a) U5: r (q) w (q) U6: r(y) w(y)

Transaction at mobile client: Q2: r (a) r (b) r (c) Q3: r (p) r (q) U4: r (x) r (y) w (y)

From Figure 3.19 the following execution scenario is concluded:

 After Q2 has read data items a and b from the broadcast cycle, Ci-1, a is updated

by U1 before Q2 reads c, which is caught by partial backward validation.

Therefore Q2 aborts.

 Q3 successfully passes partial backward validation and commits.

 U4 passes the partial backward validation in broadcast cycle Ci and is then sent

to the server for validation (final and forward validation). Because Y has been

updated by U6 before U4 reaches the validation point, U4 fails to pass the final

validation and aborts.

 U1, U5 and U6 successfully pass the forward validation and commit.

2. Background and Related Work

49

Figure 2.19 Transaction execution schedule [147]

As a result, all committed transactions based on FBOCC are serializable. FBOCC also

minimizes the use of the uplink channel. This is because, firstly, validated and

committed read-only transactions are locally at clients, and these constitute the majority

of mobile transactions. Secondly, update transactions are validated and aborted locally

at clients, which means that update transactions are more likely to pass the validation

and write phases at the server. The FBOCC is suitable for concurrency control in

wireless broadcast environments for many reasons [126] and is widely deployed

[147][59][61][60][63].

2.5.9 Discussion

Serializability is a standard correctness criterion for many mobile applications such as

mobile stock trading, and the inability to maintain it may lead to serious financial

consequences [149][150]. However, maintaining serializability in mobile environments

is facing new challenges due to the resource constraints of mobile computing devices

and the nature of its use anytime and anywhere. Access efficiency and power limitations

are the two major challenges in mobile wireless environments. Limited upstream

communication capacity from a mobile device to the server makes conventional

concurrency control techniques inappropriate for such environments. Using upstream

Time

Client

Server

 CD (ci) = {a} CD (ci+1) = {q}

 r2 (a) r2 (b) r3 (p) r4(x) r3 (q) c3 r4(y) w4(y)

Ci-1 r1 (a) w1 (a) c1 Ci r5 (q) w5 (q) c5 ci+1 r6(y) w6(y) c6

Wireless medium

Q2 fails the partial backward validation

because CD (Ci) ∩ CRS (Q2) ≠ {}

U4 fails the final validation

because

WS (U6) ∩ RS (U4) ≠ {}

Ci; RS (U4); WS (U4)

 and pre-written

 values

2. Background and Related Work

50

communication is also very expensive in terms of battery power consumption

[147][151]. In addition, disconnection issues mean that mobile devices may struggle to

cope because of undesired signal interference, or when users seek to reduce energy

consumption [127]. Furthermore, the cost of validation overhead which, required to be

relatively low in order to appropriate the mobile resources constraints. These

challenges lead conventional concurrency control approaches to be less applicable to

mobile environments [59][63][126]. The following discussion addressing the weakness

of the conventional OCC techniques regarding these challenges.

Locking-based concurrency control request locks for each data item read in a

transaction, including read-only transactions in order to detect data conflicts. In mobile

environments such techniques would require extensive use of client to server

communication and would overload the server with lock/unlock requests

[126][59][63][152].

 The timestamp based OCC has a relatively expensive validation cost at triple at

forward and backward oriented validation [64]. Timestamp management also involves

other large overheads, since each data access requires its timestamp to be updated

[64][24]. It is therefore infeasible in mobile environments since it requires client to

server communication, which leads to high levels of inefficiency in terms of resource

utilization and energy use [126][150][59][126].

 OCC based on serialization graph testing is very expensive in terms of validation

costs. In practice it is very expensive to maintain the serialization graphs of concurrently

running transactions, and further overhead needed for cycle checking which adds even

more cost and energy drain [19][152][153].

 Forward validation schemes [56] are a good concurrency control approach for

mobile environments for many reasons [126], and are widely deployed in wireless

broadcast environments [147][59][60][63]. It involves relatively low-cost validation, at

one-third of the timestamp validation cost [7]. In addition, it has the ability to be

combined with virtual execution environments to reduce the rollback overhead, which is

a battery-friendly advantage [18][17]. It is therefore argued here that the forward

2. Background and Related Work

51

validation scheme is a suitable OCC approach for governing transactions operating in

mobile environments.

Conventional OCC protocols were originally designed to work in conventional

database environments. Mobile environments, however, have different features, which

mean that conventional OCC protocols are not suitable for mobile environments.

Therefore, there is still gap in concurrency control for mobile environments need to be

covered in order to satisfy its requirement.

The contribution made in this thesis involves a novel departure from existing

techniques by redesigning forward validation schemes in order to make them more

appropriate for use in mobile environments. In the proposed new approach, the order of

the traditional transactional phases sequence read-validation-write [8] is changed. The

write phase now follows the read phase with the validation phase occurring after the

write phase [16]. The combination of the new order of transactional phases with virtual

execution can provide a solution appropriate to the constraints of mobile devices and

mobile broadcast environments. Chapters 3 and 4 demonstrate that the new approach is

capable of improving overall system performance and the likelihood that transactions

will complete within their specified deadlines [17][18].

2.6 Summary

Background information in previous research relevant to this thesis is reviewed in this

chapter. It introduces databases and showed how their consistency may interfere

concurrent execution. It is explained how database consistency can be maintained by

enforcing serializable schedules. In addition, various database types are introduced,

including centralized, distributed, mobile and real-time databases. Furthermore, caching

and rerun policies used to enhance system performance are explained. Following this,

the main existing OCC techniques are reviewed, and significant aspects of OCC are

investigated to identify the strengths and weakness of existing OCC protocols. Further

topics regarding mobile environments are covered, including data delivery methods,

broadcast datacycles and forward and backward OCC. The following two chapters

introduce the contributions made by this thesis.

 3 The Read-Write-Validate

52

Chapter 3

The Read-Write-Validate Approach

3.1 Introduction

Millions of smartphones and tablet devices are being used for increasingly complex

tasks. As mobile applications become achievable and practical for use as stand-alone

applications or to access remote applications. multiple applications run in parallel on

mobile devices, raising issues of sharing resources such as processors, memory access,

solid state disk access and network connections [154]. In addition, many mobile

applications require asymmetrical channels between clients and the server, whereby the

frequency of read transactions requested by the client is significantly higher than the

number of write transactions. Taking the example of a stock trading application; there

are far more transactions involving a read-only checking of stock prices, compared to

the number of transactions involving sales or other events requiring update transactions

(that is, users typically check share prices far more than they buy shares). A common

implementation of this type of application involves the use of a broadcast disk protocol

[119], whereby the database is repeatedly broadcast to the clients in its entirety. This

approach means that there is no requirement for the client to send a read request to the

server; the client simply waits for the requested piece of data to appear in the cycled

transmission, and the server does not have to respond to individual client requests to

send data. Clearly, this greatly reduces the amount of traffic on the network, and the

number of requests which the server must process. This type of approach is particularly

useful when a relatively small database must be read by numerous clients.

Conventional OCC is a well-understood solution in this type of situation [8].

However, these protocols place a strain on the mobile device’s battery due to the cost of

validation and of duplicating information retrieval associated with aborted transactions.

In addition, they tend to involve the heavy use of the network in both directions to

request and validate read transactions, which renders the approach less applicable to

mobile networks [126] due to limited uplink bandwidth and battery life. Forward

 3 The Read-Write-Validate

53

validation schemes [56] provide relatively cheaper validation costs [64]. They have

been extended so as to be suitable for mobile broadcast environments [147], and have

been widely adopted in subsequent research [59][63][61][155][60][156]. Therefore, a

novel OCC approach that employ forward validation schemes to address the real-time

requirements of mobile devices and mobile broadcast environments is proposed in this

thesis.

The proposed approach is a combination of virtual execution policy and a novel

transactional OCC phase’s order in which the write phase occurs before the validation

phase. When transactions are in a rerun state, we can offset their validation until after

the write phase. There are important benefits of this approach, for example writes may

become visible to transactions in the read phase earlier, affording more likelihood of

reading up-to-date data from disk. Also, overall blocking is reduced (in the original

OCC protocols, transactions in the read phase need to be blocked as a transaction

commits changes to the database - such blocking is not required in the proposed

approach, as out-of-date reads are caught by the later validation step). The proposed

approach is explored in this chapter in two contexts. Firstly, it is show that

implementing it on the mobile devices themselves can improve contention problems due

to shared resources on that device. Secondly, it is further show that the proposed

protocol represents an efficient implementation for client-server models based on a

broadcast datacycle for a wireless network, which is now receiving renewed interest due

to its potential for energy efficiency in the field of mobile communications [122]. The

results show that with the proposed approach the number of client-server transactions

which miss their deadlines due to concurrency issues is reduced. The number of

transactions requiring restarts is also reduced, so less energy is used in retransmitting

data or in accessing a resource a second time.

This chapter introduces the proposed Read-Write-Validation approach, and

discusses the correctness justification for reordering the transactional phases. Then, an

extensive discussion of the advantages and disadvantages of the Read-Write-Validation

approach are presented, and additional enhancements of the approach are introduced.

Then, the Read-Write-Validation protocol for governing transactions operating on

databases residing on mobile devices themselves is explained. Finally, the distributed

Read-Write-Validation protocol for governing transactions operating in client-server

models based on wireless broadcast environment is presented.

 3 The Read-Write-Validate

54

3.2 Read-Write-Validate Approach

The proposed approach fundamentally changes the order of the traditional transactional

phases in conventional OCC [8]. The write phase now follows the read phase, with the

validation phase occurring afterwards as illustrated in Figure 3.1. Such the transaction

now commits after the write phase finishes and before validation phase starts.

Figure 3.1: Read-Write-Validate approach phases.

Both write and validation phases are collectively considered a single critical section,

allowing only one transaction to execute in either phase [8][56]. The validation phase

executes based on a forward validation scheme [56]. Validation with this scheme is

achieved by identifying the intersection between the validating transaction’s write set

WS (Tv) and every read set of all concurrently running transactions RS (Ti):

WS (Tv) ∩ RS (Ti) ≠ {}

If the above holds true (i.e., there is intersection), then a conflict has occurred and a

resolution policy is needed in order to resolve it. In this approach, The never abort

validating (NAV) transactions strategy [85] is the only conflict resolution policy that is

applied. This guarantees that a transaction entering the critical section will commit. This

requires transactions conflicting with the validating transaction to be aborted. NAV is

important in the sense that the validating transaction has used the resource and

completed its execution; it will be very expensive to abort such transaction. In addition,

NAV gains in importance in the proposed approach because the write phase occurs

before the validation phase. Therefore, data will be updated and accessible by other

transactions at the time of validation, which makes aborting validating transactions

more expensive and more complicated. The new transactional phase’s ordering is

combined with the virtual execution technique to allow for much greater performance.

The combination with virtual execution technique will be described in detail in section

3.6 Read-Write-Validate enhancement.

Read phase
Write

phase

Validation

phase

Time

 3 The Read-Write-Validate

55

3.3 Justifying the Read-Write-Validate Approach

Using a critical section around the write and validation phases, the ordering becomes

trivial as system correctness is guaranteed (as serial schedule) in either scheme.

However, without using forward validation coupled with the never abort validating

(NAV) transactions strategy, it would be more costly to employ the Read-Write-

Validate approach; here if a validating transaction is aborted it is expensive to undo the

changes made during the write phase. This would also result in an increased number of

conflicts due to other transactions having accessed the same data needing to be aborted.

Another advantage of this strategy of NAV transactions is that the resources utilized by

a validating transaction are not wasted [85].

In, addition, real-time centralized transactional databases need to handle

transactions with timing constraint in the form of deadlines. Factors such as system

contention have a direct impact on satisfying transactional deadlines; such factors occur

during validation. Therefore, it is acknowledged that, in the traditional OCC phase

ordering, the validation step introduces a degree of non-determinism with regards to

how long writes will take to become visible in the database (delaying entering the write

phase). The validation phase is required to ensure system correctness with regards to

transactions that are still executing, rather than providing a direct benefit to the

validating transaction itself. If the write phase occurs before the validation phase then

non-deterministic timing constraints of the validation phase are removed, allowing a

transaction to commit sooner.

3.4 Advantages of the Read-Write-Validate Approach

The Read-Write-Validation approach provides substantial advantages leading to the

achievement of significant improvements in system performance. These advantages

including the minimization of transaction lifespan , eliminating the blocking of

concurrent transactions, newly starting transactions are never blocked and updates are

visible earlier. The advantages achieved by the Read-Write-Validate approach are

described in the following sections.

 3 The Read-Write-Validate

56

3.4.1 Transaction Lifespan Minimized

Transaction lifespan is the transaction’s execution time, which is the time between the

transaction beginning its execution and committing. In conventional OCC approaches,

the lifespan of transaction T includes the non-deterministic timing of the validation

phase period, which is the period of validating other concurrently running transactions

in order to ensure system correctness rather than providing direct benefit to validating

transaction itself. The additional non-deterministic timing of the validation phase in

conventional OCC is illustrated in Figure 3.2 by the line marked in red.

Figure 3.2 Transaction

 lifespan in conventional OCC

In the Read-Write-Validate Approach, the non-deterministic timing of the validation

phase period is removed from the lifespan of the transaction, as shown in Figure 3.3.

The validation phase of transaction T executes after it commits. This is an important

benefit in real-time systems where the validation phase introduces non-deterministic

timing constraints, which may effect on satisfying transactional deadlines.

Figure 3.3 Transaction

 lifespan in Read-Write-Validate approach

T
Read Validation Write

Commit

Time

Read Validation Write

Commit

T

Time

 3 The Read-Write-Validate

57

3.4.2 Blocking of Concurrent Transactions Eliminated

In the conventional OCC approach, non-conflicted transactions executing in the read

phase will eventually be blocked while the validating transaction executes in the

validation and write phases, in order to be prevented from entering a conflict state after

validation. If non-conflicted concurrently running transactions are allowed to continue

execution after they have been validated, they may potentially enter a conflicted state.

This arises if a value read by non-conflicted transactions in the read phase is shared with

the write set of a validating transaction. As a result, non-conflicted concurrently running

transactions must be blocked after having been validated, until the validating transaction

commits, in order to guarantee database consistency. Although non-conflicted

transactions constitute the majority of transactions contentious workload in OCC

transactional systems, blocking them continually is considered to be a great weakness of

conventional OCC.

In the Read-Write-Validate approach, non-conflicted transactions are no longer

blocked from progressing, and yet database consistency is still maintained, since

transactions waiting to enter the critical section are not considered blocked.

Concurrently running transactions are allowed to continue execution while the

validating transaction execute in both the validating and write phases. If concurrently

running transactions enter a conflict state while the validating transaction is writing,

such a conflict will eventually be detected in the deferred validation phase. If non-

conflicted concurrently running transactions do not enter a conflict state while the

validating transaction is writing, such transactions will successfully pass validation

along with the validating transaction, and continue execution without affecting database

consistency. The following two scenarios illustrate how the blocking of concurrently

running transactions is removed in the Read-Write-Validate approach.

 Conventional OCC Scenario

Figure 3.4 shows a scenario where three concurrent transactions, T1, T2 and T3

are running. T1 finishes the read phase before T2 and T3 and consequently starts

validation against T2 and T3. T2 is a conflicted transaction because it is reading

the shared data x and y, and this conflict is detected and T2 is aborted. The non-

 3 The Read-Write-Validate

58

conflicted transaction T3 successfully passes validation, but T3 has to be

blocked while T1 is completing the rest of its validation phase along with other

concurrent transactions and its entire write phase in order to ensure that T3 will

not enter an inconsistent state after having been validated against T1. T3 will

resume execution after T1 commits and leaves the critical section. Such

blocking is important when transaction read sets are dynamic, (which means that

it is not known in advance when the transaction starts. Therefore, the scheduler

has to block all non-conflicted concurrently running transactions after they have

been validated, to make sure that none of them will enter a state of

inconsistency.

Figure 3.4 The occurrence of

blocking in the conventional OCC approach

 Read-Write-Validate Approach Scenario

Figure 3.5 shows the same scenario running three concurrent transactions T1, T2

and T3. The validating transaction T1 starts executing its write phase before the

validation phase, based on the Read-Write-Validation approach. Both T2 and T3

continue execution while the validating transaction writes. When T1 starts the

validation phase, the conflicted transaction T2 will be detected and aborted. If

T3 enters a conflict state while T1 performs the write phase, that is not a

problem, since such a conflict will be detected by validation afterwards.

Otherwise, the non-conflicted transaction T3 will successfully validate against

T1

T2

T3

Read Validation Write

Read

Read Validation Write

write x,y

read x,y

read m,n

T3 blocked

T2 aborts

Time

T1 commits

 3 The Read-Write-Validate

59

the validating transaction T1, and it continues execution without affecting

database consistency. Therefore, non-conflicted transactions like T3 will benefit

from not being blocked during T1’s validation and write phase period.

Figure 3.5 Blocking eliminated

 in Read-Write-Validate approach

3.4.3 Newly Starting Transactions Never Blocked

Newly starting transactions are those, which may start execution while another

transaction is executing in the validation or write phases.

In the conventional OCC approach, such transactions will be temporally delayed

until the validating transaction commits. This is trivial for the following reasons:

 If the newly starting transaction starts while the validating transaction is

executing in the validation phase, it will not be in conflict with the validating

transaction because it has only just started and its read set will be empty.

However, it has to be blocked to make sure that it will not become involved in a

state of inconsistency, as described in the previous section.

 If the newly starting transaction starts while the validating transaction is

exacting in the write phase, obviously this transaction will not have any chance

to be validated in the future against the currently validating transaction which

has passed the validation phase already. Therefore, newly starting transactions

Read Validation Write
T1

T2

T3

write x,y

Read

read x,y

T2 aborts

Read Validation Write

read m,n

Time

T1 commits

 3 The Read-Write-Validate

60

must be blocked until the current validating transaction finishes the whole

updating process and commits, in order to guarantee database consistency.

The Read-Write-Validate approach has the advantage of allowing newly starting

transactions to continue execution straightway without affecting database consistency.

This advantage is explained in the following.

 If the newly starting transaction starts execution while the validating transaction

running in the validation phase, which takes place after the write phase, at this

point the database will already be updated. Therefore, newly starting

transactions will never enter a conflicted state, and no validation is required for

such new transactions.

 If the newly starting transaction starts execution while the current validating

transaction is running in the write phase, the newly starting transaction

continues execution and causes no problem. If the newly starting transaction

was a conflicting transaction, that is also not a problem because such a conflict

will be detected later at the validation phase and the conflicted transaction will

be aborted. If the newly starting transaction was actually a non-conflicting

transaction, which is in fact expected to constitute the majority of the

contentious workload in OCC environments, then such a transaction will pass

the validation phase successfully and benefits from not being blocked while the

current validating transaction is in its write and validation phases.

The following two scenarios illustrate how newly starting transactions gain these

benefits from the proposed Read-Write-Validate approach:

 Newly Starting Transactions in the Conventional OCC Scenario

Figure 3.6 illustrates a scenario where three concurrent transactions, T1, T2 and

T3 are executing based on conventional OCC. T1 entered the validation phase

before T2 and T3 were started. T2 started execution while T1 was executing in

the validation phase. Unfortunately, T2 has to be blocked, as described earlier,

until T1 commits in order to prevent T2 from entering a state of inconsistency.

 3 The Read-Write-Validate

61

Figure 3.6 Blocing in newly starting

transactions in the conventional OCC approach

T3 started execution while T1was executing in the write phase, and it

also has to be blocked until T1 commits to ensure consistency. If T3 continued

execution during T1’s write phase, and T3 comes into conflict with it, such a

conflict will not be detected because T1 has already completed the validation

phase.

 Newly Starting Transactions in Read-Write-Validate Approach Scenario

Figure 3.7 illustrates an example similar to that discussed in the previous

section, with an additional transaction T4 and using the Read-Write-Validate

approach. T1 entered the validation phase before T2, T3 and T4 started. T2 and

T3 started execution while T1 was still executing in the write phase. As opposed

to conventional OCC, T2 and T3 will not be blocked, and will continue

execution during T1’s write phase. Then, at T1’s validation phase which occurs

afterward, there will be two possibilities as illustrated below:

1. If the newly starting transaction is non-conflicting, such as transaction

T2 and which constitutes the majority of the contentious workload, it

benefits from not being blocked during T1’s write phase because it will

successfully pass validation against the currently validating transaction

T1 and therefore continue execution.

Read Validation Write

T1

T2

write x,y
Read phase

read x,y

T3

Time
read x,y

 3 The Read-Write-Validate

62

2. If the newly starting transaction is a conflicting transaction such as

transaction T3, it will be detected in T1’s validation phase and will abort.

Figure 3.7 New transactions are never

 blocked in in Read-Write-Validate approach

Transaction T4, which started during T1’s validation phase, continues

execution without the need for validation, because all of T1’s updates have

already been transferred to the database. Therefore, T4 will never have the

chance to become conflicted with T1.

3.4.4 Earlier Visible Updates

In the Read-Write-Validation approach, writes become visible earlier, affording more

likelihood of reading up-to-date data and thus reducing the opportunity for conflicts to

occur. This is because the reordering of the validation and write phases guarantees that

all new updates are made before the validation phase starts. The following two scenarios

running two transactions, T1 and T2, based on the conventional OCC approach and the

Read-Write-Validate approach clarify this issue.

 Late Visible Updates in Conventional OCC Scenario

Figure 3.8 illustrates two concurrently running transactions, T1 and T2. T1

entered the validation phased before T2. T2 was blocked while T1 executed the

Read

T3 aborts

T4

read m,n

T3

Read Validation Write

T1

T2

write x,y

Read read x,y

T2 and T4

Never blocked

read x,y

Tim

 3 The Read-Write-Validate

63

validation and write phases. After T1 commits, T2 resumes execution and reads

the new T1 updates of x,y after the blocking period which is equal to

approximately T1’s validation and write phases.

Figure 3.8 Late visible

updates in conventional OCC approach

 Earlier Visible Updates in Read-Write-Validation Approach Scenario

Figure 3.9 shows the same scenario of concurrent transactions T1 and T2 using

the Read-Write-validation approach. T2 will not be blocked, as described earlier

in previous sections, while T1 is executing its write and validation phases. T2

continues execution and reads the new T1 updates of x,y while T1 is still

running in the validation phase. T2 is not considered to be in conflict with T1

even if it could read T1’s updates during its validation phase because T1 is

already committed by that time, and the validation performed by T1 is needed in

order to keep other concurrently running transactions consistent. Therefore, the

time of T2’s execution during T1’s write phase and part of T1’s validation phase

benefits T2 which reaches the operation of reading x,y earlier. This time is

illustrated in T2’s execution time in the green segment. The fact that T2 does not

need to wait for the rest of the T1’s validation to be finished (illustrated in T2’s

execution time in the blue segment), together gives T2 the ability to see and use

T1’s new updates earlier.

Read Validation Write
T1

Read

T2

write x,y

read x,y

Time

 3 The Read-Write-Validate

64

Figure 3.9 Earlier visible updates

 in the Read-Write-Validate approach

3.5 Disadvantages of Read-Write-Validate Approach

The advantages of the Read-Write-Validate approach described in the previous section

are not without cost. There is a price to pay in order to gain these advantages. The cost

can be summarised in two points. There is a longer wasted execution and a critical

section constraint, these are discussed below.

3.5.1 Longer wasted execution

If a conflicted transaction aborts as soon as the conflict is detected in the validation

phase, then placing validation phase before the write phase as in the conventional

approach is beneficial in the sense that conflict detection will occur earlier. In other

words, there is no need to wait until the entire write phase period is completed to

identify conflicts. This minimises the amount of wasted work resulting from that

conflicted transaction, compared to aborting a conflicted transaction after the write

phase execution period as in the Read-Write-Validate approach. The following two

scenarios illustrate this problem.

 Wasted Execution in Conventional OCC Approach

Figure 3.10 shows the scenario of two concurrently running transactions,T1 and

T2. T1 entered the validation phase and started validating against T2. Due to a

conflict with T1, T2 aborts. The amount of work which has been done by T2 is

Read Validation Write

T1

write x,y

Read
Write

T2

read x,y

Time

T2 validated

at this time

Validation

 3 The Read-Write-Validate

65

considered to be a wasted execution (Marked by the blue segment in T2’s

execution line).

Figure 3.10 Short period of wasted

 execution in the conventional OCC approach

 Read-Write-Validation Approach Scenario

The phase reordering in the Read-Write-Validate approach means the validation

phase occurs after the write phase. Therefore, conflicted transactions will

continue execution in the entire period of the write phase before they are

detected. This consequently increases the amount of wasted execution of

conflicted transactions, which are shown by the blue and red segments in T2’s

execution line in Figure 3.11. Phase reordering benefits non-conflicted

transactions, which constitute the majority of the contentious overload in OCC

main assumption. In contrast, it a has negative impact in case of conflicted

transactions, because it gives them the chance to continue execution for a longer

period before being aborted.

Figure 3.11 Longer period of wasted

work in the Read-Write-Validate approach

Read Validation Write
T1

Read

T2

write x

read x
Shorter wasted work

Time

T2 aborts

T2 aborts

Read Validation Write
T1

Read

T2

write x

read x
Longer wasted execution

Time

 3 The Read-Write-Validate

66

However, this potential disadvantage of the Read-Write-Validate approach is

solved by combining Read-Write-Validate with virtual execution, which is discussed

later in this chapter in section 3.6.

3.5.2 Critical Section Constraint

The critical section constraint of the write and validation phases is considered to be a

scalability drawback of the Read-Write-Validate approach, which is inherited from the

original forward and backward validation approaches. It is needed to ensure database

consistency. If more than one transaction enters the write or validation phase at the

same time, a state of inconsistency might occur. However, this constraint is also solved

in the distributed version of the Read-Write-Validate Approach introduced in section

3.9.

3.6 Read-Write-Validation Enhancement

The virtual execution approach described in section 2.4.2 is applicable with the Read-

Write-Validate approach. The combination of both approaches is beneficial and fixes

the problem of longer period of wasted execution discussed previously in section 3.5.1.

Furthermore, it adds two important advantages to the Read-Write-Validate approach:

reduces the risk of conflict and improves energy efficiency. These additional advantages

are described in the following.

3.6.1 Energy Efficiency Improvement

Virtual execution allows those transactions that have been aborted to re-execute using

in-memory values as opposed to reading directly from the persistent store. Cached

values from the write sets of committed transactions together with read sets from

currently executing transactions populate a buffer local to the transaction management

system. This improves the proposed approach because accessing a conventional hard

disk drive is expensive in terms of power usage, as the disk must attain read speed, and

the appropriate data sector be found. Even solid-state drives are significantly more

expensive to access compared to the local memory. Clearly, a reduction in the

 3 The Read-Write-Validate

67

frequency of transactions that must be restart will reduce the number of times a disk is

accessed, leading to a reduction in energy usage.

3.6.2 Reduction of Conflict Risk

In virtual execution, rerun transactions are quicker than those in their initial run, as there

is no access to the persistent store. So, transactions in rerun become ready to enter the

critical section for the write and validation phases in a shorter time, which increases the

probability of transaction commitment and obviously reduce the risk of being conflicted

with other concurrently running transactions

3.6.3 Wasted Execution Elimination

In the virtual execution environment, a conflicted transaction in the first run does not

abort directly even if a conflict is detected (as explained previously in section 2.4.2,).

Instead, it continues execution to prefetch all of the read set data to the main memory. In

this sense, the problem of increasing wasted execution discussed earlier in section 3.5.1,

which results from deferring the validation phase until after the write phase, no longer

exists. In fact, there is no wasted execution in the first phase because such an execution

will be used to prefetch the read set data. Conflicted transactions only restart in the

rerun phase. The time at which conflict is detected (whether early or late detection) then

makes no difference. Such a benefit is illustrated in following scenario.

Figure 3.12 shows two concurrently running transactions T1 and T2, based on

the Read-Write-Validate approach combined with virtual execution. T1 entered the

write and validation phases before T2. T1 detected a conflict with T2 while T2 was still

executing in the read phase. As opposed to the previous scenarios, T2 will not be

aborted even if it is a conflicted transaction. T2 continues execution until the end of the

read phase to prefetch all T2’s read set data, then it aborts and it rerun using the in-

memory data prefetched by T2 and the write set of T1. Therefore, first phase execution

is not considered wasted work and the conflicted detection time makes no difference in

the virtual execution environment.

 3 The Read-Write-Validate

68

Figure 3.12 Wasted executions no longer

 exist in the virtual execution environment.

3.7 Coping with System Failures

System failure occurs in a situation when the state of transactions is lost. For instance,

power loss may cause a complete loss of the main memory content, or software errors

may overwrite parts of the data in the main memory. In such system failures, the

following recovery techniques are performed to ensure database consistency:

 Restart all transactions that have not yet been committed from scratch.

Therefore, they will read from the database directly, as if they were in the initial

run.

 If a transaction was executing in the validation phase, then this transaction has

already committed and written the new updates to the database. Therefore, there

is no need to execute the validation phase again because concurrently running

transactions will be restarting, reading the updated data directly from the

database.

 If a transaction was executing in the write phase, the recovery of such a

transaction will use the logging techniques described in a previous study [34].

3.8 Read-Write-Validation Protocol

The Read-Write-Validate protocol explained in this section is a straightforward

implementation of the Read-Write-Validate approach. Its aim is to govern concurrent

transactions running on the mobile devices themselves, in order to improve issues of

Read Validation Write
T1

Read
T2

write x

read x

T2 conflict

detected

Rerun Write Validation

Time

 3 The Read-Write-Validate

69

contention with shared resources on that device, such as the solid-state disk. The Read-

Write-Validate protocol and the pseudo-code of the validation algorithm are illustrated

below.

3.8.1 Protocol Description

A transaction that reaches the end of the read phase enters a pre-commit set (PCS). One

member of the PCS may be chosen by the scheduler to enter the write phase. The

earliest deadline policy [35] is employed to give priority to transactions that are closest

to expiration.

Transactions that either are in the read phase or are members of the PCS may be

aborted and rerun if they are found to be in conflict with a validating transaction. The

validating transaction is guaranteed to commit. Therefore, any other transactions that

are in conflict with it must be rerun. A transaction that is in its initial run will complete

the read phase, regardless of whether or not it is in conflict, and enter the PCS.

Allowing conflicted transactions to complete the read phase improves performance

because the persistent data store is only accessed once per read operation [53]. A

transaction that is rerun will have a local copy of all the required data for it to attempt

execution again.

A forward validation scheme is employed which, during the validation phase of

Tv, checks if there is an intersection between the write set WS (Tv) with any read set

RS (Ti) for all running transactions.

WS (Tv) ∩ RS (Ti) ≠ {}

This includes transactions executing in the read phase and members of the PCS. If an

intersection (i.e., a conflict) is found, then:

 If the conflicting transaction Ti is in the initial run, it is allowed to proceed to the

read phase and is marked for rerun. Ti enters the PCS upon completing the read

phase but is not eligible to enter the write phase. At this point, Ti is updated with

the values from other transactions it has conflicted with and will be rerun.

 3 The Read-Write-Validate

70

 If Ti is in rerun then it is aborted. At this point, RS (Ti) is updated with WS

(Tv), so that it can be rerun again with the updated read set.

Newly started transactions may start the read phase at any time. The correctness of

system execution is ensured as follows:

 If a transaction enters the read phase while the validating transaction is writing,

there is the possibility of reading inconsistent data. This will be detected when

the validating transaction finishes the write phase and enters the validation

phase.

 If a transaction enters the read phase while the validating transaction is

validating, then any reads are made against the updated values from the

persistent store (as validation occurs after the write phase). Any transactions

entering the read phase at this point do not need to be validated against the

currently validating transaction.

3.8.2 Pseudo-code

Pseudo-code illustrating the execution of the validation phase is presented next.

 Conventions used in the pseudo-code

 Active Transactions (AC) – This is the set of all currently running transactions.

It includes transactions in the read phase and those waiting to enter the write and

validation phases.

 Conflicted Set (CS) – CS (Ti) contains the updated read values from any

validating transactions that Ti has conflicted with. Each item (Ok) in CS (Ti) is

cached until RS (Ti) can be updated. These values are cached rather than the

read set of Ti being directly update to make it clear that the writes would not be

automatically updated. If RS (Ti) are chosen to update directly, RS (Ti) can be

updated when Ti has finished the initial run or, if it is in rerun, when it is

aborted. Upon updating, CS (Ti) is discarded.

The assumption is that a transaction executing in the read phase reads the

required data and performs any required computation. Similarly, a transaction in the

 3 The Read-Write-Validate

71

write phase updates any values that were written to during its read phase. The scheduler

handles rerunning identified transactions along with updating the read sets for

conflicting transactions.

 The pseudo-code of the validation algorithm is presented below:

Algorithm 6 Validation phase

1: for each Ti in AC do

2: if ((WS(Tv) ∩ RS(Ti)) ≠ {}) then

3: for each Ok in (WS(Tv) ∩ RS(Ti)) do

4: update Ok in CS(Ti);

5: end for

6: if Ti in initial run then

7: mark Ti for rerun;

8: else

9: update Ti with CS(Ti), rerun Ti;

10: end if

11: end if

12: end for

13: discard WS(Tv);

3.9 Distributed Read-Write-Validate Protocol

Section 3.8 showed that this approach is applicable to OCC on resource-constrained

devices such as smart-phones. Now, this work is extended to the wireless broadcast

datacycle model for mobile network applications. Earlier studies on transaction

processing in wireless environments focused on read-only transactions

[89][157][158][159], which is applicable to conventional information services such as

weather and traffic information. However, update transactions must be considered as

well in complex mobile applications such as mobile e-commerce [152]. Therefore, the

Distributed Read-Write-Validate Protocol aims to improve the overall performance of

the system, including update transactions. The results in chapter 4 show that, with this

technique, the overall performance of the system is increased and the number of client-

server transactions which miss their deadline due to concurrency issues is reduced [18].

 3 The Read-Write-Validate

72

The validation process in the distributed Read-Write-Validate Protocol is

performed in two stages: the validation stage at the client and the validation stage at the

server. Both validation stages are described below.

3.9.1 Validation Stage at Client

The validation stage at the client is performed using partial backward validation for all

client transactions. All running transactions at the clients (i.e. both read-only and update

transactions) will be validated at the beginning of every broadcast cycle by performing

backward validation with the write set of the committed transactions at the server.

Conflicted transactions will be marked for rerun, but will continue execution until the

end of the read phase using the rerun policy. When a conflicted transaction reaches the

end of the read phase, it simply updates the conflicted data items in memory and is

rerun without accessing the persistent store. Previous studies [160][54] have shown that

optimistic concurrency control performs better if transactions are allowed to reach the

end of their read phase before being aborted. This is intuitive, since transactions that

have been aborted early would not have retrieved all the required data to be ready

locally for the rerun phase. Read-only transactions which are not conflicted can proceed

and commit locally at the client. Non conflicted update transactions will be sent to the

server to be globally validated.

 Partial Backward Validation Pseudo-code

Conflicted Set (CS) – Given CS(Tm), this contains the updated values from Ci and that

Tm has been found to conflict with. Each item (Ok) in CS(Tm) is cached until RS(Tm)

can be updated with these updated values. These values are chosen to be cached rather

than directly updating the read set of Tm in order to make it clear that the writes would

not be automatically updated. If RS(Tm)) are chosen to be updated directly, RS(Tm) can

be updated when Tm has finished the initial run or, if it is in rerun, when it is aborted.

Upon updating, CS(Tm) is discarded.

It is assumed that a transaction which is executing in the read phase reads the

required data and performs any necessary computation. Similarly, a transaction which is

in the write phase will update any values that were written to during its read phase. The

 3 The Read-Write-Validate

73

scheduler will handle rerunning transactions that have been marked for rerun, along

with the process of updating the read sets for conflicting transactions.

The pseudo-code for partial backward validation is presented below:

Algorithm 7 Partial backward validation

1: PartialBackwardValidation(Tm){

2: if ((ControlInfo(Ci) ∩ RS(Tm)) ≠ {}) then

3: for each Ok in (ControlInfo(Ci) ∩ RS(Tm))

4: update Ok in CS(Tm);

5: if Tm in initial run then

6: mark Tm for rerun;

7: else

8: update Tm with CS(Tm), rerun Tm;

9: endif

10: else

11: record the value of Ci,

12: endif

13: }

Tm – transaction generates and executes at the clients.

ControlInfo(Ci) – the set of data items which was updated.

3.9.2 Validation Stage at the Server

The validation stage at the server is performed in two steps: 1) final partial backward

validation; 2) Read-Write-Validate. Both steps are described below:

 Final Backward Validation Algorithm

Update transactions have to perform final backward validation with any possibly

committed transactions after the update transaction has finished partial validation at the

client, and before starting Read-Write-Validation validation at the server [147][59]. The

 3 The Read-Write-Validate

74

results of this validation (to commit or abort) will also be included in the information

table as acknowledgment to the mobile client for further actions.

The final backward validation pseudo-code is as follows:

Algorithm 8 Final backward validation

1: FinalValidation(Tm) {

2: For each Ti (i= 1,2,...,n) {

3: If (RS(Tm) ∩ WS(Ti) ≠ {}) then{

4: Return fail;

5: Break;

6: }

7: }

 Read-Write-Validate Algorithm

One of the transactions which is ready to commit will be chosen to enter the write phase

by the scheduler. The earliest deadline policy [35] is employed to give priority to

transactions that are closest to deadline expiration. Once this transaction has completed

the write phase, it performs forward validation against all concurrently running

transactions at the server [16][18]. This includes locally generated transactions and

update transactions that have been received from clients for global validation. Any

locally generated conflicted transactions will be marked for rerun. They will continue

executing until the end of the read phase in the first run as described previously

[18][15][16]. Conflicted updating mobile transactions will be aborted and rerun again at

the client. When a validating transaction finishes the write and validation phases, the

write set will be broadcast in the next broadcast datacycle with the control information

table. The control information table is a table consisting of the write sets of committed

transactions at the server (new updates), which is used for partial backward validation at

clients to keep mobile transactions consistent. In addition, it contains final validation

results of mobile transactions (performed at the server) as acknowledgement to the

mobile clients for future actions. In other words, control information table provide

mobile clients with all information it need to maintain consistency.

 3 The Read-Write-Validate

75

The pseudo-code for Read-Write-Validate uses the same notation explained in the

section on partial backward validation, and is presented as follows:

Algorithm 9 Read-Write-Validate validation

1: validate(Tv){

2: if (Tv is a mobile update transaction) then

3: FinalValidation (Tv);

4: If (returen fail)then

5: Abort (Tv); exit;

6: End if

7: End if

8: Commit WS(Tv) to database;

9: ControlInfo(Ci) = ControlInfo(Ci) U WS(Tv);

10: For each Tj (j= 1,2,.....,n) {

11: if ((WS(Tv) ∩ RS(Tj)) ≠ {}) then

12: if (Tj is not mobile update transaction) then

13: for each Ok in (WS(Tv) ∩ RS(Tj)) {

14: update Ok in CS(Tj);}

15: if (Tj in initial run) then

16: mark Tj for rerun;

17: else

18: update Tj with CS(Tj), rerun Tj;

19: endif

20: else

21: abort (Tj);

22: endif

23: endif

24: }

25: }

 3 The Read-Write-Validate

76

The proposed approach is orthogonal to the back-off method [59] and OCC for the

broadcast disk scheme [63]. That is to say, both of these approaches can be combined

with the proposed approach.

3.10 Summary

This chapter has introduced the Read-Write-Validate approach, which involves a novel

order of transactional phases in OCC. The proposed approach changes the order of the

traditional read/validation/write phases; write now follows the read phase with

validation occurring after the write phase. The combination of the proposed approach

with virtual execution environments brings substantial benefits for resource-constrained

devices in terms of performance, including throughput, response time and late

transaction rate, and also in terms of the efficiency of energy use (battery utilization).

The proposed approach is explored in this chapter in two contexts:

 Firstly, the Read-Write-Validate protocol is suitable for mobile devices which are

resource constrained such as smart phones and tablets. The Read-Write-Validate

protocol improves issues of contention with shared resources on such devices.

 Secondly, it is then adopted in a distributed Read-Write-Validate protocol, which

is suitable for client-server models based on a wireless broadcast datacycle which

are receiving renewed interest due to the potential for increased energy efficiency

in the field of mobile communications. The distributed Read-Write-Validate

protocol improves issues of contention in both the server and client devices.

This chapter provides clear explanations of the pseudo code of algorithms to show

how these protocols work. The next chapter concentrates on the evaluation of the

proposed approach. It includes descriptions of the simulation tool used for the

evaluation, the system model and settings implemented in the simulation and the results

gathered from the simulation experiments.

4. Evaluation

77

Chapter 4

Evaluation

The evaluation reported in this thesis focuses on improvement in performance

associated with the proposed approach, which includes the assessment of throughput,

response time and miss rate measurements. Energy efficiency evaluation is beyond the

scope of the thesis and experiments regarding this will be carried out in further work. In

this chapter, two simulation implementations are performed in order to evaluate the

contributions provided by the present research. The first simulation is used to evaluate

the Read-Write-Validate protocol, and the second simulation evaluates the distributed

Read-Write-Validate protocol. Both simulations are presented below.

4.1 Read-Write-Validate Protocol

In this section, a brief introduction of the simulation tool used to evaluate the Read-

Write-validate protocol is presented. Then the simulation model which demonstrates the

Read-Write-validate protocol and the parameters used in the simulation is explained.

Finally, the results of a comparison between the Read-Write-validate protocol with the

new ordering of phases (read-write-validation) and the forward validation protocol with

conventionally ordered phases (read-validation-write) are presented.

4.1.1 Simulation Tool

The simulation of the Read-Write-Validate protocol was implemented using SimJave,

which is a simulation package used to build working models of complex systems. It is a

public source discrete event toolkit produced by Fred Howell and Ross McNab at the

Department of Computer Science, University of Edinburgh. SimJave consists of three

packages: eduni.simjava, eduni.simanim and eduni.simdiag.[161][162]

4. Evaluation

78

 eduni.simjava: The purpose of this package is implementing standalone java

simulation code.

 eduni.simanim: this is integrated with the previous package to visualize the

simulation by providing a skeleton applet.

 eduni.simdiag. This package’s purpose is to give Simjava the ability to display

results in graphic form.

Building a simulation is based on breaking the systems down into different entities,

and extending Simjava classes to simulate the behavior of such entities. The

communication between these entities is performed by scheduling events.

4.1.2 Simulation Model and Setting

A simulation model is produced that matches closely accepted designs published in the

literature [64][9]. A few modifications are introduced to this design to accommodate the

rerun of transactions and the format of the proposed protocol. The model investigates

different performance characteristics of the proposed protocol compared to those of a

forward validation approach in a virtual execution environment. A range of results are

presented highlighting the performance benefits of the Write-Read-validate protocol.

The simulation model consists of a single-site database system operating with a

shared-memory multiprocessor. It contains two disks and two CPUs with a queue per

disk and a shared queue for the CPUs. The simulation parameters shown in Table 1

were taken from previous simulation experiments [64][40][163]. The transaction size

remains the same for every transaction and the write set is assumed to be a subset of the

read set. When the transaction performs a read, a 36µs cost is incurred to access the disk

and a further 1.5µs for processing the page. A write costs 200µs with 36µs to read the

page beforehand. When the transaction enters the write phase, 200µs per write is

incurred. The disk access probability is used for a page being present inside the buffer.

For rerun transactions this probability is zero, as the page is present in memory. The

validation cost is based on the number of transactions that have to be validated, with a

unit cost of 0.5µs. Deadline assignment, as described elsewhere [78], is controlled by

the minimum and maximum slack factor parameters that provide a lower and upper

bound for a transaction’s slack time. The following formula from the study cited above

[78] is used when calculating a transaction’s deadline:

 Deadline = AT + uniform (Minimum Slack, Maximum Slack) * ET

4. Evaluation

79

In the formula, AT and ET denote arrival and execution times respectively. As

deadlines must be calculated prior to execution, ET is an estimated value based on

transaction size, disk access and CPU access, which is equal to 1250 µs when

transactions execute with no contention.

Parameter Value

Pages in database 5000

Transaction size
12-page read set

 4-pages write set

disk access (read)

disk access (write)

36 µs

200 µs

CPU access 1.5 µs

disk access probability (1st run) 0.5

disk access probability (rerun) 0

Minimum slack factor 2

Maximum slack factor 8

Validation cost (per transaction) 0.5 µs

Transaction arrival rate 1 per 1000 µs to 1 per 200 µs

Table 1. Simulation parameters used in

the evaluation of the Read-Write-Validate protocol

Each simulation was performed using the same parameters for 10 random

number seeds. Each run consisted of 10000 transactions. To allow the system to

4. Evaluation

80

stabilize, the results from the first few seconds were discarded. Mean values are

presented for the performance metrics analysed in all experiments.

Two experimental sets are presented. The first set of experiments was based on

the assumption that 50% of execution transactions are updating transactions. The

second set of experiments was based on the assumption that 75% of the execution

transactions are updating transactions. The percentage of update transactions was

increased in the second set of experiments in order to determine the behavior of the

proposed approach in high contention environments. Results from each set of

experiments include the average response time, throughput and number of late

transactions. In each graph, results are presented for the two protocols. The first is the

Read-Write-Validate protocol introduced in the previous chapter using the new ordering

of phases (read-write-validation) which is termed LV in the figures. The other protocol

is forward validation using the conventional ordering of read-validation-write phases,

which is abbreviated to FV in the figures.

4.1.3 Simulation Results

The results of the series of experiments are presented in the following:

Experimental set 1:

The first set of experiments was based on the assumption that 50% of transactions are

updating transactions, and the results are illustrated in Figures 4.1-4.3.

Figure 4.1 shows throughput for an increasing rate of transactions. Throughput

is measured as the number of committed transactions, with the commit occurring at the

end of the write phase for both types of phase ordering. All protocols share a common

progression when contention is low, and are still manageable using the concurrency

control protocol. Therefore, as the number of transactions input to the system increase,

the throughput of the system also is increases. However, when the point is reached

where the level of contention is too high and cannot be handled by concurrency control,

throughput starts to degrade. The number of transactions missing their deadline, shown

in Figure 4.3 also has an impact on throughput as these transactions are aborted and will

never commit. As the rate increases, the number of late transactions increases as

throughput falls. Figure 4.1 clearly demonstrates that the proposed approach is more

efficient in handling high level of contention among transactions, reaching its highest

4. Evaluation

81

point at about 3600 transactions per second. In comparison, the conventional OCC

approach reaches the highest point at about only 2000 transactions per second.

Figure 4.2 shows the average response time for an increasing rate of

transactions. The response time is only for transactions that successfully commit and, as

the rate of transactions input to the system increases, the response time increases due to

high contention. The results in figure 4.2 illustrate that when the transaction rate is less

than 1500 per second, both approaches have the same response time due to low

contention. Then from 1500 to 5000 transactions per second, the proposed approach has

a lower response time than the conventional approach. This indicates the effect of the

advantages gained by the proposed approach, as presented in chapter 3 which, including

that the cost of the validation phase does not affect the transaction’s commit time and

also that concurrent running transactions do not suffer temporary blocking when another

transaction is validating. Above 5000 transactions per second, the average response

time is similar for both protocols. The response time stabilizes around 4500

microseconds due to deadline assignment, where only transactions that have a

sufficiently large deadline will be able to commit. Regardless of the benefits of the

proposed approach, transactions at this level of contention expire during the initial run

of the read phase.

Figure 4.3 shows the percentage of transactions which miss their deadlines. All

protocols have no late transactions if contention is low and they are still manageable

using concurrency control. When the point is reached where contention is too high and

can hardly treated adequately using concurrency control, the late transactions rate starts

to rise. Figure 4.3 illustrates that both protocols have no late transactions when

transaction contention is low, as the rate of the transactions being input to the system is

less than 2000 per second. Then, when the rate rises to more than 2000 transactions per

second, the rate of late transactions with the conventional OCC protocol start to rise,

which indicates its inefficiency in coping with such level of contention. However, the

proposed approach manages higher level of transaction contention, with no rise in late

transactions until about 3700 transactions per second, which indicates its ability to deal

with high transaction contention. Then each protocol, at its peak, has a high percentage

(around 80%) of missed deadlines. With high levels of system contention, transactions

experience longer delays in accessing the disk and the CPU. This results in transactions

4. Evaluation

82

being more likely to miss their deadlines during the read phase and never entering the

validation and write phases.

Figure 4.1: Throughput

with 50% of update transactions

Figure 4.2 Average response

 times with 50% of update transactions

Figure 4.3 Late transactions

with 50% of update transactions

Experimental set 2:

The second set of experiments was based on the assumption that 75% of execution

transactions are updating transactions, and the results are illustrated in Figures 4.4-4.7.

Figure 4.4 shows the throughput for increasing rates of transactions. Both

protocols share a common progression when contention is low and are still controllable

by the concurrency control protocol. Thereafter, as the number of transactions input to

the system increases, the throughput of the system increases. However, when the point

is reached where contention is too high and can hardly be treated properly by

concurrency control, the throughput starts to degrade. The numbers of late transactions

50004000300020001000

4000

3000

2000

1000

0

Rate (Transactions / Second)

T
r
o

u
g

h
p

u
t
 (

 C
o

m
m

it
s
 /

 S
e

c
o

n
d

)

LV

FV

50004000300020001000

5000

4000

3000

2000

1000

0

Rate (Transactions / second)

R
e

s
p

o
n

s
e

 T
im

e
 (

M
ic

ro
s
e

c
o

n
d

)

LV

FV

50004000300020001000

90

80

70

60

50

40

30

20

10

0

Rate (Transaction / second)

L
a

te
 t

ra
n

s
a

c
ti

o
n

s

%

LV

FV

4. Evaluation

83

shown in Figure 4.6 strongly impacts on throughput, since these transactions are aborted

and will never commit. As the transaction rate increases, the number of late transactions

increases as throughput decreases. However, Figure 4.4 also shows that the proposed

approach is efficient in coping with higher contention among transactions. It reaches the

highest point at about 3400 transactions per second, while conventional OCC approach

only reaches the highest point at about 2600 transactions per second. The plateau shown

around 3500 transactions per second represents a bottleneck in the critical section in the

write and validation phases. This is not considered a problem, since in real systems

read-only transactions constitute the majority of typical transactional traffic [68][14].

The graph still illustrates that the Read-Write-Validate protocol sustains a higher level

of throughput compared to the other approach.

Figure 4.5 shows the average response time for an increasing rate of

transactions. As the rate increases, transaction response time increases due to high level

of contention. The figure demonstrates that at rates less than 1500 transactions per

second, both approaches have the same response time due to low contention. Then,

from 1500 until 5000 transactions per second, the proposed approach has a lower

response time than the conventional approach. This demonstrates the effect of the

advantages gained by the proposed approach, which include that the cost of the

validation phase does not affect the transaction’s commit time, and that concurrent

running transactions do not suffer temporary blocking when another transaction is

validating. Above 5000 transactions per second, the average response time is similar for

both protocols. The response time stabilizes at around 4500 microseconds due to

deadline assignment, where only transactions that have a sufficiently large deadline will

be able to commit. Regardless of the benefits of the proposed approach, transactions

expire at this level of contention during the initial run in the read phase. The jump at a

rate of ~3400 and then a decline at ~3700 is explained by the plateau in Figure 4.4. First

the response times increase because executing transactions need to wait before they are

able to enter the write and validation phases, and then response times decline due to the

increased miss rate at that arrival rate as shown in figure 4.6.

Figure 4.6 shows the rate of late transactions for an increasing rate of

transactions. Both protocols have no late transactions when contention is lower at 2600

transactions per second. Then, as the transaction rate increase, the number of late

4. Evaluation

84

transactions with the conventional OCC protocol starts to sharply rise, which indicates

its inefficiency in dealing with high contention. However, the proposed approach still

shows no late transactions until about 3500 transactions per second, which indicates its

ability in dealing with high contention. Each protocol, at its peak, has a high proportion

of missed deadlines at around 80%. With a high level of system contention, transactions

experience longer delays in accessing the disk and the CPU. This results in transactions

being more likely to miss their deadlines during the read phase and thus never entering

the validation and write phases.

Figure 4.4 Throughput

 with 75% of update transactions

Figure 4.5 Average response times

with 75% of update transactions

Figure 4.6 Late transactions

 with 75% of update transactions

From these previous results, it can be concluded that significant improvements

in throughput, response time and late transaction rates are gained when deploying the

proposed approach to control transaction contention on mobile devices.

50004000300020001000

3500

3000

2500

2000

1500

1000

500

Rate (Transactions / Second)

T
ro

u
g

h
p

u
t

(
C

o
m

m
it

s
 /

 S
e

c
o

n
d

)

LV

FV

50004000300020001000

5000

4000

3000

2000

1000

Rate (Transactions / Second)

R
e

s
p

o
n

s
e

 T
im

e
 (

 M
ic

ro
s
e

c
o

n
d

)

LV

FV

50004000300020001000

90

80

70

60

50

40

30

20

10

0

Rate (Transactions / Second)

L
a

t
e

 T
r
a

n
s
a

c
t
io

n
s
 %

LV

FV

4. Evaluation

85

4.2 Distributed Read-Write-Validation Protocol

This section describes experiments using a simulation model carried out in order to

evaluate the distributed Read-Write-Validate protocol. The simulation is built using

Simjava, which is the same simulation tool used in the previous evaluation of the Read-

write-validate protocol (section 4.1). Descriptions of the simulation model and the

parameters used in the simulation are presented first. Then the results are discussed,

comparing the performance of the proposed simulated model with that of the simulation

of the original forward and backward optimistic concurrency control (FBOCC) [147].

4.2.1 Simulation Model and Setting

A simulation model has been developed that is based on the model presented in

previous studies [147][63][59][126]. The arrival rate of transaction at the server has

been increased by a factor of 100x to a value representative of current applications. The

model was also extended slightly in order to accommodate the rerun of transactions and

the format of the distributed Read-Write-Validate protocol, in order to conduct a

meaningful comparison. The model investigates the different performance

characteristics of the proposed protocol versus FBOCC in a virtual execution

environment. A range of results is presented which highlight the performance benefits

of the distributed Read-Write-Validate protocol. The simulation model consists of a

server, a client, and the broadcast disk structure. Only one client was used in the

simulation, in order to provide a direct comparison with the existing work, which is

built upon broadcast disk implementations where the read transaction is carried out

entirely at the client (so that the number of clients is irrelevant), and where mobile

update transactions are relatively rare. The server executes the server’s transactions

based on Read-Write-Validate algorithms. Deadline assignment, as explained elsewhere

[78] is controlled by the minimum and maximum slack factor parameters that provide a

lower and upper bound for a transaction’s slack time. The deadline of transactions is

calculated using the following formula [78]:

Deadline = AT + uniform (minimum slack factor, maximum slack factor) * ET

In the formula, AT and ET denote arrival and execution times respectively. Execution

time is estimated using the values of transaction length, CPU time and disk access

(mean inter-operation delay in mobile transactions). Table 2 shows the parameters

4. Evaluation

86

which were used during the simulation experiments. The time unit is in bit-time, which

is the time to transmit a single bit. For a broadcast bandwidth of 64 kbps, 1 M bit-time

is equivalent to approximately 15s.

Parameter Value

Server

Transaction length 8

Read operation probability .5

Disk access time 1000

Transaction arrival rate 1 per 20000 to 1 per 1667

Number of database 300

Concurrency control protocol Distributed Read-Write-Validate OCC

Priority scheduling Earliest deadline first

Mobile clients

Transaction length 4

Read operation probability .5

Fraction of read only transactions 75 %

Minimum slack factor 2 (uniformly distributed)

Maximum slack factor 8 (uniformly distributed)

Mean inter-operation delay 65,536

Mean inter-transaction delay 131.072

Table 2. Simulation parameters in the

 evaluation of the distributed Read-Write-Validate protocol

.

4. Evaluation

87

4.2.2 Simulation Results

This section presents the results of a series of experiments performed in order to

benchmark the distributed Read-Write-Validate protocol. The first set of results

presented in Figures 4.7-4.9 demonstrates the performance of transactions generated on

the server side. The second set of results presented in Figures 4.10-4.11 demonstrates

the performance of transactions generated on the client’s side. In each graph, the results

are presented of the two protocols: the distributed Read-Write-Validation protocol,

abbreviated to DLVEW and the forward and backward optimistic concurrency control

protocol termed to FBOCC.

Results set 1:

The first set of results show the throughput, average response time and late transaction

rate of transactions generated and performed at the server, which are concatenated with

the abbreviation S in Figures 4.7-4.9 below.

Figure 4.7 shows throughput for an increasing rate of transactions at the server.

Throughput is defined as the number of committed transactions at the server, with the

commit occurring at the end of the write phase for both phase orderings. All protocols

share a common progression when levels of contention are low. Then throughput starts

to degrade when contention reaches a level at about .2 * 10e
-3

 transaction per bit-time in

the FBOCC approach. In contrast, the proposed approach is more efficient in handling

the high contention of transactions at the server, and achieves further than 4 * 10e
-3

transaction per bit-time. The numbers of late transactions shown in figure 4.9 affect

throughput, as these transactions are aborted and will never commit. As the transaction

rate increases, the number of late transactions increases and throughput drops.

Figure 4.8 shows the average response time for an increasing rate of transactions.

The response time is only included for transactions that successfully commit. As

transaction rate increases, the transaction response time increases due to high

contention. It can be seen that, between 1 * (10^-4) and 6 * (10^-4) transactions per bit-

time, the distributed Read-Write-Validate approach has a lower response time than

FBOCC. This indicates the effect of the advantages gained by the proposed approach, as

presented in chapter 3 which, including the advantage of offsetting the non-

4. Evaluation

88

deterministic period of the validation phase before the write phase in the proposed

approach as well as eliminating the temporary blocking of concurrently running

transactions when another transaction is validating. The response time stabilizes after

80000 bit-time due to deadline assignment, where only transactions that have a

sufficiently large deadline will be able to commit. Regardless of the benefits of the

proposed protocol, transaction at this level of contention, expire during the initial run in

the read phase.

Figure 4.7 Throughput at the server

Figure 4.8 Response time at the server

6543210

100

80

60

40

20

0

Server Transaction Arrival Rate (10e-4 tx per bit-time)

M
is

s
 r

a
te

 %

S-FBOCC

S-DLVEW

Figure 4.9 Late transactions at the server

Figure 4.9 shows the percentage of late transactions for an increasing rate of

transactions. All protocols have no late transactions when the arrival rate of server

transactions is low. Then as this rate increases, the percentage of late transactions also

increases. Between 2 * (10^-4) and 6 * (10^-4) transactions per bit-time, the distributed

Read-Write-Validate protocol has a lower miss rate than FBOCC, which indicates the

efficiency of the proposed approach when dealing with high contention environments.

6543210

0.5

0.4

0.3

0.2

0.1

0.0

Server Transaction Arrival Rate (10e-4 tx per bit-time)

T
h

ro
u
g

h
tp

u
t

(b
it

-t
im

e
 X

1
0
e

-3
)

S-FBOCC

S-DLVEW

6543210

80

70

60

50

40

30

20

10

0

Server Transaction Arrival Rate (10e-4 tx per bit-time)

R
e

s
p

o
n
s
e

 T
im

e
 (

 b
it

-t
im

e
 X

1
0

e
3

)

S-FBOCC

S-DLVEW

4. Evaluation

89

When the transaction arrival rate exceeds 6 *(10^-4) transactions per bit-time,

transactions experience longer delays in accessing the disk and the CPU. This results in

transactions being more likely to miss their deadlines during the read phase and never

entering the validation and write phases.

The results in figures 4.7-4.9 show that adopting the proposed approach at the server

can significantly improve server transaction performance, including a throughput

increase and reductions in both response time and number of late transactions.

Results set 2:

The second set of results show the throughput and miss rate of mobile transactions

generated at clients. Response time results were similar for both protocols, which is

satisfactory given the real-time nature of the application domain where applications

focus on measuring results of late transactions, which miss their deadlines. Throughput

is another performance metric strongly connected to the rate of late transactions rate. In

the following figures, mobile transactions are concatenated with the abbreviation

MROT indicating mobile read-only transactions, and MUT to indicate mobile update

transactions. These results are illustrated in Figures 4.10-4.13 below.

Results for Mobile Update Transactions (MUT)

Mobile update transactions are where the read phase is generated and executed on

mobile devices. Then, they are transmitted to the server for global validation with other

transactions on the server. The validation and write phases are performed at the server

in order to maintain database consistency. Therefore, adopting the proposed approach

on the server will directly advantage mobile update transactions during their write and

validation phases. Such an assumption is justified by the results presented in Figures

4.10-4.11.

 Figure 4.10 shows the throughput of mobile update transactions. All protocols share

a common progression when contention at the server is low. Then the distributed Read-

Write-Validate protocol demonstrates higher throughput whenever the server

transaction arrival rate increases over 2 * 10e
-4

 transactions per bit-time. This indicates

the advantage of executing the validation and write phases of mobile update transactions

under the Read-Write-Validate approach at the server, indicating that the cost of the

4. Evaluation

90

validation phase does not affect the transactions commit time. The steady changes in

overall trends result from the constant rate of the number of mobile transactions

generated at the mobile device, which is specified in table 2. Only the transaction rate at

the server increases.

 Figure 4.11 shows the rate of late mobile update transactions. All protocols do have

some late transactions even when the arrival rate of transactions at the server is low,

which indicates the effect of the transmission delay between the clients and the server

for those transactions with insufficient deadlines. However, the late transaction rate with

the distributed Read-Write-Validate protocol is consistently lower than that with the

FBOCC protocol at all levels of contention. This demonstrates the advantage of

executing the validation and write phases of mobile update transactions with the Read-

Write-Validate approach at the server. The constant difference shown in the graph

related to the fact that the number of mobile transactions generated at the mobile device

is constant, as stated in table 2. Only the transaction rate at the server increase.

Figure 4.10 Throughput

of update transactions at clients

6543210

100

80

60

40

20

0

Server Transaction Arrival Rate (10e-4 tx per bit-time)

M
is

s
 %

MUT-FBOCC

MUT-DLVEW

Figure 4.11 Late update

 transactions at clients

These results illustrated in Figures 4.7-4.9 show that adopting the proposed approach at

the server will directly influence mobile update transactions by increasing throughput

and reducing the rate of late transactions in the system. This means that the distributed

Read-Write-Validate protocol is more appropriate for real-time mobile applications.

6543210

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Server Transaction Arrival Rate (10e-4 tx per bit time)

T
h
ro

u
g

h
tp

u
t

(b
it

-t
im

e
 X

1
0
e

-5
)

MUT-FBOCC

MUT-DLVEW

4. Evaluation

91

Results for Mobile Read-only Transactions (MROT)

Read-only transactions are those which do not update the database; in other words, they

are transactions whose write set is empty and have no write phase. Such transactions do

not affect database consistency. Therefore, mobile read-only transactions generate,

execute, and commit locally on mobile devices without needing to be transmitted to the

server for global validation. As a result, adopting the proposed approach on the server

will not directly affect these transactions at the clients, as they are validated locally by

the backward validation algorithm in both protocols. This is indicated by the results

shown in Figures 4.12-4.13, which present the throughput and late transaction rates of

mobile read-only transactions. Both figures demonstrate that both the distributed Read-

Write-Validate protocol and the FBOCC protocol give similar results as expected.

However, the read-only transactions in all protocols will be affected to some extend by

the increasing rate of database updates at the server, since the new updates will be

constantly broadcast and used for the validation of mobile read-only transactions at the

clients. Therefore, as the frequency of database updates at the server increases, the

conflict rate among read-only mobile transactions also increases, which consequently

leads to increased number of transactions aborting. This explains the overall downward

trend of throughput in figure 4.12 and the overall upward trend of late transactions in

Figure 4.13. The steady changes in the trends result from the constant rate of the

number of mobile transactions generated at the mobile device as specified in table 2.

Only the transaction rate at the server is increased.

6543210

0.6

0.5

0.4

0.3

0.2

Server Transaction Arrival Rate (10e-4 tx per bit-time)

T
h
ro

u
g

h
tp

u
t

(b
it

-t
im

e
 X

1
0
e

-5
)

MROT-FBOCC

MROT-DLVEW

Figure 4.12 Throughput of read-only

transactions at clients

6543210

100

80

60

40

20

0

Server Transaction Arrival Rate (10e-4 tx per bit-time)

M
is

s
 R

a
te

 %

MROT-FBOCC

MROT-DLVEW

Figure 4.13 late read-only

transactions at clients

4. Evaluation

92

4.3 Summary

This chapter describes a set of experiments including both centralised and distributed

versions of the Read-Write-Validate protocols. These experiments were performed in

order to benchmark the Read-Write-Validate approach proposed in this thesis compared

to the conventional OCC protocol. The measurements of the performance of the

protocols were taken as throughput, response time and the late transaction rate. The

analysis of the results gathered from the simulation experiments can be summarised as

follows:

 Significant improvements in throughput, response times and the timeliness of

the overall system are achieved when the Read-Write-Validate approach is

deployed to control access to shared data on mobile devices.

 Significant improvements in throughput, response time and the timeliness of the

overall system are achieved at the server, without disrupting mobile transactions

running at the clients, when the Read-Write-Validate approach is deployed in

server-client models based on wireless broadcast environments.

 Observable improvements are found in the number of late mobile update

transactions that miss their deadline due to concurrency issues, and there is a

clear increase in mobile update transactions throughput as well when the Read-

Write-Validate approach is deployed on client-server models based on wireless

broadcast environments. In contrast, read-only mobile transactions running at

mobile devices show a similar trend in both protocols regardless of the

enhancements made on the server side.

93

Chapter 5

Conclusions and Future Work

5.1 Introduction

Transactions which are restarted due to being aborted after a conflict with another

transaction must access the persistent store more frequently. Each restart represents a

drain on time, resources and energy. Virtual execution allows the read phase of a

conflicted transaction to complete, and stores the read data locally for reuse when the

transaction is aborted. This thesis puts forward the argument that in a virtual

environment it is fruitful to bring the write phase forward so that it occurs earlier than

the validation phase. This approach, while seemingly counter-intuitive, improves both

the throughput and the miss rate of the overall system at the server and clients. Further

to this, the approach also improves the energy efficiency of the system, since more

transactions meet their deadlines and fewer must be fully restarted since the read phase

is often not repeated, and therefore the power consumed in repeating data access is

reduced.

This idea has been explored in the context of multiple applications accessing a

shared resource on a mobile device [17][16], and in the context of a client-server model

based on the broadcast datacycle approach for wireless environments [18]. In both

cases, a simulation of the technique is deployed and used to compare the results with

those generated using more established FOCC and FBOCC algorithms, where the

validate phase occurs entirely prior to the write phase. The results show that the

proposed approach significantly improves throughput and the timeliness of transactions

achieving their deadlines in the overall system when compared to the conventional

approaches.

5. Conclusion and Future Work

94

5.2 Contributions of the Thesis

This thesis introduces a novel Read-Write-Validate sequence of transactional phases

combined with virtual execution to give a new OCC approach. The proposed approach

is presented in two contexts:

 Firstly, it is shown that implementing it on the mobile devices themselves can

improve issues of contention with shared resources on these devices [16][17].

 Secondly, it is further shown that it is an efficient implementation of a client-

server model based on the broadcast datacycle approach for wireless

environments [18].

5.2.1 Advantages Gained by the Present Research

The advantages given by the contributions made in this thesis are summarised below:

 Transaction Lifespan Minimized

The lifespan of a transaction is the time between it starting and committing. With the

proposed approaches, the non-deterministic timing of the validation phase period is

removed from the transactions lifespan. The validation phase of a transaction executes

after the transaction commits. This is can be an important benefit in real-time systems

where the validation phase introduces non-deterministic timing constraints that affect

transactions satisfactorily meeting their deadline.

 The Blocking of Concurrent Transaction is Eliminated

In the proposed approaches, non-conflicted transactions no longer have to be blocked

from progressing in order to guarantee database consistency. Concurrently running

transactions are allowed to continue execution while the validating transaction executes

in both validation and write phases. If concurrently running transactions enter into a

state of conflict while the validating transaction is writing, such a conflict will

eventually be detected in the deferred validation phase. If concurrently running

transactions do not enter a conflict state while the validating transaction is writing, such

transactions will successfully pass validation against the validating transaction, and will

continue execution, gaining the benefit of not being temporarily blocked during the

validating transaction’s write and validation phases.

5. Conclusion and Future Work

95

 Newly Starting Transactions are Never Blocked

Newly starting transactions are those which may start their execution while another

transaction is executing in the validation or write phases. With the proposed approaches

newly starting transactions can continue execution straightaway without affecting

database consistency.

- If newly starting transactions start execution while the validating transaction

is running in the validation phase, which now is occurs after the write phase,

then at this point the database will already be updated. Therefore, newly

starting transactions will never enter a conflicted state, and no validation is

required for such new transactions.

- If newly starting transactions start execution while the current validating

transaction running in the write phase, the newly starting transactions simply

continue their execution. If a newly starting transaction was a conflicting

transaction, that is also not a problem because such a conflict will be

detected later at the validation phase and the conflicted transaction will be

aborted. If the newly starting transaction was a non-conflicting transaction,

which usually constitute the majority of the contentious workload, it will

continue execution and benefit from not being blocked during the validating

transaction’s write and validation phases.

 Earlier Visible Updates

In the proposed approach, writes become visible to concurrent transactions earlier,

affording more likelihood of reading up-to-date data and thus reducing the risk of

conflict. This is because the reordering of the validation and write phases guarantees

that all new updates are already made before the validation phases start. This

consequently reduces the risk of becoming conflicted with other concurrently running

transactions, which benefits overall system performance.

 Reduction of Conflict Risk

Rerun transactions are quicker than those in their initial run, since there is no access to

the persistent store, which makes transactions in rerun become ready to enter the critical

5. Conclusion and Future Work

96

section for the write and validation phases in a shorter time. This reduces the risk of

becoming conflicted with other concurrently running transactions and increases the

chances of transactions committing.

 Energy Efficiency Improvement

Virtual execution improves the proposed approach because accessing a conventional

hard disk drive is expensive in terms of power usage when the disk must attain read

speed and the appropriate data sector to be found. Even solid-state drives are

significantly more expensive to access compared to the local memory. Consequently,

reducing the number of times that a disk is accessed will reduce the energy consumed.

Clearly, a reduction in the frequency of transactions that must be restarted will reduce

the number of times a disk is accessed, leading to a reduction in energy usage.

5.3 Future Work

The contribution of this thesis is to provide a novel departure from existing optimistic

concurrency control techniques. It opens new doors for future research using this new

optimistic concurrency control transactional structure. This section provides suggestions

for interesting future research directions related to the contribution proposed in this

thesis.

Energy Efficiency Evaluation

The rerun policy adopted in the proposed approach provides the advantage of

minimizing persistent store access, which is expensive in terms of power usage. Clearly,

a reduction in the frequency of transactions that must be rerun lead to a reduction in

energy usage, which is very important in resource-constrained mobile devices [17].

Although this thesis concentrates on evaluating performance improvement, including

throughput, response time and late transaction rate, future work should be dedicated to

benchmarking the energy efficiency and battery utilization improvements gained by

employing the proposed approach in real implementations.

Thick Client Applications

In traditional client-server models, clients have limited resources (thin clients). Their

functionality is restricted to sending requests to the server, which is a powerful

5. Conclusion and Future Work

97

computer providing the clients with services. In such models, clients will share the

resources of the server. As the number of clients increases, the number of service

requests sent to the server increases, which can lead to server bottlenecks.

Developments in computing technology such as multi-core processors and memory

offered at low cost leads to clients having more powerful hardware (thick clients). Thick

clients are capable of providing rich functionality independent from the server, which

reduces network latency by caching data at the clients [45]. Running multiple complex

tasks in parallel on a thick client’s devices raises issues associated with sharing

resources such as processors, memory access, solid-state disk access and network

connections. Therefore, a concurrency control technique is needed to take full

advantage of the thick client’s resources, which is another future research path in which,

where the proposed approach can be explored.

Software Transactional Memory Considerations

Software transactional memory is a concurrency control mechanism for controlling

concurrent access (read/write) to shared memory. Software transactional memory

inherits similar properties from conventional database transactions. For instance,

transactions in software transactional memory also preserve some ACID properties such

as atomicity and isolation [164]. Data consistency needs to be maintained according to a

correctness criterion such as serializability in a similar way as in conventional

databases. Some types of software transactional memory are designed with a non-

blocking property, which adopts the ordering of transaction in conventional optimistic

concurrency control where transactions need to be validated before they are eligible to

commit [165][164]. It would be well worth investigating the proposed approach with

the new transactional phase order in non-blocking software transaction memory, in

order to achieve further advances in the field.

References

98

References

[1] N. Conway, “Transactions and Data Stream Processing,” in CISC 499, 2008, pp.

1–28.

[2] V. Kumar, Performance of Concurrency Control Mechanisms in Centralized

Database Systems. Prentice Hall, New Jersey, 1996.

[3] A. N. Menascé, Daniel A., “Optimistic versus pessimistic concurrency control

mechanisms in database management systems Information Systems,” 1982, pp.

13–27.

[4] J. W. H. Garcia-Molina, J.U., Database System Implementation. Prentice-Hall.,

2000.

[5] H. Morgan, K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The

Notions of Consistency and Predicate Locks in a Database System,” vol. 19, no.

11, 1976.

[6] J. Lee, “Concurrency Control Algorithms for Real-Time Database Systems,”

University of Virginia, 1994.

[7] a. Thomasian and E. Rahm, “A new distributed optimistic concurrency control

method and a comparison of its performance with two-phase locking,”

Proceedings.,10th Int. Conf. Distrib. Comput. Syst., pp. 294–301, 1990.

[8] H. T. Kung and J. T. Robinson, “On Optimistic Control Methods for

Concurrency,” vol. 6, no. 2, pp. 213–226, 1981.

[9] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control performance

modeling: alternatives and implications,” ACM Trans. Database Syst., vol. 12,

no. 4, pp. 609–654, Nov. 1987.

[10] J. Lee and S. H. Son, “Performance of Concurrency Control Algorithms for

Real-Time Database Systems,” Univ. Virginia, United States, 1994.

References

99

[11] J. R. Haritsa, M. J. Carey, and M. Livny, “Data access scheduling in firm real-

time database systems,” Real-Time Syst., vol. 4, no. 3, pp. 203–241, Sep. 1992.

[12] M. J. C. and M. L. IHaritsa, Jayant R., “Dynamic real-time optimistic

concurrency control,” in Real-Time Systems Symposium, 1990. Proceedings.,

11th. IEEE, 1990, pp. 94–103.

[13] M. L. Jayant H., M.C., “On Being Optimistic about Real-Time Constraints,” in

in Proceedings of the 1990 ACM SIGACT-SIGART-SIGMOD Symposium on

Principles of Database Systems (PODS), 1990, pp. 331–343.

[14] S. h. Lee, J. and Son, “Concurrency control algorhitms for real-time database

systems,” Perform. Concurr. Control Mech. Cent. Database Syst. Prentice-Hall,

Englewood Cliffs, NJ., 1996.

[15] A. Franaszek, P.A., Robinson, J.T., Thomasian, “Access Invariance and Its Use

in High Contention Environments,” in proceedings of the 6th International

conference on Data Engineering, 1990, pp. 47–55.

[16] K. Solaiman and G. Morgan, “Later Validation/Earlier Write: Concurrency

Control for Resource-Constrained Systems with Real-Time Properties,” 2011

IEEE 30th Symp. Reliab. Distrib. Syst. Work., pp. 9–12, Oct. 2011.

[17] K. Solaiman and G. M. M. Brook , G. Ushaw, “A Read-Write-Validate

Approach to Optimistic Concurrency Control for Energy Efficiency of

Resource-Constrained Systems,” in Wireless Communications and Mobile

Computing Conference (IWCMC) 9th International. IEEE, 2013, no. Cc, pp.

1424–1429.

[18] K. Solaiman and G. morgan , M. Brook, G. Ushaw, “Optimistic Concurrency

Control for Energy Efficiency in the Wireless Environment,” in in The 13th

International Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP) springer, 2013, pp. 115–128.

[19] N. Bernstein, P.A., Hadzilacos, V., Goodman, Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

[20] C. H. Papadimitriou, “The serializability of concurrent database updates,” J.

ACM, vol. 26, no. 4, pp. 631–653, Oct. 1979.

[21] and P. V. Tamer èozsu, M., Principles of distributed database systems. Springer.

1999.

[22] and T. K. Coulouris, George, Jean Dollimore, Distributed Systems: Concepts

and Design Edition 3. 2001.

References

100

[23] and K. S. Kuramitsu, Kimio, “Towards ubiquitous database in mobile

commerce,” in In Proceedings of the 2nd ACM international workshop on Data

engineering for wireless and mobile access, ACM, 2001, pp. 84–89.

[24] S. Ortiz, “Embedded databases come out of hiding,” in Computer 33, no. 3,

2000, pp. 16–19.

[25] and T. N. R. Selvarani, D. Roselin, “A SURVEY ON DATA AND

TRANSACTION MANAGEMENT IN MOBILE DATABASES,” Int. J.

Database Manag. Syst. 4.5, 2012.

[26] et al. Whang, Kyu-Young, “The ubiquitous DBMS,” in ACM SIGMOD Record

38.4, 2010, pp. 14–22.

[27] A. Nori, “Mobile and embedded databases,” in Proceedings of the 2007 ACM

SIGMOD international conference on Management of data. ACM, 2007, pp.

1175–1177.

[28] G. S. Welling, “Designing adaptive environment-aware applications for mobile

computing,” Diss. Rutgers, The State University of New Jersey, 1999.

[29] J. J. Liu, “Mobile map: A case study in the design & implementation of a mobile

application,” Diss. Carleton University, 2002.

[30] V. F. W. DiPippo, Lisa Congiser, “Real-time databases,” Database Syst.

Handbook, Multiscience Press, pp. 1–57, 1997.

[31] S. A. Aldarmi, “Real-Time Database Systems : Concepts and Design,” 1998.

[32] J. L. and K. Raatikainen, “Optimistic Concurrency Control Methods for Real-

Time Database Systems,” Helsinki, 2001.

[33] R. Abbott and H. Garcia-Molina, “Scheduling real-time transactions,” ACM

SIGMOD Rec., vol. 17, no. 1, pp. 71–81, Mar. 1988.

[34] J. U. and J. W. H. Garcia-Molina, DATABASE SYSTEM The Complete Book.

2009.

[35] M. J. Haritsa, J.R., Livny, M., Carey, “Earliest Deadline Scheduling for Real-

Time Database Systems,” in In proceedings of the 12th Real-Time System

Symposium, 1991, pp. 232–242.

[36] R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions: a

performance evaluation,” ACM Trans. Database Syst., vol. 17, no. 3, pp. 513–

560, Sep. 1992.

[37] M. L. J. R. Haritsa, M. J. Carey, “Value-Based Scheduling in Real-Time

Database Systems,” VLDB J., vol. 2, no. 2, p. Number 117–152, 1993.

References

101

[38] W. . Liu, C., L ., Layland, J., “Scheduling Algorithms for Multiprogramming in

a Hard Real Time Environment,” J. ACM, vol. 20, pp. 46–61, 1973.

[39] K. V. Datta A., S.H.S., “Limitations of priority cognizance in conflict resolution

for firm real-time database systems,” in IEEE Transaction on Computers, 2000,

pp. 483–501.

[40] Z. Qin, Y. Wang, D. Liu, and Z. Shao, “Real-Time Flash Translation Layer for

NAND Flash Memory Storage Systems,” 2012 IEEE 18th Real Time Embed.

Technol. Appl. Symp., pp. 35–44, Apr. 2012.

[41] M. J. Franklin, Client data caching: A foundation for high performance object

database systems. Kluwer Academic Publishers, 1996.

[42] and G. G. Silberschatz, Abraham, Peter B. Galvin, Operating system concepts. J.

Wiley & Sons, 2009.

[43] and L. B. Podlipnig, Stefan, “A survey of web cache replacement strategies,”

ACM Comput. Surv. 35.4, pp. 374–398, 2003.

[44] B. Krishnamurthy and and J. Rexford, Web protocols and practice: HTTP/1.1,

Networking protocols, caching, and traffic measurement. Vol. 108. Reading:

Addison-Wesley, 2001.

[45] F. Bukhari, “Maintaining Consistency in Client-Server Database Systems with

Client-Side Caching,” Newcastle University Newcastle upon Tyne, UK, 2012.

[46] M. J. C. Franklin, Michael J., “Client-server caching revisited,” 1992.

[47] Y. Wang and L. A. Rowe, “Cache Consistency and Concurrency Control in a

Client/Server DBMS Architecture,” in ACM SIGMOD int. Conference on

management of Data, 1991, pp. 367–376.

[48] M. J. Carey and E. Al, “Data caching tradeoffs in client-server DBMS

architectures,” in . Vol. 20. No. 2. ACM,, 1991, pp. 357–366.

[49] and M.-A. N. Wilkinson, Kevin, “Maintaining consistency of client-cached

data,” in in VLDB, 1990, pp. 122–133.

[50] M. L. Franklin, Michael J., Michael J. Carey, “Transactional client-server cache

consistency: alternatives and performance,” ACM Trans. Database Syst. 22.3,

pp. 315–363, 1997.

[51] T. A. Franaszek P., R.J., “Concurrency control for high contention

environments.,” ACM Trans. Database Syst., vol. 17, no. 2, pp. 304–345, 1992.

[52] and S. S. L. u, Philip S., Daniel M. Dias, “On the Analytical Modeling of

Database Concurrency Control,” J. ACM 40.4, vol. 40, no. 4, pp. 831–872, 1993.

References

102

[53] P. S. Yu and D. M. Dias, “Analysis of hybrid concurrency control schemes for a

high data contention environment,” IEEE Trans. Softw. Eng., vol. 18, no. 2, pp.

118–129, 1992.

[54] D. Yu s. P., Dias, M., “Performance analysis of optimistic concurrency control

schemes with different rerun policies,” in Proceedings of the Fifteenth Annual

International, 1991, pp. 294 – 300.

[55] A. Thomasian and S. Member, “Control Methods for High-Performance

Transaction Processing,” vol. 10, no. 1, pp. 173–189, 1998.

[56] H. Theo, “Observation on Optimistic Concurrency Control Schemes,” Inf. Syst.,

vol. 9, no. 2, pp. 111–120, 1984.

[57] R. Unland, “Optimistic concurrency control revisited,” Arbeitsberichte des

Instituts für Wirtschaftsinformatik, Westfälische Wilhelms-Universität Münster,

No. 30, 1994.

[58] J. Huang and E. Al., “Experimental Evaluation of Real-Time Optimistic

Concurrency Control Schemes,” in VLDB. Vol. 91, 1991.

[59] S. Park and S. Jung, “An energy-efficient mobile transaction processing method

using random back-off in wireless broadcast environments,” J. Syst. Softw., vol.

82, no. 12, pp. 2012–2022, Dec. 2009.

[60] Y. Lei, X., Zhao, Y., Chen, S., “Concurrency control in mobile distributed real-

time database systems,” Parallel Distrib. Comput., vol. 69(10), pp. 866–876,

2009.

[61] W. P. and Y. K. M. Choi, “Two-phase Mobile Transaction Validation in

Wireless Broadcast Environments,” in In Proceedings of the 3rd International

Conference on Ubiquitous Information Management and Communication, 2009,

pp. 32–38.

[62] and K.-W. L. Lee, Victor CS and K. Lam, “Optimistic Concurrency Control in

Broadcast Environments : Looking Forward at the Server and Backward at the

Clients,” Mob. Data Access. Springer Berlin Heidelb., pp. 97–106, 1999.

[63] S. Jung and K. Choi, “A concurrency control scheme for mobile transactions in

broadcast disk environments,” Data Knowl. Eng., vol. 68, no. 10, pp. 926–945,

Oct. 2009.

[64] J. J. Lee, “Precise serialization for optimistic concurrency control,” Data Knowl.

Eng. Elsevier Sci. B.V., vol. 29, no. 2, pp. 163–179, Feb. 1999.

References

103

[65] V. C. S. Lee and K. Lam, “Conflict free transaction scheduling using

serialization graph for real-time databases,” vol. 55, pp. 57–65, 2000.

[66] K. Marzullo, “Concurrency Control for Transactions with Priorities TR 89-996,”

Dep. Comput. Sci. Cornell Univ., 1989.

[67] H. Berenson, E. O. Neil, P. O. Neil, M. Corp, P. Bernstein, J. Melton, and S.

Corp, “A Critique of ANSI SQL Isolation Levels,” no. June, pp. 1–10, 1995.

[68] M. Yabandeh and D. Gómez Ferro, “A critique of snapshot isolation,” Proc. 7th

ACM Eur. Conf. Comput. Syst. - EuroSys ’12, p. 155, 2012.

[69] T. Riegel, H. Sturzrehm, P. Felber, and C. Fetzer, “From Causal to z -

Linearizable Transactional Memory,” 2007.

[70] P. L. DANG De-Peng, LIU Yun-Sheng, “Weak Serializable Concurrency

Control in Distributed Real-Time Database Systems,” vol. 6, no. 4, 2002.

[71] M. a. Bornea, O. Hodson, S. Elnikety, and A. Fekete, “One-copy serializability

with snapshot isolation under the hood,” 2011 IEEE 27th Int. Conf. Data Eng.,

pp. 625–636, Apr. 2011.

[72] K. Lam and W. Yau, “On using similarity for concurrency control in real-time

database systems,” J. Syst. Softw., vol. 43, no. 3, pp. 223–232, Nov. 1998.

[73] J. Lindstr, “Relaxed Correctness for Firm Real-Time Databases,” in Embedded

and Real-Time Computing Systems and Applications, 2006. Proceedings. 12th

IEEE International Conference on. IEEE, 2006, pp. 82–86.

[74] S. Revilak, P. O’Neil, and E. O’Neil, “Precisely Serializable Snapshot Isolation

(PSSI),” 2011 IEEE 27th Int. Conf. Data Eng., pp. 482–493, Apr. 2011.

[75] P. S. Yu and S. H. Son, “On real-time databases: concurrency control and

scheduling,” Proc. IEEE, vol. 82, no. 1, pp. 140–157, 1994.

[76] R. K. Lindström J., “Dynamic adjustment of serialization order using timestamp

intervals in real-time databases.,” in in In Proceedings of the 6th International

Conference on Real-Time Computing Systems and Applications,IEEE Computer

Society Press, 1999.

[77] K. R. and D. T. Jiandong H., J.S., “Experimental Evaluation of Real-Time

Optimistic Concurrency Control Schemes.,” in Proc. 17th Conf. Very Large

Databases, 1991, pp. 35–46.

[78] J. Lee and S. H. Son, “Using dynamic adjustment of serialization order for real-

time database systems,” 1993 Proc. Real-Time Syst. Symp., pp. 66–75, 1993.

References

104

[79] R. K. Lindstrom J., “Using Importance of Transactions and Optimistic

Concurrency Control in Firm Real-Time Databases,” in in Proc. 7th

International Conference on Real-Time Systems and Applications (RTCSA ’00),

2000, pp. 12–14.

[80] J. Lindstrom, “Optimistic Concurrency Control Methods for Real-Time

Database Systems,” in S.o.P.A.R. A-2003-1, Editor.University of Helsinki

Department of Computer Science., 2001.

[81] A. Peinl, P., Reuter, “Empirical comparison of database concurrency control

schemes,” in in Proceedings of the 9th Znternutionul Conference on Very Large

Data Bases., 1983, pp. 97–108.

[82] R. Pradel, U., Schlageter, G. , Unland, “Redesign of optimistic methods:

Improving performance and availability,” in in In Proceedings of the 2nd

International Conference on Data Engineering IEEE Computer Society Press,

1986.

[83] E. R. a. A. Thomasian., “A New Distributed Optimistic Concurrency Control

Method and a Comparison of its Performance with Two-Phase Locking.,” in in

In Proceedings of Tenth ICDCS., 1990.

[84] K. R. and D. T. Jiandong H., J.S., “Experimental Evaluation of Real-Time

Optimistic Concurrency Control Schemes.,” in Proc. 17th Conf. Very Large

Databases, 1991, pp. 35–46.

[85] J. Huang and J. A. Stankovic, “Concurrency Control in Real-Time Database

Systems: Optimistic Scheme vs. Two-Phase Locking,” 1990.

[86] N. H. Mamun Q. E. K., “Timestamp based optimistic concurrency control.,” in

in TENCON2005,, 2005, pp. 1–5.

[87] T. A., “Checkpointing for optimistic concurrency control methods.,” in

Knowledge and Data Engineering, IEEE Transactions on, 1995, pp. 332–339.

[88] J. G. and A. Reuter, Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers,, 1992.

[89] G. Garcia-Molina, H., Wiederhold, “Read-only transactions in a distributed

database.,” in ACM Transactions on Database Systems, 1982, pp. 209–234.

[90] H.-Y. WANG1 and 3 AND KAM-YIU LAM4, “Mobile Real-Time Read-Only

Transaction Processing in Broadcast Disks,” vol. 1264, pp. 1249–1264, 2006.

References

105

[91] B. Lu, Q. Zou, and W. Perrizo, “A dual copy method for transaction separation

with multiversion control for read-only transactions,” Proc. 2001 ACM Symp.

Appl. Comput. - SAC ’01, pp. 290–294, 2001.

[92] A. SangKeun Lee, Chong-Sun Hwang and M. Kitsuregawa, “Concise

PapersUsing Predeclaration for Efficient Read-Only Transaction Processing in

Wireless Data Broadcast,” vol. 15, no. 6, pp. 1579–1583, 2003.

[93] S. H. Kwok-Wa L., K.-y.L., “Real-time optimistic concurrency control protocol

with dynamic adjustment of serialization order,” in in on Proc of IEEE Real-

Time Technology and Application Syniposium, 1995, pp. 174–179.

[94] P. Pii, G. Britain, C. Engineering, A. Buchmann, and I. Science, “A REAL-

TIME CONCURRENCY CONTROL PROTOCOL FOR MAIN-MEMORY

DATABASE SYSTEMS +,” vol. 23, no. 2, pp. 109–125, 1998.

[95] J. and R. R. Larus, Transactional Memory. MORGAN & CLAYPPOOL

PUBLISHERS USA, 2007.

[96] H. F. K. Silberschatz, Abraham and and S. Sudarshan, Database system

concepts, Vol. 4. Hightstown: McGraw-Hill, 1997.

[97] D. Potier and and P. Leblanc., “Analysis of locking policies in database

management systems,” Commun. ACM 23.10, pp. 584–593, 1980.

[98] T. A. Ryu I., “Performance analysis of centralized databases with optimistic

concurrency control.,” Elsevier Sci. Publ. B. V., vol. 7, no. 3, 1987.

[99] T. Alexander, “Analysis of some optimistic concurrency control schemes based

on certification.,” in in In Proceedings of the 1985 SIGMETRICS Conference on

Measurement and Modeling of Computer Systems., 1985.

[100] T. Johnson, “Analysis of Optimistic Concurrency Contro Revisited.,” 1992.

[101] B. Azer, “Speculative Concurrency Control: A position statement,” 1992.

[102] B. S. Bestavros A., “SCC-nS: a Family of Speculative Concurrency Control

Algorithms for Real-Time Databases,” in in Proc. Third Int’l Workshop

Responsive Computer Systems., 1993.

[103] B. S. Bestavros A., “Speculative Concurrency Control,” in Computer Science

Department Boston University, 1993.

[104] B. S. Bestavros A., “Time liness via speculation for real-time databasees,” in in

In Proceedings of RTSS’94: The 14th IEE Real-Time System Symposium., 1994.

References

106

[105] B. S. Bestavros A., “Value-cognizant speculative concurrency control,” in In

Proceedings of VLDB 95 : The International Conference on Very Large

Databases, 1995.

[106] B. S. Bestavros A., “Value-cognizant speculative concurrency control for real-

time databases.,” Inf. Syst., pp. 21(1):75–101, 1996.

[107] Y. S. G. Jun C. Yan_Li Z., “A New Speculative Concurrency Control Protocol

and The Analysis base on Petri Net,” in in Computer Engineering and

Applications, 2009, pp. 121–123.

[108] J. W. Juna C., Y.f.W., “Concurrency Control Protocol for Real-Time Database

and The Analysis Based on Petri Net.,” Adv. Mater. Res., pp. 12–17, 2011.

[109] E. P. Azer B., S.B., “Performance Evaluation of Two-Shadow Speculative

Concurrency Control,” 1993.

[110] B. S. and L. A. Haubert, J., “Improving the SCC protocol for real-time

transaction concurrency control. in Signal Processing and Information

Technology,” in ISSPIT 2003. Proceedings of the 3rd IEEE International

Symposium on, 2003.

[111] M. C. M. L. Jayant H., “Dynamic Real-Time Optimistic Concurrency Control,”

in in Proceedings of the 11th IEEE Real-Time Systems, 1990, pp. 94–103.

[112] S. H. S. Lee J., “Performance of concurrency control algorithms for real-time

database systems,, K. Vijay, Editor. Prentice-Hall, Inc.,” Perform. Concurr.

Control Mech. Cent. database Syst., pp. 429–460, 1996.

[113] M. C. M. L. Jayant H., “Dynamic Real-Time Optimistic Concurrency Control,”

in in Proceedings of the 11th IEEE Real-Time Systems., 1990, pp. 94–103.

[114] E. D. Jensen and C. Douglass, “A Time-Driven Scheduling Model for Real-

Time Operating Systems,” pp. 112–122, 1985.

[115] J. R. Haritsa, M. J. Carey, and M. Livny, “On being optimistic about real-time

constraints,” Proc. ninth ACM SIGACT-SIGMOD-SIGART Symp. Princ.

database Syst. ACM, pp. 331–343, 1990.

[116] J. Lee, S. H. Son, and C. Science, “AN OPTIMISTIC CONCURRENCY

CONTROL PROTOCOL FOR REAL-TIME DATABASE SYSTEMS,” in In

Pro- ceedings of 3rd International Symposium on Database Systems

forAdvancedApplications, Daejon, Korea, 1993, pp. 387–394.

References

107

[117] Acharya, “Broadcast Disks: Dissemination-Based Data Management for

Asymmetric Communication Environments, PhD dissertation,” Brown

Univesity, 1997.

[118] and E. T. Finne, Arild, “Data Management and Concurrency Control in

Broadcast based Asymmetric Environments,” 2005.

[119] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast Disks : Data

Management for Asymmetric Communication Environments,” no. May, 1995.

[120] A. Herman, G., Gopel, G., Lee, K.C., Weinrib, “The datacycle architecture for

very high throughput database systems,” in Proceedings of the ACM SIGMOD

Conference, 1987, pp. 97–103.

[121] S. Acharya, M. Franklin, and S. Zdonik, “Balancing Push and Pull for Data

Broadcast,” pp. 183–194, 1997.

[122] S. A. K. Chitra Manikandan, “Time Stamping Method for Consistent Data

Dissemination to Read Write Mobile Clients,” in International Conference on

Computer Communication and Informatics (ICCCI -2012), 2012, pp. 10 – 12.

[123] C. L. L.-F. Lin, C.-C. Chen, “Benefit-oriented data retrieval in data broadcast

environments,” Wirel. Networks 16, pp. 1–15, 2010.

[124] A. S. P. C. K. Liaskos, S. G. Petridou, G. I. Papadimitriou, P. Nicopolitidis, “On

the analytical performance optimization of wireless data broadcasting,” Veh.

Technol. IEEE Trans. 59, pp. 884–895, 2010.

[125] H. S. S.-Y. Yi, “A hybrid scheduling scheme for data broadcast over a single

channel in mobile environments,” J. Intell. Manuf. 23, pp. 1259–1269, 2012.

[126] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, and K.

Ramamritham, “Efficient concurrency control for broadcast environments,”

Proc. 1999 ACM SIGMOD Int. Conf. Manag. data - SIGMOD ’99, pp. 85–96,

1999.

[127] S. V. and B. R. B. Imielinski, Tomasz, “Energy efficient indexing on air,” in

ACM SIGMOD Record. Vol. 23. No. 2. ACM, 1994, pp. 25–36.

[128] L. L. M. Chehadeh, Y. C., Ali R. Hurson, “Energy-efficient indexing on a

broadcast channel in a mobile database access system,” in Information

Technology: Coding and Computing, 2000. Proceedings. International

Conference on. IEEE, 2000, pp. 368–374.

[129] V. Goel, “Energy Efficient Air Indexing Schemes for single and Multi-level

Wireless channels,” pp. 525–530, 2012.

References

108

[130] X. Lu and E. Al., “SETMES: a scalable and efficient tree-based mechanical

scheme for multi-channel wireless data broadcast,” in Proceedings of the 7th

International Conference on Ubiquitous Information Management and

Communication. ACM, 2013.

[131] J. Zhong and E. Al., “Evaluation and comparison of various indexing schemes in

single-channel broadcast communication environment,” in Knowledge and

Information Systems, 2013, pp. 1–35.

[132] S. and J. C. Im, “MLAIN: Multi-leveled air indexing scheme in non-flat wireless

data broadcast for efficient window query processing,” Comput. Math. with

Appl. 64.5, pp. 1242–1251, 2012.

[133] et al. Sun, Weiwei, “An automaton-based index scheme for on-demand XML

data broadcast,” Database Syst. Adv. Appl. Springer, pp. 96–110, 2012.

[134] J. Zhong and E. Al., “Multi-channel energy-efficient hash scheme broadcasting,”

in Proceedings of the 21st international conference on software engineering and

data engineering, 2012.

[135] S. Wang and H.-L. Chen, “Tmbt: An efficient index allocation method for multi-

channel data broadcast,” AINA, pp. 236–242, 2007.

[136] Q. G. and S. L. J. Xu, W.-C. Lee, X. Tang, “An error-resilient and tunable

distributed indexing scheme for wireless data broadcast,” TKDE, 18(3), pp. 392–

404, 2006.

[137] E.-P. L. and A. S. Y. Yao, X. Tang, “An energy-efficient and access latency

optimized indexing scheme for wireless data broadcast,” TKDE,18(8), pp. 1111–

1124, 2006.

[138] B. S. and D. T. A. Waluyo, “Global indexing scheme for location-dependent

queries in multi channels mobile broadcast environment,” AINA, pp. 1011–1016,

2005.

[139] B. L. and S. P. S. Jung, “A tree-structured index allocation method with

replication over multiple broadcast channels in wireless environments,”

TKDE,17(3), pp. 311–325, 2005.

[140] R. M. D. Sumari, Putra and and A. R. Rahiman, “A Broadcast Disk scheme for

mobile information system,” J. Comput. Sci. Technol. 10, 2010.

[141] A. S. Tanenbaum, Computer Networks. 1987.

[142] K.-L. Tan and and B. C. Ooi, “On selective tuning in unreliable wireless

channels,” Data Knowl. Eng., pp. 209–231, 1998.

References

109

[143] A. Bestavros, “AIDA-based real-time fault-tolerant broadcast disks,” in Real-

Time Technology and Applications Symposium 1996. Proceedings., 1996 IEEE,

1996, pp. 49–58.

[144] A. B. Baruah, Sanjoy, “Pinwheel scheduling for fault-tolerant broadcast disks in

real-time database systems,” in Data Engineering, 1997. Proceedings. 13th

International Conference on. IEEE, 1997, p. Baruah, Sanjoy, and Azer

Bestavros. "Pinwheel sche.

[145] W. et al. Hu, “An on-demand data broadcasting scheduling algorithm based on

dynamic index strategy,” in Wireless Communications and Mobile Computing,

2013.

[146] A. B. Baruah, Sanjoy, “Timely and fault-tolerant data access from broadcast

disks: A pinwheel-based approach,” in Proceedings of the workshop on on

Databases: active and real-time. ACM, 1996, pp. 45–49.

[147] V. C. S. Lee, K. Wa Lam, and T.-W. Kuo, “Efficient validation of mobile

transactions in wireless environments,” J. Syst. Softw., vol. 69, no. 1–2, pp. 183–

193, Jan. 2004.

[148] V. C. S. L. and K.-W. Lam and ., “Optimistic Concurrency Control in Broadcast

Environments: Looking Forward at the Server and Backward at the Clients,” in

in Proceedings of International Conference on Mobile Data Access, Lecture

Note in Computer Science, 1999, pp. 97–106.

[149] A. Bowen, T.F., Gopal, G., Herman, G., Hickey, T., Lee, K.C., Mansfield, W.H.,

Raitz, J., Weinrib, “The datacycle architecture,” in Communications of the ACM,

1992, pp. 71–81.

[150] and S. H. S. Lee, Victor CS, Kwok-Wa Lam, “Concurrency control using

timestamp ordering in broadcast environments." The Computer Journal,” vol.

45.4, pp. 410–422, 2002.

[151] and Z. S. Siau, Keng, “Building customer trust in mobile commerce,” Commun.

ACM 46.4, pp. 91–94, 2003.

[152] and B.-S. J. Choi, Ho-Jin, “A timestamp-based optimistic concurrency control

for handling mobile transactions,” Comput. Sci. Its Appl. Springer Berlin

Heidelb., pp. 796–805, 2006.

[153] et al. Lam, Kam-Yiu, “Concurrency control strategies for ordered data broadcast

in mobile computing systems,” Inf. Syst. 29.3, pp. 207–234, 2004.

References

110

[154] A.-P. Bosch, G.; Creus; Tuovinen, “Feature Interaction Control on

Smartphones,” in Industrial Embedded Systems, 2007. SIES ’07. International

Symposium, 2007, pp. 302–309.

[155] et al. Lei, Xiangdong, “Concurrency control in mobile distributed real-time

database systems,” J. Parallel Distrib. Comput. 69.10, pp. 866–876, 2009.

[156] L. Guohui, Y. Bing, and C. Jixiong, “Efficient Optimistic Concurrency Control

for Mobile Real-Time Transactions in a Wireless Data Broadcast Environment,”

11th IEEE Int. Conf. Embed. Real-Time Comput. Syst. Appl., pp. 443–446, 2005.

[157] E. Pitoura, “Supporting read-only transactions in wireless broadcasting.,” in

Proceedings of the DEXA98 International Workshop on Mobility in Databases

and Distributed Systems, 1998, pp. 428–433.

[158] P. K. Pitoura, E., Chrysanthis, “Scalable processing of readonly transactions in

broadcast push.,” in Proceedings of the 19th IEEE International Conference on

Distributed Computing System, 1999.

[159] D. Barbara, “Certification reports: supporting transactions in wireless systems.,”

in in Proceedings of 17th International Conference on Distributed Computing

Systems, 1997, pp. 466–473.

[160] D. Yu s. P., Dias, M., “Analysis of hybrid concurrency control schemes for a

high data contention environment,” in in IEEE Trans. Software Eng, 1992, pp.

118–129.

[161] F. Howell and and R. McNab., “"SimJava: A discrete event simulation library

for java.,” Simul. Ser. 30, pp. 51–56, 1998.

[162] F. and R. M. Howell, “SimJava.,” Institute for Computing Systems Architecture,

Division of Informatics, University of Edinburgh, 2000. .

[163] S. Manegold, “Understanding , Modeling , and Improving Main-Memory

Database Performance,” CWI Amsterdam, 2002.

[164] and R. R. Harris, Tim, James Larus, Transactional memory." Synthesis Lectures

on Computer Architecture 5.1. 2010, pp. 1–263.

[165] and W. N. S. I. Herlihy, Maurice, Victor Luchangco, Mark Moir, “Software

transactional memory for dynamic-sized data structures,” in In Proceedings of

the twenty-second annual symposium on Principles of distributed computing,

2003, pp. 92–101.

[166] www.virtualmv.com/wiki/index.php?title=DBMS:Centralised_vs_Distributed

