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ABSTRACT 

Dependency on information technology (IT) and computer and information security 

(CIS) has become a critical concern for many organizations. This concern has essen-

tially centred on protecting secrecy, confidentiality, integrity and availability of infor-

mation. To overcome this concern, defensive mechanisms, which encompass a variety 

of services and protections, have been proposed to protect system resources from mis-

use. Most of these defensive mechanisms, such as CAPTCHAs and spam filters, rely in 

the first instance on a single algorithm as a defensive mechanism. Attackers would 

eventually break each mechanism. So, each algorithm would ultimately become useless 

and the system no longer protected. Although this broken algorithm will be replaced by 

a new algorithm, no one shed light on a set of algorithms as a defensive mechanism. 

This thesis looks at a set of algorithms as a holistic defensive mechanism. Our hypothe-

sis is that the order in which a set of defensive algorithms is released has a significant 

impact on the time taken by attackers to break the combined set of algorithms. The ra-

tionale behind this hypothesis is that attackers learn from their attempts, and that the 

release schedule of defensive mechanisms can be adjusted so as to impair the learning 

process. To demonstrate the correctness of our hypothesis, an experimental study in-

volving forty participants was conducted to evaluate the effect of algorithms’ order on 

the time taken to break them. In addition, this experiment explores how the learning 

process of attackers could be observed. The results showed that the order in which algo-

rithms are released has a statistically significant impact on the time attackers take to 

break all algorithms. Based on these results, a model has been constructed using Sto-

chastic Petri Nets, which facilitate theoretical analysis of the release order of a set of 

algorithms approach. Moreover, a tailored optimization algorithm is proposed using a 

Markov Decision Process model in order to obtain efficiently the optimal release strat-

egy for any given model by maximizing the time taken to break a set of algorithms. As 

our hypothesis is based on the learning acquisition ability of attackers while interacting 

with the system, the Attacker Learning Curve (ALC) concept is developed. Based on 

empirical results of the ALC, an attack strategy detection approach is introduced and 

evaluated, which has achieved a detection success rate higher than 70%. The empirical 

findings in this detection approach provide a new understanding of not only how to de-

tect the attack strategy used, but also how to track the attack strategy through the prob-

abilities of classifying results that may provide an advantage for optimising the release 

order of defensive mechanisms.  
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GLOSSARY OF TERMS 

Term Definition 

Security 

The sum of all measures taken to prevent loss of any kind, 

which can occur due to user error, hardware failure, mali-

cious acts, acts of nature and defects in code [139]. 

Security Attack 
Any action, such as interruption, interception and modifica-

tion that compromises the security of information [26]. 

Successful Attack Any attempt of attack that is executed successfully. 

Attacker 
An agent (human or computational) that attempts the attack 

[111]. 

Attacker’s manipula-

tion 

The distance between one attempt from an attacker and his 

previous attempts [14]. 

Accumulative ma-

nipulation 

Attacker’s aggregated amount of knowledge, which effec-

tively represents how close the attacker is to breaking the 

defensive mechanism [14]. 

Computer Security 

The prevention of, or protection against, access to informa-

tion by unauthorised users, as well as intentional but unau-

thorised destruction or alteration of that information [26]. 

Prevention 

The security procedures undertaken by implementing safe-

guards, such as a defensive mechanism, in order to make a 

secure system [111]. 

Defensive Mechanism 
As stated by Bishop in [26], is to institute controls that pre-

serve secrecy, confidentiality, integrity and availability. 

Interactive Defensive 

Mechanism 

A defensive mechanism that operates while interacting with 

an attacker. 

Non-Interactive De-

fensive Mechanism 

A defensive mechanism that operates without interacting 

with an attacker. 

Release Order of De-

fensive Mechanism 

The arrangement of releasing a set of defensive mechanisms 

according to a particular sequence [11].  

System resources 
A finite set of resources e.g. communication or computa-

tional resources that an attacker intends to misuse [139]. 

System’s feedback 
The simple Boolean response or reasons that attackers re-

ceive from the system for the failure of their request [11]. 

Model 

As defined by Wilson in [146] is “the explicit interpretation 

of a situation, or one idea about that situation. It can be ex-

pressed in mathematics, symbols or words, but is essentially 

a description of entities, processes or attributes and the rela-

tionships between them.”  
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Chapter 1.  INTRODUCTION 

This chapter introduces the idea of the research undertaken; in particular, the back-

ground, motivation, and problems of the research are detailed. This chapter also in-

cludes the research hypothesis with several research questions set out for further inves-

tigation. Furthermore, the research aim and objectives are stated. 

This chapter also explains the methodology of the research, which is empirically based 

in nature with a novel experimental work that is carried out to evaluate the proposed 

idea. Moreover, the main contributions of the research are described and the publication 

history is presented. Towards the end of this chapter, the structure of this thesis is de-

tailed. 

1.1 Context & Motivation 

Dependency on information technology (IT) and computer and information security 

(CIS) has become a critical concern for many organisations. This concern has been 

mainly about protecting secrecy, confidentiality, integrity and availability of informa-

tion when using computer systems. For this reason, much research has been conducted 

in this area by proposing defensive mechanisms, which are based on algorithms that aim 

to protect system resources from misuse. These algorithms encode a set of rules that 

characterize and recognize attempts at misuse, and prevent any adverse effect on system 

resources.  

In this thesis, a defensive mechanism is used as a broad term which encompasses a vari-

ety of services and products that preserve secrecy, confidentiality, integrity and avail-

ability. In order to precisely define a defensive mechanism in terms of classification 
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performance, we begin with the confusion matrix
1
 that helps to understand how a defen-

sive mechanism performs correct/incorrect classification, as shown in Table 1.1. Termi-

nologies presented in Table 1.1 are explained as follows. True Positive (TP) indicates 

that the defensive mechanism correctly classifies a malicious attempt as malicious. True 

Negative (TN) indicates that the defensive mechanism classifies a normal attempt as 

normal. These two classification results (i.e. TP and TN) are accurate. Moreover, False 

Negative (FN) indicates that the defensive mechanism classifies a malicious attempt as 

normal. Finally, False Positive (FP) indicates that the defensive mechanism classifies a 

normal attempt as malicious. These two classification results (i.e. FN and FP) are inac-

curate. The key point to highlight is that an attacker is successful if it is classified as a 

FN. 

Table  ‎1.1: The Confusion Matrix 

 Prediction of a defensive Mechanism 

Attack Not attack 

R
ea

li
ty

 

A
tt

a
ck

 

True Positive 

(TP) 

False Negative 

(FN) 

N
o
t 

  
 

a
tt

a
ck

 

False Positive 

(FP) 

True Negative 

(TN) 

Given this confusion matrix, we categorise defensive mechanisms, based on their pre-

dicted results, into two main categories: Assertive
2
 and Predictive

3
 defensive mecha-

nisms. The predicted results of an Assertive defensive mechanism are always accurate: 

TP or TN. For instance, an access control system [53] restricting entrance to a property, 

a building or a room to authorised persons under a well-defined policy (i.e., a policy 

either clearly denying or allowing and that is typically defined as “to set who can use 

what information in a computer system” [69]) is an Assertive defensive mechanism.  

                                                 
1  The term confusion matrix is generally known as a contingency table or an error matrix that represents a specific 

table layout, which gives visualization of the performance of an algorithm, where each column of the matrix states 

the examples in a predicated class, whereas each row states the examples in an actual class [136].  

2  Since assertive theories throughout the history of philosophy have sprung from diverse motives and considerations, 

in this thesis assertiveness is the idea that everything that happens is completely determined by prior conditions. 

3  A prediction refers to a quantitative description about what will happen under specific conditions [121]. 
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On the other hand, due to uncertainty as well as several essential tradeoffs
4
 between 

security and other forms of important factors such as usability or accessibility in design-

ing a defensive mechanism, the predicted results of a predictive defensive mechanism, 

in addition to the accurate classification results, can also include FP and FN. This cate-

gory can be divided into two types: Interactive and non-Interactive defensive mecha-

nisms. With the interactive type, the attackers can get feedback from the system with 

regards to their attempt, in particular after each failed attempt. This feedback may be a 

simple Boolean response or may include a reason for the failure. For example, in a 

CAPTCHA system [143], an attacker gets feedback from the system indicating whether 

an attempt is successfully passed or not. Similarly, with a spam-filter system (e.g., [4, 

42, 116]), an attacker can obtain a response with regards to a spam email that is submit-

ted to target users. Furthermore, in a biometrics authentication
5
 system, an attacker can 

know the result of cheating attempts such as a cheated face or voice. As a result of this 

feedback on the attacker’s performance, the prediction results of the interactive defen-

sive mechanism type can gradually identify a malicious attempt as a normal attempt (i.e. 

attackers can learn while a TP attempt becomes a FN), where feedback gained can be a 

key factor to revealing a defensive algorithm’s rules. For instance, the attacker can send 

spam messages as normal messages. The underlying assumption is that the protection 

accuracy of a system against an attack begins to gradually decrease over time
6
.  

In the non-Interactive type, the attacker, in contrast, cannot get feedback from the sys-

tem. For example, in airport security identification devices, the prediction results are 

observed only by the responsible person behind these devices. Even though a FN pre-

diction result can occur, for example when dangerous items, such as weapons, are mis-

taken for keys or coins, the attacker still cannot estimate the prediction results of this 

defensive mechanism type. Another example is in antivirus systems [114]; the predic-

tion results of these systems can be observed by only the user. Not only can a FN pre-

diction result occur, but also a FP prediction result, such as when a normal file is identi-

fied as a virus.  

At present in the literature, interactive defensive mechanisms are qualitatively studied; 

that is, once a defensive mechanism is broken, the security officer must deploy another 

                                                 
4 More details regarding these tradeoffs are presented in Chapter 2 (Table 2.2). 

5 The term biometric authentication refers to the identification of humans by their characteristics or features. 

6 This type of protection mechanisms will be referred to as systems that are eventually breakable. 
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one, which will in turn eventually be broken, leading the officer to deploy a new defen-

sive mechanism, and so on and so forth. For instance, once several CAPTCHA schemes 

such as Microsoft and Yahoo are released in 2007, an attack is improved and subse-

quently these released schemes are broken [150]. This causes to develop new schemes. 

In 2011, these new schemes are broken again by an attack that has been applied in [32]. 

Additionally, deploying a defensive mechanism has a cost; for example, Caliendo et al. 

calculated in [33] the cost of deploying a spam-filter within a particular organization at 

about fifteen thousand Euros for the first year. Furthermore, the security officer must 

usually work within a given budget constraint, and has therefore a limited number of 

defence mechanisms to deploy. For this reason, it is important to look at the problem of 

interactive predictive defensive mechanisms across several of attacks. 

With the background issues presented above, this research intends to fill the gap by 

placing its focus on interactive predictive defensive mechanism. The rationale for this 

limited focus is explained as follows. In the practical use of interactive predictive defen-

sive mechanism, attackers and defenders exchange ‘victories,’ each celebrating (tempo-

rary) success in breaking and defending. That is, as attackers interact with the system, 

they receive feedback that augments their knowledge of the rules of the algorithm which 

is used by the system to characterize misuse. They are then able to adapt their future 

interactions in accordance with this augmented knowledge, increasing their ability to 

break the defensive algorithms deployed, until eventually reaching the point where the 

defensive mechanism is broken, the spam-filter rules are overridden or CAPTCHAs are 

automatically deciphered.  

Since most interactive predictive defensive mechanism rely on a single algorithm as a 

defence mechanism [11, 12] and when this algorithm is broken, it will be replaced with 

another, we investigate a methodology to prolong the interaction between an attacker 

and a security system for as long as possible. As an attacker can gradually derive the 

rules that are used by the defensive mechanism to classify attempts as a result of inter-

acting with the system, the aim of this study is not to prevent breaking the defensive 

mechanism as much as lengthening the time necessary to break it. Therefore, the 

method proposed in this research is a set of algorithms approach as a holistic defence 
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mechanism. When studying sets of algorithms, various issues arise about how to con-

struct the algorithms and in which order
7
, or in which combination to release them. 

In order to precisely define the problem under consideration, we provide an abstract 

system model of the attack scenario, involving the attacker and the system as shown in 

Figure 1.1. This model describes a general class of interactive security solutions, which 

includes CAPTCHAs, certain spam filters, and intrusion tolerance algorithms. This 

class of mechanisms is characterized by an intelligent defensive algorithm being at-

tacked and eventually broken, and then being replaced by a new intelligent defensive 

mechanism. Furthermore, this model provides the basis of the experimental study pre-

sented in Chapter 3, which is revised into a stochastic model in Chapter 4 in order to 

analyse the release order of security algorithms, and is refined into a stochastic model in 

Chapter 5 to derive optimal release strategies. Each component of this abstract system 

model is detailed as follows: 

 

Figure ‎1.1: Abstract System Model. 

Security Layer. To maintain the security of the system, the security layer must be up-

dated. Within this update, the algorithm used by the security layer is replaced by anoth-

er algorithm from the pool to encapsulate a different set of rules such that requests that 

are misusing system resources are no longer permitted to pass through the security lay-

er. The attacker must repeat the process of knowledge acquisition in order to determine 

the new classification rules so that he can continue sending requests to misuse system 

resources. This process of learning takes time and the overall aim of the algorithms is to 

maximize the time until all are broken. 

                                                 
7  The order terms refers in this thesis to the arrangement or disposition of defence algorithms in relation to each other 

according to a particular sequence, pattern, or method. 
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System Resources. In the system model, it is assumed that a finite set of resources can 

be used, e.g. communication or computation resources. The pool of security algorithms 

is contained by a security layer deployed to protect the system resources from misuse, 

e.g. excessively high consumption or consumption for unacceptable purposes. These 

algorithms classify requests to the system as acceptable or unacceptable based upon a 

set of rules. If a request is classified as acceptable, then the request proceeds and the 

system resources are consumed. A request that is classified as unacceptable cannot pro-

ceed through the security layer, and feedback is provided to the user regarding the failed 

request. 

Algorithms. The selection of algorithms when updating the security layer determines 

the subsequent security of the system. In particular, a set of algorithms D, D = {d1, d2, 

..., dn}, n > 1, dn ∈ D, represents the security layer of the system. Each of these algo-

rithms includes a number of rules R = {r1, r2, …, rn}, n ≥ 1 to protect the system. Based 

on the rules of an algorithm, a set of algorithms is classified into three types: overlap-

ping rules, non-overlapping rules or mixed. In the first type, some of the rules are a sub-

set of each other ri ⊂ ri+1. The importance of this type can be in breaking up a defense 

algorithm into a set of algorithms, and more details about this will be given later in 

Chapter 3. In the non-overlapping rules type, all the rules are independent ri ≠ ri+1. The 

importance of this type can be in using variance algorithms that might force the attacker 

back to the beginning of the learning phase. For example, when an algorithm is broken 

by an attacker, the attacker needs to discover a new approach to break the next release 

algorithm. The possible reason behind this can be that there were not patterns that could 

be exploited from the first released algorithm in order to break the next release algo-

rithm, and more details about this will be given later in Chapter 4. The third type is us-

ing mixed overlapping rules and non-overlapping rules algorithms ri ⊂ ri+1 and ri+1 ≠ 

ri+2. The importance of this type can be, in addition to the importance of the first and 

second type, that releasing an independent algorithm which has non-overlapping rules 

between dependent algorithms that have overlapping rules might impair the attacker’s 

learning process. 

Attacker. An attacker is an agent (human or computational) that attempts to misuse 

system resources. The attacker makes requests for the system resources, which pass 

through the security layer as described above. The attacker has some prior knowledge 

about the rules used to classify requests, and attempts to design requests to be classified 
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as acceptable. On each failed attempt, the attacker receives some feedback from the sys-

tem. This feedback may be a simple Boolean response, or may include reasons for the 

failure. The attacker can add this feedback to his knowledge, and use this knowledge to 

inform his subsequent requests. By repeatedly performing this knowledge acquisition 

process
8
, the attacker can derive the rules that are used by algorithms to classify re-

quests. This includes both the parameters used and the values of these parameters. The 

attacker can then misuse system resources by sending requests that are structured in 

such a way that they fulfil the rules of the algorithm in the security layer. In this case, 

the algorithm is considered ‘broken’. 

Intuitively, releasing a set of algorithms one by one sequentially extends the required 

time to break a system, rather than releasing only one algorithm. However, the order in 

which algorithms are released may be essential in terms of extending the time taken to 

break all algorithms. The question for the defender is then to find out the order in which 

to release these algorithms so that the time until all algorithms are broken is maximized. 

1.2 Research Hypothesis & Questions 

Based on the aforementioned problems discussed, the order in which algorithms are 

released may thus be important. As a consequence, this research postulates that the 

longer it takes for the attacker to acquire the necessary knowledge regarding classifica-

tion, the longer the system is protected from misuse. In line with this, the research hy-

pothesis is: 

Hypothesis: “The time taken by a series of attackers to break a set of interactive prob-

abilistic defensive mechanism is dependent on the order in which the algorithms are 

released.” 

The main reasoning behind this hypothesis is that the time it takes an attacker to break a 

defensive algorithm may depend on what the attacker has learned from earlier success-

ful attacks on similar algorithms. Therefore, if this hypothesis is valid, one may be able 

to defend better against attacks by impairing the process of learning of attackers. There 

may be many ways in which this can be achieved, but in this thesis the most direct im-

                                                 
8 In the education context, for example Kahn and O’Rourke stated in [72] that learning is driven by a process of in-

quiry. 

 



Chapter 1 – Introduction 

 

8 

 

plication of this reasoning is considered to be that the order in which defensive algo-

rithms are released may impact the learning process. 

Bearing in mind the hypothesis mentioned above, a number of research questions have 

been set forward to guide the research work, as well as the construction of this thesis: 

Research Question (1): 

“Does the order in which different defensive mechanisms are released impact the time 

an attacker needs to break each one of them?” 

Research Question (2):  

“Could we optimize the order in which defensive mechanisms are released?” 

Research Question (3): 

“How does dependency between algorithms impact on ability to answer question 2?” 

Research Question (4): 

“Could we model the learning acquisition process of attackers?” 

Research Question (5): 

“Based on understanding the learning acquisition, can we devise an attacker detection 

approach?” 

1.3 Research Aim & Objectives 

Following the research problem, the hypothesis and the research questions presented in 

the previous two sections, the aim of this research is to investigate a set of algorithms 

approach for an interactive defensive mechanism which focuses on the order in which to 

release these algorithms, so that the time until all algorithms are broken is maximised. 

With several research questions to be answered as listed above, the objectives of this 

research to achieve its aim are: 

Objective (1): 

 To conduct a review of relevant existing approaches and related theories. 

Objective (2): 

 To identify and propose an ordered releasing strategy for a set of algorithms ap-

proach. 
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Objective (3):  

- To develop and conduct an evaluation experiment for the proposed order. 

Objective (4): 

- To build a model and analyse different algorithm orders. 

Objective (5): 

- To derive an optimisation algorithm for releasing security algorithms. 

Objective (6): 

- To devise an attack detection approach based on the learning curve that can pro-

vide an advantage to optimising the release order algorithm. 

The above objectives have been reached throughout the course of this research. Many 

interesting insights were gained and lessons learned from this research and these are 

discussed in Chapter 8. 

1.4 Research Methodology 

In order to achieve the research aim, a research methodology was prepared which cov-

ered all research aspects, from collecting the preliminary research data to the evaluation 

of the work. The research methodology is summarised as follows: 

I. Literature review: This stage of the study aims to identify the weaknesses of 

interactive defensive mechanism types. In addition, it aims to review the ex-

isting interactive defensive mechanism approaches (methods, models, tech-

niques, frameworks) in order to investigate their ability to accommodate to 

weaknesses. 

II. Proposing a new approach: As a result of this research, an approach will be 

proposed which is expected to address the weaknesses of the existing ap-

proaches to interactive defensive mechanism types, and which includes vari-

ous aspects that have not yet been covered. 

III. Evaluation: In this stage, the proposed approach will be evaluated. Specifi-

cally, an empirical-based approach undertaken with a novel experimental 

study was set up in order to evaluate the proposed approach. 
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The participants involved in all of the experimental works were recruited 

from the student body of this university. The recruitment process was man-

aged through emails and posters distributed among the students on the cam-

pus (Appendix A). In order to guarantee that ethical procedures were fol-

lowed, the methods of recruitment and the process of informed consent (Ap-

pendix A) for all the experimental work carried out, was approved by the uni-

versity ethical committee (UEC). 

The experimental work focused on the ordering of algorithms, which aimed 

to investigate the question of whether the order in which a set of defensive al-

gorithms is released has a significant impact on the time taken by attackers to 

break the combined set of algorithms. Several simplified but representative 

spam filter algorithms and a web-based system on which to perform the ex-

periment were developed to support this experiment. This study of the order-

ing of several algorithms involved forty participants. Details of the ordering 

of several algorithms, including the results and analysis, will be discussed in 

Chapter 3.  

1.5 Contributions of the Thesis 

This thesis addresses the issue of the release of a set of algorithms as an interactive de-

fensive mechanism in general and focuses on the issue of maximising the time taken by 

an attacker to break all algorithms. The key area of concern is, when a released algo-

rithm is broken by an attacker, how much knowledge is gained that can provide the at-

tacker with patterns to break the next released algorithm. 

This thesis provides the following five key contributions to address the issue of the re-

lease order of security algorithms in interactive defensive mechanisms: 

 An introduction to the issue of interactive defensive mechanisms in a system, 

which includes (i) appropriate categorisation of defensive mechanisms, and (ii) a 

definition of interactive defensive mechanism types (Addressed in Chapter 1). 

The result of the categorisation scheme of defensive mechanisms is based on the 

expected results of a defensive mechanism from the confusion matrix and is use-

ful to interested parties such as researchers, defensive mechanism designers and 

developers as a tool to classify a defensive mechanism. The view of interactive 
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defensive mechanisms is based on the perspective of depending on a single algo-

rithm as a defensive mechanism and the learning acquisition ability of attackers. 

This view is important and useful since it provides a consistent and clear under-

standing of the problem of interactive defensive mechanisms in a system. Hav-

ing such a view enables various interested parties, such as researchers, defensive 

mechanism design and defensive mechanism developers, to work from the same 

reference point, which is as unambiguous as possible 

 A novel controlled experimental study for evaluating whether the order of utilis-

ing a set of algorithms methodology as a defensive mechanism matters (Ad-

dressed in Chapter 3). This includes its design, in addition to numerous devel-

oped secure algorithms. The developed controlled experimental study facilitates 

a real-life interaction between a system that includes a set of algorithms and an 

attacker in terms of time taken to break the system 

 A model for the release order of security algorithms using Stochastic Petri Nets 

(Addressed in Chapter 4). The proposed model is designed based on the underly-

ing principles of the developed controlled experimental study, which can de-

scribe the interaction between an attacker, the set of algorithms used by a system 

and the knowledge gained by an attacker with each attack. This framework fa-

cilitates theoretical analysis of the releasing order of a set of algorithms method-

ology. Based on empirical results achieved from the controlled experimental 

study, the proposed model is parameterised and evaluated 

 An optimisation algorithm to compute the optimal release strategy for a set of 

defensive algorithms (Addressed in Chapter 5). Due to the fact that the results of 

the experiment showed that the release order of defensive algorithms has a sig-

nificant impact on the time needed to break a set of defensive algorithms, the 

problem of the release order strategy for a set of defensive algorithms is mathe-

matically modeled as a Markov Decision Process and provides a tailored algo-

rithm to efficiently solve any model within the class of models presented. The 

model solution should scale without problems to optimize the release order of 

tens of defensive algorithms 
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 A notion of accumulative manipulation of an attacker that is derived from the 

experimental study. Since breaking an interactive defensive algorithm typically 

requires several attempts by the attacker, the attacker’s knowledge gradually in-

creases with each attempt. As such, the attacker performs each attempt following 

a structured strategy rather than randomly modifying their requests. Thus, the 

accumulative manipulation is defined as the attacker’s aggregated amount of 

knowledge that effectively represent how close the attacker is to breaking the de-

fensive mechanism. This notion also forms the basis of the Attacker Learning 

Curve (ALC) approach, which reflects the influence of the strategy used by the 

attacker. Based on this approach, a detection of attack strategy mechanism is in-

troduced and implemented. This detection mechanism can provide an advantage 

for the developed optimisation algorithm with regard to prolonging the protec-

tion of an interactive defensive mechanism as long as possible. Furthermore, the 

results of evaluating this detection mechanism indicate that the ALC offers a set 

of efficient features and heuristics for a machine learning technique in order to 

detect the attack strategy qualitatively. (Addressed in Chapters 6 and 7). 

1.6 Publication History 

This thesis includes work that has been published in peer-reviewed publications written 

by the author. These publications are as follows: 

1. Alsuhibany, S. A., Alonaizi, A., Morisset, C., Smith, C., and van Moorsel, A. 

“Experimental Investigation in the Impact on Security of the Release Order of 

Defensive Algorithms,” Proceeding in 3
rd

 IFIP International Workshop on Se-

curity and Cognitive Informatics for Homeland Defence (SeCIHD’13), volume 

8128 of Lecture Notes in Computer Science (LNCS), Springer, September 2–6, 

2013, pp. 321–336. 

2. Alsuhibany S. A., and van Moorsel, A. “Modelling and Analysis of Release Or-

der of Security Algorithms Using Stochastic Petri Nets,” Proceeding in 8
th

 In-

ternational Conference on Availability, Reliability and Security (ARES’13), 

IEEE Computer Society, September 2-6, 2013, pp. 437–445.  



Chapter 1 – Introduction 

 

13 

 

3. Alsuhibany, S. A., Alonaizi, A., Morisset, C., and van Moorsel, A. “Optimizing 

the Release Order of Defensive Mechanisms,” Proceeding in 29
th

 Annual UK 

Performance Engineering Workshop (UKPEW’13), 4
th

 Jul, 2013, pp. 34–41. 

4. Alsuhibany, S. A., Morisset C., and van Moorsel, A. “Detection of Attack 

Strategies,” Proceeding in 8
th 

International Conference on Risks and Security of 

Internet and Systems (CRiSIS’13), IEEE Computer Society, October 23-25, 

2013, pp. 1–8. 

In addition to peer-reviewed papers, a technical report has been written and published in 

the School of Computing Science Technical Reports Series. 

1. Alsuhibany, S. A., Alonaizi, A., Smith, C., and van Moorsel, A. Optimizing the 

Release Order of Defensive Mechanisms. School of Computing Science. 2012. 

School of Computing Science Technical Report Series 1333, available at: 

http://www.cs.ncl.ac.uk/publications/trs/papers/1333.pdf 

This was a preliminary version of the results of validating the main hypothesis and the 

derivation of the optimisation algorithm.  

1.7 Structure of the Thesis 

The remainder of the thesis is structured as follows: 

Chapter 2 provides a relevant literature review and offers background information that 

allows the reader to understand the topics and related work in the area of defensive 

mechanisms. The chapter presents examples of different interactive defensive mecha-

nisms. It focuses on the effectiveness of information order in the education and psy-

chology fields, as well as shedding light on the learning curve theory. It also explains 

related works on game theory, attack modelling and attacker’s behaviour in terms of 

time-to-compromise a system. Moreover, it mainly highlights the anomaly detection 

technique work on hybrid, machine learning based classifiers in which an unsupervised 

machine learning algorithm is applied as a first layer for observing an attack attempt. 

Finally, stochastic modelling formalisms and a number of tools that are used for sto-

chastic modelling and solving are presented. 

http://www.cs.ncl.ac.uk/publications/trs/papers/1333.pdf
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Chapter 3 describes the controlled experimental study, which examines the hypothesis 

that the time spent on breaking a set of defensive algorithms depends on the order in 

which these algorithms are released. This chapter explains the experiment setup, includ-

ing the system developed and the experiment procedures, including data collection. The 

findings of this evaluation study are detailed and discussed in the chapter. 

Chapter 4 introduces the proposed model of the release order of security algorithms 

using Stochastic Petri Nets (SPN). In this chapter, the SPN model, assumptions and per-

formance metric calculations are described. Based on the results achieved from the ex-

perimental study, the model is parameterised. Furthermore, the results obtained by 

evaluating the SPN model are presented. 

Chapter 5 explains the approach to the derivation of optimal release strategies. Based 

on a continuous time Markov Decision Process, a tailored optimisation algorithm is 

provided. An application is presented based on the empirical results of the experimental 

study. This optimisation algorithm can efficiently obtain the optimal release strategies 

for any given model. 

Chapter 6 demonstrates the Attacker Learning Curve (ALC) that is formed by accumu-

lative manipulation notions of an attacker. This ALC is derived from the data collected 

in Chapter 3. This chapter also describes an Attacker Learning Curve Model (ALCM) 

that is inspired by a previous model used for describing developers’ learning curve dur-

ing software development. 

Chapter 7 shows the proposed attack strategy detection approach that builds upon the 

ALC concept of knowledge that is presented in Chapter 6. The results of evaluating this 

detection approach include not only an ALC experiment-based, but also an ALCM 

model-based. A discussion regarding the probability results of classifying cor-

rect/incorrect classified samples is also provided. 

Chapter 8 concludes the thesis by examining all research questions thoroughly and in 

parallel to meet the research aim and objectives set out earlier. Implications of this work 

and the benefits of the findings will also be discussed. Also, this final chapter includes 

all contributions of this thesis to this field of study followed by several possible future 

research avenues. 
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Chapter 2.  BACKGROUND AND 

LITERATURE REVIEW 

This chapter provides background information and a literature review related to the re-

search conducted in this thesis in order to give the context for the problem of interactive 

defensive mechanisms. The background gives information about the theoretical and 

practical problems for the defender of the system, with regard to the time needed to 

break a set of algorithms, and for the attacker, with respect to the knowledge gained. 

The fundamental concepts used in this thesis are introduced, and the relationship be-

tween these concepts is investigated. The relevant literature pertaining to these concepts 

is then reviewed, drawing from several disciplines including: presenting different per-

spectives on the motivations behind investigating the learning acquisition process (such 

as learning curve theory); describing different quantitative security techniques used by 

researchers (such as Time-To-Compromise-System); and presenting approaches to de-

tect anomaly attacks in order to improve the protection of a system. Such an approach 

differs from previous works, which focus on concepts and methodologies from the per-

spective of a single discipline. The value of this cross-disciplinary approach is to pro-

vide a theoretical and practical basis for the study of interactive defensive mechanisms 

in a secure system.  

The remainder of this chapter is structured as follows. Section 2.1 gives an overview 

regarding attackers, defenders and their motives. Section 2.2 highlights the definition of 

a defensive mechanism and interactive defensive mechanism with several examples. 

Section 2.3 presents the learning acquisition process with respect to the learning curve 

theory, a problem-based learning approach and the effectiveness of information order in 

the learning process. Section 2.4 discusses the quantitative security methodology of at-
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tack modelling. Section 2.5 outlines anomaly detection techniques in which an unsuper-

vised machine learning algorithm is utilised as a first layer for observing an attack at-

tempt. Section 2.6 explores stochastic modelling formalisms, and then describes those 

that are relevant to this thesis. This section also summarizes a number of tools used to 

build a model. Finally Section 2.7 concludes this chapter. 

2.1 Attackers, Defenders and their Motives 

In general, the importance of utilising the Internet as an integral way of conducting 

daily business has increased continuously in several areas including banks, schools and 

services providers. However, it is not only those with good intentions who can connect 

to the Internet, but also those with malicious goals. Since the Internet has become ubiq-

uitous, computer security has become more important than ever. Security researchers 

have therefore long been interested in understanding what an attacker can do to the 

Internet and what can be done to prevent attacks through defenders. In light of this, the 

definition of attackers, defenders and their motives are presented in the following sub-

sections. 

2.1.1 Attackers 

The term ‘attacker’ is defined as people who attempt to compromise the confidentiality, 

integrity, or even control of a computer network without its owner’s knowledge [9]. 

Although this definition reflects a very broad umbrella that covers people with very dif-

ferent backgrounds and motivation, a possible classification of this definition is pro-

posed in [135] as shown in Table 2.1. The following explains briefly each attack type 

that is shown in Table 2.1. 

In an early period of networks and the Internet, Gray Hat hackers dominated the at-

tacker scene [9]. Curiosity and fame were key in motivating these attackers who were 

often asocial individuals. Furthermore, Script Kiddies mimic hackers for fame by using 

self-developed tools. When a widespread device, such as a game, is protected, a 

Cracker removes the protection of this device. Nowadays, this concept has been ex-

tended to include various activities such as blackmailing individuals and stealing money 

from bank accounts. The Malicious Users and system administrators are an important 

class of attacker. This is because attackers are inside an organisation; therefore, the po-
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tential for causing damage can be high. For example, malicious users can steal corporate 

secrets or costumers’ data [9]. 

Table  ‎2.1: Attacker Types [135]. 

Actor Description 

Script Kiddie Often young, no sophisticated skills, motivated by fame. 

Gray hat hacker 
Semi-Professional, criminal intent, sophisticated attack tools 

and programs. 

Cracker Modifies software to remove protection. 

Malicious user Inside organisation, criminal intent. 

Malicious system 

administrator 

Control of network, criminal intent, potentially significant 

damage. 

2.1.2 Defenders 

Ideally, defensive actions should take place against security issues that are raised by 

attackers, when using a networked system. Indeed, the responsibility for securing net-

work and systems lies with the system administrators. In addition to configuring and 

monitoring the networks against attacks, the system administrators are responsible for 

enforcing formal and informal security polices and educating users on possible vulner-

abilities [18]. 

2.1.3 Motivation of Attackers and Defenders 

The motivation of attackers seems difficult to be determined. In particular, several 

places indicate that they are very appealing to attacker such as law enforcement and de-

fence department. Also, as some systems are easy to be attacked, attackers use them as 

targets [139]. 

There are several challenges of network security from the defender’s perspective. One 

of these challenges is the lack of motivation. This challenge partly stems from the diffi-

culty in quantifying the value added by network security. Furthermore, misalignment of 

incentives is another challenge. That is, since several researchers exaggerate the risks 

for their own benefits, management usually has an incentive to cover up security 

breaches. There is thus a huge gap between system administrators and people suffering 

security breaches (e.g., customers of a bank) [9]. 

However, various recent optimistic developments for defensive mechanisms have taken 

place. Firstly, the level of awareness of network security has increased in different ar-
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eas, ranging from government and business to the general public. Secondly, perceiving 

that security is an important feature leads to making demands for secure networks and 

systems. As a result of this, security services for both organisations and individuals have 

emerged. Finally, the nature of emerging security facilities, whether for individuals or 

organisations, supports dynamic prevention and improved response defence [9]. 

2.2 Defensive Mechanism  

Given the importance of both computer security and the existing vulnerabilities, this 

section presents the definition of a defensive mechanism, interactive defensive mecha-

nism and examples for interactive defensive mechanisms. 

2.2.1 What is a Defensive Mechanism? 

A defensive mechanism, as stated by Bishop in [26], is that which institutes controls 

that preserve secrecy, confidentiality, integrity and availability. The interpretations of 

these four aspects vary due to the contexts in which they arise. In the computer security 

context, these aspects are interpreted as follows [18, 26]: 

 Secrecy refers to the effects of the defensive mechanism used to limit the num-

ber of principals which can access information, such as cryptography or com-

puter access controls. 

 Confidentiality indicates the concealment of information or recourses against an 

unauthorised person. 

 Integrity refers to preventing unauthorised persons from modifying the informa-

tion. 

 Availability refers to the ability to use the information or resources requested by 

the user. The aspect that is relevant to security is preventing Denial of Service 

(DoS) attack in which someone might deliberately arrange to deny access to the 

information by making it unavailable. 

2.2.2 Interactive Defensive Mechanism 

Considering the definition of a defensive mechanism, a variety of defensive mecha-

nisms have been developed. Despite the main categories encompassing widely deployed 
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solutions including firewalls and antivirus, this subsection essentially reviews the inter-

active defensive mechanism type that is pointed out in Chapter 1. In particular, based on 

the predicted results from the confusion matrix that is shown in Figure 1.1, defensive 

mechanisms are categorised into two major types: Assertive and Predictive. As men-

tioned previously, the results of an assertive defensive mechanism are always a TP pre-

diction result or TN prediction result, such as an access control system restricting under 

a well-defined policy. On the other hand, due to several fundamental tradeoffs in de-

signing a defensive mechanism, as summarised in Table 2.2 [9], a predictive defensive 

mechanism can also include FP prediction results and FN prediction results. The follow-

ing sheds light on the tradeoffs indicated in Table 2.2 that cause a FP prediction result 

and a FN prediction result, as well as a TP prediction result and a TN prediction result. 

Table  ‎2.2: Basic Security Tradeoffs [9]. 

Tradeoff Security versus 

Usability  Difficulty of use and mental overhead  

Accessibility  Access restrictions based on location or role 

Overhead  Costs on system and network resources 

Economics Monetary and manpower costs 

Typically, usability represents a basic tradeoff that lies between security risk and ease of 

use, where additional security mechanisms impair usability, therefore making the sys-

tem less usable for its user. A real-life example is when the user of a computer network 

wants to access data easily while expecting the sensitive data to be protected from unau-

thorised access. Since the application of such defensive mechanisms is for achieving a 

satisfactory level of security between the user and sensitive data, a level of usability is 

sacrificed [9]. 

Accessibility is another factor that needs to be balanced in the network security, where a 

service is accessible to as many people as possible. For instance, a spam email can rep-

resent a downside to the unrestricted accessibility of a network, while a network with 

restricted accessibility that protects users against spam emails can have accessibility 

tradeoffs. 



Chapter 2 – Background and Literature Review 

 

20 

 

Furthermore, the overhead that is caused by security systems with regard to system and 

economic resources is also an important tradeoff. As such, the defensive mechanism 

used, such as antivirus or firewall, utilises both network and system resources, such as 

bandwidth and memory. Consequently, the system administrator needs to maintain the 

defensive mechanism, even though it is open source and free [9]. 

In addition to the aforementioned fundamental tradeoffs, a number of tradeoffs that can 

occur during the operation of defensive mechanisms need to be taken into account. For 

instance, a basic performance criterion for an intrusion detection system is the FP pre-

diction result. The tradeoff can be a decrease in the FP prediction result, which leads to 

decreasing the system’s sensitivity, and increasing the FN prediction result, which in 

turn leads to decreasing the system effectiveness, as shown in Figure 2.1. As a solution, 

upper bounds for the FP prediction result and lower bounds for the FN prediction result 

should be determined according to the specifications of the deployed network. 

 

Figure ‎2.1: An example Tradeoff in Intrusion Detection System [9]. 

Hence, the predictive defensive mechanism is divided into two types: interactive defen-

sive mechanisms and non-interactive defensive mechanisms. In the interactive defensive 

mechanism, the attacker can get feedback from the system after each attempt, whether 

the attempt passes through the defensive mechanism or not. This feedback may be a 

simple Boolean response or may include a reason for the failure. Accordingly, the feed-

back plays an important role in breaking this type of defensive mechanism gradually 

over time. In contrast, with a non-interactive defensive mechanism, the attacker cannot 

obtain feedback from the system. For example, in antivirus systems, the prediction re-

sults of these systems can be observed by only the user. Also, in airport security identi-

fication devices, the prediction results are observed only by the responsible person be-

hind these devices. As noted previously in Chapter 1, this thesis focuses mainly on the 
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problem of the interactive defensive mechanism. Therefore, the following provides sev-

eral examples of interactive defensive mechanisms. 

2.2.3 Examples of Interactive Defensive Mechanisms 

Despite the fact that there are several interactive defensive mechanisms, this section 

outlines those most widely deployed, including CAPTCHAs, Spam-Filters and Anti-

Phishing systems. Moreover, these mechanisms provide an indication to systems that 

are eventually breakable over time, as mentioned in Chapter 1. 

CAPTCHAs 

In 1996, Moni Naor was the first person who proposed to use automated Turing tests to 

verify that a human is in the loop [101]. For the same reason, the CAPTCHA system 

was developed. CAPTCHA is a Completely Automated Public Turing test to tell Com-

puters and Humans Apart. It is a program that generates and grades tests that humans 

can pass easily, whereas computers cannot [143]. CAPTCHA is defined formally in 

[22] by Baird and Popat. Since then, it has been established for several applications; for 

instance, it protects against spammers who abuse email accounts by writing programs 

which automatically sign up for thousands of email accounts for this purpose. As a re-

sult, CAPTCHA plays a significant role in reducing spam and has been adopted by 

various websites, including Microsoft, Google, and Yahoo. 

A high-quality CAPTCHA must satisfy two main requirements: robustness and usabil-

ity. The robustness aspect is the strength of CAPTCHAs to defend against adversarial 

attacks, while the usability aspect is, by definition, in the effortlessness for humans to 

pass its challenges. 

So far, three main types of CAPTCHAs have been deployed. The first is Text-based, 

which consists of sophisticated distorted text images that are unrecognisable to even 

state of the art of pattern recognition programs, though recognisable to users’ eyes. The 

users are typically required to perform a text recognition task to pass these tests. Figure 

2.2 shows an example of a text-based CAPTCHA. 

 

Figure ‎2.2: An example of a text-based CAPTCHA (Hotmail, 2013) 
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The second type is Image-based, which consists of images that are unrecognisable to 

state of the art of image recognition programs, but remain recognisable to users. The 

users are typically required to perform an image recognition task to pass these tests. For 

example, PIX is one of the first Image-based schemes; more details about PIX and EPS-

Game, which are used for creating the required image database, can be found in [144]. 

Figure 2.3 shows an example of an image-based scheme. 

 

Figure ‎2.3: An example of an image-based CAPTCHA [76]. 

The third type is Sound-based and consists of sophisticated distorted speech that is 

again unrecognisable to state of the art of speech recognition programs, but recognisable 

to users. Users are typically required to perform a speech recognition task to pass these 

schemes. For example, a word is said and the user must type the word [35]. These sys-

tems are usually used alongside text-based schemes for disabled people. 

Although developers have proposed several mechanisms to create more robustness 

CAPTCHAs against the attackers, a number of successful attacks have been reported. 

For example, Moy et al. [100] defeated EZ-Gimpy (99% success rate) and the 4-letter 

Gimpy-r (78% success rate). In addition, a number of CAPTCHAs have been broken 

[150] by counting the number of pixels of each segmented character, achieving a suc-

cess rate of almost 100%. More recently, a systematic evaluation methodology has been 

applied in [32] to 15 current CAPTCHA schemes from popular web sites, in which the 

authors found that 13 of these schemes were vulnerable to automated attacks. 

Therefore, once a new CAPTCHA is released, a new attack is developed. In light of 

this, Alsuhibany proposed in [10] a CAPTCHA developing system, as shown in Figure 

2.4, which shows the targeted area that satisfies security and usability aspects, although 



Chapter 2 – Background and Literature Review 

 

23 

 

as a result of this, once the developed scheme is released, an attack is improved and 

subsequently the released scheme is broken. 

 

Figure ‎2.4: CAPTCHA Developing System [10]. 

Spam-Filters 

Despite the fact that CAPTCHAs are applied to protect against spammers who abuse 

email accounts, unsolicited emails have become a serious problem with tangible costs 

felt by virtually every internet user. Several approaches have been proposed by re-

searchers for filtering unsolicited emails. These approaches are classified into two major 

methods [4]. The first method is the reputation-based filters that rely on information 

outside of the content of the individual email messages. For example, origin based tech-

niques classify spam email based on network information including black lists [42] and 

white lists [51, 116]. Furthermore, social networks aim to assign to each message a 

probability of it being spam, based on the past history of the user. Implicit techniques 

[82] and explicit techniques [52] are examples on the social network method. Besides 

this technique, traffic analysis is used in [103] to identify when a host or network issues 

an abnormally large number of emails. Although this method can mitigate the impact of 

spam email, studies in [61] and [52] stated numerous disadvantages can take place for 

the black list and white list. 

In contrast to the reputation-based filter, content-based filters detect spam email by ex-

amining the content of the email regardless of its origin. For example, in heuristic fil-

ters, an email is classified as spam by searching for patterns that are commonly identi-

fied in spam, such as in [42]. For fingerprinting filters, spam emails are detected by 

computing and comparing the fingerprint of any incident email, for example, via an ap-

proximate or exact hashing algorithm or digest [44]. Moreover, machine learning filters 

aim to automatically derive spam and not spam classifiers, therefore avoiding the hu-
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man labour required to maintain rule-based filters. There are several categories of ma-

chine learning including: statistical filters [50], genetic algorithms [103], artificial im-

mune systems [75], and artificial neural networks [75]. Density-based clustering [152] 

is considered on the server side, which can process hashed versions of messages. As 

content-based filters can detect spam with such accuracy, spammers are increasingly 

devising attacks to thwart them. For example, four groups of attacks have been intro-

duced in [147]: tokenization, obfuscation, weak statistical and strong statistical. Fur-

thermore, an extensive survey has been conducted in [41] on content-based spam filters. 

This survey concludes that, as computers improve continually and processing power 

becomes cheaper, it may become more likely that the better developed mechanisms 

against spam-emails can be more widely employed. However, it seems that 100% accu-

racy is not expected to be achieved by any automated filter or even a combination of 

filters (e.g., naïve Bayes and genetic programming). The reason behind this is the 

changing nature of spam and improving attacks on statistical filters. 

Moreover, Yeh et al. observed and analysed in [151] a large number of spam-emails. 

For each spam email, they collected source IPs, the URLs within the emails, and the 

web sites of the URL. Figure 2.5 illustrates the geographic distribution of the spam 

source IP addresses. They observed by tracing some spam campaigns that most are 

likely manipulated by various automatic programmes. 

 

Figure ‎2.5: Source of IP addresses of spam emails [151]. 

In 2012, Caliendo et al. investigated in [33] the cost impact of spam filters by measuring 

the effect of information system technologies in organisations. They found the cost of 

deploying a SPAM filter within a particular organization to be approximately fifteen 

thousand Euros for the first year, which means that while the security officer must usu-
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ally work within a given budget constraint, and has therefore a limited number of de-

fence mechanisms to deploy, there is a need to investigate a method to mitigate this di-

lemma. 

Anti-Phishing 

Phishing attack is the king of the social-engineering attack in which people are tricked 

into sharing sensitive information or installing malware on their devices by using a 

spoof email message [63]. Phishing attack is increasingly pervasive and sophisticated. 

That is, it has spread further than email messages by means of SMS, instant messaging, 

social networking and massive multiplayer games [60]. 

To protect users against this attack, a number of Anti-Phishing algorithms have been 

developed. For example, Fette et al. developed in [49] the first email phishing filter. 

Afterwards, blocking phishing sites was proposed as a defence mechanism against 

phishing attack. As such, numerous commercial browsers are designed to block phish-

ing attempts by means of a number of approaches (e.g. [1]). Figure 2.6 shows an exam-

ple of a passive warning page against a suspected unsafe site. Since these approaches 

are installed in browsers, their efficiency can be evaluated empirically. For instance, 

Sheng et al. examined in [133] the most important block-lists and browser tools, show-

ing that zero-hour protections achieved by block lists had a TP (i.e., True Positive) rate 

of less than 20%. They found that, despite the fact that deployed heuristics were rather 

effective in identifying phishing attack attempts, they were simply warning people in 

web browsers rather than blocking probable phishing sites. 

 

Figure ‎2.6: An example of a passive warning page vs. a suspected unsafe site [142]. 
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In light of the protection approaches against phishing attacks, taking down phishing 

sites has also been proposed by several organizations. Therefore, end users who click on 

a phishing website should be shown a message such as “The requested page is not 

available” [63]. 

Furthermore, a very recent broad survey conducted in [74] reviewed a number of anti-

phishing software techniques. This survey concluded that applying machine learning 

techniques as a defence mechanism against phishing attack is promising due to their 

effectiveness with respect to classifying the phishing attack in the publically known lit-

erature. 

For phishing attack against costumers, the Anti-Phishing Working Group APWG is an 

international consortium of law enforcement, industry and academic researchers de-

voted to combating Internet scams and online fraud [19]. This group stated that the peak 

was in 2010 where APWG identified more than 115,000 unique phishing sites world-

wide [19, 85]. In spite of this, phishing costs varied widely in terms of the expected 

damage, ranging from $61,000,000 per year to $3,000,000,000 per year in the U.S. [60]. 

Security experts and phishing attackers are in a rat race nowadays. Since security ex-

perts make great efforts to develop and improve techniques to detect phishing and spam 

attacks, attackers are continually learning new techniques and consequently changing 

their strategies [20]. Although most scientific papers (e.g., [117]) emphasize that train-

ing and education overcome the human weakness to some extent regarding phishing 

attacks, updating the detection algorithms continually can improve human knowledge in 

the fight against phishing attacks. 

Given these examples, attackers augment their knowledge of the rules of the algorithm, 

which is used by the system, by receiving feedback as a result of the interaction between 

them and the algorithm. In order to determine the new rules, the attacker must repeat 

this process of learning acquisition. Therefore, the learning acquisition process plays an 

important factor in this thesis. As stated previously in Chapter 1, the longer it takes for 

the attacker to acquire the necessary knowledge regarding the rules of the algorithm, the 

longer the system is protected from misuse. Accordingly, since the work in this thesis 

considers using a learning acquisition process as a rationale in Chapter 1, an overview 

of this process is presented in the next section. 
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2.3 An Overview of the Learning Acquisition Process 

The first serious discussions and development of learning theories emerged during the 

1970s with Rumelhart and Normans [124]. These theories argued that knowledge is 

structured in the form of schemata (i.e. a mental structure of preconceived ideas). The 

schemata can be modified in three ways: Accretion, Tuning and Restructuring. Accre-

tion takes place when a learner has certain disjointed ideas about the material to be 

learned, with gaps that need to be filled in order to learn. This kind of learning has also 

been termed gap filling [37]. Tuning illustrates the evolutionary changes for interpreting 

information. Finally, Restructuring refers to modifications in knowledge that include 

the creation of new structures that are constructed either to account for new information 

or to reinterpret old information. Therefore, during the process of learning, an individ-

ual’s understanding of the domain can change, usually resulting in a degree of restruc-

turing of knowledge [145]. 

In light of the aforementioned theory, the following subsections discuss related con-

cepts, which will be discussed with results of Chapters 3, 4 and 6. First of all is the 

learning curve theory. In addition, the importance of practical experience in learning is 

presented in this section by Problem-Based Leaning (PBL) as one of the best known 

self-directed learning approaches. Furthermore, the effectiveness of information order 

on the intentional and incidental learning concepts is discussed. 

2.3.1 Learning Curve Theory 

Learning Curve Theory is an early investigation of learning concentrated on the per-

formance of individual subjects. This investigation shows that the time required to exe-

cute a task reduces at a decreasing rate as experience of the task improves. Therefore, 

the learning curve signifies a graphical illustration of increasing the learning with ex-

perience.  

In particular, the term ‘learning curve’ is exploited in two significant ways: where a 

body of knowledge is increased over time, or where an identical task is repeated in a 

number of trials [118]. There is a large volume of published studies describing the role 

of the learning curve in two main fields: psychology and economics. These are outlined 

in the following. 
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Learning Curve in Psychology and Cognitive Fields 

In 1885, Wozniak was the first person to explain the learning curve [148]. He conducted 

an experiment that involved memorising a series of nonsense syllables, then recording 

the success over a number of trials. Accordingly, the yield results of this experiment 

were represented by a diagram of learning against trial numbers. Accordingly, learning 

curve theory is involved explicitly or implicitly in most of the studies discussed previ-

ously. 

Several learning curve models have been investigated in the cognitive science field. For 

instance, Card et al. [34] investigated the learning which occurred while using cursor 

positioning devices by testing the performance on the continuous movement devices 

against the predictions of Fitts’s Law. Four devices were evaluated for this study. As a 

result, the mouse was found to be fastest on all counts and also to have the lowest error 

rate. Another study by Anderson proposed in [16] a framework for skills acquisition. 

The proposed framework includes two main stages in the improvement of cognitive 

skills. The first stage is procedural in that domain knowledge is directly personified in 

procedures for performing the skill, whereas the other stage is a declarative one, in 

which the facts about the skill domain are interpreted. This framework is based on the 

Adaptive Control of Thought-Rational (ACT-R) production system [17] in which the 

distinction between procedural and declarative knowledge is essential. The declarative 

knowledge represents a propositional network, while procedural knowledge represents 

the productions. 

Learning Curve in the economic Field 

In 1936, Theodore Paul Wright [149] was the first to attempt to formulate relations be-

tween learning variables in quantitative form. He explored the impact of learning on 

production costs in the aircraft industry. That is, the relationship between the amount of 

time it takes an organization with a learning rate percentage of r to produce the n
th

 item 

can be expressed by an operation manager as an equation: 

Tn = T1 (n
b
) 

where Tn indicates the time required to complete the n
th

 task, and b indicates ln(r)/ln(2), 

where r indicates the learning rate percentage. 
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In general, the majority of learning rates r range between 70% and 90%. Usually, this 

learning percent is determined by statistical analysis of actual cost data for similar prod-

ucts. Stewart et al. proposed in [137] guidelines for estimating learning rates in different 

situations, as shown in Table 2.3. 

Table  ‎2.3: Guidelines for estimating the learning rates in different fields [137]. 

Field Learning rate 

Aerospace 85% 

Shipbuilding 80-85% 

Complex machine tools for new models 75-85% 

Repetitive electronics manufacturing 90-95% 

Repetitive machining or punch-press operations 90-95% 

Repetitive electronic operations 75-85% 

Repetitive welding operations 90% 

Raw materials 93-96% 

Purchased parts 85-88% 

In consideration of mathematical models, Hackett compared in [57] the efficiency of a 

selection of models of learning. One of these models was an accumulative learning 

model proposed by Restle and Greeno [120]. They posited that all information on the 

activity being learnt is accumulated. Furthermore, a number of methods have already 

been suggested to model and assess the software development process. For example, 

Hanakawa et al. proposed in [58] a simulation model for software development that 

takes into account the developer’s learning curve; thus, it can be used to compute a de-

veloper’s productivity. Particularly, they proposed a knowledge model that shows quan-

tity of gain to a developer’s knowledge by executing an activity. This quantity of gain to 

the developer’s knowledge is derived from the relationship between bij, which is the 

developer’s experience level i while performing the activity j, and  , which is the re-

quired knowledge level to execute this activity. This model is based on the following 

assumptions: 

 If bij is higher than  , the developer i does not achieve any new knowledge by 

executing activity j. This means that the developer’s knowledge level is un-

changed. 
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 If bij is lower than  , the developer i gains a quantity of new knowledge by exe-

cuting the activity j. This means the developer’s knowledge level is increased. 

The amount gained depends on the gap between the current knowledge and the 

required knowledge level. 

The simulation knowledge model proposed in [58] is defined as follows: 

                                  
    

                                          

                                                         
                          1  

where        is the quantity of gain to knowledge of developer i by executing the activ-

ity j, which has knowledge level  , at time t; Kij is the maximum quantity of gain to 

knowledge of the developer i by executing activity j; bij is the developer i’s knowledge 

level about activity j; E is the developer’s efficiency of gain to knowledge by executing 

activity j; and   is the required knowledge level to execute the primitive activity of ac-

tivity  j. 

The knowledge level is reset to the developer’s new knowledge level bij at each step: 

             bij  (t+1) = bij (t) + Lij(t)                                                     2 

Therefore, by plotting the level of the developer’s knowledge in time sequence, the de-

veloper’s learning curve during the execution of an activity can be obtained. In the 

simulation of this model, the growth of the developer’s knowledge level bij during the 

execution of activity j shows the developer’s learning curve, as shown in Figure 2.7. In 

this figure, Line (1) shows the learning curve in the simulation in which the growth of 

the developer’s knowledge level bij has a great impact on the development progress. 

Additionally, when the activity is chosen in ascending order of the required knowledge 

level, then the shape of the learning curve will be flat, as shown in Line (2). 

 

Figure ‎2.7: Learning Curve in the simulation [58]. 
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Broader Interpretation 

The learning curve notion was introduced in the educational and psychology fields, but 

this notion has gained a broader interpretation over time. For example, “Efficiency 

Curve”, “Experience Curve”, “Improvement Curve”, “Cost Improvement Curve”, 

“Learning Curve” and “Progress Curve” are often utilised interchangeably. Generally 

speaking, all learning displays incremental changes over time. Furthermore, in the eco-

nomic field, in view of the fact that the development indicates a whole system learning 

progress with varying rates of progression, the subject is rates of development. In this 

thesis, Attacker Learning Curve concept is developed that will be detailed in Chapter 6. 

Since the attackers deal with the released algorithm as a problem needs to be solved, a 

Problem-Based Learning approach, which is a widely known self-directed learning skill 

curriculum approach in the education field, is highlighted in the following subsection. 

The correlation between this approach and our work is discussed in Chapter 6. 

2.3.2 Problem-Based Learning Approach 

There is also a large volume of published studies describing the role of Problem-Based 

Learning (PBL) approach and its significance in improving learning skills. Barrows and 

Tamblyn [23] are two of the main theorists behind PBL. They have made a key contri-

bution to the development of the next historical stage of medical education. For this, 

they presented in [23] the scientific basis of the PBL approach in medical education. In 

addition, they described the methods of problem-based medical learning that have been 

developed over the years at McMaster University. 

A study by Norman analyzed in [107] three concepts: Problem-solving skills, solving a 

problem and the problem-based learning concept. This study referred to problem-

solving skills, as described and measured in medical education, possessing a number of 

characteristics. Firstly, a skill should be a general strategy. Secondly, it is applicable in 

a variety of situations. Finally, it is independent of the specific knowledge of situations. 

Furthermore, this study, supported later by Neville [105], pointed out that despite the 

heterogeneity of the extensive literature on PBL, there is certainly sufficient cognitive 

psychological evidence to validate this approach of learning. Not only this, but there is 

also a significant amount of empirical evidence of effective learner outcomes. 
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Brown et al. proposed in [31] the improvement of a new cognitive apprenticeship to 

train students’ thinking and problem solving skills to be included in school subjects 

such as reading. This study introduces a framework that offers a critical lens for evaluat-

ing both the advantages and the disadvantages of different learning environments and 

teaching approaches. Furthermore, this study and others in [77, 29] stated that PBL has 

dual importance in helping learners not only to construct knowledge, but also to develop 

strategies. 

In another major study, Norman and Schmidt examined in [108] the psychological basis 

for PBL using theoretical perspectives. As there has been no assessment of the experi-

mental evidence underneath the possible differences in students’ learning that can be 

attributed to PBL, these theoretical perspectives are primarily from cognitive psychol-

ogy. They found that there is a strong basis for the idea of the PBL and there is an evi-

dence to support its effect on the learning process. 

In consideration of enhancing the value of PBL, Kolodner et al. showed in [77] how the 

suggestions of Case-Based Reasoning (CBR) can improve the PBL approach. In par-

ticular, CBR is proposed in [78] as a method for implementing software that can solve 

problems based on past experience. This method provides a cognitive theory that situ-

ates learning in reasoning regarding real-world situations. Also, it has several principals, 

for example the computational accounts it provides of reasoning activities, particularly 

of knowledge access, access to old experience (Cases), and use of old experience in rea-

soning. These principals have been utilized to inform the design of stand-alone learning 

environments [132]. However, CBR was not able to describe the teacher’s role and 

other issues of classroom practice. As a result, this study found that PBL methodology 

could offer principals of practice to go along with CBR’s educational principals. To 

achieve the goal of this study by combining PBL and CBR, it is necessary, for example, 

to analyze why PBL works can contribute to understanding how to move PBL to a new 

environment; as well as to consider the design of computer programs to facilitate the 

learning from a problem-solving activities point of view. 

Hmelo and Ferrari investigated in [62] how the tutorial process in PBL can be used to 

develop higher order thinking skills. This investigation takes into account the role of the 

problem, the facilitator role, collaboration among the students, and the importance of 

students’ reflection. For example, facilitators are responsible for encouraging all stu-
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dents to be actively involved, encouraging them to express their thoughts and critically 

respond to comments of other students. Two forms of guidance are recommended to 

assist learners in engaging in meaningful independent learning. The first is that prior 

independent learning activities with discussion should be held. The second is that the 

location of learning resources may prove useful in learning additional concerning as-

signed learning issues. This study concluded that because PBL places the learning abil-

ity in real-world problems, it is well suited to help students not only to become active 

learners, but also to develop strategies and construct knowledge. 

In the following subsection, the effectiveness of representing information order in the 

learning acquisition process is reviewed. 

2.3.3 Effects of Information Order in Learning Process 

Following Rumelhart and Norman’s learning theory [124], a number of studies have 

investigated whether category learning is influenced by the order in which examples are 

presented. 

Since this thesis evaluates whether the order in which different defensive mechanisms 

are released will impact the time an attacker needs to break each one of them, effects of 

information order in the learning process is reviewed in this section in order to be com-

pared with our results in Chapters 3 and 4. 

Elio and Anderson investigated in [47] the difference between two models of schema 

abstraction
9
: the Generalization model and the Instance-only model. This investigation 

was done by conducting three experiments. In the first experiment, the aim was to ma-

nipulate the likelihood of forming category generalization in two different sets of study 

exemplars, keeping the similarity of transfer items between two study sets as constant as 

possible. In the second experiment, two generalized conditions were constructed: the 

first condition, in which forming generalization may be facilitated by blocking, and the 

second condition, in which forming generalizations was hindered by random presenta-

tion of instances. In the third experiment, a generalized study set and a control study set 

were designed, each with its own transfer item set and the relationship between the 

transfer set and the study set was set to be as equivalent as possible for both generalized 

and control materials. The results of these experiments are as follows. In the experi-

                                                 
9 The schema abstraction refers to a mental structure of preconceived idea [47]. 
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ments 1 and 3, accuracy and confidence on transfer items were better in generalized 

condition than in the control condition, whereas in experiment 2, study items were 

learned faster and transfer performance was better with blocked presentation than with 

random presentation. In all experiments, there was an effect on the similarity of transfer 

items to study materials. Furthermore, when training is blocked into groups of mutually 

similar examples, then categories are learned faster. 

The same authors, Elio and Anderson, evaluated in [48] the effects of information order 

and variance on schema abstraction. This evaluation was accomplished by measuring 

the transfer performance after different numbers and different types of category exem-

plars had been studied. The stimuli were descriptions of people belonging to one of two 

clubs and all the categories were constructed using numerical notation. For example, an 

item such as 1113 may translate as “Works for the government, is college educated, is 

single, plays chess, like jazz.” To test the effect of category variance on the schema ab-

straction, a large variable category in which different number types both shared many 

overlapping features and had unique feature patterns was needed. The results of this 

evaluation revealed that transfer performance was better if subjects began with a low-

variance sample and were gradually introduced to the allowable variation on subsequent 

samples than if they consistently saw representative samples. On the other hand, this 

information order effect may interact with a teach model subject to be more analytical 

about the material performed better if their initial and subsequent samples were repre-

sentatives of the category variation. 

In 1994, Medin and Bettger examined in [98] the influence of order of examples on old-

new recognition memory
10

. Specifically, there were two groups; each can see exactly 

the same set of examples but in two different orders. The first group’s order maximizes 

the similarity of successive examples, while the second group’s order minimizes the 

similarity. When the sequence of examples has been presented, the participants are 

given an old-new recognition test. If shared properties of successively presented exam-

ples are selectively strengthened, the two orders should produce both main effect and 

interactions in recognition. This study concludes that a strong learning advantage can be 

achieved when training objects are presented in an order that tends to maximize the 

similarities between successive examples. Related work on the effect of semantic or-

                                                 
10 Old-new recognition memory refers to measure item-specific memory, devoid of inter-item associations [98]. 
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ganization on word recognition is consistent with this prediction. Particularly, when 

word lists are compared with words from categories, recognition is better if examples 

are blocked by the category than if they are overlapping [102]. 

Another study by Clapper and Bower investigated in [40] the difference between two 

general methods of an unsupervised category learning concept. The first method is 

based on learning explicit correlation rules or associations within a stimulus domain. 

The second method is based on inventing separate categories to capture the correlation 

structure of the domain. The unsupervised category learning is not arbitrarily predefined 

by the experimenter; rather, subjects should discover categories or explore a given 

stimulus domain concerning a sequence effect. This investigation was accomplished by 

experimental studies. There were three conditions: blocked condition, mixed condition 

and control condition. In the blocked condition, the stimuli were partitioned into two 

categories based on patterns of correlated attribute values. In the mixed condition, in-

stances of both categories were randomly interspersed in the training sequence rather 

than being grouped into a separate block. Finally, in the control condition, as none of 

the attributes were distinct categories, all attributes of the stimuli varied independently. 

The results showed that the overall score of learning was higher in the two correlated 

conditions (blocked and mixed) than in the controlled condition. Also, the learning was 

higher in the contrast condition than in the practice condition throughout the experi-

ment. Additionally, the learning increased while the number of instances increased. 

Moreover, it was clear from the subjects’ performance in this study that diagnostic fea-

tures of many of the fuzzy categories used in standard supervised learning experiments 

are often highly unreliable. 

To maximize comparison and understanding how memory affects category learning, 

Sandhofer and Doumas examined in [131] sequencing training instances experimen-

tally. The results of this experiment indicated that the learning process significantly in-

creases when learning begins by interacting with a limited set of highly similar exem-

plars. However, the process increases more slowly when the instances are distributed 

and dissimilar. The results of this study showed that the information order effects were 

examined with a symbolic connectionist model of general learning and representation 

discovery. In short, this study suggested that when a presentation of examples is ordered 

in such a way that discrete instances of a category could be more readily connected in 

memory, category learning and discovery are more likely to occur. In addition, begin-
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ning learning by interacting with a limited set of highly similar exemplars leads to more 

learning than when instances are distributed and dissimilar. 

It is important to recognize that the presentation order effects are especially interesting 

in the light of categorization models that emphasize incremental learning from trial to 

trial. For instance, Sakamoto et al. examined in [126] how people learn about the vari-

ance of categories based on two basic approaches of explaining the nature of the mind: 

the mechanistic and rational approaches. The mechanistic models attempt to simulate 

human behaviour using processes analogous to those used by humans, while the rational 

analyses attempt to characterize the environment and the behavioural effects that hu-

mans look to optimize. In this study, the authors’ argument was that mechanistic models 

are best suited for driving surprising behaviour predictions. Their argument was vali-

dated empirically. The overall results demonstrated that the participants showed sensi-

tivity to category variability and assigned transfer items which lay between two catego-

ries to the higher variability category. This assumes that people can learn the mean and 

the variability of each category and use this information to classify new items. Further-

more, although one category was ordered semi-regularly, both ordered and random 

fashions had equal variance. Therefore, the difference between the stimuli on successive 

trials was small. In short, this study concluded that people assess variability by building 

incremental adjustments to memory representation of the source of local comparisons. 

Mathy and Feldman recently investigated in [91] the mechanism in which concepts are 

learned from examples by manipulating the presentation order. In particular, they intro-

duced the idea of a rule-based presentation order. This idea is a sequence that respects 

the internal organization of the examples within a category. In this investigation, the 

performance of subjects with the rule-based presentation order was compared with both 

the similarity-based and dissimilarity-based orders. The hypothesis behind this was that 

the rule-based presentation order would better facilitate the learning process compared 

to other approaches, especially in highly structured concepts. As a result, their study 

yields a better learning approach compared to the similarity-based order approach that 

maximizes the adjacency of the training examples previously found to be most advanta-

geous in artificial classification tasks [47, 48, 98]. Furthermore, the proposed order in 

this study was better in terms of learning than the dissimilarity-based order. To show the 

results in a meaningful way, the learning curves of all presentation orders, as shown in 

Figure 2.8, illustrate the influence of a presentation order on learning. Specifically, 
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ranking of effectiveness of the three presentation orders was visible in learning curves 

and can be expresses as follows: rule-based   similarity-based   dissimilarity-based. 

More importantly, the three learning curves were statistically distinct. 

 

Figure ‎2.8: Performance over time for all three presentation order types [91]. 

The differences between the presentation orders depend on the nature of the concepts 

learned. Particularly, the rule-based presentation order gives a substantial benefit in case 

the category is highly structured. As such, it contains salient sub-categories around 

which the presentation order can be organized. It is more likely that a rule-based presen-

tation is, in effect, a random presentation. However, a similarity order might encourage 

a sequence of short-term over specific hypotheses (blind alleys) based on accidentally 

contiguous examples, which would impede learning. 

2.4 Security Quantification and Attack Modelling 

As the work in this thesis considers utilizing a quantitative measure as a target approach 

to the release order of defensive mechanisms, this quantitative measure is reviewed in 

this section under the attack modelling umbrella. 

In the dependability community, there are several well-known and efficient approaches 

for quantifying reliability, availability and safety. In the security community, there is a 

motivation behind quantified security that is a variation of the following thought: since 

we cannot measure it, we cannot control it. In trying to ascertain how well security re-

quirements are met, a significant challenge is to provide an accurate knowledge of secu-
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rity properties in relevant operational settings. To address this problem, the quantifica-

tion of security can be a solution to such needs. Mostly during the past decade, there-

fore, numerous studies have been accomplished on applying the dependability paradigm 

to security. Furthermore, it has been claimed in scholarly literature and by leading stan-

dards organisations that such quantification is not only possible, but also beneficial and 

can even be necessary for good security management [15, 27, 36, 64, 113]. In this sec-

tion, the importance of attacker behaviour in quantifying security, and the estimation of 

the time to compromise a system component that is visible to an attacker and game the-

ory are highlighted. 

2.4.1 Security Quantification and Attacker Behavior 

The relationship between attack modelling, security quantification and the attacker be-

haviour has been widely investigated [5, 30, 70, 80, 89, 110, 127]. A groundbreaking 

paper was proposed by Brocklehurst et al. in [30] as a first attempt towards operational 

measures of computer security. They developed a quantitative theory of operational se-

curity by conducting an experiment in which attackers would be allowed to break a sys-

tem under controlled conditions. The Mean Effort to Security Breach as a quantitative 

measure is defined and discussed. The study pointed out two significant results: the lack 

of quantitative measures for determining operational security and relative security as-

sessment to the reliability domain. In addition, the study stated that quantifying the con-

tribution that is made by different resources, as well as the ability and experiences of the 

attacker need more investigation. 

Based on empirical data collected from an intrusion experiment, Jonsson and Olovsson 

[70] devised a hypothesis on typical attacker behaviour. The hypothesis suggests that 

the attacking process can be divided into three phases: the learning phase, the standard 

attack phase and the innovative phase, as shown in Figure 2.9. The probability for suc-

cessful attacks in the standard attack phase is expected to be considerable, while in the 

learning and innovative phases it is expected to be small. That is, the inexperienced at-

tacker spends more time in the learning phase before actually crossing the attacking 

skill threshold, as indicated in Figure 2.10a. On the other hand, the experienced attacker 

progresses much faster in the following phases, as indicated in Figure 2.10b. 



Chapter 2 – Background and Literature Review 

 

39 

 

 

Figure ‎2.9: A typical attacking process [70]. 

 

Figure ‎2.10: The standard attack phase [70]. 

In order to model the attack behaviour, a study by Sallhammar et al. investigated in 

[127] the attacker behaviour that can be integrated in the transition rate matrix of a sto-

chastic model for operational security evaluation. It aims to provide a realistic measure 

of operational security and an approach was recommended by the authors to compute 

the expected behaviour for rational attackers. In this approach, it is considered that the 

attacker rewards the possible costs - if the actions are detected by the system - and the 

probabilities of succeeding with particular attack actions. 

Almasizadeh and Azgomi developed in [5] a method for quantifying security based on 

the assumption that a typical attacker needs time to perform the attack phase. During the 

attack, the attacker can be detected by the system; therefore, the overall attacking proc-

ess is interrupted. In addition, a generic model which focuses on evaluating security and 

allowing analysis of the security of systems capable of detecting and responding to at-

tacks has been developed in [89]. 

In 2013, Krautsevich et al. described in [80] their initial ideas on modelling the behav-

iour of an attacker that has uncertain knowledge about a computer system. Their model 

is based on Markov Decision Processes (MDP) theory, which will be explained later in 

Section 2.6.2, for predicting possible attacker’s decisions. 
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Ortalo et al. developed in [110] a tool to evaluate the security of a system based on at-

tacker behaviour. That is, in order to evaluate the quantitative measure characterizing 

the operational security based on a privilege graph, it is necessary to recognize the sce-

nario of attacks that can be attempted by a possible attacker to achieve the objective. 

Therefore, this study describes a technique for transforming a privilege graph into a 

Markov chain. Thus, as a result of a series of atomic attacks on a system, the resulting 

Markov chain signifies enhanced privileges gained by an attacker. 

Sallhammar et al. presented in [128] a new approach to integrate security and depend-

ability evaluation. Their approach is inspired by all the previous studies and is based on 

the underlying assumption that an attacker has a complete knowledge of the system 

states, the possible transitions between states and existing vulnerabilities. However, this 

assumption might not be accurate in a real life scenario. 

Aghajani and Azgomi presented in [2] a high-level stochastic model to evaluate several 

significant security measures of a multi-layer. Their model is based on stochastic activ-

ity networks that are a stochastic extension of Petri nets. This model can capture at-

tacker behaviour and the system responses of intrusion tolerant web services architec-

ture. Similarly, Sahner et al. used quantitative modelling techniques in [125] to evaluate 

security properties. Additionally, Goseva-Popstojanova et al. proposed in [54] a state 

transition model depicting the dynamic behaviour of an intrusion tolerant system. This 

model contains a framework defining the vulnerability and the threat set. Several pieces 

of work use the concept of the MDP in the context of security. For instance, Kreidl in-

troduced a simple MDP in [81] with only three states (normal, under attack and failure) 

and three decisions (wait, defend and reset), which analyses the cost of defence coun-

termeasures against the cost of an intrusion.  

Likewise, Roy et al. proposed in [122] an Attack Countermeasure Tree (ACT) to con-

sider both attacks and countermeasures in an attack tree structure. They devised several 

objective functions based on greedy, branch and bound techniques. The aim of these 

functions is to reduce the number of countermeasures, reduce investment cost, and ex-

ploit the benefit from implementing a certain countermeasure set. In the design of this 

study, each countermeasure optimization problem can be solved not only with probabil-

ity assignments to the model, but also without this probability. However, their solution 

focuses on a static attack scenario and predefined countermeasure for each attack.  
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2.4.2 Time-To-Compromise System 

In recent years, there has been an increasing amount of literature on the time taken for 

an attacker to compromise a system and misuse its resources. McQueen et al. proposed 

in [96] a new model for estimating the time to compromise a system component that is 

visible to an attack. This study provides a function of known and visible vulnerabilities 

and attacker skill level that can estimate the expected value of the time-to-compromise. 

The proposed model suggests a number of strategies for reducing the risk of cyber 

threats. For example, the time necessary for an attacker to compromise components can 

be increased theoretically by government restrictions on the publication of valid ex-

ploits. Moreover, the authors emphasized that unless there is a constant effort to disable 

services as soon as a new vulnerability is discovered, the dynamic nature of cyber secu-

rity is decreasing over time. However, there were a number of downsides in the model, 

such as the estimation of available exploits to various skill levels of the attackers was 

not validated. 

Kadota et al. considered the constrained regret-optimization problem for a semi-Markov 

decision process in [71]. As such, the expected regret-utility of the total reward earned 

until the reaching time to a given absorbing subset is minimized subject to multiple ex-

pected regret-utility constraints. Therefore, a saddle point theorem is achieved and the 

existence of a constrained optimal policy proved by introducing a corresponding La-

grange function. 

In 2006, McQueen et al. suggested in [97] a methodology for obtaining a quantitative 

measurement of the risk reduction. This risk reduction is achieved when a control sys-

tem is modified with a view to enhancing cyber security defence mechanisms against 

attackers. Furthermore, in this study as well as in [96], it was recommended that the 

attackers’ skill levels should be considered when determining the mean time to com-

promise a system. In addition, these studies pointed out that a number of techniques 

proposed for estimating cyber security are likely to require considerable details about 

the target system. This can make these techniques unmanageable as a comparative tool 

for multiple systems. Therefore, this was addressed by Leversage and Byres in [83] by 

offering a model which focuses on being a comparative tool and becomes a more gener-

ally applicable methodology, though still allowing meaningful comparisons. They stated 

that the selection of time as the unit of measurement is fundamental to the model’s 
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strength. Similarly, Nguyen and Sood proposed in [106] a quantitative analysis of Self-

Cleansing Intrusion Tolerance (SCIT) that is time-based intrusion tolerance architecture. 

By utilizing SCIT to systems, engineers are offered the capability of adjusting the sys-

tem of intrusion tolerance specified by Mean Time To Security Failure (MTTSF). 

Paulauskas and Garsva provided simulation results in [112] to evaluate the computer 

system security by using Mean Time-to-Compromise criteria. They highlighted that the 

effect of the attack depends largely on the attacker’s skill level. Thus, their study sug-

gests a normal skill level distribution in the skill group.  

2.4.3 Game Theoretic Security Approach 

Game theory is a mainstream research topic in the economic community. Economic 

concepts have been applied to computer security to address the analysis of strategic 

choices between attackers and defenders at an assumed cost. As game theory views the 

interactions between attacker and defender as two players, it can provide a mathematical 

framework for analyzing and modelling network security problems. In traditional net-

work security solutions, McInerney et al. discussed in [94] one of the first approaches to 

applying game theory to network security. Feedback Reasoning for Information Assur-

ance Response System is proposed (FRIARS). A FRIAR is an automatic Information 

Assurance technique and is based on a MDP. 

Lye and Wing modelled in [88] the interaction between an attacker and a defender as a 

two-player stochastic game. By using their model, the best-response strategies for the 

players (attacker and defender) can be computed and then the results can be used by the 

administrator to enhance the security of the network. Generally, their study showed how 

a very general game-theoretic formalism can be applied to the security concept. 

Alpcan et al. investigated in [6] the problem of Nash Equilibrium Design for a general 

class of games from an optimization and control theoretic perspective. Specifically, this 

study considered how long it took the game to approach a Nash equilibrium when many 

players were trying to solve it in a distributed way. A feedback system approach is sug-

gested as a control input to make the system robust and to control the system’s progress. 

A study by Jiang et al. examined in [67] an active defence using an approach to attack 

prediction. In particular, the study systematically identifies cost factors of a cost-

sensitive model and introduces the attack strategy prediction and optimal active defence 
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strategy decision algorithm. In addition to this study, Alpcan and Baser utilized in [7] 

the Min-max Q learning approach in order to gradually improve of the defender’s qual-

ity. This work can handle reactive defence actions, while Shive et al. proposed in [134] 

proactive defence measures based on a game theory inspired defence architecture. 

A game theory is also recommended in [129] as a method for modelling the probabili-

ties of expected attacker behaviour in a quantitative model. This method models the 

penetration attempt as a series of intentional state changes. These changes lead the se-

cure system from an assumed secure state to a state in which one or more of the systems 

aspects are attacked. At each intermediate stage of the attack, the attempt might be de-

tected by the system to bring the system back to the first secure state. 

Sallhammar et al. proposed a game theory approach in [130] to attack modelling as a 

means for computing and therefore predicting the expected attacker strategy. In their 

study, the possible use of the Nash Equilibrium as a part of the transition probabilities in 

a state transition model is defined. 

The interaction of an attacker and the network administrator as a repeated game is mod-

elled in [8] with finite steps or infinite steps. In particular, the study is focused on estab-

lishing a quantitative approach with a practical degree of abstraction in order to analyse 

the underlying principles for the development of Intrusion Detection Systems (IDSs). 

By utilizing a modified version of this study, Bloem et al. introduced in [28] an Auto-

matic or Administrator Response (AOAR) algorithm for allocating the time that a sys-

tem administrator has available to respond to attacks. Although it lays out a practical 

implementation of an algorithm and demonstrates its utility, the study lacks a formal 

theoretical framework. 

Roy et al. recently conducted a comprehensive survey [123], concluding that most of 

the current research in game theory are based on static games, games with perfect in-

formation, or games with complete information. 

There are a number of detection techniques that can be used to improve the protection 

of a system, such as Anomaly Detection Techniques. Due to the fact that a type of 

anomaly detection technique is part of the work undertaken in this thesis, as shown in 

Chapter 7, it is reviewed in the next section. 
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2.5 Anomaly Detection Techniques 

There exist a considerable number of studies that consider a hybrid
11

 design approach 

based on anomaly detection techniques, as shown in [84], but these formulations do not 

fit exactly with the approach in this thesis that shown in Chapter 7. Thus, this section 

mainly highlights the related works on hybrid machine learning based classifiers in 

which an unsupervised machine learning
12

 algorithm is applied as a first layer for ob-

serving an attack attempt, as summarised in Table 2.4. 

Table  ‎2.4: Hybrid approaches in which an unsupervised machine learning algorithm is 

applied as a first layer. 

Author Method 1 Method 2 Evaluation Methodology 

Khan et al. [73] Unsupervised Supervised Simulation Clustering, SVM 

Liu et al. [86] Unsupervised Supervised * Clustering, SOM 

Liu and Yi [87] Unsupervised Supervised Simulation SOM, Neural 

Gunes et al. [55] Unsupervised Unsupervised ** SOM 

Horng et al. [65] Unsupervised Supervised ** Clustering, SVM 

Zhang et al. [153] Unsupervised Supervised ** SOM, KAA 

Ours [14] Unsupervised Supervised Real data 
Density-based, 

DLDA 

* 1998 DARPA Intrusion Detection Evaluation Data and TCP dump raw data. 

** KDDCUP99 training data. 

A Dynamically Growing Self-Organizing Tree (DGSOT) algorithm is used in [73] to 

train Support Vector Machines (SVM) for classification and reducing both false nega-

tives and false positives. Similarly, Liu et al. proposed in [86] an IDBGC algorithm (In-

trusion Detection Based in Genetic Clustering). This algorithm includes two stages: a 

nearest neighbour clustering and a genetic optimization. The main purpose of the first 

stage is to decrease the size of data objects to a reasonable one; therefore, it can be suit-

                                                 
11 A hybrid approach typically consists of two functional components. The first one takes raw data as input and gen-

erates intermediate results. The second one will then take the intermediate results as the input and produce the final 

results [84]. 

12 The unsupervised algorithm seeks out similarities between pieces of data in order to characterize them, whereas the 

supervised algorithm builds a concise model of the distribution of class labels in terms of predictor features. 



Chapter 2 – Background and Literature Review 

 

45 

 

able for genetic algorithms in the second stage. Their experiment is evaluated by using 

1998 DARPA Intrusion Detection Evaluation Data and TCP dump raw data. In addi-

tion, Liu and Yi proposed in [87] a modified, unsupervised learning algorithm 

PCASOM (Principal Components Analysis and Self-Organizing Map) and neural net-

works as a detection method. Their simulation is carried out to illustrate the perform-

ance of the proposed method by using DARPA 1998 evaluation data sets. Therefore, the 

detection rate is 94.286% (660 out of 700). 

Gunes et al. investigated in [55] a hierarchy of Self-Organizing Feature Maps as an ID 

approach. They demonstrated that using a two-layer self-organizing map (SOM) hierar-

chy, based on all 41-features from the KDDCUP99 training set, can achieve 90.4% a 

detection rate  under test conditions; interestingly, this represents the best performance 

based on an unsupervised learning algorithm. 

Moreover, Horng et al. proposed in [65] an SVM-based network intrusion detection 

system with algorithm clustering for data pre-processing. This algorithm could provide 

highly qualified, abstracted and reduced datasets. According to their experiment on 

the KDD Cup 1999, the proposed system could reach an accuracy of 95.72%. 

Recently, Zhang et al. proposed in [153] a novel approach by combining the SOM and 

the kernel auto-associator (KAA). The SOM organizes the prototypes of samples while 

the KAA provides data description of normal connection patterns. Using the KDD CUP, 

1999 dataset, the performance of the proposed scheme was compared with some state-

of-the-art novelty detection methods in terms of separating normal connection patterns 

from intrusive connection patterns. This showed marked improvements in terms of the 

high intrusion detection accuracy and low false positives. 

As a stochastic model is a part of the work carried out in this thesis as a target formal-

ism when modelling the release order of defensive mechanisms, an overview of this 

stochastic model is presented in the next section. 

2.6 Stochastic Modelling Formalisms 

Since the likelihood of the occurrence of large various daily events is probabilistic mak-

ing them described as stochastic processes, these events are modelled using stochastic 

models which rely on probabilistic theory. The stochastic process is a mathematical rep-
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resentation of the system with probabilistic or random characteristics. Furthermore, it 

forms the system behaviour as a function of times which can be continuous or discrete 

[90]. 

In order to identify the stochastic process formally, numerous definitions require intro-

duction first. The first definition is of the Random Experiment. This is an experiment 

that can have one or more potential results (e.g., student’s marks). Secondly, the Sample 

Space of this experiment is a set of all potential results which can be finite or infinite 

(e.g., a positive integer between 0 and 100). When a single result is achieved from the 

Sample Space (e.g., a student’s mark is 62), then it is called a Sample Point. Another 

definition is the Random Variable that is a function known over the Sample Space of an 

experiment. It provides a real number to each result from the Sample Space. An exam-

ple of this is the random variable Pass that gives fail (i.e. 0) results to students whose 

marks are under 50, while it gives passes (i.e. 1) otherwise [99]. 

Given these aforementioned definitions, the Stochastic Process {Xt, t ∈ T} is defined as 

a set of random variables sorted by a parameter, from an indexed set, T that mostly 

represents a time t. Therefore, Xt is supposed to be the current state of the system at time 

t, and the State Space S of this process is the set of all the random variable values [99]. 

The State Space S of a stochastic process can be either Discrete or Continuous. The 

Discrete is when the states can be counted by positive integers, while the Continuous is 

the opposite. Consequently, the stochastic process is supposed to be a Continuous-State 

Stochastic Process (or a Chain) if its state space is continuous (e.g., the waiting time of 

jobs to be served), or a Discrete-State Stochastic Process if its state space is discrete 

(e.g., the number of job arrivals). Additionally, the index set T can be continuous if the 

process is examined during an interval of time, or discrete if the process is examined in 

specific time instants. As a result, the stochastic process can be a Continuous-Time Sto-

chastic Process if its time parameter is continuous (e.g., during the whole week), or a 

Discrete-Time Stochastic Process if its time parameter is discrete (e.g., every day of the 

week). Bearing these in mind, the stochastic process can be one of four types depending 

on the combination between state types and time types. These types are as follows: (1) 

Continuous-Time Continuous State Space Stochastic (e.g., the waiting time of custom-

ers arriving at any time of the week); (2) Continuous-Time Discrete State Space Sto-

chastic Process (e.g., the number of customers waiting in a shop at any time of the 
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week); (3) Discrete-Time Discrete State Space Stochastic Process (e.g., the number of 

customers waiting in a shop every day of the week); and finally (4) Discrete-Time Con-

tinuous State Space Stochastic Process (e.g., the waiting time of customers arriving 

every day of the week) [25, 59, 99]. 

Most existing stochastic processes offer several kinds of dependence between the states 

that have previously occurred, the current state and the future state. As an example, the 

total gain of a person after n coin flips depends on the gain at the end of the (n-1)
th

 flip. 

However, as this dependence becomes more complicated, the analysis of such systems 

becomes more difficult. For this reason, a process with dependence of the first-order is 

desirable [25]. There is a set of stochastic processes that exploits this particular kind of 

dependency of the system states. This is called the Markov Property or the Memoryless 

Property that considers the future state. This consideration relies only on the present 

state, and this property is independent of the previous states or the time spent in the cur-

rent state. In other words, the firing rate of system activities is exponentially distributed 

[99]. The Markov Process is a stochastic process that satisfies the Markov Property, 

whereas in the Semi Markov Process, the sojourn time of the current state impacts the 

next state (i.e. the Memoryless property of the state’s sojourn time is not valid) [59]. 

As stated previously, the stochastic process illustrates the behaviour of the system with 

states and activities that change them [119]. In order to assist the application of an ana-

lytical and numerical solution, these stochastic models often utilise a Markov or Semi-

Markov chain. Although this describes the system at a low level, given all the states and 

transitions that the system may go through, high-level modelling formalisms, such as 

Stochastic Petri Nets (SPNs), are often used because of the complexity of giving a full 

representation of every state and transition in a concrete system. These formalisms are 

then automatically transformed into the core Markov or Semi-Markov chain [140]. 

In the next sub-sections, three modelling paradigms that are used to describe stochastic 

systems are reviewed. Since Semi-Markov mode and Stochastic Discrete Event System 

are not utilised in this thesis, they will not be described. Only the paradigms that have 

been used in this thesis are described; these are the Markov Chain, the Markov Decision 

Process model and the Stochastic Petri Net (SPN). Furthermore, the software tools for 

building and solving models are also described. 
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2.6.1 Continuous-Time Markov Chain 

The Markov Chain is a mathematical model that transitions from one state to another 

between a finite or countable state space [109]. The term “Markov Chain” indicates the 

sequence of random variables X1, X2, …, Xn with the Markov Property. Formally: 

                                                

The stochastic process            is a continuous-time Markov chain if for all s, t   

0 and nonnegative integers i, j, x (u), 0   u   s [121]: 

                                   

                      

Particularly, a continuous-time Markov chain is a stochastic process which has Markov 

property and in which the conditional distribution of the future X (t + s) given the pre-

sent X (s) and the past X (u),     u  s, relies merely on the present and is independent 

of the past. 

Additionally, once                    is independent of s, then the continuous-

time Markov chain is supposed to have stationary or homogeneous transition probabili-

ties. For example, a continuous-time Markov chain enters state i at time 0, and the proc-

ess does not leave state i during the next 10 minutes. The probability that the process 

will not leave state i during the following 10 minutes can be described as follows. By 

the Markov chain property, the probability that the process remains in state i during the 

interval [10, 20] is just the unconditional probability that it stays in state i for at least 10 

minutes [121]. As such, if Ti indicates the amount of time that the process stays in state i 

before making a transition into a different state, then: 

                          

Or generally, by the same reasoning 

                         

for all s, t   0. Therefore, the random variable Ti is memoryless and should thus be ex-

ponentially distributed. 
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Based on the above, a continuous-time Markov chain can be defined as follows: it is a 

stochastic process with properties which mean that each time it enters state i: 

- The amount of time it spends in that state before making a transition into a 

different state is exponentially distributed with the mean, and 

- If the process leaves state i, then it next enters state j with some probability 

Pij that satisfies the following: Pii = 0 for all i and         for all i. 

Specifically, a continuous-time Markov chain is a stochastic process that moves from 

one state to another in accordance with a discrete-time. However, it is such that the 

amount of time it spends in each state is exponentially distributed. Moreover, the 

amount of time that the process consumes in state i and the next state visited should be 

an independent random variable. In the case that the next state visited was dependent on 

Ti, information as to how long the process has already been in state i would be relevant 

to the prediction of the next state. 

As an optimisation problem is a part of the work undertaken in this thesis that is solved 

via a Markov Decision Process model, as shown in Chapter 5, this model is reviewed in 

the next subsection. 

2.6.2 Continuous-Time Markov Decision Process 

The Markov Decision Process (MDP), which is an extension of the Markov chain, pro-

vides a mathematical framework for modelling decision making in conditions where the 

results are slightly random and slightly under the control of a decision maker. There-

fore, the MDP is a constructive tool for studying a wide range of optimisation problems 

[109]. Formally, the MDP is a 4-tuple (S, A, Pa (s, s`), Ra (s, s`)), where 

 S is a finite set of states 

 A is a finite set of actions 

 Pa(s, s`) = Pr (st+1 = s` | st = s, at  = a) is the probability that action a in state s 

at time t leads to state s` at time t+1 

 Ra (s, s`) is the immediate reward received after the transition from state s to 

state s` 



Chapter 2 – Background and Literature Review 

 

50 

 

The core problem of the MDP is to find a policy for the decision maker. This policy is a 

rule π for choosing actions when in state s. Typically, a policy π is a set of numbers π = 

{πi (a), a ∈            with the understanding that if the process is in state i, then 

action a is to be chosen with probability πi (a) as follows [109]: 

πi (a)=  
                          
                             

  

In the continuous-time Markov Decision Process, the decision can occur at any time 

chosen by the decision maker. Thus, one of the best ways to model the decision making 

process for a system that has continuous dynamics is by using the continuous-time 

Markov decision process. The continuous-time Markov Decision Process (CTMDP) is 

defined as follows. In the case that the state space and action are finite, the definition is 

[56]: 

 S: State Space 

 A: Action Space 

 Q (i|j, a):       , a transition rate function 

 R (i, a):      , a reward function 

In the case that the state space and action are controlled [56]: 

 X: state space 

 U: state of possible control 

                  a transition rate function  

               

A reward rate function is such that                                    where, 

         is the reward function [56]. 

In this thesis, CTMDP is utilised to develop an optimisation algorithm that will be ex-

plained in Chapter 5. Moreover, as the release order of defensive algorithms is modelled 

by using Stochastic Petri Nets (SPNs), as shown in Chapter 4, the next sub-section re-

views this SPN approach. 
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2.6.3 Stochastic Petri Nets 

In order to achieve a qualitative measure, Petri Nets (PNs) are widely used for model-

ling systems with simultaneous and chronological transitions in order to obtain qualita-

tive measures. They are also very effective in representing system concurrency and syn-

chronisation [90]. The Petri net is a type of directed graph with an initial state called the 

initial marking. The basic graph of a Petri net is a directed, bipartite graph consisting of 

two kinds of nodes. The first are called places, and the second transitions. Arcs (or ar-

rows) connect places and transitions. The arcs can only connect a place with a transition 

or a transition with a place. Connections between two nodes that are of the same kind 

are not allowed (e.g. that connect a place with a place). 

In graphical Petri net representations, places are drawn as circles and transitions as bars 

or boxes. The initial distribution of tokens among places is called the initial marking of 

the Petri net. The marking of tokens over places determines the state of a Petri net. A 

transition is enabled if each place connected to the transition contains at least one token. 

The firing of transitions changes the distribution of tokens and produces new states. 

Transitions are generally assumed to be the active components of Petri nets. Transitions 

can stand for tasks, events, operations, transformations, transportation, and so on. 

However, places are usually passive and they could represent a medium, phase, and 

condition. Tokens often indicate physical objects or represent information. The flow of 

these tokens and the firing of transitions are then used to model the dynamic behaviour 

of the system. Figure 2.11 illustrates a simple example of a graphical Petri net, where 

the circles represent places (P1, P2, P3 and P4), the bars correspond to transitions (t1 

and t2) and tokens are represented by small dots (in P1). 

 

Figure ‎2.11: A Graphical Petri Net Example. 

A Petri net model can use transitions to represent tasks and places which stand for the 

pre- and post-conditions of the tasks or resources involved in the system. A transition is 
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enabled if each input place contains at least a number of tokens which equal the weight 

of the flow relationship from the places to the transition; when a transition fires, it con-

sumes a number of tokens from each input place and produces a number of tokens equal 

to the weight of the flow relation from the place to the transition. For example, t1 in 

Figure 2.11 produces two tokens to P2 and P3. 

The numbers of tokens contained in the place are used to define the situation or condi-

tion of a Petri net state. When firing transitions, removing tokens from input places and 

adding them to output places identifies a change in state and describes the dynamic be-

haviour of a Petri net. The initial marking denotes the distribution of tokens over places. 

The arcs connect places with transitions or vice versa. Arcs are grouped into the two 

types that are used in this thesis with respect to transitions. These types are as follows: 

input arcs, which go from places to transitions shown by arrows, and output arcs, which 

go from transitions to places shown by arrows. 

In the interest of allowing the extraction of quantitative and time-related performance 

results, Stochastic Petri Nets (SPNs) were introduced by assigning exponentially dis-

tributed random functions to the delay of the Petri net transitions. By means of this ex-

ponential distribution, the state of the modelled system can be changed in a probabilistic 

way. Not only this, but it also allows the estimation of more cumulative performance 

results from the steady state distribution like the average delay. Moreover, since SPNs 

with the exponential distribution and Continuous-time Markov chain both use the mem-

oryless property of transition firing, the exponential distribution allows SPNs to resem-

ble Continuous-time Markov chains [90]. 

One of the SPN’s features is that it provides an integration of graph modelling and 

probabilistic modelling. This feature allows a system’s behaviour to be analysed. As 

such, while an SPN is capable of giving a visual description of a system process, it is 

automatically transformed into the underlying Markov Chain model for performance 

analysis [3]. In order to achieve performance results, firstly the defined reward variables 

should be converted to their equivalent essential state-level stochastic processes with the 

corresponding rewards specified at the state level [3]. 

There are several limitations of an SPN. Firstly, as the SPN is mostly able to model 

small-sized systems, SPN graphs become extremely complicated when the system size 
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increases. This leads to a significant increase in the number of Markov states. Further-

more, transitions with low impact on the model might not require being associated with 

an exponential distribution, since the SPN needs to associate an exponential distribution 

with each transition. That is, removing the time from the transition with low impact 

might result in a smaller number of Markov states. Therefore, the performance extrac-

tion is simplified. 

On the other hand, Generalised Stochastic Petri Nets (GSPNs) were constructed in [3] 

to overcome the aforementioned shortcomings of SPNs. GSPNs introduce two types of 

transitions: Timed and Immediate. The former transition is included with an exponen-

tial-distributed delay function, while the latter is included with zero time delay. Accord-

ingly, a delay function is merely related to timed transitions and is dependent on a place 

marking. In immediate transitions, a firing priority is declared over timed transitions if 

they are both enabled. If multiple immediate transitions are enabled, they fire based on a 

probability distribution function [3]. 

Although GSPNs exploit all the SPN’s characteristics, the smaller reachability set of a 

GSPN reduces the confusion of performance analysis much more than SPNs do [3]. 

There is an additional arc called an inhibitor that can be used by GSPNs alongside the 

places, timed/immediate transitions and directed arcs. This inhibitor arc enables a transi-

tion to fire in such a way that is opposite to that of the normal arc, while the input place 

that is connected to the inhibitor does not contain tokens. This additional arc offers a 

more flexible description of the system graph and also decreases its size [3]. 

The SPN is used to model the release order of defensive algorithms, as shown in Chap-

ter 4. In the next subsection, software tools that are used to build and solve an SPN 

model are reviewed. 

2.6.4 Software Tools for Building and Solving SPN Models 

Numerous software tools have been introduced in order to assist in accomplishing all 

the steps of modelling, starting from building the model and ending with solving the 

model. As a part of this thesis focuses on the stochastic mode, and SPN specifically, the 

software tools that will be reviewed in this section relate to the tools that solve SPN 

models. Nevertheless, the largest proportion of this section is devoted to the first tool 

under review, because it is the only used tool for implementation in Chapter 4. 
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SPNP 

The Stochastic Petri Net Package (SPNP) is a modelling tool that is utilised for analys-

ing the performance, dependability and performability of a system model. Furthermore, 

SPNP is exploited for building and solving Stochastic Petri Net (SPN) Reward Models, 

specifically Stochastic Reward Net (SRN) with the foundation of Markov Reward Mod-

els (MRM) [38]. 

An SPNP allows a number of results to be obtained, for instance transient, steady-state, 

cumulative, and time-averaged measures using an analytic model or discrete simulation. 

The reward rates can be defined by the SPNP at the net level. Furthermore, although 

non-Markovian SPN models can be also defined using an SPNP, and can be solved by 

using discrete event simulation. 

The SPNP has a textual and a graphical input method. In the textual input method, the 

CSPL is applied, which is a subset of the C programming language with additional con-

structs for defining the model parameters [38]. In terms of the graphical input, the iSPN 

interface has a set of graphical user interfaces (GUIs) to aid creating and solving the 

model. Several of these GUIs are explained as follows. 

 Petri Net editor: this assists construction of the SRN model graphically. 

 Function definition GUI: this assists creation of the reward, guard, distribu-

tion, arc cardinality, and probability functions. 

 Environment GUI: this assists options for setting up the environment. For 

example, the solver type (i.e. numerical or simulation) and, from the same 

GUI, the analysis option (i.e. steady state or transient) can be specified.  

 Animation GUI: this assists visualising how the tokens move from one place 

to another in the model. 

 Analysis frame: this assists in defining the time used to solve the reward 

variables. In addition to this, from the same frame, the model can be run and 

then the results represented. 

Since the following tools are not utilised in this thesis, only a brief description for each 

tool will be given. 
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Möbius 

The Möbius is used in a wide range of discrete state computing systems for perform-

ance modelling. As such, it is a framework that involves both multiple formalisms, such 

as SAN, and multiple solution approaches, such as simulation. Several of these ap-

proaches are independent of the modelling formalism being used. Thus, these may be 

utilized in combination with each other [45]. 

In addition, by using multiple modelling formalisms, the Möbius tool allows a single 

model to be built. When a model has been built, it is converted into a model which is 

specified by using Möbius framework components. In addition, communication be-

tween different parts can use an Abstract Functional Interface (AFI). This AFI is a 

group of C++ functions which enable interaction between different models and solvers 

[43]. 

PIPE 

The Platform Independent Petri net Editor (PIPE) is an open source Petri net modelling 

tool. It allows users to identify queries on the modelled system and solve them. Once 

the model is created and the performance query of interest is identified using the PIPE 

front-end user interface, they are both converted into XML files and then sent to the 

Analysis Server for assessment. Note that because a single query can include a number 

of sub-queries that need to be evaluated before the main query is assessed, the query is 

decomposed into its sub-queries based on their dependencies. The analysing server 

manages several distributed analysing tools such as SMARTA and MOMA. That is, it 

allocates each derived query to an appropriate analysing tool, after transforming the 

XML files into an input type that is suitable for that tool [46]. 

GreatSPN 

The Graphical Editor and Analyser for Timed and Stochastic Petri Nets (GreatSPN) is a 

software tool for creating, validating and analysing the system model. There are two 

main techniques that can be used to build a model: a Generalised Stochastic Petri Net 

(GSPN) (and its extensions) and a Stochastic Well-formed Net (SWN). Moreover, as 

GreatSPN has no common rate and impulse reward definition, it can define performance 

results that have limited expressive power [115]. 
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2.7 Summary 

This chapter has provided background information regarding two important aspects re-

lated to the contribution accomplished by this thesis. Firstly, this chapter presented the 

importance of defensive mechanisms in the Internet against attackers who attempt to 

abuse the services. The discussion included essential definitions of both an attacker and 

a defender. This was followed by interactive defensive mechanism types, which re-

vealed a number of security algorithm examples that are expected to be broken over 

time. The discussion also included the fundamental idea behind these algorithms, and 

the developing circle life of an algorithm being released and eventually broken. The 

learning curve theory in psychology, and cognitive and economic fields that apply to the 

attacker learning process were highlighted, and a rationale for this choice was also in-

cluded. Furthermore, this was followed by more discussion on several relevant theories 

related to the learning acquisition process. The discussion included relevant existing 

work on the effectiveness of information order in the learning process. 

Secondly, this chapter examined several related works in the literature to support the 

proposed methodology which will be evaluated and discussed thoroughly in the follow-

ing chapter including a review of quantitative security by modelling attacks, modelling 

attacker behaviour and estimating the time to compromise a system components; a 

game theory framework to identify the best attack and defence strategies; and an explo-

ration of anomaly detection techniques in which unsupervised machine algorithms were 

applied as a first layer in hybrid approaches in order to detect an attack attempt. 

Additionally, the discussion in this chapter also elaborated on the background of sto-

chastic modelling formalisms; in particular, the focus was directed towards the model-

ling of the release order of defence algorithms, which are used to evaluate an attacker’s 

performance. The continuous-time Markov Decision Process was selected as a tool to 

develop the optimisation algorithm, while stochastic Petri nets and their tools were se-

lected as an instrument to represent the interaction between defence algorithms and an 

attacker. 



 

57 

 

Chapter 3.  EXPERIMENTAL STUDY 

This chapter reports a controlled-laboratory experiment that has been carried out as a 

method to evaluate the proposed idea. In this experiment, investigating whether the or-

der of the release algorithms will matter or not, the influence of the release order on in-

dependent algorithms and the importance of the strategies used in the knowledge acqui-

sition process are evaluated. 

The effect of the presentation order on the learning mechanism is not new. That is, pre-

vious research in the field of education and psychology provide several insights into the 

effect of presentation order [47, 48, 91, 98, 131]. However, to the best of our knowl-

edge, we are the first to address this particular issue of the release order strategy in the 

information security concept. There exists a considerable amount of related work that 

considers the attack and defence interaction as a game-theoretic problem such as in [67, 

88, 134], but these formulations do not fit exactly with our approach. Chapter 2 dis-

cusses this further. 

Since the content-based type of spam filters
13

 have been found to offer a very good 

model for our experimental requirements, it is important to point out that it is not the 

objective of the experiment to say anything definitive about spam filter algorithms. 

Thus, a bespoke spam filter was designed that would fit the purposes of the experiment, 

although this has created an intuitively appealing experiment that has various elements 

in common with traditional spam filters. The designed spam filter includes several algo-

rithms that act as a defensive mechanism against attackers. 

                                                 
13 This is an electronic mail (e-mail) service feature that is designed to block unwanted e-mail messages sent by un-

ethical senders. This feature has different types such as Bayesian filter, Blacklist-White-list and Content-Based filter, 

which is the most common type [41]. The developed content-based filter will be discussed in Sections 3.3.2 and 

3.3.4. Moreover, the content-based filter is highlighted in Chapter 2 (Section 2.2.3). 
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Furthermore, an automated program can be used to break the algorithms of the designed 

spam filter. However, a form of understanding of a human learning process can be seen 

clearly by sending e-mails to evade a spam filter, as automated approaches are abstrac-

tions of this human learning process that require encoding by humans. Any automated 

approach would need to know the parameters to try, and the range within which these 

parameters may fall. 

The remainder of this chapter is structured as follows. The experiment scope is pre-

sented in Section 3.1. Section 3.2 defines the main hypothesis under test. Section 3.3 

outlines the experiment setup. The experiment procedure is presented in Section 3.4. 

Section 3.5 reports the results. Section 3.6 provides the discussion. Finally, Section 3.7 

summaries this chapter. Moreover, an early version of this experimental study was pub-

lished in [11]. 

3.1 Experiment Scope 

This experiment covers the evaluation of a set of algorithms approach, investigating 

specifically the importance of a set of algorithms from the release order perspective, the 

significance of breaking up a secure algorithm into a set of algorithms, the broadening 

of understanding of the knowledge acquisition process in the information security, and 

the impact of the strategies used in breaking an algorithm in the knowledge acquisition 

process. 

3.2 Hypotheses 

A controlled laboratory experiment study was carried out in order to investigate the re-

search questions of this thesis. This study focuses on the impact of the release order of 

defensive algorithms on the time needed to break them. Therefore, the main hypothesis 

under test is: 

Hypothesis H1: The time it takes to break a series of algorithms is dependent on the 

order in which the algorithms are released. 

Since the rationale included in improving the interactive defensive mechanism approach 

was framed using a set of algorithms, it is interesting to see whether there is any signifi-

cant difference in the release order of dependent algorithms on further independent al-
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gorithms. Hence, a hypothesis
14

, which is a rather subtle variant of the previous one, is 

that: 

Hypothesis H2: The time taken to defeat a future algorithm does not depend on the or-

der in which earlier algorithms were broken. 

The next section explains the experimental setup of this study. 

3.3 Experiment Setup 

The experiment involves subjects acting as potential attackers, carrying out attacks on a 

test system, within which a number of different defence algorithms have been deployed. 

The experimental design, the system, attackers, algorithms, material, variables, meas-

urement units, generalisation and threat validity, avoiding bias and control measures are 

discussed in the following subsections. 

3.3.1 The Experimental Design 

The experiment used the between-subject design, in which each participant is exposed 

to only one of the experimental conditions. That is, two sets of subjects break a series of 

defence algorithms where the order is different between the groups. This type of design 

ensures that the exact same algorithms are used in each experiment condition, and that 

there is no unnecessary confounding factor biasing the results (at the cost of recruiting 

relatively many participants). 

The participants are randomly assigned to one of the following two experimental 

groups: 

 Group 1 (G1): The order of algorithms for this group was: Algorithm 1 

(A1), Algorithm 2 (A2) then Algorithm 3 (A3). 

 Group 2 (G2): The order of algorithms for this group was: Algorithm 2 

(A2), Algorithm 1 (A1) then Algorithm 3 (A3). 

Specifics about the algorithms will be given in Section 3.3.4. 

                                                 
14  There is an additional reason to consider this particular hypothesis, namely whether the use of a Markov decision 

model with a state space that simply keeps track of which algorithms are broken can be justified. The hypothesis 

corresponds to demonstrating the memoryless property of the Markov model with that state space. The Markov deci-

sion model itself is outside the scope of this chapter, and more details will be given in Chapter 5. 
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In order to gather more information to improve the design of the experiment, a pilot 

study was conducted. Four PhD students and Four MSc students from the school of 

computing science at Newcastle University participated in this study. The pilot study 

emulated a similar environment, conditions and measures of the planned experiment 

and its running scenario, and gathered related information in the shape of errors, prob-

lems, comments, observations, suggestions, required time and task implementation 

flow. Based on this information, modifications and improvements were made to the ex-

periment design and the developed algorithms. The modifications included changing the 

thresholds of similarity that are utilised in the defence algorithms developed in order to 

manage the difficulty and adjust the system to be more usable for the participants. Other 

modifications were related to the arrangement of the experiment instructions. The pilot 

study also helped in estimating the required time for each subject to perform the ex-

periment; thus, 30-40 minutes was found to be suitable for the participants. The required 

improvements to the experiment material and measurement were made and then the real 

experiment was started. 

It was made clear to the subjects that the data collected in the experiment are strictly 

confidential to the experimenter and his supervisor. They are only used for research 

purposes and not for any other intention. The subjects’ contact details were only used 

for announcing the winners (i.e. the first and the second winner). 

3.3.2 System 

A challenge in designing the experiment was to design a system that could be breached 

by ordinary people in a matter of minutes. It was found that a content-based spam filter 

could offer a very good model for the experiment requirements. Although as mentioned 

there is no attempt to study and derive results for spam filters themselves, it is believed 

that the simple spam filters have enough similarities with reality to act as an example of 

the class of systems introduced in Chapter 1 (Figure 1.1). 

Thus, a web-based system on which to perform the experiment was developed. A Web 

application was also developed, which enabled each participant to perform a registration 

process (e.g. choosing a username, password and educational background), sign a con-

sent form, and read a brief introductory page with necessary information (e.g. descrip-

tion of the experiment, experiment factors, the participant goal, and applied method on 

how to defeat a content-based spam-filter). The participants could then begin the ex-
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perimental process, interacting with the spam-filter algorithms. The main idea was that 

the participants tried to send e-mails that pass through the spam filters, as described in 

more detail in Section 3.4. The system recorded all attempts and the time taken by each 

participant to break each algorithm in each session. The interfaces of the web applica-

tion developed are included in Appendix A. 

The settings of this developed system are flexible for further investigation. For instance, 

it can be possible to add more algorithms with varying robustness. Moreover, the simi-

larity threshold of each algorithm and the number of attackers for each group can be 

increased/decreased. Also, it can be possible to change the e-mail text. 

3.3.3 Attackers 

A nontrivial problem was to find potential attackers. The aim was to find attackers that 

could be considered to be non-specialists. Whilst specialist attackers or security experts 

could have been recruited, they would have provided information mostly about where 

and how particular algorithms needed to be improved and less about learning. Forty 

students were recruited for this experiment (34 male and 6 female, something that was 

not considered relevant for this experiment). The typical age range of subjects was 24-

33 with 4 participants in the group 40+. The subjects of this experiment were 40 Mas-

ter’s and PhD students from the School of Computing Science and other schools in 

Newcastle University. The subjects were recruited by email; emails were sent to all 

MSc students and PhD students at the school and this returned a positive response from 

40 subjects. 

37 subjects have technical backgrounds (majoring in computer science and engineer-

ing), and the remaining 3 subjects non-technical (in linguistics). It is important to note 

that because our aim was to observe the learning acquisition, the learning process is ac-

complished despite the backgrounds, as stated in [72]. 

Each participant was offered £5 for participation. To motivate participants to do their 

best, like real attackers, an additional incentive to increase their motivation was offered. 

The participant who got the highest score in each group was awarded £40 while the sec-

ond ranked subject was awarded £20. The highest score is based on the time and num-

ber of trials to complete the task. 



Chapter 3 – Experimental Study 

 

62 

 

3.3.4 Algorithms 

The rationale behind the defensive spam-filter algorithms constructed is as follows. A 

simple algorithm A1 acts as a base algorithm and a more complicated algorithm A2 ex-

tends the rules used by A1. In other words, the rules in A1 are a subset of A2, which is 

the first case to consider when one wants to test a hypothesis. The third algorithm A3 

does not share any rule with A1 or A2, and acts as a simple independent algorithm. 

Hence, the first hypothesis H1 is challenged by means of the following question: 

Q1 – Do G1 and G2 break A1 and A2 within a similar amount of time? 

Furthermore, the second hypothesis H2 is challenged by means of the following ques-

tion: 

Q2 – Do G1 and G2 break A3 within a similar amount of time? 

A negative answer will be provided in Section 3.5 to Q1 along with a positive answer to 

Q2. The specific algorithms A1, A2 and A3 will now be described, as well as pseudo 

code describing their operation. Modern density-based spam filters [152] form the basis 

for implementing the algorithms. These spam filters detect a spam e-mail message by 

utilising an unsupervised learning engine that plays an increasingly important role in 

this type of filter. 

Note that some of the symbol names being used in the pseudo code of the algorithms 

are given in Table 3.1. Briefly, the symbols in Table 3.1 are explained as follows. As in 

[152], a hash-based vector representation is used. That is, for each e-mail, hash values 

of each length 9 substring extracted from the e-mail are calculated
15

, and then the first N 

of them is used as a vector representation of the e-mail. To check a single e-mail, in or-

der to find similar previous e-mails which share S% of the same hash values, the algo-

rithm checks the database. As a result, an e-mail which is transferred more than D times 

is marked as spam. Therefore, the algorithm does evaluate whether an e-mail message is 

spam or not based on the similarity with previously submitted e-mail. This similarity 

will be exploited later in Chapter 6 for constructing the Attacker Learning Curve notion. 

                                                 
15 The standard hash function provided in the Java library is used.   
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Algorithm 1 (A1). This algorithm is a simple implementation of the proposal of [152] 

where only the first part of the message is checked for similar hashes. Furthermore, the 

similarity threshold is 75. The pseudo code of this is shown in Figure 3.1. 

Table  ‎3.1: Symbols used in pseudo code and their values in the experiments. 

Symbol Meaning Value 

D Spam threshold  100 

N Number of hash values for each email  100 

S1 Similarity threshold “Algorithm 1&3” 75% 

S2 Similarity threshold “Algorithm 2” 65% 

Input:  T: Text of Mail 

           Var h: Hash value 

 

Output: R: result of detection 

New-Hash-DB-Candidate ← Make N Hash values from T 

For h in New-Hash-DB-Candidate do 

    For each first 25 hash in New-Hash-DB-Candidate do 

      If hi in H1 is similar to hj in H2 

      Then increment similarity, increment j and i=j 

    Else increment j 

    If H1 and H2 share S1 same hash value 

    Then R= detected;  

    Update-Similar-Mail (Mail in Hash-DB pointed by h) 

    If No. of Similar Mail > D  

    Then Mark Hash-DB as “spam” 

Else R= no similarity  

// If No Similar Entry exists in Hash DB 

 Store-New-Mail (New-Hash-DB-Candidate) 

Return R; 

Figure ‎3.1: Pseudo code of A1. 

Algorithm 2 (A2). This algorithm is similar to A1 except that, before any calculation of 

the hash values, the message would go through word transformation that would delete 

all redundant letters and white spaces, and would unify letter case, and transform com-

mon number shortcuts to their equivalent letters (e.g. 4 would become for). Those trans-

formations would create a harder algorithm since it would detect any attempt of the at-

tacker to trick the spam filter by using such word transformations. Furthermore, the 

similarity threshold is 65. In other words, this algorithm has more rules to increase the 

robustness level. The pseudo code of this is shown in Figure 3.2. 

Algorithm 3 (A3). This algorithm is a simple implementation of the proposal of [152]; 

however, the last part of the message is checked for similar hashes, and the similarity 

threshold is 75. The pseudo code of this is shown in Figure 3.3. 
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It is worthwhile to note that the reason behind using a different threshold is that it was 

empirically found that the similarity threshold can play an important role in terms of 

determining the difficulty of an algorithm. That is, in A1 and A3, the attacker needs to 

modify only 25% of the part that the algorithm is checking, while it is 35% in A2. 

Input:  T: Text of Mail 

           Var h: Hash value 

 

Output: R: result of detection 

// Remove all white spaces; make the whole text .lowercase 

.T’ = Normalise (T)    

 //Remove triple letters; convert some numbers to letters (like 

4 to for)   

 New-Hash-DB-Candidate ← Make N Hash values from T 

 For h in New-Hash-DB-Candidate do 

    For each first 25 hash in New-Hash-DB-Candidate do 

 If hi in H1 is similar to hj in H2 

          Then increment similarity, increment j and i=j 

          Else increment j 

 If H1 and H2 share S2 same hash value 

          Then R= detected; 

          Update-Similar-Mail (Mail in Hash-DB pointed by h) 

       If No. of Similar Mail > D  

          Then Mark Hash-DB as “spam” 

          Else R= no similarity 

// If No Similar Entry exists in Hash DB 

 Store-New-Mail (New-Hash-DB-Candidate) 

 Return R; 

Figure ‎3.2: Pseudo code of A2. 

Input:  T: Text of Mail 

           Var h: Hash value 

 

Output: R: result of detection 

For read T until the last part 

New-Hash-DB-Candidate ← Make N Hash values from the last part of T 

For h in New-Hash-DB-Candidate do 

For each first 25 hash in New-Hash-DB-Candidate do 

   If hi in H1 is similar to hj in H2 

      Then increment similarity, increment j and i=j 

      Else increment j 

   If H1 and H2 share S1 same hash value 

      Then R= detected; 

      Update-Similar-Mail (Mail in Hash-DB pointed by h) 

   If No. of Similar Mail > D  

      Then Mark Hash-DB as “spam” 

      Else R= no similarity 

// If No Similar Entry exists in Hash DB 

    Store-New-Mail (New-Hash-DB-Candidate) 

Return R; 

Figure ‎3.3: Pseudo code of A3. 
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3.3.5 Materials: stimulus and rationale 

The stimulus material provided to participants consisted of some default e-mail text. 

The subjects were asked to send this text to the server, as if it was a typical e-mail. The 

e-mail text was chosen to be 512 characters in length. Although real-life spammers may 

send messages that are shorter than this, the length of messages provides the subjects 

with sufficient text to utilize a range of different strategies to breach the spam-filter. 

The same e-mail text was assigned to all subjects, rather than allowing each subject to 

write his own e-mail. There were several reasons for this. First, self-written e-mails may 

be of different lengths, making the measurement and comparison of participant’s learn-

ing a difficult task. Second, self-written e-mails might be chosen because they are easy 

to type (or, in perverse cases, particularly hard to type). This would again introduce bi-

ases that are difficult to control. Third, the use of the same e-mail template across all 

subjects means that each subject can be treated as an impostor for all the other subjects, 

putting testing on a firm foundation. Finally, using the same e-mail for everyone af-

fected experimental control over unanticipated biases. 

3.3.6 Variables 

In this experiment, the main independent variable is the algorithm order. The time con-

sumed to break each algorithm and the numbers of trials are the dependent variables. 

3.3.7 Measurement Units 

Table 3.2 defines the measurement units (e.g. time taken, effort), which are used in this 

experiment. 

Table  ‎3.2: The Experiment Measurement Units. 

The Unit Definition How is it measured? 

Time taken 

The duration of time that is 

spent in order to break a spe-

cific algorithm. 

Difference between start time and 

end time of breaking the algorithm. 

Effort 
The exertion necessary to 

break a specific algorithm. 

Number of trials and the manipula-

tion accomplished on the email text 

to break the algorithm. 
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3.3.8 Generalisation and Threats Validity 

Generalisation 

Since the content-based spam-filter was chosen as the form to evaluate the proposed 

approach for this experiment, other interactive defensive mechanisms such as 

CAPTCHA can be applied. However, it would be costly (time consuming and impossi-

ble) to cover all interactive defensive mechanisms in this thesis. Thus, the objective of 

this research is to show the validity of the claim that release order matters. That in itself 

is challenging. Showing it holds for another interactive defensive mechanism is an addi-

tional difficulty, beyond the scope of this research. 

Validation 

The experiment validity is an important issue in ensuring the quality and generalisabil-

ity of findings. Two types of validity are involved in this experiment: internal validity, 

which is concerned with how the study supports the findings; and external validity, 

which is concerned with generalisability of the results. The threats to internal and exter-

nal validity are addressed and taken into account as follows: 

Internal Validity 

For internal validation, the following factors are taken into account: 

Selection: The subjects were randomly assigned to the control and experimental groups. 

History: Most of the subjects were selected from the same place; therefore, in order to 

reduce any influential effects, they were recruited and contacted individually and per-

formed the tasks individually at different times. 

Motivation: Since the subjects were volunteers and the tasks did not take a long time, 

there was little concern about boredom or loss of enthusiasm during the experiment. 

Time: The time required for the experiment was estimated after conducting a pilot 

study and the subjects were informed of this when they were recruited. During the ex-

periment, they were told to take enough time to perform the task and that they could 

stop if they were not willing to continue. 

Training: A brief description was given to all of the subjects and the necessary clarifi-

cation and training was provided before starting the task. Moreover, the subjects were 

told that they had the right to ask any questions. 
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External Validation 

A number of measures were taken in order that the sample reflected the rationale for the 

learning acquisition process. Although the selected sample was mostly comprised of 

subjects with a technical background, some had no technical background as the aim was 

to observe learning acquisition, not to evaluate the algorithms themselves. Thus, this 

does not threaten the validity of the research. 

3.3.9 Avoiding Bias and Control Measures 

Experiments are very sensitive to errors. Many errors could arise due to bias in the ex-

periment. The following measures were taken to avoid and reduce any bias in this ex-

periment: 

 The subjects were randomly divided into Group 1 and Group 2. 

 Since the aim was to recruit non-specialist attackers in order to observe 

learning acquisition, the inconsistency-bias produced by attackers’ back-

grounds is reduced. In addition, as stated in [47, 72] the learning process is 

achieved regardless of the backgrounds of subjects. 

 Self-written emails were not allowed because these may have been of dif-

ferent lengths, making the measurement and comparison of participants’ 

learning a difficult task. Therefore, a default email text was prepared for all 

participants. 

 The maximum number of changes (i.e., manipulations) they were allowed to 

introduce at each trial was 80. This made it impossible for participants to 

write a completely different e-mail message. 

 The copy and paste functions were not activated to avoid sending com-

pletely different e-mails. 

 The system recorded time consumption individually in order to avoid the 

subjects affecting each other or any other meaning, provide the same level 

of support, observe subjects’ progress during the task implementation, and 

give the same amount of time and support. 

 On all the data documents, only the subjects’ reference numbers were used, 

rather than the names. This anonymity made the data analysis more reliable 

and maintained the subjects’ privacy. 
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3.4 Experiment Procedure 

In this section, the way the experiment was run is explained, i.e., instructions to sub-

jects, procedures and the data collected. 

3.4.1 Instructions to subjects 

Subjects were instructed to act as attackers whose goal was to defeat the spam-filter al-

gorithms by successfully passing through the spam filter algorithms with 3 e-mails 

(where each e-mail is interpreted as a batch of 100
16

). The subjects were instructed that, 

to defeat an algorithm, they should introduce enough changes to the message template 

provided to trick the spam filter into thinking that the message being sent was genuine. 

Subjects were also informed that there are a number of candidate attacks that spammers 

can enact to fool spam filter algorithms. For example [51]: Random addition, Thesaurus 

substitution, Perceptive substitution and Aimed addition. The aim of this was creating a 

level playing field for all participants. 

Subjects were told that if they needed a break, they were to do so after they had de-

feated all the algorithms. Subjects were able to gauge their progress by looking at a 

counter at the right of the screen which showed how many e-mails had been sent suc-

cessfully so far and how many yet remained. Subjects were advised to focus on the task 

and to avoid distractions, such as talking with the experimenter, while the task was in 

progress. 

3.4.2 Procedures 

The experiment was begun with a brief description about the experiment aim, phases 

and the assigned tasks to make the subjects ready for the task implementation. Since a 

web application was developed on which to perform the experiment, each participant 

was able to firstly perform a registration process (e.g. choosing a username, password, 

educational background, age, and gender). Then, each participant was asked by the sys-

tem to read and sign the consent form and the participant was informed of the right to 

stop at any time. After this, each participant was asked to read a brief introductory page 

                                                 
16  In the original algorithm [152], when an e-mail message transferred more than 100 times, then it is marked as 

spam. Therefore, due to the time limitation of the experiment, each sent e-mail message is interpreted as a batch of 

100. 
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with necessary information (e.g. description of the experiment, experiment factors, the 

participant goal, applied method on how to defeat a content-based spam-filter). The par-

ticipant could then begin the experimental process, interacting with the spam-filter algo-

rithms. The main idea was for the participants to try to send e-mails that would pass 

through the spam filters. In particular, after every e-mail message sent by the partici-

pant, the system gave information about the progress made: whether the spam attempt 

passed or failed and, once the algorithms were considered defeated, a notice that the 

deployed algorithm of the system had been changed. Note that it was necessary to de-

feat each algorithm twice by an attacker in order to confirm the learning process, and 

more details regarding its usefulness will be given later in Chapter 6. At the end of the 

experiment, each participant was informed about the score achieved, the time taken and 

the number of trials. Finally, the participant was asked to fill in a short sur-

vey/questionnaire about his or her experience. 

3.4.3 Collected Data 

The time taken by each participant to defeat the algorithms in each session was recorded 

by the system. Furthermore, the number of trials and the e-mails sent for each session 

were recorded for later analysis. Thereafter, the questionnaires were collected. 

3.5 Results and Analysis 

In the experimental study, all the participants successfully completed their tasks. The 

following sub-sections will discuss the hypothesis with respect to the ordering of the 

algorithms A1 and A2, the hypothesis regarding the insensitivity of the order of A1 and 

A2 with respect to the time used to defeat A3, and the impact of order on defeating all 

algorithms. 

3.5.1 Testing Hypothesis: Does Order Matter? 

The average time needed to break each algorithm in the two groups is shown in Figure 

3.4. From the totals (the rightmost bar), it can be seen that Group 1 took longer than 

Group 2. This indicates there are implications of the ordering of the algorithm, which 

will be discussed in more detail below. As expected, the ‘tougher’ algorithm A2 took 

more time to break than A1. In Group 2, it took on average 16.2 minutes and in Group 

1, 14.1 minutes. The time needed to break A1 was far less in Group 2, possibly because 
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learning the techniques to break A2 first, which is effectively a superset of A1, is 

enough to break A1. The statistical significance of this will now be discussed. 

Table 3.3 compares the algorithms A1 and A2 in the two groups, with respect to time 

needed (middle column) as well as trials made (rightmost column). For both, average 

(Avg.), standard deviation (SD) and maximum (Max) and minimum (Min) values are 

provided. With respect to average time, it was found that the time needed for breaking 

A1 and A2 in Group 1 was 25.0 minutes, while it was 20.1 minutes in Group 2. A t-test 

yields a result of t=1.89, p<0.1, indicating that the difference between Group 1 and 

Group 2 is indeed statistically significant. 

 

Figure ‎3.4: The average time (in minutes) for ‘attackers’ to break the algorithms. 

Table  ‎3.3: Order of two algorithms A1 and A2. 

Group 
Total time Total trials 

Avg. SD Max Min Avg. SD Max Min 

1 25.0 10.6 57.1 13.5 33.4 20.1 99.0 14.0 

2 20.1 4.3 26.0 10.8 26.1 8.3 40.0 11.0 

Therefore, the answer to Q1 can be seen as negative, by observing that G2 broke A1+A2 

in significantly less time than G1. This result validates the hypothesis H1, since it was 

the case that the order of release had an impact on the time required to break an algo-

rithm. 

With respect to the number of trials, there was found to be a less significant difference. 

The average number of trials was 33.4 for Group 1 and 26.1 for Group 2. However, this 

difference is not statistically significant (t=1.55, p=0.139). The discrepancy between 
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time and trials is interesting; it does not invalidate the claim that order matters but 

shows that it is not always apparent (and, of course, as always, possibly not true). This 

is discussed more at the end of this section. Additionally, Chapter 6 highlights the effect 

of the applied strategy on the knowledge gained, where a strategy with few trials in-

creases the knowledge gained more effectively than others with many trials. 

Looking then at A1 and A2 individually, it is evident that the difference in the total 

time/trials can be attributed particularly to the time/number of trials it takes to break A1. 

Comparing the time and trials to break A1 in the two groups in Table 3.4, a t-test yields 

a result of t=6.33, p<0.001, indicating that the time consumed to break A1 in Group 1 is 

significantly higher than that in Group 2. Also, a statistically significant difference is 

found in the number of trials (t=6.62, p<0.005). 

Table  ‎3.4: Breaking A1 for each group. 

Group 
Total time A1 Total trials A1 

Avg. SD Max Min Avg. SD Max Min 

1 10.9 4.7 24.8 5.5 14.8 6.8 31 6 

2 3.8 1.3 6.5 0.86 4.3 1.87 8 2 

Likewise, Table 3.5 compares A2 in the two groups. A t-test yields a result of t=-1.32, 

p=0.196, indicating that the time consumed to break A2 in Group 2 is not significantly 

higher than that in Group 1. The difference found in number of trials was also not found 

to be a statistically significant (t=-0.86, p=0.399). In other words, the difference for A2 

is less significant than that for A1. This suggests that attackers learn more from A2 than 

from A1, in terms of how much helps them to speed them up in attacking the other algo-

rithm. 

Table  ‎3.5: Breaking A2 for each group. 

Group 
Total time A2 Total trials A2 

Avg. SD Max Min Avg. SD Max Min 

1 14.1 6.2 32.3 7.8 18.6 14.7 74 8 

2 16.2 3.4 21.3 8.9 21.7 7.2 34 9 
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It is worthwhile to note that previous research assumed, based on psychology studies, 

that interacting with a limited set of highly similar exemplars leads to more learning 

than when the instances are distributed and dissimilar [131]. The order results appeared 

to confirm this assumption. The average time of breaking A1 in Group 2 was 3.8 min-

utes, and the maximum time was 6.5 compared to 10.9 minutes and the maximum time 

was 24.8 minutes in Group 1. In contrast, the average time of breaking A2 in Group 2 

was 16.2 minutes, as opposed to 14.1 minutes in Group 1. 

3.5.2 The Influence of Order on Defeating Future Algorithms 

The negative answer to Q1 validates the hypothesis H1; however it is also necessary to 

verify that the difference between G1 and G2 indeed comes from the release order, and 

not from the fact that G2 contains more naturally talented attackers. To research this 

question, the third algorithm A3 was added at the end of each experiment group. This 

provided an opportunity to check if the order of the previous algorithms had any effect 

on the time needed to defeat the subsequent algorithm A3. 

A3 is compared in the two groups in Table 3.6. A t-test yields a result of t=0.14, 

p=0.891, indicating that there is no statistically significant difference between the times 

needed to break A3 in Groups 1 and Group 2. Also, no statistically significant differ-

ence was found in the number of trials (t=1.12, p=0.273). Hence, this points to a posi-

tive answer to Q2, by observing that G1 and G2 take a similar amount of time to break 

the independent algorithm A3. This result validates hypothesis H2. 

Table  ‎3.6: Breaking A3 for each group. 

Group 

Total time A3 Total trials A3 

Avg. SD Max Min Avg. SD Max Min 

1 6.70 4.93 17 0.97 8.8 10.3 49 2 

2 6.5 4.4 16.3 0.56 6.05 4.4 20 2 

One needs to be careful in generalizing this result: it is not claimed here that any inde-

pendent algorithm would require the same amount of time, regardless of the history of 

the attackers. It may be that if A3 was more closely related to A1 and A2, the results 

would be different. In addition, one would expect that aspects which influence the 

memory of the attacker may matter, such as the absolute time it takes to break algo-
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rithms. After all, it is not unlikely that attackers simply forget more of the knowledge 

gained from earlier attacks if the attack is more distantly in the past. Thus, this experi-

ment is regarded as an initial look at this issue. 

3.5.3 The Influence of Order on Defeating All Algorithms 

To complete the discussion, it is necessary to revisit the influence of ordering on the 

time and effort it takes to break all three algorithms. 

The effects of all algorithms in the two groups are compared in Table 3.7. A t-test yields 

a result of t=1.76, p<0.1, indicating that the time needed to break the series of algo-

rithms in Group 1 is significantly higher than in Group 2. The average number of trials 

is 42.3 trials in Group 1 compared to 32.1 trials in Group 2, and a t-test yields a result of 

t=1.78, p<0.1, indicating that the number of trials in Group 1 is statistically significantly 

higher than in Group 2. This is somewhat surprising, since the time to break A3 differs 

little between groups, and it was shown in Section 3.5.1 that, without algorithm A3, the 

difference in the total numbers of trials of the two groups is not statistically different. 

This may suggest that, with respect to the number of trials needed, the validity of the 

hypothesis is at the edge of statistical significance. 

Table  ‎3.7: Breaking all algorithms for each group. 

Group 
Total time Total trials 

Avg. SD Max Min Avg. SD Max Min 

1 31.7 10.8 59.4 17.4 42.3 23 112 16 

2 26.6 7.36 36.1 12.2 32.1 11 56 13 

3.5.4 Attacking Process 

Qualitative data were collected, in the form of surveys, to verify that the attacking proc-

ess was accomplished by structured strategies that are based on the knowledge gained 

rather than complete randomness. In particular, an analysis was carried out of the strate-

gies that were used to defeat the algorithms, the part of the e-mail that the participants 

believed that each algorithm was checking, and the algorithm which the participants 

thought was the toughest to defeat. 
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Most of the participants, (90% or 36 out of 40), used structured strategies to defeat the 

algorithms. In particular, 42% (15 out of 36) used Thesaurus substitution, Perceptive 

substitution and Delete spaces, 33% (12 out of 36) used Random addition, Thesaurus 

substitution, Perceptive substitution and Add spaces, and 25% (9 out of 36) used Per-

ceptive substitution. A further investigation will be carried out for these strategies in 

Chapter 6. 

In terms of identifying the correct part of the e-mail that each algorithm is checking, the 

results in Group 1 were 70% (14 out of 20), 80% (16 out of 20) and 75% (15 out of 20) 

for A1, A2 and A3, respectively. In Group 2, the results were 100% (20 out of 20), 

100% (20 out of 20) and 70% (14 out of 20) for A1, A2 and A3, respectively. Further-

more, it was observed that 80% (16 out of 20) in Group 1 found that A2 was the hardest 

algorithm, whereas 95% (19 out of 20) found that A2 was the hardest algorithm in 

Group 2. 

3.6 Discussion 

For simplicity and consistency purposes, the hypotheses are discussed one by one here-

after, in the same order that they were introduced in the previous sections. 

Hypothesis H1: The time it takes to break a series of algorithms is dependent on the 

order in which the algorithms are released. 

This experimental study provides statistically significant evidence that the release order 

for a set of algorithms can increase the time needed to break a system’s security. In par-

ticular, as shown in Table 3.3, the time required by Group 1 to break the algorithms was 

significantly higher than Group 2. Thus, the main objective of this experiment, namely 

that ‘order matters’ is established. In other words, the result of the experiment does sup-

port hypothesis H1. 

It is important to point out that the value in testing the two conditions (i.e. A1 is de-

ployed before A2, and A2 is deployed before A1) in which the defences are over-

lapping, were necessary to build the hypothesis on solid ground before conducting fur-

ther experiments. Even though several studies in the psychology and education fields 

indicated that learning curves can be considerably increased by interacting with a lim-

ited set of highly similar exemplars [e.g. 47, 98, 131], these studies were only focused 
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on the effectiveness of the presentation order on the categorization models. For this rea-

son, in this experiment, even the trivial assumption (i.e. A2 is deployed before A1) is 

tested to avoid surprises. Hence, the experimental results achieved from these condi-

tions can lead to a further experiment in which the algorithms’ order is, for instance, a 

subset, independent and superset or other orders. 

There was not found to be a statistically significant difference in the number of trials 

when breaking A1 and A2 in Group 1. A possible explanation for this might be that the 

strategy used may impact the knowledge gained, regardless of the number of trials. In 

other words, in a single trial, some strategies may provide more feedback to the attacker 

than others. Since there were several strategies applied by the attackers in this study 

based on the results of the survey, it can be assumed that the released algorithm’s rules 

can be disclosed by some strategies faster than other. A further investigation will be 

undertaken in Chapter 6. 

Since A1 is a simplified version of A2, the experiments also indicate that the success of 

attacks can be delayed by breaking up an algorithm into parts that are released in se-

quence. It would be unwise to generalize that conclusion too quickly, but it is an inter-

esting insight which implies that the reasoning that, by breaking up an algorithm into 

subsets the attacker is ‘taught’ how to attack, is less valid. 

Hypothesis H2: The time taken to defeat a future algorithm does not depend on the or-

der in which earlier algorithms were broken. 

The concatenation of A3 at the end of both Groups 1 and 2 yielded an interesting and 

important result. It showed that, despite the knowledge gained at any point of the re-

lease chain, injecting a non-subset algorithm would force the attacker back to the learn-

ing phase. Accordingly, we carried out an investigation in Chapter 4 into such orders, 

for example, A2, A3 and A1 and these led to more interesting results. Furthermore, it is 

of note that the insight that breaking A3 takes an equal amount of time for both groups 

was used as confirmation that a Markov model is an appropriate formalism for the prob-

lem at hand, as will be shown in Chapter 5. Thus, the result of the experiment does sup-

port hypothesis H2. 

Furthermore, based on the qualitative data, it was found that the participants performed 

the attacking process by employing strategies which used the skills gained. This result 
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seems to be consistent with other researchers in the education field which found that 

using such strategies can help to construct knowledge [62, 97]. Although applying such 

strategies can assist in increasing the learning acquisition process, it might, on the other 

hand, facilitate the detection of the attacker. This will be investigated in more detail in 

Chapter 7. 

A recent study by Mathy and Feldman in the field of education stated in [91] that a dis-

similarity-based presentation order was statistically less effective in terms of learning. 

Therefore, as the aim here in this thesis was to impede the learning process of the at-

tackers, there can be similarities between the attitudes expressed by the order of Group 

1 in the experiment and that described by Mathy and Feldman. Hence, it could con-

ceivably hypothesise that a dissimilarity-based presentation order might be useful to the 

release order strategy of defensive mechanisms. 

The findings in this chapter support previous research into this quantitative security area 

which link a time and an attack phase. For instance, Almasizadeh and Azgomi assumed 

in [5] that a typical attacker needs time to perform the attack phase. They used this as-

sumption as a starting point to develop a model that focuses on evaluating security and 

allows the analysis of the security of systems capable of detecting and responding to 

attacks. 

This combination of findings may provide some support for the conceptual premise of 

quantitative measures for determining operational security by proposing prolonging the 

time of breaking defensive algorithms as long as possible. 

3.7 Summary 

This chapter has presented the control-laboratory experiment conducted to validate the 

hypothesis that the order in which defensive algorithms are released impacts the success 

of the attacker. The rationale behind this hypothesis is based on the observation that 

attackers increase knowledge by learning from their attempted attacks, and on the intui-

tion that the learning experience of attackers can be influenced by the order in which 

defensive algorithms are released. The experiment was undertaken at the School of 

Computing Science at Newcastle University. There were 40 recruited subjects (MSc and 

PhD students). This chapter has included the experimental design, system, measure-

ments and procedures involved. 
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Through a between-subjects experiment with simplified but representative spam filter 

algorithms, it has been possible to show that the order in which defensive algorithms are 

released indeed influences the length of time attacks take. This is a very encouraging 

result for this line of research, indicating that the problem merits study. The experiment 

also provides an indication that breaking up a defensive algorithm can be a beneficial 

tool in prolonging the overall attack time, but this issue needs to be researched in much 

more detail before this conclusion can be drawn more widely. Furthermore, the experi-

ment shows that success in breaking future algorithms does not depend on how that to-

tal amount of knowledge was gained. 

Since the results of this chapter are encouraging, modelling the release order of defen-

sive algorithms is worth to studying. With such a model, it can be possible to estimate 

the time needed to break a given set of algorithms without conducting a time-consuming 

experiment. Therefore, the following chapter will discuss and present the Stochastic 

Petri Net, to model the release order strategy. 



 

78 

 

Chapter 4.  MODELLING OF RELEASE 

ORDER STRATEGIES 

This chapter presents the proposed model of the utilization of several algorithms to act 

as a defence mechanism. As the attack evolves, the algorithm used by the system is 

changed to maintain the security property. The aim of changing the algorithm is to 

maximize the time before the next security breach. This time is based upon the knowl-

edge the attacker gains from previous attempts to breach the system. Although the at-

tacker is subject to limited time, knowledge and rationality, he/she may develop tools 

that aim to decrease the required time and rationality while still requiring the knowledge 

to encode. As attackers learn from their attempts, the order of the algorithms impacts on 

the time taken to break a system (i.e., an attacker needs to defeat a set of algorithms in 

order to break the system), as verified in Chapter 3. 

The model in this chapter is developed based on Stochastic Petri Nets (SPN), which can 

describe the interaction between an attacker, the set of algorithms used by a system, and 

the knowledge gained by the attacker with each attack. This framework allows for a 

theoretical analysis of the release order of a set of algorithms, and for a better estimate 

of the time required to break a defensive algorithm in various algorithm orders. Based 

on the empirical results in Chapter 3, the model is parameterized, evaluated and allows 

us to draw a conclusion in terms of understanding the effectiveness of interleaving in-

dependent algorithms (i.e., with disjointed sets of rules) with dependent algorithms (i.e., 

with overlapping sets of rules), with respect to the time required for an attacker to break 

the algorithms. An early version of this model was published in [12]. 
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The remainder of this chapter is organized as follows. Section 4.1 defines stochastic 

modelling formalisms, and illustrates briefly those that are relevant to this chapter. Sec-

tion 4.2 describes Stochastic Petri Nets, presenting an overview of Stochastic Petri Nets, 

evaluation tools, model assumptions, and model metrics. In Section 4.3, model design 

and performance are described. Section 4.4 offers a case study in order to evaluate the 

performance of the proposed model. The results and analysis are discussed in Section 

4.5. The discussion is presented in Section 4.6. Finally, Section 4.7 summarizes this 

Chapter. 

4.1 Stochastic Model 

The reason for the occurrence of a great many daily events is so complex that they are 

best defined as probabilistic, meaning they can be described as stochastic processes. For 

this reason, these events are modelled using stochastic models which rely on probabilis-

tic theory. A Stochastic Process is a mathematical representation of the system with 

probabilistic or random characteristics. Within such a model, a stochastic process repre-

sents the behaviour of the system over time, given the occurrence of certain events. It 

models the system behaviour as a function of time which could be continuous or dis-

crete [90]. 

In order to assess the interaction between the attackers and the defence mechanism, a 

stochastic model is constructed, which refines and formalizes the abstract model de-

scribed in Chapter 1 (Figure 1.1). Broadly speaking, a stochastic model can be depicted 

as a state transition diagram, which describes all relevant operational system states and 

the possible transitions between these states. To describe time aspects between events, a 

rate matrix is specified. It is usually assumed that both the next event and the time be-

fore this event are random. Hence, the behaviour of the system is a stochastic process. 

The main advantage of this modelling approach is that it captures dynamic aspects of 

system behaviour, which is arguably an applicable approach for modelling the security 

of a system [138]. More details about stochastic modelling formalisms can be found in 

Chapter 2 (Section 2.6). 

To allow the extraction of quantitative and time-related performance results, Stochastic 

Petri Nets (SPNs) are utilized for the model in this chapter and are explained in the fol-

lowing section. 
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4.2 Proposed Stochastic Petri Net (SPN) Model 

In this section, an overview of SPNs, evaluation tools used in modelling the release or-

der of defensive mechanisms, assumptions of the model, and the metrics of the model 

are discussed. 

4.2.1 SPN: An Overview 

Stochastic Petri Nets (SPNs) are built by assigning exponentially distributed random 

functions
17

 to the delays of Petri net transitions. This allows the extraction of quantita-

tive and time-related performance results. The SPN is a technique used to model and 

analyse the dynamic behaviour of parallel and distributed systems such as business 

processes. It is a mathematical modelling technique used to describe a probabilistic na-

ture as a function of a parameter that usually has the meaning of time. It has been used 

as a helpful modelling formalism and analytic tool in many applications. It is used for 

the performance evaluation of distributed and parallel computer systems and has been 

proposed for modelling the qualitative and quantitative analysis of current systems [90]. 

SPNs use timed transitions, and the delays of a transition firing are a random variable 

with an exponential distribution λi. This means that the transition is associated with a 

random firing delay, of which the probability density functions are negative exponen-

tials with specific rates. In this case, the distribution of a random variable Xi of the firing 

time of a transition is given by the equation: FXi (X) =1 e
λ.x

, and the average time of 

firing the transition Ti is equal to 1/ λi. This allows the mapping of an SPN system onto 

continuous-time Markov chains (CTMC) [3] in order to analyse and compute interesting 

performance measures such as the probability of transition firing, the probability of be-

ing in a subset of markings, or the mean number of tokens. 

The SPN is defined formally in [90] as a 4-tuple, SPN = (P, T, F, λ) where: 

1. P = {p1, p2, ..., pm} is a finite set of places. 

2. T = {t1, t2, ..., tn} is a finite set of transitions. 

3. F  (P × T) ∪ (T × P) is a set of flow relations. 

4. λ = {λ1, λ2, ..., λn} is a finite delay associated with each transition.  

                                                 
17  The exponential distribution is very widely used in performance modelling and denotes the probability distribution 

that describes the time between events that occur continuously and independently at a constant average rate [138]. 
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The relationships between places and transitions are P ∩ T =  and P ∪ T ≠ . A place 

p is called an input place of transition t if, and only if, there exists a direct arc from p to 

t. In contrast, place p is called an output place of transition t only if there exists a direct 

arc from t to p. A place p contains zero or more tokens at any time, which are drawn as 

black dots. The initial distribution of tokens among places is called the initial marking 

of the Petri net. This marking represents a state in the Petri net. Each transition has a 

specific firing delay, which specifies the amount of time that must elapse before the 

transition can fire. The firing rate λi is associated with the timed transition ti of the Petri 

net. 

Since, as mentioned previously, SPNs are a modelling formalism that account for the 

randomness of event occurrence times, competition for resources, simultaneous pro-

gress of independent processes and synchronization of multiple flows make them suit-

able for representing the security status of a system in terms of attacker behaviour. As 

an abstract modelling formalism, SPNs do not directly refer to any specific aspect of the 

security domain, but expect the modeller to provide the meaning of places, tokens and 

transitions. In the context of the security phenomena that are highlighted in this thesis, 

the classical interpretation of Petri Net elements is as follows: 

 Places represent a set of algorithms that are not yet deployed, a deployed 

algorithm, a broken algorithm, an attacker and an attacker’s knowledge. 

 Tokens inside a place (the marking of the place) model the number of algo-

rithms, the attacker, and the attacker’s knowledge gained after breaking an 

algorithm. Tokens are anonymous entities that do not carry any qualifying 

information; thus, the security of the system or the algorithms entity they 

represent changes as they move from one place to another. Tokens are not 

always graphically depicted, apart from those cases in which they are nu-

merous. 

 Transitions represent the system status change. There are two fundamental 

transitions in the proposed model in this chapter: changing the broken algo-

rithm with a new one by the system at rate “μ”, and making the attack by the 

attacker at rate “λ”. For the former, the rate of the transition μ represents the 

speed at which the system reacts. For the latter, the rate of the transition λ 

represents the speed of the attacks. Furthermore, there is an immediate tran-
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sition (i.e. not a timed transition) for moving the token from the broken al-

gorithm to both the attacker’s knowledge and the attacker.  

 Arcs (arrows linking places to transitions and transitions to places) repre-

sent the flow of system transformations, from attacker to a new algorithm, 

from a new algorithm to a broken algorithm, from a broken algorithm to at-

tacker’s knowledge, and from a broken algorithm to attacker. 

In order to generate and evaluate the proposed SPN model, an appropriate stochastic 

analysis tool is chosen. More details about the chosen evaluation tool will be given in 

the following sub-section. 

4.2.2 Evaluation Tools 

Given the SPN model, a stochastic analysis tool is required to generate, solve and 

evaluate this model. Since there are several stochastic analysis tools, such as Stochastic 

Petri Net Package (SPNP) [38], Möbius [45] and Platform Independent Petri net Editor 

(PIPE) [46], an SPNP tool was chosen in this study. Moreover, although a further tool 

might be suitable to be applied to building, solving and evaluating the proposed SPN 

model in this study, the SPNP software tool was found to be more suitable due to its 

features such as textual and graphical input methods. 

The SPNP tool creates files of a standard structure using a CSPL (C-based SPN lan-

guage) specific to SPNP. This CSPL is a simple input language that is based on C pro-

gramming language and which represents the model textually with its state variables, 

actions, reward variables and solving commands in a single file. For ease of reference, 

this is here called the SPNP file. This SPNP file should contain six basis functions [38], 

each of which is designed to carry out one or several tasks by using a number of rele-

vant functions. These six functions, used in the mapping relations, are described as fol-

lows: 

- option(): This function is used to carry out certain tasks by calling on some 

relevant function which affects the way in which the Stochastic Reward Net 

(SRN) is described and solved. 

- net(): This function is used to define an SRN. The following functions are 

called on by this function: 



Chapter 4 – Modelling of Release Order Strategies 

 

83 

 

 place() and init(): The former is used to define a place with a name p; 

and the latter defines the initial number of tokens in place p to be n. 

 imm(): This function defines the time transition. 

 rateval() and probval(): The first of these functions defines the firing 

rate of the timed transition t and the firing weight or probability of an 

immediate transition t as a constant value val. The function probval() 

needs to be used only if the value of the firing weight of the immedi-

ate transition is different from the default value 1.0. 

 priority(): This defines the priority of transition. 

- assert(): This is a Boolean marking function used to check the validity of 

each newly found marking. 

- ac_init(): This function is used to call a set of functions before starting the 

construction of the reach ability graph in order to output information about 

the model to the “.out” file of the SPNP. 

- ac_reach(): This function is used to call a set of functions after the con-

struction of the reach ability graph is completed in order to output informa-

tion about it to the “.out′” file of the SPNP. 

- ac_final(): This function calls a set of functions designed for the user to 

flexibly define outputs; for example, a function to solve the Markov chain 

numerically at time t or for steady state analysis, and a function to output 

data about the Markov chain and its solution. 

In the interests of clarifying and simplifying the application of measurements, schedule 

and functions of the chosen SPNP tool, the following assumptions have been made. 

4.2.3 Model Assumptions 

The design of the proposed model is based on a set of assumptions related to the system, 

attack, and attackers. These assumptions are as follows: 

 The distribution times for replacing an algorithm (i.e. when the released al-

gorithm is broken, it is replaced by a new algorithm) and attack attempt to 

break the algorithm are assumed to be exponentially distributed with the 

rates of μ and λ, respectively. The assumption of exponential distribution 
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can be easily relaxed by defining other time distributions and evaluating the 

model using SPNP version 6.0 [39]. 

 The system enters a security failure state when all algorithms are broken. 

 There is only one attack against the system. The reason behind this is to fo-

cus on the modelling process of the interactions between the attacker and 

the system. 

 Only scenarios of attacks that eventually lead to breaking all algorithms are 

considered, and not the scenarios which may be aborted during the attack 

process. Therefore, in the model, there is not a place that allows the attacker 

to interrupt an ongoing attack. 

To represent key properties of the proposed model, a metric over the proposed model 

can be defined. This metric is discussed in the following sub-section. 

4.2.4 Model Metrics 

Since the main concern in this study is the security of the interactive defensive mecha-

nisms, a metric is required that encapsulates this security concern and the relationships 

between this concern and the time (as the attacker evolves in the proposed SPN model). 

Hence, a particularly meaningful metric which is most suitable for this study is the 

Mean Time to Security Failure (MTTSF) [2]. This metric represents the average time 

elapsed to reach a security failure state. Accordingly, a higher MTTSF is desirable. For 

this approach, a security failure occurs when all algorithms have been broken, and the 

attacker can misuse the system resources. 

4.3 Model Design and Performance 

The proposed SPN model is designed and evaluated by using SPNP [38] to describe the 

system behaviour under attack with the objective of assessing the MTTSF of the system. 

Using the graphical representation feature of the SPNP tool, as noted previously, it is 

possible to represent several algorithms, which vary in terms of rules, the order of the 

released algorithm, an attacker and the knowledge gained by the attacker. This graphical 

representation of all elements of the model helps in understanding the modelled system. 
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Therefore, Figure 4.1 presents a graphical illustration of the proposed SPN model, and 

Table 4.1 identifies the used symbols in the proposed SPN model. 

 

Figure ‎4.1: A graphical illustration of the proposed SPN model. 

Table  ‎4.1: Identifying the Symbols. 

Symbol Meaning 

Sup_Algs Superset algorithm 

Sub_Algs Subset algorithm 

Ind_Algs Independent algorithm 

Rel_Sup_Algs Transition to release a super algorithm 

Rel_Sub_Algs Transition to release a subset algorithm 

Rel_Ind_Algs Transition to release an independent algorithm 

Released_Algo Released algorithm 

Break_Released_Algo Transition to break the released algorithm 

Broken_Algo Broken algorithm 

T_Attacker_Knowledge Transition to increase attacker’s knowledge 

Attacker_Knowledge Knowledge gained by the attacker 
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The explanation of places and transitions utilised in the proposed model is in the follow-

ing. The places Sup_Algs, Sub_Algs and Ind_Algs represent a set of defence algorithms. 

Specifically, Sup_Algs and Sub_Algs represent the overlapping type (i.e. Sup_Algs ⊃ 

Sub_Algs as described previously in Chapter 1 (Section 1.1)), while Ind_Algs represents 

a non-overlapping algorithm type (i.e. independent algorithm). This means that A1 is a 

simplified version of A2, whereas A3 does not share any rule with A1 or A2. In addi-

tion, there are three timed transitions: Rel_Sup_Algs, Rel_Sub_Algs, Rel_Ind_Algs and 

Break_Released_Algo. As usual, the transition time is non-zero and follows a probabil-

ity distribution, e.g., the exponential distribution. The first three transitions are associ-

ated with an enabling function in each transition that guards the firing of the transition 

depending on the Released_Algo state. This enabling function avoids releasing a new 

algorithm while the current algorithm remains unbroken, and can control the releasing 

order of algorithms. When an algorithm released in Released_Algo place is broken, the 

selected algorithm will be enabled to deploy a new token (i.e. a new algorithm).  

The construction of the model takes the system’s lifecycle into account. Initially, a set 

of algorithms is placed in Sup_Algs, Sub_Algs and Ind_Algs places as tokens. Each al-

gorithm has a weight reflecting the patterns that can be exploited when broken. In par-

ticular, there are overlapping rules between subset algorithms and superset algorithms, 

whereas independent algorithms have different rules, reflecting various weights between 

them and the dependent algorithms. The selection of a released algorithm is modelled 

by firing one of the transitions Rel_Sup_Algs, Rel_Sub_Algs or Rel_Ind_Algs. Once an 

algorithm is selected, a token at a time (if it exists) is moved from an associated place to 

the Released_Algo place.  

The attacker now attempts to break the deployed algorithm at an initial rate. Once the 

deployed algorithm is broken, it is moved to the Broken_Algo place, which is modelled 

by the transition of Break_Released_Algo, the firing of which will move a token into 

place Broken_Algo. Then, the T_Attacker_Knowledge transition immediately translates 

this token to both the Attacker_Kowledge place, which increases the attacker’s knowl-

edge, and the Attacker place, which in turn will prepare to break the next deployed algo-

rithm. Now, the attacker attempts to break the new deployed algorithm, which is re-

leased after breaking the previous algorithm by firing one of the transitions 

Rel_Sup_Algs, Rel_Sub_Algs or Rel_Ind_Algs. Once the released algorithm is defeated, 

the next one is released, and so on and so forth. 
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It is important to note that the firing rate λ of the attacking process is controlled by the 

Break_Released_Algo transition, in order to have an effect on the firing rate (i.e. Attack 

Rate λ) in defeating the released algorithm through a sequence of trials.  

The time taken for an attacker to cause a transition from one state to another depends on 

two significant factors: the attacker’s knowledge and the robustness of the system. 

Therefore, it is considered in this thesis that the time taken to break an algorithm is cal-

culated by [12]: 

                                              Ti = (SL*RLi)                                                           1                                                          

where Ti is the time taken to break algorithm i, SL is the skill level of the attacker that 

can be derived by normal distribution intervals suggested in [112] and RL is the robust-

ness level of the algorithm. The attack rate λ is simply calculated by [12]: 

                                                           λ = 1/Ti                                                                    2                                      

Finally, the system is considered as experiencing a security failure if the security failure 

condition described in Section 4.2.4 is met, which is when all algorithms have been 

broken. This is modelled by making the system enter an absorbing state when the condi-

tion is met. Specifically, the absorbing state is represented in Figure 4.1 when all algo-

rithm tokens are transferred to the Attacker_Knowledge place. 

As stated earlier, this model has been implemented into an SPNP tool [38], which sup-

ports the adopted modelling formalism and allows for graphical model definition and 

for solution via simulation. 

4.3.1 Performance Metrics Calculation 

As mentioned previously in Section 4.2.2, a MTTSF is chosen in this study in the inter-

ests of achieving the security metric. An MTTSF can be obtained using the concept of 

mean time to absorption (MTTA) in the SPN model. In particular, a reward assignment 

is used so that a reward of 1 is assigned to all states except absorbing states, which is 

done with the following reward assignment function: if mark (Released_Algo) = 1 (i.e. 

an algorithm is released) then return 1, else return 0. As also stated previously, the ab-

sorbing state occurs when all tokens of the algorithms are moved to the At-

tacker_Knowledge place. The MTTSF of the system is then simply the expected accu-

mulated reward until absorption E[Y (∞)], defined as follows: 
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where S denotes the set of all states except the absorbing ones, ri (reward) is 1 for those 

states and Pi (t) is the probability of state i at time t. 

4.3.2 Further Details for the Used Functions 

In the proposed SPN model, several tasks are mapped to various functions defined in 

the C functions of the CSPL file. These functions are Guard, Distribution and Reward 

functions. There are three guard functions in order to control the release order of the 

algorithms. Specifically, in the transition of each type of algorithm (i.e. subset algo-

rithms, superset algorithms and independent algorithms) as shown in Figure 4.1, there is 

a guard function. Based on the order that is needed for evaluation, the guard function of 

each transition will be defined. For instance, if the order that will be evaluated is a su-

perset, subset and independent algorithm, then the guard functions for the superset, sub-

set and independent algorithm are shown in Figures 4.2, 4.3, and 4.4, respectively. 

 

Figure ‎4.2: A Guard Function for Superset Algorithm. 

 

Figure ‎4.3: A Guard Function for Subset Algorithm. 

 

Figure ‎4.4: A Guard Function for Independent Algorithm. 

if (mark("Released_Algo")==1 || mark("Released_Algo")==0 && 

mark("Sub_Algs")==1)  

return (0); 

else if (mark("Sup_Algs")==0 && mark("Released_Algo")==0 && 

mark("Sub_Algs")==0)  

return (1); 

if (mark("Sup_Algs")==1 || mark("Sup_Algs")==0 && 

mark("Released_Algo")==1 )  

return (0); 

else if (mark("Sup_Algs")==0 && mark("Released_Algo")==0)  

return (1); 

if (mark("Released_Algo")==1)  

return (0); 

else 

return (1); 
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As shown in the above figures, the guard function of superset algorithms allows releas-

ing a super algorithm if there is not yet a released algorithm. In order to release a subset 

algorithm, the guard of this algorithm verifies, if there is no released algorithm whether 

a super algorithm or other types, then a subset algorithm is allowed to be released; oth-

erwise, it is not. Finally, while there is not a released superset or subset algorithm, an 

independent algorithm is allowed to be released. 

Moreover, in order to control the attack rate λ for each released algorithm, a distribution 

function is developed in the Break_Released_Algo transition. The attack rate of an at-

tacker is evaluated by using the distribution function that is presented in Figure 4.5. 

That is, while the number of tokens in the Attaker_Kowledge place is less than 1 or 

equal to 0, then the first released algorithm attack rate is returned; if not, then while the 

Attaker_Kowledge place is less than 2 or equal to 1, then the second released algorithm 

attack rate is returned; otherwise, if the Attaker_Kowledge place is less than 3 or equal 

to 2, then the third released algorithm attack rate is returned. 

 

 

In respect to reward functions, there are two reward functions in order to analyse both 

the security and the amount of knowledge that an attacker has achieved during the at-

tacking process. The security of a system is evaluated by using the reward function that 

is depicted in Figure 4.6. As such, while there is a released defensive algorithm, 1 is 

returned, indicating that the algorithm is not yet broken. However, in case the released 

algorithm is broken, 0 is returned. With regards to the amount of knowledge achieved 

by the attacker, this is analysed by using a reward function that is shown in Figure 4.7. 

In particular, Expected reward rate at time t function, which its experiment parameters 

are start value, stop value and increment value, is used to analyse the reward amount at 

time t. This time represents the attacker’s trial in this model. Therefore, with each attack 

if(mark("Attaker_Knowledge")==0 || mark("Attaker_Knowledge")<1) return λ 

for the first released algorithm; 

else if(mark("Attaker_Knowledge")==1 || mark("Attaker_Knowledge")<2) re-

turn λ for the second released algorithm; 

else if(mark("Attaker_Knowledge")==2 || mark("Attaker_Knowledge")<3) re-

turn λ for the third released algorithm; 

Figure ‎4.5: A Distribution Function for controlling the Attack Rate λ 
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attempt, the reward function returns the amount of knowledge that the attacker has 

gained. For example, when analysing the reward amount for 10 trials, then the experi-

ment parameters of Expected reward rate at time t function are 1 for the start value, 10 

for the stop value and 1 for the increment value. 

 

Figure ‎4.6: A Reward Function for Evaluating the Security of a System. 

 

Figure ‎4.7: A Reward Function for Evaluating Knowledge Gained by the Attacker. 

Given that the developed model is evaluated by means of a case study that is based on 

the previous experiment presented in Chapter 3, this case study will be discussed in the 

following section. 

4.4 Case Study 

This section presents a case study to evaluate the performance of the proposed model 

discussed in the previous section. The purpose of this evaluation is to investigate the 

degree to which the proposed model can achieve its objectives. Furthermore, it aims to 

explore and discuss any areas that need to be enhanced. The chosen case study is a 

spam-filter system. Since the previous experiment shown in Chapter 3 was conducted 

using a form of spam-filter system, the results of that experiment are utilised in this case 

study. More importantly, the model can be parameterised based on empirical results. 

Therefore, all the following numerical values are the results achieved from that experi-

ment. 

The following is a brief explanation of the experiment, which involved subjects acting 

as potential attackers carrying out attacks on a spam filter system. By using simplified 

but representative spam filter algorithms, the study was able to show that the order in 

which defensive algorithms are released influences the length of time attacks take. 

There were three algorithms A1, A2 and A3 acting as a set of defence mechanisms, 

such that A1 was a subset of A2, while A3 was independent of both A1 and A2. The 

attackers were divided into two groups, Group 1 and Group 2; the algorithms in Group 

return (mark("Attaker_Knowledge")); 

if (mark("Released_Algo")==1) {return 1;} 

else {return 0;} 
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1 were released in the order A1, A2 and A3, while the release order in Group 2 was A2, 

A1 and A3. Each attacker was asked to break the algorithms sequentially, and the time 

taken to break each algorithm was recorded, as well as the trials. The average time to 

break all algorithms for each group is shown previously in Table 3.7. The best order to 

maximize the time taken to break all algorithms by the attackers was in Group 1 (i.e. 

A1, A2 and A3). 

Since the time taken to break each algorithm is known, the fire rate λ of 

Brak_Released_Algo transition for each algorithm is derived from Equation (2) as 

shown in Table 4.2. Furthermore, the default fire rate of releasing defence algorithms 

(i.e. Rel_Sup_Algs, Rel_Sub_Algs and Rel_Ind_Algs transitions) is μ1= μ2 = μ3 = 1, re-

spectively. This means that the system reacts through 1 time unite in order to replace the 

broken algorithm with another algorithm. 

Table  ‎4.2: Fire rate of Break_Released_Algo transition. 

Order of the algorithms 
Fire rate 

A1 A2 A3 

A1, A2 and A3 0.0917 0.0709 0.1492 

A2, A1 and A3 0.2631 0.0617 0.1538 

In addition to the aim of the previous experiment – investigating the influence of the 

release order of defensive algorithms – this case study aims to analyse the interleaving 

of independent algorithms with dependent ones. Hence, the release process of algo-

rithms is thus: firstly, the Rel_Sub_Algs transition is fired (i.e. for releasing A1); once 

this algorithm is broken, the Rel_Ind_Algs transition is fired (i.e. for releasing A3); fi-

nally, after breaking this algorithm, the Rel_Sup_Algs transition is fired (i.e. for releas-

ing A2). So, once this algorithm is broken, the MTTSF is calculated. 

More importantly, the fire rate of algorithm A2 is taken from Group 2 (as shown in Ta-

ble 4.2), since the release order of the algorithm in Group 2 was A2, A1 and A3. There-

fore, it is assumed that releasing the independent algorithm among dependent algo-

rithms can impair the learning process of the attackers. Even though A1 was broken and 

the attacker’s knowledge was increased, breaking A2 after A3 forced the attacker back 

to the beginning of the learning phase. This additional release order allows a compari-

son with that of the best order in the previous experiment (i.e. A1, A2 and A3). 
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This order of interleaving of independent algorithms with dependent ones can be ap-

plied also for this order: A2, A3 and A1. In this case study, however, the order namely 

A1, A3 and A2 is only analysed. 

4.5 Results and Analysis 

This section presents the numerical data obtained from evaluating the SPN model and 

discusses the physical meaning. Firstly, the results achieved in the previous experiment 

are replicated based on the MTTSF metric. Moreover, the effect of the algorithm orders 

on the MTTSF is examined for both the first order of the previous experiment (i.e. A1, 

A2, and A3) and the proposed order in this section (i.e. A1, A3 and A2). Finally, the 

progress of the attacker’s knowledge acquisition process is shown for both orders. 

In the following figures, “E. Order” represents the experiment-based order, while “M. 

Order” represents the model-based order (i.e. A1, A3 and A2). Moreover, “E. Attacker 

Knowledge Progress” represents the attacker’s knowledge progress based on the ex-

periment order, while “M. Attacker Knowledge Progress” represents the attacker’s 

knowledge progress based on the proposed model order. 

4.5.1 Replicating the Results of Release Order 

The results achieved in the previous chapter are replicated by the proposed SPN model 

based on the fire rates that are presented in Table 4.2, with the purpose of demonstrating 

the performance of the proposed model. Figure 4.8 demonstrates the influence of the 

algorithm order on the time taken to break all algorithms by mode-based generated re-

sults. 
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Figure ‎4.8: Replicating the results of release order 
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A comparison of the results of the proposed SPN model solution with those obtained via 

the real experiment reveals that in the proposed model the MTTSF for Group 1 is about 

31.1 minutes, while it is about 25.8 minutes for Group 2. These results indicate that the 

time taken to break all algorithms in Group 1 is extended longer than in Group 2, as 

reported from experimental results in the previous chapter. It is noticeable that the esti-

mation of 80 as the number of trials for the Expected reward rate at time t function is 

found to be suitable empirically. 

4.5.2 Algorithms Order vs. MTTSF 

The implication of the algorithm order, which is the E. Order and M. Order, on the 

MTTSF is shown in Figure 4.9, where it can be observed that the proposed order (i.e. 

model-based order) achieves a higher MTTSF than the experiment order. In particular, 

the amount of time needed for breaking the proposed order is almost 35 minutes. On the 

other hand, the time needed for breaking the experiment-based order is approximately 

31 minutes. 

Although the order of Group 1 (i.e. A1, A2 and A3) in the previous experiment intro-

duces an approach to, for instance, break one algorithm into a number of algorithms 

while keeping a level of security, the proposed order in this thesis can improve the secu-

rity of this order, as shown in Figure 4.9. That is, each subset algorithm obtained from 

the main algorithm can be followed by an independent algorithm. Even though an at-

tacker may observe this release strategy, he needs to return to the learning phase with 

each independent algorithm. 
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Figure ‎4.9: MTTSF vs. Algorithm Orders. 
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On the other hand, the order of Group 2 in the experiment (i.e. A2, A1 and A3) might 

not be improved by the proposed order, as A2 is the superset and A1 the subset algo-

rithm. However, interleaving independent algorithms might lead to increasing the time 

taken to break the subset algorithm, as in E. Order. 

4.5.3 Attacker’s Knowledge Acquisition Process 

The estimation of the attacker’s knowledge acquisition progress for breaking all algo-

rithms is shown in Figure 4.10, which is obtained by estimating the time for the token of 

the broken algorithm to arrive at the Attacker_Knowledge place (i.e. the absorbing 

state). This estimation has been obtained by using the Expected reward rate at time t 

function that uses the reward function that is shown in Figure 4.7 and 80 as the stop 

value for its experiment parameters. 

As shown in Figure 4.10, the process of knowledge acquisition in the proposed order 

(i.e. M. Attacker Knowledge Progress) seems extended in comparison to the experiment 

order (i.e. E. Attacker Knowledge Progress). Although the Group 1 order in the previ-

ous experiment proved empirically that breaking up an algorithm in subsets does not 

necessarily ‘teach’ the attacker how to attack, impairing the learning process with an 

independent algorithm among dependent algorithms can be a strategy to extend the 

breaking time of a system. Moreover, the knowledge acquisition progress of the attack-

ers with the Group 2 order of the previous experiment might be affected by the pro-

posed order.  
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Figure ‎4.10: Attacker’s Knowledge Acquisition Process. 
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4.6 Discussion 

The present study was designed to model the application of set of algorithms to act as a 

defensive mechanism. The Stochastic Petri Nets were used for the formalization. Using 

the developed model, in addition to the proposed release order of algorithms in the pre-

vious experiment, the investigation of the effect of algorithms with disjointed rule sets 

interleaved with algorithms which have overlapping rules is accomplished. 

The results of this developed model replicate the time taken to break all algorithms for 

both groups by using a MTTSF metric. This indicates that the metric used is appropriate 

for the proposed model, which is defined by the reward function illustrated in Figure 

4.6. The results obtained by evaluating the proposed model through empirical results are 

very encouraging. 

Another important finding was that such an interleaving of independent algorithms with 

dependent ones can maximise the time required to break a defence mechanism. In par-

ticular, as shown in Figure 4.9, the time that was required to break the system was ex-

tended by the model-based order compared to the order of Group 1 in the previous ex-

periment. Although the previous experiment highlighted the interesting insight that the 

success of attacks can be delayed by breaking up an algorithm in parts that are released 

in sequence, this insight can be improved by the proposed order in this case study. 

In this study, the methodology of presenting the attacker’s knowledge acquisition proc-

ess, as shown in Figure 4.10, yielded an interesting prediction of the importance of the 

release order of the algorithm. Specifically, the learning progress of the attackers in the 

Group 1’s order in the previous study was affected by the proposed order in this case 

study. A study in the field of psychology, based on empirical results, stated that when 

the instances are distributed and dissimilar, this leads to a reduction in the learning 

process [131]. The results of the proposed order can confirm this assumption. Therefore, 

a possible explanation for this study’s results may be the enforcement of an attacker to 

return to the learning phase with each independent algorithm. These findings suggest 

that the proposed order appears promising in terms of extending the length of the learn-

ing acquisition process as much as possible. 

Nevertheless, the proposed order (i.e. model-based order) might not be recommended to 

such systems as Group 1’s order due to the following facts: 1) Deploying/releasing a 
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defensive mechanism has a cost. For instance, recently, a study by Caliendo et al. calcu-

lated in [33] the cost of deploying a spam filter within a particular organisation, and 

found that the cost is circa fifteen thousand Euros for the first year. 2) Most companies 

have limited resources, and therefore a limited number of defensive mechanisms they 

can deploy over a given period of time. Therefore, in this context, Group 1’s order 

seems economically better than the proposed order, where given a “complex” mecha-

nism, it can generate (for a low cost) many more subsets of this mechanism then can be 

released according to Group 1’s order. 

Furthermore, Jonsson and Olovsson suggested a hypothesis in [70] that the attacking 

process can be split into three phases: the learning phase, the standard attack phase, and 

the innovative attack phase. The probability for successful attacks during the learning 

and innovative phases is expected to be small. The proposed order provides further sup-

port for this hypothesis in terms of the learning phase, as the learning process is as-

sumed in this study to be impaired with an independent algorithm among dependent 

algorithms. 

It is worthy to note that the interaction between the attacker and the defender in the pro-

posed SPN model appears like a game between two players. For instance, Lye and 

Wing modelled in [88] the interaction between an attacker and a defender as a two-

player stochastic game. Their model could compute the best-response strategies for the 

players and then use the results by the administrator to enhance the security of a system. 

However, it typically does not consider maximizing the duration of the game as the ob-

jective, but aim for Nash or other equilibria. 

4.7 Summary 

This chapter has proposed a model of a set of defensive algorithms approach, based on 

the assumption that a single defence algorithm has a number of drawbacks due to the 

attacker learning as time progresses. The proposed model is constructed by using Sto-

chastic Petri Nets (SPN), which can describe the interaction between an attacker, the set 

of algorithms used by a system, and the knowledge gained by an attacker with each at-

tack. The purpose of this framework was to facilitate theoretical analysis of the release 

order of a set of algorithms approach. 
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Due to several important features, a Stochastic Petri Net Package (SPNP) is utilised as a 

software tool to implement the proposed model. Based on the empirical results achieved 

from the previous experiment conducted in Chapter 3, the proposed model is parameter-

ized and evaluated. The model allows the results obtained previously in Chapter 3 to be 

replicated. Not only this, but it also demonstrates and predicts the consequences of in-

troducing algorithms that are not a subset of a set of used algorithms, which forces the 

attacker back to the beginning of the learning phase. 

The study has gone some way towards enhancing our understanding of the interleaving 

of independent algorithms with dependent ones, which was a model-based order. De-

spite this model’s apparent cost efficiency, this study offers some insight into impeding 

the learning acquisition process of the attacker. 

Studying and developing an optimisation algorithm is important. As shown in Chapter 

3, a statistically significant impact on the time attackers take to break all algorithms, 

while breaking A3 took an equal amount of time for both groups. This can be used as 

confirmation that a Markov model is an appropriate formalism for the problem at hand. 

Therefore, the following chapter will entail discussion of the use of a Markov model 

and optimisation of the release order of a set of defensive algorithms. 
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Chapter 5.  OPTIMAL RELEASE ORDER 

STRATEGIES 

This chapter defines an optimal strategy approach that has been accomplished for the 

release order of defensive algorithms. Specifically, since the order in which spam filter 

algorithms are released has a statistically significant impact on the time attackers take to 

break all algorithms, as shown in Chapter 3, this problem is modelled as an optimisation 

problem
18

 using a stochastic model in this chapter. In order to get a model that has, on 

one hand, enough complexity to capture the complexity of the phenomenon in the prob-

lem and, on the other hand, enough structure and simplicity, a continuous-time Markov 

Decision Process (CTMDP) is found to be a suitable tool for this optimisation problem. 

This CTMDP allows determining an optimal strategy for the model. The objective of 

this optimisation algorithm will be the release order of algorithms so as to maximise the 

time until the attackers break through all algorithms available. For this, when maximis-

ing the mean time to break algorithms, well-known iterative algorithms [141] can be 

applied. Therefore, this chapter provides a version of such an iterative algorithm that 

exploits the absorbing nature of the underlying Markov chain and avoids generating 

(and storing) the whole Markov chain. An early version of this optimisation algorithm 

was published in [13]. 

The remainder of this chapter is structured as follows. Section 5.1 provides a prelimi-

nary outline of the approach to the derivation of optimal release strategies and estab-

lishes a design for how the continuous-time Markov Decision Process is applied. Sec-

tion 5.2 describes the proposed optimisation algorithm. An application example is pro-

                                                 
18 Generally, an optimisation problem seeks values of the variables that lead to an optimal value of the function that is 

to be optimised. 
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vided in Section 5.3. The discussion is presented in Section 5.4. Section 5.5 summarises 

the chapter with an overall discussion. 

5.1 Deriving Optimal Release Order Strategy 

The release order of defensive mechanisms has indeed influenced the time attackers 

take to break them, as verified in Chapter 3. Particularly, the time required by Group 1 

to break the algorithms was significantly higher than Group 2. Moreover, the concatena-

tion of Algorithm 3 (i.e. A3) at the end of both Group 1 and Group 2 yielded an interest-

ing result, namely that the time taken to break A3 is not significant; rather, the signifi-

cance lies with which algorithms were broken. This result therefore can indicate that 

injecting a significantly different algorithm forces the attackers back to the learning 

phase. Whether this can be extended to more similar algorithms remains to be seen. 

Thus, optimising the release order of defensive algorithms is a problem worthy of study. 

This optimisation is a procedure used to make a system as effective as possible in terms 

of maximising the time taken by attackers to break the system. To study and determine 

the optimal release strategies, a stochastic model that takes into account the important 

aspects of the problem is used in this study. 

Broadly, a stochastic model is a model that involves probability, or randomness, associ-

ated with time and events. When using such a model, a stochastic process represents the 

behaviour of the system over time, given the occurrence of certain events. A stochastic 

model can be depicted as a state transition diagram, which describes all relevant opera-

tional system states and the possible transitions between these states. To describe time 

aspects between events, a rate matrix is specified. One usually assumes that the event 

that will occur next in the system, as well as the time before this event, is random. 

Hence, the behaviour of the system is a stochastic process. The main advantage of this 

modelling approach is that it captures dynamic aspects of system behaviour, which it 

can be argued is an applicable approach for modelling the security of a system [138]. 

Such a stochastic process is known as a Markov process. 

A Markov process is a special type of stochastic process in which the conditional prob-

ability distribution function satisfies the Markov property or the Memoryless property of 

a Markov chain. This Memoryless property means that the past history of a random 

variable that is exponentially distributed plays no role in predicting its future. For in-
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stance, when X is the random variable that denotes the length of time that a person 

spends in a service and X is exponentially distributed, then the probability that the per-

son in service finishes at some future time t is independent of how long that person has 

already been in service. Accordingly, as observed in Chapter 3, the concatenation of 

Algorithm 3 at the end of both groups (i.e. Groups 1 and 2) demonstrated the memory-

less property of the Markov model. 

Therefore, the optimisation problem is modelled in this study as a Markov Decision 

Process [24] with a state space S that simply keeps track of which algorithms are bro-

ken. This allows determining an optimal strategy from the model. More details regard-

ing the utilisation of Markov Decision Process are given in the next section. 

5.1.1 Modelling the Release Order Strategy 

A Markov Decision Process (MDP) is a widely unified framework for modelling and 

describing sequential decision making problems that arise in engineering, economics, 

operations research and computer science [24]. MDP is also useful for studying a wide 

range of optimisation problems. There are four principal components in an MDP model: 

a state space, an action space, the effects of the actions and the immediate cost incurred 

by the actions. A decision process is characterized by the fact that in each state there is a 

choice to be made between possible actions. Each action takes the process to a new 

state. 

Since time is an essential factor in the problem at hand, a continuous-time Markov De-

cision Process (CTMDP) is introduced. As the released algorithm is broken and knowl-

edge regarding its rules is gained by the attacker, the system responds to this by replac-

ing the defeated algorithm with another one. The system does not make the decision 

about replacing actions blindly, but takes into account past, current, and possible future 

states of the attackers and also possible rewards that are connected with the actions. The 

goal of the system in this study is to maximise the time taken by the attacker to break all 

algorithms.  

Formally, CTMDP is a set P = {S, A, λ, R}, where: 

1. S is a set of system states si  S. 

2. A is a set of possible actions ai  A in any state si  S. 
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3. λ is a transition delay λa associated with any actions ai  A, and is also used 

if the action results in a transition from state i to j. 

4. R is a set of rewards functions rij dependent on the state si and the action aij. 

States in the MDP must reflect the amount of knowledge gained by the attacker. Here 

the very natural assumption is made that if a given set of algorithms has been broken, 

the time it takes to break future algorithms is the same regardless of the order in which 

the earlier algorithms were broken. (The experiments showed this a valid assumption, 

since the time to break A3 was not influenced by the order in which the earlier ones 

were broken). Then, the state is completely specified by maintaining which algorithms 

are broken. If G is the set of all algorithms (with |G| elements), then a state s ∈ S is a 

tuple s = (g1,g2,…,g|G|), where gi = 0 if the i-th algorithm has not been broken yet, gi = 1 

if the i-th algorithm has been broken. 

The actions in a state represent the selection of a next algorithm to be released. Thus, 

there is an action corresponding to any algorithm that is not yet broken; that is, there are 

as many possible actions in state si ∈ S as there are 0 elements. 

The delays signify the time it takes for an attacker to break the algorithm associated 

with action ai. This time depends on the knowledge gained from breaking earlier algo-

rithms, which is maintained in the state. 

This formulation immediately shows that there exist, at most, 2
|G|

 states. The possible 

order in which the |G| algorithms can be released is |G|!. To determine which release 

order is optimal, it is first necessary to define the optimization criterion. For that opti-

mization criterion, a reasonably efficient algorithm is required to search through the 

many options. 

The particular metric of interest (and, hence, the optimization criterion) in this study, as 

mentioned previously, is for maximizing the time it takes to break all algorithms. There-

fore, let the stochastic process R(t), defined for t ≥ 0, indicates if all algorithms have 

been broken at time t: R(t) = 1 if s = (1,1,…,1) and otherwise R(t) = 0. It is important to 

note that R(t) turns 1 only once, and then stays 1. The probability that all algorithms are 

broken at time t is P(R(t) = 1), where P indicates the probability, as usual. R(t) also pro-
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vides the Mean Time to Security Failure
19

 (MTTSF) [2]: E [R(t)] =            
 

 
, 

and with higher moments similarly. In what follows, R (t) is referred to as the time to 

security failure. 

Finding the best strategy corresponds to a standard Markov Decision Process optimiza-

tion problem with a finite horizon only for the first moment
20

 E [R(t)], but not for higher 

moments or its distribution. In the following section, a specific backward algorithm is 

presented that efficiently generates all paths ‘backwards’ from the state in which all al-

gorithms have been broken. 

5.2 Optimisation Algorithm 

The optimization term in this chapter, and in the thesis, refers to the selection of a best 

defensive algorithm to be released from a set of available alternative algorithms. The 

selection of best defensive algorithm to be released is calculated by a probability distri-

bution. In order to describe this probability distribution, the exponential distribution 

needs to be defined. As mentioned previously in Chapter 4, the exponential distribution 

is the probability distribution that describes the time between events that occur continu-

ously and independently at a constant average rate. Despite the exceptional mathemati-

cal tractability that flows from the memoryless property of the exponential distribution, 

mathematical tractability sometimes is not sufficient to overcome the need to model 

processes for which the exponential distribution is simply not adequate. Thus, Phase-

type distributions [138] permit the modelling of more general distributions, while main-

taining some of the tractability of exponential distribution. 

To calculate the optimal strategy of the release order in the proposed optimisation algo-

rithm, it is useful to realize that any selected sequence of algorithms corresponds to a 

hypo-exponential distribution, which in turn is a special case of a Phase-type distribu-

tion. The hypo-exponential is a series of k exponential distributions, each of which has 

its own rate λi, the rate of the i
th

 exponential distribution. If there are k independently 

distributed exponential random variables xi, then the random variable: 

                                                 
19 For quantifying the security of a system, MTTSF refers to the length of time to reach such absorbing states [2]. 

20 The first moment refers to a mathematical quantity that is defined in relation to random mathematical objects 

known as a point process. This point process seeks to represent a collection of points randomly on some underlying 

mathematical space. Therefore, the sth moment of a set of data with a total of n discrete points X1, X2, …, Xn is given 

by the formula: (X1
s+X2

s+...+Xn
s/n). For instance, the first moment was set as s = 1 [104]. 
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is hypo-exponentially distributed [138]. Therefore, the following result for hypo-

exponential distributions is needed: If H1 is hypo-exponential with rates λ1,…,λK and 

MTTSF E[R1(t)], and H0 is hypo-exponential with rates λ0, λ1,…,λK, and MTTSF 

E[R0(t)], then E[R0(t)] = 1/λ0 + E[R1(t)]. 

Although this is an obvious result, it is important to note that the same does not hold for 

higher moments. In other words, lower moments are utilised here in this optimisation. 

The above implies that a backward algorithm can be executed that optimizes for hypo-

exponential distributions of increasing length. The backward algorithm is an inference 

algorithm which computes the posterior marginal of all state variables given a sequence 

of observations. The algorithm represents the principle of dynamic programming to ef-

ficiently compute the values that are required to obtain the posterior marginal distribu-

tion [121]. Thus, it implies that known MDP theory can be used, since reward ri,j = 1/ λi,j 

can be associated with each transition from state i to j. Because of the specific structure 

of the proposed model, it makes sense to provide a bespoke algorithm that avoids gen-

erating the complete state space S as shown in Figure 5.1. 

 

Figure ‎5.1: The Backward Optimization Algorithm. 

In the proposed backward optimisation algorithm, it is noticeable that (1,1,…,1) is the 

absorbing state with all algorithms broken. The algorithm starts from that absorbing 

start = (0,0,…,0); 

end = (1,1,…,1); 

For All s ∈ S set ETs = 0;  
ToDoSet = {end}; 

While( ToDoSet ≠ {start} ) Do { 

   ToDoSet = {s|si, for any i  ToDoSet} 

   For All s  ToDoSet Do { 

       For All i ∈ S such that s  i Do { 

              If( 1/λs,i + ETi > ETs ) Then { 

              ETs = 1/λs,i + ETi; 

              BestNexts = i; 

             }       

       } 

   } 

 } 
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state and explores all possible previous states (stored in ToDoSet). For each previous 

state, it selects the action that maximizes the time to reach the absorbing state (stored in 

the BestNext variable associated with each state). This continues until the state with no 

broken algorithms is reached. 

Given the backward optimisation algorithm, the optimal order of releasing the algo-

rithms is then obtained as follows, in the tuple Optimal: 

s = start; 

Optimal = (s); 

While( s ≠ end ) Do { 

Optimal = (Optimal, BestNexts ); 

s = BestNexts; 

} 

It is noted that the above algorithm neither generates the complete state space S, nor all 

possible sequences of algorithms. The storage required is approximately 

N!/[(N/2)!(N/2)!] real-valued variables, which occurs halfway through the backward 

algorithm (which starts with a single state (end) and ends with a single state (start)). 

That still limits the size of the model one will be able to solve, but with modern day 

computing equipment this implies that the problem can be solved for up to several tens 

of algorithms. 

It is important to remark that the above algorithm does not work if higher moments are 

considered. Moreover, it is also straightforward to find release strategies that optimize 

the MTTSF, but which do not optimize the second moment of the time until security 

failure. 

5.3 Application to the Example 

This section presents an example in which the best strategy can be achieved. The exam-

ple presented, with three algorithms, is of course a simple case, in that it has only a few 

states, and the best release strategy can therefore be easily computed. Nevertheless, it is 

useful to provide the MDP for this case that is discussed in the following subsection. 
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5.3.1 Markov Decision Process for Example 

In the experimental study conducted in Chapter 3, the release order of the three devel-

oped algorithms (A1, A2, A3) was: A1, A2 then A3 for Group 1, while it was A2, A1 

then A3 for Group 2. The MDP for this is provided in Figure 5.2. 

 

Figure ‎5.2: Markov Decision Process for Example. 

As mentioned, there are three algorithms in this example, (A1, A2, A3), leading to 8 

theoretically possible states (denoted by the circles in Figure 5.2). Since the release or-

ders for both groups in the experimental study put A3 at the end, the possible order is 

restricted in this example and always puts algorithm A3 last. The actions in each state 

are given by the arcs. Only in state (0,0,0) there is a choice between actions, namely to 

first release algorithm A1 (leading to (1,0,0)) or algorithm A2 (leading to 0,1,0). The 

arcs are labelled according to the time it takes to completely break the algorithm, as 

seen from the experiment carried out in Chapter 3. Referring back to Chapter 3, Group 1 

followed the trajectory at the top of Figure 5.2, using 10.9 minutes to break A1 and 14.1 

minutes to break A2. Group 2 followed the trajectory at the bottom of Figure 5.2, using 

16.2 minutes to break A2 and 3.8 minutes to break A1. Then all participants broke A3, 

in an average of 6.6 minutes. 

The backward optimization algorithm of Figure 5.1 traverses backwards and picks the 

best action. Before getting to state (0,0,0), it obtains intermediate results of 14.1 + 6.6 = 

20.7 for state (1,0,0) and 3.8 + 6.6 = 10.4 for state (0,1,0). For state (0,0,0), it then se-

lects the action that maximizes the time to security failure, so it releases algorithm A1 

first (the trajectory at the top of Figure 5.2), because 10.9 + 20.7 > 16.2 + 10.4. Thus, 

the optimal release strategy becomes A1 followed by A2 followed by A3. 
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5.4 Discussion 

The experimental study accomplished in Chapter 3 confirms that optimising the release 

order for a set of algorithms can increase the time needed to break a system’s security in 

a statistically significant manner. This optimisation problem led to investigating an ap-

propriate formalism to optimise the release order strategy. Accordingly, the optimisa-

tion problem is modelled mathematically as a Markov Decision Process and a tailored 

optimisation algorithm is provided, as shown in Figure 5.1 using efficient quantitative 

methods. 

By applying the optimisation algorithm, the optimal release order of the defensive algo-

rithms indicates that releasing the subset algorithms before the superset algorithms can 

maximise the length of time taken to break the algorithms. This is because, according to 

the empirical results accomplished in Chapter 3, the rules of superset algorithms need 

more time to be disclosed, even though the rules of its subset algorithm have been ex-

ploited. Although gaining knowledge of the rules for subset algorithms by the attackers 

could offer a number of indications of how the rules of superset algorithms act, releas-

ing the superset algorithms after the subset algorithms keeps the attackers in the learn-

ing phase for a considerable length of time. 

The results of applying the proposed optimisation algorithm to dependent algorithms 

(i.e. super and subset algorithms) suggest that it may be a suitable tool for optimising 

the release order of a set of algorithms which was basically one algorithm broken up 

into superset and subset parts. Furthermore, when a system has a limited type of defen-

sive algorithm, this optimisation algorithm may be adapted to optimise the release order 

of these algorithms. 

Moreover, the consequence of using the model-based order proposed in Chapter 4 is 

that the proposed optimisation algorithm may be a suitable tool to release a set of algo-

rithms for a system that has unrestricted types of defensive algorithms (i.e. using mixed 

dependent and independent algorithms). Although establishing this kind of system may 

be a challenge in terms of cost, the security level of the system can be increased signifi-

cantly by releasing each independent algorithm. As a result, a tradeoff can be recog-

nised clearly between the security level and the financial cost in addition to the third 

factor, which is the usability that complements them, as reported in [68]. 
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It is interesting to note the relative correlation between the release order of the defensive 

algorithms strategy and the game theory approach, with regards to the demand of the 

optimisation problem. That is, game theory can provide a mathematical framework for 

analysing and modelling network security problems. This framework has been targeted 

by various studies such as in [6, 7, 67, 129, 130]. The optimisation algorithm is applied 

in these studies in order to provide a level of security from different angles. For in-

stance, Alpcan et al. investigated in [6] how long it took the game to approach a Nash 

equilibrium when many players tried to solve it in a distributed way. A feedback system 

approach is suggested as a control input to make the system robust and to control the 

system’s progress. In addition to this study, Alpcan and Baser utilized in [7] an optimal 

reactive defensive action through the Min-max Q learning approach in order to the 

gradually improve the defender’s quality. Moreover, Jiang et al. developed in [67] an 

optimal active defensive strategy decision algorithm. Despite these studies which in-

volve dynamic games apply optimisation algorithms in order to find the best solutions 

among a set of candidate solutions, none of them consider the attacker’s learning and/or 

maximizing the duration of the game as the game’s objective. 

Likewise, an optimisation algorithm was used in [122] in order to gain scalable optimal 

countermeasure selection using implicit enumeration on Attack Countermeasure Trees 

(ACT). However, this solution focuses on a static attack scenario and predefined coun-

termeasure for each attack.  

5.5 Summary 

This chapter has given an account of and the reasons for the demand of optimising the 

release order of a set of algorithms approach. This demand for optimisation is intro-

duced in Chapter 3, which schedules the release of defensive algorithms so as to pro-

long the time attackers need to successfully defeat all algorithms. 

In this chapter, the aim was to develop and provide an optimisation algorithm for the 

release order of defensive algorithms. Therefore, this chapter has provided a tailored 

optimisation algorithm using a Markov Decision Process to obtain efficiently the opti-

mal release strategies for any given model. 

Based on the empirical results achieved in Chapter 3, an application example has been 

demonstrated. The results of this application indicate that the proposed optimisation 
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algorithm may be a useful tool to optimise a set of similar algorithms with variation in 

their rules. Not only this, but the proposed optimisation algorithm can also be a practical 

tool to optimise a set of mixed dependent and independent algorithms. Nonetheless, this 

type of several algorithms for a system can be costly in terms of money, though the se-

curity level of the system could be increased, and a tradeoff between the security and 

expense of the system could be recognised intuitively. In general, therefore, the pro-

posed model solution should scale without problems to optimise the release order of 

tens of defensive algorithms. 

As the learning acquisition process of the attacker plays an important role in this thesis, 

the next chapter sheds light on this topic by investigating an Attacker Learning Curve 

notion based on the data collected in the controlled experimental study carried out in 

Chapter 3. 
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Chapter 6.  ATTACKER LEARNING CURVE 

This chapter explains the proposed Attacker Learning Curve (ALC) notion, while ana-

lysing the data collected from the experimental study reported in Chapter 3. Since the 

defence algorithms used in the experiment evaluate the attackers’ attempts based on a 

similarity mechanism, this leads to similarity-based quantitative data. Therefore, the 

idea of the ALC lies in collecting the attempts data of an attacker when several manipu-

lated attempts to break an algorithm are carried out by the attacker. As such, accumula-

tive manipulation, which is the attacker’s aggregated amount of knowledge, can gradu-

ally create the ALC. The ALC effectively represents how close an attacker is to break-

ing a defence algorithm. 

This chapter also outlines several strategies which were utilised to break the algorithms, 

and which were discovered when analysing the attackers’ attempts. By applying the 

proposed ALC, the impact of all used strategies used in breaking the algorithms is dem-

onstrated. Furthermore, an ALC is formalised as an Attacker Learning Curve Model 

(ALCM) that allows estimation of the learning curve of an attacker to break an algo-

rithm. An early version of this proposed ALC notion and its model were published in 

[14]. 

The remainder of this chapter is organised as follows. Section 6.1 begins by the theo-

retical dimensions of the proposed idea of the ALC. Section 6.2 describes the design, 

synthesis, characterisation and evaluation by an illustrative example of the ALC. In Sec-

tion 6.3, the impact of all observed strategies in breaking an algorithm is discussed. Sec-

tion 6.4 describes the inspired ALCM. Section 6.5 presents the discussion. Finally, Sec-

tion 6.6 summarises the chapter. 
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6.1 An overview of Attack Scenario 

In order to define the principle behind this chapter, an overview of the attacker scenario 

is provided, involving the attacker and the defensive mechanism, as shown in Figure 

6.1. This figure describes the interaction scenario between an attacker and a security 

defensive mechanism. 

 

Figure ‎6.1: Attack Scenario. 

The scenario starts with an attacker who has prior knowledge regarding the rules used 

by the defensive algorithms to classify a request. Then, the attacker attempts to structure 

requests systematically in order for the requests to be classified by the security layer as 

accepted, since the security layer classifies requests as acceptable or not based on a set 

of rules. An acceptable request can proceed through the security layer and use system 

resources, while an unacceptable request is blocked. On each failed attempt (i.e. unac-

ceptable request), the attacker receives feedback from the system with regards to the 

failed attempt, as shown in Figure 6.1. This feedback may be a simple Boolean re-

sponse, or may include reasons for the failure, as mentioned previously in Chapter 1. 

Indeed, this feedback can be a fundamental aspect that motivates attacks on the interac-

tive defensive mechanisms, as detailed in Chapter 1. In particular, the attacker learns 

from the feedback, and uses it for subsequent requests. By repeatedly performing this 

knowledge acquisition process, the attacker can gradually derive the rules used by the 

algorithms to classify requests, including both the parameters used, and the value of 

these parameters. For example, attackers executed an attack on several CAPTCHA 

schemes by gradually deriving the parameters used and the value of these parameters, 

until this scheme was broken [150]. The attacker can then misuse the system resources 

by sending requests that are structured in such a way that they are classified as accept-

able by the algorithm that is in the security layer, in which case, the algorithm is consid-

ered broken. 
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The focus of this scenario is mainly on a similarity assessment mechanism, where any 

request from each attacker is evaluated by comparing this request with all previous re-

quests. In this light, a similarity threshold, which is a lower limit for the similarity of 

two data records that belong to the same cluster, is defined. Additionally, it is assumed 

in this scenario that an attacker sends a set of messages in order to break the released 

algorithm that is in the security layer. Intuitively speaking, a rule R consists of a set of 

previous messages that are known to be attacks. This set is updated with each attempt, 

and so Rn = {p1, p2, …, pn} is written for the rule R at step n, where each pi denotes the 

previous attempt at step i. An attacker submits a message m with some manipulations 

against a rule R, and either this message is considered different enough and is thus ac-

cepted, or it is not, in which case m is added to R. The difference between m and R is 

calculated with the functions: 

             ∈                                

                      ∈    

where hi(m) indicates the i
th

 hash value of the message m, and MH is the maximal num-

ber of hashes. Given a rule R and a message m, if m has a lower similarity threshold ST, 

then m is accepted and added to R (i.e. the rule of the algorithm is broken); otherwise, m 

is rejected. 

For the purpose of this scenario, a detection approach adapted from that utilised in 

Chapter 3 (i.e., using a spam filtering detection approach) is used to detect attempts of 

attackers. This is the experimental scenario considered here, but it is also a good fit for 

the detection of abnormal database queries, or detection of information leakage. More 

details of how this spam filtering detection approach is exploited to develop the ALC 

are discussed in the following section. 

6.2 Attacker Learning Curve 

The Learning Curve phenomenon is widely known, especially in the psychology and 

economic fields. As such, this phenomenon is exploited in two significant ways: where 

a body of knowledge is increased overtime or where an identical task is repeated in a 

number of trials [118]. For instance, since organisations gain experience with produc-

tion, productivity and quality improve at a decreasing rate. In other words, accumulating 

experience leads to improved performance [21]. 
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Accordingly, the notion of the Attacker Learning Curve (ALC) is that, as attackers gain 

knowledge with regards to the rules used in the defensive mechanism, accumulating 

experience regarding the applied rules in the defensive mechanism leads to improved 

performance in breaking the defensive mechanism. In view of this, the accumulation of 

experience can be anticipated quantitatively based on the detection approach of at-

tacker’s attempts. That is, the attacker’s attempt is evaluated by Similarity-Based 

evaluation method which is explained briefly in the next subsection. This produces 

quantitative data (i.e., Similarity-Based data) which is the distance between the attempt 

and the similarity threshold, as shown in Figure 6.2. Since breaking a defensive algo-

rithm typically requires several attempts by attackers, each attempt is manipulated by 

attackers in order to avoid detection. Thus, the accumulative manipulation, which is the 

attacker’s aggregated amount of knowledge, can gradually build the ALC that effec-

tively represents how close an attacker is to breaking a defensive algorithm. Figure 6.2 

depicts the structure of the ALC, starting with the detection of the attacker’s attempt 

through the accumulative manipulation process, and then achieving the ALC. Based on 

the ALC, both quantitative data (i.e., Accumulative-Based data) and qualitative data 

(i.e., Strategy) are organized as an input in the Training data. The qualitative data will 

be highlighted in Section 6.3. In addition, although Training data are beyond the scope 

of this chapter, they will be defined and used as phase 2, and the components of the 

structure of the ALC as phase 1 in the proposed detection approach that will be de-

scribed in the next chapter (Section 7.1.3). 

 

Figure ‎6.2: The structure of the ALC. 

Based on the data analysed from the previous experiment, the following subsection 

shows examples on how the attacker performance is extracted from the similarity 

evaluation results of the defence algorithm. 
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6.2.1 Extracting Similarity-Based Data 

The similarity evaluation approach is one of the common approaches in interactive de-

fensive mechanisms to determine an attack attempt [152]. Since the previous controlled 

experiment study uses a similarity evaluation approach, each similarity result of each 

attempt is recorded and collected
21

. Based on the data collected from this experiment, 

similarity-based data are developed in this study to demonstrate the attacker’s progress 

during the attacking process. Therefore, Figure 6.3 shows an example of one attacker’s 

performance, which is extracted from the experiment data to break all algorithms (i.e. 

Algorithm 1 (A1), Algorithm 2 (A2) and Algorithm 3 (A3)). The example shown in 

Figure 6.3 uses structured strategies to break the algorithms. More details about strate-

gies applied in the attack process are in Section 6.3. 

 

Figure ‎6.3: Example of Structured Attacker Performance. 

In contrast, Figure 6.4 illustrates an example of one of the attackers’ performances to 

break all algorithms by using random strategies. Hence, the impact of the strategies on 

the attack process can be observed in terms of time taken. Furthermore, these similarity-

based data encourage investigation into the accumulative manipulation concept. 

As the accumulative manipulation term has an important implication for developing the 

ALC, the formalism of this term is presented in the following subsection. 

                                                 
21  For each algorithm, an attack attempt is evaluated against a similarity threshold. While the similarity of an attempt 

is above the similarity threshold, the attacker needs to try again. 
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Figure ‎6.4: Example of Unstructured Attacker Performance. 

6.2.2 Accumulative Manipulation 

The manipulation of an attacker denotes the distance between one attempt from an at-

tacker and his previous attempts. The accumulative manipulation of an attacker Ak is 

therefore given by the function AcMan, defined as: 

                
                                
                                                                     

  

where R is a rule and     denotes the i
th

 message sent by   . For example, consider the 

simple case where the length of a message is limited to 7, i.e., MH=7, where the rule R 

is initialised with “Message” and where the similarity threshold is set to ST=2, meaning 

that at least two characters need to be different in order for a message to be accepted. If 

   attempts to submit “Message”, then all hash values are identical, and this attempt is 

therefore rejected, and                 . 

If the next message sent by    is “Messoge”, then    “       ”      “       ” , 

and it follows that     “       ”    . Since this value is still below ST, the new 

message is added to the rule, i.e., R = {“Message”, “       ”} and 

                   Now, if the next message is “Messo9e”, it remains the case that  

    “       ”    , since   considers the minimum of   . However, 

                     , thus denoting that the attacker has made some pro-

gress. It is worth noting here that the accumulative manipulation can continuously in-

crease, even if the attacker never breaks the rule. More details will be given in the fol-

lowing subsection by presenting an illustrative example based on empirical results. 
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Next, an ALC example derived from the empirical results of the experimental study in 

Chapter 3 is described. This example demonstrates the efficiency of accumulative ma-

nipulation. 

6.2.3 Illustrative Example to ALC 

In order to link the data collected in Chapter 3 with the derivation of the ALC, the 

background of the attack attempt detection mechanism is briefly outlined. In the ex-

periment, attackers sent a manipulated e-mail to the system for breaking its security al-

gorithms. Each e-mail submitted was evaluated by a similarity approach to quantita-

tively determine an attack attempt based on similarity with previously submitted e-

mails. The level of similarity is exploited in this study by calculating the accumulative 

manipulation. In particular, the similarity of submitted emails, which is determined by 

the similarity threshold, is subtracted from the whole hash values (i.e. 100 hash val-

ues
22

), and this difference is called the amount of effective manipulation (e.g. the third 

column in Table 6.1). This amount is then increased accumulatively while the attacker 

is attempting to break an algorithm, as shown in the fourth column in Table 6.1. 

Table 6.1 presents the calculation of the accumulative manipulation of one of the at-

tackers, who performed the attack task successfully in the previous experiment in Chap-

ter 3. The similarity threshold of this algorithm was 75%. Based on this accumulative 

manipulation, Figure 6.5 illustrates the ALC. 

Table  ‎6.1: Calculating the Accumulative Manipulation. 

Trials Similarity  Manipulation=100-Similarity Accumulative Manipulation 

1 100  0.00 0.00 

2 95  5.00 5.00 

3 91  9.00 14.00 

4 99  1.00 15.00 

5 92  8.00 23.00 

6 87  13.00 36.00 

7 97  3.00 39.00 

8 84  16.00 55.00 

9 73  27.00 82.00 

10 88  12.00 94.00 

11 76  24.00 118.00 

12 69  31.00 149.00 

                                                 
22

 More details regarding the value of parameters are presented in Chapter 3, specifically in Section 3.3.4. 
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Figure ‎6.5: The Attacker Learning Curve Based on the Accumulative Manipulation. 

It is important to note that the attackers in the experiment were asked to break the algo-

rithm twice (i.e. pass through the spam filter algorithm with 3 e-mails, where the first 

email was for training the database and the remaining two are for breaking the algo-

rithm). The reason behind this was to make sure that the attacker was learning during 

the attack process. For this, in Table 6.1, the row highlighted in orange corresponds to 

the first break, while the one highlighted in red corresponds to the second break. Hence, 

as shown in Table 6.1, once the attacker had defeated the algorithm, the second break 

required only two trials. 

6.3 Strategies Applied in Attack Process 

Since attackers’ tactics and techniques are constantly evolving, attackers are continually 

developing new attack tools and strategies to enable the possibility of a successful at-

tack process against a secure system. In the interests of understanding the strategies ap-

plied in an attack process of the previous experiment, qualitative data in the form of a 

survey were collected from the experimental study, as mentioned in Chapter 3, to verify 

that the attacking process was accomplished by structured strategies based on the 

knowledge gained rather than complete randomness. In particular, each attacker was 

asked to detail the strategy (or strategies) that were used to defeat the algorithms, the 

part of the email that the participants believed that each algorithm was checking, and the 

algorithm which the participants thought was the toughest to defeat, as shown in Ap-
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pendix A. The results of this survey indicate that 90% of the attackers (36 out of 40) 

used structured strategies to defeat the algorithms. 

These results led to further investigation into the text of the e-mails sent by each at-

tacker. The main purpose of this investigation was not only to identify the most effec-

tive strategy in terms of consuming time in the attacking process, but also to demon-

strate the influence of the observed strategies on the ALC. Thus, the following subsec-

tions describe the observed strategies and their impact on breaking the algorithms by 

utilising the ALC based on the results of the investigation. 

6.3.1 Observed Strategies 

There were three main strategies that attackers used which were discovered by means of 

the investigation procedures. These strategies are as follows: 

 Thesaurus substitution, Perceptive substitution, Delete spaces. 

 Random addition, Thesaurus substitution, Perceptive substitution, Add 

spaces. 

 Perceptive substitution. 

where Random Addition adds random characters to the original email text; Thesaurus 

Substitution substitutes some words of the original text with synonyms defined in a the-

saurus; Perceptive Substitution substitutes some characters of words in the original text 

without changing the aim of how the words are to be perceived by the reader, for exam-

ple, “security” could become “s3curity”; Add Spaces randomly adds spaces; and Delete 

Spaces randomly deletes spaces. The effectiveness of each of these strategies in ma-

nipulating a given e-mail text is described as follows. 

Suppose that a spam e-mail is sent by an attacker to users, as shown in Figure 6.6. This 

e-mail can be then manipulated by the attacker using a Random Addition strategy, The-

saurus Substitution strategy, Perceptive Substitution strategy, Add Spaces strategy or 

Delete Spaces strategy, as shown in Figures 6.7, 6.8, 6.9, 6.10 and 6.11, respectively. 
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Figure ‎6.6: Original Spam E-mail. 

 

Figure ‎6.7: Using Random Addition. 

 

Figure ‎6.8: Using Thesaurus Substitution. 

 

Figure ‎6.9: Using Perceptive Substitution. 
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Figure ‎6.10: Using Add Spaces 

 

Figure ‎6.11: Using Delete Spaces. 

The influence of each strategy on the ALC is discussed in the following subsection. 

6.3.2 Impact of All Strategies in Breaking Algorithms 

Since the ALC effectively represents how close an attacker is to breaking a defensive 

algorithm, it is interesting to demonstrate the impact of each observed strategy, which is 

described in the previous section, in breaking all algorithms outlined in Chapter 3 by the 

proposed ALC. In addition, because of the experimental groups (i.e. Group 1 and Group 

2 as stated in Chapter 3) took a similar amount of time to break algorithm 3 (A3), a 

demonstration of the impact of all observed strategies in breaking algorithms is only 

based on the data collected for breaking A3 in both groups. The reason for this is that it 

allows demonstration of the ALC in a comparable model. In other words, the results of 

the ALC based on Group 1’s data can be compared with those of the ALC based on 

Group 2’s data. For this, the average accumulative manipulation of each strategy in both 

groups is calculated, as depicted in Figure 6.12. 

It can be observed that although the groups are disjointed, each strategy behaves in a 

comparable way in each group. For example, in both groups, strategy 2 was the most 
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effective in terms of breaking the algorithm, whereas strategy 3 was the least effective. 

In other words, the time taken to break an algorithm by using strategy 3 was longer than 

that for strategy 2.  
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Figure ‎6.12: The average Accumulative Manipulation vs. all strategies. 

Based on these results, the ALC is modelled as an Attacker Learning Curve Model 

(ALCM). The developed ALCM is inspired by a previous model used for describing the 

development learning curve during software development. More details are presented in 

the following section. 

6.4 Attacker Learning Curve Model (ALCM) 

This section describes the proposed ALCM that has the potential to estimate the learn-

ing curve of an attacker in breaking an algorithm. Specifically, since several models 

have been proposed for software development to estimate the progress of software de-

velopment, one of these models [58] is used here in this chapter as a starting point for 

constructing the proposed ALCM. In the following, the knowledge model of the previ-

ous model of software development, the proposed ALCM, and the performance of the 

proposed model are presented. 

6.4.1 Knowledge Model 

Hanakawa et al. proposed in [58] a simulation model for software development that 

takes into account the developer’s learning curve (more details are in Section 2.3.1). 
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This model shows quantity of gain to a developer’s knowledge by executing an activity. 

This quantity of gain to the developer’s knowledge is derived from the relationship be-

tween bij, which is the developer’s experience level i while performing the activity j, and 

θ, which is the required knowledge level to execute this activity. This model is defined 

as follows [58]: 

                                 
    

                                          

                                                         
                                    1 

where Lij (t) is the quantity of gain to knowledge of developer i by executing the activity 

j, which has knowledge level θ, at time t; Kij is the maximum quantity of gain to knowl-

edge of the developer i by executing activity j; bij is the developer i’s knowledge level 

about activity j; E is the developer’s efficiency of gain to knowledge by executing activ-

ity j; and θ is the required knowledge level to execute the primitive activity of activity j. 

The knowledge level is reset to the developer’s new knowledge level bij at each step: 

bij  (t+1) = bij (t) + Lij(t)                            2 

Therefore, by plotting the level of the developer’s knowledge in time sequence, the de-

veloper’s learning curve can be determined during the execution of an activity. In the 

simulation of this model, the growth of the developer’s knowledge level bij during the 

execution of activity j shows the developer’s learning curve, as shown previously in 

Chapter 2 (Figure 2.7). In that figure, Line (1) shows the learning curve in the simula-

tion in which the growth of the developer’s knowledge level bij has a great impact on 

the development progress. Additionally, when the activity is chosen in ascending order 

of the required knowledge level, then the shape of the learning curve will be flat, as 

shown in Line (2). In light of this, Equation (1) can be exploited to form the proposed 

ALCM, and this is described in the subsequent section. 

6.4.2 Proposed ALCM 

As the proposed ALCM is based on Equation (1), each factor in this equation is devel-

oped for the purposes of the proposed model as follows. The required knowledge level 

  is defined by the Algorithm Robustness Level (ARL) [14]: 



Chapter 6 – Attacker Learning Curve 

 

122 

 

        ARL=T/SL                                                                 3 

where T is the time required to break the algorithm and SL is the skill level of the at-

tacker. This skill level is divided into three main categories, as suggested by [112]: Be-

ginner, Intermediate and Expert. Since the previous experiment presented in Chapter 3 

focuses on beginner attackers
23

, a single value is considered for SL, experimentally de-

fined as 0.3, and this value is also used for the parameter E, characterizing the efficiency 

of the attacker. The quantity of knowledge gained of the developer Lij is defined with 

regard to Attacker Knowledge AKij. The maximum quantity of knowledge that can be 

gained Kij is defined with respect to the used strategy Sij by the attacker i in order to 

break an algorithm j, and has empirically established values 7.5, 10.5 and 5 for strate-

gies 1, 2 and 3, respectively. Finally, the developer’s knowledge level bij is replaced by 

Accumulative Attacker Knowledge AccAKij that defines the attacker’s knowledge level i 

about an algorithm j. The proposed ALCM is then defined as follows: 

          
    

                                                     

                                                                          
                      4 

The knowledge level is reset to the attacker’s knowledge level AccAKij 

                                       AccAK (t+1) = AccAK (t) + AK (t)                                              5 

By parameterising the proposed ALCM based on the empirical results achieved in the 

previous experiment, estimating the performance of an attacker is possible. The follow-

ing section presents the results of evaluating the proposed model. 

6.4.3 Performance of the Proposed Model 

In order to evaluate the performance of the ALCM, the parameters of the model are fit-

ted with the empirical data from Groups 1 and 2, presented in Table 6.2 and Table 6.3, 

respectively. Figure 6.13 presents the results of fitting the model with both groups, ob-

tained with the Java jmathplot library
24

. For the sake of clarity, the curves are presented 

by using percentage-based grading; that is, each curve reaches 100% when the corre-

sponding strategy in the corresponding group breaks the algorithm’s rules. 

                                                 
23 In particular, the results of the survey indicate that most of the participants had a beginner skill level. 

24 https://code.google.com/p/jmathplot/ 

https://code.google.com/p/jmathplot/
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The results of running the model based on the parameters derived from both Groups 1 

and 2, as shown in Figure 6.13, indicate that strategy 2 is more efficient in both groups 

in terms of increasing the learning acquisition process of the attacker, while strategy 3 is 

less efficient. By using the proposed model, therefore, it is possible to estimate the 

learning curve of an attacker in breaking an algorithm. For example, when the strategy 

S, the skill level of the attacker SL, and the robustness of the algorithm ARL are given, 

the progress of the attacker can be predicted. Furthermore, the accumulative output of 

the model can also be used for the proposed detection approach which will be shown 

later in the next chapter. 

Table  ‎6.2: Fitted Parameters for Group 1. 

Strategy 

# 

Strategy 

(S) 

Avg. Braking 

Time (T) min-

utes 

Skill 

level 

(SL) 

Algorithm Robustness 

Level 

(ARL) 

Attacker 

Knowledge 

(AK) 

1 7.5 7.32 0.3 24.4 0.0 

2 10.5 6.12 0.3 20.4 0.0 

3 5 12.7 0.3 42.3 0.0 

Table  ‎6.3: Fitted Parameters for Group 2. 

Strategy 

# 

Strategy 

(S) 

Avg. Braking 

Time (T) 

minutes 

Skill 

level 

(SL) 

Algorithm Robustness 

Level 

(ARL) 

Attacker 

Knowledge 

(AK) 

1 7.5 6.24 0.3 20.8 0.0 

2 10.5 5.8 0.3 19.3 0.0 

3 5 11.9 0.3 39.7 0.0 
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Figure ‎6.13: Result of running the proposed model on Group 1 and Group 2. 

6.5 Discussion 

This chapter set out to quantitatively represent the knowledge gained by attackers. The 

correlation between various manipulated attempts in order to break the interactive de-

fensive algorithms and the accumulated manipulation could gradually build the Attacker 

Learning Curve (ALC). This ALC represents quantitatively how close an attacker is to 

breaking a defensive algorithm. 

Based on the empirical results achieved in Chapter 3, it could be possible to obtain the 

manipulation amount of each attacker’s attempt. As a consequence, the ALC was repre-

sented as shown in Figure 6.5. Although the learning curve concept in the fields of psy-

chology and education has been signified by a graphical illustration of increasing the 

knowledge with experience [126], to the best of our knowledge this is the first study 

that proposes the notion of accumulative manipulation, which forms the basis of the 

ALC, in the security context. 

Furthermore, the strategies observed indicate that the attacking process was accom-

plished by means of structured strategies based on knowledge gained rather than com-

plete randomness. This finding corroborates the idea of the Problem-Based Learning 

(PBL) approach [23], which is a widely known self-directed learning approach in the 
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education field that leads to gaining knowledge via thinking strategies. For instance, 

Hmelo and Ferrari concluded in [62] that PBL is used to help students not only to be-

come active learners, but also to develop strategies and construct knowledge. In general, 

it may thus be that such connections exist between conducting an attack repetitively 

against a defensive algorithm and a PBL approach, where an attacker needs to learn 

strategies to defeat a defensive algorithm and where the students are required to learn 

strategies to solve a given problem. 

On the other hand, the feedback gained through unstructured attacks seems to have been 

unhelpful to the attackers, as shown in Figure 6.4. An implication of this is the possibil-

ity that an attacker who applies an unstructured attack strategy may interrupt ongoing 

attacks due to the huge number of trials and consequent time consumption. This impli-

cation might also apply to structured attacks when an ineffective strategy is adopted, 

since feedback achieved from this strategy could be unhelpful, as strategy 3 was shown 

in Figure 6.12. 

Another important finding was the validation of the hypothesis concerning the influence 

of the observed strategies on the developed ALC, as shown in Figure 6.12. This influ-

ence reflects the impact of the strategy with regards to its feedback to the attacker. For 

example, the feedback of strategy 2 was more effective in helping to reveal the rules of 

the released algorithm than others. Although strategy 1 has overlapping strategies with 

strategy 2, the feedback of strategy 2 was more supportive in terms of the attacker learn-

ing process. Hence, it is possible to hypothesise that the strategy used can be identified 

by using such detection approaches. This hypothesis will be validated in the next chap-

ter. 

It is encouraging to compare this result of the impact of the strategy used with that 

found by Jonsson and Olovsson who found in [70] that the inexperienced attacker 

spends more time in the learning phase, while the experienced attacker spends less time. 

It can thus be suggested that the inexperienced attacker’s progress might be improved 

by employing a more effective strategy. Conversely, the experienced attacker’s progress 

might be reduced by ineffective strategies. Moreover, this finding on the importance of 

the strategy applied in the attack enhances previous researches into this area such as in 

[96, 112] which links attacker skill levels and determines the mean time used to com-

prise a system. Moreover, these findings regarding the manipulated attempts of attack-



Chapter 6 – Attacker Learning Curve 

 

126 

 

ers support the idea of Hung et al. who stated in [66] that it was easy for attackers to 

search convex classifiers to find input that can avoid being classified as negative. 

Additionally, if the ALCM inspired by a previous model that is utilised for explaining a 

developer’s learning curve, the evaluation of the ALCM suggests the applicability of 

using it. It is important to note that the knowledge acquisition process of an attacker 

presented in Chapter 4 used the developed model, as shown in Figure 4.10. However, 

this derivation of the attacker knowledge acquisition process did not take into account 

the strategy applied in the attacking process. Therefore, the ALCM seems a typical 

model to estimate the learning curve of an attacker to break an algorithm, due to its rec-

ognition of the strategy applied in the attacking process. 

This combination of findings provides support for the conceptual premise that the order 

of defensive algorithms matters due to the rationale that attackers learn from their at-

tempts. Not only this, but it also bears in mind the possibility of improving the proposed 

release order strategy of a set of algorithms, which will be highlighted in Chapter 7. 

6.6 Summary 

This chapter has investigated the central importance of the Attacker Learning Curve 

(ALC) notion of breaking an algorithm. In this investigation, the aim was to represent 

the ALC quantitatively by observing the accumulative manipulation of an attacker for 

each attack. The aim was also to represent the ALC based on several applied strategies. 

This ALC was then modelled to estimate the learning acquisition process of an attacker. 

The results of this investigation show that the developed ALC could represent the per-

formance of an attacker quantitatively, depending on the detection approach applied to 

detect the attempts of attackers. Furthermore, by means of the ALC, it could be possible 

to distinguish between the strategies used of an attack. 

The study has gone some way towards enhancing our understanding of the attacker’s 

performance to break a system using quantitative data. Therefore, this work contributes 

to existing knowledge on the acquisition process of the attacker by providing the notion 

of accumulative manipulation, which forms the basis of the ALC, then modelling this as 

the Attacker Learning Curve Model (ALCM). 
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Since the recognisability of the ALC for the applied strategies could affect the probabil-

ity of detecting them, the next chapter highlights a proposed approach that enables de-

tection of the strategies used based on the defined ALC notion given in this chapter. 
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Chapter 7.  DETECTION OF ATTACK 

STRATEGIES 

This chapter describes the proposed simple but novel attack strategy detection approach 

that builds upon the Attacker Learning Curve (ALC) concept which was explained pre-

viously in Chapter 6. That is, as stated in Chapter 1, defensive mechanisms should face 

attackers who interact with the system by mostly applying a strategy. This strategy 

plays an important role in receiving feedback
25

 on effectiveness to the attackers. It also 

augments the knowledge of the attackers regarding the rules used by defensive mecha-

nisms to characterize misuse. They are then able to adapt their future interactions ac-

cordingly, increasing their ability to break the defensive mechanisms, until eventually 

reaching the point where the defensive mechanism is broken. 

A number of interesting solutions have emerged such as Anomaly Intrusion Detection 

System (AIDS) that utilizes normal usage behaviour patterns to recognize the intrusion. 

The detection techniques of the AIDS can be classified into three main categories [84]: 

Statistic-based, Knowledge-based and Machine Learning-based. The machine learning-

based category has several advantages such as flexibility and adaptability, and can be 

generally classified as either Unsupervised or Supervised learning
26

. Several studies 

have investigated hybrid
27

schemes from different angles (e.g., [55][65]), and although 

                                                 
25 As defined in Chapter 1, the feedback may be a simple Boolean response, or may include reasons for the failure. 

26 As defined in Chapter 3, the unsupervised algorithm seeks out similarities between pieces of data in order to char-

acterize them, whereas the supervised algorithm builds a concise model of the distribution of class labels in terms of 

predictor features [84]. 

27 A hybrid approach typically consists of two functional components. The first one takes raw data as input and gen-

erates intermediate results. The second one will then take the intermediate results as the input and produce the final 

results [84]. 
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most of these studies have focused on classifying records as either normal or abnormal 

behaviour, detecting the type of attack strategy has not yet been investigated. Thus, 

knowing which strategy an attacker is using can provide an advantage for the security 

mechanism, for instance by using an attack-defence tree [79], or by optimizing the re-

lease order of algorithms [12, 13], which was previously discussed in Chapters 3, 4 and 

5. 

Hence, an attack strategy detection approach is proposed in this chapter. Based on the 

collected data in Chapter 3, each abnormal attempt of an attacker is detected using an 

unsupervised learning algorithm, which leads to the construction of the ALC. Since the 

ALC differs from one attack strategy to another, as demonstrated in the previous chap-

ter, the following question is asked: Can the applied attack strategy be detected quanti-

tatively by using the accumulative manipulation of attackers? 

To explore this question, the previous experimental study’s groups are divided into two 

sets: a training set, which is Group 1, and a testing set, which is Group 2. Therefore, the 

corresponding ALC of each attacker belonging to a training set for each strategy is gen-

erated. Then, a Diagonal Linear Discriminant Analysis (DLDA) classification method 

is applied to detect the strategy used by attackers belonging to the testing set. This de-

tection mechanism achieved a detection success rate higher than 70% on experimental 

data. An early version of this proposed detection approach was published in [14]. 

The rest of this chapter is organised as follows. Section 7.1 outlines types of attack 

strategies, the applied detection approach and the workflow of this detection approach. 

Section 7.2 reports the experimental evaluation. The results of this evaluation are pre-

sented in Section 7.3. Section 7.4 presents the discussion. Finally, Section 7.5 summa-

rises this chapter. 

7.1 Strategy-Based Detection Approach: An overview 

The underlying principle of the proposed attack strategy detection approach is that the 

accumulative manipulation, which was developed in the previous chapter, is character-

istic for each observed strategy. In this section, a brief outline regarding the observed 

strategies, the methodology of the detection approach and the workflow of the detection 

approach are presented. 
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7.1.1 Types of Attack Strategies 

Despite the fact that strategies observed in the previous experimental study have been 

provided in detail previously in Chapter 6, a brief outline of these strategies is given in 

this section in the interests of reminding the reader. Thus, the observed strategies are 

divided into three main strategies
28

 as follows: 

1. Thesaurus substitution, Perceptive substitution, Delete spaces. 

2. Random addition, Thesaurus substitution, Perceptive substitution, Add 

spaces. 

3. Perceptive substitution. 

The first two strategies contain mixed types of strategies. In contrast, the third strategy 

contains only one strategy. The influence of these strategies on the performance of the 

attackers is obviously demonstrated by the proposed ALC, as shown in the previous 

chapter (Figure 6.12). Thus, the implication of this finding in relation to making fea-

tures and heuristics leads to investigate a strategy detection method. In order to develop 

the detection approach, these features and heuristics can be used as a training set for a 

supervised learning machine that classifies the strategy used based on the training set. In 

light of this, a Diagonal Linear Discriminant Analysis (DLDA) is chosen to be a detec-

tion approach in this chapter for classifying the strategy used based on the accumulated 

manipulation notion that was developed from collected data in Chapter 3. The following 

subsection defines this chosen classification methodology. 

7.1.2 Detection Approach: DLDA 

Among many possible prediction techniques, a Discriminant analysis approach is util-

ised in this chapter due to several advantages such as the powerful but computer-

intensive bootstrap methodology [95]. This advantage is now computationally feasible 

with the relatively easy access to high-speed computers. 

There are different discriminant methods for classifying the data. These methods in-

clude traditional ones such as Nearest Neighbours and Linear Disciminant Analysis, as 

well as more modern ones such as Classification Trees. Since each observed strategy 

has small samples, Diagonal Linear Discriminant Analysis (DLDA) is applied to clas-

                                                 
28  The definition of each strategy is given in Chapter 6 (Section 6.3.1). 
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sify the strategy used, as a common technique for data classification. This method is a 

variation of Linear Discriminant Analysis (LDA), which is used to fit the linear combi-

nation of features that best separate two or more classes of object or event. 

In DLDA, however, the common within-group covariance matrix is assumed to be di-

agonal. The resulting combinations may be used as a linear classifier, or more com-

monly in dimensionality reduction before later classification. This method is the sim-

plest case of the maximum likelihood discriminant rule, in which the class densities are 

supposed to have the same diagonal covariance matrix. The most important advantage 

of the DLDA algorithm lies in its computational efficiency [95]. 

Furthermore, one of the features that motivated the choice of this method is that it does 

not require a large sample compared with others such as the Quadratic Linear Dis-

criminant Analysis (QLDA) type. Finally, many researchers have pointed out that the 

naive Bayes classifier of high-dimensional data with small sample sizes sometimes 

known as DLDA. More details about DLDA can be found in [95]. 

Given the approach used for the detection mechanism, the subsection below describes 

the workflow of the proposed strategy detection approach starting from detecting an 

attack attempt to detecting the applied strategy. 

7.1.3 The Workflow of the Detection Approach 

This section explains the workflow of the proposed strategy detection approach as a 

preparation for the implementation stage of this approach, which will be discussed in 

the next section. The workflow is depicted in Figure 7.1. 

As shown in Figure 7.1, the workflow is divided into two phases: Phase 1 and Phase 2. 

Phase 1, which was shown previously in Chapter 6 (Section 6.2), includes the detection 

of attack attempts that produce quantitative data (similarity-based) and the ALC that is 

represented by accumulative manipulation of each attempt with the corresponding strat-

egy. Phase 2 starts with a training data set that includes the accumulative manipulation 

(i.e., Quantitative data) and the strategy (i.e., Qualitative data). Moreover, Phase 2 con-

tains Attack Detection based on Qualitative data that is trained by both the training data 

set and the output of the proposed Attacker Learning Curve Model (ALCM), which was 

developed in the previous chapter (Section 6.4). 
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Figure ‎7.1: The workflow of the Detection Approach. 

Each component of both phases is discussed as follows: 

 Attack Attempt: Initially, each attack attempt is observed by using an unsu-

pervised learning algorithm. Using a similarity evaluation function, it de-

cides that an attempt is abnormal when the similarity between the attempt 

and a set of known abnormal attempts is higher than an empirically defined 

similarity threshold. Thus, the next step exploits this Similarity-Based quan-

titative data. 

 Attacker Learning Curve (ALC): The notion behind the Learning Curve is 

that accumulating experience leads to improved performance [21]. For the 

ALC, since breaking a defence algorithm typically requires several attempts 

by attackers, each attempt, which is signified by Similarity-Based data, is 

manipulated in order to avoid detection. Thus, the accumulative manipula-

tion, which is the attacker’s aggregated amount of knowledge, can gradually 

build the ALC that represents effectively how close an attacker is to break-

ing a defence algorithm. 

 Training Data: A training set is a set of data used in different areas of in-

formation science to discover potentially predictive relationships. Since the 

proposed detection approach relies on a supervised learning machine, the 

accumulated manipulation data (Quantitative data) are associated with the 

corresponding strategy (Qualitative data) in this training set data, known 

from manually analyzing attacker attempts. 

 Attack Detection Based on Qualitative Data: The proposed detection ap-

proach depends on a supervised machine learning that uses a DLDA type of 

Phase 1 Phase 2 
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discriminant function. This supervised machine learning takes place using a 

training set that is prepared in the previous stage. The main purpose of this 

detection approach is to investigate the possibility of detecting the attack 

strategy used by means of a given accumulated manipulation. Therefore, a 

strategy could be detected unless it is not recognised in stage 2. In this case, 

the strategy is new and its accumulated manipulation should be updated in 

the ALC stage. 

As the workflow of the detection approach is depicted and explained in this section, the 

next section presents an evaluation experiment that will not only show the detection 

results of ALC-based accumulative manipulation, but also the results of the ALCM-

based accumulative manipulation. 

7.2 Experimental Evaluation 

In order to test the question of whether the strategy used in an attack can be detected 

based on the accumulative manipulation of the attacker, an evaluation experiment is 

conducted. The main question under investigation is: 

- Can the applied attack strategy be detected quantitatively based on the ac-

cumulative manipulation of attackers? 

This section presents an experimental evaluation of the above question by firstly de-

scribing the setup of and then the procedure of this experiment. 

7.2.1 Experiment Setup 

The experiment study reported in Chapter 3 involves subjects acting as potential attack-

ers carrying out attacks on a test system, within which a number of different security 

algorithms have been developed. One aspect of the collected data is the similarity 

amount of each submitted e-mail. Since Groups 1 and 2 took a similar amount of time to 

break Algorithm 3 (A3), as stated in Chapter 3, the training set as well as the testing set 

is based upon the data collected from breaking A3. Therefore, the data collected from 

Group 1 for breaking A3 are used as a training set, while a test set utilises the data col-

lected from Group 2 for breaking A3. Furthermore, the software and computing used to 

conduct the experiment are presented. 
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Training Set 

The training set is divided into two main sets: ALC-Based and ALCM-Based. As such, 

the former is based on the accumulative manipulation of attacks accomplished by the 

experiment, whereas the latter is based on the accumulative manipulation carried out by 

the proposed model. For both sets, the training set is built on the average accumulative 

manipulation of Group 1 for each observed strategy. As mentioned in Chapter 6, 90% of 

the attackers (i.e. 36 out of 40) used structured strategies to defeat the algorithms. Spe-

cifically, in Group 1, there were 17 attackers who used structured strategies, and the 

distribution of the number of attackers on each observed strategy is shown in Table 7.1. 

Table  ‎7.1: The Number of Samples of each Strategy for Group 1. 

Total 3 2 1 Strategy 

17/36 4 6 7 Number of Samples 

The average ALC-Based accumulative manipulation of each strategy for this training 

set is illustrated in Figure 7.2, while the average ALCM-Based accumulative manipula-

tion of each strategy for the training set is shown in Figure 7.3. 

 

Figure ‎7.2: The average of ALC-Based accumulative manipulation for each strategy. 
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Figure ‎7.3: The average of ALCM-Based accumulative manipulation for each strategy. 

Test Set 

The test set is divided into two test sets: the ALC-Based and ALCM-Based test sets. For 

both sets, the accumulative manipulation of each attacker in Group 2 is used in the test 

set. Since the number of attackers who used structured strategies in Group 1 was 17, the 

number of attackers who used structured strategies in Group 2 was 19. It is important to 

note that even though the difference in attacker numbers in the groups is small, it seems 

useful to utilise Group 2 as a test set in terms of evaluating the effectiveness of the pro-

posed detection approach. The number of attackers who employed each strategy for 

Group 2 is shown in Table 7.2. 

Table  ‎7.2: The Number of Samples of each Strategy for Group 2. 

Total 3 2 1 Strategy 

19/36 6 5 8 Number of Samples 

The accumulative manipulation of each of the 19 attackers in Group 2 used in the test 

set is compared against both the ALC and the ALCM for the corresponding strategy 

built from Group 1. The ALC-Based accumulative manipulation of each attacker in 
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Group 2 is shown in Figure 7.4, whereas the ALCM-Based accumulative manipulation 

of each attacker in Group 2 is shown in Figure 7.5. 

 

Figure ‎7.4: The ALC-Based accumulative manipulation of attacker’s attempts. 

 

Figure ‎7.5: The ALCM-Based accumulative manipulation of attacker’s attempts. 
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Software and Computing 

MATLAB
29

 (version 7.6) is used as standard software for classification method realiza-

tion, with a Statistics Toolbox [93]. This Statistics Toolbox provides statistical and ma-

chine learning algorithms and tools for organising, analysing and modelling data. 

Among these algorithms and tools, the “classify” function is selected, which performs 

the classification by using different types of Discriminant analysis. The syntax and de-

scription of this function will be highlighted in the following section. For the purposes 

of this experiment, the type “Diaglinear”, which was mentioned previously as DLDA, is 

used to carry out the classification results. 

Classification Function Used 

As stated above, the classify function is selected to perform the classification task. The 

syntax and the description of this function are as follows. The syntax of the classify 

function is [93]: 

[class, POSTERIOR] = classify (sample, training, group, ‘type’) 

The description of the above syntax is that sample, training, group and type refer to the 

test set, training set, strategy and Diaglinear, respectively. That is, this function classi-

fies each row of the data in the test set into one of the strategies in the training set. The 

test and training sets should be matrices with the same number of columns. Strategy is a 

grouping variable for the training set. It is a unique value defined strategy; each element 

defines the strategy to which the corresponding row of the training set belongs. In this 

experiment, the strategy is 1, 2, and 3. The training set and strategy should have the 

same number of rows. The output class indicates the strategy to which each row of the 

test set has been assigned, and is of the same type as group. Furthermore, the output also 

returns a matrix POSTERIOR – estimates of the posterior probabilities that the j
th

 train-

ing set was the source of the i
th

 test set observation. The results of this matrix 

POSTERIOR are detailed in Section 7.3. In addition, more details regarding the classify 

function are in [93]. 

7.2.2 Experiment Procedure 

In this section, the procedures involved in the experiment are explained. As such, the 

detection approach is trained separately by both training sets, ALC-Based and ALCM-

                                                 
29 MATLAP refers to matrix laboratory which is a high-level mathematical language [92]. 
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Based accumulative manipulation, through the classify function. In other words, the 

ALC-Based accumulative manipulation is used with the corresponding strategy firstly 

to train the detection approach using the classify function. Meanwhile, the test set of 

ALC-Based accumulative manipulation, which comprises only the accumulative ma-

nipulation of each attacker, is fed to the classify function. Since this test set includes 

only the accumulative manipulation of each strategy, the detection approach classifies 

the predictability of each attacker’s accumulative manipulation for a specific strategy. 

Once the results of this classification (i.e. detection) stage are achieved, the next stage 

of training for ALCM-Based accumulative manipulation is prepared. Secondly, the 

same procedure is followed for the training and test sets of ALCM-Based accumulative 

manipulation in the detection approach through the classify function. 

7.3 Results of the Evaluation 

In order to assess the proposed detection approach, the two ALC-Based and ALCM-

Based test sets were successfully fed to the detection approach. In this section, the over-

all success detection rate and probabilities of the classification are presented. Note that, 

because the standard performance, including precision and recall, is beyond the scope of 

this thesis, it is not presented in this chapter. 

7.3.1 Overall Rates of Success Detection 

The overall detection rates on both the ALC-Based and ALCM-Based test sets are 

73.68% and 68.42%, respectively. In other words, given the accumulative manipulation 

of an attacker from Group 2, there are 14 chances out of 19 to find the correct strategy 

of this attacker when training the detection approach on the average ALC-Based accu-

mulative manipulation for each strategy in Group 1, as shown in Table 7.3. In contrast, 

there are 13 chances in 19 when training the detection approach on the average ALCM-

Based accumulative manipulation built from Group 1, as shown in Table 7.3. Addition-

ally, Table 7.3 shows the details of detecting each strategy. 

It is important to point out that these detection results are based on the correct detection 

of each sample’s trials until the first breaking attempt, since the attacker is asked to 

break each algorithm twice. As noted before in Chapter 6 (Section 6.2.3), the reason for 

asking the attackers to break an algorithm twice is to ascertain the learning process. 
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Table  ‎7.3: The Results of Classifying each Strategy. 

ALC-Based test set ALCM-Based test set 

Strategy 
Total 

Strategy 
Total 

1 2 3 1 2 3 

Number of Samples 8 5 6 19 8 5 6 19 

Correct Classification 5 4 5 14 5 3 5 13 

Incorrect Classification 3 1 1 5 3 2 1 6 

It is apparent from this table that the DLDA can be an effective method for detecting the 

strategy of an attacker quantitatively. As shown in Table 7.3, strategies 2 and 3 were 

detected with a high success rate, while most of the undetected attackers were using 

strategy 1. Moreover, the detection results using the ALCM-Based test set are quite en-

couraging, and attacks using strategies 2 and 3 were detected with a high success rate, 

whereas most of the undetected attackers used strategy 1, as observed in the ALC-Based 

test set. More details regarding each attacker’s accumulative manipulation, classified 

results and labelled results for both ALC-Based and ALCM-Based test sets are pre-

sented in Appendix B. 

Bearing in mind the overall success detection rate, the probability aspect of classifying 

each attempt with a specific strategy, which is provided by the classify function as 

shown in Section 7.2.1, can be useful in terms of tracking the classification process of 

an attacker’s attempt. Therefore, the following section sheds light on this aspect. 

7.3.2 Probabilities of Classification 

Interestingly, the results of the matrix POSTERIOR, which is a returned output with the 

detection results, can allow tracking of the classification process until the attacker 

breaks the algorithm. That is, a positive correlation was found between the applied 

strategy in the attack and the increase of the probability with each attempt. For example, 

Table 7.4 shows the successive probabilities of the classification for a subject using 

strategy 3 (i.e. attacker number 5 in Appendix C for ALC-based and ALCM-based test 

sets). From the data in Table 7.4, it is worth observing that the probability of classifica-

tion using strategy 3 almost always increases both for the ALC and the ALCM, which 

tends to indicate that the confidence in the classification increases with the number of 

trials. 
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This observation might allow us to conjecture that if the number of trials were increased 

significantly, the accuracy of the detection would also increase. Not only this, but it 

might add an improvement to the proposed release order strategy by introducing a Pro-

active Defence Approach. That is, instead of waiting until an algorithm is broken to re-

place it, such a moment could be anticipated and a new algorithm deployed in time. 

However, due to the time limitation, this will be for future work. 

Table  ‎7.4: The probability of classifying one of the correctly classified samples. 

Trial 

Probability of classifying each 

strategy (ALC-Based) 

Probability of classifying each 

strategy (ALCM-Based) 

1 2 3 1 2 3 

1 0.528 0.338 0.132 0.224 0.351 0.424 

2 0.258 0.361 0.379 0.261 0.362 0.375 

3 0.229 0.352 0.418 0.240 0.356 0.402 

4 0.203 0.365 0.431 0.234 0.354 0.410 

5 0.261 0.365 0.372 0.222 0.350 0.427 

6 0.229 0.352 0.418 0.163 0.321 0.515 

7 0.133 0.298 0.568 0.104 0.271 0.623 

One the other hand, Table 7.5 shows the probabilities of the classification for a subject 

using strategy 1 who was wrongly classified as using strategy 2 (i.e. attacker number 6 

in Appendix C for the ALC and ALCM).  

Table  ‎7.5: The probability of classifying one of the incorrectly classified samples. 

Trial 

Probability of classifying each 

strategy (ALC-Based) 

Probability of classifying each strat-

egy (ALCM-Based) 

1 2 3 1 2 3 

1 0.528 0.338 0.132 0.528 0.338 0.132 

2 0.528 0.338 0.132 0.335 0.372 0.292 

3 0.362 0.375 0.261 0.282 0.366 0.351 

4 0.371 0.379 0.248 0.350 0.372 0.277 

5 0.371 0.386 0.242 0.270 0.365 0.364 

From the data in Table 7.5 on the ALC-Based test set case, it is worth observing that the 

probability of the classification as strategy 1 is quite close to that of strategy 2, which 

could be interpreted as of rather low confidence in the final result. On the other hand, no 
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relative convergence was found in the ALCM-Based test set case compared to the ALC-

Based test set, since the probability of strategy 1 is the lowest of all, as shown in Table 

7.5. From the data in this table for the ALCM-Based test set, it can be seen that the ap-

proach is inaccurate, which underlines the fact that this approach might not be perfect. 

More details on the probability of detecting each attempt using the predicted strategy 

are presented in Appendix C. 

7.4 Discussion 

The present study was designed to determine the effect of the developed ALC on the 

possibility of detecting the attack strategy used experimentally. The results of this ex-

periment show that the correct detection rate on the testing set of the ALC-Based accu-

mulative manipulation was 73.68%. Since this is, to the best of our knowledge, the first 

attempt to detect the attack strategy used, the accuracy obtained with this experiment 

indicates that the notion of accumulative manipulation, which forms the ALC, can be 

successfully used as an input feature for a supervised detection algorithm. 

It is interesting to note that although the results of the matrix of POSTERIOR could al-

low tracking by the detection approach, the percentage of incorrect classification was 

31.58% (i.e., 6 out of 19 attackers). However, a possible explanation for this might be 

that overlapping between the types of strategies used could affect the accumulative ma-

nipulation produced. Accordingly, this may cause a misclassification in the detection 

approach, as the detection approach relies essentially on the ALC, which is formed by 

the accumulative manipulation of each attacker. For instance, Table 7.5 shows the prob-

abilities of the classification for a subject that was using strategy 1, and was wrongly 

classified as using strategy 2. Since there is an overlap between two types of strategies: 

Thesaurus substitution and Perceptive substitution, this may cause misclassification. 

Hence, a security mechanism that can monitor and log the manipulation performed by 

an attacker can leverage that information to detect the strategy used by the attacker. 

Such knowledge can be particularly useful in adapting the defensive mechanism to that 

particular attacker, in terms of efficiency (e.g., deploying the best way to block that at-

tacker) or cost (e.g., only deploying countermeasures for that particular kind of at-

tacker). Furthermore, this finding has important implications for developing an ap-



Chapter 7 – Detection of Attack Strategies 

 

142 

 

proach that considers the evolution of the classification instead of the final classification 

only. 

In the current study, the results obtained from the ALCM-Based test set show that a 

learning curve model can be utilised to detect the strategy used by an attacker. Although 

this approach is less accurate compared to the ALC-Based test set, it does not require 

training the classifier with effective previous attempts, but can directly build the learn-

ing curves from the possible attacker skill levels, the strategies used and the robustness 

of the algorithms, as noted previously in Chapter 6. 

There are several limitations to the work presented here in this chapter. Firstly, the 

number of participants for each strategy is quite low. However, this work is considered 

as proof of the concept, showing that using accumulative manipulation makes sense in 

some contexts. Clearly, further work is required in order to understand which contexts 

are suitable and which are not. Secondly, only attempts that are known to be attacks are 

used. In other words, the data are not cluttered with data coming from normal usage. In 

a practical setting, it would probably be necessary to first detect whether a particular 

user is attacking the system, and only then try to detect which strategy is being em-

ployed. Finally, in the design of the experiment, the attackers do not care about being 

detected or not, whereas an actual inside-attacker would try to hide as much as possible. 

It is however difficult to design an experiment that can cover all possible kinds of at-

tack, and the goal of the work presented here is not to provide a tool ready to use in any 

possible context, but rather to identify the features that can be useful when using ma-

chine learning in the context of security. 

Indeed, the results presented in this chapter corroborate the ideas of Liao et al., who 

pointed out in [84] the need for a better understanding of the different types of features 

and heuristics for specific goals in network intrusion detection. In other words, selecting 

and understanding an effective set of features is a challenging and labour-intensive task. 

Therefore, the results in this chapter have identified a proper set of features for the de-

tection of attack strategies. 

These findings will doubtless be much scrutinized, but there are some immediately de-

pendable conclusions for the likelihood of detecting the applied attack strategy quantita-

tively. 
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7.5 Summary 

This chapter has proposed an attack strategy detection approach using the original con-

cept of an attacker accumulative manipulation developed in the previous chapter, which 

is abstracted as the Attacker Learning Curve (ALC). Based on the results of the devel-

oped ALC and its model, the proposed detection approach is evaluated. The result of 

this evaluation shows that the overall detection success rate is higher than 70%. Return-

ing to the question posed at the beginning of this chapter: “Can the applied attack strat-

egy be detected quantitatively by using the accumulative manipulation of attackers?”, it 

is now possible to state that the attack strategy applied can be detected quantitatively. 

Moreover, the empirical findings in this study provide a new understanding of not only 

detecting the attack strategy used quantitatively, but also tracking the attack strategy 

used through the probabilities of the classification. 

The findings in this chapter may be subject to at least two limitations. First, data used in 

the experiment are not cluttered with data coming from normal usage because the at-

tempts are known to be attacks. In other words, it would probably be necessary to first 

detect whether a particular user is attacking the system, and only then to try to detect 

which strategy is being adopted. Furthermore, a limitation of this study may be that the 

number of samples in each strategy was relatively small. However, we consider this 

work as a proof of concept, showing that using accumulative manipulation makes sense 

in some contexts. 

In the next chapter, a summary of the research contributions and several potential future 

works are presented. 
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Chapter 8.  CONCLUSION AND FUTURE 

WORK 

This chapter concludes the thesis with a discussion of the findings of this research and 

with a future work. In particular, this thesis has given an account of and the reasons for 

interactive defensive mechanisms from the perspective of the knowledge acquisition 

process of attackers and proposed a set of algorithms approach, of which the rationale 

was to prolong the protection of a system as far as possible. A cornerstone of this thesis 

was the investigation into whether the order of releasing a set of defensive algorithms 

has an effect on the time taken to break all algorithms or not. Through an experimental 

study, it was possible to demonstrate that the order in which defensive algorithms are 

released does indeed influence the time attacks take. Based on the empirical results 

achieved by this experiment, a Stochastic Petri Net model was developed, which can 

describe the interaction between an attacker and a set of algorithms, in order to estimate 

the time required to defeat a defensive algorithm with various algorithm orders. Fur-

thermore, an optimisation algorithm was proposed to obtain efficiently the optimal re-

lease strategy by using a Markov Decision Process model. To contribute an advantage 

for the interactive defensive mechanisms, a detection of attack strategy approach, which 

relies on the developed Attacker Leaning Curve (ALC) notion, was proposed and evalu-

ated. 

The remainder of this chapter is organised as follows. Section 8.1 outlines the contribu-

tions made by this thesis. Section 8.2 then provides reflections on the research con-

ducted in this thesis in order to answer the research questions. Finally, Section 8.3 offers 

a discussion on potential future works which can be derived from the research works 

conducted in this thesis. 
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8.1 Summary of Contributions 

The thesis has made several contributions as follows: 

 A Classification scheme of defensive mechanisms (Addressed in Chapter 1). 

Based on the insight into the confusion matrix in for instance in machine learn-

ing, a classification scheme that consists of different dimensions such as asser-

tive and predictive defensive mechanisms has been proposed. Furthermore, the 

interactive and non-interactive defensive mechanisms are introduced under the 

predictive defensive mechanism umbrella. To our knowledge, the proposed clas-

sification scheme has not been introduced by other researchers. The value of 

such classification is in providing interested parties such as researchers, defen-

sive mechanism designers and developers with a tool to accurately classify de-

fensive mechanisms. Moreover, this classification has allowed the identification 

of a correlation between a defensive mechanism, such as an interactive defensive 

mechanism, and other possible factors such as the knowledge acquisition proc-

ess of attackers. This provides a consistent and clear understanding of the prob-

lem of interactive defensive mechanisms. 

 A novel experimental study for evaluating the proposed approach (Ad-

dressed in Chapter 3). One of the challenges in this thesis was designing an 

experiment in order to evaluate whether the release order of a set of defensive 

algorithms matters. More precisely, the dilemma was to design a system that 

could be reached by non-specialists in a matter of minutes, since the rationale 

behind the proposed approach was that attackers learn from their attempts. 

Hence, we decided a spam-filter would offer a very good model for the experi-

mental requirements. Based on a chosen content-based spam filter, several sim-

plified but representative algorithms were developed. Accordingly, a web-based 

system was developed as well, which allows the participants to interact with the 

algorithms of the spam filter in order to break them. Using this developed sys-

tem, the evaluation of the release order of defensive algorithms in terms of time 

taken to break them was carried out. Not only this, but also the attackers’ learn-

ing progress was observed and analysed quantitatively. 

 A model for the release order of a set of defensive algorithms (Addressed in 

Chapter 4). The proposed model represents a generic application level blueprint 



Chapter 8 – Conclusion and Future Work 

 

146 

 

for the underlying principle of the developed experimental study. A Stochastic 

Petri Net model was used to construct the proposed model. As such, this model 

could allow for a theoretical analysis of the release order of a set of algorithms, 

and for a better estimation of the time required to break a defensive algorithm 

with various algorithm orders. This approach is unique and important since there 

has been no such attempt to provide a model that addresses the issue of the re-

lease order of the defensive algorithms. Moreover, this model could be a valu-

able tool to interested parties such as interactive defensive algorithm designers 

and developers of interactive defensive algorithms. 

 An optimisation algorithm to obtain the optimal release strategies (Ad-

dressed in Chapter 5). Based on the empirical results, which are presented in 

Chapter 3 and demonstrate that the release order of defensive algorithms has a 

statistically significant impact on the time attackers take to break all algorithms, 

an optimisation algorithm has been proposed. The metric of interest (and, hence, 

the optimisation criterion) in this algorithm was to maximise the time it takes to 

break a set of algorithms. The approach to the proposed optimisation algorithm 

was to mathematically model the optimisation problem, and to present a bespoke 

and efficient solution algorithm that derives the optimal release strategy for any 

model. The mathematical model used on this algorithm was the Markov Deci-

sion Process model, with a specific state space that is utilised to derive the effi-

cient optimisation algorithm. To the best of our knowledge, this is the first to 

address this particular issue of optimising the release strategy to delay a success-

ful attack success for as long as possible. 

 An approach to demonstrate an attacker’s progress (Addressed in Chapter 

6). Since the feedback achieved from a system while an attacker attempts to 

break it plays an important role in gradually weakening the security level of in-

teractive defensive algorithms, a quantitative approach to show the effectiveness 

of this feedback from the attacker perspective has been proposed. This approach 

is the accumulative manipulation amount of an attacker’s attempts that led to 

developing the Attacker Learning Curve (ALC) concept. The value of this con-

cept is not only in demonstrating the performance of an attacker during the at-

tack process, but also in distinguishing the applied strategy in the attack. Fur-

thermore, the ALC concept represents the importance of the feedback to the at-
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tacker in terms of disclosing rules of the defensive algorithms. Therefore, this 

concept can reduce the gap of knowledge by showing quantitatively both the 

progress level of an attacker and the strategy used in an attack. 

 A mechanism to detect the attack strategies (Addressed in Chapter 7). 

Based on the ALC concept developed, a mechanism to detect attack strategies 

has been proposed. This mechanism exploits the features and heuristics that can 

be provided by the proposed accumulative manipulation, which forms the ALC 

concept, in order to detect attack strategies. The performance of the proposed 

mechanism shows the practicality and efficiency of this novel detection mecha-

nism. The value of this detection mechanism is in providing an advantage for the 

security mechanism, for instance by using an attack-defence tree, or even by op-

timising the release order of algorithms, which has been proposed in Chapter 5. 

8.2 Reflections on Research Outcomes 

This section provides reflections on the research conducted in this thesis in light of the 

research questions addressed in Section 1.2. In particular, each research question is an-

swered first, and then a reflection on the overall thesis is provided. 

8.2.1 The first research question 

The first research question was as follows: Does the order in which different defensive 

mechanisms are released impact the time an attacker needs to break each one of them? 

This is indeed a practical question to investigate, particularly when a set of algorithms 

scheme proposed is new to the defensive mechanism realm. The majority of interactive 

defensive mechanisms can be considered from a qualitative point of view by releasing a 

single defensive mechanism. In practice, using an interactive defensive mechanism, 

such as a CAPTCHA or spam filter, the attacker and defender exchange ‘blows’, each 

celebrating (temporary) success in breaking and defending. However, the feedback giv-

en by the system during the attack process by attackers allows for the gradual disclosure 

of the rules included in the defensive algorithms over time. The issue of feedback seems 

evident in the interactive defensive mechanisms, as discussed in Chapter 1. Therefore, 

this has led to propose a set of defensive mechanisms approach in order to prolong the 

time needed to break a system. Intuitively, releasing a set of algorithms one by one se-
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quentially extends the required time to break a system, rather than releasing only one 

algorithm. 

In order to evaluate whether the order will affect the security level of a system in terms 

of maximizing the time taken to break all algorithms, a controlled laboratory experiment 

study was conducted. The results of this experimental study revealed that the order in 

which interactive defensive mechanisms are released has a statistically significant im-

pact on the time attackers take to break all algorithms (Figure 3.4, Tables 3.3 and 3.7). It 

is important to note that the effect of the presentation order on the learning mechanism 

is not new in the fields of education and psychology. As such, previous research pro-

vides several insights and experiments into the effect of presentation order [48, 91, 98, 

131]. However, to the best of our knowledge, this is the first experiment to address this 

particular issue of the release order strategy in the security field. This allows the ques-

tion to be answered as follows:  

“The order in which different defensive mechanisms are released can impact the time an 

attacker needs to break each one of them.” 

8.2.2 The second research question 

The second research question was as follows: Could we optimize the order in which 

defensive mechanisms are released? 

The release order of defensive mechanisms has indeed influenced the time attackers 

take to break them, as answered in question 1. Therefore, optimizing the release order of 

defensive mechanisms is a problem worthy of study. The aim of this optimization is to 

make a system as effective as possible in terms of maximizing the time taken by attack-

ers to break the system. Thus, we have provided in Chapter 5 a tailored optimization 

algorithm using a Markov Decision Process to obtain efficiently the optimal release 

strategies for any given model. Moreover, the proposed model solution should scale 

without problems to optimize the release order of tens of defensive mechanisms. This 

allows the question to be answered as follows: 

 “We could optimize the order in which defensive mechanisms are released using a 

Markov Decision Process.” 
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8.2.3 The third research question 

The third research question was as follows: How does dependency between algorithms 

impact on ability to answer question 2? 

The proposed set of defensive algorithms approach leads to an investigation of not only 

independent and dependent defensive algorithms, but also of the defensive algorithm of 

which these algorithms were originally a part. Since Algorithm 1 was a simplified ver-

sion of Algorithm 2 in the controlled experimental study that was carried out in Chapter 

3, the results of this study showed that the success of attacks can be delayed (i.e. extend-

ing the time of attack) by breaking up an algorithm into parts, when these parts are re-

leased in a specific order. This specific order was determined by the results of the exper-

iment, in which a subset defensive algorithm was released before the superset defensive 

algorithm, as shown in the order of Group 1. On the other hand, the success of the at-

tack could be also delayed by breaking up an algorithm into parts when the parts are 

released in the reverse order, as shown in the order of Group 2, but not as much as the 

order of Group 1. Thus, it is an interesting insight that implies the intuitive reasoning 

that by breaking up a defensive algorithm into parts the attacker is not ‘taught’ how to 

attack.  

Furthermore, in the setup of the controlled experimental study, Algorithm 3 was a rela-

tively independent (i.e. non-subset) defensive algorithm using a quite different defen-

sive approach to that of Algorithms 1 and 2 was applied. In light of this, the concatena-

tion of Algorithm 3 at the end of the release order of Group 1 and Group 2 yielded in-

teresting and important results. These results showed that, despite the knowledge gain at 

any point of the release chain, injecting a non-subset algorithm would force the attacker 

back to the learning phase. More importantly, the time taken to break Algorithm 3 in 

both groups was equal. This finding has important implications for developing an opti-

mization algorithm for the order release strategy, which has been accomplished by 

means of a Markov Decision Process model, as reported in Chapter 5. This allows the 

question to be answered as follows:  

“It could be useful to break up a defensive algorithm into multiple algorithms, and re-

lease them one by one if the order of these multiple algorithms is that the subset defen-

sive algorithm is released before the superset defensive algorithm.” Also: 
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“The time taken to defeat a future independent defensive algorithm does not depend on 

the order in which earlier algorithms were broken.” 

8.2.4 The fourth research question 

The fourth research question was as follows: Could we model the learning acquisition 

process of attackers? 

Since an exploration was carried out to find out the answer to all of the previous ques-

tions, the common denominator between them was the attacker’s aggregated amount of 

knowledge. Using quantitative data that collected from the experiment, an accumulative 

manipulation notion that represents effectively how close an attacker is to breaking a 

defensive algorithm was developed. As noticed previously, this can be observed through 

a number of attempts accomplished by the attackers, which forms the basis of the ALC 

(i.e. the attacker’s performance by accumulative experience). Using this approach, it 

was possible to not only demonstrate the attacker’s performance, but also to distinguish 

between the attack strategies applied by means of different amounts of effective manip-

ulation for each attacker’s attempts. 

Additionally, we also developed an Attacker Learning Curve Model (ALCM) that is 

inspired by a previous model that is utilised for explaining a developer’s learning curve, 

as presented in Chapter 6. The evaluation of the ALCM suggests the applicability of 

using it. Although the knowledge acquisition process of an attacker presented in Chap-

ter 4 derived through the developed model, as shown in Figure 4.10, this derivation of 

the attacker knowledge acquisition process did not take into account the strategy applied 

in the attacking process. Therefore, the ALCM seems a typical model to estimate the 

learning curve of an attacker to break an algorithm, due to its recognition of the strategy 

applied in the attacking process. This allows the question to be answered as follows: 

“We could empirically model the learning acquisition process of attackers.” 

8.2.5 The fifth research question 

The fifth research question was as follows: Based on understanding the learning acqui-

sition, can we devise an attacker detection approach? 

The results of the ALC have attracting an interest by us to devise an attacker detection 

approach that can add an enhance security level to the release order strategies. Thus, a 
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detection of attack strategies approach has investigated and evaluated empirically based 

on the data of ALC that collected from the controlled experimental study. The empirical 

findings from this method provide an additional advantage with respect to supporting 

the proposed approach for prolonging the time taken to break a set of defensive mecha-

nisms, that is, by considering the evolution of the attacker’s performance. This allows 

the question to be answered as follows:  

“A detection methodology for attack strategies has been developed which could be used 

to prolong the time taken to break a system as far as possible.” 

8.2.6 Overall Reflection 

This section gives an overall opinion regarding the viability of the proposed methodolo-

gy. 

The methodology proposed in this thesis starts from a set of defensive mechanisms as a 

holistic defensive approach and maps it to the release order strategy. Automated ap-

proaches to breaking defensive mechanisms, such as bots, were purposely not used, as 

they are beyond the scope of this research. The reason for this is that any automated 

approach would need to know the parameters to try, and the range in which these pa-

rameters may fall. Instead, the significant challenges in answering the aforementioned 

questions should be stressed, in terms of designing a representative experiment, system 

implementation of the experiment, and conducting, and analyzing the experiment. In 

particular, as it is assumed that an attacker is human, the problem of human learning 

would be seen clearly by sending e-mails to evade a content-based spam filter, as it re-

quires a low degree of technical proficiency (i.e. it is possible to show the objective to 

non-specialists people). Consequently, a content-based spam filter was chosen because 

it allows some understanding of a human learning process, as automated approaches are 

abstractions of this human learning process that require encoding by humans. 

It is significant to note that the testing of the two conditions, in which the defenses are 

overlapping (i.e. Algorithm 1 and Algorithm 2), was necessary to build a solid hypothe-

sis before further experiments were conducted. It is hard to predict how our brains pro-

cess knowledge and, hence, even the trivial assumptions should be tested to avoid sur-

prises. In addition, adding Algorithm 3 at the end of the two experimental conditions is 

harmless to the integrity of the original experiment results, which pertained to the re-
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lease order. Rather, the addition of Algorithm 3 has provided an insight into the effect 

of non-wholly overlapping algorithms on overlapping algorithms. 

Furthermore, an abstract model of human learning was considered as a starting point.  It 

is assumed that a simple feedback loop exists, in which a human acts and then learns, 

then acts, and so on.  More complex learning processes would certainly be interesting to 

investigate, but it is believed that the approach in this thesis provides a valid starting 

point. Accordingly, an accumulative manipulation of an attacker notion could be devel-

oped that effectively represents the learning curve of the attacker. Moreover, this notion 

allows a distinction between the applied attack strategies to be measured quantitatively. 

Based on the features and heuristics that are provided by this notion, a detection of at-

tack strategies approach is proposed and evaluated. Although a number of important 

limitations in the evaluation of this proposed detection approach need to be considered, 

the aim behind this approach is not to provide a tool ready to use in any possible con-

text, but rather to identify the features that can be useful when using machine learning in 

the context of security. 

This research is exploratory in nature, not directly aiming to support or refute any exist-

ing theories or practice. However, it does open up a new platform for more research to 

be conducted in the near future. This research also does not attempt to provide an ulti-

mate solution to the existing issues, but instead opens possible avenues to be investigat-

ed. This research does not provide a silver bullet to an issue but instead creates more 

opportunity for interested parties to collaborate in an effort to improve the existing pro-

posed countermeasures.  

8.2.7 Applicability to Other Security Scenarios 

This section speculates how the concepts that are presented in this thesis would relate to 

other security scenarios e.g. CAPTCHA. In general, due to the utilization of a set of 

algorithms rather than a single algorithm as a defensive mechanism, it is assumed that 

the algorithm with more security rules than another is already known. For example, if 

Algorithm 1 has a, b and c rules and Algorithm 2 has the same rules plus an advanced 

one i.e. a, b, c and d, that is, if the similarity between the proposed defensive algorithms 

is known, then their deployment can be ordered appropriately. As a result, the optimiza-

tion order increased the time needed to break the defensive algorithm from 16.2 min-

utes, in the case of applying Algorithm 2 alone, to 25 minutes in the case of applying 
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the optimized set of defensive algorithms (i.e. releasing Algorithm 1, which was the 

subset, took 10.9 minutes, then releasing Algorithm 2, which was the superset, took 

14.1 minutes). By generalizing the optimization approach, it could be applied to any 

security system that currently depends on a single defensive algorithm. It is important to 

emphasise that the objective of this research is to show the validity of the claim that the 

release order of defensive algorithms matters. That in itself is challenging. Showing that 

it holds true for another system, such as a CAPTCHA, is an additional and difficult 

question beyond the scope of this thesis. 

However, this section describes how the experiment would be different and how differ-

ences between algorithms and attackers would be classified in case, for instance, 

CAPTCHA. Therefore, the following highlights the algorithms, attackers and the ex-

periment. 

Algorithms 

It could be possible to generate three types of CAPTCHAs: overlapping rules, non-

overlapping rules or mixed. For the first type, the rules of generating such text-based 

CPATCHAs have, for example, the following characteristics: 

 Eight characters are used in each sample; 

 Only upper case letters and digits are used, and 

 Foreground (i.e. sample text) is dark red whereas background is light gray. 

While such samples have, in addition to the previous characteristics, the following char-

acteristics: 

 Warping (both local and global) is used for character distortion; 

 Nine and seven characters are used in each sample; 

 Small case letters are used, and 

 Foreground is blue, green and back whereas background is white. 

Thus, based on the characteristics, a generator can produce a set of overlapping 

CAPTCHAs with a view to not only extent the time taken to break the system, but also 

to break up a CAPTCHA into parts. 
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For the second type, the rule of generating the samples are based on text-based scheme 

as shown for instance in Figure 2.2 and image-based scheme as shown for example in 

Figure 2.3. Thus, a generator can produce a set of non-overlapping CAPTCHAs in order 

to prolong the time to break the system as this is the cornerstone of this thesis. 

Finally, for the mixed type, it can generate for example overlapping text-based schemes 

and image-based scheme which represents non-overlapping rules scheme. Furthermore, 

it can also generate text-based scheme by generating independent text-based schemes. 

Attackers 

According to the state of the art of CPATCHAs, all attackers against CAPTCHAs are 

automated programs (i.e. bots) [100, 150, 32]. The automated programs are abstracted 

of humans learning process that require encoding by human. Therefore, any automated 

programs would need to know the parameters to try, and the range within which these 

parameters can fall. Depending on the targeted CAPTCHA scheme, the automated pro-

gram should be encoded by a set of heuristics that are observed by human after acquir-

ing such feedbacks
30

.  

For example, an automated program can be encoded by the following heuristics that 

control the movement of the automated program in order to break a text-based sample 

scheme: 

 Whenever feasible, an automated program moves down vertically as much as 

possible. As such, down movement is the direction that has the highest priority. 

 The automated program moves down from its starting point until it is immedi-

ately above a foreground pixel. 

 When the automated program moves left and up only, it move left one pixel, and 

then moves down as much as possible. 

 When the automated program moves right and up, it moves right one pixel, and 

then moves down as much as possible. 

 A vertical slicing line could be a legitimate segmentation line. 

 Distance control, when the automated program reaches the bottom line, it is 

done. On the other hand, when the automated program cannot reach the bottom, 

it is aborted and all its trace is deleted. 

                                                 
30 The feedback concept has been explained in Chapter 1 (Section 1.1) 
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Once the automated done these heuristics successfully, a recognition approach can be 

used with a view to identify a specific letter of the targeted CAPTCHA. It is important 

to note that the automated program that is utilised to break a set of CAPTCHAs needs to 

be learned by sophisticated heuristics, since all of attacks, to the best of our knowledge, 

are developed against a system that has only a single algorithm to generate 

CAPTCHAs. 

Experiment 

The common methodology that is used in order to observe and analyse CAPTCHA 

schemes follows the practical in the fields such as computer vision and machine learn-

ing. In particular, an attack is built on observing and analysing a random number of 

samples. These samples are called a “Sample set”. To show the effectiveness of a de-

veloped attack, a large “Test set” of random samples are tested by the developed attack, 

which is no prior knowledge about any sample in this set.  

So, the time taken by the attacker to analyse the released schemes and testing the attack 

on the observed schemes could be calculated. Since the time was playing an important 

role in the previous experiment with a view to demonstrate the impact of the release 

order of a set of algorithms on the time taken to break them, this impact could be shown 

to CAPTCHAs. Furthermore, this could be shown also to other security scenarios. 

Moreover, as we mentioned previously, the proposed optimisation algorithm is in-

creased the time needed to break the defensive algorithms. By generalising this optimi-

sation algorithm, it could be applied to any security system that currently depends on a 

single defensive algorithm. The next section provides some discussion on possible fu-

ture work relevant to this research. 

8.3 Future Work 

The research work presented in this thesis provides a basis for a number of potential 

related future works as follows: 

 It would be useful to conduct a controlled experimental study in which the 

defensive algorithms are not wholly overlapping and in fact are qualitatively 

different, and in which defensive algorithms are returned to be released 

again rather than removed (i.e. not released again) when the next defensive 
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algorithm is deployed. This would provide an insight into the effectiveness 

of the knowledge gained on the attacker’s performance when the broken al-

gorithm is released after breaking a different one. Although it might be in-

convenient to re-release a broken algorithm against attacks, it would be in-

teresting to investigate the amount of remaining knowledge regarding this 

algorithm after breaking a relatively different one. 

 It would be worth investigating a proactive defensive approach based on ei-

ther related algorithms (i.e. algorithms which have overlapping rules) or 

non-related algorithms. The idea behind this approach is that the released 

algorithm is replaced with another one before it is broken, based on the pro-

posed optimization algorithm which applies a set of related algorithms, 

while the proposed optimization algorithm might not be applied in the case 

where a set of non-related algorithms is used. This would provide an insight 

into the length of the time needed to break an algorithm with knowledge 

gained intermittently.  

 It would be interesting to investigate whether we can extend the developed 

Petri Net model, which is in Chapter 4, in order to prolong the time needed 

to break a system. That is, based on the probability of attacker’s knowledge 

evolution to break the released algorithm, it could replace the released algo-

rithm by another algorithm from the pool of algorithms before breaking the 

released one. 

 It would be of value to conduct more research to study further the accuracy 

of the proposed detection attack strategy approach before a defensive algo-

rithm’s rules are broken and to understand how to establish better confi-

dence in the classification results, for instance by considering the evolution 

of the classification instead of the final classification only.  

 It would be interesting to develop an approach that considers qualitative rea-

soning, in light of what has been considered here in this research, based on 

formal logic, to model the knowledge gained by the attackers by combining 

both a qualitative and quantitative approach. This would provide an oppor-

tunity to get more precise detection results. 
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 Since the proposed detection of attack strategies was useful for insider at-

tacks particularly, and evaluated based on attempts that are known to be at-

tacks, it would be interesting to first detect whether a particular user is at-

tacking the system, and only then to try to detect which strategy is being 

used by the attacker. This could be carried out in a controlled experimental 

study in which random attackers are involved among ordinary users. 

 As the main goal of the detection of attack strategies presented here in this 

thesis is to identify the features that can be useful when using machine 

learning in the context of security, it would also be interesting to try the 

proposed detection approach in a different context in which, for instance, an 

attacker types commands into a terminal looking for misconfiguration. 
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Participants Recruiting Email 

Hello,  

 

My name is Suliman and I am PhD student at School of Computing Science. As part of 

my research work, I am planning to evaluate a novel defence mechanism by conducting 

an experiment. Therefore, I need participants to take place in this experiment. The ex-

periment takes only about 30-40 minutes. 

The experiment will be as a game, the higher score you get, the higher reward you will 

achieve. Specifically, the first winner will get £40 and the second winner will get £20. 

Additionally, just for the participation, each participant will get £5. 

The experiment would take place at Cybercrime lab, room 702, Claremont Tower on 

13
th

 April to 17
th

 April 2012. I will be there from 9:00am till 6:30pm and you can 

choose to come between these hours to try out the experiment at any date of the above 

dates.  

If you are interested in helping out, please e-mail me at (suliman.alsuhibany@ncl.ac.uk) 

and I will allocate a slot for you. 

For any further information, please do not hesitate to contact me. 

 

Thank you and I am waiting for your participation in this experiment. 

 

Suliman Alsuhibany 

Cybercrime lab 

Room 702, Claremont Tower 

School of Computing Science 

Newcastle University 

suliman.alsuhibany@ncl.ac.uk 

 

 

 

 

 

 

 

 

 

 

 

mailto:suliman.alsuhibany@ncl.ac.uk
mailto:suliman.alsuhibany@ncl.ac.uk


Appendix A: Experiment Materials 

 

160 

 

Screenshots for the System Website - Registration Page 
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Screenshots for the System Website - Participant Consent Form Page 

(1) 
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Screenshots for the System Website - Participant Consent Form Page 

(2) 
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Screenshots for the System Website – Experiment instructions 
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Screenshots for the System Website - An Example to an attacker’s at-

tempts to break the system 

 

- A number of successful/failed trials for Breaking Algorithm 1 
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- A trial for Breaking Algorithm 2 

 

- A trial for Breaking algorithm 3 
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- Breaking the system 

 
 

Screenshots for the System Website – Survey Page 

 



Appendix A: Experiment Materials 

 

168 

 

 

Screenshots for the System Website – Logout Page 
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ALC-Based Accumulative Manipulation 

Note: Green colour: classified successfully, while Red colour: misclassified. An L. result refers to labelled data and C. result refers to classified result. 

 

 

  

ALC-based Accumulative manipulation 

Attacker 

Trial A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 20 11 0 9 0 0 0 18 0 7 0 23 0 0 0 0 

3 0 0 17 38 29 7 37 0 3 6 45 2 12 0 42 0 15 17 0 

4 5 11 45 65 47 16 64 0 11 9 113 7 38 0 42 0 27 44 0 

5 17 16 76 92 68 42 
 

10 40 12 
 

7 67 9 82 7 38 73 0 

6 39 22 
  

81 49 
 

28 69 21 
 

36 
 

14 95 8 65 
 

0 

7 61 48 
  

91 80 
 

54 
 

43 
 

57 
 

41 115 15 91 
 

15 

8 88 78 
  

130 
  

87 
 

61 
 

77 
 

62 149 24 
  

39 

9 110 
   

151 
    

87 
 

114 
 

86 
 

44 
  

61 

10 134 
   

204 
    

113 
 

116 
 

111 
 

66 
  

79 

11 184 
          

123 
   

124 
  

110 

12 
           

134 
   

136 
  

133 

13 
           

151 
   

159 
  

191 

14 
           

172 
   

210 
   

15 
           

223 
       

L. results S3 S1 S1 S2 S3 S1 S1 S2 S1 S3 S2 S3 S1 S1 S2 S3 S1 S2 S3 

C. results S3 S1 S2 S2 S3 S2 S1 S1 S1 S3 S2 S3 S1 S1 S2 S3 S2 S2 S2 
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ALCM-Based Accumulative Manipulation 

  

ALCM-based Accumulative manipulation 

Attacker 

Trial A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 5.009 11.8 17.93 10.9 7.571 15 6.67 7.07 5.635 26.97 6.882 9.111 5.65 12.4 7.35 8.1 11.38 7.7 

3 9.211 10.83 26.8 39.39 23.1 16.38 35.3 14.29 15.8 11.94 62.3 14.25 21.09 12 26.4 15.3 17.6 25.67 16.02 

4 19.31 17.762 46.9 65.98 36.9 26.89 64 23.17 27.2 19.1 112.6 22.19 38.24 19.1 42.6 23.8 29.2 44.68 25.05 

5 30.49 26.297 76 92 52.7 39.85 
 

33.77 43.1 27.35 
 

30.78 66.93 27.4 61.5 33.1 43.7 72.49 34.95 

6 42.98 37.322 
  

71.2 56.65 
 

46.87 68.9 37.09 
 

40.14 
 

37.2 84.5 43.4 63.1 
 

45.87 

7 57.14 52.668 
  

93.4 80 
 

63.9 
 

48.92 
 

50.43 
 

49.1 113 54.7 91 
 

58.05 

8 73.45 76.988 
  

121 
  

87 
 

63.91 
 

61.82 
 

64.2 149 67.4 
  

71.81 

9 92.65 
   

158 
    

84.15 
 

74.59 
 

84.5 
 

81.8 
  

87.6 

10 115.9 
   

204 
    

113 
 

89.1 
 

111 
 

98.5 
  

106.1 

11 145.3 
          

105.9 
   

118 
  

128.3 

12 
           

125.7 
   

142 
  

156.1 

13 
           

149.9 
   

173 
  

191 

14 
           

180.7 
   

201 
   

15 
           

222.6 
       

L. results S3 S1 S1 S2 S3 S1 S1 S2 S1 S3 S2 S3 S1 S1 S2 S3 S1 S2 S3 

C. results S3 S2 S1 S2 S3 S2 S1 S1 S2 S3 S2 S3 S1 S1 S3 S3 S1 S2 S2 
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ALC-based Probability of detecting each attempt to the predicted strategy 

  
Trials 

A
tt

ac
ke

r 

st
ra

te
gy

 

1 2 3 4 5 6 7 8 9 10 11 

1 

1 0.528 0.528 0.171 0.233 0.322 0.237 0.178 0.125 
   

2 0.338 0.338 0.356 0.370 0.305 0.355 0.329 0.291 
   

3 0.132 0.132 0.471 0.396 0.371 0.406 0.492 0.583 
   

2 

1 0.528 0.528 0.528 0.528 0.498 0.482 0.389 
    

2 0.338 0.338 0.338 0.338 0.348 0.353 0.370 
    

3 0.132 0.13 0.132 0.132 0.152 0.164 0.239 
    

3 

1 0.528 0.528 0.365 0.363 
       

2 0.338 0.338 0.372 0.368 
       

3 0.132 0.132 0.261 0.267 
       

4 

1 0.528 0.355 0.360 0.365 
       

2 0.338 0.475 0.454 0.372 
       

3 0.132 0.169 0.184 0.261 
       

5 

1 0.528 0.258 0.229 0.203 0.261 0.229 0.133 0.095 
   

2 0.338 0.361 0.352 0.365 0.365 0.352 0.298 0.261 
   

3 0.132 0.379 0.418 0.431 0.372 0.418 0.568 0.643 
   

6 

1 0.528 0.528 0.362 0.371 0.371 
      

2 0.338 0.338 0.375 0.379 0.386 
      

3 0.132 0.132 0.261 0.248 0.242 
      

7 

1 0.528 0.471 0.434 
        

2 0.338 0.356 0.364 
        

3 0.132 0.171 0.200 
        

8 

1 0.528 0.528 0.528 0.528 0.495 0.434 0.372 0.370 
   

2 0.338 0.338 0.338 0.338 0.349 0.364 0.345 0.323 
   

3 0.132 0.132 0.132 0.132 0.154 0.200 0.281 0.305 
   

9 

1 0.528 0.528 0.498 0.488 0.458 
      

2 0.338 0.338 0.348 0.351 0.359 
      

3 0.132 0.132 0.152 0.159 0.181 
      

10 

1 0.528 0.528 0.223 0.291 0.270 0.302 0.242 0.305 0.189 
  

2 0.338 0.338 0.369 0.335 0.364 0.327 0.371 0.323 0.361 
  

3 0.132 0.132 0.406 0.372 0.364 0.369 0.386 0.370 0.448 
  

11 

1 0.528 0.371 0.328 
        

2 0.338 0.379 0.372 
        

3 0.132 0.248 0.298 
        

12 

1 0.528 0.528 0.233 0.322 0.166 0.264 0.178 0.127 0.047 
  

2 0.338 0.338 0.370 0.305 0.354 0.363 0.329 0.293 0.190 
  

3 0.132 0.132 0.396 0.371 0.478 0.371 0.492 0.579 0.762 
  

13 
1 0.528 0.478 0.448 0.379 

       
2 0.338 0.354 0.361 0.371 
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ALC-based Probability of detecting each attempt to the predicted strategy 

3 0.132 0.166 0.189 0.248 
       

14 

1 0.528 0.528 0.528 0.528 0.478 0.448 0.379 
    

2 0.338 0.338 0.338 0.338 0.354 0.361 0.371 
    

3 0.132 0.132 0.132 0.132 0.166 0.189 0.248 
    

15 

1 0.528 0.322 0.370 0.319 0.357 
      

2 0.338 0.371 0.389 0.371 0.398 
      

3 0.132 0.305 0.239 0.309 0.243 
      

16 

1 0.528 0.528 0.528 0.528 0.233 0.322 0.322 0.312 0.369 0.331 0.203 

2 0.338 0.338 0.338 0.338 0.171 0.305 0.305 0.316 0.258 0.299 0.365 

3 0.132 0.132 0.132 0.132 0.471 0.371 0.371 0.371 0.372 0.369 0.431 

17 

1 0.528 0.528 0.298 0.369 0.331 0.327 
     

2 0.338 0.338 0.568 0.372 0.369 0.369 
     

3 0.132 0.132 0.133 0.258 0.299 0.302 
     

18 

1 0.528 0.528 0.291 0.261 
       

2 0.338 0.338 0.583 0.643 
       

3 0.132 0.132 0.125 0.095 
       

19 

1 0.528 0.528 0.528 0.528 0.528 0.528 0.371 0.370 0.322 0.298 0.264 

2 0.338 0.338 0.338 0.338 0.338 0.338 0.379 0.396 0.371 0.372 0.371 

3 0.132 0.132 0.132 0.132 0.132 0.132 0.248 0.233 0.305 0.328 0.363 

 

  
ALCM-based Probability of detecting each attempt to the predicted strategy 

  
Trials 

A
tt

ac
ke

r 

st
ra

te
gy

 

1 2 3 4 5 6 7 8 9 10 11 

1 

1 0.528 0.528 0.224 0.222 0.240 0.151 0.084 0.037 
   

2 0.338 0.338 0.351 0.350 0.356 0.312 0.249 0.169 
   

3 0.132 0.132 0.424 0.427 0.402 0.535 0.666 0.793 
   

2 

1 0.528 0.312 0.369 0.312 0.296 0.362 0.312 
    

2 0.338 0.371 0.372 0.371 0.369 0.372 0.371 
    

3 0.132 0.316 0.257 0.316 0.334 0.264 0.316 
    

3 

1 0.528 0.318 0.357 0.371 
       

2 0.338 0.371 0.372 0.319 
       

3 0.132 0.310 0.269 0.308 
       

4 

1 0.278 0.362 0.311 0.320 
       

2 0.366 0.372 0.370 0.371 
       

3 0.355 0.265 0.317 0.307 
       

5 

1 0.224 0.261 0.240 0.234 0.222 0.163 0.104 0.097 
   

2 0.351 0.362 0.356 0.354 0.350 0.321 0.271 0.263 
   

3 0.424 0.375 0.402 0.410 0.427 0.515 0.623 0.639 
   

6 
1 0.528 0.335 0.282 0.350 0.270 

      
2 0.338 0.372 0.366 0.372 0.364 
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3 0.132 0.292 0.351 0.277 0.365 
      

7 

1 0.528 0.382 0.447 
        

2 0.338 0.361 0.344 
        

3 0.132 0.256 0.208 
        

8 

1 0.512 0.492 0.469 0.440 0.414 0.402 0.382 
    

2 0.344 0.350 0.357 0.363 0.367 0.369 0.371 
    

3 0.143 0.156 0.173 0.196 0.217 0.227 0.245 
    

9 

1 0.512 0.335 0.351 0.369 0.360 
      

2 0.344 0.372 0.366 0.372 0.365 
      

3 0.143 0.292 0.282 0.258 0.274 
      

10 

1 0.528 0.047 0.087 0.136 0.188 0.238 0.248 0.287 0.301 
  

2 0.338 0.190 0.252 0.301 0.334 0.356 0.358 0.345 0.328 
  

3 0.132 0.762 0.660 0.562 0.476 0.404 0.392 0.367 0.369 
  

11 

1 0.528 0.350 0.289 
        

2 0.338 0.372 0.368 
        

3 0.132 0.277 0.342 
        

12 

1 0.528 0.256 0.222 0.208 0.158 0.110 0.065 0.039 0.047 
  

2 0.338 0.361 0.350 0.344 0.317 0.277 0.222 0.174 0.190 
  

3 0.132 0.382 0.427 0.447 0.523 0.612 0.711 0.786 0.762 
  

13 

1 0.528 0.510 0.489 0.464 
       

2 0.338 0.345 0.351 0.358 
       

3 0.132 0.144 0.159 0.176 
       

14 

1 0.528 0.512 0.492 0.469 0.440 0.402 0.468 
    

2 0.338 0.344 0.350 0.357 0.363 0.369 0.357 
    

3 0.132 0.143 0.156 0.173 0.196 0.227 0.174 
    

15 

1 0.528 0.226 0.224 0.163 0.104 
      

2 0.338 0.351 0.351 0.321 0.271 
      

3 0.132 0.421 0.424 0.515 0.623 
      

16 

1 0.528 0.357 0.319 0.278 0.234 0.188 0.142 0.0970 0.056 0.047 0.025 

2 0.338 0.269 0.308 0.366 0.354 0.335 0.305 0.263 0.208 0.190 0.141 

3 0.132 0.372 0.371 0.355 0.410 0.476 0.552 0.639 0.734 0.762 0.832 

17 

1 0.528 0.372 0.351 0.370 0.372 0.379 
     

2 0.338 0.335 0.366 0.323 0.350 0.371 
     

3 0.132 0.292 0.282 0.305 0.277 0.248 
     

18 

1 0.528 0.312 0.350 0.369 
       

2 0.338 0.371 0.372 0.372 
       

3 0.132 0.316 0.277 0.258 
       

19 

1 0.528 0.370 0.357 0.319 0.278 0.234 0.229 0.208 0.188 0.185 0.175 

2 0.338 0.392 0.372 0.371 0.366 0.410 0.418 0.424 0.476 0.454 0.496 

3 0.132 0.236 0.269 0.308 0.355 0.354 0.352 0.366 0.335 0.360 0.328 
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