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As man draws near the common goal

Can anything be sadder

Than he who, master of his soul

Is servant to his bladder?

Anon



Abstract

A third of all men experience unpleasant lower urinary tract symptoms (LUTS)

such as a poor stream and being unable to postpone urination, usually later

in life. Two important investigations for these men are: a one-off clinic-based

measurement of urine flow rate, and the patient’s hand written record of volumes

passed over the course of several days.

Well acknowledged deficiencies in these tests have spurred research into home-

based alternatives. ‘Home urodiagnostic’ devices have been developed that obtain

multiple measurements of flow rate and an electronic voiding diary. However, little

conclusive evidence exists as to their clinical utility. The aim of this thesis is to

investigate the value of home urodiagnostics in the assessment of men with LUTS.

First, the improvement in clinical performance of an average rather than single

flow rate measurement is calculated based upon the theory of combining variance,

predicting benefit for thousands of men per year. Next, finding existing devices

deficient, the characteristics and technical performance of a novel device are

presented. Despite its low cost, it is found to meet the required standard.

In a study of conventional versus home urodiagnostics in men with LUTS, the

latter is better tolerated, less likely to fail and gave more reliable measurement of

flow rate. A study in which home urodiagnostics was performed before and after

prostate surgery reveals large variation in the response of flow rate to surgery.

Subtle changes within an individual are demonstrable.

Finally, home urodiagnostics is piloted within primary care, where the resulting

data suggests benefit from a change in the management strategy of over a third

of patients studied.

In conclusion, home urodiagnostics shows promise for improving the assessment

of men with LUTS. The next step is to evaluate the effect on patient reported

outcomes in a large scale trial.
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Chapter 1

Introduction

1 Introduction

A third of all men experience the onset of lower urinary tract symptoms (LUTS)

in the autumn of their life. At a conservative estimate, this amounts to 100,000

new cases each year in the UK, and several million worldwide. At best, LUTS

hamper enjoyment of one’s retirement; at worst they progress to serious and even

life-threatening conditions.

Measurement of urine flow rate (uroflowmetry) requires men to attend a clinic in

order to pass urine into a flowmeter. It is a simple, non-invasive test that helps

to establish the cause of LUTS and select appropriate treatment. Commonly,

uroflowmetry, usually including measurement of post void residual, is the only

objective assessment of lower urinary tract function made prior to surgery.

Although this measurement is valuable, the circumstances surrounding the test

are far from ideal. Owing to closely scheduled appointments and the requirement

to arrive with a full bladder, missed measurements - and missed toilets - are not

uncommon. In addition, the artificial environment of the flow clinic may yield

results that are unrepresentative of the patient’s true voiding. Further, we know

that an individual’s flow rate varies, and this potentially important information

cannot be captured.

1



1 Introduction

Meanwhile, these men are also required to complete a frequency-volume chart at

home for several days. This involves buying, or appropriating from the kitchen

cupboard, a measuring container suitable for receiving urine. Each volume passed,

day and night, must be recorded on a printed chart. Compiling this information

requires motivation, dexterity and sustained effort, and so inevitably the quality

of the result varies.

What if these men were provided with the means to record all of this information,

in the comfort of their own home, and without the requirement to write anything

down? This has the potential to provide more detailed and representative infor-

mation on which to base clinical decisions, whilst improving patient experience.

To this end, the departments of Regional Medical Physics and Urology within

Newcastle upon Tyne Hospitals NHS Foundation Trust have collaborated to

develop such a means: the PeePod, a portable, electronic home flowmeter and

volume diary.

1.1 Aims and objectives

The aim of this thesis is to investigate the clinical value of ‘home urodiagnostics’

(to coin a phrase) using the PeePod in the assessment of men with LUTS.

Specifically, it aims to measure the effect of home urodiagnostic data on diagnosis

and assessment of treatment outcome in these men.

Following a summary of the relevant background in Chapters 2 and 3, this aim

will be addressed by the following objectives:

1. To evaluate current evidence regarding methods and value of home urodi-

agnostics by reviewing the literature (Chapter 4).
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1 Introduction

2. To calculate the improvement in clinical accuracy that could be achieved by

averaging multiple measurements of flow rate in an individual (Chapter 5).

3. To compare home urodiagnostics to conventional assessment in terms of

patient preference, test success rate, test-retest reliability and diagnostic

consistency and confidence (Chapter 7).

4. To measure the sensitivity to change of home urodiagnostic data to surgical

treatment for LUTS (Chapter 8).

5. To test the feasibility and utility of home urodiagnostics in a primary care

setting (Chapter 9).

Finally, the conclusions drawn throughout will be summarised in Chapter 10.

My role in the work described in this thesis, with supervision from Michael

Drinnan, Robert Pickard and, prior to his retirement, Clive Griffiths, was as

follows:

• Study design.

• Development of study documentation.

• Application for relevant approvals (ethical, R&D, MHRA, UKCRN Portfo-

lio, Caldicott).

• Identification, recruitment and consent of study participants.

• Data collection.

• Data analysis.

• Interpretation of results.

• Reporting and dissemination.

All Methods sections constitute my own work. The contributions of others are

described where relevant.
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Chapter 2

Anatomy and physiology of the male

lower urinary tract

2 Anatomy and physiology of the male lower urinary tract

2.1 Introduction

The human urinary system consists of the kidneys, ureters, bladder, urethra and

urinary sphincters. The former two elements are referred to as the upper urinary

tract, and the latter three, the lower urinary tract (LUT, Figure 2.1). The kidneys

have several critical functions including removal of waste products and regulation

of hydration and blood pressure. The LUT is concerned with internal storage

of urine and its subsequent elimination by voluntary and socially appropriate

voiding.

This chapter details the anatomy and function of the LUT, followed by a

description of its nervous control, and concludes with discussion of its mechanical

properties.
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2 Anatomy and physiology of the male lower urinary tract

ureter

bladder

ureteral orifice
trigone

bladder neck

prostate

urethra

Figure 2.1 Coronal schematic section of the adult male lower urinary tract.

2.2 Anatomy

2.2.1 Bladder

The urinary bladder is a hollow, muscular organ responsible for storage and

subsequent voiding of urine. Urine is produced by the kidneys at a rate of

approximately 1 or 2 ml·min−1 (although this rate depends upon several factors

such as fluid intake and temperature), and transported to the bladder by the

ureters via intermittent peristalsis.

The bladder wall is capable of folding in order to reduce the volume within to only

a few millilitres. On filling, once the volume reaches around 100 ml, it unfurls

to assume a roughly spherical shape with a radius of up to approximately 5 cm

(Griffiths, 1980). The healthy bladder is highly compliant; its volume can increase

to several hundred millilitres with little or no increase in pressure (Small, 2013).

5



2 Anatomy and physiology of the male lower urinary tract

The bladder wall comprises three layers (although poorly distinguished) of smooth

muscle, referred to collectively as the detrusor (Figure 2.2). The muscle cells run

in different directions, the outer layers being mostly longitudinal and the inner

layer being mostly circular (Gray, 1989). The resulting muscle fibre ‘mesh’ gives

a uniform wall tension during bladder contraction.

A triangular zone known as the trigone, formed by the two ureteral orifices and

the internal urethral orifice, has an additional inner layer of muscle to that of the

detrusor. Any specialised function of the trigone is uncertain; it is hypothesised

to contract during filling, widening the ureteral orifices, and then relax with the

onset of voiding to direct urine into the urethra (Roosen et al., 2009).

bladder exterior

bladder interior

longitudinal

layers

circular

layer

0.5 mm

Figure 2.2 Microscopic cross section of the bladder wall (magnification × 18)
(University of Iowa Hospitals and Clinics, 2013).
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2 Anatomy and physiology of the male lower urinary tract

2.2.2 Urethra

The male urethra is a flexible tube of around 20 cm in length through which

urine is voided from the body via the external meatus at the end of the penis.

In its relaxed state, the urethra curves upwards and forwards below the prostate

and then downwards and forwards at the point where the penis joins the body.

Proximal to distal, it consists of the following regions (Figure 2.3):

• Pre-prostatic, between the internal urethral orifice and prostate. Here

the smooth, circular muscle of the bladder neck thickens; there is debate

as to whether this forms an inner sphincter which aids continence under

autonomous control.

• Prostatic, where the urethra passes through the prostate. This section

contains ducts through which the constituents of ejaculate enter the urethra.

• Membranous, a narrow region surrounded by two layers of muscle: one

smooth, longitudinal layer and an outer circular layer. The latter, the

external sphincter, is made of striated, skeletal muscle and is therefore

voluntarily controlled, allowing men to postpone and interrupt urination.

• Spongiose, the long and, when flaccid, fairly passive region of the urethra

surrounded by erectile tissue.

To maintain continence during the storage phase, the urethra resides in a collapsed

state due to sustained contraction of its smooth muscle, its walls sealed by a viscid

secretion (Griffiths, 1980). The pressure profile of the urethra varies along its

length due to the differences in composition described above. The point at which

the pressure is highest constitutes the flow controlling zone (FCZ). As discussed

later in Section 2.4.1, the urethra is thought to remain closed until the urethral

closure pressure at the FCZ is exceeded to allow voiding, at which point it opens
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bladder

pre−prostatic

prostatic

membranous

spongiose

prostatic and ejaculatory ducts
prostate

external urethral orifice anterior

posterior

Figure 2.3 Anatomical schematic of a coronal section of the male urethra (Gray,
1989).
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2 Anatomy and physiology of the male lower urinary tract

to a diameter of several millimetres. The FCZ is usually in the region of the

prostatic urethra and bladder neck, although abnormalities resulting from disease

or injury may result in higher pressures elsewhere.

2.2.3 Prostate

The prostate gland is responsible for production and secretion of a substance that

combines with sperm from the testes to produce seminal fluid. It is positioned

directly below the bladder, encircling the urethra (Figure 2.4). Therefore,

although not part of the urinary system per se, the prostate when enlarged can

have a considerable effect on the mechanism of the LUT.

vas deferens

seminal vesicle

urethra

prostate

ejaculatory duct

Figure 2.4 Anatomical schematic of a transverse section of the prostate gland
(Gray, 1989).
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2 Anatomy and physiology of the male lower urinary tract

2.3 Control

The majority of the visceral organs are regulated entirely below the level

of consciousness through spinal and brain stem reflexes. The urinary and

defecatory systems are therefore unusual in that an extent of conscious control

from the cerebrum is learned during childhood. The LUT is governed by

complex interaction between the central, autonomic (subconscious) and somatic

(conscious) nervous systems.

The autonomic nervous system is divided into two branches: sympathetic and

parasympathetic. Differentiation between the two is given by the chemical

neurotransmitter released at the at the neuroeffector junction (sympathetic:

noradrenaline, parasympathetic: acetylcholine) and in general the two branches

have the opposite effect on a given organ or system. The somatic system also

involves the release of acetylcholine at the neuroeffector junction (Griffiths, 1980).

These chemical neurotransmitters couple with receptors on the surface of the

muscles cells of the bladder wall, bladder neck and urethra. The consequence

of this coupling may be inhibitory, resulting in muscle relaxation, or excitory,

resulting in muscle contraction through reduction or elevation, respectively, of

intracellular calcium levels.

Although there is much debate regarding the neural control of the human LUT,

with animal trials providing the majority of evidence, the following sections

attempt to summarise current opinion.

2.3.1 Storage

Both sensory and motor nerve activity take place during the storage phase. At

first, this activity is controlled by subconscious reflexes within the brain stem.
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2 Anatomy and physiology of the male lower urinary tract

Sympathetic efferent activity within the hypogastric nerve inhibits the detrusor

and activates the smooth muscle within the bladder neck and urethra. Thus, the

detrusor is relaxed and the bladder neck and urethra are contracted, promoting

internal urinary storage. The pudendal nerve excites the skeletal muscle of

the external urethral sphincter and it too remains contracted. Meanwhile,

parasympathetic efferent nerve pathways, the role of which is described below,

are relatively inactive.

As the bladder fills, the sensory afferent components of the pelvic (parasympa-

thetic) and hypogastric (sympathetic) nerves are responsible for informing the

central nervous system (CNS) as to the fullness of the bladder via receptors in

the bladder wall sensitive to distension. Sensory information from the bladder

neck and urethra is carried in the pudendal and hypogastric nerves. As a

result of these feedback loops, the electrical activity within the external sphincter

increases with increasing bladder volume and raised abdominal pressure, resulting

in strengthened contraction (de Groat, 2006).

The pontine micturition centre (PMC) is an area of the pons within the brain stem

associated with regulation of storage and voiding. Input to the PMC is controlled

by a region of the brain called the periaqueductal grey (PAG), which is thought

to co-ordinate sensory information from the LUT with messages from areas of the

brain responsible for conscious control. When a critical level of bladder distension

is reached, parasympathetic activity within the LUT is triggered and the brain

becomes aware of the desire to void. At this stage, the prefrontal cortex is capable

of suppressing excitory signals that would otherwise result in bladder contraction

and therefore incontinence (Fowler et al., 2008).
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2 Anatomy and physiology of the male lower urinary tract

2.3.2 Voiding

With the conscious decision to empty the bladder, the LUT switches: active

becomes inactive, excited becomes inhibited, contracted becomes relaxed.

Excitation of the PMC, once this is permitted by higher centres of the brain,

triggers the onset of voiding. Initially, sympathetic signals to the external urethral

sphincter are inhibited and the muscle becomes relaxed. This is soon followed by

parasympathetic activity via the pelvic nerve which results in contraction of the

detrusor, relaxation of the outlet, and the flow of urine. Once the bladder is

empty, the system switches back to the storage mechanisms described previously.

These neural control concepts are illustrated in Figure 2.5.
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Figure 2.5 Illustration of the neural control of the lower urinary tract during storage (left) and voiding (right).
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2 Anatomy and physiology of the male lower urinary tract

2.4 The mechanics of voiding

The following chapter describes the diseases that can interfere with the normal

working order of the LUT. The most common affect the mechanical properties

of the system, characterised by changes in the observed pressures and flow

rates. Models of the LUT, described below, enable us to relate these clinical

measurements to the underlying mechanisms in order to aid diagnosis and guide

effective treatment.

2.4.1 Urethral resistance relation

In the simplest case, the bladder outlet can be modelled as a rigid opening through

which fluid flows as a result of a driving pressure. The following form of Bernoulli’s

principle applies:∗

p =
ρv2

2
⇒ v =

√
2p

ρ
(2.1)

Where:

p = driving pressure

ρ = fluid density ≈ 1,000 kg·m−3 for urine

v = fluid velocity

Combining this with Equation 2.2 for volumetric flow rate in order to eliminate

velocity results in Equation 2.3, describing how pressure dictates flow rate through

a rigid opening; a higher pressure yields a higher flow rate.

∗ Any effects due to gravity, fluid viscosity or turbulence are small compared to the influence
of driving pressure and are therefore ignored (Schäfer, 1990).
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2 Anatomy and physiology of the male lower urinary tract

Q = vA (2.2)

Q = A

√
2p

ρ
(2.3)

Where:

Q = volumetric flow rate

A = cross-sectional area of outlet

The bladder outlet, however, is not rigid but elastic. Consequently, even when the

bladder outlet and sphincter are relaxed, the urethra remains closed until subject

to a certain opening pressure, puo, which is the detrusor pressure at which flow

begins. The equation must therefore be modified taking this elasticity into account

as in Equation 2.4†, which is a statement of the urethral resistance relation (URR)

(Schäfer, 1985), illustrated in Figure 2.6.

Q = A
√

2(p− puo) ⇒ p = puo +
Q2

2A2
(2.4)

The URR defines the relationship between pressure and flow rate arising from

the passive bladder outlet, which is dependent only upon opening pressure and

cross-sectional area. However, the bladder outlet is only half of the story; the

function of the detrusor muscle that generates the opening pressure and drives

the flow of urine must also be taken into consideration.

† Density, ρ, has disappeared from this equation on the condition that ρ ≈ 1 g·cm−3,
requiring the following units: Q in cm3·s−1, A in cm2 and p in g·cm−1·s−2.
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Figure 2.6 The urethral resistance relation (URR) describing the relationship
between pressure and flow rate arising from the passive bladder outlet (Schäfer,
1985). In accordance with Schäfer’s convention, pressure is plotted on the
horizontal axis and flow rate on the vertical axis.
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2.4.2 Bladder output relation

The Hill muscle model describes the relationship between the tension within a

muscle strip and its speed of shortening (Hill, 1938). In the context of the detrusor,

pressure can be derived from tension, and flow rate from speed of muscle fibre

shortening. The model was therefore adapted to describe the relation between

detrusor pressure and urine flow rate during voiding: the bladder output relation

(BOR) (Griffiths, 1980). The BOR is given in Equation 2.5 and illustrated in

Figure 2.7. Contrary to the URR, it indicates that pressure and flow are inversely

related. This follows from the fact that there is a limit to the power output of the

detrusor, power being the product of pressure and flow rate (Equation 2.6).

(
pdet
pdet.iso

+
1

4

)
(4Q+Q*) =

5

4
Q* (2.5)

Where:

pdet = detrusor pressure

pdet.iso = isovolumetric detrusor pressure

Q = flow rate

Q* = potential maximum flow rate

P = pQ (2.6)

Where:

P = power

p = pressure

Q = flow rate
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Figure 2.7 The bladder output relation (BOR) describing the relation between
detrusor pressure and urine flow rate during voiding (Griffiths, 1980).

Determination of the URR and BOR in an individual would allow calculation of

detrusor strength and outlet conditions, which would be of great clinical value.

However, the volume dependency of pdet.iso and Q* causes the BOR to change

throughout the course of a void. Outlet conditions also vary, partly due to

sphincteric muscle activity and partly due to slow, viscoelastic relaxation of the

outlet. The reciprocal nature of the BOR and URR, along with these constantly

changing conditions, make the relationships very difficult to establish.

The models have, however, given us a better understanding of measurements of

pressure and flow made in the clinic. The BOR tells us that a high detrusor

pressure is not necessarily synonymous with a strong bladder muscle and may

instead be the response of a normal or weak bladder to high outlet resistance.

Importantly, they have allowed identification of pressure-flow combinations that

are suggestive of certain diseases. This can be seen by comparing Figure 2.8, which

shows the superimposition of the URR and BOR, with pressure-flow nomograms

discussed in Chapter 3 (Figure 3.11, page 40).
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2 Anatomy and physiology of the male lower urinary tract

The subject of this thesis is largely uroflowmetry, the measurement of urine flow

rate with respect to time, which does not include direct measurement of detrusor

pressure. It is, nevertheless, important to discuss uroflowmetry in the context of

the function of the LUT, and this may allow speculation regarding the mechanisms

behind observed flow information.

Flow rate

Pr
es

su
re

 

 

resistance

resistance

detrusor

URR
BOR

 lower outlet

 higher outlet stronger detrusor

weaker

Figure 2.8 Superimposition of the URR and BOR, showing how the plots are
shifted for higher or lower outlet resistance, and a stronger or weaker detrusor.
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Chapter 3

Lower urinary tract symptoms: clinical

background

3 Lower urinary tract symptoms: clinical background

3.1 Introduction

Chapter 2 described the form and function of the healthy male LUT. Sadly, as

with many parts of the anatomy, age brings about change and deterioration of

the LUT, often manifesting as lower urinary tract symptoms (LUTS, Table 3.1).

LUTS may be categorised into storage symptoms, such as difficulty postponing

urination (urgency), voiding symptoms, such as a weak stream, and, according to

some, post micturition symptoms, such as a sensation of not having emptied

the bladder. This chapter describes the diseases associated with LUTS, the

assessments carried out in order to diagnose their cause, and ways in which they

may be treated.
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Storage symptoms experienced during the storage phase

Frequency Voiding more often by day.

Nocturia Having to wake at night one or more times
to void.

Urgency A sudden compelling desire to void which
is difficult to defer.

Urinary incontinence Any involuntary leakage of urine.

Voiding symptoms experienced during the voiding phase

Slow stream Reduced urine flow.

Spitting or spraying Spitting or spraying of the urine stream.

Intermittency Urine flow which stops and starts, on one
or more occasions, during micturition.

Hesitancy Difficulty in initiating micturition result-
ing in a delay in the onset of voiding after
the individual is ready to pass urine.

Straining Muscular effort used to initiate, maintain
or improve the urinary stream.

Terminal dribble A prolonged final part of micturition,
when the flow has slowed to a trickle /
dribble.

Post micturition symptoms experienced immediately after micturition

Incomplete emptying A feeling of not having emptied the
bladder after passing urine.

Post micturition dribble Involuntary loss of urine immediately after
voiding has finished.

Table 3.1 Lower urinary tract symptoms as defined by the Standardisation Sub-
committee of the International Continence Society (Abrams et al., 2002).
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3.2 Causes of lower urinary tract symptoms

3.2.1 Relating to the outlet

The most common cause of male LUTS is bladder outlet change due to benign

enlargement of the prostate gland (BPE). Owing to the position of the prostate

in relation to the urethra, histological changes within the prostate can interfere

with the function of the LUT.

Benign prostatic hyperplasia (BPH), an increase in the number of prostatic cells, is

closely related to the ageing process, present in the prostates of 50 % of men aged

51 to 60 years (Berry et al., 1984). The mechanism of BPH remains uncertain,

but it is believed to occur with hormonal changes within the prostate. Early

development of the gland depends upon the androgen dihydrotestosterone (DHT)

which is derived from testosterone in the presence of the 5α reductase enzyme

(Gormley et al., 1992). Levels of DHT within the prostate appear to increase

with age, prompting a second growth spurt later in life. Figure 3.1 shows BPH in

a sectioned prostate.

In approximately half of those with BPH, the prostate gland grows in size (BPE).

The normal adult prostate is often described as walnut-sized; the enlarged prostate

may be compared to anything up to that of a grapefruit∗.

In approximately half of those with BPE, growth of the prostate into the

urethra results in benign prostatic obstruction (BPO) (de la Rosette et al., 1998).

Consequently, the detrusor pressure required to open the urethra is elevated and

less bladder energy is available to generate flow, hence flow rate decreases and

bladder emptying may be impaired.

∗ My personal favourite: “His prostate was as large as a Newtown pippin.” (Jones, 1897).
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Figure 3.1 A sectioned prostate showing two masses of BPH (University of
Washington, Department of Pathology, 2010).

Bladder outlet obstruction (BOO) is an umbrella term for obstruction of the

bladder outlet, including BPO, characterised by increased detrusor pressure and

reduced urine flow rate (Abrams et al., 2002). Strictures (a narrowing of the

urethra due to scar tissue) and other such changes to the outlet resulting from

injury, disease or congenital malformation may also cause obstruction (Griffiths,

1980). In this thesis, the term ‘obstruction’ generally refers to that of the bladder

by the enlarged prostate.

3.2.2 Relating to the detrusor

Detrusor underactivity (DU) An underactive detrusor has poor contractile

strength, or cannot sustain contraction for a sufficient period of time to complete

bladder emptying (Abrams et al., 2002). Symptoms of DU can appear similar

to those of BOO, in particular a weak urine stream. As with BPH, reduction in

detrusor contractility accompanies the ageing process, but does not always induce

symptoms. DU may be secondary to conditions such as diabetes or BOO, or

neurological in cause (van Koeveringe et al., 2011).
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Detrusor overactivity (DO) Overactivity of the detrusor (not in fact the

opposite of DU) is characterised by involuntary detrusor contractions that occur

during the filling phase (Abrams et al., 2002). Frequency and sensations of urgency

are often associated with DO, which may also lead to incontinence. The cause of

DO is poorly understood; it is classified either as neurogenic, when the patient is

known to have a relevant neurological condition, or otherwise idiopathic (Abrams

et al., 2002).

3.2.3 Further causes of LUTS

Neurological As described in Section 2.3 (page 10), control of the LUT involves

complex interaction between various parts of the CNS and peripheral nervous

system, leaving it susceptible to interference from neurological disease or spinal

injury. Patients with neurological LUT dysfunction may be unable to void at will

or, conversely, may lack control over bladder emptying.

Behavioural The origin of LUTS may be behavioural rather than pathological.

Over-consumption of fluids, particularly those with a diuretic effect, such as

alcohol, may induce storage symptoms. Apparent frequency may in fact be

‘opportune’ voiding.

Urinary tract infections Symptoms of urinary tract infection (UTI) include

haematuria (blood in the urine), dysuria (painful urination) and frequency.

Prostatitis Inflammation of the prostate, causing dysuria and frequent urina-

tion, is usually suspected in a man with a tender prostate gland.

Cancer Cancers of the prostate or bladder occasionally present as voiding or

storage symptoms, respectively.

24



3 Lower urinary tract symptoms: clinical background

3.3 Investigation of the lower urinary tract

Clearly, each symptom has a number of possible origins, and each disease a number

of possible symptoms. This many-to-many relationship makes it impossible to

identify the cause of LUTS based upon symptoms alone. Therefore, within

health services across the world, a considerable amount of resource is dedicated to

investigations of the LUT. This section describes those investigations, beginning

with uroflowmetry and voiding diaries, and continuing in approximate order of

relevance to this thesis.

3.3.1 Uroflowmetry

The voiding phase can be quantified by asking the patient to pass urine into a

flowmeter, giving measurements of flow rate (Q) as a function of time and voided

volume (Vvoid). Uroflowmetry is a simple, informative and, therefore, popular

investigation. At a conservative estimate, around 100,000 tests take place within

the UK each year. This section focuses upon the patient experience and the

characteristics and utility of the measurement.

Patient experience A typical day in our flow clinic will see up to 20

appointments scheduled at 15 minute intervals. The appointment letter requests

that patients attend with a full bladder. Whilst feasible for some, the very nature

of LUTS makes this a frightening prospect for others. These men sit in the waiting

room and drink water until the desire to void arrives. Once it does, they are given

an explanation of the test and left alone in the measurement room to pass urine. If

the volume of urine passed is deemed insufficient, as discussed below, they return

to the waiting room and refill their bladder for another attempt.
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Not all men find the test difficult or unpleasant. There are those who arrive at

the allotted time, ready to void, and are homeward bound within a few minutes.

However, matters often do not go according to plan. Episodes of incontinence

in the waiting room, sickness due to a stomach full of cold water, and ‘bashful

bladder’ preventing any measurement being obtained; I have witnessed all of these

during a relatively short spell in the flow clinic.

Parameters A multitude of parameters can be derived from a urine flow

study; those most commonly reported are illustrated in Figure 3.2. In order

to describe flow rate by a single parameter, either the maximum (Qmax ) or

average (Qave) is chosen. Qmax has been found to have higher diagnostic accuracy

for obstruction and is therefore the recommended and more commonly reported

parameter (Schäfer et al., 2002; Oelke et al., 2007).

The main application of Qmax is to determine the probability that a man is

obstructed, but caution should be exercised. Firstly, a low flow rate alone

cannot distinguish between an obstructed outlet and a hypocontractile detrusor.

Secondly, the variability of Qmax within and between individuals results in an

overlap, too, between obstructed and unobstructed men. This can be seen from

Figure 3.3, which illustrates data from a large study of men with LUTS and shows

the typical distributions of Qmax in obstructed and unobstructed populations.

What can be said is that a man with a low flow rate is more likely to be obstructed

than one without, and more likely to have obstruction than a weak detrusor, to

such an extent to make Qmax a clinically valuable measurement.

Intra- and inter-subject variability of Qmax is an important theme throughout this

thesis. The clinical effect of taking an average value from multiple measurements

in each individual will be examined in detail in Chapter 5.
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Figure 3.2 An annotated urine flow curve showing derivation of the following
parameters: tflow , tvoiding , tQmax , Qmax , Qave and Vvoid .
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Figure 3.3 The distributions of Qmax in obstructed and unobstructed populations
as measured in a study of 871 men with LUTS (Rosier et al., 1996).

There is no consensus regarding a threshold below which Qmax is abnormal.

Commonly examined values are 10 and 15 ml·s−1. A study of 165 men with LUTS

found 10 ml·s−1 to have sensitivity and specificity of 71 %, whereas 15 ml·s−1 had

95 % sensitivity and 35 % specificity (Reynard et al., 1996); these results are

in keeping with similar studies (Poulsen et al., 1994; van Venrooij et al., 1995;

Homma et al., 1998; Reynard et al., 1998; Oelke et al., 2007).

Volume-flow rate nomograms Intra-subject variability of Qmax can be

explained to an extent by variation in bladder volume. As a muscle is stretched,

the force that the muscle can exert once stimulated increases (Hill, 1938). Past an

optimal level of distention, thought for the bladder to be 400 to 500 ml on average,

the muscle becomes overstretched and the potential force decreases again. This

effect is illustrated in Figure 3.4, which shows three flow recordings provided by

a healthy subject.
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Figure 3.4 Three flow recordings from a healthy subject, showing the dependency
of maximum flow rate on bladder volume.

In an attempt to account for this dependency of maximum flow rate upon bladder

volume, Qmax can be evaluated in the context of volume information rather

than alone. The Siroky nomogram is based upon 300 measurements from 80

asymptomatic men (Siroky et al., 1979). Maximum flow rate was plotted against

bladder volume for each void with a line of best fit and confidence intervals

according to what appears to be a quadratic relationship. This allows maximum

flow rate to be classified as normal or, if it falls below the 2 standard deviation line,

abnormally low (Figure 3.5, grey shaded area). The nomogram was subsequently

validated in a second group of men undergoing disobstructive surgery; 98 % of

pre-surgery measurements fell into the abnormal area and all post-surgery values

into the normal area (Siroky et al., 1980).

The Bristol and Liverpool nomograms are similar concepts but derived instead

with voided volume in the place of bladder volume (Kadow et al., 1985; Haylen

et al., 1989). If the bladder does not empty completely, these two measurements
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are not equivalent. Therefore, although the performance of the detrusor is better

predicted by its starting volume, it is more appropriate to apply a nomogram

based upon voided volume if only this measurement is known.
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Figure 3.5 The Siroky nomogram for maximum flow rate in men (Siroky et al.,
1979). Flow rates of voids which fall into the grey shaded area below the −2SD
line are deemed to be abnormally low.

Given that a low volume does not stretch the bladder to generate its optimum level

of force, urological guidelines recommend that in order to obtain a representative

flow rate measurement, the voided volume should be at least 150 ml (de la Rosette

et al., 2001; National Institute for Health and Clinical Excellence, 2010). This may

require repeat tests during one appointment, or multiple visits to the urology

clinic.

Plotting a single [Vvoid , Qmax ] point can establish whether flow rate is low for a

given volume. However, as shown later in this thesis, men with LUT dysfunction

often do not exhibit the relationship between Vvoid and Qmax that is assumed,

potentially invalidating this interpretation. More value may lie in establishing
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whether a patient’s voiding follows this ‘normal’ pattern, although in order to do

so multiple measurements would be required.

Flow curves It is not only the parameters that are calculated from a urine flow

study that are of clinical value, but also the shape of the curve (Abrams, 2006).

A variety of shapes have become associated with different pathophysiologies; as

illustrated in Figure 3.6.

In particular, flow patterns resulting from diseases of the outlet have been

discussed. Figure 3.7 shows the effect of constrictive (stricture) and compressive

(BPO) obstruction types on the urethral resistance relation (see Section 2.4.1,

page 14). In the case of constrictive obstruction, there is no additional external

compression of the urethra and voiding begins at a normal opening pressure.

However, the much increased resistance to flow down the narrowed urethra alters

the relationship between pressure and flow rate, resulting in less variation in flow

rate and a flattened flow curve (Figure 3.6C).

In the case of compressive obstruction, compression of the urethra by the enlarged

prostate requires a higher pressure to open the urethra and begin voiding. The

relationship between pressure and flow rate is similar to that of a normal outlet,

albeit shifted towards higher pressure. Thus, the compressive curve rises in a

normal fashion, but with lower amplitude (Figure 3.6E) (Schäfer et al., 2002).

Equipment Most modern flowmeters are based upon either weight transducer

or spinning disc technology. Weight transducer flowmeters weigh the volume of

urine as it fills a container. This is converted to volume using a scaling factor and

then to flow rate by differentiation with respect to time (Equation 3.1).
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Figure 3.6 Flow curves associated with particular urological diagnoses (Abrams,
2006): (A) Normal bell-shaped curve, (B) supranormal flow which may be
associated with detrusor overactivity, (C) the long, flat flow of a urethral stricture,
(D) low flow rate and a delayed peak, thought to reflect detrusor underactivity,
(E) the long, declining flow of bladder outlet obstruction, (F) relatively rapid
fluctuations due to straining of the abdominal muscles, and (G) slower undulations
reflecting fluctuating detrusor contraction, most commoly seen in patients with
neurological conditions.
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Figure 3.7 The effect on the urethral resistance relation of constrictive and
compressive obstruction types (Schäfer, 1990).

A spinning disc flowmeter directs urine onto a motor-driven disc. Given that the

urine tends to slow the rotation of the disc, the power supplied to the motor must

vary to maintain a constant speed. This power is converted to flow rate using a

scaling factor and then volume is calculated by integration with respect to time

(Equation 3.2).

Q =
dV

dt
(3.1)

V =

∫
Q dt (3.2)

Where:

Q = volumetric flow rate

V = volume

t = time
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By measuring flow rate directly, spinning discs avoid the amplification of noise by

differentiation that occurs with weight transducer devices. However, given that

urine comes into contact with moving parts, they are more difficult to clean and

maintain.

3.3.2 Voiding diaries

A voiding diary complements the urine flow study by obtaining information about

the storage phase. Patients are provided with a pre-printed chart on which to

record their voiding habits over the course of several days. These range from the

simplest form where only the times of voids are noted, to more involved bladder

diaries which may require details of leaks, urgency and fluid intake. The most

common for men with LUTS is a frequency-volume chart (FVC) where voided

volumes are recorded against the appropriate hour.

Very frequent urination, nocturia, consistently low volumes, polyuria (>40 ml·kg−1

body mass passed over 24 hours) and nocturnal polyuria (nocturnal volume

>33 % of 24 hour volume) are all signs of abnormality (Abrams et al., 2002;

van Kerrebroeck et al., 2002).

The length of the monitoring period ranges from 3 to 14 days, although there

is evidence to suggest that longer diaries may cause ‘fatigue’ or even ‘despair’

(Tincello et al., 2007), resulting in poor compliance. As can be seen from

Figure 3.8, the quality of these charts varies; some men neglect to complete them

altogether.
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Figure 3.8 Two examples of patient-completed frequency-volume charts demonstrating their variable quality.
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3.3.3 Post void residual (PVR)

A flow test may be followed by a scan to estimate the residual urine inside the

bladder after voiding is apparently complete. Once the bladder has been scanned

by an ultrasound probe, associated software calculates the volume within. The

bladder is usually assumed to be spherical, resulting in errors to the order of

±15 %. Scans occasionally detect abnormalities of the bladder such as diverticula,

where high intravesical pressures cause formation of pouches in the bladder

lining (Figure 3.9). A less common technique for determination of PVR is by

catheterisation.

Someone with normal LUT function may have a PVR of up to approximately

50 ml. A patient who leaves in excess of 1,000 ml in their bladder is considered

to be in chronic urinary retention (National Institute for Health and Clinical

Excellence, 2010).

It is thought that as voiding in the presence of obstruction demands more energy,

the energy available for voiding is depleted before the bladder is emptied (Schäfer,

1990). In the case of the underactive detrusor, the same phenomenon results from

the fact that less energy is available initially. Therefore, whilst a large PVR

is abnormal, the measurement cannot distinguish between the two conditions.

Whilst the same is true for Qmax , PVR has been found to have considerably lower

diagnostic accuracy for obstruction (Oelke et al., 2007) and is therefore regarded

as a less useful measurement.

3.3.4 Symptom scores

Patients may be asked to complete a symptoms questionnaire, commonly the

International Prostate Symptom Score (IPSS, Figure 3.10). This involves scoring

how often they experience various symptoms, ranging from 0 (Not at all) to 5
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bladder

diverticulum

Figure 3.9 A bladder diverticulum revealed on an ultrasound bladder scan
(Manski, 2013).

(Almost always) and rating quality of life (QoL), ranging from 0 (Delighted) to

6 (Terrible). Symptom scores correlate very poorly with specific conditions and

objective assessment of disease and are therefore of little diagnostic worth (Rosier

et al., 1996; de la Rosette et al., 1998). Rather, their value lies in being able to

categorise baseline severity and bother, and track the improvement or decline in a

patient’s symptoms over time or following treatment. Change in symptom score

is often the primary patient-reported outcome measure for clinical trials involving

men with LUTS.

3.3.5 Urodynamics

The gold standard test for investigating the function of the LUT is urodynamics.

This test measures the pressure generated by the detrusor muscle during storage

and then during voiding when the data can be related to the recorded urine

flow rate. The term pressure-flow studies (PFS) refers to the voiding phase of

urodynamics.

Prior to beginning the study, manometer catheters are inserted into the patient’s

bladder (urethrally) and rectum, to measure intravesical pressure (pves) and
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Total IPSS score

International Prostate Symptom Score (IPSS)

Total score: 0 − 7 mildly symptomatic; 8 − 19 moderately symptomatic; 20 − 35 severely symptomatic.

Over the past month, how often
have you experienced...

Incomplete emptying 0 1 2 3 4 5

Frequency 0 1 2 3 4 5

Intermittency 0 1 2 3 4 5

Urgency 0 1 2 3 4 5
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Figure 3.10 The International Prostate Symptom Score questionnaire began life
as the AUA-7 (Barry et al., 1992). The eighth question regarding quality of life
was added later.
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abdominal pressure (pabd), respectively. pabd is subtracted from pves to determine

the pressure generated by the detrusor muscle (pdet). The urethral catheter has a

second lumen through which the bladder is filled with room-temperature saline.

During filling, bladder sensations are documented with respect to the observed

pressures. The patient is then asked to pass urine into a flowmeter whereby flow

rate (Q) and Vvoid are measured. A contrast agent may be included with the filling

fluid to allow X-ray imaging of the LUT.

A number of diseases of the LUT, such as BOO, DO and DU, are defined according

to observations made during urodynamic studies (Abrams et al., 2002). Particular

effort has gone into applying urodynamics to classification of obstruction, the

result being pressure-flow nomograms. Three of these are shown in Figure 3.11

and described below.

The Abrams-Griffiths (AG) nomogram (Figure 3.11A) is based upon urodynamic

data from 117 men with suspected BOO. First, pdet versus Q was plotted for

each void. Those with mean gradient below 2 cmH2O·ml−1·s and with final pdet

≤40 cmH2O were classified as unobstructed, and the remainder as obstructed.

Qmax was then plotted against pdet.Qmax (the detrusor pressure at the point of

maximum flow) for each void. The boundaries of the nomogram are those that

separated obstructed and unobstructed patients, with an equivocal region where

classifications overlapped (Abrams and Griffiths, 1979).

The International Continence Society (ICS) nomogram (Figure 3.11B) is a

simplification of the AG nomogram, with the low pressure, low flow region

reclassified from equivocal to unobstructed. This allows categorisation according

to AG number (pdet.Qmax − 2Qmax) with <20, 20 to 40 and >40 corresponding to

unobstructed, equivocal and obstructed, respectively (Griffiths et al., 1997).

Figure 3.11C shows the linear passive urethral resistance relation (LIN-PURR)

nomogram. In addition to obstruction classification, this grades the extent of
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(C) LIN-PURR.
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the obstruction (0 = unobstructed, I = mildly obstructed, II to VI = obstructed

with increasing severity) and also the strength of the detrusor (ST = strong, N =

normal, W = weak, VW = very weak). A straight line is drawn between [pdet.Qmax,

Qmax] and [puo, 0], the gradient and position of which provides the classifications

(Schäfer, 1990). The nomogram is a linearisation of the BOR and URR, as can

be seen by comparison with Figure 2.8 (page 19). The axes are inverted with

respect to the above two nomograms; its grade II obstruction zone corresponds

approximately to the equivocal region of the ICS nomogram.

3.3.6 Non-invasive pressure-flow measurements

The ability to measure bladder pressure non-invasively would be highly advanta-

geous, reducing morbidity and discomfort associated with invasive procedures

and increasing efficiency. This is the motivation behind the development of

non-invasive pressure-flow systems over the past 15 years. Examples include

Pel’s condom catheter (Pel and van Mastrigt, 1999), and the penile cuff device,

described below.

The penile cuff machine (CT3000, Mediplus Ltd), developed in this department,

works upon the same principle as measurement of systolic blood pressure by

occlusion of blood vessels. A pneumatic cuff is positioned around the penis and

the patient asked to pass urine. Once the flow of urine is detected by a flowmeter,

the cuff inflates until the point where flow ceases. This cuff interruption pressure,

pcuff .int, is a measure of bladder pressure under isovolumetric conditions (Griffiths

et al., 2002).

Through a combination of theory and experimentation, the ICS nomogram was

adapted for use with pcuff .int in place of pdet.Qmax. The line separating obstructed

and equivocal was raised by 40 cmH2O to account for abdominal pressure plus the

height difference between bladder and cuff, and its slope increased by 2Qmax to
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account for the increase in detrusor pressure under isovolumetric rather than flow

conditions. The line separating unobstructed and equivocal was removed, and a

line at Qmax = 10 ml·s−1 inserted to improve predictive performance (Griffiths

et al., 2005).

3.3.7 Digital rectal examination (DRE)

The prostate is positioned slightly anterior to the rectum and so a digital

rectal examination can be performed to assess its size, symmetry, firmness and

tenderness. BPO is more likely to result from a large prostate, malignancy can

cause hard, irregular nodules, whereas a tender gland may indicate prostatitis.

3.3.8 Prostate specific antigen (PSA)

PSA is an enzyme secreted by the prostate gland, a small amount of which diffuses

into the blood stream and is measured by a blood test. Malignant changes within

the prostate result in a larger concentration of PSA in the blood. However, the

same is true for benign conditions such as BPH and prostatitis; PSA therefore has

low specificity for diagnosing cancer. PSA levels are also elevated by infection,

retention and catheterisation and so values obtained under these circumstances

should be rechecked at an appropriate time. A rapid increase in PSA level, even if

it remains within the normal range, is also suspect. Following an abnormal result,

patients may be expedited to specialist assessment for further, more specific tests

such as a transrectal ultrasound scan of the prostate (TRUS) or biopsy. A study of

over 2,000 healthy men established the age-specific normal reference PSA ranges

displayed in Table 3.2 (Oesterling et al., 1993).
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Age range (years) PSA range (ng·ml−1)

40 - 49 0 - 2.5

50 - 59 0 - 3.5

60 - 69 0 - 4.5

70 - 79 0 - 6.5

Table 3.2 Age-specific reference PSA ranges derived from a study of over 2,000
healthy man (Oesterling et al., 1993).

3.3.9 Further investigations

Urinalysis Urinalysis tests a mid-stream sample of urine for the presence of

various substances, such as blood and protein, and measures pH and specific

gravity. The results may be suggestive of infection, renal disease, malignancy,

diabetes, or stones of the kidney or bladder.

Pad tests For patients suffering from incontinence, a pad can be worn for a

specific period of time, or during a particular activity, and then weighed in order

to quantify urine leakage.

Serum creatinine The blood can be tested in order to measure the concentra-

tion of creatinine, a waste product filtered out by the kidneys. A high level may

indicate impaired renal function.

Cystoscopy The appearance of the lower urinary tract can be investigated by

passing an endoscope through the urethra and into the bladder.
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3.3.10 Evidence

There is very little evidence, particularly of high level and quality, regarding the

value of performing the investigations just described in men with LUTS. Guideline

recommendations regarding which tests should be offered in which care settings

are often based upon expert opinion alone; the lowest level of clinical evidence

(Figure 3.12). This applies even to the ‘gold standard’ urodynamics, prompting

the National Institute for Health Research in 2012 to launch a commissioned

Health Technology Assessment call to answer the following research question:

“In men with lower urinary tract symptoms, does the addition of multichannel

cystometry change management and improve patient outcomes?”

Expert opinion

Case report / series

Case control study

Cohort study

Randomised
control trial (RCT)

Systematic
review of RCTs

Figure 3.12 The hierarchy of evidence (Guyatt et al., 1995).
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3.4 Treatment

Once the probable cause of LUTS has been established, treatment options fall

into the categories of conservative, medical and surgical. Broadly speaking

these categories correspond to mildly, moderately and severely symptomatic,

respectively. The IPSS questionnaire is one way in which symptom severity is

defined (Figure 3.10).

3.4.1 Conservative management

Men with mild symptoms may be satisfied to receive fluid intake and lifestyle

advice and undergo watchful waiting, where their condition is monitored over time.

Measures such as these are less effective in reducing symptoms than medical and

surgical treatments. Nevertheless, a net reduction in symptom scores is observed

in men assigned to watchful waiting (Wasson et al., 1995).

Other conservative measures include training of the pelvic floor muscles and

bladder to increase muscle strength and suppress urge, containment products

such as pads and penile clamps, and intermittent or permanent catheterisation.

3.4.2 Medical therapy

Men with suspected BOO and moderate symptoms are often treated with medica-

tion, most commonly alpha-adrenergic-antagonists (α-blockers). As discussed in

Section 2.3 (page 10), the noradrenaline neurotransmitter interacts with receptors

within the smooth muscle of the LUT to maintain contraction, and therefore

assists in maintaining continence, during the storage phase. As the name suggests,

α-blockers block these receptors, resulting in relaxation of the bladder neck

and prostate and therefore lower outlet resistance. α-blockers have been found

consistently to decrease IPSS score by around 8 points and increase Qmax by 2
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to 3 ml·s−1 on average across a cohort (National Institute for Health and Clinical

Excellence, 2010).

Men found to have a large prostate on DRE or TRUS, or with high PSA, may

be prescribed 5α-reductase inhibitors. Section 3.2.1 described how growth of

the prostate involves conversion of testosterone to DHT, requiring the presence

of the 5α reductase enzyme. 5α-reductase inhibitors decrease the amount of 5α

reductase within the prostate, resulting in a lower level of DHT. This halts growth

and eventually results in shrinkage of the gland to the order of 20 % over 6 months.

The above medications may also be prescribed to unobstructed men with detrusor

underactivity so that the weakened detrusor faces less resistance to flow.

An overactive bladder may be treated medically with antimuscarinics, which

suppress the activity of the parasympathetic nervous system responsible for

instigating detrusor contraction (see Section 2.3, page 10). A muscarinic agonist

may be used to treat underactivity by the opposite mechanism, although there is

little evidence of benefit.

Other medical options include desmopressin to reduce urine production, or an

afternoon diuretic to encourage evening, rather than nighttime, voiding for men

suffering from nocturia. Combined medical therapy includes an α-blocker plus

5α-reductase inhibitor, and an α-blocker plus antimuscarinic.

3.4.3 Surgery

For men with severe voiding symptoms, or more serious consequences of obstruc-

tion, several types of surgery are available to remove the obstructive prostate in

part or, rarely, in its entirety. These disobstructive surgeries, of which there are

approximately 30,000 performed each year in the UK (Abrams, 1994), are the

subject of Chapter 8.
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Surgical options to combat storage symptoms include augmentation cystoplasty

to increase bladder capacity, myectomy or intravesical botulinum toxin injection

to decrease muscle activity, and sacral nerve stimulation to inhibit the bladder

(National Institute for Health and Clinical Excellence, 2010).

3.5 Conclusion

LUTS, previously termed ‘prostatism’, were once thought as the name suggests

to be synonymous with disease of the prostate. In 1994, Abrams published a

plea to abolish this presumptive term in order that fewer men be treated without

sufficient diagnostic work-up. In fact, a third of men with LUTS are not obstructed

(Abrams and Feneley, 1978) and will experience poorer outcome from treatment

as such.

Storage symptoms such as frequency, urgency and nocturia are far more bother-

some than a weak urine stream, probably owing to the resulting social disruption.

This suggests that we ought to focus upon treating the bladder. However, animal

studies have shown the obstructed bladder to become ischemic and hypertrophied,

reducing the energy supply to the muscle and altering its viscoelastic properties

(Levin et al., 1990). Consequently, it becomes ‘weak’ (DU) and ‘twitchy’ (DO),

with overactivity found to occur in 50 % of men with BOO (National Institute

for Health and Clinical Excellence, 2010). There is also evidence to suggest that

by treating the outlet, the bladder will revert towards its original function (van

Venrooij et al., 2002; de Nunzio et al., 2003). Therefore, the first question to the

urologist’s mind is often: Obstructed or not?
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In men with suspected obstruction, invasive investigation is generally reserved for

cases in which surgery poses a particular risk, such as very elderly patients, or

younger men wishing to retain sexual function. Therefore, diagnosis is usually

based upon a series of non-invasive investigations. Uroflowmetry is often the only

objective assessment of LUT function made prior to surgical intervention.

The primary aim of urodynamic investigation is to reproduce the patient’s

symptoms (Abrams, 2006), requiring the circumstances of the tests to be as

‘normal’ as possible. How many men normally pass urine with someone waiting

behind the door, having filled their bladder as quickly as possible and then held

on until they were called? Men often complain of a variable flow rate, perhaps

depending on time of day, but this cannot be described by a single measurement.

These issues led naturally to the conclusion that urine flow studies may be better

placed in patients’ homes, and that the supplementary information available from

multiple measurements may be clinically valuable. Recent research interest in the

subject has therefore been high; a number of different techniques and devices have

been reported. The following chapter presents a review of the literature regarding

methods and value home urodiagnostics.
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4 Methods and value of home urodiagnostics in the assessment of men with lower urinary tract symptoms: A

literature review

4.1 Introduction

The aim of this chapter is to review the literature regarding techniques and devices

used for home urodiagnostics, to discuss their value as alternatives to clinic-based

assessment, and to identify gaps in the evidence. The ability to record multiple

flows in an individual is perceived as a key advantage of home urodiagnostics.

Thus, where relevant to the clinical value of multiple home measurements,

literature describing clinic-based studies of multiple flow measurements is also

included.
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4.2 Methods

A search of PubMed and Embase was conducted for the period January 1988 to

September 2013 using keywords ‘home uroflowmetry’, ‘multiple uroflowmetry’,

‘uroflowmeter’, ‘electronic voiding diary’ or ‘automated voiding diary’, and

focussed subject headings ‘uroflowmetry’ or ‘urine flow rate’. Reference lists

from retrieved articles were examined and additional papers checked for relevance.

Proceedings of the annual meetings of the ICS∗ since 2008 were searched. Relevant

guidelines were obtained from the UK NHS Evidence repository†. Papers were

deemed eligible if they described original studies of the use of home uroflowmetry

in adult men or the use of multiple clinic-based readings in an individual. Eligible

literature was retrieved and further checked for relevance. The results of this

systematic search are shown in Figure 4.1.

4.3 Results

4.3.1 Home uroflowmetry techniques

Timing methods The simplest method is to time a void of given volume, such

as the first 100 ml (Hansen and Zdanowski, 1997; Folkestad and Spangberg, 2004),

or measure Vvoid over a given time (Bloom et al., 1985; Schwartz et al., 1998). The

measured parameter, which must be documented manually, is an average flow rate

over the timed period rather than Qmax .

Timed flow rates correlate moderately with Qmax , suggesting their value as a home

screening tool. However, the practicality of the test is questionable, particularly if

the stream must be stopped or redirected after 100 ml. Further, the requirement

∗ www.icsoffice.org

† www.evidence.nhs.uk
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289 titles identified

Titles screened for relevance

133 potentially relevant

   titles retrieved

Full text review

36 eligible publications

18 original articles from

   electronic search

11 original articles from hand

   search

3 guideline documents

3 published abstracts

1 conference abstract

Review

156 excluded

79 not revelant population

31 duplicates

21 review articles / editorial

   comments

13 subject area unrelated to

   urology

12 animal studies

97 rejected

52 investigations of irrelevant

   clinical methods / models

17 studies of diagnostic accuracy,

   or correlation to clinical measures,

   of conventional uroflowmetry

16 treatment / intervention studies

9 studies of disease / symptom

   prevalence

3 case studies

Figure 4.1 Flow chart of selection process for reviewed literature.
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to begin timing “when the stream has reached full strength” or “from the distinct

feeling of relief” (Bloom et al., 1985) is certain to introduce an element of

subjectivity.

Funnel devices An estimate for Qmax can be obtained using hand-held funnel

devices. The user voids into the funnel and urine flows out through a suitably

restricted aperture into a measuring container.

When flow from the funnel, determined by the size of the aperture and the height

of fluid above it, equals the patient’s flow rate into the device, the level of urine

inside the funnel remains constant. When outflow exceeds inflow, the level falls;

when inflow exceeds outflow, the level rises. Thus the maximum level to which

urine rises during a void gives an indication for Qmax . The measurement is

documented by writing the value along with Vvoid on a chart.

Basic designs reported by Smith (1965; Figure 4.2A) and more recently Currie

(1998; Figure 4.2B) were calibrated to a single Qmax threshold. If urine did not

rise to the threshold level the test was deemed positive, indicating an abnormally

low Qmax . The next development was to incorporate multiple calibrated levels into

the device in order to categorise Qmax into ranges. The device reported by Pel and

van Mastrigt (2002) categorised Qmax into one of seven ranges using a funnel with

multiple apertures (Figure 4.2C). The Uflow Meter R© (MDTi, Wolverhampton,

UK) comprised a funnel of progressively narrow chambers with the aperture and

diameters calibrated to indicate three ranges for Qmax : <10 ml·s−1, 10 to 15 ml·s−1

and >15 ml·s−1 (Figure 4.2D). When evaluated in 46 men with LUTS, results from

the Uflow Meter showed reasonable agreement with clinic uroflowmetry (Kappa

= 0.61), but 11 % of participants found the device difficult to use due either to

obesity or the requirement to void whilst observing the level of urine (Pridgeon

et al., 2007).
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The Peakometer, first reported by Drach and Binard (1976), incorporated a

calibrated indicator strip that was stained by urine as it rose in the chamber and

hence recorded Qmax automatically, although Vvoid was still documented manually

following visual inspection of the level of fluid in the container (Drach and Binard,

1976; Ball, 1982; Colstrup et al., 1983; Figure 4.2E). The more recent CaptiFlowTM

is identical in concept to the Peakometer (Lucas, 2009).

Electronic devices Electronic flowmeters based upon similar technology to

standard clinic-based instruments have also been evaluated in the home. Those

reported in the literature include the handheld P-flow meter (de la Rosette et al.,

1996; Witjes et al., 1997; Sonke et al., 1999, 2002; Figure 4.2F), the Da CapoTM,

a weight transducer clinic flowmeter adapted for home use (Jørgensen et al.,

1998; Porru et al., 2005; Figure 4.2G), the PUFS2000 (Boci et al., 1999) and the

Home UroData system (Golomb et al., 1992). These devices obtain an automated

frequency-volume chart along with measurements of the full flow trace and voided

volume for multiple voids, without the need for the user to document results

manually. Little need be said about their technical capabilities in comparison

to in-clinic flowmeters; they are essentially the same equipment operated in a

different setting.

Electronic voiding diaries Only one study was found describing the use of an

electronic voiding diary in adult men, which included only three male participants

(Quinn et al., 2003). There was deemed to be insufficient evidence to allow

discussion.

4.3.2 Reported benefits of home uroflowmetry

Describing variability Many studies have analysed multiple flow measure-

ments from an individual, obtained in the home or clinic, in order to investigate
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A B C D

E F G

Figure 4.2 Seven home uroflowmeters described in the literature: (A) Smith’s
device (Smith, 1965), (B) Streamtest cup (Currie, 1998), (C) PEL device (Pel
and van Mastrigt, 2002), (D) Uflow Meter R© (Caffarel et al., 2007; Pridgeon et al.,
2007), (E) Peakometer (Drach and Binard, 1976; Ball, 1982; Colstrup et al.,
1983), (F) P-flow (de la Rosette et al., 1996; Witjes et al., 1997; Sonke et al.,
1999, 2002) and (G) Da Capo (Jørgensen et al., 1998; Porru et al., 2005).
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variability of flow parameters. Section 3.3.1 (page 29) described the Siroky

nomogram which quantified the relationship between flow rate and voided volume

in a cohort of asymptomatic men (Figure 3.5). Sonke et al. (2002) analysed

the relationship between Qmax and Vvoid by collecting multiple home flows from

208 men with LUTS and found it to differ considerably between individuals; 28 %

having an inverse relationship. They also reported that unobstructed patients had

steeper regression lines than obstructed patients, although this was not quantified.

Golomb et al. (1992) measured the variability of home uroflowmetry in patients

with LUTS. In their study group, uroflowmetric parameters varied more in men

with BPE than in healthy controls. Witjes et al. (1997) compared circadian

changes at home in men with varying grades of BOO according to LIN-PURR

evaluation. Significant differences in Qmax and Vvoid between groups with differing

grades of obstruction were seen according to time of day. Vvoid was higher, and

Qmax lower, during the night, the difference inQmax being larger for men with more

severe obstruction. Porru et al. (2005) also found significant circadian differences

in multiple measurements of Qmax at home in 107 patients with LUTS. Systematic

variability in Qmax has also been found in the clinic with voiding position (such as

sitting versus standing, the latter yielding a higher flow rate) (Yamanishi et al.,

1999) and even season and temperature (Watanabe et al., 2007).

One way to determine the likely spread of flow rates measured in practice for

an individual is to calculate the intra-subject standard deviation (SD) of multiple

readings. Home studies have found the intra-subject SD of multiple measurements

of Qmax in an individual to range between 0.5 and 6.0 ml·s−1 (Matzkin et al., 1993;

Boci et al., 1999). This implies that for a patient with a moderate intra-subject

SD of 2.5 ml·s−1, Qmax may vary by up to 10 ml·s−1 (95 % confidence interval)

between voids due to random fluctuation alone (Sonke et al., 1999).
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Caffarel et al. (2007) recruited 22 volunteers to perform two clinic flows and

record home flows for two weeks using the Uflow Meter. Bland-Altman analysis

showed considerable variation between the two clinic readings (mean difference

= 2.5 ml·s−1) whereas comparison of average Qmax from two series of multiple

home flow recordings made during successive weeks showed little variation (mean

difference = −0.2 ml·s−1).

Meier et al. (1994) recruited 100 men with micturition disorders to record multiple

home flows and thus calculated the number of measurements required to reliably

detect a given difference in average Qmax . For example, it was found that

approximately 50 measurements before and after an intervention were needed to

be certain of a difference of 2 ml·s−1 within an individual. The same group went

on to show that for clinical trials with Qmax as an outcome measure, sample sizes

could be reduced considerably by recording multiple voids from each individual

before and after the intervention (Meier et al., 1995).

Increasing diagnostic accuracy Boci et al. (1999) analysed multiple home

flows and pressure-flow studies from 24 patients with symptomatic BPE. Mean

home Qmax was compared to obstruction grade according to the LIN-PURR

nomogram (see Figure 3.11C, page 40). Although no unobstructed patient had a

mean home Qmax below 10 ml·s−1 and no obstructed patient was above 14 ml·s−1,

the interval 10 to 14 ml·s−1 contained mixed diagnoses. Just 46 % (11/24) of

patients were classified correctly using mean Qmax alone.

Reynard et al. (1996) recruited 165 patients to perform four consecutive clinic

flows, each having previously undergone PFS with obstruction diagnosed accord-

ing to the Abrams-Griffiths nomogram (see Figure 3.11A, page 40). The diagnostic

accuracy of the highest Qmax recorded from one, two, three and four voids was

compared for different cut-off values. If Qmax of any void was above the chosen

threshold, the patient was classed as unobstructed. In order to achieve good
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specificity (94 %) whilst retaining moderate sensitivity (39 %), it was concluded

that the highest reading from three flows and a threshold of <10 ml·s−1 provided

a valuable improvement over a single reading to diagnose obstruction. Recently,

these data were re-analysed by Caffarel et al. (2009) using the area under the

receiver operating characteristic (ROC) curve for one to four voids. No difference

in diagnostic accuracy was found between Qmax from one void and the maximum

of up to four voids. This can be seen from Figure 4.3, which shows the ROC

curves for the four test protocols examined by Reynard et al. The area under

each smoothed curve is between 75 and 77 %, indicating similar diagnostic power;

in fact their confidence intervals are almost identical (Caffarel et al., 2009).

Combating psychological effects Several studies have reported the phe-

nomenon of an increase in Qmax readings from successive clinic-recorded voids

(Carter et al., 1991; Feneley et al., 1996; Reynard et al., 1996; Jepsen et al., 1998).

This is thought to reflect an effect whereby patients become accustomed to the

test environment. In the clinic-based study reported by Feneley et al. (1996), 147

patients voided twice on two separate clinic visits. The average reading from the

second void was statistically higher than the first on both visits, with a difference

of approximately 0.5 ml·s−1. A larger effect was observed by Reynard et al. (1996)

where the mean Qmax of one to four clinic voids in 165 men with LUTS rose

progressively from 10.2 to 14.9 ml·s−1, the differences apparently not predicted by

voided volume. In contrast, Sonke et al. (1999) found no evidence of this effect in

home recordings from a sample of 212 men with LUTS.

Investigating symptoms Matzkin et al. (1996) compared frequency, intermit-

tency, weak flow and nocturia symptom scores with equivalent measures derived

from home uroflowmetry recordings over 24 hours in 42 men with LUTS and

found that only nocturia data correlated. Porru et al. (2005) found a significant
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Figure 4.3 ROC curves showing diagnostic accuracy for BOO of the four clinic
test protocols examined by Reynard et al. (1996): (A) Qmax from a single clinic
void, (B) maximum Qmax from two clinic voids, (C) maximum Qmax from three
clinic voids and (D) maximum Qmax from four clinic voids. For each plot, the
other three are underlaid in grey to demonstrate the similarity in diagnostic power,
indicated by the area under the curve.
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correlation between the frequency symptom score and frequency derived from

multiple home flow data in 107 men with LUTS.

Improving patient experience Boci et al. (1999) reported a questionnaire

study in which 20 of 25 patients considered home uroflowmetry using an electronic

device to be simpler and more acceptable than clinic uroflowmetry. Several studies

reported that participants found home flow devices easy to use, but neither

quantitative data nor the method used to establish this were presented (de la

Rosette et al., 1996; Currie, 1998; Jørgensen et al., 1998; Pel and van Mastrigt,

2002; Caffarel et al., 2007; Pridgeon et al., 2007).

4.4 Discussion

4.4.1 Techniques and devices: Good Urodynamic Practice?

For a frame of reference against which to judge reported techniques and devices,

the 2002 ICS standardisation report, Good Urodynamic Practices: Uroflowmetry,

Filling Cystometry, and Pressure-Flow Studies, was used (Schäfer et al., 2002).

According to this document, the requirements for uroflowmetry include: adequate

privacy, a normal desire to void and repeated and representative measurements.

The variables measured should include a graphical plot of flow rate against time

for the whole void, Qmax rounded to the nearest 1 ml·s−1, and Vvoid and PVR to

the nearest 10 ml.

Simple timing methods may hold appeal as they require no specialist equipment,

although interpretation of Qave is hampered by the lack of validated diagnostic

thresholds. Use of standard Qmax thresholds is possible which would tend to

improve sensitivity, for example for diagnosis of BOO, at the expense of reduced

specificity.
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Several simple, low-cost home flow instruments that provide a measure of Qmax

have been reported, at least one of which was commercially available at the time

of writing. It has been demonstrated that the large potential error in a single

measurement from these devices is counteracted by the effect of averaging repeated

measurements (Caffarel et al., 2007). Combining Qave from a timed void with

Qmax from a funnel device may provide information regarding the shape of the

flow curve to take this low technology concept further. These attributes suggest

that such methods may be valuable where low technology solutions are preferred,

for example remote or underdeveloped areas.

Electronic measurement has undoubted advantages in terms of precision and data

management and interpretation. The resulting data include the plot of flow rate

against time, which may aid the assessment and with which clinicians are familiar.

The main barrier to increased home use of electronic devices is cost, with currently

available options retailing at approximately £2,500 (e3,000, $4,000). At this level,

it is unlikely to be financially viable to use electronic equipment for routine home

use due to capital investment and servicing requirements.

One disadvantage of home uroflowmetry is the lack of a measurement of PVR,

which is part of the ICS recommendation. However, as discussed in Section 3.3.3

(page 36), the value of PVR is uncertain, with low diagnostic accuracy compared

to Qmax (Oelke et al., 2007). It may be envisaged that an abnormal result from

home uroflowmetry would lead to a subsequent clinic visit, where if necessary a

stand-alone measurement of PVR could be obtained after normal, private voiding.

Table 4.1 summarises the above discussion, showing the performance of both

clinic uroflowmetry and methods reported for home uroflowmetry against ICS

recommendations (Schäfer et al., 2002).
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Clinic
uroflowmetry

Timing
methods

Simple
funnels

Disposable
funnels

Electronic
devices

Measurement of Qmax : 0-50 to 1 ml·s−1 X

Qave measured
and

documented
manually

Qmax

categorised and
documented

manually

X X

Measurement of Vvoid : 0-1,000 to 10 ml X
Documented

manually
Documented

manually

Up to 600 ml,
documented

manually
X

Measurement of flow curve X × × × X

Measurement of PVR to 10 ml X × × × ×

Adequate privacy × X X X X

Normal desire to void × X X X X

Representative measurement ? X X X X

Repeated measurements × X X X X

Automated analysis verified by inspection X × × ×
Yes, but may

be time
consuming

Table 4.1 The performance of clinic uroflowmetry and methods for home uroflowmetry against ICS recommendations (Schäfer et al.,
2002).
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4.4.2 The value of home uroflowmetry

Describing variability in flow rate to improve diagnostic accuracy A

number of studies were found that investigated both inter- and intra-subject

variability of Qmax recorded using home uroflowmetry. The low reliability of a

single clinic flow measurement was often cited as the motivation for such studies.

What is the implication of this, and do the findings have any practical importance?

By averaging multiple measurements of Qmax in an individual the influence of

extreme values, either outliers or unrepresentative flows, is reduced. Statistically,

this ought to improve sensitivity and specificity for diagnosis of BOO, but the

evidence to support this statistical prediction is lacking. One small study showed

that just 46 % of the men assessed could be classified as minimally obstructed

(mean Qmax >14 ml·s−1) or clearly obstructed (mean Qmax <10 ml·s−1). The

remaining 54 % could not be classified correctly using mean Qmax alone (Boci

et al., 1999).

Reynard et al. (1996) concluded that the maximum Qmax of three clinic flow

measurements provides a valuable improvement in diagnostic power over a single

measurement. However, improvement in sensitivity could equally, and more

conveniently, be achieved by applying a lower threshold for abnormality to a

single measurement of Qmax (Caffarel et al., 2009). The observation of an

increase in Qmax readings from successive clinic voids indicates that a single flow

recording tends to underestimate an individual’s true Qmax , thereby reducing its

specificity. Again, this can be corrected without making multiple measurements

by adjusting the threshold for abnormality, unless the effect is found to differ

between obstructed and unobstructed patients.

The experimental use of home uroflowmetry has revealed interesting differences

between obstructed and unobstructed populations. These include circadian

variability and the relationship between Qmax and Vvoid ; the reasons for the
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observed differences are not clear. Further research into this area may allow

specification of thresholds for such parameters that best separate populations

with different conditions, and hence aid diagnosis.

Describing variability in flow rate to assess treatment outcome Home

uroflowmetry studies have shown that Qmax varies typically by up to 10 ml·s−1 in

an individual (Sonke et al., 1999). Qmax is the most common objective indication

of the need for treatment for BOO and of treatment outcome in an individual. Yet,

the typical increase in flow rate of 2 ml·s−1 from medical treatment in particular is

smaller than this variation. Conducting follow-up clinic measurements under the

same conditions as those performed initially (such as time of day and voiding

position) may go some way towards reducing variation but is unlikely to be

practical.

Measurement of multiple flows in an individual reduces the error in mean Qmax

by the square root of the number of measurements. This will result in greater

certainty in determining whether a treatment effect has occurred or alternatively

whether the clinical condition has become worse. Further, use of average Qmax

from multiple flows as an outcome measure would reduce the required sample

size, and therefore possibly cost and duration, for clinical trials (Meier et al.,

1995). These areas will be examined in more detail, and the effects quantified, in

Chapter 5.

This advantage of multiple home uroflowmetry raises a key question: How many

flow recordings should be obtained? The answer will depend upon the situation

and the desired level of accuracy for average Qmax (Sonke et al., 1999). For

example, in a trial of medical treatment where we anticipate an improvement of

2 ml·s−1 in Qmax , we may wish to reduce the standard error of a patient’s average

Qmax to 0.5 ml·s−1 or lower. Assuming the highest reported intra-subject SD

of 6 ml·s−1 (Boci et al., 1999), this would require 144 measurements or more.
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In contrast, for a man complaining of LUTS with Qmax >25 ml·s−1 on a single

void, repeated measurements are unlikely to much increase the certainty that he

is unobstructed.

Investigating symptoms Symptom scores have been compared to home

uroflowmetry data, resulting in the conclusion that men are poor at quantifying

symptoms (Matzkin et al., 1996). Whilst this is an interesting observation, it has

little value given that the purpose of measuring symptoms is to obtain a patient’s

subjective view of their condition.

Improving patient experience Patient opinion regarding new practices and

changes to clinical care is likely to become increasingly important. An example of

this trend in the UK is the NHS Choose and Book system‡ where patients select the

location for their first outpatient appointment, generating income for the chosen

department. Some evidence was found, although predominantly anecdotal, that

men preferred home over clinic uroflowmetry. Perceived benefits of electronic

voiding diaries over hand-written diaries, such as reduced burden and improved

compliance, have yet to be confirmed.

‡ www.chooseandbook.nhs.uk.
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4.5 Conclusion

The findings of this chapter illustrate the gulf between low-cost methods of

obtaining average or peak flow measurements, and precise, expensive devices

with the capabilities of clinic flowmeters. Simple methods and devices may be

suitable as screening tests or for long-term self-monitoring, or further on in the

patient pathway where attendance at a specialised clinic is not convenient or

possible. However, they are not ideal for diagnostic use since they fall short of

ICS recommendations for uroflowmetry.

In contrast, electronic devices clearly score highly in terms of their adherence to

‘good practice’ for uroflowmetry. However, the cost of such equipment is currently

too high for routine home use. An ideal device to replace clinic-based uroflowmetry

would combine reliable and continuous measurement of flow rate throughout each

void and concise data presentation, at a cost that could be absorbed into current

tariffs for assessment of men with LUTS.

The statistical benefit of averaging multiple measurements of Qmax , made feasible

by home uroflowmetry, should translate to improved diagnostic accuracy and

assessment of treatment outcome. This hypothesis will be tested in the following

chapter.
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The clinical benefit of an average

maximum flow rate

5 The clinical benefit of an average maximum flow rate

5.1 Introduction

The literature reviewed in the previous chapter revealed that the practice of

recording several measurements of flow in each individual, and applying a

threshold to the resulting maximum Qmax , provided no improvement in diagnostic

power over a single measurement. One study reported that mean Qmax derived

from multiple measurements in an individual also produced no improvement (de la

Rosette et al., 1996). Yet, quite the opposite conclusion was drawn: that averaging

multiple measurements of Qmax should translate to improved diagnostic accuracy

and assessment of treatment outcome. This statement seems unfounded, perhaps

even contrary to the evidence. Upon what is it based? The answer lies within

this chapter.
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5.2 Single versus multiple measurements

Investigation of symptoms often involves measuring a physiological parameter

and categorising the result as normal or abnormal, usually by comparison to a

threshold. These parameters often exhibit appreciable within-subject variability,

examples being blood pressure, heart rate and of course urine flow rate.

The use of solitary measurements of variable parameters made in the clinic

raises two issues. Firstly, what are the implications of cases where this one-

off measurement is an outlier? Secondly, there may be an effect by which

measurements obtained in an artificial environment are in fact unrepresentative

of the patient’s true condition; they are drawn from a different distribution.

We are therefore in the midst of a shift away from diagnoses based upon

one-off clinical measurements and towards closer-to-home monitoring to obtain

multiple readings under more natural circumstances. An example of this trend

is the 2011 NICE clinical guideline concerning the management of hypertension

in adults (National Institute for Health and Clinical Excellence, 2011). The

most radical distinction between it and its 2006 predecessor is the strong

recommendation that hypertension observed in the clinic be investigated by

ambulatory or home blood pressure monitoring. This is acknowledgement in part

of the intra-subject variability of these measurements, and in part of anxiety-

induced elevation of blood pressure which occurs in the clinic, termed ‘white coat

hypertension’. This is beginning to sound familiar.

The volume of data resulting from ambulatory and home monitoring techniques

raises its own issue. In order to apply a threshold and test diagnostic accuracy, we

must reduce these data, from which an almost unlimited number of parameters

may be derived, to a single value.
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Commonly, multiple measurement are averaged to give a mean value, such is the

treatment of multiple blood pressure measurements allowing comparison to the

threshold separating normo-tensive and hyper-tensive subjects. As discussed in

the previous chapter, the allure of a mean compared to a single value is that

it varies far less: by a factor of
√
n, where n is the number of measurements

averaged. Crucially, this means that when examining distributions of means rather

than single values, there is a narrowing of the distribution and subsequently less

overlap between individuals and between groups of individuals.

By modelling Qmax according to descriptive statistics reported in the literature,

the present chapter aims to quantify this effect in relation to men with LUTS.

Thus, the improvement in clinical performance to be achieved by averaging

multiple measurements in an individual is predicted.

5.3 Sensitivity, specificity, ROC curves and accuracy

The performance of a clinical test is often described by its sensitivity (the

proportion of positives correctly classified) and specificity (the proportion of

negatives correctly classified). These measures can be difficult to interpret because

they vary from 0 to 100 %, in opposite directions, as the threshold separating test

positives and test negatives is varied.

An ROC curve, a plot of sensitivity versus [1-specificity], usually for multiple

thresholds, allows visualisation of how sensitivity and specificity vary with respect

to each other. A smoothed line is drawn through the points, allowing calculation

of the area under the curve (AUC), a threshold-independent measure of the

discriminatory power of the test. An AUC of 100 % signifies a perfect test∗,

∗ An AUC below 50 % can be increased to (100−AUC) % by reversing the classifications, so
that those classified as positives become negatives, and vice versa. Therefore, the worst possible
AUC is 50 %.
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of 0 % a test that always classifies incorrectly and of 50 % a test equivalent to

classification at random.

The AUC reflects the probability that the measured parameter will be lower (if

test positives are classed as those below the thresholds) or higher (if test positives

are classed as those above the thresholds) for a randomly chosen positive than for

a randomly chosen negative. In practice, a threshold must be chosen and applied.

If prevalence is known, accuracy may be calculated from sensitivity and specificity

for a given threshold according to Equation 5.1†. Accuracy is also defined more

intuitively by Equation 5.2.

accuracy = (sensitivity × prevalence) + [specificity × (1− prevalence)] (5.1)

accuracy =
true positives+ true negatives

total
(5.2)

5.4 Theory versus practice

There are two methods by which sensitivity and specificity, and thus the AUC

and accuracy, may be calculated.

The first is to measure the parameter under test in a study cohort and compare

the results to the gold standard. Of course, the resolution of the resulting ROC

is limited by the sample size; the larger the sample, the more it approaches the

true ROC, as illustrated in Figure 5.1. This method requires the value of the test

parameter to be known for every individual; for Qmax , this has not previously

been reported in a study of sufficient size to allow robust calculations.

† Sensitivity, specificity, accuracy, AUC and prevalence may be expressed as percentages or
as proportions from 0 to 1; percentages are used throughout this chapter except for Equation 5.1.
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Figure 5.1 The effect of small (B) and large (C) sample sizes on estimation of the true ROC curve (A) for a test parameter.
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Alternatively, with knowledge of the distributions of the test parameter in

the positive and negative populations, as determined by the gold standard,

ROC curves may be calculated theoretically. At each threshold, sensitivity is

the integral of the positives’ distribution below the threshold as a proportion

of the integral of the whole distribution. Specificity is the integral of the

negatives’ distribution above the threshold as a proportion of the integral of the

whole distribution. These calculations are shown in Equations 5.3 (sensitivity)

and 5.4 (specificity) and Figure 5.2 for normal distributions, which are assumed

throughout this chapter, but the theory holds true for any kind of distribution.

∫ thresh

−∞
exp

{
−(TP − µpos)

2

2σ2
pos

}
/

∫ +∞

−∞
exp

{
−(TP − µpos)

2

2σ2
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}
(5.3)
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2σ2
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}
/

∫ ∞
−∞

exp

{
−(TP − µpos)

2

2σ2
pos

}
(5.4)

Where:

thresh = the threshold at which sensitivity and specificity are evaluated

TP = the range of values across which the frequency of the test parameter 6= 0

µpos, µneg = the mean of the test parameter in the positive and negative

populations

σpos, σneg = the standard deviation of the test parameter in the positive and

negative populations
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In this case, the limiting factor for the accuracy of the results is the size of the

sample from which the summary statistic were calculated. Being that only a mean

and standard deviation for positive and negative populations are required, this

information is likely to be widely available from the literature. However, for Qmax ,

only the characteristics of single values have been reported. In order to complete

the theory, distributions of mean Qmax must also be determined. This requires

consideration of multiple sources of variance and their combined effect.
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Figure 5.2 Theoretical calculation of sensitivity and specificity from distributions
of positives and negatives. Sensitivity (true positives) is the red shaded region as
a proportion of the area under the red curve, and specificity (true negatives) is
the blue shaded region as a proportion of the area under the blue curve. In this
illustration, prevalence is 40 % (the area under the red curve is two thirds that of
the blue curve), the distributions have the same standard deviation, and the test
parameter is lower in positives than negatives.
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5 The clinical benefit of an average maximum flow rate

5.5 Combining variance

Let’s begin by imagining that we measure a test parameter once in a group

of subjects. The parameter varies between subjects with standard deviation

σBETWEEN , but does not vary within subjects; one subject always produces the

same value. The distribution of values is shown in Figure 5.3A; its variance (σ2)

is simply equal to the between subject variance (Equation 5.5).

σ2
TOTAL = σ2

BETWEEN (5.5)

Next we introduce within subject variability, with standard deviation σWITHIN ,

and remeasure the parameter once per subject. The spread of the resulting

distribution increases according to Equation 5.6 (Figure 5.3B).

σ2
TOTAL = σ2

BETWEEN + σ2
WITHIN (5.6)

Finally, we measure the parameter n times in each subject and take the mean

value. Mean values vary less than single values by a factor of
√
n and so the term

involving σWITHIN is reduced accordingly (Equation 5.7). With a sufficiently

large number of measurements per subject, we can essentially eliminate the

effect of intra-subject variability; as n increases, σTOTAL approaches σBETWEEN

(Figure 5.3C).

σ2
TOTAL = σ2

BETWEEN +

(
σWITHIN√

n

)2

(5.7)
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Figure 5.3 An illustration of the effect of combining multiple sources of variance on measurement of a test parameters (A to C) and
the measured change in a test parameters following an intervention (D to F).
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5 The clinical benefit of an average maximum flow rate

In a second scenario, we measure a test parameter before and after an intervention.

This time, we are not interested in distributions of the test parameter itself, but

rather the distributions of the measured change in the parameter following the

intervention. As we have a paired situation, between-subject variance disappears

from the calculations.

If we begin by assuming that the intervention has no effect, we need only consider

within subject variance (Equation 5.8). The term appears twice because we

are comparing two measurements in each subject. The distribution of measured

changes is shown in Figure 5.3D.

σ2
TOTAL = σ2

WITHIN + σ2
WITHIN

⇒ σ2
TOTAL = 2σ2

WITHIN

(5.8)

If the intervention does alter the value of the test parameter, there is an additional

contribution from the variance of the intervention effect across the subjects

(Equation 5.9, Figure 5.3E).

σ2
TOTAL = σ2

WITHIN + σ2
WITHIN + σ2

INTERV ENTION

⇒ σ2
TOTAL = 2σ2

WITHIN + σ2
INTERV ENTION

(5.9)

Finally, if we take the mean value of the difference between n pre- and

post-intervention measurements in each subject, the σWITHIN term is reduced

(Equation 5.10, Figure 5.3F). Again, with sufficiently large n, the total variance

tends to that of the intervention effect.

σ2
TOTAL =

(
σWITHIN√

n

)2

+

(
σWITHIN√

n

)2

+ σ2
INTERV ENTION

⇒ σ2
TOTAL =

2σ2
WITHIN

n
+ σ2

INTERV ENTION

(5.10)
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5 The clinical benefit of an average maximum flow rate

These are the concepts that underpin calculations of the benefit of mean Qmax in

the remainder of this chapter.

5.6 Diagnostic accuracy for obstruction

As discussed in Section 3.3.1 (page 28), the accuracy of single values of Qmax

to diagnose BOO has been reported in numerous studies. This section aims

to determine the improvement in diagnostic accuracy achievable by averaging

multiple measurements in an individual.

5.6.1 Methods

Calculations were based upon a predictive model built using the parameters and

assumptions listed on the following page, derived from a report of 871 men with

LUTS (Rosier et al., 1996), and a small home uroflowmetry study in which details

of Qmax were presented for each patient (Boci et al., 1999).

Throughout the literature, Qmax in a symptomatic population has repeatedly been

described using parametric statistics (Golomb et al., 1992; Meier et al., 1994,

1995; van Venrooij et al., 1995; de la Rosette et al., 1996; Reynard et al., 1996;

Witjes et al., 1997; Homma et al., 1998; Reynard et al., 1998; Boci et al., 1999;

Sonke et al., 1999). One exception was found that did not provide details of the

observed distribution (Oelke et al., 2007). Although information regarding the

characteristics of Qmax in an individual is scarce, one study provided the mean

and standard deviation of Qmax for each participant (Boci et al., 1999). Therefore,

for these analyses Qmax was modelled as normally distributed at both population

and individual level.
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5 The clinical benefit of an average maximum flow rate

• The prevalence of obstruction in the study population is 62 % (Rosier et al.,

1996).

• Individuals’ Qmax are normally distributed around their mean with standard

deviation (SD) 3 ml·s−1 (pooled from Boci et al., 1999).

• Single values of Qmax in the obstructed population are normally distributed

with mean [SD] 9.3 [3.8] ml·s−1 (Rosier et al., 1996).

• Single values of Qmax in the unobstructed population are normally dis-

tributed with mean [SD] 12.9 [5.3] ml·s−1 (Rosier et al., 1996).

• For consideration of multiple voids, the mean of 40 voids is calculated (this

is based upon 10 voids per day (Boci et al., 1999) for 4 days, the standard

length of a frequency-volume chart).

This information enabled distributions for single values of Qmax in the obstructed

(positive) and unobstructed (negative) populations to be created.

Those for the mean of 40 values of Qmax required further consideration. Their SDs

may be calculated from Equation 5.7: we know σWITHIN (3 ml·s−1) and n (40), but

σBETWEEN is missing. However, applying Equation 5.6 to single values of Qmax ,

we know σWITHIN (3 ml·s−1) and σTOTAL (obstructed: 3.8 ml·s−1, unobstructed:

5.3 ml·s−1), allowing calculation of σBETWEEN for use in Equation 5.7. The means

are the same as those for single values.

The above calculations are based upon the assumption that single values of Qmax

recorded in the clinic always reflect normal voiding. Finally, as this may not always

be the case, simulations were performed in which a proportion of these values

were set to be unrepresentative. MATLAB software (MathWorks, Natick, USA)
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5 The clinical benefit of an average maximum flow rate

was used to generate single and multiple values of Qmax for 100,000‡ ‘patients’ as

pseudorandom numbers drawn from the normal distributions described previously.

However, for 10 % of cases, the single value of Qmax was instead drawn from a

uniform distribution on the interval 0 to 30 ml·s−1§, the effect being that 10 %

of these voids were unrepresentative (outside two standard deviations above or

below the mean) rather than the expected 5 %. Sensitivity and specificity were

then determined by counting the number of obstructed / unobstructed patients

for whom (mean) Qmax was below / above a range of thresholds.

5.6.2 Results

The distributions of single Qmax and the mean of 40 values of Qmax for obstructed

and unobstructed patients is shown in Figure 5.4. For mean Qmax calculated

from 40 voids, the effect on the population distributions is a decrease in spread

according to Equation 5.7. The effect of intra-subject variability has almost

been eliminated, leaving a total SD just marginally above the between subject

SD (obstructed patients: 2.38 ml·s−1 versus 2.33 ml·s−1, unobstructed patients:

4.39 ml·s−1 versus 4.37 ml·s−1).

Once the four distributions were known, ROCs were calculated as described in

Section 5.4. These are shown in Figure 5.5. By averaging 40 measurements, there

is an improvement in the AUC of 5 %, from 70 to 75 %.

Here, the AUC reflects the probability that (mean) Qmax will be lower for a

randomly chosen obstructed patient than for a randomly chosen unobstructed

patient. Commonly examined thresholds of 10 and 15 ml·s−1 are marked on

both curves on Figure 5.5. Table 5.1 compares diagnostic accuracy at these two

‡ An estimate for the number of men with LUTS who undergo a urine flow test in the UK
each year.

§ The approximate range for Qmax resulting from the above distributions.
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5 The clinical benefit of an average maximum flow rate

thresholds for the two protocols, calculated using sensitivities, specificities and

prevalence according to Equation 5.1.

Following simulations in which 10 % of single values of Qmax were drawn from a

uniform rather than normal distribution, the AUC for single voids fell from 70 to

67 %, and the accuracies at 10 and 15 ml·s−1 fell from 61 to 60 % and 70 to 68 %,

respectively. The simulated ROCs are shown in Figure 5.6, and the simulated

statistics in Table 5.2.
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Figure 5.4 The distributions of single values of Qmax in the obstructed (red) and
unobstructed (blue) populations (solid lines) from Rosier et al. (1996), and how
these are affected by instead measuring the mean of 40 voids in each individual
(dashed lines).
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Figure 5.5 Calculated ROC curves illustrating the power of single values (red)
and the mean of 40 values (blue) of Qmax to diagnose obstruction. Thresholds
of 10 and 15 ml·s−1 are marked on both curves. Note that the curves cross over
at the bottom left hand corner of the plot. Because the distributions of single
values of Qmax are more spread, up to a certain threshold a larger proportion of
this distribution for obstructed men falls below the threshold, resulting in better
sensitivity. The same effect gives single values better specificity at high thresholds.
The benefit of averaging multiple measurements in each individual occurs where
distributions of obstructed and unobstructed patients overlap.

Threshold 10 ml·s−1 15 ml·s−1

Protocol Single Mean Single Mean

Sensitivity 55 % 58 % 93 % 99 %

Specificity 70 % 75 % 35 % 32 %

Accuracy 61 % 65 % 70 % 73 %

Table 5.1 Calculated sensitivities, specificities and accuracies of single values and
the mean of 40 values of Qmax to diagnose obstruction at 10 and 15 ml·s−1.
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Figure 5.6 Simulated ROC curves illustrating the power of single values (red) and
the mean of 40 values (blue) of Qmax to diagnose obstruction. The dashed red line
is derived from a simulation in which all single values of Qmax are drawn from the
normal distributions described previously. The solid red line (*) is derived from
a simulation in which 10 % of single values of Qmax are instead drawn from a
uniform distribution on the interval 0 to 30 ml·s−1.

Threshold 10 ml·s−1 15 ml·s−1

Protocol Single Single* Mean Single Single* Mean

Sensitivity 55 % 53 % 58 % 93 % 88 % 99 %

Specificity 70 % 69 % 75 % 35 % 36 % 32 %

Accuracy 61 % 60 % 65 % 70 % 68 % 73 %

Table 5.2 Simulated sensitivities, specificities and accuracies of single values,
single values of which 10 % are drawn from a uniform distribution (*), and the
mean of 40 values of Qmax to diagnose obstruction at 10 and 15 ml·s−1. For those
with equivalent calculated values in Table 5.1, all are equal.
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5.7 Measurement of treatment outcome

5.7.1 Methods

Similar calculations may be carried out in order to compare the ability of single

and the mean of multiple values of Qmax to assess treatment outcome, based upon

the following model:

• Let us imagine that we treat our obstructed patients from Section 5.6 with

an α-blocker. All patients therefore begin with distributions according to

the obstructed population described therein.

• Half of the patients do not respond to treatment: their distributions remain

unchanged (Norg et al., 2006).

• The other half do respond to treatment: their true mean Qmax increases.

These improvements are normally distributed with mean 2 ml·s−1 (Djavan

et al., 2004) and SD 0.5 ml·s−1 (ensuring all changes are positive).

• Thus the prevalence = 50 %.

• Again, Qmax in each individual is normally distributed about their mean

with SD 3 ml·s−1 (Boci et al., 1999).

• For consideration of multiple voids, the mean of 40 voids is calculated both

before and after treatment.

In this scenario, ‘positives’ are defined as those who experience an improvement

in mean Qmax following medication, and ‘negatives’ as those who do not.

Again, simulations were performed to investigate the effect of unrepresentative

voiding in the clinic. 62,000 sets of pre- and post-medication single and multiple

values of Qmax were generated as pseudorandom numbers drawn from the normal
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5 The clinical benefit of an average maximum flow rate

distributions described above. However, for 10 % of cases, the single value of Qmax

was instead drawn from a uniform distribution on the interval 0 to 30 ml·s−1.

5.7.2 Results

The pre- and post-medication distributions of single Qmax for responders and non-

responders are illustrated in Figure 5.7A and Figure 5.7B, respectively, and for

mean Qmax , Figure 5.7C and Figure 5.7D, respectively. Pre-medication and non-

responder distributions are centred around 9.3 ml·s−1, and responder distributions

around 11.3 ml·s−1. For the non-responders these distributions have SDs as

described in Section 5.6: 3.8 ml·s−1 for single values and 2.4 ml·s−1 for mean

values. For responders, the SDs are slightly larger as a result of the spread of

the effect of medication: 3.83 ml·s−1 for single values and 2.43 ml·s−1 for mean

values¶.

Sensitivity and specificity can be applied in a slightly unconventional context

to measure the performance of both single and mean values of Qmax to assess

outcome. In order to do so, we need to consider the distributions of the difference

between one pre- and one post-medication measurement of (mean) Qmax .

For the non-responders, the distribution is centred around 0 ml·s−1 and for the

responders around 2 ml·s−1. The SDs may be calculated using the concepts

presented in Equations 5.8 to 5.10‖. For non-responders, the variance equals

twice the intra-subject variance. For responders, the variance of the medication

effect is added to this. For mean Qmax , the intra-subject SD is reduced by a factor

of
√

40. The resulting distributions are shown in Figure 5.8.

¶ √3.82 + 0.52 = 3.83 and
√

2.382 + 0.52 = 2.43.

‖ Single values: 4.3 ml·s−1 for responders and 4.2 ml·s−1 for non-responders. Mean values:
0.8 ml·s−1 for responders and 0.7 ml·s−1 for non-responders.
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Figure 5.7 (A) The pre-medication distribution of single values of Qmax . (B)
The post-medication distributions of single values of Qmax for responders (green)
and non-responders (red). (C) The pre-medication distribution of the mean of 40
values of Qmax . (D) The post-medication distributions of the mean of 40 values
of Qmax for responders (green) and non-responders (red).
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Figure 5.8 (A) The distribution of measured change in single values of Qmax

for responders. (B) The distribution of measured change in single values of Qmax

for non-responders. (C) The distribution of measured change in the mean of 40
values of Qmax for responders. (D) The distribution of measured change in the
mean of 40 values of Qmax for non-responders. Green and red shading illustrate
calculation of sensitivity and specificity for a threshold of 0 ml·s−1. Note that plots
(A) and (B) have a smaller vertical-axis limit than plots (C) and (D).
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Pragmatically, we may consider Qmax to have improved following medication if it

is any higher than pre-medication Qmax , which equates to a threshold of 0 ml·s−1.

Sensitivity is then the probability for the responders of measuring a difference in

Qmax above 0 ml·s−1, and specificity is the probability for the non-responders of

measuring a difference below 0 ml·s−1. Figure 5.8 also illustrates the derivation

of sensitivity and specificity for a threshold of 0 ml·s−1.

These distributions enabled construction of ROCs as described in Section 5.4

(Figure 5.8). Single voids have an AUC of 63 %, whereas the means of 40

measurements have an almost perfect AUC of 97 %.

Here, the AUCs reflect the probability that (mean) Qmax will be measured to

increase more for a randomly chosen responder than for a randomly chosen

non-responder. Thresholds of 0, 1 and 2 ml·s−1 are marked on both curves in

Figure 5.9.
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Figure 5.9 Calculated ROC curves illustrating the power of single values (red)
and the mean of 40 values (blue) of Qmax to assess treatment outcome. Thresholds
of 0, 1 and 2 ml·s−1 are marked on both curves.
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Table 5.3 compares the treatment assessment accuracy for the two protocols

at these three thresholds. The best accuracy, 91 %, is achieved by applying a

threshold of 1 ml·s−1 to mean Qmax .

Threshold 0 ml·s−1 1 ml·s−1 2 ml·s−1

Protocol Single Mean Single Mean Single Mean

Sensitivity 68 % 99 % 59 % 88 % 50 % 50 %

Specificity 50 % 50 % 59 % 93 % 68 % 100 %

Accuracy 59 % 75 % 59 % 91 % 59 % 75 %

Table 5.3 Calculated sensitivities, specificities and accuracies of single values and
the mean of 40 values of Qmax to assess treatment outcome at thresholds of 0, 1
and 2 ml·s−1.

Following simulations in which 10 % of single values of Qmax were drawn from a

uniform rather than normal distribution, the AUC for single voids fell from 63 to

60 %, and the accuracies at 0, 1 and 2 ml·s−1 fell from 59 to 57 %, 59 to 58 %,

and 59 to 57 %, respectively. The simulated ROCs are shown in Figure 5.10, and

the simulated statistics in Table 5.4.

5.8 Discussion

As discussed in Chapter 3, the main limitation of Qmax is its performance in

distinguishing between obstructed and unobstructed men. The area below any

threshold applied to Qmax encompasses a proportion of the obstructed population

plus a lesser proportion of the unobstructed population∗∗. These proportions

are slightly altered for the mean Qmax protocol, giving an increase in diagnostic

accuracy of at least 3 %.

∗∗ Unless extremely high, in which case all men will fall below the threshold.
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Figure 5.10 Simulated ROC curves illustrating the power of single values (red)
and the mean of 40 values (blue) of Qmax to assess treatment outcome. The dashed
red line is derived from a simulation in which all single values of Qmax are drawn
from the normal distributions described previously. The solid red line (*) is derived
from a simulation in which 10 % of single values of Qmax are instead drawn from
a uniform distribution on the interval 0 to 30 ml·s−1.
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Threshold 0 ml·s−1 1 ml·s−1 2 ml·s−1

Protocol Single Single* Mean Single Single* Mean Single Single* Mean

Sensitivity 68 % 65 % 99 % 59 % 57 % 88 % 50 % 49 % 50 %

Specificity 50 % 50 % 50 % 59 % 58 % 93 % 68 % 66 % 100 %

Accuracy 59 % 57 % 75 % 59 % 58 % 91 % 59 % 57 % 75 %

Table 5.4 Simulated sensitivities, specificities and accuracies of single values, single values of which 10 % are drawn from a uniform
distribution (*), and the mean of 40 values of Qmax to assess treatment outcome at thresholds of 0, 1 and 2 ml·s−1. For those with
equivalent calculated values in Table 5.3, all are equal.
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Given this relatively modest effect, it is no surprise that small studies involving a

few tens of men have failed to detect an improvement. De la Rosette et al. (1996)

concluded that grade of obstruction in their cohort of 67 agreed no better with

results from home uroflowmetry than with those from the clinic. However, they

did not acknowledge that the study lacked the power to detect a small difference.

The improvement predicted here would require a sample of over 1,000 men to

detect with 80 % power. Yet, the prevalence of male LUTS is such that this

would benefit thousands of men in the UK each year.

Far more apparent is the advantage of using mean Qmax to assess the effect of

treatment on flow rate. Uroflowmetry is commonly performed as follow-up for

treatment of suspected BOO, and this is in accordance with the recommendation

of the European Association of Urology (Oelke et al., 2011). The change in Qmax

measured following an intervention is the main, usually only, objective indication

of treatment response.

Due to intra-subject variability of Qmax often being higher than medication-

induced benefit, the conventional single void method of assessing the response

of flow rate to medication achieves at best 59 % accuracy: little better than

guesswork. Far higher accuracy of up to 91 % may be achieved by averaging

multiple flows before and after treatment. In fact, this is just one of several

aspects of treatment assessment that could benefit from this practice.

Secondly, we can associate the measured change in Qmax with a confidence interval

for each man by performing a statistical comparison of mean Qmax before and after

treatment. Therefore, we can express the uncertainty surrounding the outcome in

an individual. The same calculation for single values of Qmax would require use

of an estimated SD, running the risk of type I and II errors if the assumed value

was different to the man’s true SD.
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Thirdly, the use of mean Qmax considerably reduces the effect of regression to the

mean that may occur during treatment trials. How often does a treatment trial

for suspected or diagnosed BOO enforce inclusion criteria upon IPSS and Qmax ,

and then remeasure these parameters as outcomes? The subsequent observation

of improvement may be attributed to regression to the mean rather than any

treatment effect. This is a well acknowledged phenomenon, demonstrated by

Prescott and Garraway (1995) to occur when measuring Qmax .

By way of demonstration, let us imagine that we screen a sample of our obstructed

cohort from Section 5.6 and treat only those who have Qmax below 12 ml·s−1

based on a single measurement. Of 1,000 men screened, 600 fulfill this criterion

and receive treatment, but the treatment has no effect and flow rates remain

unchanged. Qmax is remeasured following treatment and a paired t-test measures

a net improvement in Qmax of 1 ml·s−1, with associated p-value 5 × 10−6. The

reason is clear from Figures 5.11A and 5.11B. Two identical distributions are

being compared, only the former has an artificially imposed upper limit and the

latter does not.

If instead we screen and treat based upon mean Qmax from 40 measurements,

we are comparing Figures 5.11C and 5.11D. This time, a paired t-test will

correctly measure no difference. At sufficiently large sample sizes, or with

fewer measurements per man, the effect is still present to a small extent, but

considerably reduced.

Finally, averaging multiple values of Qmax in an individual enables a reduction in

the sample size of clinical trials for which Qmax is an outcome measure. The larger

the number of voids averaged per man, the closer the distribution of measured

improvements converges to the true distribution; the effect of treatment minus

the ‘noise’ of intra-subject variability. This is apparent from Equation 5.10.
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Figure 5.11 An illustration of regression to the mean when using a single value
of Qmax to select those to treat and the reduction in this effect when instead using
the mean of 40 measurements per individual. (A) Simulated values for single
measurements of Qmax in 600 patients selected for treatment from 1,000 based
upon a criterion of Qmax <12 ml·s−1, (B) simulated values for a second single
measurement of Qmax in these patients, (C) simulated values for measurements of
mean Qmax in patients instead selected based upon a criterion of mean Qmax from
40 measurements <12 ml·s−1 and (D) simulated values for a second mean Qmax

from 40 measurements in these patients.
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5 The clinical benefit of an average maximum flow rate

Figure 5.12 shows the sample size required to detect a given difference with a

given power versus the number of measurements averaged. A marked decrease is

observed from one to ten voids: a reduction of over 80 % in the required sample

size. Ten voids would therefore appear to represent a good balance between cost

of, and benefit from, multiple uroflowmetry for the purpose of reducing the sample

size for clinical trials.
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Figure 5.12 The number of pre- and post-treatment measurements of Qmax

averaged per man versus the sample size required to detect a given difference in
mean Qmax with given power. Values are expressed as a percentage of the sample
size required if only one measurement is made per man.

5.9 Conclusion

As Qmax is a well established clinical parameter, an obvious first step is to extract

from multiple home uroflowmetry a mean Qmax : the clinician’s familiar friend in

a slightly different guise. Both diagnostic accuracy and, particularly, assessment

of treatment outcome would benefit from using a mean rather than single value

of Qmax . The extent of this benefit has been predicted by models founded upon

descriptive statistics from the literature.
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5 The clinical benefit of an average maximum flow rate

The results, whilst suggesting that thousands of men per year may benefit from

more accurate clinical decision making, are perhaps not quite enough of a sensation

to move uroflowmetry from the clinic into the home just yet.

MeanQmax is not the only parameter available from multiple measurements of flow

made in the home. There is a wealth of uncharted information that may provide

new insight into lower urinary tract function. However, how can we investigate

this further without an appropriately designed device?
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Chapter 6

The PeePod

6 The PeePod

6.1 Introduction

It is apparent from the literature reviewed in Chapter 4 that a variety of home

flowmeters have been developed for both research and commerce since the 1960s.

It is also clear that the clinical performance of Qmax could be improved in

terms of diagnostic accuracy, and even more so for evaluation of treatment

outcome, by averaging multiple measurements in an individual. Despite this,

home uroflowmetry has not been incorporated into common clinical practice, and

this can be attributed to a number of factors. First and foremost is the absence of

sufficiently powered, high quality studies demonstrating in a clinical setting the

benefit of home uroflowmetry over conventional methods. But there is also the

matter of the technology itself; none of the devices identified in Chapter 4 fulfill

the recommendations of the ICS at a sufficiently low cost to allow widespread use.

Indeed, if such an instrument did emerge, attempts to fill the evidence gap may

not be far behind.
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6 The PeePod

It is this factor that the Regional Medical Physics and Urology departments

within Newcastle upon Tyne Hospitals NHS Foundation Trust sought to address

some years ago. Prior to my joining the department, a prototype device based

upon a very economic capacitive measurement technique was developed, led by

Jennifer Caffarel. This work laid the foundations for development of a second

generation device, selected for funding by the Wellcome Trust’s Technology

Transfer Translation Award in 2010. This chapter describes the characteristics

and technical performance of that device: the PeePod.

The PeePod was developed by Michael Drinnan (research, general develop-

ment and software), Mike Whitaker (research, general development, electronics,

firmware and maintenance software), Clive Griffiths (research and general de-

velopment), Rob Beckwith (3D mechanical computer aided design model) and

me (research, general development and reporting algorithms). Robert Pickard

provided clinical insight to guide the development.

The intellectual property associated with the PeePod, namely a patent application

and trademark registration, is described in Appendix A1, page 237. Prior to

patient use, the device was registered with the Medicines and Healthcare Products

Regulatory Agency (MHRA) (see Appendix A2, page 239).

6.2 Scope and specification

To inform the development of the device, we began by producing a scope and

specification, based upon guideline recommendations (Schäfer et al., 2002) and

consideration of what could be achieved at low-cost.
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6 The PeePod

6.2.1 Scope

The PeePod is an electronic urine flowmeter and voiding diary designed for

operation by patients in their homes. It is intended to fill the technology gap,

being simple and low-cost to allow widespread single-patient use, but sufficiently

sophisticated to obtain precise data that can replace conventional flow rate testing

and frequency-volume charts. It must be simple to operate, self contained and

portable, and battery-powered. The data obtained are to include the date, time,

duration and continuous volume and flow rate measurements for multiple voids.

The device must connect to a PC for the purpose of data download, followed by

simple and concise presentation of results via bespoke software.

6.2.2 Specification

The specification is described in Table 6.1 overleaf.
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Range
Resolution Accuracy

Reporting Plotting Required Desirable

Volume 0 - 1,000 ml 10 ml 2 ml ±5 % (±50 ml in 1,000 ml)∗ ±0.5 % (±5 ml in 1,000 ml)

Flow rate 0 - 50 ml·s−1 1 ml·s−1 0.1 ml·s−1 ±5 % (±2.5 ml·s−1 in 50 ml·s−1) ±1 % (±0.5 ml·s−1 in 50 ml·s−1)

Void duration - 1 s - ±4 % (±5 s in 2 mins) ±1 % (±1.2 s in 2 mins)

Time of void - 1 min - ±0.1 % (±25 mins in 2 weeks) ±0.025 % (±5 mins in 2 weeks)

Required Desirable

Memory capacity Up to 50 voids Up to 100 voids

Battery life Up to 1 week Up to 2 weeks

∗ Here, ± denotes the maximum permissible error.

Table 6.1 The initial specification for the PeePod describing measurement range, resolution and accuracy.
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6.3 Measurement technique

The PeePod employs weight transducer technology. It is in essence a pair of

weighing scales, measuring the downward force due to gravity of urine inside a

container. A base unit houses electronics and a load beam: an aluminium bar

with a cutout around which four strain gauges are positioned (Figure 6.1A). The

cutout ensures that when force is applied, deformation occurs at the narrowest,

and therefore weakest, parts of the beam where the strain gauges are located. The

strain gauges are constructed of an arrangement of metal foil so that deformation

changes their resistance according to Equation 6.1.

R =
L

Aσ
(6.1)

Where:

R = resistance

L = length of foil

A = cross-sectional area of foil

σ = conductivity of foil

They are arranged in a Wheatstone bridge configuration, which is illustrated in

Figure 6.1C. The output voltage is given by Equation 6.2.

V = Vs

(
R2

R1 +R2
− R3

R3 +R4

)
(6.2)

Where:

V = measured voltage

Vs = supply voltage

R1, R2, R3, R4 = strain gauge resistances
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6 The PeePod

When no force is applied, all four resistances are equal and so the output voltage

is zero. When force is applied to the load beam, the resistance of the strain gauges

under tension, R1 and R3, increases, and that of those under compression, R2

and R4, decreases. The electrical output is therefore proportional to the applied

force. The volume of urine inside the container is in turn proportional to the force

and so can be determined simply by application of a conversion factor. Flow rate

is then derived from volume via differentiation in software.

V

Vs

R1 R2

R3R4

tension

R1, R3

compression

R2, R4

A

B

C

Figure 6.1 (A) An aluminium load beam. (B) An exaggerated illustration of
the effect of load on four strain gauges with resistances R1 to R4: two experience
tension and two experience compression. (C) An electronics block diagram showing
the configuration of four strain gauges with resistances R1 to R4 in a Wheatstone
bridge, with supply voltage Vs and output voltage V.
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6.4 Design and operation

The PeePod consists of two components: a measurement base unit, or ‘pod’, and

a jug for collection of urine (Figure 6.3). All that is required of the patient is to

place the jug on top of the pod, void into the jug, and then dispose of the urine.

To ensure simplicity of operation, the PeePod is devoid of buttons, switches and

displays. A light-emitting diode (LED) indicator communicates the current status

of the device to the user, as illustrated in Figure 6.2.

Pre−
activation

Activated

Activation
period

exceeded

Insufficient
battery
voltage

No flash Batteries
not yet activated

No flash Jug not
in place, device

not ready for use

Single flash
(once per second)

Jug in place, device
ready for use

Double flash
(once per second)

Flow detected,
data being saved

Slow flash (once every 10 seconds)
Device will no longer function

No flash

≈ 6 months

Figure 6.2 The various states assumed by the PeePod, and how these are conveyed
by the LED indicator. Once the activation period has been exceeded, the device
enters a state of hibernation, lasting approximately 6 months. Following this, flow
rate and volume data are retained but void dates and times are lost.
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Figure 6.3 The PeePod with the collecting jug positioned on top of the pod, and
the pod alone showing user instruction label. A green LED indicates the state of
the device to the user according to Figure 6.2.
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6.5 Hardware and firmware

For a conventional clinic flowmeter, a base unit typically containing a load beam

and analogue amplifier connects to a separate system including data-logger, power,

and control firmware. For the PeePod, all of this functionality is incorporated

into the pod. It has inbuilt power, memory and control in the form of two AA

batteries, memory chip, and microcontroller, respectively. It connects to a PC

via USB for the purpose of calibration and data download, which are performed

by bespoke pieces of software. Once the batteries have been activated by removal

of an isolation tab, the PeePod functions for a period of time dictated by the

firmware, set at present to be two weeks. The memory capacity of the PeePod is

0.5 megabytes which equates to around 33,000 seconds’ worth of data, amounting

to over 500 voids with an average duration of 1 minute. In a low power state,

the device continually monitors activity in order to implement a flow-detection

algorithm that rejects movement and handling artefacts and saves only valid

voiding data to memory. A quartz crystal, with claimed accuracy ±0.003 %

(±36 s in 2 weeks), maintains timing information.

6.5.1 Sample rate

Due to the resonant frequency of this crystal and the firmware involved, accuracy

of timing information depends upon the sample rate being a power of two. Given

that the recommended sample rate is 10 Hz (Schäfer et al., 2002), the neighbouring

possibilities are 8 and 16 Hz.The contractions and relaxations of the detrusor

muscle responsible for changes in urine flow rate are relatively slow and can

therefore be reliably represented by sample rates upwards of 0.2 Hz (Gammie et al.,

2014). However, in order to reproduce artefacts such as abdominal straining and

(in the case of weight transducer flowmeters) knocking, a higher rate is required.

103
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The guideline also recommends that flow data are filtered using a sliding average

with a duration of 2 seconds. The low-pass tendency of this filter attenuates high

frequencies such that there is very little difference between signals recorded at 8

and 16 Hz. This is illustrated in Figure 6.4, which shows four flow traces recorded

at 16 Hz and subsequently displayed at 8 and 4 Hz by discarding samples. Even

at 4 Hz the effect of downsampling on the shape of the curves and interpretation

of Qmax is negligible.

The design of the PeePod is a compromise between function, performance and

cost. A sample rate of 16 Hz rather than 8 Hz would double the required memory

and at least double the power consumption. On balance, a sample rate of 8 Hz

was chosen rather than the recommended 10 Hz.

6.6 Maintenance software

Maintenance software developed by Mike Whitaker allows calibration and testing

of the PeePod both prior to and following patient use. Calibration is performed

by programming the analog-to-digital conversion (ADC) values corresponding to

0 and 1,000 g into the device’s memory, after which gain is checked by applying a

500 g mass. The measurement limit is tested to ensure a saturation point beyond

1,000 ml plus the jug weight, and the flow rate measurement verified using a

constant flow device (Griffiths et al., 1983). Following the patient study, data

may be saved as a .csv or .xml file.
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Figure 6.4 Four flow traces recorded at 16 Hz and downsampled to 8 and
4 Hz. A healthy subject was asked to (A) void normally, (B) void intermittently
by contracting their external urethral sphincter, and (C) strain their abdominal
muscles intermittently. (D) shows a trace from a constant flow device (described
later in Section 6.9.1) interspersed with knocking artefacts. The effect of
downsampling on the shape of the curves and interpretation of Qmax is negligible.
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6.7 Reporting

For the purpose of the studies described in the following chapters, the .csv

data were loaded into MATLAB in order to produce a clinical report. This

report, illustrated in Figures 6.5 and 6.6, comprises the following (calculations

are described later):

• A ‘supertrace’ on which all flow traces are superimposed, with the ‘median

scored’ trace highlighted (Figure 6.5).

• An electronic frequency-volume chart with daily totals (Figure 6.5).

• Summary statistics (Figure 6.6).

• A plot of Qmax versus Vvoid for each void, with median Qmax versus median

Vvoid highlighted. The Siroky nomogram for maximum flow rate in men is

underlaid, with indication of normality accordingly (Figure 6.6)†.

• A series of individual flow traces marked with Qmax (Figure 6.6).

6.7.1 Calculations

Flow rate Volume data extracted from the PeePod are converted to the flow

information displayed in the report by two point differentiation, multiplication

by the sample rate, and convolution with a two second triangle window. The

maximum point, reported as Qmax , is detected following further application of

a two second median filter so that sharp spikes such as knocking artefacts are

ignored. This signal processing is illustrated in Figure 6.7.

† In retrospect, given the issues discussed under Section 3.3.1, from page 29, it would have
been more appropriate to use a nomogram based upon voided rather than bladder volume. This
will be corrected for future data analyses and presentation.
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PeePod home urodiagnostics report dd−mmm−yyyy
SURNAME Forename NHS# Page 1 of 2

0 10 20 30 40 50 60 70 80
0
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15

20
Individual flow traces
Median scored flow trace

Hour / Day
6 am
7 am
8 am
9 am

10 am
11 am

Midday
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10 pm
11 pm

Midnight
1 am
2 am
3 am
4 am
5 am
Total

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

100 ml

108 ml
168 ml
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123 ml
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40 ml
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98 ml
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143 ml

156 ml

138 ml

45 ml
74 ml

188 ml

550 ml 506 ml 485 ml 1709 ml 990 ml 690 ml 979 ml

Figure 6.5 Page 1 of the PeePod report with a supertrace, showing individual flow
traces with the median scored trace highlighted, and electronic frequency-volume
chart with daily totals. Light and dark blue shading at 6 am and 11 pm denote the
start of the daytime and nighttime periods, respectively. Days with low 24-hour
Vvoid may be due to insufficient fluid intake, or periods of poor device compliance.
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PeePod home urodiagnostics report dd−mmm−yyyy
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# voids / day *
Vvoid / day *

Vvoid *
Qmax *

Total # voids
Study duration

6
690 ml
142 ml

11.7 ml⋅s−1
42

7 days

% nocturnal Vvoid
Nocturnal Vvoid / night *

Nocturnal Vvoid *
% nocturnal voids

Nocturia *

38 %
333 ml
174 ml
17 %

1

* median

20
12 11

15
11

5 6 5 7

15 13 16
12

0
0

4

18
13

40

7

Time (s)

F
lo

w
 r

at
e 

(m
l⋅s−

1 )

Voided volume (ml)

M
ax

im
um

 fl
ow

 r
at

e 
(m

l⋅s−
1 )

mean

−1SD

−2SD

−3SD

 

 
Patient’s flow rate is below
average but within the
normal range

0 100 200 300 400 500
0

10

20

30

40

Median

Figure 6.6 Page 2 of the PeePod report with summary statistics, Vvoid plotted
against Qmax for each void and for median values, with an indication of normality
according to the Siroky nomogram, which is underlaid, and a series of individual
flow traces with Qmax marked for each. The six voids with abnormally low Qmax

at larger volumes may reflect high bladder volume and therefore large post void
residual.
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Figure 6.7 An illustration of the signal processing which converts volume
measurements as recorded by the PeePod to reported flow rate information.

109



6 The PeePod

Median scored flow trace The flow trace highlighted on the supertrace is

selected as follows: All traces are aligned at time zero. At each sample, the trace

closest to the median value of all traces at that sample receives a point. The

median scored trace is that which receives the most points. This has various

advantages over a simple mean or median calculation, as illustrated in Figure 6.8.

Summary statistics To reduce the influence of extreme values, medians were

chosen over means as the more appropriate representation of central tendency.

This is because the number of voids recorded may be small, and the duration in

days certainly will be. Table 6.2 describes calculation of the summary statistics

shown in Figure 6.6, other than those which are self-explanatory. Guidance was

taken from standardisation of terminology reports published by the ICS (Abrams

et al., 2002; van Kerrebroeck et al., 2002).

Indication of normality for voiding parameters The point [median Vvoid ,

median Qmax ] is classified according to the Siroky nomogram (see Figure 3.5,

page 30), and the classification displayed, as follows:

+1SD
Patient’s flow rate is above average

Mean
Patient’s flow rate is within

the normal range

−1SD
Patient’s flow rate is below average

−2SD
but within the normal range

Patient’s flow rate is low

−3SD
Patient’s flow rate is very low
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Figure 6.8 Three alternatives for displaying the average flow trace: (A) Median
scored trace. (B) The result of taking the mean measurement is an oversmoothed
trace, which may mask intermittency. Due to the staggered void end points, it
tends to have a long decreasing tail with the appearance of terminal dribble, even
if individual voids do not exhibit this characteristic. (C) The median flow trace
suffers a similar problem to a lesser extent, and jumps from trace to trace, giving
an unphysiological appearance. This patient appears to be straining towards the
end of some voids, perhaps to improve bladder emptying.
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Statistic Calculation

Median Vvoid / day Vvoid is totalled per 24 hour period (6 am to 6 am)

and the median value reported.

Median # voids / day The number of voids are totalled per 24 hour

period and the median value reported.

Median nocturia The number of voids are totalled per night (11 pm

to 6 am) and the median value reported.

% nocturnal voids The number of voids during nighttime hours as a

percentage of the total number of voids.

Median nocturnal

Vvoid

The median volume of all voids during the night

(including the first void of the following morning

if before 10 am).

Median nocturnal

Vvoid / night

Vvoid is totalled per night (including the first void

of the following morning if before 10 am) and the

median value reported.

% nocturnal Vvoid The total volume of all voids during the night

(including the first void of the following morning if

before 10 am) as a percentage of the total volume

of all voids.

Table 6.2 Calculation of summary statistics included in the PeePod report.
Guidance was taken from ICS standardisation of terminology reports (Abrams
et al., 2002; van Kerrebroeck et al., 2002).
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6.8 Software

A second piece of software (the PeePortal) was subsequently created by Michael

Drinnan, combining data download, analysis and reporting, and including the

following functionality (Figure 6.9):

• A second-level valid flow algorithm is applied, which may hide obviously

artefactual recordings from the user altogether (such as those due to the

device being handled or transported), and suggest that others may be invalid

by marking them with a red cross.

• For each void, the start point, end point, and Qmax are determined

automatically, but may be corrected by the user if necessary.

• Voids may be flagged as invalid in order to exclude them from all analyses,

and marked as day or night to allow calculation of nocturia and nocturnal

voided volume.

• The electronic voiding diary allows exclusion of whole days from per-day

calculations, although individual voids are still included for average Qmax

and Vvoid . This may be appropriate in order to exclude a period of apparently

poor compliance.
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Figure 6.9 A screenshot from the PeePortal showing the frequency-volume chart
tab. Green text denotes daytime voids, black text with moon symbol denotes
nocturnal voids, and red crosses denote voids marked as invalid. Days marked
with a tick are included in calculation of per-day statistics, whereas those marked
with a cross are not. The selected void, shown in blue, is displayed in the lower
panel to allow correction of start time, end time and Qmax by dragging the blue
and red dashed bars.
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6.9 Technical performance

This section aims to test the most crucial aspects of the PeePod’s measuring

function: the accuracy of its volume and flow rate measurements.

For calibration purposes, a linear relationship is assumed between the force applied

to the PeePod and its electrical output and so any non-linearity will result in

errors. The performance of the load beam is not the only factor; the beam is

mounted into plastic housing and any force that serves to deform the plastic

and prevent force being transmitted to the beam will affect the linearity of the

measurement.

In addition, patients are asked to place the PeePod on a flat surface at a convenient

height before use, and as it happens the closed toilet seat is usually ideal. For those

with combined toilet/shower rooms, devices may be exposed to, and required to

function accurately at, high humidity.

Finally, unlike a conventional flowmeter which resides in the relative safety of

the hospital clinic, the portable nature of the PeePod leaves it susceptible to

being dropped, sat on, etc, which may inflict damage to the load beam or plastic

housing. Such damage may affect the PeePod’s calibration, resulting in voiding

information being reported incorrectly.

These effects, which may compromise the PeePod’s accuracy, are examined below.

6.9.1 Methods

Linearity 10 PeePods were tested in order to investigate the linearity of the

volume measurement. 26 × 50 g masses were loaded onto each device one by

one, and the ADC values recorded at each point (providing 27 measurements per
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device)‡§. Residuals were calculated between the linear relationship connecting

ADC values corresponding to 0 and 1,000 g and the actual ADC values recorded

for each load¶. In addition, in order to evaluate the linearity at high humidity, one

device was tested as described above, following which it was placed in a bathroom

whilst a hot shower was run for 10 minutes, and then retested.

Calibration errors following use Chapters 7, 8 and 9 will describe studies of

the PeePod in clinical practice, totalling approximately 100 datasets. Here, these

data are used to present shifts in the device’s calibration during use. Each time a

PeePod was prepared for patient use, a calibration procedure was performed. As

described earlier, this involved programming the ADC values corresponding to 0 g

and 1,000 g into the PeePod’s memory using custom-built calibration software.

The values were then rechecked when a device was returned. Both gain and zero

calibrations were examined. The zero error was simply the post-use reading in ml

with no load applied. The gain error was defined as follows:

errorgain = ml1,000 −ml0 − 1, 000 (6.3)

Where:

errorgain = gain error (ml)

ml1,000 = the post-use reading in ml with 1,000 g applied

ml0 = the post-use reading in ml with no load applied

‡ Errors associated with decreasing mass are not presented because the measurement of
interest is always that of increasing weight.

§ The PeePod is required to measure up to 1,000 ml plus the weight of a collecting vessel,
hence a limit of 26 × 50 g = 1,300 g was chosen.

¶ Consequently, there will be no errors measured at 0 g or 1,000 g, and a spurious reading
at either or both of these calibration points will result in large errors across the measurement
range. Whilst this is not a true indication of the PeePod’s inherent linearity, it does reflect use
of the device in practice.
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Where large errors were observed, the raw data were examined in an attempt to

determine the point at which the change occurred. This often gave an indication

of the cause, and also allowed subsequent data to be excluded from the patient’s

results.

Propagation of errors into flow rate Errors associated with the flow rate

measurement are a combination of errors due to non-linearity and those due

to shifting calibration. Therefore, the above data allowed calculation of the

propagation of volume errors into flow rate.

For each of the 10 devices tested for linearity, the resulting volume measurements

were combined with the largest observed gain error following use. In other words,

each volume measurement was altered to add the effect of the worst gain error on

top of the effect of non-linearity. Flow rate measurements for each device were

then simulated by linear interpolation between these volume measurements to

achieve a flow rate of 50 ml·s−1, followed by differentiation. This represents the

worst case in terms of error maximisation for the following reasons:

1. Errors simulated in this way are proportional to the chosen flow rate, and

are expressed as the percentage of full scale (50 ml·s−1). Errors are therefore

maximised if the simulated flow rate is chosen to be 50 ml·s−1. The PeePod

will rarely be required to measure flow rates in excess of 50 ml·s−1 in clinical

practice.

2. As mentioned previously, prior to presentation for analysis, flow data should

be smoothed by a sliding average filter, which serves to reduce the errors.

Therefore, errors following application of a filter will also be presented.

3. The largest gain error may be an outlier.
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6 The PeePod

The above method was chosen over that of testing the flow rate measurement

using a constant flow device. It is not a trivial matter to generate a constant

flow rate with high accuracy. Figure 6.10 shows an example trace from one such

device (Griffiths et al., 1983)‖, which deviates by up to 2.7 ml·s−1 (18 %) from

the intended constant flow rate of 15 ml·s−1.
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Figure 6.10 The flow rate produced by a constant flow device (Griffiths et al.,
1983) showing deviation of up to 2.7 ml·s−1 (18 %) of the intended rate of
15 ml·s−1.

6.9.2 Results

Linearity Figure 6.11 shows individual histograms of the residuals for each

device tested; in general they are approximately normally distributed. Figure 6.12

shows the histogram of residuals for the 10 devices combined; all are comfortably

within ±5 % of full scale (1,000 ml). The maximum error was 2.2 ml (0.2 % of

full scale). All errors combined had mean [SD] −0.09 [0.7] ml.

‖ The device comprises a milk bottle, rubber bung, short metal tube and longer rubber
tube. The rubber tube vents to atmosphere at the top of the metal pouring tube of length h.
Therefore, flow rate, Q = A

√
2gh, remains constant.
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6 The PeePod

Figure 6.13 shows deviation from linearity for the load test at (A) 53 % humidity∗∗

and (B) following exposure to 99 % humidity, with humidity as measured by a

digital hygrometer. The errors do not appear to be exacerbated by high humidity;

they are in fact slightly, although not significantly, smaller (p = 0.2, absolute

unpaired errors compared using Mann Whitney U).

Calibration errors following use A total of 105 full calibration datasets were

available for investigation of change in calibration during use. Histograms showing

all gain and zero errors are displayed in Figures 6.14A and 6.14B, respectively.

All gain errors were within ±10 ml (±1 %), with the exception of one device

returned with an error of −29 ml (2.9 %). On investigation, the electrical wiring

inside this device was found to make contact with the lid, causing reduced gain

by a reduction in the force transferred to the load beam. All gain errors combined

had mean [SD] −0.5 [4.0] ml.

95 % of zero errors were within ±100 ml, with the remaining 5 % ranging from

129 to 811 ml. Raw data revealed that larger shifts coincided with excessive force

applied to device. All zero errors combined had mean [SD] 18 [104] ml.

The PeePod’s zero calibration is far less crucial than its gain. The volume

for each void is calculated by subtracting the volume at the start of the void,

rather than the value programmed as zero, from that at the end. Therefore, the

reported volume and flow rate measurements depend only upon the gain. The sole

requirement is that there are sufficient ADC units above the zero for measurement

of the jug weight plus 1,000 ml of urine, and in practice usually far less.

∗∗ Normal room humidity on the day of the test.
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Figure 6.11 Histograms showing deviation from linearity for 10 devices tested by applying increasing load.
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Figure 6.12 Histograms showing deviation from linearity for the combined results
from 10 devices tested by applying increasing load.

Propagation of errors into flow rate The worst gain error was an extreme

outlier, as shown in Figure 6.14A. Nevertheless, this error was combined with the

volume linearity measurements in order to calculate the propagation of these two

sources of error into flow rate. That is, all volume measurements became 97.1 %

of their original value. Flow rate measurements were then simulated as described

earlier. Figure 6.15A shows the simulated flow rate measurements superimposed

over the intended flow rate of 50 ml·s−1, (B) the same plot with a focussed vertical

scale and (C) the results following application of a 2 second triangle filter.

Prior to filtering, the maximum error was 3.5 ml·s−1 (7 %) and following filtering

was 2.8 ml·s−1 (5.6 %). The ±5 % limit was exceeded at two points as shown

in Figure 6.15C. For all other combinations of the remaining 104 gain errors and

10 devices tested for linearity (1040 measurements), all errors were within the

recommended ±5 % relative to full scale (within ±2.5 ml·s−1 of 50 ml·s−1).
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Figure 6.13 Histograms showing deviation from linearity for one device tested by
applying increasing load at (A) 53 % humidity and (B) 99 % humidity.
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Figure 6.14 Histograms showing the change in (A) gain and (B) zero calibration
from pre- to post-use for 105 devices.
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Figure 6.15 (A) Flow rates simulated from linear interpolation of volume
linearity measurements plus gain errors (blue) superimposed over the intended
flow rate of 50 ml·s−1 (green). (B) The same plot with focussed vertical scale. (C)
The result following application of a 2 second triangle filter. Dashed grey lines
show 50 ml·s−1 ±5 %. The traces are zero padded at the beginning and end.
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6.9.3 Discussion

Potential sources of error were identified and a limited amount of testing carried

out to assess the accuracy of the PeePod’s volume and flow rate measuring

functions. With the exception of one extreme case, the reason for which was

identified, both volume and flow rate were reported to within the required

accuracies as stated in the initial specification. The gain calibration, upon which

volume and flow rate calculations are based, appears to be extremely resilient to

damage during use.

Testing has identified measures that will further improve the PeePod’s reliability,

listed below. Therefore, the errors presented here represent the worst case.

• A more accurate manufacturing processes (steel rather than silicone tooling

to improve tolerances).

• More secure mounting of the load beam into the plastic housing.

• Improved mechanical end stops to reduce the risk of the load beam exceeding

its damage limit.

• Increased clearance around the load beam and improved securing of wires

to reduce the risk of fouling.

• More robust packaging to reduce damage in transit.

Systematic, larger-scale testing of the device will form part of the CE marking

process. This should verify the results reported here and the accuracy that ought

to result from the hardware responsible for maintaining and calculating timing

information.
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6 The PeePod

6.10 Conclusion

Having identified a gap in the evidence, and a gap in the technology, we have

developed a novel instrument: a low-cost electronic home flowmeter and voiding

diary. Our primary aim was to create a device which is simple and intuitive to

use for both patients and clinicians alike.

Despite its low cost and portable nature, the PeePod performs extremely well.

It reports both volume and flow rate with accuracies within those expected of

conventional clinic flowmeters carrying hefty price tags.

With this confirmation that the PeePod is fit for purpose, reliable and robust, the

next step is to investigate the performance of the device within a clinical setting

to determine the benefit for men with LUTS.
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Chapter 7

Home versus conventional urodiagnostics

in the assessment of men with lower

urinary tract symptoms

7 Home versus conventional urodiagnostics in the assessment of men with lower urinary tract symptoms

7.1 Introduction

Before embarking upon a large scale trial, such as that comparing patient reported

outcomes, a new clinical tool such as the PeePod should undergo preliminary

validation. This should include verification of robustness, accuracy and reliability,

and acceptability to both patients and clinicians.

A number of these issues were addressed in the previous chapter, which showed

that the technical performance of the device was to the required standard. Despite

the existence of a large amount of relevant literature, summarised in Chapter 4,

several other of these questions, more general to home urodiagnostics, remain

unanswered.
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7 Home versus conventional urodiagnostics

Patient opinion and preference has yet to be investigated robustly. Of the reviewed

literature, a number of studies reported that home urodiagnostic devices were easy

to use, but no further details were provided (de la Rosette et al., 1996; Currie,

1998; Jørgensen et al., 1998; Pel and van Mastrigt, 2002; Caffarel et al., 2007;

Pridgeon et al., 2007). Only Boci et al. (1999) reported the use of a questionnaire.

25 patients were asked, perhaps slightly leadingly: Is home uroflowmetry simpler

and more acceptable than free [clinic] uroflowmetry?, to which 80 % responded

that it was.

Test-retest reliability of flow rate has been reported for a simple categorical funnel

flowmeter, the Uflow Meter (Caffarel et al., 2007), but not for more precise

electronic devices. In a diagnostic context, an average Qmax has been examined in

isolation, but the remaining novel information available from home urodiagnostics

has not been taken into consideration. Test success rates have not been formally

measured.

The aim of this chapter is therefore to assess home urodiagnostics using the

PeePod by comparison to conventional assessment, comprising clinic uroflowmetry

and manual frequency-volume chart, in the following areas:

• Patient opinion.

• Test-retest reliability of flow rate.

• Test success rate.

• Diagnostic consistency and confidence.
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7 Home versus conventional urodiagnostics

7.2 Methods

This section describes the methodology relating to study design and recruitment.

For continuity, methods of data analysis are described later alongside the results.

7.2.1 Study design

Two sample size calculations were conducted using Minitab software (Minitab Inc,

Pennsylvania, USA) prior to beginning the study:

Patient opinion The primary outcome measure was patients’ preference towards

either conventional or home urodiagnostic assessment. Applying a power

calculation with 80 % power, a null hypothesis that neither method is preferred

(50 %), and the preferred method requiring at least 70 % (deemed to be the

smallest clinically significant majority), gave a sample size of 47 patients. This

was increased to 60, allowing an attrition rate of approximately 20 %.

Test-retest reliability For assessment of test-retest reliability, paired t-tests, or

non-parametric equivalent, of the absolute difference between the first and second

sets of measurements were planned. Applying a power calculation with 80 %

power to detect a difference of 1.5 ml·s−1 between repeatability of clinic Qmax

and average home Qmax (an estimate based upon pilot data from the capacitive

prorotype device mentioned previously), gave a sample size of 16 patients.

7.2.2 Recruitment

Ethical approval for the study was obtained from Newcastle & North Tyneside

1 Research Ethics Committee, covered by application 10/H0906/10 Assessment

of home uroflowmetry: Amendment 3 (08/06/2011) which received favourable

opinion on 15th July 2011 (see Appendix A3, page 241 onwards).
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7 Home versus conventional urodiagnostics

All men attending the urine flow clinic at the Freeman Hospital were eligible for

inclusion into the study, with the following exclusion criteria:

• Inability to understand written or verbal instructions or give informed

consent to participate in the study.

• Inability to void in a standing position, or preference towards voiding in a

position other than standing.

• Presence of an indwelling urinary catheter.

• Inability to operate the PeePod, for example, poor hand function.

Patients were approached and, if willing, recruited on arrival at the Urology clinic

for their urine flow study appointment. Those who agreed to take part:

• Carried out a urine flow test and completed a manual frequency-volume

chart for four days. These tests formed part of their routine assessment for

LUTS.

• Used the PeePod at home for one week. Patients were given a brief

explanation of the device during consent and provided with an instruction

sheet (see Appendix A4, page 246).

• Completed a questionnaire to provide feedback about their experience of

the clinic test, frequency-volume chart, and PeePod (see Appendix A5,

Section A5.1, page 247 onwards).

The first half of patients recruited were also asked to return to perform a second

clinic urine flow test after using the PeePod at home.
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7 Home versus conventional urodiagnostics

7.3 Analyses and results

60 men were recruited into the study between January and July 2012. One man

dropped out before using the PeePod due to ill health, leaving 59 sets of data

available for analysis. The median age of the remaining 59 men was 67 years

(range 45 to 89 years) at the time of entry into the study.

Voiding parameters were found in a high proportion of individuals to be non-

Gaussian (37 % of Qmax distributions and 59 % of Vvoid distributions, according

to the Anderson-Darling test). Volumes tended to be skewed towards lower values,

whilst around half of patients’ Qmax distributions were variably skewed in either

direction. Therefore, non-parametric statistics are used to describe and analyse

the data from this point onwards.

Figure 7.1 shows the single clinic measurement versus median home voiding

parameters. Median home Qmax was significantly higher than Qmax in the clinic

(11.9 versus 11 ml·s−1, p = 0.02, Wilcoxon signed rank test), and median home

Vvoid significantly lower (198 versus 242 ml, p = 0.001).

Figure 7.2 shows Qmax versus Vvoid at home and in the clinic for two interesting

cases, where despite clinic Vvoid and Qmax being within the range of normal voiding

at home, the combination of the two did not conform to the usual pattern.

Figures 7.3 and 7.4 show all maximum flow rates and voided volumes recorded at

home and in the clinic.
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Figure 7.1 (A) Clinic Qmax versus median home Qmax , and (B) clinic Vvoid

versus median home Vvoid . Dotted lines represent identity.
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Figure 7.2 Qmax versus Vvoid at home (green) and in the clinic (red) for two
patients: (A) patient 53 from Figures 7.3 and 7.4 and (B) patient 59. Despite
clinic Vvoid and Qmax being within the range of normal voiding at home, the
combination of the two does not conform to the usual pattern.
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Figure 7.3 All maximum flow rates recorded at home (blue) and in the clinic (red). Black bars show median home Qmax and 2.5th and
97.5th percentiles. Patients are ordered by increasing median home Qmax . As discussed later, two patients (22 and 37) were unable to
void in the clinic, hence no clinic void is marked.
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Figure 7.4 All voided volumes recorded at home (green) and in the clinic (red). Black bars show median home Vvoid and 2.5th and
97.5th percentiles. Patients are ordered by increasing median home Qmax , corresponding with those in Figure 7.3. As discussed later,
two patients (22 and 37) were unable to void in the clinic, hence no clinic void is marked.
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Overall, volumes recorded on manual and electronic frequency-volume charts were

no different (p = 0.2, Wilcoxon sign rank test), although when each individual’s

volumes were compared, five (9 %) were significantly larger at home and 11 (20 %)

were significantly smaller at home (p <0.05, Mann-Whitney U); the remaining 39

(71 %) were no different.

The median number of volumes recorded per day on the manual charts was eight,

and on the electronic was seven (calculated by dividing the number of voids

recorded by the number of days elapsed between the first and last); these were

significantly different (p = 0.02, Wilcoxon signed rank test). In addition, half of

participants who completed a manual FVC included at least one ‘tick’, denoting a

void whose volume could not be measured. Across these 27 patients, the median

number of ticks per day was 0.8. Including ticks, the median number of voids

recorded per day on the manual charts across all patients was nine.

7.3.1 Patient opinion

Patients were asked to complete a questionnaire in order to provide feedback

regarding home and conventional assessment. Questions 1 and 2 below were

presented as visual scales and were repeated for the three investigations: clinic

flow test, frequency-volume chart, and PeePod:

1. Please rate the burden of [investigation]. (0 = Not at all burdensome and 10

= Very burdensome).

2. In the future, if you required investigation for urinary symptoms, how willing

would you be to carry out [investigation]? (0 = Not at all willing and 10 =

Very willing).

3. In the future, if you required investigation for urinary symptoms, which would

you prefer? Hospital flow test and frequency-volume chart / PeePod
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Free text areas were also provided for justification of these responses.

The results are shown in Tables 7.1 and 7.2 and Figure 7.5. Patients found the

clinic flow test the most burdensome and the PeePod the least; all comparisons

were statistically significant (p <0.05, Wilcoxon sign rank test). Patients were

most willing to repeat the PeePod and least the clinic flow test. Only the

comparison between these two investigations was significant for this question

(p = 0.001, Wilcoxon sign rank test).

Test
Mean Median p-value (Wilcoxon)
score score

PeePod 0.98 0 ←− ←−
0.001

FVC 2.18 1 ←− 1× 10−5←−
0.007

Urine flow test 3.25 2.5 ←−←−

Table 7.1 Patient feedback regarding the burden of using the PeePod, completing
a manual frequency-volume chart and attending a clinic flow test. Arrows indicate
the two investigations being compared.

Test
Mean Median p-value (Wilcoxon)
score score

PeePod 9.21 10 ←− ←−
0.085

FVC 8.49 10 ←− 0.001←−
0.052

Urine flow test 7.52 10 ←−←−

Table 7.2 Patient feedback regarding their willingness to repeat using the PeePod,
completing a manual frequency-volume chart and attending a clinic flow test.
Arrows indicate the two investigations being compared.

135



7 Home versus conventional urodiagnostics

Home assessment:

40 (68 %)

No preference:

9 (15 %)

Conventional

assessment:

6 (10 %)

No response:

4 (7 %)

Figure 7.5 Patient preference towards the mode of urodiagnostic assessment.

Regarding Question 3, of 46 men who expressed a preference for one mode of

investigation over the other, 40 (87 %) chose home assessment and six (13 %)

chose conventional assessment (p = 3 × 10−7, one sample binomial test). Where

men justified their choice, the most common reasons for choosing home assessment

were convenience (18 instances), more private and natural voiding (8), to save

time or money or avoid travel (4) and the absence of paperwork (3). Comments

included the following∗:

“I find it difficult to hold my water and need to urinate the moment I feel

the need.”

“[I have] never been able to produce samples on demand.”

“I find attending hospital for a flow clinic causes some form of psycholog-

ical problem, I want to go but the environment doesnt feel right.”

∗ Redaction key: [ ] = word(s) inserted or replaced for clarity.
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Reasons for choosing conventional assessment included the notion that the

resulting data were of higher quality (2), to receive feedback from staff (1) and to

obtain a measurement post void residual (1). Comments included the following:

“[I’m] not sure how much information you get from the PeePod!”

“[The hospital flow test] gives a more exact record.”

7.3.2 Test-retest reliability

The estimated sample size required for these analyses was 16. A second man

withdrew from the study after using the PeePod but prior to his repeat clinic

flow test, also due to health issues. This left 28 sets of data available for analysis.

Figure 7.6 shows Bland-Altman plots for home and conventional measurement of

Qmax and Figure 7.7 shows all maximum flow rates recorded at home and in the

clinic for patients in whom test-retest reliability of flow rate was assessed.
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Figure 7.6 Bland-Altman plots showing test-retest reliability for (A) median home
Qmax and (B) clinic Qmax . Dashed lines denote the mean difference plus and minus
two standard deviations.

137



Patient

Q
m

ax
 (

m
l⋅s

−
1 )

 

 

F
irs

t
S

ec
on

d
1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

15

30

45
Individual home Q

max Median home Q
max

, 2.5th and 97.5th percentiles Clinic Q
max

Patient

Q
m

ax
 (

m
l⋅s

−
1 )

15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

15

30

45

Figure 7.7 All maximum flow rates recorded at home (blue) and in the clinic (red) for 28 patients in whom test-retest reliability of
flow rate was assessed. First clinic measurements and the first half of home measurements are shown on the left, and second sets on
the right, as indicated for patient 1. Black bars show median home Qmax and 2.5th and 97.5th percentiles. Patients are ordered by
increasing median home Qmax .
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Repeatability of clinic flow data was assessed by comparison of Qmax from the

first clinic flow test to that from the second. Repeatability of home flow data was

assessed by comparison of median Qmax from the first half of home measurements

to that from the second half†. These absolute paired differences were compared

using Wilcoxon signed rank test. The mean difference at home was 1.0 ml·s−1

and in the clinic was 2.6 ml·s−1 (p = 5× 10−4).

No learning effect was observed either in the clinic or at home for Qmax . That is,

when the first measurement of Qmax in the clinic was compared to second, and the

median of the first half of home measurements of Qmax compared to that of the

second half, neither were significantly different (p >0.05, Wilcoxon signed rank

test). The same was true for Vvoid .

Qmax is often considered in relation to the following thresholds: <10 ml·s−1,

abnormal, 10 to 15 ml·s−1, equivocal and >15 ml·s−1, normal. Based upon these

thresholds, Table 7.3 compares the clinical indication from the first test protocol

to that from the second for both home and conventional data.

7.3.3 Test success rate

All patients successfully recorded home voiding data using the PeePod.

Two patients were unable to void in the clinic due to ‘bashful bladder’ and four

others failed to complete a manual frequency-volume chart. Therefore, a total of

six patients (10 %) did not provide a complete set of results for the clinic-based

assessment. This difference in success rate was statistically significant (p = 0.03,

McNemar’s test).

† Where an odd number of voids were recorded, the last value was discarded.
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κ = 0.84
Home assessment (second half)

Abnormal Equivocal Normal

Home Abnormal 8 1 0 9

assessment Equivocal 1 8 1 10

(first half) Normal 0 0 9 9

9 9 10 28

κ = 0.61
Clinic assessment (second)

Abnormal Equivocal Normal

Clinic Abnormal 7 4 0 11

assessment Equivocal 3 8 0 11

(first) Normal 0 0 6 6

10 12 6 28

Table 7.3 Contingency tables showing the agreement between first and second test
protocols regarding the clinical interpretation of Qmax and median Qmax . Kappa
values represent agreement according to Cohen’s kappa.
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There was, however, large variation in the amount of data recorded using the

PeePod, as shown in Figure 7.8. One patient recorded just nine voids, although

the same individual failed to complete a manual frequency-volume chart, and

voided in the clinic on both occasions with a voided volume below 150 ml.
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Figure 7.8 Histogram of the number of voids recorded using the PeePod.

Nine patients voided in the clinic with a volume less than 150 ml, which is generally

deemed to be insufficient for reliable interpretation of flow rate (de la Rosette

et al., 2001; National Institute for Health and Clinical Excellence, 2010). One of

these patients voided at home with all 100 voided volumes below 150 ml (patient

5, Figures 7.3 and 7.4). For one third of patients (19/59), over half of their voided

volumes at home were below 150 ml. Figure 7.9 shows a histogram of all voided

volumes recorded at home.

7.3.4 Diagnostic consistency and confidence

For each patient, two reports were constructed. One contained conventional

data (single clinic flow trace with Qmax , Vvoid and PVR, Siroky nomogram

with indication of normality, and manual frequency-volume chart) and the other

contained home urodiagnostic data (up to 16 flow traces, electronic frequency-

volume chart, median flow trace with summary statistics, and Siroky nomogram
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Figure 7.9 Histogram of all voided volumes recorded at home. The dashed line
marks 150 ml, below which flow rate in the clinic is deemed to be unrepresentative.

with indication of normality for median Vvoid versus median Qmax
‡). The reports

were anonymised using a cipher, ordered at random and compiled into a booklet.

Four consultant urologists from the Freeman Hospital with no prior involvement

in the project answered the following questions in relation to each report§:

1. Based upon this report, please make a suggested diagnosis (tick one):

� Normal

� Bladder outlet obstruction

� Detrusor underactivity

� Detrusor overactivity

� Other (please state) ................................

‡ As in Chapter 6, Figures 6.5 and 6.6.

§ The intention had been to ask all raters to score all patient reports. However, a time
and motion study revealed that a booklet containing half of the data (29 patients and thus 58
reports) took 2 hours and 48 minutes to complete! Therefore, raters were instead given packs
containing paired data for half of the patients. Those included in each pack were overlapped
such that each report was rated twice, allowing assessment of inter-rater agreement. One patient
was excluded as his clinic flow trace was missing from his notes; fortuitously this left an even
number of patients.
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2. Please rate your confidence in this diagnosis (tick one):

� Very confident

� Quite confident

� Not very confident

� Not at all confident

Intra- and inter-rater agreement Intra-rater agreement between home and

clinic diagnosis for each patient was fairly poor, being either 13 or 14 out of 29

for all four raters. These results are shown in Table 7.4.

There was no statistical difference between diagnostic inter-rater agreement at

home where 36/58 (62 %) diagnoses agreed (κ = 0.42, Cohen’s kappa), and in the

clinic where 35/58 (60 %) diagnoses agreed (κ = 0.4) (p = 1, McNemar’s test).

Confidence and adjusted confidence Raters were more confident with their

diagnoses based upon home data than conventional data (p = 0.006, Wilcoxon

signed rank test). The mean confidence score for home was 2.0 compared to 1.8

in the clinic (where 0 = Not at all confident and 3 = Very confident).

Regarding inter-rater agreement, an ‘adjusted confidence’ score was calculated to

reflect the relationship between confidence and concord, according to the system

illustrated in Table 7.5.

The mean adjusted confidence score for home data was 3.0 out of 16 (had all

diagnoses agreed and all ratings been Very confident) and for conventional data

was 2.2 (p = 0.6, Wilcoxon sign rank test).
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Diagnosis based upon conventional data

Normal BOO DU DO Stricture Polyuria NP Unsure

D
ia

g
n
o
si

s
b
a
se

d
u
p

o
n

h
o
m

e
d
a
ta Normal 10 8 0 3 0 1 0 0 22

BOO 6 38 9 6 1 0 0 1 61

DU 0 8 3 1 0 0 1 1 14

DO 6 7 0 1 0 0 0 2 16

Stricture 0 0 0 0 1 0 0 0 1

Polyuria 0 1 0 0 0 0 0 0 1

NP 0 0 0 0 0 0 1 0 1

Unsure 0 0 0 0 0 0 0 0 0

22 62 12 11 2 1 2 4 116

Table 7.4 Intra-rater agreement between diagnoses based upon home urodiagnostic and conventional data. Green shading denotes
agreement, red shading denotes disagreement. Each patient was rated twice, providing 116 comparisons.
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Second diagnosis

Very Quite Not very Not at all

confident confident confident confident

Very confident ±16 ±12 ±8 ±4

First Quite confident ±12 ±9 ±6 ±3

diagnosis Not very confident ±8 ±6 ±4 ±2

Not at all confident ±4 ±3 ±2 ±1

Table 7.5 Adjusted confidence scores used to weight the consistency of diagnoses
based upon home and conventional data. Matching diagnoses were allocated the
positive score, and conflicting diagnoses the negative score.

7.4 Discussion

The discovery that Qmax was not normally distributed in around half of the

patients in this study introduces a potential source of error into the calculations

performed in Chapter 5. However, a perfect model incorporating multiple

distributions would be complicated and would require many patients to be studied

to represent these distributions accurately. This would negate the benefit of

modelling rather than performing a large study of diagnostic accuracy. Chapter 5

presented a simple method of approximating the clinical benefit of averaging Qmax

in an individual.

7.4.1 Comparison of home and conventional data

Figure 7.3 reveals that the majority of patients voided in the clinic with flow rates

within the 95 % confidence limits of their voiding at home. Just five patients
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voided with Qmax outside this range¶ (one higher, four lower), and 13 patients for

Vvoid (11 higher, two lower)‖. Although, using results from two participants as

an example, illustrated in Figure 7.2, voiding parameters within these confidence

intervals did not always constitute representative voiding.

Ten patients (17 %) voided in the clinic with a volume higher than any volume at

home. Given the circumstances surrounding a clinic flow test, quickly filling the

bladder with fluid and often having to wait for the flowmeter once full, this isn’t

surprising. Whilst this didn’t necessarily cause flow rates to be unrepresentative,

it is probably not a particularly pleasant exerience for the patient.

Overall, voided volumes recorded in the clinic were significantly higher than the

median value of those obtained at home, and flow rates significantly lower. The

clinician should consider this trend for interpretation of clinic Qmax and regard the

measurement as being more sensitive to abnormality than specific to normality.

From Figure 7.3, this statistic appears to be due to a number of men with high

home flow rates producing a lower rate in the clinic, sometimes associated with

low voided volumes (patients 50, 51 and 55), and sometimes with high (patients 6,

45 and 47). In general, patients with lower home flow rates tended to over-perform

in the clinic, whereas those with higher home flow rates tended to under-perform.

Among the top row of Figure 7.3, 57 % voided in the clinic with Qmax above the

median at home and among the bottom row, this was just 21 %. This tendency

reduces diagnostic certainty in terms of separating those with low and high flow

rates, reducing the discriminatory power of clinic Qmax .

Conversely, de la Rosette et al. (1996) found in a study of similar size that clinic

Qmax was slightly, although not significantly, higher than the mean value at home.

¶ Thus 9 % (5/57) were unrepresentative, close to the 10 % resulting from simulations in
Chapter 5.

‖ By the definition of 95 % confidence limits, 5 % (three patients) would be expected to fall
outside these limits.

146



7 Home versus conventional urodiagnostics

However, most patients recorded fewer than ten voids, perhaps insufficient to

obtain a stable average. In this study the median number of voids recorded per

patient was 49 (range 9 to 146).

When manual and electronic voiding diaries were compared, manual diaries

contained on average one additional volume per day. This should be borne in

mind for interpretation of electronic diaries. It is perhaps due to the template

nature of a manual chart being a visual reminder that a particular space on a

particular day should be filled. (Anecdotally, one gentleman arrived at his flow

appointment apologising for the incomplete nature of his chart; he had not been

able to void every hour.) Further, electronic diaries such as the PeePod do not

allow for the placing of a tick to signify an unquantified void, amounting on

average to one void per day.

7.4.2 Test re-test reliability

Figure 7.6 illustrates the superior repeatability of median home Qmax versus clinic

Qmax . Absolute differences between first and second repeats were significantly

higher for clinic flow data. This result is to be expected due to the narrowing

of confidence intervals surrounding an average value calculated from multiple

measurements. Although, looking at Figure 7.6, the confidence intervals for home

measurements are not as narrow compared to those of clinic measurements as

may be anticipated. The reason may lie in Figure 7.7: for many patients, often

despite large variability of Qmax at home, clinic voids are close together. This

is interesting and perhaps stems from the particular conditions of voiding in the

clinic: on his two clinic visits, each man probably voided before leaving the house,

arrived and drank a particular amount of water, possibly even attended at the

same time of day. These repeatable circumstances are resulting in repeatable,

although not necessarily representative, clinic voiding. The same may be true for
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home urodiagnostic data, given the difference between voiding into a flowmeter

and into a toilet, but the circumstances are far closer to ‘normal’.

Of particular interest is the clinical implication of repeatability of flow rate:

whether repeated measurements affect the interpretation of flow rate. Based upon

thresholds for normality commonly applied to Qmax , 25/28 (89 %) of first and

second tests agreed for home data, whereas for clinic data this was 21/28 (75 %).

This difference was not statistically significant (p = 0.3, McNemar’s test).

7.4.3 Patient opinion

A common theme amongst men who expressed a preference towards home

assessment was convenience, or more particularly, avoidance of the inconvenience

of long drives, lengthy waiting times and expensive car parking associated with

a hospital visit. Amongst these important but non-clinical issues were a small

number of poignant statements regarding negative experiences of the flow clinic.

A small percentage of participants favoured conventional assessment. Two were

dubious about the PeePod’s technical capabilities, perhaps due to the simple

nature of its appearance and operation.

Overall, preference towards home rather than conventional assessment was

indisputable, verified by significantly lower burden scores and more willingness

to repeat the investigation in the future.

7.4.4 Test success rate

Despite only brief instruction and the requirement to use the device unsupervised

at home, all patients successfully recorded voiding data using the PeePod. The

success rate for conventional assessment was 90 %. Whilst this may appear high, a

failure rate of 10 % would be regarded as poor for a simple, non-invasive diagnostic
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test such as uroflowmetry. This amounts to 10,000 failed tests of an estimated

100,000 in the UK each year, many of which will require a repeat appointment,

costly for both the patient and the NHS.

Due to the dependency of flow rate upon volume, urological guidelines recommend

that for a clinic flow test to be considered valid, the voided volume should be at

least 150 ml. Otherwise, the test should be repeated until a valid volume is

achieved. 15 % of clinic tests would have been deemed as failures for not meeting

this criterion. The importance of the volume produced in the clinic is that it

is representative of normal voiding. With one third of patients usually voiding

less than 150 ml at home, clearly lower volume voiding often is representative.

Figure 7.9 is of course weighted towards patients who voided many times with

low volumes, but gives an idea of the proportion of true voids that would be

rejected in the clinic: over 40 %. Reynard et al. (1998) found that 25 % of around

900 men voided less than 150 ml in the clinic.

A flow test should be evaluated in the context of the patient’s voiding diary

(Schäfer et al., 2002). Perhaps recommendations should place more emphasis

upon this method of validation rather than application of a blanket threshold to

Vvoid . The important question is: what is the aim of a clinic flow test? Is it to

make a measurement which is representative of the patient’s true voiding, or is it

to measure the patient’s flow rate capabilities under circumstances that are not

necessarily normal? It is professed to be to reproduce the patient’s symptomatic

complaints (Abrams, 2006), surely more akin to the former.

7.4.5 Diagnostic consistency and confidence

Finally, diagnostic consistency and confidence were examined. Inter-rater

diagnostic consistency was compared for home urodiagnostic and conventional

data and no difference found. A scoring system was devised to penalise conflicting
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yet confident diagnoses and reward confident consensus. This system was based

upon the notion that a patient who is diagnosed confidently yet incorrectly

may receive ineffective treatment, whereas he who is diagnosed correctly with

confidence would be managed appropriately in a timely fashion. Again, no

difference was found. These results are perhaps another manifestation of the

repeatability of clinic data resulting from repeatable circumstances, discussed

previously.

The missing piece of this puzzle is each patient’s true condition, or more

pragmatically, the condition which when treated would bring him the most benefit.

The assumption that the condition that both raters agree on is the correct one

is not necessarily valid. Further, there could be no accounting for comorbidities.

Commonly, BOO and DU (17 cases) or BOO and DO (13) were diagnosed based

upon the same report; conditions well known to coexist. The same applied to BOO

and Normal (14) and DO and Normal (9). Both BOO and DO are progressive

diseases, rather than simply present or not; these cases may represent borderline

clinical significance.

An attempt was made to review each patient’s notes and determine a true

urodynamic diagnosis. However, invasive pressure-flow measurements were

reported in only a small minority of cases. Considering instead treatment outcome,

the vast majority of treatment episodes were for BOO, the outcomes of which were

often undocumented.

What can be concluded is that the clinicians were more confident in their diagnoses

based upon home urodiagnostic data. This is despite the lack of measurement of

post void residual measurement and despite the unfamiliar nature of the novel

data. This elevated confidence, which may simply stem from a larger volume of

data available for review, could at least promote benefit from the ‘doctor as a

drug’ placebo effect.
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Further, in four cases, the rater felt too uncertain to make a diagnosis based upon

conventional data, whereas no PeePod reports went undiagnosed. This suggests

that patients assessed at home are less likely to require further investigation.

7.5 Conclusion

Home-based assessment using the PeePod was much better tolerated, less likely

to fail and gave more reliable measurement of Qmax than a standard combination

of clinic-based uroflowmetry and manual FVC.

The study was not powered to detect differences in diagnostic consistency or the

reliability of clinical indication of Qmax and indeed none were found. However,

the results could be used to power larger follow-on studies.

The following chapter describes a study of home urodiagnostics in a more specific

group of patients: men who have reached the stage where their LUTS require

surgical intervention.
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Chapter 8

Sensitivity to change following

disobstructive bladder outlet surgery

8 Sensitivity to change following disobstructive bladder outlet surgery

8.1 Introduction

Chapter 7 examined the potential impact of PeePod data on the diagnosis of men

with LUTS. As discussed previously, the second important application of flow and

volume information is evaluation of the effect of treatments, particularly medical

and surgical relief of bladder outlet obstruction.

The most common form of surgery for men with LUTS, in fact one of the most

prevalent operations for older men, is endoscopic resection of the bladder outlet

(Health and Social Care Information Centre, 2012). This procedure is usually

performed for men with suspected or proven obstruction in order to reduce outlet

resistance and allow a return to efficient voiding. An instrument containing a

camera and a means of removing tissue (either an electrically heated wire or a

laser) is passed into the urethra and used to widen the narrowed prostatic or

bladder neck region, assumed to be the flow controlling zone.
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Figure 8.1 illustrates the most frequently performed type of outlet surgery:

transurethral resection of the prostate (TURP). Being well established and having

a large evidence base, TURP remains the gold standard. However, newer

procedures, particularly laser-based, with fewer risks and shorter recovery time

may supersede TURP as set-up costs fall and expertise becomes more widespread.

Table 8.1 gives a description of the disobstructive surgeries relevant to this chapter.

Approximately 30,000 of these procedures are performed in the UK each year,

and over a million worldwide (Jensen et al., 1996; National Institute for Health

and Clinical Excellence, 2010). Recently, NICE has highlighted the importance

of being able to predict the outcome of TURP. Overall failure rates (failure being

defined as a lack of sufficient symptomatic improvement) are between 25 and 30 %

(National Institute for Health and Clinical Excellence, 2010), and up to 20 % even

in those who are urodynamically obstructed (Homma, 2001). With each elective

procedure costing in the region of £2,000 to £3,000 (Department of Health, 2012),

improving the discriminatory power of the diagnostic work-up to predict outcome

from surgery could save the NHS up to £30 million per year.

Given that many recordings are obtained in each individual, home urodiagnostics

is extremely sensitive to change in storage and, particularly, voiding parameters.

Hypothetically, patients undergoing these surgeries are obstructed to begin with

and, subsequently, completely unobstructed. Thus, the parameters which are

most sensitive to change ought to be those which best separate obstructed and

unobstructed populations. The aim of this chapter is therefore to measure the

sensitivity to change of home urodiagnostics in men undergoing disobstructive

prodecures and to present for the first time the nature of these data before and

after surgery on an individual level.
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Figure 8.1 (A) An illustration of transurethral resection of the prostate surgery
(Terese Winslow, 2006). (B) The surgeon’s view: an image from the resectoscope
during surgery (Nottingham Urology Group, 2013).
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Type of surgery Description

TURP Transurethral resection of the prostate. A resectoscope
(cystoscope and electrically heated wire loop) is passed
into the urethra where prostate tissue is resected
by electrocauterisation. A non-conducting glycine
solution is used for irrigation; in a small percentage of
cases, excess absorption may lead to water intoxication
(hyponatremia).

TURIS Transurethral resection in saline. Similar to TURP,
although this technique permits the use of isotonic saline
for irrigation. This reduces the risk of hyponatremia,
allowing for longer procedures; TURIS is therefore more
appropriate for men with larger prostates.

HOLEP Holmium laser enucleation of the prostate. Prostate
tissue is resected, and blood vessels coagulated, by a
holmium laser. Again, the irrigation fluid is saline.
HOLEP is advised for men taking anticoagulants due
to reduced bleeding.

KTP laser
prostatectomy

Potassium titanyl phosphate laser prostatectomy.
Prostate tissue is vapourised by a KTP laser. Tissue
cannot be collected for pathological examination to
detect prostate cancer as is routine practice for the
above procedures.

BNI or TUIP Bladder neck incision or transurethral incision of the
prostate. For men found to have a minimally enlarged
prostate, an incision is made in one or both sides of the
bladder neck or the prostate. Resection may be carried
out by electrocauterisation or a laser. A BNI may also
be necessary to treat scarring of the bladder neck which
occasionally results from one of the above surgeries.

Table 8.1 A description of the five types of disobstructive surgery performed for
patients recruited into this study.
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8.2 Methods

8.2.1 Study design

In conceiving this study, initial consideration was given to powering for predictive

performance. That is, attempting to measure the difference between home

urodiagnostics and conventional assessment in predicting which men would

experience good, and which would experience poor, surgical outcome. This

methodology has been used by our group in the past in order to assess the

predictive value of non-invasive bladder pressure measurements obtained using

the ‘cuff-machine’ (CT3000) (Harding et al., 2007).

Homma (2001) modelled surgical success rates based upon estimates for prevalence

of obstruction, success rates of surgery in the obstructed and unobstructed

populations, and accuracies of various diagnostic protocols. He predicted an

improvement of 9 % (from 81 to 90 %) in outcome from TURP in the scenario

where all men undergo invasive PFS, and then only those diagnosed as obstructed

are operated upon, versus that in which none undergo PFS.

Demonstrating this improvement with 80 % power and significance level 0.05

would require a sample size of 129. Any benefit from home uroflowmetry is

likely to be far smaller than that from invasive PFS; powering to detect a 3 %

improvement (the increase in diagnostic accuracy of mean Qmax compared to

single Qmax predicted in Chapter 5) would require a sample size of 1290, which is

clearly unfeasible here.

The decision was made, therefore, to measure instead the sensitivity to change of

home uroflowmetry following disobstructive surgery, whilst piloting an investiga-

tion of home uroflowmetry parameters that may relate to good outcome. Thus

the aim was to conduct an exploratory study of 30 men. The results could also

then be used to power sample size calculations for follow-on studies (Lenth, 2013).
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8.2.2 Recruitment

Ethical approval for the study was obtained from Newcastle & North Tyneside

1 Research Ethics Committee, covered by application 10/H0906/10 Assessment

of home uroflowmetry: Amendment 3 (08/06/2011) which received favourable

opinion on 15th July 2011 (see Appendix A3, page 241 onwards).

All men scheduled for disobstructive surgery at the Freeman Hospital were eligible

for inclusion into the study. The exclusion criteria were the same as those listed

in the previous chapter (see Section 7.2.2, page 129), with the addition of the

following:

• Men for whom the primary reason for surgery was removal of cancerous

tissue rather than relief of symptoms.

Suitable patients were identified in one of two ways:

• From the disobstructive surgery schedule list. These patients were contacted

by telephone and an explanation of the study given. Those who agreed to

take part attended the Freeman Hospital to give consent, complete an IPSS

questionnaire and collect a PeePod.

• From their attendance at the surgery pre-assessment clinic at the Freeman

Hospital, that is, patients who had been placed on the waiting list for

disobstructive surgery. These patients were given an explanation of the

study following their pre-assessment appointment and those who agreed to

take part then gave consent, completed an IPSS questionnaire and collected

a PeePod.
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The majority of the patients approached were identified by my colleague Wendy

Robson (Senior Research Nurse) and her research team, who also accompanied

me during the consent process, and took consent on some occasions when I was

unavailable.

All men who took part in this study carried out the following:

• Used the PeePod at home for one week and completed an IPSS questionnaire

prior to their surgery.

• Used the PeePod at home for one week and completed a second IPSS

questionnaire at least four months following their surgery∗.

PeePod data were not made available to treating clinicians and therefore played

no part in clinical decision making.

Patients’ records were also checked pre- and post-procedure for relevant informa-

tion such as diagnostic test results, the amount of prostate tissue resected during

surgery, and the nature of any follow-on treatments or investigations.

8.3 Results

33 men were recruited into the study between January and September 2012. One

man withdrew following the first period of recording due to ill health, a second

man’s prostate procedure was delayed, preventing timely follow-up, and a third

participant’s operation was postponed indefinitely following heart surgery. This

left 30 full datasets available for analysis.

∗ Although three months has been used previously (Porru et al., 2002), the clinical members
of the project team felt from experience that a marked improvement in storage symptoms occurs
from month three to four.
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The median age of the men who completed the study on the day of their surgery

was 72 years (range 55 to 89 years). The median length of time between surgery

and follow-up was 162 days (range 122 to 351 days). Table 8.2 shows the number

of men who underwent each type of surgery.

Type of surgery Number of men

TURP 16

HOLEP 6

KTP laser prostatectomy 3

TURP with BNI 2

HOLEP with BNI 1

TURIS 1

Laser BNI 1

Total 30

Table 8.2 The types of surgery performed for men who completed this study.

8.3.1 Patient reported outcome

The median total IPSS score prior to surgery was 21 (range 10 to 29), and

following surgery was 7.5 (0 to 23), this symptomatic improvement being highly

statistically significant (p = 2 × 10−6, Wilcoxon sign rank test). Figure 8.2A

shows the percentage decrease in total IPSS score and IPSS QoL score following

surgery for each participant, ordered by increasing percentage reduction in total

IPSS score. These measures were strongly correlated (ρ = 0.8, p = 1 × 10−7,

Spearman’s rank correlation coefficient). Figure 8.2B shows how each symptom

changed; all improved significantly (p <0.05, Wilcoxon sign rank test).
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Figure 8.2 Patient reported outcome: (A) The percentage reduction in total
IPSS score (blue) and IPSS QoL life score (yellow) for each participant following
surgery, ordered by increasing percentage reduction in total IPSS score. (B) The
change in median IPSS score across all participants for each symptom type.
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Good symptomatic outcome was defined as either a reduction in total IPSS score of

50 % or more, as used by previous investigators (Porru et al., 2002; Harding et al.,

2007). According to this criterion, 63 % (19/30) of participants experienced good

symptomatic outcome from surgery. With the additional criterion of an improved

post-procedure IPSS QoL score of 2 (Mostly satisfied) or less, this rose to 73 %

(22/30). One man’s symptoms became worse; his total IPSS score increased from

10 to 13, although his IPSS QoL score decreased from 6 to 5.

8.3.2 Sensitivity to change

The treatment induced changes in a number of home urodiagnostic parameters are

presented in Table 8.3. The following standard voiding and storage parameters

were examined:

• ˜Median† and maximum Qmax

• ˜Median Qave

• ˜Median and maximum Vvoid

• ˜Median voiding time (tvoiding)

• ˜Median time to Qmax (tQmax)

• ˜Median frequency of daytime voids

• ˜Median frequency of nighttime voids (nocturia)

† Where multiple measurements of a parameter were obtained per individual, ‘ ˜median’
denotes the median of the medians. That is, a median value of the parameter was calculated for
each individual, and then the median of this value across all individuals obtained, and compared
pre- and post-surgery.
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Among the literature reviewed in Section 4.3.2 (page 53 onwards), were studies

that hypothesised differences in certain home urodiagnostic parameters between

obstructed and unobstructed men. Therefore, the following were also compared

pre- and post-surgery:

• Interquartile range (IQR) Qmax : Golomb et al. (1992) reported larger

variability in Qmax for patients with symptomatic BOO than healthy men.

• The gradient of the linear relationship between Vvoid and Qmax according to

a least squares fit: Sonke et al. (2002) reported that unobstructed patients

had steeper Qmax versus Vvoid regression lines than obstructed patients.

• The value of Qmax at Vvoid = 200 ml according to this line of best fit: By

examining the value of this regression line at Vvoid = 200 ml, Qmax may

be controlled for voided volume. 200 ml was chosen as the largest volume

included in all patients’ Vvoid range prior to surgery.

• The ratio of median daytime Qmax to median nighttime Qmax : Witjes et al.

(1997) found larger circadian flow rate variability in patients with higher

grades of obstruction.

Figure 8.3 plots the change in median Qmax against the change in median Vvoid

following surgery; these measures were strongly correlated (ρ = 0.5, p = 0.002,

Spearman’s rank correlation coefficient). Figures 8.4 to 8.9 show pre- and post-

surgery Qmax versus Vvoid and pre- and post-surgery flow traces for each individual

participant, ordered by increasing change in median Qmax following surgery.

Figure 8.10 shows post-surgery versus pre-surgery median frequency (A) and post-

surgery versus pre-surgery median nocturia (B).
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A) Per void parameters

Parameter
Pre-surgery Post-surgery

p-value n (%)
˜median ˜median

Qmax (ml·s−1) 9.4 16.9 3× 10−6 80

Qave (ml·s−1) 4.0 7.0 3× 10−6 77

Vvoid (ml) 147 192 9× 10−5 50

tvoiding (s) 44 26 5× 10−6 83

tQmax (s) 8.0 6.8 0.001 57

B) Per patient storage parameters

Parameter
Pre-surgery Post-surgery

p-value n (%)
˜median ˜median

Frequency 8 6 7× 10−5 77

Nocturia 1 1 0.5 27

C) Per patient voiding parameters

Parameter
Pre-surgery Post-surgery

p-value n (%)
median median

Maximum Qmax (ml·s−1) 13.9 24.8 1× 10−5 87

Maximum Vvoid (ml) 354 414 7× 10−5 80

IQR Qmax (ml·s−1) 3.2 4.1 0.002 77

Qmax /Vvoid gradient (s−1) 0.01 0.02 0.003 77

Qmax at 200 ml Vvoid (ml·s−1) 9.8 15.3 1× 10−5 90

Daytime/nighttime Qmax 1.1 1.0 0.6 50

Table 8.3 A comparison between pre- and post-surgery values of a number of home
urodiagnostic parameters. p-values represent paired comparisons using Wilcoxon
signed rank test. For (A) n denotes the number of men who experienced a
significant improvement (p <0.05) in the parameter according to Mann-Whitney
U. For (B) and (C), n denotes the percentage of men who experienced an
improvement in the parameter when one pre-surgery value was compared to one
post-surgery value; no statistical test was used.
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Figure 8.3 Change in median Qmax versus change in median Vvoid following
surgery.

8.3.3 Predictive power

There are two approaches to investigating the prognostic power of a test to predict

the outcome from treatment.

If outcome data are binary (good or poor outcome), unpaired pre-treatment

parameters may be compared between the two groups, and the results reported

as sensitivity and specificity. Or, patients may be grouped according to values of

a pre-treatment parameter. The proportion of patients who experience good and

poor outcome in each group can be reported as positive and negative predictive

value.

Alternatively, if outcome data are scalar, or at least interval, a relationship can

be sought between outcome and values of the test parameter. Although no

diagnostically applicable threshold is produced, this method benefits from better

resolution of outcome data and therefore better sensitivity to a relationship, if one

exists. Given the small sample size in this study, to avoid division into subgroups

resulting in further reduction in statistical power, this was the chosen method.
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Figure 8.4 Pre- and post-surgery Qmax versus Vvoid (left) and pre- and post-
surgery flow traces (right). Patients are ordered by increasing change in median
Qmax , shown at the top of each flow trace plot. Percentage reduction in total IPSS
score and, where measured, resected prostate weight are also shown. For clarity,
a maximum of 20 pre- and post-surgery flow traces are displayed. Patients 1 to 5.
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Figure 8.5 For the full caption and legends, see Figure 8.4, page 165. Patients
6 to 10.
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Figure 8.6 For the full caption and legends, see Figure 8.4, page 165. Patients
11 to 15.
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Figure 8.7 For the full caption and legends, see Figure 8.4, page 165. Patients
16 to 20.
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Figure 8.8 For the full caption and legends, see Figure 8.4, page 165. Patients
21 to 25.
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Figure 8.9 For the full caption and legends, see Figure 8.4, page 165. Patients
26 to 30.
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Figure 8.10 Changes in storage parameters following surgery: (A) Post-surgery
versus pre-surgery median frequency and (B) post-surgery versus pre-surgery
median nocturia. Dotted lines represent identity. Values represent the number
of overlapping points.

Good correlation implies good predictive power. Spearman’s rank analysis is

based upon the position of datapoints’ ranks rather than the values themselves and

therefore does not require a linear relationship and does not require the nature of

the relationship to be known. Thus, the relationship between home urodiagnostic

parameters and outcome from surgery was investigated using Spearman’s rank

correlation analysis.

The ‘predictors’ were pre-surgery values of the parameters listed in Table 8.3 that

changed significantly following surgery. The ‘responses’ (one subective parameter,

one objective voiding parameter and one objective storage parameter) were as

follows:

• Percentage change in total IPSS score

• Absolute change in median Qmax

• Absolute change in median frequency
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Table 8.4 presents the correlations between these predictors and responses.

Ommission of any predictor or response signifies that none of its correlations

were significant. Figure 8.11 plots regression information for the best predictors

of subjective outcome (namely, the value of Qmax at Vvoid = 200 ml as a predictor

of percentage reduction in total IPSS score) and objective outcome (namely, the

interquartile range of Qmax as a predictor of change in median Qmax ). Both were

best described by an inverse relationship, that is, of the following form, where a

and b are constants:

response =
a

predictor
+ b (8.1)

Response

Reduction in total Change in median

IPSS score (%) Qmax (ml·s−1)

H
o
m

e
u
ro

d
ia

g
n

o
st

ic
p

re
d

ic
to

r

Median Qmax

ρ = −0.37 ρ = −0.24

p = 0.047 p = 0.2

Median tvoiding
ρ = 0.37 ρ = 0.44

p = 0.047 p = 0.02

IQR Qmax

ρ = −0.24 ρ = −0.48

p = 0.2 p = 0.007

Qmax /Vvoid gradient
ρ = −0.16 ρ = −0.39

p = 0.4 p = 0.04

Qmax at Vvoid = 200 ml
ρ = −0.39 ρ = −0.29

p = 0.03 p = 0.1

Table 8.4 The predictive value of home urodiagnostic data. Correlations for which
p <0.05 are highlighted in green, the strength of the relationship being indicated
by the tint of the highlight.
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Figure 8.11 (A) Reduction in total IPSS score (%) versus the value of Qmax at
Vvoid = 200 ml and (B) change in median Qmax versus IQR Qmax , with inverse
regression lines, r2 values, and F-test p-values.

On examining the pre-surgery notes of the patients involved in this study,

there was a diagnosis of BOO from either invasive or non-invasive pressure-flow

measurements in 8 cases (27 %), for 5 patients (17 %) pressure-flow measurements

either did not detect BOO or were inconclusive, and there was no record of

pressure-flow measurements having been carried out prior to surgery in the

remaining 17 cases (57 %). Figure 8.12 compares the increase in median Qmax in

patients grouped according to results from invasive or non-invasive pressure-flow

measurements. There was no difference in response in terms of change in Qmax

when the obstructed group was compared to all other patients (p = 1, Mann-

Whitney U, although samples of this size could only detect a large difference) and

a confirmed diagnosis of BOO did not guarantee a large increase.

There was no relationship between the weight of prostate tissue resected and

the increase in median Qmax (ρ = −0.05, p = 0.8, Spearman’s rank correlation

coefficient; Figure 8.13).
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Figure 8.12 The change in median Qmax for patients grouped according to results
from invasive or non-invasive pressure-flow measurements.
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Figure 8.13 Change in median Qmax following surgery versus resected prostate
weight: (A) All patients, and (B) the same plot focussed upon the region of
smaller change in median Qmax and lower prostatic weight resected. One patient
for whom there was no prostate tissue resected (BNI only) and three for whom
prostate tissue was vapourised and could not therefore be collected (Greenlight
laser prostatectomy) are shown in orange and purple, respectively.
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8.4 Discussion

In general, patients were satisfied with the symptomatic outcome from their

surgery; all but one reported a reduction in total IPSS score. 63 % experienced

‘good’ symptomatic outcome, which is somewhat lower than subjective success

rates measured previously (Neal et al., 1989; Harding et al., 2007). This increased

to 73 % if those with good post-surgery IPSS quality of life scores were included.

This poorer than expected result may stem from less stringent inclusion criteria

surrounding flow rate and IPSS score.

8.4.1 Home urodiagnostic changes following surgery

A variety of home urodiagnostic parameters were compared pre- and post-surgery

and the majority showed a statistical improvement. The most significant were

maximum and average flow rate and the related variable voiding time, which

decreased markedly from 44 to 26 seconds.

The parameter which changed in the highest proportion of patients (90 %) was

the value of Qmax at Vvoid = 200 ml according to the least squares best fit linear

regression relationship for Qmax versus Vvoid . The ratio of daytime to nighttime

Qmax did not change following surgery, challenging the notion that circadian

variability is higher for obstructed patients.

As discussed in Section 3.5 (page 47), long-term changes to detrusor function

associated with chronic obstruction can lead to both overactivity during storage

and underactivity during voiding, but treatment of obstruction appears to reverse

these effects. Thus, one would expect an increase in Vvoid and a reduction in

frequency as overactive symptoms regress following surgery. Overall, a statistically

significant improvement was observed for both of these parameters.
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On an individual level, half the participants experienced a statistically significant

increase in Vvoid ; this is consistent with the estimate that overactivity is found in

50 % of men with BOO (National Institute for Health and Clinical Excellence,

2010). Despite time to follow-up being fairly evenly distributed from four to eight

months (with the exception of two patients restudied at 10.5 and 11.5 months),

there was no correlation between time to follow-up and percentage reduction in

frequency (ρ = −0.005, p = 1) or increase in Vvoid (ρ = −0.2, p = 0.2, Spearman’s

rank correlation coefficient). This suggests that overactive symptoms tend to

improve most within the first four months following surgery.

Overall, nocturia did not change following surgery, although one fortunate fellow

who saw a decrease from six to zero voids per night may disagree (Figure 8.10).

8.4.2 Responses of flow and volume to surgery

It is extremely interesting to observe the varying responses of flow rate and voided

volume to surgery between individuals, presented in Figures 8.4 to 8.9.

In several patients there was an increase in both flow rate and flow rate variability;

a shift towards the ‘normal’ pattern suggested by various flow-rate, volume

nomograms (Siroky et al., 1979; Kadow et al., 1985; Haylen et al., 1989), the

clearest examples being patients 21, 27, 28 and 29. For some, there was an

accompanying increase in Vvoid (21 and 29) and for others there was not (27 and

28). Again, an increase in Vvoid could signify a reduction in overactivity, or more

efficient emptying of the bladder.

In several other patients, surgery had far less impact upon the relationship

between Qmax and Vvoid , as for patients 15, 22, 24 and 25. The pre-surgery pattern

was shifted, either upward to higher flow rates (patients 22 and 24), or diagonally

towards both higher flow rates and larger volumes (patients 15 and 25).
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It appears that for a proportion of men, normal dependency of flow rate upon

bladder volume was restored by surgery, and for others it was not. In the latter

group, perhaps morphological changes within the bladder resulting from long-term

obstruction, observed during animal trials, have left the bladder with irreversible,

or less easily reversible, stiffness.

Other notable cases include patient 6, for whom the improvement in flow rate

resulted only from the addition of voids between 200 and 300 ml (improved storage

in the absence of any supposed precursory improvement in voiding), and patient

11, whose improvement in flow rate was modest at low volumes and marked at

high.

8.4.3 Why would flow rate fail to improve?

Men who undergo disobstructive surgery are expected to experience, and told to

expect, an improvement in flow rate as a result of reduced outlet resistance. This

ought to be clearly demonstrable from home urodiagnostics given that multiple

measurements narrow the confidence intervals surrounding an average Qmax .

It is surprising therefore that six patients did not experience a significant increase

in Qmax (defined either as a decrease in median Qmax , or an increase with p >0.05

according to Mann Whitley U; patients 1 to 5 and 7 on Figures 8.4 and 8.5). For

this suboptimal response there are a number of possible explanations, discussed

below.

Absence of obstruction One may instinctively attribute an unsuccessful

operation, in terms of little or no improvement in flow rate, to an absence of

obstruction prior to surgery, that is, an incorrect diagnosis. However, definitions

of obstruction are somewhat arbitrary calculations involving Qmax and pdet.Qmax.

Even men who are not deemed to be obstructed by one or another pressure-flow
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nomogram ought to experience an increase in Qmax due to the reduction in outlet

resistance according to the urethral resistance relation (see Section 2.4.1, page 14).

This is providing that the tissue removed constituted the flow controlling zone, as

discussed later.

Further, in this study, even men with obstruction confirmed by pressure-flow

measurements did not necessarily experience a large increase in flow rate following

surgery. One man was deemed to be unobstructed; his median Qmax increased by

16 ml·s−1.

Reduction in voiding pressure Bladder outlet obstruction is defined by

a combination of Qmax and pdet.Qmax. Therefore, it is possible for surgery to

disobstruct a patient and bring about a change in one but not the other. Tammela

and Kontturi (1995) reported results from pressure-flow studies in 27 men with

BOO, at baseline and following four years of treatment with a 5α-reductase

inhibitor. For the majority of patients, pdet.Qmax decreased and Qmax increased.

However, at least one man moved from the obstructed to unobstructed region of

the Abrams-Griffiths nomogram with no change in flow rate; pdet.Qmax fell from

86 to 17 cmH2O whilst Qmax remained at 13 ml·s−1. Overall, the decrease in

pdet.Qmax was statistically significant (p <0.001) whereas the increase in Qmax was

not (p value not reported)‡.

The reason lies in the nature of the BOR (see Section 2.4.2, page 17). Disobstruc-

tive treatment in a man with severe obstruction will induce a larger decrease in

pressure and a smaller increase in flow rate than in a less obstructed man. This

concept, illustrated in Figure 8.14, could go some way towards explaining the

variation in the response of flow rate to treatment found in this study.

‡ Due to reasons relating the to the study design, these comparisons were performed in two
subgroups groups of 12 and 15 patients.
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The main difference between the work by Tammela and Kontturi and the present

study is the nature of the treatment. Surgical intervention is intended for men

with severe obstruction and should have a large effect on both pressure and flow

rate; one may envisage a change from point A to D on Figure 8.14. Further,

even if a man who becomes unobstructed following surgery does not experience

an increase in flow rate, his flow trace should move from an obstructed pattern

towards a normal bell-shaped curve. From Figures 8.4 and 8.5, this does not

appear to be the case for the patients in question.
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Figure 8.14 The effect of disobstructive treatment on severe and mild obstruction
according to the bladder output relation. The path from point A to B represents
the effect for a man who begins with severe obstruction; there is a large decrease
in pressure and a small increase in flow rate. Conversely, for a man with mild
obstruction there is a small decrease in pressure and a large increase in flow rate;
from C to D. The pink curve shows the bladder output relation and the Abrams-
Griffiths nomogram is underlaid in grey. This is a simplified model in which
only the urethral resistance relation, and not the bladder output relation, changes
following surgery.
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Post-surgery scarring Formation of scar tissue at some point in the bladder

outlet (bladder neck or urethra) following surgery resulting in constrictive

obstruction may negate any benefit from reduction in outlet resistance. Patient

3 (Figure 8.4), subsequent to his follow-up in this study, was diagnosed with

post-surgery bladder neck stenosis§ and treated with a BNI. As discussed in

Section 3.3.1 (page 31), constrictive obstruction is characterised by a decreased

flow rate and flatter flow curve, indicated by his post-surgery flow rates. Patient

2’s post-procedure plots appears to exhibit these characteristics to an even larger

extent; perhaps he too suffered surgical scarring, although if this is the case the

condition is at the time of writing undiagnosed. Patient 17 was diagnosed post-

surgery with a urethral stricture which was corrected by an optical urethrotomy

(urethral incision) prior to his follow-up in this study.

Decreased contractility Bladder contractility measured non-invasively has

been found to decrease significantly when remeasured several months following

surgery for BOO (Harding et al., 2005). It is possible, therefore, that in some

patients the reduction in outlet resistance allowing an initial increase in flow

rate was counterbalanced over subsequent months by a decrease in bladder

contractility. This finding is incongruent with the theory that surgery reverses

the adverse effects that obstruction has on the bladder, and requires further

investigation.

Resected tissue weight Although weight of resected prostate tissue and

increase in median Qmax did not correlate, there were a small number of cases

where little tissue was removed and response in terms of increase in flow rate

was poor (Figure 8.13B). However, it seems unlikely that were obstructive tissue

§ Although the reason cited for this was discomfort as opposed to dissatisfaction with the
outcome from his operation.
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present it would not be removed; this would be poor surgical technique. Prostatic

regrowth, which is to the order of 1 g per year (Capitán et al., 2011), may be

a contributing factor in patients who had a small amount of tissue resected and

more time between surgery and follow-up.

Flow controlling zone The remaining possibility is that the site of the

operation, the prostatic urethra and / or bladder neck, was not the flow controlling

zone. In a condition more commonly observed in females, symptoms of overactive

bladder force patients to contract their pelvic floor in order to maintain continence

or postpone voiding. If prolonged, the resulting ‘overactive sphincter’ would

present as an obstructive pattern and would not necessarily be discerned during

the diagnostic work-up for BOO.

There was no evidence that patients with signs of overactivity, characterised by low

voided volumes and high frequency, experienced less improvement in flow. Again,

the size of samples involved in this study may lack the power to demonstrate a

relationship of this nature.

8.4.4 Predictive value

An attempt was made to predict subjective and objective outcome from pre-

surgery home urodiagnostic parameters. Bonferoni correction for multiple

comparisons would decrease the p-value denoting significance from 0.05 to 0.002¶.

No correlations achieved this; possibly a reflection of the inadequacy of the sample

size.

¶ 11 predictors and three responses amounted to 33 comparisons (n = 33); for Bonferoni
correction, the largest p-value for significance falls to α/n.

181



8 Sensitivity to change following disobstructive bladder outlet surgery

Nevertheless, a number of home urodiagnostic parameters were good predictors

of the response of Qmax to surgery (Table 8.4). (The reader will recall from

Section 5.8, page 91, that the effect of regression to the mean is almost eradicated

in cases where an average value calculated from multiple measurements is used.)

In particular, the variability of Qmax described by its interquartile range predicted

the increase in median Qmax far better than median pre-surgery Qmax itself. The

fact that less variable flow rates are more likely to improve following surgery could

be taken into consideration during the clinical decision making process.

Unsurprisingly, as symptoms are known to correlate poorly with objective

measures of LUT function, home urodiagnostic parameters were less successful

at predicting subjective outcome. The value of Qmax at Vvoid = 200 ml, according

to the linear regression relationship for Qmax versus Vvoid , performed best, having

a marginal edge over median Qmax and median tvoiding. Surgical success rates in

terms of symptomatic improvement are better for obstructed patients by 15 to

29 % (Homma, 2001). Given that this parameter controls flow rate for volume, it

may better separate patients with low flows secondary to obstruction from those

who pass small volumes, with a low flow rate, due to overactivity.

8.5 Conclusion

The most crucial outcome from treatments for BOO is of course that reported by

the patient. However, objective assessment is also important to verify the intended

mechanism of the treatment. The aim of disobstructive surgery is to reduce

outlet resistance and increase flow rate; symptomatic improvement is presumably

secondary to this. Would a surgeon put resector-to-prostate in the knowledge that

the patient’s flow rate would remain unchanged as a result of the surgery?
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This study has revealed interesting and considerable variation in the response

of objecting voiding parameters to surgery. Whilst some men emerged with

unchanged, or even slightly diminished, flow rates, others were able to void with

supranormal flows of up to 80 ml·s−1! The reasons for this variation remain

uncertain. A number possible explanations for poor response were discussed, and

the variability of Qmax found to be a good predictor.

The PeePod has emerged as a useful tool to study these subtle changes within,

and differences between, individuals. There could be value in using home

urodiagnostics throughout clinic trials for treatment of LUTS, which may shed

light on the mechanisms of medical and surgical interventions.

Here ends the investigation of home urodiagnostics in the familiar setting of

secondary care. The final leg of this journey takes us to pastures new: an

evaluation of the PeePod in general practice.
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Chapter 9

Home urodiagnostics in primary care

9 Home urodiagnostics in primary care

9.1 Introduction

So far, this thesis has described evaluation of the PeePod in patients recruited from

secondary care. This was an obvious place to begin because in the urology clinic,

uroflowmetry is an established test. The resulting data are familiar to clinicians

and the device can be assessed in the context of the conventional alternative.

However, secondary care is only the latter part of the story for men with LUTS.

Their pathway usually begins with a visit to a GP who will follow their own

investigative protocol, and perhaps subsequently make the decision to refer for

specialist assessment.

Specialist care is costly and so, to improve the efficiency of NHS care, those in

general practice are being asked to do more and refer less. Financial incentives

have already been placed upon reductions in rates of referral. In relation

to urology, there is a growing body of opinion in the literature and amongst

organisations such as NICE that a large proportion of men with LUTS are not

being managed appropriately in primary care (Morant et al., 2008; Quinlan et al.,

2009; Kirby et al., 2010).
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Could access to additional diagnostic information, such as that provided by the

PeePod, help GPs to meet the increasing demands being placed upon them?

Although not primarily designed with this purpose in mind, the simple, portable

nature of the PeePod lends itself to implementation in primary care. At present,

NICE recommend that flow-rate measurements are not offered to men with LUTS

at initial assessment. This statement, however, is based upon a lack of evidence

to support the practice rather than the existence of evidence against.

The aim of this chapter is to assess the feasibility and utility of the introduction of

home urodiagnostics into the early clinical pathway of men with LUTS, beginning

with an investigation of the current management of these men by local GPs.

9.2 Are NICE guidelines implemented in primary care?

As a basis for our investigation, we looked to NICE clinical guideline 97: The

management of lower urinary tract symptoms in men, published in 2010 (National

Institute for Health and Clinical Excellence, 2010). According to this evidence-

based report, at initial assessment all men with LUTS should be offered the

following:

• Physical examination of the abdomen and external genitalia.

• Digital rectal examination (DRE).

• Urinalysis.

• Men with bothersome LUTS∗ should also complete a frequency-volume

chart.

Thereafter, guidelines diverge according to the type of LUTS that predominates

(storage, voiding or post micturition).

∗ NICE define bothersome LUTS as those that are “worrying, troublesome or have an impact
on quality of life”. Non-bothersome LUTS are presumably those that a man is happy to live
with, but that prompt him to seek reassurance regarding serious disease.
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We conducted surveys to determine which tests and treatments were administered

in primary care for men with LUTS. The tests and treatments selected for

inclusion were those from NICE clinical guideline 97 that are feasible for use

in primary care.

9.2.1 Methods

Prostate assessment audit 100 consecutive patients in attendance at four

local specialist prostate assessment centres were surveyed as to which investiga-

tions and treatments they had received in primary care. These clinics are for men

whose initial assessment did not indicate the presence of serious disease (those

with suspected cancer would follow a different route) but by implication had

bothersome LUTS.

Questionnaires were completed by the clinician providing the clinic, who gave an

explanation of the investigation or treatment where necessary. Patient’s referral

notes were also checked.

My role included questionnaire design, data entry, presentation and analysis using

SPSS (IBM, Armonk, USA) and MATLAB software packages, and interpretation.

My colleague Chris Harding (consultant urologist) instructed participating cen-

tres, distributed and collected questionnaires, and registered and reported the

audit internally.

Survey of general practitioners In addition to the above, 40 local GPs

completed a similar survey regarding how often they used NICE pathway

investigations and treatments for men with LUTS. For each, they were asked to

choose from Never, Less than half the time, More than half the time and Always,

for each of Initial presentation, First review and Second review (see Appendix A5,

Section A5.2, page 250 onwards).
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The survey was circulated amongst GPs known to the project group and members

of local Primary Care Research Networks. It could be completed either as an

online survey† or by entering the results into an Excel (Microsoft, Redmond,

USA) spreadsheet or hard copy.

9.2.2 Results

Prostate assessment audit The participating prostate assessment centres are

listed below, with the number of questionnaires contributed by each in brackets.

• North Tyneside General Hospital (37)

• Freeman Hospital, Newcastle upon Tyne (27)

• Queen Elizabeth Hospital, Gateshead (20)

• Hexham Hospital (16)

The median age of the patients included in the survey was 66 years (range 46 to

90 years), the median symptom duration was six months (range three weeks to

12 years), and the median number of visits to primary care prior to referral was

two (range one to ten visits). Figure 9.1 shows the percentages (also frequencies,

given that 100 men were surveyed) of men who received each investigation and

treatment in primary care.

Survey of general practitioners The median number of male patients with

a new complaint of LUTS seen per month by the respondents was four (range one

to 30 per month) (Figure 9.2). For ease of presentation and interpretation, given

that the survey produced a large amount of data, the results were used to calculate

† http://www.surveymonkey.com/s/J6Q2TQG
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Figure 9.1 The percentage of men who received a variety of (A) investigations
and (B) treatments in primary care, based upon an audit of 100 men referred to
specialist assessment at local prostate assessment centres.
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a likelihood score for each appointment type. This reflected the probability that

each investigation and treatment would be used at each appointment, calculated

according to Equation 9.1. The results are shown in Figure 9.3.

likelihood (%) =
1
3
n<half + 2

3
n>half + nalways

ntotal

(9.1)

Where:

n<half = number of responses of Less than half the time

n>half = number of responses of More than half the time

nalways = number of responses of Always

ntotal = total number of responses
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Figure 9.2 The number of male patients with a new complaint of LUTS seen per
month by GPs who responded to our survey.
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Likelihood of investigation being carried out (%)
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Figure 9.3 The likelihood of men with LUTS receiving a variety of (A)
investigations and (B) treatments in primary care at initial presentation (blues /
reds), first review (dark grey) and second review (light grey), based upon a survey
of 40 local GPs. For the asterisks key see Figure 9.1.
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9.2.3 Discussion

Naughty or NICE? According to our audit of patients in attendance at

prostate assessment clinics, whose LUTS are presumably bothersome, the four in-

vestigations recommended for initial assessment by NICE were actually performed

in just 59 (DRE), 29 (urinalysis), 14 (physical examination) and 4 % (FVC) of

cases (Figure 9.1A). According to the GPs themselves, these tests are performed

more frequently, but there is still an admission that they are not offered to all

men. In particular, there is just an 18 % likelihood of a frequency-volume chart

being completed at initial presentation. As patients may not recall each and every

investigation‡, the truth is likely to lie somewhere between reports from patients

and GPs, which are subject to recall bias and estimation bias, respectively.

Concerning treatments, conservative measures, such as fluid management, are

most likely to take place at initial presentation, whilst medications are most

likely to be prescribed at the first GP review visit. A large discrepancy was

found between rates of fluid intake and lifestyle advice reported by patients

(9 %) and GPs (65 %), most likely indicating that not all patients perceive

conservative management such as this as a form of treatment. A symptom

score questionnaire, such as the IPSS, should be completed by men considering

treatment. Although half of those surveyed received some form of treatment, only

9 % recalled completing such a questionnaire during their assessment in primary

care.

It is difficult to draw a conclusion about the appropriateness of treatments

administered to the group of patients surveyed in the prostate assessment clinics,

given that this depends upon the results of various investigations. However,

‡ Although, as articulated by Mr Harding: “Not many people forget a finger up their a**e!”

191



9 Home urodiagnostics in primary care

according to NICE, men with uncomplicated§ LUTS should only be referred

for specialist assessment once medical treatment has failed. Half of the men

surveyed reported no form of treatment in primary care. Although we don’t

have information regarding the proportion of complicated LUTS in the patients

surveyed, it is unlikely that as many as half fell into this category.

Why are there these discrepancies between guidelines and practice? There are a

number of possible factors, discussed below.

Investigative priorities It is clear from both surveys that exclusion or

detection of serious disease is being prioritised. Results from PSA testing

and DRE, the most commonly performed investigations amongst our prostate

assessment group, can indicate possible prostate cancer. This emphasis may

leave little time for investigation of less serious, benign disease, as facilitated

by tools such as frequency-volume charts and, if treatment is being considered,

IPSS questionnaires. Is this practice justified?

A prospective study of over 20,000 men found that LUTS were associated with

detection of early, localised prostate cancer, given that men with LUTS were more

often screened for such, but not of advanced cancer. This led to the conclusion

that prostate cancer does not cause LUTS (Martin et al., 2008). Therefore, LUTS

should no more warrant investigation of prostate cancer than any other complaint

commonly reported by a similar demographic. Still, to many men’s minds, and

perhaps some GPs’, prostate disease is synonymous with prostate cancer. Brown

et al. (2003) found in a small group of men with uncomplicated LUTS and no

evidence of prostate cancer that over two thirds were worried regarding cancer at

initial presentation.

§ NICE define complicated LUTS as recurrent or persistent urinary tract infection, retention,
renal impairment that is suspected to be caused by lower urinary tract dysfunction, or suspected
urological cancer.
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Guideline despair General practitioners require knowledge of an enormous

number of different medical conditions, many of which are associated with some

form of clinical guidance. From January 2009 to December 2012, NICE alone

published 79 clinical guidelines, which represents a new several hundred page

document every two to three weeks.

The GPs who completed our survey generally saw only a handful of patients per

month with a new complaint of LUTS (Figure 9.2). Several major disease areas,

such as cardiovascular and respiratory, are covered by the Quality and Outcomes

Framework¶, meaning that practices receive financial reward for adherence to

relevant guidelines. This is not the case for LUTS. Therefore, with relatively few

cases, and lack of incentive, many GPs may be unfamiliar with the fine detail

of clinical guideline 97. They may also feel that their learning is better spent

on diabetes and cancer than honing interpretation of frequency-volume charts.

Referral to secondary care may seem like the more efficient option from an NHS

care perspective.

With GPs being expected to improve their management of men with LUTS, but

having little incentive to do so, what could be done to overcome this apparent

stalemate?

¶ http://www.nice.org.uk/aboutnice/qof
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9.3 Home urodiagnostics in primary care feasibility

study

This chapter began with the idea that home urodiagnostics could aid the primary

care assessment of men with LUTS. Indeed, an investigation of current practice

has highlighted areas which fall short of guideline recommendations. In particular,

more men should be offered conservative and medical treatments prior to referral

for specialist care. Could home urodiagnostics provide the missing link to guide

general practitioners to an appropriate management decision?

In order to test the feasibility and utility of home urodiagnostics in primary care,

a study of the PeePod was conducted at five practices within local primary care

federation Hadrian Primary Care Alliance‖. Ethical approval for the study was

obtained from Newcastle & North Tyneside 1 Research Ethics Committee, covered

by application 10/H0906/10 Assessment of home uroflowmetry: Amendment

4 (11/11/2011) which received favourable opinion on 14th December 2011 (see

Appendix A3, page 241 onwards).

9.3.1 Methods

Two meetings were conducted at each site prior to beginning the study. At the

first, the general concept of the project and device was presented, and at the

second, details of the study were discussed. The participating GPs were required

to recruit men with LUTS to use the PeePod for one week. No exclusion criteria

surrounding symptom severity, symptom duration, treatment status, or number

of previous primary care consultations were imposed.

‖ http://hadrianpca.co.uk
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Patients were asked to complete an IPSS questionnaire and a survey to provide

feedback about the PeePod, by answering the questionnaire described in Sec-

tion 7.3.1 (page 134) in relation to the PeePod (see Appendix A5, Section A5.1,

page 247 onwards).

Participant identification, recruitment, consent, and instructing of the patient

regarding use of the PeePod were performed by the GPs. I prepared devices and

study site files, retrieved data from used devices, compiled PeePod reports and

acted as the point of contact for recruiting sites.

The recruitment target was 25 patients, with the intention that each practice

would recruit five men.

9.3.2 Results

24 patients were recruited between February and September 2012. The participat-

ing members of Hadrian Primary Care Alliance are listed below, with the number

of patients recruited by each in brackets.

• Branch End Surgery, Stocksfield (1)

• Burn Brae Medical Group, Hexham (3)

• Ponteland Medical Group, Ponteland (5)

• Sele Medical Practice, Hexham (9)

• White Medical Group, Ponteland (6)

One device was returned containing no data; the patient probably voided into the

jug prior to placing it onto the pod. This left 23 sets of data for analysis, two of

which did not include an IPSS questionnaire.
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The median age of the recruited patients was 68 (range 61 to 77 years), the median

total IPSS score was 12 (range 2 to 26) and the median IPSS QOL score was 3

(range 1 to 6).

Eight patients had a current prescription of an α-blocker, one patient of an

α-blocker and 5α-reductase inhibitor in combination, and one patient of an

antimuscarinic, all for treatment of LUTS.

Symptoms versus objective voiding data The PeePod data provided

objective measures of frequency, weak flow and nocturia to allow correlation of

these paramaters with subjective IPSS scores, using Spearman’s rank correlation

coefficient. For frequency ρ = 0.4, p = 0.07, for weak flow ρ = −0.3, p = 0.3, and

for nocturia ρ = 0.6, p = 0.009. These results are illustrated in Figure 9.4.

Reporting PeePod reports were provided to the GPs for comment. Initially,

the reports contained only the supertrace, electronic frequency-volume chart,

summary statistics, Siroky nomogram and selection of individual flow traces

(Figures 6.5 and 6.6, pages 107 and 108). However, GPs fed back that these

results, being unfamiliar, were of little use alone.

Therefore, subsequently, the data were reviewed by Chris Harding (consultant

urologist), along with the patient’s history, relevant medications, IPSS question-

naire, and results from PSA and DRE where available. Chris then provided a

short recommendation on patient management to append to the PeePod report.

All 23 reports were reviewed and annotated as such. Nine recommended that

the current management strategy be altered, as summarised in Table 9.1. Nine

recommended a first treatment or continuation of the current plan, and five were

deemed to be normal.
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Figure 9.4 Scatter plots showing the relationship between objective parameters
as measured by the PeePod and subjective symptoms as measured by the IPSS
questionnaire, for (A) frequency, (B) weak flow and (C) nocturia. ρ and p denote
correlation according to Spearman’s rank correlation coefficient. Values represent
the number of overlapping points. For (C), the dotted line represents identity
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Existing
management

Suggested
management

Number of
patients

α-blocker Antimuscarinic 5

α-blocker 5α-reductase inhibitor 3

α-blocker Referral 1

Table 9.1 The existing and suggested management of nine patients whose PeePod
reports and relevant background were reviewed by a consultant urologist.

Case studies Three interesting case studies are presented on the following

pages to demonstrate the potential value of home urodiagnostics in the patients

studied. For each, the patient’s history and symptoms are described, followed by

a summary of findings from the PeePod report, plus discussion of the implications

of these results.
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CASE STUDY 1

History A 65 year old male with a two to three year history of urgency, urge

incontinence and nocturia three to four times a night. His symptoms as recorded

on an IPSS questionnaire were predominantly storage (urgency = 5, frequency

= 4, nocturia = 3) with voiding symptoms to a lesser extent (intermittency =

5, weak stream / straining = 2). The patient had a current prescription of an

α-blocker (tamsulosin) and 5α-reductase inhibitor (finasteride).

PeePod results Above average flow rate (median Qmax = 23 ml·s−1), highly

variable according to voided volume, with a large proportion of low volume

voids (median Vvoid = 180 ml) but normal bladder capacity (maximum Vvoid

= 375 ml). Flow curves appeared normal with no evidence of intermittency.

Median frequency was eight and nocturia, three.

Comments This patient’s prescribed medications indicate that he had been

managed according to a suspected diagnosis of bladder outlet obstruction. This

management decision may have been influenced by the apparent presence of

voiding symptoms, which were unsubstantiated by the PeePod data. The data

strongly suggest a case of overactive bladder; the patient could be managed

accordingly.
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CASE STUDY 2

History A 77 year old male complaining of difficulty initiating urination and

frequency. His IPSS questionnaire reported mild to moderate voiding symptoms

(intermittency = 3, weak stream = 1) and mild storage symptoms (frequency

/ nocturia = 1). The patient had been prescribed an α-blocker (tamsulosin).

PeePod results A maximum flow rate within the normal range, particularly

given the patient’s age (median Qmax = 21 ml·s−1). Consistently large voided

volumes (median Vvoid = 440 ml) and high bladder capacity (maximum Vvoid

= 900 ml). Flow curves appeared to be normal with little evidence of

intermittency. Normal frequency at four times per day.

Comments This man’s voiding symptoms could in part be due to distention

of the bladder past its most efficient point, given the consistently large voided

volumes. He could be counselled in this regard and reassured that his results

are normal.

Hour / Day
6 am
7 am
8 am
9 am

10 am
11 am

Midday
1 pm
2 pm
3 pm
4 pm
5 pm
6 pm
7 pm
8 pm
9 pm

10 pm
11 pm

Midnight
1 am
2 am
3 am
4 am
5 am
Total

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
424 ml

189 ml

183 ml

429 ml

437 ml

220 ml

191 ml

591 ml

143 ml

588 ml

609 ml

281 ml

576 ml

880 ml

505 ml

411 ml

724 ml

898 ml

395 ml

180 ml

501 ml

454 ml

309 ml

201 ml

391 ml

481 ml

384 ml

506 ml

1225 ml 1439 ml 2197 ml 2520 ml 1974 ml 1355 ml 1371 ml
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CASE STUDY 3

History A 73 year old male complaining of nocturia three times per night,

variable flow, hesitancy, and terminal dribbling. His IPSS questionnaire showed

mixed storage (frequency = 3, urgency = 1) and voiding (intermittency =

4, weak stream / straining = 2) symptoms. He had trialled an α-blocker

(tamsulosin) but discontinued this due to intolerable side effects such as

dizziness.

PeePod results A consistently low maximum flow rate (median Qmax =

6 ml·s−1, range 2 to 10 ml·s−1), particularly at high volumes, always with

terminal dribble, and an average flow time of over 90 seconds. Frequency

almost hourly on some days and nocturia three times per night. A normal

bladder capacity of 400 ml.

Comments The PeePod report strongly suggests a case of advanced bladder

outlet obstruction. The patient’s flow rate is very low with an obstructive

pattern. There is likely to be a degree of detrusor over- and underactivity

secondary to BOO. If the patient wished, it would be appropriate to refer him

to specialist care with a view to discussing surgical intervention, particularly

as he was unable to tolerate medical treatment.
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GP feedback Following completion of the study, the GPs leading the research

at each site were asked to provide feedback regarding the study, including the value

of the PeePod report, once annotated. Two provided a short statement to the

effect that patients found the device acceptable and easy to use. The remaining

more detailed responses are given below∗∗.

“I found the [PeePod] reports useful as they were an additional

diagnostic tool, enabled better evidence based treatment instead of a

trial of treatment, and improved the patients’ quality of life more quickly.

They also prevented the need for some referrals. Some examples:

[A] 65 year old man presented with [urgency] and occasional urge

incontinence. He had nocturia 3-4/night. I initially gave some lifestyle

advice and tamsulosin, but [on the basis of the PeePod report] I changed

him to an anticholinergic, and reinforced evening fluid reduction. His

symptoms had improved at the next appointment. I suspect I would have

got there in the end with trial and error but with PeePod I got there

quicker, with fewer appointments, and less cost of medication/time.

One report came back with a very high urine output so I discussed fluid

intake in detail and it did appear he was drinking excessive quantities of

fluids, these were reduced and symptoms improved.

One result came back as fairly normal, [although] the patient reported

poor flow and frequency, so they could be reassured without the need for

trying medications and referral.”

Dr Tom Schatzberger, Sele Medical Practice

∗∗ Redaction key: [ ] = word(s) inserted or replaced for clarity, ... = word(s) removed.
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“Broadly speaking [the PeePod] was universally embraced by the

patients as an interesting option. The ones who had previously had the

pleasure of a trip to the [urine flow clinic at the Freeman Hospital] were

very clear that it was preferable. They found it easy to use. From my

perspective the clinical insight offered by the team on the report was very

helpful and added weight to my attempts at managing their care in primary

care.”

Dr Matthew Thomas, Ponteland Medical Group

“[The] PeePod device was used with relative ease and no reported

problems in all of our patients... Suggestions fed back to us regarding

each patient were straightforward and useful. [It was] good to be able to

reassure one patient that his flow rate was actually within normal limits

rather than his perception that it was slow. [It was] also useful to be

advised that another patient’s symptoms were suggestive of [detrusor

overactivity] according to his PeePod result ... enabling us to give

appropriate lifestyle advice and consider bladder training.”

Dr Nick Hargreaves, Burn Brae Medical Group

Patient opinion The median ‘burden score’ was 0 (Not at all burdensome)

(range 0 to 3), indicating that all participants experienced very little inconvenience

when using the PeePod at home. The median ‘willingness to repeat’ score was 10

(Very willing) (range 2 to 10); all but five patients gave a score of 10. The results

are shown in Figure 9.5. There was no difference between the scores from these

patients and those from patients recruited from secondary care, as described in

Section 7.3.1 (page 135) (Mann-Whitney U, p = 0.8 and 0.9).
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Figure 9.5 PeePod burden (brown) and willingness to repeat (blue) scores from
each participant as recorded on a questionnaire. Patients are ordered by increasing
burden followed by decreasing willingness to repeat.

9.3.3 Discussion

What could home urodiagnostics contribute to the primary care

assessment of men with LUTS? Once serious disease has been ruled out,

GPs are often left with the decision to focus upon treating either the prostate or

the bladder. Treatment for obstruction is more effective in those with a low flow

rate, hence clinical trials exclude those with Qmax above a certain threshold. The

same applies to treatment for overactivity in relation to storage symptoms such

as frequency and nocturia; a lower limit is often applied. Therefore, knowledge of

parameters such as flow rate, frequency and nocturia would be of great benefit to

GPs for the initial assessment of men with LUTS.
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An appreciation of a patient’s storage difficulties can be obtained from their

description of such. Patients are rather good at estimating how often they pass

urine during the day and night, probably owing to the impact of this on their

quality of life. This is reflected by reasonable agreement (and low p-values)

between subjective and objective measures of frequency and nocturia in this study,

despite the small sample size (Figure 9.4A and Figure 9.4C).

The same could not be said for patients’ own evaluation of their flow rate

(Figure 9.4B), and other investigators have drawn the same conclusion on the

basis of much larger studies (Reynard et al., 1998; de la Rosette et al., 1998).

This could be an important contributing factor towards the high failure rate of

α-blocker medication, estimated to be around 50 % if prescribed in primary care

on the basis on symptoms rather than flow rate (Norg et al., 2006). Therefore,

objective measurement of a patient’s flow rate, along with its relation to voided

volume and storage parameters, could be an extremely valuable early tool.

One may argue that a conventional frequency-volume chart plus office-based urine

flow test is equally valuable. However, firstly, a conventional flow test does not

lend itself to being administered within primary care. GPs may at present request

the test for patients under their care from a secondary care provider, but as there is

little incentive to do so rather than refer, this is rare. Just one man in our prostate

assessment audit had performed a urine flow test prior to referral. Secondly, a

combined electronic report enables automated analysis, which, as discussed below,

may be crucial. Thirdly, certain information which proved to be valuable during

this study is only determinable from multiple measurements of flow.

By way of example, three case studies were presented, illustrating the value

of home urodiagnostics in the early assessment of men with LUTS. The

first demonstrated how GPs could be directed towards the most appropriate

management strategy, in this case away from that of obstruction and towards
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overactivity. The second man could be reassured that his urinary function was

normal. It is not just about avoiding referrals, but also expediting the referral

of those who truly warrant it, as in the third case. According to one urologist

who examined all 23 cases, over a third were likely to have gained from a different

management strategy.

Appreciation of these benefits was shared by the GPs involved in the feasibility

study. They described arriving at the correct management decision more quickly,

improving efficiency by avoidance of ineffective medications resulting from ‘trial

and error’, and having the confidence to reassure men whose results were normal.

However, an important observation was made. They requested that the reports

include expert interpretation, and in fact felt otherwise unable to comment on

their utility.

This raises the following question: If home urodiagnostics was to become available

within primary care, would it suffer the same fate as frequency-volume charts: a

valuable and yet, due to the investment required to understand and interpret

them, underused tool?

Interpretation Any new tool requires investment of resources for development

and testing of training strategies and materials. It may be possible to train all

GPs in the full interpretation of home urodiagnostic data. However, given the

issues discussed in Section 9.2.3, this seems impractical and therefore unrealistic.

An alternative, and perhaps more feasible, approach could be for this role to fall

to one accredited GP with a Special Interest†† (GPwSI) for each practice or group

of associated practices, to whom men with LUTS were directed. (Although, at

the time of writing there was no GPwSI framework for urology.)

†† http://www.rcgp.org.uk/clinical-and-research/clinical-resources/gp-with-a-special-
interest-gpwsi-accreditation
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A third option would be for home urodiagnostic data to be interpreted by a

specialist and a recommendation returned to primary care, the model tested

during this study. This would appear to be an ideal scenario for GPs; they could be

extremely confident in the decisions made, whilst retaining patient management

within primary care. It remains to be seen how urologists would perceive this

arrangement.

Finally, the nature of home urodiagnostic data allows a degree of automated

analysis. A number of the early investigations performed commonly for men with

LUTS are relatively simple to interpret. PSA is compared to an age-dependent

threshold (Table 3.2, page 43); a high level may indicate cancer. Serum creatine

is compared to a normal range; a high level may indicate renal disease. For DRE,

the prostate is reported as either nodular (cancer?) or smooth, enlarged (BPE?)

or small. At the very least, home urodiagnostic parameters could be reported

with respect to normal ranges, and abnormal values flagged.

Slightly more involved, but feasible, would be to include recommendations based

upon the data. Unfortunately, the workings of a urologist’s brain cannot be

translated into an algorithm, but simple guidance may be sufficient to lead GPs

through conservative management options. Suggested strategies could be built

into nomograms such as that illustrated in Figure 9.6: a plot of median Qmax

versus 24 hour frequency separating likely cases of normal, overactive, obstructed,

and mixed. Volume-related observations could be covered by alerts, such as the

following:

! Polyuria - discuss fluid intake.

! Low voided volumes - consider bladder training.

! Nocturnal polyuria - consider an afternoon diuretic.
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The complexity would lie in prioritisation of recommendations where multiple

parameters fell outside normal ranges, and accounting for situations in which

previous treatments had failed. Of course, any such tool would require extensive

development and testing.
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Figure 9.6 An example of a simple draft nomogram that could translate home
urodiagnostic data into basic recommendations for patient management. The red
marker indicates the patient’s position on the nomogram.

9.4 Conclusion

According to NICE, at present, three quarters of men who consult their GP due to

LUTS are referred for specialist assessment, but over 60 % of those referred could

be managed conservatively (National Institute for Health and Clinical Excellence,

2013). Therefore, those in primary care are likely to come under increasing

pressure to improve the management of men with LUTS without referral to

secondard care.
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The combination of home urodiagnostics with symptom scores, PSA and DRE

appears to be a powerful tool to guide the initial management of men with LUTS.

However, GPs are unlikely to adopt a technology that requires a large amount of

time or expertise to administer. The success of a device such as the PeePod in

this environment would require careful consideration and evaluation of models of

implementation, particularly surrounding interpretation of the resulting data.
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Chapter 10

Conclusion

10 Conclusion

10.1 Summary of conclusions, strengths and limita-

tions

The aim of this thesis was to investigate the value of home urodiagnostics in the

assessment of men with lower urinary tract symptoms.

A review of the literature revealed a host of devices previously used to measure

flow in the home. None fulfilled guideline recommendations whilst being

designed and costed for widespread use. A small number of underpowered

studies reported that an individual’s average Qmax had no better diagnostic

accuracy for obstruction than a single value. Although the review was conducted

systematically, heterogeneity in the designs of studies identified did not allow

meta-analysis.

A novel, theoretical method of calculating the accuracy of a meanQmax to diagnose

bladder outlet obstruction was presented. This predicted benefit for thousands

of men in the UK per year. Similarly, the capability of single and average values

of Qmax to measure the effect of medical treatment on flow rate was calculated.

This showed that the use of conventional uroflowmetry to measure medication
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effect is unwarranted. Substantial improvement was predicted when multiple

measurements are averaged in an individual. Confidence in the knowledge that

medical treatment has had a measurable effect on the LUT would no doubt benefit

both clinicians and patients. Although the spread of flow rates were later found

to be non-Gaussian in some patients, introducing a potential source of error in

these calculations, this was an elegant method of estimating the clinical accuracy

of multiple measurements of flow.

In the remaining chapters of this thesis, a novel device was used to obtain home

urodiagnostic information in patients. A comparison of home and conventional

urodiagnostics in a group of men with LUTS revealed undeniable patient

preference towards home-based assessment. Flow rates recorded in the clinic were

significantly lower than those at home, a concern for interpretation of clinic voids.

Diagnostically, there was increased confidence amongst surveyed clinicians in

home data without a corresponding increase in consistency of diagnosis. Perhaps

the clinical significance of these new data is not yet known; its potential value is

not being maximised. It would have been advantageous if the true urodynamic

diagnosis for each patient was known, allowing more conclusive analyses.

Next, home urodiagnostics was performed by a group of men before and after

disobstructive outlet surgery. This revealed for the first time that 20 % of

participants did not experience an improvement in flow rate, an extremely

surprising result. This statement may come under criticism from the clinical

perspective, disputable as it may be, that only obstructed men will experience

benefit from surgery. Again, to silence those critics, the study design would

have gained from urodynamic confirmation of obstruction in each participant.

This study showed home urodiagnostics to be a highly sensitivite tool to measure

objective outcome from treatment of obstruction in an individual and a group.
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Multiple measurements allowed calculation of parameters which may better

separate obstructed and unobstructed patients than flow rate alone. The

parameter that changed in the highest proportion of patients, and best predicted

subjective outcome, was the predicted value of Qmax at Vvoid = 200 ml according

to the linear regression relationship for Qmax versus Vvoid . This, along with

alternative methods of quantifying the relationship between Qmax and Vvoid ,

should be further investigated and evaluated in larger samples under more strict

inclusion criteria.

Finally, home urodiagnostics was evaluated in a primary care setting, where at

present most men with LUTS are treated empirically with an α-blocker. The

results suggested that the addition of flow and volume data would help to guide

GPs to the most appropriate management decision more quickly and with greater

confidence, be that treatment for obstructions or overactivity, reassurance or

referral. It is in this setting, perhaps, where home urodiagnostics shows most

promise.

The patients recruited into the studies described in this thesis had varying

underlying causes of LUTS. Inability to relate home urodiagnostic observations

to specific disease mechanisms made interpretation of the results difficult at

times. In retrospect, a study of home urodiagnostic data in a cohort with

known urodynamic diagnoses may have been the best place to start. However,

this would have presented practical issues given that relatively few men undergo

urodynamic investigation, and even fewer emerge with a single definitive diagnosis.

Further, the ability of urodynamic observations to predict surgical outcome is itself

unproven and under question.

The PeePod has now had extensive clinical field testing in the patients for whom

it is intended. Aside from this research, the device was specifically requested

for clinical use in four patients who were unable to pass urine in the flow clinic.
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Overall, the device was used by more than 100 patients with a success rate of over

99 %. This included one patient with Alzheimer’s disease and another in his 10th

decade of life. It is clearly fit for purpose.

In conclusion, this work has shown that home urodiagnostics is a feasible

alternative to conventional assessment and should improve the experience of men

under assessment for LUTS. Larger clinical investigations should be performed to

verify the beneficial effects measured and predicted within this thesis.

10.2 The future

The next step, therefore, will be to conduct a clinical trial using patient

reported outcome in the most appropriate setting. A robust and adequately

powered study, in which patients are randomised between home urodiagnostic

and conventional assessment, should enable evidence-based recommendations to

be made by decision-making bodies such as NICE. Application processes are

underway for a randomised controlled trial involving patients referred to our

secondary care benign prostate assessment clinic. Outcome measures will include

symptomatic outcome, as measured by the IPSS questionnaire, and test efficiency,

defined as the percentage of tests completed successfully according to a set of

clinically important criteria. We hope that independent groups will conduct

their own research into home urodiagnostics to further validate our findings. As

an aside, a large database of normative home urodiagnostic data would also be

beneficial.

On a slightly different note, there has been interest over the years in the PeePod’s

suitability for use in adult females and paediatrics. Flow rate measurements

are often performed for men in order to discern an obstructive pattern. Whilst

obstruction of the female bladder outlet can occur, urogynaecology is chiefly

concerned with the opposite complaint: incontinence. Therefore, measurements
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of flow rate are of less value in female patients, who make up around one in ten

visits to the flow clinic. However, the electronic voiding diary may be of more

worth. The next engineering challenge could be to adapt the device with use by

women (ShePod?) or children (PeeweePod?) in mind.

Regarding the future of home urodiagnostics in general, it is likely to gain

momentum from the current trend towards home health and telemonitoring. As

the next generations age, their adeptness with, and reliance upon, ‘personal digital

assistants’ will no doubt bring about further change to diagnostics and health

monitoring. A variety of healthcare ‘apps’ are already available, allowing users to

monitor sleep patterns, diet and exercise, and a multitude of symptoms, to name

but a few. Urology is no exception, with the recent development of several digital

voiding diaries∗. In addition to voided volumes, these allow symptoms and other

important information such as episodes of incontinence and sensations of urgency

to be documented. One can envisage in the near future a union of services like

these and devices such as the PeePod, giving a complete picture of a patient’s

LUTS in one place. Careful consideration would then need to be given to how

this new combination of information is utilised.

10.3 Concluding message

The science of medicine is so often concerned with the big picture, clinical trials

and overall trends, which masks the story of each patient. New methods by which

we can study patients in more detail allow us to better understand their condition.

After all, shouldn’t healthcare be about the individual?

∗ Examples include http://www.ip-voiding-diary.com, http://www.elaros247.org.uk/services/,
and http://www.urologysite.com/ElectronicBladderDiary.
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de la Rosette JJMCH, Witjes WPJ, Schäfer W, Abrams P, Donovan JL, Peters TJ,

Millard RJ, Frimodt-Møller C, and Kalomiris P. Relationships between lower

urinary tract symptoms and bladder outlet obstruction: Results from the

ICS-‘BPH’ study. Neurourology and Urodynamics, 17(2):99–108, 1998.

de la Rosette JJMCH, Alivizatos G, Madersbacher S, Rioja Sanz C, Nordling J,

Emberton M, Gravas S, Michel MC, and Oelke M. EAU guidelines on benign

prostatic hyperplasia. European Urology, 40(3):256–264, 2001.

de Nunzio C, Franco G, Rocchegiani A, Iori F, Leonardo C, and Laurenti C. The

evolution of detrusor overactivity after watchful waiting, medical therapy

and surgery in patients with bladder outlet obstruction. Journal of Urology,

169(2):535–539, 2003.

Department of Health. Payment by Results tariff information spreadsheet for 2012

to 2013, February 2012. URL https://www.gov.uk/government/uploads/

system/uploads/attachment data/file/216214/dh 133578.xls.

Djavan B, Chapple C, Milani S, and Marberger M. State of the art on the efficacy

and tolerability of alpha1-adrenoceptor antagonists in patients with lower

urinary tract symptoms suggestive of benign prostatic hyperplasia. Urology,

64(6):1081–1088, 2004.

217

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216214/dh_133578.xls
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216214/dh_133578.xls


Drach GW and Binard W. Disposable peak urinary flowmeter estimates lower

urinary tract obstruction. Journal of Urology, 115(2):175–179, 1976.

Feneley MR, Dunsmuir WD, Pearce J, and Kirby RS. Reproducibility of uroflow

measurement: Experience during a double-blind, placebo-controlled study

of doxazosin in benign prostatic hyperplasia. Urology, 47(5):658–663, 1996.

Folkestad B and Spangberg A. Validation of timed micturition: A comparison

of flow rates measured at home manually and electronically. Scandinavian

Journal of Urology and Nephrology, 38(5):385–390, 2004.

Fowler CJ, Griffiths D, and de Groat WC. The neural control of micturition.

Nature Reviews Neuroscience, 9(6):453–466, 2008.

Gammie A, Clarkson B, Constantinou C, Damaser M, Drinnan M, Geleijnse G,
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A1 Intellectual property

A1.1 Patent

Title Urine flow measuring apparatus

Application numbers UK: 1113749.4

International: PCT/GB2012/051941

Priority date 10/08/2011

Applicant Newcastle upon Tyne Hospitals NHS Founda-

tion Trust

Inventors Michael Whitaker

Michael Drinnan

Alison Bray

Clive Griffiths

Robert Beckwith
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A1.2 Trademark

Mark text PeePod (text only)

Status Registered

Class 10 - Surgical, medical, dental and veterinary

apparatus and instruments, artificial limbs,

eyes and teeth; orthopaedic articles; suture ma-

terials; sex aids; massage apparatus; supportive

bandages; furniture adapted for medical use.

Filing date 11/05/2010

First advert Journal 6846

Publication date 30/07/2010

Registration date 08/11/2010

Next renewal date 11/05/2020

List of goods or services Class 10 - Medical apparatus, instruments and

devices; urine flowmeters; parts and fittings for

the aforementioned goods.

Proprietor Newcastle upon Tyne Hospitals NHS Founda-

tion Trust

ADP number 0970114001
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