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ABSTRACT 
 
Ageing is associated with the functional decline of both haematopoietic stem and 
endothelial progenitor cells (HSPCs and EPCs), leading to an imbalance between cellular 
damage and repair.  Telomeres are the end caps of chromosomes that maintain 
chromosomal integrity and shorten with age.  Telomerase is the enzyme responsible for 
telomere replication.  The absence of telomerase leads to premature ageing.  Oxidative 
stress as well as metabolic stress and short telomeres are key contributors to the 
manifestation of different age-related diseases.  However, the exact effect of these factors 
on HSPCs and EPCs is not clear.  
 
The effects of metabolic stress were studied by the addition of different glucose 
concentrations to low passage (early) cells in culture.  Metabolic stress impaired the 
growth of EPCs and CD34+ HSPCs.  There was no change in telomerase enzyme activity 
under metabolic stress in CD34+ HSPCs.  However, metabolic stress upregulated the 
metabolic co-activator PGC-1α in EPCs but not in CD34+ HSPCs. 
 
The effects of oxidative stress were investigated by incubating peripheral blood EPCs, 
and cord blood CD34+ expanded HSPCs under 40% O2 in culture.  While early EPCs 
show resistance to oxidative stress, CD34+ HSPCs showed impaired growth and 
differentiation potential.  This impairment was associated with increased telomerase 
activity, no changes to TERT or TERC expression, and maintenance of telomere length.  
Oxidative stress limited CD34+ HSPC myeloid differentiation.  In particular, CD15+ 
granulocytes were more sensitive to oxidative stress than CD14+ monocytes.  
Furthermore, CD15+ granulocytes reduced the expression of TERC during myeloid 
differentiation.  In contrast to CD34+ HSPCs under growth conditions, there was no 
increase in telomerase activity during myeloid differentiation under oxidative stress. 
 
To investigate the effects of ageing in vivo with telomerase dysfunction, HSPCs from 
bone marrow of aged telomerase deficient TERT-/- and TERC-/- first generation mice 
were studied.  Ageing resulted in the accumulation of Lineage-Sca-1+CKit+ stem cells and 
CFU-GM colonies in wild type mice.  TERT-/- mice without telomere shortening showed 
a normal phenotype at young age (1.5-7.5 months) and augmented ageing of bone 
marrow with increased age (22 months).  On the other hand, TERC-/- mice with short 
telomeres led to a premature ageing bone marrow phenotype, even at young ages (8-12 
months).  Interestingly, both TERT-/- and TERC-/- showed more erythroid progenitor 
colonies.  Furthermore, short- (7 months) and long-term (16 months) dietary restrictions 
ameliorated the ageing bone marrow phenotype.  
 
Together, the data presented demonstrates the damaging effect of oxidative and metabolic 
stress on humans in early EPCs and CD34+ HSPCs.  In a mouse model, normal ageing 
disrupted HSPCs.  Telomerase deficiency augmented normal ageing, whilst short 
telomeres appear to be a major determinant of ageing.  These ageing phenotypes in mice 
can be ameliorated by dietary restriction. 
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Chapter 1 Introduction 

1.1 Ageing 
Ageing is commonly characterised as generalised progressive impairment of function 

leading to an increased vulnerability to environmental challenges and the risk of death 

and disease.  Ageing affects most living organism and is also associated with a decrease 

in fertility.  Ageing corresponds with molecular damage in lipids, proteins, and nucleic 

acids with the failure of maintenance and repair.  These are the basis of all age-related 

diseases which gerontology research is aimed to understand in order to increase the 

lifespan and improve the quality of life during old age (Rattan and Kassem, 2006).  

Although there is a clear heritable aspect in human longevity (Cournil and Kirkwood, 

2001), the ageing phenotype significantly differs, even between monozygontic human 

twins (Herskind et al., 1996). 

Among the numerous ageing theories is the mitochondrial free radical theory of ageing 

(or oxidative stress theory) put forward by Harman (1956).  This theory states that ageing 

organismal deterioration occurs as a consequence of free radical-mediated damage, which 

gradually compromises the function of cells, tissues, and, eventually, the organism.  

Oxidative stress is known to induce reactive oxygen species (ROS), mainly by-products 

of mitochondria, including superoxide anion (O2•
-), hydroxyl radical (•OH), and 

hydrogen peroxide (H2O2).  The accumulation of ROS causes oxidative stress during 

which redox balance between oxidants and antioxidants is disrupted, leading to oxidative 

cellular damage, senescence, and apoptosis and, eventually, to ageing.  Numerous data 

are in support of mitochondrial free radical theory.  For example, metabolic syndrome 

patients showed a significant increase in oxidative stress (Hansel et al., 2004).  However, 

the mitochondrial free radical theory is under an intense re-evaluation due to recent 

multiple data that challenged the theory (Hekimi et al., 2011).  Specifically, the 

unexpected observations challenging the theory include the following: 1) ROS may 

prolong the lifespan in yeast and worms (Van Raamsdonk and Hekimi, 2009; Mesquita et 

al., 2010); 2) genetic manipulations which impair mitochondrial but do not elevate ROS 

accelerate ageing (Hiona et al., 2010); 3) genetic manipulation in mice which increases 
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mitochondrial ROS, and oxidative damage does not accelerate ageing (Van Remmen et 

al., 2003); and 4) increased antioxidant defences in mice do not extend lifespan (Perez et 

al., 2009).  These controversies lead to the emergence of new theories, mainly based on 

the notion that, despite their deleterious role, ROS are essential in signalling molecules.  

In this sense, ROS’s primary effect will be the activation of a compensatory homeostatic 

response, which as age advances, ROS accumulates and eventually aggravates, leading to 

age-associated damage (Hekimi et al., 2011). 

1.1.1 Age-related diseases  

There are 10.8 million people aged 65 or above in the UK who are expected to pass the 

20 million mark by 2031, according to the Office for National Statistics in the UK 

(2013).  In the last three generations, a significant increase of human life expectancy was 

achieved by a reduction in birth-related deaths and as a result of improvements in health 

interventions.  The risks of age-associated conditions, such as infections, frailty, cancers, 

anaemia, autoimmune diseases, cardiovascular diseases, and diabetes, may be high with 

this rapid rise of aged populations (Rattan and Kassem, 2006).  Among the common age-

related diseases is the metabolic syndrome, which is associated with different 

cardiovascular risk factors, such as hypertenstion, obesity, atherogenic dyslipidemia, 

insulin resistance, and glucose intolerance.  These risk factors ultimately lead to abnormal 

lipid and carbohydrate metabolism and increase the chances of atherosclerosis, diabetes, 

stroke, and cardiovascular disease (C. K. Roberts and Sindhu, 2009). 

Diabetes encompasses a group of metabolic diseases characterised by high blood glucose 

that is the result of either insufficient insulin production (Type 1) or cells resistant to the 

production of insulin (Type 2).  Diabetes can also occur only during pregnancy 

(gestational diabetes), which might proceeds to type 2.  Nowadays, the advanced medical 

therapies along with the discovery of insulin have improved the life expectancy and 

quality of life for patients with type 1 and 2 diabetes.  However, the majority of these 

patients will develop chronic diabetic complications over the years that will lead to 

mortality and morbidity.  There are several diabetic complications, including 

macrovascular events that lead to accelerated atherocelrosis and microvascular events 

that affect the nervous system (neuropathy), kidneys (nephropathy), and eyes 
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(retinopathy) (Kojima et al., 2014).   Hyperglycemia is the underlying cause of these 

complications that occurs possibly via inducing dyregulated biochemical pathways that 

cause injury and death in the affected organs.  In diabetic nephropathy, hyperglycemia 

stimulate mesangial cell proliferation and hypertrophy with the accumulation of an 

excessive extracellular matrix and the thickening of the glomerular basement membrane.  

It further leads to the loss of podocytes, tubular hypertrophy, and the thickening of the 

tubular basement membrane (Kanwar et al., 2011).  Whereas in diabetic retinopathy, 

hyperglycemia lead to the secretion of vasoregulatory factors from Muller cells and the 

loss of pericytes and endothelial cells, causing acellular capillary formation without 

perfusion (Hammes et al., 2011).  Furthermore, hyperglycemia in diabetic peripheral 

neuropathy disrupts endothelial cells of the vasa nervorum in the peripheral nerves, 

neurons, and Schwann cells (Vincent et al., 2011).  The bone marrow was not considered 

a target organ for chronic diabetic complications until recently.  It has been observed that 

endothelial progenitor cells (EPCs) and haeamtopoietic stem and progenitor cells 

(HSPCs) decreased in diabetic humans and rodents (Fadini et al., 2005; Fadini et al., 

2006b).  This implies their potential involvement in the manifestation of diabetes. 

1.1.2 Cellular mechanisms of ageing 

There are several complex mechanisms underlying ageing and hallmarks, including the 

loss of proteostasis, epigenetic alterations, genomic instability, and, of particular interest 

to this thesis, mitochondrial dysfunction, deregulated nutrient sensing, altered 

intercellular communication, cellular senescence, telomere attrition, and stem cell 

exhaustion (Lopez-Otin et al., 2013).   

Mitochondrial dysfunction can contribute to ageing as direct evidence in mice showed 

that proofreading deficiency by mutated mitochondrial DNA polymerase γ (POLG) can 

cause a number of age-related changes, such as a reduced lifespan, anaemia, hair loss, 

osteoporosis, the induction of apoptosis markers in different tissues, and reduced fertility 

(Trifunovic et al., 2004; Kujoth et al., 2005).  It has been shown that the impaired 

mitochondrial function in these mice was, unexpectedly, not accompanied with increased 

ROS production (Hiona et al., 2010).  Furthermore, it has been reported that reduced 

mitochondrial biogenesis can occur as a consequence of telomere attrition in telomerase 
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deficient mice heart, liver, and HSCs with subsequent p53-mediated suppression of the 

transcriptional coactivators Peroxisome Proliferator-Activated Receptor Gamma (PPAR

�)-Coactivator-1� (PGC-1�) and -�(Sahin et al., 2011).  During physiological 

ageing, this mitochondrial decline occurs in wild type mice and can be partially reversed 

through the activation of telomerase (Bernardes de Jesus et al., 2012).  PGC-1� is a 

master regulator of a complex metabolic response involved in mitochondrial biogenesis 

such as mitochondrial DNA (mtDNA) replication and transcription and mitochondrial 

respiration (Wu et al., 1999). Mitochondrial biogenesis can be modulated by SIRT1 

through a process involving PGC-1� (Rodgers et al., 2005).  In fact, it has been shown 

recently that PGC-1� is reduced in wild type mice muscle with ageing and that in ageing 

mice, the muscle-specific knockout of PGC-1� impaired glucose tolerance and led to 

insulin resistance and inflammatory markers in liver and white adipose tissue (Sczelecki 

et al., 2014). 

Deregulated nutrient sensing during ageing can involve four main pathways; insulin- 

and IGF-1 signalling (IIS), mTOR (mammalian target of rapamycin), sirtuins, and AMPK 

(adenosine monophosphate AMP-activated protein kinase).  In mammals, the 

somtotrophic axis consists of the growth hormone (GH), produced by the anterior 

pituitary gland, and its secondary mediator IGF-1 (insulin-like growth factor-1), produced 

in response to GH by many cell types, though mostly hepatocytes.  The IGF-1 

intracellular signalling pathway is the same as the one triggered by insulin, which informs 

cells of a glucose presence.  This is the reason this pathway was called the “insulin and 

IGF-1” IIS pathway (Barzilai et al., 2012).  Mutations or genetic polymorphisms that 

reduce the IGF-1 receptor, GH, insulin receptor, or downstream effectors (e.g., FOXO 

(forkhead box), mTOR, and AKT (protein kinase B)) have been linked to longevity in 

model organisms and humans (Barzilai et al., 2012).  GH and IGF-1 levels decline during 

normal ageing and, paradoxically, in mouse models with premature ageing (Schumacher 

et al., 2008). These contradictory observations can be accommodated in a model where 

IIS downmodulation can reflect a defensive response to systemic damage that aims to 

minimise cell metabolism and growth (Garinis et al., 2008).  However, extremely lower 

low levels of IIS signalling are incompatible with life, as seen by PI3K or AKT kinases 

null mice are embryonically lethal (Renner and Carnero, 2009).  Furthermore, 
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supplementation with IGF-1 in progeroid mice can ameliorate premature ageing (Marino 

et al., 2010). 

The mTOR is part of two multiprotein complexes, mTORC1 and mTORC2.  mTOR is a 

kinase that regulates signals for cell growth control in response to nutrients and 

essentially all aspects of anabolic metabolism.  This pathway is widely studied due to its 

important role in cancer development and apoptosis.  It has been shown that mTOR 

signalling activation increases proliferative capacity of cancer cells and reduces apoptosis 

(Morgensztern and McLeod, 2005).  Furthermore, it has been reported that mTOR can act 

as a link between energy and nutrients signalling pathways (Tokunaga et al., 2004).  

Several studies suggested that the mTOR pathway inhibition extends the lifespans of 

yeast, flies, worms, and mice (Hansen et al., 2008; Selman et al., 2009; Bjedov et al., 

2010).  Although the inhibition of TOR activity retards multiple aspects of ageing, it also 

has undesirable side effects, such as insulin resistance, testicular degeneration, cataracts, 

and impaired wound healing (Wilkinson et al., 2012).   

In contrast to IIS and mTOR, the nutrient sensors sirtuins and AMPK signal nutrient 

catabolism and scarcity rather than nutrient anabolism and abundance.  Thus, their 

upregulation favours healthy ageing.   

Sirtuins are members of NAD (aldehyde dehydrogenase)-dependent protein deacetylases 

and ADP ribosyltransferases which have been studied extensively due to their anti-ageing 

potential.  An extra copy of SIR2 has been shown to extend the lifespan in yeast, worms, 

and flies (Kaeberlein et al., 1999; Tissenbaum and Guarente, 2001; Rogina and Helfand, 

2004).  SIRT1 can deacetylate and activate PGC-1α (Rodgers et al., 2005).  Furthermore, 

overexpression of SIRT3 has been shown to improve the regenerative capacity of aged 

HSCs in mice (Brown et al., 2013).   

AMPK is regarded as the “fuel gauge” of the cell which is activated by the increase of 

cellular ratio of AMP+ADP to ATP.  The activation of AMPK has multiple effects on 

metabolism, shuts off mTORC1 (Alers et al., 2012), and may mediate lifespan extension 

in  worms and mice (Onken and Driscoll, 2010; Anisimov et al., 2011).  Moreover, it has 

been reported that SIRT1 and AMPK can engage in a positive feedback loop and hence 

act in a unified response, connecting both sensors of low-energy (Price et al., 2012). 
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The altered intercellular communication involves more inflammation during ageing or 

‘inflammageing,’ which is defined as a pro-inflammatory phenotype accompanying 

ageing in mammals.  This inflammageing interconnects with dysfunctional immune 

system cells or immunosenescence, leading to the failure of clearing out infectious agents 

and infected cells.  Furthermore, inflammation is involved in the pathogenesis of several 

age-related diseases including obesity, type 2 diabetes, and atherosclerosis (Franceschi et 

al., 2000).  The presence of pro-inflammatory phenotype is evident by (1) higher 

expression of genes linked to immune responses and inflammation in the tissues of old 

humans and mice (Csiszar et al., 2003; de Magalhaes et al., 2009), (2) increased levels of 

cytokines (Fagiolo et al., 1993), and (3) activation of the master regulator of 

inflammatory responses NF-κB (Helenius et al., 1996). 

Cellular senescence can be defined as a signal transduction program that leads to 

irreversible growth arrest associated with morphological changes in cells and structural 

changes in nuclear chromatin (Shay and Roninson, 2004). Cellular senescence was 

originally described by Leonard Hayflick, who first observed that human fibroblasts stop 

dividing after approximately 50 population doublings known as the “Hayflick limit” 

(Hayflick and Moorhead, 1961).  When dividing, cells are marked by decline in the 

proliferative potential (replicative senescence) triggered by critically shortened end caps 

of chromosomes termed telomeres (Harley et al., 1990).  Cell division in a mammalian 

organism requires the duplication of its chromosomal DNA.  DNA polymerases lack the 

capacity to completely replicate the terminal ends of linear DNA molecules called 

telomeres—a function performed by a specialized DNA polymerase known as 

telomerase.  However, as most somatic cells do not express telomerase, this leads to the 

progressive loss of telomere-protective sequences from chromosomal ends, to the 

reaching of the Hayflick limit, and, eventually, to becoming senescent (Olovnikov, 1996).  

However, there are other ageing-associated stimuli that trigger cellular senescence like 

non-telomeric DNA damage and derepression of the INK4/ARF locus, also called 

CDKN2a and CDKN2b (encodes for p16INK4a and P19ARF).  The most important 

mechanisms, which implement senescence in response to an oncogenic insult, include 

p16INK4a/Rb and p19ARF/p53 pathways (Serrano et al., 1997).  Strikingly, the levels of 

p16INK4a and, to a lesser extent, P19ARF correlate to the age of all tissues analysed in both 
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humans and mice (Krishnamurthy et al., 2004; Ressler et al., 2006).  INK4a/ARF locus 

was identified with the highest number of age-associated pathologies like Alzheimer’s 

disease, glaucoma, cardiovascular diseases, and diabetes (Jeck et al., 2012).  

Nevertheless, an additional copy of the INK4/ARF locus in transgenic Super-Ink/Arf 

mice can protect against the age-associated alterations in glucose homeostasis with 

enhanced sensitivity and signalling and lower glucose levels (Gonzalez-Navarro et al., 

2013).  These studies suggest that the activation of INK4a/ARF can be a beneficial 

compensation response to avoiding the spread of damaged cells and their effects on 

ageing and disease. 

Telomere shortening is observed in the normal ageing of mice and humans (Flores and 

Blasco, 2010). In humans, telomerase deficiency is associated with the premature 

development of diseases that involve the loss of the regenerative capacity of different 

tissues such as aplastic anaemia (Vulliamy et al., 2002), pulmonary fibrosis (Armanios et 

al., 2007), and dyskeratosis congenita (Vulliamy et al., 2001).  Mice that are genetically 

modified with shortened or lengthened telomeres exhibit shorter or longer lifespans, 

respectively (Blasco et al., 1997; Herrera et al., 1999; Rudolph et al., 1999; Tomas-Loba 

et al., 2008). A recent study had shown that ageing could be reverted by telomerase 

activation in aged mice (Jaskelioff et al., 2011).  Furthermore, the systemic viral 

transduction of telomerase can delay normal physiological ageing in adult wild type mice 

without increasing the incidence cancer (Bernardes de Jesus et al., 2012).  A recent meta-

analysis in humans was in favour of a strong relation between risk of mortality and short 

telomeres, particularly at younger ages (Boonekamp et al., 2013). 

Among the most obvious characteristics of ageing is the regenerative decline of tissues, 

which is implied by stem cell exhaustion.  The decline of haematopoiesis with age leads 

to less production of adaptive immune cells (immunosenescence) and therefore to 

increased incidence of myeloid malignancies and anaemia (Franceschi et al., 2000).  

Aged mice have shown an overall decrease in cell cycle activity of haematopoietic stem 

cells (HSCs) with fewer cell divisions in old HSC compared to young ones and with the 

accumulation of DNA damage (Rossi et al., 2007).  It has been shown that the 

overexpression of inhibitory proteins of the cell cycle, such as p16INK4a, also correlates to 

DNA damage.  Old INK4a-/- HSCs showed increased cell cycle activity and enhanced 
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engraftment compared with old wild type HSCs (Janzen et al., 2006).  Stem cell decline 

is also caused by telomere shortening with ageing in multiple tissues (Flores et al., 2005; 

Sharpless and DePinho, 2007).  Furthermore, the quiescence of stem cells has been 

shown to be important for their long-term functionality.  In Drosphila intestinal stem 

cells, the excessive proliferation of these cells has led to premature exhaustion and 

premature ageing (Rera et al., 2011).  Similar findings were observed in p21-/- mice, 

which led to HSCs (Cheng et al., 2000) and neural stem cells’ (Kippin et al., 2005) 

premature exhaustion.  In particular, p21-/- mice maintained HSCs quiescence and 

increased their numbers, however, in serial transplantation, their self-renewal ability was 

impaired (Cheng et al., 2000).  It has recently been shown that LT-HSCs (long-term 

reconstituting haematopoietic stem cells), upon irradiation, activate the cell cycle 

inhibitor p21 independently of p53.  This upregulation of p21 inhibited p53 induction and 

prevented apoptosis (Insinga et al., 2013).  Thus, these studies indicate that the long-term 

maintenance of the organism requires a balance in the proliferation of stem and 

progenitor cells as excessive proliferation can lead to the exhaustion of stem cell niches.  

Recent work has supported the importance of extrinsic pathways in the decline of stem 

cell function.  Interestingly, the extrinsic stem cell environment rather than telomere 

dysfunction impaired lymphopoiesis during the transplantation of mice with telomere 

shortened bone marrow (BM) cells (G3 TERC-/-) compared to controls (Song et al., 

2010).  When muscle-derived stem cells from young mice were transplanted to 

progerioid mice, it extended their lifespan and improved degenerative alterations.  The 

therapeutic effects of stem cells have been suggested to be caused by secreted factors 

(Lavasani et al., 2012).  Furthermore, muscle regeneration by muscle stem cell activation 

after injury in old mice can be restored in parabiosis experiments by exposure to systemic 

factors from young mice.  This effect was mediated at least in part by restoration of the 

normal signalling of the Delta-Notch pathway (Conboy et al., 2005).  It has been shown 

that ageing induces Wnt signalling in muscle stem cells and increases fibrosis in 

parabiosis studies (Brack et al., 2007). 
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1.1.3 Anti-ageing interventions 

Ageing effects on the immune system have implications for clinical medicine.  One 

example is the influenza virus vaccination which has 30-40% efficiency in protecting the 

elderly from influenza (McElhaney and Dutz, 2008).  Another clinical implication was 

also seen after transplantation, as bone marrow transplantation from older individuals 

showed a lower capacity of reconstitution of the immune system in recipients (Kollman 

et al., 2001).  Such examples highlighted the importance of research translation into 

clinical developments.  Anti-ageing or rejuvenating therapies do not necessarily restore 

immune function to young levels as long as modest enhancement in the immune function 

can potentially be clinically beneficial.  Ideally, these interventions should be cost 

effective, readily available, and easy to administer to a large number of individuals.  

Some of these interventions are discussed below. 

1.1.3.1 Dietary restriction 
Dietary or caloric restriction (DR or CR) is the most powerful intervention that increases 

the lifespans of several organisms and decreases the incidence of age-related phenotypes 

that are delayed by DR including cancer, diabetes, cardiovascular disease, 

neurodegenerative diseases, and kidney disease (Everitt et al., 2006).  DR or caloric 

restriction (CR) refers to food intake limitation by 20-40% of ad labium consumption 

without malnutrition (Bronson and Lipman, 1991; Fontana et al., 2010).  There are other 

dietary modifications used in ageing research, including changes of food content in the 

diet such as the alterations in protein, some amino acids, or fat intake (Zimmerman et al., 

2003; Miller et al., 2005).  

In 1935, McCay initially proposed that DR may be able to prolong lifespan.  He has 

noted that feeding of the laboratory rats with a reduced calorie diet while maintaining 

their micronutrient levels had extended their lifespans compared to controls (McCay et 

al., 1989).  Subsequently, numerous reports pertaining to yeast (S. J. Lin et al., 2000), 

invertebrate animals such as worms (C. elegans) (Klass, 1977), flies (Cooper et al., 

2004), mammals like rodents (Weindruch et al., 1988; Swindell, 2012), and dogs (Kealy 

et al., 2002) have shown the beneficial effect of DR on lifespan extension and health 

improvement.  However, contradictory influences of DR on lifespan were also reported, 
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depending on mice genotype (Liao et al., 2010) and initial basal metabolic rate (Brzek et 

al., 2012).  In fact, two studies from long-term DR in non-human primates have reported 

health benefits, such as the reduction of the incidence of cancer and diabetes in dietary-

restricted rhesus monkeys compared to controls, but were discordant on the effect of DR 

on life extension (Colman et al., 2009; Mattison et al., 2012).  The conflicting results 

might arise from the different study designs as different diet composition of dietary 

restrictions and controls as well as different strains were used.  In humans, a randomized 

clinical study on non-obese sedentary subjects has shown that a 12-month 20% reduction 

in caloric intake improves insulin sensitivity, decreases fat mass, reduces circulating 

inflammatory markers, decreases plasma triiodothyronine levels, increases adiponectin 

concentration, and reverses some of the ageing deterioration in cardiac diastolic function 

(Weiss et al., 2008; Fontana et al., 2010; Stein et al., 2012). 

The physiological benefits of DR are implicated by lowering body mass and fat content, 

improving insulin sensitivity, and lowering blood glucose in rats (Zheng et al., 2009). 

Although the exact mechanism of dietary restriction remains to be defined, theories 

suggested the protection against cellular damage by reducing cellular metabolism 

(Bordone and Guarente, 2005).  It has been shown on many animal models that DR 

enhances mitochondrial biogenesis and function (Martin-Montalvo and de Cabo, 2013).  

It has been reported that DR can reduce oxidative damage in rodents’ muscles and protect 

against sacropenia, even with a key antioxidant enzyme deletion (Sod1-/-) (Y. C. Jang et 

al., 2012).  Furthermore, some reports confirmed significant mitochondrial ROS 

reduction and decreased oxidative stress in the liver and muscle of rodents (Zainal et al., 

2000; C. Wang et al., 2010).  The mitochondrial and metabolic effects of DR were 

suggested to be due to the induced expression of transcriptional co-activator PGC-1α 

(Civitarese et al., 2007).  On the other hand, other groups suggested the induction of 

oxidative stress resistance with DR by the increased production of ROS, which induced 

catalase activity (Schulz et al., 2007).  The authors proposed that DR promotes the 

production of ROS that leads to the ignition of stress defence mechanisms and to the 

long-term reduction of oxidative damage.  This leads to another hypothesis, known as 

“mitochondrial hormesis,” which proposes that DR acts as a low-intensity stressor that 
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induces mitochondrial biogenesis and subsequent cellular defence and adaptation to 

metabolic alterations to reduce oxidative stress (Ristow and Zarse, 2010). 

1.1.3.2 Dietary restriction pathways 
There are several nutrient sensing pathways implicated in the beneficial effect of DR on 

the  ageing process.  Since the first paper by Kenyon et al. (1993) in which the reduction 

of the insulin/IGF-1/FOXO pathway was shown to prolong the lifespan of worms, 

accumulating data have shown that this pathway is evolutionary conserved (Partridge and 

Gems, 2002).  It has been shown that DR reduced IGF-1 blood levels in mice (Huffman 

et al., 2008).  In human skeletal muscle, DR has been also shown to inhibit the 

insulin/IGF-1 pathway in microarray studies (Mercken et al., 2013).  Another important 

nutrient sensor pathway is mTOR.  In mice, it has been shown that the deletion of S6K (a 

main mTORC1 substrate) increased lifespan and resistance to age-related pathologies 

such as loss of insulin sensitivity (Selman et al., 2009).  The lifespan extension effect of 

DR in Drosophila was mediated by the translational repressor 4E-BP, a downstream 

target of mTOR, which enhanced mitochondrial activity (Zid et al., 2009).  The third 

pathway involves sirtuins, which can mediate the effects of DR as evidenced by several 

studies.  First, it has been shown that DR induces the expression of sirtuins SIRT1 

(Cohen et al., 2004), SIRT3 (Lombard et al., 2007), and SIRT5 (Nakagawa et al., 2009) 

in mice and SIRT1 in humans (Civitarese et al., 2007).  Furthermore, the loss of function 

mutations in sirtuins can decrease DR output.  For example, SIRT1 knockout mice do not 

show a typical life extension (Mercken et al., 2014) or physical activity (D. Chen et al., 

2005) seen by DR.  Also, the overexpression of SIRT1 in transgenic mice can mitigate 

diseases, such as diabetes, much like DR (Herranz et al., 2010).  Conversely, the 

compromise of sirtuin activity can contribute to diabetes and metabolic syndrome in mice 

(Chalkiadaki and Guarente, 2012) and humans (Biason-Lauber et al., 2013).  The DR 

increases the insulin-stimulated glucose uptake in mouse skeletal muscle by an 

AMPKα2-dependent induction of SIRT1 activity (P. Wang et al., 2012).  It has recently 

been shown that AMPK-/- mice skeletal muscles impaired DR-mediated glucose tolerance 

compared to wild type mice (Silvestre et al., 2014).  In this study, the lack of AMPK 

under DR abolishes the SIRT1 downregulation seen in ad libitum mice. This suggests 

that the deficiency of AMPK impairs the beneficial effects of DR on glucose tolerance, 
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possibly through SIRT1 gene downregulation (Silvestre et al., 2014).  An interesting and 

recent study suggested that the balance between macronutrients rather than caloric intake 

determines cardiometabolic health and longevity in mice (Solon-Biet et al., 2014).  This 

study showed that a high carbohydrate and low protein diet optimizes longevity and 

health (lower blood pressure, improved glucose tolerance, and lower triglycerides) 

compared to 24 ad libitum diets.  The beneficial effects were associated with hepatic 

mTOR activation and mitochondrial function (Solon-Biet et al., 2014).   

Resveratrol (antioxidant in red wine) has been shown to prolong in mice fed with a high 

fat diet (Baur et al., 2006).  This life extension effect mimics DR effects with reduced 

IGF-1 levels, increased AMPK, and PGC-1α activity.  Furthermore, it has been reported 

that resveratrol delays the onset of senescence in human endothelial progenitor cells and 

induces telomerase activity dose-dependently (X. B. Wang et al., 2011).  The oral 

administration of red wine and resveratrol in normal rats has been shown to preserve 

vascular function by delaying ageing (improved aerobic capacity, decreased p53 and p16 

in the aorta, and increased telomere length and telomerase activity) although no effect on 

lifespan was observed (da Luz et al., 2012).  

1.1.3.3 Other anti-ageing interventions 
Beyond caloric restriction and resveratrol, metabolic strategies have been proposed to 

delay ageing acting on sirtuins, mTOR signalling, the IIS pathway, and AMPK.  Some 

drugs, such as metformin, may create a cellular milieu that facilitates longevity because 

of their specific mechanism of action through AMPK (Suwa et al., 2006).  Also, 

angiotensin II inhibitors may potentially be useful for knocking out an At-II type I 

receptor (Agtr1a) in mice’s prolonged lifespan and increased number of mitochondria, 

SIRT3 expression, and nicotinamide phosphoribosyltransferase (Benigni et al., 2009).  

Furthermore, it has been clearly established that using HMG-CoA reductase inhibitors, 

statins, for lipid-lowering therapy reduces cardiovascular events in patients with or 

without coronary artery diseases (Baigent et al., 2010).  Statins may exert anti-ageing 

pleiotropic effects by targeting the accumulation of farnesylated proteins that causes 

several human progeria syndromes (Fong et al., 2006; Varela et al., 2008).  Moreover, a 

natural extract isolated from Astragalus membranceus, called TA-65, induced telomerase 

activity in vitro, increased mRNA expression of TERT, and improved mouse health-span 
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indicators such as glucose tolerance (Bernardes de Jesus et al., 2011).  Of note, AGS-499 

has recently been demonstrated to protect human mesenchymal stem cells from oxidative 

stress by telomerase activation (Tichon et al., 2013).  This novel compound has also been 

reported to delay the progression of amyotrophic lateral sclerosis disease in mice (Eitan 

et al., 2012).  However, no current human longitudinal study investigates the potential 

effects of telomerase-activating drugs on lifespan. 

1.2 Endothelial progenitor cells 

The vascular system plays a primary role in the repair and regeneration of various tissues 

in the human body.  In vascular tissues, a complex network of capillaries and blood 

vessels is formed to provide sufficient nutrients and oxygen and to remove waste 

products.  This network is formed and maintained through three main mechanisms: 

vasculogenesis, angiogenesis, and arteriogenesis.  Vasculogenesis is the primary 

formation of blood vessels and the vascular system by the endothelial cell precursors 

during foetal development, whereas angiogenesis is the formation of new blood vessels 

sprouting from pre-existing ones—for instance, due to ischemia, as shown in Figure 1.1.  

Arteriogenesis occurs when arterioles’ lumen widens as a result of the growth or 

remodelling of the adjacent arteries (Risau, 1997).  

Furthermore, the endothelium plays a critical role in the homeostasis of the vascular 

system.  It forms a layer lining for all blood vessels in the body.  It functions as an 

interface between vessels and blood-borne elements and tissues.  The endothelium 

regulates coagulation, thrombosis, platelet adhesion, leukocyte recruitment, vascular 

tone, and release growth factors and cytokines (J. Z. Chen et al., 2004).  Endothelial 

dysfunction is associated with endothelial cell loss (Libby, 2002) and a decrease in nitric 

oxide (NO) availability, which is one of the most important factors in maintaining 

vascular homeostasis (Wassmann and Nickenig, 2003; Laufs et al., 2004).  Additionally, 

endothelial dysfunction has been linked to coronary artery disease and cardiovascular risk 

factors (Verma et al., 2004).  It also leads to atherosclerosis, which, besides endothelial 

cell damage, causes the invasion of inflammatory cells and the proliferation of vascular 

smooth muscle cells (Libby and Theroux, 2005).  

Therefore, maintaining the integrity of the endothelial layer is crucial for healthy vessels 

and the prevention of vascular diseases.  Several studies, in vivo and in vitro, confirmed 
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the beneficial properties of endothelial progenitor cells (EPCs) in vascular growth and 

repair (Asahara et al., 1997; Kocher et al., 2001; Griese et al., 2003) 

 

 
Figure 1.1: Vasculogenesis and angiogenesis. 
Endothelial progenitor cells differentiate into venous and arterial endothelial cells that assemble 
in a primitive capillary plexus.  Cells aid in vasculogenesis and angiogenesis by producing 
different cytokines, which recruit other cells to form the new vessels.  As differentiating from 
their progenitors, vessels then sprout and become stabilised by smooth muscle cells (SMC) to 
form a mature vasculature. Haematopoietic progenitors and their descendants contribute to 
angiogenesis directly and indirectly by differentiating from leukocytes and platelets and releasing 
angiogenic factors.  Some factors produced by different cells as indicated in the figure.  Flk-1 
(Fetal liver kinase-1), AML (Acute myeloid leukemia), Scl (Stem cell leukemia), Tie-1 and -2 
(Tyrosine kinase-1 and -2), VEGF (Vacular endothelial growth factor), Shh (Sonic hedgehog), 
Grdl (Gridlock), M� (Macrophage), HIF (Hypoxia induced factor), PDGF (Platelet-derived 
growth factor), PIGF (Phosphatidylinositol-glycan biosynthesis class F protein), and TGF-� 
(Transforming growth factor-�).  Source: Carmeliet (2003).  
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1.2.1  Origins of endothelial progenitor cells 

Vascular and haematopoietic systems develop in parallel and interdependently during 

embryogenesis.  Multi-lineage haematopoietic progenitors are derived from endothelium 

within embryo proper from the inner cell mass of the blastocyst (Zovein et al., 2008) and 

yolk sac (Goldie et al., 2008).  After that, haemtopoiesis migrate in the fetal liver (Palis et 

al., 2001) and intra-embryonic sites: the aorta-gonad-mesonephros (AGM) region and in 

head and major blood vessels (Z. Li et al., 2012).  There is a close physical association 

between endothelial and haematopoietic stem cells (Morrison and Spradling, 2008).  

Many cell surface markers are shared between vascular endothelial and hematopoietic 

cells (Jackson et al., 2001).  Therefore, several studies identified EPC populations that 

exhibit haematopoietic characteristics.  There are specialised areas in embryonic tissue 

composed of endothelial cells termed haemogenic endothelium.  These are able to 

generate HSCs and differentiated haematopoietic cells (Medvinsky and Dzierzak, 1996).  

A haemogenic endothelium was shown to give rise to haematopoietic cells (Lancrin et 

al., 2009).  Furthermore, studies have shown other anatomical regions where haemogenic 

potential of endothelial cells is located, including umbilical arteries (Yokomizo and 

Dzierzak, 2010), head vasculature (Z. Li et al., 2012), yolk sac developing capillaries (W. 

Li et al., 2005b), placenta (Gekas et al., 2005), and endocardium (Nakano et al., 2013).  

Moreover, accumulating evidence is in favour of a new concept interconnecting 

endothelial and haematopoietic cells (Chao and Hirschi, 2010).  However, the presence of 

haemogenic cells in adult hematopoietic tissues is not directly proven.  A current view 

supports a model that suggests new HSCs, during adult life, are not generated through 

hamogenic endothelium but rather through self-renewal from pre-existing HSCs (Hirschi, 

2012).  Nevertheless, the labelling of hemogenic endothelium before definitive 

haemtopoiesis and following their progeny during adult life showed that embryonic 

HSCs remain functional in adult life but do not contribute to all the haematopoietic cells 

generated postnatally (Zovein et al., 2008).  Therefore, the existence of functional 

endothelium in adult haematopoietic tissues cannot be excluded. 
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1.2.2 Uses of endothelial progenitor cells 

Premature ageing of the vascular system is characterised by decreased repair and 

neovascularization.  Endothelial progenitor cells became a popular research material due 

to their pro-angiogenic and regenerative potential; in particular, EPCs were investigated 

in diabetes (Tepper et al., 2002; Loomans et al., 2004; Fadini et al., 2006a; Fadini et al., 

2007; Ling et al., 2012), cancer (Lyden et al., 2001; Mancuso et al., 2001; Mancuso et 

al., 2006; Shaked et al., 2006; Nolan et al., 2007), and cardiovascular disorders (Eizawa 

et al., 2004; N. Werner et al., 2005; Kunz et al., 2006; Hughes et al., 2007).  One of the 

most important advantages of endothelial progenitor cells is that they do not elicit an 

immune response when allogenic grafts are transplanted in vivo and in vitro (Ladhoff et 

al., 2010).  In this study, EPCs were protected against allospecific cytotoxic T 

lymphocyte activity and alloantibody/complement lysis.  Also, allogenic aortic 

transplantation showed no signs of rejection (Ladhoff et al., 2010).  The injection of 

EPCs in ischemic animal models was shown to significantly enhance neovascularization, 

leading to the recovery of injured tissue and better blood flow (Murohara et al., 2000; 

Kawamoto et al., 2001; Kawamoto et al., 2003; Urbich et al., 2003).  

Clinical studies have shown a negative correlation between the number of circulating 

EPCs and the risk of cardiovascular disease (e.g., age, hypertension, diabetes, smoking) 

and morbidity (Vasa et al., 2001a; Vasa et al., 2001b; N. Werner et al., 2005). 

Furthermore, human clinical trials using EPCs transplantation in peripheral artery disease 

and myocardial infraction were safe, but associated with absent or very modest clinical 

benefit (Assmus et al., 2002; Tateishi-Yuyama et al., 2002; Leistner et al., 2011).  A 

recent meta-analysis of acute myocardial patients has suggested that the time of cell 

delivery as well as the type, quantity, and mobility of delivered cells are important 

determinants of the response to the therapy.  The most promising studies are those with 

high purified CD34+ doses on the intra-coronary infusion (Poole and Quyyumi, 2013).  

In fact, a phase III randomized study was designed on a large set of refractory angina and 

chronic myocardial ischemia patients, involving intramyocardial administration of a 

1x105 autologous CD34+ cell/kg (Povsic et al., 2013). 
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1.2.3 Characterisation of endothelial progenitor cells 

Asahara and colleagues first characterised endothelial progenitor cells (EPCs) in 1997.  

They isolated a proliferative heterogeneous population of cells in animal models with 

endothelial cells markers (CD34+, kinase insert domain receptor KDR + or VEGFR2) 

contributing to new blood vessel formation in vitro (Asahara et al., 1997).  Since then, 

extensive studies were performed to identify those cells due to their therapeutic potential, 

mainly in cardiovascular disease (Rafii and Lyden, 2003).  Two major mechanisms are 

thought to be involved in vascular repair by EPCs.  The first is carried out by the physical 

incorporation of EPCs into the growing angiogenic network, whereas the second 

mechanism is via secreting pro-angiogenic cytokines (e.g., VEGF-A, stromal cell-derived 

factor-1 (SDF-1), insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor 

(HGF)) (Rehman et al., 2003; Urbich et al., 2005).   

Different approaches and nomenclature were used to classify endothelial 

progenitor cells.  These can be divided into two main approaches: cell culture techniques 

and cell biomarkers.  The first cell culture technique, originally described by Asahara et 

al. (1997), involves the isolation of mononuclear cells from the peripheral blood and the 

growth them on fibronectin-coated plates.  Adherent cells are harvested and identified as 

actylated low-density lipoprotein (acLDL) positive cells.  These cultures are short-term 

producing colonies after 4-9 days and termed early EPCs (Hur et al., 2004).  Hill et al. 

(2003) used a different isolation technique in which non-adherent cells were cultured 

instead of adherent cells after 48 hours of preplating.  Those cells were referred to as 

colony forming unit-Hill (CFU-Hill) and are characterised by a cluster of round cells 

surrounded by spindle shape cells.  The third cell culture technique is used to identify an 

endothelial colony forming cell (ECFC).  It differs from the first one in that cells are 

cultured from the cobblestone appearance in culture on collagen-coated plates and are 

seeded for extended period of time (Ingram et al., 2004).  Other cell culture techniques 

might involve using commercial kits for isolation purposes, such as endothelial cell 

colony-forming units (CFU-ECs) (Yoder et al., 2007).   

Several biomarkers were used to identify EPCs by fluorescence-activated cell 

sorting (FACS).  Peichev et al. used the expression of CD34, CD133, and CD309, which 

is the vascular endothelial growth factor receptor 2 (VEGFR2 or KDR in humans), to 
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identify EPCs and referred to them as circulating endothelial precursors (CEPs) (Peichev 

et al., 2000).  Other studies have used CD31 (Platelet Endothelial Cell Adhesion 

Molecule 1, PECAM-1), CD105 (endoglycan), CD146 (MUC-18), CD144, UEA-1 (Ulex 

Europaeus Agglutinin-1), vWF (Von Willbrand Factor), CD144 (VE-cadherin), and 

CD202b (Tie-2) (Timmermans et al., 2007).  However, until this point, investigators have 

failed to identify unique markers for EPCs.  

The different methods of isolation and culture have resulted in different characterisations 

of EPCs and observations of functions.  Some groups compared EPCs as early and late 

EPCs according to their time in the culture.  Hur et al. showed that these two types, early 

EPCs and late EPCs, differ in their lifespan, appearance in culture, expression of genes, 

and in vitro capillary tube formation. Early EPCs were spindle-shaped and lasted for 4 

weeks in the culture, whereas late EPCs appeared as cobblestones and grew up to 12 

weeks in the culture.  Unlike early EPCs, late EPCs expressed VE-cadherin, Flt-1, KDR, 

and CD45 and formed a better capillary tube.  However, both early EPCs and late EPCs 

showed comparable potential for induction in vivo vasculogenesis (Hur et al., 2004; 

Yoon et al., 2005).  Yoder and colleagues compared CFU-ECs and ECFCs and 

discovered interesting differences.  Mainly, ECFCs have the ability to form blood vessels 

in vivo and have robust proliferative potential. CFU-ECs express haematopoietic antigens 

and phagocyte bacteria, whereas ECFCs do not.  A clonal analysis performed by Yoder et 

al. showed the distinct origin of these two types of cells, in which CFU-ECs are related to 

hematopoietic origin while ECFCs are not.  Therefore, according to Yoder et al. (2007), 

CFU-ECs progeny are hematopoietic related cells with macrophage antigens and function 

(phagocytosis) as well as endothelial antigens that have some proliferative potential and 

cannot form vessel in vivo. 

Although these studies suggested that ECFCs are the best candidate for regenerative 

vascular therapy, they have not been used clinically yet.  A potential limitation of these 

cells is the paucity of these cells in the peripheral blood.  It has been shown that ECFCs 

were grown from a subset (14%) of PBMNCs (peripheral blood mononuclear cells) from 

acute coronary syndrome (Campioni et al., 2013).  Therefore, an improved methodology 

for ECFC cultures is needed to achieve adequate cells for therapeutic applications. 
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1.2.4 Vascular repair during ageing 

Dysfunctional endothelium is considered a common ground for cardiovascular disease 

and type 2 diabetes among other diseases (Loomans et al., 2004; Fadini et al., 2005).  

The vascular homeostatic response is the balance between cellular damage and repair, 

and it involves the mobilization of EPCs from their bone-marrow niche.  This integral 

part of mobilisation is associated with rapid and significant increase in circulating EPCs 

in acute ischemic events such as vascular injury secondary to burns or surgery (Gill et al., 

2001), acute coronary syndrome (George et al., 2004), and myocardial infraction 

(Shintani et al., 2001). 

The link between ageing and EPCs is supported by several studies.  Although there was 

no significant difference in the number of circulating EPCs (CD34+/KDR+ or 

CD133+/KDR+) between young (25 years old) and old (61 years old) subjects, early 

EPCs showed significant impairment in cells survival, migration, and proliferation (Heiss 

et al., 2005).  Furthermore, young but not old donor mice bone marrow derived EPCs 

transplantation prevented a decline in the angiogenic platelet-derived growth factor 

(PDGF)-B induction pathway and cardiac angiogenesis in the ageing murine model 

(Edelberg et al., 2002).  In addition, bone marrow-derived EPCs (CD31+CD45-) showed 

exhausted atheroprotective property with old ApoE-/- mice compared to young ones 

(Rauscher et al., 2003).   

Additional factors affecting EPC ageing are described in Table 1.  The first factor linked 

to EPC ageing is oxidative stress.  Several studies proved the effect of oxidative stress 

during ageing on EPCs.  Early EPCs were found to be more resistant to oxidative stress 

as they express high levels of antioxidants compared to adult microvascular endothelial 

cells and HUVECs (human umbilical vein endothelial cells) (He et al., 2004).  

Furthermore, in aged subjects, early EPCs were found to be more sensitive to oxidative 

stress as they showed less antioxidant enzyme glutathione peroxidase-1 (GPx-1) (He et 

al., 2009).  Early EPCs were also shown to have an upregulation of proatherogenic factor 

Angiotensin II (AngII), which enhances ROS production and cellular senescence of early 

EPCs (M. Wang et al., 2003; Imanishi et al., 2005).  Another important factor during 

ageing connected with EPCs is inflammation.  Low grade inflammation was shown to be 

associated with increased proinflammatory cytokine tumour necrosis factor-alpha (TNF-
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�) in aged rats’ coronary arteries compared to young ones (Csiszar et al., 2003).  Long-

term treatment of EPCs in culture, isolated from human umbilical cord blood (UCB), 

with TNF-�, increased premature senescence associated with an induction of the cell 

cycle inhibitor p16INK4a (Y. Zhang et al., 2009).  Pro-angiogenic factors including the 

vascular endothelial factor (VEGF) and the stromal derived factor-1 (SDF-1) have been 

shown to impair EPC (Flk-1+/CD11b-) trafficking to ischemic sites and to depress the 

hypoxia-inducible factor alpha (HIF-1�) (E. I. Chang et al., 2007).  Estrogen might also 

act as a pro-angiogenic factor by which estrogen treatment of post-ovariectomy young 

female mice increased levels of EPCs (Sca-1+/Flk+) compared to the untreated group 

(Strehlow et al., 2003).  Another factor affecting EPC ageing is the reduction in telomere 

length in early EPCs associated with age in healthy sedentary men (Kushner et al., 2009).  

Additionally, a 57% reduction of telomerase activity was seen in older men compared to 

young men (Kushner et al., 2011).  Moreover, the overexpression of human TERT in 

circulating angiogenic cells (CACs) conserved telomerase activity, enhanced EPC 

function, and delayed senescence after the ischemic hind limb (Murasawa et al., 2002).  

The last factor related to EPC ageing is reduced nitric oxide bioavailabilty where 

decline of EPC levels and function may be related to the reduced nitric oxide (NO) 

generation of ageing endothelium.  The importance of nitric oxide production and nitric 

oxide synthase (eNOS) expression for EPC mobilisation was proved where increased NO 

bioavailability by physical exercise induced EPCs (Sca-1+/Flk+), which was not seen with 

eNOS null mice or with an NOS inhibitor (Laufs et al., 2004).  In addition, oxidized low 

density lipoprotein (ox-LDL) accumulation with age may also contribute to a reduction of 

EPCs during ageing.  Early EPCs were shown to be impaired in survival and function 

with an ox-LDL inhibitory effect on EPC eNOS activity and expression (Ma et al., 2006). 

Therefore, ageing implicated both environmental and intracellular changes in EPCs 

homing, generation, and mobilisation from bone marrow leading to a senescent 

phenotype.  
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1.3 Haematopoietic stem and progenitor cells 
Stem cells are defined as cells that are capable of self-renewal and differentiation.  Self-

renewal is the process of producing one or two daughter cells identical to the parent cell 

in the genetic material and epigenetic modification.  Those daughter cells are also 

identical in function with multipotency (full range of differentiation ability) and also self-

renewal potential.  Differentiation is the process in which cells become more specialised 

mature functional cells.  Stem cells are least prone to differentiation without cell division.  

The differentiation involves epigenetic change via cell division and the loss of self-

renewal or some part of multipotency (Kondo, 2010).  Furthermore, stem cells can be 

classified according to their potency (differentiation potential) into totipotent, pluripotent, 

multipotent, and unipotent as shown in Table 2.  
 

Cells potency Definition Example 

Totipotent  Differentiate into all embryonic layers 

(endoderm, mesoderm, ectoderm) and 

extraembryonic tissue 

Fertilized egg (zygote) 

Pluripotent Differentiate into all embryonic tissues ES, ICM, iPS cell 

Multipotent Differentiate into all lineages of a 

tissue/organ 

NSC, HSC 

Oligopotent Differentiate into some but not all lineages 

of a tissue/organ 

CLP, CMP 

Unitpotent Differentiate into one type of lineage in a 

tissue/organ 

Marcophage progenitor 

Table 2: Stem cells potency 
ES: embryonic stem; ICM: inner cell mass; iPS: induced pluripotent stem cell; NSC: neural stem 
cell; HSC: haematopoietic stem cell; CLP: common lymphoid progenitor; CMP: common 
myeloid progenitor (Seita and Weissman, 2010) 
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Figure 1.2: Haematopoiesis. 
The process of haematopoises involves the differentiation of haematopoetic stem cells (CFU-
Blast) into either myeloid or lymphoid progenitors.  Myeloid precursors differentiate into 
granulocytes, erythroids, monocytes, and megakaryocytes (CFU-GEMM) mature blood cells 
which produce granulocytes and monocytes (CFU-GM), erythrocytes from burst-forming units 
(BFU-E), megakaryocytes (CFU-Meg), mast cells (CFU-mast), basophils (CFU-Bas), and 
eosinophils (CFU-Eo).  Modified from Kufe et al. (2003). 
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Transplantation assays provide the gold standard functional definition of HSC, which 

includes self-renewal and differentiation.  In mice, for example, HSCs isolated from the 

bone marrow can rescue the receipt after sublethal irradiation and showed long-term 

repopulating ability in serial transplantation (Krause et al., 2001).  This study has also 

shown that bone marrow HSCs can differentiate into epithelial cells in the liver, lung, GI 

tract, and skin of the recipients. 

HSCs can be isolated primarily from bone marrow and peripheral blood, but these are 

limited due to donor compatibility.  Umbilical cord blood is an alternative source of 

HSCs that provides a rapidly available and more youthful population than in peripheral 

blood and bone marrow.  However, limited volumes of UCB lead to lower engraftment 

and more susceptibility to infections as well as other complications (Ballen et al., 2012).  

Therefore, to identify ideal HSC generation and expansion, a better understanding of 

molecular and cellular network involved is crucial.  HSCs are mainly slow cycling 

(Wilson et al., 2008) and reside in the bone marrow for a lifetime but do not originate 

there.  During embryonic development, HSCs are produced and expanded before residing 

in the bone marrow before birth (Christensen et al., 2004).   

1.3.1 Origins of haemtopoietic stem cells 

The generation of adult HSCs occurs during embryonic development.  The initial site for 

haematopoietic production is the yolk sac.  During mice development on embryonic day 

(E), 7.25 extra-embryonic tissue, containing both visceral endoderm and mesoderm, 

produces large nucleated erythrocytes termed erythroblasts (Palis et al., 2001).  

Surrounding these blood cells, a layer of endothelial cells is formed, and these specialized 

structures are called blood islands.  The haematopoietic and endothelial cells are thought 

to be generated from a common mesodermal precursor referred as the haemangioblast 

(Ferkowicz and Yoder, 2005).  In addition, it was shown that by E7.5-E8, erythroid-

myeloid progenitors start to appear in the yolk sac and in the allantois and chorion (that 

fuse later, forming the placenta and umbilical cord blood).  It was also shown by 

Medvinsky and Dzierzak (1996) that AGM (aorta-gonads-mesonephros) can develop 

HSC de novo in mice.  In mammalian development, two overlapping waves emerge 

haemtopoietic cells known as primitive (short-term and limited haematopoeitic cell types) 
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and definitive (long-term and produce all haematopoietic cell types) haematopoiesis.  

Definitive haematopoiesis occurs in the extra-embryonic yolk sac later in the 

development and characterised by lifelong production of all haematopoietic lineages, 

including HSCs (Medvinsky et al., 2011).   

The perspective of the yolk sac as the origin of primitive haematopoiesis was broadly 

accepted.  However, mechanisms pertaining to how sites for definitive haematopoiesis 

were colonized have been intensively debated in the last century.  During development, it 

was suggested that HSC production migrates sequentially from the yolk sac to multiple 

niches, including the fetal thymus, spleen, liver, and bone marrow.  Supporting this 

theory, Moore and Owen (1965) showed that haematopoietic stem cells do not appear de 

novo in the same way with the yolk sac but rather originated and migrated from the yolk 

sac to colonize other organs’ rudiments.  Furthermore, the principle of migration from the 

yolk sac was also supported by Hossaint (1981), who demonstrated grafting mouse liver 

rudiments during early development (10 days before gestation) in chick/quail do not 

produce haematopoietic cells.  While grafting the liver, when it was taken after the 

circulatory system had been established at a later stage, resulted in haematopoiesis.  

However, this study shows the migration of haemanioblast in the colonization of fetal 

liver but does not directly illustrate that these haematopoietic stem cell progenitors 

originated from the yolk sac and possibly have migrated from alternative haematopoietic 

niche.  Alternative niches of the haemangioblast from the embryo proper from quails 

(Dieterlen-Lievre, 1975), the aorta-gonads-mesonephros (AGM) region in mouse (Godin 

et al., 1995) and human (Tavian et al., 1999). 

In summary, HSC origin studies illustrated that the site of haematopoietic development 

and haematopoiesis is not fixed and involves sequential niches in the two developmental 

waves, beginning with short-term presence at the blood islands of the yolk sac (primitive) 

to their long-term residence in the bone marrow (definitive) (Figure 1.3).   
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Figure 1.3: Haematopoietic niche model during development. 
Haematopoiesis occurs in two developmental waves: the primitive wave, which involves the yolk 
sac, and the definitive wave in the fetal liver, where haematopoietic progenitor cells migrate from 
the yolk sac and AGM (aorta-gonads-mesonephros).  Then, the bone marrow becomes the major 
niche and the primary haematopoietic progenitors source for a lifetime.  Reproduced from 
McGrath et al. (2005). 
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1.3.2 Uses of haematopoietic stem cells 

The first experiment of the stem cell concept was proved by McCulloch and Till by 

performing bone marrow cell transplantation into irradiated mice (Till and McCulloch, 

1961).  These bone marrow cells produced myeloid multilineage colonies in the spleens 

of the transplanted animals, which was proportional to the number of injected cells.  

Successful human stem cell transplantation was reported since 1957 and then was 

performed on nuclear workers and leukemia patients (Thomas et al., 1957; Mathe et al., 

1959).  This provided formal evidence that intravenous injection of bone marrow allows 

the long-term repopulation of new blood cells.  For over 50 years now, such 

transplantations have been performed to treat patients with malignancies, bone marrow 

failure, and immunodeficiencies.  After conditioning regimens, such as total body 

irradiation and chemotherapy to suppress the immune system, HSCs are infused 

intravenously to myeloablated patients.  Long-term reconstitution of the haematopoietic 

system is achieved gradually with donor cells if infection and immunological reaction are 

under control (Kondo, 2010).  There are two types of stem cell transplantation, 

autologous and allogeneic, based on the source of haematopoietic cells.  Autologous stem 

cell transplantation is performed to rescue patients after doses of radiation and/or 

chemotherapy with their own mobilised peripheral blood.  The allogeneic hematopoietic 

stem cell transplantation differs from the autologous in that the haematopoietic cells 

obtained from an appropriate HLA-matched donor can rescue patients and also induce 

graft-versus-host disease (GVHD) (Ferrara et al., 1999).  For this reason, these patients 

require immunosuppressive therapy.  Furthermore, hematopoietic stem cell 

transplantation can also be used to induce tolerance to solid organ grafts.  At Stanford 

University, it has been shown that with kidney transplantation in patients with an HLA-

matched sibling, followed by total irradiation and then infusion of T cells and CD34+ 

stem cells from the same donor, 8 out of 12 patients successfully discontinued all 

immunosuppressive drugs (followed up from 12-36 months) (Scandling et al., 2011).  

However, a recent follow up study of HLA-mismatched renal transplantation without 

maintenance of immunosuppression reported 4 out of 10 patients without rejection, 2 

patients who developed rejection, and 1 patient who developed recurrent disease; the 
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remaining 3 patients could not stop the immunosuppression due to rejection (Kawai et 

al., 2013). 

In addition to bone marrow, cord blood and mobilised peripheral blood are sources of 

HSCs used in transplantation.  However, HSC numbers remain limited, which is a major 

obstacle for basic and clinical research.  Despite the extensive research and current better 

understanding of intrinsic and extrinsic HSC regulation, it remains very difficult to 

reproduce HSCs in vitro without inducing differentiation (Hofmeister et al., 2007).  A 

potential promising source of HSCs includes induced pluripotent stem cells (iPS), which 

are created by the transcription factor-mediated reprogramming of somatic cells (K. 

Takahashi and Yamanaka, 2006).  Interestingly, a recent study reported a strategy where 

by authors induced a megakaryocyte progenitor cell line from a human embryonic stem 

cell and iPS was able to show thrombogenic activity in mouse models of 

thrombocytopenia (S. Nakamura et al., 2014).  These findings suggest the potential of 

megakaryocyte progenitor cell lines for clinical application. 

1.3.3 Characterisation of haematopoietic stem cells 

Since 1988, Weissman and collaborators pioneered in the identification of HSCs through 

a set of protein markers on the surface of mouse blood cells using multi-colour 

fluorescence-activated cell sorting (FACS) (Spangrude et al., 1988).  The identified 

population was capable of haemtopoietic system reconstitution when transplanted into 

lethally irradiated mice.  This mouse HSC-enriched population accounted for about 

0.05% of the total bone marrow cells and expressed Thy-1lowLineage-Sca-1+ markers 

(Spangrude et al., 1988).  The most thoroughly characterised HSC population relies on 

the expression of membrane glycoprotein Sca-1 and the tyrosine kinase receptor C-Kit 

(CD117) along with the lack of lineage markers (Ter119, Gr-1, Mac-1, B220, CD4, and 

CD8) (Okada et al., 1992).  Furthermore, C-Kit+Sca-1+lineage- (KSL) cells contain a 

variety of progenitor cells capable of haematopoietic reconstitution.  Further strategies to 

enrich KSL cells with HSCs involved other markers: CD34 (CDneg/lowKSL) (Osawa et al., 

1996), Flk2 (CD34-Flk2-KSL) (Christensen and Weissman, 2001), and the efflux of 

supravital dye Hoechst 33342 (Goodell et al., 1996).  Other methods to identify HSCs 

have been described, including Endoglin (C. Z. Chen et al., 2002), SLAM (Signalling 
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lymphocyte activation molecule) family markers CD150+CD48- (Slamf2 and Slamf2) 

(Kiel et al., 2005; I. Kim et al., 2006), Tie-2 (Arai et al., 2004), CD133 (Yin et al., 1997),  

and a CD201 endothelial protein C receptor (EPCR) (Balazs et al., 2006).  Recently, it 

has been shown that CD49f+ cells, specifically Lin-CD34+CD38-CD45RA-

Thy1+RholoCD49f+, were highly efficient in long-term multilineage engraftment in NOD-

SCID (nonobese diabetic severe combined immunodeficient)-IL-2γc-/- mice (Notta et al., 

2011). 

Similar to technologies used for the isolation of mouse HSCs, human HSCs were also 

isolated on the basis of functional assays and cell-surface marker phenotype.  In human 

HSCs, the long-term reconstitution property was evaluated with xenotransplantation 

models (Baum et al., 1992).  CD34 is considered the first cell surface marker to enrich 

human HSCs.  It is a ligand for L-selectin expressed by 0.5-5% of blood cells in human 

fetal liver, cord blood, and adult BM (Krause et al., 1996).  In-vitro assays revealed that 

these populations are very heterogeneous and mostly have multipotency and oligopotency 

(Civin et al., 1984; DiGiusto et al., 1994; Krause et al., 1996).  Human CD34+ has been 

used clinically in numerous autologous and allogeneic transplantations and proved 

potential engraftment (Vogel et al., 2000).  In contrast, CD34- is reported to engraft 

NOD/SCID mice by intra-BM injection, which gives rise to CD34+ HSCs in vivo and in 

vitro.  Such a finding suggests the presence of more primitive cells within the CD34- 

population (Y. Nakamura et al., 1999).  Studies have identified two further markers 

within the Lin-CD34- cells from human CB HSC, which was able to repopulate SCID 

mice, CD93 (Anjos-Afonso et al., 2013), and CD133 (M. Takahashi et al., 2013).  

However, engraftment is only achieved by direct intra-BM injection, suggesting homing 

difficulties in comparison to CD34+ (Yahata et al., 2003; M. Takahashi et al., 2013). 

 

1.3.4 HSCs and ageing 

The dysfunction of HSCs, which give rise to both myeloid and lymphoid lineages, might 

underlie the ageing of the immune system.  The innate and adaptive immune systems 

coordinate the immune response by myeloid leukocytes and lymphoid cells (B and T 

lymphocytes), respectively.  As age progresses, the production of naïve T cells declines 
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and the clonal expansion of memory and effector T cells increases, which leads to less 

immunity and more autoimmunity in the elderly (Dorshkind et al., 2009).  B cells 

decrease in number with age and produce antibodies with less diversity and affinity (Han 

et al., 2003).  In comparison, myeloid lineage expands with age, thus providing a pro-

inflammatory environment (Franceschi et al., 2000).  Other cells, such as dendritic 

antigen-presenting cells and natural killers, also diminish and become functionally 

impaired during ageing (Mocchegiani and Malavolta, 2004).  These phenotypes of 

inflammation and immunosenescence are contributed in several pathologies during 

ageing, such as cancer and autoimmune diseases.  The ageing of HSCs is discussed in 

this section in several levels, including population, cellular, and molecular. 

At the population level, in mouse HSC ageing, the HSC number was increased and 

myeloid-skewed with lymphoid deficiency, despite differences from strain to strain (Sudo 

et al., 2000; M. Kim et al., 2003; Dykstra et al., 2011).  Similarly, immunophenotypically 

defined haematopoietic stem and progenitor cells (CD34+CD38- or Lin-CD34+CD38-

CD90+CD45RA-) increase in elderly individuals’ bone marrow (>65 years) (Kuranda et 

al., 2011; Pang et al., 2011).  However, the increase in the number of HSCs does not 

compensate for the loss of their function during ageing, thus leading to an overall decline 

in the regenerative capacity (Sudo et al., 2000).  Aged HSCs show reduced self-renewal 

activity in serial transplantation assays (Rossi et al., 2005).  To explain HSC ageing, two 

models were proposed: first, a clonal alteration model and, second, a population shift 

model (Muller-Sieburg and Sieburg, 2008).  The clonal alteration model implies that 

HSCs change uniformly as a homogenous population by which individual aged stem cells 

differentiate into a myeloid, rather than a lymphoid, lineage.  However, recent evidence 

supported the population shift, as evidence suggested that HSC are heterogeneous and 

ageing HSCs are derived from a different composition of distinct classes of HSCs (Cho et 

al., 2008; Beerman et al., 2010; Dykstra et al., 2011).  There are three classes of HSCs in 

mice; balanced, myeloid-biased (my-bi) and lymphoid-biased (ly-bi) stem cells.  Both 

young and old marrows show all three subsets of HSCs; however, during ageing the 

composition shift over to the my-bi HSC become dominant in old marrow.  On the other 

hand, human HSC ageing in the bone marrow is largely unknown, due to insufficient 

information for HSCs markers (Cavazzana-Calvo et al., 2011). 
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At the cellular level, ageing is associated with metabolic byproducts, genomic damage, 

and telomere shortening, thus leading to the functional decline of stem cells (Nijnik et al., 

2007; Sahin and Depinho, 2010; Yahata et al., 2011).  The proliferative response of 

HSCs to early-acting cytokines flt3 ligand (FL), c-kit (KL), and thrombopoietin (TPO) 

decreases with ageing (Henckaerts et al., 2002).  However, aged HSCs are more actively 

cycling, in which more frequent cells were in the S/G2/M phases of cell cycle compared 

to the HSCs of young mice (Morrison et al., 1996).  Old HSCs that were transplanted into 

myeloablated recipient mice show less reconstitution (Morrison et al., 1996), more 

mobilization to the peripheral blood (Xing et al., 2006), and less homing and engrafting 

in the bone marrow of recipients (Liang et al., 2005). 

At the molecular level, microarray analysis revealed a general ageing signature of HSCs 

in comparison to young individuals.  The expression of genes linked to protein 

aggregation, inflammatory response, and oxidative stress increases with age, while genes 

involved in transcriptional regulation and genomic integrity (chromatin remodeling and 

DNA repair) decrease with age in both mice and humans (Rossi et al., 2005; Pang et al., 

2011).   

Mitochondria and ROS can also affect HSC ageing.  It has been shown that the lack of 

mitochondrial DNA polymerase catalytic subunit gamma (PLOG) expression in 

transgenic mice leads to increased mtDNA mutations that developed anaemia and 

lymphopenia (Trifunovic et al., 2004).  Furthermore, the reduced self-renewal potential 

of HSCs in serial transplantations can be rescued with N-acetyl cysteine (NAC)-mediated 

ROS inhibition (Ito et al., 2006).  Interestingly, HSCs with high levels of interacellular 

ROS showed an increase in the p38MAPK activity and mTOR, both of which have been 

shown to induce stem cell exhaustion after serial transplantation (Y. Y. Jang and Sharkis, 

2007).  Moreover, mice lacking the FOXO protein family of transcription factors (an 

integral part of the IIS pathway) showed higher ROS levels and less quiescence than 

wild-type mice (Miyamoto et al., 2007).  However, it has also been shown that the ROS 

levels in physiologically aged HSCs and HSCs from Plog-/- mice are not elevated.  Thus, 

one may question whether or not ROS and mtDNA can directly affect HSC ageing 

(Norddahl et al., 2011). 
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A new insight into the molecular regulation of HSC ageing linked intercellular activity of 

RhoGTPase Cdc42 to the declined HSC functionality during ageing (Florian et al., 2012).  

Authors have found that Cdc42 activity in HSCs increases with ageing and the 

genetically enforced activation of Cdc42 leads to a premature ageing phenotype.  Cdc42 

distribution in the cytoplasm has been shown to be polarised in young HSCs, but diffused 

in aged HSCs.  Even more interestingly, in aged HSCs the pharmacological inhibition of 

Cdc42 restores polarity and rejuvenates them to a youthful state.  Recently, the same 

group has shown that Wnt5a activates Cdc42 and induces an ageing phenotype in young 

LT-HSCs (Lin-Sca-1+C-Kit+CD34-Flk-) (Florian et al., 2013). 

 

1.4 Telomere length and telomerase 

1.4.1 Telomeres 

Telomeres are specialised nucleoproteins at the ends of mammalian chromosomes and 

are composed of long hexa nucleotide repeats (TTAGGG)n and that are associated with 

shelterin multiprotein complex (Figure 1.4).  There are six proteins in the human shelterin 

complex: telomere repeat factor 1 (TRF1) and 2 (TRF2), TRF1-interacting nuclear 

protein 2 (TIN2), TPP1, protection of telomeres 1 (POT1), and repressor/activator protein 

1 (RAP1) (de Lange, 2002).  Telomere length varies among species, ranging from 2-15 

kilobase pairs (kb) in humans (Martens et al., 1998) and 40-80kb in laboratory mice 

(Blasco et al., 1997).  The main function of telomeres and their associated proteins is the 

maintenance of chromosomal integrity and stability by (1) the protection of chromosomal 

ends from enzymatic degradation, (2) the prevention of end-to-end chromosome fusion, 

and (3) protection from DNA damage response by the prevention of chromosomal DNA 

to be recognised as a double-stranded breaks (de Lange, 2002).  Telomeres are regarded 

as a biological clock, as they shorten with each cell division as a result of the end 

replication problem and oxidative stress.  The end replication problem occurs when the 

DNA-polymerase cannot fully replicate chromosomal ends (more details are described in 

the next section).  When reaching a critical length, cells either enter senescence or 

apoptosis.  In most somatic cells, unlike stem cells, telomeres shorten with each cell 

division, thus leading to a finite limit known as the “Hayflick limit” (Allsopp et al., 1992; 
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von Zglinicki et al., 1995; Blasco et al., 1997).  However, cellular senescence can also 

occur through telomere-independent signaling, such as altered mitogenic signaling, 

cyclin-dependent kinase inhibitors signaling, and non-telomeric DNA damage response, 

as well as other signaling pathways (Rodier and Campisi, 2011). 

Telomere length has been postulated as a biomarker of human ageing since it is an 

indicator of cellular senescence and oxidative stress (von Zglinicki and Martin-Ruiz, 

2005).  Remarkable epidemiologic researchers measured telomere length, mostly the 

average leukocyte telomere length (LTL), to investigate the links to ageing and disease.  

LTL shortening is associated with age, several age-related diseases, environmental risk 

factors linked to vascular ageing (e.g., high BMI, insulin resistance, sedentary lifestyle, 

and smoking), and atherosclerosis (Samani et al., 2001).  In fact, a human longitudinal 

study recently indicated that smoking and metabolic syndrome variables (waist-hip ratio, 

blood glucose, cholesterol level) accelerate telomere attrition (Huzen et al., 2014).  

Therefore, these cells may serve as biomarkers of chronic immune activation, a 

cumulative burden of inflammation, or oxidative stress.  Furthermore, hereditary diseases 

caused by telomerase mutations implicated in the telomere length include dyskeratosis 

congenita (Vulliamy et al., 2001), idiopathic pulmonary fibrosis (Armanios et al., 2007), 

and bone marrow failure syndromes (Vulliamy et al., 2002).  As haematopoietic stem 

cells are on the top of the hierarchy of leukocytes, telomere length in HSCs and LTL are 

mirrored at any age.  The maximum length of telomeres is observed at birth and then it 

progressively shortens with age (Flores et al., 2008).  Furthermore, the haematopoietic 

system undergoes the highest telomere attrition early in life, probably due to its high 

proliferative potential to maintain blood homeostasis (Allsopp et al., 1992; Rufer et al., 

1999).   

Telomere length maintenance can be either by telomerase (described in the next section) 

or via an alternative lengthening of telomeres (ALT) mechanism.  About 10% of tumours 

stabilise telomere length with ALT, which involves DNA homologous recombination 

(Bryan et al., 1997).  Furthermore, it was shown that during the early embryo cleavage 

stage, telomeres are also lengthened by an ALT mechanism (Liu et al., 2004).  ALT was 

recently found to exist in normal mouse somatic cells by using a telomere-tagged 

transgenic mouse strain, but not in the germline (Neumann et al., 2013).   
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Figure 1.4: The structure of telomeres. 
Telomeres are end caps of chromosomes bound by a complex of proteins regarded as telomsome 
or shelterin, which is composed of TRF1, TRF2, RAP1, POT1, TPP1, and TIN2.  POT1/TPP1 
heterodimer is also bound to the G-strand overhang.  Telomere length shortens with each 
division, until it reaches a critically short length.  Telomere erosion leads to cell arrest and 
replicative senescence.  Modified from Hoffman et al. (2011).  
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1.4.2 Telomerase 

Since telomerase was first described by Nobel Prize winners Elizabeth Blackburn, Carol 

Greider, and Jack Szostak (Greider and Blackburn, 1985), it has attracted many scientists 

from multidisciplinary fields since it represents the possible key to the fountain of youth.  

Telomerase plays a pivotal role in stem cell rejuvenation by telomere maintenance and is, 

therefore, a crucial factor in ageing.  Ageing is associated with tissue atrophy, reduced 

telomerase activity, telomere shortening, and stem cell senescence (Flores and Blasco, 

2010).  Telomerase structure, expression, function, diseases, and mutations will be 

discussed in this section.  

1.4.2.1 Telomerase structure 
Unlike somatic cells, stem cells maintain telomere length by a unique reverse 

transcriptase called telomerase.  Telomerase replicates telomeres (the ends of telomeres) 

(Greider and Blackburn, 1989). Telomerase is composed of the catalytic subunit reverse 

transcriptase (TERT), the RNA template (TERC) for telomere synthesis, and associated 

proteins (such as dyskerin and heat-shock protein hsp90) (Lingner et al., 1997; T. M. 

Nakamura et al., 1997).  For the catalytic activity (canonical function) of telomere 

maintenance and elongation, both TERT and TERC are required (Lingner et al., 1997). 

The structure of TERT and TERC are similar in mice and humans.  Mammalian TERT 

mRNA is composed of 16 exons and 15 introns that extend over 35kb (Y. S. Cong et al., 

1999).  Mouse gene TERT is located on chromosome 13, whereas human TERT is 

located on chromosome 5 (Greenberg et al., 1998).  Mouse and human TERT genes have 

a similar promoter region which differ in regulation (Pericuesta et al., 2006).  In contrast, 

the non-coding RNA component of telomerase (TERC) is similar between mice and 

humans and both are located on chromosome 3.  Mature mammalian TERC is composed 

of 451 nucleotides, while its template part is complementary to the telomeric sequence 

which is composed of 11 nucleotides (5’-CUAACCCUAAC-3’) (Feng et al., 1995; Egan 

and Collins, 2012). Furthermore, there is a high functional similarity between mouse and 

human telomerase.  When telomerase-activity-deficient mouse cells (TERC knockout) 

were transfected with human telomerase genes, telomerase was fully restored indicating 
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the structural conservation and functional interchangeability between mice and humans 

(Martin-Rivera et al., 1998).    

1.4.2.2 Telomerase expression 
There is a tissue-specific expression of telomerase activity in mammals.  Mice show 

telomerase activation across different cells and tissues including intestine, muscle, liver, 

testes, and lymphocytes throughout life.  During human embryonic development, 

telomerase is active; after 20 weeks of gestation, it gradually decreases in the embryo.  

However, adult stem cells, germ cells, endothelial cells, and lymphocytes still show 

detectable telomerase activity (Ulaner et al., 1998).  Furthermore, epigenetic regulation 

was shown to modify telomerase activity during stem cells via acetylaction/deacetylation, 

as well as methylation/demethylation of histone H3 in the TERC promoter and histone 

H3 and H4 in the TERT promoter region (Saretzki et al., 2008; Yang et al., 2008).   

The functions of telomerase can be divided into canonical and non-canonical.  With each 

cell division, chromosomes must be replicated to share DNA between two daughter cells.  

The end caps of chromosomes (telomeres) get shorter, due to the “end replication 

problem” (Figure 1.5).  During mammalian cell division, the chromosomal DNA is 

duplicated with DNA polymerases.  DNA polymerases can only synthesise DNA in a 5’-

3’ direction.  As DNA polymerases need a template to start the DNA synthesis, they use 

an 8-12 base segment of RNA as a starting primer.  While the leading strand can be 

continuously synthesised, the lagging strand is not fully synthesised, leading to short, 

RNA-primed segments termed Okazaki fragments.  After DNA extension, the gaps filled 

in by DNA polymerase priming from upstream DNA 3’ ends and the RNA segments are 

removed.  An 8-12 base pairs gap is created after the removal of the outer 5’-RNA 

primer, leading to a daughter strand that is shorter than the parental strand.  This inability 

to achieve full DNA replication causes a loss of the terminal sequence during each 

replication cycle (Watson, 1972; Levy et al., 1992).  This short fragment of telomere 

(≈20bp) is lost with each division.  Once a critical level length of telomere is reached, 

cells face cell cycle arrest and replicative senescence.  Telomerase recognises the strand 

(3’-G-rich) and elongates it with the 5’ TTAGGG telomeric repeats that are 

complementary to RNA template on the TERC component (Blackburn, 2001).  This 
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telomeric shortening is even significantly accelerated with oxidative stress (≈50-100bp) 

(von Zglinicki et al., 1995). 

 

 

 
Figure 1.5: Telomerase function. 
DNA polymerase lacks the ability to replicate the lagging strand (3’-5’) forming Ozaki fragments 
on the lagging strand, thus leading to an “end replication problem”.  Therefore, telomeres shorten 
with each cell replication.  Telomerase elongates telomeres by binding to a 3’ overhang and 
extending it with TTAGGG repeats.  DNA polymerase then synthesises a new lagging 5’ end 
strand of telomeres.  Modified from Sadava (2007). 
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1.4.2.3 Functions of telomerase 
The canonical function of telomerase involves the protection of telomeres against 

erosion, chromosomal end fusion, and the instability of chromosomes.  Therefore, 

telomerase enzymatic activity is required for the indefinite potential of immortal cell 

proliferation (e.g., embryonic stem cells, germ cells, and cancer cells) (Greenberg et al., 

1998; Martin-Rivera et al., 1998).  When telomerase is absent (i.e., somatic cells), 

telomeres shorten with each cell division.  Eventually, telomere length reaches a critical 

point that activates a p53-dependent DNA damage response (DDR) in the telomeric 

region that may lead to cell cycle arrest and apoptosis or senescence (Saretzki et al., 

1999).  DDR is activated by the sensor kinsases, such as ATM/ATR or DNA-PK or the 

phosphorylation of γH2A.X, leading to the activation of Ck1 and Ck2 (cell cycle 

checkpoint proteins) and a p53/p21 pathway, causing cell-cycle arrest (d'Adda di 

Fagagna et al., 2003). 

Many studies suggest several non-canonical functions of telomerase.  Mounting 

experimental data suggests that TERT is involved in telomere-independent effects on cell 

survival, proliferation, stem cell biology, cellular transformation, mitochondrial function, 

DNA damage response, regulation of gene expression, and chromatin remodeling (Y. 

Cong and Shay, 2008).  The overexpression of TERT was reported to activate epidermal 

stem cell proliferation and mobilisation in transgenic mice with enhanced hair growth, 

increased keratinocyte proliferation, and augmented skin hyperplasia independent of its 

reverse transcriptase activity (Flores et al., 2005).  Furthermore, TERT can action as an 

integrator and transcriptional co-activator of signaling pathways, as in Wnt/β-catenin and 

Myc (Choi et al., 2008).  TERT also acts as a co-factor that promotes Wnt target genes 

through interaction with the Wnt- β-catenin transcriptional complex (Park et al., 2009).  

Another study showed a regulatory feedback loop between Wnt and TERT by which it 

has been suggested that β-catenin, which is an effector in Wnt signaling, might be a direct 

regulator of mouse TERT expression (Hoffmeyer et al., 2012).  In addition, human TERT 

interacts with the RNA component of mitochondrial RNA-processing endoribonuclease 

(RMRP), which has a function in processing ribosomal RNA in the nucleus.  This gene is 

mutated in pleiotropic syndrome cartilage-hair hypoplasia and an hTERT-RMRP 

complex generates other small-interfering RNAs that regulate gene expression at the 
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post-transcriptional level (Maida et al., 2009).  Nitta et al. (2011) studied a TERT-/- and 

ATM-/- knockout mouse model and demonstrated that TERT is required for HSC function 

and tissue renewal in ageing.  These double-knockout models (TERT-/-ATM-/-) showed 

higher senescence markers (γH2AX and p16), oxidative stress, and apoptosis, but such 

findings were not present in the single-knockout model.  Moreover, it has been shown 

that mitochondrial TERT plays a protective function by reducing reactive oxygen 

production, protecting mtDNA against damage, increasing the membrane potential, and 

inhibiting apoptosis induction (Ahmed et al., 2008; Haendeler et al., 2009).  In fact, it has 

been demonstrated recently that mitochondrial telomerase localisation specifically 

decreases cellular oxidative stress and mitochondrial ROS generation after induction of 

exogenous stress generated by irradiation or H2O2 in cancer cells and thereby prevents 

nuclear DNA damage (Singhapol et al., 2013). 

Telomerase function is regulated by genetic, epigenetic, and environmental factors. 

Several polymorphisms in the TERT promoter region and telomerase-associated protein 

genes have been shown to regulate telomerase expression and activity (Hsu et al., 2006).  

The transcriptional activators that target the TERT promoter include c-Myc, Sp1, Est-1, 

nuclear factor kappa B (NFκB), nuclear factor of activated T-cells, cAMP response 

element protein, hypoxia-inducible factor, and signal transducer and activator of 

transcription 3 (STAT3). The transcriptional repressors include myeloid zinc finger 2, 

p53, Wilms tumor 1, AP-1, AP-2, AP-4, CCCTC binding factor, menin, and Smad3 (Kyo 

et al., 2000).  Furthermore, the TERT promoter contains CpG islands and, thus, is 

susceptible to epigenetic modification by DNA methylation (Kyo et al., 2008).  Histone 

acetylation and deacetylation also became increasingly important in TERT transcriptional 

regulation.  Histone decacytlase inhibitors activate the TERT promoter by SP1 

(Doetzlhofer et al., 1999), with recruitment mimicking TERT mRNA expression by T-

cell antigen receptor stimulation through maintaining H3/H4 acetylation (Hou et al., 

2002).  TERT expression is also regulated by an mRNA splicing mechanism that contains 

at least six splice sites and α exerts a dominant negative effect on normal transcripts 

(Colgin et al., 2000).  In addition, microRNAs are involved in the control of TERT gene 

expression and translation, whereas high levels of telomerase activity in NK/T-cell 

lymphomas is associated with diminished miRNA-150 and transfection with exogenous 
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miRNA-150-reduced telomerase activity via reducing Akt kinase expression (Watanabe 

et al., 2011).  Telomerase activity is also regulated at the post-translational level by 

phosphorylation and protein folding.  TERT protein has multiple serine residues that are 

putative sites for phosphorylation and Akt kinase activation (Kang et al., 1999).  TERT 

phosphorylation and activation also occur via protein kinase C (PKCα) (H. Li et al., 

1998).  Moreover, lifestyle factors can implicate telomerase function.  Exercise induces 

aortic telomerase activity and telomere-stabilizing proteins in mouse models.  Exercise 

decreased apoptosis regulators and vascular cell cycle inhibitors were absent in TERT-/- 

mice.  Telomerase activity and telomere proteins were upregulated and pro-apoptotic 

proteins were downregulated in young and middle-aged athletes compared to untrained 

subjects (C. Werner et al., 2009).   

1.4.2.4 Telomerase dysfunction in disease 
Several diseases are linked to mutations or changes in telomerase gene expression.  

Telomerase was found to be active in over 90% of human cancers and is responsible for 

their unlimited proliferative potential.  Therefore, numerous studies in vitro and in vivo 

investigated telomerase as a major pharmacological target for cancer therapy (Ruden and 

Puri, 2013).  However, the other 10% of tumours stabilise telomere length without 

telomerase activity via the ALT mechanism (Bryan et al., 1997).  Other than cancer, a 

number of diseases are related to dysfunctional telomerase genes, including aplastic 

anaemia, pulmonary fibrosis, and hepatic cirrhosis, which are all associated with short 

telomeres (Young, 2012).  Another example, dyskeratosis congenita, shows some 

features of premature ageing (anaemia, premature graying, thrombocytopenia, 

predisposition to cancer) with autosomal-dominant deletion in the human TERC gene.  A 

common feature of these patients is their extraordinary short telomeres (Vulliamy et al., 

2001).  Furthermore, telomerase is a vital factor in ageing, due to its role in rejuvenating 

stem cells through telomere maintenance.  In ageing tissues, stem cell ageing diminishes 

the regeneration potential.  It was shown that telomerase is activated in adult stem cells 

with longer telomeres than the surrounding tissues (Flores et al., 2008).   
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1.4.2.5 Telomerase dysfunction in mouse models 
Telomerase mutation studies in animal models have advanced the research field.  TERT-/- 

telomerase-deficient mice show direct evidence of a loss of differentiation and 

proliferation capacity of somatic and germ cell lines with telomere shortening (Allsopp et 

al., 2003).  In comparison, the overexpression of TERT in embryonic stem cells 

enhanced proliferation, enriched apoptosis and oxidative stress resistance, and improved 

differentiation (Armstrong et al., 2005; Yang et al., 2008).   

Mouse TERT and TERC knockout models that lack telomerase activity only show 

defects in the late generations with increased age-related disease incidence and premature 

tissue degeneration affecting high cellular turnover tissues, such as intestine and bone 

marrow (Blasco, 2003).  Late generations of TERT-/- mice lacking functional telomerase 

show reduced testes mass and fertility, as well as increased intestinal cell apoptosis 

(Allsopp et al., 2003; Meznikova et al., 2009).   

TERT-/- G1 and G2 did not show any phenotypic changes in the testes, ovary, brain, 

gastrointestinal tract, liver, pancreas, bone marrow; other tissues were all normal in 

comparison to wild types (Yuan et al., 1999). However, telomere length-shortening 

occurred in TERT-deficient mice.  TERT-heterozygous mice were able to elongate TL to 

a level equivalent to the wild type, unlike the deficiency seen by TERC+/- (Chiang et al., 

2004).  Moreover, when TERT and TERC mutations were introduced by backcrossing 

with mice with an already-shortened telomere background (CAST/EiJ), progressive 

telomere shortening and reduced survival of TERT+/- mice with progressive breeding (9 

generations) have been shown (Strong et al., 2011).  Interestingly, these mice showed a 

less severe phenotype than the TERT-null mice (skewed myeloid/erythroid in the bone 

marrow, extramedullary heamatopoiesis in the liver and spleen, intestinal villous atrophy 

and crypt depletion, crypt hyperplasia and mictoadenomas, and typhocolitis in the large 

intestine). 

Similarly, TERC-/- that was compared to wild types demonstrated an impaired 

regeneration of organs, shorter lifespans, skewed differentiation of stem cells, kyphosis, 

and decreased body weights (Lee et al., 1998; Rudolph et al., 1999).  Studies by Lee et 

al. (1998) on the first-generation G1 TERC-/- revealed no adverse effect on the overall 

clinical condition (weight, motor behaviour/activity, lifespan,) through 20 months of life.  
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G1 TERC-/- showed a normal morphology and capacity of haematopoietic progenitor 

cells to grow and differentiate in clonogenic assays in vitro, however, in G3 and G6, 

colonies were significantly reduced.  Furthermore, the authors noticed infertility with no 

offspring produced after G6 intercrosses.  The male reproductive systems demonstrated 

smaller testes, impaired spermatogenesis, and increased apoptosis in the testes (G6).  

Similarly, the G6 TERC-/- female reproductive system exhibited smaller ovaries and a 

decreased number of oocytes.  Interestingly, Rudolph et al. (1999) studied TERC-/- mice 

extensively under ageing and stress.  G3 and G6, when compared to TERC+/+, showed 

increased hair graying and alopecia (hair loss) at a younger age (less than 6 months) and 

during ageing (older than 15 months).  In those ageing late generations (G6) of TERC-/- 

mice, a spectrum of consequences were shown, including ulcerative skin lesions that 

were negatively correlated with telomere length, decreased body weight, and decreased 

wound healing.  As a measure of stress response, blood cell ablation was performed with 

5-fluorouracil (5-FU) to measure an induced stress response.  Unlike young mice (1-3 

months), old mice showed a decline in blood cells during ageing, with an increased loss 

of G6 in comparison to G3 and TERC+/+.  Furthermore, there was an increased frequency 

of chromosomal fusion during ageing in G3 and an increased incidence of cancer (i.e.: 

teratocarcinoma, lymphomas, squamous cell carcinomas), especially in late generations 

(G4-G6).  In addition, in conditions with stress, as in serial transplantation of G1 HSCs 

from both TERC-/- and TERT-/-, repopulating activity was reduced and a loss of telomere 

length was noted (Allsopp et al., 2003).  Furthermore, the lack of telomerase activity and 

telomere dysfunction in late generations of TERT-/- and TERC-/- mice is associated with 

impaired mitochondrial function and biogenesis.  In particular, TERT-/- mice showed 

increased ROS production in heart, liver, and haematopoietic stem cells, cardiomyopathy, 

and decreased gluconeogenesis.  These defects were shown to be through PGC-1α-

dependent activation of p53 (Sahin et al., 2011).  Interestingly, a reversible TERT 

knockout was engineered by using an allele encoding a 4-OHT-inducible telomerase 

reverse transcriptase-oestrogen receptor (TERT-ER).  In late-generation (f4) TERT-/-, 

telomerase was reactivated by a 4-OHT (4-Hydroxytestosterone) treatment that reduced 

DNA damage signaling and restored tissue function by re-establishing the stem cell 

population; for example, in interstitial crypts and the brain (Jaskelioff et al., 2011).  
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Another promising genetic manipulation study showed that telomerase gene therapy 

might substantially delay or reduce age-related decline of mouse health span.  An adeno-

associated virus (AAV) was introduced; carrying TERT to mature and old mice showed 

better neuromuscular coordination, reduced biomarkers of ageing, improved insulin 

sensitivity and increased lifespans without an increased incidence of cancer (Bernardes 

de Jesus et al., 2012). 

 

1.4.3 Telomerase and haematopoietic stem and progenitor cells regulation 

Haematopoiesis relies on the self-renewal and differentiation of HSCs.  Studies in both 

humans and mice show clear evidence that short telomeres cause quantitative and 

qualitative defects in HSCs that manifest in the form of stem cell exhaustion (Allsopp et 

al., 2003; Hao et al., 2005; Rossi et al., 2007).  Serial transplantation of extensive self-

renewal induced by stimulating NA10hd-transduced TERT-/- HSCs showed deficient 

reconstituting ability, reduced telomere length, and accumulating DNA damage 

(Sekulovic et al., 2011).  Similarly, the presence of short telomeres in G3 TERC-/- long-

term reconstituting haematopoietic stem cells (LT-HSCs) decreases their ability to 

repopulate irradiated mice.  Regardless of the HSC pool expansion with age in these 

mice, this decline in the regenerative function is exacerbated in old G3 TERC-/- HSCs 

(Rossi et al., 2007).  Furthermore, in this study, the majority of LT-HSCs from old wild-

type mice stained for the DNA-damage response marker H2AX indicated that DNA 

damage accumulates with age.  The cellular mechanisms of telomere-mediated stem cell 

failure are not completely known, but the deletion of cylcin-dependent kinase inhibitor 1a 

(Cdkn1a) that encodes p21 (transcriptional target of p53) rescues the HSC self-renewal 

defect in mice (Choudhury et al., 2007).  The aplastic anaemia phenotype can be reversed 

with an allogeneic stem cell transplantation in humans, which indicates that telomere-

related stem cell disruption occurs cell autonomously.  Other tissues are also involved 

with telomere dysfunction, such as the intestinal epithelium, which manifests as villous 

atrophy due to the loss of crypt stem cells (Rudolph et al., 1999; Hao et al., 2005; 

Choudhury et al., 2007).   
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1.5 Aims 
As oxidative and metabolic stress contributes to ageing and age-related diseases, my 

thesis is focused on investigating their roles on both endothelial and haematopoietic stem 

progenitor cells (EPCs and HSPCs).  To assess the impact of oxidative stress, cells were 

incubated under hyperoxia (40% O2) culture conditions and compared to normoxia (20% 

O2) and hypoxia (3% O2).  On the other hand, metabolic stress was induced in culture by 

the addition of different glucose concentrations, as can be found in diabetic patients 

(10mM, 25mM, 30mM), as well as supraphysiological levels (50mM, 100mM, and 

150mM).  In the first results chapter, EPCs were isolated from healthy donors’ peripheral 

blood and incubated under metabolic stress.  In particular, I have studied the role of 

hyperglycemia on the metabolic regulator PGC-1α.  I also have examined the role of the 

anti-diabetic drug metformin on PGC-1α and downstream targets in EPCs in vitro.  In the 

second results chapter, HSPCs were isolated from umbilical cord blood samples.  I 

examined the role of telomerase in HSPCs during CD34+ cell expansion under oxidative 

and metabolic stress.  I have further tested the effects of oxidative stress on telomerase in 

myeloid cells after differentiation from CD34+ HSPCs.  To evaluate the role of 

telomerase in depth, I studied HSPCs’ ageing in bone marrow isolated from telomerase-

deficient mice (TERT-/- and TERC-/-) in the last two results chapters.  These two mouse 

models allowed me to analyse the role of telomerase without telomere shortening (TERT-

/-) and with telomere shortening (TERC-/-) in vivo.  Ageing in BM, the HSPCs of these 

models were assessed by evaluating the stem cell expression and clonogenic potential.  

Furthermore, in the last results chapter, I was interested in examining the effects of anti-

ageing interventions, specifically dietary restriction and telomerase activation by the 

telomerase activator TA-65.  A brief outline of aims for each results chapter are shown in 

Figure 1.6 and detailed aims are separately described in each chapter. 
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Figure 1.6: Aims of thesis. 

 !

• Establish*EPCs*culture**

• Investigate*the*role*of*metabolic*and*oxidative*
stress*on*PGC;1α*in*EPCs*

• Evaluate*the*role*of*anti;diabetic*drug*metformin*in*
vitro*

Endothelial+
progenitor+cells+

• Establish*CD34+*HSPCs*expansion*and*myeloid*
differentiation*
• Investigate*the*role*of*oxidative*and*metabolic*
stress*on*HSPCs*
• Evaluate*telomerase*regulation*in*HSPCs*under*
oxidative*stress*
• Determine*the*effects*of*statins*and*TA;65*on*HSPCs*

Human+
Haematopoietic+

stem+and+
progenitor+cells+

• Establish*bone*marrow*isolation*HSPCs*and**culture*
• Investigate*the*role*of*telomerase*ko*on*HSPCs*
ageing*(KSL*expression*and*colonies*formation)*
• Evaluate*the*effects*of*metabolic*and*oxidative*
stress*on*HSPCs*
• Examine*the*effects*of*anti;ageing*intervention*
dietary*restriction*and*TA;65*on*HSPCS*ageing*

Mouse+
haematopoietic+

stem+and+
prognitor+cells+



 
 

46 

Chapter 2 Materials and methods 

2.1 Animals 
TERT and TERC mouse lines were purchased from Jackson Laboratory.  The mice 

lines included the TERT-/- strain: B6.129S-Tert, tm1Yjc/J (Chiang et al., 2004) and 

TERC-/- strain: B6.Cg-Terc, tm1Rdp/J (Blasco et al., 1997), both on a C57BL/6 

background. Mice were inbred to obtain a wild-type, first-generation (G1) knockout and 

heterozygous mice for the TERT and TERC genotypes. The mice used for the TA-65 

treatment had a genotype C57BL/Icrfa(t) (Rowlatt et al., 1976).  Animals were housed in 

the same room and provided with sawdust, paper bedding, and had ad libitum access to 

water.  Mice were housed at 20 +/-2°C under a 12h light/12h dark photoperiod.  Ethical 

approval was granted by the LERC Newcastle University, UK. The work, which was 

licensed by the UK Home Office (PPL 60/3864), complied with the guiding principles for 

the care and use of laboratory animals.  

As shown in Figure 2.1, according to Chiang et al. (2004) TERT-deficient mice were 

constructed in two main steps.  First the constructing of the targeting vector that was 

performed with a 6kb-mTERT genomic DNA fragment was derived from strain 129, 

which consisted of exon 1 and exon 2 of the mTERT gene.  The DNA fragment was 

inserted into the pBluescript-KS vector at the EcoRI site (KS-tert).  After cutting a 

BamHI-Xbal fragment from KS-tert, the fragment was subcloned into pBluescript-KS 

vector (KS-BX).  A unique enzyme restriction site (Xhol) in KS-BX was created by PCR 

proximally to an ATG, which corresponds to the translation initiation code of the mTERT 

mRNA.  Neomycin resistance and green fluorescent protein (GFP) genes were inserted in 

the Xhol site of the vector.  This resulted in a BamHI-Xbal DNA fragment with 

neomycin and GFP-resistant genes, which was used to replace the BamHI-Xbal fragment 

of KS-tert.  Outside the genomic DNA fragment, at a Notl site the thymidine kinase gene 

was inserted.  The final construct was used as an mTERT gene-targeting construct.  The 

second step was to target the gene in embryonic stem cells and mTERT knockout mice 

production.  The mTERT-targeting construct was linearised by using Sall and 

electroporated into embryonic stem cells.  G418-resistant colonies were selected and 

isolated.  Embryonic stem cell colonies with homologous recombination events were 
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identified with a BmHI-Xbal fragment from KS-tert as a probe in the Southern blot 

analysis.  Mutant mice were generated with the selected embryonic stem cell clones.  To 

confirm the disruption of the mTERT gene, southern blotting, RT-PCR, and telomerase 

activity were used. 

The TERC-/- mice construction (Figure 2.1) was performed as described by Blasco et al. 

(1997).  For the TERC genomic deletion, two new unique Sacl restriction sites were 

introduced by site-directed mutagenesis into a 4kb Xhol genomic fragment and a 3.3kb 

Xbal genomic fragment.  These sites allowed the correct homologous recombination 

events to be recognised by the digestion of genomic DNA with Sacl.  Sacl-digested DNA, 

by using a 1.2kb probe, generated a 6.3kb wild-type band or a 4.7kb band from the 

correct targeted allele.  The site-directed mutagenesis was performed by using the 

Amersham Sculptor In-vitro Mutagenesis System and the sites were confirmed by 

sequencing.  The mutagenised fragments were cloned into the targeting vector pPNT to 

generate pPNT-mTRΔ.  The plasmid contained the neomycin resistance gene for the 

replacement of the mTR gene and the HSV TK gene for the counterselection in the 

ganciclovir of randomly integrated constructs.  The plasmid pNT-mTRΔ was linearised 

with Notl to generate embryonic stem cells with targeted integration, and the DNA was 

electroporated into WW6 embryonic stem cells.  Using G418 and ganciclovir, cells were 

selected and positive clones were picked after 9 to 10 days.  Four clones (Tel-1, Tel-2, 

Tel-3, and Tel-4) correctly targeted the mTR locus out of the 449 neomycin-/ganciclovir-

resistant clones that were initially screened.  The four clones were injected into C57BL/6J 

blastocysts and implanted into pseudopregnant mice.  The chimeric progeny were 

identified by their mosaic coat colour.  Mice from the first microinjections (Tel-1) were 

mated to C57BL/6J to test for germline transmission of the mTR gene replacement, and 

heterozygous progeny mTR+/- were identified.  Further generations of the telomerase-null 

mice were obtained by mating mTR-/- with each other. 
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Figure 2.1: Expression of TERT and TERC knockout constructs 
Comparison of wild-type TERT mRNA (A) and TERT knockout constructs in mice (B).  Wild-
type TERT+/+ contains 16 exons.  The knockout described by Chiang et al. (2004) contains a GFP 
and a neomycin-resistant gene (neo) inserted into exon 1.  The TERC noncoding gene consists of 
one exon, as shown in wild-type TERC.  The exon was replaced with neomycin, as described by 
Blasco et al. (1997). 

2.1.1 Bone marrow isolation 

Tibiae and femura from both legs of mice were collected and carefully cleaned 

from adherent soft tissue with sterile tissue paper. The tips of each bone were cut open by 

using sterile scissors and forceps.  The bone marrow was collected by inserting the needle 

into one end of the bone and flushing it out from the other open end.  Each bone was 

flushed with 3ml PBS; after that, the cells were washed twice with 15ml PBS and 

counted with a haemocytometer. 

2.1.2 Cell culture 

Cell culture was performed as previously described (Samper et al., 2002) by using 

MyeloCult culture media [H5100 05150, Stem cell Technologies, Canada].  Isolated bone 

marrow cells were plated in a 6-well plate at 16x106 per 2 ml MyeloCult for 3 days.  Two 

concentrations of glucose [43835 Hameln Pharmaceuticals, Germany] (10mM or 20mM) 

were added daily to bone marrow cells compared to controls.  TA-65, a gift from T.A. 
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Sciences, was dissolved in DMSO in three concentrations (1µM, 5µM, and 10µM) and 

added only once initially with media and compared to controls.  Expansion was 

performed by using a cocktail of cytokines for a week (100ng/ml SCF, 100ng/ml TPO, 

and 100ng/ml FLT-3L).   

2.1.3 Treatments 

The diet that was used was standard rodent pelleted chow (CRM (P); Special Diets 

Services, Witham, UK) for the DR experiment and powdered food for the TA-65 

treatment. 

1. DR: During the dietary restriction experiments, the control group had ad libitum 

access to food (AL), whereas the dietary-restricted (DR) group was limited by 

40% as described previously (Cameron et al., 2011).  Long-term DR started at 6 

months of age and lasted for 16 months, (i.e., mice were 22 months old when 

used). Short-term DR started at 4 months of age and lasted for 7 months, so that 

the mice were 11 months old when used.  Only males were used for the DR 

experiments. 

2. TA-65 treatment: TA65® is a telomerase activator purified from Astragalus 

membranaceous and licensed to TA-Science Inc., USA.  Twenty-four-month-old 

female wild-type mice with the genotype C57BL/Icrfa(t), as well as 9-month-old 

TERC+/- and TERC-/-, were treated with TA-65 for 3-4 months.  TA65® was 

solubilised in DMSO and further diluted into water to form a suspension. This 

substance was mixed with powdered food (5 g/mouse per day) and administered 

orally at a daily dose of 25 mg/kg per mouse, as described eralier (Bernardes de 

Jesus et al., 2011).  The control mice received the same food with only DMSO in 

water (0.33%).  All work complied with the guiding principles for the care and 

use of laboratory animals in the UK. 

2.2 Human endothelial progenitor cells 

2.2.1 Peripheral blood isolation 

Mononuclear cells were isolated from peripheral blood by density gradient 

centrifugation.  The methodology is based on using a high-density polymer solution in 
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the centrifugation of different cell components (shown in Figure 2.3).  Briefly, a 

leucocyte cone from the Blood Donor Center, Newcastle, was diluted 1:2 with 1X 

Phosphate Buffered Saline (PBS) [GIBCO, Invitrogen 1218564, USA].  The sample was 

then layered over 15ml of Bicoll separating solution [density 1.077 g/ml, L6113 

Biochrom AG, Germany].  Using a density gradient centrifugation at 800g for 20 minutes 

without a brake [Centrifuge 5810, Eppendorf, Germany], the white layer (buffy coat) of 

the mononuclear cells was collected along with the serum above it.  Two washes were 

performed with PBS and a full brake centrifugation at 800g for 10 minutes.  Cells were 

counted by using a haemocytometer under a light microscope in the four squares, as 

shown in Figure 2.2.   

2.2.2 Cell culture 

The cell culture was performed as described by Urbich and colleagues (Urbich et al., 

2003).  After cell isolation from peripheral blood, cells (15x106/well) were resuspended 

in EBM-2 [CC3156 Lonza, Switzeralnd] media with SingleQuotsEGM-2 (FBS 10 

ml, Hydrocortisone 0.2 ml, hFGF-B 2ml, VEGF 0.5 ml, R3-IGF- 1,0.5 ml, Ascorbic acid 

0.5 ml, hEGF 0.5 ml, GA-1000 0.5 ml, and Heparin 0.5 ml) and 10% fetal bovine serum 

(FBS) [12003C Sigma, USA].  After coating 6 wells of the polysterene plates [734-1599 

Iwaki, Japan] with 0.001% human fibronectin-coat [F0895 Sigma Aldrich, USA] for at 

least 30 minutes at room temperature, the cells were then seeded.  The cells were treated 

daily with the following glucose [43835 Hameln Pharmaceuticals, Germany] 

concentrations: 10mM, 20mM, 30mM, 50mM, 100mM, 150mM, 200mM, and 250mM.  

Conditions with metformin [D150959 Sigma, USA] dissolved in water to concentrations 

(0.1mM, 0.5mM, 1mM, and 10mM) were added when the cells were first plated.  Cells 

were incubated in humidified 37˚C, 95% air conditioned, 5% CO2, and 20% oxygen were 

placed in a CO2 ThermoForma steri-cycle incubator for 7 days or 3 days depending on 

the experiment.  For oxidative stress testing, cells were incubated in the same incubator 

conditions (humidified 37˚C, 95% air conditioned, 5% CO2), except for the oxygen levels 

in which 3% oxygen and 40% oxygen levels were used.  Cells were harvested from wells 

using a foam tool [9010-320 Iwaki, Japan] after washing with PBS and then centrifuged 
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at 800g for 5 minutes. For the rest of the cells, the media were changed every 2 days and 

cells were harvested at days 3, 5, and 7.     

 
Figure 2.2: The haemocytometer.  
Haemocytometer used for manual cell counting under light microscope for cells isolated and 
grown in cell culture.  The squares labeled with numbers 1, 2, 3, and 4 were counted.  Any 
outlying cells were not counted. 
 

2.3 Human haematopoietic stem and progenitor cells 

2.3.1 Human umbilical cord blood isolation 

Umbilical cord blood samples were collected only from Caesarean section births, 

due to logistical considerations and homogeneity of treatment reasons.  Patients 

consented and ethical approval was obtained from the Local Research Ethics Committee 

prior to any umbilical cord blood collection.  Umbilical cord blood samples were 

collected in Baxter collection bags provided with CPD-A (citrate phosphate dextrose 

adenine) anticoagulant [Baxter, USA].  All samples were processed within 24 hours of 

collection.  Whole umbilical cord blood was diluted 1:1 with 1X PBS and layered very 

slowly on 15ml of Bicoll separating solution.  Layered samples were centrifuged for 20 

minutes without deceleration at 800g, as shown in Figure 2.3.  The mononuclear cells 

layer was carefully aspirated in a new tube and filled with PBS and centrifuged at 800g 

for 10 minutes; this step was performed twice.  Another washing step was performed at 

350g for 15 minutes.  Cells were then were resuspended in 50ml MACS buffer, which is 
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1X PBS, 2% FBS, and 2mM EDTA [AM9260 Life technologies, USA], and counted in a 

haemocytometer.  

 

 

 

Figure 2.3: Density gradient centrifugation.   

Blood is diluted with PBS and layered carefully over Bicoll.  After centrifugation with Bicoll, the 
top layer is plasma.  Then, cells separate into the yellow MNCs (mononuclear cells) layer or the 
buffy Bicoll layer, followed by granulocytes and RBCs (red blood cells or erythrocytes).  
Mononuclear cells are carefully harvested for further experiments. 
 

2.3.2 Immunomagentic sorting of human CD34+ cells 

MACS® technology is now the gold standard in magnetic cell separation according 

to the cell surface antigens.  As shown in Figure 2.4, cells of interest are labeled 

specifically with super-paramagnetic MACS microbeads.  Cells are then are passed 

through separation columns that are placed in a strong magnet.  Labeled cells with 

microbeads are retained in the column while unlabeled cells pass through.  After 

removing the column from the magnet, the retained cells are eluted to give the positive 

fraction of cells. 

MACS super-paramagnetic microbeads are only 50nm in diameter, which is comparable 

to the size of a virus and about one million times smaller in volume than eukaryotic cells.  
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Microbeads are composed of iron oxide and polysaccharide, which make them, together 

with their small size, biodegradable.  Microbeads do not influence function and viability, 

nor do they activate cells.  When cells are cultured, microbeads are decomposed, thus 

allowing cells to retain their physiological functions.  Therefore, there is no need for bead 

detachment and positively selected cells can be used directly after separation for 

experiments (Biotec, 1999). 

 

 
Figure 2.4: Principle of immunomagentic beads labeling.   
Microbeads bind specifically to a cell’s antigen (such as CD34) and are retained in a magnetic 
field.  Unlabeled cells pass through with buffer washes then labeled cells are removed from 
magnetic field and flushed out.  Pure positively selected cells then are ready for use in 
experiments. 
 

The isolation of CD34+ cells was performed by using CD34+ microbead kit for humans, 

as described by the manufacturer [Miltenyi biotec, 130046702, Germany].  After the 

isolation of umbilical cord blood, mononuclear cells in the previous methods section (i.e., 

2.2.1) cells were resuspended in a final volume of 300µl per 108 total cell.  100µl of FcR 

blocking reagent per 108 cells was incubated at room temperature for 5 minutes.  CD34+ 

labeling was performed by adding 100µl per 108 cells and incubated at 4°C for 30 

minutes.  Cells were then were washed with MACs buffer at 350g for 15 minutes.  
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Columns were primed with MACS buffer and cells were applied to the columns in a 

magnetic field, letting the CD34- unlabeled cells pass through and trapping the CD34+ 

labeled cells.  Washing was performed 3 times with 3ml-MACS buffer to ensure that 

nonspecific binding was washed away.  The column was removed from the magnetic 

field and flushed with 5ml-MACS buffer.  Another column was used and a CD34- 

fraction passed again in the column to ensure that no CD34+ cells were missed.  The 

second column was flushed with 2.5ml and CD34+ cells were collected.  CD34+ cells 

were used for flow cytometry and cell culture.   

Similar to the isolation of CD34+ microbeads, CD14 and CD15 microbeads were also 

used to separate monocytes and granulocytes, respectively, from mononuclear cells 

isolated from peripheral blood [CD14: 130050201, CD15: 130046601, Miltenyi Biotec, 

Germany]. 

2.3.3 Cell culture 

CD34+ cells then were counted by using haemocytometer and expanded for a week in 

20% FBS 200mM IMDM media [21980032 Invitrogen, USA] supplemented with 

100ng/ml stem cell factor (SCF) [3007 Peprotech, USA], 100ng/ml thrombopoietin 

(TPO) [30018 Peprotech, USA], 100ng/ml Fms-related tyrosine kinase-3 ligand (FLT-

3L) [30019 Peprotech, USA], and 50µg/ml gentamycin [15710049 Invitrogen, USA].  

Furthermore, cells were differentiated into granulocytes by using a supplementary 

mixture: 20ng/ml SCF, 50ng/ml FLT-3L, and 100ng/ml G-CSF [30023 Peprotech, USA], 

as described by Schuller et. al. (2007).  Table 3 shows the different cytokines mixtures 

that were used.  The schematic set up of expansion and differentiation of CD34+ cells 

that were isolated from umbilical cord blood are shown in Figure 2.5.  Oxidative stress 

was tested by using different oxygen levels in an incubator (3%, 20%, and 40%).  

Different concentrations (10mM, 20mM, and 30mM) of glucose were added daily to 

CD34+ HSPCs for a week.  TA-65 [T.A. Sciences, USA] was dissolved in DMSO to 

working solution of 1µM, 5µM and 10µM.  Those TA-65 concentrations were added 

initially to CD34+ HSPCs and once during media change and compared to controls.  

Atorvastatin was kindly donated by Pfizer and prepared in DMSO [472301 Sigma, USA] 

to a working dilution of 0.3µM dissolved in DMSO, as found by our group to be the 
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optimal for cell growth.  Atorvastatin (0.3µM) was added during myeloid differentiation 

of HSPCs for one week, initially with media and then once with media change. 

 

Stem cells expansion cytokines 100ng/ml SCF 

100ng/ml TPO 

100ng/ml FLT-3L 

Granulocytes differentiation cytokines 20ng/ml SCF 

50ng/ml FLT-3L 

100ng/ml G-CSF 

Table 3: Cytokines mixtures for expansion and differentiation of CD34+ HSPCs 
isolated from cord blood. 
 
 

 
Figure 2.5: CD34+ cells from umbilical cord blood expansion and differentiation to 
granulocytes set up in culture.   
Cells were expanded for 1 week under cytokines, then either further expanded for another two 
weeks or differentiated for one week.  A different cytokines mixture was used for the 
differentiation.  Media were changed twice a week. 
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2.4 Samples cryopreservation 
Human PBMNCs, cord blood cells, and mouse bone marrow cells were cryopreserved in 

-80°C before or at different days of the cultures.  Cryopreserved cells were usually used 

before performing different experiments.  The medium that was used included RPMI 

1640 [R0883 Sigma, USA] with 10% FBS and 10% DMSO.  After centrifugation 800g 

for 10 minutes, the supernatant media were discarded.  The freezing media were added as 

100µl per 1 million cell and mixed well, stored in a cryovial, and placed under -80°C in 

Mr frosty container [5100-0001 Thermo Scientific, USA] until experiments were 

conducted. 

2.5 RT-qPCR 
A real-time quantitative polymerase chain reaction (qPCR) is used to accurately 

measure the active or inactive state of any gene of interest within the genome.  It is a 

further development of PCR technology which is widely applied in the field of molecular 

diagnostics.  The essential components required for RT-qPCR include a DNA or RNA 

template, DNA polymerase, primers, nucleotides, and the conversion of RNA into cDNA 

with reverse transcriptase.  The real-time quantitative PCR reaction copies the specific 

sequence into billions of amplicons with a few steps.  These steps include denaturation to 

separate strands, annealing to allow primer binding, extension to make new DNA and, 

lastly, exponential amplification.  In RT-qPCR, SYBR green dye was used for the 

detection of double-stranded DNA with high affinity.  However, SYBR green also binds 

to single-stranded DNA, albeit with a lower affinity.  When SYBR green is excited at 

488nm wavelength (blue light), it emits at 522nm (green light) (Biosystems, 2011).   

2.5.1 Total Ribo-nucleic Acid (RNA) extraction 

RNA total extraction was performed using guanidinium thiocyanate phenol 

chloroform extraction, which was originally developed by Chomczynski and Sacchi 

(1987).  Nowadays, this chemical is TRIzol, which is a monophasic solution containing 

phenol, guanidine isothiocyanate, and other components that facilitate the RNA isolation 

of a variety of species.  TRIzol maintains RNA integrity by inhibiting RNase activity and 

dissolving and disrupting cells. 
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The RNA was isolated from the cell culture by TRIzol [15596026 Life Technologies, 

USA], according to the manufacturer’s protocol.  After taking off the media off of the 

well, the plate was washed once with PBS.  One ml of TRIzol was added and incubated 

for 5 minutes at room temperature.  After incubating with 250µl of chloroform [9722 life 

technologies, USA] for 5 minutes, the samples were centrifuged at 10,000 rpm for 5 

minutes.  Three layers formed; the top clear, aqueous layer contained RNA, the middle 

contained white precipitated DNA, and the organic phase was found in the bottom pink 

layer.  The top RNA layer was taken carefully, mixed with 550 µl isopropanol [190764 

Sigma, USA], and incubated for 5 minutes.  The pellets should have been barely visible 

after 30 minutes of centrifugation at maximal speed.  Before adding 1 ml of 75% ethanol 

[7023 Sigma, USA] in DEPC-[57585 Sigma, USA] treated water, the isopropanol was 

poured off.  Again, samples were centrifuged at 9500rpm for 5 minutes and the 

supernatant was discarded.  The pellets were left to air dry and then 20 µl of DEPC-

treated water was added.  The total RNA concentration was measured by using the 

Nanodrop spectrophotometer ND-1000. 

The sensors of the Nanodrop were cleaned with 2µl of distilled water in each channel and 

then wiped off and blanked with another fresh 2µl of distilled water.  Then sensors were 

cleaned again before inserting 2µl of the extracted RNA sample.  The RNA results were 

recorded and expressed as ng per µl and the upper limit 3000µg/µl, which should not be 

reached to avoid inaccurate measurements.  The RNA quality was measured by the ratio 

of absorbance at a wavelength of 260 (260; RNA) and at a wavelength of 280 (280; 

protein).  Generally, a very pure RNA sample would result in a 260/280 ratio of 2.0 or 

closer. 

2.5.2 Reverse transcription 

The first strand of cDNA was synthesised using 25ng/ µl total RNA, 0.5 µg random 

primers [C1101 Promega, USA] and 0.5mM deoxy-nucleotide triphosphate (dNTP) mix 

[10297018 Invitrogen, USA].  The mixture was incubated for 5 minutes at 65˚C and then 

placed on ice for 1 minute.  After that, 5mM dithiothreitol (DTT), 5X First Strand Buffer, 

40 units RNaseOut, and 200 units Superscript III Reverse Transcriptase [18080044 

Invitrogen, USA] were added to the mix and mixed well, followed by an incubation in 
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Hybaid PxE Thermal Cycler [Thermo Scientific, USA] with the following program: 55˚C 

for 60 minutes and 70˚C for 15 minutes.  After these incubations, 2 units of RNase H 

[EN0201 Fermentas, USA] were added to the mix and returned to the thermal cycler for 

the following incubation at 37˚C for 20 minutes and 65˚C for 10 minutes. 

2.5.3 Real-time quantitative PCR 

The StepOnePlus Real-Time PCR system [Applied Biosystems, USA] was used for the 

quantification of the gene transcripts.  Triple samples were used in PCR assays in 96-well 

plates [4346907 Applied biosystems, USA].  Each reaction mixture (20 µl) contained 

cDNA (27.5ng RNA), 0.13µM of gene specific primers, and 1X Fast SYBR Green 

Master Mix [4385612 Applied Biosystems, USA].  The comparative Ct method was used 

to quantify the target gene expression. Forty cycles were performed for each sample.  

After preheating the PCR plate for 10 minutes at 95˚C, each cycle involved 95˚C for 15 

seconds, annealing for 60 seconds at optimum primer temperature, and heating at 72˚C 

for the specific elongation time. Data were collected during the extension step and 

analysis was carried out using StepOne Software v2.0 [Applied Biosystems, USA]. The 

specificities of primers used in experiments are listed in Table 4 on the next page. 
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Primer Sequence 5’-3’ 

Forward 
Reverse 

Annealing 
temperature (˚C) 

TBP            
                   

GCCACGCCAGCTTCGGAGAG 
TCAGTGCCGTGGTTCGTGGC 

60 

PGC-1α      
                   

TGTTTTTGACGACGAAGCAG 
AATGAATAGGATTGCGTGCC 

60 

AMPKα1  
                   

GACAGCCGAGAAGCAGAAAC 
AGGATGCCTGAAAAGCTTGA 

60 

GLUT4      
                   

AGAGCGTGTCGTTCACGCGG 
CCCACAACGGGTCTGGTGGC 

60 

G6Pase      
                   

GGTGGTGCGAGCAGCCAGAA 
TGCAGGAGGACGAGGGAGGC 

60 

hTERT      
                   

TTCCTGCACTGGCTGATGAG 
CCGGTAAGAAAAAGAGCCTGTTC 

 
60 

hTERC      
                   

GCCTTCCACCGTTCATTCTA 
CCTGAAAGGCCTGAACCTC 

60 
 

mGAPDH  
                    

AACTTTGGCATTGTGGAAGG 
ACACATTGGGGGTAGGAACA 

60 

mβ-actin     
                    

TGCCGCATCCTCTTCCTC 
CCACAGGATTCCATACCCAAG 

60 

mTERT GGATTGCCACTGGCTCCG 
TGCCTGACCTCCTCTTGTGAC 

60 

mTERC TCATTAGCTGTGGGTTCTGGT 
TGGAGCTCCTGCGCTGACGTT 

60 

Table 4: Different specificities of studied primers. 

2.6 Quantitative-telomeric repeat amplification protocol (Q-TRAP) 
Quantitative-telomeric repeat amplification protocol (Q-TRAP) is an assay used for 

telomerase activity detection using real-time PCR.  This technique is developed from the 

original TRAP technique and involves two steps process of telomerase product formation 

and amplification.  In the first, if telomerase is present within sample lysate it will bind to 

substrate and dNTPs (deoxynucleotide triphosphate) within the reaction solution to make 

telomeric repeats.  In the second step, specific forward and reverse primers are used to 

amplify these products in real-time PCR by using SYBR green.  The advantages of this 

method are increased throughput, reduced carry-over contamination, and single-step 

detection and quantification.  Conversely, the drawback of this technique is the non-

specificity of SYBR green, which can interfere with correct data interpretation.  
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However, this issue can be resolved by primer concentration and annealing temperature 

optimisation (Herbert et al., 2006). 

2.6.1 Q-TRAP 

Telomerase activity was tested by using the quantitative telomeric repeat amplification 

protocol (Q-TRAP), as reported previously.  A telomerase substrate (TS) (5'-

AATCCGTCGAGCAGAGTT-3') and a reverse primer ACX (5'- 

GCGCGGCTTACCCTTACCCTTACCCTAACC -3') were used in the PCR mastermix.  

Furthermore, the mismatches in the ACX primer reduce primer-dimer artifacts.  The 

mastermix contained 1xSYBR Green [Applied Biosystems Mastermix 4309155, USA], 

double-distilled H2O, and 1mM EGTA with 0.1µg of each primer.  Cell extracts (50,000 

cells) were added to the mastermix and distributed in triplicates (25µl each) in MicroAmp 

Fast-tubes [4358293 Applied Biosystems, USA].  SYBR green bound to the double-

stranded DNA as amplicons were produced and PCR program first started with 25°C for 

30 minutes to allow the telomerase in the protein extracts to elongate the TS primer by 

adding TTAGGG repeats.  This was followed by 95°C for 10 minutes, then cycled x 40 

with 95°C for 15 seconds and 60°C for 1 minute.  A meltcurve was produced at the end 

with 95°C for 15 seconds, 60°C for 1 minute, and 95°C for 15 seconds.  Data was 

collected and analysed by StepOne software [Applied Biosystems, USA].  Telomerase 

activity was calculated in samples based on threshold cycle values (CT). 

2.7 Fluorescence activated cell sorting (FACS)  
Flow cytometry is a quantitative single cell analysis technique that has been 

developed since the 1970s.  It has become fundamental in clinical and research 

applications.  The wide application of flow cytometry is not only due to phenotypic 

cellular characteristics, but also attributed to the intracellular measurements of DNA and 

RNA, and functional characteristic such as cell death.   FACS analysis in the flow 

cytometer stands for fluorescence-activated cell sorting and was invented by BD.  It is a 

technology used to analyse single particles based on size and internal complexity or 

granularity.  The flow cytometer is divided into three main systems: fluidics, optics, and 

electronics, as shown in Figure 2.6.  The fluidics system transports samples one at a time 

by hydrodynamic focusing of the sheath fluid to laser beams.  The laminar flow separates 
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the sheath fluid from the sample and ensures that they do not come into contact and, once 

cells are analysed, they flow to waste along with the sheath fluid.  The optics system 

consists of lasers and lenses that illuminate samples to specific optical filters and then 

recorded to appropriate detectors.  The electronics system is the converter of light signals 

into electronic signals that can be processed by the computer.  When light strikes a cell, it 

is either scattered or absorbed.  Fluorescence can be re-emitted from the cell if the 

absorbed light is at the appropriate wavelength.  Fluorescence occurs when the cell has a 

naturally fluorescent particle or is conjugated with fluorochrome antibodies that bind 

cellular or intracellular antigens.  Forward-scattered light (FSC) and side-scattered light 

(SSC) are the main parameters collected when light strikes cells, depending on the cells’ 

size and internal complexity, respectively.  The FSC is collected at an angle of 

approximately <10°, while the SSC is collected at 90°, as shown in Figure 2.7.   

In addition to considerable information gathered in regard to the physical properties of 

cells from the side and forward scatter, the flow cytometers are frequently used to 

measure fluorescent probes or fluorochromes. There are numerous antibodies, mostly 

monoclonal, that are used for staining available in the market directed to specific antigens 

with different types of fluorochromes.  Dyes of choice, such as R-phycoerithrin (PE), 

fluorescein (FITC) or peridinin chlorophyll protein (PerCP), might target intracellular 

content such as DNA (Hoechst 33342 or prodiduim iodide (PI)).  When using two or 

more fluorochromes in one sample, a spectral overlap can interfere with results; 

therefore, compensation is essential to eliminate it.  Fluorochromes absorb light, resulting 

in an unstable state of exited electrons.  The energy absorbed generates vibration and 

heat, which leads to the emission of a longer wavelength of photons (i.e., termed the 

emission wavelength) for the molecule.  The photomultiplier tube (PMT) converts 

photons into a proportional voltage by using a photocatode, which results in the 

generation of pulse.  This electrical pulse or signal is then converted by analog to a digital 

converter to a numerical signal.  Recorded fluorescence quantity and intensity are 

displayed in the computer system by single (such as histograms) or multiple parameters 

plots (such as a dot plot) (Scheffold and Kern, 2000; Stewart, 2000; Bakke, 2001; Givan, 

2001). 
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Figure 2.6: Principle of flow cytometry.   
Cells in sheath fluid are analysed by laser beams according to their physical properties and 
fluorescence intensity via different specific lenses and detectors. A photomultiplier tube (PMT) 
transmits signals to an analog-to-digital-converter which translates information into the computer. 
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Figure 2.7: Flow cytometry analysis of a single cell. 
When laser beams hit the cell, relative directions of forward-scatter light and side-scatter light 
and fluorescence of different fluorochromes become evident.  PE: R-Phycoerythrin and F: 
Fluorescein (FITC).  Reproduced from (Dimmick, 2009). 
 

CD34+ purity check was performed by the addition of 5µl of CD34 antibody to 1 x 106 

cells after the centrifugation of freshly isolated cells (shown in Figure 2.8).  Furthermore, 

mononuclear cells isolated from cord blood samples were characterised for the presence 

of a CD14 monocytes marker and a CD15 granulocyte marker (Figure 2.9).  Antibodies 

were incubated in the dark 4°C for 30 minutes (antibodies listed in Table 5).  The cells 

then were washed using BD FACS lyse/wash assistant and analysed in FACSCanto II 

424 [BD, USA].   
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Target and conjugate Manufacturer Catalogue number  

CD45 anti-human PerCP-

eFluor 710 

eBioscience 46045942 

CD45 anti-human FITC BD Pharmingen 555482 

CD34 anti-human PE BD Pharmingen 555822 

CD15 anti-human FITC Miltenyi Biotech 13008101 

CD14 anti-human Pacific blue Invitrogen MHCD1428 

Table 5: Antibodies used in human umbilical cord blood immuophenotyping. 
 

 
Figure 2.8: Purity check of CD34+ cells isolated from human umbilical cord blood 
samples. 
After CD34+ cells were separated by using immunomagnetic beads, CD34+ cells were analysed 
using FACS for CD34 antigen expression (purity check).  A: Side scatter (SSC) vs. forward 
scatter (FSC).  B: SSC vs. CD45 expression to exclude non-cellular content.  C: SSC vs. CD34 to 
check CD34+ cells percentage.  Over 90% purity was obtained with the positive selection.  
CD34- fraction was measured as a negative control and did not contain CD34+ cells. 

A B C
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Figure 2.9: Immunophenotyping of CD15+ and CD14+ cells isolated from human 
umbilical cord blood samples. 
CD34+ cells isolated from human umbilical cord blood were characterised during 3 weeks of 
expansion and 1 week of granulocytes differentiation.  A: Side scatter (SSC) vs. forward scatter 
(FSC).  B: SSC vs. CD45 expression to exclude non-cellular content.  C: CD15 vs. CD14 to 
check percentages of CD15+ granylocytes and CD14+ monocytes.  Unstained cells were used as 
a negative control. 
 

To identify haematopoietic stem and progenitor cells in mouse bone marrow, a lineage kit 

was used to exclude specific lineage cells including CD3e/CD3ε chain (T cells marker), 

CD11b/Mac-1 α chain (leukocytes marker), CD45R/B220 (B cells marker), Ly-6G and 

Ly-6C/Gr-1 (granulocytes and neutrophils), TER-119/Ly-76 (erythroid cells).  Gating 

strategy is shown in Figure 2.10 and antibodies specifications are listed in Table 6.   
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Figure 2.10: Haematopoietic stem and progenitor cells (HSPCs) gating using lineage 
kit.  
Side scatter (SSC) vs. forward scatter (FSC) were first evaluated to exclude debris (A).  The 
following gate was SSC vs. lineage negative to select the (Lin-) cells (B).  According to lineage 
negative cells in B, LSK (lineage-Sca-1+CKit+) stem cells were defined as Sca-1+CKit+ cells 
(C).  Unstained cells were used as a negative control. 

 

Target and conjugate Manufacturer Catalogue number  

Lineage kit: 

CD3e anti-mouse Biotin 

CD11b anti-mouse Biotin 

CD45R anti-mouse Biotin 

Gr-1 anti-mouse Biotin 

TER-119 anti-mouse Biotin 

BD Pharmingen 559971 

Streptavidin PE BD Pharmingen 554061 

CKit anti-mouse PerCP-

eFluor 710 

eBioscience 46117180 

Sca-1 anti-mouse PE-Cy7 BD Pharmingen 558162 

Mouse BD Fc Block BD Pharmingen 553142 

Table 6: Antibodies used in mouse bone marrow stem cells immunophenotyping 
 

A B C
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2.7.1 Cell sorting 

Sorting using flow cytometry is the process of physical separation of cells or particles of 

interest from a heterogenous population.  Electrostatic sorting is the most common 

technology used in analytical flow cytometers, as in FACSAria II [BD, USA].  It is based 

on the same principle used in ink-jet printers involving the electrostatic deflection of 

charged droplets.  Generally, hydrodynamic focusing of ejected samples in sheath fluid 

passes through a light source from one or more lasers.  Scattered light and fluorescence 

signals are then produced, detected, and measured.  Cells are subsequently removed by 

vacuum to a waste reservoir (Davies, 2012).  Cells isolated from mTert-GFP mice bone 

marrow were sorted into GFP high, intermediate, and low. 

2.8 Flow-fluorescent in situ hybridization (Flow-FISH) 

The Flow-FISH method is a further development of quantitative fluorescence in situ 

hybridization (Q-FISH).  It combines FISH with flow cytometry, which allows 

simultaneous measurement of fluorescence and light properties of cells.  Unlike Q-FISH, 

Flow-FISH can also be performed on non-metaphase therefore non-dividing cells.  

However, Flow-FISH protocol requires accurate measurement of weak fluorescence 

signals with proper sample preparation, instrument calibration, and internal controls to 

ensure reproducibility (Rufer et al., 1998; Baerlocher and Lansdorp, 2004). 

Telomere length measurement was performed as described previously (Spyridopoulos et 

al., 2004; Spyridopoulos et al., 2008).  Briefly, each sample contained 100,000 bovine 

thymocytes as an internal standard and 200,000 haematopoietic stem and progenitor cells 

from umbilical cord blood or mouse bone marrow resuspended in a hybridization mixture 

with a telomere-specific N-terminal FITC-conjugated (C3TA2)3 PNA probe. After 

washing and counterstaining with propidium iodide, cells were analysed by flow 

cytometry on a FACSCanto with FACSDiva version 6.1. software [BD, USA].  Relative 

telomere length was determined by comparing mean fluorescence intensity of the sample 

with that of the internal control.  The internal control, bovine thymoctyes, was used to 

express the telomere length in kilobases.  Mean telomere length of samples was 

calculated as molecular equivalents of soluble flurochrom (MESF) in samples divided by 

MESF in thymocytes multiplied by mean telomere length of thymoctyes determined 
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directly by Southern Blotting prior to the study (13.37kb).  An example of murine bone 

marrow cells Flow-FISH plots is shown in Figure 2.11. 

 

 
Figure 2.11: An example of Flow-FISH analysis of mouse bone marrow cells. 
Flow-FISH is based on DNA denaturation and hybridization with a  PNA (peptide nucleid acid) 
probe that is labelled with a fluorescin flurophore (FITC). Excess probe is washed away, and a 
reading is made through FACS analysis. 
A: Side scatter (SSC) vs. forward scatter (FSC).  B: Singlet cells were identified according to 
height and side scatter (SSC).  C: According to PI staining, negative unstained controls, and 
single staining tubes, signals from bovine thymocytes and bone marrow (BM) cells were gated 
separately.  D: The PNA signal corresponding to molecular equivalents of soluble fluorochrome 
(MESF) was detected, and different populations were measured in non-stained PNA histograms 
(E) and stained cells PNA+ (F). 
 

2.9 Clonogenic Assay 
Haematopoietic colony-forming cell (CFC) assay has been used extensively since 1961 in 

clinical and research applications.  This functional assay assesses the haematopoietic 

stem and progenitor cells’ ability to divide and differentiate in response to cytokines 

stimulation in a semi-solid medium.  The results of this assay provide an excellent 

measurement of the original cell population since each haematopoietic colony is derived 
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from a single progenitor cell that gives rise to haematopoietic cells.  The applications of 

CFC assays included testing cell manipulations such as CD34+ enrichment, T-cell 

depletion, cryopreservation, and gene therapy (Gordon, 1993). 

A semi-solid methylcellulose-based medium, methocult [GF M3434, Stemcell 

Technologies, Canada], was thawed slowly from -20°C inside a fridge at 4°C overnight, 

and  8 x 105 of haematopoietic stem and progenitor cells isolated from mouse bone 

marrow were mixed with 4   ml of Methocult.  The mixture of cells and methocult 

(1.1ml) wass divided with 16-g blunt-end needle into triplicate 35mm cell culture dishes 

accompanied by an additional well with a sterile water well in 100mm petri to keep the 

appropriate humidity (shown in Figure 2.12).  Cultures were then placed in a 37°C 

incubator maintained with 5% CO2 and >95% humidity.  Samples were counted blindly, 

and a gridded scoring dish was used to enumerate colony types and numbers according to 

criteria described by the manufacturer [Stemcell Technologies, Canada], shown in Figure 

2.13. 

 

 
Figure 2.12: Preparation of clonogenic assay plates 
Haematopoietic colonies were set up with bone marrow cells mixed with Methocult in triplicate 
35mm culture dishes placed in a 100mm petri dish.  The blue well contained sterile water to 
ensure humidity for the 14-day assay. 
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Figure 2.13: Colony-forming units morphological identification. 
Different colonies produced from the haematopoietic clonogenic assay can be identified 
according to their morphology into one of the colony-forming unit types: BFU-E, CFU-G, CFU-
M, CFU-GM, or CFU-GEMM.  Adapted from MethoCult User Instructions (Stemcell 
Technologies). 

   
 
  

CFU-GM

CFU-GEMM

BFU-E

CFU-G

CFU-M

Burst-forming unit-Erythroid:
Produces a minimum of 30 cells that appear fused together; 
clusters are composed of a group of tiny colonies of irregular 
shape with a dense core.

Colony-forming unit-Granulocytes:
Typically produces 20-40 small clusters of cells that give rise to a 
homogenous population of eosinophils, basophils, or neutrophils.

Colony-forming unit-Marcrophage:
Produces colonies containing greater than 20 large cells that give 
rise to a homogenous population of macrophages.

Colony-forming unit-Granulocytes, Macrophage:
Produces 20 or more clusters and may contain cell numbers in 
the thousands giving rise to a heterogenous population of 
granulocytes and macrophages.

Colony-forming unit-Granulocte, Erythroid, Marcophage, 
Megakaryocyte:
Produces a multiple lineage of large colonies typically contain 500 
cells or more and clusters of granulocytes, erythroid, 
macrophages, and/or megakaryocytes. 
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2.10 Statistical analysis 
All results were analysed for statistical significance with the threshold of probability (p-

value) defined at 0.05 (5%) for significant results.  This measures how confidently one 

can reject the null hypothesis, which states that there are no relationships between 

measured variables.  The null hypothesis can be true if the observed data have at least a 

95% probability occurring purely by chance (Lieber, 1990).  The Mann-Whitney 

nonparametric test was used in the calculation of statistical significance between two 

variables.  For more than two variables, Kruskal-Wallis with Dunn’s post hoc test was 

used.  All tests were performed using GraphPad Prism version 6.0d. !
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Chapter 3 Metabolic stress induces PGC-1α in endothelial 

progenitor cells 

3.1 Introduction 
Vascular endothelial dysfunction is a major manifestation of diabetes that leads to 

numerous cardiovascular complications including limb ischemia, which could potentially 

result in limb amputation (S. J. Hamilton et al., 2007).   

EPCs play a critical role in angiogenesis and vascular repair.  Early EPCs were reported 

to fail to form tubelike structures and to have limited proliferative potential (Hur et al., 

2004).  However, their ability to augment new blood vessels appears to be by secreting 

chemokines, angiogenic growth factors, and cytokines without direct incorporation in the 

vascular network (Yoon et al., 2005).  Studies have reported that hyperglycemia 

decreases the number and function of circulating blood-derived early EPCs both in vitro 

(Seeger et al., 2005; Y. H. Chen et al., 2007) and in diabetic patients in vivo (Fadini et 

al., 2005). 

PGC-1α (Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)-Coactivator-1α) 

is a key metabolic coactivator that expresses various functions in different tissues.  It has 

been shown that PGC-1α upregulation mediates hyperglycemia in the diabetic liver 

(Herzig et al., 2001).  Furthermore, PGC-1α was found to promote vasculogenesis in the 

heart and muscles (Arany et al., 2008).  However, little is known about the link between 

hyperglycemia and PGC-1α in early EPCs. 

In this chapter, EPCs isolated from human peripheral blood were incubated with different 

diabetic (10mM, 15mM, 20mM, and 25mM) and supraphysiological (50mM, 100mM, 

and 150mM) glucose concentrations to assess the role of hyperglycemia as a metabolic 

stress in culture.  Additionally, cultured EPCs were also studied under different 

metformin concentrations (0.1 mM, 0.5 mM, 1 mM, and 1mM) to investigate their 

effects.  PGC-1α and downstream targets GLUT4 (Glucose Transporter type 4) and 

G6Pase (Glucose-6-Phosphatase) expressions were measured using real-time qPCR.   
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Therefore, three main aims were investigated in this chapter: 

a) To establish EPCs in culture   

b) To assess the role of metabolic stress on PGC-1α and its downstream targets in 

EPCs   

c) To investigate the effects of metformin on EPCs 

3.2 Results 

3.2.1 Impact of oxidative stress and metabolic stress on EPC cell count  

EPCs were isolated from peripheral blood of healthy volunteers.  Cells were cultured for 

one week using specific endothelial media with growth factors.  As seen in Figure 3.1A, 

EPCs showed the distinctive colonies with a cluster of cells and spindle-shape cells 

radiating off them.  EPCs did not proliferate, and the adherent cell number was reduced 

during culture (Figure 3.2).  However, due to the limitation of techniques used (cell count 

and microscopic morphology), I cannot exclude the contamination of other cells in 

culture. 

As diabetes has been shown to lead to reduction in EPC numbers (Fadini et al., 2005) and 

function (Vasa et al., 2001b), I have investigated the effects of metabolic stress on EPCs.  

For that, cells were cultured under different glucose concentrations (15mM, 20mM, 

25mM).  Of note, the EBM-2 medium used for cell culture has already contained 5mM 

glucose. In particular, critical glucose levels of >13.8 mmol/l and >33.3 mmol/l are 

implicated in severe lethal complications of diabetes in diabetic ketoacidosis and the 

hyperosmolar hyperglycemic state, respectively (Kearney and Dang, 2007).  Whereas the 

physiological level of glucose in a healthy person ranges from 4.9–5.9 mmol/L according 

to the national institute for clinical excellence (NICE) (NHS, 2008). 

Oxidative stress (40% oxygen level) has been shown to reduce the growth of endothelial 

colony-forming cells (ECFCs), proposed to be “true” EPCs, via disruption of VEGF-NO 

signalling in human preterm cord blood samples compared to normoxic conditions 

(Fujinaga et al., 2009).  Therefore, I tested the effect of oxidative stress on EPCs by 

incubating them under different oxygen levels (3%, 20%, and 40%).  Although the 

sample number was small (n=2), the cell number was reduced under metabolic stress.  

Vice versa, cell counts increased with decreasing glucose concentrations (Figure 3.3).  
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Cells were noticed to be smaller under the light microscope in high glucose 

concentrations and failed to form the distinctive colonies (Figure 3.1B).  In comparison to 

metabolic stress, oxidative stress did not affect the EPC count in a short-term culture 

(Figure 3.3).  Furthermore, more cell count was noticed under atmospheric oxygen 

conditions (20%) compared to 3% and 40%. 

 

 
Figure 3.1: Morphology of EPCs in culture. 
EPCs were isolated by density-gradient centrifugation from peripheral blood of healthy 
volunteers.  Cells were cultured in EBM-2 media supplemented with endothelial growth factors 
(hFGF-B, VEGF, R3-IGF-1, and hEGF).  A: A cluster of cells was observed under the light 
microscope by day 4. This distinctive pattern of EPCs was seen as a cluster of cells surrounded by 
spindle-shaped cells.  B: Cells were cultured with 100mM glucose concentration.  On day 5, 
EPCs appeared smaller in size and failed to form distinctive EPCs colonies (10x magnification).   

A

B
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Figure 3.2: EPCs count in culture.  
Endothelial progenitor cells were isolated by density-gradient centrifugation from peripheral 
blood of healthy volunteers.  Cells were cultured for one week in EBM-2 media supplemented 
with endothelial growth factors (n=4).  Media were changed every two days, and adherent cells 
were counted.  Statistical significance was calculated by the Kruskal-Wallis multiple comparisons 
test compared to Day 0 (*P<0.05, **P<0.01). Error bars stand for mean ± SEM. 
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Figure 3.3: EPC count under different oxygen levels and glucose concentrations.   
EPCs were isolated by gradient centrifugation from healthy volunteers’ peripheral blood.  Cells 
were cultured under different glucose concentrations (15mM, 20mM, and 25mM) and incubated 
under 3%, 20%, and 40% oxygen levels for 3 days.  Two experiments were performed 
experiment A and experiment B.  Adherent cells were counted using a haemocytometer.  The 
calculation of statistical significance was not possible due to small n numbers.  Error bars stand 
for mean ± SEM.*
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3.2.2 Effects of metabolic stress and metformin on PGC-1α signalling pathways in 

EPCs 

The onset of diabetes and insulin resistance has been correlated with human genetic 

variants in PGC-1α (Hara et al., 2002).  PGC-1α has been also shown to induce 

angiogenesis in skeletal muscle (Arany et al., 2008).  Thus, I was interested to examine 

the effect of metabolic stress (mimicking hyperglycemia in diabetes) on PGC-1α 

expression and downstream targets (GLUT4 and G6Pase).  AMPKα1 was evaluated, as it 

has been reported that AMPK acts as an upregulator of PGC-1α in skeletal muscles 

(Jager et al., 2007).  I used diabetic and supraphysiological glucose doses (10mM, 

25mM, 50mM, 100mM, and 150mM) to assess the effects on PGC-1α and associated 

genes.  Contrary to expectation, as seen in Figure 3.4, glucose induced PGC-1α and 

targets (GLUT4 and G6Pase) in EPCs dose-dependently.  Supraphysiological glucose 

levels lead up to a 30-, 46-, and 26-fold increase in PGC-1α, G6Pase, and GLUT, 

respectively.  However, AMPKα1 was 1.8-fold induced under 150mM glucose 

concentration compared to control.  Whereas under glucose levels that are relevant to 

diabetic patients (10-25mM), the induction of mRNA expression was two-, three- and 

fivefold in PGC-1α, G6Pase, and GLUT4, respectively, compared to control.  

Furthermore, under diabetic glucose levels, AMPKα1 was not changed. 

Metformin is an insulin-sensitizing bioguanide (dimethylbiguanide), a commonly used 

drug to treat type 2 diabetes as well as for prevention of some vascular complications 

(Gong et al., 2012).  To evaluate the effects of this anti-diabetic drug on PGC-1α in 

EPCs, different doses of metformin (0.1mM, 0.5mM, 1mM, and 10mM) were added to 

EPCs in culture.  There was no change of the EPC number with metformin (Figure 3.5).  

High metformin concentrations significantly induced PGC-1α and downstream targets 

GLUT4 and G6Pase up to 28-, 26-, and 84-fold in EPCs, respectively.  However, 

AMPKα1 was not changed with different doses of metformin (Figure 3.6). 

 

  



 
 

78 

 
Figure 3.4: Effects of metabolic stress on the expression of PGC1-α  and 
downstream targets in EPCs.   
EPCs were isolated by gradient centrifugation from peripheral blood of healthy volunteers.  Cells 
were incubated for three days with different glucose concentrations (10mM, 25mM, 50mM, 
100mM, 150mM) (n=4).  The percentage of mRNA expression compared to control EPCs 
without glucose.  Genes examined were PGC-1α (A), AMPKα1 (B), GLUT4 (C), and G6Pase 
(D). Gene expression was referenced to the housekeeping gene TBP (TATA-box binding 
protein). Real Time PCR [StepOnePlus, Applied Biosystems] was used to measure the gene 
expression by the ∆∆CT method. Statistical significance was calculated by Kruskal-Wallis and 
Dunn’s multiple comparison tests (*P<0.05 and **P<0.01). Error bars stand for mean ± SEM. 
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Figure 3.5: EPC count under metformin in culture. 
EPCs were isolated by gradient centrifugation from peripheral blood of healthy volunteers.  Cells 
were incubated with different doses of metformin (0.1mM, 0.5mM, 1mM, and 10mM) for three 
days in culture (n=4).  Adherent cells were counted using a haemocytometer.  Statistical 
significance was calculated by the Kruskal-Wallis test (ns= nonsignificant).  Error bars stand for 
mean ± SEM. 
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Figure 3.6: Effects of metformin on PGC1-α  expression and downstream targets. 
EPCs were isolated by gradient centrifugation from peripheral blood of healthy volunteers.  Cells 
were cultured under different concentrations of metformin (0.1mM, 0.5mM, 1mM, 10mM) for 
three days (n=3).  The percentage of mRNA expression compared to control EPCs without 
metformin.  PGC-1α (A), AMPKα1 (B), GLUT4 (C), and G6Pase (D) were referenced to 
housekeeping gene, TBP.  Real-time PCR [StepOnePlus, Applied Biosystems] was used to 
measure the gene expression by the ∆∆CT method. Statistical significance was calculated by 
Kruskal-Wallis and Dunn’s multiple comparison tests compared to controls (*P<0.05 and ns= 
nonsignificant). Error bars stand for mean ± SEM. 
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3.3 Discussion 
PGC-1α plays a fundamental role in energy regulation, such as in mitochondrial 

biogenesis, lipid oxidation, and glucose metabolism as well as angiogenesis (Arany et al., 

2008; Ventura-Clapier et al., 2008).  Since ageing has been associated with impaired 

repair of vascular lesions (Gennaro et al., 2003), several studies have demonstrated the 

potential of endothelial progenitor cells to restore vascular repair (Asahara et al., 1997; 

Kalka et al., 2000; Sheng et al., 2013).  To promote angiogenesis and vascular repair, 

endothelial progenitor cells act directly via physical incorporation into the growing 

angiogenic network or indirectly by secreting angiogenic factors, known as the “paracrine 

effect” (Rehman et al., 2003).  In diabetes, significant impairment of angiogenesis occurs 

(Fadini et al., 2006b).  However, the underlying mechanisms of diabetes and the role of 

PGC-1α in EPCs are poorly understood.  Therefore, the goal of this study was to 

investigate the role of PGC-1α in EPCs under oxidative and metabolic stress.   

I could not detect any EPC proliferation in culture in agreement to previous reports (Hur 

et al., 2004).  Oxidative stress showed no obvious tendency to reduce EPCs.  However, 

the number of samples tested in my experiments was low (n=2), and it was difficult to 

reach a definitive conclusion.  In fact, EPCs have been shown previously to express high 

levels of antioxidant enzymes and thus were more resistant to oxidative stress compared 

with adult microvascular endothelial cells and HUVECs (Dernbach et al., 2004; He et al., 

2004; Cai et al., 2006).  Therefore, such an enhanced antioxidant system in EPCs allows 

them to promote vascular regeneration in the setting of ischemic injury.  However, during 

ageing, the system is disrupted.  It was demonstrated that the activity of antioxidant 

enzyme glutathionine peroxidase-1 (GPx-1) was significantly reduced in EPCs isolated 

from old subjects and more sensitive to stress-induced apoptosis compared to younger 

ones (He et al., 2009).   

In my experiments, metabolic stress or hyperglycemia reduced early EPCs in culture.  

Similarly, in diabetic patients EPC numbers and function were reduced (Fadini et al., 

2005).  It has been shown that hyperglycemia (25mM) in mouse heart myocardial 

endothelial cells induced angiopoetin-2, which led to impairment of angiogenesis (J. X. 

Chen and Stinnett, 2008).  Furthermore, studies have suggested that hyperglycemia 

reduces the number and function of circulating blood-derived EPCs, mostly early, both in 
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vitro (Krankel et al., 2005; Seeger et al., 2005; Y. H. Chen et al., 2007) and in vivo 

(Tepper et al., 2002; Loomans et al., 2004; Fadini et al., 2005).  In identifying the 

underlying mechanism of hyperglycemia-induced damage to EPCs, it has been suggested 

that glucose results in an overproduction of ROS, leading to EPC senescence (Kuki et al., 

2006).  Chen et al. argued that the reduction of EPCs under high glucose conditions is 

associated with nitric oxide modification, not oxidative stress (Y. H. Chen et al., 2007).  

One group found that inhibition of p38 MAP kinase activation led to improved cell 

viability under glucose (Seeger et al., 2005).  Moreover, another study reported that 

glucose reduces EPCs via downregulation of SIRT1, a metabolic sensor, expression 

levels, and enzyme activity (Balestrieri et al., 2008).  

I reported that high glucose concentrations in EPCs induced PGC-1α expression as well 

as GLUT4 and G6Pase.  GLUT4 is a glucose transporter while G6Pase is an enzyme that 

hydrolyzes glucose-6-phosphate during gluconeogenesis and glycogenolysis.  Both 

GLUT4 and G6Pase are downstream targets of PGC-1α (Baar et al., 2002; Matsumoto et 

al., 2007).  PGC-1α has been shown to act differently depending on tissues.  For 

example, it was shown that PGC-1α activates mitochondrial biogenesis in muscle (J. Lin 

et al., 2002), drives thermogenesis in response to cold in brown fat (Puigserver et al., 

1998), and increases in diabetic liver (Herzig et al., 2001).  Furthermore, induction of 

PGC-1α has been shown by others to improve vasculogenesis in the heart and muscles 

(Arany et al., 2008).  Therefore, the result I found was rather unexpected, as PGC-1α was 

associated with enhanced vasculogensis in the heart and muscles.  Accordingly, I 

expected to see a reduction of PGC-1α expression because hyperglycemia has been 

shown to disrupt angiogenesis in diabetes.  Unfortunately, due to this contradictory result 

and lack of clear data at the time of these experiments (my first year), I decided to move 

my studies towards a more primitive cell type, such as haematopoietic stem cells.  

However, a very recent publication from Zoltan Arany’s group at Harvard University 

confirmed my findings in EPCs and endothelial cells and for the first time revealed that 

PGC-1α induction in EPCs is associated with defective endothelial migration via notch 

signalling that blunts the Rac/Akt/eNOS pathway (Sawada et al., 2014).  The authors 

further confirmed that diabetic endothelial dysfunction could be rescued in both type 1 

and 2 diabetic mouse models when lacking endothelial PGC-1α.  This deletion 
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accelerated wound healing and recovered blood flow after hind limb ischemia (Sawada et 

al., 2014). 

To investigate the effects of the anti-hyperglycemic drug metformin on PGC-1α in EPCs, 

I tested the effect of adding different doses of metformin on the expression of PGC-1α 

and downstream targets.  The hypothesis was that metformin could induce PGC-1α in 

endothelial progenitor cells.  As expected, metformin induced mRNA expression of 

PGC-1α and downstream targets, but not AMPKα1.  However, metformin doses used in 

this study exceeded the recommended dose and are considered supratherapeutic (0.1–

10mM), by which some groups considered 20µM to be clinically relevant in vitro.  

However, it can be argued that these culture conditions are already under the 

overabundant nutrient environment, and thus higher metformin doses were needed to try 

to mimic the in-vivo effects (Cantrell et al., 2010).  Similar to my finding, metformin has 

been reported to induce expression of PGC-1α by almost twofold in HUVECs compared 

to controls.  They have also shown that metformin reduces intracellular ROS production 

by promoting mitochondrial biogenesis through activating the AMPK-PGC-1α pathway 

in HUVECs (Kukidome et al., 2006).  Prior studies have noted the positive effect of 

metformin in the treatment of type 2 diabetes patients and its association with improved 

vascular function (Abbasi et al., 2004). It has been shown that metformin does not 

influence insulin secretion but promotes glucose utilization by an AMP-activated protein 

kinase (AMPK)-mediated stimulation in white adipocytes (Gong et al., 2012).  Moreover, 

treatment with metformin has been shown to reduce incidence and improved survival for 

many common cancers such as liver, pancreatic, and breast cancer (P. Zhang et al., 

2013).  Metformin showed contrasting reports regarding the pro-angiogenic (Phoenix et 

al., 2009) and anti-angiogenic (Tan et al., 2009) effect.  In fact, a recent study in 

HUVECs suggested that metformin acts in a paradoxical way.  Metformin inhibited 

angiogenesis in HUVECs partially dependent on AMPK in vitro and in vivo.  However, 

the gene expression profiling revealed modulation of several angiogenesis-associated 

genes and proteins by metformin.  This was associated with induction of VEGF and rapid 

induction of inflammatory response mediators COX2 (cyclooxygenase 2) and CXCR4 

(CXC chemokine receptor 2), while antibody array analysis showed the opposite 
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regulation of angiogenesis-associated proteins in endothelial cells such as IL-8 (Dallaglio 

et al., 2014). 

Taken together, both metabolic stress and metformin treatment induced PGC-1α in 

cultured EPCs.  However, exact mechanisms underlying metformin use require further 

extensive research as published data are still controversial. 
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Chapter 4 Effects of metabolic and oxidative stress on HSPC 

expansion and differentiation  

4.1 Introduction 
Ageing is associated with an overall decline in the functional capacity of stem cells to 

maintain homeostasis under different physiological stimuli.  Haematopoietic stem cells 

are the common ancestor cells forming different lineage cells of the blood and immune 

system.  They are a rare cell type at the top of the hierarchy of stem and progenitor cells.  

HSPCs are ultimately responsible for the production of numerous new blood cells every 

day.  HSPCs can be isolated from the blood or bone marrow and have the full potential 

for cell renewal, differentiation, or mobilization into circulating blood.  Among the 

markers commonly used to identify the heterogeneous HSPC population is CD34.  CD34 

is a highly glycosylated transmembrane protein strongly expressed on HSPCs.  It has 

been shown that CD34+ cells can reconstitute haematopoiesis in the bone marrow of a 

myeloablated recipient for a lifetime during transplantation assays (Krause et al., 1996).  

Interestingly, also in transplantation assays, HSCs from aged donors have demonstrated a 

significantly reduced function compared with HSCs from young donors (Sudo et al., 

2000).  Furthermore, current research indicates that cell intrinsic and extrinsic factors can 

contribute to the functional decline of stem cells during ageing.  This functional reduction 

is associated with age-associated changes in gene-expression profiles of HSCs (Rossi et 

al., 2005).   

Umbilical cord blood is a valuable source of HSPCs that can be easily collected and 

usually discarded after the delivery process.  In some studies, umbilical cord blood 

extended the availability of haematopoietic stem cell transplantation when there was no 

suitable donor (Ballen et al., 2012).  However, due to the usually limited volume of 

umbilical cord blood compared to bone marrow and peripheral blood, ex-vivo expansion 

has been considerably studied as an important way to amplify HSPCs.   

In most somatic cells, telomeres shorten with age.  After each cell division, telomere 

length shortens until they reach a critically short length.  This telomere erosion leads to 

cell-cycle arrest, chromosomal instability, and replicative senescence (Harley et al., 

1990).  However, telomeres are maintained in the germ line and almost all tumour cells 
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by a specialized ribonulceoprotein reverse transcriptase called ‘telomerase.’  Telomerase 

counteracts the attrition of telomeric repeats from incomplete end replication by the 

addition of telomeric repeats de novo onto the 3’ overhang (Feng et al., 1995).  In 

addition to the germ line, telomerase is present at detectable levels in haematopoietic 

stem cells, though in limited amounts (Counter et al., 1995).  Although HSPCs have 

extensive replicative potential, there is a consistent decline in telomere length in their 

progeny as humans age (Rufer et al., 1999).  Hence, telomerase levels in human HSPCs 

are not sufficient to maintain replication indefinitely (Vaziri et al., 1994).  In addition, 

telomerase activity decreases with age (Engelhardt et al., 2000).  In haematopoietic stem 

cells, the assumption that telomerase is required to prevent telomere loss with age or 

proliferation is not fully supported by fundamental data.  Studies on the role of 

telomerase and telomeres in HSCs from healthy individuals are challenging because they 

are very rare cells lacking definitive markers.  In contrast, blood cells derived from HSCs 

are easily accessible for analysis.  Indeed, if one assumes that the number of cell 

divisions between granulocytes and HSPCs is relatively constant (Hills et al., 2009), then 

the average telomere length in granulocytes can be an indicator for the telomere length in 

HSPCs (Shepherd et al., 2004).  In fact, data from our group has showed that human 

telomere length in peripheral blood correlates very well with their bone marrow-residing 

CD34+ progenitors (r=0.95) (Spyridopoulos et al., 2008; Spyridopoulos et al., 2009).  

Furthermore, in humans, individuals with hetereozygous mutations in hTERT or hTERC 

genes can present with a wide spectrum of diseases including bone marrow failure, 

dyskeratosis congenital (DKC), and pulmonary fibrosis (Young, 2012). 

Several reports studied ex vivo expansion of UCB HSPCs and effects on telomerase.  It 

has been shown that despite telomerase upregulation as a response to cytokine-induced 

expansion, telomeres shorten in UCB CD34+ cells compared to unexpanded controls 

(Engelhardt et al., 1997).  Similar induction in telomerase during CD34+ cells’ ex vivo 

expansion was reported; however, telomere length was maintained for 16 weeks when a 

coculture system was used (Gammaitoni et al., 2004).  Another study also confirmed 

telomerase induction during expansion and has shown that telomere length in CD34+ 

might predict erythroid proliferative potential (Schuller et al., 2007).  Furthermore, a 
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recent study reported that telomerase induction during CD34+ expansion was associated 

with mRNA TERT expression (Ge et al., 2013).   

Oxidative stress has been implicated in a number of age-related chronic medical 

conditions, such as atherosclerosis and metabolic syndrome.  Metabolic syndrome is 

defined as a group of risk factors including hypertension, obesity, atherogenic 

dyslipidemia, glucose intolerance, and insulin resistance, which increases cardiovascular 

disease risk and other diseases such as diabetes (Frisard and Ravussin, 2006).  However, 

the effects of metabolic and oxidative stress on HSPC expansion and myeloid 

differentiation are largely unknown.  

In this chapter, CD34+ cells isolated from human umbilical cord blood were studied in 

order to investigate the effects of ageing stress cues (oxidative and metabolic stress) on 

expanded CD34+ HSPCs and myeloid-differentiated cells in culture.  Cells were isolated 

from human UCB, and CD34+ cells were obtained by immunomagentic beads separation.  

The main aims of this chapter were first to establish a protocol to expand CD34+ HSPCs 

in culture, and second, to assess the effects of oxidative stress on cell growth, telomerase 

activity, and colony formation in CD34+ HSPCs.  Another aim of this chapter was to 

examine the effects of metabolic stress on CD34+ HSPCs expansion and telomerase 

activity.  Finally, I wanted to examine if there was any role for telomerase in HSPC 

expansion or differentiation and whether or not I can enhance CD34+ HSPCs expansion 

and telomerase activity using the telomerase activator TA-65.  
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4.2 Results 

4.2.1 Growth characteristics of human CD34+ HSPCs during in-vitro expansion 

To establish CD34+ expansion in culture, CD34+ cells isolated by immunomagnetic bead 

separation from umbilical cord blood were expanded using a cocktail of expansion 

cytokines to specifically induce HSPC growth as described by Schuller et al. (2007) 

(details are described in Chapter 2 section 2.3).  As seen in Figure 4.1, HSPCs can be 

expanded over 37 times in a 2-week culture under atmospheric oxygen concentration  

(20% O2).  Cell growth drops by 20-fold in three-week culture under 20% oxygen.   

Furthermore, to check how CD34+ HSPCs behave in culture conditions during ex-vivo 

expansion for three weeks, cells were characterized using flow cytometry for the stem 

cell marker CD34, the granulocyte marker CD15, and the monocyte marker CD14.  As 

shown in Figure 4.2, when CD34+ HSPCs were cultured, they lost the stem cells marker 

CD34 and expressed more differentiation markers (CD15 and CD14). 

To assess the role of telomerase during CD34+ HSPCs expansion, telomerase activity 

was measured by Q-TRAP.  Telomerase activity increased to reach the maximum of 25-

fold at two weeks and then dropped by the third week (Figure 4.3).  This induction was 

matching the proliferation pattern seen in Figure 4.1.   

Additionally, to assess the effects of expansion on telomere length and to find out 

whether or not telomerase induction is associated with changes in telomere length,  I 

measured telomere length using flow-FISH in CD34+ HSPCs at different stages of 

expansion (day 0, 1 week, and 2 weeks).  There was no detectable change in telomere 

length detected, as shown in Figure 4.4. 

To further investigate whether there was a transcriptional regulation of TERT or TERC 

genes during CD34+ HSPCs expansion in culture, TERT and TERC expression were 

analysed by qRT-PCR.  As seen in Figure 4.5, neither TERT nor TERC expression were 

influenced during CD34+ HSPCs expansion in a three-week culture.  

Moreover, as PGC-1� and downstream targets were induced during metabolic stress in 

EPCs (as shown in the previous chapter, Figure 3.4), I was interested to evaluate the 

expression of PGC-1� during CD34+ HSPCs expansion.  As shown in Figure 4.6, no 

significant difference in the expression of PGC-1� occurred during CD34+ expansion. 
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Figure 4.1: Expansion of CD34+ HSPCs in culture. 
CD34+ cells were isolated by immunomagnetic labelling from human umbilical cord blood of 
Caesarean deliveries.  Cells were expanded in IMDM media supplemented with a mixture of 
cytokines (SCF, TPO, and FLT-3L) for three weeks in culture (n=10).  Cell counts were 
performed with a haemocytometer under light microscopy.  Cells were grown under normoxic 
oxygen levels (20%), and media were changed twice a week.  Statistical significance was 
calculated by the Kruskal-Wallis multiple comparisons test, comparing each time point with the 
baseline (Day 0) (*P<0.05, **P<0.01, and ****P<0.0001). Error bars stand for mean ± SEM.   
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Figure 4.2: Expression of CD34, CD15, and CD14 during CD34+ HSPCs expansion. 
CD34+ HSPCs were isolated using immunomagnetic labelling isolated from umbilical cord blood 
samples from Caesarean deliverers.  Cells were expanded in IMDM media supplemented with a 
cocktail of cytokines for three weeks.  Cultured CD34+ HSPCs were characterized using FACS 
analysis for stem cell marker CD34 (n=10) and differentiation markers CD15 (n=8) and CD14 
(n=7).  Cells were cultured under atmospheric (normoxic) oxygen levels (20% O2), and media 
were changed twice a week.  Statistical significance was calculated using Kruskal-Wallis and 
Dunn’s multiple comparison tests (*P<0.05, **P<0.01, and ns= nonsignificant). Error bars stand 
for mean ± SEM. 
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Figure 4.3: Telomerase activity during CD34+ HSPCs expansion. 
CD34+ HSPCs were isolated by immunomagnetic labelling from umbilical cord blood of 
Caesarean deliveries.  Cells were expanded using a cytokines mixture for three weeks in culture 
(n=9).  Telomerase activity was measured by Q-TRAP at different time points and compared to 
the day 0 sample (control).  Statistical significance was calculated using Kruskal-Wallis and 
Dunn’s multiple comparison tests (*P<0.05, ***P<0.001). Error bars stand for mean ± SEM.   
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Figure 4.4: Telomere length during CD34+ HSPCs expansion. 
CD34+ HSPCs were isolated by immunomagnetic labelling from umbilical cord blood of 
Caesarean deliveries.  Cells were expanded using a cytokines mixture for three weeks in culture.  
Telomere length was measured by Flow-FISH for HSPCs at day 0 and after one and two weeks 
(n=6).  Measurements were compared to human peripheral blood mononuclear cells (PBMNCs).  
Statistical significance was calculated using Kruskal-Wallis and Dunn’s multiple comparison 
tests (ns= nonsignificant). Error bars stand for mean ± SEM.   
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Figure 4.5: Effects of CD34+ HSPCs expansion on TERT and TERC expression.  
CD34+ HSPCs were isolated by immunomagnetic labelling from umbilical cord blood samples 
from Caesarean deliverers.  Cells were expanded with a cocktail of cytokines over three weeks.  
TERT mRNA (A) and TERC RNA (B) expression were measured using qRT-PCR, normalized to 
the housekeeping gene TBP and compared to day 0 samples (control) (n=3).  Statistical 
significance was calculated using Kruskal-Wallis and Dunn’s multiple comparison tests (ns= 
nonsignificant). Error bars stand for mean ± SEM.   
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Figure 4.6: The transcription of PGC-1�  during CD34+ HSPCs expansion. 
CD34+ HSPCs were isolated by immunomagnetic labelling from umbilical cord blood samples 
from Caesarean deliverers.  Cells were expanded with a cocktail of cytokines for three weeks.  
PGC-1� expression was measured using qRT-PCR, normalized to the housekeeping gene TBP, 
and compared to day 0 samples (control) (n=5). Statistical significance was calculated using 
Kruskal-Wallis and Dunn’s multiple comparison tests (ns= nonsignificant). Error bars stand for 
mean ± SEM.   
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4.2.2 Impact of oxidative and metabolic stress on HSPC expansion 
Oxidative stress was induced by incubating cells under hyperoxic conditions (40% O2), 

as published by Saretzki et al. (2004).  HSPCs were also incubated under atmospheric 

(20% O2) and hypoxic conditions (3% O2) for comparison of the impact of oxidative 

stress.  Hyperoxia (40% O2) impaired HSPC growth in culture, as HSPC cell counts were 

significantly reduced compared to normoxia and hypoxia in two-week expansion.  

Notably, more HSPCs were expanding under atmospheric oxygen conditions compared 

to hypoxic and hyperoxic ones (Figure 4.7).  

Furthermore, I was interested in evaluating the effects of oxidative stress on telomerase 

activity.  Surprisingly, 40% oxygen significantly induced telomerase activity during 

expansion of HSPCs over one week (Figure 4.8).  This was contradictory to the 

association of telomerase activity with cell proliferation that I had seen during CD34+ 

HSPCs expansion (see Figure 4.1 and Figure 4.3).  

To investigate the effect of oxidative stress on clonogenicity, cells were isolated from 

umbilical cord blood and cultured in a clonogenic assay using Methocult.  This media 

was supplemented with specific growth factors (SCF, GM-CSF, G-CSF, IL-3, and EPO) 

and other supplements that optimize colony growth.  Colonies were incubated under 

hyperoxia (40% O2) and compared with hypoxic (3% O2) and normal culture conditions 

(20% O2).  At the start of clonogenic assay experiments, cells isolated after CD34+ 

immunomagnetic beads failed to form colonies in culture.  I therefore used MNCs 

isolated freshly from umbilical cord blood samples for these CFU assays, and colonies 

were formed successfully.  However, there was no growth of colonies under oxidative 

stress.  Whereas under hypoxic (3% O2) culture condition, the monocytic (CFU-M) and 

more progenitor colonies (CFU-GEMM) were significantly induced (Figure 4.9).  

The effect of metabolic stress on CD34+ HSPCs expansion was assessed in vitro by 

incubating cells with different concentrations of glucose (10mM, 20mM, and 30mM).  

This was performed to mimic diabetes in which high blood glucose causes cellular stress 

and damage.  Similar to the effect seen with high glucose impairment of cell count in 

EPCs in the previous chapter, high glucose levels also reduced CD34+ HSPCs growth 

significantly by fourfold compared to controls at one week of culture (Figure 4.10).   

Therefore, I investigated whether HSPC cell-count decrease under hyperglycemia was 
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associated with changes in telomerase activity.  As seen in Figure 4.11, metabolic stress 

did not influence telomerase activity in expanded over one week CD34+ HSPCs.   

I also had tested the telomerase activator TA-65 in culture to investigate its effects on 

HSPC expansion.   CD34+ HSPCs were incubated under different concentrations (1µM, 

5µM, and 10µM).  As seen in Figure 4.12, there was no change in CD34+ HSPCs cell 

count under the treatment with TA-65.  To further assess the effects of TA-65 on CD34+ 

HSPC expansion in culture, telomerase activity was evaluated.  TA-65 showed a 

threefold induction of telomerase at 5µM compared to control (0µM TA-65); however, 

this induction was not statistically significant.  This might be due to the high variability 

of samples.  Interestingly, a concentration of 10µM TA-65 significantly lowered 

telomerase activity (Figure 4.13). 
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Figure 4.7: Impact of oxidative stress on CD34+ HSPC expansion. 
CD34+ HSPCs were isolated from umbilical cord blood from Caesarean deliveries.  Cells were 
expanded using a cocktail of cytokines for 14 days. Expansion of CD34+ HSPCs cells was 
performed under different oxygen levels (3%, 20%, and 40%) in independent samples (n=3).  
Cell count was performed with a haemocytometer under light microscopy.  Statistical 
significance was calculated using Two-way ANOVA and Tukey’s multiple test (*P<0.05, 
**P<0.01, and ****P<0.0001).  Error bars stand for mean ± SEM  
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Figure 4.8: Effects of oxidative stress on telomerase activity on HSPC expansion. 
CD34+ HSPCs were isolated from umbilical cord blood from Caesarean deliveries.  Cells were 
expanded using a cocktail of cytokines under different oxygen levels in culture (3%, 20%, and 
40%) for one week (n=3).  Telomerase activity was measured using Q-TRAP and compared to 
the day 0 sample (control).  Statistical significance was calculated using Kruskal-Wallis and 
Dunn’s multiple comparison tests (*P<0.05). Error bars stand for mean ± SEM.   
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Figure 4.9: Impact of oxygen concentration on colony-forming potential of umbilical 
cord blood cells.  
Fresh whole umbilical cord blood cells were isolated from Caesarean deliveries.  Cells were 
grown in clonogenic assay under 3%, 20%, and 40% oxygen levels (n=3).  Different colony types 
were scored under an inverted microscope after 14 days of culture.  CFU = colony-forming units, 
-M= macrophage, -GM= granulocyte macrophage, -GEMM= granulocyte, erythroid, 
macrophage, and megakaryocyte.  Statistical significance was calculated using Two-way 
ANOVA and Tukey tests (**P<0.01, ***P<0.001, ns=nonsignificant).  Error bars stand for mean 
± SEM.   
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Figure 4.10:+Effects+of+metabolic stress on HSPC growth in culture.+
CD34+ HSPCs were isolated from umbilical cord blood from Caesarean deliveries.  Cells were 
expanded using a cocktail of cytokines for one week with different doses of glucose (10mM, 
20mM, and 30mM) (n=3).  Cell count was performed with a haemocytometer under light 
microscopy.  Statistical significance was calculated using Kruskal-Wallis and Dunn’s multiple 
comparison tests compared to an untreated sample (**P<0.01). Error bars stand for mean ± SEM. 
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Figure 4.11: Impact of metabolic stress on telomerase activity in HSPCs. 
CD34+ HSPCs were isolated from umbilical cord blood from Caesarean deliveries.  Cells were 
expanded using a cocktail of cytokines.  Different glucose concentrations were added in culture 
for one week (n=3).  Telomerase activity was measured using Q-TRAP and compared to an 
untreated sample (control).  Statistical significance was calculated using Kruskal-Wallis and 
Dunn’s multiple comparison tests (ns= nonsignificant). Error bars stand for mean ± SEM.   
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Figure 4.12: Effects of TA-65 on HSPC count in culture. 
CD34+ HSPCs were isolated from umbilical cord blood from Caesarean deliveries.  Cells were 
expanded using a cocktail of cytokines.  Different doses of TA-65 (1µM, 5µM, and 10µM) were 
added to HSPCs for one week in culture (n=3).  Cell count was performed with a 
haemocytometer under light microscopy.  Statistical significance was calculated by Kruskal-
Wallis and Dunn’s multiple comparison tests (ns= nonsignificant).  Error bars stand for mean ± 
SEM. 
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Figure 4.13: Effects of TA-65 on telomerase activity. 
CD34+ HSPCs were isolated from umbilical cord blood from Caesarean deliveries and were 
expanded using a cocktail of cytokines.  Different doses of TA-65 (1µM, 5µM, and 10µM) were 
added to expanded CD34+ HSPCs in culture for one week in culture (n=3).  Telomerase activity 
was measured using Q-TRAP compared to the day 0 sample (control).  Statistical significance 
was calculated by Kruskal-Wallis and Dunn’s multiple comparison tests (*P<0.05).  Error bars 
stand for mean ± SEM 
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4.2.3 Effect of oxidative stress on myeloid differentiation from CD34+ HSPCs 
As I have shown in the previous section that oxidative stress impairs CD34+ HSPC 

expansion (Figure 4.7), I was interested to see what happens during myeloid 

differentiation of these cells.  I chose myeloid cells, as they reflect the majority of 

leukocytes.  In addition to leukocytes’ role in innate immunity, telomere length in these 

cells, or LTL (leukocyte telomere length), has been widely used and suggested as a 

predictor marker for ageing and several diseases such as diabetes (J. Zhao et al., 2014).   

CD34+ HSPCs were isolated from UCB and differentiated into myeloid cells using 

specific cytokines (described in Chapter 2). As shown in Figure 4.14, more adherent 

cells, possibly macrophages, were seen under oxidative stress.  The cell number was also 

significantly reduced by fourfold under high oxygen levels (40%) compared to low 

oxygen levels in culture (Figure 4.15).  Furthermore, atorvastatin, a cholesterol-lowering 

drug, was tested according to its proven beneficial effects on endothelial progenitor cells 

as well as improvement of cardiovascular health (Baran et al., 2012). However, as shown 

in Figure 4.15, there was no increase in myeloid cellularity by atorvastatin in vitro. 

To confirm the differentiation of myeloid cells isolated from CD34+ umbilical cord 

blood, expression of the stem cell marker CD34, the granulocyte marker CD15, and the 

monocyte marker CD14 were measured by flow cytometry after one week of 

differentiation in culture.  Furthermore, myeloid cells were incubated under different 

oxygen levels (3%, 20%, and 40%) to assess the role of oxidative stress on cellular 

composition.  As seen in Figure 4.16, during one week of myeloid differentiation, the 

expression of granulocyte differentiation marker CD15 was increased from 7% to 41% 

under normoxic culture conditions (i.e., 20 % O2) compared to CD34+ HSPC expansion 

(See Figure 4.2, day 7 expression).  Additionally, CD15+ granulocytes were significantly 

reduced by almost fourfold under oxidative stress (40% O2) compared with hypoxic 

conditions.  Whereas CD14+ monocytes were more resistant to oxidative stress with 

twofold increase compared with hypoxia (Figure 4.16).  Therefore, granulocytes were 

very sensitive to oxidative stress while monocytes were more resistant during myeloid 

differentiation. 

As CD34+ HSPCs showed induction of telomerase under oxidative stress in Figure 4.8, I 

was interested to test the effect of oxidative stress on telomerase activity during myeloid-
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differentiated cells.  In addition, atorvastatin was added to those cells to test whether it 

could induce telomerase activity in vitro.  Unlike during CD34+ HSPC expansion (Figure 

4.8), oxidative stress did not induce telomerase activity during myeloid differentiation. 

Telomerase activity was significantly upregulated during hypoxia and normoxia 

compared to day 0.  However, when the comparison was performed with the right 

controls of the experiment (i.e., using hypoxic conditions as control), there was no 

difference across the groups.  It is worth noting that the myeloid differentiation showed 

almost threefold higher telomerase activity compared to CD34+ HSPCs expansion 

(compare day 7 in Figure 4.3 with 20% in Figure 4.17).  Moreover, atorvastatin induced 

more telomerase activity in myeloid cells only under normoxia (Figure 4.17).   

To check if there were any transcriptional regulation coincidently with telomerase 

activity in myeloid-differentiated cells under different oxygen levels, I also analysed the 

gene expression of TERT and TERC.  The RNA expression of these genes was measured 

using real-time qPCR.  In contrast to the unchanged TERT and TERC expression during 

CD34+ expansion in Figure 4.5, TERC expression was significantly reduced during 

myeloid differentiation under oxidative stress (Figure 4.18).  Interestingly, this reduction 

was similar to CD15+ granulocyte reduction.  Therefore, I investigated TERC gene 

expression for CD15 and CD14 following immunomagnetic separation of cells.  

Peripheral blood samples were taken from healthy volunteers, and mononuclear cells 

were collected and sorted into CD15+ and CD14+ with appropriate controls.  As shown 

in Figure 4.19, TERC was significantly upregulated in CD15+ granulocytes.  Therefore, 

the reduction in TERC gene expression during myeloid differentiation is most likely the 

consequence of decreasing granulocyte numbers during oxidative stress. 
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Figure 4.14: Morphology of cells under different oxygen levels. 
CD34+ HSPCs were isolated from Caesarean deliveries’ umbilical cord blood.  Cells were 
differentiated in culture into myeloid cells using a cytokine mixture (SCF, FLT3-L, TPO, and G-
CSF) for one week.  A, B, and C: Myeloid differentiated cells under 3%, 20%, and 40% oxygen 
levels, respectively.  Fewer but more adherent cells were seen during oxidative stress under light 
microscopy (10x magnification).*
*
*
*
*

A B 
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Figure 4.15: Effects of oxidative stress on myeloid differentiation. 
CD34+ HSPCs were isolated from umbilical cord blood of Caesarean deliveries.  Cells were 
differentiated in culture into myeloid cells using a cytokine mixture for one week (n=4).  Myeloid 
cells were incubated under different oxygen levels (3%, 20%, and 40%).  AT: 0.3µM atorvastatin 
was supplemented with media.  Cell count was performed with a haemocytometer under light 
microscopy. Statistical significance was calculated by Kruskal-Wallis and Dunn’s multiple 
comparison tests (*P<0.05). Error bars stand for mean ± SEM.   
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Figure 4.16: Impact of oxidative stress on the  expression of CD34, CD15, and CD14 
during myeloid differentiation.   
CD34+ HSPCs were isolated from umbilical cord blood of Caesarean deliveries.  Cells were 
differentiated in culture into myeloid cells using a cytokine mixture for one week.  The 
expression of stem cell markers CD34 (n=6) (A), granulocyte marker CD15 (n=7) (B:), and 
monocyte marker (n=4) (C) were measured using FACS analysis. Statistical significance was 
calculated by Kruskal-Wallis and Dunn’s multiple comparison tests (*P<0.05 and ns= 
nonsignificant). Error bars stand for mean ± SEM.   
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Figure 4.17: Effects of oxidative stress on telomerase activity in myeloid 
differentiation. 
CD34+ HSPCs were isolated from umbilical cord blood and differentiated into myeloid cells 
using cytokines.  Myeloid-differentiated cells were incubated under different oxygen levels (3%, 
20%, and 40%) and supplemented with 0.3µM atorvastatin (AT) at each oxygen condition.  
Telomerase activity was measured using Q-TRAP normalized to day 0 samples (control) (n=4).  
Statistical significance was calculated using Kruskal-Wallis and Dunn’s multiple comparison 
tests (*P<0.05, **P<0.01, and ns= nonsignificant). Error bars stand for mean ± SEM.   
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Figure 4.18: Impact of oxidative stress on TERT and TERC expression during 
myeloid differentiation. 
CD34+ HSPCs were isolated from umbilical cord blood samples.  Cells were differentiated into 
myeloid cells using cytokines.  TERT mRNA (A) and TERC RNA (B) expression were measured 
using qRT-PCR after one week in culture.  Expression was normalized to day 0 and referenced to 
housekeeping gene TBP (n=3).  Statistical significance was calculated using Kruskal-Wallis and 
Dunn’s multiple comparison tests (*P<0.05 and ns= nonsignificant). Error bars stand for mean ± 
SEM. 
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Figure 4.19: TERC expression in CD15+ granulocytes. 
Immunomagnetic separation of CD14 and CD15 was performed from healthy volunteers’ 
peripheral blood.  TERC expression was measured using qRT-PCR, normalized to unsorted cells, 
and referenced to housekeeping gene TBP (n=3).  Statistical significance was calculated using 
Kruskal-Wallis and Dunn’s multiple comparison tests (**P<0.01). Error bars stand for mean ± 
SEM. 
 

 

 

 

 
 
* *

Unso
rte

d

CD15
-C

D14
+

CD15
+C

D14
-

CD14
-C

D15
-

CD14
+C

D15
-

0

500

1000

1500

P
er

ce
nt

 c
ha

ng
e 

in
 T

E
R

C
/T

B
P

co
m

pa
re

d 
to

 u
ns

or
te

d 
ce

lls

**



 
 

112 

4.3 Discussion 
Ageing is associated with high levels of oxdiatively damaged molecules (M. L. Hamilton 

et al., 2001) and less-functional stem cells.  Haematopoietic stem cells play a vital role in 

the homeostasis of the human body throughout life.  Many studies have aimed to expand 

these cells in vitro to obtain sufficient cell numbers for therapeutic transplantation 

purposes.  Furthermore, other studies focused on ex-vivo expansion and regulations of 

telomeres and telomerase (Gammaitoni et al., 2004; Schuller et al., 2007; Ge et al., 

2013).  However, no current data examined the effects of oxidative stress and metabolic 

stress on telomerase in CD34+ UCB HSPCs during ex-vivo expansion and myeloid 

differentiation.  Hence, I have used cytokines to expand CD34+ HSPCs isolated from 

umbilical cords under different oxygen levels (3%, 20%, and 40%), measured telomerase 

activity and telomere length, and analysed the transcription of TERT and TERC.  

Additionally, these measurements were also repeated under the same conditions but after 

myeloid differentiation of CD34+ HSPCs. 

In my experiments, CD34+ HSPCs were expanded successfully in culture with cytokines, 

reaching 37-fold cell count after only two weeks.  However, CD34+ expression was lost 

during culture and more differentiated cells appeared.  Similarly, it has been shown that 

by nine days, CB CD34+CD38- HSPCs differentiated, as they lost CD34 in culture and 

reduced the repopulating potential in SCID mice (Bhatia et al., 1997).  Telomerase 

activity was upregulated during CD34+ HSPCs expansion consistent with previous 

reports (Gammaitoni et al., 2004).  This induction was associated with the proliferation 

pattern, confirming the published relationship between telomerase activity and cell 

growth (S. Li et al., 2005a).   

4.3.1 Oxidative stress 
In my experiments, oxidative stress induced by hyperoxia (40% O2) did reduce CD34+ 

HSPC expansion and myeloid differentiation.  Neither the telomerase activator TA-65, 

nor statins enhanced this impairment of cellularity.  Interestingly, high oxygen levels 

completely inhibited the growth of colonies, whereas hypoxia induced their formation in 

clonogenic assays.  My data suggest that hypoxia is a better in-vitro environment for 

maintaining colonies in comparison to normoxia and hyperoxia.  This is in agreement 
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with favourable stem and progenitor growth under 1–6% oxygen levels in human bone 

marrow (Eliasson and Jonsson, 2010). 

Oxidative stress is implicated in several diseases and can cause cellular damage.  The 

reduction-oxidation (redox) modulation of signalling pathways is involved in the 

regulation of many metabolic processes.  Although oxidative reactions are an essential 

part of several biological systems, they can be toxic depending on the balance between 

oxidative stimuli and defence response (Sies, 1997).  The generation of ROS is dependent 

on the oxygen content surrounding the cells.  Higher oxygen content generates more ROS 

and vice versa (Sauer et al., 2001).  Moreover, suitable ROS content acts as an 

intracellular second messenger, regulating adhesion, cell growth, transcription factor 

activation, and apoptosis (Kowaltowski et al., 2009).  Therefore, maintaining dynamic 

equilibrium under physiological circumstances by which the body produces and removes 

ROS continuously is crucial (Allen and Balin, 2003).  It has been shown that the level of 

ROS in HSCs must be controlled to preserve the capacity for quiescence and cell renewal 

(Ito et al., 2004).  Although low levels of ROS are required for HSCs functioning, the 

underlying mechanisms that regulate and ameliorate oxidative stress in these cells remain 

unclear.  However, it is widely known that ROS are mainly generated in the mitochondria 

of eukaryotic cells.  Alterations in mitochondrial function increase ROS production 

leading to several oxidative stress-associated diseases and accelerated ageing (Kobayashi 

and Suda, 2012).  Therefore, the number of mitochondria in HSCs is lower than in 

differentiated cells to reduce ROS generation (M. Kim et al., 1998).  Furthermore, the 

level of oxygen was found to influence muscle satellite cells (Csete et al., 2001), neural 

precursor cells (Limoli et al., 2004), and murine embryonic stem cells (Saretzki et al., 

2004).   

The biological functions of HSCs probably change when exposed to a different 

environment with higher oxygen levels than the bone marrow, where HSCs reside.  The 

bone marrow microenvironment is hypoxic with dissolved O2 concentration varying from 

0.1–4% according to radial position of the marrow (Chow et al., 2001).  Hypoxia has 

been shown to retain the long-term biological functions of HSCs, such as haematopoietic 

reconstruction, proliferation, self-renewal, and multi-differentiation (Naka et al., 2008; 

Warren and Rossi, 2009).  In culture, 5% hypoxia improved expansion of human cord 
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blood HSC (Roy et al., 2012).  Recently, 10% O2 tension was found to be optimal for 

CD34+ CD90+ expansion of UCB stem/progenitor cells in co-culture with BM 

mesenchymal stem/stromal cells (MSC) (Andrade et al., 2013).  In fact, it has been 

shown that when BM lineage-negative cells hyperoxia (20% O2), hypoxia (1% O2) then 

hyeproxia (20% O2) reoxygenation decreased stem cells, increased cell senescence, and 

caused cell-cycle arrest in culture.  These experiments were performed in a mouse model 

of Fanconi’s anaemia (Fancc-/-) (X. Zhang et al., 2005). 

In contrast, hyperoxia contributes to the pathogenesis of bronchopulmonary dysplasia 

(BPD) (R. J. Roberts et al., 1983), abnormal vascular growth in the developing retina 

causing retinopathy (Gu et al., 2003), and decreases growth of endothelial colony-

forming cells (Fujinaga et al., 2009).  Higher oxygen partial pressure (21–40%) increased 

levels of intracellular peroxides (Lorenz et al., 2001) and protein carbonyls (Starke-Reed 

and Oliver, 1989).  Furthermore, hyperoxia decreased the replicative lifespan and 

increased the rate of telomere shortening four- to tenfold (von Zglinicki et al., 1995).  On 

the other hand, murine embryonic stem cells were found to be resistant to potential 

oxidative stress with increased levels of antioxidant defence and good DNA repair 

capacity (Saretzki et al., 2004). 

These studies confirm the importance of hypoxic conditions for HSPCs growth, which 

was supported by my data (induced colony formation under hypoxic conditions).  

However, no current data have examined the role of hyperoxia on CD34+ HSPCs isolated 

from UCB.  My results showed that hyperoxia could reduce cellularity and colony 

formation ability of HSPCs in culture, suggesting its toxic role.*  
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4.3.2 Hyperglycemia and stem cell expansion 
In this study, metabolic stress (30mM glucose) impaired CD34+ HSPC growth and 

myeloid differentiation in culture, suggesting a toxic effect in a dose relevant to the case 

seen in diabetes.  Although the role of metabolic stress has not been directly examined in 

the context of haematopoiesis in the literature, several studies suggest that metabolic 

conditions can affect HSC homeostasis.  An example is increased risk for acute 

myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) in children 

exposed to high glucose levels in utero (Hjalgrim et al., 2003; Hjalgrim et al., 2004).  

Consequently, hyperglycemia is linked to higher mortality patients with AML (Ali et al., 

2007).  Furthermore, ALL was found to be more frequent in children with diabetes 

(Feltbower et al., 2004).  In addition, cord blood from diabetic mothers displayed 

decreased neutrophil mobility (Mehta and Petrova, 2005) and platelet function (Strauss et 

al., 2010).  Telomerase is upregulated in mononuclear cells from UCB from mothers with 

type 1 diabetes (Cross et al., 2010).  Furthermore, mouse models of type 1 diabetes 

(induced by streprtozotocin injections that destroy pancreatic islet cells inducing chronic 

hyperglycemia) has been shown to decrease BM Lin-Sca-1+C-Kit+ stem cells, lower 

engraftment and repopulation capacity, and downregulate growth factors IGF-1, isulin 

growth factor binding protein 5 (IGFBP-5), and proangiogenic cytokine VEGF compared 

to control mice (Orlandi et al., 2010).  It has been shown that the depletion of BM HSPCs 

(LSK cells) was associated with increased oxidative stress, DNA damage, and apoptosis 

in type 1 diabetic mice (Oikawa et al., 2010).  Likewise, in human bone marrow samples 

of type 2 diabetes, CD34 immunosorted BM progenitors have been shown to be reduced 

compared to controls.  Furthermore, diabetes in those patients with upregulated apoptotic 

factor FOXO3a and downstream targets p21 and p27 and forced expression of 

mircoRNA-155 has been shown to reverse these transcriptional changes (Spinetti et al., 

2013).  In a retrospective study of bone marrow transplant patient records, it has been 

reported that diabetes was correlated with poor mobilization of CD34+ HSPCs compared 

to non-diabetic patients.  The authors also studied mouse models of diabetes type 1 

(streptozotocin-induced) and type 2 (leptin receptor knockout db/db), which also showed 

impaired mobilization of HSPCs, increased LSK, increased adhesion, and decreased 

chemotaxis of HSPCs compared to controls.  Interestingly, HSPC numbers and 
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mobilization were reverted to normal when transplanted into a non-diabetic host implying 

that the defects seen are due to a dysfunctional bone marrow niche (Ferraro et al., 2011). 

On the contrary, a recent report confirmed that glucose exposure enhanced HSC 

formation in zebrafish via HIF-1� in response to ROS sensing.  Conversely, the dose 

used was only 1% in fish water (Harris et al., 2013).  Collectively, these data suggest that 

metabolic stress can affect HSC homeostasis. 

4.3.3 Role of telomerase in expansion and differentiation 
In this chapter, telomere length and telomerase activity were measured during ex vivo 

CD34+ HSPC expansion and differentiation.  Telomerase, among other factors, is 

reported to play a critical role in the maintenance of telomere length that is important for 

both differentiation and self-renewal of haematopoietic stem cells (Gammaitoni et al., 

2004).  It was also suggested that telomerase activity is directly linked to cell 

proliferation capacity (Sakabe et al., 1998; S. Li et al., 2005a).  Unlike stem/progenitor 

cells, most adult somatic cells do not have telomerase activity and thus telomeres 

gradually shorten, limiting cell division (Harley et al., 1990).  Furthermore, the 

increasing interest in telomerase regulation is due to evidence that telomerase is activated 

in the majority of cancers, leading to unlimited growth of cancer cells (N. W. Kim et al., 

1994; M. W. Chang et al., 2005). 

From my findings, telomere length was maintained in culture whereas telomerase activity 

was upregulated in a similar way to the HSPC proliferation pattern seen with expansion 

and consistent with reported studies (Gammaitoni et al., 2004; Schuller et al., 2007; Ge et 

al., 2013).  Telomerase activity was upregulated with oxidative stress contradicting 

reported telomerase induction under hypoxia (5% O2) in hTERT-transduced bone marrow 

endothelial cells (Napier et al., 2010).  However, telomerase activity was elevated in rats 

under physical stress (i.e., swim, fox urine exposure, water bottle removal, cage tilt, and 

weak tail pinch) (Beery et al., 2012).  Similarly, telomerase was also induced in lens 

epithelium of dogs after exposure to tertiary butyl-hydroperoxide (TBHP)-induced 

oxidative stress (Colitz et al., 2004).  These data suggest telomerase might play a 

protective role during oxidative stress.   

Furthermore, more CD14+ monocytes were seen under oxidative stress in our 

experiments in comparison with CD15+ granulocytes, suggesting that monocytes are 
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resistant to oxidative stress in comparison to granulocytes.  This is in agreement with a 

published report where fibroblasts damaged with oxidative stress from peroxide treatment 

showed a higher migration of CD14+ cells from PBMNCs (Geiger-Maor et al., 2012).   

Another report showed that CD14+/lowCD16- monocytes isolated from human PBMNCs 

have been showed to be more susceptible than CD14+CD16- monocytes to undergo 

apoptosis, express higher proaptotic genes and proteins such as cytochrome c and TNF�, 

and produce higher ROS, whereas CD14+CD16- were more resistant to oxidative stress 

compared to CD14+/lowCD16+ monocytes (C. Zhao et al., 2010). 

In addition, suppression of CD15+ granulocytes during oxidative stress was responsible 

for the downregulation in TERC gene expression during myeloid differentiation.  Two 

main findings should be pointed out.  First, it has been shown in hepatocellular carcinoma 

that accumulation of CD15+ cells correlate with the tumour progression and produced 

metalloproteinase-9 (MMP-9) that triggered tumour angiogenesis (Kuang et al., 2011).  

Second, it has been reported that reducing the hTR mRNA by siRNA in oral squamous 

carcinoma Tca8113 cells successfully inhibited xenograft tumour growth in nude mice 

(Y. Li et al., 2011).  Therefore, these data suggest that the CD15+ and the associated 

TERC reduction might be a protective response to hyperoxia.   

In conclusion, metabolic and oxidative stress influence HSPCs proliferation, clonogenic 

potential, and telomerase activity, suggesting a disrupted homeostasis in culture.  To 

further assess the role of telomerase in HSPCs, TERT- and TERC-deficient mice were 

studied in the next chapter.    
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Chapter 5 Effects of telomerase on bone marrow HSPCs 

ageing 

5.1 Introduction 
Ageing is associated with a functional decline in tissues and stem cells.  This dysfunction 

of stem cells has been shown to be due to intrinsic and extrinsic factors.  The contribution 

of intrinsic factors to HSC ageing was seen in transplantation assays where HSCs from 

aged donors exhibited a significantly reduced function compared with young ones (Sudo 

et al., 2000), while extrinsic factors were implicated in parabiosis experiments in which 

aged stem cells have been rejuvenated by exposure to a young systemic environment 

(Conboy et al., 2005).  However, there is no clear-cut distinction between these factors, 

and it is also possible that the cellular environment could lead to intrinsic stem cell 

alteration that may also persist even if the environment rejuvenated.  Therefore, this 

interrelation can only be addressed by defining the underlying molecular processes such 

as DNA damage.  During HSC ageing, an accumulation of DNA damage was observed 

(Rossi et al., 2007) as well as telomere dysfunction (Choudhury et al., 2007).  Telomere 

shortening limits the proliferation capacity to a finite number of cell divisions (Allsopp et 

al., 1992).  Critically short telomeres induce DNA damage checkpoints, resulting in cell 

cycle arrest or apoptosis, and thus limiting cell viability (Rudolph et al., 1999).   To 

maintain telomeres, telomerase is required to enhance replicative capacity of regenerative 

cells such as stem and progenitor cells (Lee et al., 1998).  An important tool to 

understand telomere biology is the genetically engineered telomerase-deficient mouse 

model.  Both telomerase knockout mice, TERT-/- and TERC-/-, lack telomerase activity 

and are characterised by progressively shortening telomeres (Blasco et al., 1997; Chiang 

et al., 2004; Sahin et al., 2011).   

Although telomerase deficient models were studied extensively, mainly at later 

generations, to assess the role of telomere shortening (Blasco, 2003), no data are  

available with regard to normal bone marrow ageing in TERT-/- and TERC-/- first 

generation mice. 

The aim of this chapter was to assess HSPC ageing.  Haematopoietic stem and progenitor 

cells were isolated from TERT-/- and TERC-/- telomerase-deficient mice.  Bone marrow 
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counts and HSPC content were assessed, and clonogenic assays were performed.  HSPCs 

isolated from bone marrow were harvested and cultured in order to learn the effects of 

ageing on bone marrow HSPC cellularity, stem cell content, and colonies formation.  The 

other aim of this chapter was to investigate if bone marrow ageing is mediated by 

telomerase or shortening of telomere length. 

5.2 Results 

5.2.1 Effects of ageing on bone marrow HSPCs  

To confirm the impact of ageing on mouse HSPCs described previously (Dykstra et al., 

2011) in our system, freshly isolated bone marrow cells were counted and analysed for 

the expression of stem cell markers in young (1.5-7.5 months) and old (22 months) wild 

type mice on strain C57BL/6.  As shown in Figure 5.1, there was no change in bone 

marrow cellularity during ageing.  Furthermore, haematopoietic stem and progenitor cells 

(HSPCs) were assessed using flow cytometry characterisation of Lineage-Sca-1+CKit+ 

(LSK) in young and aged mice.  LSK cells increased from 0.22±0.15% in young mice to 

1.3±0.5% in old mice (p<0.01, Figure 5.2), similar to what is reported by Etrl and 

colleagues (2008).   

Clonogenic assays are used clinically to assess the ability of various haematopoietic stem 

cells to divide and differentiate after ex-vivo manipulations (e.g., CD34+ cell enrichment, 

cryopreservation, gene therapy, and T-cell depletion) (Pereira et al., 2007).  Therefore, 

assessing colonies during ageing is a valuable tool that enables the comparison of HSC 

potential.  During ageing, in vitro clonogenic assays revealed a significant increase in the 

CFU-GM progenitors of normal morphology (Figure 5.3) from 17.3 to 22.4 (p<0.01, 

Figure 5.4).  Therefore, collectively, these data are consistent with disrupted 

haematopoiesis during ageing, manifesting as an increase in LSK cells and change in the 

clonogenic assay and possibly consistent with the myeloid skewing of haematopoiesis 

previously reported by others (Dykstra et al., 2011).  
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Figure 5.1: Bone marrow cellularity during ageing.   
Bone marrow cell count from freshly isolated bones of wild type young (1.5-7.5 months) and old 
(22 months) C57BL/6 mice. Statistical significance calculated by Mann-Whitney test (ns= 
nonsignificant).  Error bars stand for mean ± SEM. 
 
 

 
Figure 5.2: Stem cells content during ageing.   
Lineage-Sca-1+CKit+ (LSK) stem cell content in freshly isolated bone marrow cells were 
measured by FACS analysis from young (1.5-7.5 months) and old (22 months) C57BL/6 mice.  
All p-values calculated by Mann-Whitney test (**P<0.01).  Error bars stand for mean ± SEM. 
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Figure 5.3: Morphology of different colonies in clonogenic assay. 
Freshly isolated HSPCs were grown in clonogenic assays for 2 weeks.  Using inverted 
microscopy, colony types were scored according to morphological appearance to CFU-G, CFU-
M, CFU-GM, CFU-GEMM, and BFU-E.  CFU=colony-forming unit, –G=granulocyte, -
M=monocyte, -GM=granulocyte/monocyte, -GEMM=granulocyte, erythoid, megakaryocyte, 
monocyte, and red bar=0.2mm. 
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Figure 5.4: Clonogenic assay during ageing. 
HSPCs were isolated from young (1.5-7.5 months) and old (22 months) C57BL/6 mice bone 
marrows.  Clonogenic assays of bone marrow cells were scored after two weeks of culture.  All p-
values calculated by Mann-Whitney test (**P<0.01, ns=nonsignificant).  Error bars stand for 
mean ± SEM. 
 

5.2.2 Impact of lack of TERT on HSPCs ageing 

The impact of critically short telomeres on bone marrow functionality has been described 

previously using telomerase-negative late generation TERC-/- mice (Ju et al., 2007).  

However, telomere-independent roles for the telomerase protein TERT have been 

described recently (Saretzki, 2009).  Therefore, we were interested in whether the lack of 

the catalytic subunit TERT has a direct influence on the HSPC ageing.  

As expected, splenocytes from TERT-/- mice did not possess any telomerase activity 

when compared to wild type cells (data not shown from our group).  Flow-FISH analysis 

of bone marrow from young and old wild type mice as well as TERT-/- mice showed no 

significant change in telomere length (Figure 5.5).  To identify a potential effect of 

telomerase deficiency on the phenotype of the bone marrow found in wild type aged 

mice, we compared young (1.5-7.5 month old) and old (22 month old) TERT-/- mice to 

their age-matched wild type littermates.  Young and old TERT-/- bone marrow showed no 

evidence of accelerated ageing compared with wild type controls (Figure 5.6).  Neither 
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deficiency did not augment the age-related increase in HSPCs found in wild type mice 

but did result in a significant increase in granulocyte-, monocyte-, and erythroid 

progenitor colonies (Figure 5.7 and Figure 5.8) consistent with aged TERT-/- bone 

marrow exhibiting a greater change in the clonogenic assay than wild type.  Thus, TERT 

deficiency augments the normal ageing process of HSPCs, implying that the lack of 

telomerase per se is not responsible for changes seen in HSPCs during normal ageing of 

wild type mice. 

 
Figure 5.5: Telomere length in TERT-/- bone marrow HSPCs.  
HSPCs were freshly isolated from mice bone marrow.  Samples were cryopreserved until 
experiment.  Telomere length was measured by flow-FISH of TERT wild type and knockout 
C57BL/6 mice.  Human=human PBMNCs and Thymocytes=bovine thymocytes were used as 
controls.  Statistical significance calculated by Mann-Whitney test.  Error bars stand for mean ± 
SEM. 
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Figure 5.6: Bone marrow cellularity of TERT-/- during ageing. 
Total cell count of freshly isolated total bone marrow from young (1.5-7.5 months) and old (22 
months) C57BL/6 mice. Statistical significance calculated by Mann-Whitney test 
(ns=nonsignificant).  Error bars stand for mean ± SEM. 
 

 
Figure 5.7: LSK stem cell content in TERT-/- during ageing. 
Lineage-Sca-1+CKit+ (LSK) stem cell measured by FACS analysis from freshly isolated bone 
marrow HSPCs from young (1.5-7.5 months) and old (22 months) C57BL/6 mice.  Statistical 
significance calculated by Mann-Whitney test (ns=nonsignificant).  Error bars stand for mean ± 
SEM. 
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Figure 5.8: Clonogenic assay of TERT-/- mice during ageing. 
HSPCs isolated from young (1.5-7.5 months) and old (22 months) C57BL/6 mice were cultured 
in clonogenic assay for 14 days.  Colonies were scored according to morphology under inverted 
microscopy.  All p-values calculated by Mann-Whitney test (ns=nonsignificant, *P<0.05, 
**P<0.01, ***P<0.001).  Error bars stand for mean ± SEM. 
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5.2.3 Effects of lack of TERC-/- on bone marrow ageing  

The absence of TERC abolishes telomerase activity and leads to shortened telomere: 

bone marrow haematopoietic stem cells (HSCs) from TERC-/- mice display impaired 

replicative capacity, manifested as a reduction in serial bone marrow transplantation 

potential, and accompanied by rapid telomere shortening, compared with wild type mice 

(Allsopp et al., 2003).  In order to investigate the effect of shortened telomeres on HSPC 

ageing, we analysed LSK cells and CFU-potential in bone marrow from 8-12 month 

(young) and 15 month (old) old TERC-/- mice. Flow-FISH analysis revealed a significant 

reduction in bone marrow HSPC telomere length in TERC-/- mice compared with wild 

type controls P<0.05 (Figure 5.9), unlike in TERT-/- mice (compare Figure 5.5 and Figure 

5.9).  This telomere shortening is not reported elsewhere in the first generation of TERC-/- 

mice because they normally are backcrossed with heterozygous TERC+/- mice with intact 

telomeres.  However, this was not performed with our mouse model, leading to shorter 

telomeres in the first generation of mice already. 

Young TERC-/- mice showed a significant decrease in bone marrow cellularity compared 

to old TERC-/- mice (Figure 5.10).  We also observed a significant induction of LSK stem 

cells (Figure 5.11) comparable to that seen during ageing (Figure 5.2) and significantly 

higher CFU-G, CFU-M, CFU-GM, and BFU-E formation in young and old TERC-/- mice 

compared to wild types in vitro (Figure 5.12). Therefore, it seems that short telomeres, 

rather than telomerase deficiency itself, results in an ageing bone marrow profile. 

However, older TERC-/- mice show a slightly different phenotype with no clear increase 

in LSK stem cell frequency whilst retaining a myeloid-skewed colony formation 

potential. 
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Figure 5.9: Telomere length in TERC-/- bone marrow HSPCs. 
HSPCs were freshly isolated from mice bone marrow.  Samples were cryopreserved until the 
experiment.  Telomere length was measured by flow-FISH of TERC wild type and knockout 
C57BL/6 mice.  Human=human PBMNCs and Thymocytes=bovine thymocytes were used as 
controls.  Statistical significance calculated by Mann-Whitney test (*P<0.05).  Error bars stand 
for mean ± SEM. 
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Figure 5.10: Bone marrow cellularity of TERC-/- mice. 
Total bone marrow cell count from freshly isolated bones from young (8-12 months) and old (15 
months) C57BL/6 mice. Statistical significance calculated by Mann-Whitney test (***P<0.001 
and ns=nonsignificant).  Error bars stand for mean ± SEM except n=2 which represents the range. 
 

 

 
Figure 5.11: LSK stem cell content in TERC-/- mice. 
Lineage-Sca-1+CKit+ (LSK) stem cell measured by FACS analysis from freshly isolated bone 
marrow HSPCs from young (8-12 months) and old (15 months) C57BL/6 mice.  Statistical 
significance calculated by Mann-Whitney test (ns=nonsignificant).  Error bars stand for mean ± 
SEM except n=2 which represents the range. 
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Figure 5.12: Clonogenic assay of TERC-/- mice. 
HSPCs were isolated from young (8-12 months) and old (15 months) C57BL/6 mice and cultured 
in a clonogenic assay for 14 days.  Colonies were scored according to morphology under inverted 
microscopy.  All p-values calculated by Mann-Whitney test (ns=nonsignificant, *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001).  Error bars stand for mean ± SEM except n=2 which 
represents the range. 
 
 
 
  

Young

Old
TERC

+/+

TERC
-/-

0

1

2

3

4

5

C
ol

on
ie

s/
 8

x1
05  

ce
lls n=10

n=7

***

TERC
+/+

TERC
-/-

0

2

4

6

8

10 n=10

n=7

****

TERC
+/+

TERC
-/-

0

10

20

30

40
n=10

n=7

****

TERC
+/+

TERC
-/-

0.0

0.5

1.0

1.5

n=10

n=7

ns

TERC
+/+

TERC
-/-

0

2

4

6

8

10
n=10

n=7

****

TERC
+/+

TERC
-/-

0

2

4

6

8

C
ol

on
ie

s/
 8

x1
05  

ce
lls

n=2

n=3
**

TERC
+/+

TERC
-/-

0

5

10

15

n=2

n=3

*

TERC
+/+

TERC
-/-

0

20

40

60

n=2

n=3
*

TERC
+/+

TERC
-/-

0.0

0.5

1.0

1.5

2.0

2.5 n=2

n=3

ns

TERC
+/+

TERC
-/-

0

5

10

15

n=2

n=3

CFU-G CFU-M CFU-GM CFU-GEMM BFU-E

CFU-G CFU-M CFU-GM CFU-GEMM BFU-E



 
 

130 

5.3 Discussion 
 
Ageing is a complex process that involves dysfunction in haematopoietic stem cells due 

to cell intrinsic and extrinsic alterations, which ultimately causes compromise in different 

mature blood lineages. This dysfunction leads to several haematological diseases 

preferentially found in older age including anemia, myelodysplastic syndrome, and 

myeloid leukemia (Franceschi et al., 2000).  Tremendous research is directed towards 

deciphering ageing mechanisms to combat age-related diseases and to extend healthy 

lifespans. Mutations in telomerase genes limit telomere maintenance and lead to shorter 

lifespans in mice and humans (Herrera et al., 1999; Rudolph et al., 1999; Vulliamy et al., 

2004).  However, little is known about the link between bone marrow ageing and 

telomerase.  In this study we analysed the ageing haematopoietic system in vivo, without 

bone marrow transplantation, employing fluorescence antibody cell sorting (FACS) and 

colony-forming assays to measure haematopoietic stem and progenitor cells (HSPCs) 

from wild type and telomerase deficient mice up to 22 months of age. 

In our models, ageing increased Lineage-Sca-1+CKit+ HSPCs in the bone marrow of 

TERT+/+ wild types.  This induction is accompanied by more myeloid progenitors (CFU-

GM), which might be consistent with myeloid skewing with ageing as reported by others 

in humans and mice (Waterstrat and Van Zant, 2009; Dykstra et al., 2011; Pang et al., 

2011).  In humans, CFU-GM grown from bone marrow also increased with age (Marley 

et al., 1999).  However, the influence of ageing on HSCs numbers from murine models 

has been reported to be strain-specific (J. Chen et al., 2000).  Furthermore, the number of 

CD34+CD8- progenitors increased with age in humans, with no change in the 

repopulating activity with colonies in humans (Kuranda et al., 2011), whereas another 

study showed no difference between young and elderly HSC in particular myeloid 

progenitors in mononucleated cells (Chatta et al., 1993).  Conversely, elderly adults 

displayed less mixed granulocyte/macrophage colonies compared to young (Marley et al., 

1999). 

Telomeres are specialized end caps of chromosomes that protect and maintain 

chromosomal integrity and prevent DNA damage responses (Blackburn, 2001; de Lange, 

2002).  Telomeres shorten as age progresses in humans, limiting the proliferative capacity 

of a cell to a certain number of cell divisions (Allsopp et al., 1992).  Critically short 
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telomeres lose the capping function and induce DNA damage checkpoints leading to 

apoptosis or cell cycle arrest.  Although mice have very long telomeres, they also shorten 

in stem and somatic cell compartments and accumulate telomere-associated DNA 

damage when sensitive methods are applied (Flores et al., 2008; Hewitt et al., 2012).  

The organ systems most sensitive to telomere shortening are those with high cell turnover 

rates, supporting the finding that telomere dysfunction impairs stem cell maintenance 

(Lee et al., 1998; Rudolph et al., 1999; Kirwan and Dokal, 2008; Sahin et al., 2011).  

Furthermore, various groups have shown recently that telomere length also influences 

mitochondrial function and thus contributes to metabolic changes (Passos et al., 2010; 

Sahin et al., 2011). 

Telomerase is a DNA reverse transcriptase consisting of an RNA template (TERC) and 

catalytic subunit (TERT) that replicates telomeres.  Although telomerase is activated in 

some adult stem cells, its expression in stem cells is not sufficient to prevent telomere 

shortening during ageing (Flores and Blasco, 2010). The TERC-/- mouse model at later 

generations has been reported to have less haematopoietic stem cell repopulating 

potential and a dysfunctional microenvironment (Allsopp et al., 2003; Ju et al., 2007).  In 

agreement with these studies, our data confirm that telomere shortening in TERC-/- 

telomerase deficient mice lead to an ageing bone marrow phenotype, reflected by a 

fivefold increase in LSK cells as well as CFU-GM colonies. In comparison, telomerase-

deficient TERT-/- mice without telomere shortening showed no evidence of premature 

hematopoetic stem cell ageing at the level of LSK cell frequency (Rossi et al., 2007).  

However, lack of telomerase did lead to a significant increase in granulocyte, monocyte, 

and erythroid colonies, augmenting the normal ageing process and providing the first 

example of a specific erythroid progenitors increase associated with ageing—notably, 

that it can be ameliorated by DR. Of note, erythroid progenitor (BFU-E) increase was 

found only in telomerase-deficient mice, suggesting a telomerase dependent disruption of 

normal bone marrow homeostasis. A possible explanation of the erythroid colonies 

induction seen in our TERT-/- mouse models is anaemia, which has been reported as an 

independent predictor of mortality and morbidity in ageing (Guralnik et al., 2005).  The 

induction seen in erythroid progenitor colonies in aged mice might be a good example of 

how the bone marrow responds to anaemic shortage of erythrocytes as a compensation 
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mechanism. Whilst erythropoiesis has yet to be studied extensively in ageing mice, a 

recent study showed aged, anaemic mice to have a significant increase in splenic 

CD71hiTer119hi progenitors with a similar trend in bone marrow (Guo et al., 2013). 

These findings are of particular importance, given the clinical burden of age-related 

anaemia. The only other case to our knowledge of a marked erythroid induction of 

progenitor populations has been demonstrated in a disease model of myeloproliferative 

neoplasm (Mullally et al., 2010).  Others have described a certain function of the tumour 

suppressor gene p15Ink4b in the commitment of blood progenitors to the erythroid 

lineage (Humeniuk et al., 2013).  Interestingly, p15INK4b and telomerase/hTERT have 

been found in a complex recently where hTERT inhibits translation of p15 mRNA 

(Iannilli et al., 2013). One could speculate that without TERT p15 expression stays high 

and promotes erythroid differentiation of myeloid progenitors. 

In conclusion, telomerase deficiency without telomere attrition leads to HSPCs ageing in 

the bone marrow, which is exacerbated with short telomeres.   
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Chapter 6 The impact of anti-ageing interventions on HSPCs 

6.1 Introduction 
Ageing is a progressive process of functional decline of various tissues that cannot be 

reversed.  However, current research identified some interventions that can ameliorate 

such as dietary restriction and TA-65 supplementation.  Dietary restriction (DR) is a well-

known anti-ageing intervention that increases lifespan as well as health in different 

organisms and decreases the incidence of cancer during ageing (Weindruch et al., 1988; 

Bronson and Lipman, 1991; Swindell, 2012). DR also delays some age-related diseases 

such as diabetes, atherosclerosis, kidney disease, and neurodegenerative diseases 

(Mattison et al., 2012).  However, some studies reported contradicting influences of DR 

on lifespan depending on the genotype of mice (Liao et al., 2010).  The exact mechanism 

of dietary restriction is still not clear; nevertheless, theories are pointing towards 

protection against cellular damage by reducing cellular metabolism (Bordone and 

Guarente, 2005). Although the beneficial effect of DR on hematopoietic stem-cell ageing 

has been demonstrated previously (Ertl et al., 2008), little is known about its mechanism, 

particularly with respect to telomeres.  Since telomere shortening is associated with 

ageing and accelerated in human diseases with telomerase mutations such as dyskeratosis 

congenita and aplastic anaemia (Garcia et al., 2007), telomerase activation might be a 

potential anti-ageing target.  In fact, experimental activation of telomerase using TA-65 

in mice has been shown to rescue telomere length in mouse embryonic fibroblasts and 

enhance their health span (Bernardes de Jesus et al., 2011).   

However, data are lacking with regard to the effects of DR and TA-65 on HSPCs ageing 

in telomerase-deficient mouse models. 

In this chapter, haematopoietic stem and progenitor cells (HSPCs) isolated from the bone 

marrow of different telomerase knockout mice were investigated.  Anti-ageing dietary 

restriction and the herbal extract telomerase activator TA-65 were also tested in HSPCs 

in vivo and in vitro, respectively.  Parameters of bone marrow ageing studied included 

bone marrow cell counts, HSPCs content, and clonogenic assays.  HSPCs isolated from 

bone marrow were harvested and cultured to find out if the telomerase activator TA-65 

can ameliorate ageing of bone marrow stem cells in vivo and in vitro.  The second aim of 
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this chapter was to investigate if dietary restriction can ameliorate ageing in a telomerase-

dependent manner. 

 

6.2 Results 

6.2.1 Effects of TA-65 on TERC-/- and TERT+/+ bone marrow ageing 

TA-65 is a herbal telomerase activator that is commercially available and is reported to 

ameliorate the amount of short telomeres, and decrease the percentage of critically short 

telomeres and DNA damage in mouse fibroblasts that harbour critically short telomeres 

(Fauce et al., 2008; Bernardes de Jesus et al., 2011; Harley et al., 2011).  Therefore, we 

tested in vivo the treatment of different telomerase knockout mice to see if TA-65 shows 

any ageing amelioration in the bone marrow.  In vitro treatment of 12-month-old TERC+/- 

and TERC-/- mice HSPC cells with TA-65 did not affect bone marrow cellularity (Figure 

6.1), stem cells (Figure 6.2), or colonies in culture (Figure 6.3).  On the contrary, TA-65 

treatment of 28-month-old TERT+/+ mice showed a tendency to induce bone marrow 

cellularity by 1.7-fold (Figure 6.4), whereas no change was seen in HSPC content (Figure 

6.5) or colonies (Figure 6.6).  In addition, TA-65 showed the tendency to increase TERT 

transcription by 2.5-fold, similar to what has been reported by de Jesus and colleagues in 

other cell types (2011).  We also found a trend of telomerase activity induction (fivefold) 

with TA-65 in 28-month-old TERT+/+ mice bone marrow compared to controls (Figure 

6.7).  In contrast, old TERT+/+ mice treatment showed significantly reduced transcription 

of TERC and no change in the proliferation marker c-myc, as shown in Figure 6.8.  

Furthermore, when colonies were incubated under different oxygen levels to assess the 

effect of oxidative stress, there was a significant induction of CFU-GM colonies with 

TA-65 under 3% oxygen level, while there was a trend of increased CFU-GM colonies 

with TA-65 under oxidative stress (Figure 6.9).  To examine the effect of oxidative stress 

on colony formation, data were combined from TA-65 treated and non-treated mice and 

oxygen levels were compared.  As shown in Figure 6.10, oxidative stress significantly 

reduced CFU-G, CFU-M, and CFU-GM colonies compared to the 3% oxygen level.  

Moreover, in an attempt to track cells lacking TERT in clonogenic assay, TERT-GFP 

tagged bone marrow cells were isolated and sorted using FACS (FACSAria II [BD, 
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USA]) from mice described by Breault et al. (2008).  Unfortunately, sorted cells were 

unable to produce colonies in culture, and the reason might have been the loss of cellular 

properties as unsorted cells grew colonies as normal. 

 

 

 

 
Figure 6.1: Effects of TA-65 treatment in TERC+/- and TERC-/- mice bone marrow 
cellularity.  
8-12-month-old C57BL/6 mice were treated with either TA-65 or control for 3-4 months.  Bone 
marrow cells were isolated and quantified.  Statistical significance calculated by Mann-Whitney 
test.  Error bars stand for mean ± SEM. 
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Figure 6.2: Effects of TA-65 treatment on LSK stem cell content of TERC+/- and 
TERC-/- mice. 
8-12-month-old C57BL/6 mice were treated with either TA-65 or control for 3-4 months.  Bone 
marrow cells were isolated and lineage-Sca-1+CKit+ (LSK) stem cell measured by FACS analysis.  
Statistical significance calculated by Mann-Whitney test.  Error bars stand for mean ± SEM. 
 

 
Figure 6.3: Effects of TA-65 treatment on clonogenic assay of TERC+/- and TERC-/- 

mice. 
8-12-month-old C57BL/6 mice were treated with either TA-65 or control for 3-4 months.  Bone 
marrow cells were isolated and cultured in clonogenic assay for 14 days.  Colonies were scored 
according to morphology under inverted microscopt.  All p-values calculated by Mann-Whitney 
test.  Error bars stand for mean ± SEM. 
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Figure 6.4: Effects of TA-65 treatment in TERT+/+ mice bone marrow cellularity. 
28-month-old TERT+/+ C57BL/Icrfa(t) mice were treated with either TA-65 or control for 3-4 
months.  Bone marrow cells were isolated and quantified.  Statistical significance calculated by 
Mann-Whitney test (ns=nonsignificant).  Error bars stand for mean ± SEM. 
 

 
Figure 6.5: Effects of TA-65 treatment on LSK content of TERT+/+ mice. 
28-month-old TERT+/+ C57BL/Icrfa(t) mice were treated with either TA-65 or control for 3-4 
months.  Bone marrow cells were isolated and lineage-Sca-1+CKit+ (LSK) stem cells were 
measured by FACS analysis.  Statistical significance calculated by Mann-Whitney test (ns= 
nonsignificant).  Error bars stand for mean ± SEM. 
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Figure 6.6: Effects of TA-65 treatment on clonogenic assay of TERT+/+ mice. 
28-month-old TERT+/+ C57BL/Icrfa(t) mice were treated with either TA-65 or control for 3-4 
months.  Bone marrow cells were isolated and cultured in clonogenic assay for 14 days.  Colonies 
were scored according to morphology under inverted microscope.  All p-values calculated by 
Mann-Whitney test (ns= nonsignificant).  Error bars stand for mean ± SEM. 
 

 
Figure 6.7: Effects of TA-65 treatment on telomerase activity in TERT+/+ mice. 
28-month-old TERT+/+ C57BL/Icrfa(t) mice were treated with either TA-65 or control for 3-4 
months.  Bone marrow cells were isolated and telomerase activity was measured by Q-TRAP.  
Statistical significance calculated by Mann-Whitney test (ns= nonsignificant).  Error bars stand 
for mean ± SEM. 
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Figure 6.8: Effects TA-65 treatment on TERT, TERC, and c-myc expression in 
TERT+/+ mice. 
28-month-old TERT+/+ C57BL/Icrfa(t) mice were treated with either TA-65 or control for 3-4 
months.  Bone marrow cells were isolated and real-time quantitative PCR was used to analyse the 
expression of: TERT, TERC and c-myc.  Real Time PCR [StepOnePlus, Applied Biosystems] 
was used to measure the gene expression by the ∆∆CT method.  Expression was normalized to 
housekeeping genes GAPDH and �-actin and referenced to one TERT+/+ control.  All p-values 
calculated by Mann-Whitney test (ns= nonsignificant, *P<0.05).  Error bars stand for mean ± 
SEM. 
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Figure 6.9: Effects of oxidative stress on clonogenic assay in TA-65 treated TERT+/+ 
mice. 
28-month-old TERT+/+ C57BL/Icrfa(t) mice were treated with either TA-65 (n=5) or control 
(n=3) for 3-4 months.  Bone marrow cells were isolated and clonogenic assay of bone marrow 
cells after two weeks and TERT+/+ TA: TA-65 treated.  Clonogenic assay was performed under 
different oxygen levels (3%, 20%, and 40%).  All p-values calculated by two-way ANOVA 
(**P<0.01); other comparisons were not significant.  Error bars stand for mean ± SEM. 
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Figure 6.10: Effects of oxidative stress on colony formation in culture. 
Clonogenic assay of bone marrow cells after two weeks’ culture of 28-month-old C57BL/Icrfa(t) 
mice TA-65 treated and controls were combined to assess oxygen impact on colonies (n=7).  
Colonies were incubated in different oxygen levels 3%, 20%, and 40%.  Statistical significance 
displayed in comparison to 3% oxygen.  All p-values calculated by two-way ANOVA (*P<0.05, 
***P<0.001, ****P<0.0001).  Error bars stand for mean ± SEM. 
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6.2.2 Impact of short-term expansion of HSPCs, metabolic stress, and TA-65 in 

culture 

Previous reports confirmed the role of telomerase in the maintenance of haematopoietic 

stem cells through serial transplantation in vivo (Gluckman et al., 1989; Allsopp et al., 

2003; Ballen et al., 2012).  Nevertheless, to assess the effect of telomerase in HSPCs in 

vitro, cell count was quantified under expansion, metabolic stress, and TA-65 addition.  

These experiments were performed to compare mouse HSPCs to CD34+ HSPCs isolated 

from human UCB (Chapter 4).  HSPC expansion was induced using a different cytokine 

cocktail over 1 week of culture, including 100ng/ml stem cell factor (SCF), 100ng/ml 

thrombopoietin (TPO), and 100ng/ml FLT-3 ligand (FLT-3L).  As shown in Figure 6.11, 

telomerase does not affect the expansion level of HSPCs in vitro in both old (22 months) 

and young (1.5-8 months) mice.  Unlike EPCs and cord blood HSPCs, HSPCs from 

TERT-/- and TERC-/- showed resistance to metabolic stress, in which different doses of 

glucose were administered in vitro (Figure 6.12A).  Furthermore, treatment of mice 

HSPCs with TA-65 did not enhance their growth in culture (Figure 6.12B).   

 
Figure 6.11: Effects of short-term HSPCs expansion in culture. 
Bone marrow cells were expanded in culture using cytokines.  Cells were seeded on the first day 
and recounted after 7 days of culture.  Wild types were TERT+/+, young: 8-12 months, old: 22 
months C57BL/6 mice (n=3).  Statistical significance was calculated using Kruskal-Wallis test 
(ns= nonsignificant). 
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Figure 6.12: Effects of metabolic stress and TA-65 treatment on HSPCs in short-
term culture. 
Bone marrow cells from different knockout mice were grown in culture for 3 days under different 
concentrations of glucose to assess the effect of metabolic stress and TA-65 on haematopoietic 
stem and progenitor cells (HSPCs) growth.  Two-way ANOVA revealed no significant 
differences between groups and treatments.  Wt young: TERT+/+ wild type.  Ages were 1.5-7.5 
month old for young wild types TERT+/+ and TERT-/-, 8-12 month old for young TERC-/-; all old 
mice were 22 months old.  All mice were on C57BL/6 strain. 
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6.2.3 Impact of short- and long-term dietary restriction on bone marrow HSPCs  

A previous study provided evidence that ageing causes an increase in short-term 

haematopoietic stem cells (ST-HSCs) in wild type mice that can be partly reversed by 

dietary restriction (DR) (Ertl et al., 2008). To identify whether the previously described 

effect of DR on ageing of haematopoietic stem cells is mediated by telomerase, we 

compared TERT+/+ or TERT+/- with TERT-/- mice under conditions of short-term (7 

month) and long-term (16 months) DR. 

Despite variability in bone marrow cellularity, both short-term (Figure 6.13) and long-

term (Figure 6.16) DR reduced the percentage of LSK cells within the bone marrow of 

aged mice in both TERT+/+ or TERT+/- and TERT-/- mice.  This was almost the same level 

found in young mice (Figure 6.14 and Figure 6.18). Of particular note, TERT-/- mice 

showed a similar result under DR (Figure 6.14 and Figure 6.18), suggesting a telomerase-

independent effect of DR on the accumulation of LSK HSPCs with age. Furthermore, DR 

reduced the change in the clonogenic assay during aging, as indicated by statistically 

significant reductions in CFU-M and CFU-GM following both short- and long-term DR 

in wild type and mutant mice (Figure 6.15 and Figure 6.18). In 22-month-old mice 

subjected to long-term DR, the accumulation of BFU-E and CFU-G specifically 

associated with TERT deficiency was also reversed in TERT-/- mice to young and wild 

type levels (Figure 6.18). Together, these data show that dietary restriction is able to 

ameliorate the phenotypes of ageing in haematopoietic stem cells, mostly independent of 

TERT and telomerase.  
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Figure 6.13: Effects of short-term DR on bone marrow cellularity in TERT+/- and 
TERT-/- mice. 
Bone marrow counts were isolated freshly from bones of 11-month-old mice under dietary 
restriction (DR) for 7 months and ad libitum (AL) control C57BL/6 mice.  Statistical significance 
was calculated by Mann-Whitney test.  Error bars stand for mean ± SEM. 
 

 
Figure 6.14: Effects of short-term DR on LSK stem cell content in TERT+/- and 
TERT-/- mice. 
Lineage-Sca-1+CKit+ (LSK) stem cells were measured using FACS analysis from freshly isolated 
bone marrows of 11-month-old mice under dietary restriction (DR) for 7 months and compared 
ad libitum (AL) control C57BL/6 mice.  All p-values calculated by Mann-Whitney test.  Error 
bars stand for mean ± SEM. 
  

0

50

100

150

T
o

ta
l B

M
C

s/
m

o
u

se
 (x

10
6 )

n=3

n=2

n=3

n=4

AL/DR

TERT

AL ALDR DR

+/- -/- +/- -/- 

p=0.1

0.0

0.5

1.0

1.5

2.0

Li
ne

ag
e-

Sc
a-

1+
C

K
it+

ce
lls

(%
)

n=3

n=3

n=4

n=2

AL/DR

TERT

AL ALDR DR

+/- -/- +/- -/- 

p=0.1



 
 

146 

 
 
 

 
Figure 6.15: Effects of short-term DR on clonogenic assay. 
Clonogenic assay of bone marrow cells after two weeks’ culture from 11 month old bone marrow 
under dietary restriction (DR) for 7 months and ad libitum (AL) control C57BL/6 mice.  All p-
values calculated by Mann-Whitney test (**P<0.01, ***P<0.001, ****P<0.0001).  Error bars 
stand for mean ± SEM. 
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Figure 6.16: Effects of long-term DR on bone marrow cellularity. 
Bone marrow cell count of freshly isolated bones from young (1.5-7.5 month old) and old (22 
month old) under dietary restriction (DR) for 16 months and ad libitum (AL) control C57BL/6 
mice.  Statistical significance calculated by Mann-Whitney test.  Error bars stand for mean ± 
SEM. 

 
Figure 6.17: Effects of long-term DR on LSK stem cell content. 
Lineage-Sca-1+CKit+ (LSK) stem cells were measured using FACS analysis from freshly isolated 
bone marrows from young (1.5-7.5 month old) and old (22 month old) under dietary restriction 
(DR) for 16 months and ad libitum (AL) control C57BL/6 mice.  All p-values calculated by 
Mann-Whitney test (*P<0.05 and **P<0.01).  Error bars stand for mean ± SEM. 
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Figure 6.18: Effects of long-term DR on clonogenic assay. 
Clonogenic assay of bone marrow cells after two weeks’ culture from young (1.5-7.5 month old) 
and old (22 month old) under dietary restriction (DR) for 16 months and ad libitum (AL) control 
C57BL/6 mice.  All p-values calculated by Mann-Whitney test (**P<0.01, ****P<0.0001).  Error 
bars stand for mean ± SEM. 
  

0

1

2

3

C
ol

on
ie

s/
 8

x1
05  

ce
lls

n=8

n=3
n=3

n=3n=3

n=9

AL/DR

TERT

AL AL DRDR

+/+ -/- 

AL AL

+/+ -/- +/+ -/- 

Young Old

* *

0

2

4

6

8

10

n=8

n=3

n=3

n=3n=3

n=9

AL AL DRDR

+/+ -/- 

AL AL

+/+ -/- +/+ -/- 

Young Old

**
**

0

10

20

30

40

n=8

n=3 n=3

** **

n=3n=3

n=9
**** ****

AL AL DRDR

+/+ -/- 

AL AL

+/+ -/- +/+ -/- 

Young Old

0.0

0.2

0.4

0.6

0.8

C
ol

on
ie

s/
 8

x1
05  

ce
lls

n=8

n=3

n=3
n=3

n=3
n=9

AL AL DRDR

+/+ -/- 

AL AL

+/+ -/- +/+ -/- 

Young Old

*

AL/DR

TERT

0

2

4

6

n=8

n=3

n=3
n=3n=3

n=9
**

AL AL DRDR

+/+ -/- 

AL AL

+/+ -/- +/+ -/- 

Young Old

**

CFU-G CFU-M CFU-GM

CFU-GEMM BFU-E



 
 

149 

6.3 Discussion 
The anti-ageing effect of telomerase on heamatopoetic stem cells is mediated by both its 

canonical function through elongating telomeres (Tomas-Loba et al., 2008; Bernardes de 

Jesus et al., 2011) as well by telomere-independent mechanisms (Nitta et al., 2011).  The 

latter study showed that TERT can mitigate ageing of HSPCs by antagonising the effects 

of oxidative stress on DNA damage. Vera et al. reported that mice overexpressing the 

catalytic subunit TERT (TgTERT) show less telomere shortening and less telomere 

damage, resembling the effect of caloric restriction (Vera et al., 2013).  The authors also 

found that caloric restriction of TgTERT mice leads to a significant lifespan extension 

compared to wild types. Ertl and coauthors have found that the effect of DR on 

haematopoetic stem-cell ageing is a general phenomenon in mice from different genetic 

backgrounds, although its effects on function per HSC are genotype-dependent (Ertl et 

al., 2008).  These observations are confirmed by my study, where I provide evidence that 

telomerase does not seem to be required for the beneficial effect of ameliorating ageing in 

HSPCs under dietary restriction. In fact, even short-term caloric restriction reversed the 

“ageing” phenotype of bone marrow stem cells.  To our surprise, this beneficial effect 

occurred independently of the presence of telomerase (TERT ko mice). 

The telomerase activator TA-65, purified from the root of Astragalus membranaceus, has 

been shown to ameliorate the amount of short telomeres and decrease the percentage of 

critically short telomeres as well as DNA damage in mouse embryonic fibroblasts that 

harbour critically short telomeres (Bernardes de Jesus et al., 2011).  In humans, it has 

also been shown that the small molecule telomerase activator (TAT2) isolated from 

Astragalus membranaceus induced telomerase activity in peripheral blood mononuclear 

cells and T lymphocytes and increased their antiviral functions (Fauce et al., 2008).  

Furthermore, human supplementation with TA-65 as well as other dietary supplements 

have been shown to reduce the percentage of cells with short telomeres (Harley et al., 

2011). 

Although there were no effects of TA-65 on the bone marrow in young TERC-/- and 

TERC+/- mice, I found a tendency of boosting bone marrow cellularity and telomerase 

activity with TA-65 in aged TERT-/- mice.  Furthermore, this effect of TA-65 was 

accompanied by a tendency of increased TERT transcription, matching what has been 
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reported previously (Bernardes de Jesus et al., 2011) and also a downregulation of TERC 

expression using real-time PCR.  However, TA-65 did not affect LSK cells or 

haematopoietic stem cell function, as quantified by clonogenic assays. Additionally, TA-

65 does not protect colonies in culture from oxidative stress. Taken together, TA-65 

negative results might be due to the short period of TA-65 treatment and given that even 

the TERT ko mouse has a very mild phenotype regarding the bone marrow.  Moreover, 

another possibility is that the dose and/or the uptake of TA-65 in food might not be 

sufficient to induce telomerase.  Therefore, further testing of doses as well as route of 

uptake are required. 

Recently, one week of treatment of young heterozygous TERT mice with GRN510, a 

small molecule on the basis of cycloastragenol (GRN665 or TAT2 also isolated from the 

plant Astragalaus membranaceus), has been shown to activate telomerase in bone marrow 

progenitor cells compared to controls.  Perhaps this activation is either due to the much 

younger age of the mice or to the small molecule activator being more potent than the 

plant extract TA-65 (Le Saux et al., 2013). 

To sum up, the effects of ageing discussed in the previous chapter (Chapter 5), including 

the lineage change in the clonogenic assay associated with lack of telomerase, can be 

ameliorated by dietary restriction but not TA-65 supplementation. 

 

*
 !
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Chapter 7 General discussion 
Ageing implicates the progressive functional decline of different cells and tissues, 

affecting all species.  Recently, it has been shown that there are several complex 

mechanisms underlying ageing summarized into 9 interconnecting hallmarks.  Lopez-

Otin and colleagues have proposed a hierarchical relationship between those hallmarks.  

In brief, ageing hallmarks can be divided into three: primary (causes of damage, all 

negative), antagonistic (responses to damage, depend on intensity), and integrative 

(culprits of the phenotype, directly affect tissue homeostasis).  Primary hallmarks include 

genomic instability, telomere attrition, epigenetic alteration, and loss of proteostasis.  

Antagonistic hallmarks include deregulated nutrient signalling, mitochondrial 

dysfunction, and cellular senescence.  Integrative hallmarks include stem cell exhaustion 

and altered cellular communication (Lopez-Otin et al., 2013).  Of particular interest for 

this thesis are telomeres and telomerase and their involvement in ageing and disease.  

Telomeres are specialized protective nucleoprotein complexes at the end of chromosomes 

that shorten with each cell division.  Critically short telomeres lose the capping function 

at the chromosomal ends as these dysfunctional telomeres induce DNA damage 

checkpoints leading to apoptosis or cell cycle arrest.  Organ systems with the higher rates 

of cell turnover are more sensitive to telomere shortening (Lee et al., 1998).  Therefore, 

telomere length has been suggested to be a biomarker of ageing as it can be an indicator 

of cellular senescence and oxidative stress (von Zglinicki and Martin-Ruiz, 2005).  

Telomerase is a unique reverse transcriptase that replicates de novo telomeric DNA to 

extend telomere length.  Telomerase mutations are implicated in several human diseases 

including; dyskeratosis congenita (Vulliamy et al., 2001), idiopathic pulmonary fibrosis 

(Armanios et al., 2007), and bone marrow failure syndromes (Vulliamy et al., 2002). 

The focus of this thesis was to investigate underlying cellular mechanisms of ageing by 

oxidative and metabolic stress in early EPCs and HSCs, and a particular focus of my 

thesis was the relation to telomerase.  
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7.1 PGC-1�  and metabolic stress 

Ageing is associated with a defect in the repair of vascular lesions (Gennaro et al., 2003).  

Many researchers have shown the therapeutic potential of EPCs in restoring vascular 

repair (Asahara et al., 1997; Kalka et al., 2000; Sheng et al., 2013).  Although PGC-1α 

plays a critical role in energy regulation, such as in mitochondrial metabolism, lipid 

oxidation, glucose metabolism, and angiogenesis (Arany et al., 2008; Ventura-Clapier et 

al., 2008), little is known about its role in EPCs and underlying mechanisms of diabetes.  

I showed in my thesis that metabolic stress and metformin in early EPCs induced PGC-

1α and downstream targets similar to that reported in HUVECs (Kukidome et al., 2006).  

It has been reported for the first time recently that the expression of PGC-1α is induced in 

diabetic mice and humans and blocks endothelial migration in vitro and vasculogenesis in 

vivo via induction of Notch signalling (Sawada et al., 2014).  In their elegant study, the 

authors showed that transgenic overexpression of PGC-1α in the endothelium resembles 

multiple diabetic phenotypes, including blunted wound healing, aberrant re-

endothelialization after carotid injury, and decreased blood flow recovery after hind limb 

ischemia.  Conversely, endothelial specific PGC-1α knockout mice rescued wound 

healing and recovery after hind limb ischemia in type 1 and type 2 diabetes (Sawada et 

al., 2014).   

The role of metabolic stress has not been directly examined in the context of 

haematopoiesis; however, several studies suggest that metabolic conditions can affect 

HSC homeostasis.  The risk for acute myelogenous leukemia (AML) and acute 

lymphoblastic leukemia (ALL) increased in children exposed to high glucose levels in 

utero (Hjalgrim et al., 2003; Hjalgrim et al., 2004).  Furthermore, hyperglycemia is 

linked to higher mortality in patients with AML (Ali et al., 2007).  In addition, ALL was 

found to be more frequent in children with diabetes (Feltbower et al., 2004).  Cord blood 

from diabetic mothers displayed decreased neutrophil mobility (Mehta and Petrova, 

2005) and platelet function (Strauss et al., 2010).  A recent report confirmed that glucose 

exposure enhanced HSC formation in zebrafish (Harris et al., 2013).  Telomerase is 

upregulated in mononuclear cells from UCB from mothers with type 1 diabetes (Cross et 

al., 2010).  In contrast, in my experiments no difference in telomerase activity was seen 
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in CD34+ HSPCs with hyperglycemia in vitro suggesting that metabolic stress acts in a 

telomerase-independent mechanism in these cells. 

7.2 Oxidative stress 

Oxidative stress contributes to ageing and several diseases and leads to cellular damage.  

In order to avoid toxicity of oxidative reactions, there must be a balance between 

oxidative stimuli and defence response (Sies, 1997).  ROS generation depends on oxygen 

sensing around the cells; high oxygen leads to more ROS and vice versa (Sauer et al., 

2001).  However, suitable ROS content is important as an intracellular second messenger 

that regulates cell growth, adhesion, transcription factor activation, and apoptosis 

(Kowaltowski et al., 2009).  Therefore, the equilibrium in ROS production and removal 

must be maintained continuously (Allen and Balin, 2003; X. Zhang et al., 2005). 

Furthermore, hyperoxia increases the rate of telomere shortening from four- to tenfold 

and decreases the replicative lifespan of fibroblasts (von Zglinicki et al., 1995).  

Interestingly, murine embryonic stem cells have increased levels of antioxidant defence 

and good DNA repair capacity, making them resistant to potential oxidative stress 

(Saretzki et al., 2004).  Similarly, in this study, when early EPCs were challenged under 

oxidative stress, there was no difference in their proliferation, suggesting that these cells 

are particularly resistant to oxidative stress.  This is consistent with reported high levels 

of antioxidant enzymes in EPCs and more resistance to oxidative stress compared with 

adult microvacascular endothelial cells and HUVECs (Dernbach et al., 2004; He et al., 

2004; Cai et al., 2006).  In addition, when CD34+ HSPCs isolated from UCB were 

expanded and differentiated to myeloid cells under hyperoxia, their proliferation was 

impaired. Interestingly, oxidative stress reduced CD15+ granulocytes while CD14+ 

monocytes were more resistant.  In fact, it has been shown that CD14+CD16- monocytes 

were more resistant to oxidative stress compared with CD14+/lowCD16+ monocytes 

(Geiger-Maor et al., 2012).  Furthermore, when fibroblasts were damaged by oxidative 

stress using peroxide treatment, higher migration of CD14+ cells was seen (C. Zhao et 

al., 2010).  Additionally, I also showed that the downregulation of TERC expression 

during myeloid differentiation was due to the suppression CD15+ granulocytes.  CD15+ 

granulocytes have also been shown to trigger tumour angiogenesis by producing 

proangiogenic MMP-9 (Kuang et al., 2011).  Therefore, I propose that this suppression of 
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CD15+ differentiation and the associated decrease in TERC under hyperoxia might be a 

protective cellular mechanism.  Furthermore, hyperoxia reduced the clonogenic capacity 

of HSPCs from both human UCB and mouse models in my experiments.  Unexpectedly, 

telomerase activity was induced during hyperoxia in CD34+ HSPCs expansion.  On the 

contrary, it has been reported that telomerase is induced under hypoxic 5% oxygen in 

hTERT-transduced bone marrow endothelial cells (Napier et al., 2010).  However, the 

difference might be explained by the different cells they used compared to my expanded 

CD34+ HSPCs.  Data from our group has also shown that telomerase activity is 

suppressed in T lymphocytes under hyperoxia (Bennaceur et al., manuscript submitted).  

However, under physical stress, in vivo telomerase activity is elevated in PBMNCs of 

rats (Beery et al., 2012). 

7.3 Telomerase in HSCs ageing 
Telomerase expression is readily detected in most haematopoetic stem cells (Counter et 

al., 1995), but this activity is not sufficient to prevent overall loss of telomeric DNA with 

age or proliferation (Rufer et al., 1999).  Primarily, telomerase is required to directly act 

on chromosome ends in haematopoietic stem cells; however, indirect effects of 

telomerase via cells that support cell proliferation have also been shown (Ju et al., 2007).  

An accumulation of DNA damage was shown during ageing in HSCs from mice and 

humans (Rossi et al., 2007; Rube et al., 2011).  Genetically engineered mouse models 

demonstrated that telomere dysfunction and the accumulation of DNA damage can 

contribute to the age-related decline of stem cell function and maintenance (Choudhury et 

al., 2007; Rossi et al., 2007).  Telomerase knockout mice (TERT-/- and TERC-/-) have 

been investigated to understand the role of telomeres and telomerase biology (Blasco, 

2003).  Despite the fact that these models were studied extensively, normal ageing in 

those models is poorly understood.  Therefore, I investigated the role of telomerase on 

HSPC content and their clonogenic potential.   

Ageing in wild type mice bone marrow HSPCs was associated with increased LSK cells 

and CFU-GM colonies.  This data might be in line with studies reporting myeloid 

skewing with ageing and accumulation of stem cells both in mice and humans (Sudo et 

al., 2000; Rossi et al., 2007; Waterstrat and Van Zant, 2009; Dykstra et al., 2011; Pang et 

al., 2011).  I then compared this phenotype with old TERT-/- (lack of telomerase activity, 
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but intact telomeres), which showed an augmented ageing phenotype of the bone marrow 

particularly in the composition of colonies (CFU-G, -M, -GM and BFU-E) but not LSK 

cells in aged mice.  In contrast, young TERC-/- mice that lack telomerase and have 

shortened telomeres showed even more HSCs ageing with increased LSK cells and 

induction of the same colonies.  These effects suggest a gradient effect of telomerase and 

telomeres on HSCs ageing in the bone marrow. As shown in Figure 7.1, lack of 

telomerase per se without telomeres shortening (TERT-/- mice) augments ageing, but lack 

of telomerase with telomeres shortening (TERC-/- mice) accelerate ageing of the BM 

HSCs. 

 
Figure 7.1: The effect of telomerase deficient mice on bone marrow ageing. 
From results of chapter 6, it is speculated that the genetic lack of telomerase TERT and TERC 
show a gradient effect with TERC on the top affecting bone marrow HSPCs ageing. 
 

Of note, the erythroid BFU-E colonies were only skewed with telomerase knockouts 

(TERT-/- and TERC-/-), indicating a telomerase-dependent imbalance in the bone marrow 

homeostasis.  Anaemia might be a good explanation of erythroid skewness where the 

bone marrow responds to anaemic shortage of cells in a compensatory mechanism.  A 

recent study confirmed a significant induction in splenic CD71hiTer119hi progenitors with 

a similar tendency in bone marrow (Guo et al., 2013).  Given the clinical burden of age-

related anaemia, these findings might suggest new approaches to resolve it. 

7.4 Dietary restriction 
Dietary restriction is a well-known anti-ageing intervention that extends lifespans of 

many organisms including worms (Klass, 1977), flies (Cooper et al., 2004), mice 
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(Bronson and Lipman, 1991), dogs (Kealy et al., 2002), and monkeys (Colman et al., 

2009).  DR has several health benefits including reduction of the incidence of cancer, 

diabetes, brain atrophy, and cardiovascular disease (Colman et al., 2009).  However, 

recently, it has become apparent that the effects of DR in extending lifespans are not 

universal (Mattison et al., 2012).  Indeed, DR can either extend or decrease longevity 

depending on the genetic background (Liao et al., 2010).  Although the exact mechanism 

of dietary restriction is not well understood, theories suggest the protection against 

cellular damage by reducing cellular metabolism (Bordone and Guarente, 2005).  In 

particular, little is known about the DR mechanism with respect to telomeres and 

telomerase.  Thus, I was interested to find out if the effect of DR in HSPC ageing is 

influenced by the lack of telomerase.  I have shown that long-term DR (16 months) can 

ameliorate HSCs ageing in the bone marrow. In my study, even short-term (7 months) 

DR ameliorated bone marrow ageing.  In fact, DR almost reversed the ageing BM HSPCs 

phenotype (more LSK stem cells and more colonies) seen with ageing to a similar BM 

HSPCs seen in young mice (less LSK stem cells and colonies).  This is in agreement with 

previous studies (Ertl et al., 2008).  Remarkably, Ertl and colleagues have demonstrated 

that DR can also ameliorate HSC function in repopulation assays in vivo.  Nevertheless, 

this functional benefit of DR in vivo was found to be mouse strain-specific (Ertl et al., 

2008).  In my experiments, I investigated the role of lack of telomerase (TERT-/- mice) on 

DR, but there was no association of telomerase with DR in our models.  Therefore, the 

DR beneficial effect in ageing HSPCs is TERT-independent and, to my knowledge, this 

finding is quite novel.  Interestingly, a recent report confirmed that TERT overexpression 

in mice “synergizes” with the beneficial effects of CR, including improved glucose 

tolerance, protection from osteoporosis, enhanced neuromuscular coordination, decreased 

rate of telomere shortening with ageing, decreased DNA damage, and increased longevity 

(Vera et al., 2013).  

In addition, the same group has shown that supplementation of mice with TA-65, purified 

from the root of Astragalus membranaceus, improves the health span and is capable of 

telomerase-dependent elongation of short telomeres (Bernardes de Jesus et al., 2011), 

suggesting that TA-65 has an anti-ageing potential.  Therefore, I investigated the role of 

dietary supplementation of the telomerase activator TA-65 in aged telomerase deficient 
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(TERT-/-) and heterozygous mice (TERT+/-).  I reported here that TA-65 shows a 

tendency to increase bone marrow cellularity, induce telomerase activity, and TERT 

expression in bone marrow HSPCs.  However, no effect was seen on bone marrow HSCs 

ageing.  In comparison, data from our group has shown that TA-65 can induce T 

lymphocytes proliferation in vitro (data not shown).   

7.5 Limitations and perspectives 
There are several limitations in my study, which can only be addressed by further 

investigation.  The first limitation is in the characterisation of cells.  This limitation 

involves EPCs from PBMNCs, and HSPCs from both human and mice.  As I have 

shown, EPCs do not proliferate in culture and ECFCs are thought to be the real 

angiogenic endothelial progenitor cells; data are limited in those cell types.  It will be 

interesting to find out how ECFC can behave under metabolic and oxidative stress and 

how telomerase is regulated under those conditions.  Furthermore, HSPCs can be better 

characterised with reported markers CD93 and CD133 (Anjos-Afonso et al., 2013; M. 

Takahashi et al., 2013).  The second limitation in my mice study: treatment of mice with 

TA-65 might be limited in this study due to three main reasons.  First, the strain of mice 

used for the TA-65 treatment is different than the one used in the ageing HSPCs (chapter 

5).  Although the right control wild type mice were used, which were fed with DMSO as 

TA-65 was dissolved in DMSO for the treated group, the strain might show a different 

ageing phenotype in their BM HSPCs (Ertl et al., 2008).  Second, the dietary 

supplementation might not be sufficient to induce HSPCs in the bone marrow.  Data from 

our group showed induction of T lymphocytes with TA-65.  Unlike lymphocytes, HSPCs 

are a rare cell type that reside in the bone marrow niche.  Therefore, it might be possible 

that the absorbed amount of TA-65 could not reach the bone marrow cells.  Third, the 

duration of TA-65 treatment was only 4 months in aged mice. It will be interesting if the 

route of TA-65 administration and time course can be tested and compared in mice in 

further experiments (e.g., injections vs dietary supplementation).   
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7.6 Summary and conclusion 
In summary, my studies have examined the effects of metabolic and oxidative stress on 

EPCs and HSPCs with the aim of understanding the underlying influences of ageing and 

telomerase.  To start with, metabolic and oxidative stresses were induced in culture with 

glucose addition and incubation under different oxygen levels, respectively.  Metabolic 

stress disrupted the cellularity of both EPCs and HSPCs.  Unlike HSPCs, EPCs showed 

an increased expression of the metabolic co-activator PGC-1α under diabetic conditions.  

In contrast, oxidative stress limited the cellularity of both EPCs and HSPCs.  Indeed, 

when HSPCs were differentiated into myeloid cells, the expression of TERC was blunted.  

This reduction was essentially due to suppression of CD15+ granulocytes under oxidative 

stress.  Furthermore, oxidative stress stimulated more growth in CD14+ monocytes 

suggesting their resistance.  Surprisingly, telomerase activity was increased under 

oxidative stress in HSPCs.  This induction was opposite to the proliferation pattern and 

was neither associated with telomere shortening, nor a difference in TERT or TERC 

expression.  To investigate the role of telomerase and telomeres on HSPCs, mice lacking 

telomerase activity with (TERC-/-) and without (TERT-/-) telomere shortening were 

evaluated.  Ageing in wild type mice was associated with a specific bone marrow HSPCs 

phenotype, with increased LSK stem cells and more CFU-GM accumulation.  

Telomerase deficiency in aged TERT-/- mice augmented this bone marrow ageing 

phenotype whereas telomerase deficiency plus telomere shortening exaggerated the effect 

even in young TERC-/- mice, suggesting that shorter telomeres cause ageing.  I also 

investigated the role of DR in TERT-/- mice and showed that DR can ameliorate the 

ageing of bone marrow HSPCs in a telomerase-independent fashion.  However, lack of 

telomerase was correlated with induced erythroid colonies, implying that telomerase 

disruption might impact haematopoiesis.  In addition, in vivo treatment with the 

telomerase activator TA-65 did not change bone marrow ageing, at least in my mouse 

models.  A schematic summary of my results is shown in Figure 7.2. 
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Figure 7.2: Summary of thesis findings. 
Metabolic stress and oxidative stress limited HSPCs proliferation as well as age and lack of 
telomerase (TERT-/- and TERC-/- mice).  Metabolic stress also blunted EPCs cell count.  Both 
short-term and long-term dietary restriction can ameliorate HSPCs ageing.  Telomerase activator 
(TA) might also have the potential to improve bone marrow HSPCs ageing. 
 

In conclusion, my data suggest a pivotal role of metabolic and oxidative stress on early 

EPC and HSPC homeostasis.  Although most of my experiments were limited to in vitro 

effects, our mice models showed interesting and novel findings with basic ageing effects.  

Experiments in mice were a measure of bone marrow in situ ageing, unlike bone marrow 

transplantation studies where homing is a complication.  However, future experiments 

should reveal more in-depth pathways associated with those ageing phenotypes that will 

open gates to new medical interventions. 
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Appendix 
Presentation and publication  
 

• Presentation: Role of telomere biology and oxidative stress in the regenerative 

capacity of haematopoietic stem cells.  For Newcastle University vice-chancellor 

Prof. Chris Brink.  Venue: Hanger Lab, IGM, Newcastle University (03/02/2012). 

• Poster: Role of telomere biology and oxidative stress in the regenerative capacity 

of haematopoietic stem cells.  Saudi International conference 2012.  Venue: 

Brunel University, London (26/10/2012). 

• Poster: Role of telomere biology and oxidative stress in the regenerative capacity 

of haematopoietic stem cells.  North East Postgraduate Conference (NEPG) 2012.  

Venue: Hancock museum, Newcastle University (26/10/2012). 

• Talk: The role of telomerase and telomeres in haematopoietic stem and 

progenitor cells during ageing and dietary restriction.  For Prof. Thomas von 

Zglinicki group.  Venue: IAH Edwardson meeting room, Newcastle University 

(03/12/12). 

• Poster: Role of telomere biology and oxidative stress in the regenerative capacity 

of haematopoietic stem cells.  IAH/IGM research day.  Venue: IGM, Newcastle 

University (25/01/2013). 

• Poster: Role of telomere biology and oxidative stress in the regenerative capacity 

of haematopoietic stem cells.  NESCI research day.  Venue: Newcastle University 

(24/06/13). 

• Poster: Role of telomere biology and oxidative stress in the regenerative capacity 

of haematopoietic stem cells.  12th International conference on oxidative stress, 

redox states & antioxidants.  Venue: Paris, France (03/07/2013). 

• Manuscript: Nouf Al-Ajmi, Gabriele Saretzki, Colin Miles and Ioakim 

Spyridopoulos.  Dietary restriction ameliorates telomerase-dependent and -

independent haematopoietic ageing in situ.  Submitted to the Journal of 

Experimental Gerontology (26/02/2014). 
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