
BAYESIAN HIERARCHICAL MODELLING FOR

INFERRING GENETIC INTERACTIONS IN YEAST

JONATHAN HEYDARI

Thesis submitted for the degree of

Doctor of Philosophy

Institute for Cell & Molecular Biosciences

Newcastle University

Newcastle upon Tyne

United Kingdom

February,2014



Abstract

Identifying genetic interactions for a given microorganism, such as yeast, is difficult.

Quantitative Fitness Analysis (QFA) is a high-throughput experimental and computa-

tional methodology for quantifying the fitness of microbialcultures. QFA can be used

to compare between fitness observations for different genotypes and thereby infer genetic

interaction strengths. Current “naive” frequentist statistical approaches used in QFA do

not model between-genotype variation or difference in genotype variation under differ-

ent conditions. In this thesis, a Bayesian approach is introduced to evaluate hierarchical

models that better reflect the structure or design of QFA experiments. First, a two-stage

approach is presented: a hierarchical logistic model is fitted to microbial culture growth

curves and then a hierarchical interaction model is fitted tofitness summaries inferred

for each genotype. Next, a one-stage Bayesian approach is presented: a joint hierarchi-

cal model which simultaneously models fitness and genetic interaction, thereby avoiding

passing information between models via a univariate fitnesssummary. The new hierarchi-

cal approaches are then compared using a dataset examining the effect of telomere defects

on yeast. By better describing the experimental structure,new evidence is found for genes

and complexes which interact with the telomere cap. Variousextensions of these models,

including models for data transformation, batch effects and intrinsically stochastic growth

models are also considered.
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Chapter 1. Introduction

High-throughput screening of microbial culture fitnesses is a powerful tool in biology

that can be used to learn about the interaction between genesand proteins in living cells.

Fitness, the ability of organisms to survive and reproduce in a specific environment, is

of fundamental importance to every living organism. Measuring components of fitness

(such as population growth rate) in microbial cultures is a way to directly assess and

rank the health of such populations. Genome-wide Quantitative Fitness Analysis (QFA)

is a robot-assisted high-throughput laboratory workflow, combining systematic genetic

techniques to generate arrays of genetically distinct microbial cultures with quantification

and modelling of growth curves to estimate fitnesses (Bankset al., 2012; Addinallet al.,

2011). An important reason for carrying out QFA is to comparethe fitnesses of cultures

with distinct genotypes in order to quantify epistasis (genetic interaction).

In Addinall et al. (2011), a frequentist statistical approach is used to modeland make

inference for significantly interacting genes in a QFA screen comparison. Other large-

scale quantitative genetic interaction screening approaches exist, such as Epistatic Miniar-

ray Profiling (E-MAP) (Schuldineret al., 2006) and Synthetic Genetic Array (SGA) (Tong

& Boone, 2006), but we expect QFA to provide higher quality fitness estimates by using

a culture inoculation technique which results in a wider range of cell densities during cul-

ture growth and by capturing complete growth curves insteadof using single time point

assays. QFA and alternative genetic interaction screeningapproaches mentioned above

use frequentist statistical methods that cannot account for all sources of experimental

variation or estimate evidence of genetic interaction simultaneously and do not partition

variation into population, genotype and repeat levels. Further, the frequentist statistical

approaches used in the methods above cannot account for relevant prior information.

The first aim of this thesis is to develop new Bayesian models that will better deter-

mine genes which significantly interact than the current frequentist approach. Accounting

for more sources of variation than the frequentist approach, Bayesian QFA will be able to

find genetic interactions within QFA with less error and increased confidence. The new

Bayesian QFA will be used to help locate genes that are related to telomere activity in

suppressor/enhancer analysis as well as other high throughput experiments such as drug

screening.

Analysis of high throughput genetic screen data involves modelling both the experi-
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Chapter 1. Introduction

mental structure and its sources of variation. Many underlying sources of variation within

the data can be identified in the experimental design. Without fully modelling variation

within the experiment, a model may not be able to identify themore subtle interactions.

With a Bayesian approach (Bernardo & Smith, 2007) there is more flexibility of model

choice, allowing model structure to reflect experimental structure or design. Currently

there is no standard frequentist approach which can deal with inference for a hierar-

chical model that simultaneously models logistic growth parameters and probability of

genetic interaction. Using Bayesian hierarchical modelling (Gelman & Hill, 2006), this

study looks to extract as much information as possible from valuable QFA data sets. The

Bayesian hierarchical approach also allows the borrowing of strength across subjects,

helping identify significantly interacting open reading frame deletions (orf∆s) which oth-

erwise may have been given low significance and overlooked.

Prior distributions are used to incorporate the existing information known about the

possible values for parameters. Bayesian analysis can allow the use of Boolean indicators

to describe the evidence that eachorf∆ interacts with the query mutation in terms of

probability. During the model fitting procedure, we find thatorf∆ fitnesses have a long-

tailed distribution around their population mean due to unusually fit, dead or missing

orf∆s. In these instances, the scaledt distribution is used to describe these features.

Following the approach for determining epistasis from the comparison of two QFA

screens presented by Addinallet al. (2011), the present study develops a two-stage ap-

proach to this problem:i) the separate hierarchical model (SHM) is fitted to cell density

measurements to estimate fitness, thenii) fitness estimates are input to the interaction

hierarchical model (IHM). Next, a unified approach, referred to as the joint hierarchical

model (JHM), is developed. The JHM models mutant strain fitnesses and genetic interac-

tions simultaneously, without having to pass information between two different models.

The JHM can also allow two important, distinct, microbial fitness phenotypes (population

growth rate and carrying capacity) to provide evidence for genetic interaction simultane-

ously.

Applying the new Bayesian approaches to QFA screen data, thepresent study is

able to identify new genes and complexes that interact with genetic mutationcdc13-1

in yeast.cdc13-1is a genetic mutation which results in dysfunctional telomere mainte-

nance. Telomeres are repetitive regions of deoxyribonucleic acid (DNA) at the end of

linear chromosomes. They have been of great interest in recent years as they have been

shown to have a role in ageing and cancer (Shay & Wright, 2005).

2



Chapter 1. Introduction

Current approaches (Addinallet al., 2011) fit a deterministic logistic growth model to

yeast QFA data. For logistic growth data sets where stochastic fluctuations are observed,

the deterministic model fails to account for the intrinsic noise. To better describe observed

yeast QFA data, a stochastic model can be used. Stochastic models simultaneously de-

scribe dynamics and noise or heterogeneity in real systems (Chenet al., 2010). For exam-

ple, stochastic models are increasingly recognised as necessary tools for understanding

the behaviour of complex biological systems (Wilkinson, 2011, 2009) and are also used

to capture uncertainty in financial market behaviour (Kijima, 2013; Koller, 2012). Many

such models are written as continuous stochastic differential equations (SDEs) which of-

ten do not have analytical solutions and are slow to evaluatenumerically compared to their

deterministic counterparts. Simulation speed is often a particularly critical issue when in-

ferring model parameter values by comparing simulated output with observed data (Hurn

et al., 2007).

For SDE models where no explicit expression for the transition density is available, it

is possible to infer parameter values by simulating a latentprocess using a data augmen-

tation approach (Golightly & Wilkinson, 2005). However, this method is computationally

intensive and not practical for all applications. When fastinference for SDEs is important,

for example real-time analysis as part of decision support systems or big data inference

problems where simultaneous model fits are made to many thousands of datasets (e.g.

Heydariet al. (2012)), an alternative approach is needed (Heydariet al., 2013).

The second aim of this thesis is to present a fast approach forstochastic modelling

of processes with intractable transition densities and apply this approach to a SDE de-

scribing logistic population growth for the first time. One such approach is demonstrated:

developing an analytically tractable approximation to theoriginal SDE, by making lin-

ear noise approximations (LNAs) (Kurtz, 1970, 1971; Van Kampen, 2011). The present

study introduces two new first order LNAs of a stochastic logistic growth model (SLGM)

(Capocelli & Ricciardi, 1974), one with multiplicative andone with additive intrinsic

noise, which are labelled LNAM and LNAA respectively. The LNA reduces a SDE to a

linear SDE with additive noise, which can be solved to give anexplicit expression for the

transition density.

The Bayesian approach can be applied in a natural way to carryout parameter infer-

ence for state space models with tractable transition densities (West & Harrison, 1997).

A state space model describes the probabilistic dependencebetween an observation pro-

cess variableXt and state processSt. The transition density is used to describe the state

processSt and a measurement error structure is chosen to describe the relationship be-
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tweenXt andSt. Transition densities are derived for the LNA approximate models and

measurement noise is chosen to be either multiplicative or additive in order to construct

a linear Gaussian structure and allow fast inference through the use of a Kalman filter.

The Kalman filter (Kalman, 1960) is typically used to infer the hidden state process of

interestSt and is an optimal estimator, minimising the mean square error of estimated

parameters. The main assumptions of the Kalman filter are that the underlying system is

a linear dynamical system and that all noise is Gaussian (or that the mean and standard

deviation of the noise is known). Here the Kalman filter is used to reduce computational

time in a parameter inference algorithm by recursively computing the marginal likelihood

(West & Harrison, 1997).

It is shown that both of the new diffusion equation models have more realistic growth

characteristics at the saturation stage when compared to a related model by Román-

Román & Torres-Ruiz (2012) (an approximate model approachwhich is labeled RRTR)

and it is shown that a zero-order LNA of the logistic growth SDE with multiplicative

intrinsic noise is equivalent to the RRTR.

This study compares the utility of each of the approximate models during parameter

inference by comparing simulations with both synthetic andreal datasets. After inference

it is shown that the fast approximate methods give similar posterior distributions to the

slow arbitrarily exact models. Of the approximate models considered, the RRTR model

is shown to be the worst at recovering true parameters of logistic growth data.

The LNA models are an improvement over the RRTR and so should be used for better

parameter inference of logistic growth data, as they are just as fast but more accurate.

The stochastic modelling approach presented in this study,a LNA followed by a Kalman

filter recursion for marginal likelihood computation, is applicable to a range of popula-

tion growth models or stochastic processes, where fast inference is of importance. The

approach presented in this study enables stochastic modelling for a big data genome-

wide analysis, where previously a deterministic model, unable to capture the information

within the stochasticity of a process, is assumed due to the constraints in computational

time associated with large volumes of data. The problems of big data (Boyd & Crawford,

2011) are relatively new and part of an expanding field of research that involves large and

complex collections of data sets, typically with large components of noise.

1.1. Quantitative Fitness Analysis

Genome-wide Quantitative Fitness Analysis (QFA) is a robot-assisted high-throughput

laboratory workflow, combining systematic genetic techniques to generate arrays of ge-
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netically distinct microbial cultures with quantificationand modelling of growth curves to

estimate fitnesses (Bankset al., 2012; Addinallet al., 2011). A QFA screen can be used

to compare the fitnesses of cultures with distinct genotypesin order to quantify genetic

interaction.

Genetic interaction strengths are typically estimated by comparing fitnesses in two

QFA screens: a control screen and a query screen. QFA output includes fitness estimates

for all microbial cultures in an arrayed library including replicate cultures. For example,

such a library could be a systematic collection of all non-essential, single gene deletion

strains in the model eukaryoteSaccharomyces cerevisiae(S. cerevisiae, brewer’s yeast).

All strains within a query screen differ from their control screen counterparts by a com-

mon condition such as a background gene mutation, drug treatment, temperature or other

treatment. To identify strains that show interaction with the query condition, correspond-

ing fitness responses for each strain in the library under thequery and control conditions

can be compared.

An example of the procedure to create mutant strains to test for genetic interaction

using QFA screens is as follows. First a suitable query mutation is chosen, which is rele-

vant to an area of biology of particular interest (e.g.cdc13-1for its relevance to telomere

capping processes). Next, a library of strains is chosen, within which to search for strains

interacting with the query mutation (e.g. a genome-wide library of independent strains

with individual, non-essential genes deleted:orf∆s). Finally, an appropriate, neutral con-

trol background mutation is chosen (e.g.ura3∆) to allow the separation of the effect of

background condition from that of the library strains. In most cases, control and query

mutations are crossed with the chosen library using Synthetic Genetic Array (SGA) tech-

nology (Tong & Boone, 2006). Independent replicate cultures are inoculated and grown

across several plates for each strain under each condition to capture biological and techni-

cal heterogeneity. Cultures are grown simultaneously and time course images captured by

photography. Robotic assistance is required for both culture inoculation and image cap-

ture during genome-wide screens which can include approximately 5,000 independent

genotypes.

Raw QFA data (photographs) are converted into cell density estimates using the image

analysis software Colonyzer (Lawlesset al., 2010). Observed changes in cell density

over time are converted to fitness estimates for both the control and query strain by fitting

logistic growth curves to data. Genetic interactions are identified by finding mutants in the

query screen whose fitnesses deviate significantly from predictions given by a theoretical

model of genetic independence.
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Addinall et al. (2011) describe using QFA to infer genetic interactions with telomere-

specific query mutations. They use least squares methods to fit logistic growth curves to

culture time courses, then generate a univariate fitness estimate for each time course. They

use a linear model predicting query strain fitness given control strain fitness, consistent

with Fisher’s multiplicative model of genetic independence, to test for genetic interaction

between the query mutation and eachorf∆. Deviation from the predicted linear relation-

ship between the query and control fitnesses is evidence for genetic interaction between

orf∆ and the query mutation. The significance of observed interactions is assigned us-

ing a simple frequentist linear modelling approach. One of the major limitations of the

statistical model used in Addinallet al. (2011) is that it assumes eachorf∆ fitness has

the same variance. It is expected that explicit modelling ofheterogeneity will allow more

robust identification of interactions, particularly wherevariability for a particular strain is

unusually high (e.g. due to experimental or technical difficulties).

1.1.1. Quantifying fitness

Observing changes in cell number in a microbial culture is the most direct way to estimate

culture growth rate, an important component of microbial culture fitness. Direct counting

of cell number on a high-throughput scale is not practical and so cell density estimates

are made instead from culture photographs taken during QFA.Estimates of the integrated

optical density (IOD) generated by the image analysis tool Colonyzer (Lawlesset al.,

2010) are used to capture cell density dynamics in independent cultures during QFA.

Density estimates, scaled to normalise for camera resolution, are gathered for each culture

and a dynamic model of population growth, the logistic modelẋ = rx(1−x/K) (Verhulst,

1845) (see Section 1.1.2), is fit to the data. Example photographic images of two yeast

colonies inoculated by QFA, growing over time, along with corresponding quantitative

measures of growth can be seen in Figure 1.3.

For a QFA screen, cultures are typically grown on 384-spot plates over time, where a

process calledspottingis used to inoculate microbial cultures on the plates. The spotting

process involves a stage where microbial cultures are first diluted and then the diluted

culture is spotted to the plate. Section 2.1.5 describes thespotting process and alternatives

in further detail. An example 384-spot plate of yeast cultures is given in Figure 1.1. Yeast

cultures in Figure 1.1 are all alive and have similar culturesize. A cropped image of 15

yeast cultures from a 384-spot plate is given in Figure 1.2. Yeast cultures in Figure 1.2

have different culture sizes, the smaller cultures have hadslow growth relative to the larger

cultures. An example of the raw time series data is given in the Appendix, Figure A.1.
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Figure 1.1: Example 384-spot plate image from a yeast quantitative fitness analysis screen, taken
approximately 3 days after inoculation. Yeast cultures arespotted and grown in regular arrays on
solid agar plates.

Figure 1.2: Cropped image of 15 out of 384 spotted yeast cultures from a 384-spot plate, taken
from a quantitative fitness analysis screen. Image taken approximately 3 days after inoculation.
Yeast cultures are spotted and grown in regular arrays on solid agar plates.
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Further detail on the QFA workflow and alternative 384-spot plate images can be found

at (Bankset al., 2012) andhttp://research.ncl.ac.uk/qfa/ .

After logistic growth model fitting, estimated logistic growth parameters sets can then

be used to determine the fitness of a culture. If required, a univariate fitness definition can

be chosen to summarise a set of logistic growth parameters (see Section 1.1.3).
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Figure 1.3: A) Timelapse images for two genetically modifiedS. cerevisiaecultures with different
genotypes (indicated) corresponding to the time series measurements plotted in panel B. B) Time
course cell density estimates derived from analysis of the timelapse images in panel A together
with (least squares) fitted logistic growth curves.

1.1.2. The logistic growth model

The logistic model of population growth, an ordinary differential equation (ODE) de-

scribing the self-limiting growth of a population of sizex(t) at timet, was developed by
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Verhulst (1845),

dx(t)

dt
= rx(t)

(

1− x(t)

K

)

. (1.1)

The ODE has the following analytic solution:

x(t; θ) =
KPert

K + P (ert − 1)
, (1.2)

whereP = x(0) andθ = (K, r, P ). The model describes a population growing from an

initial sizeP (culture inoculum density) with an intrinsic growth rater, undergoing ap-

proximately exponential growth which slows as the availability of some critical resource

(e.g. nutrients or space) becomes limiting (Jr.et al., 1976). Ultimately, population den-

sity saturates at the carrying capacity (maximum achievable population density)K, once

the critical resource is exhausted. Appendix A.2 shows how to derive the solution of

(1.1), given in (1.2). An example of two different logistic growth trajectories are given by

the solid lines in Figure 1.3B. Where further flexibility is required, generalized forms of

the logistic growth process (Tsoularis & Wallace, 2002; Peleget al., 2007) may be used

instead (see Section 2.5.2).

1.1.3. Fitness definitions

Culture fitness is an important phenotype, indicating the health of a culture. Several

distinct quantitative fitness measures based on fitted logistic model parameters (1.2) can

be constructed. Addinallet al.(2011) present three univariate measures suitable for QFA:

Maximum Doubling Rate(MDR) and Maximum Doubling Potential(MDP ) detailed

in (1.3), and their productMDR ×MDP , where

MDR =
r

log
(

2 K−P
K−2P

) and MDP =
log
(

K
P

)

log(2)
. (1.3)

MDR is reciprocal of minimum doubling timeT which a cell population takes to reach

2x(0), assuming the exponential phase begins att = 0:

x(t)

x(0)
= 2.
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We now rearrange to give the following expression for MDR:

MDR =
1

T
=

r

log(2(K−P )
K−2P

)
.

MDP is the number of times population size doubles before reaching saturation, assuming

geometric progression:

x(0)× 2MDP = K.

Rearrange to give the following:

MDP =
log(K

P
)

log 2
.

MDR captures the rate at which microbes divide when experiencing minimal inter-

cellular competition or nutrient stress. A strain’s growthrate largely dictates its ability to

outcompete any neighbouring strains.MDP captures the number of divisions the culture

is observed to undergo before saturation. A strain which candivide a few more times than

its neighbours in a specific environment also has a competitive advantage.

The choice of a single overall fitness score depends on the aspects of microbial phys-

iology most relevant to the biological question at hand. Typically the fitness definition

MDR × MDP is used in QFA to account for both attributes simultaneously. Other

fitness definitions available include cell count, expected generation number and their ap-

proximations (Coleet al., 2007).

1.2. Epistasis

Epistasis is the phenomenon where the effects of one gene aremodified by those of one

or several other genes (Phillips, 1998). Besides the multiplicative model, there are other

definitions for epistasis such as additive, minimum and log (Mani et al., 2008). Minimum

is a suboptimal approach which may allow “masking” of interactions (Maniet al., 2008).

For a typical yeast QFA screen comparison, Addinallet al. (2011) assumes a multiplica-

tive interaction model (1.4), but when dealing with measurements on a log scale, it is

effectively assuming an additive interaction model (Aylor& Zeng, 2008). This highlights

the point that multiplicative and additive models are equivalent if fitness data are scaled

appropriately (Cordell, 2002).
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1.2.1. Defining epistasis

As presented in Addinallet al. (2011), this study assumes Fisher’s multiplicative model

of genetic independence (1.4) (Cordell, 2002; Phenixet al., 2011), to represent the ex-

pected relationship between control strain fitness phenotypes and those of equivalent

query strains in the absence of genetic interaction. In thisstudy, we interpret genotypes for

which the query strain fitness deviates significantly from this model of genetic indepen-

dence as interacting significantly with the query mutation.Square bracket notation is used

to represent a quantitative fitness measure. For example[wt] and[query] represent wild-

type and query mutation fitnesses respectively. “Wild-type” strictly refers to the genotype

that is prevalent among individuals in a natural (or wild) population. However, during

laboratory cultivation of microbes it is more usual to introduce extra gene mutations to an

ancestral lineage that is well established within the scientific community. Working with

established lineages allows direct comparison with results from the literature without the

confounding effect of sampling genotypes from natural populations, which are consid-

erably more heterogeneous. Thus in context of this thesis, “wild-type” will refer to the

reference strain, before additional mutations are introduced.orf∆ represents an arbitrary

single gene deletion strain (i.e. a mutant from the control strain library). query : orf∆

represents an arbitrary single gene deletion from the querystrain library (e.g. crossed with

the query mutation). Fisher’s multiplicative model of genetic independence is as follows:

[query : orf∆]× [wt] = [query]× [orf∆] (1.4)

⇒ [query : orf∆] =
[query]

[wt]
× [orf∆]. (1.5)

In (1.5), [query]
[wt]

is a constant for a given pair of QFA screens, meaning that if this

model holds, there should be a linear dependence between[query : orf∆] and[orf∆] for

all deletionsorf∆. During genome-wide screens of thousands of independentorf∆s, it

can be assumed that the majority of gene mutations in the library do not interact with

the chosen query mutations. Therefore, even if the query or wild-type fitnesses are not

available to us, the slope of this linear model can still be estimated by fitting it to all

available fitness observations, before testing for strainswhich deviate significantly from

the linear model. Any extra background condition, such as a gene mutation common to

both the control and query strains (e.g. triple instead of double deletion strains for the

query and control data sets), may change the interpretationor definition of the type of

genetic interaction but the same linear relationship is applicable.
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1.2.2. Addinall et al. (2011) Quantitative Fitness Analysis screen comparison

Addinall et al. (2011) present QFA where the logistic growth model (1.2) is fit to ex-

perimental data by least squares to give parameter estimates (K̂, r̂) for each culture time

course (eachorf∆ replicate). Inoculum densityP is assumed known and the same across

all orf∆s and their repeats. After inoculating approximately 100 cells per culture, during

the first several cell divisions there are so few cells that culture cell densities remain well

below the detection threshold of cameras used for image capture and so, without sharing

information across allorf∆ repeats,P cannot be estimated directly. It is therefore nec-

essary to fixP to the same value for both screens, using an average estimateof P from

preliminary least squares logistic growth model fits. Fitting the model to eachorf∆ re-

peat separately means there is no sharing of information within anorf∆ or betweenorf∆s

when determiningK̂ and r̂. By developing a hierarchical model to share information

acrossorf∆ repeats for eachorf∆ and betweenorf∆s, estimates for every set of logistic

growth curve parameters(K, r) can be improved and therefore for every strain fitness.

Quantitative fitness scores (Fcm) for each culture were defined (1.6) (see (1.3) for

definitions ofMDR andMDP ), where

Fcm =MDRcm ×MDPcm. (1.6)

The indexc identifies the condition for a givenorf∆: c = 0 for the control strain and

c = 1 for the query strain.m identifies anorf∆ replicate. Scaled fitness measuresF̃cm are

calculated for both the control and query screen such that the mean across allorf∆s for a

given screen is equal to 1. After scaling, any evidence thatF̃0m andF̃1m are significantly

different will be evidence of genetic interaction.

The following linear model was fit to the control and query strain scaled fitness mea-

sure pairsF̃cm for each uniqueorf∆ in the gene deletion library:

F̃cm = µ+ γc + εcm, whereγ0 = 0

εcm ∼ N(0, σ2), whereεcm is i.i.d.
(1.7)

In (1.7), γ1 represents the estimated strength of genetic interaction between the control

and query strain. If the scaled fitnesses for the control and query strain are equivalent

for a particularorf∆ such that they are both estimated by someµ, i.e. no evidence of

genetic interaction, we would expectγc = 0. The model was fit by maximum likelihood,

using the R function “lmList” (Pinheiro & Bates, 2000) with variation assumed to be the
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same for all strains in a given screen and the same for both control and query screens. So,

for every gene deletion from the library an estimate ofγ1 was generated together with a

p-value for whether it was significantly different from zero. False discovery rate (FDR)

corrected q-values were then calculated to determine levels of significance for eachorf∆.

Addinallet al.(2011) use the Benjamini-Hochberg test (Benjamini & Hochberg, 1995) for

FDR correction. This test is commonly used in genomic analyses as although it assumes

independence of test statistics, even if positive correlation exists between tests, the result

is that FDR estimates are slightly conservative. Finally a list of orf∆ names, ranked by

γ magnitudes, was output andorf∆s with q-values below a significance cut-off of 0.05

classed as showing significant levels of genetic interaction with the query mutation.

1.2.3. Fitness plots

Fitness plots are used to show whichorf∆s show evidence of genetic interaction from a

QFA screen comparison. Figure 1.4 shows an example fitness plot taken from (Addinall

et al., 2011). Fitness plots are typically meanorf∆ fitnesses for control strains against

the corresponding query strains.orf∆s with significant evidence of interaction are high-

lighted in the plot as red and green for suppressors and enhancers respectively.orf∆s

without significant evidence of interaction are in grey. Solid and dashed grey lines are for

a simple linear model fit (corresponding to a model of geneticindependence) and the line

of equal fitness respectively.
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2

2

Figure 1.4: Fitness plot taken from Addinallet al. (2011). A yeast genome knock out collection
was crossed to thecdc13-1mutation, or as a control to theura3∆ mutation. 8 replicate crosses
were performed for the query and control strains.orf∆s with significant evidence of interaction are
highlighted in red and green for suppressors and enhancers respectively.orf∆s without significant
evidence of interaction are in grey and have noorf name label. Lenient and stringent classification
of significant interaction is based on p-values< 0.05 and FDR corrected p-values (q-values)
< 0.05 respectively. For a further description on fitness plots, see Section 1.2.3.
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1.3. The stochastic logistic growth model

To account for uncertainty about processes affecting population growth which are not ex-

plicitly described by the deterministic logistic model, wecan include a term describing

intrinsic noise and consider an SDE version of the model. Here we extend the ODE in

(1.1) by adding a term representing multiplicative intrinsic noise (1.8) to give a model

which we refer to as the stochastic logistic growth model (SLGM), which was first intro-

duced by Capocelli & Ricciardi (1974),

dXt = rXt

(

1− Xt

K

)

dt+ σXtdWt, (1.8)

whereXt0 = P and is independent of Wiener processWt, t ≥ t0. The Wiener process

(or standard Brownian motion) is a continuous-time stochastic process, see Section 2.6.1.

The Kolmogorov forward equation has not been solved for (1.8) (or for any similar formu-

lation of a logistic SDE) and so no explicit expression for the transition density is avail-

able. Román-Román & Torres-Ruiz (2012) introduce a diffusion process approximating

the SLGM with a transition density that can be derived explicitly (see Section 5.2).

Alternative stochastic logistic growth models to (1.8) areavailable. Allen (2010) de-

rives the stochastic logistic growth models given in (1.9) and (1.10) from Markov jump

processes (Allen, 2010; Wilkinson, 2011). Firstly,

dXt = rXt

(

1− Xt

K

)

dt+
√

rXtdWt, (1.9)

whereXt0 = P and is independent ofWt, t ≥ t0. Secondly,

dXt = rXt

(

1− Xt

K

)

dt+

√

rXt

(

1 +
Xt

K

)

dWt, (1.10)

whereXt0 = P and is independent ofWt, t ≥ t0.

Note that (1.8) (1.9) and (1.10) are not equivalent to each other. (1.9) and (1.10) are

able to describe the discreteness of the Markov jump processes that they approximate (or

demographic noise). Demographic noise becomes less significant for large population

sizes, therefore (1.9) and (1.10) describe more deterministic growth curves when popula-

tion size is large (i.e. large carrying capacityK). Equation 1.8 introduces an additional

parameterσ, unlike (1.9) and (1.10). The additional parameter in (1.8)allows us to tune

the amount of noise in the system that is not directly associated with the noise due to
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the discreteness of the process (demographic noise). The additional parameter also gives

(1.8) further flexibility for modelling intrinsic noise than (1.9) and (1.10). As the diffu-

sion terms of (1.9) and (1.10) are functions of the logistic growth parameters, for large

populations (1.9) and (1.10) can confound intrinsic noise with estimates of logistic growth

parametersr andK. For the above reasons, the SLGM in (1.8) is the most appropriate

model for estimating logistic growth parameters of large populations, as intrinsic noise

does not tend to zero with larger population sizes, unlike (1.9) and (1.10).

1.4. Outline of thesis

A brief outline of thesis is as follows. Chapter 2 gives background to the biological and

statistical methods used throughout the thesis. Yeast biology related to the QFA data sets

analysed in this study is given as well as an introduction to Bayesian inference.

In Chapter 3 the SHM and IHM models for the new two-stage Bayesian QFA approach

are presented. Next, the JHM for the new one-stage Bayesian QFA approach is presented.

The chapter is concluded by introducing a two-stage frequentist QFA approach using a

random effects model.

In Chapter 4 the new Bayesian approaches are applied to a previously analysed QFA

data set for identifying genes interacting with a telomere defect in yeast. The chapter is

concluded with an analysis of further QFA data sets with the JHM and two extensions of

the JHM; included for further investigation and research.

Chapter 5 begins by introducing an existing logistic growthdiffusion equation by

Román-Román & Torres-Ruiz (2012). Two new diffusion equations for carrying out fast,

Bayesian parameter estimation for stochastic logistic growth data are then presented. The

chapter is concluded by comparing inference between the approximate models considered

and with arbitrarily exact approaches.

Finally, Chapter 6 presents conclusions on the relative merits of the newly developed

Bayesian approaches and stochastic logistic growth models. The chapter is concluded by

discussing the broader implications of the results of the studies presented and scope for

further research.
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2.1. Yeast biology

Saccharomyces cerevisiaeis a species of budding yeast widely used to study genetics.

S. cerevisiaewas the first eukaryotic genome that was completely sequenced (Goffeau

et al., 1996). Yeast is ideal for high throughout experimentations as it is easy to use and

arrayed libraries of genetically modified yeast strains arereadily available or obtainable

for experiments (Zeyl, 2000). There are many different observable traits available withS.

Cerevisiae, such as size, opacity and density. There are about 6000 genes in theS. Cere-

visiaegenome of which 5,800 of these are believed to be true functional genes (Cherry

et al., 2012).

Yeasts are ideal for genome-wide analysis of gene function as genetic modification of

yeast cells is relatively straightforward and yeast cultures grow quickly. Epistasis identi-

fied within a species of yeast may exist in the analogous geneswithin the human genome

(Botsteinet al., 1997). Therefore, finding genes involved in epistasis within yeast is of

great interest outside the particular experimental species in question.

2.1.1. Telomeres

Telomeres are the ends of linear chromosomes and found in most eukaryotic organ-

isms (Olovnikov, 1996). Telomeres permit cell division andsome researchers claim that

telomere-induced replicative senescence is an important component of human ageing (Ly-

dall, 2003). They cap (or seal) the chromosome end to ensure genetic stability and are

believed to prevent cancer (Shay & Wright, 2005).

In Figure 2.1, aS. cerevisiaechromosome is shown with the telomere single-stranded

DNA (ssDNA) at the end, where DNA binding proteins such as Cdc13 are bound. Fig-

ure 2.1 also shows how telomere maintenance compares between a Homo sapiens (H.

sapiens) andS. cerevisiaechromosome.

Telomere length decreases with each division of a cell untiltelomere length is very short

and the cell enters senescence (Hayflick & Moorhead, 1961), losing the ability to di-

vide. Some cancerous cells up-regulate the enzyme called telomerase which can prevent

shortening of telomeres or elongate them, potentially allowing cancerous cells to live in-

definitely (Wright & Shay, 1992).
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Figure 2.1: Telomere at a chromosome end (diagram and legend taken from Dewar & Lydall
(2012)). The telomere cap is evolutionarily conserved. Telomeres are nucleoprotein caps present
at the ends of most eukaryotic chromosomes, consisting of double-stranded DNA (dsDNA) with a
single-stranded DNA (ssDNA) overhang, bound by dsDNA- and ssDNA-binding proteins. Collec-
tively, the telomere binding proteins “cap” the telomere and serve to regulate telomerase activity
and inhibit the DNA damage response (DDR). In budding yeast,the telomeric dsDNA is bound
by Rap1, which recruits the accessory factors Rif1 and Rif2.In humans, the telomeric dsDNA
is bound by TRF1 and TRF2 (held together by TIN2) and TRF2 recruits RAP1 to telomeres. In
budding yeast, Cdc13 binds the telomeric ssDNA and recruitsStn1 and Ten1 to form the CST
(Cdc13-Stn1-Ten1) complex, while in humans, the telomericssDNA is bound by POT1. In hu-
man beings, POT1 and TRF1-TRF2-TIN2 are linked together by TPP1, which may permit the
adoption of higher-order structures. In both budding yeastand humans, the Ku complex, a DDR
component that binds to both telomeres and Double-strand breaks (DSBs), also binds and plays a
protective role.

It is believed that telomeres are partly responsible for ageing; without the enzyme telom-

erase, a fixed limit to the number of times the cell can divide is set by the telomere short-

ening mechanism because of the end replication problem (Levy et al., 1992).

2.1.2. The end replication problem

In eukaryote cell replication, shown in Figure 2.2, new strands of DNA are in the5′ to 3′

direction (red arrows), the leading strand is therefore completed in one section whereas the

lagging strand must be formed via backstitching with smaller sections known as Okazaki

fragments (Lydall, 2003). Figure 2.2 shows how the lagging strand is left with a3′ over-

hang, with the removal of the terminal primer at the end and how the leading strand is

left with a blunt end (David Wynford-Thomas, 1997). Telomerase fixes this problem by

extending the3′ end to maintain telomere length (Levyet al., 1992). Without telomerase,

the leading strand is shortened (Olovnikov, 1973) and telomere capping proteins such as

Cdc-13 in yeast binds to the ssDNA that remains. Most eukaryotic cells have telomerase
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activated and may maintain DNA replication indefinitely. Not all mammalian cells have

telomerase activated and it is believed this problem then leads to the shortening of their

telomeres and ultimately senescence.

Figure 2.2: The end replication problem (diagram and legend taken from Lydall (2003)). (A)
Telomeres in all organisms contain a short3′ overhang on the G rich strand. (B) A replication
fork moving towards the end of the chromosome. (C) The newly replicated, lagging C strand,
will generate a natural3′ overhang when the ribonucleic acid (RNA) primer is removed from the
final Okazaki fragment, or if the lagging strand replicationmachinery cannot reach the end of the
chromosome. In the absence of nuclease activity the unreplicated3′ strand will be the same length
as it was prior to replication. (D) The newly replicated leading G strand will be the same length as
the parental5′ C strand, and blunt ended if the replication fork reaches theend of the chromosome.
Therefore the newly replicated3′ G strand will be shorter than the parental3′ strand and unable
to act as a substrate for telomerase because it does not contain a3′ overhang. If the leading strand
replication fork does not reach the end of the chromosome a5′ rather than3′ overhang would be
generated, but this would not be a suitable substrate for telomerase.

2.1.3. CDC13 and cdc13-1

CDC13 is an essential telomere-capping gene inS. cerevisiae(Zubko & Lydall, 2006).

The protein Cdc13, encoded byCDC13, binds to telomeric DNA (see Figure 2.1), forming

a nucleoprotein structure (Lustig, 2001). Cdc13 regulatestelomere capping and is part of

the CST complex with Stn1 and Ten1 (Wellinger, 2009). This provides protection from

degradation by exonucleases such as Exo1.cdc13-1is a temperature-sensitive allele of

theCDC13gene that has temperature sensitivity above26 ◦C, where the capping ability

of the protein is reduced (Nugentet al., 1996). By inducing the temperature sensitivity

of Cdc13-1, telomere maintenance is disrupted. A lot of research activity for telomere
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integrity focuses on the CST complex and oftencdc13mutations are considered, like

cdc13-1andcdc13-5(see, for example, Anbalaganet al., 2011; Fosteret al., 2006).

2.1.4. URA3

URA3 is a gene that encodes orotidine 5-phosphate decarboxylase(Conget al., 2002).

URA3 is used as a genetic marker for DNA transformations, allowing both positive and

negative selection depending on the choice of media (Kanekoet al., 2009).

In Addinall et al. (2011)ura3∆ is used as a control mutation because it is neutral

under the experimental conditions. For a QFA comparison, constructing a query mutation

such ascdc13-1typically involves adding selection markers to the genome.To ensure that

the same selection markers are found in both the query and control strains, and that the

control and query screens can be carried out in comparable environments, a neutral mu-

tation such asura3∆ can be introduced to the control strain.URA3encodes an enzyme

called ODCase. DeletingURA3causes a loss of ODCase, which leads to a reduction

in cell growth unless uracil is added to the media (Jones, 1992). Addinall et al. (2011)

include uracil in their media so thatura3∆ is effectively a neutral deletion, approximat-

ing wild-type fitness. As a control deletion,URA3 is not expected to interact with the

query mutation, the library oforf∆s in the control and query screen or any experimental

condition of interest such as temperature.

2.1.5. High-throughput methodology for Quantitative Fitness Analysis

To collect enough data to perform QFA (Addinallet al., 2011), a methodology such as

high-throughput screening is required (Soonet al., 2013; An & Tolliday, 2009). High-

throughput screening is most notably used in the field of biology for genome wide sup-

pressor/enhancer screening and drug discovery. The automation of experimental proce-

dures through robotics, software, sensors and controls allows a researcher to carry out

large scale experimentation quickly and more consistently.

Hundreds of microbial strains with various gene deletions need to be systematically

created, cultured and then have measurable traits quantified. The repeatability of micro-

bial culture growth is ideal to give sufficient sample sizes for identifying both variation

and significance in high throughput experimentation (Xu, 2010).

The quality of the quantitative data is critical for identifying significantly interacting

genes. To measure the phenotypes of different mutant strains of a micro-organism such as

yeast (Zeyl, 2000), a process calledspottingis used. This process is different to a typical

SGA experiment wherepinningwould be used (see, for example, Tong & Boone (2006)).
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Pinning is a quicker but less quantitative process where themicrobial strains are typically

directly pinned to a 1536 plate and allowed to grow until image analysis starts. Spotting

on the other hand has a stage where the cultures are diluted and then the dilute culture

is spotted in 384 format to give a more accurate reading in image analysis. This in turn

gives rise to much more accurate time series data for modelling.

Figure 2.3 illustrates the spotting process. An image opacity measure is typically used

as a proxy for the density of microbial colonies. Time lapse photographs are taken of the

384-spot plates after incubation, using high resolution digital cameras, to measure growth.

A software package such as Colonyzer (Lawlesset al., 2010) can then be used to deter-

mine a quantitative measure of fitness from the photographs taken of the cultures grown

on the plates. To ensure a consistent method to capture images of microbial colonies, all

cameras should be of the same make and model.

2.2. Comparing lists of genes

Upon completing a QFA screen comparison, a list of genes ordered by genetic interaction

strength can be obtained. Lists of ordered genes can be used to compare two different

statistical approaches for a QFA screen comparison.

A comparison of two lists can be carried out through standardstatistical similarity

measures such as the Jaccard Index or Spearman’s rank correlation coefficient. Observ-

ing only the subset of genes showing significant evidence of genetic interaction, two lists

of genes can be compared using the Jaccard Index (Cheetham & Hazel, 1969), see Sec-

tion 2.2.1. The Jaccard index does not account for the ordering of genes and is dependent

on the number of interactions identified when the cut-off of genes showing significant evi-

dence of interaction is chosen or influenced by the experimenter. Due to these undesirable

properties of the Jaccard index, this method is not appropriate for an unbiased compari-

son of statistical methods. The Spearman’s rank correlation coefficient (Kowalczyket al.,

2004) is able to account for the ordering of genes and is able to account for the whole list

of genes available, see Section 2.2.2.

Gene ontology (GO) term enrichment can be used to suggest which list of genetic

interactions has the most biological relevance (Consortium, 2004). There are many other

alternative approaches available for the comparison of twogene lists (Yanget al., 2006;

Lottazet al., 2006).

Using both Spearman’s correlation coefficient and GO term enrichment analysis of

gene lists allows for both an unbiased statistical and biological comparison of two lists of

ordered genes.
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Figure 2.3: The spotting procedure for robotic inoculation of yeast strains in 384-spot format (di-
agram and legend taken from Bankset al. (2012)). This procedure begins with 1536 independent
cultures per plate (left). In this typical example, colonies at positions 1,1; 1,2; 2,1 and 2,2 (colored
red) are four replicates of the same genotype.his3::KANMX cultures in yellow, growing on the
edge of the plate, have a growth advantage due to lack of competition and are therefore not exam-
ined by Quantitative Fitness Analysis. One of these replicates (e.g. 1,1) is inoculated into liquid
growth media in 96-well plates using a 96-pin tool which inoculates 96 out of 1536 colonies each
time. In order to inoculate one replicate for each of 384 genedeletions, four different “quadrants”
(indicated as red, blue, green and purple) are inoculated into four different 96-well plates contain-
ing growth media. After growth to saturation (e.g. 3 days at 20 C), cultures are diluted in water,
then the four quadrants from one repeat are spotted in 384-format onto a solid agar plate (right) in
the same pattern as the original Synthetic Genetic Array plate (as indicated by color). The process
can be repeated to test other replicates: 1,2; 2,1 and 2,2. Example time-lapse images on the right
were captured 0.5, 2 and 3.5 days after inoculation.

2.2.1. Jaccard index

For two sample sets, the Jaccard index (Jaccard, 1912; Cheetham & Hazel, 1969) gives a

measure of similarity. WhereA andB are two sample sets of interest, the Jaccard Index

is as follows:

J(A,B) =
|A ∩B|
|A ∪B| .

The value of J(A,B) can range from 0 to 1, with a larger number for more similarity.
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2.2.2. Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient (Spearman, 1987; Kowalczyket al., 2004)

allows comparison of two variablesXi andYi, both of sample sizen. First,Xi andYi
are both converted into ranksxi andyi. Where there are rank ties or duplicate values, the

rank equal to the average of their positions is assigned. TheSpearman’s rank correlation

coefficient is as follows:

ρ =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)2
∑

i(yi − ȳ)2
.

The value ofρ can range from -1 to 1. As the relationship between two variables becomes

closer to being described by a monotonic function, the larger in magnitudeρ will be.

2.2.3. Gene ontology term enrichment analysis

Gene ontology (GO) term enrichment analysis can give insight to the biological functions

of a list of genes (Consortium, 2004). A list of GO terms can beacquired from a list of

genes. For yeast the Saccharomyces Genome Database (SGD) (Cherryet al., 2012) can

be used to find GO term associations for each gene in the genome. A statistical analysis

is carried out to determine which GO terms are most prevalentin a list of genes. The

experimenter can then look at GO terms of interest, find out which genes they correspond

to and how many are identified in the list.

An unbiased Gene Ontology (GO) term enrichment analyses on alist of genes can

be carried out using the software R (R Core Team, 2013) and thebioconductoR package

GOstats (Falcon & Gentleman, 2007). There are many other software packages and online

services available to carry out a GO term enrichment such as the Database for Annotation,

Visualization and Integrated Discovery (DAVID) (Huanget al., 2008, 2009) or the Gene

Ontology Enrichment Analysis and Visualization tool (GOrilla) (Edenet al., 2009, 2007).

A GO term clustering analysis is a statistical approach thatcan be used to follow

up a GO term analysis. Information on the relation of GO termsis used in a clustering

analysis to find functionally related groups of GO terms. Thebioinformatics tool DAVID

(Huanget al., 2008, 2009) can be used to carry out GO term clustering (david.abcc.

ncifcrf.gov/ ).
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2.3. Bayesian inference

A classical (or frequentist) statistical approach typically assumes model unknown param-

eters are constants and uses the likelihood function to makeinference. An alternative

methodology is a Bayesian approach (Bernardo & Smith, 2007;Gelmanet al., 2003),

named after Thomas Bayes (Bayes & Price, 1763). In a Bayesiansetting, a parametric

model similar to the frequentist approach can be assumed butmodel parameters are treated

as random variables. This feature allows anyprior knowledge for a given parameter to

be incorporated into inference by building aprior distribution to describe the information

available. We are interested in theposterior distribution, that is the probability of the

parameters given the evidence. Moreover, whereD is the observed data,θ is the set of

parameters of interest, we are interested in calculating the posterior densityπ(θ|D). A

priori knowledge ofθ is described byπ(θ) and the likelihood of data byL(D|θ). Using

Bayes theorem we obtain the following:

π(θ|D) ∝ π(θ)L(D|θ)
or Posterior ∝ Prior × likelihood.

2.3.1. Markov chain Monte Carlo

In Bayesian inference we are typically interested in sampling from the posterior distri-

bution or one of its marginals, but often this is difficult. Markov Chain Monte Carlo

(MCMC) methods are used for sampling from probability distributions (Gamerman, 1997;

Gilks et al., 1995). The Monte Carlo name describes the repeated random sampling used

to compute results. A Markov chain can be constructed with anequilibrium distribution

that is theposteriordistribution of interest.

A Markov chain{Xn, n ∈ N
0} is a stochastic process which satisfies the Markov

property (or “memoryless” property): forA ⊆ S, whereS is the continuous state space

s.t.Xn ∈ S,

P (Xn+1 ∈ A|Xn = x,Xn−1 = xn−1, ..., X0 = x0) = P (Xn+1 ∈ A|Xn = x),

∀x, xn−1, ..., x0 ∈ S. The equilibrium distributionπ(x) is a limiting distribution of a

Markov chain with the following two properties. First, there must exist a distribution

π(x) which is stationary. This condition is guaranteed when the Markov chain satisfies
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detailed balance:

π(x)p(x, y) = π(y)p(y, x), ∀x, y,

wherep(x, y) is the transition density kernel of the chain. Secondly, thestationary distri-

butionπ(x) must be unique. This is guaranteed by the ergodicity of the Markov process;

see Gamerman (1997) for a definition and sufficient conditions.

2.3.2. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropoliset al., 1953; Hastings, 1970) is a MCMC

method for obtaining a random sample from a probability distribution of interest (or sta-

tionary distribution) (Chib & Greenberg, 1995). With the following procedure a sample

from the stationary distribution of the Markov chain can be obtained:

1) Initialise counteri = 0 and initializeX0 = x0

2) From the current positionXi = x, generate a candidate valuey∗ from a proposal

densityq(x, y).

3) Calculate a probability of acceptanceα(x, y∗), where

α(x, y) =







min
{

1, π(y)q(y,x)
π(x)q(x,y)

}

if π(x)q(x, y) > 0

1 otherwise.

4) Accept the candidate value with probabilityα(x, y∗) and setXi+1 = y∗, otherwise

reject and setXi+1 = x.

5) StoreXi+1 and iteratei = i+ 1.

6) Repeat steps 2-5 until the sample size required is obtained.

The choice of proposal density is important in determining how many iterations are

needed to converge to a stationary distribution. There are many choices of proposal dis-

tribution (Gamerman, 1997), the simplest case is the symmetric chain. The symmetric

chain involves choosing a proposal whereq(x, y) = q(y, x), such that step two simplifies
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to give the following:

α(x, y) =







min
{

1, π(y)
π(x)

}

if π(x) > 0

1 otherwise.

More general cases are random walk chains and independence chains.

For a random walk chain, the proposed value at stagei is given byy∗ = xi+wi, where

wi are i.i.d. random variables. The distribution forwi must therefore be chosen, and is

typically Normal or Student’st distribution centred at zero. If the distribution forwi is

symmetric, the random walk is a special case of symmetric chains.

For an independence chain, the proposed transition is formed independently of the

previous position of the chain, thusq(x, y) = f(y) for some densityf(.):

α(x, y) =







min
{

1, π(y)f(x)
π(x)f(y)

}

if π(x)f(y) > 0

1 otherwise.

Parameters within our proposal distribution are known as tuning parameters. They

are typically used to adjust the probability of acceptance or improve mixing and must be

chosen through some automatic procedure or manually, see Section 2.3.4.

2.3.3. Gibbs sampling

The Gibbs sampler (Gelfand & Smith, 1990; Casella & George, 1992) is a MCMC al-

gorithm for obtaining a random sample from a multivariate probability distribution of

interestπ(θ), whereθ = (θ1, θ2, ..., θd). Consider that the full conditional distributions

π(θi|θ1, ..., θi−1, θi+1, ..., θd), i = 1, ..., d are available. Where it is simpler to sample from

conditional distribution than to marginalize by integrating over a joint distribution, the

Gibbs sampler is applicable. The following procedure sequentially samples from the full

conditional distribution for each parameter, resulting inthe probability distribution of in-

terest. The algorithm is as follows:

1) Initialise counteri = 1 and parametersθ(0) = (θ1(0), θ
2
(0), ..., θ

d
(0)).

2) Simulateθ1(i) from θ1(i) ∼ π(θ1|θ2(i−1), ..., θ
d
(i−1)).

3) Simulateθ2(i) from θ2(i) ∼ π(θ2|θ1(i), θ3(i−1), ..., θ
d
(i−1)).
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4) ...

5) Simulateθd(i) from θd(i) ∼ π(θd|θ1(i), ..., θd−1
(i) ).

6) Storeθ(i) = (θ1(i), θ
2
(i), ..., θ

d
(i)) and iteratei = i+ 1.

7) Repeat steps 2-6 until the sample size required is obtained.

To ensure the full conditional distributions for each parameter in a Bayesian model are

known and easy to handle, conjugacy can be used. Conjugacy iswhere the prior is of

the same family as the posterior. Conjugacy can be induced bythe choice of prior, for

example if it is known that a likelihood is Normal with known variance, a Normal prior

over the mean will ensure that the posterior is also a Normal distribution.

2.3.4. Convergence issues

To accept output from MCMC algorithms, all chains are required to have reached con-

vergence (Gamerman, 1997; Cowles & Carlin, 1996). Convergence is a requirement to

gain unbiased samples of a posterior distribution. Visual and statistical tests can be used

to determine if chains have converged, see Section 2.3.5.

Other issues that we must consider for MCMC sampling algorithms are choice of

tuning parameters, burn-in period, sample size and thinning, if required. Tuning parame-

ters require a good choice of proposal distribution, preferably with high acceptance rates

and good mixing. There are many schemes available for the choice of tuning parameters

(Andrieu & Thoms, 2008). Typically tuning parameters are determined during a burn-in

period. The burn-in period is a number of iterations which analgorithm must be run for

in order to converge to equilibrium. Sample size depends on how many iterations from

the posterior are required for both inference and testing convergence. Thinning involves

discarding output for iterations of a MCMC algorithm, in order to give less dependent

realizations from the posterior distribution.

Extending the length of the burn-in period, sample size and thinning leads to increased

computational time. With large data sets and models with a large number of parameters,

computation time can become a problem. With a Bayesian modelling approach, computa-

tional time associated with MCMC can be much longer than a much simpler least squares

approach. This problem is exacerbated when coupled with poor mixing and is likely to
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lead the experimenter to simplify their modelling procedure, consequently sacrificing the

quality of inference, in order to complete their analysis within a shorter time frame.

2.3.5. Convergence diagnostics

To determine whether chains are true samples from their target distributions, tests for lack

of convergence or mixing problems (Gamerman, 1997; Cowles &Carlin, 1996) must be

carried out. Typically multiple tests are used to give confidence that the output has con-

vergence. There are many convergence diagnostics for testing chains for convergence, for

example the Heidelberg-Welch (Heidelberger & Welch, 1981)and Raftery-Lewis (Raftery

& Lewis, 1995) tests. For many convergence diagnostics, summary statistics such as p-

values can be used to decide whether convergence has been reached. Visual inspection

of diagnostic plots can also be used to determine if convergence has been reached. Trace

plots are used to check if samples from the posterior distribution are within a fixed region

of plausible values and not exploring the whole range. ACF (auto-correlation function)

plots are used to determine serial correlation between sample values of the posterior dis-

tribution in order to check for the independence of observations. Density plots are used to

check whether a sample posterior distribution is restricted by the choice of prior distribu-

tion and determine whether choice of prior is appropriate. Running multiple instances of

our MCMC algorithm and comparing chains can also help us decide whether our chains

have converged.

2.3.6. Computer programming

To ensure results and inference are reproducible, it is useful to create a computer package

so that an analysis can be made in the future without all the code required being re-written.

Using freely available software such as the statistical program R (R Core Team, 2013),

scripts and commands can be built and shared for easy implementation of code.

Where fast inference is of importance, the choice of programming language is an

important consideration. The software package R can also beused as an interface for run-

ning code in the C programming language. Statistical code written in the C programming

language is typically much faster than using standard R functions or code written in many

other programming languages (Fourment & Gillings, 2008).
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2.4. Hierarchical modelling

Hierarchical modelling is used to is used to describe the structure of a problem where

we believe some population level distribution exists, describing a set of unobserved pa-

rameters (Gelmanet al., 2003). Examples include pupils nested within classes, children

nested within families and patients nested within hospitals. With the pupil-class rela-

tionship (2 level-hierarchy), for a given class there may bea number of pupils. We may

believe that by being in the same class, pupils will perform similarly in an exam as they

are taught by the same teacher. Further, we may have a pupil-class-school relationship

(3 level-hierarchy). For a given school, multiple classes exist and in each class there is

a number of pupils. We may believe that being within the same school, classes would

perform similarly in an exam as they share the same head teacher or school principal.

Hierarchical modelling is used to describe a parent/child relationship (Gelman & Hill,

2006). Repeating the parent/child relationship allows multiple levels to be described.

Where a hierarchical structure is known to exist, describing this experimental structure

avoids confounding of effects with other sources of variation.

There are many different hierarchical models available, depending on what the exper-

imenter is most interested in (Zuuret al., 2009; Goldstein, 2011). Sharing of information

can be built into hierarchical models by the sharing parameters. Allowing parameters to

vary at more than one level allows an individual child (subject) effect to be examined.

A typical frequentist hierarchical model is built with random effects and has limited dis-

tributional assumptions available, whereas a Bayesian hierarchical model is flexible to

describe various distributions (Gelman, 2006), see Section 2.4.1.

Plate diagrams allow hierarchical models to be representedgraphically (Lunnet al.,

2000b; Thulasiraman, 1992). Nodes (circles) are used to describeparameters and plates

(rectangles) to describe repeating nodes. The use of multiple plates allows nesting to be

described.

2.4.1. Distributional assumptions

The flexibility of the Bayesian paradigm allows for models tobe built that are otherwise

not practical in the frequentist paradigm. More appropriate assumptions can therefore be

made to better describe experimental structure and variation in a Bayesian setting (Gel-

manet al., 2003). For example, inference for a hierarchicalt-distribution or hierarchical

variable section model in a frequentist context is difficultin practise without using MCMC

methods that are a more natural fit with Bayesian approaches.
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The use of prior distributions allows information from the experimenter and experi-

mental constraints to be incorporated, for instance if a parameter is known to be strictly

positive then a positive distribution can be used to enforcethis. Truncation can be used to

reduce searching posterior areas with extremely low probability.

2.4.2. Indicator variables

Indicator variables are used in variable selection models to describe binary variables

(O’Hara & Sillanpaa, 2009). A Bernoulli distributed indicator variable can take the value

0 or 1 to indicate the absence or presence of an effect and can be used to describe binary

outcomes such as gender.

2.4.3. The three parametert-distribution

The Student’st-distribution has one parameter, namely the degrees of freedom parameter

ν which controls the kurtosis of the distribution (Johnsonet al., 1995). The Student’s

t-distribution is as follows:

t1(x; ν) =
Γ
(

ν+1
2

)

√
νπ Γ

(

ν
2

)

(

1 +
x2

ν

)−
ν+1
2

, x ∈ R, ν ∈ R
+. (2.1)

Theν scale parameter has the effect of increasing the heaviness of the distribution’s tails.

Adding an additional location parameterµ and scale parameterσ allows further flexibil-

ity with the shape of the distribution (Jackman, 2009). Theσ scale parameter does not

correspond to a standard deviation but does control the overall scale of the distribution.

The three parametert-distribution (or scaledt-distribution) is then as follows:

t3(x;µ, ν, σ) =
1

σ
t1

(

(x− µ)

σ
; ν

)

, x ∈ R, ν ∈ R
+,

wheret1 is given in (2.1).

2.5. Generalisations of the logistic growth model

Where more flexibility than the logistic growth model is required, the logistic growth

model (1.1) can be extended by adding parameters (Tsoularis& Wallace, 2002; Jr.et al.,

1976). A common extension of the logistic growth model is Richards’ growth model

(Richards, 1959; Peleget al., 2007), which adds a single parameter for changing the

shape of growth. A more general case to both the logistic and Richards’ growth model is
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the generalised logistic growth model. Similarly to the logistic growth model (1.1) and

its stochastic counterpart (1.8), these more general equations can be extended to diffusion

equations if required.

2.5.1. Richards’ growth model

Richards’ Growth model (Richards, 1959) adds an extra parameterβ to the logistic growth

equation (1.1). The parameterβ affects where maximum growth occurs and consequently

the relative growth rate (Tsoularis & Wallace, 2002). Richards’ Growth model is as fol-

lows:

dxt
dt

= rxt

[

1−
(xt
K

)β
]

. (2.2)

The ODE has the following analytic solution:

xt =
K

(1 +Qe−rβt)
1
β

,

whereQ =

[

(

K

P

)β

− 1

]

eβto ,

(α, β) are positive real numbers andt ≥ t0. Whenβ = 1, Richards’ growth model is

equivalent to the logistic growth equation.

2.5.2. Generalised logistic growth model

The generalised logistic growth model adds extra parameters (α, β, γ) to the logistic

growth equation (1.1). The extra parameters(α, β, γ) affect where maximum growth

occurs, the relative growth rate (Tsoularis & Wallace, 2002) and give a greater selection

of curve shapes than the Richards’ growth model (2.2). The generalised logistic growth

model is as follows:

dxt
dt

= rxαt

[

1−
(xt
K

)β
]γ

, (2.3)

where(α, β, γ) are positive real numbers andt ≥ t0. The generalised logistic growth

model cannot in general be integrated to give an analytical solution forxt. Whenα = 1,

β = 1 andγ = 1, the generalised logistic growth model is equivalent to thelogistic

growth equation.
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2.6. State space models

A state space model describes the probabilistic dependencebetween a measurement pro-

cessYt and a state processXt (West & Harrison, 1997; Durbinet al., 2004). The most

basic case of a state space model is as follows:

(Xt|Xt−1 = xt−1) ∼ f(t, xt−1),

(Yt|Xt = xt) ∼ g(t, xt),
(2.4)

wheref andg are known. A state space model with a linear Gaussian structure has the

advantage of allowing us to carry out more efficient MCMC by integrating out latent

states with a Kalman filter, instead of imputing all states. The probabilistic representation

and the ability to incorporate prior information makes Bayesian inference an appropriate

choice for parameter estimation of a state space model.

State space representation provides a general framework for analysing stochastic dy-

namical systems observed through a stochastic process. A state space model allows us

to include both an internal state variable and an output variable in our model. The state-

space representation of a stochastic process with measurement error can be given by (2.4)

wheref is the transition density of the process andg is the assumed measurement error.

Inference methods are also readily available to carry out estimation of state space models.

2.6.1. Stochastic differential equations

An ordinary differential equation (ODE) can be used to modela system of interest. For

systems with inherent stochastic nature we require a stochastic model. A stochastic dif-

ferential equation (SDE) is a differential equation where one or more terms include a

stochastic process (Wilkinson, 2011; Øksendal, 2010). An SDE differs from an ODE

by the addition of a diffusion term, typically a Weiner process, used to describe the in-

trinsic noise of a given process. A Wiener process (or standard Brownian motion) is a

continuous-time stochastic process. A Wiener processW (t), t ≥ 0, has the following

three properties Durrett (1996):

1)W (0) = 0.

2) The functiont→ W (t) is almost surely everywhere continuous.

3)W (t) has independent increments withW (t)−W (s) ∼ N(0, t− s), for 0 ≤ s < t.

Intrinsic noise from a Weiner process perpetuates the system dynamics of a differential

equation.The intrinsic noise is able to propagate though the process, unlike measurement
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noise. Instead of inappropriately modelling intrinsic noise by measurement noise, an SDE

allows our process to model both system and measurement noise separately.

The simplest case of a stochastic differential equation is of the form:

dX(t) = µdt+ σdW (t),

whereW denotes a Wiener process. Parametersµ andσ may depend on time and cor-

respond to the drift and diffusion coefficients respectively. The transition density of a

stochastic process describes the movement from one state tothe next and can be found

from the solution of the process.

2.6.2. The Euler-Maruyama method

The Euler-Maruyama method provides an approximate numerical solution of a SDE (Car-

letti, 2006). For a stochastic process of the form:

dXt = f(Xt)dt+ g(Xt)dWt,

where functionsf andg are given andWt is a Wiener process. Given an initial condition

X0 = x0 we can build an Euler-Maruyama approximation ofX over an interval[0, T ].

The Markov chainY defined below is an Euler-Maruyama approximation to the truesolu-

tion ofX. First we set the initial conditionY0 = x0. Next, the interval[0, T ] is partitioned

intoN equal subintervals of width∆t > 0. The Euler-Maruyama approximation is then

recursively defined for1 ≤ i ≤ N as follows:

Yi+1 = Yi + f(Yi)∆t+ g(Yi)∆Wi,

where∆Wi = Wti+1
− Wti ∼ N(0, ∆t). The Euler-Maruyama approximationY will

become a better approximation to the true processX as we increase the size ofN .

2.6.3. Kalman filter

The Kalman filter (Kalman, 1960; Welch & Bishop, 1995) is a recursive algorithm that can

be used to estimate the state of a dynamic system from a seriesof incomplete and noisy

measurements. The main assumptions of the Kalman filter are that the underlying system

is a linear dynamical system and that the noise has known firstand second moments.

Gaussian noise satisfies the second assumption, for example.
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Inference for a state space model (2.4) (see Section 2.6), where bothf and g are

Gaussian, can be carried out using a Kalman filter. If all noise is zero-mean, uncorrelated

and white, then the Kalman filter represents an optimal linear filter (Simon, 2006), even

if the noise is not Gaussian. An application of the Kalman filter is given in Section C.5 of

the Appendix.

The Kalman filter algorithm is derived as follows:Xti and Yti are the state and

measurement processes respectively.wt and ut are the state and measurement error

respectively, wherewt andut are IID, E[wt] = 0, E[ut] = 0, E[wtwt
T ] = Wt and

E[utut
T ] = Ut. The Kalman filter can be extended wherewt andut are not zero mean.

The unobserved latent process is driven by:

Xti |Xti−1
∼ N(GtiXti−1

,Wti)

and the measurement error distribution, relating the latent variable to the observed is given

by

Yti |Xti ∼ N(F T
ti
Xti , Uti),

where matricesFti ,Gti , Uti andWti are all given. Now, suppose that:

Xti−1
|Y1:ti−1

∼ N(mti−1
, Cti−1

).

Incrementing time withXti = GtiXti−1
+ wti−1

and condition onY1:ti−1
to give:

Xti |Y1:ti−1
= GtiXti−1

|Y1:ti−1
+ wti|Y1:ti−1

= GtiXti−1
|Y1:ti−1

+ wti−1
,

aswti is independent ofY1:ti−1
. We can then show the following using standard multivari-

ate theory:

Xti |Y1:ti−1
∼ N(ati , Rti).

whereati = Gtimti−1
andRti = GtiCti−1

GT
ti
+Wti . AsYti = F T

ti
Xti +uti , and condition

onY1:ti−1
to give:

Yti |Y1:ti−1
= F T

ti
Xti |Y1:ti−1

+ uti|Y1:ti−1

= F T
ti
Xti |Y1:ti−1

+ uti,

asuti is independent ofY1:ti−1
. We can then show the following using standard multivari-
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ate theory:

Y1:ti |Y1:ti−1
∼ N(F T

ti
ati , F

T
t RtiFt + Uti)

Y1:ti|Y1:ti−1
andXti |Y1:ti−1

are therefore jointly Gaussian with the following mean and

covariance:

(

Xti

Y1:ti

)

∼MV N

((

ati
Yti

)

,

(

Rti RtiFt

F T
t Rti F T

t RtiFt + Uti

))

,

Finally, the following multivariate theorem is used:

if

(

Y1

Y2

)

∼ MVN

((

µ1

µ2

)

,

(

Σ11 Σ12

Σ21 Σ22

))

,

thenY1|Y2 = y2 ∼ MVN
(

µ1 +Σ12Σ
−1
22 (y2 − µ2), Σ11 −Σ12Σ

−1
22 Σ21

)

,

to obtain the following:

Xti |Y1:ti ∼ N(mti , Cti),

wheremti = ati +RtiF (F
TRtiF + U)−1[Yti − F Tati ]

andCti = Rti −RtiF (F
TRtiF + U)−1F TRti .

(2.5)

Parametersm0 andC0 must be initialised first, then using the equations in (2.5),mti and

Cti can be recursively estimated.

Typically, the Kalman filter is used to make inference for a hidden state process, but

it can be used to reduce computational time in algorithms forinferring process hyper-

parameters by recursively computing the marginal likelihoodπ(yt1:N ) (West & Harrison,

1997), where

π(yt1:N ) =

N
∏

i=1

π(yti|yt1:(i−1)
)

andπ(yti|yt1:(i−1)
) =

∫

X
π(yti, xti |yt1:(i−1)

)dxti =
∫

X
π(yti |xti)π(xti |yt1:(i−1)

)dxti gives a

tractable Gaussian integral. The procedure for computing the marginal likelihoodπ(yt1:N )

using the Kalman filter algorithm is as follows:

1) Initialise with prior knowledge forX0 and seti = 1.

2) Prediction step fromXti−1
|Y1:ti−1 toXti |Y1:ti−1

(giving π(xti |y1:ti−1
)).
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3) Calculate and storeπ(yti |y1:ti−1
).

4) Update step to giveXti |Y1:ti, then iteratei = i+ 1.

5) Repeat steps 2-4 (and computeπ(yt1:N ) ).

2.6.4. Linear noise approximation

The linear noise approximation (LNA) (Kurtz, 1970, 1971; Van Kampen, 2011) reduces

a non-linear SDE to a linear SDE with additive noise, which can be solved (Wallace,

2010; Komorowskiet al., 2009). The LNA assumes the solution of a diffusion process

Yt can be written asYt = vt + Zt (a deterministic partvt and stochastic partZt), where

Zt remains small for allt ∈ R≥0. The LNA is useful when a tractable solution to a SDE

cannot be found. Typically the LNA is used to reduce an SDE to aOrnstein-Uhlenbeck

process which can be solved explicitly. Ornstein-Uhlenbeck processes are Gaussian, time

discretising the resulting LNA will therefore give us a linear Gaussian state space model

with an analytically tractable transition density available. The LNA can be viewed as

a first order Taylor expansion of an approximating SDE about adeterministic solution

(higher order approximations are possible (Gardiner, 2010)). We can also view the LNA

as an approximation of the chemical Langevin equation (Wallaceet al., 2012). Applica-

tions of the LNA to non-linear SDEs are given in Section 5.3 and 5.4.
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3.1. Introduction

In this chapter, alternative modelling approaches are developed to better model a QFA

screen comparison than the current frequentist Addinallet al. (2011) approach. Sec-

tion 3.2 presents the modelling assumptions for the development of a Bayesian approach.

Two Bayesian approaches are then presented in Sections 3.3 and 3.4, incorporating some

model assumptions that are not convenient in a frequentist setting. So that our Bayesian

models can be compared with a frequentist hierarchical modelling approach, a random

effects model is then presented in Section 3.5.

The models in this chapter are compared using previously analysedS. cerevisiaeQFA

screen data in the next chapter. HistoricS. cerevisiaeQFA screen datasets are used to

shape the model assumptions adopted in the following sections.

3.2. Bayesian hierarchical model inference

As an alternative to the maximum likelihood approach presented by Addinallet al.(2011),

we present a Bayesian, hierarchical methodology wherea priori uncertainty about each

parameter value is described by probability distributions(Bernardo & Smith, 2007) and

information about parameter distributions is shared across orf∆s and conditions. Plausi-

ble frequentist estimates from across 10 different historic QFA data sets, including a wide

range of different background mutations and treatments were used to quantifya priori

uncertainty in model parameters.

Prior distributions describe our beliefs about parameter values. These should be dif-

fuse enough to capture all plausible values (to capture the full range of observations in

the datasets) while being restrictive enough to rule out implausible values (to ensure effi-

cient inference). Inappropriate choice of priors can result in chains drifting during mixing

and becoming stuck in implausible regions. Although using conjugate priors would al-

low faster inference, we find that the conjugate priors available for variance parameters

(Gelman, 2006) are either too restrictive at low variance (Inverse-gamma), not restric-

tive enough at low variance (half-t family of prior distributions) or are non-informative

or largely discard the prior information available (Uniform). Our choice for the priors of

precision parameters is the non-conjugate Log-normal as wefind the distribution is only
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restrictive at extremely high and low variances.

We use three types of distribution to model parameter uncertainty: Log-normal, Nor-

mal and scaled t-distribution with three degrees of freedom. We use the Log-normal

distribution to describe parameters which are required to be non-negative (e.g. parame-

ters describing precisions, or repeat-level fitnesses) or parameter distributions which are

found by visual inspection to be asymmetric. We use the Normal distribution to describe

parameters which are symmetrically distributed (e.g. someprior distributions and the

measurement error model) and we use thet-distribution to describe parameters whose un-

certainty distribution is long-tailed (i.e. where using the Normal distribution would result

in excessive shrinkage towards the mean). A Normal distribution was considered for de-

scribing the variation inorf∆s but was found to be inappropriate, failing to assign density

at the extreme high and low fitnesses. For example, after visual inspection of frequentist

orf∆ level means about their population mean, we found there to bemany unusually fit,

dead or missingorf∆ and concluded thatorf∆ fitnesses would be well modelled by the

t-distribution.

Instead of manually fixing the inoculum density parameterP as in Addinallet al.

(2011) our Bayesian hierarchical models deal with the scarcity of information about the

early part of culture growth curves by estimating a singleP across allorf∆s (and condi-

tions in some of our models). Our new approach learns aboutP from the data and gives

us a posterior distribution to describe our uncertainty about its value.

The new, hierarchical structure implemented in our models (Goldstein, 2011) reflects

the structure of QFA experiments. Information is shared efficiently among groups of

parameters such as between repeat level parameters for a single mutant strain. An example

of the type of Bayesian hierarchical modelling which we use to model genetic interaction

can be seen in Yi (2010), where hierarchical models are used to account for group effects.

In Phenixet al. (2011) the signal of genetic interaction is chosen to be “strictly ON

or OFF” when modelling gene activity. We include this concept in our interaction models

by using a Bernoulli distributed indicator variable (O’Hara & Sillanpaa, 2009) to describe

whether there is evidence of anorf∆ interacting with the query mutation; the more evi-

dence of interaction, the closer posterior expectations will be to one.

Failing to account for all sources of variation within the experimental structure, such

as the difference in variation between the control and queryfitnesses, may lead to inac-

curate conclusions. By incorporating more information into the model with prior distri-

butions and a more flexible modelling approach, we will increase statistical power. With

an improved analysis it may then be possible for a similar number of genetic interactions
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to be identified with a smaller sample size, saving on the significant experimental costs

associated with QFA.

Inference is carried out using Markov Chain Monte Carlo (MCMC) methods. The

algorithm used is a Metropolis-within-Gibbs sampler whereeach full-conditional is sam-

pled in turn either directly or using a simple Normal random walk Metropolis step. Due

to the large number of model parameters and large quantity ofdata from high-throughput

QFA experiments, the algorithms used for carrying out inference often have poor mixing

and give highly auto-correlated samples, requiring thinning. Posterior means are used to

obtain point estimates where required.

For the new Bayesian approaches (described in Section 3.3 and 3.4), model fitting is

carried out using the techniques discussed above, implemented in C for computational

speed, and is freely available in the R package “qfaBayes” athttps://r-forge.

r-project.org/projects/qfa .

3.3. Two-stage Bayesian hierarchical approach

In the following sections, a two-stage Bayesian, hierarchical modelling approach (see

Section 3.3.1 and 3.3.2) is presented. The following two-stage Bayesian approach gen-

eratesorf∆ fitness distributions and infers genetic interaction probabilities separately.

For a QFA screen comparison, first the separate hierarchicalmodel (SHM) given in Sec-

tion 3.3.1, is fit to each screen separately and a set of logistic growth parameter estimates

obtained for each time-course. Secondly, each set of logistic growth parameter estimates

is converted into a univariate fitness summary and input to the interaction hierarchical

model (IHM) given in Section 3.3.2, to determine which genesshow evidence of genetic

interaction.

3.3.1. Separate hierarchical model

The separate hierarchical model (SHM), presented in Table 3.1, models the growth of

multiple yeast cultures using the logistic function described in (1.2). In this first hierar-

chical model, the logistic model is fit to the query and control strains separately.

In order to measure the variation betweenorf∆s, parameters (Kp,σK
o ) and (rp,σr

o) are

included at the population level of the hierarchy. Within-orf∆ variation is modelled by

each set oforf∆ level parameters (Ko
l ,τKl ) and (rol ,τ

r
l ). Learning about these higher level

parameters allows information to be shared across parameters lower in the hierarchy. A

three-level hierarchical model is applied to(K,Ko
l , Klm) and(r, rol , rlm), sharing infor-
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mation on the repeat level and theorf∆ level. Note thatorf∆ level parametersKo
l androl

are on the log scale (eK
o
l ander

o
l are on the scale of the observed data).

Assuming a Normal error structure, random measurement error is modelled by the

νl parameters (one for eachorf∆). Information on random error is shared across all

orf∆s by drawinglog νl from a normal distribution parameterised by (νp,σν). A two-level

hierarchical structure is also used for both theτKl andτ rl parameters.

Modelling logistic model parameter distributions on the log scale ensures that pa-

rameter values remain strictly positive (a realistic biological constraint). Truncating dis-

tributions allows us to implement further, realistic constraints on the data. Truncating

log rlm values greater than 3.5 corresponds to disallowing biologically unrealistic culture

doubling times faster than about 30 minutes and truncating of repeat level parameters

logKlm above 0 ensures that no carrying capacity estimate is greater than the maximum

observable cell density, which is 1 after scaling.

orf∆ level parameterseK
l
o ander

l
o are on the same scale as the observed data. Real-

istic biological constraints (positive logistic model parameters) are enforced at the repeat

level, however botheK
l
o ander

l
o, which are assumed to have scaledt-distributions, are

truncated below zero to keep exponentiated parameters strictly positive. Mostorf∆ level

logistic growth parameters are distributed in a bell shape around some mean value, it is

the unusually fit, dead or missingorf∆s within a typical QFA screen that require the use

of a long tailed distribution such as the scaledt-distribution with 3 degrees of freedom.

The non-standard choice of a truncated scaledt-distribution with 3 degrees of freedom

ensures that the extreme high and low values have probability assigned to them regardless

of the population level location and scale parameters for a given QFA screen.

For example, after visual inspection of frequentistorf∆ level means about their popu-

lation mean, we found there to be many unusually fit, dead or missingorf∆ and concluded

thatorf∆ fitnesses would be well modelled by the t-distribution.

Identifiability problems can arise for parametersKlm andrlm when observed cell den-

sities are low and unchanging (consistent with growth curves for cultures which are very

sick, dead or missing). In these cases, eitherKlm or rlm can take values near zero, allow-

ing the other parameter to take any value without significantly affecting the model fit. In

the Addinallet al. (2011) approach identification problems are handled in an automated

post-processing stage: for cultures with low K estimates (classified as dead),r is automat-

ically set to zero. Without correcting for identification problems in our Bayesian models,

misleading information from implausible values will be shared across our models. Com-

puting time wasted on such identifiability problems is reduced by truncating repeat level
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Table 3.1: Description of the separate hierarchical model (SHM). Dependent variableylmn (scaled
cell density measurements) and independent variabletlmn (time since inoculation) are data input
to the SHM.x(t) is the solution to the logistic model ODE given in (1.2).l indicates a particular
orf∆ from the gene deletion library,m indicates a repeat for a givenorf∆ andn indicates the time
point for a givenorf∆ repeat.

l = 1, 2, ..., L orf∆ level

m = 1, ...,Ml Repeat level

n = 1, 2, ..., Nlm Time point level

Time point level

ylmn ∼ N(ŷlmn, (νl)
−1) ŷlmn = x(tlmn;Klm, rlm, P )

Repeat level

log Klm ∼ N(Ko
l , (τ

K
l )−1)I(−∞,0] log τKl ∼ N(τK,p, (στ,K)−1)I[0,∞)

log rlm ∼ N(rol , (τ
r
l )

−1)I(−∞,3.5] log τ rl ∼ N(τ r,p, (στ,r)−1)

orf∆ level

eK
o
l ∼ t(Kp, (σK,o)−1, 3)I[0,∞) log σK,o ∼ N(ηK,o, (ψK,o)−1)

er
o
l ∼ t(rp, (σr,o)−1, 3)I[0,∞) log σr,o ∼ N(ηr,o, (ψr,o)−1)

log νl ∼ N(νp, (σν)−1) log σν ∼ N(ην , (ψν)−1)

Population level

log Kp ∼ N(Kµ, (ηK,p)−1) log rp ∼ N(rµ, (ηr,p)−1)

log P ∼ N(P µ, (ηP )−1) νp ∼ N(νµ, (ην,p)−1)

τK,p ∼ N(τK,µ, (ητ,K,p)−1) log στ,K ∼ N(ητ,K , (ψτ,K)−1)

τ r,p ∼ N(τ r,µ, (ητ,r,p)−1) log στ,r ∼ N(ητ,r, (ψτ,r)−1)
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parametersrlm, preventing the MCMC algorithms from becoming stuck in extremely low

probability regions whenKlm takes near zero values. Similarly,log τKl parameters are

truncated below 0 to overcome identifiability problems between parametersKlm andrlm
whenrlm takes near zero values.

The SHM in Table 3.1 is fit to both the query and control strainsseparately. Means

are taken to summarise logistic growth parameter posteriordistributions for eachorf∆

repeat. Summaries(K̂lm, r̂lm, P̂ ) for eachorf∆ repeat are converted to univariate fitnesses

Fclm, wherec identifies the condition (query or control), with any given fitness measure

e.g.MDR ×MDP (see (1.3) and Addinallet al. (2011)). A problem of the two-stage

approach is that we must choose a fitness definition most relevant to the experiment.

We choose the same definition used in Addinallet al. (2011),MDR×MDP , for the

comparison of our methods. An alternative choice of fitness definition could be used

given sufficient biological justification. Section 1.1.3 gives the derivations ofMDR and

MDP . The product ofMDR×MDP is used as it accounts for the attributes of two

definitions simultaneously.

The flow of information within the model and how each parameter is related to the

data can be seen from the plate diagram in Figure 3.1 (Lunnet al., 2000b).
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ylmnŷlmn
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l

rlm

σK,o στ,K

τK,p
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Population

orf∆

Repeat

Time Point

Figure 3.1: Plate diagram for the separate hierarchical model, described in Section 3.3.1. This
figure shows the four levels of hierarchy in the SHM model, population,orf∆ (l), repeat (m) and
time point (n). Prior hyperparameters for the population parameters areomitted. A circular node
represents a parameter in the model. An arrow from a source node to a target node indicates
that the source node parameter is a prior hyperparameter forthe target node parameter. Each
rectangular box corresponds to a level of the hierarchy. Nodes within multiple boxes are nested
and their parameters are indexed by corresponding levels ofthe hierarchy. The node consisting
of two concentric circles corresponds to the models fitted values. The rectangular node represents
the observed data.
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3.3.2. Interaction hierarchical model

After the SHM fit, the IHM, presented in Table 3.2, can then be used to model estimated

fitness scoresFclm and determine, for eachorf∆, whether there is evidence for interaction.

Fitnesses are passed to the IHM where query screen fitnesses are compared with con-

trol screen fitnesses, assuming genetic independence. Deviations from predicted fitnesses

are evidence for genetic interaction. The flow of information within the IHM and how

each parameter is related to the data can be seen from the plate diagram in Figure 3.2.

The interaction model accounts for betweenorf∆ variation with the set of parameters

(Zp,σZ) and withinorf∆ variation by the set of parameters (Zl,νl). A linear relationship

between the control and queryorf∆ level parameters is specified with a scale parameter

α1. Any deviation from this relationship (genetic interaction) is accounted for by the term

δlγ1,l. δl is a binary indicator of genetic interaction fororf∆ l. A scaling parameterα1

allows any effects due to differences in the control and query data sets to be scaled out,

such as differences in genetic background, incubator temperature or inoculum density.

The linear relationship between the control and query fitness scores, consistent with

the multiplicative model of genetic independence, described in (1.5), is implemented in

the IHM as:F̂ = eαc+Zl+δlγcl = eαceZl+δlγcl. Strains whose fitnesses lie along the linear

relationship defined by the scalarα1 show no evidence for interaction with the query

condition. On the other hand, deviation from the linear relationship, represented by the

posterior mean ofδlγ1,l is evidence for genetic interaction. The larger the posterior mean

for δl is the higher the probability or evidence there is for interaction, while γ1,l is a

measure of the strength of interaction. Where the query condition has a negative effect

(i.e. decreases fitness on average, compared to the control condition), query fitnesses

which are above and below the linear relationship are suppressors and enhancers of the

fitness defect associated with the query condition respectively. A list of gene names are

ordered byδlγcl posterior means and thoseorf∆s with δ̂l > 0.5 will be classified and

labelled as showing “significant” evidence of interaction.

The Bernoulli probability parameterp is our prior estimate for the probability of a

givenorf∆ showing evidence of genetic interaction. For a typical yeast QFA screen,p

is set to 0.05 as the experimenter’s belief before the experiment is carried out is that5%

of our orf∆s exhibit genetic interactions. Observational noise is quantified by νcl. The

νcl parameter accounts for difference in variation between condition i.e. the query and

control data sets and for difference in variation betweenorf∆s.
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Table 3.2: Description of the interaction hierarchical model (IHM).Fclm are the observed fitness
scores, wherec identifies the condition for a givenorf∆, l identifies a particularorf∆ from the
gene deletion library andm identifies a repeat for a givenorf∆.

c = 0, 1 Condition level

l = 1, ..., Lc orf∆ level

m = 1, ...,Mcl Repeat level

Repeat level

Fclm ∼ N(F̂cl, (νcl)
−1) F̂cl = eαc+Zl+δlγcl

orf∆ level

eZl ∼ t(Zp, (σZ)
−1
, 3)I[0,∞) log σZ ∼ N(ηZ , ψZ)

log νcl ∼ N(νp, (σν)−1) log σν ∼ N(ην, ψν)

δl ∼ Bern(p)

eγcl =

{

1 if c = 0;

t(1, (σγ)−1, 3)I[0,∞) if c = 1.
log σγ ∼ N(ηγ, (ψγ)−1)

Condition level

αc =

{

0 if c = 0;

N(αµ, ηα) if c = 1.

Population level

log Zp ∼ N(Zµ, (ηZ,p)
−1
) νp ∼ N(νµ, (ην,p)−1)
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Figure 3.2: Plate diagram for the interaction hierarchical model, described in Section 3.3.2. This
figure shows the four levels of hierarchy in the IHM model: population,orf∆ (l), condition (c) and
repeat (m). Prior hyperparameters for population parameters are omitted. Plate diagram notation
as in Figure 3.1.
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3.4. One-stage Bayesian hierarchical approach

Following from Section 3.3, a one-stage approach for inferring fitness and genetic inter-

action probabilities separately is presented. All of the SHM and IHM modelling assump-

tions described in Section 3.3, such as distributional choices and hierarchical structure are

inherited by the one stage approach known as the joint hierarchical model (JHM).

3.4.1. Joint hierarchical model

The JHM given in Table 3.3 is an alternative, fully Bayesian version of the two-stage

approach described in Section 3.3.1 and 3.3.2. The JHM incorporates the key modelling

ideas from both the SHM and the IHM with the considerable advantage that we can learn

about logistic growth model, fitness and genetic interaction parameters simultaneously,

thereby avoiding having to choose a fitness measure or point estimates for passing in-

formation between models. The JHM is an extension of the SHM with the presence or

absence of genetic interaction being described by a Bernoulli indicator and an additional

level of error to account for variation due to the query condition. Genetic interaction is

modelled in terms of the two logistic growth parametersK andr simultaneously. Similar

to the interaction model in Section 3.3.2 in Chapter 3.3, linear relationships between con-

trol and query carrying capacity and growth rate (instead offitness score) are assumed:

(eαc+Ko
l
+δlγcl , eβc+ro

l
+δlωcl).

By fitting a single JHM, we need only calculate posterior means, check model diag-

nostics and thin posteriors once. However, the CPU time taken to reach convergence for

any given data set is roughly twice that of the two-stage approach for a genome-wide

QFA.

The flow of information within the model and how each parameter is related to the

data can be seen from the plate diagram in Figure 3.3.
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Table 3.3: Description of the joint hierarchical model (JHM). The dependent variableyclmn

(scaled cell density measurements) and independent variable tclmn (time since inoculation) are
input to the JHM.c identifies the condition for a givenorf∆, l identifies a particularorf∆ from
the gene deletion library,m identifies a repeat for a givenorf∆ andn identifies the time point for
a given condition andorf∆ repeat.

c = 0, 1 Condition level

l = 1, ..., Lc orf∆ level

m = 1, ...,Mcl Repeat level

n = 1, ..., Nclm Time point level

Time point level

yclmn ∼ N(ŷclmn, (νcl)
−1) ŷclmn = x(tclmn;Kclm, rclm, P )

Repeat level

log Kclm ∼ N(αc +Ko
l + δlγcl, (τ

K
cl )

−1)I(−∞,0] log τKcl ∼ N(τK,p
c , (στ,K

c )−1)I[0,∞)

log rclm ∼ N(βc + rol + δlωcl, (τ
r
cl)

−1)I(−∞,3.5] log τ rcl ∼ N(τ r,pc , (στ,r
c )−1)

orf∆ level

eK
o
l ∼ t(Kp, (σK,o)−1, 3)I[0,∞) log σK,o ∼ N(ηK,o, (ψK,o)−1)

er
o
l ∼ t(rp, (σr,o)−1, 3)I[0,∞) log σr,o ∼ N(ηr,o, (ψr,o)−1)

log νcl ∼ N(νp, (σν)−1) log σν ∼ N(ην , (ψν)−1)

δl ∼ Bern(p)

eγcl =

{

1 if c = 0;

t(1, (σγ)−1, 3)I[0,∞) if c = 1.
log σγ ∼ N(ηγ, ψγ)

eωcl =

{

1 if c = 0;

t(1, (σω)−1, 3)I[0,∞) if c = 1.
log σω ∼ N(ηω, ψω)

Condition level

αc =

{

0 if c = 0;

N(αµ, ηα) if c = 1.
βc =

{

0 if c = 0;

N(βµ, ηβ) if c = 1.

τK,p
c ∼ N(τK,µ, (ητ,K,p)−1) log στ,K

c ∼ N(ητ,K , (ψτ,K)−1)

τ r,pc ∼ N(τ r,µ, (ητ,r,p)−1) log στ,r
c ∼ N(ητ,r, (ψτ,r)−1)

Population level

log Kp ∼ N(Kµ, (ηK,p)−1) log rp ∼ N(rµ, (ηr,p)−1)

νp ∼ N(νµ, (ην,p)−1) log P ∼ N(P µ, (ηP )−1)
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yclmn

νprp

rclm

αc

σωc

βc

ωcl

Ko
l

Kp

σν

δl rol

ŷclmn

τK,p τ r,p P

σK,o

νcl

στ,rσr,oστ,K

Kclm

τKl τ rl

Time Point

orf∆

Condition

Population

σγc γcl

Repeat

Figure 3.3: Plate diagram for the joint hierarchical model, described in Section 3.4.1. This figure
shows the five levels of hierarchy in the JHM model, population, orf∆ (l), condition (c), repeat
(m) and time point (n). Prior hyperparameters for the population parameters areomitted. Plate
diagram notation is given in Figure 3.1.
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3.5. Random effects model

To improve on the Addinallet al.(2011) modelling approach whilst remaining within the

frequentist paradigm, by accounting for the hierarchical structure of the data, a random

effects model (Zuuret al., 2009; Pinheiro & Bates, 2000) can be used. The random effects

model (REM) given in Table 3.4 is used to model estimated fitness scoresFclm from (1.6)

and estimate evidence of interaction for eachorf∆ simultaneously with a single model

fit. Introducing a random effectZl allows us to account for between subject variation by

estimating a singleσZ2. Unlike the Addinallet al.(2011) approach, observed valuesFclm

are not scaled and instead a parameter to model a condition effectµc is introduced.

γcl represents the estimated strength of genetic interaction between anorf∆ and its

query mutation counterpart. For a multiplicative model of epistasis, an additive model

is used to describe the log transformed datafclm = log(Fclm + 1), whereFclm are the

observed fitnesses. We use the Benjamini-Hochberg test to correct for multiple testing in

order to make a fair comparison with the (Addinallet al., 2011) approach.

Inference for a frequentist random effects model can be carried out most simply with

the R package “lme4” (Bateset al., 2013). For the R code to fit the REM see Section A.3

of the Appendix. In the frequentist paradigm some parameters cannot be modelled as

random effects since computational difficulties associated with large matrix computations

arise with multiple random effects and very large data sets.Similarly, a more appropriate

model with a log-link function in order to model repeat levelvariation with a normal

distribution cannot be fit, due to computational difficulties that arise with non-linear model

maximum likelihood algorithms and large data sets. Such computational difficulties cause

algorithms for parameter estimation to fail to converge.

Table 3.4: Description of the random effects model (REM).c identifies the condition for a given
orf∆, l identifies a particularorf∆ from the gene deletion library andm identifies a repeat for a
givenorf∆.

fclm = µc + Zl + γcl + εclm

µc =

{

µ+ α if c = 0;

µ if c = 1.
γcl =

{

0 if c = 0;

γl if c = 1.

Zl ∼ N (0, σZ
2) εclm ∼ N (0, σ2)
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4.1. Introduction

In this chapter, the new Bayesian models developed in Chapter 3 are applied to previ-

ously analysed QFA screen data. The one-stage and two-stageBayesian approaches are

compared with the two-stage Addinallet al.(2011) and random effects model (REM) ap-

proaches for a QFA screen comparison designed to inform the experimenter about telom-

ere biology inS. cerevisiae.

After comparing the approaches developed, the one-stage Bayesian joint hierarchical

model (JHM) is found to best model a QFA screen comparison. The JHM is then applied

to further examples ofS. cerevisiaeQFA screen data to demonstrate the JHM’s ability to

model different experiments. Two extensions of the JHM are then considered, to account

for a batch effect and a transformation effect within a QFA screen comparison. Fitness

plots for the further case studies and extensions of the JHM are included for further in-

vestigation and research.

The new one-stage Bayesian QFA will be used at first to help identify genes that are

related to telomere activity, but the analysis is general enough to be applicable to any

high-throughput study of arrayed microbial cultures (including experiments such as drug

screening).

4.2. cdc13-1 27
◦C vs ura3∆ 27

◦C suppressor/enhancer data set

The following analysis is for a QFA experiment comparing query cdc13-1 strains with

controlura3∆ strains at27◦C, previously analysed by Addinallet al. (2011), to identify

genes that show evidence of genetic interaction with the query mutationcdc13-1. The

ability of the Cdc13 protein produced bycdc13-1strains to cap telomeres is reduced at

temperatures above26 ◦C (Nugentet al., 1996), inducing a fitness defect.

The experimental data used are freely available athttp://research.ncl.ac.

uk/colonyzer/AddinallQFA/ . Addinall et al. (2011) present a list of interaction

strengths and p-values for significance of interaction, together with a fitness plot for this

experiment. We will compare lists of genes classified as interacting withcdc13-1by the

non-hierarchical frequentist approach presented by Addinall et al. (2011) and the hierar-

chical REM with those classified as interacting by our hierarchical Bayesian approaches.
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4,294 non-essentialorf∆s were selected from the yeast deletion collection and used to

build the corresponding double deletion query and control strains. Independent replicate

culture growth curves (time course observations of cell density) were captured for each

query and control strain. The median and range for the numberof replicates perorf∆ is

8 and[8, 144] respectively. There are 66orf∆ strains that have greater than 8 replicates

(for both the control and query screen). More replicates have been tested for this subset

of orf∆s as a quality control measure to check if 8 replicates are sufficient to generate

a stable fitness summary for eachorf∆. orf∆s with high replicate number include a

small number of mutations whose phenotypes are well understood in a telomere-defective

background, together with some controls and a range of mutations randomly selected from

the deletion library. Including genotypes with well characterised phenotypes allows us to

leverage expert, domain-specific knowledge to assess the quality of experimental results.

The modelling approaches considered can accommodate different numbers of replicates

for eachorf∆, therefore we don’t expect systematic bias from the number of repeats. The

range for the number of time points for growth curves captured in the control experiment

is [7, 22] and[9, 15] in the query experiment. Rawcdc13-127◦C time series data is given

in Figure A.1, for example.

As in the Addinallet al. (2011) analysis, a list of 159 genes are stripped from our

final list of genes for biological and experimental reasons.Prior hyper-parameters for the

models used throughout this chapter are provided in Table B.1. Although our priors are

informed by frequentist estimates of historical QFA data sets, we ensure our priors are

sufficiently diffuse that all plausible parameter values are well represented and that any

given QFA data set can be fit appropriately.

The Heidelberg-Welch (Heidelberger & Welch, 1981) and Raftery-Lewis (Raftery &

Lewis, 1995) convergence diagnostics are used to determinewhether convergence has

been reached for all parameters. Posterior and prior densities are compared by eye to

ensure that sample posterior distributions are not restricted by the choice of prior distri-

bution. ACF (auto-correlation) plot diagnostics are checked visually to ensure that serial

correlation between sample values of the posterior distribution is low, ensuring that the

effective sample size is similar to the actual sample size.

To assess how well the logistic growth model describes cell density observations we

generate plots of raw data with fitted curves overlaid. Figures 4.1A, 4.1B and 4.1C show

time series data for three different mutant strain repeats at 27◦C, together with fitted lo-

gistic curves. We can see that eachorf∆ curve fit well represents the repeat level esti-

mates as eachorf∆ level (red) curve lies in the region where most repeat level (black)
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curves are found. Sharing information betweenorf∆s will also affect eachorf∆ curve

fit, increasing the probability of theorf∆ level parameters being closer to the population

parameters. Comparing Figures 4.1A, 4.1B and 4.1C shows that the separate hierarchical

model (SHM) captures heterogeneity at both the repeat andorf∆ levels.

Figure 4.1D demonstrates the hierarchy of information about the logistic model pa-

rameterK generated by the SHM for therad50∆ control mutant strain (variation de-

creases going from population level down to repeat level). Figure 4.1D also shows that

the posterior distribution forK is much more peaked than the prior, demonstrating that we

have learned about the distribution of both the population andorf∆ parameters. Learning

more about the repeat level parameters reduces the varianceof our orf∆ level estimates.

The posterior for the first time-course repeatKclm parameter shows exactly how much

uncertainty there is for this particular repeat in terms of carrying capacityK.
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Figure 4.1: Separate hierarchical model (SHM) logistic growth curve fits. Data fororf∆ repeats
have been plotted in A, B and C, with SHM fitted curves overlaidin black for repeat level param-
eters and red for theorf∆ level parameter fit. A) SHM scatter plot for 144his3∆ ura3∆ repeats
at 27◦C. B) SHM scatter plot for 48rad50∆ ura3∆ repeats at27◦C. C) SHM scatter plot for
56 exo1∆ ura3∆ repeats at27◦C. D) SHM density plot of posterior predictive distributions for
rad50∆ ura3∆ carrying capacityK hierarchy. The prior distribution forKp is in black. The
posterior predictive foreK

o
l is in blue and forKclm in green. The posterior distribution of the first

time-course repeatKclm parameter is in red. ParametersKp, eK
o
l andKclm are on the same scale

as the observed data.

4.2.1. Frequentist approach

Figure 4.2A is aMDR ×MDP fitness plot from Addinallet al. (2011) where growth

curves and evidence for genetic interaction are modelled using the non-hierarchical fre-

quentist methodology discussed in Section 1.2.2. Figure 4.2B is aMDR×MDP fitness

54



Chapter 4. Case Studies

plot for the frequentist hierarchical approach REM, described in Table 3.4, applied to the

logistic growth parameter estimates used in Addinallet al. (2011). The number of genes

identified as interacting withcdc13-1by Addinall et al. (2011) and by the REM are 715

and 315 respectively (Table 4.1). The REM has highlighted many strains which have low

fitness. In order to fit a linear model to the fitness data and interpret results in terms of the

multiplicative model we apply a log transformation to the fitnesses, thereby affecting the

distribution oforf∆ level variation.

The REM accounts for between subject variation and allows for the estimation of a

query mutation andorf∆ effect to be made simultaneously, unlike the model presented

by Addinallet al. (2011). Due to the limitations of the frequentist hierarchical modelling

framework, the REM model assumes equal variances for allorf∆s and incorrectly de-

scribesorf∆ level variation as Log-normal, assumptions that are not necessary in our

new Bayesian approaches.
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Figure 4.2: Fitness plots withorf∆ posterior mean fitnesses. Meanorf∆ level fitness are plot-
ted for the control strains against the corresponding querystrains. orf∆s with significant evi-
dence of interaction are highlighted in red and green for suppressors and enhancers respectively.
A) Non-Bayesian, non-hierarchical fitness plot, based on Table S6 from Addinallet al. (2011)
(F = MDR ×MDP ). B) Non-Bayesian, hierarchical fitness plot, from fitting the REM to data
in Table S6 from Addinallet al. (2011)(F = MDR ×MDP ). C) IHM fitness plot withorf∆
posterior mean fitness.orf∆s with significant evidence of interaction are highlighted on the plot
as red and green for suppressors and enhancers respectively(F = MDR × MDP ). D) JHM
fitness plot withorf∆ posterior mean fitnesses.orf∆ strains for the JHM plot are classified as
being a suppressor or enhancer based on analysis of growth parameterr, meaning occasionally
strains can be more fit in the query experiment in terms ofMDR ×MDP but be classified as
enhancers (green). For panels A and B significant interactors are classified as those with FDR
corrected p-values< 0.05. For panels C and D significant interactors have posterior probability
∆ > 0.5. To compare fitness plots, labelled genes are those belonging to the following GO terms
in Table 4.1: “telomere maintenance”, “ageing”, “responseto DNA damage stimulus” or “perox-
isomal organization”, as well as the genes identified as interactions only inK with the JHM (see
Figure 4.3) (blue), genes interacting only inr with the JHM (cyan) and the MRX complex genes
(pink). Solid and dashed grey fitted lines are for the 1-1 lineand linear model fits respectively.
Alternative fitness plots with each of the GO terms highlighted are given in Section B.2 of the
Appendix.

56



Chapter 4. Case Studies

Table 4.1: Number of genes interacting withcdc13-1at 27◦C identified using each of four ap-
proaches: Add (Addinallet al., 2011), REM, IHM and JHM. Number of genes annotated with
four example GO terms (telomere maintenance, ageing, response to DNA damage stimulus and
peroxisome organisation) are also listed. For the Addinallet al. (2011) and REM approach, sig-
nificant interactors are classified as those with FDR corrected p-values (q-values)< 0.05. The
label “half data” denotes analyses where only half of the available experimental observations
are used. The JHM uses aMDR × MDP summary after model fitting to classify suppres-
sors and enhancers, comparable with the other three approaches. The full lists of GO terms
for each approach considered are given in a spreadsheet document, freely available online at
http://research.ncl.ac.uk/qfa/HeydariQFABayes/ .
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Add 419 296 715 263 192 455 18 1.52E-06 0.0376 16 4.32E-05 0.1863 69 9.28E-12 8.14E-10 13 0.225 0.468

REM 184 131 315 103 86 189 11 2.37E-05 0.0136 10 0.0004 0.0824 49 7.40E-16 1.73E-13 3 0.855 0.914

IHM 404 172 576 252 113 365 14 6.57E-05 0.0051 16 0.0015 0.0445 55 4.60E-09 3.41E-07 10 0.318 0.524

JHM 665 274 939 475 177 601 18 8.22E-05 0.0155 21 0.0015 0.0986 76 3.52E-09 1.99E-07 24 0.002 0.019

4.2.2. Two stage Bayesian approach

Figure 4.2C is an interaction hierarchical model (IHM) fitness plot withorf∆ level fitness

measures generated using the new Bayesian two-stage methodology with fitness in terms

ofMDR×MDP . 576 genes are identified by the IHM as genetic interactions (Table 4.1).

Logistic parameter posterior means are used to generate fitness measures. For a gene(l)

from the gene deletion library,(eZl) is the fitness for the control and(eα1+Zl+δlγc,l) for

the query in the IHM. For a gene(l) in the query screen, with no evidence of genetic

interaction i.e.δl = 0, fitness will be a linear transformation from the control counterpart

(eα1+Zl). Similar to Figures 4.2A and 4.2B, Figure 4.2C shows how the majority of con-

trol strains are more fit than their query strain counterparts, with a mean fitted line lying

below the line of equal fitness. Comparing the fitted lines in Figures 4.2A and 4.2B with

Figure 4.2C, the IHM shows the largest deviation between thefitted line and the line of

equal fitness, is largely due to the difference inP estimated with the SHM for the control

and query data sets being scaled out by the parameterα1. If we fix P in our Bayesian

models, similar to the frequentist approach, genetic interactions identified are largely the

same, but we then have the problem of choosingP . We recommend estimatingP simul-

taneously with the other model parameters because if the choice ofP is not close to the

true value, growth rater estimates must compensate and don’t give accurate estimates for
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time courses with low carrying capacityK.

It can be seen that many of the interactingorf∆s have large deviations from the genetic

independence line. This is because of the indicator variable in the model, used to describe

genetic interaction. When there is enough evidence for interaction the Bernoulli variable

is set to 1, otherwise it is set to 0. It is interesting to note that non-significantorf∆s,

marked by grey points, lie amongst some of the significant strains. Many such points

have high variance and therefore we are less confident that these interact with the query

mutation. This feature of our new approach is an improvementover that presented in

Addinall et al. (2011), which always shows evidence for an epistatic effectwhen mean

distance from the genetic independence line is large, regardless of strain fitness variability.

An extract from the list of top interactions identified by theIHM is included in Table B.2.

4.2.3. One stage Bayesian approach

Figure 4.2D is a JHMMDR×MDP fitness plot using the new, unified Bayesian method-

ology. TheMDR×MDP fitness plot given in Figure 4.2D is for visualisation and com-

parison with theMDR × MDP fitness plots of the other approaches considered: the

JHM does not make use of a fitness measure. 939 genes are identified by the JHM as

genetic interactions (Table 4.1). Posterior means of modelparameters are used to obtain

the following fitness measures. With the JHM we can obtain anorf∆ level estimate of

the carrying capacity and growth rate(K, r) for a gene (l). For a gene (l) from the gene

deletion library, carrying capacity and growth rate(eK
o
l , er

o
l ) are used to evaluate the fit-

ness for the control and(eα1+Ko
l
+δlγc,l, eβ1+ro

l
+δlωc,l) for the query. For a gene(l) in the

query screen, with no evidence of genetic interaction i.e.δl = 0, carrying capacity and

growth rate will be linear transformations from the controlcounterpart(eα1+Ko
l , eβ1+ro

l ).

Instead of producing a fitness plot in terms ofMDR × MDP , it can also be use-

ful to analyse carrying capacityK and growth rater fitness plots as, in the JHM, evi-

dence for genetic interaction comes from both of these parameters simultaneously, see

Figures B.5 and B.6. Fitness plots in terms of logistic growth parameters are useful for

identifying some unusual characteristics oforf∆s. For example, anorf∆ may be defined

as a suppressor in terms ofK but an enhancer in terms ofr. To enable direct comparison

with the Addinallet al. (2011) analyses we generated aMDR×MDP fitness plot, Fig-

ure 4.2D. An extract from the list of top interactions identified by the JHM is included in

Table B.3.
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Table 4.2: Genes interacting withcdc13-1at 27◦C and GO terms over-represented in the list of
interactions according to each approach A) Number of genes identified for each approach (Add
Addinall et al.(2011), REM, IHM and JHM) and the overlap between the approaches. 4135 genes
from theS. cerevisiaesingle deletion library tested overall. B) Number of GO terms identified for
each approach (Add Addinallet al. (2011), REM, IHM and JHM) and the overlap between the
approaches. 6107S. cerevisiaeGO Terms available.

A. REM:0 REM:1
Add:0 Add:1 Add:0 Add:1

IHM:0
JHM:0 3097 54 31 10
JHM:1 231 78 29 29

IHM:1
JHM:0 1 2 1 0
JHM:1 30 327 0 215

B. REM:0 REM:1
Add:0 Add:1 Add:0 Add:1

IHM:0
JHM:0 5813 21 58 7
JHM:1 46 8 6 10

IHM:1
JHM:0 20 15 3 12
JHM:1 13 54 2 147

4.3. Comparison with previous analysis

4.3.1. Significant genetic interactions

Of the genes identified as interacting withcdc13-1(1038, see Table 4.2A) some are iden-

tified consistently across all four approaches (215 out of 1038, see Table 4.2A). Of the hits

identified by the JHM (939), the majority (639) are common with those in the previously

published Addinallet al. (2011) approach. However, 231 of 939 are uniquely identified

by the JHM and could be subtle interactions which are the result of previously unknown

biological processes.

To examine the evidence for some interactions uniquely identified by the JHM in more

detail we compared the growth curves for three examples fromthe group of interactions

identified only by the JHM. These examples (chz1∆, pre9∆ andpex6∆) are genetic in-

teractions which can be identified in terms of carrying capacity K, but not in terms of

growth rater (see Figure 4.3). By observing the difference between the fitted growth

curve (red) and the expected growth curve, given no interaction (green) in Figure 4.3A,

4.3B and 4.3C we test for genetic interaction. Since the expected growth curves in the

absence of genetic interaction are not representative of either the data or the fitted curves

on the repeat andorf∆ level, there is evidence for genetic interaction.

We chose a prior for the probabilityp of a gene interacting with the background muta-

tion as 0.05. We therefore expected to find 215 genes interacting. The Bayesian models,

for which a prior is applicable (IHM and JHM), find more genes than expected (576 and

939 interactions respectively, Table 4.1), demonstratingthat information in this dataset

can overcome prior expectations. The JHM identifies the highest proportion of genes as

hits out of all methods considered, particularly identifying suppressors ofcdc13-1(Ta-

ble 4.1). In fact, the JHM identifies more hits than the Addinall et al. (2011) approach,
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Figure 4.3: Joint hierarchical model (JHM) logistic growth curve fitting. JHM data fororf∆
repeats have been plotted in A, B and C, with fitted curves overlaid in black for repeat level
parameters, red for theorf∆ level query parameter fit and green for the expectedorf∆ level query
parameter fit with no genetic interaction. A) JHM scatter plot for 8 chz1∆ cdc13-1repeats. B)
JHM scatter plot for 8pre9∆ cdc13-1repeats. C) JHM scatter plot for 8pex6∆ cdc13-1repeats.

even when constrained to using only half of the available data. An important advantage to

our new Bayesian approach is that we no longer have the difficulty of choosing a q-value

threshold. For the Addinallet al.(2011) approach to have similar numbers of interactions

to the JHM, a less stringent q-value threshold would have to be justifieda posterioriby

the experimenter.

4.3.2. Previously known genetic interactions

In order to compare the quality of our new, Bayesian hierarchical models with existing,

frequentist alternatives, we examined the lists of geneticinteractions identified by all the

methods discussed and presented here. Comparing results with expected or previously

known lists of interactions from the relevant literature, we find that genes coding for the

MRX complex (MRE11, XRS2& RAD50), which are known to interact withcdc13-1

(Fosteret al., 2006), are identified by all four approaches considered andcan be seen in a

similar position in all four fitness plots (Figure 4.2A, 4.2B, 4.2C and 4.2D).

By observing the genes labelled in Figure 4.2A and 4.2B we cansee that the frequen-

tist approaches are unable to identify many of the interesting genes identified by the JHM

as these methods are unable to detect interactions for genesclose to the genetic inde-

pendence line. The JHM has extracted more information from deletion strain fitnesses

observed with high variability than the Addinallet al. (2011) approach by sharing more

information between levels, consequently improving our ability to identify interactions

for genes close to the line of genetic independence (subtle interactions).CTI6, RTC6and

TGS1are three examples of subtle interactors identified only by the JHM (interaction in

terms ofr but notK) which all have previously known telomere-related functions (Franke
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et al., 2008; Keoghet al., 2005; Addinallet al., 2008).

We tested the biological relevance of results from the various approaches by carrying

out unbiased Gene Ontology (GO) term enrichment analyses onthe hits (lists of genes

classified as having a significant interaction withcdc13-1) using the bioconductoR pack-

age GOstats (Falcon & Gentleman, 2007). For the GO term enrichment analysis R code

used, see Section B.5 of the Appendix.

All methods identify a large proportion of the genes in the yeast genome annotated

with the GO terms “telomere maintenance” and “response to DNA damage stimulus”

(see Table 4.1), which were the targets of the original screen, demonstrating that they all

correctly identify previously known hits of biological relevance. Interestingly, the JHM

identifies many more genes annotated with the “ageing” GO term, which we also ex-

pect to be related to telomere biology (though the role of telomeres in ageing remains

controversial) suggesting that the JHM is identifying novel, relevant interactions not pre-

viously identified by the Addinallet al. (2011) screen (see Table 4.1). Similarly, the

JHM identifies a much larger proportion of the PEX “peroxisomal” complex (included

in GO term: “peroxisome organisation”) as interacting withcdc13-1(see Table 4.1) in-

cluding all of those identified in Addinallet al. (2011). Many of the PEX genes show

large variation in bothK and r, an example can be seen in Figure 4.3C forpex6∆.

Members of the PEX complex cluster tightly, above the fitted line in the fitness plot

Figure 4.2D (fitness plots with highlighted genes for GO terms in Table 4.1 are given

in Section B.2 of the Appendix), demonstrating that although these functionally related

genes are not strong interactors, they do behave consistently with each other, suggest-

ing that the interactions are real. The results of tests for significant over-representation

of all GO terms are given in a spreadsheet document, freely available online athttp:

//research.ncl.ac.uk/qfa/HeydariQFABayes/ .

Overall, within the genes interacting withcdc13-1identified by the Addinallet al.

(2011), REM, IHM and JHM approaches, 274, 245, 266 and 286 GO terms were signif-

icantly over-represented respectively (out of 6235 possible GO terms, see Table 4.2B).

147 were common to all approaches and examples from the groupof GO terms over-

represented in the JHM analysis and not in the Addinallet al. (2011) analysis seem in-

ternally consistent (e.g. “peroxisome organisation” GO term) and consistent with the bi-

ological target of the screen, telomere biology (significant GO terms for genes identified

only by the JHM are also included in the spreadsheet document).

Extracts from the list of top interactions identified by boththe IHM and JHM are

provided in Section B.3. Files including the full lists of genetic interactions for the
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IHM and JHM are freely available online athttp://research.ncl.ac.uk/qfa/

HeydariQFABayes/ . Alternative fitness plots to Figure 4.2A, B, C & D with gene

labels for those showing significant evidence of genetic interaction are provided in Fig-

ure 1.4 and Section B.7. As suppressors and enhancers in the JHM may be in terms of both

K andr, fitness plots in terms ofK andr with gene labels for those showing significant

evidence of genetic interaction are given in Figure B.10 andFigure B.11 respectively.

To further compare the similarity of the Bayesian hierarchical models and frequentist

analysis, a table of Spearman’s rank correlation coefficients (Spearman, 1987) between

genetic strengths and aMDR ×MDP correlation plot of the JHM versus the Addinall

et al. (2011) are given in Section B.8 of the Appendix.

4.3.3. Hierarchy and model parameters

The hierarchical structure and model choices included in the Bayesian JHM and IHM

are derived from the known experimental structure of QFA. Different levels of variation

for differentorf∆s are expected and can be observed by comparing distributions of fre-

quentist estimates or by visual inspection of yeast cultureimages. The direct relationship

between experimental and model structure, together with the richness of detail and num-

ber of replicates included in QFA experimental design, reassures us that overfitting is not

an issue in this analysis. For theura3∆ 27◦C andcdc13-127◦C experiment with 4294

orf∆s there are 1.25 times the number of parameters in the JHM (∼200,000) compared to

the two stage REM approach (∼160,000) but when compared to the large number of pairs

of data points (∼830,000) there are sufficient degrees of freedom to justify our proposed

Bayesian models.

4.3.4. Computing requirements

Our Bayesian hierarchical models require significant computational time. As expected,

the mixing of chains in our models is weakest at population level parameters such as

Kp andαc. For theura3∆ 27◦C andcdc13-127◦C dataset, the JHM takes∼2 weeks

to converge and produce a sufficiently large sample. The two stage Bayesian approach

takes one week (with the IHM part taking∼1 day), whereas the REM takes∼3 days and

the Addinallet al. (2011) approach takes∼3 hours. A QFA experiment can take over a

month from start to finish and so analysis time is acceptable in comparison to the time

taken for the creation of the data set but still a notable inconvenience. We expect that

with further research effort, computational time can be decreased by using an improved

inference scheme and that inference for the JHM could be completed in less than a week
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without parallelisation. MCMC algorithms are inherently sequential so, parallelisation

is not completely trivial and may be considered for future development. Parallelisation

may reduce computational time by partitioning the state space into segments that can

be updated in parallel (Rosenthal, 2000). For the JHM it may be possible to partition

by QFA screens to reduce computational time. Further, parallelisation may be possible

acrossorf∆s for even further reduction to computational time.

4.3.5. Convergence diagnostics

Evidence of convergence for our Bayesian models in Section 4.2.2 and 4.2.3 can be shown

by observing posterior samples from the MCMC samplers used.Figures 4.4, 4.5 and 4.6

show evidence of convergence for a subset of population level parameters from the SHM,

IHM and JHM respectively. Posterior samples of 1000 particles are obtained after a burn-

in period of 800k and a thinning of every 100 observations forthe SHM, IHM and JHM.

Population level parameters are found to have the worst mixing in our models due

to the large number of lower level parameters that population level parameter sampling

distributions are conditioned upon. We demonstrate how ourpopulation parameters have

converged with Trace plots, ACF and density plots in Figures4.4, 4.5 and 4.6. Trace plots

show that the posterior samples are bound between a fixed range of values, indicating

convergence. Auto-correlation functions do not have any large peaks above the dashed

blue line for significant evidence of dependence, showing that each sequential sample

value from the posterior distributions are largely uncorrelated with previous values and

ensuring that the effective sample size is similar to the actual sample size. ACF plots in

Figures 4.5 and 4.6 do show some dependence within our posterior samples but as the

ACF decays rapidly before a lag of 5, there is only a small amount that will not be a

problem for inference. Density plots show that that there isenough information within

the models to give sufficiently peaked single modes, converging around a fixed region of

plausible values.

Table 4.3 gives diagnostic statistics for the population parameters considered in Fig-

ures 4.4, 4.5 and 4.6. We can see in Table 4.3 that the lowest effective sample size of

our model parameters is324, for the JHMP parameter, followed by378 for the SHMP

parameter. Of all our model parameters,P was found to have the lowest effective sample

size, but we are still able to find a large enough sample for ourinference. Heidelberg and

Welch P-values do not show evidence against the stationary of our chains, using a cut-

off of 0.10. The above statistics are calculated for all model parameters and are used to

identify where mixing is poor and if our model has reached convergence. All chains are
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Table 4.3: Bayesian model convergence statistics for the two-stage approach in Section 4.2.2 and
one-stage approach in Section 4.2.3. Heidelberg and Welch P-values and the effective sample size
have been calculated for a subset of population level parameters.

Model Parameter Effective sample size Heidelberg and WelchP-value
SHM Kp 521 0.49

rp 441 0.11
P 378 0.56
νp 1000 0.17

IHM Zp 677 0.35
σz 430 0.14
νp 1000 0.46
αc 914 0.59

JHM Kp 473 0.72
rp 566 0.12
P 324 0.12
νp 1000 0.13
α 407 0.36
β 808 0.67

accepted for parameter posterior samples in Section 4.2.2 and 4.2.3 as effective sample

sizes are found to be greater than300 and Heidelberg and Welch P-values greater than

0.10 for every chain.
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Figure 4.4: Convergence diagnostics for the separate hierarchical model (SHM). Trace, auto-
correlation and density plots for the SHM parameter posteriors (sample size = 1000, thinning
interval = 100 and burn-in = 800000), see Section 4.2.2. Posterior (black) and prior (red) densities
are shown in the right hand column.
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Figure 4.5: Convergence diagnostics for the interaction hierarchicalmodel (IHM). Trace, auto-
correlation and density plots for the IHM parameter posteriors (sample size = 1000, thinning
interval = 100 and burn-in = 800000), see Section 4.2.2. Posterior (black) and prior (red) densities
are shown in the right hand column.

66



Chapter 4. Case Studies

0 200 400 600 800

0
.1
4
1
5

0 5 10 15 20 25 30

0
.0

0
.6

A
C
F

0.1410 0.1420 0.1430

0
8
0
0

D
e
n
si
ty

0 200 400 600 800

0
.5
4
5

0
.5
6
0

0 5 10 15 20 25 30

0
.0

0
.6

A
C
F

0.545 0.555

0
1
0
0

D
e
n
si
ty

0 200 400 600 800

0
.4
1
6

0
.4
2
0

0 5 10 15 20 25 30

0
.0

0
.6

A
C
F

0.416 0.418 0.420

0
2
0
0

D
e
n
si
ty

0 200 400 600 800

6
.5
4
e
−
0
5

0 5 10 15 20 25 30

0
.0

0
.6

A
C
F

6.52e−05 6.58e−05

0
2
0
0
0
0
0
0

D
e
n
si
ty

0 200 400 600 800

9
8
0
0
0

0 5 10 15 20 25 30

0
.0

0
.6

A
C
F

96000 100000 104000

0
.0
0
0
0
0D
e
n
si
ty

0 200 400 600 800

5
.3
5
0

5
.3
7
0

0 5 10 15 20 25 30

0
.0

0
.6

A
C
F

5.350 5.360 5.370

0
6
0

D
e
n
si
ty

νpe

β2e

α2e

Particle number                                               Lag                                             Parameter value

p
Ke

pre

Pe

^

^

^

^

^

^

Figure 4.6: Convergence diagnostics for the joint hierarchical model (JHM). Trace, auto-
correlation and density plots for the JHM parameter posteriors (sample size = 1000, thinning
interval = 100 and burn-in = 800000), see Section 4.2.3. Posterior (black) and prior (red) densities
are shown in the right hand column.
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4.3.6. Simulation study

A simulation study was carried out to compare the performance of the different ap-

proaches considered for a simulated QFA screen comparison from the JHM. We believe

that the JHM closely models a QFA screen comparison and so by simulating a QFA screen

comparison data set from the JHM we will obtain a data set for which we know the full

set of true genetic interactions. Simulated JHM data will include important features of

QFA screen comparison data, such as a hierarchical structure and genetic interaction in

terms of bothK andr.

Two simulated QFA screens where generated, a control and query screen with some

condition effect in the query. Each screen consists of 4300orf∆s and 8 logistic growth

time-course repeats for eachorf∆. Each time-course consists of 10 measurements, evenly

distributed across 6 days. 430 genes were set as genetic interactors in the query screen.

The true Population level parameters are chosen from frequentist estimates of 10 historic

data sets,orf∆ and repeat level parameters are then generated from the JHM structure in

Table 3.3 and growth time-course data simulated.

Table 4.4 shows the number of true genetic interactions identified, suppressors and

enhancers, as well as false positives (FPs) and false negatives (FN) for each of the ap-

proaches considered. As expected, the JHM identifies the largest number of true genetic

interactions. The number of suppressors identified by the JHM is higher than the Addi-

nall et al. (2011), REM and IHM but for enhancers, all methods perform very similarly.

Performance of the different methods can be observed through the FP and FN rates. From

Table 4.4 we can calculate FP and FN rates, where FP rate= 1−“sensitivity” and FN

rate= 1−“specificity”. FP rates for the Addinallet al. (2011), REM, IHM and JHM are

0.078, 0.042, 0.006 and0.002 respectively. The JHM has the lowest FP rate when com-

pared to the other approaches available. Frequentist approaches Addinallet al.(2011) and

REM have large FP rates when compared to the two Bayesian approaches. The Addinall

et al. (2011) approach has more false positives than true genetic interactions. FN rates

for the Addinallet al. (2011), REM, IHM and JHM are0.488, 0.570, 0.593 and0.270

respectively. Two-stage approaches Addinallet al. (2011), REM and IHM have large FP

rates when compared to the JHM. The Addinallet al. (2011), REM and IHM have∼200

false negatives, approximately double the number identified by the JHM (∼100). Observ-

ing the genes that have been missed by the two-stage approaches, we find that they often

fail to identify genetic interactions when evidence is weakin only K or r, even if there

is sufficient evidence in the other parameter such that the JHM can identify the genetic

interaction.
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From our simulation study we have been able to show that the two-stage frequen-

tist approaches have high false positives and false negatives. From the number of false

positives identified for each method, we can see that the non-hierarchical Addinallet al.

(2011) approach has the worst performance, followed by the hierarchical two-stage ap-

proaches. As expected, the JHM is the best approach when we consider a simulated hier-

archical data set with genetic interaction in terms ofK andr, as the two-stage approaches

fail to capture more subtle genetic interactions.

Table 4.4: Simulation study with a joint hierarchical model (JHM) simulated dataset. A QFA
screen comparison was generated from the JHM and 430 genes are set as genetic interactors, see
Section 4.3.6. Applications of the (Addinallet al., 2011), REM, two-stage Bayesian (IHM) and
one-stage Bayesian (JHM) approaches are made to the JHM simulated dataset and performance
compared. Suppressors and enhancers are defined in terms ofMDR×MDP .

Model True interactions True Suppressors True Enhancers False Positives False Negatives Sensitivity Specificity
identified (N=430) (N=274) (N=156)

Addinall et al. (2011) 220 158 62 303 210 0.922 0.512
REM 185 100 85 163 245 0.958 0.430
IHM 175 130 45 23 255 0.994 0.407
JHM 314 256 58 8 116 0.998 0.730

4.4. Bayesian inference code comparison

Inference for the Bayesian hierarchical models in this thesis is carried out using code

written in the C programming language. To see how our code compares to commonly

used software available for carrying out inference for Bayesian models, we have tested

posterior samples for our C code and equivalent code using Just Another Gibbs Sampler

(JAGS) software (written in C++) (Plummer, 2003) . We carry out our JAGS analysis

within the R package “rjags” (Plummer, 2010) which providesa more familiar framework

for an R user implementing the JAGS software. The BUGS (Bayesian inference Using

Gibbs Sampling) language (Lunnet al., 2000a) is used to describe models in JAGS. The

SHM, IHM and JHM have each been described with the BUGS language in Section B.6

of the Appendix.

For the following comparison we use a subset from thecdc13-127◦C vsura3∆ 27
◦C

suppressor/enhancer data set described in Section 4.2. A subset of 50orf∆s (for both the

control and query) are chosen, each with 8 time-course repeats. With a smaller data set

we are able to collect large posterior sample sizes, sufficient to carry out a comparison

between posterior samples. Density plots are used to visually compare the similarity of

the posterior samples from the C and JAGS code. The KolmogorovSmirnov test (Huber-

Carol, 2002) and unpaired two-sample Student’s t-test (Witte & Witte, 2009) are used to
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Table 4.5: Unpaired t-test and Kolmagorov-Smirnov p-values comparing posterior samples from
the joint hierarchical model (JHM) using both C and Just Another Gibbs Sampler (JAGS) software.
An extract of JHM parameters are given for both the C programming language and JAGS software.
Posterior means are also included for both approaches. t-tests are carried out on the log posterior
samples i.e.K̂p in place ofeK̂p to assume normality.

Parameter C Code posterior mean JAGS posterior mean t-test (with log posterior samples) Kolmagorov-Smirnov test

eK̂p 0.143 0.143 0.452 0.401
er̂p 4.639 4.641 0.424 0.482

eP̂ 2.537 · 1004 2.517 · 1004 0.137 0.116
eν̂p 7.402 · 1004 7.416 · 1004 0.250 0.190
eα̂c 0.304 0.304 0.203 0.140

eβ̂c 0.384 0.384 0.156 0.146

test for significant difference between posterior samples from our C and JAGS code.

A comparison of posterior samples for our most sophisticated model, the JHM, is

given below. Posterior samples of 100k particles are obtained after a burn-in period of

1000k and a thinning of every 100 observations for both the C and JAGS code. Compu-

tational time for the C and JAGS code is∼ 30 hours and∼ 400 hours respectively. The

minimum effective sample size per second (ESSmin/sec) for the C and JAGS code is∼1

and∼0.1 respectively, demonstrating that the C code is∼ 10× faster.

Figure 4.7 gives density plots for an extract of JHM parameters for the C and JAGS

software. Visually there is no significant difference between the posterior sample den-

sity plots in Figure 4.7. Of the parameters shown, the weakest effective sample size

(∼ 80000ESS) is for the initial inoculum parameterP , but this is sufficiently large enough

ESS to test if posterior samples show a significant difference. Table 4.5 demonstrates fur-

ther that there is no significant difference found between the parameters shown. The

unpaired t-test for log posterior samples (for normality assumption) and Kolmogorov-

Smirnov test p-values are all greater than 0.10 for the parameters given, including the

inoculum density parameterP . Overall we find no significant evidence against the C

code and JAGS code sampling from the same posterior distributions.

As carrying out inference using C is∼10 times faster than the JAGS equivalent code

we prefer the C code for our Bayesian hierarchical models. Obtaining sufficiently sized

independent posterior samples of our posterior distributions for a larger data set of∼4000

orf∆s, we estimate our C code to be at least more than∼50× faster than the equivalent

JAGS as we find the JAGS code to have exponential computational costs as we introduce

larger data sets. JAGS is very useful for model exploration as it is fast and simple to

describe complex models. The JAGS software is so prohibitively slow for the JHM, that

an experimenter is likely to not carry out such inference anduse a more simple or faster
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Figure 4.7: Density plots for posterior samples from the joint hierarchical model (JHM) using the
C programming language (red) and Just Another Gibbs Sampler(black) software. Density plots
for the JHM parameter posteriors (sample size = 100000, thinning interval = 100 and burn-in =
1000000).

method, justifying the use of the C programming language to carry out inference. Fur-

ther improvements such as the introduction of parallelisation may lead to more favourable

computational times in the future.
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4.5. Further case studies

In this section we briefly introduce different data sets thatmay be considered for fur-

ther investigation and research. We can also see how the JHM performs for different

experimental conditions by applying the JHM to different QFA screen comparisons, see

MDR×MDP fitness plots in Figures 4.8-4.11. The data sets used in Figures 4.8-4.11

are currently unpublished from the Lydall lab. For each of the data sets, the JHM in Ta-

ble 3.3 is applied with the prior hyper-parameters in Table B.1. Posterior samples of 1000

particles are obtained after a burn-in period of 800k, and a thinning of every 100 observa-

tions. Similarly to Section 4.3.5, chains from our MCMC sampler are accepted where the

effective sample sizes are greater than300 and Heidelberg and Welch P-values are greater

than0.10 for every chain. As in the Addinallet al.(2011) analysis, each experiment has a

list of 159 genes stripped from our final list of genes for biological and experimental rea-

sons. Results for thecdc13-1exo1∆ 27
◦C vscdc13-127◦C andcdc13-1rad9∆ 27

◦C vs

cdc13-127◦C experiments have further genes removed for biological andexperimental

reasons, 23 and 13 genes respectively (a total of 182 and 172 genes respectively).

Figure 4.8 is acdc13-1exo1∆ 27
◦C vs cdc13-127◦C suppressor/enhancer analysis

for finding genes that interact withexo1in a telomere maintenance defective background

(cdc13-1at27◦C). Similarly, Figure 4.9 is acdc13-1rad9∆ 27
◦C vscdc13-127◦C sup-

pressor/enhancer analysis for finding genes that interact with rad9 in a telomere main-

tenance defective background. Figure 4.10 is ayku70∆ 37
◦C vsura3∆ 37

◦C suppres-

sor/enhancer analysis for finding genes that interact withyku70at high temperature. Fig-

ure 4.11 is an example of a temperature sensitivity experiment, for finding genes that

interact with the high temperature of37◦C. Figures 4.8-4.11 demonstrate that the JHM

can capture different linear relationships that are above or below the 1-1 line. Curvature

of the data in Figures 4.8-4.11 suggests that the linear relationships modelled by the JHM

may be improved through linearising transformations of thedata. Extending the JHM

to account for the curvature in the data may improve our modelfit and allow to better

determine genes which significantly interact.

Table 4.6 compares the number of suppressors and enhancers estimated for each of

the experiments considered. The experiments in Table 4.6 have similar numbers of ge-

netic interactions, ranging from 358 to 511, but much lower than thecdc13-127◦C vs

ura3∆ 27
◦C experiment which has939. The experiments introduced in this section also

differ from thecdc13-127◦C vsura3∆ 27
◦C experiment as they have more enhancers

than suppressors, further demonstrating the JHM’s abilityto model different experimental
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situations and the non-restrictive choice of priors (TableB.1).

Table 4.6: Number of joint hierarchical model (JHM) interactions for QFA datasets given in
Section 4.5. Interactions for each dataset is split into suppressors and enhancers. The number of
interactions found with the extensions to the joint hierarchical model (see Section 4.6) are also
given. Each QFA screen comparison consists of 4294orf∆s. Results for all experiments have a
list of 159 genes removed from the final list of interactions for biological and experimental reasons.
Results for thecdc13-1exo1∆ 27

◦C vscdc13-127◦C andcdc13-1rad9∆ 27
◦C vscdc13-127◦C

experiments have further genes removed for biological and experimental reasons, 23 and 13 genes
respectively (a total of 182 and 172 genes respectively).

Query screen Control screen Interactions Suppressors Enhancers
cdc13-1exo1∆ 27

◦C cdc13-127◦C 388 81 307
cdc13-1rad9∆ 27

◦C cdc13-127◦C 358 73 285
yku70∆ 37

◦C ura3∆ 37
◦C 511 104 407

ura3∆ 37
◦C ura3∆ 20

◦C 460 138 322

Model forcdc13-127◦C vs Interactions Suppressors Enhancers
ura3∆ 27

◦C experiment
JHM 939 665 274

JHM-Batch 553 378 174
JHM-Transformation 901 658 243

Table 4.7A shows the overlap in genes with significant evidence of genetic interactions

between the different QFA comparisons considered. The largest number of overlapping

genetic interactions are found with thecdc13-1∆ 27
◦C vsura∆ 27

◦C experiment, over-

lapping with 301 and 263 genes from thecdc13-1exo1∆ 27
◦C vs cdc13-127◦C and

cdc13-1rad9∆ 27
◦C vscdc13-127◦C experiment respectively. Thecdc13-1∆ 27

◦C vs

ura∆ 27
◦C, cdc13-1exo1∆ 27

◦C vscdc13-127◦C andcdc13-1rad9∆ 27
◦C vscdc13-1

27
◦C experiments are expected to overlap most as they are designed to find genes inter-

acting in acdc13-1background. The smallest number of overlapping genetic interactions

are found with theura3∆ 37
◦C vsura3∆ 20

◦C andyku70∆ 37
◦C vsura3∆ 37

◦C exper-

iment. Theura3∆ 37
◦C vsura3∆ 20

◦C andyku70∆ 37
◦C vsura3∆ 37

◦C experiments

are expected to have the least overlap as they are not designed to find genes interacting

in a cdc13-1background. Theyku70∆ 37
◦C vs ura3∆ 37

◦C experiment is designed

to look at telomeres, but instead of disrupting the telomerecapping protein Cdc13 using

cdc13-1, a yku70∆ mutation is made such that the protein Yku70 (a telomere binding

protein which guides the enzyme telomerase to the telomere (Addinall et al., 2011)) is

no longer produced by the cell. Furtherura3∆ 37
◦C vs ura3∆ 20

◦C is designed to
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investigate temperature sensitivity only.

Table 4.7B shows the overlap in significant GO terms between the different QFA com-

parisons considered. The largest number of overlapping significant GO terms are found

with thecdc13-1∆ 27
◦C experiment, overlapping with∼150 GO terms for each experi-

ment. The smallest overlap withcdc13-1∆ 27
◦C vsura∆ 27

◦C experiment is 110 GO

terms with theura3∆ 37
◦C vsura3∆ 20

◦C experiment. The smallest number of overlap-

ping genetic interactions are for theura3∆ 37
◦C vsura3∆ 20

◦C experiment, followed

by yku70∆ 37
◦C vsura3∆ 37

◦C, with∼110 and∼120 GO terms overlapping with the

other experiments respectively. Similarly to the overlap of genes with significant evi-

dence of genetic interaction, the overlap of significant GO terms shows that ourcdc13-1

background experiments share the most GO terms and that the temperature sensitivity

experimentura3∆ 37
◦C vsura3∆ 20

◦C has the least overlap.

We have shown that the JHM can successfully model different experimental data sets,

Figures 4.8-4.11 are included as a reference for further research. Of the different ex-

periments we can see thatcdc13-127◦C vs ura3∆ 27
◦C is the most dissimilar to the

other experiments due to the large number of genetic interactions, 939 in total (see Ta-

ble 4.6). The next largest number of genetic interactions is511 with theyku70∆ 37
◦C

vs emphura3∆ 37
◦C experiment, which is approximately half the genes found for the

cdc13-127◦C vsura3∆ 27
◦C experiment. Tables 4.7A and 4.7B show that the overlap

between QFA comparisons is as expected using the JHM, with the closer related exper-

iments sharing the most overlap. To account for the curvature of the data observed in

Figures 4.8-4.11 we introduce a JHM with linearising transformations in the next section.

Further research may include developing models that can incorporate multiple QFA com-

parisons to find evidence of genetic interactions between query screens and incorporate

more information within our models.
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Table 4.7: Overlap between different QFA comparisons for genes interacting and gene ontology
terms over-represented in lists of interactions. For a faircomparison, any genes removed from the
results of a QFA comparison for biological and experimentalreasons are removed for all experi-
ments, therefore results for all experiments have a list of 195 genes (159+23+13, see Table 4.6)
removed from the final list of interactions for biological and experimental reasons. A) Number
of genes identified for each QFA comparison and the overlap between QFA comparisons. 4099
genes from theS. cerevisiaesingle deletion library are considered. B) Number of GO terms iden-
tified for each approach and the overlap between QFA comparisons. 6094S. cerevisiaeGO Terms
available.

A. cdc13-1∆ 27
◦C cdc13-1exo1∆ 27

◦C cdc13-1rad9∆ 27
◦C yku70∆ 37

◦C ura3∆ 37
◦C

vs ura∆ 27
◦C vscdc13-127◦C vscdc13-127◦C vsura3∆ 37

◦C vsura3∆ 20
◦C

cdc13-1∆ 27
◦C vsura∆ 27

◦C 926 N/A N/A N/A N/A
cdc13-1exo1∆ 27

◦C vscdc13-127◦C 301 386 N/A N/A N/A
cdc13-1rad9∆ 27

◦C vscdc13-127◦C 263 245 355 N/A N/A
yku70∆ 37

◦C vsura3∆ 37
◦C 252 155 146 506 N/A

ura3∆ 37
◦C vsura3∆ 20

◦C 223 152 149 164 455

B. cdc13-1∆ 27
◦C cdc13-1exo1∆ 27

◦C cdc13-1rad9∆ 27
◦C yku70∆ 37

◦C ura3∆ 37
◦C

vs ura∆ 27
◦C vscdc13-127◦C vscdc13-127◦C vsura3∆ 37

◦C vsura3∆ 20
◦C

cdc13-1∆ 27
◦C vsura∆ 27

◦C 282 N/A N/A N/A N/A
cdc13-1exo1∆ 27

◦C vscdc13-127◦C 142 188 N/A N/A N/A
cdc13-1rad9∆ 27

◦C vscdc13-127◦C 151 130 212 N/A N/A
yku70∆ 37

◦C vsura3∆ 37
◦C 150 119 125 245 N/A

ura3∆ 37
◦C vsura3∆ 20

◦C 110 100 112 119 195
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Figure 4.8: cdc13-1exo1∆ 27
◦C vs cdc13-127◦C joint hierarchical model (JHM) fitness plot

with orf∆ posterior mean fitnesses. The JHM does not does not make use ofa fitness measure
such asMDR ×MDP but the fitness plot is given in terms ofMDR ×MDP for comparison
with other approaches which do.orf∆ strains are classified as being a suppressor or enhancer
based on one of the two parameters used to classify genetic interaction, growth parameterr, this
means occasionally strains can be more fit in the query experiment in terms ofMDR ×MDP

but be classified as enhancers (green). Further fitness plot explanation and notation is given in
Figure 4.2.
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Figure 4.9: cdc13-1rad9∆ 27
◦C vs cdc13-127◦C joint hierarchical model (JHM) fitness plot

with orf∆ posterior mean fitnesses. The JHM does not does not make use ofa fitness measure
such asMDR ×MDP but the fitness plot is given in terms ofMDR ×MDP for comparison
with other approaches which do.orf∆ strains are classified as being a suppressor or enhancer
based on one of the two parameters used to classify genetic interaction, growth parameterr, this
means occasionally strains can be more fit in the query experiment in terms ofMDR ×MDP

but be classified as enhancers (green). Further fitness plot explanation and notation is given in
Figure 4.2.
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Figure 4.10: yku70∆ 37
◦C vs ura3∆ 37

◦C joint hierarchical model (JHM) fitness plot with
orf∆ posterior mean fitnesses. The JHM does not does not make use ofa fitness measure such
asMDR ×MDP but the fitness plot is given in terms ofMDR ×MDP for comparison with
other approaches which do.orf∆ strains are classified as being a suppressor or enhancer based
on one of the two parameters used to classify genetic interaction, growth parameterr, this means
occasionally strains can be more fit in the query experiment in terms ofMDR ×MDP but be
classified as enhancers (green). Further fitness plot explanation and notation is given in Figure 4.2.
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Figure 4.11: ura3∆ 37
◦C vsura3∆ 20

◦C joint hierarchical model (JHM) fitness plot withorf∆
posterior mean fitnesses. The JHM does not does not make use ofa fitness measure such as
MDR × MDP but the fitness plot is given in terms ofMDR × MDP for comparison with
other approaches which do.orf∆ strains are classified as being a suppressor or enhancer based
on one of the two parameters used to classify genetic interaction, growth parameterr, this means
occasionally strains can be more fit in the query experiment in terms ofMDR ×MDP but be
classified as enhancers (green). Further fitness plot explanation and notation is given in Figure 4.2.
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4.6. Extensions of the joint hierarchical model

In this section we briefly introduce two new extensions of theJHM for further investiga-

tion and research. An extension to the JHM, given in Table 3.3, is to consider a batch

effect. Batch effects are technical sources of variation from the handling of experimental

cultures (Leeket al., 2010; Chenet al., 2011). Batch effects can be confounded with the

biology of interest, leading to misleading results and conclusions.

A QFA screen comparison is carried out between two QFA screens. Each QFA screen

consists of multiple 384 plates grown over time (see Figure 2.3), typically with eachorf∆

repeat on a different 384 plate. For thecdc13-127◦C vsura3∆ 27
◦C experiment, each

QFA screen is built of 120 384 spot plates (240 total unique plates). Each 384 plate

is created sequentially and may be created by a different experimenter. The 384 plates

may therefore differ due to factors that the experimenters do their best to control such

as the amount of nutrition in a plate, temperature, or other environmental effects. Where

orf∆ repeats are carried out across multiple plates, differences in plates can therefore be

captured by introducing a batch effect into the model.

Through careful planning and improved experimental design, batch effects can be re-

duced or removed. When we are unable to improve our experimental design any further

we may be interested in accounting for a batch effect within our model. Introducing pa-

rameters to model batch effects in our experiment we can account for any differences

between the 240 384 spot plates. A JHM with batch effects (JHM-B), described in Ta-

ble 4.9, will be able to improve inference by including more of the experimental structure.

The model in Table 4.9 introduces a batch effectκb andλb, for a plateb, to capture any

batch effect in carrying capacityK and growth rater respectively. A batch effect will be

estimated within the model and consequently any confounding with orf∆ level carrying

capacityK and growth rater parameters will be removed. Using frequentist estimates of

the batch effects in the QFA screens, a normal prior was chosen to describe batch effect

parameters, allowing either a positive or negative effect to be incorporated for eachorf∆

repeat in terms ofK andr.

Another extension of the JHM is to consider a transformationto linearise the relation-

ship describing genetic independence in the JHM. When carrying out linear regression

we may be interested in linearising the data to improve the linear relationship (Kutner

et al., 2005). There are many different transformations used for linearising data, the most

common are log and power transformations. Power transformations are families of power
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functions that are typically used to stabilise variance andmake our data more Normal

distribution-like. For a variablex, a power function is of the formf : x 7→ cxr, for

c, r ∈ R, wherec andr are constant real numbers. The Box-Cox transformation (Box&

Cox, 1964) is a particular case of power transformation thatis typically used to transform

data and linearise a relationship within a data set.

Without linearising our data, we may not be describing genetic independence within

our model correctly, leading to misleading results and conclusions. A JHM with transfor-

mations (JHM-T), described in Table 4.10, will be able to improve inference by ensuring a

more linear relationship is made between the control and query screen. Genetic indepen-

dence within the JHM is described as a linear relationship (see Sections 1.2.1 and 3.4.1)

for both carrying capacityK and growth rater. We may not believe there to be a per-

fectly linear relationship between the control and query for bothK andr. Introducing a

power transformation for the model of genetic independencein terms ofK andr can al-

low us to linearise the relationship and better model genetic independence. The model

in Table 4.10 introduces the transformation parametersφ andχ at anorf∆ level for

both the carrying capacityK and growth rater respectively, whereφ > 0 andχ > 0.

The “vanilla” JHM assumes an additive model of epistasis with (αc + Ko
l + δlγcl, βc +

rol + δlωcl), whereαc andβc are the scale parameters, as we are considering logorf∆

parameters. The “vanilla” JHM effectively assuming a multiplicative model on the orig-

inal scale of the data i.e.(eαceK
o
l
+δlγcl, eβcer

o
l
+δlωcl). By introducing new parametersφ

andχ to scale the control and query data
(

αc+Ko
l
+δlγcl

φ
,
βc+ro

l
+δlωcl

χ

)

we can expect to

have a power transformation with the control and query on theoriginal scale of the data
[

(

eαceK
o
l
+δlγcl

) 1
φ ,
(

eβcer
o
l
+δlωcl

) 1
χ

]

. The transformation parameters give the same trans-

formation to both the control and query screens. Our model will learn aboutφ andχ,

adjusting the relationship of genetic independence and consequently those identified as

genetic interaction. Choosing to include a multiplicativetransformation parameter where

the model describes genetic independence (as an additive model) will give the model the

flexibility to adjust the linear relationship between the control and query screens. Prior

hyper-parameter choice for the transformation effect mustbe strictly positive and centred

at1 (no transformation effect) and so a gamma distribution witha mean of1 is chosen for

bothχ andφ.

Figures 4.12 and 4.13 show JHM-B and JHM-TMDR×MDP fitness plots respectively,

for thecdc13-127◦C vsura3∆ 27
◦C experiment. Prior hyper-parameter choices for the

models are given Table B.1. Bayesian inference and MCMC methods for the JHM in Ta-
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ble 3.3 is carried out similarly for both the JHM-B and JHM-T.Posterior samples of 1000

particles are obtained after a burn-in period of 800k, and a thinning of every 100 obser-

vations. Similarly to Section 4.3.5, chains from our MCMC sampler are accepted where

the effective sample sizes are greater than300 and Heidelberg and Welch P-values are

greater than0.10 for every chain. Similarly to the other previous modelling approaches

considered (including the “vanilla” JHM), a list of 159 are stripped from our final list of

genes for biological and experimental reasons.

The JHM-B fit in Figure 4.12 has many less interactions on the plot than the “vanilla”

JHM fitness plot, this may be evidence of a plate effect existing. The JHM-T fit in Fig-

ure 4.13 is largely the same as the “vanilla” JHM fitness plot.It is worth noting that the

JHM-T model fit in Figure 4.13 has posterior mean estimates ofφ̂ = 0.96 andχ̂ = 0.87,

2dp, suggesting that a transformation may only exist in terms of r.

Table 4.6 compares the number of suppressors and enhancers estimated for the two

extensions of the JHM. The JHM-B reduces the number of genetic interactions from the

“vanilla” JHM from 939 to 553, and similarly reduces the number of suppressors and

enhancers. Therefore from the “vanilla” JHM to the JHM-B, there is approximately a

41% reduction of genes identified as showing significant evidence of genetic interaction,

strong evidence for the presence of a batch effect. The JHM-Tis more similar to the

JHM with 901 interactions, reducing both suppressors and enhancers by asmall amount.

Therefore from the “vanilla” JHM to the JHM-T, there is approximately a4% reduction

of genes identified as showing significant evidence of genetic interaction, a much smaller

reduction from the JHM than that observed with the JHM-B.

Table 4.8A shows that the number of genes that overlap with the genes identified by

the “vanilla” JHM is 531 and 886 for the JHM-B and JHM-T respectively. Therefore the

number of genes identified as interacting by the “vanilla” JHM and now no longer iden-

tified is 408 and53 for the JHM-B and JHM-T respectively. This further demonstrates

the large reduction in genetic interactions when using the JHM-B, suggesting that a batch

effect is present within the data. The number of genes newly identified as showing signif-

icant evidence of genetic interaction by the JHM-B and JHM-Tis 22 and15 respectively.

These numbers are small relative to the number of genes that are no longer identified,

indicating that the biggest change from the “vanilla” JHM isthat the JHM-B and JHM-T

are more stringent for determining significant genetic interactions. Table 4.8A shows that

the “vanilla” JHM and JHM-T have similar overlap with the Addinall et al. (2011), REM

and IHM approaches. The JHM-B has much less overlap with the Addinall et al. (2011)

approach than the “vanilla” JHM does, reducing the overlap from 649 to 498, indicating
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Table 4.8: Genes interacting withcdc13-1at 27◦C and GO terms over-represented in the list of
interactions according to each approach A) Number of genes identified for each approach (Add
Addinall et al. (2011), REM, IHM, JHM, JHM-B and JHM-T) and the overlap between the ap-
proaches. 4135 genes from theS. cerevisiaesingle deletion library are considered. B) Number
of GO terms identified for each approach (Add Addinallet al. (2011), REM, IHM, JHM, JHM-B
and JHM-T) and the overlap between the approaches. 6107S. cerevisiaeGO Terms available.
See Tables 4.2A and 4.2B for further details on the overlap between the “vanilla” models (Add
Addinall et al. (2011), REM, IHM, JHM).

A. Add REM IHM JHM JHM-B JHM-T
JHM 649 273 572 939 N/A N/A

JHM-B 498 239 468 531 553 N/A
JHM-T 628 276 572 886 535 901

B. Add REM IHM JHM JHM-B JHM-T
JHM 219 165 216 286 N/A N/A

JHM-B 223 170 217 204 265 N/A
JHM-T 215 160 219 267 206 293

that the changes lead to an approach that is even more dissimilar from the Addinallet al.

(2011) approach.

Table 4.8B shows that the overlap in significant GO terms for the JHM-T and JHM-B

with the JHM is 204 and 267 respectively. There are 286 (see Table 4.8B) significant

GO terms found with the “vanilla” JHM, meaning there is a reduction of approximately

29% and7% with the JHM-B and JHM-T respectively, demonstrating the difference of

our new approaches from “vanilla” JHM. Table 4.8B also showsthat the “vanilla” JHM,

JHM-B and JHM-T all have a similar number of overlap in significant GO terms with the

Addinall et al. (2011), REM and IHM approaches.

We have introduced two potential ways of further extending the JHM to better model

a QFA screen comparison, Figures 4.12 and 4.13 are included as a reference for further

research. The JHM-B has made large changes to our results by reducing the number

of hits, see Table 4.6. Further research may involve investigating the behaviour of an

alternative JHM-B with tighter priors for the batch effect parameters so we can see how

the additional parameters affect the model fit in more detail. Further research for the JHM-

T would involve developing an alternative JHM-T where different transformations are

made for the control and query screens. We find that the largest difference with the JHM-

B and JHM-T is that they are more stringent for determining genetic interactions than the

“vanilla” JHM. Currently we prefer the “vanilla” JHM until further model exploration and

analysis such as simulation studies are carried out to further investigate how the JHM-B

and JHM-T affect our results.
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Table 4.9: Description of the joint hierarchical model with batch effects. b identifies the batch
which anorf∆ repeat belongs to. Further model notation is defined in Table3.3

c = 0, 1 Condition level

l = 1, ..., Lc orf∆ level

m = 1, ...,Mcl Repeat level

n = 1, ..., Nclm Time point level

b = 1, ..., B Batch

Time point level

yclmn ∼ N(ŷclmn, (νcl)
−1) ŷclmn = x(tclmn;Kclm, rclm, P )

Repeat level

log Kclm ∼ N(αc + κb +Ko
l + δlγcl, (τ

K
cl )

−1)I(−∞,0] log τKcl ∼ N(τK,p
c , (στ,K

c )−1)I[0,∞)

log rclm ∼ N(βc + λb + rol + δlωcl, (τ
r
cl)

−1)I(−∞,3.5] log τ rcl ∼ N(τ r,pc , (στ,r
c )−1)

orf∆ level

eK
o
l ∼ t(Kp, (σK,o)−1, 3)I[0,∞) log σK,o ∼ N(ηK,o, (ψK,o)−1)

er
o
l ∼ t(rp, (σr,o)−1, 3)I[0,∞) log σr,o ∼ N(ηr,o, (ψr,o)−1)

log νcl ∼ N(νp, (σν)−1) log σν ∼ N(ην , (ψν)−1)

δl ∼ Bern(p)

eγcl =

{

1 if c = 0;

t(1, (σγ)−1, 3)I[0,∞) if c = 1.
log σγ ∼ N(ηγ, ψγ)

eωcl =

{

1 if c = 0;

t(1, (σω)−1, 3)I[0,∞) if c = 1.
log σω ∼ N(ηω, ψω)

Condition level

αc =

{

0 if c = 0;

N(αµ, ηα) if c = 1.
βc =

{

0 if c = 0;

N(βµ, ηβ) if c = 1.

τK,p
c ∼ N(τK,µ, (ητ,K,p)−1) log στ,K

c ∼ N(ητ,K , (ψτ,K)−1)

τ r,pc ∼ N(τ r,µ, (ητ,r,p)−1) log στ,r
c ∼ N(ητ,r, (ψτ,r)−1)

Population level

log Kp ∼ N(Kµ, (ηK,p)−1) log rp ∼ N(rµ, (ηr,p)−1)

νp ∼ N(νµ, (ην,p)−1) log P ∼ N(P µ, (ηP )−1)

Batch

Log κb ∼ N(κp, (ηκ)−1) Log λb ∼ N(λp, (ηλ)−1)
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Table 4.10: Description of the joint hierarchical model with transformations. Model notation is
defined in Table 3.3

c = 0, 1 Condition level

l = 1, ..., Lc orf∆ level

m = 1, ...,Mcl Repeat level

n = 1, ..., Nclm Time point level

Time point level

yclmn ∼ N(ŷclmn, (νcl)
−1) ŷclmn = x(tclmn;Kclm, rclm, P )

Repeat level

log Kclm ∼ N(
αc +Ko

l + δlγcl
φ

, (τKcl )
−1)I(−∞,0] log τKcl ∼ N(τK,p

c , (στ,K
c )−1)I[0,∞)

log rclm ∼ N(
βc + rol + δlωcl

χ
, (τ rcl)

−1)I(−∞,3.5] log τ rcl ∼ N(τ r,pc , (στ,r
c )−1)

orf∆ level

eK
o
l ∼ t(Kp, (σK,o)−1, 3)I[0,∞) log σK,o ∼ N(ηK,o, (ψK,o)−1)

er
o
l ∼ t(rp, (σr,o)−1, 3)I[0,∞) log σr,o ∼ N(ηr,o, (ψr,o)−1)

log νcl ∼ N(νp, (σν)−1) log σν ∼ N(ην , (ψν)−1)

δl ∼ Bern(p)

eγcl =

{

1 if c = 0;

t(1, (σγ)−1, 3)I[0,∞) if c = 1.
log σγ ∼ N(ηγ, ψγ)

eωcl =

{

1 if c = 0;

t(1, (σω)−1, 3)I[0,∞) if c = 1.
log σω ∼ N(ηω, ψω)

Condition level

αc =

{

0 if c = 0;

N(αµ, ηα) if c = 1.
βc =

{

0 if c = 0;

N(βµ, ηβ) if c = 1.

τK,p
c ∼ N(τK,µ, (ητ,K,p)−1) log στ,K

c ∼ N(ητ,K , (ψτ,K)−1)

τ r,pc ∼ N(τ r,µ, (ητ,r,p)−1) log στ,r
c ∼ N(ητ,r, (ψτ,r)−1)

Population level

log Kp ∼ N(Kµ, (ηK,p)−1) log rp ∼ N(rµ, (ηr,p)−1)

νp ∼ N(νµ, (ην,p)−1) log P ∼ N(P µ, (ηP )−1)

φ ∼ Γ (φshape, φscale) χ ∼ Γ (χshape, χscale)
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Figure 4.12: cdc13-127◦C vsura3∆ 27
◦C joint hierarchical model with Batch effect (JHM-B)

fitness plot withorf∆ posterior mean fitnesses. The JHM does not does not make use ofa fitness
measure such asMDR × MDP but the fitness plot is given in terms ofMDR × MDP for
comparison with other approaches which do.orf∆ strains are classified as being a suppressor or
enhancer based on one of the two parameters used to classify genetic interaction, growth parameter
r, this means occasionally strains can be more fit in the query experiment in terms ofMDR ×
MDP but be classified as enhancers (green). Further fitness plot explanation and notation is given
in Figure 4.2.
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Figure 4.13: cdc13-127◦C vsura3∆ 27
◦C joint hierarchical model with transformations (JHM-

T) fitness plot withorf∆ posterior mean fitnesses. The JHM does not does not make use ofa
fitness measure such asMDR×MDP but the fitness plot is given in terms ofMDR×MDP for
comparison with other approaches which do.orf∆ strains are classified as being a suppressor or
enhancer based on one of the two parameters used to classify genetic interaction, growth parameter
r, this means occasionally strains can be more fit in the query experiment in terms ofMDR ×
MDP but be classified as enhancers (green). Further fitness plot explanation and notation is given
in Figure 4.2.
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Chapter 5. Fast Bayesian parameter estimation for stochastic
logistic growth models

5.1. Introduction

In this Chapter, fast approximations to the stochastic logistic growth model (SLGM)

(Capocelli & Ricciardi, 1974) (see Section 1.3) are presented. The SLGM is given by

the following diffusion equation:

dXt = rXt

(

1− Xt

K

)

dt+ σXtdWt, (5.1)

whereXt0 = P and is independent ofWt, t ≥ t0.

A deterministic logistic growth model (see Section1.1.2) is unable to describe intrinsic

error within stochastic logistic growth time course data. Consequently a deterministic

model may lead to less accurate estimates of logistic growthparameters than a SDE,

which can describe intrinsic noise. So that random fluctuations present within observed

yeast QFA data (1.1) can accounted for as intrinsic noise instead of being confounded

within our measurement error we are interested in using the SLGM in (5.1), instead of its

deterministic counterpart (1.1). Alternative stochasticlogistic growth equations exist (see

Section 1.3) but we find (5.1) to be the most appropriate as intrinsic noise does not tend

to zero with larger population sizes.

The SLGM (5.1) is analytically intractable and therefore inference requires relatively

slow numerical simulation. Where fast inference is of importance such as real-time anal-

ysis or big data problems, we can use model approximations which do have analyti-

cally tractable densities, enabling fast inference. For large hierarchical Bayesian mod-

els (see Chapter 3), computational time for inference is typically long, ranging from one

to two weeks using a deterministic logistic growth model. Inference for large hierarchi-

cal Bayesian models using the SLGM would increase computational time considerably

(computational time is roughly proportional to the number of time points longer) with

relatively slow numerical simulation approaches, therefore we may be interested in using

approximate models that will allow us to carry out fast inference.

First an approximate model developed by Román-Román & Torres-Ruiz (2012) is

introduced. Two new approximate models are then presented using the linear noise ap-

proximation (LNA) (Wallace, 2010; Komorowskiet al., 2009) of the SLGM. The model
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Chapter 5. Fast Bayesian parameter estimation for stochastic logistic growth models

proposed by Román-Román & Torres-Ruiz (2012) is found to be a zero-order noise ap-

proximation.

The approximate models considered are compared against each other for both simu-

lated and observed logistic growth data. Finally, the approximate models are compared to

“exact” approaches.

5.2. The Roḿan-Román & Torres-Ruiz (2012) diffusion process

Román-Román & Torres-Ruiz (2012) present a logistic growth diffusion process (RRTR)

which has a transition density that can be written explicitly, allowing inference for model

parameter values from discrete sampling trajectories.

The RRTR is derived from the following ODE:

dxt
dt

=
Qr

ert +Q
xt, (5.2)

whereQ =
(

K
P
− 1
)

ert0 , P = xt0 andt ≥ t0. The solution to (5.2) is given in (1.2) (it

has the same solution as (1.1)).

Román-Román & Torres-Ruiz (2012) see (5.2) as a generalisation of the Malthusian

growth model with a deterministic, time-dependent fertility h(t) = Qr

ert+Q
, and replace

this with Qr

ert+Q
+ σWt to obtain the following approximation to the SLGM:

dXt =
Qr

ert +Q
Xtdt+ σXtdWt, (5.3)

whereQ =
(

K
P
− 1
)

ert0 , P = Xt0 and is independent ofWt, t ≥ t0. The process

described in (5.3) is a particular case of the Log-normal process with exogenous factors,

therefore an exact transition density is available (Gutiérrez et al., 2006). The transition

density forYt, whereYt = log(Xt), can be written:

(Yti |Yti−1
= yti−1

) ∼ N (µti, Ξti) ,

wherea = r, b =
r

K
,

µti = log(yti−1
) + log

(

1 + be−ati

1 + be−ati−1

)

− σ2

2
(ti − ti−1) and

Ξti = σ2(ti − ti−1).

(5.4)
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5.3. Linear noise approximation with multiplicative noise

We now take a different approach to approximating the SLGM (5.1), which will turn out

to be closer to the exact solution of the SLGM than the RRTR (5.3). Starting from the

original model (5.1), we apply Itô’s lemma (Itô, 1944; Øksendal, 2010):

df(t, Xt) =
df

dt
dt+ µ

df

dx
dt+

1

2
σ2d

2f

dx2
dt+ σ

df

dx
dWt, (5.5)

with the transformationf(t, Xt) ≡ Yt = logXt. After deriving the following partial

derivatives:
df

dt
= 0,

df

dx
=

1

Xt

and
d2f

dx2
= − 1

X2
t

,

we can obtain the following Itô drift-diffusion process:

dYt =

(

r − 1

2
σ2 − r

K
eYt

)

dt+ σdWt. (5.6)

The log transformation from multiplicative to additive noise, gives a constant diffusion

term, so that the LNA will give a good approximation to (5.1).The LNA reduces a

non-linear SDE to a linear SDE with additive noise. The LNA can be viewed as a first

order Taylor expansion of an approximating SDE about a deterministic solution. We

now separate the processYt into a deterministic partvt and a stochastic partZt so that

Yt = vt + Zt and consequentlydYt = dvt + dZt. We choosevt to be the solution of the

deterministic part of (5.6):

dvt =

(

r − 1

2
σ2 − r

K
evt
)

dt. (5.7)

We now redefine our notation as follows:a = r − σ2

2
andb = r

K
. Equation 5.7 is then

solved forvt:

vt = log

(

aPeaT

bP (eaT − 1) + a

)

, (5.8)

whereT = t− t0. We now write down an expression fordZt, wheredZt = dYt − dvt:

dZt =
(

a− beYt
)

dt+ σdWt − (a− bevt) dt

We then substitute inYt = vt + Zt and simplify the expression to give

dZt = b
(

evt − evt+Zt
)

dt+ σdWt. (5.9)
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As dZt is a non-linear SDE it cannot be solved explicitly, we use theLNA (see Sec-

tion 2.6.4) to obtain a linear SDE that we can solve explicitly. We apply the LNA by

making a first-order approximation ofeZt ≈ 1 + Zt and then simplify to give

dZt = −bevtZtdt+ σdWt. (5.10)

This process is a particular case of the time-varying Ornstein-Uhlenbeck process, which

can be solved explicitly. The transition density forYt (derivation in Appendix C.1) is

then:

(Yti|Yti−1
= yti−1

) ∼ N(µti , Ξti) ,

redefineyti−1
= vti−1

+ zti−1
, Q =

( a
b

P
− 1

)

eat0 ,

µti = yti−1
+ log

(

1 +Qe−ati−1

1 +Qe−ati

)

+ e−a(ti−ti−1)
1 +Qe−ati−1

1 +Qe−ati
zti−1

and

Ξti = σ2

[

4Q(eati − eati−1) + e2ati − e2ati−1 + 2aQ2(ti − ti−1)

2a(Q+ eati)2

]

.

(5.11)

The LNA of the SLGM with multiplicative intrinsic noise (LNAM) can then be written as

d logXt = [dvt + bevtvt − bevt logXt] dt + σdWt,

whereP = Xt0 and is independent ofWt, t ≥ t0.

Note that the RRTR given in (5.3) can be similarly derived using a zero-order noise ap-

proximation (eZt ≈ 1) instead of the LNA.

5.4. Linear noise approximation with additive noise

As in Section 5.3, we start from the SLGM, given in (5.1). Without first log transforming

the process, the LNA will lead to a worse approximation to thediffusion term of the

SLGM, but we will see in the coming sections that there are nevertheless advantages.

We separate the processXt into a deterministic partvt and a stochastic partZt so that

Xt = vt + Zt and consequentlydXt = dvt + dZt. We chosevt to be the solution of the

deterministic part of (5.1):

dvt =
(

rvt −
r

K
v2t

)

dt. (5.12)
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We now redefine our previous notation as follows:a = r andb = r
K

. Equation 5.12 is

then solved forvt:

vt =
aPeaT

bP (eaT − 1) + a
. (5.13)

We now write down an expression fordZt, wheredZt = dXt − dvt:

dZt =
(

aXt − bX2
t

)

dt+ σXtdWt −
(

avt − bv2t
)

dt.

We then substitute inXt = vt + Zt and simplify the expression to give

dZt = (a− 2bvt)Zt − bZ2
t dt+ (σvt + σZt) dWt.

As dZt is a non-linear SDE it cannot be solved explicitly, we use theLNA (see Sec-

tion 2.6.4) to obtain a linear SDE that we can solve explicitly. We now apply the LNA, by

setting second-order term−bZ2
t dt = 0 andσZtdWt = 0 to obtain

dZt = (a− 2bvt)Ztdt+ σvtdWt. (5.14)

This process is a particular case of the Ornstein-Uhlenbeckprocess, which can be solved.

The transition density forXt (derivation in Appendix C.3) is then

(Xti |Xti−1
= xti−1

) ∼ N(µti , Ξti),

wherexti−1
= vti−1

+ zti−1
,

µti = xti−1
+

(

aPeaTi

bP (eaTi − 1) + a

)

−
(

aPeaTi−1

bP (eaTi−1 − 1) + a

)

+ ea(ti−ti−1)

(

bP (eaTi−1 − 1) + a

bP (eaTi − 1) + a

)2

Zti−1
and

Ξt =
1

2
σ2aP 2e2aTi

(

1

bP (eaTi − 1) + a

)4

× [b2P 2(e2aTi − e2aTi−1) + 4bP (a− bP )(eaTi − eaTi−1)

+ 2a(ti − ti−1)(a− bP )2].

(5.15)

The LNA of the SLGM, with additive intrinsic noise (LNAA) canthen be written as

dXt =
[

bvt
2 + (a− 2bvt)Xt

]

dt+ σvtdWt,

whereP = Xt0 and is independent ofWt, t ≥ t0.
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5.5. Simulation and Bayesian inference for the stochastic logistic growth
model and approximations

To compare the accuracies of each of the three approximate models in representing the

SLGM, we first compare simulated forward trajectories from the RRTR, LNAM and

LNAA with simulated forward trajectories from the SLGM (Figure 5.1). We use the

Euler-Maruyama method (Carletti, 2006) (see Section 2.6.2) with very fine discretisation

to give arbitrarily exact simulated trajectories from eachSDE.

The LNAA and LNAM trajectories are visually indistinguishable from the SLGM

(Figures 5.1 A, C & D). On the other hand, population sizes simulated with the RRTR

display large deviations from the mean as the population approaches its stationary phase

(Figures 5.1A & B). Figure 5.1E further highlights the increases in variation as the pop-

ulation approaches stationary phase for simulated trajectories of the RRTR, in contrast to

the SLGM and LNA models.
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Figure 5.1: Forward trajectories (No. of simulations=100) for the stochastic logistic growth
model and approximations. See Table 5.1 for parameter values. A) The stochastic logistic growth
model (SLGM). B) The Román-Román & Torres-Ruiz (2012) (RRTR) approximation. C) The
linear noise approximation with multiplicative intrinsicnoise (LNAM). D) The linear noise ap-
proximation with additive intrinsic noise (LNAA). E) Standard deviations of simulated trajectories
over time for the SLGM (black), RRTR (red), LNAM (green) and LNAA (blue).
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5.5.1. Bayesian parameter inference with approximate models

To compare the quality of parameter inference using each of these approximations we

simulated synthetic time-course data from the SLGM and combined this with either Log-

normal or Normal measurement error. Carrying out Bayesian inference with broad priors

(see (5.16) and (5.17)) we compared the parameters recovered using each approximation

with those used to generate the synthetic dataset. The synthetic time-course datasets

consist of 27 time points generated using the Euler-Maruyama method with very fine

intervals (Carletti, 2006).

We formulate our inference problem as a dynamic linear statespace model (West &

Harrison, 1997). The advantage of a state space formulationis that we are then able to

build a Kalman filter to carry out fast parameter inference. We can take advantage of a

linear Gaussian structure and construct a Kalman filter recursion for marginal likelihood

computation (Appendix C.5). By choosing to match the measurement error structure to

the intrinsic error of our models we can build a linear Gaussian structure. We therefore

assume Log-normal (multiplicative) error for the RRTR and LNAM, and for the LNAA

we assume Normal (additive) measurement error. Dependent variableyti and independent

variable{ti, i = 1, ..., N} are data input to the model (whereti is the time at pointi and

N is the number of time points).Xt is the state process, describing the population size.

The state space model for the RRTR and LNAM is as follows:

log(yti) ∼ N(Xti , ν
2),

(Xti |Xti−1
= xti−1

) ∼ N (µti, Ξti) , wherexti = vti + zti , (5.16)

µti andΞti are given by (5.4) and (5.11) for the RRTR and LNAM respectively. Priors

are as follows:

logX0 ≡ log P ∼ N(µP , τP
−1), log K ∼ N(µK , τK

−1), log r ∼ N(µr, τr
−1),

log ν−2 ∼ N(µν, τν
−1), log σ−2 ∼ N(µσ, τσ

−1)I[1,∞].

Bayesian inference is carried out with broad priors such that estimated parameter val-

ues are not heavily influenced by our choice. See Table C.1 forprior hyper-parameter

values. Log-normal prior distributions are chosen to ensure positive logistic growth pa-

rameters and precision parameters are strictly positive. Our prior for log σ−2 is truncated

below 1 to avoid unnecessary exploration of extremely low probability regions, which

could be caused by problems identifyingν, for example whenlog ν−2 takes large val-
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ues, and to ensure that intrinsic noise does not dominate theprocess. Our choice of 1

for the truncation threshold is made by observing forward simulations from our processes

and choosing a value forlog σ−2 where intrinsic noise is so large that the deterministic

part of the process is masked, consequently making the LNA a bad approximation. We

also find that truncatinglog σ−2 is more preferable to truncatinglog ν−2 as truncating

log ν−2 does not alleviate the identifiability problem without being very restrictive for the

measurement error structures.

The state space model for the LNAA is as follows:

yti ∼ N(Xti , ν
2),

(Xti |Xti−1
= xti−1

) ∼ N (µti, Ξti) , wherexti = vti + zti , (5.17)

µti andΞti are given by (5.15). Priors are as in (5.16). Measurement error for the observed

values is Normal so that we have a linear Gaussian structure.The state space models in

(5.16) and (5.17) have different measurement error structures. So that a fair comparison

can be made between (5.16) and (5.17), we choose our priors sothat the marginal mo-

ments for the measurement error of our models is not too dissimilar, particularly at the

earliest stage where most growth is observed.

To see how the inference from our approximate models compares with slower “ex-

act” models, we consider Euler-Maruyama approximations (Kloeden & Platen, 1992) of

(5.1) and of the log transformed process, using fine intervals. We use the approach of

(Golightly & Wilkinson, 2005) to carry out inference of our “exact” models. A single

site update algorithm is used to update model parameters andthe Euler-Maruyama ap-

proximation of the latent process in turn. Given these approximations we can construct a

state space model for an “exact” SLGM with Log-normal measurement error (SLGM+L)

and similarly for the SLGM with Normal measurement error (SLGM+N), priors are as in

(5.16).

Our inference makes use of a Kalman filter to integrate out thestate process. The

Kalman filer allows for fast inference compared to slow numerical simulation approaches

that impute all states. The algorithm for our approximate models is the Metropolis-within-

Gibbs sampler with a symmetric proposal (Gamerman & Lopes, 2006). Full-conditionals

are sampled in turn to give samples from the joint posterior distribution:

π(K, r, P, σ, ν,Xt1:N , yt1:N ),
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whereXt1:N is the latent process andyt1:N is the observed data, forN observed data points.

The Metropolis-within-Gibbs sampler algorithm is as follows:

1) Initialise counteri = 1 and parametersK(0), r(0), σ(0), P(0), ν(0)

2) SimulateK(i) fromK ∼ π(K|ν(i−1), r(i−1), σ(i−1), P(i−1), yt1:N )

3) Simulater(i) from r ∼ π(r|ν(i−1), K(i), σ(i−1), P(i−1), yt1:N

4) Simulateσ(i) from σ ∼ π(σ|ν(i−1), K(i), r(i), P(i−1), yt1:N )

5) SimulateP(i) from ν ∼ π(P |ν(i−1), K(i), r(i), σ(i), yt1:N )

6) Simulateν(i) from ν ∼ π(ν|K(i), r(i), σ(i), P(i), yt1:N )

7) Repeat steps 2-6 until the sample size required is obtained.

We find the mixing for our algorithm is improved when we have intermediate steps

between sampling from theσ(i) andν(i) full conditionals. Each update in our algorithm is

accomplished by a Metropolis-Hastings step using a Kalman filter. Acceptance ratios are

calculated for each update during a burn-in period. To improve the computational speed

of our inference, further research may involve using an algorithm where we jointly update

our parameters. Posterior means are used to obtain point estimates and standard deviations

for describing variation of inferred parameters. The Heidelberger and Welch convergence

diagnostic (Heidelberger & Welch, 1981) is used to determine whether convergence has

been achieved for all parameters.

Computational times for convergence of our MCMC schemes (code is available at

https://github.com/jhncl/LNA.git ) can be compared using estimates for the

minimum effective sample size per second (ESSmin/sec) (Plummeret al., 2006). The av-

erage ESSmin/sec of our approximate model (coded in C) is∼100 and “exact” model∼1

(coded in JAGS (Plummer, 2010) with 15 imputed states between time points, chosen to

maximise ESSmin/sec). We find that our C code is typically twice as fast as the simple

MCMC scheme used by JAGS, indicating that our inference is∼50× faster than an “ex-

act” approach. A more efficient “exact” approach could speedup further, say by another

factor of 5, but our approximate approach will at least be an order of magnitude faster.
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We use a burn-in of 600,000 and a thinning of 4,000 to obtain a final posterior sample size

of 1,000 for MCMC convergence of all our models.

To compare the approximate models ability to recover parameters from the SLGM

with simulated Log-normal measurement error, we simulate data and carry out Bayesian

inference. Figure 5.2 shows that all three approximate models can capture the synthetic

time-course well, but that the RRTR model is the least representative with the largest

amount of drift occurring at the saturation stage, a property not found in the SLGM or

the two new LNA models. Comparing forwards trajectories with measurement error (Fig-

ure 5.2), the “exact” model is visually similar to all our approximate models, but least

similar to the RRTR. Further, Table 5.1 demonstrates that parameter posterior means are

close to the true values and that standard deviations are small for all models and each

parameter set. By comparing posterior means and standard deviations to the true values,

Table 5.1 shows that all our models are able to recover the three different parameter sets

considered.

To compare the approximations to the SLGM with simulated Normal measurement

error, we simulate data and carry out Bayesian inference. Figure 5.4 shows that of our ap-

proximate models, only the LNAA model can appropriately represent the simulated time-

course as both our models with Log-normal measurement error, the RRTR and LNAM

do not closely bound the data. Comparing forwards trajectories with measurement error

(Figure 5.4), the “exact” model is most visually similar to the LNAA, which shares the

same measurement error structure. Further, Table 5.1 demonstrates that only our models

with Normal measurement error have posterior means close tothe true values and that

standard deviations are larger in the models with Log-normal measurement error. Ob-

serving the posterior means forK for each parameter set (Table 5.1), we can see that the

RRTR has the largest standard deviations and that, of the approximate models, its poste-

rior means are furthest from both the true values and the “exact” model posterior means.

Comparing LNA models to the “exact” models with matching measurement error, we can

see in Table 5.1 that they share similar posterior means and only slightly larger standard

deviations. Example posterior diagnostics given in Figure5.3, demonstrate that posteriors

are distributed tightly around true values for our LNAA and data from the SLGM with

Normal measurement error.

5.5.2. Application to observed yeast data

We now consider which diffusion equation model can best represent observed microbial

population growth curves taken from a Quantitative FitnessAnalysis (QFA) experiment
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Figure 5.2: Forward trajectories with measurement error for the stochastic logistic growth model
and approximations, simulated from parameter posterior samples (sample size=1000). Model
fitting is carried out on SLGM forward trajectories with Log-normal measurement error (black),
for three different sets of parameters (see Table 5.1). See (5.16) or (5.17) for model and Table C.1
for prior hyper-parameter values. Each row of figures corresponds to a different time course data
set, simulated from a different set of parameter values, seeTable 5.1. Each column of figures
corresponds to a different model fit: A), E) & I) SLGM+L (orange). B), F) & J) RRTR model
with lognormal error (red). C), G) & K) LNAM model with lognormal error (green). D), H) &
L) LNAA model with normal error (blue). See Table 5.1 for parameter posterior means and true
values.

(Section 1.1) (Addinallet al., 2011; Bankset al., 2012), see Figure 5.5. The data consists

of scaled cell density estimates over time for budding yeastSaccharomyces cerevisiae.

Independent replicate cultures are inoculated on plates and photographed over a period

of 5 days. The images captured are then converted into estimates of integrated optical

density (IOD, which we assume are proportional to cell population size), by the software

package Colonyzer (Lawlesset al., 2010). The dataset chosen for our model fitting is a

representative set of 10 time-courses, each with 27 time points. Once we have chosen the

most appropriate stochastic model we can then look to apply our chosen model to logistic

growth data from the QFA screens used throughout Chapter 4 inthe future.

As in Figure 5.4, we see that the LNAA model is the only approximation that can

appropriately represent the time-course and that both the RRTR and LNAM fail to bound

the data as tightly as the LNAA (Figure 5.5). Our two “exact” models are visually similar
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Figure 5.3: Convergence diagnostics for the linear noise approximation of the stochastic logistic
growth model with additive intrinsic noise (LNAA) fit to simulated stochastic logistic growth data
with Normal measurement error, see Figure 5.4D. Trace, auto-correlation and density plots for the
(LNAA) parameter posteriors (sample size = 1000, thinning interval = 4000). Posterior density
(black), prior density (dashed blue) and true parameter values (red) are shown in the right hand
column.
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Figure 5.4: Forward trajectories with measurement error, simulated from inferred parameter
posterior samples (sample size=1000). Model fitting is carried out on SLGM forward trajectories
with Normal measurement error (black), for three differentsets of parameters (see Table 5.1). See
(5.16) or (5.17) for model and Table C.1 for prior hyper-parameter values. Each row of figures
corresponds to a different time course data set, simulated from a different set of parameter values,
see Table 5.1. Each column of figures corresponds to a different model fit: A), E) & I) SLGM+N
(pink). B), F) & J) RRTR model with lognormal error (red). C),G) & K) LNAM model with
lognormal error (green). D), H) & L) LNAA model with normal error (blue). See Table 5.1 for
parameter posterior means and true values.

to our approximate models with the same measurement error, with the SLGM+N most

similar to the LNAA and the SLGM+L to the RRTR and LNAM. This isas expected due

to matching measurement error structures. Table 5.1 summarises parameter estimates for

the observed yeast data using each model. The variation in the LNAA model parame-

ter posteriors is much smaller than the RRTR and LNAM, indicating a more appropriate

model fit. Comparing the LNA models and “exact” models with matching measurement

error, we can see in Table 5.1 that they share similar posterior means and standard devi-

ations for all parameters and in particular, they are very similar for bothK andr, which

are important phenotypes for calculating fitness (Addinallet al., 2011).

In Table 5.2, to compare quality of parameter inference for 10 observed yeast time-

courses with each approximate model. Mean squared error (MSE) for 1000 posterior

sample forward simulations are calculated for each yeast time course and summed to give

101



Chapter 5. Fast Bayesian parameter estimation for stochastic logistic growth models

Table 5.1: Bayesian state space model parameter posterior means, standard deviations and true
values for Figures 5.2, 5.4 and 5.5. True values for the simulated data used for Figures 5.1, 5.2
and 5.4 are also given.

Panel Model K̂ r̂ P̂ ν̂ σ̂

Figure 5.2, SLGM with lognormal error
A SGLM+L 0.150 (0.001) 2.982 (0.014) 1.002 · 10−04 (1.112 · 10−06) 3.860 · 10−03 (2.127 · 10−03) 0.017 (0.005)
B RRTR 0.150 (0.003) 2.990 (0.011) 9.931 · 10−05 (1.069 · 10−06) 5.684 · 10−03 (2.360 · 10−03) 0.012 (0.006)
C LNAM 0.150 (0.001) 2.988 (0.013) 9.980 · 10−05 (1.124 · 10−06) 4.140 · 10−03 (2.180 · 10−03) 0.016 (0.005)
D LNAA 0.150 (0.001) 3.005 (0.020) 9.647 · 10−05 (2.946 · 10−06) 3.099 · 10−05 (2.534 · 10−05) 0.019 (0.003)
E SGLM+L 0.110 (0.001) 3.975 (0.047) 5.054 · 10−05 (1.568 · 10−06) 6.159 · 10−03 (5.527 · 10−03) 0.051 (0.014)
F RRTR 0.109 (0.007) 3.984 (0.035) 5.046 · 10−05 (1.137 · 10−06) 5.928 · 10−03 (4.596 · 10−03) 0.037 (0.009)
G LNAM 0.110 (0.001) 3.985 (0.046) 5.043 · 10−05 (1.580 · 10−06) 6.188 · 10−03 (5.191 · 10−03) 0.052 (0.013)
H LNAA 0.110 (0.001) 3.959 (0.067) 5.207 · 10−05 (4.310 · 10−06) 4.540 · 10−05 (4.395 · 10−05) 0.059 (0.010)
I SGLM+L 0.300 (0.001) 5.997 (0.029) 1.962 · 10−05 (4.041 · 10−07) 9.543 · 10−03 (4.035 · 10−03) 0.024 (0.015)
J RRTR 0.301 (0.004) 6.015 (0.017) 1.943 · 10−05 (2.835 · 10−07) 1.241 · 10−02 (2.307 · 10−03) 0.008 (0.006)
K LNAM 0.300 (0.001) 6.015 (0.031) 1.953 · 10−05 (4.202 · 10−07) 8.943 · 10−03 (4.252 · 10−03) 0.027 (0.016)
L LNAA 0.300 (0.001) 6.037 (0.067) 1.895 · 10−05 (1.502 · 10−06) 8.122 · 10−05 (1.596 · 10−04) 0.047 (0.008)

Figure 5.4, SLGM with normal error
A SLGM+N 0.150 (0.002) 3.099 (0.085) 9.299 · 10−05 (7.305 · 10−06) 5.326 · 10−03 (1.009 · 10−03) 0.059 (0.030)
B RRTR 0.213 (0.123) 1.368 (0.263) 4.552 · 10−03 (2.118 · 10−03) 2.539 · 10−01 (1.097 · 10−01) 0.419 (0.129)
C LNAM 0.171 (0.033) 1.580 (0.271) 5.241 · 10−03 (2.048 · 10−03) 2.054 · 10−01 (7.805 · 10−02) 0.473 (0.051)
D LNAA 0.150 (0.002) 2.990 (0.262) 1.189 · 10−04 (7.099 · 10−05) 5.490 · 10−03 (1.060 · 10−03) 0.053 (0.033)
E SLGM+N 0.109 (0.001) 4.183 (0.074) 4.390 · 10−05 (4.129 · 10−06) 9.679 · 10−04 (2.806 · 10−04) 0.057 (0.012)
F RRTR 0.157 (0.087) 2.631 (0.337) 4.398 · 10−04 (1.678 · 10−04) 1.040 · 10−01 (1.009 · 10−01) 0.374 (0.162)
G LNAM 0.116 (0.009) 3.019 (0.374) 4.967 · 10−04 (1.397 · 10−04) 3.346 · 10−02 (4.309 · 10−02) 0.475 (0.044)
H LNAA 0.110 (0.001) 4.010 (0.158) 5.012 · 10−05 (1.443 · 10−05) 1.093 · 10−03 (3.638 · 10−04) 0.053 (0.013)
I SLGM+N 0.305 (0.003) 5.267 (0.125) 3.263 · 10−04 (3.407 · 10−05) 1.119 · 10−02 (1.974 · 10−03) 0.045 (0.031)
J RRTR 0.314 (0.057) 3.030 (0.233) 1.307 · 10−03 (2.897 · 10−04) 2.228 · 10−01 (3.708 · 10−02) 0.075 (0.086)
K LNAM 0.313 (0.020) 3.392 (0.430) 1.118 · 10−03 (3.269 · 10−04) 1.176 · 10−01 (8.435 · 10−02) 0.360 (0.165)
L LNAA 0.302 (0.002) 5.862 (0.523) 2.890 · 10−05 (2.599 · 10−05) 8.774 · 10−03 (1.466 · 10−03) 0.041 (0.028)

Figure 5.5, observed yeast data
A SLGM+L 0.110 (0.007) 4.098 (0.299) 7.603 · 10−06 (3.206 · 10−06) 3.457 · 10−01 (5.319 · 10−02) 0.113 (0.109)
B SLGM+N 0.110 (0.003) 3.905 (0.173) 1.044 · 10−05 (3.086 · 10−06) 1.852 · 10−04 (7.460 · 10−05) 0.167 (0.028)
C RRTR 0.114 (0.026) 3.764 (0.201) 1.079 · 10−05 (3.155 · 10−06) 3.379 · 10−01 (4.840 · 10−02) 0.078 (0.077)
D LNAM 0.110 (0.011) 3.777 (0.216) 1.077 · 10−05 (3.277 · 10−06) 3.362 · 10−01 (5.137 · 10−02) 0.104 (0.108)
E LNAA 0.109 (0.003) 3.832 (0.198) 1.069 · 10−05 (3.680 · 10−06) 1.769 · 10−04 (6.607 · 10−05) 0.164 (0.033)

True values K r P ν σ
Figures 5.1, panels A, B, C and D 0.11 4 0.00005 N/A 0.05

Figures 5.2 and 5.4, panels A, B, C & D 0.15 3 0.0001 0.005 0.01
Figures 5.2 and 5.4, panels E, F, G and H 0.11 4 0.00005 0.001 0.05
Figures 5.2 and 5.4, panels I, J, K and L 0.3 6 0.0002 0.01 0.02

Table 5.2: Total mean squared error (MSE) for 10 observed yeast growth time courses, each with
1000 forward simulated time-courses with measurement error. Parameter values are taken from
posterior samples. Standard Deviations give the variationbetween the sub-total MSEs for each
yeast time course fit (n=10).

Model SLGM+N SLGM+L RRTR LNAM LNAA
Total MSE 29.847 100.165 600.601 99.397 30.959

Standard Deviation 1.689 8.391 55.720 9.263 2.030

a Total MSE for each model. It is clear that the RRTR is the worst overall representation

of the 10 yeast time courses, with the highest total MSE and a much larger total MSE

than the “exact” SLGM+L. It is interesting to see there is a very similar total MSE for

the SLGM+L and LNAM, and similarly for the SLGM+N and LNAA, demonstrating that

our approximations perform well.

Once the most appropriate approximate stochastic model is chosen, we can incorpo-

rate the SDE within our Bayesian hierarchical models described in Section 3. Currently
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Chapter 5. Fast Bayesian parameter estimation for stochastic logistic growth models
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Figure 5.5: Forward trajectories with measurement error, simulated from inferred parameter
posterior samples (sample size=1000). Model fitting is carried out on observed yeast time-course
data (black). See (5.16) or (5.17) and Table C.1 for prior hyper-parameter values. See Table 5.1
for parameter posterior means. A) SLGM+N (pink). B) SLGM+L (orange). A) RRTR model with
Log-normal error (red). B) LNAM model with log-normal error(green). C) LNAA model with
Normal error (blue).

the Bayesian hierarchical models described in Section 3 have long computational times,

∼2 weeks for the joint hierarchical model (JHM) (∼1 week with further optimisations)

and so extending these models using slow numerical methods would lead to prohibitively

slow computational times that we estimate to take∼3-6 months (with 4294orf∆s,∼8

repeats and∼27 time points). Inference using the Kalman filter will allowthe Bayesian

hierarchical models to carry out stochastic modelling at a greatly reduced computational

time (∼10× faster) compared to an arbitrarily exact approach.
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We have joined a hierarchical model of microbial growth witha model for genetic interac-

tion in order to learn about strain fitnesses, evidence for genetic interaction and interaction

strengths simultaneously. By introducing Bayesian methodology to QFA we have been

able to model the hierarchical nature of the experiment and expand the multiplicative

model for genetic interaction to incorporate many sources of variation that previously had

to be ignored.

We proposed two new Bayesian hierarchical model approachesto replace the current

statistical analysis for identifying genetic interactions within a QFA screen comparison.

Both the new two-stage and one-stage approaches give similar results but have different

interpretations. The two-stage approach fits the SHM followed by the IHM, with uni-

variate point estimate fitness definitions generated as an intermediate step. The two-stage

approach can therefore be regarded as a Bayesian hierarchical version of the Addinall

et al. (2011) approach. In contrast, the one-stage approach fits the JHM, which does not

require a univariate definition of fitness, recognising thatfitness is a multi-faceted concept,

allowing interaction to be identified by either growth rate (logistic parameterr) or final

biomass (logistic parameterK) achievable by a given genotype. Our one-stage approach

is a new method of detecting genetic interaction that further develops the interpretation of

epistasis within QFA screens.

Hierarchical methods are able to account for the many sources of variation that exist

within QFA data by accurately reflecting QFA experimental design, which is known. A

hierarchical, frequentist approach using random effects,namely the REM is presented in

order to improve on the Addinallet al. (2011) approach. Due to the lack of flexibility

with modelling assumptions in the standard frequentist modelling paradigm, the REM

is unsuitable for modelling the distribution oforf∆ level variation on a log scale or for

simultaneously modelling genetic interaction and logistic growth curves.

The data from which logistic parameter estimates are derived during QFA are the re-

sult of a technically challenging, high-throughput experimental procedure with a diverse

range of possible technical errors. Our Bayesian, hierarchical models allow us the flex-

ibility to make distributional assumptions that more closely match the data. This allows

us to switch between modelling parameter uncertainty with Normal, Log-Normal and

Student’s t distribution where appropriate.
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QFA experimental design is intrinsically multilevel and istherefore more closely mod-

elled in our hierarchical scheme. Consequently the JHM and IHM capture sources of

variation not considered by Addinallet al. (2011). By sharing information across lev-

els in the hierarchy, our models have allowed us to learn moreaboutorf∆s with weaker

genetic interaction. Our more flexible model of variance also avoids misclassification of

individual genotypes with high variance as having significant interactions. Without fully

accounting for the variation described in the Bayesian hierarchical models, the previous

Addinall et al. (2011) approach may have relatively poor power to detect subtle interac-

tions, obscuring potential novel observations.

Many subtle, interesting genetic interactions may remain to be investigated for the ex-

ample dataset we present: QFA to understand telomere capping usingcdc13-1. The JHM

is better able to identify subtle interactions (see Figure 4.3). In our two-stage approaches,

univariate fitness measures such asMDR × MDP are used in the intermediate steps,

occasionally causing interaction in terms of one parameterto be masked by the other. For

example, strains with little evidence for interaction witha background mutation in terms

of growth rate but with strong evidence of interaction in terms of carrying capacity are

sometimes classified as interactors using the JHM (see Figure 4.3). The JHM has iden-

tified genes that have not been identified as showing genetic interaction in the Addinall

et al. (2011) or two-stage Bayesian analysis, for exampleCHZ1, which is thought to be

related to telomere activity (Wanet al., 2011).

As expected, many genes previously unidentified by Addinallet al. (2011) have been

identified as showing evidence of interaction using both of our Bayesian hierarchical

modelling approaches. Some genes which have been identifiedonly by the JHM (see

Figure 4.2D), such as those showing interaction only in terms of r, are found to be re-

lated to telomere biology in the literature. Currently there is not sufficient information

available to identify the proportion of identified interactions that are true hits and so we

use unbiased GO term enrichment analyses to confirm that the lists of genetic interactions

closely reflect the true underlying biology. GO term annotations relevant to telomere bi-

ology are available for well-studied genes in the current literature. Unsurprisingly all of

the approaches considered closely reflect the most well-known GO terms (see Table 4.1).

Computational time for the new Bayesian approach ranges from one to two weeks

for one of the datasets presented in Addinallet al. (2011). This compares favourably

with the time taken to design and execute the experimental component of QFA (approx-

imately six weeks). Time and resources used to follow up the results of a QFA screen

comparison can be saved with the Bayesian approaches suggested, allowing genes to be
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chosen for further investigation with increased confidence. With an improved analysis

it may be possible to detect more genetic interactions with the same sample size, allow-

ing us to systematically detect and rank interactions genome-wide. Overall we recom-

mend a JHM or “Bayesian QFA” for analysis of current and future QFA data sets as it

accounts for more sources of variation than the Addinallet al. (2011) QFA methodol-

ogy. With the JHM we have outlined new genes with significant evidence of interaction

in the ura3∆ 27◦C andcdc13-127◦C experiment. The full lists of genetic interactions

for both the two and one stage Bayesian hierarchical approaches as well as lists of sig-

nificant GO terms are freely available online athttp://research.ncl.ac.uk/

qfa/HeydariQFABayes/ . The new Bayesian hierarchical models we present here

will also be suitable for identifying new genes showing evidence of genetic interaction

in backgrounds other than telomere activity. We hope that further, reductionist lab work

by experimental biologists will give additional insight into the mechanisms by which the

new genes we have uncovered interact with the telomere.

In this thesis we have also presented two new diffusion processes for modelling logis-

tic growth data where fast inference is required: the linearnoise approximation (LNA)

of the stochastic logistic growth model (SLGM) with multiplicative noise and the LNA

of the SLGM with additive intrinsic noise (labelled as the LNAM and LNAA respec-

tively). Both the LNAM and LNAA are derived from the linear noise approximation of

the stochastic logistic growth model (SLGM). The new diffusion processes approximate

the SLGM more closely than an alternative approximation (RRTR) proposed by Román-

Román & Torres-Ruiz (2012). The RRTR lacks a mean revertingproperty that is found

in the SLGM, LNAM and LNAA, resulting in increasing varianceduring the stationary

phase of population growth (see Figure 5.1).

We compared the ability of each of the three approximate models and the SLGM to re-

cover parameter values from simulated datasets using standard MCMC techniques. When

modelling stochastic logistic growth with Log-normal measurement error we find that our

approximate models are able to represent data simulated from the original process and

that the RRTR is least representative, with large variationover the stationary phase (see

Figure 5.2). When modelling stochastic logistic growth with Normal measurement error

we find that only our models with Normal measurement error canappropriately bound

data simulated from the original process (see Figure 5.4). We also compared parameter

posterior distribution summaries with parameter values used to generate simulated data

after inference using both approximate and “exact” models (see Table 5.1). We find that,

106



Chapter 6. Conclusions and future work

when using the RRTR model, posterior distributions for the carrying capacity parameter

K are less precise than for the LNAM and LNAA approximations. We also note that it

is not possible to model additive measurement error while maintaining a linear Gaussian

structure (which allows fast inference with the Kalman filter) when carrying out inference

with the RRTR. We conclude that when measurement error is additive, the LNAA model

is the most appropriate approximate model.

To test model performance during inference with real population data, we fitted our

approximate models and the “exact” SLGM to microbial population growth curves gen-

erated by quantitative fitness analysis (QFA) (see Figure 5.5). We found that the LNAA

model was the most appropriate for modelling experimental data. It seems likely that

this is because a Normal error structure best describes thisparticular dataset, placing the

LNAM and RRTR models at a disadvantage. We demonstrate that arbitrarily exact meth-

ods and our fast approximations perform similarly during inference for 10 diverse, ex-

perimentally observed, microbial population growth curves (see Table 5.2) which shows

that, in practise, our fast approximations are as good as “exact” methods. We conclude

that our LNA models are preferable to the RRTR for modelling QFA data.

It is interesting to note that, although the LNAA is not a better approximation of the

original SGLM process than the LNAM, it is still quite reasonable. Figures 5.1A and 5.1D

show that the SLGM and LNAA processes are visually similar. Figure 5.1E demonstrates

that forward trajectories of the LNAA also share similar levels of variation over time with

the SLGM and LNAM.

Fast inference with the LNAA gives us the potential to develop large hierarchical

Bayesian models for genome-wide QFA datasets, using a diffusion equation and realistic

computational resources

Here, we have concentrated on a biological model of population growth. However, we

expect that the approach we have demonstrated: generating linear noise approximations

of stochastic processes to allow fast Bayesian inference with Kalman filtering for marginal

likelihood computation, will be useful in a wide range of other applications where simu-

lation is prohibitively slow.

Further work involves extending the Bayesian hierarchicalmodels in Chapter 3 with the

approximate stochastic logistic growth models and methodsfor carrying out inference de-

scribed in Chapter 5. By accounting for the random fluctuations within the logistic growth

data we will be able to improve our logistic growth parameterestimates.

We have demonstrated how to incorporate a batch effect or a transformation effect to
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the joint hierarchical model in Section 4.5. Introducing a batch or transformation effect

into our models will allow us to capture even further experimental variation. Fitness plots

for further case studies given in Section 4.5 and extensionsof the joint hierarchical model

given in Section 4.6 are included for experimental biologists to investigate further.

A related experiment to the QFA screen comparison analysed within this thesis is

the “all-by-all” QFA experiment (in early development at the time of writing). The “all-

by-all” QFA experiment begins with a control plate consisting of N orf∆s. For each

of theN orf∆s a new query plate is created, each query plate consists of the control

plate and an additional background mutation related to one of the N orf∆s. In total

there will beN + 1 unique plates (including the control plate). Where a standard QFA

comparison looks for genes that interact with a single querymutation (or condition), the

“all-by-all” QFA experiment aims to find genetic interactions for multiple query mutations

(N) simultaneously. The “all-by-all” experiment therefore incorporates more information

and investigates more potential genetic interactions thana standard QFA comparison.

We expect that the Bayesian hierarchical modelling and genetic interaction modelling

developed in this thesis will be used to create models for describing the “all-by-all” QFA

experiment as well as many other similar experiments in the future.

By improving our software we may be able to reduce computational time for infer-

ence. Currently the code for implementing the Bayesian models described in this thesis

is written in the C programming language which can be run as standalone software or

through an R package “qfaBayes”, available athttps://r-forge.r-project.

org/projects/qfa . The computational speed of our C code used for inference could

be improved by parallel implementation, taking advantage of a multi-core processor to

carry out tasks simultaneously. With faster computationaltimes we expect to reduce the

time for a typical QFA comparison with the JHM from∼2 weeks to less than a week.

Currently the information available on true genetic interactions and biological pro-

cesses in yeast is limited and so we rely on objective analyses such as simulation studies

to give unbiased comparisons between the approaches considered. The biological pro-

cesses of many genes in the yeast genome are yet to be identified so we are unable to

use GO term enrichment analysis as a “gold standard” for comparing the results of our

approaches. Information used to build a gene ontology is typically well known and taken

from well understood experiments, we expect that subtle genetic interactions which we

are interested in finding will have little information available. QFA screen comparisons

are designed to learn biology which is not already fully understood and so a biological

comparison between the different approaches considered isdifficult. Simulation studies
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(see Section 4.3.6) give us the ability to compare the different approaches and the effects

of modelling more experimental structure.

A typical QFA comparison is a large and complex data set corresponding to around

400,000 time series, posing considerable computational, as well as statistical challenges.

With a Bayesian approach we are able to evaluate complex hierarchical models to better

reflect the structure or design of genome-wide QFA experiments. Bayesian variable se-

lection methods embedded within a large hierarchical modelallow us to describe genetic

interaction and use prior information to incorporate physical and biological constraints

within our models. We have shown that Bayesian hierarchicalmodelling of large and

complex data gives us the advantage of increased modelling flexibility compared to a fre-

quentist approach, allowing us to better describe the experimental structure or design. For

the reasons above, a QFA screen comparison or any other highly structured experimental

dataset is better modelled using a Bayesian hierarchical modelling approach when com-

pared to an alternative frequentist approach.

Overall this thesis presents improved modelling approaches to the current non-hierarchical

frequentist approach for a QFA screen comparison. The research contained in this thesis

illustrates how Bayesian inference gives us further modelling flexibility, allowing us to

better describe the known experimental structure. Further, our modelling approaches and

assumptions are transferable outside QFA screen experiments where we wish to capture

as much experimental structure as possible. The results from our temperature sensitive

cdc13-1QFA experiment results will give further insight to the telomere and consequen-

tially aging and cancer in yeast and potentially the human genome (Botsteinet al., 1997).
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model and random effects model R code

A.1. cdc13-1 Quantitative Fitness Analysis data set sample

Figure A.1: cdc13-1Quantitative Fitness Analysis data set sample. Notable columns include
“ORF”, “Expt.Time” and “Growth”. “ORF” indicates whichorf∆ strain the row corresponds to.
“Expt.Time” indicates the time in days from theorf∆ strain being spotted (Addinallet al., 2011).
“Growth” gives an adjusted measure of cell culture density from the image analysis for a given
orf∆ strain and time point. Generated from Colonyzer output fileswith the qfa R package, freely
available athttp://qfa.r-forge.r-project.org/ .
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A.2. Solving the logistic growth model

The solution to the logistic growth ODE (1.1) can be obtainedas follows. First we factor

the right side of (1.1) and rearrange to give:

dx(t)

x(t)
(

1− x(t)
K

) = rdt.

We now rearrange further using a partial fractions expansion and integrate over both sides

of the equation:
∫

dx(t)

x(t)
+

1
K
dx(t)

(

1− x(t)
K

) =

∫

rdt. (A.1)

Integrating the first component on the left side of (A.1) we obtain the following, wherec1
is an unknown constant:

∫

dx(t)

x(t)
= log(x(t)) + c1.

Integrating the second component on the left side of (A.1) weobtain the following, where

c2 is an unknown constant:

1

K

∫

dx(t)

1− x(t)
K

= − log(1− x(t)

K
) + c2.

Integrating the right side of (A.1) we obtain the following,wherec3 is an unknown con-

stant:
∫

rdt = rt+ c3.

Solving the integrals in (A.1) we obtain the following, where c4 = c3 − c1 − c2 is an

unknown constant:

log

(

x(t)

1− x(t)
K

)

= rt+ c4.

Rearranging our equation, we obtain the following:

x(t)

1− x(t)
K

= ert+c4 .
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We now apply initial conditions,P = x0 and rearrange to obtain an expression forc4:

c4 = log

(

P

1− P
K

)

.

We now substitute in our expression forc4 to give:

log

(

x(t)

1− x(t)
K

)

= rt+ log

(

P

1− P
K

)

Finally, we rearrange to give (1.2).
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A.3. Random effects model R code

library(lme4) #http://cran.r-project.org/web/package s/lme4/index.html
#http://research.ncl.ac.uk/colonyzer/AddinallQFA/Lo gistic.zip and extract zip file
#alternatively http://research.ncl.ac.uk/colonyzer/A ddinallQFA/
#"Table S8 Logistic Output Files - 36MB .zip file"
aa<-read.delim("cSGA_v2_r1_Logistic.txt",header=T,s kip=1,sep="\t")
#...
bb<-read.delim("Adam_cdc13-1_SDLV2_REP1_Logistic.tx t",header=T,skip=0,sep="\t")
#...
aa<-aa[aa$Treatments==27,]
bb<-bb[bb$Treatments==27,]
aa<-aa[!aa$Row==1,]
aa<-aa[!aa$Row==16,]
aa<-aa[!aa$Col==1,]
aa<-aa[!aa$Col==24,]
bb<-bb[!bb$Row==1,]
bb<-bb[!bb$Row==16,]
bb<-bb[!bb$Col==1,]
bb<-bb[!bb$Col==24,]

ORFuni=ORFuni_a=unique(aa$ORF)
ORFuni_b=unique(bb$ORF)
L=length(ORFuni_a)
NoORF_a=NoORF_b=aaa=bbb=numeric()
for (i in 1:L){

NoORF_a[i]=nrow(aa[aa$ORF==ORFuni[i],])
NoORF_b[i]=nrow(bb[bb$ORF==ORFuni[i],])
aaa<-rbind(aaa,aa[aa$ORF==ORFuni[i],])
bbb<-rbind(bbb,bb[bb$ORF==ORFuni[i],])

}
a=b=numeric(0)
K_lm=aaa$Trimmed.K
P_a=43
r_lm=aaa$Trimmed.r
for (i in 1:length(r_lm)){

if(K_lm[i]<=2 * P_a){K_lm[i]=2 * P_a+0.01;r_lm[i]=0;}
a[i]=(r_lm[i]/log(2 * max(0,K_lm[i]-P_a)/max(0,K_lm[i]-2 * P_a))) * (log(K_lm[i]/P_a)/log(2));

}
K_lmb=bbb$Trimmed.K
P_b=43
r_lmb=bbb$Trimmed.r
for (i in 1:length(r_lmb)){

if(K_lmb[i]<=2 * P_b){K_lmb[i]=2 * P_b+0.01;r_lmb[i]=0;}
b[i]=(r_lmb[i]/log(2 * max(0,K_lmb[i]-P_b)/max(0,K_lmb[i]-2 * P_b))) * (log(K_lmb[i]/P_b)/log(2));

}

condition<-factor(c(rep("a",length(a)),rep("b",leng th(b))))
subject=numeric()
for (i in 1:L){

subject=c(subject,rep(i,NoORF_a[i]))
}
for (i in 1:L){

subject=c(subject,rep(i,NoORF_b[i]))
}
subcon=subject
subcon[1:length(a)]=0
subcon<-factor(subcon)
subject<-factor(subject)
f=c(a,b)
data=data.frame(f,subject,condition,subcon)
data$lf=log(data$f+1)
data$subcon<-C(data$subcon,sum)
bk<-contrasts(data$subcon)
contrasts(data$subcon)=bk[c(nrow(contrasts(data$sub con)),1:(nrow(contrasts(data$subcon))-1)),]
model1<-lmer(lf˜subcon+(1|subject),data=(data),REML =F)
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Appendix B. Bayesian hierarchical modelling

B.1. Hyper-parameter values for Bayesian hierarchical modelling

Table B.1: Hyper-parameter values for Bayesian hierarchical modelling of quantitative fitness
analysis data. Hyper-parameter values for the separate hierarchical model (SHM), interaction
hierarchical model (IHM) and joint hierarchical model (JHM) are provided.

SHM & JHM SHM & JHM JHM IHM JHM-B & JHM-T
Parameter Name Value Parameter Name Value Parameter Name Value Parameter Name Value Parameter Name Value

τK,µ 2.20 ηr,p 0.13 αµ 0.00 Zµ 3.66 κp 0.00
ητ,K,p 0.02 νµ 19.82 ηα 0.25 ηZ,p 0.70 ηκ 1.17
ηK,o −0.79 ην,p 0.02 βµ 0.00 ηZ 0.10 λp 0.00
ψK,o 0.61 P µ −9.04 ηβ 0.25 ψZ 0.42 ηλ 1.17
τ r,µ 3.65 ηP 0.47 p 0.05 ην 0.10 φshape 100.00
ητ,r,p 0.02 ηγ −0.79 ψν 2.45 φscale 0.01
ηr,o 0.47 ψγ 0.61 νµ 2.60 χshape 100.00
ψr,o 0.10 ηω 0.47 ην,p 0.05 χscale 0.01
ην −0.83 ψω 0.10 αµ 0.00
ψν 0.86 ητ,K 2.20 ηα 0.31
Kµ −2.01 ψτ,K 0.02 p 0.05
ηK,p 0.03 ητ,r 3.65 ηγ 0.10
rµ 0.97 ψτ,r 0.02 ψγ 0.42
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B.2. cdc13-1 27
◦C vsura3∆ 27

◦C fitness plots with gene ontology terms
highlighted

A B

C D

0 50 100 150

0
2
0

4
0

6
0

8
0

1
0
0

TEL1

TEC1

DPB3

GPR1

SIR2

YDR026C

GIS1

FOB1

DPB4

SIR4

CTA1

SNF1

GPA2

RIM15

PUF4

PNC1
SNF4

SIP2

RTG2

HXK2
ACB1

PHB1

PHB2

LAG1

SOD2

FIS1

GUT2

LAC1

MSN4

MDH1

AAT1

RAD27

UTH1

DNM1

HSP104

EST2

BUD6

MDM30

SIR3

TSA1

ZDS2

NDI1MSN2
NDE1

SGS1

ZDS1

HDA1

RAS2
PEX6

RPD3
LAG2DNL4

CKA2

RAS1

NPT1

SCP1

HST2

CTF4HDA3

NTG1

FUN30
YAL027W

NUP60

HTA2

ALK2
APN2

PSY4

PIN4

HHT1
RDH54

MMS4

RAD16TDP1
SLX1

HSM3

CHK1

SNF5

DCC1
MRC1

POL4MSH3

NHP10

HEX3

RPN4

RAD59

BDF2

BRE1

MSH5MGT1

RAD57

RAD28

PPH3

RAD55

UBC13
MSH6

BMH2

SAC3

RAD9

HTA1

DIN7

RAD34
HIM1

VID21

ESC2

XRS2

MUS81

RAD30

DOT1

PLM2

RAD23

HAT2

MIG3

YEN1

PTC2
RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4

CKB1

ALK1

RAD6

MMS2

LIF1

PAN2

SOH1

RAD54

SAE2

RTF1

SHU1

SNF6

RRM3

WSS1RTT107

CKA1
MET18

CSM2
REV7

RPL40A

RRD1IMP2'

MPH1

RTT101

HPR5

RAD26

POL32

RAD7

TOR1EAF6

GRR1

PAN3

IXR1

YNK1

APN1

CTK1

DOA1

TRM2

NUP133

RPL40B

MLP1

RTT109

UBI4
RAD5

MLH2

SLX4

TOS4

IRC20NEJ1

MMS22

RSC2

PSY3
CST9

CDC73

RAD33

UNG1

RAD52

SML1

OGG1

RAD10

CTK3

CSM3

CTF18
YKU80

PSO2

YIM1
TPP1

MLH1

DDR48
RAD14

MRE11

YKU70

HHT2

PMS1

MKT1

YAF9

EAF7

PSY2

IES2

MGS1

VPS75

RAD50

TOF1

MCK1

SIN3

NTG2

MSH2

HMI1

PAP2

EXO1

CKB2

LEO1

ARP8

ELG1

IES4

WTM2

REV1

RAD17

PHR1

HAT1
CHL1

RAD1

RMI1
ELC1 PNG1

MEI5
MLH3REV3

DDC1

EAF3

NHP6A

MMS1

CHZ1

PRE9

CTI6

RTC6

TGS1

PEX22

ATG14

PEX32

YCL056C
PEX19

GSG1PEX7
ADR1

PEX5

PEX10

PEX3
PEX29

AFG1

ATG18

PEX14

PEX31

PEX8

PEX4
PEX21

SLT2

PEX28

PEX18

DJP1

BCK1

MDV1

ATG27

YJL185C

PEX2

GPX1

PEX1

VPS1

CAF4

PEX13

PEX30

MID2

ATG17YMR018W

PEX12INP2

INP1

PEX17

ATG2

PEX15

WSC3
MDH2

RTC1

PEX11
SLG1 YOR084W

PEX27
MKK1

PEX25VPS30

MKK2

ANT1

SWD1

HEK2

SWD3

PBP2

RIF1

GBP2

EST3

SBA1

BRE2

STM1

EST1

TOP3

RIF2

CGI121

HSC82

YRF1−6

HSP82
SWD1

HEK2

TEL1

SWD3

PBP2

RIF1

GBP2

MRC1

HEX3

RAD59

RAD57

XRS2

RAD51

SLX8

RAD54

EST3

SBA1

BRE2

STM1

EST1

TOP3

EST2

RIF2

RAD52

CGI121

YKU80

HSC82

SGS1

YKU70
RAD50

YRF1−6

EXO1

ELG1

TGS1

HSP82

0 50 100 150

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

TEL1

TEC1

DPB3

GPR1

SIR2

YDR026C

GIS1

FOB1

DPB4

SIR4

CTA1

SNF1

GPA2

RIM15

PUF4

PNC1
SNF4

SIP2

RTG2

HXK2
ACB1

PHB1

PHB2

LAG1

SOD2

FIS1

GUT2

LAC1

MSN4

MDH1
AAT1

RAD27

UTH1

DNM1

HSP104

EST2

BUD6

MDM30

SIR3

TSA1

ZDS2
NDI1MSN2NDE1

SGS1

ZDS1

HDA1

RAS2

PEX6
RPD3

LAG2DNL4

CKA2

RAS1

NPT1

SCP1

HST2

CTF4

HDA3

NTG1

FUN30
YAL027W

NUP60

HTA2

ALK2
APN2

PSY4

PIN4

HHT1
RDH54

MMS4

RAD16TDP1
SLX1

HSM3

CHK1

SNF5

DCC1
MRC1

POL4MSH3

NHP10

HEX3

RPN4

RAD59

BDF2BRE1

MSH5MGT1

RAD57

RAD28

PPH3

RAD55

UBC13
MSH6

BMH2

SAC3

RAD9

HTA1

DIN7

RAD34
HIM1

VID21

ESC2

XRS2

MUS81

RAD30

DOT1

PLM2

RAD23

HAT2

MIG3

YEN1

PTC2
RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4

CKB1

ALK1

RAD6

MMS2

LIF1

PAN2

SOH1

RAD54

SAE2

RTF1

SHU1

SNF6

RRM3

WSS1RTT107

CKA1MET18

CSM2REV7

RPL40A

RRD1IMP2'

MPH1

RTT101

HPR5

RAD26

POL32

RAD7

TOR1EAF6

GRR1

PAN3
IXR1

YNK1
APN1

CTK1

DOA1

TRM2

NUP133

RPL40B

MLP1

RTT109

UBI4RAD5

MLH2

SLX4

TOS4

IRC20NEJ1

MMS22

RSC2

PSY3

CST9

CDC73

RAD33

UNG1

RAD52

SML1

OGG1

RAD10

CTK3

CSM3

CTF18

YKU80

PSO2

YIM1
TPP1

MLH1

DDR48
RAD14

MRE11

YKU70

HHT2

PMS1

MKT1

YAF9

EAF7

PSY2

IES2

MGS1

VPS75

RAD50

TOF1

MCK1

SIN3

NTG2

MSH2

HMI1

PAP2

EXO1

CKB2

LEO1

ARP8

ELG1

IES4

WTM2

REV1

RAD17

PHR1

HAT1

CHL1

RAD1

RMI1
ELC1 PNG1

MEI5
MLH3REV3

DDC1

EAF3

NHP6A

MMS1

CHZ1

PRE9

CTI6
RTC6

TGS1

PEX22

ATG14

PEX32

YCL056C
PEX19

GSG1PEX7
ADR1

PEX5
PEX10

PEX3

PEX29

AFG1

ATG18

PEX14

PEX31

PEX8

PEX4
PEX21

SLT2

PEX28

PEX18

DJP1

BCK1

MDV1

ATG27

YJL185C

PEX2

GPX1

PEX1

VPS1

CAF4

PEX13

PEX30

MID2

ATG17YMR018W

PEX12
INP2

INP1

PEX17

ATG2

PEX15

WSC3MDH2

RTC1

PEX11
SLG1 YOR084WPEX27

MKK1

PEX25VPS30

MKK2

ANT1

SWD1

HEK2

SWD3

PBP2

RIF1

GBP2

EST3

SBA1

BRE2

STM1

EST1

TOP3

RIF2

CGI121

HSC82

YRF1−6

HSP82SWD1

HEK2

TEL1

SWD3

PBP2

RIF1

GBP2

MRC1

HEX3

RAD59

RAD57

XRS2

RAD51

SLX8

RAD54

EST3

SBA1

BRE2

STM1

EST1

TOP3

EST2

RIF2

RAD52

CGI121

YKU80

HSC82

SGS1

YKU70

RAD50

YRF1−6

EXO1

ELG1

TGS1

HSP82

0 50 100 150

0
1
0

2
0

3
0

4
0

5
0

6
0

NTG1YAL027WPEX22

NUP60

SWD1

HTA2
ALK2

APN2HEK2
PSY4

PIN4

TEL1

HHT1
RDH54TEC1MMS4RAD16

ATG14

PEX32

SWD3

TDP1SLX1

PBP2

HSM3

CHK1

RIF1

DPB3

SNF5

GBP2

DCC1

YCL056C

MRC1

POL4MSH3

NHP10

HEX3

RPN4

GPR1

SIR2

RAD59
PEX19

BDF2

BRE1

MSH5MGT1

RAD57

YDR026CRAD28

PPH3

RAD55

UBC13

GIS1
MSH6

BMH2

GSG1
FOB1

DPB4

PEX7

SAC3

ADR1

RAD9

HTA1

SIR4

PEX5
CTA1DIN7

PEX10 RAD34
HIM1

PEX3

VID21

ESC2

XRS2

MUS81
RAD30

DOT1

SNF1

PEX29PLM2

RAD23

AFG1

GPA2

MIG3CHZ1YEN1

PTC2

RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4RIM15
ATG18

PUF4

CKB1

ALK1PNC1RAD6

MMS2

LIF1

PAN2

SNF4

SOH1

PEX14

RAD54

SAE2SIP2

RTF1

RTG2
HXK2PEX31

ACB1

PEX8 PHB1

PEX4
PRE9

PHB2

PEX21LAG1SHU1

SNF6

SOD2

SLT2

RRM3

WSS1

PEX28

RTT107

PEX18

EST3

CKA1

FIS1

MET18

CSM2REV7RPL40A

RRD1

IMP2'

GUT2

MPH1

DJP1

RTT101

HPR5

BCK1

MDV1ATG27

YJL185C

PEX2

RAD26

POL32

RAD7

TOR1
EAF6

GRR1

LAC1

PAN3

GPX1

IXR1

MSN4
YNK1MDH1AAT1

RAD27

APN1SBA1

CTK1

PEX1

DOA1

VPS1

CAF4

UTH1

TRM2

NUP133

RPL40B

MLP1
DNM1

RTT109

HSP104

UBI4
BRE2

RAD5

MLH2
SLX4

STM1

TOS4

PEX13

EST1

TOP3

IRC20NEJ1
BUD6

MMS22

PEX30

MID2

RSC2

MDM30
PSY3CST9

CDC73

ATG17

SIR3

RIF2

RAD33UNG1

TSA1

RAD52

CGI121SML1

OGG1

RAD10ZDS2
CTK3

NDI1
YMR018WPEX12
MSN2

CSM3CTF18 YKU80

PSO2NDE1YIM1TPP1INP2

MLH1

DDR48

SGS1

RAD14

INP1

MRE11

ZDS1

YKU70

HDA1

HHT2

PMS1

MKT1RAS2YAF9

EAF7

PEX17
IES2

MGS1ATG2
VPS75

RAD50

MCK1

PEX6

RPD3YRF1−6

SIN3

LAG2NTG2

PEX15

MSH2
WSC3MDH2

RTC1

PEX11
DNL4

SLG1

EXO1

CKB2

CKA2

YOR084WRAS1

LEO1

ARP8

ELG1

IES4PEX27

NPT1

WTM2MKK1REV1SCP1

RAD17

PHR1

HAT1
CHL1

HST2
RAD1

RMI1

ELC1

PNG1

PEX25VPS30MEI5MKK2

TGS1

MLH3REV3

CTI6

RTC6

DDC1

HSP82

EAF3

NHP6AANT1

CTF4

MMS1

HDA3

SWD1

HEK2

TEL1

SWD3

PBP2

RIF1

GBP2

MRC1

HEX3

RAD59

RAD57

XRS2

RAD51

SLX8

RAD54

EST3

SBA1

BRE2

STM1

EST1

TOP3

RIF2

RAD52

CGI121

YKU80

SGS1

YKU70

RAD50

YRF1−6

EXO1

ELG1
TGS1

HSP82

0 20 40 60 80

0
2
0

4
0

6
0

8
0

NTG1YAL027W
PEX22

NUP60

SWD1

HTA2
ALK2

APN2HEK2
PSY4

PIN4

TEL1

HHT1
RDH54TEC1MMS4RAD16

ATG14

PEX32

SWD3

TDP1SLX1

PBP2

HSM3

CHK1

RIF1

DPB3

SNF5

GBP2

DCC1

YCL056C

MRC1

POL4MSH3

NHP10

HEX3

RPN4

GPR1

SIR2

RAD59
PEX19

BDF2

BRE1

MSH5
MGT1

RAD57

YDR026CRAD28

PPH3

RAD55

UBC13

GIS1
MSH6

BMH2

GSG1
FOB1

DPB4

PEX7

SAC3

ADR1

RAD9

HTA1

SIR4

PEX5

CTA1DIN7

PEX10

RAD34
HIM1PEX3

VID21

ESC2

XRS2

MUS81

RAD30

DOT1

SNF1

PEX29PLM2

RAD23

AFG1

GPA2

MIG3

CHZ1

YEN1

PTC2

RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4

RIM15ATG18

PUF4

CKB1

ALK1PNC1RAD6

MMS2

LIF1

PAN2

SNF4

SOH1

PEX14

RAD54

SAE2SIP2

RTF1

RTG2

HXK2PEX31
ACB1

PEX8 PHB1

PEX4

PRE9

PHB2

PEX21LAG1SHU1

SNF6

SOD2

SLT2

RRM3

WSS1

PEX28

RTT107

PEX18

EST3

CKA1

FIS1

MET18

CSM2REV7
RPL40A

RRD1

IMP2'

GUT2

MPH1

DJP1

RTT101

HPR5

BCK1

MDV1

ATG27

YJL185C

PEX2

RAD26

POL32

RAD7

TOR1

EAF6

GRR1

LAC1

PAN3

GPX1

IXR1

MSN4
YNK1MDH1AAT1

RAD27

APN1

SBA1

CTK1

PEX1

DOA1

VPS1

CAF4

UTH1

TRM2

NUP133

RPL40B

MLP1
DNM1

RTT109 HSP104

UBI4

BRE2

RAD5

MLH2

SLX4

STM1

TOS4

PEX13

EST1

TOP3

IRC20NEJ1
BUD6

MMS22

PEX30

MID2

RSC2

MDM30

PSY3CST9

CDC73

ATG17

SIR3

RIF2

RAD33UNG1

TSA1

RAD52

CGI121
SML1

OGG1

RAD10ZDS2

CTK3
NDI1YMR018W

PEX12

MSN2

CSM3

CTF18
YKU80

PSO2NDE1YIM1TPP1

INP2

MLH1

DDR48

SGS1

RAD14

INP1

MRE11

ZDS1

YKU70HDA1

HHT2

PMS1

MKT1
RAS2

YAF9

EAF7

PEX17

IES2

MGS1
ATG2

VPS75

RAD50

MCK1

PEX6 RPD3YRF1−6

SIN3

LAG2NTG2

PEX15

MSH2

WSC3MDH2

RTC1

PEX11
DNL4

SLG1

EXO1

CKB2

CKA2

YOR084WRAS1

LEO1

ARP8

ELG1

IES4
PEX27

NPT1

WTM2MKK1REV1SCP1

RAD17

PHR1

HAT1CHL1

HST2

RAD1

RMI1

ELC1

PNG1

PEX25

VPS30

MEI5MKK2

TGS1

MLH3REV3

CTI6
RTC6

DDC1

HSP82

EAF3

NHP6A
ANT1

CTF4

MMS1

HDA3

SWD1

HEK2

TEL1

SWD3

PBP2

RIF1

GBP2

MRC1

HEX3

RAD59

RAD57

XRS2

RAD51

SLX8

RAD54

EST3

SBA1

BRE2

STM1

EST1

TOP3

RIF2

RAD52

CGI121

YKU80

SGS1

YKU70
RAD50

YRF1−6

EXO1

ELG1

TGS1

HSP82

Figure B.1: Alternative fitness plots withorf∆ posterior mean fitnesses. Labels for the “telomere
maintenance” gene ontology term are highlighted in blue. A)Non-Bayesian, non-hierarchical
fitness plot, based on Table S6 from Addinall et al. (2011)(F = MDR × MDP ). B) Non-
Bayesian, hierarchical fitness plot, from fitting REM to datain Table S6 from Addinall et al.
(2011) (F = MDR × MDP ). C) IHM fitness plot withorf∆ posterior mean fitness(F =
MDR × MDP ). D) JHM fitness plot withorf∆ posterior mean fitnesses.orf∆ strains are
classified as being a suppressor or enhancer based on analysis of growth parameterr. Further
fitness plot explanation and notation is given in Figure 4.2.
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Figure B.2: Alternative fitness plots withorf∆ posterior mean fitnesses. Labels for the “ageing”
gene ontology term are highlighted in blue. A) Non-Bayesian, non-hierarchical fitness plot, based
on Table S6 from Addinall et al. (2011)(F = MDR ×MDP ). B) Non-Bayesian, hierarchical
fitness plot, from fitting REM to data in Table S6 from Addinallet al. (2011)(F = MDR ×
MDP ). C) IHM fitness plot withorf∆ posterior mean fitness(F = MDR ×MDP ). D) JHM
fitness plot withorf∆ posterior mean fitnesses.orf∆ strains are classified as being a suppressor or
enhancer based on analysis of growth parameterr. Further fitness plot explanation and notation is
given in Figure 4.2.
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Appendix B. Bayesian hierarchical modelling
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Figure B.3: Alternative fitness plots withorf∆ posterior mean fitnesses. Labels for the “response
to DNA damage” gene ontology term are highlighted in blue. A)Non-Bayesian, non-hierarchical
fitness plot, based on Table S6 from Addinall et al. (2011)(F = MDR × MDP ). B) Non-
Bayesian, hierarchical fitness plot, from fitting REM to datain Table S6 from Addinall et al.
(2011) (F = MDR × MDP ). C) IHM fitness plot withorf∆ posterior mean fitness(F =
MDR × MDP ). D) JHM fitness plot withorf∆ posterior mean fitnesses.orf∆ strains are
classified as being a suppressor or enhancer based on analysis of growth parameterr. Further
fitness plot explanation and notation is given in Figure 4.2.
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Appendix B. Bayesian hierarchical modelling

A B

C D

0 50 100 150

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

TEL1

TEC1

DPB3

GPR1

SIR2

YDR026C

GIS1

FOB1

DPB4

SIR4

CTA1

SNF1

GPA2

RIM15

PUF4

PNC1
SNF4

SIP2

RTG2

HXK2
ACB1

PHB1

PHB2

LAG1

SOD2

FIS1

GUT2

LAC1

MSN4

MDH1
AAT1

RAD27

UTH1

DNM1

HSP104

EST2

BUD6

MDM30

SIR3

TSA1

ZDS2
NDI1MSN2NDE1

SGS1

ZDS1

HDA1

RAS2

PEX6
RPD3

LAG2DNL4

CKA2

RAS1

NPT1

SCP1

HST2

CTF4

HDA3

NTG1

FUN30
YAL027W

NUP60

HTA2

ALK2
APN2

PSY4

PIN4

HHT1
RDH54

MMS4

RAD16TDP1
SLX1

HSM3

CHK1

SNF5

DCC1
MRC1

POL4MSH3

NHP10

HEX3

RPN4

RAD59

BDF2BRE1

MSH5MGT1

RAD57

RAD28

PPH3

RAD55

UBC13
MSH6

BMH2

SAC3

RAD9

HTA1

DIN7

RAD34
HIM1

VID21

ESC2

XRS2

MUS81

RAD30

DOT1

PLM2

RAD23

HAT2

MIG3

YEN1

PTC2
RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4

CKB1

ALK1

RAD6

MMS2

LIF1

PAN2

SOH1

RAD54

SAE2

RTF1

SHU1

SNF6

RRM3

WSS1RTT107

CKA1MET18

CSM2REV7

RPL40A

RRD1IMP2'

MPH1

RTT101

HPR5

RAD26

POL32

RAD7

TOR1EAF6

GRR1

PAN3
IXR1

YNK1
APN1

CTK1

DOA1

TRM2

NUP133

RPL40B

MLP1

RTT109

UBI4RAD5

MLH2

SLX4

TOS4

IRC20NEJ1

MMS22

RSC2

PSY3

CST9

CDC73

RAD33

UNG1

RAD52

SML1

OGG1

RAD10

CTK3

CSM3

CTF18

YKU80

PSO2

YIM1
TPP1

MLH1

DDR48
RAD14

MRE11

YKU70

HHT2

PMS1

MKT1

YAF9

EAF7

PSY2

IES2

MGS1

VPS75

RAD50

TOF1

MCK1

SIN3

NTG2

MSH2

HMI1

PAP2

EXO1

CKB2

LEO1

ARP8

ELG1

IES4

WTM2

REV1

RAD17

PHR1

HAT1

CHL1

RAD1

RMI1
ELC1 PNG1

MEI5
MLH3REV3

DDC1

EAF3

NHP6A

MMS1

CHZ1

PRE9

CTI6
RTC6

TGS1

PEX22

ATG14

PEX32

YCL056C
PEX19

GSG1PEX7
ADR1

PEX5
PEX10

PEX3

PEX29

AFG1

ATG18

PEX14

PEX31

PEX8

PEX4
PEX21

SLT2

PEX28

PEX18

DJP1

BCK1

MDV1

ATG27

YJL185C

PEX2

GPX1

PEX1

VPS1

CAF4

PEX13

PEX30

MID2

ATG17YMR018W

PEX12
INP2

INP1

PEX17

ATG2

PEX15

WSC3MDH2

RTC1

PEX11
SLG1 YOR084WPEX27

MKK1

PEX25VPS30

MKK2

ANT1

SWD1

HEK2

SWD3

PBP2

RIF1

GBP2

EST3

SBA1

BRE2

STM1

EST1

TOP3

RIF2

CGI121

HSC82

YRF1−6

HSP82

PEX22

ATG14

PEX32

YCL056C
PEX19

GSG1PEX7
ADR1

PEX5
PEX10

PEX3

PEX29

AFG1

ATG18

SNF4

PEX14

PEX31

PEX8

PEX4
PEX21

SLT2

PEX28

PEX18

FIS1

DJP1

BCK1

MDV1

ATG27

YJL185C

PEX2

GPX1

PEX1

VPS1

CAF4
DNM1

PEX13

PEX30

MID2

ATG17YMR018W

PEX12
INP2

INP1

PEX17

ATG2

PEX6

PEX15

WSC3MDH2

RTC1

PEX11
SLG1 YOR084WPEX27

MKK1

PEX25VPS30

MKK2

ANT1

0 50 100 150

0
2
0

4
0

6
0

8
0

1
0
0

TEL1

TEC1

DPB3

GPR1

SIR2

YDR026C

GIS1

FOB1

DPB4

SIR4

CTA1

SNF1

GPA2

RIM15

PUF4

PNC1
SNF4

SIP2

RTG2

HXK2
ACB1

PHB1

PHB2

LAG1

SOD2

FIS1

GUT2

LAC1

MSN4

MDH1

AAT1

RAD27

UTH1

DNM1

HSP104

EST2

BUD6

MDM30

SIR3

TSA1

ZDS2

NDI1MSN2
NDE1

SGS1

ZDS1

HDA1

RAS2
PEX6

RPD3
LAG2DNL4

CKA2

RAS1

NPT1

SCP1

HST2

CTF4HDA3

NTG1

FUN30
YAL027W

NUP60

HTA2

ALK2
APN2

PSY4

PIN4

HHT1
RDH54

MMS4

RAD16TDP1
SLX1

HSM3

CHK1

SNF5

DCC1
MRC1

POL4MSH3

NHP10

HEX3

RPN4

RAD59

BDF2

BRE1

MSH5MGT1

RAD57

RAD28

PPH3

RAD55

UBC13
MSH6

BMH2

SAC3

RAD9

HTA1

DIN7

RAD34
HIM1

VID21

ESC2

XRS2

MUS81

RAD30

DOT1

PLM2

RAD23

HAT2

MIG3

YEN1

PTC2
RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4

CKB1

ALK1

RAD6

MMS2

LIF1

PAN2

SOH1

RAD54

SAE2

RTF1

SHU1

SNF6

RRM3

WSS1RTT107

CKA1
MET18

CSM2
REV7

RPL40A

RRD1IMP2'

MPH1

RTT101

HPR5

RAD26

POL32

RAD7

TOR1EAF6

GRR1

PAN3

IXR1

YNK1

APN1

CTK1

DOA1

TRM2

NUP133

RPL40B

MLP1

RTT109

UBI4
RAD5

MLH2

SLX4

TOS4

IRC20NEJ1

MMS22

RSC2

PSY3
CST9

CDC73

RAD33

UNG1

RAD52

SML1

OGG1

RAD10

CTK3

CSM3

CTF18
YKU80

PSO2

YIM1
TPP1

MLH1

DDR48
RAD14

MRE11

YKU70

HHT2

PMS1

MKT1

YAF9

EAF7

PSY2

IES2

MGS1

VPS75

RAD50

TOF1

MCK1

SIN3

NTG2

MSH2

HMI1

PAP2

EXO1

CKB2

LEO1

ARP8

ELG1

IES4

WTM2

REV1

RAD17

PHR1

HAT1
CHL1

RAD1

RMI1
ELC1 PNG1

MEI5
MLH3REV3

DDC1

EAF3

NHP6A

MMS1

CHZ1

PRE9

CTI6

RTC6

TGS1

PEX22

ATG14

PEX32

YCL056C
PEX19

GSG1PEX7
ADR1

PEX5

PEX10

PEX3
PEX29

AFG1

ATG18

PEX14

PEX31

PEX8

PEX4
PEX21

SLT2

PEX28

PEX18

DJP1

BCK1

MDV1

ATG27

YJL185C

PEX2

GPX1

PEX1

VPS1

CAF4

PEX13

PEX30

MID2

ATG17YMR018W

PEX12INP2

INP1

PEX17

ATG2

PEX15

WSC3
MDH2

RTC1

PEX11
SLG1 YOR084W

PEX27
MKK1

PEX25VPS30

MKK2

ANT1

SWD1

HEK2

SWD3

PBP2

RIF1

GBP2

EST3

SBA1

BRE2

STM1

EST1

TOP3

RIF2

CGI121

HSC82

YRF1−6

HSP82

PEX22

ATG14

PEX32

YCL056C
PEX19

GSG1PEX7
ADR1

PEX5

PEX10

PEX3
PEX29

AFG1

ATG18

SNF4

PEX14

PEX31

PEX8

PEX4
PEX21

SLT2

PEX28

PEX18

FIS1

DJP1

BCK1

MDV1

ATG27

YJL185C

PEX2

GPX1

PEX1

VPS1

CAF4
DNM1

PEX13

PEX30

MID2

ATG17YMR018W

PEX12INP2

INP1

PEX17

ATG2

PEX6

PEX15

WSC3
MDH2

RTC1

PEX11
SLG1 YOR084W

PEX27
MKK1

PEX25VPS30

MKK2

ANT1

0 50 100 150

0
1
0

2
0

3
0

4
0

5
0

6
0

NTG1YAL027WPEX22

NUP60

SWD1

HTA2
ALK2

APN2HEK2
PSY4

PIN4

TEL1

HHT1
RDH54TEC1MMS4RAD16

ATG14

PEX32

SWD3

TDP1SLX1

PBP2

HSM3

CHK1

RIF1

DPB3

SNF5

GBP2

DCC1

YCL056C

MRC1

POL4MSH3

NHP10

HEX3

RPN4

GPR1

SIR2

RAD59
PEX19

BDF2

BRE1

MSH5MGT1

RAD57

YDR026CRAD28

PPH3

RAD55

UBC13

GIS1
MSH6

BMH2

GSG1
FOB1

DPB4

PEX7

SAC3

ADR1

RAD9

HTA1

SIR4

PEX5
CTA1DIN7

PEX10 RAD34
HIM1

PEX3

VID21

ESC2

XRS2

MUS81
RAD30

DOT1

SNF1

PEX29PLM2

RAD23

AFG1

GPA2

MIG3CHZ1YEN1

PTC2

RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4RIM15
ATG18

PUF4

CKB1

ALK1PNC1RAD6

MMS2

LIF1

PAN2

SNF4

SOH1

PEX14

RAD54

SAE2SIP2

RTF1

RTG2
HXK2PEX31

ACB1

PEX8 PHB1

PEX4
PRE9

PHB2

PEX21LAG1SHU1

SNF6

SOD2

SLT2

RRM3

WSS1

PEX28

RTT107

PEX18

EST3

CKA1

FIS1

MET18

CSM2REV7RPL40A

RRD1

IMP2'

GUT2

MPH1

DJP1

RTT101

HPR5

BCK1

MDV1ATG27

YJL185C

PEX2

RAD26

POL32

RAD7

TOR1
EAF6

GRR1

LAC1

PAN3

GPX1

IXR1

MSN4
YNK1MDH1AAT1

RAD27

APN1SBA1

CTK1

PEX1

DOA1

VPS1

CAF4

UTH1

TRM2

NUP133

RPL40B

MLP1
DNM1

RTT109

HSP104

UBI4
BRE2

RAD5

MLH2
SLX4

STM1

TOS4

PEX13

EST1

TOP3

IRC20NEJ1
BUD6

MMS22

PEX30

MID2

RSC2

MDM30
PSY3CST9

CDC73

ATG17

SIR3

RIF2

RAD33UNG1

TSA1

RAD52

CGI121SML1

OGG1

RAD10ZDS2
CTK3

NDI1
YMR018WPEX12
MSN2

CSM3CTF18 YKU80

PSO2NDE1YIM1TPP1INP2

MLH1

DDR48

SGS1

RAD14

INP1

MRE11

ZDS1

YKU70

HDA1

HHT2

PMS1

MKT1RAS2YAF9

EAF7

PEX17
IES2

MGS1ATG2
VPS75

RAD50

MCK1

PEX6

RPD3YRF1−6

SIN3

LAG2NTG2

PEX15

MSH2
WSC3MDH2

RTC1

PEX11
DNL4

SLG1

EXO1

CKB2

CKA2

YOR084WRAS1

LEO1

ARP8

ELG1

IES4PEX27

NPT1

WTM2MKK1REV1SCP1

RAD17

PHR1

HAT1
CHL1

HST2
RAD1

RMI1

ELC1

PNG1

PEX25VPS30MEI5MKK2

TGS1

MLH3REV3

CTI6

RTC6

DDC1

HSP82

EAF3

NHP6AANT1

CTF4

MMS1

HDA3

PEX22
ATG14

PEX32

YCL056C

PEX19GSG1
PEX7ADR1

PEX5

PEX10

PEX3
PEX29AFG1ATG18SNF4

PEX14

PEX31

PEX8

PEX4
PEX21

SLT2

PEX28PEX18
FIS1

DJP1

BCK1

MDV1ATG27

YJL185C

PEX2

GPX1
PEX1

VPS1

CAF4DNM1

PEX13

PEX30

MID2

ATG17YMR018WPEX12INP2
INP1

PEX17ATG2

PEX6

PEX15

WSC3MDH2

RTC1

PEX11

SLG1

YOR084W
PEX27MKK1PEX25VPS30 MKK2

ANT1

0 20 40 60 80

0
2
0

4
0

6
0

8
0

NTG1YAL027W
PEX22

NUP60

SWD1

HTA2
ALK2

APN2HEK2
PSY4

PIN4

TEL1

HHT1
RDH54TEC1MMS4RAD16

ATG14

PEX32

SWD3

TDP1SLX1

PBP2

HSM3

CHK1

RIF1

DPB3

SNF5

GBP2

DCC1

YCL056C

MRC1

POL4MSH3

NHP10

HEX3

RPN4

GPR1

SIR2

RAD59
PEX19

BDF2

BRE1

MSH5
MGT1

RAD57

YDR026CRAD28

PPH3

RAD55

UBC13

GIS1
MSH6

BMH2

GSG1
FOB1

DPB4

PEX7

SAC3

ADR1

RAD9

HTA1

SIR4

PEX5

CTA1DIN7

PEX10

RAD34
HIM1PEX3

VID21

ESC2

XRS2

MUS81

RAD30

DOT1

SNF1

PEX29PLM2

RAD23

AFG1

GPA2

MIG3

CHZ1

YEN1

PTC2

RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4

RIM15ATG18

PUF4

CKB1

ALK1PNC1RAD6

MMS2

LIF1

PAN2

SNF4

SOH1

PEX14

RAD54

SAE2SIP2

RTF1

RTG2

HXK2PEX31
ACB1

PEX8 PHB1

PEX4

PRE9

PHB2

PEX21LAG1SHU1

SNF6

SOD2

SLT2

RRM3

WSS1

PEX28

RTT107

PEX18

EST3

CKA1

FIS1

MET18

CSM2REV7
RPL40A

RRD1

IMP2'

GUT2

MPH1

DJP1

RTT101

HPR5

BCK1

MDV1

ATG27

YJL185C

PEX2

RAD26

POL32

RAD7

TOR1

EAF6

GRR1

LAC1

PAN3

GPX1

IXR1

MSN4
YNK1MDH1AAT1

RAD27

APN1

SBA1

CTK1

PEX1

DOA1

VPS1

CAF4

UTH1

TRM2

NUP133

RPL40B

MLP1
DNM1

RTT109 HSP104

UBI4

BRE2

RAD5

MLH2

SLX4

STM1

TOS4

PEX13

EST1

TOP3

IRC20NEJ1
BUD6

MMS22

PEX30

MID2

RSC2

MDM30

PSY3CST9

CDC73

ATG17

SIR3

RIF2

RAD33UNG1

TSA1

RAD52

CGI121
SML1

OGG1

RAD10ZDS2

CTK3
NDI1YMR018W

PEX12

MSN2

CSM3

CTF18
YKU80

PSO2NDE1YIM1TPP1

INP2

MLH1

DDR48

SGS1

RAD14

INP1

MRE11

ZDS1

YKU70HDA1

HHT2

PMS1

MKT1
RAS2

YAF9

EAF7

PEX17

IES2

MGS1
ATG2

VPS75

RAD50

MCK1

PEX6 RPD3YRF1−6

SIN3

LAG2NTG2

PEX15

MSH2

WSC3MDH2

RTC1

PEX11
DNL4

SLG1

EXO1

CKB2

CKA2

YOR084WRAS1

LEO1

ARP8

ELG1

IES4
PEX27

NPT1

WTM2MKK1REV1SCP1

RAD17

PHR1

HAT1CHL1

HST2

RAD1

RMI1

ELC1

PNG1

PEX25

VPS30

MEI5MKK2

TGS1

MLH3REV3

CTI6
RTC6

DDC1

HSP82

EAF3

NHP6A
ANT1

CTF4

MMS1

HDA3

PEX22 ATG14

PEX32

YCL056C

PEX19GSG1
PEX7ADR1

PEX5

PEX10

PEX3
PEX29

AFG1ATG18SNF4

PEX14

PEX31

PEX8

PEX4

PEX21

SLT2

PEX28PEX18

FIS1

DJP1

BCK1

MDV1

ATG27

YJL185C

PEX2

GPX1
PEX1

VPS1

CAF4DNM1

PEX13

PEX30

MID2

ATG17YMR018W

PEX12

INP2

INP1

PEX17
ATG2

PEX6

PEX15

WSC3MDH2

RTC1

PEX11

SLG1

YOR084W
PEX27MKK1

PEX25

VPS30

MKK2
ANT1

Figure B.4: Alternative fitness plots withorf∆ posterior mean fitnesses. Labels for the “per-
oxisomal organisation” gene ontology term are highlightedin blue. A) Non-Bayesian, non-
hierarchical fitness plot, based on Table S6 from Addinall etal. (2011)(F = MDR ×MDP ).
B) Non-Bayesian, hierarchical fitness plot, from fitting REMto data in Table S6 from Addinall
et al. (2011)(F = MDR × MDP ). C) IHM fitness plot withorf∆ posterior mean fitness
(F = MDR ×MDP ). D) JHM fitness plot withorf∆ posterior mean fitnesses.orf∆ strains
are classified as being a suppressor or enhancer based on analysis of growth parameterr. Further
fitness plot explanation and notation is given in Figure 4.2.
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Appendix B. Bayesian hierarchical modelling

B.3. Lists of top genetic interactions for the two-stage andone-stage
Bayesian approaches

Table B.2: Sample of interaction hierarchical model top genetic interactions withcdc13-1at27◦C

Type of Gene Probability of Strength of Position in
Interaction Name Interactionδl Interactione(δlγl) Addinall (2011)
Suppressor IPK1 1.00 2.87 10

LST4 1.00 2.77 13
RPN4 1.00 2.76 17
MTC5 1.00 2.66 20
GTR1 1.00 2.64 38
NMD2 1.00 2.62 3
SAN1 1.00 2.62 16
UPF3 1.00 2.58 21

RPL37A 1.00 2.56 121
NAM7 1.00 2.53 22
RPP2B 1.00 2.52 120

YNL226W 0.99 2.49 126
YGL218W 1.00 2.46 250

MEH1 1.00 2.45 45
ARO2 1.00 2.45 68
EXO1 1.00 2.45 1
BUD27 1.00 2.43 46
RAD24 1.00 2.39 4
RPL16B 1.00 2.39 33
RPL43A 1.00 2.39 150

Enhancer :::MRC1 1.00 0.11 35
YKU70 1.00 0.11 31

STI1 1.00 0.11 42
RIF1 1.00 0.13 36
ELP3 1.00 0.16 82
CLB5 1.00 0.17 58
MRC1 1.00 0.17 63
DPH2 1.00 0.18 24
POL32 1.00 0.19 113
MAK31 1.00 0.19 37
SWM1 1.00 0.20 25
LTE1 1.00 0.21 48

MAK10 1.00 0.22 44
ELP2 1.00 0.22 77
PAT1 1.00 0.24 144
DPH1 1.00 0.25 55
SRB2 0.99 0.25 174
THP2 1.00 0.26 67
MFT1 1.00 0.26 52
LSM6 0.97 0.26 389

Seehttp://research.ncl.ac.uk/qfa/HeydariQFABayes/IHM_s trip.txt for the full list.
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Appendix B. Bayesian hierarchical modelling

Table B.3: Sample of joint hierarchical model top genetic interactions with cdc13-1at27◦C

Type of Gene Probability of Strength of Strength of Strengthof Position in
Interaction Name Interaction Interaction Interaction Interaction Addinall (2011)

δl e(δlγl) e(δlωl) MDR ×MDP
Suppressor CSE2 1.00 490.51 0.48 11.71 838

in K SGF29 1.00 273.69 0.68 14.16 580
GSH1 1.00 78.79 0.92 17.89 281
YMD8 1.00 59.31 0.65 7.05 2022

YGL024W 1.00 28.13 1.18 13.33 151
RPS9B 1.00 24.67 1.12 10.24 801
GRR1 1.00 22.51 0.67 5.99 1992

Suppressor BTS1 1.00 19.27 2.29 19.65 201
in r IPK1 1.00 5.56 2.26 44.81 10

NMD2 1.00 2.96 2.19 48.51 3
SAN1 1.00 2.37 2.17 48.70 16
LST4 1.00 5.79 2.14 44.14 13
RPN4 1.00 8.00 2.12 40.46 17
UPF3 1.00 3.16 2.07 45.25 21

Suppressor in SAN1 1.00 2.37 2.17 48.70 16
MDR ×MDP NMD2 1.00 2.96 2.19 48.51 3

UPF3 1.00 3.16 2.07 45.25 21
EXO1 1.00 2.89 2.06 45.04 1
IPK1 1.00 5.56 2.26 44.81 10
LST4 1.00 5.79 2.14 44.14 13
NAM7 1.00 3.02 2.04 43.00 22

Enhancer YKU70 1.00 0.01 1.09 −23.44 31
in K STI1 1.00 0.01 1.20 −21.60 42

RIF1 1.00 0.01 0.63 −26.17 36
:::MRC1 1.00 0.01 0.83 −23.15 35
MAK31 1.00 0.02 1.18 −18.19 37
CLB5 1.00 0.02 0.87 −19.54 58
MRC1 1.00 0.02 0.81 −20.40 63

Enhancer PAT1 1.00 1.71 0.28 −18.30 144
in r PUF4 1.00 2.00 0.31 −21.61 34

YKU80 1.00 2.15 0.33 −21.68 32
RTT103 1.00 2.54 0.34 −17.87 153
LSM1 0.99 2.13 0.34 −16.20 101
GIM3 0.99 0.93 0.35 −19.70 132
INP52 0.96 0.86 0.36 −14.50 345

Enhancer in RIF1 1.00 0.01 0.63 −26.17 36
MDR ×MDP LTE1 1.00 0.06 0.40 −23.96 48

YKU70 1.00 0.01 1.09 −23.44 31
:::MRC1 1.00 0.01 0.83 −23.15 35
DPH2 1.00 0.04 0.56 −23.11 24
EST1 1.00 0.12 0.46 −22.20 5

MAK10 1.00 0.04 0.59 −21.92 44
Seehttp://research.ncl.ac.uk/qfa/HeydariQFABayes/JHM_s trip.txt for the full list.
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B.4. cdc13-1 27
◦C vsura3∆ 27

◦C fitness plots for the joint hierarchical
model in terms of carrying capacity and growth rate parameters
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Figure B.5: Joint hierarchical model (JHM) carrying capacity fitness plot with orf∆ posterior
mean fitnesses.orf∆ strains are classified as being a suppressor or enhancer based on carrying
capacity parameterK. Significant interactors have posterior probability∆ > 0.5. To compare
fitness plots, labelled genes are those belonging to the following gene ontology terms in Table 4.1:
“telomere maintenance”, “ageing”, “response to DNA damagestimulus” or “peroxisomal organi-
zation”, as well as the genes identified as interactions onlyin K with the JHM (see Figure 4.3)
(blue), genes interacting only inr with the JHM (cyan) and the MRX complex genes (pink).

121



Appendix B. Bayesian hierarchical modelling

0 1 2 3 4 5 6

0
1

2
3

4
5

NTG1YAL027WPEX22

NUP60

SWD1

HTA2ALK2APN2HEK2
PSY4

PIN4

TEL1

HHT1
RDH54TEC1MMS4RAD16
ATG14

PEX32

SWD3

TDP1SLX1

PBP2

HSM3

CHK1

RIF1

DPB3

SNF5

GBP2

DCC1

YCL056C

MRC1

POL4MSH3

NHP10

HEX3

RPN4

GPR1
SIR2RAD59PEX19

BDF2

BRE1

MSH5MGT1

RAD57

YDR026CRAD28

PPH3
RAD55

UBC13

GIS1MSH6

BMH2

GSG1
FOB1

DPB4

PEX7

SAC3

ADR1

RAD9

HTA1

SIR4

PEX5
CTA1DIN7

PEX10

RAD34HIM1PEX3

VID21

ESC2

XRS2

MUS81
RAD30

DOT1

SNF1

PEX29PLM2

RAD23

AFG1

GPA2

MIG3CHZ1
YEN1

PTC2

RAD51

SLX8

MAG1

RAD4

RAD24

BMH1

MSH4

RIM15ATG18

PUF4

CKB1

ALK1PNC1RAD6

MMS2

LIF1

PAN2

SNF4

SOH1

PEX14

RAD54

SAE2SIP2

RTF1

RTG2

HXK2PEX31
ACB1

PEX8 PHB1

PEX4
PRE9

PHB2

PEX21LAG1SHU1

SNF6

SOD2

SLT2

RRM3
WSS1

PEX28
RTT107

PEX18

EST3

CKA1

FIS1

MET18

CSM2REV7RPL40A

RRD1

IMP2'

GUT2

MPH1

DJP1
RTT101

HPR5

BCK1

MDV1
ATG27

YJL185C

PEX2

RAD26

POL32

RAD7

TOR1
EAF6

GRR1

LAC1

PAN3

GPX1

IXR1

MSN4
YNK1MDH1AAT1

RAD27

APN1
SBA1

CTK1

PEX1

DOA1

VPS1

CAF4

UTH1

TRM2

NUP133

RPL40B

MLP1
DNM1

RTT109

HSP104
UBI4BRE2
RAD5

MLH2

SLX4

STM1

TOS4

PEX13

EST1

TOP3

IRC20NEJ1BUD6

MMS22

PEX30

MID2

RSC2

MDM30
PSY3CST9

CDC73

ATG17
SIR3

RIF2

RAD33UNG1

TSA1

RAD52

CGI121SML1

OGG1

RAD10ZDS2
CTK3

NDI1YMR018W

PEX12

MSN2

CSM3

CTF18

YKU80

PSO2NDE1YIM1TPP1
INP2

MLH1

DDR48

SGS1

RAD14
INP1

MRE11

ZDS1
YKU70

HDA1

HHT2

PMS1

MKT1RAS2

YAF9

EAF7

PEX17

IES2

MGS1ATG2

VPS75

RAD50

MCK1

PEX6
RPD3YRF1−6

SIN3

LAG2NTG2

PEX15

MSH2
WSC3MDH2

RTC1

PEX11DNL4

SLG1

EXO1

CKB2

CKA2

YOR084WRAS1

LEO1

ARP8

ELG1

IES4PEX27

NPT1

WTM2MKK1REV1SCP1

RAD17

PHR1

HAT1

CHL1

HST2
RAD1

RMI1

ELC1

PNG1

PEX25
VPS30

MEI5MKK2

TGS1

MLH3REV3

CTI6
RTC6

DDC1

HSP82

EAF3

NHP6AANT1

CTF4

MMS1
HDA3

CHZ1
PRE9PEX6

TGS1

CTI6
RTC6

XRS2MRE11
RAD50

Figure B.6: Joint hierarchical model (JHM) growth rate fitness plot withorf∆ posterior mean
fitnesses.orf∆ strains are classified as being a suppressor or enhancer based on growth parameter
r. Significant interactors have posterior probability∆ > 0.5. To compare fitness plots, labelled
genes are those belonging to the following gene ontology terms in Table 4.1: “telomere mainte-
nance”, “ageing”, “response to DNA damage stimulus” or “peroxisomal organization”, as well as
the genes identified as interactions only inK with the JHM (see Figure 4.3) (blue), genes interact-
ing only inr with the JHM (cyan) and the MRX complex genes (pink).
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B.5. Gene ontology term enrichment analysis in R

source("http://bioconductor.org/biocLite.R")
biocLite("GOstats")
biocLite("org.Sc.sgd.db")
###################
library(GOstats) # GO testing tool package
library(org.Sc.sgd.db) # yeast gene annotation package
genes=read.table("JHM_strip.txt", header=T)
UNIVSTRIP=genes[,2]
genes<-as.vector(genes[genes[,3]>0.5,2])
genes<-unique(genes)
ensemblIDs=as.list(org.Sc.sgdPMID2ORF)
univ=unlist(ensemblIDs)
univ=univ[!is.na(univ)]
length(univ)
length(unique(univ))
univ=unique(univ)
all=as.vector(univ)
all=all[all%in%UNIVSTRIP]
length(all)
ontology=c("BP")
vec<-genes%in%univ
genes<-genes[vec]
params_temp=new("GOHyperGParams", geneIds=genes,
universeGeneIds=all,

annotation="org.Sc.sgd.db", categoryName="GO",
ontology=ontology, pvalueCutoff=1,
testDirection = "over")

results=hyperGTest(params_temp)
results=summary(results)
results$qvalue<-p.adjust(results$Pvalue,method="BH" )

123



Appendix B. Bayesian hierarchical modelling

B.6. Code for Just Another Gibbs Sampler software

B.6.1. Separate hierarchical model code
model {
for (l in 1:N){

for (m in 1:NoORF[l]){
for (n in 1:NoTime[(NoSum[l]+m)]){

y[m,n,l] ˜ dnorm(y.hat[m,n,l], exp(nu_l[l]))
y.hat[m,n,l] <- (K_lm[(NoSum[l]+m)]

* P* exp(r_lm[(NoSum[l]+m)] * x[m,n,l]))
/(K_lm[(NoSum[l]+m)]+P * (exp(r_lm[(NoSum[l]+m)] * x[m,n,l])-1))

}
K_lm[(NoSum[l]+m)]<- exp(K_lm_L[(NoSum[l]+m)])
K_lm_L[(NoSum[l]+m)] ˜ dnorm(K_o_l_L[l],exp(tau_K_l[l ]))T(,0)
r_lm[(NoSum[l]+m)]<- exp(r_lm_L[(NoSum[l]+m)])
r_lm_L[(NoSum[l]+m)] ˜ dnorm(r_o_l_L[l],exp(tau_r_l[l ]))T(,3.5)

}
K_o_l_L[l]<- log(K_o_l[l])
K_o_l[l] ˜ dt( exp(K_p), exp(sigma_K_o),3)T(0,)
r_o_l_L[l]<- log(r_o_l[l])
r_o_l[l] ˜ dt( exp(r_p), exp(sigma_r_o),3)T(0,)
nu_l[l] ˜ dnorm(nu_p, exp(sigma_nu) )
tau_K_l[l]˜dnorm(tau_K_p,exp(sigma_tau_K))T(0,)
tau_r_l[l]˜dnorm(tau_r_p,exp(sigma_tau_r))

}
K_p ˜ dnorm(K_mu,eta_K_p)
r_p ˜ dnorm(r_mu,eta_r_p)
nu_p ˜ dnorm(nu_mu,eta_nu_p)
P<-exp(P_L)
P_L ˜ dnorm(P_mu,eta_P)
tau_K_p ˜ dnorm(tau_K_mu,eta_tau_K_p)
sigma_tau_K ˜ dnorm(eta_tau_K,psi_tau_K)
tau_r_p ˜ dnorm(tau_r_mu,psi_tau_r)
sigma_tau_r ˜ dnorm(eta_tau_r,psi_tau_r)
sigma_nu˜dnorm(eta_nu,psi_nu)
sigma_K_o ˜ dnorm(eta_K_o,psi_K_o)
sigma_r_o ˜ dnorm(eta_r_o,psi_r_o)
}

B.6.2. Interaction hierarchical model code
model {
for (l in 1:N){

for (c in 1:2){
for (m in 1:NoORF[l,c]){

y[m,c,l]˜ dnorm(exp(alpha_c[c]
+delta_l[l,c] * gamma_cl_L[l,c]) * Z_l[l],exp(nu_cl[l+(c-1) * N]))

}
nu_cl[l+(c-1) * N]˜dnorm(nu_p,exp(sigma_nu))

}
Z_l[l]˜dt(exp(Z_p),exp(sigma_Z),3)T(0,)
delta_l[l,1]<-0
delta_l[l,2]˜dbern(p)
gamma_cl_L[l,1]<-0
gamma_cl_L[l,2]<-log(gamma_l[l])
gamma_l[l]˜dt(1,exp(sigma_gamma),3)T(0,)

}
alpha_c[1]<-0
alpha_c[2]˜dnorm(alpha_mu,eta_alpha)
Z_p˜dnorm(Z_mu,eta_Z_p)
nu_p˜dnorm(nu_mu,eta_nu_p)
sigma_Z˜dnorm(eta_Z,psi_Z)
sigma_nu˜dnorm(eta_nu,psi_nu_p)
sigma_gamma˜dnorm(eta_gamma,psi_gamma)
}
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B.6.3. Joint hierarchical model code
model {
for (l in 1:N){

for (c in 1:2){
for (m in 1:NoORF[l,c]){

for (n in 1:NoTime[NoSum[l,c]+m,c]){
y[m,n,l,c] ˜ dnorm(y.hat[m,n,l,c],exp(nu_cl[l+(c-1) * N]))
y.hat[m,n,l,c] <- (K_clm[(SHIFT[c]+NoSum[l,c]+m)]

* P* exp(r_clm[(SHIFT[c]+NoSum[l,c]+m)] * x[m,n,l,c]))
/(K_clm[(SHIFT[c]+NoSum[l,c]+m)]+P * (exp(r_clm[(SHIFT[c]+NoSum[l,c]+m)]

* x[m,n,l,c])-1))
}
K_clm[(SHIFT[c]+NoSum[l,c]+m)]<-exp(K_clm_L[(SHIFT[ c]+NoSum[l,c]+m)])
K_clm_L[(SHIFT[c]+NoSum[l,c]+m)] ˜ dnorm(alpha_c[c]+K _o_l_L[l]
+(delta_l[l,c] * gamma_cl_L[l,c]),exp(tau_K_cl[l+(c-1) * N]))T(,0)
r_clm[(SHIFT[c]+NoSum[l,c]+m)]<-exp(r_clm_L[(SHIFT[ c]+NoSum[l,c]+m)])
r_clm_L[(SHIFT[c]+NoSum[l,c]+m)] ˜ dnorm(beta_c[c]+r_ o_l_L[l]
+(delta_l[l,c] * omega_cl_L[l,c]),exp(tau_r_cl[l+(c-1) * N]))T(,3.5)

}
tau_K_cl[l+(c-1) * N]˜dnorm(tau_K_p_c[c],exp(sigma_tau_K_c[c]))T(0,)
tau_r_cl[l+(c-1) * N]˜dnorm(tau_r_p_c[c],exp(sigma_tau_r_c[c]))

nu_cl[l+(c-1) * N]˜dnorm(nu_p,exp(sigma_nu))
}
K_o_l_L[l]<- log(K_o_l[l])
K_o_l[l] ˜ dt(exp(K_p),exp(sigma_K_o),3)T(0,)
r_o_l_L[l]<- log(r_o_l[l])
r_o_l[l] ˜ dt(exp(r_p),exp(sigma_r_o),3)T(0,)
delta_l[l,1]<-0
delta_l[l,2]˜dbern(p)
gamma_cl_L[l,1]<-0
gamma_cl_L[l,2]<-log(gamma_l[l])
gamma_l[l]˜dt(1,exp(sigma_gamma),3)T(0,)
omega_cl_L[l,1]<-0
omega_cl_L[l,2]<-log(omega_l[l])
omega_l[l]˜dt(1,exp(sigma_omega),3)T(0,)

}
alpha_c[1]<-0
alpha_c[2]˜dnorm(alpha_mu,eta_alpha)
beta_c[1]<-0
beta_c[2]˜dnorm(beta_mu,eta_beta)
K_p˜dnorm(K_mu,eta_K_p)
r_p˜dnorm(r_mu,eta_r_p)
nu_p˜dnorm(nu_mu,eta_nu_p)
P <- exp(P_L)
P_L ˜dnorm(P_mu,eta_P)
sigma_K_o˜dnorm(eta_K_o,psi_K_o)
sigma_r_o˜dnorm(eta_r_o,psi_r_o)
tau_K_p_c[1]˜dnorm(tau_K_mu,eta_tau_K_p)
tau_K_p_c[2]˜dnorm(tau_K_mu,eta_tau_K_p)
tau_r_p_c[1]˜dnorm(tau_r_mu,eta_tau_r_p)
tau_r_p_c[2]˜dnorm(tau_r_mu,eta_tau_r_p)
sigma_tau_K_c[1]˜dnorm(eta_tau_K,psi_tau_K)
sigma_tau_K_c[2]˜dnorm(eta_tau_K,psi_tau_K)
sigma_tau_r_c[1]˜dnorm(eta_tau_r,psi_tau_r)
sigma_tau_r_c[2]˜dnorm(eta_tau_r,psi_tau_r)
sigma_nu˜dnorm(eta_nu,psi_nu)
sigma_gamma˜dnorm(eta_gamma,psi_gamma)
sigma_omega˜dnorm(eta_omega,psi_omega)
}
}
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B.7. Additional cdc13-1 27
◦C vs ura3∆ 27

◦C fitness plots

Figure B.7: Alternative non-Bayesian, hierarchical fitness plot, fromfitting the random effects
model (REM) to data in Table S6 from Addinallet al. (2011)(F =MDR×MDP ). orf∆s with
significant evidence of interaction are highlighted in red and green for suppressors and enhancers
respectively.orf∆s without significant evidence of interaction are in grey andhave noorf name
label. Significant interactors are classified as those with FDR corrected p-values< 0.05.
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Figure B.8: Alternative interaction hierarchical model (IHM) fitness plot with orf∆ posterior
mean fitness.orf∆s with significant evidence of interaction are highlighted on the plot as red and
green for suppressors and enhancers respectively(F = MDR ×MDP ). Solid and dashed grey
fitted lines are for the IHM linear model fit.orf∆s with significant evidence of interaction are
highlighted in red and green for suppressors and enhancers respectively.orf∆s without signifi-
cant evidence of interaction are in grey and have noorf name label. Significant interactors have
posterior probability∆ > 0.5.
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Figure B.9: Alternative joint hierarchical model (JHM) fitness plot with orf∆ posterior mean
fitnesses. The JHM does not does not make use of a fitness measure such asMDR × MDP

but the fitness plot is given in terms ofMDR × MDP for comparison with other approaches
which do. orf∆ strains are classified as being a suppressor or enhancer based on one of the
two parameters used to classify genetic interaction, growth parameterr, this means occasionally
strains can be more fit in the query experiment in terms ofMDR ×MDP but be classified as
enhancers (green).orf∆s with significant evidence of interaction are highlighted in red and green
for suppressors and enhancers respectively.orf∆s without significant evidence of interaction are
in grey and have noorf name label. Significant interactors have posterior probability ∆ > 0.5.
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Figure B.10: Joint hierarchical model (JHM) carrying capacity fitness plot with orf∆ posterior
mean fitnesses.orf∆ strains are classified as being a suppressor or enhancer based on carrying
capacity parameterK. orf∆s with significant evidence of interaction are highlighted in red and
green for suppressors and enhancers respectively.orf∆s without significant evidence of interaction
are in grey and have noorf name label. Significant interactors have posterior probability ∆ > 0.5.
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Appendix B. Bayesian hierarchical modelling
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Figure B.11: Joint hierarchical model (JHM) growth rate fitness plot withorf∆ posterior mean
fitnesses.orf∆ strains are classified as being a suppressor or enhancer based on growth parameter
r. orf∆s with significant evidence of interaction are highlighted in red and green for suppressors
and enhancers respectively.orf∆s without significant evidence of interaction are in grey andhave
noorf name label. Significant interactors have posterior probability ∆ > 0.5.
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B.8. Correlation between methods

The Addinall et al. (2011) approach has its highest correlation with the IHM, followed by

the JHM and then the REM. The REM correlates least well with the JHM while showing

the same correlation with both the Addinall et al. (2011) approach and the IHM. The

correlation between the IHM and the JHM is the largest observed between any of the

methods, demonstrating the similarity of our Bayesian hierarchical methods.

Table B.4: Spearman’s rank correlation coefficients for magnitudes from genetic independence,
between Addinall et al. (2011), random effects approach (REM), interaction hierarchical model
(IHM) and joint hierarchical model (JHM) approaches

Method Method

Addinall et al. (2011) REM IHM JHM QFA
QFA QFA QFA (MDR ×MDP )

Addinall et al. (2011) QFA, 1 0.77 0.89 0.88
REM QFA, 1 0.77 0.75
IHM QFA, 1 0.95

JHM QFA (MDR×MDP ), 1

TheMDR × MDP correlation plot of the JHM versus the Addinall et al. (2011)

approach demonstrates the similarity (Pearson correlation=0.90) and differences between

the two approaches in terms ofMDR×MDP . We can see how the results differ between

the JHM and Addinall et al. (2011), with a kink at the origin due to the JHM allowing

shrinkage of non-interacting genes towards the fitted line.
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Figure B.12: MDR ×MDP genetic interaction correlation plot of JHM versus Addinall et al.
(2011) (Pearson correlation=0.90).
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C.1. Linear noise approximation of the stochastic logisticgrowth model
with multiplicative intrinsic noise solution

First we look to solvedZt, given in equation (5.10). We definef(t) = −bevt = − baPeaT

bP (eaT−1)+a

to obtain the following,

dZt = f(t)Ztdt+ σdWt.

In order to match our initial conditions correctly,Z0 = 0. Define a new processUt =

e
−

∫ t

t0
f(s)ds

Zt and solve the integral,

∫ t

t0

f(s)ds =

∫ t

t0

− baPeaS

bP (eaS − 1) + a
ds = log

(

a

bP (eaT − 1) + a

)

,

where,S = s− t0 andT = t− t0. Apply the chain rule toUt,

dUt = e
−

∫ t

t0
f(s)ds

dZt − f(t)e
−

∫ t

t0
f(s)ds

Ztdt.

Now substitute indZt = f(t)Ztdt+ σdWt and simplify to give

dUt = e
−

∫ t

t0
f(s)ds

σdWt.

Apply the following notationφ(t) = e
∫ t

t0
f(s)ds

= a
bP (eaT−1)+a

andψ(t) = σ to give

dUt = φ(t)−1ψ(t)dWt.

Ut, has the following solution,

Ut = U0 +

∫ t

t0

φ(s)−1ψ(s)dWs.

AsUt = φ(t)−1Zt, Zt then has the following solution (Arnold, 2013),

Zt = φ(t)

[

Z0 +

∫ t

t0

φ(s)−1ψ(s)dWs

]

.
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Finally, the distribution at time t isZt|Z0 ∼ N(Mt, Et) (Arnold, 2013), where

Mt = φ(t)Z0 andEt = φ(t)2
∫ t

t0

[

φ(s)−1ψ(s)
]2
ds.

Further,Mt =
a

bP (eaT−1)+a
Z0 andEt = σ2

[

a
bP (eaT−1)+a

]2
∫ t

t0

[

a
bP (eaS−1)+a

]−2

ds.

As
∫ t

t0

[

a
bP (eaS−1)+a

]−2

ds = b2P 2(e2aT−1)+4bP (a−bP )(eaT−1)+2aT (a−bP )2

2a3
,

Et =σ
2

[

a

bP (eaT − 1) + a

]2 [b2P 2(e2aT − 1) + 4bP (a− bP )(eaT − 1) + 2aT (a− bP )2

2a3

]

=σ2

[

b2P 2(e2aT − 1) + 4bP (a− bP )(eaT − 1) + 2aT (a− bP )2

2a (bP (eaT − 1) + a)2

]

.

Taking our solutions forvt (5.8) andZt, we can now write our solution for the LNA to

the log of the logistic growth process (5.6).

As Yt = vt + Zt,

Yt|Y0 ∼ N
(

log

[

aPeaT

bP (eaT − 1) + a

]

+Mt, Et

)

.

Note: aPeaT

bP (eaT−1)+a
has the same functional form as the solution to the deterministic part of

the logistic growth process (5.1) and is equivalent whenσ = 0 (such thata = r− σ2

2
= r).

Further, asYt is normally distributed, we knowXt = eYt will be log normally distributed

and

Xt|X0 ∼ log N (log

(

aPeaT

bP (eaT − 1) + a

)

+Mt, Et).

Alternatively setQ =
(

a
b

P
− 1
)

eat0 ,

Xt|X0 ∼ log N (log

( a
b

1 +Qe−at

)

+Mt, Et).

134



Appendix C. Stochastic logistic growth modelling

From our solution to the log process we can obtain the following transition density

(Yti|Yti−1
= yti−1

) ∼ N (µti, Ξti) ,

whereyti−1
= vti−1

+ zti−1
, Q =

( a
b

P
− 1

)

eat0 ,

µti = yti−1
+ log

(

1 +Qe−ati−1

1 +Qe−ati

)

+ e−a(ti−ti−1)
1 +Qe−ati−1

1 +Qe−ati
zti−1

and

Ξti = σ2

[

4Q(eati − eati−1) + e2ati − e2ati−1 + 2aQ2(ti − ti−1)

2a(Q+ eati)2

]

.
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C.2. Zero-order noise approximation of the stochastic logistic growth
model

After obtaining (5.7) in Section 5.3, we can derive the RRTR logistic growth diffusion

process as follows. First our expression fordvt, given in (5.7), is approximated by set-

ting σ2 = 0,

dvt =

(

r − 1

2
σ2 − r

K
evt
)

dt =
(

r − r

K
evt
)

dt.

We now write down an expression fordZt, wheredYt is given in (5.6) anddZt = dYt−dvt,

dZt =

(

r − 1

2
σ2 − r

K
eYt

)

dt+ σdWt −
(

r − r

K
evt
)

dt.

We can then rearrange and simplify to give the following,

dZt =

(

r

K

[

evt − eYt
]

− 1

2
σ2

)

dt+ σdWt.

We now substitute inYt = vt + Zt,

dZt =

(

r

K

[

evt − evt+Zt
]

− 1

2
σ2

)

dt+ σdWt.

We now apply a zero order LNA by settingeZt = 1 to obtain,

dZt =

(

r

K
[evt − evt ]− 1

2
σ2

)

dt+ σdWt.

We can then simplify to give the following,

dZt = −1

2
σ2dt+ σdWt. (C.1)

Differentiatingvt, given in (5.8), with respect to t we can obtain an alternative expression

for dvt,

dvt =
a(a− bP )

bP (eaT − 1) + a
dt =

r(K − P )

K + P (erT − 1)
dt, (C.2)

whereT = t− t0. We now write down our new expression forYt, wheredYt = dvt+dZt,

given (C.2) and (C.1),

dYt =

(

r(K − P )

K + P (eaT − 1)
− 1

2
σ2

)

dt+ σdWt
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or alternatively by settingQ =
(

K
P
− 1
)

eat0 ,

dYt =

(

Qr

ert +Q
− 1

2
σ2

)

dt+ σdWt.

We can then apply Itô’s lemma (5.5) (Itô, 1944) with the transformationf(t, Yt) ≡ Xt = eYt.

After deriving the following partial derivatives:

df

dt
= 0,

df

dx
= eYt and

d2f

dx2
= eYt ,

we can obtain the following Itô drift-diffusion process:

dXt =
Qr

ert +Q
Xtdt+ σdWt,

which is exactly the RRTR logistic diffusion process presented by Román-Román &

Torres-Ruiz (2012).
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C.3. Linear noise approximation of the stochastic logisticgrowth model
with additive intrinsic noise solution

First we look to solvedZt, given in (5.14). We definef(t) = a − 2bvt to obtain the

following,

dZt = f(t)Ztdt+ σvtdWt.

In order to match our initial conditions correctly,Z0 = 0. Define a new processUt =

e
−

∫ t

t0
f(s)ds

Zt and solve the integral,

∫ t

t0

f(s)ds =

∫ t

t0

(a− 2bVs)ds = aT − 2 log

(

bP (eaT − 1) + a

a

)

,

as
∫ t

t0
Vsds = 1

b
log
(

bP (eaT−1)+a

a

)

, whereS = s − t0 andT = t − t0. Apply the chain

rule toUt,

dUt = e
−

∫ t

t0
f(s)ds

dZt − f(t)e
−

∫ t

t0
f(s)ds

Ztdt.

Now substitute indZt = f(t)Ztdt+ σvtdWt and simplify to give,

dUt = e
−

∫ t

t0
f(s)ds

σvtdWt.

Apply the following notationφ(t) = e
∫ t

t0
f(s)ds

= eaT
(

a
bP (eaT−1)+a

)2

andψ(t) = σvt to

give,

dUt = φ(t)−1ψ(t)dWt.

Ut has the following solution,

Ut = U0 +

∫ t

t0

φ(s)−1ψ(s)dWs.

AsUt = φ(t)−1Zt, Zt has the following solution (Arnold, 2013),

Zt = φ(t)

[

Z0 +

∫ t

t0

φ(s)−1ψ(s)dWs

]

.

Finally the distribution at time t isZt|Z0 ∼ N(Mt, Et) (Arnold, 2013), where

Mt = φ(t)Z0 andEt = φ(t)2
∫ t

t0

[

φ(s)−1ψ(s)
]2
ds.

Mt = eaT
(

a

bP (eaT − 1) + a

)2

Z0
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and

Et =

(

eaT
(

a

bP (eaT − 1) + a

)2
)2
∫ t

t0

[

eaS
(

a

bP (eaS − 1) + a

)2
]−2

σ2V 2
s ds

=σ2

(

eaT
(

a

bP (eaT − 1) + a

)2
)2

×
∫ t

t0

[

eaS
(

a

bP (eaS − 1) + a

)2
]−2

[

aPeaS

bP (eaS − 1) + a

]2

ds

=σ2

(

eaT
(

a

bP (eaT − 1) + a

)2
)2

×
∫ t

t0

[

e−2aS

(

a

bP (eaS − 1) + a

)−4
]

[

aPeaS

bP (eaS − 1) + a

]2

ds

=σ2

(

eaT
(

1

bP (eaT − 1) + a

)2
)2
∫ t

t0

[

a2P 2

(

1

bP (eaS − 1) + a

)−2
]

ds,

as
∫ t

t0

(

1
bP (eaS−1)+a

)−2

ds = b2P 2(e2aT−1)+4bP (a−bP )(eaT−1)+2aT (a−bP )2

2a
,

Et =
1

2
σ2aP 2e2aT

(

1

bP (eaT − 1) + a

)4

×
[

b2P 2(e2aT − 1) + 4bP (a− bP )(eaT − 1) + 2aT (a− bP )2
]

.

Taking our solutions forvt (5.13) andZt, we can obtain the following transition density

(Xti |Xti−1
=xti−1

) ∼ N(µti , Ξti),

wherexti−1
=vti−1

+ zti−1
,

µti =xti−1
+

(

aPeaTi

bP (eaTi − 1) + a

)

−
(

aPeaTi−1

bP (eaTi−1 − 1) + a

)

+ ea(ti−ti−1)

(

bP (eaTi−1 − 1) + a

bP (eaTi − 1) + a

)2

Zti−1
and

Ξti =
1

2
σ2aP 2e2aTi

(

1

bP (eaTi − 1) + a

)4

× [b2P 2(e2aTi − e2aTi−1) + 4bP (a− bP )(eaTi − eaTi−1)

+ 2a(ti − ti−1)(a− bP )2].
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C.4. Prior hyper-parameters for Bayesian state space models

Table C.1: Prior hyper-parameters for Bayesian sate space models, Log-normal with mean (µ)
and precision (τ )

Parameter Name Value
µK log(0.1)
τK 2
µr log(3)
τr 5
µP log(0.0001)
τP 0.1
µσ log(100)
τσ 0.1
µν log(10000)
τν 0.1
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C.5. Kalman filter for the linear noise approximation of the stochas-
tic logistic growth model with additive intrinsic noise and Normal
measurement error

To findπ(yt1:N ) for the LNAA with Normal measurement error we can use the following

Kalman Filter algorithm. First we assume the following:

θti |y1:ti ∼ N(mti , Cti),

mti = ati +RtiF (F
TRtiF + U)−1[yti − F Tati ],

Cti = Rti − RtiF (F
TRtiF + U)−1F TRti

and initialize withm0 = P andC0 = 0. Now suppose that,

θti |y1:ti−1
∼ N(ati , Rti),

ati = Gtimti−1

andRti = GtiCti−1
GT

ti
+Wti .

The transition density distribution, see (5.15) is as follows:

θti |θti−1
∼ N(Gtiθti−1

,Wti)

or equivalently(Xti|Xti−1
= xti−1

) ∼ N (µti , Ξti) , wherexti−1
= vti−1

+ zti−1
,

θt =

(

1

Xti

)

=

(

1 0

Hα,ti Hβ,ti

)(

1

Xti−1

)

= Gtiθti−1
,

Gti =

(

1 0

Hα,ti Hβ,ti

)

, Wti =

(

0 0

0 Ξti

)

whereHα,ti = Hα(ti, ti−1) =vt − Vt−1e
a(ti−ti−1)

(

bP (eaTi−1 − 1) + a

bP (eaTi − 1) + a

)2

andHβ,ti =Hβ(ti, ti−1) = ea(ti−ti−1)

(

bP (eaTi−1 − 1) + a

bP (eaTi − 1) + a

)2

.
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The measurement error distribution is as follows:

yti |θti∼N(F T θti , U)

or equivalentlyyti |θti∼N(Xti , σ
2
ν),

whereF =

(

0

1

)

andU = σ2
ν .

Matrix Algebra:

ati =Gtimti−1

=

(

1 0

Hα,ti Hβ,ti

)(

1

mti−1

)

=

(

1

Hα,ti +Hβ,timti−1

)

Rti = GtiCti−1
GT

ti
+Wti

=

(

0 0

0 Hβ,ti
2c2ti−1

)

+

(

0 0

0 Ξti

)

=

(

0 0

0 Hβ,ti
2c2ti−1

+ Ξti

)

Cti−1
=

(

0 0

0 c2ti−1

)

RtiF (F
TRtiF + U)−1 =

(

0 0

0 Hβ,ti
2c2ti−1

+ Ξti

)(

0

1

)

×
[

(

0 1
)

(

0 0

0 Hβ,ti
2c2ti−1

+ Ξti

)(

0

1

)

+ σ2
ν

]−1

=
[(

Hβ,ti
2c2ti−1

+ Ξti + σ2
ν

)]−1
(

0

Hβ,ti
2c2ti−1

+ Ξti

)
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mti =ati +RtiF (F
TRtiF + U)−1[yti − F Tati ]

=

(

1

Hα,ti +Hβ,timti−1

)

+
[(

Hβ,ti
2c2ti−1

+ Ξti + σ2
ν

)]−1

×
(

0

Hβ,ti
2c2ti−1

+ Ξti

)[

yti −
(

0 1
)

(

1

Hα,ti +Hβ,timti−1

)]

=





0

Hα,ti +Hβ,timti−1
+

Hβ,ti
2c2ti−1

+Ξti

Hβ,ti
2c2ti−1

+Ξti
+σ2

ν

[

yti −Hα,ti −Hβ,timti−1

]





Cti =Rti − RtiF (F
TRtiF + U)−1F TRti

=

(

0 0

0 Hβ,ti
2c2ti−1

+ Ξti

)

−
[(

Hβ,ti
2c2ti−1

+ Ξti + σ2
ν

)]−1

×
(

0

Hβ,ti
2c2ti−1

+ Ξti

)[

(

0 1
)

(

0 0

0 Hβ, ti
2c2ti−1

+ Ξti

)]

=





0 0

0 Hβ,ti
2c2ti−1

+ Ξti −
(

Hβ,ti
2c2ti−1

+Ξti

)2

Hβ,ti
2c2ti−1

+Ξti
+σ2

ν





With mti andCti for i = 1 : N , we can evaluateati , Rti andπ(xti |yt1:(i−1)
) for i =

1 : N . We are interested inπ(yt1:i) =
∏N

i=1 π(yti |yt1:(i−1)
), whereπ(yti|yt1:(i−1)

) =
∫

x
π(yti |xti)π(xti |yt1:(i−1)

)dxti gives a tractable Gaussian integral. Finally,

log π(yt1:N ) =
N
∑

i=1

log π(yti|yt1:(i−1)
)

=

N
∑

i=1

[

− log
(√

2π(σ2
f + σ2

g)
)

− (µf − µg)
2

2(σ2
f + σ2

g)

]

,

whereµf − µg =yti − ati = yti −Hα,ti −Hβ,timti−1

andσ2
f + σ2

g =σ2
ν +Rti = σ2

ν +Hβ,ti
2c2ti−1

+ Ξti .
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Procedure

1. Seti = 1. Initializem0 = P andC0 = 0.

2. Evaluate and store the following log likelihood term:

log π(yti|yt1:(i−1)
) =

[

− log
(√

2π(σ2
f + σ2

g)
)

− (µf − µg)
2

2(σ2
f + σ2

g)

]

,

whereµf − µg =yti −Hα,ti −Hβ,timti−1
andσ2

f + σ2
g = σ2

ν +Hβ,ti
2c2ti−1

+ Ξti.

3. Create and store bothmti , andCti,

wheremti =Hα,ti +Hβ,timti−1
+

Hβ,ti
2c2ti−1

+ Ξti

Hβ,ti
2c2ti−1

+ Ξti + σ2
ν

[

yti −Hα,ti −Hβ,timti−1

]

andc2ti =Hβ,ti
2c2ti−1

+ Ξti −

(

Hβ,ti
2c2ti−1

+ Ξti

)2

Hβ,ti
2c2ti−1

+ Ξti + σ2
ν

.

4. Incrementi, i=(i+ 1) and repeat steps 2-3 tilllog π(ytN |yt1:(N−1)
) is evaluated.

5. Calculate the sum:

log π(yt1:N ) =

N
∑

i=1

log π(yti |yt1:(i−1)
).
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