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Abstract 

  

We initially considered the theoretical properties and benefits of so-called holographic 

processing in a specific type of computational problem implied by the theories of 

synaptic rescaling processes in the biological wake-sleep cycle. 

This raised two fundamental questions that we attempted to answer by an experimental 

in vitro electrophysiological approach. We developed a comprehensive experimental 

paradigm based on a pharmacological model of the wake-sleep-associated delta rhythm 

measured with a Utah micro-electrode array at the interface between primary and 

associational areas in the rodent neocortex.  

  

 We first verified that our in vitro delta rhythm model possessed two key features found 

in both in vivo rodent and human studies of synaptic rescaling processes in sleep: The 

first property being that prior local synaptic potentiation in wake leads to increased local 

delta power in subsequent sleep. The second property is the reactivation in sleep of 

neural firing patterns observed prior to sleep. By reproducing these findings we 

confirmed that our model is arguably an adequate medium for further study of the 

putative sleep-related synaptic rescaling process. In addition we found important 

differences between neural units that reactivated or deactivated during delta; these were 

differences in cell types based on unit spike shapes, in prior firing rates and in prior 

spike-train-to-local-field-potential coherence. Taken together these results suggested a 

mechanistic chain of explanation of the two observed properties, and set the  

neurobiological framework for further, more computationally driven analysis.  

  

 Using the above experimental and theoretical substrate we developed a new method of 

analysis of micro-electrode array data. The method is a generalization to the 

electromagnetic case of a well-known technique for processing acoustic microphone 

array data. This allowed calculation of: The instantaneous spatial energy flow and 

dissipation in the neocortical areas under the array; The spatial energy source density in 

analogy to well-known current source density analysis. 

   

 We then refocused our investigation on the two theoretical questions that we hoped to 

achieve experimental answers for: Whether the state of the neocortex during a delta 
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rhythm could be described by ergodic statistics, which we determined by analyzing the 

spectral properties of energy dissipation as a signature of the state of the dynamical 

system; A more explorative approach prompting an investigation of the spatiotemporal 

interactions across and along neocortical layers and areas during a delta rhythm, as 

implied by energy flow patterns.   

 

 We found that the in vitro rodent neocortex does not conform to ergodic statistics 

during a pharmacologically driven delta or gamma rhythm. 

We also found a delta period locked pattern of energy flow across and along layers and 

areas, which doubled the processing cycle relative to the fundamental delta rhythm, 

tentatively suggesting a reciprocal, two-stage information processing hierarchy similar 

to a stochastic Helmholtz machine with a wake-sleep training algorithm. Further, the 

complex valued energy flow might suggest an improvement to the Helmholtz machine 

concept by generalizing the complex valued weights of the stochastic network to higher 

dimensional multi-vectors of a geometric algebra with a metric particularity suited for 

holographic processes. 

 

 Finally, preliminary attempts were made to implement and characterize the above 

network dynamics in silico. We found that a qubit valued network does not allow fully 

holographic processes, but tentatively suggest that an ebit valued network may display 

two key properties of general holographic processing.   
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Chapter 1.  Introduction  

defining the problem and scope of investigation 

  

 The setting for the present thesis is the Wellcome Trust funded 4-year MRes/PhD 

programme, ‘Systems Neuroscience: From Networks to Behaviour’ at the Institute of 

Neuroscience within Newcastle University. A major purpose of this programme is to 

bring in new talent from technical fields into the biomedical field of neuroscience. This 

goes some way in explaining the rather unusual focus for a biomedical thesis, which is 

decidedly technological rather than medical. This means that we have sought primarily 

a specific technological innovation, using quantifiable biomedical phenomena to refine 

and constrain (to some extent) this innovation. While the resulting novel approach to 

analysis and interpretation of neurodynamic data has a great deal of scope for 

application in the biomedical field, insufficient time was available to exploit this 

potential here. The reason for seeking this technological breakthrough in a 

neuroscientific setting is specifically that it seems to be a form of technology, which 

Nature and evolution has figured out and implemented in the brain already. What this 

technology is, and why it appears to be critically important if we wish to truly 

understand brain function, is the subject of this chapter. It is hoped it will provide 

explanation as to why we thus wished to reverse-engineer this unknown solution. 

 

1.1 The issue of intractable problems 

 Of the many important problems in science that one can choose to study, few carry the 

practical significance of that of ‘intractability’. It is a sort of meta-problem in the sense 

that it concerns which other types of problems we can hope to solve with the application 

of computers. The use of computers has undoubtedly been of great benefit in many 

fields, and it has even been suggested that once a field adopts computers as a 

fundamental tool, once a field becomes computerized, so to say, then the accelerating 

increase in computer speed, known as Moore’s law, empowers a similar law of 

accelerated advance in the given field (Kurzweil 2005). However, the problem of 

intractability drops like a spanner into the machinery of this logic: The fundamental 

misconception lies in the notion that a problem can be intractable at the moment, 

because we lack the necessary computer speed, but will become tractable in the future 

as enough computational speed becomes available according to Moore’s law. This is not 
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necessarily wrong, but it overlooks the real issue and clouds the proper understanding of 

intractability: There is a very large group of important problems that for any problem 

size of practical importance are truly intractable (see e.g. Aaronson 2004b). This means 

that even if we can write down a sequence of steps (an algorithm) necessary to solve the 

problem, we can never finish running through those steps no matter how fast we try. 

The number of steps simply grows exponentially as a function of problem size, and any 

relevant size is big enough that the resulting number of steps is effectively infinite. This 

is the true meaning of intractability; that the speed of computation, current or future, is 

irrelevant.  

 

 That being said, there is however a further point of great importance that needs to be 

made clear: Intractable does not necessarily mean impossible; it only means impossible 

for a computer following an algorithm. Further to that, we should specify that a 

computer does not just mean a device which carries out an algorithm; it also means that 

the environment or universe in which this device operates follows certain rules, for 

example, the above statement “no matter how fast we try”, would implicitly assume that 

nothing in the device could move faster than light, and possible parallel devices could 

not communicate faster than light.  

 

 Hope of achieving tractability runs short when one realizes that these rules, our modern 

physical theories that describe our environment in extreme detail, are themselves 

algorithms or equivalently formal mathematical systems. It would seem to imply that 

nothing can exist that is not equivalent to a formal system or an algorithm on a 

computer, thus we can never hope to construct a tractable computing device within 

these laws. This foreboding idea is known as the physical Church-Turing thesis 

(Piccinini 2007), but it is not universally accepted, and it is clear that neither classical 

nor quantum theory is really complete (Einstein, Podolsky et al. 1935), i.e. they cannot 

necessarily describe everything that can exist. Further, the same proofs that originally 

put limits on the power of formal systems, the proofs that made us aware of the problem 

of intractability in the first place, did so by contrasting formal systems with something 

that is clearly beyond them, and clearly exists: The brain and the mind. We will give a 

brief and informal account of these proofs and their historical context in the next 

subsection, but it should be noted that we will not be trying to introduce or review the 

field of complexity theory, whose domain we are trespassing, especially because we 
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suspect that the point of view normally taken in that field is not particularly helpful to 

our own endeavor.  

 

1.1.1 Interpreting Gödel’s theorems 

 In a golden period of mathematics, between the world wars, there was great optimism 

that everything in Nature could finally be described and understood under one grand 

formal mathematical system. This pursuit was the dominant programme of mathematics 

at the time, known as Hilbert’s programme. Nevertheless, it was all stopped dead in its 

tracks before it really got rolling as Kurt Gödel introduced a surprising sort of logic of 

paradox that proved that it could not be done (Gödel 1931). Simply put, Gödel said, 

“There is no proof of this statement”. Indeed there is no formal proof; its truth cannot be 

shown by any formal mathematical method or by any amount of computation, but we 

can do something else, we can simply see that it is true; by the might of mental insight. 

It is recommended at this point to take a minute to verify this in your own mind. It is a 

beautifully simple point, which demonstrates that the brain is not a computer and 

cognition not simply a collection of applied algorithms. Once this point of view sets in, 

it becomes self-reinforcing and eventually self-evident. Much like free will is self-

evident to those who think they have it: Not because no evidence is needed, but because 

the evidence is all around. There is nothing mystical about self-evidence, and it is of 

course at the very heart of science, because self-evidence is the basis of all foundational 

axioms from which all scientific reasoning derives.  

 

 Intractable problems are in fact solved right and left when one learns to recognize them. 

Most of what we do in our daily lives is utterly intractable; this is the reason why 

artificial intelligence has had so little general success (Dreyfus 2007). For example, 

when IBM announced that they could simulate an entire cat brain (IBM 2009), a 

neuroscientist might have claimed that they had not included enough neurobiological 

detail, but that debate is mute in a sense, because there is no theoretical foundation 

telling us which level of detail is required for cat cognition. On the other hand, we can 

simply ask if that IBM cat can catch a mouse, and realize that the answer is no, because 

catching a mouse is an intractable problem. The same essentially goes for the billion 

euro EU project aimed at simulating an entire human brain, the human brain project, 

which might be hopeless in the same sense, because from our understanding of 

intractability the brain cannot ever be computationally simulated no matter the detail. 
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There is of course hope that in the process we might somehow discover how the brain 

achieves tractability, but the idea that simply simulating every thinkable detail will 

reproduce a mind is presently false, because that simulation will never be able to run, 

unless something fundamental changes in our understanding of computation and 

simulation. There have been estimates of the computational power needed to run the 

human brain simulation, and of the power required to power and cool the needed 

computers, in the order of one full nuclear power plant (Kogge 2011; Furber 2012), 

which clearly shows that something is fundamentally wrong when we are trying to 

simulate a device, the brain, that does not use enough power to heat a cup of tea.   

 

 A few course corrections might be in order at this point: The mention of free will and 

the comparison with its self-evidence might lead the reader to think that we intend to 

debate personal philosophy rather than hard science, but that is not the case. In fact, the 

idea that the question of free will is outside the scope of science is an unfortunate result 

of one of a few foundational axioms of science, and we already know from quantum 

Bell’s theorem-type experiments (about quantum entanglement) that we must give up at 

least one of these foundational axioms in order to explain the experimental outcomes 

(Werbos 2008), and we also know that the current consensus, known as the Copenhagen 

Interpretation, which gives up the Axiom of Reality (objective reality), is not workable 

(Hestenes 2009). It is indeed a paradoxical situation that the consensus is that the 

consensus is wrong, but that is nevertheless the state of affairs in physical science; even 

a Dane can see that there is something rotten in the Kingdom of Denmark (paraphrasing 

David Hestenes’ comment on the Copenhagen Interpretation).  

 

 The question of free will ties in with the validity of the Axiom of Causality, so is not a 

matter of mere philosophical taste, but rather a perfectly valid scientific question that 

can and must be both argued and settled scientifically, because it is of essential 

importance to all science through the foundational axioms that are supposed to be self-

evident, but are obviously overdue for re-evaluation due to Bell’s theorem-type 

experiments. In the same way, as we will see in more detail later, the foundational 

axioms of science have direct relations to the issue of intractability through the 

definition of the environment in which computation takes places, and which defines the 

limits of computation. It goes both ways though; the power of computations that we can 

observe experimentally make requirements on the rules of the environment, and can 

potentially help decide which axiom(s) must be abandoned, affirmed or reinstated. This 
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is the position taken here; that the computational power of the brain to solve intractable 

problems tells us something essential about the physical environment in which it exists.  

 

 The commonly accepted idea that all interpretations of quantum theory are equivalent 

and only a matter of personal philosophy, because they lead to the same experimental 

outcomes, is arguably wrong, because different interpretations give up different axioms, 

and, for instance, the existence or not of an objective reality is obviously not without 

consequence, nor is the existence of free will. Of similar importance is the way these 

axioms of science implicitly define some of our terminology, and potentially limit or 

bias what can be scientifically stated without paradox or other epistemic problems. 

Axioms must be unconditionally true or they blind our formal systems of logic, and in 

extension us, to the truth; the fact that we already know that we have an unstable set of 

foundational axioms should encourage us to explore all options carefully. 

 

 Gödel’s theorems are often misunderstood exactly because they unsettle basic axioms 

and fundamental assumptions, but admittedly there is to some extent room and need for 

interpretation; the account given here tries to follow the comprehensive interpretation 

given by Roger Penrose (Penrose 1989; Penrose 1994), but we do not know whether he 

agrees that it does. For reasons that will become clear later we will however depart from 

his use of the term non-computation, to describe processes that solve intractable 

problems, and instead keep the door open that computation might achieve the same 

thing if the rules of the environment of the computing device are different than assumed 

by Penrose’s conventional definition of computation. This change in terminology might 

be unwise, but sometimes an over-established terminology can hold back understanding 

of new perspectives or simply overcomplicate things, and we suspect that this might be 

the case here. 

 

1.1.2 The Gödel letter and the modern Millennium Prize problem of P vs. NP 

 Although Gödel’s theorems changed mathematics and science in fundamental ways, it 

seems Gödel himself might eventually have had a change of heart, perhaps by the same 

sort of considerations of the brain and mind as above: In a letter to John von Neumann 

(after whom the modern computer architecture is rightly named) in 1956 (see Lipton 

2013), 25 years after his theorems, he proposed that there might be a sort of loop-hole in 

his own theorems’ limits on computation. We do not know what his detailed reasoning 
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was, but he likely knew that all physical theories were and are subject to his theorems, 

and we can reasonably speculate that he considered the brain to be physical, thus 

leading to the paradox (and paradox was his speciality): How can the physical brain, 

thus being equivalent to a computer, produce a mind capable of surpassing all 

computers. The letter is generally considered the birth of the field of complexity theory 

(Lipton 2013), but our reading departs on the suggestion of a loop-hole, which 

complexity theory has since rejected. It is also sometimes considered a gesture to von 

Neumann who was dying, and who would have appreciated staying in the game, so to 

say, till the very end. However, our interpretation suggests that it was no mere gesture, 

but rather a genuine request for help and support from an old hero. This is not clear 

from the letter alone, but as we will see later Gödel had already found a physical basis 

for the suspected loop-hole, although he never to our knowledge made the connection in 

public (and we can therefore only speculate that he did in private) we know that he was 

sorely disappointed in the reception of this basis as first presented without a connection 

to his theorems (Yourgrau 2006), so before presenting any such connection (which he 

never did though) he would have needed to gather considerable support from other 

giants of the field. It is also worth mentioning here that when Gödel was first presenting 

parts of the results that would soon form his famous theorems, at a conference 

discussion, von Neumann was the only one to grasp the significance, and he even 

produced his own proof, which he revealed to Gödel who had just gone to print with his 

own now famous version. This must have been an enormous relief; that someone at the 

top of mathematics understood what he had achieved.  

 

 Gödel continued to gather evidence for his loop-hole basis for the rest of his life 

(Yourgrau 2006), but his wider interpretation of what it meant had the consequence that 

it was not widely accepted or even understood. This failure to assert an important 

possibility in physics has likely contributed to the precarious situation we have today. 

From a letter of genuine inquest has grown a completely one-sided discourse where 

there is no longer any real question, only a matter of finding a final proof of an already 

settled truth. The consensus for the last half century since Gödel has indeed been that 

there is no loop-hole, that tractability is impossible, and that the brain therefore does not 

solve intractable problems. At the same time we know that certain problems that the 

brain certainly solves are intractable, but instead of challenging our preconceptions we 

try to explain away the paradox; we will return to the details of this in the next section. 

Science has tried very hard to prove that the consensus is correct, but all we have 
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succeeded in proving is that it is much harder to prove than initially thought (Lance 

2009). In fact, it is the most sought after proof at the top of the list of Millennium Prize 

problems each worth a million dollars. The prize is given for a proof that P ≠ NP, which 

is shorthand for the consensus that a tractable device cannot be build (this is not 

formally very accurate; there are many subtle details, but it is the spirit of it). The 

opposite possibility, that NP = P, is not mentioned, and is generally considered 

ridiculous, because, well, it would be too good to be true, or absurd to use the technical 

term. How many times has the absurd turned out to be the truth in the history of science 

(Feyerabend 2010; Kuhn and Hacking 2012)? In this thesis we will promote that neither 

P ≠ NP nor NP = P is the case, and that something more like NP ≈ P is the real situation. 

The difficulty of the current situation is then due to a fundamental misstep in raising the 

P versus NP issue in the first place, in assuming that the question makes sense, and that 

the distinction must be real, while in reality it could just as well be an artifact of a 

forceful introduction of a limited notion of computation in an environment defined, as a 

basic axiom of science, to only allow a limited form of computation. 

 

1.2 Does the brain somehow solve intractable problems? 

 It is clearly of fundamental importance to the purpose of this thesis whether the brain 

really solves intractable problems or not. The counter-consensual hypothesis made at 

the very onset is that it does indeed solve intractable problems; not as part of any 

conscious problem solving ability, but rather intrinsically in basic subconscious 

processes at the neuronal level. If it were to turn out that the brain does in fact not solve 

intractable problems, there might still be some value to this study in the sense that 

historically we have learned important lessons from considering things that eventually 

or even immediately turn out to be wrong; but it must be made clear that we can assume 

it to be true with just as much justification as the consensus assumes it to be wrong. We 

simply do not know either way. That there even is a consensus is out of old habit and 

not based on real evidence (Aaronson 2005a), and the neglect of  consideration to the 

alternatives is quite irrational and of course against scientific principles. That being said, 

let us briefly consider the evidence in our favour; the only ‘evidence’ against, that we 

know of, being the lack of hard proof and acceptance of our position, and the notion that 

it would simply be too good to be true, i.e. absurd.  
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1.2.1 Gödel’s theorems imply that the brain solves intractable problems 

 As we have already covered, Gödel’s theorems themselves imply and are based on the 

distinction between mind and machine, with a further distinction between formal proof 

and informal proof by mental insight. The informal proof that there is no formal proof is 

indeed by insight as the reader should have experienced firsthand in the previous 

section. However, before we go on to the more concrete evidence there is another issue 

that is often mentioned as a way around it, so it might be worth covering it first: 

Considering that humans are fallible it is easy to think that perhaps brains do not really 

solve intractable problems, but rather approximate solutions; that is, that there is a 

difference in difficulty of exact and approximate solutions of intractable problems. This 

is however in our opinion unlikely to be the case. The central issue is of course the 

question of when an approximation is good enough; if the reader is already familiar with 

the coarse graining of phase space when calculating entropy we might adopt a similar 

view that the approximation and exact solution must look macroscopically the same, but 

even this criterion is not that well defined anyway (Baranger 2001). Let us instead 

consider a simpler analogy: The original problem of intractability is due to the 

(exponential) size of the search space, let us represent this space by the space of our 

Milky Way galaxy. The exact solution might then be represented by Earth; the relative 

scales might even be fairly realistic for smaller problems. Now let us consider the size 

of the space of the approximate solutions; if we make this too big then we must 

conclude that there was no real problem in the first place since an approximate solution 

is easy to find in this case. We could make it the size of our solar system, enormously 

bigger than Earth, but still enormously difficult to find in the entirety of the galaxy. In 

this picture we can see that an approximate solution, the solar system instead of Earth, 

although much much bigger in search space is not much easier to find in the scale of the 

entire search space of the galaxy. So the tentative conclusion is that even if the brain is 

operating with approximate solutions it does not make the intractable problems so much 

easier as to be suddenly tractable.  

 

 The field of complexity theory usually takes the approximation approach, and hundreds 

of different schemes are known, none of which provide general approximate solutions 

to all or most intractable problems in practical settings. One of the more popular 

approaches, simulated annealing (Kirkpatrick, Gelatt et al. 1983), should be mentioned 

here because it relates to ideas that we will consider later, and it will be important to 

understand how what we are proposing is different from this idea. At first sight or going 
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by the name alone it seems that this approach is based on a known physical 

phenomenon, annealing, which makes it particularly interesting, because it happens 

more or less naturally. However, the simulation part makes the issue a lot more 

complicated, because we do not know how to efficiently simulate physical annealing, so 

different approximation schemes are again used. These schemes are typically the same 

as used to approximate Bayesian statistics, which we will elaborate on in the next 

subsection, as the first example of intractable problems, which the brain appears to 

solve.  

 

 Another way to see that perhaps approximations are not the key to information 

processing in the brain is to consider problems that have only yes/no answers, but are 

still algorithmically intractable; in this case we can see that an approximate yes or no 

does not make much sense. It might seem that we could invoke a heuristic along the 

lines of, if one answer leads to a logical paradox, choose the other answer, but this is 

something Gödel showed is algorithmically impossible in the details of his proof.  

 

1.2.2 The Bayesian brain is intractable 

 Helmholtz suggested that the brain is a statistical inference machine estimating the 

probabilities of alternative explanations of sensory input (Helmholtz 1860). This idea 

has since achieved a deep foundation in Bayesian probability theory (Westheimer 

2008), and the resulting idea of a so-called Bayesian brain, is now generally accepted as 

a theoretical foundation in neuroscience (Jaynes 1988). Further, it is known that 

Bayesian methods are optimal in the sense that there is no better way of making a given 

inference. Unfortunately, it is almost universally forgotten or ignored that this is only 

true in theory; in practice direct Bayesian methods are simply intractable, and in order 

to use them we must resort to various approximations like Monte Carlo methods and 

variations, and it seems quite likely that neuroscientists would be more reluctant to 

accept the Monte Carlo brain. It might be implicitly assumed that the brain has found a 

tractable way to be Bayesian, but from the previous sections it can be understood that 

this is not possible within the current framework of what the brain is, a computer. We 

will consider this in more detail and look at the alternatives later; first we continue with 

further examples of how we can see that the brain really deals with intractable 

problems. 
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1.2.3 Associative memory is intractable 

 Associative or content-addressable memory is about context. The problem with context 

is that in general there is no way of knowing what is relevant and what is not until both 

have been considered. This means that everything must be considered. Searching a 

semantic network for the relevant context is known to be intractable in the simplest 

version where concepts are represented by individual nodes (Cook 1971). It is however 

also possible to represent concepts by patterns across large numbers of nodes, where 

each node can also participate in multiple concepts; this idea was developed by Hinton, 

who called it distributed representations (Hinton 1990). The concept of distributed 

representation obviously fits much better with neural networks, both biological and 

other, but in itself does not provide a means of addressing the network or memory in a 

tractable way, which is also reflected in Hinton’s further conceptualization of reduced 

distributed representations that maintain the computational properties of the full 

representations, but at a much lower cost at the expense of some uncertainty. We will 

return to actual attempts at implementing such reduced representations in chapter 3.  

 

1.2.4 Vision is intractable 

 It has been formally shown that general visual search (finding a general object in a 

general visual scene) is an intractable problem (Tsotsos 2005). This should not be 

confused with simpler examples of specialized systems that are able to recognize 

specific objects in specific situations and environments; this can mostly be achieved 

with sufficient effort, but it does not imply that the system can do it in general, i.e. for 

general objects in general situations. On the other hand it should also not be confused 

with more difficult situations that require the system to actually understand what it is 

recognizing, like situations of complex occlusion, distortion or deformation. 

  

 The proof of intractability was given in the context of biological vision, but the authors 

go on to conclude that the brain does not actually solve it. Rather than conclude that the 

brain handles intractable visual search they suggest that the problem is reduced to a 

tractable problem by the process of attention  (Tsotsos 2005; Tsotsos and Bruce 2008). 

This is clearly not reasonable unless attention itself is then an intractable problem, and 

we would be back to square one. If we could simply reduce intractable problems to 

tractable ones by a tractable process there would be no intractable problems in the first 

place. Again, it could be argued that the brain has simply found a way through millennia 
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of evolution, which we will not disagree with; in fact, this is also our view, but it must 

then be accepted that this way is not by any of the known theories of attention (Itti, Rees 

et al. 2005), to the extent that these are formulated in enough detail to be 

computationally simulated.  

 

1.2.5 Natural language is at least intractable 

 Recognizing and responding to natural language, or simply translating between natural 

languages in text form is very often misunderstood as something that is on the horizon 

of artificial intelligence, because much research and attention is focused on the problem, 

and many products and services promote or even hype the idea. However, it is clear that 

this cannot be very successful without the actual understanding of what is being said 

(Kanerva 2010). Understanding is arguably more difficult than single intractable 

problems; it could seem that a combination of several intractable problems might 

achieve understanding, but it might as well be that it requires actual consciousness, and 

that that is even more difficult than a combination of several intractable problems. It 

might also be that solving intractable problems requires understanding, which is 

certainly in line with Gödel’s theorems, and certainly a property of the brain and mind, 

but the point here is not to speculate on these issues, but rather to argue that language is 

another example of a problem that is at least intractable, though routinely solved by the 

brain. 

 

1.3 How does the brain solve intractable problems? 

  Having argued that the brain is able to solve intractable problems we will now 

consider suggestions of how it might actually do so. It is clear that it is extremely 

difficult to come up with anything that is not equivalent to a formal system, which of 

course also complicates its description, since a normal logical exposition is a formal 

system itself, and therefore might not be able to directly capture the essence of the idea. 

Presumably a description of such an idea must then be given in such a way as to invoke 

an insight in a manner similar to the informal proof of Gödel’s statement encountered 

above. Ultimately the only way to be really convincing in lieu of formal proof is by 

demonstration, i.e. by solving a general intractable problem in a recognizable way. This 

is really also all that is needed in order for the first suggestion (that we will consider 

below) to be entirely convincing, but unfortunately it has everything but such a 

demonstration. 
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1.3.1 Friston’s ergodic suggestion 

 Karl Friston has proposed a grand unified theory of the brain, whose apparent 

explanatory power spans a vast expanse of bioscience (Friston, Kilner et al. 2006; 

Friston and Kiebel 2009; Feldman and Friston 2010; Friston 2010; Friston, Daunizeau 

et al. 2010). It is rather difficult to grasp in its mathematical detail, so the following 

merely reflects our reading of it, with the implied understanding that it might not be 

ultimately correct. The theory is first and foremost a Bayesian brain theory, but the 

necessary approximation and subsequent tractability is achieved in a non-standard way 

known as variational Bayes. It is also a strange attractor theory, the most salient point of 

which is that the system is indeterministic (Gleick 1997); however as indeterminism is 

not enough to solve intractable problems (Penrose 1994), we will not dwell further on 

this aspect of the theory. In any case it is exceedingly difficult to tell the flavours of 

indeterministic dynamical systems apart (Mandell and Selz 1997).  

 

 The foundational idea of Friston’s theory is that the goal of brains of biological agents 

is to minimize entropy, but rather than evaluate this inaccessible or intractable measure 

directly they minimize another measure, free energy, which is a bound on entropy under 

certain conditions. These conditions, as far as we understand it, are the conditions of 

ergodicity, i.e. that the long-term statistics of the system are the same as the short-term 

statistics of many representative systems. This is unfortunately rather unlikely to hold in 

our opinion; in general complex systems are not ergodic (Grigolini, Aquino et al. 2009), 

and the assumption of ergodicity has already failed spectacularly several times in the 

history of science: Most famously in the failure of statistical physics to predict the 

spectrum of blackbody background radiation, known as the ultraviolet catastrophe, 

which led Planck to suggest that energy is quantized, eventually leading to the theory of 

quantum mechanics. It also failed in what is known as the Fermi-Pasta-Ulam problem 

(Porter, Zabusky et al. 2009), which sprung from one of the first computer simulations 

of complex systems (weights connected by springs), and stood unresolved for a decade 

(partly because it was classified at Los Alamos). The anecdote is that they accidentally 

left the simulation running overnight, and in the morning instead of ending in the 

predicted thermalization the simulated system displayed a recurrence of past states, 

revealing that it was not ergodic and chaotic, but quasi-periodic. The resolution of this 

problem is also rather spectacular, but unfortunately outside our present scope (see 

instead e.g. Hoffman and Wayne 2008). 
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 We should of course equally consider Friston’s arguments in favour of ergodicity, but 

to our knowledge there are none; rather the motivation seems to be that if it holds then 

the brain can make good enough predictions to enable a general predictive coding 

scheme, which leads to great explanatory powers in a long list of desirable properties 

from perception and action, over learning and attention, to neurodevelopment and 

evolution (Friston and Kiebel 2009). This is indeed an enticing proposition, and it is 

tempting to accept ergodicity to gain a unified explanation. However, it might be 

essentially equivalent to postulating an oracle in a black box, then showing that the 

oracle (by being an oracle) can make good enough predictions to enable a predictive 

coding scheme and everything that follows, and then concluding that the postulate of an 

oracle in a box must be true based on its extraordinary explanatory powers alone. The 

present thesis can possibly be accused of the same problem itself, but we will try to be 

upfront about the issue. 

  

 Interestingly, Friston has proposed free-energy robots based on his theory (Friston 

2010), and a demonstration on any of a number of intractable robotic or other artificial 

intelligence problems would indeed be a very welcome (informal) proof of the theory. 

However, although variational Bayes is already used in artificial intelligence, it is not 

known as a general solution, which we assume it would be by now if it was.  

 

 To be more constructive we can consider how we could experimentally determine 

whether the brain is an ergodic system; this can potentially be done by considering 

cortical oscillations as a signature of the dynamical system properties: When the 

spectrum of oscillations can be described by a power law, we know that certain values 

of the coefficient of the power law imply that the system under study is ergodic or not 

(Grigolini, Aquino et al. 2009). Nevertheless, there has been some confusion about 

exactly what to look at, e.g. local field potentials, neuron firing rates or perhaps a signal 

corrected for filtering in the tissue (Bedard, Kroger et al. 2006), so it is problematic to 

consult specific values in the literature. In theory, though, it is not confusing: We are 

supposed to look at energy dissipation, as far as we understand it. There has 

unfortunately been no way of directly measuring energy dissipation, so the confusion is 

understandable. In chapter 6 we will present a new method of measuring energy 

dissipation in vitro with micro-electrode arrays. An important point that we can take 

away from the literature without looking at specific values is that the values are very 

different between sleep and wakefulness (Bedard, Kroger et al. 2006), so it could be the 
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case that the brain is ergodic in a half-cycle. This would perhaps not help Friston’s 

theory, which we think requires ergodicity all the time, but it might be useful for other 

ideas as we will see later.  

 

 Going back to the original goal of minimizing entropy, which we certainly agree with 

(and which was first noted by Maxwell and debated ever since (Schneider 1991)), we 

can ask if it is reasonable that entropy can even be bounded by a smooth function at all. 

Although we can put formulas to entropy it is a measure that cannot be said to be fully 

understood; it is intimately tied to the problem of the arrow of time (Coveney and 

Highfield 1992), but a full exposition is beyond our current scope. We simply propose 

instead that for instance at a moment of eureka, the entropy (change) cannot be 

bounded, and that these moments of sudden insight are essential parts of our cognition, 

which we cannot do away with in any model no matter how alluring. 

 

1.3.2 Penrose’s interpretation (but not his suggested solution) 

 Roger Penrose places major importance on just the concept of insight as being beyond 

anything computers can achieve. His view follows from Gödel’s proposition of a truth 

that cannot be formally proven, but is easily understood by mental insight. Penrose’s 

exposition over two long books (Penrose 1989; Penrose 1994) is comprehensive and 

convincing, but he might have made a crucial strategic error that is only really obvious 

in hindsight: He proposed a solution. A clear distinction between the well-founded 

issues he raises, and the very tentative solution he proposes must be made.  

 

 It seems that many (neuro)scientists consider firstly his tentative ideas, and in rejecting 

them they, perhaps inadvertently, reject the major point of his work, which cannot be 

discarded so lightly. This point is that the brain is not a computer. The point is just as 

clearly that the brain is also not a quantum computer. This might be surprising, because 

Penrose is commonly associated with the idea of a quantum mind, but he specifically 

states that the brain is not any form of quantum computer that we know of, in fact it 

does not use any known quantum effect. He does later (in the tentative part) suggest that 

it uses an unknown quantum phenomenon, and that microtubules might be at the heart 

of such a phenomenon in the brain (Hameroff and Penrose 1996), but the important 

distinction between issue and solution should still be respected. 
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 Another important theme in Penrose’s view is the connection between physics and 

mind, which is also somewhat underappreciated. Few neuroscientists would agree that 

there is any tangible connection between, say, black holes and the brain, but if they can 

accept Friston’s premise that biological agents resist the rising of entropy (perhaps even 

lower it), and accept that it is a fundamental feature, then the connection is inescapable.  

  

 Penrose puts even more emphasis on the need to understand how entropy really works 

in this regard and in general, and it seems that the real question is not how brains can 

possibly resist the Second Law of Thermodynamics, but rather where this law comes 

from in the first place, since there is no a priori or theoretical reason for such 

asymmetry of past and future. This difficulty also led Hawking to cast an ad hoc 

chronology protection conjecture (Hawking 1992), which is a fancy version of the 

Axiom of Causality. Penrose’s version of this axiom is a little more specific, known as 

the Weyl curvature hypothesis  (Hawking and Israel 1979; Penrose 1982), it states that 

for some reason the Weyl-part of the space-time curvature tensor starts out (at the Big 

Bang) at zero, reflecting no distortion of space-time (the other half, the Ricci-part, is 

infinite and reflects compression ). The symmetry in the maths on the other hand 

suggests that an initial white hole singularity (e.g. the Big Bang), should have high 

entropy (and infinite Weyl-tensor) just like a final singularity (a Big Crunch black hole), 

but that is not what we find in reality. This is known as the arrow of time problem 

(Coveney and Highfield 1992; Ionescu 2008), and highlights the intimate relationship 

between entropy and time, with rising entropy in a clear sense defining the direction of 

time. Lowering entropy is then in a more tentative sense the same as going in the 

reverse direction of time.  

 

 In order to even begin to understand how the Big Bang could possibly have been born 

in a state of extreme low entropy we must consider the question of what was before it; it 

is often stated that this question does not make any sense since time itself was created 

with the Big Bang, but then the question really only changes to why it happened at all. 

This is the old question of first cause, which is an area littered with debris from 

millennia’s worth of philosophic, religious and scientific struggles. On the fringe of 

science Arthur Young has constructed an argument from first principles (Young 1976), 

which reverses the order of cause and effect by introducing purpose; e.g. the barn 

burned down and the pigs were roasted, roasted pigs taste good, so barns were burnt to 

roast pigs. The purpose of roasting pigs in a sense reverses the causality of the fire 
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causing the pigs to roast, the fire being caused by the purpose to roast. However, we 

cannot introduce purpose into science at this level without breaking with science as 

most scientists see it today, but if we disregard this problem then purpose might indeed 

be an adequate first cause. The real breaking point is obviously that we cannot be 

allowed to assign a divine purpose to the Big Bang, but the argument itself really says 

nothing about divinity of purpose; if we had the technology, the purpose of mankind 

would do just fine. We bring this up to really understand the implications of entropy 

lowering brains when taken to the extreme conclusion; bar any major extinction events 

brains will keep getting smarter and keep lowering entropy at an accelerated pace, while 

the rest of the Universe will gravitate towards higher entropy (so total entropy is still 

rising). 

 

  If we are still around at the very end we will see some spectacular events as the last 

supermassive black holes collide, causing gravity waves in the fabric of space-time 

itself. This last part is surprisingly not just speculation, because the signature of such 

events has been found in the cosmic microwave background radiation in the form of 

concentric circles of anomalous low variance (Gurzadyan and Penrose 2010). Obviously 

this seems impossible, since it has not happened yet, but the theory that predicted these 

events gives a simple explanation: We are seeing the signature of collisions at the end of 

a previous universe, part of a chain of universes called aeons; a signature in gravity 

waves, which is able to pass through the singularity to the next aeon (Penrose 2010). So 

in this view there was something before the Big Bang, and the first cause of one 

universe is the last effect of the previous. Neat; except for the question of the first cause 

of the first universe in the chain. The alternative explanation of these observations is 

that we are not seeing the end of the previous aeon, but rather the end of our own, but 

this is of course to be considered unphysical (Penrose 2010) as it breaks with our 

conventional understanding of causality, although the mathematics are equivalent, and 

although Einstein’s equations allow such loops in time (Gott 2002).  

 

 It is the hope that this brief exposition highlights that there are fundamental issues in 

our understanding of entropy (and in direct extension, of the concepts of information 

and noise (Von Baeyer 2004)) in physics as well as in the brain, and that the 

connections sometimes made by physicists, but mostly ignored or rejected in neuro-

science, are not just frivolous ideas, but should be seriously considered, not least if 

Friston’s premise is accepted. 
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 It might still be difficult to see how black holes are really relevant to neuroscience, but 

they are as much (if not more) mathematical objects as real objects, and the 

mathematical object poses some  really good questions when it comes to understanding 

information processing, entropy and computation. Information is supposed to be 

indestructible as a consequence of (unitary evolution in) quantum mechanics, but this 

poses a fundamental problem when information falls into a black hole and most 

definitely becomes inaccessible to the outside. This is known as the black hole 

information paradox (Hawking 1976) and has been popularized by a bet by Hawking 

and Thorne versus Preskill about what ultimately happens to the information; by now 

Hawking has conceded the bet to Preskill (Hawking 2005), agreeing that information is 

not destroyed forever, but released in the form of Hawking radiation (correlated with the 

original information) over millennia, but the question is obviously still wide open. Let 

us consider in a little more detail what we are taking about; a thought experiment known 

as Hawking’s box is illustrative (Penrose 2001): Consider a box of cosmic scale, the 

box contains enough mass to eventually form black holes. Now consider the phase 

space describing the state of this box. The volume of a compartment in phase space is 

the entropy associated with the state(s) described by that compartment. The phase space 

of the box will have two large compartments, one describing all the states where there is 

at least one black hole in the box, the other describing all the states where there are 

none. The time evolution of the state of the box is given by arrows flowing from 

compartment to compartment, eventually passing from the no black hole side to the 

black hole side (compartment). The volume of any phase space must remain constant by 

Liouville’s theorem, it is incompressible, but what if we allow information to be 

destroyed by a black hole? This causes the arrow flow lines to converge and merge, and 

reflects an illegal compression of phase space, but we might save the overall balance 

sheet as long as an equivalent amount of phase space volume or information is created 

somewhere else. In a classical phase space there is no mechanism to possibly allow such 

a thing, but in quantum phase space (Hilbert space) the realm of possibilities is still 

somewhat uncharted. Hilbert space volume is conserved under unitary evolution, i.e. 

reversible evolution, but decohering measurements collapsing to classical states are 

irreversible, and so is the creation of Bell-states, maximally entangled states, which are 

an essential resource in for example quantum teleportation (Bennett, Brassard et al. 

1993). Certainly we can imagine that information teleportation could play the role 

needed; if this sounds too farfetched it is worth considering what the alternative of 

correlated Hawking radiation entails: Close to the black hole event horizon quantum 
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fluctuations (which are always occurring everywhere) create virtual particle pairs out of 

nothing in singlet Bell-states, which immediately sum (annihilate) back to nothing, e.g. 

an electron-positron pair (a positron is the time-reverse of an electron, its anti-particle 

(Feynman 1990)); however occasionally the anti-particle falls into the black hole and 

the particle escapes, the negative mass of the anti-particle then means that the black hole 

loses mass, i.e. evaporates. This process in itself does not mean that information is re-

created although some information is carried by the escaping particle; for the 

information to be the same as originally fell into the black hole long before, we must 

consider the concept which made Hawking eventually give up his position on the 

information paradox: The idea is that when matter falls in, its information content is not 

destroyed, but rather imprinted on the event horizon surface of the black hole. This is 

now known as the holographic principle (Susskind 1994), because of its similarity to 

general holography, the details of which we will return to in chapter 3. Then as the 

black hole eventually starts to evaporate via Hawking radiation this radiation is imbued 

with the information stored in the horizon.  

 

 The entire process sounds quite farfetched, but the consequence that black hole entropy 

is proportional to its surface area rather than to its volume is generally accepted. This 

view of black holes is intimately related to a more general version where the entire 

information of the Universe is considered to be represented on a dual space surface of 

one less dimension, known as the AdS/CFT correspondence (Maldacena 1999). A not 

popularly known fact is that this correspondence in its natural form is between a 

hologram (the surface) and a universe with an extra dimension of time; only by a 

(forced) mathematical so-called unwrapping procedure is it then turned into a universe 

respecting our normal notions of causality (Penrose 2001). 

 

 Penrose rules out information creating white holes (other than the Big Bang) on clear 

observational grounds, but perhaps overlooks the most obvious scenario in which the 

white holes to look for are not actual Big Bang-like singularities, but rather precursors 

to such events, in the same general entropy sense that stars are precursors to black holes. 

We can succinctly say that it appears that brains are to white holes as stars are to black 

holes (in terms of entropy). So in this simplified view stars and black holes destroy 

information, while brains and white holes create information. The assumed 

indestructibility of information aside, it does not seem unreasonable that brains create 

information, perhaps simply by identifying and removing noise.  
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1.3.3 The brain is too cold to be a classical computer 

 We have already seen that Gödel’s theorems imply that the brain is not a classical 

computer; here we will consider a more practical perspective from the point of view of 

the physical temperature of the brain as a measure of information processes within. 

The argument that the brain is too hot to be a quantum computer is well-known 

(Tegmark 2000), and it is implicitly understood that it is then a classical computer (if 

nothing else then for lack of alternatives). We will revisit this argument shortly, but first 

let us consider a similar but less known argument that simply states that the brain is too 

cold to be classical computer. This requires a bit more explanation, but it is not a 

complicated consideration: If we assume that the brain is able to solve intractable 

problems (as we have argued) we run into a basic problem, which is that all known 

computation comes at a cost; the cost might seem to vary and also appears to be rapidly 

decreasing (Moore’s law), but that is the economic cost; there is a more fundamental 

cost, which within known physics has a lower limit (Berut, Arakelyan et al. 2012), 

known as Landauer’s limit (Landauer 1961). From the energy bill it would seem that the 

cost is energy, but that is still the economic cost; the energy is conserved, the amount 

the goes into the computer is exactly equal to the amount that goes out (mainly heating 

the user’s office or lap).  

 

 What actually changes is the entropy content of the energy; that is, it enters as low 

entropy energy and leaves as high entropy energy, i.e. heat. So the real cost is (negative) 

entropy, and as an associated cost is the generation of an amount of heat, which is 

necessary to balance the books of entropy accountancy. In order to lower the entropy 

(do the computation) the processor must raise the entropy in its environment. Since it 

takes an exponential amount of computation to solve an intractable problem we can 

conclude that a processor must dissipate an exponential amount of heat to do so, which 

the brain is clearly too cold to be anywhere near doing. The substrate of the computation 

does not matter here, be it silicon or biology, and the effectiveness of the process is also 

irrelevant; the argument that nature has found a more effective way does not apply, 

unless we mean a way that is not a classical computer. Even in that case it would be 

extremely surprising if that way was a way to reduce the cost below the fundamental 

limit; it could however be possible to pay in a different way, so to say. If the brain’s 

lowering of entropy did not have to be balanced by an increase in entropy in the local 

environment, but rather by an increase in entropy in the larger environment, say in the 

Sun (which is the largest account holder anyway), it would be past the heat dissipation 
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concern. This kind of suggestion could also include a notion of entropic credit, so that 

the account could be pre-paid or perhaps settled later, but neither is how classical 

computation works.  

 

 We should add that the above is not true under ergodic conditions where exponential 

complexity does not require exponential dissipation, which is true for physical 

annealing, but not for simulated annealing (Hastings and Waner 1985).  

 

1.3.4 Is the brain really too hot to be a quantum computer? 

 We have seen that Gödel’s theorems also imply that the brain is not a quantum 

computer in the conventional sense, but at this point the reader should also have come to 

appreciate the reasons for considering quantum-like effects in the brain in any case. We 

have introduced the main arguments why classical physics is not enough to produce 

cognition, and although the same arguments apply to quantum theory we will soon 

argue that it is still the most likely place to uncover phenomena, which could eventually 

defeat these arguments. 

 

 The main argument against quantum effects playing a role in cognition is that the brain 

is too hot. This is because quantum coherence is extremely short-lived at physiological 

temperatures, where it is very difficult to isolate the quantum system from the classical 

environment. Physicist Max Tegmark and others have made calculations estimating 

how long quantum coherence could be maintained in a brain-like environment at 

physiological temperatures, and concluded that the timescale (~10
-13

-10
-20 

seconds) is 

orders of magnitude too short to be able to have any influence on neurons (Tegmark 

2000; Litt, Eliasmith et al. 2006). This is a reasonable consideration, but it very much 

reflects the current main problem in quantum computing, which is also specifically to 

maintain quantum coherence (avoiding decoherence) for long enough to perform 

computations, and one could therefore suspect that this might have coloured the 

reasoning somewhat.  

 

 There are two potential ways around this temperature roadblock; the first is the simplest 

and just involves changing the assumptions of the calculations: Tegmark assumes that 

we are dealing with microscopic quantum objects that are inherently temperature 

sensitive due to the scale. However, there is a clear trend that systems that are not 
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microscopic can still behave in a quantum coherent way, both in general (Vedral 2011)  

and in biology (Ball 2011); this was originally thought to be impossible, and to our 

knowledge is still theoretically impossible, since there is no complete explanation, but 

many different experiments document it, most famously with macroscopic C60 carbon 

buckyballs (Arndt, Nairz et al. 1999), or with Schrödinger’s kittens, which are 

macroscopic packets of light (Bruno, Martin et al. 2013; Lvovsky, Ghobadi et al. 2013). 

The upshot for Tegmark’s temperature argument is that perhaps temperature is not as 

important as was assumed, and indeed quantum coherent energy transport has since 

been found in certain proteins at ambient temperatures (Collini, Wong et al. 2010). The 

natural extension of the trend that macroscopic objects can behave in a quantum 

mechanical way is to propose that perhaps all classical objects can behave as if they 

were quantum under the right (but rare) conditions. The problem is to understand what 

those conditions are; the conditions in the brain are certainly rare, but there is nothing 

obvious about them that suggest a way to achieve quantum phenomena.  

 

 The other potential way around the temperature problem comes from quantum 

computing. The first somewhat effective way to deal with unwanted decoherence in 

quantum computing was the introduction of quantum error correcting codes, which take 

advantage of quantum parallelism to introduce massive redundancy rather than actually 

solving the decoherence problem itself. A more interesting (but much less developed) 

approach is based on the curious discovery of decoherence-free subspaces (Lidar, 

Chuang et al. 1998); subsystems that are passively protected from decoherence 

otherwise caused by unwanted interactions with the classical environment. It should be 

noted that even if we could prevent unwanted decoherence it is not thought that 

quantum computers can solve intractable problems. However, it only takes very minor 

changes to the quantum computing formalism to gain this ability, but it has not been 

proven in practice, and it is often taken to imply that a given change violates quantum 

mechanics or rather violates fundamental axioms in the interpretation of quantum 

mechanics. In this sense quantum mechanics is considered an island in theory space 

(Aaronson 2004a), because any slight change causes fundamentally different results; but 

this is really only to be expected considering that we must give up at least one of our 

fundamental axioms (as discussed above) to explain the results in the first place, and 

depending on which we give up the interpretation is very different. We will outline the 

fundamental axioms and their present relevance in more detail in chapter 3. 
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1.3.5 For now define a holographic computer to be just right 

 If we rule out that the brain is a classical computer, and also rule out that it is a 

quantum computer we are indeed left with very little; it is exceedingly difficult to come 

up with physical concepts that cannot be described by either or both formalisms.  

We will however for the sake of inquiry postulate a third kind of computer, which we, 

for reasons that will become clear in the chapter 3, call a holographic computer 

(holographic computation is considered in more detail in chapter 3). The properties of 

this hypothetical device are just right, in the sense that it is somehow unaffected by 

Gödel’s theorems, and is thus able to solve intractable problems. It is part of the 

definition that it is allowed to achieve this by violating any fundamental axioms as long 

as it provides a coherent interpretation of the consequent physical phenomena. In this 

way we form an initial assumption, which is that the brain is such a holographic 

computing device, and that it as such holds the secret as to exactly what this means. All 

neuroscientists must agree that the brain holds the secret to cognition, but our point of 

view takes it further in the sense that this is also assumed to be the secret to 

understanding real physics that is not captured by the classical and quantum formalisms 

as we understand them now.  

 

1.4 A reverse-engineering perspective on the brain 

 The concept of reverse-engineering is a well-known approach to a specific kind of 

problem where a reference device is given in some form, but cannot be taken apart in 

the traditional sense to simply reveal its mechanistic operation, as is the case with the 

brain. A good example is the problem of artificial intelligence, which is a valid target of 

reverse-engineering, because intelligence is known to occur naturally; whereas 

examples where reverse-engineering would not apply are other science-fiction concepts 

such as teleporters or tractor-beams, because no such naturally occurring phenomena are 

known. Reverse-engineering is however not just a recipe of serial steps to carry out; 

rather it can be considered an art-form in which creative thought is necessary. It is 

necessary, because in order to initiate any investigation a solution or direction towards a 

potential solution must first be imagined, and fundamental (but tentative) constraints 

must be established. It is usually a poor strategy to test for specific end-point solutions 

unless ones guess is so inspired as to be right; rather a strategy should be laid out that 

partitions the vast problem space, so that further experiments narrow the space down 

until a less miraculous insight can be distilled. It is also inherent to the reverse-
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engineering approach that the only real success is the (re)implementation of the critical 

features of the device in question; famously, Feynman’s blackboard at his death had 

scribbled on it, “what I cannot create, I do not understand” (among many other things) 

(Gleick 2011). Creation does not always require full prior understanding, but it carries 

an ultimate form of proof, which is much less sensitive to interpretation than many other 

forms.  

 

 The starting point that we will consider here springs from the idea that the enormous 

advantage of tractability might come at a steep price; the cost which seems most 

universal and relevant is simply the cost of sleep: We spend about a third of our lives 

asleep in what seems to be an utterly unproductive and defenceless state that as far as 

everything but the brain is concerned could just as well be spent in a state of wakeful 

rest. It could of course be argued that the cost of sleep is greatly tempered by social 

structures, and that there could even be a benefit of sleep forcing the need for social 

structures, but at face value it is hard to see why we would sleep if it was not absolutely 

essential. We therefore hypothesize that the wake-sleep cycle is necessary to facilitate 

information processing of a holographic nature, as postulated above. 

 

1.4.1 The two concurrent and complementary approaches of this thesis 

 The theoretical framework of holographic processes (detailed in chapter 3) suggests 

several general features that might be present in systems that potentially use holographic 

phenomena to solve difficult problems. It is however unclear how to implement such a 

system, so this is where an experimental, electrophysiological approach comes in: We 

will consequently look for traces of these enabling features in vitro, and then for crucial 

hints as to how they might be re-implemented in silico. In return the concurrent in silico 

approach is intended to provide constraints on our hunt for said hints. It is the hope that 

the two approaches will converge to a point where we have in vitro experimental 

evidence for one or more features and hints, and in silico evidence for the scope of 

computational usefulness of the system under study. If our hypothesis proves even 

partially correct we would then consider a specific route to a novel technological 

implementation, time permitting. We will detail these aims at the ends of the next two 

chapters, respectively introducing each of the two approaches.  
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Chapter 2.  The Wake-Sleep Cycle 

neurophysiological background and framework 

  

 This chapter provides a short introduction to the neurophysiological background of the 

electrophysiological approach, and thus forms the framework for this experimental 

work.  We will specifically consider the wake-sleep cycle, but limited to the aspects 

deemed most relevant to the reverse-engineering perspective specified in the previous 

chapter: If we are to investigate the hypothesis that the brain is a holographic computer 

we must consider how information is fed into the device (sensory processing during the 

wake-state) and how this representation is operated upon to generate desired/useful 

outcomes (cortical dynamics during sleep and their relation to prior activity during the 

wake-state). 

 

2.1 Is sleep the price of tractability? 

 In the introduction we set forth the speculative idea that we might start a reverse-

engineering process of tractability in the brain by considering one of the main costs of 

operating a brain, namely the need to sleep. Now we must consider which aspects of the 

wake-sleep cycle are most likely to be relevant to solving difficult computational 

problems. Fortunately, neuroscience has produced a rather comprehensive and 

successful theory, which deals almost exactly with the kind of problem we are interested 

in; we will refer to that theory here as the synaptic rescaling hypothesis of the wake-

sleep cycle (Turrigiano, Leslie et al. 1998; Tononi and Cirelli 2006). 

 

2.2 The wake-sleep cycle and the synaptic rescaling hypothesis 

 The basic idea of the synaptic rescaling hypothesis is simple: While we are awake and 

experiencing sensory events, we build up synaptic potentiation encoding (but not 

necessarily organizing) new information. Sensory inputs are presented to the cortex in a 

patterned manner (i.e. they are pre-processed by sense organs and subcortical structures 

like the thalamus (Ramkumar, Jas et al. 2013)). The inputs are presented in a highly 

layer-specific manner (see below) and, as far as neuroscientists can tell to date, are 

represented both spatially and temporally within the functionally-specific primary 

sensory area concerned, and connected to associational areas higher up the cortical 
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hierarchy (see Einhauser and Konig 2010). In this way the internal (to the brain) 

representation of sensory input can be thought of as a distribution of information across 

the cortical mantle (an 'engram', Lashley 1949). The nature of this information is 

thought of classically as a population of bits in the form of action potentials in neurons. 

However, the temporal arrangement of these action potentials (bits) is tightly controlled 

by oscillations in neuronal populations; shared, periodic fluctuations in neuronal 

membrane potentials from hyperpolarised to relatively depolarised levels (Whittington, 

Cunningham et al. 2011). This dependence of cortical representations on oscillations 

has three main consequences for the hypothesis under test: Firstly, oscillations are not 

classical ‘bits’ of information. They can exist in extreme states (peak/trough), but also 

in any state in-between. Secondly, their presence in any given neuron is inescapably 

dependent on the state of multiple other neurons, i.e. they are ‘entangled’ together by 

the network process that generates them in the first place (see the discussion on Bell-

states above and qubit structure in chapters 3 and 7). Thirdly, from a neurophysiological 

perspective, the temporal arrangement of cortical activity afforded by oscillations has a 

powerful influence on synaptic plasticity (Kopell, Whittington et al. 2011; Ainsworth, 

Lee et al. 2012). In other words, the very process of representing sensory information in 

cortex has an inescapable synaptic plastic component.  

 

 This process of synaptic plasticity is naturally limited by an upper degree of 

potentiation, a limit that we feel as increasing sleep pressure as we approach it (Dijk 

2009). Then when we fall asleep a different process starts whereby the synaptic 

potentiation built up during the day is brought back down to a nominal level (Esser, Hill 

et al. 2007), so that another wake-sleep cycle can start over the next day. This all sounds 

simple, but it involves some rather profound computational problems: It appears that it 

is not enough to simply scale down all synaptic connections by the same amount, 

because synaptic plasticity is by default noisy, and is ‘unsupervised’ in the sense that it 

is not necessarily even given what is noise and what is information. There are several 

ways to look at it; we can think of a rescaling process as data compression, which is 

formally equivalent to pattern recognition or to inverse problems, like learning from 

examples (Vito, Rosasco et al. 2005). These are ways to formalize the computational 

problem faced by the rescaling process, and since these formalizations have been 

studied in some detail already, we can apply such prior work to evaluate ideas like 

scaling down all connections. If such a simple normalization process was enough it 

would probably not reflect a very interesting (computational) problem, and we should 
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perhaps consider rescaling as merely some housekeeping process, which is not 

particularly relevant to the computational problem at hand. Certainly, from a purely 

metabolic perspective sleep appears to have multiple restorative purposes at the cellular 

level (Vyazovskiy and Harris 2013), but this does not in itself rule out a more 

computational purpose. In addition, as we shall see from data presented in chapter 5, 

some neurons show activity patterns during (a model of) deep sleep that cannot at all be 

seen as restorative in the above sense as they are extremely metabolically demanding. 

 

 However, there are several ways in which the brain could potentially deal with noisy 

potentiation: The simplest well-known approach is to re-scale in some frequency or 

frequency-like domain; removing the smallest Fourier-like coefficients is a 

regularization process, which blindly removes the worst noise. The brain might well be 

doing something just like this, but in spite of extensive study and numerous applications 

this sort of process has not yet been able to tackle intractable problems, and we must 

consider that if this is what the brain is doing, it is doing it in a way which we have yet 

to understand. So we are still left with the question of how the brain selects which 

connections to scale; we will have much more to say about this question below, and 

again following the results of chapter 5.  

 

 Neuroscience fortunately seems to provide a straightforward answer in the form of a 

process, which is best called replay (Peyrache, Khamassi et al. 2009). We will consider 

this process in some detail, but first let us reflect on a possible mechanism for rescaling 

itself. The question is what characteristics are associated with synaptic depotentiation, 

and what their dynamics are over a wake-sleep cycle. One characteristic, in the form of 

delta rhythms, is both associated with depotentiation at a long-term synaptic plasticity 

level (Malinow and Malenka 2002; Cingolani, Thalhammer et al. 2008), and with prior 

potentiation by stimulation (Huber, Ghilardi et al. 2004; Vassalli and Dijk 2009). The 

point is that increased local potentiation by some form of local stimulation during 

wakefulness leads to stronger local delta rhythms during deep sleep. Let us therefore 

further characterize delta rhythms in relation to the wake-sleep cycle. 

 

2.2.1 Delta rhythms and the wake-sleep cycle 

 Delta rhythms are primarily associated with deep sleep where they are particularly 

prominent. The two main sleep phases (with further divisions), non-REM and REM, 
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display strongest delta in deep non-REM sleep, which characteristically declines until 

the beginning of a REM phase, during which it is substantially lower. At the end of the 

REM phase delta power returns to a level slightly stronger than at the beginning of the 

REM phase, and the decline starts over until the next REM phase. The non-REM delta 

phases get progressively shorter as the REM phases get progressively longer (McCarley 

2007). Except for the minor increases following REM phases, delta power continually 

declines throughout the night; eventually reaching wake levels.  It should be noted that 

delta is far from the only active oscillation during sleep, as we will also see shortly for 

wakefulness, delta in sleep is orchestrating a nested hierarchy of smaller, higher 

frequency oscillations (Valderrama, Crépon et al. 2012; Carracedo, Kjeldsen et al. 

2013) 

  

 Although delta is most prominent and clearly dominant in sleep, it is still very 

significant in wakefulness. It might be necessary to make a distinction between two 

types of delta in wakefulness: One type associated with sleep delta and the other with 

primary sensory processing. In support of the first type, experiments show that delta 

increases in wakefulness with sleep pressure (the need to sleep due to prolonged 

wakefulness and sensory experience) (Franken, Dijk et al. 1991). This has recently been 

proposed to be due to actual local sleep (Vyazovskiy, Olcese et al. 2011), i.e. parts of 

the brain sleeping while you are awake, and it might be an attractive explanation of 

performance decrease after prolonged wakefulness (Van Dongen, Caldwell et al. 2006). 

 

 The second kind, related to sensory processing, might be more interesting here since it 

suggests a purpose that goes beyond synaptic rescaling in sleep or local sleep in 

wakefulness. In sensory processing the delta rhythm is prominent in primary sensory 

areas, and it has been suggested that it acts as a carrier wave for higher, nested 

frequencies in a processing hierarchy where delta entrains theta and theta in turn 

entrains higher frequency oscillations like gamma (30-100hz) (Lakatos, Shah et al. 

2005), which is typically associated with sensory processing and attention through 

synchrony and coherence. This is to some extent supported by results showing that delta 

is phase reset by the onset of visual stimulation, and that in-phase stimulation improves 

reaction time while out-of-phase stimulation is suppressed (Lakatos, Karmos et al. 

2008; Schroeder and Lakatos 2009). In development delta power changes with 

progressing development of layer 5, while theta power follows the development of layer 

2/3 (Campbell and Feinberg 2009). Delta power is particularly strong in infants, and 
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through childhood, but declines abruptly around puberty and continues to decline with 

maturation, however its ability to phase-lock with stimuli is not necessarily affected by 

age (Schmiedt-Fehr, Duhl et al. 2011).  

 

 One of the most interesting features of the neocortex is the layered structure defined by 

differences in cell types, cell type distributions and connectivity. Functionally, layer 4 is 

considered an input layer, and layer 5 is considered an output layer, reflected to some 

extent in decreasing size of layer 4 towards higher areas that receive no input directly 

from sense organs. Layer 4 primarily passes information to layers 2/3, from where it is 

relayed back down past layer 4 to layer 5 (Thomson, West et al. 2002). Layer 4 also has 

reciprocal connections with layer 6 (Tarczy-Hornoch, Martin et al. 1999), which feed 

information back to thalamus and also direct connections to output layer 5 activated on 

receipt of strong stimuli (Ainsworth, Lee et al. 2011). Layer 4 has the highest 

concentration of inhibitory interneurons, while layers 2/3 and 5 have more pyramidal 

cells.  

 

 The profile of delta power across layers in associational rodent neocortices in a 

pharmacological delta model is very specific, with highest power in layer 5. In this 

layer, it is powered by an NMDA receptor-driven network of intrinsic bursting cells 

activating a GABAB receptor-mediated source of slow inhibition. Regular spiking cells 

in layer 5 generate outputs at theta frequency, which correlate temporally with delta-

nested theta frequency EPSPs in layer 2/3 principal cells. In contract, outputs from the 

intrinsic bursting cells correlate with IPSPs in these superficial layers (Kjeldsen, Kaiser 

et al. 2012; Carracedo, Kjeldsen et al. 2013). The most noticeable aspect of the delta 

phase relations between layers is an abrupt and almost complete phase reversal between 

layers 5 and 1 (Carracedo, Kjeldsen et al. 2010). 

 

2.2.2 Replay and rescaling 

 There is almost abundant evidence for replay in sleep of patterns of spiking neural 

activity seen during prior wakefulness (Destexhe, Hughes et al. 2007), primarily in 

hippocampus (Nadasdy, Hirase et al. 1999; Foster and Wilson 2006), but also in cortex 

(Peyrache, Khamassi et al. 2009), and in coordination between hippocampus and cortex 

(Ji and Wilson 2007; Born 2010). It is then not too far off to propose that replay has a 

similar effect to rehearsal or repetition, and thus selects out information, which is to be 
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spared rescaling as defined as depotentiation. However, have we then not only really 

moved the problem to the question of how patterns are selected for replay in the first 

place? We could say that it is simply the most salient information (Diekelmann and 

Born 2010), but we do not know which is most salient in advance, unless it is simply the 

strongest, in which case we are back to scaling by a simple normalization process. 

Another way we could resolve the situation is to say that the salient features are 

determined in advance by some information processing step occurring as the synaptic 

potentiation is build up, and perhaps then coded in the strength of connections; this 

would move at least half of the computational problem to the wake-state side, which 

might be quite reasonable as a way to share the load so to say. In this case we would 

ideally need to try to identify such a process in the wake-state, and to try to characterize 

its computational properties. To some extent evidence for this is already available when 

considering the interaction between temporal structure afforded by sensory-evoked 

cortical rhythms and the spike timing-dependent plasticity framework (Lee, Sen et al. 

2009). 

  

 So a closer (theoretical) inspection might suggest that replay is more of an 

epiphenomenon than an actual answer to the question of how connections are selected. 

Arguably any reorganization or noise cleaning process must involve some degree of 

reactivation of the information in question, so it is not surprising to find replay in any 

case, but we must be prepared that it is not a self-contained process, and that there could 

be some intimate connection to processes occurring already in the wake-state, most 

likely through some neural synchrony or coherence scheme as discussed above (Engel, 

Fries et al. 2001; Kaiser and Lutzenberger 2005; Benchenane, Peyrache et al. 2010), 

perhaps of nested gamma rhythms (Lakatos, Shah et al. 2005), as associated with 

sensory processing.   

 

 In addition to replay in sleep there is also evidence for replay during the wake-state 

(Foster and Wilson 2006; Karlsson and Frank 2009), during REM sleep (Louie and 

Wilson 2001), during sleepwalking (Oudiette, Constantinescu et al. 2011) , and even of 

what is better called preplay, perhaps reflecting mental planning processes (Buhry 

2011). The relative time scales of replay also vary from real-time to very accelerated 

(Nadasdy, Hirase et al. 1999; Euston, Tatsuno et al. 2007), and there are even reports of 

reverse replay (Foster and Wilson 2006), which is particularly interesting in relation to 

the Helmholtz machine concept that we will consider shortly. 
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 This all further complicates the picture, and it would also be hard not to notice a 

burning need to further integrate REM dream sleep into the rescaling and replay 

framework. This has of course been considered already, it is for example known that 

dream sleep displays less reactivation than deep sleep, at least in rodents (Diekelmann 

and Born 2010), but although we agreed that this reflects different processes, the 

suggestion that consolidation occurs during dream sleep seems awkward in our view, 

and is also still controversial (Vertes 2004). Another potential difficulty with replay is 

the question of which neural code (or codes (Ainsworth, Lee et al. 2012)) is being 

replayed; this is not really a problem for place cells, where a route through the 

environment describes a very basic neural code, but in general neural codes are 

unknown, and a given, observed pattern of activity might not code for anything of 

interest. Certainly the findings of, for example, accelerated replay put some limits on the 

types of neural codes that can possibly be reflected by this phenomenon, but it is still 

too early to tell. In extension there is the fundamental question of what really constitutes 

replay and how it is quantified (Chi, L. Rauske et al. 2003); ultimately, judgement of the 

various forms of correlations will have to wait until we understand neural coding more 

fully.  

 

 From our point of view the essential question is whether replay is a concept that can be 

applied to help improve existing computational approaches to compression, pattern 

recognition or other inverse problems, or even to suggest entirely new approaches. If 

replay is selective and only revives the right, relevant information the answer is clearly 

positive, but the concept of replay itself does not come with an adequate explanation of 

how such selection would work, unless it is the most salient information, the selection 

of which would then have to be explained instead.   

 

2.2.3 Delta orchestrated interaction looks like a Helmholtz machine 

 Our lab has previously suggested that reciprocal interaction across layers during delta 

is suggestive of a Helmholtz machine running a wake-sleep learning algorithm 

(Carracedo, Kjeldsen et al. 2013). This is interesting from several perspectives; let us 

first consider the concept of the Helmholtz machine and how the wake-sleep algorithm 

operates (Dayan, Hinton et al. 1995; Hinton, Dayan et al. 1995): The basic characteristic 

of the Helmholtz machine is that it is composed of two sets of stochastic weights 

(Dayan and Hinton 1996), which converge onto the same probability distribution 



31 

 

(although the weight sets will be different in general) during a weight learning process, 

which alternates the flow of information from one set to the other; during one half-cycle 

one set of weights is updated, during the other half-cycle the other set is updated. The 

updates proceed as the difference between the input and the outcome of a back and forth 

pass through both sets of weights. This algorithm is called the wake-sleep algorithm, 

because it can be mapped onto a wake-sleep cycle as follows: During wakefulness 

sensory input activates the first set of (so-called recognition) weights, the outcome of 

which is fed into the second set of (so-called generative) weights producing another 

outcome, which is compared to the original input, the second set being updated by the 

difference. During the following sleep half-cycle a random ‘dream’ activates the second 

set, generating an outcome that is fed to the first set producing yet another outcome, 

which is compared to the dream, and then the first set is updated with the difference.  

 

 We can take this analogy to biology further by also mapping it onto the neocortex’s 

anatomical and functional structure; tentatively this mapping identifies one set of 

weights with primary sensory areas and the other set with associational areas, this also 

allows the reciprocal flow directions to map onto bottom-up and top-down processing in 

a natural way. In addition, the above wake-sleep analogy considers only the dream, 

REM-state of sleep. But what about deep sleep? Here we further develop the idea that 

prior wake-sleep reciprocal interactions with the Helmholtz scheme also occur at a 

much more time-compressed level; that of individual delta rhythm periods. 

 

 Thus if we take the reciprocal interaction across layers over one full delta period as one 

full cycle of the wake-sleep algorithm, the above mapping then immediately suggests 

that the reciprocal interaction found across layers should also be in play along layers, 

and that the interaction with weights as well as the comparisons (for updates) should 

happen twice on each cycle, i.e. major computational events are to occur with double 

the fundamental delta frequency.  

 

 We would ideally need to reconsider how the abstract wake-sleep algorithm relates to 

the actual wake-sleep cycle, since one delta cycle appears to correspond to one wake-

sleep cycle in the algorithm; certainly delta rhythms are also prominent in wakefulness, 

but the characteristic pattern over the entire wake-sleep cycle is not explained by the 

Helmholtz machine alone. This is not necessarily unsalvageable, since the abstract 

terms of the Helmholtz machine can be manipulated to some extent, we might for 
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example hypothesize that the characteristic changes in delta power reflects changes in 

the thresholds of the stochastic weights, i.e. changes in the so-called temperature (Kirby 

2006), adding a potentially interesting dynamic. We will return to these issues a little 

further down once we have covered a bit more of the important features of the 

Helmholtz machine concept. 

 

 The Helmholtz machine concept is particularly interesting for our search for clues to 

tractability, because it is exactly an attempt to make the Bayesian brain concept 

tractable. Although it is not known to be a general solution, it can be shown to minimize 

a free energy measure similar if not identical to Friston’s (Kirby 2006). The question 

then arises if there is a similar assumption to Friston’s ergodicity involved (see also 

section 1.3.1). This is difficult to glean from the concept itself; however, thinking about 

such potential equivalences prompted the consideration that two sets of real valued 

weights can be seen as one set of complex valued weights, which in network terms then 

makes it a quantum neural network (Peruš 2000; Perus, Bischof et al. 2007). This would 

then have interesting implications for quantum mechanics as well as for brains (to the 

extent they can be described by Helmholtz machines). Indeed, as revealed by a search 

thus directed, someone faster and with the skills to produce the rigorous proofs had 

recently shown the equivalence of a stochastic Helmholtz machine running a wake-

sleep algorithm with a basic quantum evolution by Schrödinger’s equations (Chapline 

1999; Chapline 2004; Chapline 2008). The mapping is even quite obvious once spotted, 

since the quantum evolution consists of both forwards and backwards (in time) parts 

mapping naturally to the reciprocal wake and sleep half-cycles of the Helmholtz 

machine.  

 

 However, the author notes that simulating quantum mechanics via a Helmholtz 

machine is not enough to make the process tractable, so we do not directly gain any new 

computational power. We can tentatively identify the quantum evolution, which forms a 

quantum reciprocal diffusion process (Levy and Krener 1996), with the recently 

popularized concept of quantum annealing (see e.g. Ohzeki and Nishimori 2011), which 

is a form of quantum computing that is much closer to classical conditions than the 

previous quantum computing paradigm (Rose and Macready 2007). In fact, if we 

combine the hypothesis from above identifying delta power with the temperature 

concept of the stochastic weights, with the profile of delta power during the sleep half-

cycle, we get a very suggestive picture of an annealing process, as the delta power 
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profile corresponds to the temperature profile of a (classical) annealing schedule, and 

the physical, structural changes during annealing corresponds exactly to the purpose of 

synaptic rescaling. It also provides a more natural role for dream sleep as causing a 

temporary increase in the abstract temperature of the system as is done during an 

annealing schedule. The actual temperature of the brain is known to follow a similar 

schedule, lowering during deep sleep and increasing during dream sleep (Muzur 2005). 

We would then suggest that dream sleep reflects random potentiation rather than actual 

memory consolidation (Siegel 2001; Diekelmann and Born 2010). However, the 

situation is complicated by the diverse nature of different memory processes 

consolidated during the wake-sleep cycle. Declarative memory (trivially put, the 

learning of basic facts and their interrelations) is consolidated preferentially by deep 

(delta) sleep, whereas procedural memory (again, trivially put, the learning of sequence-

dependent cognitive strategies) is critically dependent on REM sleep and not deep sleep 

(Smith 1995; Dotto 1996). In an attempt to focus, we will consider only delta rhythms 

as a substrate for the ‘sleep’ component of our experimental model and consequent 

computational approach to understanding how the brain may solve intractable problems. 

What we can take from this section is that it does appear that, seen from the annealing 

perspective, consolidation occurs during deep sleep by depotentiating noise.  

 

 The difference between quantum and classical annealing is that one relies on thermal 

fluctuations the other on quantum fluctuations (both describable by the stochastic 

weight temperature concept of the Helmholtz machine), which means that the 

interpretations of how energy minima are reached are also different: Energy barriers are 

jumped over in the classical process, but tunnelled through in the quantum process; also 

in the quantum case the system is considered to be at multiple energy levels 

concurrently, and only as the energy barriers are raised (by reducing fluctuations) it 

becomes increasingly likely to end up in the lowest single energy state (Battaglia, 

Santoro et al. 2005; Rose and Macready 2007). Classical annealing is an ergodic 

process, so there is potentially some common ground with Friston’s ideas, but from the 

delta power profile we would suggest that the process would only occur during sleep. 

Quantum annealing is probably not ergodic in the classical sense of eventually visiting 

all states, but potentially in a more quantum sense of visiting all states simultaneously. 

 

 Following up on the view taken at the end of the first chapter we might propose a 

hypothesis of what we will then call holographic annealing, which possesses the same 
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abstract computational properties as quantum annealing, but without a direct 

requirement of actual quantum microscopic processes, and more importantly at the same 

time is tractable. We can see already that if the brain can be described by processes 

similar to a stochastic Helmholtz machine with a wake-sleep algorithm it can simulate 

basic quantum processes, which in turn enable quantum annealing, without involving 

actual quantum mechanics. This simulation would of course need to be tractable for the 

scheme to work in practice (which is part of what we mean by holographic), and this is 

the real unknown factor, to which we hope to uncover clues, by examining the relevant 

processes in an electrophysiological in vitro model of the wake-sleep cycle.  

 

2.3 Electrophysiological aims 

 On the background established above we finally set forth the aims of the 

electrophysiological approach. Implicit in all these aims is the underlying aim of 

keeping our eyes open to any and all hints of tractable processes to help shape the 

computational approach, the background of which is outlined in the next chapter. 

 

2.3.1 Establish a simplified model of the wake-sleep cycle 

 We first aim to design and implement a reduced and simplified in vitro model of the 

major aspects of the wake-sleep cycle by pharmacological manipulation at the interface 

between sensory and associational areas in the rodent neocortex. The validity of this 

model will only be confirmed by success of our further aims as follow below. 

 

2.3.2 Investigate the influence of prior activation on delta power 

 Using the substrate of the wake-sleep model of the first aim, we will pharmacologically 

stimulate proximal to sensory areas in layer 4 to simulate sensory input. This will allow 

a micro-electrode array investigation of the influence of prior activation on subsequent 

delta power in both sensory and associational areas, following previous studies as 

outlined in the background above.   

 

2.3.3 Investigate reactivation in delta of stimulated units   

 Further, given the success of the previous aims we will investigate the influence of 

prior activation on unit activity across the states of the wake-sleep model. Specifically 

we are interested in replay of unit activity for the many reasons given above, and in 
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possible coherence during stimulation as potential explanations of increased delta power 

via increased potentiation, and of selection of information for replay. 

 

2.3.4 Investigate possible ergodic dynamics in the wake-sleep model 

 Given that the above aims are met we will know that the model is a reasonable 

(although reduced) representation of the wake-sleep cycle. On this background we will 

then investigate whether any or all of the model states comply with the statistics of 

ergodic dynamics in order to evaluate the many important consequences mentioned 

above. 

 

2.3.5 Expand on Helmholtz machine interaction 

 Finally we wish to test the predictions listed above by the tentative mapping of the 

Helmholtz machine concept onto the sensory and associational areas of the rodent 

neocortex during a sleep-like delta rhythm. Candidates for this investigation are 

pairwise causality measures, as well as multi-channels extensions; we will however also 

consider the possibility of other novel options. 
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Chapter 3.  Holographic Processes  

computational background and framework 

 

 This chapter builds a conceptual framework around the computational properties of 

holographic processes; we will thus try to define the key aspects of holography, which 

might enable tractability, and then specify how we might look for them in our 

electrophysiological experiments. We will also try to explain in more detail what we 

mean by holographic processes, but we will not fully review the myriad aspects and 

interpretations of holography in general (see instead e.g. (Talbot 1996)). A clearer 

overview of the set of foundational axioms and their respective implications for 

computation (alluded to above in the introduction) will be given in the context of 

understanding the close relations of quantum and holographic computing. 

 

3.1 Gabor’s discovery of the holographic process 

 The form of holography most people are familiar with is also the form which was 

invented or discovered first, by the great Hungarian electrical engineer and physicist 

Dennis Gabor in Britain in 1947, and which earned him a Nobel Prize in 1971 among 

many other prizes. This form is optical coherent holography, and is far from all there is 

to holography, but the anecdote is quite insightful: Gabor had the simple idea that in 

order to get the best possible microscope image one had to use all the incoming light in 

the imaging process instead of filtering it in various ways to obtain various limited 

views. Holography literally means the whole information. The remarkable holographic 

principle which fulfilled this idea required phase information to be recorded and used in 

the image reconstruction process. With the advent of the coherent laser in 1964 Gabor’s 

idea became practical reality, and led to improved microscopy as envisioned. Gabor and 

others soon realized that the natural simplicity and power of holography meant that it 

was possible that biological evolution could have taken advantage, and suggested that 

biological memory used holographic principles (Gabor 1969; Westlake 1970; Poggio 

1973).  
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3.2 Holographic processes in the brain? 

 These ideas were taken further by the neurosurgeon Karl Pribram who noticed the 

remarkable analogy of the failure of the search for the memory engram, with the key 

property of holographic recordings that information is stored equally everywhere in the 

hologram (Pribram 1971). Pribram’s so-called holonomic brain theory essentially 

predicted that the brain processes information in the frequency domain (Pribram 1986; 

Pribram 1991); an idea which is still considered a valid and even well-supported 

hypothesis in neuroscience (Palva, Palva et al. 2005), but which is rarely considered in 

Pribram’s holographic perspective. Part of the reason for this neglect is likely due to his 

collaboration with acclaimed physicist David Bohm whose holographic interpretation of 

quantum mechanics interfaced naturally with Pribram’s ideas (Wilber 1982), and added 

a generalization of frequency domain processing to a more abstract higher dimensional 

frequency domain (Bohm and Hiley 1995), which unfortunately also made the theory 

less accessible. The integration of these ideas from scholars of disparate fields 

demonstrates the striking generality of a holographic principle, which applies equally 

across dimensions and scale. We can also begin to see that this principle involves a 

duality between a real space and a Fourier-like space, in which certain computations 

might be easier, just like circular convolution is point-wise multiplication in Fourier 

space, or multiplication is addition in log space. We will return to more details of this 

duality shortly.  

 

 Perhaps the most fascinating example of the generality of holography is the form 

known as generalized, near-field or incoherent holography, which achieves the same 

holographic effects, but without the need for a coherent reference; in fact, in some ways 

it achieves more because additional information can be recovered from the incoherent 

near-field of the radiation sources, as we will see later in chapter 6, where we introduce 

a new micro-electrode array data analysis method based on this concept. 

 

3.2.1 Holographic interpretations allow tractable processes 

 Bohm’s holographic interpretation of quantum mechanics begs the question of how our 

hypothesized holographic computation might be related. The answer is surprisingly 

straightforward: Although Bohm considered his interpretation just that, an 

interpretation, because he foresaw no technological consequences, no differences in 

predictions or experimental outcomes, we now know that it allows a special form of 
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measurement, which defeats intractable problems (Aaronson 2005a), at least in theory. 

This has then been used to demonstrate the inconsistency of the theory, because it 

allows something, which other theories (considered to be equivalent) do not (Aaronson 

2005a). However, in general it is still unknown how measurement is supposed to work 

in quantum theory, a problem known among other names as the measurement problem 

(Schlosshauer 2005). 

 

 In any case, Bohm’s special measurement and consequent computational ability was 

achieved by giving up the Axiom of Locality (that interactions are local), which is 

specifically the connection to holography where information is distributed equally (non-

locally) over the entire hologram. It is however not the only way to incorporate 

holographic properties into an interpretation of quantum mechanics; Gabor’s notion of 

the whole information might be applicable to other configurations of axioms, perhaps 

with additional insights into the classical-quantum ‘measurement’ interface as we will 

see shortly.  

 

3.3 Potential loop-holes in Gödel’s theorems 

 Before we get further into other quantum interpretations’ implications for intractable 

problems let us however step back and consider how Gödel’s theorems can possibly be 

defeated in the first place.  

 

3.3.1 Gödel’s loop-hole in this own theorems 

 There is no better place to start than with Gödel’s own loop-hole, which is also 

conveniently located in the complementary part of physics, namely in Einstein’s 

relativity theories. When these theories came out a major philosophical problem arose, 

because an important implication was that time was not a privileged dimension, and as 

everything else, was relative. If time was relative then the fundamental and otherwise 

self-evident assumption of causality was in trouble; and with it, the foundation of 

science, especially of reductionist science. However, science quickly recovered: It took 

some jumping through hoops defining a preferential frame of reference by the mean 

movement of all mass in the universe, but eventually a notion of cosmic time was 

accepted, and relative time was relegated to special relativistic cases, thus reaffirming 

normal causality (Yourgrau 2006).  
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 Then Gödel did it again, another ground shaking disruption of a major and generally 

accepted paradigm of science, and on the occasion of Einstein’s seventieth birthday in 

1949 no less (Gödel 1949). But this time he was unsuccessful, although his math and 

logic were impeccable, the radical implications could just not be accepted, especially by 

an already jaded community. The simplicity of his result should not be confused with 

the difficulty of obtaining it: He gave an entirely new solution to Einstein’s equations, 

which arranged matter and momentum in a way that made the resulting universe possess 

an overall rotation. The breaking point was that this rotation allowed a phenomenon that 

is now known as closed time-like curves, which basically just means loops in time.  

 

 It is commonly stated that Gödel’s universe is different from our own, so there is 

nothing to worry about, but Gödel’s logic was different, and instead effectively stated 

that the most fundamental physical laws of the Universe should not depend on the 

specific arrangement of matter and momentum; these laws are given by the equations, 

not by specific solutions; a phenomenon of fundamental importance to these laws in one 

solution, should affect the laws for all solutions. This logic is not difficult to follow, but 

the implications are difficult to accept, and Gödel’s own conclusions might have thrown 

the baby out with the bathwater, and might have been a major factor in its failure to gain 

acceptance: Gödel considered that time loops inevitably lead to paradox, and that time 

therefore had to be an illusion in itself, or rather that time was a Platonic ideal, which 

then confirmed Platonic dualistic philosophy (Gödel 1988). This was however a bridge 

too far, too mystical rather than scientific, and could not be accepted by science almost 

by definition.  

 

 Gödel continued to look for evidence of an overall rotation of the Universe for the rest 

of his life; today studies of more than 15000 galaxies have shown a small net rotation 

(Longo 2011), but the validity of the result is still open. We have also since realized that 

the putative existence of closed time-like curves would allow even classical computers 

to solve intractable problems with ease; a point which is usually used to argue against 

their existence (Aaronson 2005a). However, it is in any case an important point, and as 

implied earlier we think that Gödel might have had an inkling in his letter to von 

Neumann, although he did not say so directly, but he was also notoriously cautious with 

his ideas, especially after the disappointment with the Gödel universe. Interestingly, von 

Neumann had already stated the year before that quantum mechanics was not 

compatible with classical notions of causality.  
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 The first direct study of closed time-like curves in quantum mechanics is however due 

to David Deutsch (well-known as the father of quantum computing), and revealed that 

quantum computing close to closed time-like curves would be ridiculously powerful 

(Deutsch 1991). More recently a new development has however upset this conclusion 

slightly: Seth Lloyd, who is famous for coming up with the first feasible design for a 

quantum computer, has analysed the situation in more detail and proposed a different 

instantiation of closed time-like curves, different from the kind considered by Deutsch 

(Lloyd, Maccone et al. 2011a). In Deutsch’s study closed time-like curves lead back to a 

different past than the proverbial time-traveller remembers, leading to the Many-Worlds 

Interpretation of quantum mechanics that Deutsch is also a proponent of. Lloyd’s closed 

time-like curves lead back to the same past, and where Deutsch’s version naturally 

resolve time-travel paradoxes, because the pasts are not directly overlapping (being in 

different parallel universes or so), Lloyd simply requires that the trip back in time is 

impossible and cannot occur if and only if it leads to paradox; which is a new and more 

specific formulation of the Novikov self-consistency principle as less formally 

formulated in the 1980s (Friedman, Morris et al. 1990). This new formulation has in 

fact been verified experimentally by probabilistically sending a photon back in time to 

try to kill its past self with 50% probability (Lloyd, Maccone et al. 2011b); the 

experimental outcome is then consistent with the idea that the trip always fails if the 

murder is/would have been successful. Technically this process involves a somewhat 

dubious step called post-selection (Lloyd, Maccone et al. 2011c), which means that a 

selection is made post hoc on the desired outcome. From a classical computational 

modelling perspective it would seem that in order to achieve tractability we would more 

likely need a process that we would then call pre-selection (although obviously pre- and 

post-selection might be the same in a time loop). It is too early to conclude on this work, 

but it certainly evokes the idea that Gödel and Deutsch’s conclusions about closed time-

like curves are extreme, opposite ends of a spectrum, where there might be a golden 

path in the middle, which neither allows paradox nor unreasonably powerful 

computation. Our sought after holographic computation might lie further down such a 

path.  

 

 Lloyd’s new consistency condition (that time loops leading to paradox do not occur) is 

in fact not too far from existing techniques; quantum calculations are done on a reduced 

representation called a density matrix (because the full representation is hopelessly 
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costly), which specifically only represents the physically relevant states, so from all 

quantum possibilities and impossibilities only a much smaller subspace is considered. 

Effects forward as well as backwards in time are naturally present in all this; it is only 

by specific choice that we normally consider only the time-forwards part of the solution. 

Lloyd’s approach suggests that we can consider both, because even if we do, only the 

possible can happen; it is an assumption or even an axiom, but the understanding of why 

or how this comes about is still missing, but perhaps not too far off. 

 

 This might then prompt a re-evaluation of the foundational axioms of science; 

specifically that we might be able to give up the Axiom of Causality, but recover its 

effect from the interaction of the remaining axioms and the addition of a no-paradox or 

self-consistency axiom. This is not an entirely new idea, and as we shall see older 

versions might help explain the why and how of Lloyd’s axiomatic self-consistency 

condition.  

 

3.3.2 Holographic computation as the interaction of past and future 

 A problem which Richard Feynman called one of the last remaining problems of 

classical physics is the self-interaction of the electron, that is, the electromagnetic field 

influences the electron, which influences the field, which influences the electron; an 

infinite regress, which is profoundly difficult to deal with in calculations or even in 

concept (Feynman 1965). Wheeler and Feynman came up with a radical approach 

already in 1945 in the context of classical radiation theory, called the absorber theory of 

radiation, in which an emitter cannot radiate without coordinating with an absorber 

(Wheeler and Feynman 1945). The nature of this coordination is the radical point, 

which entails that both the emitter and absorber emit waves in both directions of time, 

these waves then interfere and cancel out in the emitter’s past and the absorber’s future, 

but reinforce in between emitter and absorber to generate an exclusively future-going 

time-forward wave from emitter to absorber. A very elegant concept, which also came 

with the experimental prediction that absorbers would display a form of pre-acceleration 

in anticipation of the incoming wave, they called this a witness of the interaction of past 

and future; something which we could potentially look for in our own experiments, but 

which without an exact calculation of the time scale involved  might be difficult to 

evaluate; rather we can bring this concept to bear on neuroscience in a broader (if not 

too serious) sense with surprising ease: One of the classic mainstream results of 
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neuroscience, which have also had heavy influence on popular philosophy, is that motor 

neurons were found to respond before an actual conscious decision to move had been 

made (Libet, Gleason et al. 1983); this was later taken to imply that free will is an 

illusion (Wegner 2002), a point of enormous philosophical importance, but which in 

Wheeler and Feynman’s framework might have a completely different interpretation as 

the aforementioned witness. In addition, in the framework we are building here it also 

has enormous practical importance, because we are beginning to see that with the 

paradox free interaction of past and future comes the power to solve intractable 

problems even with classical means. These same ideas of past and future interacting 

have also been generalized to the quantum case; firstly in Cramer’s Transactional 

Interpretation of quantum mechanics (Cramer 1986), later refined into the Possibilist 

Interpretation (Kastner 2012), which again echoes the idea of the Novikov self-

consistency principle that only the possible happens, even under or especially under 

paradoxical conditions. 

 

 Paul Werbos, who was highly instrumental in ending the debate whether neural 

networks could actually learn complex representations, by inventing the first feasible 

training algorithm, known as back-propagation (Werbos 1974), later extended to back-

propagation through time for recurrent networks (Werbos 1990), has done impressive 

work towards maturing these ideas conceptually as well as mathematically and 

experimentally (Werbos 2000). The structured understanding of the impact of 

fundamental axioms on interpretations of quantum mechanics is due to this work 

(Werbos 2008), and Werbos also states that what he calls the Backwards-Time 

Interpretation provides a solution to a fundamental computational problem known as the 

closure of turbulence (Werbos 2002), which we have already encountered in the 

electron self-interaction problem, and which we will encounter again later as it is 

intimately related to other intractable problems. He also notes that the problem was in 

fact a mathematical illusion, much like our position on the NP versus P problem 

mentioned in the introduction.  

 

 Although not everyone agree that the interaction of past and future really provides a 

way to achieve tractable computing (Bennett, Leung et al. 2009), we can see that there 

are really not many other options, especially with this many positive indications. We 

suspect that the disagreements are essentially down to prior expectations of whether or 
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not tractability is achievable in any way at all, but this of course says nothing about 

which position is ultimately correct.  

    

 Finally, in order to tie the concept of interaction of past and future up with the 

principles of holography we must consider a final generalization of holographic 

processes, the generalization to time, known as dynamic holography. The key ingredient 

of dynamic holography is exactly the dynamic interaction of two opposing waves 

traveling in opposite directions of time (Zheng, Liu et al. 2005); implemented in optical 

setups via a so-called phase-conjugate mirror, which not merely reflects, but time-

reverses incoming waves (Feldman, Bigio et al. 1982; Lehar 2010). In Bohm’s 

terminology this dynamic process is described as continuous enfolding and unfolding of 

reality between, respectively, a holographic dual space and a real space; a process very 

similar to the rotation of a qubit as we will see later. This is of course only one possible 

description of a difficult to describe concept. 

 

3.4 Holographic processes in practice in silico 

 So far we have considered aspects of holography which are mostly theoretical, but 

since we are taking a practical experimental approach we also need to consider where 

we are in terms of practical implementations. 

 

3.4.1 Holographic neural networks via circular convolution 

 The concept of reduced representation, which we encountered in the introduction 

(section 1.2.3), reflects a deep insight into distributed representations: Distributed 

representations represent concepts (or information in general) as patterns across a large 

number of abstract neurons; many concepts can be represented in the same set of 

neurons by different patterns, and all neurons can participate in many patterns or 

concepts. Representing two concepts at the same time in a fixed set of neurons produces 

a combined pattern that is similar to each individual pattern, but reduced in a certain 

sense compared to both full, separate patterns; this is the idea of a reduced 

representation.  

 

 The main strength of the reduced representation is that unlike an arbitrary abstract 

representation, like a data pointer in computer programming, the reduced representation 

is similar to the full representation and can therefore be used directly in information 
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processing without retrieving the full representation. Hinton described this reduced 

processing as intuitive inference, while continued processing to retrieve the full 

representations reflects rational inference (Hinton 1990).   

  

 However, at the time of conception these ideas were mainly theoretical, and it was not 

known how to actually implement a reduced representation in a practical way. This 

problem was solved by Hinton’s student, Tony Plate who introduced holographic 

reduced representation (Plate 1991). 

 

 The holographic reduced representation simply binds two patterns together by their 

circular convolution, producing a pattern of the same length thus reducing the storage 

requirement by half. Applying either full pattern by circular deconvolution to the 

reduced representation retrieves the other full signal. The circular convolution and 

deconvolution process is consequently a mathematical analogy to the holographic 

process, not only at the superficial level, but also in terms of the relevant equations 

(Rabal 2001).  Since the length of the patterns or rather the number of neurons involved 

is fixed, it can be seen that the binding process can be repeated over and over with 

different elements, and in this way complete cognitive structures, concept hierarchies 

for instance, can be build up (though still ultimately limited by the memory size).  

 

 Much of the power of holographic reduced representations can be understood by 

considering the task of comparing two arbitrary hierarchical structures: Normally we 

would need to compare each element of the hierarchies pairwise at the level of the 

elements’ full representations, and then sum up an overall similarity score. Holographic 

reduced representations allow a much faster similarity estimate by simply comparing 

the reduced representations, the process Hinton referred to as intuitive inference. So a 

very large number of hierarchies can be compared very quickly by intuitive inference, 

and then the best candidates can be expanded to less reduced representations for a better 

similarity estimate if necessary. The ability to process structures, like hierarchies, puts 

the connectionist holographic reduced representation systems on a level with symbolic 

systems: It was originally claimed that connectionist systems in general could not 

achieve a high level of systematicity (Fodor and Pylyshyn 1988; Fodor and McLaughlin 

1990; Niklasson and Gelder 1994), i.e. the systematic processing of symbolic structures 

(in the connectionist case, without actual symbols). It was however predicted by 

(Eliasmith 1997) and finally shown by Jane Neumann that holographic reduced 



45 

 

representations (and some other distributed representations) are able to achieve 

systematicity level five (Neumann 2002), which means generalization over unseen 

structures and even over structures of higher complexity than the training examples.  

 

 Plate has created both pure feed-forward networks and more complicated recurrent 

networks (Plate 1993). These networks are typically trained by back-propagation 

through time methods (Werbos 1990), but Neumann also showed that her networks 

could be trained equally well by a method she called one-shot learning, which 

essentially amounts to adding up and thresholding associations in the memory 

(Neumann 2001). This method is a huge simplification of training methods in general 

and its simplicity is perhaps more biologically plausible given that even individual 

neurons have potent combinatorial abilities to handle their inputs and thresholding to 

determine their output probabilities.  

 

 Holographic associative memories have been criticized for their lower storage capacity 

than other matrix memories, but this objection overlooks that such is the price of their 

excellent associative properties. A more appropriate measure is their generative 

capacity, the ability to generate new patterns within the same parameters as the example 

patterns, which has also been investigated by Plate and found to be excellent (Plate 

2003).  

 

 A more serious concern is due to the fact that deconvolution is not well-defined, and is 

therefore not guaranteed to produce stable results. This led Plate to replace 

deconvolution with correlation, which is only possible for a certain kind of data, called 

noise-like data. Real world data is not usually noise-like and must therefore be mapped 

onto noise-like replacements. Since two noise-like representations cannot be similar in 

the same way as their real world counterparts a problem arises if we wish to compare 

noise-like representations themselves (not just structural comparisons). In other words, 

representations lose their intrinsic similarity when they are replaced by noise-like 

representations. Plate has suggested adding a conventional associative memory to learn 

a transformation between noise-like data and real data, but this could possibly counter-

act the advantage of using a holographic associative memory in the first place, and it 

certainly goes against the principle of Occam’s razor. 
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 We have previously followed a suggestion to replace the inverse in the deconvolution 

step by a Moore-Penrose pseudo-inverse operation (Schönemann 1987). The problem 

with the conventional inverse is that dividing by very small numbers produces very big 

numbers, and this effectively amplifies noise in the deconvolution process. The Moore-

Penrose pseudo-inverse on the other hand is a least-squares approximation to the 

inverse, and is the best possible compromise. With the pseudo-inverse, deconvolution of 

real data becomes stable, and there is no need for noise-like replacements. This has been 

demonstrated on automatic vowel recognition in an earlier project that also adapted 

Neumann’s one-shot learning method to the new approach (Kjeldsen 2008). 

 

 This approach was however exceedingly difficult to generalize to higher dimensional 

data (such as images), as the conceptual complexity of the regularization in the pseudo-

inverse grows considerably with each added dimension. 

 

 A very elegant solution to the deconvolution problem is however to change the 

fundamental algebraic conception so that deconvolution becomes well-defined; this is 

achieved in geometric algebra, as considered next. 

 

3.4.2 Geometric algebra 

 Becoming acquainted with geometric algebra can be quite a shocking experience: The 

first lesson of geometric algebra is that the way we are used to multipling vectors 

together is wrong, or perhaps not wrong, but at least there is a much better way: 

Geometric algebra is distinguished from regular vector algebra by the rules of 

multiplication and addition, and by the generalization of the vector concept to a multi-

vector concept; in geometric algebra the (geometric) product has two parts (added 

together), one is an inner product and the other is an outer product. These two parts 

represent different aspects of the geometric product with different, and in a sense 

opposite geometrical interpretations (Aerts, Czachor et al. 2009). By combining the 

inner and outer product the geometric product achieves properties that neither hold on 

their own. The geometric algebra is real-valued, but a concept subsuming the imaginary 

unit is easily constructed, and with the major advantage that it is formulated in general 

for spaces of any dimension, meaning that an algebraic expression generalizes from 

complex numbers to hypercomplex numbers, like quaternions. This is not normally the 

case; it usually becomes increasingly difficult to work in higher dimensional complex 
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spaces from the point of view of implementing the basic operations. The geometric 

product absorbs the complexity of such generalizations, for example concepts like 

qubits and higher dimensional qudits can be formulated in geometric algebra from basic 

operations; for this reason it has been called quantum computation without quantum 

mechanics (Aerts and Czachor 2007), because the algebra remains real. An additional 

advantage is that a problem with complex numbers, or specifically with the imaginary 

unit, namely that we do not always know how to interpret it, disappears; in geometric 

algebra we only have to deal with an interpretation of geometry, which is usually 

intuitive (Gull, Lasenby et al. 1993b).      

 

 The number of basic geometric algebra steps needed to solve intractable problems is 

not an exponential of the problem size (Schott and Staples 2010); however, this does not 

directly allow one to solve intractable problems in practice, because the basic operation 

of the geometric product, at least in the obvious implementations, is itself intractable, 

since it is an all-to-all operation with each element of a multi-vector, and because the 

number of possible multi-vectors is set by the dimension of the algebra, which is 

reflected in the size of individual multi-vector elements. So the intractable problem has 

merely been moved to a deeper level in geometric algebra in this sense, but there might 

be some advantages in having the problem focused in the single point of the geometric 

product. 

 

 If we can come up with a tractable version of the geometric product, or at least operate 

only within a set of conditions under which the product is tractable, we can solve 

intractable problems in practice with geometrical algebra. One suggestion in this 

direction is a version of the geometric product referred to as the projected product, 

which came about in the context of reading out solutions from a memory multi-vector of 

holographic reduced representations (Aerts, Czachor et al. 2009). The idea is that some 

questions have answers that can only exist in a limited subspace of the full space of the 

algebra; this prior knowledge is used to only carry out the geometric product operations 

that end up in this subspace. The problem then is knowing in advance and in general 

which product elements end up in the right subspace, without spending more resources 

finding out than it takes to simply do the full product and afterwards select out the right 

subspace.  
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3.4.3 Holographic neural networks in geometric algebra 

 The geometric algebra version of holographic reduced representations replaces 

convolutions and deconvolutions with the geometric product (Patyk 2010), and 

therefore the implementation of the geometric product is the main aspect of an 

implementation of holographic reduced representations in geometric algebra.  

Within the framework of distributed representations holographic reduced 

representations have an equivalent binary representation called binary spatter codes 

(Kanerva 1994); in this formalism binding is achieved by binary XOR. The binary 

spatter codes allow a convenient implementation of the geometric product by 

representing the presence or absence of geometric so-called basis-blades as a binary 

code and implementing the geometric product as binary XOR (with a certain sign-

correcting factor) (Aerts, Czachor et al. 2006). This implementation of the geometric 

product is called a bitmap representation on an additive basis.  

 

 Distributed representations have also been based on tensor products (Smolensky 1990), 

and holographic reduced representations can be considered a lossy compression of 

tensor product representations; the geometric product version lies in between these two 

extremes in terms of the operations and memory size required (Aerts, Czachor et al. 

2009): The convolution based implementation uses a fixed memory size, while the 

geometric product causes the memory to grow, although not as rapidly as the tensor 

product.   

  

 Perhaps the easiest way to implement the geometric product is to express it with matrix 

multiplications: A matrix representation, called Cartan’s representation, of the 

geometric product can be built from a series of so-called Pauli matrices (which are also 

fundamental building blocks of quantum mechanics) (Dorst, Fontijne et al. 2009), but 

the representation is very sparse and the size of the required matrices grows as 2^N, 

where N for holographic reduced representations outside toy-domains is typically in the 

order of thousands. This means that the matrix representation is very inefficient, 

although insights might be gained by directly inspecting the matrix representations 

visually. 

 

 It is clear that the practical implementations of holographic neural networks have not 

yet caught up with the main theoretical aspects outlined above, but it is important to 

notice that once the step to geometric algebra is taken the lines between holographic 
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neural networks and the quantum formalism become severely blurred by several 

mathematical similarities and identities. It is the hope that considering it from both sides 

will lead to new insights about both, and it is particularly encouraging that geometric 

algebra already reveals that quantum structures and processes can be achieved without 

actual quantum mechanics represented by the imaginary unit. 

 

3.5 Computational aims 

 The computational aims of this thesis in the first instance revolve around implementing 

a framework based on holographic neural networks in geometric algebra, which can 

serve as a substrate for investigating the relations between holographic and quantum 

computing, especially relating to the question of tractability. In the second instance it is 

the hope that this will prepare us to take up any hints or clues found in the 

electrophysiological approach. We outline the first instance aims below:   

 

3.5.1 Holographic neural networks in geometric algebra 

We will implement a holographic neural network in geometric algebra, and investigate 

basic computational properties; the concept of the projected-product is of particular 

interest as a candidate for a tractable version of the full geometric product. We will 

attempt to relate this concept to the quantum formalism where such measurement 

concepts are perhaps more developed.  

 

3.5.2  Cartan’s matrix embedding of holographic neural networks 

 We will visually examine holographic memory structures in Cartan’s matrix 

embedding of geometric algebra, with the purpose of identifying patterns which could 

suggest paths to tractable geometric products in the optimized (non-embedded) version. 

 

3.5.3 Quantum neural network memory structure 

 We also aim to investigate properties of simulated quantum neural networks, which 

might reveal differences or similarities with the holographic counterpart. The hope is to 

understand why quantum neural networks are intractable in simulation, and to identify 

potentially important differences in the holographic geometric algebra formalism. 
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3.5.4 Qubit structure in geometric algebra 

 As a secondary approach to the previous aim we will implement qubit structures in 

geometric algebra to allow easier comparison with traditional quantum computing, and 

to facilitate discussion of comparisons with holographic methods within the established 

terminology of quantum computing with concepts like superposition, entanglement, 

measurement and teleportation. 
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Chapter 4.  Methods  

general electrophysiological and computational methods 

 

 This methods chapter provides the most general methods applied in the experiments 

and analysis reported in the following results chapters. For easier reference the more 

specific methods are however given in the respective results chapters. 

 

4.1 Animal and slice preparation 

 All animals were young adult male Wistar rats weighing in excess of 150g obtained 

from Charles River Laboratories Inc. and housed in the Comparative Biology Centre at 

Newcastle University. Animals were allowed to acclimatise for at least two days prior to 

experiments, and were on a light-dark cycle with light 8am-8pm, with food and water 

ad libitum, and environmental enrichment in the form of cardboard boxes. 

All procedures were conducted in accordance with the UK Animals (Scientific 

Procedures) Act, of 1986, under personal and project licenses granted by the UK Home 

Office.  

 

 Animals were placed in a bell jar to induce light anaesthesia by exposure to 3 ml of an 

inhalant anaesthetic, isoflourane (Abbott Laboratories., Kent, UK).  

An intramuscular injection of ketamine (≥100mg/kg
-1

, Pfizer Ltd., Kent, UK) and 

xylazine (≥10 mg/kg
-1

, Millpledge Veterinary, Retford, UK), was then administered in 

the gluteal area of the hind leg. It was confirmed that all tail pinch, pedal withdrawal 

and corneal reflexes were abolished. The thoracic cavity was cut open and the rib cage 

partly removed in order to gain access to the heart. A catheter was inserted into the left 

ventricle of the heart followed by a small incision in the right atrium to allow for 

manual intracardial perfusion with approximately 50 ml of a solution of cold, 

oxygenated, sucrose artificial cerebrospinal fluid (saCSF, see below). An incision was 

made along the midline of the head and neck of the animal, and the head was separated 

from the neck with scissors. The skull was split along the sagittal suture accessed from 

the severed spinal column, allowing for the skull and dura to be peeled away. The brain 

was excised and placed in a petri-dish of cold, oxygenated saCSF. The frontal cortex, 

brain stem and cerebellum were cut away, and the remaining tissue was glued to a 

chuck of a Leica VT1000 vibratome (Leica Microsystems, Nussloch GmbH, Germany) 
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on the caudal surface of the brain. The chuck was placed into the cutting chamber filled 

with cold oxygenated saCSF. 

 

 Coronal sections were cut at a thickness of 450 µm, and transferred to a petri-dish filled 

with cold oxygenated saCSF. Three slices per hemisphere around the relevant area were 

usually obtained; this area was located using visual landmarks with reference to the rat 

brain atlas (Paxinos and Watson 1998). Slices were lightly trimmed down with a scalpel 

to allow easier handling and better perfusion in the recording chamber. 

  

 Coronal sections were transferred to a holding chamber to allow to stabilize at room 

temperature for thirty minutes in oxygenated normal artificial cerebrospinal fluid 

(aCSF, see below). Two slices were then placed in a recording chamber on a double 

layer of lens cleaning tissue and maintained at the interface between warm humidified 

carbogen gas (95% O2/5% CO2) and normal aCSF, and perfused by circulating 

oxygenated normal aCSF through the chamber using a peristaltic pump at a rate of 

about 1.2 ml/minute at 34°C using a flow heater. Slices were left to stabilize in the 

recording chamber for thirty minutes before recording or drug application. 

Recipes for aCSF and saCSF are given below: 

aCSF (in mM): 126 NaCl, 3 KCl, 1.25 NaH2PO4,
 
24 NaHCO3, 1.2 MgSO4, 1.6 CaCl2, 

and 10 glucose.  

saCSF (in mM): 252 sucrose, 3 KCl, 1.25 NaH2PO4,
 
24 NaHCO3, 2 MgSO4, 2 CaCl2, 

and 10 glucose.  

 

4.2 Pharmacology 

 Below we list the recipes for the relevant pharmacological manipulations. 

 

4.2.1 Gamma wake-state model 

 The persistent gamma wake (active attending) model state was induced by bath 

application of 400 nM of the kainate receptor agonist, kainic acid ((2S,3S,4-R)-carboxy-

4-(1methylethenyl)-3-pyrrolidineacetic acid)) (kainate from here on). 
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4.2.2 Delta sleep-state model 

 The delta sleep model state was induced by bath application of low cholinergic drive 

with 4 M of the non-hydrolysable acetylcholine analogue carbachol, and low 

dopaminergic tone by blocking dopamine D1 receptors with 10 M SCH23390.  

 

4.2.3 Sensory stimulation model 

 Stimulation was 1mM glutamate in aCSF applied as a micro drop of approximately 50-

150 nl with a blunted glass electrode of type GC120TF (Harvard Apparatus).  See 

section 5.2.3 for details of application. 

 

4.3 Electrophysiology 

 The electrophysiology carried out in this thesis was primarily multi-channel recordings, 

but also single channel glass electrodes and paired glass electrodes were used as 

described below. 

 

4.3.1 Glass electrodes 

 Extracellular local field potentials were recorded using glass micro-electrodes pulled 

from thin-walled borosilicate glass capillaries of type GC120TF (Harvard Apparatus), 

mounted in electrode holders with a silver wire connector inside the glass electrode, 

which was filled with normal aCSF. Estimated resistance was less than 5 MOhm. All 

glass electrode experiments presented were done with paired electrodes in layer 2/3 and 

layer 5 in associational neocortex, aligned on the same line perpendicular to the 

curvature of the cortex. All recordings were 60 seconds long and sampled at 5 kHz. 

 

4.3.2 Utah array 

 Micro-electrode array recordings of both local field potentials and unit activity were 

done with silicon electrode arrays, from here on called Utah arrays. The arrays were 

square, 10x10 electrodes with a separation of 0.4 mm in each direction, and a shank 

length of 1.2 mm, and electrode impedances ranging from 230-370 kOhm. Electrode 

arrays were super-glued onto a machined 4mm diameter, 8cm length plastic shank and 

mounted on a 3D patch manipulator. 

The unfiltered signal sampled at 30 kHz was used for spike detection in the Matlab 

software Wave_clus (Quiroga, Nadasdy et al. 2004) (with the recorded unit activity 
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given by the recording software only used as reference) for a more uniform approach 

between experiments. In Wave_clus spike detection thresholds (negative going) were 

set at five times the estimated standard deviation of the noise, and units were defined by 

superparamagnetic clustering; clusters which did not display reasonable spike shapes 

and inter-spike-intervals (particularly those corresponding to 50Hz noise) were 

manually rejected.  

 

4.4 Complex continuous cross wavelet semblance analysis 

 We implemented a wavelet analysis technique for pairwise correlations of local field 

potentials and in extension for functional connectivity estimates (Lee, Harrison et al. 

2003; Fingelkurts, Fingelkurts et al. 2005; Li, Guo et al. 2009). The wavelet method 

called wavelet semblance (Cooper and Cowan 2008) or the wavelet cross-spectrum 

(Grinsted, Moore et al. 2004) has several advantages over time-series correlations and 

Fourier based measures: In general wavelet analysis offers more flexible trade-offs 

between time and frequency resolution, and time-frequency maps are the natural 

outcome without special extensions like short-time Fourier transforms or multi-taper 

methods. Also, wavelet analysis does not assume stationarity, and signal amplitude and 

phase can easily be considered separately, which gives more flexible measures of 

correlation.  Wavelet analysis can also be applied to spike data (Nedungadi, Rangarajan 

et al. 2009; Makarov, Pavlov et al. 2010), but the process requires high time-resolution, 

and is therefore very computationally intensive. We return to this point later when we 

will consider spike-train-to-local-field-potential coherence specific to chapter 5.  

 

 In our efforts to optimise and port the wavelet analysis (used for post hoc analysis of all 

the data presented in this thesis) to the graphics processing unit (GPU) we realized that 

the wavelet transform is essentially convolution with wavelet shapes at many different 

scales. Consequently the process can possibly be done much faster in Fourier space 

where (circular) convolution is element-wise multiplication. Following this idea we 

found an existing implementation (Torrence and Compo 1998), and since FFT 

parallelizes well and is supported on the GPU in Matlab it was simple to achieve very 

significant speed-ups. The Fourier space version of the wavelet transform has since 

been included in the latest Matlab version (2012b), but does not support complex 

wavelets, which are necessary to take full advantage of the transform. It does also not 

support GPU. 
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4.5 Computational modelling 

 The computational approach of this thesis does not operate at the level of equivalent 

circuit models or other detailed modelling of the neurobiological operations of neurons, 

to then build up to some functional, observational or behavioural aspect. Instead our 

approach is in a sense the opposite; we start with the most abstract properties of an 

algebra as the formal mathematical foundation of anything a detailed model can 

achieve. It is the algebra itself which possesses the features of an abstract model of 

cognition, and the details of how the algebra is implemented is considered to be 

multiple realizable as long as the algebraic properties are fulfilled. Many cognitive 

abilities can for example be characterized as inverse problems albeit, in general, 

difficult ill-posed and ill-conditioned inverse problems (Vito, Rosasco et al. 2005). 

These, are also commonly encountered in physics and engineering, where a very wide 

range of approximation approaches are known, but without general solutions. Inversion 

is a basic algebraic operation, and for this and other reasons we changed the basic 

algebraic language to a little-known formulation, which not only unifies the range of 

different approaches given in standard algebra (Lasenby, Lasenby et al. 2000), but also 

solves inverse problem is a very elegant and natural way. A brief introduction to 

geometric algebra was given in section 3.4.2. We give the detailed methods of our 

implementations in chapter 7. 
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Chapter 5. Results  

verification and extension of the in vitro wake-sleep model 

 

5.1 Introduction and aims 

 This first results chapter presents initial efforts to verify that our in vitro delta rhythm 

model was an adequate substrate for further investigation of sleep-associated synaptic 

rescaling processes. For this purpose we developed an extensive experimental paradigm 

to mimic and model some of the primary features of the wake-sleep cycle, i.e. during a 

persistent gamma model of the wake-state (active attending) we introduced a 

stimulation model of sensory input to induce synaptic potentiation, and subsequently 

switched to the delta model of the sleep-state (non-REM) to form one whole evolution 

of the wake-sleep cycle model. The validity of all these models was thus under scrutiny, 

and was evaluated by their combined ability to reproduce two key aspects of synaptic 

rescaling processes found in both in vivo and human studies as detailed in chapter 2. 

The experiments presented in this chapter were thus designed with two main aims in 

mind as specified in the following subsections.  

 

5.1.1 Delta power and prior stimulation 

 The first and foremost aim was to attempt to extent the in vitro delta model to the 

finding that prior stimulation of local cortical areas produces stronger delta power in the 

same local areas during subsequent sleep, as seen in a number of studies in vivo and in 

human subjects (see section 2.2.1 for details). We further aimed to investigate whether 

the presence of a persistent gamma rhythm, as a model of wakefulness, enhanced the 

effect of stimulation.   

 

5.1.2 Reactivation and replay 

 The second aim extended our inquiry into the domain of unit spiking, and set out to 

investigate whether units that responded to stimulation are reactivated, deactivated or 

unchanged during subsequent delta; and if so, to examine the characteristics of the 

respective unit types. We considered reactivation a limited form of replay, since it is a 

prerequisite of replay, but does not in itself imply any particular neural code, which was 
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anyway unknown in our case, since we were not dealing with place cells like most 

previous studies as discussed in chapter 2. 
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Figure 5.1: Overview of experimental paradigm 

 

 

 

Figure 5.1: Overview of experimental paradigm 

The experimental paradigm consisted of four distinct conditions: The baseline condition was defined by 

gamma model perfusion for 2 hours, then the insertion of the Utah array with 20 minutes recovery time, 

and culminated in a 60 second recording of baseline activity. Figure 5.2 shows an example of a baseline 

condition recording. The stimulation condition followed immediately after the baseline condition, as soon 

as micro spritzing was ready, typically after 5 minutes. The spritzing of one micro drop (50-150 nl) of 

aCSF containing 1mM Glutamate was done approximately 20 seconds into the stimulation condition 

recording. Figure 5.3 shows an example of a stimulation condition recording. The gamma model was then 

washed out until 25ml pure aCSF had run through. The delta condition then started with 90 minutes of 

perfusion with the delta model aCSF, and continued for another hour with 60 second recordings every 10 

minutes. Figure 5.4 shows an example of a delta condition recording. When the Utah array was taken out 

the temporary marks left in the slice were immediately micro-photographed for post hoc electrode 

localization. Finally the Utah array was inserted into the secondary unstimulated slice, and after 20 

minutes recovery time a final recording was taken as the external control condition. This slice was also 

micro-photographed. 
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5.2 Methods 

 The methods described here are specific to this chapter; for general methods see 

chapter 4. We start with an overview of the experimental paradigm, and then consider 

each experimental condition and the associated methods in more detail. We will also 

give a short introduction to the various statistical tests used throughout. 

 

5.2.1 Overview of the experimental paradigm  

 An overview of the experimental paradigm is shown in Figure 5.1, and is further 

described in steps as follows: 

Following slice preparation as described in chapter 4, two slices were placed into the 

recording chamber in the presence of gamma model aCSF perfusion. We then waited 

two hours for the model to take effect. Then we inserted the Utah array into one slice 

and allowed 20 minutes for the slice to recover. Initially did one 60 second recording as 

the baseline condition. Figure 5.2 shows an example of a baseline condition recording, 

and further details are given in the next subsection. Then did one 60 second stimulation 

condition recording during which (after approximately 20 second) a stimulation model 

aCSF micro drop spritz was introduced in layer 4 at the edge of the Utah array proximal 

to primary areas. Figure 5.3 shows an example of a stimulation condition recording, and 

further details are given two subsections hence. Washed out gamma model by breaking 

the perfusion loop, so that runoff was discarded and continually replaced by pure aCSF, 

closed the loop again when 25ml of pure aCSF had run through. Switched to the delta 

model aCSF, and waited one and a half hour for the model to take effect. Recorded for 

60 seconds every ten minutes for one hour as the delta condition. Figure 5.4 shows an 

example of a delta recording, and further details are given three subsections hence. 

Took out array, and micro-photographed array marks left in slice for post hoc electrode 

localization. Inserted array into second slice (that was not stimulated) and allowed 20 

minutes for the slice to recover. Did one 60 second recording as an external control 

condition (the external controls were a precaution in case internal controls in the form of 

channels not responding to stimulation were not enough; this was not found to be the 

case). Took out array and micro-photograph array marks left in second slice. 

 

5.2.2 Baseline condition - gamma wake-state model 

 To separately evaluate the effect of the gamma wake-state model we quantified the 

presence or absence of a gamma rhythm; obviously the gamma model itself was always 
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present, but as we were trying to model a wake-like gamma rhythm we set this as a 

reasonable criterion. A gamma rhythm was deemed to be present when there was a 

clearly dominant peak in the spectrum in the gamma band (25-100 Hz) after non-causal 

notch filtering at 50 Hz. The gamma model aCSF contained 400nM kainate. Incubation 

time was two hours with perfusion at a rate of approximately 1.2 ml per minute, with an 

additional 20 minutes recovery time after insertion of the Utah array.  

 

5.2.3 Stimulation condition - sensory input model 

 To model sensory input we introduced pharmacological stimulation in layer 4 primary 

areas. Stimulation was 1mM Glutamate in aCSF applied as a micro drop spritz with a 

blunted glass electrode of type GC120TF (Harvard Apparatus). Using a micro-

manipulator to briefly touch the stimulation electrode to the slice as close to the array as 

possible, one micro drop of approximately 50-150 nl was applied. Figure 5.6.A 

indicates approximate stimulation location in layer 4 at the top of the array proximal to 

primary areas.  

 

 Stimulation was deemed successful for each sorted unit when an abrupt increase (at 

least tripling over 1-2 seconds) in firing rate could be identified in the firing histograms 

with one second bins (as seen in Figure 5.5, top red unit), and was further quantified by 

its peak firing rate as the maximal histogram firing rate after response onset (also 

indicated in Figure 5.5. 

 

5.2.4 Delta condition - delta sleep-state model 

 The delta sleep model state was induced by perfusion with aCSF containing low 

cholinergic drive with 4 M of the non-hydrolysable acetylcholine analogue carbachol, 

and low dopaminergic tone by blocking dopamine D1 receptors with 10 M SCH23390. 

 

 Incubation time was 1.5 hours, followed by repeated recordings every 10 minutes for 

an hour; of these six recordings the recording with strongest delta power was chosen for 

further analysis. Delta power was determined at a fundamental peak in the signal 

spectrum in the delta band (1-4 Hz). The analysis of the putative increase in delta power 

following stimulation was carried out by comparing channels (i.e. locations) that 

showed spiking response to stimulation (as described above) with those channels that 
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did not. The potentially confounding factor of location was controlled for as described 

below in 5.2.7. 

  

 An alternative approach would have been to use the external control slices that were 

not stimulated at all, but due to large variability in delta power between slices in general 

additional confounding factors would have been more difficult to control for.  
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Figure 5.2: Example of baseline condition recording 

 

 

 

Figure 5.2: Example of baseline condition recording 

The top trace shows an example of a baseline condition recording of 60 seconds at 30 kHz sample rate. At 

least one spike size is clearly visible in the full trace, and zooming in on 2 seconds of data, shown in the 

middle trace, reveals 2 or 3 additional spike sizes that were later thresholded and sorted with the 

Wave_clus Matlab software. The bottom complex continuous wavelet scalogram reveals an on-going 

gamma oscillation at around 30 Hz. The presence of a gamma oscillation was an experimental factor, but 

not an experimental requirement, so this example is special in this sense, and should not be taken to 

indicate that all experiments or channels displayed clear gamma oscillations. A gamma oscillation was 

determined to be present when there was a clear peak in the power spectrum in the gamma band (25-100 

Hz) after non-causal notch filtering at 50 Hz. 
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Figure 5.3: Example of stimulation condition recording 

 

 

 

Figure 5.3: Example of stimulation condition recording 

The top trace shows an example of a stimulation condition recording of 60 seconds at 30 kHz sample rate. 

About 20 seconds into the recording the stimulation response onset is clearly visible as condensed firing 

(indicated by the arrow), zooming in on a 2 second segment at the onset, shown in the middle trace, 

reveals increased spike sizes as well. The complex continuous wavelet scalogram shown at the bottom 

indicates a strong response in the gamma band (25-100 Hz) particularly in the high gamma band (60-100 

Hz) in this case. 50 Hz noise was filtered out with a non-causal notch filter. In many examples the 

response power tapered off a bit more slowly starting at the higher frequencies. Response power as 

indicated by the scalogram was not used to quantify responses, instead the firing rates of individual units 

after sorting were found to be more reliable, and also allowed quantification on unit basis instead of on  

channel basis. 
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Figure 5.4: Example of delta condition recording 

 

 

 

Figure 5.4: Example of delta condition recording 

The top trace shows an example of a delta condition recording of 60 seconds at 30 kHz sample rate. The 2 

second zoom-in shown in the middle-left trace confirms preferential firing in bursts on the trough of the 

delta period. The complex continuous wavelet scalogram shown at the bottom indicates a strong 

fundamental delta rhythm as well as a weaker harmonic, the summation over time into a wavelet 

spectrum (also on a linear scale) shown in the middle-right plot shows this more clearly. A weak 

harmonic was typical, but far from discernible in all cases. Delta power was determined as the peak in the 

power spectrum at the fundamental delta frequency. 
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5.2.5 Spike sorting and classification 

 The raw recordings of each condition (baseline, stimulation and delta) at 30 kHz 

sample rate were concatenated, thresholded and sorted manually with the Wave_clus 

Matlab software, which uses wavelet decomposition and superparamagnetic clustering 

in wavelet space of unit spike shapes. Units are the commonly used designation of 

extracellular measures of spikes in membrane potential of single or multiple coherent 

cells. Each unit was then given a set of binary classifications indicating if it responded 

to stimulation, and for each condition indicating if it was active during that condition; if 

a unit showed less than 20 spikes during a 60 second epoch of any condition it was 

deemed inactive in that condition. Figure 5.5 shows example units for one channel, and 

the corresponding classifications. 

 

5.2.6 Spike-train-to-local-field-potential phase semblance 

 In order to evaluate the temporal alignment of spikes with the phase of local field 

potential oscillations during stimulation we generalized the complex continuous wavelet 

semblance approach detailed in chapter 4, to the case of spike-train-to-local-field-

potential semblance, where the spike-train is represented as delta functions at each spike 

sorted spike timestamp. This approach had previously been verified in (Vinck, Battaglia 

et al. 2012), and is equivalent to considering individual spikes via spike-triggered 

averages under certain conditions (Vinck, Battaglia et al. 2012). By using a complex 

wavelet approach the phase and amplitude of the signals can be separated (Cooper and 

Cowan 2008), so that the phase-only semblance measure is independent of the spike 

rate, which forms the signal amplitude, and might have confounded our analysis when 

spike rates of compared groups were different. 

 

5.2.7 Statistics 

 The delta power data under consideration was not normally distributed as determined 

by normality tests in SPSS; we therefore used the non-parametric Wilcoxon rank sum 

test and the Kruskal–Wallis test with multiple comparison provided by Matlab. We also 

used the McNemar difference of proportion test in SPSS to test differences between 

percentages of units that responded to stimulation and were active or not during delta, 

and to test percentage differences in unit shape groupings. 

 



66 

 

 We further used generalized linear models in SPSS to evaluate a number of 

experimental factors. These models try to fit the variation in the outcome variable with a 

function of the included factors; analysis proceeds by first including all factors and their 

possible interactions, then reducing the model by removing insignificant factors until 

the quality of the model degrades. We only present reduced models. For the delta power 

model the normal distribution was used, which was adequately fulfilled by the log10-

transformed data. The binomial distribution was used for the unit reactivation model. 
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Figure 5.5: Example of spike sorting and classification 

 

 

 

 

Figure 5.5: Example of spike sorting and classification 

Recordings from the three main experimental conditions were concatenated, so that the same units could 

be identified and followed across all three conditions. Stimulation responses were identified as an at least 

triple increase in firing rate over 1-2 seconds, and the peak response rate was quantified as the maximal 

firing rate after response onset. The figure shows an example of three different units from the same 

channel; the top red unit shows response to stimulation and was also active during the delta condition, the 

middle green unit was not active during delta (if less than 20 spikes in any condition these were deemed 

to be spurious events due to the limits of the clustering process), while the bottom blue unit was only 

active during delta. The response and presence of each unit was thus entered into a binary classification 

table as indicated by the bottom table, e.g. the top red unit reads: showed stimulation response and was 

active during all three conditions. Each condition was 60 seconds long, time bins of one second were used 

for this figure. 
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5.3 Results 

 We follow the logical order of first considering the stimulation responses, then their 

effect on local delta power, and finally whether responding units were reactivated or 

deactivated during delta, and what the unit characteristics were.   

 

5.3.1 Stimulation response 

 Since it was known that delta power varies with layer (Carracedo, Kjeldsen et al. 2013) 

we needed not only to identify which channels showed responses, but also where they 

were located, so that the location could be controlled for. For this purpose we used post 

hoc localization by identifying the marks left by the array in micro-images of the slices, 

as indicated in the example in Figure 5.6.A. Figure 5.6.B and Figure 5.6.C show the 

trend of the spatial response patterns for ten cases, which could be easily aligned, 

respectively as absolute counts of responding units (i.e. units like the top red unit in 

Figure 5.5) for each electrode location, and as average peak response rates measured as 

indicated in Figure 5.5. In our analysis we controlled for layer and area differences by 

statistical modelling (see section 5.2.7) as well as by splitting the full data set by layers 

and areas. 

 

5.3.2 Delta power and prior stimulation response 

 We were not only interested in the overall effect of stimulation on delta power, but also 

in any and all effects of layer and area, as the slices used contained a stimulated primary 

sensory area and an adjacent associational area. We introduced a range of data splits by 

layer and by area, and by both layer and area at the same time. Since the statistical 

power is reduced with every split, and since the best statistical method is not easily 

given, we compared several approaches. We considered an N of 19, where N is a slice, 

for a total of 566 channels in neocortex with clear delta rhythms. Figure 5.7 reflects the 

initial and most straight-forward statistical analysis of the raw delta power values log10 

transformed to mitigate inter-slice variation. This analysis revealed an overall 

significant effect (p=0.00197) when disregarding layer 4 of stimulation response to 

increase delta power, but when spilt into layers and areas only layer 6 of associational 

cortex (i.e. the non-stimulated region) was significant (p=0.0087). 

 

 Figure 5.8 reflects the same analysis, but on values normalized by the slice norm to 

mitigate inter-slice variation, which enhanced the effect across deep associational areas 
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(p=8.6220e
-04

). Figure 5.9 again reflects the same analysis, but on delta power values 

standardized by subtracting the mean and dividing by the standard deviation within slice 

to mitigate inter-slice variation, which also agreed well with the previous analysis.  

We then employed a generalized linear model to evaluate the effect of several additional 

factors on delta power; by including slice identity in the model we mitigated the inter-

slice variability, and by including layer and area we controlled for layer and area effects. 

We also included the presence of gamma as a factor to evaluate if gamma enhanced the 

effect of stimulation. The results of this analysis are shown in Figure 5.10, and revealed 

agreement with the previous measures, as well as additional effects in some primary 

areas as shown. There was also an overall effect of gamma, but without any clear spatial 

pattern in the splits; however there was no effect of the interaction of gamma and 

stimulation response (and it was subsequently removed from the model), which was the 

real point of interest. A variation of this approach, where we instead nested each factor 

within the slice identity, the effect of which was to remove the assumption that factors 

are the same in each slice, e.g. layer 2 can be considered different in different slices 

(which might be justified in the sense that they would not necessarily have the same 

baseline potentiation), is shown in Figure 5.11. This analysis also agreed with the 

previous measures, and additionally enhanced effects in superficial layers, which was to 

be expected from the higher degrees of freedom of the model. 

 

 Overall all the approaches agreed on the overall effect of stimulation; when broken 

down into layers and areas there was some variation, but with a clear centre of gravity 

in deep associational areas.  
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Figure 5.6: Stimulation response localization and quantification 

 

 

 

 

Figure 5.6: Stimulation response localization and quantification 

A) Example of post hoc Utah array localization; dots indicate locations of marks left by the array, and the 

cartoon lightning indicates the approximate location of the stimulation spritz in layer 4 at the upper edge 

of the array proximal to primary areas. B) In ten cases the locations of the arrays were similar enough to 

be easily aligned to produce maps of the simulation response trends. The total counts of responding 

channels for each location are indicated in this map. C) The average peak response rate is indicated in this 

map. Although the previous map indicates that responses occur about as often in superficial layers distal 

to stimulation as in deep layers proximal to stimulation, this map reveals that the sizes of these responses 

are smaller as would be expected from a basic distance effect.  
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Figure 5.7: Effect of stimulation response on delta power #1 

 

 

 

Figure 5.7: Effect of stimulation response on delta power #1 

This is a comparison between the delta power on channels that responded to stimulation and channels that 

did not respond to stimulation. This is therefore a comparison of two groups. Here we compared the 

logarithm of the raw delta power values to mitigate the large variation, no other normalization was used. 

Overall there is a significant difference when discounting layer 4, but when broken down into cortical 

subareas only layer 6 association is significant. Check marks are shorthand for significance of the variable 

of interest.  

We have also indicated median and standard error log power values for the main areas and layers across 

both groups. 
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Figure 5.8: Effect of stimulation response on delta power #2 

 

 

 

Figure 5.8: Effect of stimulation response on delta power #2 

This is a comparison between the delta power on channels that responded to stimulation and channels that 

did not respond to stimulation. This is therefore a comparison of two groups. Here we compared delta 

power values that have been divided by the slice norm to mitigate the large variation. Overall there is a 

significant difference, but when broken down into cortical subareas only deep layers and association areas 

are significant. Check marks are shorthand for significance of the variable of interest. 
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Figure 5.9: Effect of stimulation response on delta power #3 

 

 

 

Figure 5.9: Effect of stimulation response on delta power #3 

This is a comparison between the delta power on channels that responded to stimulation and channels that 

did not respond to stimulation. This is a comparison of two groups. Here we compared delta power values 

that had been standardized (subtract mean and divide by standard deviation) to mitigate the large 

variation. Overall there is a significant difference, but when broken down into cortical subareas only deep 

layers and association areas are significant. Superficial association was also significant, but the effect 

disappeared when broken down further. Check marks are shorthand for significance of the variable of 

interest. 
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Figure 5.10: Effect of stimulation response on delta power #4 

 

 

 

Figure 5.10: Effect of stimulation response on delta power #4 

This is a generalized linear model of the logarithm of the raw delta power. This is not a comparison of 

two groups; instead it is a test whether a number of factors significantly influence the outcome (log delta 

power). Overall all the listed factors were significant, which also meant that the included factors were 

controlled for, so that the significance of the factor we were interested in (stimresp) was not confounded 

by, in this case, layer and area. However, we also wanted to know where the significant differences in 

layers and areas are coming from, so we broke down the data by these factors and ran new models 

without them. Check marks are shorthand for significance of the variable of interest, other significant or 

lose to significant factors are listed in the respective splits. 
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Figure 5.11: Effect of stimulation response on delta power #5 

 

 

 

Figure 5.11: Effect of stimulation response on delta power #5 

This is a generalized linear model of the logarithm of the raw delta power with all other factors nested 

within the slice factor. This is not a comparison of two groups; instead it tests whether a number of 

factors significantly influence the outcome (log delta power). By nesting factors within slice we are 

making stronger assumptions about the hierarchy of factors, meaning that layers, area etc. are not 

considered the same in each slice. This might be justified in the sense that layer x in one slice will not 

necessarily have the same baseline synaptic potentiation as layer x in another slice. The relationship of 

layers within a slice is the still same for all slices. The model has N times higher degrees of freedom. 

Overall all the listed factors were significant, which also meant that the included factors were controlled 

for, so that the significance of the factor we were interested in (stimresp) was not confounded by, in this 

case, layer and area. However, we also wanted to know where the significant differences in layers and 

areas was coming from, so we broke down the data by these factors and ran new models without them. 

Check marks are shorthand for significance of the variable of interest. 
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5.3.3 Unit reactivation and deactivation during delta 

 We also utilized multiple types of statistical analysis to investigate whether units that 

responded to stimulation were more likely to be active again during delta than units that 

did not respond. We present results for N = 16 slices; the remaining three Ns considered 

in the previous analysis were not excluded, but merely skipped during preparation of the 

analysis in order to save time.  

 

 Figure 5.12 shows the result of the simplest analysis by comparing the percentages of 

responding and not responding units that were active again during delta. This revealed 

an overall significant effect (p<=0.000), which focused in associational areas when the 

data was split up by respective layers and areas. The generalized linear model shown in 

Figure 5.13 also confirmed this result. Out of a total of 1155 units, 257 responded to 

stimulation. It is worth noting the spatial overlap in terms of significance of this 

reactivation analysis with the previous section’s analysis of increased delta power, 

focussing in on deep as well as superficial associational areas. 

 

5.3.4 Differences between reactivating and deactivating units 

 We started by investigating unit shapes according to whether they responded to 

stimulation, and by when they were otherwise active. Out of 257 units responding to 

stimulation, 129 where active again during delta (reactivated), while the remaining 128 

units were not active during delta (deactivated). This revealed a clear size difference 

between reactivated and deactivated units as shown in Figure 5.14. To formalize this 

analysis we then mixed the two groups of unit shapes, and blindly sorted and clustered 

them into two clusters with the Wave_clus Matlab software, to form a comparison of 

the number of units from each group belonging to each cluster as shown in Figure 5.15. 

A difference of proportion test revealed a highly significant difference (p<=0.000) 

between the two groups. We then further compared the baseline firing rates of these two 

groups, shown by layer in Figure 5.16, and also compared the peak stimulation response 

rates, shown by layer in Figure 5.17. In both cases the same analysis by areas instead of 

layers produced the same results.  

 

 In light of the group differences, reactivated versus deactivated units, and of the spatial 

overlap of increased delta power and reactivated units, shown in previous sections, we 

then sought a mechanism to tie these findings closer together. To address this question 
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we considered a group comparison of the temporal alignment of spike-trains-to-local 

field-potential phase during stimulation, with the hypothesis that this might underlie 

differences in potentiation, which in turn underlies differences in delta power, and 

perhaps also explains the selective reactivation of one group of units.  An example of 

this analysis is shown in Figure 5.18, indicating enhanced phase coherence of 

reactivated units during stimulation, stemming mainly from the high gamma band where 

the response is also strongest (see e.g. Figure 5.3). The statistical results of this analysis 

across all experiments is shown in Figure 5.19, and confirmed that in general 

reactivated units were much better aligned to the local field potential than units that 

were later deactivated. The difference was significant (p= 0.0432) even when 

considering the entire gamma band (30-100 Hz), and not just the high gamma band. 
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Figure 5.12: Probability of reactivation 

 

 

 

Figure 5.12: Probability of reactivation 

This is a comparison of the probability of a unit being active during delta depending on whether it 

responded to stimulation during the stimulation condition. This is a comparison of proportions of two 

groups with the McNemar difference of proportion test in SPSS. Overall there was a significant 

difference, and when broken down by area it can be seen that this difference came from association areas. 

Check marks are shorthand for significance of the variable of interest. 
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Figure 5.13: Statistical model of reactivation  

 

 

 

Figure 5.13: Statistical model of reactivation  

This is a generalized linear model of the binary outcome of whether a unit is active during delta. This is 

not a comparison of two groups; instead it is a test whether a number of factors significantly influence the 

outcome (active during delta). We were interested in the effect of stimulation response. Overall the 

stimulation response of a unit significantly predicted whether it will be active again during delta. Layer 

and area were however not significant, so splitting the data on these factors was not predicted to make a 

difference. However, as the splits showed there were differences in agreement with the previous figure. 

Check marks are shorthand for significance of the variable of interest. 
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Figure 5.14: Unit shapes sorted by when they were active 

 

 

Figure 5.14: Unit shapes sorted by when they were active 

Average spike shapes with standard deviation indicated. We used the classifications of Figure 5.5 to 

produce combined categories of when each unit was active and responded. Top left plot is spike shapes of 

units that responded to stimulation and were also active during delta, i.e. reactivated units. Top right plot 

is spike shapes of units that responded to stimulation, but were not active during delta, i.e. deactivated 

units. Bottom left plot is spike shapes of units that were only active during delta. Bottom right plot is 

spike shapes of units that did not respond to stimulation, but were active during delta. The difference 

between reactivated and deactivated units is quite clear, but is further quantified in the following figures. 
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Figure 5.15: Clustering by Wave_clus of unit shapes from all responding units 

 

 

 

Figure 5.15: Clustering by Wave_clus of unit shapes from all responding units 

Top two plots are spike shapes grouped by reactivation or not (from previous figure). Bottom two plots 

are the same spike shapes, but sorted by wave_clus. A McNemar difference of proportion test revealed 

that a significantly  (p <= 0.000) bigger proportion of units that were active again during delta belonged 

to cluster #1, i.e. based on the spike shapes, reactivated and deactivated units were different cell types.  

We also quantified all cells on a bursting criteria during delta; this kind of bursting was specified as the 

repeated firing of bursts of three or more spikes on the delta period on more than half of the (on average) 

60 consecutive periods inspected. McNemar difference of proportion tests revealed no difference in the 

tendency to burst between units that had previously responded to stimulation and units that had not 

responded (p=0.435); there was also no difference when considering layer 5 (the focal point of bursting 

units) alone (p=0.851). 
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Figure 5.16: Baseline firing rates of reactivated and deactivated units 

 

 

 

Figure 5.16: Baseline firing rates of reactivated and deactivated units 

Comparing the firing rates (in the baseline condition before stimulation) of units that were reactivated 

with units that were deactivated revealed much sparser firing of units in superficial layers that were not 

later reactivated (p=0.0228 and p=0.0093, non-parametric Wilcoxon rank sum statistics). Splitting the 

data by areas produced the same result. It is interesting that superficial and deep layers did not show the 

same effect; we have not yet formed a hypothesis to explain the differences in terms of reactivation, but it 

is already known that deep and superficial layers produce distinct characteristics in this gamma model, 

with superficial layers dominated by gap-junction-dependent low gamma oscillation, while deep layers 

take over with pyramidal-interneuron high gamma rhythms, when the system is driven harder, as also 

seen during stimulation, c.f. Figure 5.3. 
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Figure 5.17: Peak response firing rates of reactivated and deactivated units 

 

 

 

Figure 5.17: Peak response firing rates of reactivated and deactivated units 

The peak firing rate of the response of units that were reactivated was much higher than units that were 

not reactivated. Left to right, p= 2.0177e
-07

, 9.1198
e-10

, 1.8698e
-05

, 3.2043e
-10

, 0.0093, non-parametric 

Wilcoxon rank sum statistics. Splitting the data by areas produced the same result. It is interesting that the 

effect, which was limited to superficial layers during the baseline condition, is seen across all layers 

during stimulation; this might then be related to stimulation kicking off the deep high gamma rhythms 

mentioned in the previous figure. This would then mean that reactivated units are involved in this rhythm, 

and taken together with the spatial overlap of increased delta and reactivation, might further suggest that 

this rhythm somehow also underlies increased potentiation.  
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Figure 5.18: Example of spike-train-to-local-field-potential phase semblance 

 

Figure 5.18: Example of spike-train-to-local-field-potential phase semblance 

Top two panels: Time-frequency spike-train-to-local-field-potential phase semblance (coherence) plots of 

the average of 13 reactivated units versus 12 deactivated units from the same slice during stimulation. 

Bottom panel: Summation over time of above plots, reactivated in blue, deactivated in red. Notice the 

main difference in the high gamma band as predicted by the high gamma stimulation responses. The local 

field potentials were non-causally notch filtered at 50 Hz.  

The next figure provides the corresponding statistics across all experiments. 
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Figure 5.19: Spike-train-to-local-field-potential coherence statistics  

 

 

 

Figure 5.19: Spike-train-to-local-field-potential coherence statistics 

Comparing the spike-train-to-local-field-potential phase semblance (coherence) during stimulation of all 

responding units depending on whether they are reactivated or deactivated during delta, revealed a 

significant (p= 0.0432, non-parametric Wilcoxon rank sum statistics, median indicated) difference 

favouring reactivated units. This comparison considered the entire gamma band (30-100 Hz), however as 

indicated in the previous figure the effect could be enhanced by considered only the high gamma band. 
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5.4 Discussion 

 Using a reduced in vitro model of two of the main aspects of the wake-sleep cycle the 

experiments described in this chapter sought to investigate the effects of stimulus 

response on subsequent delta power, as well as the possibility of reactivation of specific 

cell types during this delta rhythm. The main findings were that: 1) Layer 4 primary 

sensory stimulation predominantly activated deep layers proximal to the simulation site. 

In addition weaker activation of both deep and superficial adjacent association cortex 

was seen. 2) Response to stimulation was significantly correlated with a subsequent 

boost in delta power. This boost was seen mainly in deep association cortex, but some 

evidence for superficial layer involvement and primary sensory area involvement was 

also seen in a manner dependent on the normalisation of the data and the statistical tests 

used. 3) Many different unit shapes and behaviours were seen, with sufficient data 

collected to analyse the type of unit and its anatomical location with respect to 

reactivation incidence during delta. Reactivated units were predominantly seen in 

association cortex (where delta power also increased strongest). They were significantly 

different in their profile compared to non-reactivated units, significantly different in 

terms of their activation rates during stimulus and the degree of phase locking to 

stimulus-induced gamma rhythms. 

 

 These findings generally support the validity of the model for probing the relationship 

between deep sleep-associated delta rhythms and sensory stimulation during prior wake 

states. They also provide a useful substrate for examining the nature of replay responses 

to sensory stimulation, not just from the superficial point of view of delta carrying 

fragments of wakefulness (Destexhe, Hughes et al. 2007), but from a computational 

perspective where replayed aspects of responses to sensory stimuli may be 

computationally acted upon to selectively extinguish or reinforce certain features for 

long-term memory. However, while generally useful, we must critically consider the 

findings in context to published precedents before we can proceed to more detailed 

analysis of the dynamics of the system. 

 

5.4.1 Spatial patterns of stimulus response 

 We chose a persistent gamma rhythm model as a substrate for wakefulness as activity 

within the gamma band is involved in multiple aspects of cortical computation. Most of 

these stem from the close relationship between this rhythm, particularly the faster 
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gamma components seen in the field potential example illustrated in this chapter (e.g. 

Figure 5.3), and spike generation in cortical neurons (Rasch, Gretton et al. 2008; Ray, 

Hsiao et al. 2008). Gamma rhythms have the ability to temporally control and segregate 

spikes in multiple spatially separate neurons (Engel and Singer 2001; Fries 2005). Thus 

there is good evidence that the resulting patterns of synchrony and coherence in cortex 

form the basis of a code for many aspects of sensory representation and short-term 

memory (Engel, Fries et al. 2001; Kaiser and Lutzenberger 2005). The possibility of 

replay of such a code is a fundamental topic of this thesis.  

 

 There are, however, multiple subtypes of gamma rhythms, e.g. see (Whittington, 

Cunningham et al. 2011), and the stimulus responses observed here differ in frequency 

from the background gamma induced by the kainate application to the bathing medium. 

Interaction between high frequency and lower frequency gamma rhythms has been 

studied in a similar in vitro system (Ainsworth, Lee et al. 2011) and interesting laminar 

activation profiles result depending on stimulus intensity. A similar situation is seen in 

vivo in studies with changes in sensory stimuli (Ray, Hsiao et al. 2008), suggesting that 

output from sensory areas (arising from deep layers (layer 5 and 6) may be dramatically 

influenced by relative stimulus intensity. In this thesis the predominant activation of 

primary sensory cortex to stimulation was in these deep layers. This suggests that the 

stimulus used (glutamate application to layer 4) was strong enough to counter the on-

going ‘contextual’ (Petersen and Crochet 2013) influence of the gamma rhythm in 

superficial layers and may, in part, explain the absence of direct activation and only 

weak replay in this layer/area (see below). 

 

 Activity coding for a sensory input in a primary cortical area is usually passed bottom-

up to higher order associational areas. This is seen for visual stimuli in vivo (Roberts, 

Lowet et al. 2013) and primary auditory cortex activation in vitro (Roopun, Lebeau et 

al. 2010). However, the laminar specificity of these bottom-up connections is the 

subject of much debate (Hilgetag, O'Neill et al. 2000; Hilgetag and Grant 2010). The 

activation profile seen in this thesis suggests strongly a divergent pathway of 

connectivity from the deep layers of primary sensory cortex to both deep and superficial 

layers of association cortex (Figure 5.6). In this way the model used here provides a rich 

substrate to investigate any changes in sensory responses (modelled as layer 4 

excitation) both in primary areas and the associational areas, more closely related to 

delta rhythm generation (Carracedo, Kjeldsen et al. 2013). 
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5.4.2 Delta enhancement in relation to stimulus response 

 In humans, local changes in delta power specific to locations stimulated with 

transcranial magnetic stimulation (TMS) in prior wake-states has been reported (Huber, 

Esser et al. 2007). Similar reports of enhancement of delta activity following sensory 

stimulation have also been reported in other experimental systems. Activation of 

discrete cortical areas during waking shows altered delta power during subsequent sleep 

episodes (Massimini, Ferrarelli et al. 2007; De Gennaro, Fratello et al. 2008). Delta 

rhythm generation during deep sleep is associated with enhancement of procedural and 

declarative memory (Huber, Ghilardi et al. 2004; Aeschbach 2009). Evidence also exists 

for stimulus-specific, regional potentiation of delta rhythms (e.g. hand vibration 

(Kattler, Dijk et al. 1994)), or whisker stimulation in rodent models (Vyazovskiy and 

Tobler 2008), and reactivation of spike timing sequences during sleep is associated with 

‘learned rules’ (Peyrache, Khamassi et al. 2009). Functional clustering algorithms, 

applied to electrophysiological signals during sleep also show state-dependence 

consistent with known processes involved in memory consolidation (Feldt, Waddell et 

al. 2009), and evidence exists for sleep-dependent enhancement of visual cortical circuit 

remodelling (Aton, Seibt et al. 2009). 

 

 The correlation between prior sensory experience and delta power has led to theories 

relating delta rhythms to modification of synaptic plastic changes occurring during prior 

wakefulness. Selective enhancement and extinction of plastic changes have been 

proposed as synaptic rescaling (Tononi and Cirelli 2006), i.e. the restoration of a mean 

baseline of synaptic weights in cortex. Computational models predict that as delta 

rhythms decline during sleep so does overall cortical synaptic strength (Riedner, 

Vyazovskiy et al. 2007), and AMPA receptor phosphorylation levels are potentiated 

during wakefulness, but depressed after sleep (Vyazovskiy, Cirelli et al. 2008). Where 

are the loci of such plastic changes, and exactly what operation are they performing on 

memory of prior sensory events? The predominant occurrence of delta generators in 

associational areas (Carracedo, Kjeldsen et al. 2013), and the general pattern of 

dominance of outputs from layer 5 (the layer most strongly activated in the present 

model) from higher order cortical areas (Rouiller, Simm et al. 1991) suggest subtle 

synaptic changes favouring the establishment of longer-range functional connections 

than those induced by sensory input, thus perhaps contextualising prior experiences. 

However, large-scale alterations on functional cortical circuitry during sleep have been 
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reported (Esser, Hill et al. 2009) with a strong trend towards uncoupling of longer-range 

connections.  

 

 From the above it is clear the field to date is rather confused as to the nature of the 

dynamics of delta sleep pertinent to operations on sensory codes held in memory. We 

therefore began by rigorously analysing the changes in stimulus-induced delta power in 

our model. These analyses showed that the strongest changes occurred in deep layers of 

association cortex, and not the primary sensory area stimulated and activating these 

layers. This observation, taken alone, supports the idea of delta rhythms reinforcing 

higher cortical representations (contexts) of prior sensory events. This does not fit the 

highly region-specific delta enhancements seen in the above TMS human studies. 

However, significant changes in delta power could also be seen in the responding 

primary sensory loci depending on the constraints of the statistical analysis performed. 

It is possible that it is the interplay between enhanced delta rhythms in these two areas 

(sensory and associational) that form the crux of the dynamics pertinent to whatever 

operation delta is performing on representations of prior sensory experience; this will be 

dealt with in more detail in the next chapter.  

 

 Finally, it can be seen from the present data that superficial layers do not readily 

display changes in delta power depending on prior stimulation. There are several 

reasons why this may be the case: Firstly, superficial layers do not, per se, generate 

delta rhythms at all (Carracedo, Kjeldsen et al. 2013). Instead they receive delta- (and 

theta-) patterned drive from their corresponding delta-generating deep layers. Secondly, 

the model used a persistent gamma rhythm as a wake-state baseline. This model 

selectively generates gamma in superficial layers alone (Cunningham, Halliday et al. 

2004) and, as discussed in section 5.4.1, this rhythm imparts a template on neuronal 

activity such that only template-matched patterns of input (cortical response to 

stimulation) are processed. As the stimulus used in the model was very crude (just a 

spatially constrained excitation of layer 4), it is possible that no overt changes in 

superficial layer activity were induced. This is borne out by the lack of strong unit 

activity responses seen in primary superficial layers. Thirdly, the nature of any code for 

sensory information held in superficial layers is undoubtedly complex; involving higher 

order spike correlations (Ohiorhenuan, Mechler et al. 2010) that may not have 

influenced the basic spike-rate measures used in this thesis. 
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5.4.3 The selectivity of unit reactivation 

 Despite not considering higher-order spike correlation patterns briefly discussed above, 

our basic measure of spike-rate was found to be very useful when investigating the 

phenomenon of replay during delta rhythms. Most available evidence suggests a critical 

role for prefrontal cortex in conjunction with sharp wave/ripple outputs from 

hippocampus (Peyrache, Khamassi et al. 2009; Benchenane, Peyrache et al. 2010). 

Spike patterns associated with a learned behavioural task were replayed with high 

fidelity, and the incidence of replay was found to be related to global levels of unit 

activity in the putative cells involved.  

 

 Relating unit activity (the extracellular measure of spiking used in these and many 

similar studies) to specific neuronal subtypes is however fraught with uncertainty. Spike 

width has been used to separate interneurons out from principal cells, e.g. see 

(Peyrache, Dehghani et al. 2012). By this criterion alone it should be safe to say that the 

units in green in Figure 5.5 represent interneuron activity. The fact that they fire 

robustly and regularly during gamma and not delta seems to fit this. However, spike 

width, measured intracellularly from identified neurons reveals a very broad range of 

widths and activity patterns within interneuron and principal cell subgroups. For 

example regular spiking and fast rhythmic bursting (FRB) principal cells have wide and 

narrow spike shapes respectively (Traub, Contreras et al. 2005), and the narrow spiking 

FRB neurons also fire robustly and regularly during gamma. Similarly, basket-type 

interneurons and dendrite-targeting interneurons have narrow and wide spike shapes 

that completely overlap the principal cells just described (compare data in (Armstrong 

and Soltesz 2012) with (Fuchs, Zivkovic et al. 2007)). This study did therefore not 

attempt to subclassify units on the basis of cell type. 

 

 Despite this difficult point it was clear that different units behaved differently during 

the stages of the wake-sleep cycle model used here. Some units appeared to be entirely 

related to the generation of the gamma rhythm and some to the delta rhythm (Figure 

5.5), but the most interesting subclass were those that responded with an increase in 

spike rate to stimulation. Within this subclass two statistically different spike shapes 

corresponded to units that reactivated or deactivated during delta. The reasons for this 

stark contrast appeared most obviously to do with the timing of spike-trains relative to 

the field potential gamma rhythm during stimulation. Those units that aligned precisely 

with the gamma rhythm replayed whereas those that had more variable timing did not.    
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 Gamma rhythms are an ideal substrate for assembly formation, an assembly being a 

collection of neurons firing together following stimulation (Ainsworth, Lee et al. 2012). 

Such simultaneous spiking affords the advantage of supralinear summation of 

convergent input from the assembly neurons onto down-stream targets, and can thus 

have a very large effect on synaptic plasticity. Combination of high frequency 

(stimulus-related) and lower frequency (background) gamma rhythms such as those 

used in the present model set-up frequency differences that, through standard spike 

timing-dependent plasticity rules (Feldman 2012), would be expected to boost 

interlaminar connections in a highly direction-specific manner (Lee, Sen et al. 2009; 

Ainsworth, Lee et al. 2012). 

 

5.4.4  Summary 

 The data presented in this chapter demonstrate a complex relationship between 

stimulus presentation and subsequent delta rhythms in terms of both spatial (anatomical) 

location of plasticity-induced changes and the prior history and (perhaps) neuronal 

subtype replayed during delta rhythms following ‘sensory’ stimulation. The clear 

relation between stimulus response and replay, and the putative relationship of this to 

synaptic plasticity strongly indicates a role for delta rhythms in further processing of 

cortical representations of prior sensory input. But what is the nature of this further 

processing, and how may we resolve some of the more complex spatial patterns of 

changes seen? We will begin an attempt to unravel these phenomena in the next chapter.  
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Chapter 6.  Results  

ergodicity, energy flow and dissipation  

 

6.1 Introduction and aims 

 This second results chapter builds on the framework established by the results of the 

previous chapter. Here we took our analysis further to address the two theoretical 

questions posed by our initial considerations of holographic processes. We outline these 

two focal points in the subsections below. 

 

6.1.1 Ergodic statistics 

 If the spectrum of energy dissipation of the system in both the wake model state and 

the sleep model state can be described by power laws with certain specific coefficients it 

is implied that the system dynamics can be described by ergodic statistics, which would 

then allow Friston’s free-energy minimization principle to be in operation (Friston 

2010). If only the sleep-state model is described by ergodic statistics the system could 

possibly be described by a classical annealing process during this half-cycle (see section 

2.2.3).  

 

6.1.2 Spatiotemporal energy flow 

 Previous work in our lab suggested reciprocal interaction of deep and superficial layers 

in associational areas orchestrated by the delta rhythm, as detailed in section 2.2.3. This 

was taken to suggest a Helmholtz machine-like process of synaptic weight learning. 

However, under certain assumptions (as described in section 2.2.3) the Helmholtz 

machine framework suggests that there would have to be an interaction along layers as 

well, also orchestrated by the delta rhythm. The flow of energy is not a direct measure 

of causality, but is likely to reflect causality to some extent, and is far less removed 

from the actual underlying biological processes. 

 

6.2 Methods 

 The methods described here are specific to this chapter; for general methods see 

chapter 4. We introduce the relevant tools in the order that we used them. 
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6.2.1 Non-parametric wavelet Granger causality 

 A standard correlation or coherence measure gives no information about which signal 

(if any) drives the other. Estimating correlation as a function of lag gives some idea of 

this important aspect, but a more general idea is to consider how one signal predicts the 

other. This is the approach taken by Granger causality, which estimates the variance of 

the autoregressive prediction error of one signal as the past information of the other 

signal is included in the model (Ding, Chen et al. 2006). If the variance is reduced the 

included signal has Granger casual influence on the other. The analysis is based on 

parametric fitting of linear regression models, and provides Granger causality graphs as 

a function of frequency. However, we wanted to base the Granger causality method on 

wavelet analysis, and achieve a time-frequency Granger causality map instead of a 

parametric time-average, so that we could study the time course in detail where 

reciprocal interactions might otherwise cancel out.  

  

 This line of thought led us to a recent approach that does just that (Dhamala, 

Rangarajan et al. 2008). The main challenge in implementing this non-parametric 

Granger causality was a spectral factorization step. Many known algorithms exist 

(Sayed and Kailath 2001), but no code libraries seem available. The original non-

parametric Granger causality uses Wilson’s algorithm (Wilson 1972), however we 

found it simpler to implement the Kolmogorov cepstral method (Kolmogorov 1941), 

which although intended to be Fourier based seemed to work well with wavelet 

coefficients as well. A Matlab toolbox implementation of non-parametric Granger 

causality has since come out (Oostenveld, Fries et al. 2011), and we have verified that 

our version produce same or similar results, and found it to be orders of magnitude 

faster.  

 

 The question of causality in the presence of multiple signals is immediately relevant to 

our micro-electrode array study. However, although several techniques exist, like partial 

directed coherence (Baccalá and Sameshima 2001) and multivariate Granger causality 

(Barrett, Barnett et al. 2010), these do not provide solutions that are guaranteed to be 

accurate. This is because of the nature of the problem, which implies an infinite 

regression that thus has to be cut off at some point; a version of the closure of 

turbulence problem considered in chapter 3. This problem is amplified with increasing 

numbers of signals. In the case of two signals there is a risk of spurious causality 

estimates, because a third (unknown) node might actually mediate the causality, making 
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it so-called indirect causality, but accounting for all other possible nodes becomes an 

intractable problem when the number of signals is large. Some approaches compute all 

pair-wise causality estimates, and then try to eliminate indirect causality heuristically 

(Zou, Ladroue et al. 2010), but this becomes exceedingly difficult when we consider not 

only averages, but pair-wise time-frequency maps. For these reasons we sought a 

different approach to multi electrode array causality estimation, which is presented in 

section 6.2.3 below. 

  

6.2.2 Ergodicity measures (power-law fitting and limit torus trajectories) 

 Before a power-law coefficient can be determined a power-law curve must be fitted to 

the dissipation spectrum; this fit must in itself be good enough that we can say with 

significant confidence that the spectrum is actually best described by a power-law at all. 

This is a complex process for which we chose to use an existing Matlab toolbox, which 

directly provides p-value calculations for the best fits (Clauset, Shalizi et al. 2009). 

The power-law coefficient (n, below) intervals for which ergodicity is known (Grigolini 

et al. 2009) are: Ergodic: n<1, n=2 (Brownian).  Non-ergodic: 1<n<2, n=3 (black body). 

The status of other intervals is unknown to our knowledge. 

 

 A secondary method that we have only considered to a preliminary degree is described 

next: A dynamical system with irrationally spaced characteristic frequencies form a 

limit-N-torus in phase-space, and the trajectories on the torus can reveal ergodicity 

(Grebogi, Ott et al. 1985): If there are two rationally related characteristic frequencies 

(N=2) the trajectories eventually close up, but if the frequencies are irrationally related 

the trajectories will eventually cover the entire torus, which indicates ergodicity 

(Mackenzie 2006). This immediately suggests that the brain is ergodic from previous 

findings of phi related characteristic frequencies (Roopun, Kramer et al. 2008), however 

as N increases the picture becomes much more complex and irrationally related 

frequencies no longer guarantee ergodicity. The trend seems to be that ergodicity 

becomes increasingly unlikely with increasing N, but because trajectories on N-tori 

become extremely difficult to visualize above N=4, it is in fact unknown (Grebogi, Ott 

et al. 1985). 
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6.2.3 Near-field electromagnetic holography 

 It can be difficult to relate causality estimates to the actual underlying activity; for 

example should causality from A to B be reflected in current source density calculations 

with A as source and B as sink, or should the causality estimate be calculated on the 

current source density in the first place, or how should causality estimates for local field 

potentials be compared to same for spike data, and so on. Causality estimates are 

inherently far removed from the underlying processes, and it was thus our goal to find 

an approach what would be more directly based on all simultaneous measurements, and 

that would also unify local field potential and spike data in the same process.   

 

 From the preceding discussions of holography it is obvious that this general technique 

revolves around just such sought-after features, but the question was how to actually 

apply this principle to the case of micro-electrode array data. However, this line of 

thought allowed us to uncover an analogous application in a different field where the 

technique is known as real-time near-field acoustic holography (Hald 2001; Thomas, 

Grulier et al. 2010). The idea is to treat the array recordings as samples of a hologram in 

the recording plane; the hologram can then be backwards propagated in space into the 

medium back to the sources giving rise to the mixed signals at the recording plane. This 

is done in a higher dimensional frequency space known as K-space where a complex 

Green’s function propagator reconstructs the signal at progressively deeper planes into 

the medium. This process is however unstable and must be regularized by appropriate 

filtering (Paillasseur, Thomas et al. 2011); the reason for instability is that high 

frequency exponentially decaying, evanescent waves in the near-field are inverted and 

become exponentially amplified. With carefully balanced filtering this phenomenon 

nevertheless has the curious property that it allows spatial reconstruction resolutions 

beyond the resolution of the array (Williams and Maynard 1980), i.e. super resolution. 

This surpasses mere interpolation, and is reminiscent of recent compressive sensing 

techniques that also violate Nyquist’s well-known sampling theorems (Duarte, 

Davenport et al. 2008).  

 

 Further investigation revealed that the analogy was accurate under the relevant 

conductive conditions with the equations carrying over directly, only now with complex 

wave numbers, and electromagnetic instead of acoustic interpretations (Williams and 

Valdivia 2010).  The detailed analogies are: Microphone array corresponds to micro-
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electrode array. Acoustic pressure and particle velocity correspond to the electric field 

and the magnetic field. Acoustic intensity corresponds to the Poynting vector. 

There is also an important analogy between the acoustic properties of the acoustic 

medium, and the complex conductivity of the slice medium (Nicolas, Furstoss et al. 

1998). We obtained the relevant conductivity values from direct measurements in rodent 

neocortex given in the literature by layer, and across and along layers (Goto, Hatanaka 

et al. 2010). 

 

 The relevant equations are given as: 

Electrical field in recording plane, E = gradient(micro-electrode array potential) 

Wave number K, complex expression of conductivity rho, and frequency. 

K-space propagator G, complex function of propagation distance. 

Magnetic field in reconstruction plane, H = K x (E * G), underscore is K-space 

transform. 

Poynting vector in reconstruction plane, S = (E * G) x H 

Current density approximation, J = rho * (E * G) 

Current source density, CSD = divergence(J) 

Energy source density, ESD = divergence(S) 

Energy dissipation, D = dot(J, (E * G)) 

With x being the cross product, and constants suppressed for clarity. 

 

 To replace causality estimates we instead considered the Poynting vectors representing 

spatiotemporal energy flow. The current source density in this implementation has the 

advantage that it is based on conductivity measures for each layer, but the measure that 

we are calling energy source density (by analogy of the equations) turned out to be more 

clearly defined spatially. The measure of energy dissipation was also of particular 

interest, considering the intimate relations to computation discussed earlier in chapter 1. 

 

 The concept of super resolution, although well-documented in the literature (Peter, 

George et al. 2002; Fouque, Garnier et al. 2006), can be difficult to accept, so we 

thought hard about a way to justify that the technique works in the present 

implementation as well. For this purpose we got hold of an example data set of a 

hippocampal rodent section recorded with the BioChip 4096 array from 3Brain (3Brain 

2013) with 64x64 channels, then down-sampled the array grid at 16x16 and 32x32 

points evenly over the full grid area. This then allowed us to visually compare the 
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original 64x64 grid with super resolved versions based on the extracted down-sampled 

data.  

 

 Figure 6.1 first shows two comparisons of the reduced resolution raw data with the full 

resolution raw data, as snapshots taken at random time points during major neuronal 

events. Figure 6.2 then moves on to show the energy source density based on the full 

grid data versus reduced data sets. Finally, Figure 6.3 shows a comparison of the super 

resolved outcomes versus cubic spline interpolated outcomes based on the same reduced 

data. We were thus visually satisfied with the technique, and did not pursue a more 

detailed quantification of the similarities. It should be noted that agreement was not 

obvious during quiescent periods of low neural activity, which we estimated was not 

much above the noise level of the array in any case. 

  

 Figure 6.4 shows an example snapshot with three views (energy dissipation, energy 

source density and energy flow vector field) of the application of our technique at three 

times the original array resolution, and with the reconstruction plane 100 microns into 

the slice from the recording plane of the array. For presentation in the results section to 

follow, and in order to quantify energy flow relevant to our investigation we averaged 

the spatiotemporal energy flow in each of the four neocortical areas (superficial 

primary, deep primary, superficial association, deep association, that we also considered 

in the previous chapter), over time bins one eighth of the delta period, locked to the 

delta period over 60 seconds. We used the preceding non-parametric Granger causality 

estimations to decide the alignment of the time bins.  

 

 It should be noted that it is quite possible to greatly improve spike localization and 

sorting with this technique as well, since sorting does not rely on spike shapes, but 

rather on the spatial 3D localization of the spike sources. The amplifying backwards 

reconstruction process means that spikes buried in noise (as well as faint contributions 

to clearer spikes) come back into focus at their originating depth planes, and the 

increased resolution means that overlapping spikes can be spatially distinguished at 

their points of origin. However, further work is required to make this process feasible 

for any large amount of spikes, and we did not have the time to apply it in this project.   
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Figure 6.1: Full resolution versus reduced resolution array data 

 

 

 

Figure 6.1: Full resolution versus reduced resolution array data 

This figure exemplifies the outcomes of down-sampling full array 64x64 resolution to a reduced 

resolution of 16x16 channels. The data shows strong hippocampal events at otherwise random time 

points. Top and bottom plots are two different time points. Data taken from example data sets on the 

3Brain website. Left is full resolution, right reduced resolution.  
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Figure 6.2: Energy source density at full and super resolved resolutions 

 

 

 

Figure 6.2: Energy source density at full and super resolved resolutions 

Comparison of energy source density based on full 64x64 resolution data without super resolution (right) 

and super resolved energy source density based on reduced 16x16 resolution data (left top) and on 32x32 

reduced resolution data (left bottom). Top and bottom plots are two different time points. The square 

markers in red and blue indicate virtual electrodes for time series comparison (not shown) at random 

spatial points, which revealed that agreement was only good when neural activity was above noise level. 

 

 

 

 

 

 

 

 

 



100 

 

 

Figure 6.3: Comparison of super resolution and interpolation 

 

 

 

Figure 6.3: Comparison of super resolution and interpolation 

Here we compared super resolution (left) against cubic spline interpolation (right) based on reduced 

32x32 array data restored to original 64x64 resolution. Top and bottom plots are two different time 

points. The super resolution view revealed additional detail over the interpolation. 
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Figure 6.4: Example snapshot of near-field electromagnetic holography 

 

 

Figure 6.4: Example snapshot of near-field electromagnetic holography 

This is a snapshot from a movie covering an entire delta period (about one second) as the delta locked 

average of 60 seconds of data at 30 kHz sampling rate. The vertical red line indicates the relevant 

timepoint of the snapshot. This reconstruction was made at three times the original spatial array resolution 

in both directions. The reconstruction plane is 100 microns into the slice from the recording plane of the 

array. The energy source density shows alternating sources and sinks along and across neocortical layers, 

while the energy flow vector field reveals that the actual energy flow is along layers towards primary 

areas at this time point. The energy dissipation shows a characteristic pattern of dissipation both deep and 

superficial, but clearly separated. The time course of the movie shows that this dissipation pattern spreads 

from primary towards association areas from about the time of the delta period peak to the timepoint 

shown. 
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6.3 Results 

 We first addressed the question of ergodicity as determined by the spectrum of energy 

dissipation. We then moved on to the second question investigating spatiotemporal 

interactions in neocortex; initially we applied our non-parametric Granger causality 

measure to a dataset of paired glass electrodes across layers in layer 2/3 and layer 5 

perpendicular to the neocortical curvature in the delta model, then we applied our near-

field electromagnetic holography technique to the micro-electrode array dataset from 

the previous chapter. Finally we studied the ratios of energy dissipation to energy flow 

in the two model states of our main paradigm, respectively the gamma wake-state model 

and the delta sleep-state model as described in the previous chapter. 

 

6.3.1 Ergodicity measures for wake and sleep state models 

 The results of our investigation of ergodicity can be summarized briefly: 

In neither the wake-state model nor in the sleep-state model was it possible to fit power-

laws to the dissipation spectrums with significant confidence (p= 0.22±0.03, mean±se). 

Forcing the fits appeared to produce random coefficient values in the non-ergodic range 

from 1 to 2 (1.44±0.13). For these reasons we will not report the results in detail, but 

can conclude that we could not confirm ergodic statistics with this measure; however, 

whether this really rules out ergodicity remains unknown. We did not carry out a full 

analysis of the secondary measure, as inspecting a large part of the spectral peaks in the 

sleep state model revealed (close to) harmonic rather than irrationally spaced 

frequencies, which also suggested that the system was not ergodic. 

 

6.3.2 Temporal delta-locked interaction of layer 2/3 and layer 5 

 We first set out to elaborate on previous findings in our lab of layer 2/3 and layer 5 

interactions with a more detailed causality estimation on local field potentials in the 

delta and theta bands (Carracedo, Kjeldsen et al. 2013). 

 

 Out of 42 paired electrode recordings 13 showed a non-trivial highly similar pattern of 

non-parametric wavelet Granger causality averaged to the delta period over 60 seconds. 

No other distinctive patterns were discernible in the remaining cases; some did not 

allow a proper delta-locked average due to poor delta, others appeared to be 

insufficiently aligned to the perpendicular axis (potentially of some interest to the 

concept of cortical columns, but this was not pursued further).  
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 The analysis summarized in Figure 6.5 shows layer 5 being causal to layer 2/3 at delta 

frequency throughout the delta period, while the causality of higher frequency content 

(considered up to 15 Hz) alternates between deep and superficial, with layer 5 causality 

locked to the trough of the delta period where intrinsic bursting cells of the same layer 

are known to fire in characteristic delta locked bursts. Causality from superficial layers 

focused in the theta band, but appeared somewhat weaker than the reverse causality on 

the other half-cycle of the delta period. 

 

 We now take this robust observation further and consider whether the nesting and 

reversing causality at theta frequencies within delta has a correlate in energy flow 

within cortex. 
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Figure 6.5: Delta-locked interaction of layer 2/3 and layer 5 

 

 

 

 

Figure 6.5: Delta-locked interaction of layer 2/3 and layer 5 

The temporal interaction of layer 2/3 and layer 5 over a delta period average from 60 second recordings. 

Signals were decimated to 1 kHz and the resolution of the wavelet analysis was 0.1 Hz in the range 0.5-15 

Hz. Top panel shows an example of layer 5 being causal throughout the delta period at delta frequency, 

while higher theta frequencies alternate between layers. The zero phase point corresponds to the trough of 

the delta period where bursting activity is focused. The bottom panel shows the average interaction 

pattern for N = 13. This result confirms earlier findings in our lab of layer 2/3 and layer 5 interaction 

during delta as discussed in chapter 2.  
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6.3.3 Spatiotemporal energy flow in the neocortex 

 The tentative prediction of the Helmholtz machine concept considered in section 2.2.3 

was that a periodic interaction along layers in addition to the interaction across layers 

would be necessary to facilitate the wake-sleep learning approach. In extension, if the 

delta period sets the fundamental rhythm of this process it should occur twice in each 

period, one for each wake-sleep associated direction. 

 

 The examples of total energy flow in Figure 6.6, and total dissipation in Figure 6.7 give 

hope to this idea by revealing that while the local field potential has only a weak first 

harmonic, the energy flow and dissipation have much stronger relative first harmonics, 

and both fundamental and harmonic are locked to the field potential as indicated by the 

wavelet semblance measures. However, for dissipation, as revealed later in Figure 6.19, 

it turned out that this phase lock was in anti-phase in the case of the harmonic. 

Considering deep and superficial layers separately further revealed nested theta 

components specific to superficial layers; Figure 6.8 exemplifies this quite clearly for 

energy dissipation. 

  

 In Figure 6.9 to Figure 6.16 we investigated the average energy flow for an N of nine 

(slices) of each of the four areas, superficial primary, deep primary, superficial 

association, deep association, in eight time bins over the average delta period from 60 

second recordings. In all cases the energy flow was strongest at the trough of the delta 

period, but the directions both across and along layers reversed on each side of the 

trough as seen in the first and last figures of the set.  A smaller secondary reversal 

appeared twice on each side of the delta period peak, and in several cases (in order of 

confidence; red, blue, turquoise, purple, green) around smaller increases in energy flow; 

naturally associated with the secondary peak in the energy flow spectrum exemplified 

by Figure 6.6. 

 

 These patterns were clearly orchestrated by the delta rhythm, but broke down when 

filtering out higher frequency bands, revealing that nested rhythms were in fact 

contributing most of the actual energy flow. Progressively filtering out higher bands 

starting with the gamma band weakened the secondary pattern, ending with completely 

abolishing it below the theta band (4-9 Hz). The primary pattern was not visibly 

affected until below theta band, and in this case the pattern remained although 

considerably weakened. We illustrate two cases of this behaviour in Figure 6.17. 
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Figure 6.6: Example of total energy flow over one minute 

 

 

 

 

Figure 6.6: Example of total energy flow over one minute 

The total energy flow and average local field potential with pseudo (wavelet) spectrums on the right. The 

spectrum of energy flow reveals a strong secondary harmonic in addition to the fundamental delta 

rhythm. The bottom panel shows the phase semblance with the local field potential indicating that energy 

flow is locked to the field delta rhythm. 
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Figure 6.7: Example of total energy dissipation over one minute 

 

 

 

 

Figure 6.7: Example of total energy dissipation over one minute 

The total energy dissipation and average local field potential with pseudo (wavelet) spectrums on the 

right. The spectrum of energy dissipation reveals an even more pronounced secondary harmonic in 

addition to the fundamental delta rhythm. The bottom panel shows the phase semblance with the local 

field potential indicating that dissipation is locked to the field delta rhythm. 
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Figure 6.8: Example of dissipation in deep versus superficial layers 

 

 

 

 

Figure 6.8: Example of dissipation in deep versus superficial layers 

Considering field, flow or dissipation by deep and superficial layers separately revealed nested theta 

components in superficial layers. Here we show example wavelet spectrograms of energy dissipation over 

60 seconds during the delta sleep-state model. Spectrums on the right sum over time to produce a 

condensed view of the frequency content. 
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Figure 6.9: Energy flow vectors for nine slices. First eighth. 

 

Figure 6.9: Energy flow vectors for nine slices. First eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. The energy flows are in reasonable agreement with 

deep layers projecting upwards, and superficial layers projecting forwards towards primary areas. 
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Figure 6.10: Energy flow vectors for nine slices. Second eighth. 

 

Figure 6.10: Energy flow vectors for nine slices. Second eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. This time bin does not reveal a clear pattern of 

energy flow and might be considered an intermediate state. 
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Figure 6.11: Energy flow vectors for nine slices. Third eighth. 

 

Figure 6.11: Energy flow vectors for nine slices. Third eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. This flow pattern reveals the first secondary reversal 

around the first secondary increase in energy flow in several cases. 
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Figure 6.12: Energy flow vectors for nine slices. Fourth eighth. 

 

Figure 6.12: Energy flow vectors for nine slices. Fourth eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. This time bin does not reveal a clear pattern of 

energy flow and might be considered an intermediate state. 
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Figure 6.13: Energy flow vectors for nine slices. Fifth eighth. 

 

Figure 6.13: Energy flow vectors for nine slices. Fifth eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. This flow pattern reveals the second secondary 

reversal around the second secondary increase in energy flow in several cases. 
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Figure 6.14: Energy flow vectors for nine slices. Sixth eighth. 

 

Figure 6.14: Energy flow vectors for nine slices. Sixth eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. This flow pattern also reveals the second secondary 

reversal around the second secondary increase in energy flow in several cases. 
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Figure 6.15: Energy flow vectors for nine slices. Seventh eighth. 

 

Figure 6.15: Energy flow vectors for nine slices. Seventh eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. This flow pattern reveals the other side of the second 

secondary reversal around the second secondary increase in energy flow in several cases. 
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Figure 6.16: Energy flow vectors for nine slices. Eighth eighth. 

 

Figure 6.16: Energy flow vectors for nine slices. Eighth eighth. 

Top nine plots show total energy flow over averaged delta periods for individual slices. The timescales, 

i.e. the length of the delta period, and the magnitudes are all scaled to unity, for uniform presentation, so 

are not on the same scales, except for the location of the eighth part of the delta period being examined, 

indicated by the vertical dashed lines. Bottom plot shows total energy flow vectors for each area for each 

slice corresponding by color to the above nine plots. Each set of four vectors with the same color are on 

the same scale. This scale is not shared across slices. The energy flows are in reasonable agreement with 

deep layers projecting downwards, and superficial layers projecting backwards towards association areas. 

This is the other side of the primary reversal at the other side of the strongest energy flow. 
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Figure 6.17: Higher frequencies contribute to slow flow patterns 

 

 

 

Figure 6.17: Higher frequencies contribute to slow flow patterns 

The energy flow patterns of the previous figures appear mainly at delta and first harmonic frequencies, 

but the energy content of these patterns was not limited to these low frequencies, as illustrated in this 

figure. Progressively filtering out higher frequency bands appeared to diminish the flow patterns, 

especially the secondary first harmonic pattern. We picked the two clearest examples, corresponding by 

colour to the previous set of figures. The wide band went up to 500 Hz, below gamma means below 30 

Hz, and below theta means below 5 Hz. This also illustrated that the overall patterns of energy flow were 

not trivially linked to the frequency-content of the same energy. 
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6.3.4 Poynting vector flow/dissipation-ratio in wake and sleep models 

 We were further interested in the possible computational differences between the wake- 

and sleep-state models in terms of dissipation of energy related to computation as 

discussed earlier in chapter 1. To investigate this aspect we calculated the ratio of total 

energy dissipation to total energy flow in each state, asking how much of the energy 

flow was used for dissipation as an indication of irreversible computation.  

 

 However, we first formed an overview of energy flow and dissipation in both model 

states. Figure 6.18 compares the spatial distributions of energy flow and dissipation 

between the wake-state and sleep-state models. The clear differences in terms of spatial 

distributions suggested that further quantification was warranted, and would likely 

reveal further details as to the nature of these more superficial (average) differences. 

 

 We then considered delta period averages of both energy flow and energy dissipation in 

the nine cases from the flow vector study above; a single pattern emerged in at least 

three cases as shown in Figure 6.19: While flow and dissipation were correlated at delta 

frequency, they appeared to be anti-correlated at the harmonic. 

 

 Instead of the absolute energy flow considered up till now, we finally decided to 

consider the real and imaginary parts separately in the hope that any differences might 

provide further insight, and perhaps help interpret the physical or computational 

meaning of imaginary dissipation and flow. 

  

Figure 6.20 compares the real dissipation ratios between the wake-state model and the 

sleep-state model; only a small part of the energy flow is dissipated in both states, but 

the relative dissipation is stronger in the sleep state, suggesting that more information 

(potentially noise) is deleted (the irreversible process), consistent with the synaptic 

rescaling idea. In terms of entropy this result suggests that local internal entropy is 

lowered in both states, i.e. structure is created, by raising entropy in the environment by 

radiating heat (energy in an unstructured high entropy state). 

Figure 6.21 shows the same comparison, but for the imaginary energy flow and 

dissipation. Again the two states are different, but this view reveals a negative 

imaginary dissipation ratio in the wake state model, which has no known biophysical 

interpretation to our knowledge; we will consider possible explanations in the 

discussion below. 
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Figure 6.18: Overview of energy dissipation and flow 

 

 

 

Figure 6.18: Overview of energy dissipation and flow 

Using the same easily aligned data subset as in Figure 5.6 we formed average spatial maps of energy 

dissipation and flow in both model wake- and sleep-states. Both in terms of dissipation and flow the 

wake-state appeared to be more active; the spatial pattern was also more distributed, whereas the sleep-

state seemed to focus towards deep primary areas, where delta is also generally stronger (compare Figure 

5.7). These visually identifiable spatial differences set the stage for further quantification. The maps were 

created based on the original array resolution with subsequent cubic spline interpolation, i.e. not super-

resolution, due to the computational demands. 
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Figure 6.19: Delta period average energy flow and dissipation 

 

 

 

Figure 6.19: Delta period average energy flow and dissipation 

Three examples of energy dissipation correlating with energy flow at delta frequency, but anti-correlating 

at the harmonic. Flow and dissipation were normalized to be presentable on the same scale, as energy 

flow was orders of magnitude stronger as shown for example in Figure 6.18.  
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Figure 6.20: Comparison of real energy dissipation/flow ratios 

 

 

 

Figure 6.20: Comparison of real energy dissipation/flow ratios 

Here we considered the ratios of the real part of total dissipated energy to total energy flow in the wake-

state model and in the sleep-state model. These are totals of all channels in neocortex over one minute. 

Only a small part of the energy flow was dissipated in both cases, but the sleep state model dissipated a 

relatively higher amount.  
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Figure 6.21: Comparison of imaginary energy dissipation/flow ratios 

 

 

Figure 6.21: Comparison of imaginary energy dissipation/flow ratios 

Here we considered the ratios of the imaginary part of total dissipated energy to total energy flow in the 

wake-state model and in the sleep-state model. These are totals of all channels in neocortex over one 

minute. Only a very small part of the imaginary energy flow was dissipated in both cases, but the sleep 

state model dissipated a relatively higher amount, and curiously the wake state imaginary dissipation ratio 

was negative, which has no known biophysical explanation.  
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6.4 Discussion 

 Building on the framework established by the results of the previous chapter, and using 

a new method of micro-electrode array analysis providing a physically based dissipation 

measure, as well as causality estimates in the form of energy flow vector fields, we 

investigated two aspects of the dynamics of a simplified wake-sleep model in the rodent 

neocortex at the interface between primary sensory areas and adjoining associational 

areas. 

 

 The question of ergodicity was relevant both for Friston’s larger proposal of a free 

energy minimization scheme in the brain (Friston 2010), and (in particular for our 

current purpose) for the possibility that the free energy minimization of the Helmholtz 

machine concept might require similar statistical constraints, but also for the possibility 

that delta power during sleep reflects a classical annealing schedule, also implying 

ergodic dynamics. 

 

 The Helmholtz machine concept mapped onto the neocortex as described in section 

2.2.3 provided two tentative predictions: 1) That reciprocal delta locked interaction 

across layers should be accompanied by interaction along layers as well. 2) That 

comparison of the outcomes of the two sets of weights occurs at twice the speed of the 

fundamental cycle of the wake-sleep algorithm.    

 

6.4.1 Ergodicity in the wake-sleep model states 

 Firstly, we were unable to show that the dynamical system of the neocortex conforms 

to ergodic statistics in either of the two wake-sleep model states. This suggests that the 

system is not ergodic, but we have not shown this to be the case in a rigorous way, since 

the methods of determination did not apply to the considered spectrums of dissipation. 

If the states were ergodic the methods should have applied, but it is unknown if this 

implies non-ergodicity, since we could also not show the system to be specifically non-

ergodic.  

  

 Nevertheless, power-laws have been found in many different settings, in human 

electroencephalograms (Grigolini, Aquino et al. 2009) and fMRI (He 2011), as well as 

in animals (Bedard, Kroger et al. 2006), and both based on field potentials and on 

extracellular multi-unit spike events (Beggs and Plenz 2003; Plenz and Thiagarajan 
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2007). These studies have mainly focused on concepts like self-organized criticality and 

scale-free networks, which are computationally attractive constructs (Pu, Gong et al. 

2013), however not in as clear a sense as we consider ergodicity here, given the 

relations to tractability outlined in chapter 1.  

 

 It has already been noted that fitting a power law is not in itself a guarantee that it is the 

best suited distribution, and it can indeed be exceedingly difficult to tell the difference 

between distributions (Chu-Shore, Westover et al. 2010), and since we have used a 

more rigorous criterion (Clauset, Shalizi et al. 2009) than most studies, it is difficult to 

assess the disagreement between previous fits and the present failure to achieve 

significant fits at all.  

 

 In addition, we have of course considered a different measure than previous work; as 

far as we can tell there is agreement that the right measure is indeed dissipation of 

energy, and that neural activity (as spikes or field potential) reflects this dissipation to 

some extent. From a metabolic point-of-view this appears to be correct, since a spike 

reasonably has an associated metabolic energy cost, but from a computational point-of-

view it is only true if the process is irreversible in the sense that the entropy of the 

energy is raised. By more directly measuring dissipation we hope to have bypassed such 

uncertainties. It is also interesting to note that peak energy flow occurs during the most 

active part of the delta duty cycle, peak negativity in deep layers corresponds to peak 

depolarisation of layer 5 intrinsically bursting cells (Carracedo, Kjeldsen et al. 2013). 

Of further interest is the abrupt reversal of flow seen either side of this peak. Given the 

temporal arrangement of nested theta rhythms in the delta rhythm this strongly suggests 

that the two theta periods identified previously may represent a biological substrate for 

horizontal as well as interlaminar interactions. The previous study cited above, and the 

Granger measures used here revealed a superficial-deep/deep-superficial layer repeated 

pattern of causal interaction. The energy flow data shown in this chapter show that, at a 

time in the delta period when the first theta period would be expected in superficial and 

deep RS cells (see figs 2 & 3 of  (Carracedo, Kjeldsen et al. 2013)), energy is being 

transferred from associational to primary sensory areas (‘top down’). In contrast, during 

the second nested theta period energy flow is reversed, primary sensory to association 

cortex (‘bottom up’). The relationship between these findings and both traditional ideas 

about bottom-up and top-down processing, and the Helmholtz machine are considered 

in more detail below. 
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6.4.2 Helmholtz-like interaction across and along layers 

 Our basic paired-electrode investigation of causality across layers agrees with previous 

work (Carracedo, Kjeldsen et al. 2013), and provides a more detailed demonstration 

through the complex continuous wavelet based non-parametric Granger causality time-

frequency maps. We did not specifically investigate the relation between causality 

estimates and energy flow, but the primary pattern of flow agrees with the pattern of 

causality reversal (compare Figure 6.5 with Figure 6.9 and Figure 6.16, and see 

previous section). However, we also found more detailed information in the micro-

electrode array approach in the form of a secondary peak in the energy flow spectrum 

(which was much weaker in the local field potential), and in the secondary reversals 

occurring with this harmonic. Although the harmonic was also in the delta band we 

found that the flow patterns of first, and in particular second reversals at harmonic 

frequency were powered by higher nested theta and gamma frequencies, again 

highlighting the idea that although delta is the main orchestrator it is not the only 

functional aspect in this process, the whole being far more spectrally distributed. This 

was also apparent in the fact that dissipation appeared to be anti-phased with the flow at 

the harmonic (Figure 6.19), suggesting different computational roles. 

 

 Overall these patterns agree with the predictions made based on the Helmholtz machine 

framework, that there should be a flow of information along layers as well as across, 

and that there should be major computational events occurring with twice the frequency 

of the fundamental rhythm of the wake-sleep algorithm (not the biological wake-sleep 

cycle). Currently the biological origin of the weaker, second flow reversal is unclear. 

The timing within one delta cycle suggests coincidence with a predominantly 

hyperpolarised state in the main delta generating neurons in layer 5. However, the 

nesting of theta frequency activity demonstrated in (Carracedo, Kjeldsen et al. 2013) 

was seen to be extremely labile; occurring over a very narrow range of membrane 

potentials in the cells concerned. Excitation above this narrow band resulted in near-

persistent theta activity. It is tempting to suggest, therefore, that the more labile (in 

terms of occurrence in each slice) second flow reversal may reflect continued, or at least 

prolonged theta activity in deep and superficial RS cells. 

 

 These findings might also fit well with ideas of interacting bottom-up and top-down 

processes, most commonly studied in the visual system (McMains and Kastner 2011), 

but to our knowledge the specific delta orchestrated alternating pattern along layers 
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found here has no neurobiological precedents. Alternating patterns have been found in 

slightly different settings though; for example, in wake-state monkey temporal cortex 

between sensory processing and putative memory processing (Takeuchi, Hirabayashi et 

al. 2011), and in rat auditory cortex between sensory-evoked and spontaneous activity 

(Sakata and Harris 2009).  

 

6.4.3 Energy flow and dissipation 

 The present finding that the percentage of energy flow dissipated in the sleep-state 

model is larger than in the wake-state model appears superficially to conflict with the 

fact that metabolic demands are reduced in sleep (Vyazovskiy and Harris 2013), but 

these are not the same measures; in fact, the energy flow itself was also found to be 

higher in the wake-state model. However the percentage dissipated further indicates 

how much of the energy is used in computationally irreversible processes, at least in the 

framework established in the first three chapters. Although the metabolic cost of 

potentiation cannot be recovered (it is not reversible), and although there must also be a 

metabolic cost of depotentiation, from a computational entropy perspective the 

establishment of connections is reversible, but the deletion or rescaling of connections 

cannot be undone (unless the original stimulation is reintroduced or perhaps replayed). 

So this suggests a strong computational role for sleep, but as we saw in the previous 

chapter this is only in connection with equally important computations in the preceding 

wake-state in the form of spike-train-to-field coherence, presumably to predetermine 

which connections to keep alive (by replay) during sleep depotentiation. As we saw in 

the previous chapter, this predetermination appeared to be, in part at least, related to the 

degree of spike-train-to-field correlation in the high gamma band during stimulation. 

 

 Surprisingly there is no accepted interpretation of the imaginary part of the 

instantaneous Poynting vector (Czarnecki 2006; Emanuel 2007; Balci, Hocaoglu et al. 

2010; W. Duana 2012), although it is a fundamental concept in electromagnetism, 

constructed merely as the cross product of electric and magnetic fields. Confirming this 

peculiar situation is the fact that it is mirrored in its acoustic counterpart where an 

agreed interpretation also appears to be missing (Domenico, Nicola et al. 1996; W. 

Duana 2012). The imaginary part of the time-averaged (as opposed to instantaneous) 

Poynting vector is normally considered to reflect energy flow associated with non-

radiating electromagnetic waves (the real part being the radiating waves), but the 
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interpretation is somewhat fussy in the sense that the direction of flow is not explained 

by such standing waves; it is normally considered to represent back and forth flows, but 

these flows do not equal out, and the net flow and its direction is not really explained. 

Again the situation is mirrored in acoustics where the imaginary part of the time-

averaged intensity is also associated with standing waves with some difficulty (Stanzial, 

Prodi et al. 1996).  

 

 We can perhaps venture an explanation as to why it has been so difficult to come to 

grasps with this issue in both fields; there appears to be an intrinsic interpretational 

problem with the use of complex numbers, although immensely useful in general, they 

introduce the imaginary unit, which is almost by definition uninterpretable. This only 

really becomes apparent when one considers the alternative of the geometric algebra 

introduced in section 3.4.2. 

 

 It is however not difficult to come up with a possible interpretation of the imaginary 

part of the instantaneous Poynting vector, since it is already known that energy transport 

happens in at least two distinct ways: The first is via traveling waves corresponding to 

the radiative real part as mentioned above. The second is via resonant energy transfer, a 

phenomenon which occurs in the exponentially decaying near-field of resonators whose 

standing waves oscillate at the same (or harmonic) frequency (Kurs, Karalis et al. 2007; 

Karalis, Joannopoulos et al. 2008). Importantly, resonant energy transfer is however not 

limited to only near-field distances, since any series of resonators, each only within 

near-field distance of the previous and the next resonator, will form a bridge or tunnel 

between any points on the series like a waveguide. This is important because of the 

interpretation of on one hand the real radiative part as a locally progressive, propagating 

or traveling effect, and on the other the imaginary resonant part as a non-local and 

virtually instantaneous phenomenon. In biological terms these parts would correspond, 

respectively, to propagating waves of activity (i.e. poorly synchronised, percolative 

neuronal activations), and to synchronous activity where multiple cortical subregions, 

and the neurons therein, are tightly, temporally coactive. It is tempting to suggest that 

the negative imaginary part of the dissipation/flow ratio seen in the wake-state model 

may represent the use of such synchronous connections via the gamma rhythms 

generated by the stimuli (Traub, Whittington et al. 1996). 
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 Let us further attempt to apply this interpretation to the dissipation ratio findings from 

above: Again let us view the situation from the entropy perspective related to 

dissipation as previously described; then in the wake-state local entropy is lowered 

presumably by the creation of local order (synaptic potentiation), but this enhanced 

local order at the same time breaks the global coherence signified by a negative 

dissipation ratio or equivalently an increase in entropy in a global perspective. As 

discussed earlier there is always the question of scope when considering entropy, there 

is no contradiction in lowering entropy in a local perspective and at the same time 

raising it in a larger perspective, presumably it is the enormous increase in the Sun at 

the solar system level, that allows biological life on Earth to lower entropy in a local 

perspective without per se going against the Second Law of Thermodynamics (Penrose 

2001).  

 

 In the sleep-state on the other hand both local and global perspectives display a 

decrease in entropy (via positive dissipation). The suggestion is then that the sleep state 

facilitates a global or at least long-range structuring of neocortex, which is lacking in 

the wake state. The suggestion is also that the physical mechanism for this process is a 

non-local information processing perspective carried by resonant energy transfer under 

the straight-forward interpretation of the Poynting vector given above. Potentially this 

view can help unify the idea of contextualization during sleep with the conflicting 

finding (Esser, Hill et al. 2009) of uncoupling of propagating longer-range connections, 

as discussed in the previous chapter, since the suggested resonant connections are 

specifically not propagating.  

 

 The suggestion that global entropy increases in the wake-state fits nicely with the 

increase in sleep pressure, but might be at variance with ideas of communication 

through coherence (Fries 2005); this might depend on whether there is a cost associated 

with such communication in the sense that coherence is a resource that is spend on 

communication. This point of view would provide a semi-mechanistic explanation for 

sleep pressure, but we are not aware of direct evidence that sensory-related coherence 

and sleep pressure anti-correlate during wakefulness. We do know that neural activity 

increases with sleep pressure (Mignot and Huguenard 2009), which could indicate a 

compensatory mechanism; however, this increase was also associated with increased 

synchrony (Vyazovskiy, Olcese et al. 2009), unfortunately it was unclear to us whether 

this increase was normalized by the level of neural activity. From an abstract (quantum) 
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computational point of view sensing the environment is associated with a loss of 

coherence in exchange for local physical manifestations, while building a coherent 

resource in the first place requires de-coupling from the environment, consistent with 

the characteristics of the wake-sleep cycle. We will reconsider such processes in the 

next chapter. 

 

 It should be noted that the concept of resonant energy transfer goes against the view of 

the brain as an electrical circuit (Kandel, Schwartz et al. 2012), but for an electrical 

engineer this view is not necessarily acceptable in the first place, since in practice 

electrical circuits of this scale and nature are extremely difficult to keep isolated, and it 

is as much an antenna design problem as a circuit design problem. Some neuroscientists 

might like to counter with the fact the axons are insulated by myelin, but that is not 

really how insulation works; even if you are in a Faraday cage, but leave the door open 

the slightest you will have a cell phone signal, meaning that any gap in insulation defies 

the purpose of preventing antenna characteristics, indeed not all axons are myelinated in 

the brain, and even those that are can have many hundreds of microns of unmyelinated 

initial segment before insulation starts. This does obviously not deny that there is 

another important purpose of myelination, maintaining the axonal chemical micro-

environment for example. Further, it has previously been noted that equivalent circuit 

models contain resistors, which imply a heat-loss associated with action potential 

propagation that does not match actual measured values (Heimburg and Jackson 2007); 

the proposed resolution of this conundrum was to consider it a reversible heat-loss, i.e. 

negative dissipation as the process is reversed, so the present finding of negative 

dissipation might not be without theoretical precedents.  

 

 These final ideas are obviously very tentative and hinge on several equally tentative 

interpretations, which cannot be said to be proven in any way; further, the 

interpretations might be coloured by our desire to find a physical substrate in the brain 

for processes, which could somehow go beyond algorithmic limitations discussed 

earlier. So let us finally discuss whether this could be the case in the hypothetical 

framework built so far: From the exposition given in the background chapters it is clear 

that we are looking for an effect that might banish the Axiom of Causality, but would 

allow a non-axiomatic causality to re-emerge naturally from the remaining axioms. The 

obvious questions then revolve around the nature of resonant energy transfer. We might 

consider it in a semi-classical framework like Wheeler and Feynman’s absorber theory 
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(see section 3.3.2), or even in an acoustic framework where the evanescent wave-

mechanical coupling equations are still the same, but the most general perspective is 

given by quantum theory, where the same phenomenon is also the foundation of 

quantum annealing, which we favoured in section 2.2.3.  

 

 We would expect to be able to calculate how long, say, an electron spends in the tunnel 

during a quantum tunnelling process, however quantum mechanics provides three 

possible answers, all of which are unsatisfactory: The first is simply that we are not 

allowed to ask, the second is exactly no time at all, and the third is some amount of 

imaginary time. This again highlights the issues with interpreting the imaginary unit, 

which this example has been used specifically to illustrate in the geometric algebra 

context (Gull, Lasenby et al. 1993a). Unfortunately the geometric algebra version does 

not so far provide an answer as well, so we are left with experimental measures, which 

also have great difficulties in finding agreement amongst themselves. The emerging 

consensus however appears to be that it does travel faster than light, while no 

information can be communicated faster than light by the process (Nimtz 2011; Bancal, 

Pironio et al. 2012); the same argument as for quantum teleportation, perhaps 

suggesting a relation. However, detecting the arrival of an electron (to measure the 

arrival time) logically entails the communication of information, so the argument 

appears weak; on the other hand it is clear that electrons do not arrive before they leave, 

even with faster than light speed they start in the past and arrive in the future, so 

causality is maintained (Nimtz 2011). This is exactly the sort of process we are looking 

for, where causality is not enforced by the fundamental speed limit of Special Relativity 

theory, but appears to be in force anyway, even when the speed limit is broken. Again it 

should be noted that we are not trying to look at things purely objectively at this point; 

here we are specifically trying to apply our theoretical bias to form an interpretation, 

which fits with the same bias, so that we can conceptualize an approach to realizing 

similar processes in silico. This is the focus of the next chapter. 

 

6.4.4 Validity of near-field electromagnetic holography 

 A final point that we should not gloss over is of course that the method of near-field 

electromagnetic holography, at least in this setting and implementation, is not a tried 

and tested method (as the analogous method is in acoustics), and it is quite possible that 

we have made both conceptual and implementational mistakes along the way. We have 
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tried to avoid such pitfalls, but time and resources did not allow a completely rigorous 

verification; instead we have relied on the reasonable agreement of the outcomes of our 

method with prior knowledge of the neocortical system. The main points of agreement 

are: 1) The energy flow across layers agrees with the causality estimates. In general the 

broad anatomical structure of the slices can be made out in the energy flow, clearly 

separating cortical and subcortical structure, as well as deep and superficial layers. 

Primary and associational areas also appear as distinct units when considering the time 

course of energy flow. 2) The dissipation of energy during delta is focused in layer 5 

and layer 2/3 (see Figure 6.4), which coincides with the spatial distribution of delta 

power and unit activity (Carracedo, Kjeldsen et al. 2013). In addition, the stronger 

dissipation events appear to spread along layers in a coherent and realistic fashion. 

3) The general patterns of energy source density agree with current source density 

patterns (Carracedo, Kjeldsen et al. 2010), but are more refined and of greater 

interpretational scope. 

 

6.4.5 Summary 

 We did not find any evidence of ergodic dynamics in either the wake-state model or the 

sleep-state model. However, a conclusion of non-ergodic dynamics could also not be 

fully drawn. 

 

 We confirmed the predictions made by a more detailed mapping of the Helmholtz 

machine concept onto neocortical areas. This was shown by energy flow vectors fields 

as a potential measure of causality, but closer to the underlying neurobiology than 

conventional causality estimates. 

 

 In addition, the ratios of dissipation to flow were found to be different between wake 

and sleep model states, suggesting different computational loads and perspectives. The 

difficult finding of negative imaginary dissipation in the wake-state was interpreted in 

our framework in a way which allows a path forward for the abstract computational 

modelling approach. This is the topic of the following chapter. 
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Chapter 7.  Results  

search for holographic tractability in silico 

 

7.1 Introduction 

 This chapter presents the results of our computational modelling efforts. We focussed 

on geometric algebra implementations of holographic and quantum neural network 

concepts, as a mathematical foundation free of the difficult to interpret imaginary unit, 

which we identified in chapter 3 as a source of both conceptual and practical issues.  

 

 Although qubits and quantum-like computation have been mapped onto biological 

neurons and oscillations before (Orlov 2002; Burger 2011), our aim here is more 

abstract in the sense that we wish to identify (holographic) processes that can potentially 

go beyond conventional quantum computing. The specific mapping is thus a secondary 

concern, and is probably only likely to be correct once the fundamental holographic 

computational substrate has been identified, since the potential mappings of qubits are 

many, but the elusive mapping between a holographic computational construct and 

enabling physical/biological processes is likely singular. 

 

 We first aimed at reproducing holographic neural networks in geometric algebra on a 

basic test case as previously formulated in (Aerts, Czachor et al. 2009), with specific 

focus on the projected product as a potentially tractable version of the full geometric 

product, and as a conceptual link to quantum measurements that are also conceptually 

projections on limited subspaces. We then moved on to create an optimized version in 

order to test more advanced cases of structural and hierarchical data structures as first 

demonstrated in (Neumann 2001) without geometric algebra. In order to connect with 

quantum computation terminology we implemented quantum neural networks both with 

conventional complex numbers and in geometric algebra; for the same purpose we also 

considered qubit structures in geometric algebra. 

 

 Finally, inspired by the results of the previous chapter we undertook that construction 

and initial characterization (in geometric algebra) of a computational communication 

resource called an ebit. 
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7.2 Methods 

 The computational modelling used in this thesis was not about neurobiological detail, 

but rather about computational properties of principal network concepts at the most 

abstract algebraic level; at this level the model neurons are perhaps best considered as 

coupled oscillators, i.e. complex- or qubit-valued networks, but the nature of such 

coupling remains abstract in the sense that we wish to keep the door open to more exotic 

connections as suggested by chapter 3, and by the interpretation of imaginary 

dissipation in chapter 6.  

 

7.2.1 Holographic neural networks in geometric algebra 

 We implemented basic geometric algebra operations in Matlab, and verified it against a 

reference implementation (Dorst, Fontijne et al. 2009). The implementation allowed an 

optimized path for large-scale processing, as well as a matrix embedded version 

(Cartan’s representation of geometric algebra) for visual inspection of smaller (abstract) 

memory structures. We followed (Aerts, Czachor et al. 2009) to then implement 

holographic neural networks in geometric algebra. 

 

7.2.2 Quantum neural networks 

 We implemented quantum neural networks with conventional complex numbers as 

described in (Peruš 2000; Perus, Bischof et al. 2007), then replaced the imaginary unit, 

with its geometric algebra equivalent, called the pseudoscalar. For a more original 

approach we then followed (Matzke 2002) to implement qubit representations in 

geometric algebra, as building blocks for another type of quantum neural network in 

geometric algebra, with easier consideration of quantum computation terminology.  

 

7.3 Results 

 We present the results in the order they were obtained; throughout we focussed on 

conceptual computational properties rather than rigorous demonstrations and 

performance tests on specific computation problems. 

 

7.3.1 Holographic neural networks in geometric algebra in practice 

 Traditionally, the basic test case of holographic neural networks is concept-to-value 

binding in memory of personal data of a fictive character, called ‘Pat Smith’. Each value 
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is retrieved from memory by addressing it with the corresponding concept. Concepts 

and values are represented as so-called blades in a geometric algebra of limited 

dimension depending on the number of concepts required. 

 

 In Figure 7.1 we demonstrate this basic test case in our geometric algebra 

implementation. We first addressed the memory via the full geometric product with the 

reverse (see figure text) of the ‘name’ concept to retrieve the relevant answer, ‘pat’, as 

well as two noise terms in higher subspaces, specifically the subspace of 3-blades 

(indicated in the figure by the presence of three ‘eX’ factors, X being a number). 

Traditionally these noise terms are cleaned up by an additional processing step 

comparing the noisy answer with all possible answers. The projected product, on the 

other hand, uses the prior knowledge that answers only appear in the 1-blade subspace 

where they were encoded, to limit the retrieval process to this subspace. We 

implemented the projected product both by post hoc removal of noise subspaces from 

the full geometric product, and by pre-computing which parts of the geometric product 

end up in the right subspace, and then only computing those. This process was however 

almost as costly as the full product; in both cases we however avoided the need of the 

additional clean-up comparison with all possible answers. 

 

 The specific implementation of the projected product was however not general in the 

sense that in more complicated cases answers end up in more complicated subspaces, 

and the projected product must be designed especially to reflects this; to our knowledge 

it is unknown whether this design process is always feasible. To test this we 

implemented a more elaborate test case of learning logical transformations, shown in 

Figure 7.2. In this case we were also able to design a suitable projected product, but 

again it was specific to the special case being considered. Figure 7.3 visually compares 

the outcome of the full geometric product versus the projected product; the full product 

creates an answer with more than 2500 blades, most of which belong to the noise part. 

The projected product only produces about 200 blades, only about half of which belong 

to the noise part. Compared to the simple test case this case also reveals that under more 

complicated conditions even the correct subspace is also contaminated by some amount 

of noise, the strength of which is however negligible compared to the strength of the 

correct answer (the length of the vertical line indicated in the figure).   
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 It is worth noting that addressing the memory with the geometric product is reversible, 

since by applying the same (or reverse) operator again, the three-part noisy answer 

recreates the full memory. The projected product, on the other hand, is irreversible, 

because no more information can be recreated from the noise-free answer. However, 

since this is not a quantum system we are allowed to simply retain the original copy of 

the memory, so there is no practical collapse of the memory superposition. 
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Figure 7.1: Basic test case of holographic reduced representations 

 

 

 

 

Figure 7.1: Basic test case of holographic reduced representations 

Six personal data concepts and values of the fictive character, Pat Smith, are coded as basis blades of a 

geometric algebra. Concepts and corresponding values are bound by the geometric product, and added to 

a superposition in a single memory element (psmith above). The memory is addressed via the geometric 

product with the reverse of the concept whose value is to be retrieved. The reverse is literally formed by 

reversing the order of the string of zeros and ones in the blade. 

The geometric product produces a three-part answer, the first part belonging to the 1-blade subspace, the 

other two to the 3-blade subspace. The correct answer is only the first part; the other two parts represent 

noise.  

By applying the prior knowledge that only answers in the 1-blade subspace make sense (because all 

information was encoded in this subspace), we can throw away the last two parts, and get a clean answer. 

However, the resources spent on calculating these two noise parts are wasted; it would be preferable to 

simply not calculate them in the first place. 

The projected product attempts this feat; in this case by manual design of the reduced calculation, which, 

although successful, does not generalize to more complex situations. 
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Figure 7.2: Structural test case of holographic reduced representations 

 

 

 

Figure 7.2: Structural test case of holographic reduced representations 

Hierarchical structure, in this case formal logical formulae, can be represented and transformed with 

holographic reduced representations in geometric algebra. Here we learned the transformation between 

two logically equivalent expressions, and tested the memory on an unseen expression, comparing the true 

answer y, with the reconstructed answer yr, for both the geometric product and the projected product (re-

designed for this specific case). See next figure for a visual representation and comparison of results. The 

structural test case was taken from (Neumann 2002). 
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Figure 7.3: Structural test case of holographic reduced representations, outcome 

 

 

 

Figure 7.3: Structural test case of holographic reduced representations, outcome 

Graphical representations of the outcomes of addressing the transformation memory defined in the 

previous figure, with the geometric product (top), and the projected product (bottom). The x-axis shows 

the number of bits set in each blade; one bit corresponds to 1-blade subspace, two bits to the 2-blade 

subspace etc. The y-axis shows the number of blades, each row is one blade.  

In the top panel there are more than 2500 blades, the left columnar pattern of set bits reflects noise in 

higher subspaces; the strongest single component (blade) is the correct answer, but there is also a strong 

candidate answer.  

The bottom panel answer from the projected product, on the other hand, only produces slightly more than 

200 blades, and the correct answer is very clearly the strongest component, although the same subspace 

also contains some noise (the slanted, dotted line ) in this more elaborate example. 
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 The basic test case was implemented in Cartan’s matrix embedded version of geometric 

algebra (described in more detail in chapter 3), which is catastrophically inefficient, 

because of close-to exponential scaling of matrix sizes. For this reason the more 

complicated test case was implemented in our optimized version. However, the matrix 

version allows one to inspect the matrix content, which led (Patyk 2010) to notice that 

the sparse matrices contain repeating patterns. This discovery resulted in a much 

reduced version of Cartan’s representation, which was implemented simply by dividing 

by a factor of two in the right places in an otherwise complicated expression (involving 

repeated application of so-called Pauli matrices), used to generate Cartan’s embedding; 

we refer to this innovation as Patyk’s trick. 

 

7.3.2 Beyond Patyk’s trick 

 In Figure 7.4 we demonstrate the application of Patyk’s trick on a holographic neural 

network representation embedded in Cartan’s matrix form as a 256 trillion element 

matrix (implementable only due to extreme sparsity exploitable through sparse classes 

in Matlab), reduced to about 67 million elements by Patyk’s trick. However, by 

exploiting sparseness we were able to consider embedded matrix representations of 

much larger size than originally considered by Patyk, which led us to the further 

discovery that Patyk’s trick was not the end of the possible exploitations of self-

similarity in the data structure; in fact, the fundamental pattern in this case repeated past 

Patyk’s representation down to around 150000 element matrices, in some cases further 

(while retaining its computational properties).    

 

 Unfortunately, exploiting this discovery directly turned out to be difficult; in Patyk’s 

case dividing by a factor of two was enough, but we were unable to find any usable 

effect of dividing by larger integers, and we were unable to conceptualize another 

approach within Cartan’s representation. Nonetheless, it was encouraging that the 

holographic neural network possessed such natural self-similarity, perhaps suggesting 

that in an optimized implementation this redundant data would simply cancel out to 

reduce the computational load as well as the storage requirements.  
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Figure 7.4: Patyk’s trick hints at further tricks 

 

 

 

 

Figure 7.4: Patyk’s trick hints at further tricks 

The full representation (big square with diagonal) in Cartan’s representation takes a 256 trillion element 

matrix, while Patyk’s representation only contains about 67 million elements taken from the centre of the 

diagonal, indicated by the black square (not to scale). A further zoom-in reveals that the self-similarity 

however continues below Patyk’s representation to a matrix of only about 150000 elements. An 

additional example of Patyk’s representation shows another kind of self-similarity along the diagonal. 

The computational properties of these matrices are the same, i.e. concepts and values could be retrieved 

with the same fidelity. The full representation was only implementable by exploiting the extreme sparsity 

with sparse classes in Matlab.  
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7.3.3 Quantum neural networks in geometric algebra in practice 

 We started an investigation of quantum neural networks by implementing a standard 

quantum neural network as a complex valued matrix memory; to verify the 

implementation we selected an image pair dataset for learning natural human pose 

estimations from (Ferrari, Marin-Jimenez et al. 2009). Pixel values were coded in the 

phase angles of complex numbers with magnitudes set to unity. Image sizes were 

627x353 by 3 colour values, producing a matrix size requirement of about 440 billion 

complex values. This made the problem immediately intractable in space (problems can 

be both intractable in time (computation) and space (storage)), however it was not quite 

intractable in time, so we exploited a common trick of trading time for space (Peruš 

2000; Perus, Bischof et al. 2007): This was achieved by introducing the addressing of 

the memory (to retrieve an answer) before the full matrix was created, meaning that 

each matrix elements’ contribution to the final answer was generated one-by-one, 

corresponding to the addressing object, and then discarded to make room for the next 

calculation of the next part. The trade-off being that the full set of calculations had to be 

re-done for each memory element. In this way the full memory matrix did not exist at 

any one time. 

  

 Interestingly, this process was somewhat analogous to the quantum collapse that occurs 

at the time of measurement in real quantum systems; in the same way the superposition 

never physically exists, and we are unable to copy and reuse the actual quantum 

memory for further measurements. If the memory could be copied or retained it is 

known to lead to tractable quantum computation (Aaronson 2005a). There is some 

indication that this might eventually be possible, since it is known that fast continuous 

measurements can prevent a quantum system from collapsing, a phenomenon known as 

the quantum Zeno effect (Misra and Sudarshan 1977). 

 

 Figure 7.5 shows the outcome of addressing the quantum neural network to retrieve a 

pose estimation. The network was able to recall seen poses and to some extent poses 

that were very close to seen poses; however, it could not generalize to completely 

unseen poses, which was also expected to be too difficult.  
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Figure 7.5: Quantum neural network example 

 

 

Figure 7.5: Quantum neural network example 

Top, example of original image and pose-estimation set, shown with pose-estimation overlaid. Second, 

recall of seen pose from 78 set memory. Third, weak recall/generalization of unseen pose from 745 

element memory with very similar poses. Fourth, failed generalization to unseen pose. 

Recall/generalization was judged by eye depending on whether pose estimations (coloured line overlays) 

could be visually discriminated.  
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 Re-implementing the quantum neural network in geometric algebra revealed several 

interesting aspects. The main conceptual tasks were to replace the imaginary unit with 

its geometric algebra equivalent, and replace the matrix structure with a multi-vector 

structure. This led to interesting considerations: The imaginary unit corresponds to a so-

called pseudoscalar, the highest grade object (for complex numbers, a 2-blade), of the 

space of the geometric algebra in question. If all complex numbers are given the same 

pseudoscalar they essentially end up as one summed-up complex value in the multi-

vector memory (which is useless), revealing that it is the matrix structure that prevents 

this in the conventional version. Giving each complex number its own pseudoscalar 

means reserving a specific subspace for it, while the size of the full space of the 

geometric algebra must increase correspondingly to accommodate all necessary 

subspaces (depending on the number of complex values). No significant time or space 

appeared to be saved in this setup. However, small or redundant values in the matrix 

formulation can possibly be set to zero; if enough zeros exist to make the matrix sparse 

a significant optimization would exist through sparse library routines. On the other 

hand, in the multi-vector representation all zeros can be immediately discarded 

(sparseness not required); we did however fail to find a feasible implementation and 

application of these ideas. 

 

 Considering complex numbers in their own subspaces, however, immediately led to the 

concept of qubits, which we considered next in the hope to achieve further 

understanding through the terminology of quantum computing. 

 

7.3.4 Qubits in geometric algebra  

 Qubits map into geometric algebra in much the same way as complex numbers, with 

additional interpretations of specific values as zero or one, and as zero and one at the 

same time. A key concept is the so-called Hadamard gate, which is a fundamental 

operator in quantum computing, since it rotates the qubit state between classical states 

(zero or ones) and quantum superposition states of zero and one (and the opposite, one 

and zeros) simultaneously. Figure 7.6 shows the geometry of the qubit, and its 

construction in geometric algebra, as well as the construction and effect of its associated 

Hadamard gate, which turns out to be simply the pseudoscalar of the space of the qubit, 

as with complex values above.   
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Figure 7.6: Qubit structure and Hadamard gate in geometric algebra 

 

 

 

Figure 7.6: Qubit structure and Hadamard gate in geometric algebra 

A qubit can be represented and manipulated in geometric algebra without the use of complex numbers. 

Here we define qubit A, and its associated Hadamard gate HA, which rotates the qubit state 45 degrees 

with every application, back and forth between classical and superposition states. 

Every additional qubit requires its own subspace and its own Hadamard gate; a qubit register is formed 

via the geometric product, A * B * C etc., and can be put into a separable entangled superposition by 

sequential application of respective Hadamard gates, A * B * C * HA * HB * HC. 

A qubit corresponds (can be directly encoded into) to a ½-spin particle, e.g. an electron, which can be 

visualized as a spinning top or better a gyroscope; the axis of rotation pointing up is the logical 1, 

pointing down is 0, the superposition state is represented by the vertical position of the gyroscope spin 

axis, in which case the gyroscopic forces (precession) create a second axis of rotation causing the gyro to 

spin around both axes at the same time, i.e. state superposition. 
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 Figure 7.7 further provides a view of the four qubit states in Cartan’s embedded matrix 

representation, as a reference for later, more complex representations. In this example 

we used a small space, which could only hold a few different qubits, to make the 

patterns easily visible. 

 

 The Hadamard concept from qubits and quantum computing inspired several new 

considerations: Firstly, we considered the possibility of applying a similar concept to 

the quantum neural network developed earlier, since this appeared to be a new 

possibility afforded by the re-formulation in geometric algebra; we could however not 

conceptualize an immediate benefit to the memory size problem faced by this approach, 

although the dual-space transformation by the pseudoscalar is similar to an eigenspace 

transformation, and several optimizations might lie down this path. Instead, we returned 

to the holographic neural network concepts to consider the possible benefits of a dual 

space representation in this case.  

 

 It turned out that the projected product, being a projection onto a subspace, can be 

formulated in the dual space in a simpler way. Figure 7.8 revisits the basic test case, this 

time transforming it to the dual space by application of the pseudoscalar, and addressing 

it via the outer product instead of the full geometric product, then transforming it back 

by another application of the pseudoscalar, to reveal a dual space version of the 

projected product. The cost of the dual space transformations is negligible compared to 

the cost of the geometric product, although the transformations are applied via the 

geometric product, because the pseudoscalar itself is a single element multi-vector. 

Unfortunately, the savings afforded by the outer product instead of the geometric 

product were insignificant, at least in the implementations that we could come up with, 

and in addition it did not generalize to the more complicated structure case, for which 

we instead found that various combinations of the inner products of geometric algebra 

produced a projected product in dual space. This was encouraging since these are also 

potentially cost saving, but we were ultimately unable to identify a general pattern to 

exploit this in general settings. 
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Figure 7.7: Qubit states in Cartan's matrix embedding 

 

 

 

 

 

Figure 7.7: Qubit states in Cartan's matrix embedding 

Here we provide a view of the four qubit states in Cartan’s matrix embedding via Patyk’s trick, for later 

reference. This is one example; each qubit will in general appear different, and the size of the matrix (the 

overall space of the algebra) will need to grow to accommodate further qubits, this example can hold a 

few different qubits.  
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Figure 7.8: Projected product as outer product in dual space 

 

 

 

 

Figure 7.8: Projected product as outer product in dual space 

Transforming the holographic neural network memory, psmith, into its dual space representation by 

application of the pseudoscalar allowed a different instantiation of the projected product directly through 

the outer product. This approach did however not generalize to the more complicated structure case, 

where the more restrictive (but potentially computationally cheaper) inner products were needed. We did 

however not find the general structure to the inner product versions of the projected product. 
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7.3.5 Potential resources for tractable holographic computation, ebits  

 Through the conceptualization of tractable holographic computation developed over the 

first three chapters we arrived at the idea of paradox-free interaction of past and future, 

as a way to circumvent Gödel’s theorems, giving up the Axiom of Causality, but 

without losing causality itself. The question of which physical phenomenon could 

possibly carry such interaction in the brain (and elsewhere for that matter) was left open 

until the end of chapter 6, where we, on the basis of imaginary dissipation 

measurements, suggested that resonant energy transfer was a likely candidate.  

 

 The idea of quantum-like computation without actual quantum mechanics as suggested 

by formulations in geometric algebra (chapter 3 and this chapter), was supported by the 

notion that paradox-free interaction of past and future gives equal computational power 

to quantum and classical systems (both beyond previous limits); put another way, the 

interaction of past and future makes classical systems look quantum, and the concept of 

a distinct quantum level is then an illusion created by the failure to consider past-future 

interactions in both the classical and quantum pictures. 

 

 These ideas, although tentative, suggested that there is no fundamental difference 

between classical wave-mechanical resonance phenomena, and their mathematically 

equivalent quantum counterparts of quantum tunnelling and teleportation. For these 

reasons we decided to consider the geometric algebra equivalent of a quantum 

communication resource, known as ebits, used primarily in quantum teleportation 

protocols. 

 

 A single ebit is generally formed from two qubits that are maximally entangled into 

their shared Bell-states; this transformation in geometric algebra is achieved by the 

concurrent application of the qubits respective pseudoscalars (Hadamard gates) (as 

opposed to the sequential application used to sequentially rotate both qubits into their 

superposition states) (Matzke, Manthey et al. 2003). Figure 7.9 illustrates this process 

seen from the perspective of their Cartan matrix representations. The Bell-state matrix 

representations revealed that information is deleted in the process, because the number 

of matrix elements containing non-zero values is halved compared to the superposition 

states; this also revealed the irreversible nature of the concurrent Hadamard gates, 

because the deletion cannot be undone (Matzke 2002). Further applications of the 

concurrent Hadamard gates rotate the ebit between the four Bell-states, in analogy to the 
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single qubit case. This suggested that ebits can be used as computational elements in the 

same way as qubits, which is also the idea of decoherence-free subspaces considered in 

section 1.3.4, as a way to protect quantum states from unwanted interaction with the 

environment, especially the warm environment of the brain. 

 

 Following this concept we then encoded the basic test case from above into both qubits 

and ebits; in both cases we were able to retrieve correct answers with noise via the 

geometric product, and correct answers without noise via the projected product as the 

outer product in dual space, in the same way as above. We were however unable to 

identify any overt advantages of the ebit case in terms of computational costs or 

computational properties. We suspected that this was due to the simple nature of the 

basic test case, but the reality of the time-schedule for this thesis did not permit further 

investigations into more complex cases. To some extent this would also first have had to 

have been conceptualized as suitable test protocols did not appear to be readily available 

in this network perspective, although ebits have long been used in quantum teleportation 

protocols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 

 

 

Figure 7.9: Ebits via irreversible concurrent Hadamard gates 

 

 

 

Figure 7.9: Ebits via irreversible concurrent Hadamard gates 

A single ebit is formed from two qubits (a single qubit is formed from two bits) by the concurrent 

application of both qubits’ Hadamard gates. As opposed to the sequential application, A * B * HA * HB, 

which separably, reversibly entangles qubits, the concurrent application, A * B * (HA + HB), inseparably, 

irreversibly entangles qubits into their maximally entangled Bell-state cycle, which is similar to the cycle 

of the qubits, and can be used in the same way to encode a single classical bit. As can be seen by 

considering Cartan’s representations above, the reversible, sequential application creates an entangled 

superposition, but the irreversible, concurrent application deletes information (fewer squares are used in 

the Bell-state representations, half to be exact). This creates a quantum communication resource, the ebit, 

which in a sense holds an entropic credit since it has already pre-dissipated an amount of energy without 

computing specifically anything.   
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7.4 Discussion 

 We did not achieve the ultimate goal of the computational efforts presented in this 

chapter, which was to implement a tractable holographic computing concept able to 

solve intractable problems. We did however, within the time available, uncover several 

potentially important hints in the process:  

 

7.4.1 The projected product as a tractable geometric product 

 The idea of the projected product as a potentially tractable version of the full geometric 

product resonates with the measurement problem of quantum mechanics (Schlosshauer 

2005), where it is known that certain forms of measurement (projections) not allowed in 

the standard interpretation, but potentially allowed in holographic interpretations (Bohm 

and Hiley 1995), afford tractable quantum computation able to solve intractable 

problems (Aaronson 2005a). These kinds of measurements can also be seen as 

projections onto Bell-states, which when post-selected to only allow consistent results 

also provide tractable computation of otherwise intractable problems (Lloyd, Maccone 

et al. 2011b), and not only at the quantum level, but also classically (Aaronson 2005b). 

This selective consideration of only the states, which are physically relevant and 

paradox-free, was perhaps also reflected in the representational redundancy, which 

became apparent in Cartan’s matrix representations of holographic memories. This can 

be seen in Figure 7.4, going beyond Patyk’s trick; but we were unable to exploit it 

beyond said trick at this time. There is of course also a chance that the self-similarity of 

Cartan’s representations is due to the construction of the representations themselves, but 

since this did not appear to be the case for Patyk’s trick (Patyk 2010), it would also not 

be the case for further tricks.  

 

7.4.2 The reason quantum neural networks are intractable? 

 We also found a natural interface between intractable quantum neural networks, and 

the measurement problem of real quantum systems: In the same way as the network 

memory never existed, and only provided an answer at the time of measurement, real 

quantum systems never physically display their coherent superposition states, and 

collapse to a single answer at the time of measurement. In both cases this prevents 

memory reuse, which at least in the quantum case is known to solve intractable 

problems, if it were possible (Aaronson 2005a).  
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7.4.3 Ebits as entropic credit and communication resource 

 In chapter 6 we suggested that the patterns of dissipation in the wake and sleep model 

states potentially reflected the notion of entropic credit outlined in the introduction, and 

that this credit was built during sleep and spend on communication through coherence 

during the wake-state. This fits with the concept of ebits in at least two ways; the 

creation of ebits (blindly) deletes redundant information in an irreversible way, in a 

sense pre-dissipating energy before any actual computation, the ebits then become a 

communication resource, which (like a qubit) is spend (destroyed) when it is used 

(measured). The specific type of communication is characterized by long-range 

correlations, and at least potentially occurs at super-luminal speeds in the paradox-free 

sense considered throughout.  

 

 Returning to the question of mapping these computational concepts onto biophysical 

processes it is worth noting that ebits based on Bell-states are not quite unique; in fact, 

if we apply a slightly different version of the concurrent Hadamard gate, by changing 

(HA + HB +...) to (HA – HB –…), we get another set of states equivalent to the Bell-

states, called the Magic-states (Matzke 2002). This four-cycle of states are ninety 

degrees out of phase with the four-cycle of the Bell-states, but interchangeable at every 

second state. It is then hard not to notice the similarity with the electric and magnetic 

field concepts studied for near-field electromagnetic holography in section 6.2.3. While 

entry into Bell- or Magic-states is irreversible (i.e. exclusively time-forward), the 

rotation between the four states within is reversible (by the opposite rotation). The 

analogy with electric and magnetic fields forming the Poynting energy flow by their 

cross-product might then suggest that a similar combination of Bell- and Magic-states 

could produce a causal time-forwards energy flow (without assuming it in advance). An 

important hint to understanding such processes might be found in the fact that in Fourier 

dual space multiplying and dividing by the pseudoscalar, i.e. the imaginary unit, 

produces, respectively, derivatives and integrations, in a sense opposite directions of 

time. Fundamentally, there are only four time derivatives forming a cycle of position, 

velocity, acceleration, jerk (control), and back to position (Young 1976). We hope that 

future work will elucidate the true nature of these potential analogies.  

 

 Relatively little attention has been paid to ideas of tractable computing concepts in 

general, making it difficult to discuss; however, we particularly note (Pawłowski 2006) 

providing abstract, tractable geometric algebra algorithms for several intractable 
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problems, but also noting that these are considered unrealizable in physical systems, 

including quantum systems. We also note the concept of a duality quantum computer 

(Gui-Lu 2006; Gudder 2008), which goes beyond quantum computing parallelism by 

considering a dual space representation of the entire quantum computer. Within this 

framework, quantum interference provides computational properties similar to 

maximally entangled ebits, which were concluded to defeat intractable problems. This 

concept, however, also remains unproven. 
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Chapter 8.  Conclusion 

 

 Having already discussed the main findings of this thesis in the respective results 

chapters above, we will finally give a more general evaluation of the two concurrent 

approaches and their putative convergence. We will thus highlight the main novel 

elements and their interactions along the way. 

 

8.1 Evaluation of the electrophysiological approach  

 The electrophysiological approach adequately fulfilled the initial aims set out in section 

2.3, and in addition yielded multiple somewhat unexpected opportunities for further 

investigation, as well as potentially important hints to help guide the computational 

approach.  

 

 We established a simplified in vitro model of the biological wake-sleep cycle, by firstly 

demonstrating that prior sensory-related activation in the wake-state positively affected 

delta orchestrated processes in the sleep-state (section 5.3.2 and 5.4.2); in line with 

established theories and prior findings in the broader field. We further considered the 

notion of reactivation of wake-state, sensory-related neural activity in the subsequent 

sleep-state (section 5.3.3 and 5.4.3), and in the process uncovered a potential 

mechanistic explanation of reactivation and increased delta power in the form of 

enhanced spike-train-to-local-field-potential phase coherence of reactivated neural units 

during prior activation in the wake-state (section 5.3.4 and 5.4.3). These data raise the 

interesting possibility that synaptic rescaling during deep sleep is prior use-dependent. 

That is to say, connections to neurons that were recruited into cortical representations of 

prior sensory stimuli within the ‘ensemble’ conceptual framework (Nicolelis, Baccala et 

al. 1995) were reactivated. In contrast, neurons that responded with relatively poor 

temporal precision to the ‘sensory’ input were deactivated. This can be seen as a form of 

‘pre-processing’ of cortical activity in which only the strongest (in terms of temporal-

precision) neuronal activity patterns are selected for further processing within the 

Helmholtz scheme (see below). The biological mechanism underlying this replay-

selection remains unclear. Prior work showed that neuronal spiking in regular spiking 

cells was extremely variable, with very small changes in membrane potential (ca. 5 mV) 

taking these cells from a state of no spiking to continuous spiking at theta frequencies 
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(Carracedo, Kjeldsen et al. 2013). It is tempting to suggest that replay selection may 

therefore simply be a ‘hard-thresholding’ process, with only the strongest excitatory 

connections surviving. 

 

 As a bio-computational framework we built upon the concept of the Helmholtz 

machine, and formed a novel hypothesis about the spatiotemporal interactions along and 

across layers in the rodent neocortex during the sleep-state model (section 2.2.3). To test 

these predictions we introduced a novel analysis technique, near-field electromagnetic 

holography, which allowed us several new views on the data at hand, particularly 

energy flow vector fields and an energy dissipation measure, both instantaneous and 

spatial quantifications of putatively important aspects of the underlying neurobiological 

processes (section 6.2.3). The quantification of energy flow vector fields appeared to 

confirm our Helmholtz machine-based hypothesis, and strengthened and extended our 

previous work with new detail (section 6.3.2, 6.3.3 and 6.4.2).  

 

 Additional findings of energy dissipation and flow relations in the neocortex (section 

6.3.4) allowed us to propose a novel interpretation of the general electromagnetic 

concepts involved (section 6.4.3), which in turn provided a potentially important hint 

for the final direction of the computational approach. These data also revealed 

previously unknown subtleties in the spatiotemporal dynamics of cortex during deep 

sleep, and as we argue in chapter 6, suggests different computational processes 

occurring at different times on each delta cycle. However, what those processes may be, 

and how they are biologically generated, will have to be the subject of further work. 

 

8.2 Evaluation of the computational approach 

 The computational approach fulfilled the initial computational aims (section 3.5), and 

also managed to take up at least one interesting hint from the electrophysiological 

analysis.  

 

 We focussed on geometric algebra formulations (section 3.4.2 and 3.4.3), which turned 

out to be wise in the sense that the main computational constructions of holographic, 

qubit and ebit networks could be relatively easily formulated within the same 

framework, allowing novel points of comparison, with further understanding of 

potential equivalences (section 7.4). In addition, the test case of hierarchical structure 
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transformation (section 7.3.1 ) had not been considered in a geometric algebra 

formulation before, and its successful implementation in turn strengthened the 

geometric algebra approach. 

 

 We did reach some roadblocks along the way; the investigation of the projected product 

appeared very promising (section 7.3.1), but did not yield a final, general solution. The 

same is true of the hints that it could be possible to take Patyk’s trick further (section 

7.3.2); although very encouraging, we failed, in the time available, to find a general way 

to exploit it, and also did not manage to translate this hint into the equivalent form in the 

more optimized geometric algebra representations.  

 

 The formulation of qubits and ebits in geometric algebra was not in itself novel, but the 

abstract point-of-view in terms of the search for tractability provided a new focus in 

considering these computational construct. On the other hand, and more concretely, the 

visual representations afforded by the Cartan’s matrix embeddings were novel and 

useful ways to visualize otherwise difficult concepts (section 7.3.4 and 7.3.5).   

 

 Although we purposely focused on the basic computational constructs, it would have 

been desirable to also have had time for more rigorous testing on various computational 

problems. Based on prior experience we nevertheless feel confident that we were able to 

recognize important computational constructs and properties without building our 

approach from the very bottom in the smallest possible steps.   

 

8.3 Evaluation of convergence 

 Admittedly, the work load of the electrophysiological approach came to slightly 

dominate the efforts of this thesis, it was however never intended that the two 

approached should necessarily be equally weighted.  

 

 By the nature of the reciprocal interaction, both sides continuously influenced each 

other to the extent that we did not see them as two separate approached once we got 

deeper into it. Perhaps this is the best measure of convergence. In addition, and of a 

more concrete nature, we consider the interpretation of energy flow and dissipation 

relations on the electrophysiological side, leading to the introduction of the ebit concept 

on the computational side. This specific point of convergence was not forced by one 
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side, but rather followed naturally from both sides, with both leading up to the same 

point (in abstract computational terms). This meant that once the electrophysiological 

approach had provided the initial hint, the computational approach was immediately 

ready to take up a potentially relevant computational construct, which would otherwise 

have been very far off in terms of implementation. 

 

 In terms of the other direction of influence it is clear that it was the considerations of 

holographic processes in general, and the practical experience with the same, that 

eventually led to the conceptualization and implementation of the near-field 

electromagnetic holography analysis technique, which came to great use in the 

electrophysiological approach, in turn feeding back to the computational side. 

 

 Ultimately, we did not manage to reverse-engineer tractability, but we did gain enough 

headway to be satisfied for now. We did arguable not reach a dead-end, and the road 

ahead appears open; should we choose to go down it, the work involved picks up from 

the end of chapter 7 with the construction and characterization of further ebit based 

networks, particularly ones combining both Bell- and Magic-state ebits.        
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Glossary 

 

Annealing 

Annealing is a technique known primarily from metallurgy where it is used to improve 

the structural properties of steel. The process involves repeated heating and slow 

cooling of the object to be annealed. This controlled temperature treatment releases 

internal stress and rearranges the internal molecular structure into a (closer to) minimal 

energy state. As a result the steel becomes stronger and less brittle. The process is also 

commonly applied to glass objects.  

 

Arrow of time  

The arrow of time refers to the phenomenological experience that time has a single 

direction; the term is most often used in connection with the problem of its origin: 

While other dimensions are bidirectional, the dimension of time appears to be 

unidirectional; we do not know why. In entropy terms it is equivalent to the Second Law 

of Thermodynamics, whose origin is also unknown.  

 

Bell-state 

A Bell-state is two or more qubits that exhibit perfect correlation no matter their 

separation in space-time; this effect is the basis of quantum teleportation. A Bell-state of 

two qubits can encode a single bit of information (just like a single qubit can) and is 

referred to as an ebit. 

 

Black hole 

A black hole is a mathematical singularity predicted by general relativity theory where 

the singularity refers to gravity or equivalently to space-time curvature. At such extreme 

gravity not even light can reach escape velocity, and the singularity is therefore referred 

to as a black hole. A black hole is an object of maximal entropy; if all matter eventually 

falls into a single black hole it will be the point of maximal entropy of the Universe. It is 

believed that there is a black hole at the centre of our galaxy and most other galaxies.   
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Cosmic microwave background radiation 

The cosmic microwave background radiation is almost uniformly distributed radiation 

coming from all directions across the sky, strongest in the microwave band. It is a few 

degrees above absolute zero, and is believed to be the first light in the Universe 

following the Big Bang. 

 

Dissipation 

Dissipation is a term for the entropy of energy increasing irreversibly. Dissipation can 

also refer to non-energy related increases in entropy, such as diffusion or mixing, but 

the use in this work refers to energy.  

 

Ebit 

An ebit is a two-qubit Bell-state used to encode one bit of information. 

 

Ergodicity 

Ergodicity is a term used to describe certain statistical properties of dynamical systems. 

In its simplest description it means that the long-term statistical properties of a single 

system are the same as the short-term statistical properties of many systems that are 

representative of the single system. This affords a computational and experimental 

short-cut, because the observation of a system for a long time can be replaced with 

observation of many systems for a short time; thereby saving considerable time. The 

general properties of ergodicity are however not conceptually clear; there are degrees 

such as strong and weak ergodicity, and sometimes ergodicity is taken to imply a further 

property known as mixing, and vice versa, i.e. sometimes the concepts are taken to be 

identical.   

 

Event horizon 

An event horizon is a boundary in general relativity around a singularity such as a black 

hole. The event horizon is the point of no return for matter and information falling into 

the black hole, even light cannot return once it has crossed the event horizon, so the 

blackness of a black hole starts at the horizon. No communication is believed to be 

possible from inside the event horizon to the outside universe, thus the inside of the 

event horizon is unknowable for the outside. It is related to, but different form, the idea 

of a causal horizon, which applies to points separated by a distance greater than the light 

year age of the Universe, meaning the points can never be in communication even if the 
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information travels at the speed of light. The term event horizon also applies to a 

hypothetical future technological singularity, and is sometimes taken to mean that the 

nature of such an event is unknowable before the event, or rather before the event 

horizon has been crossed. However, the event horizon of a technological singularity is 

that of a white hole singularity, i.e. the reverse of that of a black hole, so that 

information is not prevented from escaping, but rather from entering from outside the 

horizon. 

 

General relativity 

General relativity is the current theory of gravity stating that gravity is caused by the 

curvature of space-time. 

 

Graphics processing unit 

A graphics processing unit is a kind of computer processor characterized by having a 

small instruction set, but the ability to process many threads of instruction 

simultaneously, called parallel processing, by the use of multiple processor cores. For 

certain problems, like the fast Fourier transform, which are said to be parallel, this 

speeds up overall processing. In terms of functionality it is believed that parallel 

processing can be perfectly replaced by a single sufficiently faster processor. 

 

Millennium Prize 

The Millennium Prize is an award promised by the Clay Mathematics Institute in 2000. 

It awards a million dollars for the solution of each of seven problems of mathematics. 

As of 2013 one problem solution has been accepted. The proposed solution to the 

closure of turbulence problem given by Werbos, as mentioned earlier, might be a 

candidate for a second solution. 

 

NP-problem 

An NP-problem is a problem that belongs in the complexity class NP as in Non-

Polynomial time. This means that to solve the problem a classical computer (in a 

classically causal universe) takes more time than a polynomial function of the problem 

size, typically an exponential.  
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Singlet state 

A singlet state is a quantum state where the quantum numbers, e.g. the spin values, of 

the particles involved sum to zero. This is for instance the case when quantum 

fluctuations create and annihilate pairs of particles and antiparticles. 

 

Singularity 

The term singularity refers to a value going to infinity. This can for example be the 

value of gravity, space-time compression or distortion, or in a more abstract sense 

technological capability. 

 

Space-time 

Space-time is the fabric of the Universe itself. Generally refers to three dimensions of 

space and one dimension of time, although any combination of spatial and time 

dimensions is a space-time. According to general relativity the curvature of space-time 

induces gravity. 

 

Superparamagnetic clustering  

Superparamagnetic clustering is a data clustering algorithm named after the physical 

phenomenon of superparamagnetism, which the algorithm is modelled after. Clustering 

occurs when the abstract temperature of the material (the data) is lowered until the state 

passes from paramagnetic to superparamagnetic. It is a temperature driven energy 

minimization scheme, and as such is conceptually similar to annealing.  

 

Technological singularity 

A technological singularity is a hypothesised future event where technological progress 

goes to infinity. It follows from the observation that technological progress accelerates 

further technological progress leading to an exponential increase in technological 

capability. A technological singularity is logically a minimal entropy point like a white 

hole singularity, but where the white hole Big Bang singularity is in the past the 

technological singularity is in the future, it is therefore not generally believed that the 

two can be identified with each other, which would require the technological 

capabilities of the technological singularity to include some form of backwards time 

travel (without paradox). It is unknown whether we have crossed the event horizon of a 

technological singularity, but if the past and future white hole singularities are identified 

with each other the point might be mute altogether.  
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Theorem 

A theorem is a generally accepted proof; not a theory or conjecture. 

 

Theory of everything 

A theory of everything is the ultimate goal of physics. It is generally considered to mean 

a unification of general relativity with quantum theory.  

 

Quantum theory 

Quantum theory is a mathematical framework dealing with the fundamental level of 

Nature starting from the Planck scale defining the smallest piece, a quantum, of energy, 

time, space etc. The framework is separate from the interpretation of what it means. 

 

Qubit 

A qubit is the fundamental unit of quantum computation in the same way a bit is the 

fundamental unit of classical computation. It can be in the same two states of zero or 

one like a conventional bit, but also in both states at once. An easy way to physically 

model this is to consider a spinning gyroscope with a single axis of rotation; turning it 

upside down and vice versa gives right or left rotation corresponding to zero or one, but 

if it is turned on its side gyroscopic precession forces a second axis of rotation, so that 

both right and left rotation happens at the same time, one on each axis. In the same way 

a qubit can be encoded in the spin of an electron. 

 

White hole 

A white hole is a minimal entropy singularity in general relativity. It is the time reverse 

of a black hole, or alternatively an anti-matter black hole (anti-matter being the time 

reverse of matter). The Big Bang is a white hole. It is unknown why the Big Bang was a 

low entropy singularity as it does not follow from time-reversal of a black hole alone. A 

hypothetical technological singularity would presumable be a white hole; its low 

entropy then follows from its technological capability. 
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Appendix A: Near-field electromagnetic holography 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Near-field electromagnetic holography framework for the Utah array 
% Henrik D. Kjeldsen, 2013, Matlab code  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
sr_ori = 30000; %original sample rate 
sr = 15000; %sample rate to use for NEH 
time = 0.1; %length of time segment in seconds 

  
gridn = 10; %recording array size 
gridx = 10; 
gridy = 10; 
gridmul = 3; %super-resolution factor 
pad = 1; %padding factor, 1 = no padding, 2 = double size (not used) 

  
%conductivity, rho, values along and across layers 
%mS/cm cond(l,d) l = layer; 1 = 2/3; 2 = 4; 3 = 5; 4 = 6; d = 1  

%is along layers, d = 2 is across; values from Goto 2010.  

%5 = whitematter from other source 

  
cond(1,1) = 3.19; 
cond(1,2) = 2.31; 

  
cond(2,1) = 3.25; 
cond(2,2) = 2.40; 

  
cond(3,1) = 3.53; 
cond(3,2) = 2.28; 

  
cond(4,1) = 2.94; 
cond(4,2) = 2.68; 

  
cond(5,1) = 2.25; 
cond(5,2) = 2.25; 

  
%array to hold conductivity values 
gcond = zeros(3,gridn*gridmul,gridn*gridmul); 

  
if gridmul == 3 
%expand layer mask for super-resolution  
layermask2 = zeros(30); 
X = 1:3:30; 
Y = 1:3:30; 
for x = 1:10 
    for y = 1:10 
        layermask2(X(x):X(x)+3,Y(y):Y(y)+3) = layermask(x,y); 

         
    end 
end 
layermask2 = layermask2(1:30,1:30); 
%populate conductivity array 
gcond(4,find(layermask2 == 6)) = sqrt(cond(4,1).*cond(4,2)); 
gcond(4,find(layermask2 == 5)) = sqrt(cond(3,1).*cond(3,2)); 
gcond(4,find(layermask2 == 4)) = sqrt(cond(2,1).*cond(2,2)); 
gcond(4,find(layermask2 == 3)) = sqrt(cond(1,1).*cond(1,2)); 
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gcond(4,find(layermask2 == 2)) = sqrt(cond(1,1).*cond(1,2)); 
gcond(4,find(layermask2 == 0)) = sqrt(cond(5,1).*cond(5,2)); 
else 
%populate conductivity array     
gcond(4,find(layermask == 6)) = sqrt(cond(4,1).*cond(4,2)); 
gcond(4,find(layermask == 5)) = sqrt(cond(3,1).*cond(3,2)); 
gcond(4,find(layermask == 4)) = sqrt(cond(2,1).*cond(2,2)); 
gcond(4,find(layermask == 3)) = sqrt(cond(1,1).*cond(1,2)); 
gcond(4,find(layermask == 2)) = sqrt(cond(1,1).*cond(1,2)); 
gcond(4,find(layermask == 0)) = sqrt(cond(5,1).*cond(5,2)); 
end 

  
er = 3400;  %relative permittivity  

%Joy 1999 cortex, white matter is 2720 
e0 = 8.854e-12; %vacuum  
e = e0 * er; %specific 

  
ur = 0.99999103; %relative  
u0 = 4e-7*pi; %H/m free space permeability 
u = u0 * ur; %specific 

  
%setup frequency range 
f = -sr/2:1/time:(sr)/2; 
f = f([1:(length(f)-1)/2 (length(f)-1)/2+2:end]); 
f = f([1:(length(f))/2+1 (length(f))/2+2:end]); %odd 
find(f == 0) %must be empty (no zeros) 
%in radians 
w = 2*pi*f; 

  
%calculate characteristic wave-number 
ehat = e*(1 + i*repmat(squeeze(gcond(4,:,:)), [1 1 

ceil(sr*time)]) ./shiftdim(repmat((w*e), [gridn*gridmul 1 

gridn*gridmul ]),2)); 
k = sqrt(ehat.*u.*shiftdim(repmat((w), [gridn*gridmul 1 

gridn*gridmul ]),2)); 

  
%spatial wave-numbers (Utah array spacing is 0.0004m) (K-wave toolbox) 
kx = getWavenumbers(gridn*gridmul*pad+1, 0.0004/gridmul, 1);  
ky = getWavenumbers(gridn*gridmul*pad+1, 0.0004/gridmul, 1); 
kx = kx(2:end); 
ky = ky(2:end); 
kx = fftshift(kx); 
ky = fftshift(ky); 

  
%calculate spatially dependent kz depending on near- or far-field  
kz = 

complex(zeros(gridn*gridmul*pad,gridn*gridmul*pad,round(sr*time*pad))); 
for x = 1:gridn*gridmul*pad 
    for y = 1:gridn*gridmul*pad 
         for t = 1:length(k)*pad     
              if kx(x)^2+ky(y)^2 <= k(x,y,t)^2 
                kz(x,y,t) = sqrt(k(x,y,t)^2-kx(x)^2-ky(y)^2);  

%far-field      
              else  
                kz(x,y,t) = -1i*sqrt(kx(x)^2+ky(y)^2-k(x,y,t)^2);  

%near-field    
              end 
         end 
    end 
end 
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%collect wave-vectors in one structure 
K = zeros(3,gridn*gridmul*pad,gridn*gridmul*pad,ceil(sr*time)*pad); 
K(1,:,:,:) = repmat(kx,[1 gridn*gridmul*pad ceil(sr*time)*pad]);  
K(2,:,:,:) = repmat(ky,[1 gridn*gridmul*pad ceil(sr*time)*pad]);   
K(3,:,:,:) = kz; 

  
%create k-space filter 
clear K_window 
alpha = 0.4; 
kc = 12000; 
for Ym=1:gridx*gridmul*pad 
for Xm=1:gridx*gridmul*pad 
kr=abs(sqrt(kx(Xm)^2+ky(Ym)^2)); 
if kr<=kc  
    K_window(Ym,Xm)=1-(0.5*exp(((kr/kc)-1)/alpha)); 
else 
    K_window(Ym,Xm)=0.5*exp((1-(kr/kc))/alpha); 
end 
end 
end 
K_window = repmat(K_window, [1 1 ceil(sr*time)]);  

  
%load NS6 data and layout file (Blackrock library) 
openNSx('read'); 
myArrayMap = KTUEAMapFile('SN 1017-000170.cmp') 

  
%re-arrange and filter data 
for ch = 1:96 
[x y] = myArrayMap.getChannelColumnRow(ch); 

  
tmp = double(NS6.Data(ch,30*sr_ori+1:30*sr_ori+time*sr_ori)); %take 

segment of data of length time starting 30 sec in 

  
%filter out 50hz  
tim = 0:(1/sr_ori):(time);  
temp = idealfilter(timeseries(tmp(1:ceil(time*sr_ori)),tim(1:end-

1)),[48 52],'notch'); 
df = temp.Data; 

  
%decimate for target sample rate 
dec = sr_ori/sr; 
df = decimate(df,dec); 

  
%create data structure 
map(11-(y+1),(x+1),:) = df; 
end 

  
%apply mask to remove bad channels 
map = map.*repmat(deltamask, [1 1 ceil(time*sr)]); 

  
%pre-populate "missing" super-resolution data-points with  

%interpolated super-resolution values similar to k-wave  

%toolbox; actual super-resolution values are then filled in  

%during propagation 
del = [1 0 0]; 
mapinterp = papoulisgerchberg(map,del,gridmul);  

%function by Karim Krichane 

  
%calculate E field in recording plane from potentials 
[Ex Ey Ez] = gradient((mapinterp),0.0004/gridmul,0.0004/gridmul,1/sr); 
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%setup k-space propagator 
z = 0.0001; %propagation distance in meters 
G = (exp(-1i*kz*z)); 

  
%propagate and filter E field 
E0(1,:,:,:) = fftshift(fftn(-Ex)).*G.*K_window;  
E0(2,:,:,:) = fftshift(fftn(-Ey)).*G.*K_window;  
E0(3,:,:,:) = fftshift(fftn(-Ez)).*G.*K_window;  

  
%calculate H field 
H0 = cross((K),E0); 

  
Hx = ifftn(ifftshift(squeeze(H0(1,:,:,:)))); 
Hy = ifftn(ifftshift(squeeze(H0(2,:,:,:)))); 
Hz = ifftn(ifftshift(squeeze(H0(3,:,:,:)))); 

  
%create structures to hold all field directions at  

%reconstruction plane 
H(1,:,:,:) = Hx;  
H(2,:,:,:) = Hy;   
H(3,:,:,:) = Hz;  

  
E(1,:,:,:)  = ifftn(ifftshift(squeeze(E0(1,:,:,:)))); 
E(2,:,:,:)  = ifftn(ifftshift(squeeze(E0(2,:,:,:)))); 
E(3,:,:,:)  = ifftn(ifftshift(squeeze(E0(3,:,:,:)))); 

  
%Poynting vector 
S = cross(E,H); 

  
%current density 
J(1,:,:,:) = repmat(squeeze(gcond(4,:,:)),[1 1 

ceil(sr*time)]).*squeeze(E(1,:,:,:)); 
J(2,:,:,:) = repmat(squeeze(gcond(4,:,:)),[1 1 

ceil(sr*time)]).*squeeze(E(2,:,:,:)); 
J(3,:,:,:) = repmat(squeeze(gcond(4,:,:)),[1 1 

ceil(sr*time)]).*squeeze(E(3,:,:,:)); 

  
[pomx,pomy,pomz]=meshgrid((1:gridx*gridmul),(1:gridy*gridmul),1:ceil(s

r*time)); 

  
%current source density 
CSD = 

divergence((pomx),(pomy),(pomz),squeeze(J(1,:,:,:)),squeeze(J(2,:,:,:)

),squeeze(J(3,:,:,:)));  

  
%energy source density 
ESD = 

divergence((pomx),(pomy),(pomz),squeeze(S(1,:,:,:)),squeeze(S(2,:,:,:)

),squeeze(S(3,:,:,:)));  

  
%dissipation 
D = dot(J,E); 

 
%it is helpful to filter these measures before visualization 
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Appendix B: Granger causality 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Non-parametric Granger Causality based on complex wavelets 
% Henrik D. Kjeldsen, 2012, Matlab code  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%get some example data contained in spike structure 
LII = (spike.lfps{find(cell2mat(spike.location) == (86))}); 
LV = (spike.lfps{find(cell2mat(spike.location) == (46))}); 

  
%or for csd 
LII = spike.csd(:,ind2sub([10 10],82)); 
LV = spike.csd(:,ind2sub([10 10],42)); 

  
%or straight to csd so skip till granger 
c2 = spike.cw03to15hz{ind2sub([10 10],82)};   
c1 = spike.cw03to15hz{ind2sub([10 10],42)}; 

  
%or spikes, does not work with granger if too singular 
ts = (spike.timestamp{1,find(cell2mat(spike.location) == (26))});  
d = round(ts(find(ts > 0))*1000); 
d = d(find(0 < d & d < 60000)); 
LII = zeros(60000,1); 
LII(d) = 1; 

  
ts = (spike.timestamp{1,find(cell2mat(spike.location) == (35))});  
d = round(ts(find(ts > 0))*1000); 
d = d(find(0 < d & d < 60000)); 
LV = zeros(60000,1); 
LV(d) = 1; 

  
%setup scales/freqs of interest of wavelet analysis 

%1/1000 is 1000 samples per sec. adjust as required 
scale_array=frq2scal([20:1:45], 'cmor1-1', 1/1000, 10); %low gamma 
scale_array=frq2scal([0.3:0.1:15], 'cmor1-1', 1/1000, 10);  

%delta and some 

  
nscales=wrev(scale_array); 

  
%get the actual freqs used  
f = scal2frq(nscales,'cmor1-1',1/1000);  
ff = length(f); 

  
%pre-filter 
tmp = idealfilter(timeseries(LV(1:60000),tim),[0.3 15],'pass'); 
LV = tmp.data; 
tmp = idealfilter(timeseries(LII(1:60000),tim),[0.3 15],'pass'); 
LII = tmp.data; 

  
%do wavelet analysis of both signals, change the number of samples 

below 
c1=(cwt(LV(1:60000),nscales,'cmor1-1'));  
c2=(cwt((LII(1:60000)),nscales,'cmor1-1')); 

  
%inspect scalogram  
sc1 = wscalogram('',c1,'power',0); 
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imagesc(log(sc1)) 
%set axis labels, you have to match to number of scales 
set(gca,'YTick',[1:10:ff]) 
set(gca,'YTickLabel',f(1:10:ff)) 
xlabel('ms') 
ylabel('hz') 
%do a spectrum by summing over time 
plot(log(sum(sc1,2))) 
set(gca,'XTick',[1:10:ff]) 
set(gca,'XTickLabel',f(1:10:ff)) 
xlabel('hz') 
%do semblance 
ctc=c1.*conj((c2));     
%get phase relations 
tmpp = cos(angle(ctc)); 
%show phase semblance 
imagesc(smooth2a((tmpp'),1,1000)) 
%set axis labels, you have to match to number of scales 
set(gca,'YTick',[1:10:ff]) 
set(gca,'YTickLabel',f(1:10:ff)) 
xlabel('ms') 
ylabel('hz') 
%sum over time 
plot((sum(tmpp',2))) 
set(gca,'XTick',[1:10:ff]) 
set(gca,'XTickLabel',f(1:10:ff)) 
xlabel('hz') 

  
%only if from fft wavelet analysis 
c1 =c1'; 
c2 =c2'; 

  
%setup variables for granger analysis 
k11 = c1.*conj((c1)); 
  k12  =c1.*conj((c2));     
   k21  =c2.*conj((c1));     
    k22  =c2.*conj((c2));     

  
    %set to match number of scales/freqs 
        s = 1:ff; 
    %set to number of time steps (samples)     
        tt = 1:60000; 

         
    %zero granger variables, one for each direction 
    I12 = zeros(length(s),length(tt)); 
    I21 = zeros(length(s),length(tt)); 

  
    %do granger 
    for t = tt 

         
        %%%%11 
        f1k = k11(s,t); 

         
        y = real(ifft(log(abs([wrev(f1k) ;(f1k)])))); 
        n = length(y); 

         
        w = [1;2*ones(n/2-1,1);ones(1-rem(n,2),1);zeros(n/2-1,1)]; 
        ym = real(ifft(exp(fft(w.*y)))); 

         
        ymm = fft(ym); 
        E11 = ymm(1)*transpose(ymm(1)); 
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        H11 = ymm*inv(ymm(1)); 

         
        %%%%%12 
          f1k = k12(s,t); 

         
        y = real(ifft(log(abs([wrev(f1k) ;(f1k)])))); 
        n = length(y); 

         
        w = [1;2*ones(n/2-1,1);ones(1-rem(n,2),1);zeros(n/2-1,1)]; 
        ym = real(ifft(exp(fft(w.*y)))); 

         
        ymm = fft(ym); 
        E12 = ymm(1)*transpose(ymm(1)); 

         
        H12 = ymm*inv(ymm(1)); 

         
        %%%%%22 
          f1k = k22(s,t); 

         
        y = real(ifft(log(abs([wrev(f1k) ;(f1k)])))); 
        n = length(y); 

         
        w = [1;2*ones(n/2-1,1);ones(1-rem(n,2),1);zeros(n/2-1,1)]; 
        ym = real(ifft(exp(fft(w.*y)))); 

         
        ymm = fft(ym); 
        E22 = ymm(1)*transpose(ymm(1)); 

         
        H22 = ymm*inv(ymm(1)); 

          
        %%%%%12 
        f1k = k21(s,t); 

         
        y = real(ifft(log(abs([wrev(f1k) ;(f1k)])))); 
        n = length(y); 

         
        w = [1;2*ones(n/2-1,1);ones(1-rem(n,2),1);zeros(n/2-1,1)]; 
        ym = real(ifft(exp(fft(w.*y)))); 

         
        ymm = fft(ym); 
        E21 = ymm(1)*transpose(ymm(1)); 

         
        H21 = ymm*inv(ymm(1)); 

         
dbl2 = ((E22 ).* abs(H22+(E21/E11)*H21).^2) ; 
%from first to second signal 
I12(s,t) = log((k22(s,t)./sqrt(abs(dbl2(s+max(s)))))); 

  
dbl2 = ((E11 ).* abs(H11+(E12/E22)*H12).^2) ; 
%from second to first signal 
I21(s,t) = log((k11(s,t)./sqrt(abs(dbl2(s+max(s)))))); 

  
    end 
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Appendix C: Geometric algebra 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Cartan's matrix representation of Geometric Algebra 
% Henrik D. Kjeldsen, 2012, Matlab code  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%unit/identity matrix 
I = single([1 0;0 1]); 

  
%Pauli's matrices 
a1 = single([0 1;1 0]); 
a2 = single([0 -i;i 0]);  
a3 = single([1 0;0 -1]); 

  
%SPARSE VERSION 
%unit/identity matrix 
I = sparse(([1 0;0 1])); 

  
%Pauli's matrices 
a1 = sparse([0 1;1 0]); 
a2 = sparse([0 -1i;1i 0]);  
a3 = sparse([1 0;0 -1]); 

  
%setup basis blades, optimized version below 
N = 12; 
B = cell(2); 
for i = 1:N 
    B{i} = a1; 
end 
for i = 1:N 
   if mod(i,2) 
        K = (i + 1)/2; 
    for j = 1:N-K-1 

        
        B{i} = kron(B{i} ,a1); 
    end 
    B{i}  =  kron( B{i} ,a3); 
    for j = 1:K-1 

        
        B{i}  = kron( B{i} ,I); 
    end 
   else 
        K = i/2; 
    for j = 1:N-K-1 

        
        B{i} = kron(B{i} ,a1); 
    end 
    B{i}  =  kron( B{i} ,a2); 
    for j = 1:K-1 

        
        B{i}  = kron( B{i} ,I); 
    end 
   end 
end 
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%setup basis blades, optimized (Patyk's signature version) 
N = 24;  
B = cell(2); 
for i = 1:N 
    B{i} = a1; 
end 
for i = 1:N 
   if mod(i,2) 
        K = (i + 1)/2; 
    for j = 1:N/2-K 

        
        B{i} = kron(B{i} ,a1); 
    end 
    B{i}  =  kron( B{i} ,a3); 
    for j = 1:K-1 

        
        B{i}  = kron( B{i} ,I); 
    end 
   else 
        K = i/2; 
    for j = 1:N/2-K 

        
        B{i} = kron(B{i} ,a1); 
    end 
    B{i}  =  kron( B{i} ,a2); 
    for j = 1:K-1 

        
        B{i}  = kron( B{i} ,I); 
    end 
   end 
end 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%"Pat Smith" toy example 

  
%define concepts and values 
Pat = B{1}; 
male = B{2}; 
a66 = B{3}; 
name = B{4}; 
sex = B{5}; 
age = B{6};  

  
%create memory  
PSmith = name*Pat+sex*male+age*a66;  

  
%%bigger example 
%%jane 
Jane = B{13}; 
female = B{15}; 
a25 = B{17}; 
hername = B{19}; 
hersex = B{21}; 
herage = B{23};  

  
%create memory  
PSmithJDoe = 

name*Pat+sex*male+age*a66+hername*Jane+hersex*female+herage*a25;  
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%address memory to recover value of name 
PatR = inv(name)*PSmith; 
PatR = inv(name)*PSmithJDoe; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%qubits and ebits in cartan's matrix representation 

  
%basis blades for qubit 1 
a0 = B{1}; 
a1 = B{3}; 

  
%basis blades for qubit 2 
b0 = B{5}; 
b1 = B{7}; 

  
%basis blades for qubit 3 
c0 = B{9}; 
c1 = B{11};  

  
%basis blades for qubit 4 
d0 = B{13}; 
d1 = B{15};  

  
%define qubits 
A0 = +a0-a1; 
A1 = -a0+a1; 
Ap = +a0+a1; 
An = -a0-a1; 

  
B0 = +b0-b1; 
B1 = -b0+b1; 
Bp = +b0+b1; 
Bn = -b0-b1; 

  
C0 = +c0-c1; 
C1 = -c0+c1; 
Cp = +c0+c1; 
Cn = -c0-c1; 

  
D0 = +d0-d1; 
D1 = -d0+d1; 
Dp = +d0+d1; 
Dn = -d0-d1; 

  
%define Hadamard gates 
Sa = a0*a1; 
Sb = b0*b1; 
Sc = c0*c1; 
Sd = d0*d1; 

  
%define the value one 
ma = (Sa*Sa); 
mb = (Sb*Sb); 
mc = (Sc*Sc); 
md = (Sd*Sd); 

  
%other example for qutrits 
T0 = a0*a1*b0; 
T1 = a0*a1*b1; 
Tp = a0*b1*b0; 
Tn = a1*b1*b0; 
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%Pauli gates 
Pa = ma + Sa; 
Pb = mb + Sb; 
Pc = mc + Sc; 
Pd = md + Sd; 

  
(A0*B0) %two-qubit register 
(A0*B0*Sa*Sb) %separably entangled qubits 

  
((A0*B0*(Sa+Sb))) %inseparably entangled qubits (Bell state) 

  
%all four Bell states 
BELL0 = ((A0*B0*Sa*Sb*(Sa+Sb))); 
BELL1 = ((A0*B0*Sa*Sb*(Sa+Sb)*(Sa+Sb))); 
BELL2 = ((A0*B0*Sa*Sb*(Sa+Sb)*(Sa+Sb)*(Sa+Sb))); 
BELL3 = ((A0*B0*Sa*Sb*(Sa+Sb)*(Sa+Sb)*(Sa+Sb)*(Sa+Sb))); 
BELL4 = ((A0*B0*Sa*Sb*(Sa-Sb)*(Sa+Sb)*(Sa+Sb)*(Sa+Sb)*(Sa+Sb)));  

%same as first state 

 
%all four magic states 
MAGIC0 = ((A0*B0*Sa*Sb*(Sa-Sb))); 
MAGIC1 = ((A0*B0*Sa*Sb*(Sa-Sb)*(Sa-Sb))); 
MAGIC2 = ((A0*B0*Sa*Sb*(Sa-Sb)*(Sa-Sb)*(Sa-Sb))); 
MAGIC3 = ((A0*B0*Sa*Sb*(Sa-Sb)*(Sa-Sb)*(Sa-Sb)*(Sa-Sb))); 
MAGIC4 = ((A0*B0*Sa*Sb*(Sa-Sb)*(Sa-Sb)*(Sa-Sb)*(Sa-Sb)*(Sa-Sb)));  

%same as first state 

  

 

  

 

 

 

 


