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Abstract 
 

The single greatest risk factor for the development of idiopathic Parkinson’s Disease is 

advancing age. The differences at the cellular level that cause some individuals to 

develop this highly debilitating disease over healthy ageing are not fully understood. 

Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson’s 

disease (PD) since the drug MPTP, known to cause Parkinson’s like symptoms, was 

shown to invoke its deleterious effect through inhibition of Complex I (CI) of the 

mitochondrial electron transport chain. Since this discovery in the 1980s, several 

causative genes in the much rarer familial forms of PD have been shown to encode 

proteins which function within, or in association with mitochondria. Through inherited 

cases of the disorder the process through which mitochondria are removed, mitophagy, 

a specialized form of autophagy has also been associated with the pathogenesis that 

leads to en masse cell death in this disorder. 

 

This work explores the interplay between mitochondrial deficiencies, through complex I 

dysfunction, and changes to autophagic processes. The methodologies to enable these 

observations are also described in detail with the development of novel and specialized 

techniques necessary to answer many of the specific research questions. The 

mechanisms behind complex I deficiency’s impact upon cellular processes is also 

explored as part of this thesis. Mitochondria and autophagy are irrevocably linked 

through mitochondrial dynamics, to this end an exploration of the greater impact 

complex I dysfunction has upon mitochondrial motility, fission and fusion was 

investigated.   

 

As the most prevalent neurodegenerative movement disorder of old age, understanding 

the molecular changes that result in Parkinson's Disease is vital to increase knowledge 

and offer novel therapeutic targets. Parallel studies in human upper midbrain tissue and 

cybrid cell lines within this work have revealed significant changes to both autophagy 

and mitochondrial dynamics in response to complex I deficiency. Given that 

mitochondrial ‘health’ and autophagic regulation directly impact upon one another 

identifying how exactly these may contribute to neuronal loss will hopefully allow 

therapeutic modulation at a point of PD pathogenesis where cells can still be retained.   
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 Chapter 1. Introduction 1
 

 MITOCHONDRIA 1.1

 Origins and endosymbiosis 1.1.1

It is widely accepted that mitochondria evolved through an endosymbiotic relationship 

between a primitive eukaryotic cell and eubacterium (Sagan, 1993).  Unlike other 

organelles, mitochondria share distinct characteristics with bacteria, such as a double 

membrane and their own circular DNA molecules, separate to the nuclear genome. 

Alongside these observations, the mitochondrion’s independent transcriptional and 

translational machinery coupled with the ability to replicate through binary fission, 

indicate a bacterial origin. 

 

The endosymbiotic theory championed in 1971 by Lynn Margulis states that a 

prokaryotic organism capable of aerobic respiration entered into the cytoplasm of 

another cell which relied on an inefficient means of energy production such as 

glycolysis (Margulis, 1971a; Margulis, 1971b). Surviving endocytosis, a symbiotic 

relationship ensued which afforded the prokaryotic organism protection and 

metabolisable substrates, and the host cell a major evolutionary advantage through the 

provision of adenosine triphosphate (ATP) (Scheffler, 1999). The primitive eukaryote 

that benefitted from the introduction of oxidative respiration is of archaebacterial 

descent sharing common ancestry with the group Crenarchaeota (Embley and Martin, 

2006; Foster et al., 2009). The bacterial endosymbiont is generally thought to be an α-

proteobacterium (Yang et al., 1985). Following full genome sequencing of Rickettsia 

prowazekii it was shown this α-proteobacterium contains phylogenetically related 

respiratory chain complex enzymes and a complete set of tricarboxylic enzymes 

(Andersson and Kurland, 1998; Dyall and Johnson, 2000), strengthening the argument 

for their role in the endosymbiotic story.  

 

The assimilation of these two is thought to have occurred around 1.5 billion years ago 

(Gray, 1992). Initially independent, over a large period of reductive evolution the 

invading prokaryote has become highly dependent on the host cell. A reduction in 

protein encoding genes within the mitochondrial genome and an on-going transfer to the 
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nuclear genome have rendered mitochondria incapable of independent functioning 

(Burger et al., 1996; Andersson and Kurland, 1998). The reason for the continued 

presence of mitochondrially encoded genes is unclear but may represent an 

irreconcilable difference in the genetic code translation. Alternatively or possibly in 

conjunction, certain internal components of the mitochondrion are hydrophobic which 

may pose a challenge for transportation after translation (Claros et al., 1995).    

 

 Structure 1.1.2

As independent organelles, mitochondria are typically 2µm in length and 0.5µm in 

diameter, although their form can range from extended reticular networks through to the 

more typically described rod structures.  The structure of the mitochondrion is dictated 

by its role, with every aspect of its form contributing to a highly specialised function. A 

simplified schematic of the mitochondrion structure can be seen in Figure 1.1 showing 

the double plasma membrane and convoluted internal architecture. The first membrane, 

the outer membrane, forms the boundary between the organelle and surrounding 

cytosol. Its composition is similar to that of the cell membrane and as such allows the 

diffusion of lipid soluble molecules into the intermembrane space. Transportation of 

small proteins (<5000Da) and hydrophilic proteins is also made possible through porin, 

the voltage-dependent anion channel (VDAC) which is expressed in abundance within 

this outer membrane.    

 

The internal mitochondrial membrane surrounds the central matrix of the mitochondrion 

and is impermeable to polar molecules and ions. This membrane is far richer in proteins 

than the outer membrane containing elevated levels of cardiolipin and polypeptides, 

required for a multitude of biochemical pathways within the organelle including 

electron transport. The restrictive nature of this membrane ensures efficient functioning 

of oxidative phosphorylation can proceed due to tight control of the proteins and 

molecules able to enter the surrounding space. The impermeability of this membrane 

coupled with the far more permeable nature of the outer membrane results in the inter-

membrane space, an environment similar to that of the cytosol but with strict specificity 

for larger proteins that have a mitochondrial role. In order for larger proteins to gain 

access to the mitochondrion they require specific mitochondrial targeting sequences. 

These facilitate interaction with either the Transporter Outer Mitochondrial Membrane 
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complex (TOMM) or Transporter Inner Mitochondrial Membrane complex (TIMM); 

translocases that import proteins to compartments or membranes of the organelle 

(Herrmann and Neupert, 2000; Rehling et al., 2004). 

 

 

 

Figure 1.1. Schematic representation of a mitochondrion 

EM image of multiple mitochondria within tissue (A). EM image of a single mitochondrion (B). Simplified 

mitochondrial structure showing the key components (C). 
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The invagination of the inner mitochondrial membrane was long believed to give rise to 

the internal folds that project into the matrix, called cristae mitochondriales, or cristae. 

This was first proposed in the 1950s and termed the ‘baffle model’ (Palade, 1953). 

Electron tomography analysis however, has now shown that this model is inaccurate 

with cristae actually arising from a distinct membrane connected to the inter membrane 

space through tubular inner membrane junctions (Frey and Mannella, 2000). Illustrative 

of the highly adapted form mitochondria have for their function, the cristae of the inner 

membrane provide a vastly enlarged surface area over which OXPHOS and 

maintenance of the H+ gradient can occur. Encapsulated by the inner membrane, the 

mitochondrial matrix houses multiple copies of mitochondrial DNA (mtDNA), 

machinery for its expression, alongside enzymes of the TCA cycle. Functionally within 

the matrix, iron-sulphur (Fe-S) cluster production occurs and the Krebs cycle generates 

precursors for oxidative phosphorylation.    

 

 

 MITOCHONDRIAL FUNCTIONS 1.2

Mitochondria are required for a plethora of functions, illustrated by their ubiquitous 

presence in nearly every eukaryotic cell. Although mitochondria are often simplified to 

‘powerhouses’ of the cell due to their pinnacle and most well described role in ATP 

production via OXPHOS, their contribution and impact upon diverse cellular processes 

affects all aspects of cell homeostasis and functioning. The most well conserved 

mitochondrial function is that of iron sulphur cluster formation and as such this 

introduction will begin here. Aside from this, mitochondria are also responsible for 

calcium handling, apoptosis, cell signalling and ROS production. 

 

 Iron-sulphur cluster formation 1.2.1

Iron sulphur clusters are crucial inorganic cofactors for numerous biological processes 

including regulation of gene expression, enzyme catalysis and DNA repair. Within 

mitochondria themselves, Fe-S clusters function within complexes I, II and III due to 

their capacity as electron donors and acceptors.  Dependent on function, the number of 

iron and sulphur atoms can vary within clusters and the maturation of these structures 

has been shown to be a vital function of mitochondria. Through studies within 
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S.cerevisiae two stages of Fe-S assembly have been elucidated-formation and 

conversion to holoenzymes. Over 20 proteins have been shown to be involved in these 

processes (Lill, 2009). The first stage briefly consists of the conversion of cysteine to 

alanine, releasing sulphur by the cystenine desulpharase complex Nfs1-Isd11 (Adam et 

al., 2006) and then reduction to sulphide by electrons from NADH via ferredoxin 

reductase (Lange et al., 2000).  

 

To enter mitochondria, iron is transported through a member of the mitochondrial solute 

carrier family- mitoferrin (Paradkar et al., 2009). Once within the inner membrane 

scaffold proteins including the highly conserved IscU and Nfu ((Tong and Rouault, 

2000; Tong et al., 2003) are employed to assemble Fe-S clusters. The Fe required for 

the construction of these clusters is provided through frataxin. Following synthesis of 

the Fe-S cluster it is released from the scaffold proteins and incorporated in apoproteins.  

 

 Oxidative Phosphorylation 1.2.2

Mitochondria house the biochemical machinery required for oxidative phosphorylation 

and subsequently the production of ATP molecules, the source of energy behind cellular 

functioning. Although oxidative phosphorylation itself occurs within the mitochondria 

the preceding stages of aerobic respiration begin in the cytoplasm with the anaerobic 

process of glycolysis. The glycolytic reaction can be seen below in Equation 1.1 but 

broadly speaking it converts one glucose molecule into two pyruvate molecules.  

 

         (    )   (   )   (  )

  (        )    (    )   (  )     (   )   (   )  

Equation 1.1. Glycolysis 

The overall glycolytic reaction. 

 

The next stage occurs within the mitochondria, where the aforementioned pyruvate, 

generated through glycolysis, is imported through specific carriers into the 

mitochondrial matrix to be utilised in the Krebs cycle. For this to occur pyruvate must 

be converted into acetyl CoA. This is achieved using the pyruvate dehydrogenase 
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complex (PDC) shown below in Equation 1.2. Alternatively acetyl coA can be 

generated through the β oxidation of fatty acids which are transported into the 

mitochondria in the form of fatty acyl CoA before undergoing oxidations, hydration and 

thiolysis which function to remove two carbons resulting in acetyl coA. 

 

                                              

 

Equation 1.2. Convertion of Pyruvate to AcetylCoA 

Pyruvate dehydrogenase catalyses the conversion of pyruvate to acetyl CoA. 

 

Acetyl CoA enters the tricarboxylic acid (TCA)/Krebs cycle (Krebs and Johnson 1937) 

through transfer of the acetyl group to oxaloacetate. This is followed by a series of 

chemical reactions that generate ATP, CO2 and large amounts of the reduced electron 

carriers NADH and FADH2, ultimately leading to the regeneration of oxaloacetate, and 

allowing the cycle to continue (Figure 1.2).  

 

Through the processes of glycolysis and the TCA cycle, a total of 2FADH2 and 

10NADH electron carrying molecules are provided/glucose molecule. Importantly the 2 

NADH molecules that are provided through glycolysis, are not able to pass through the 

inner mitochondrial membrane. Subsequently the transferal of electrons must occur 

through a different method than those derived within the matrix employing a process 

known as the ‘glycerol 3-phosphate shuffle’. Here, the 2e
-
 carried by NADH are 

transferred within the cytosol to dihydroxyacetone, releasing NAD+ and glycerol 3-

phosphate. The latter is then reoxidised to dihydroxyacetone by its dehydrogenase with 

the resulting 2e
-
 transferred to FAD generating FADH2. A final step enabling the 

electrons to enter the respiratory chain comes from the reduction of ubiquinone (Q) to 

ubiquinol (QH2). 

 

Ultimately, the process of aerobic respiration concludes through the process of 

OXPHOS (Figure 1.3). Here through the use of prosthetic groups, Q and cytochrome c,   

electrons are transported from both complex I and II to complex III then IV, along a 

redox potential. This series of reactions releases free energy which is used to pump 
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hydrogen ions across the inner membrane into the inner membrane space creating an 

electrochemical proton gradient across the inner membrane. It is this gradient which 

drives complex V’s uptake of H+ and the subsequent transport of H+ back into the 

matrix a process which is coupled with the production of ATP from ADP and inorganic 

phosphate (Pi). The production of ATP through the coupling of the electron and proton 

transfer was first described in 1961 by biochemist Peter Mitchell who coined the term 

‘chemiosmotic theory’ (Mitchell, 1961).  

 

           (    )               (   )

      (    )    (  )             (   ) 

Figure 1.2 The Krebs Cycle 

A schematic of the Krebs/TCA cycle (modified from (Rustin et al., 1997) and the overall TCA reaction. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Oxidative Phosphorylation 

The diagram shows the main components and functioning of the respiratory system. Electrons (red 

dashed lines) move along the four components of the electron transport chain. Through the oxidation of 

NADH complex I catalyses the reduction of ubiquinone (Q) to ubiquinol (QH2). Complex II functions 

within the Krebs cycle oxidising succinate to fumarate and transfers electrons to Q. In complex III OH2 is 

re-oxidised to Q and electrons passed to cytochrome c. The reduction of O2 to H2O completes the electron 

transport chain in complex IV. The electrochemical gradient generated by H
+ 

pumping drives H
+ 

import 

through complex V to generate ATP.  
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 Electron Transport Chain (ETC) 1.2.2.1

The oxidative phosphorylation machinery consists of the four complexes of the electron 

transport chain (I-IV) and ATP synthase (complex V). A combination of nuclear and 

mitochondrial encoded subunits make up the five complexes; with the notable exception 

of complex II, a feature that allows for experimental manipulation and observation. The 

composition of each complex, along with its contribution to the proton gradient can be 

seen in Table 1.1.  

 

 

 

 

 

 

 

Table 1.1. Composition and contribution of respiratory complexes 

All complexes with the exception of complex II have both nuclear and mitochondrial encoded subunits. 

Complex II does not pump H
+ 

ions and subsequently does not add to the electron gradient. 

 

 

 Complex I- NADH:ubiquinone oxidoreductase 1.2.2.2

Complex I, (NADH ubquinone oxidoreductase) is the entry point to the electron 

transport chain and the largest of all the respiratory complexes with a molecular mass of 

980 kDa (Hirst et al., 2003). The protein has three distinct functional regions, module 

Q, N and P (Brandt, 2006) collectively composed of around 46 different proteins, the 

majority of which (39) are nuclear encoded (Hirst et al., 2003).  The fourteen core units 

shown to have prokaryotic homologues are made up from seven nuclear encoded genes 

and the seven mitochondrially subunits, encoded by ND1 to 6 and ND4L. This first step 

of the respiratory chain serves to catalyse the oxidation of NADH and reduce 

ubiquinone to ubiquinol (Equation 1.3). 

 

The complex has a distinctive ‘L’shape (Figure 1.4) with one arm located within the 

lipid bilayer containing all of the highly hydrophobic mitochondrially encoded subunits 

(Zickermann et al., 2009), and the other (more hydrophilic in nature) protruding into the 

 

Respiratory Components 

 

Composition and Contribution 

 

Nuclear Subunits 

 

Mt Subunits 

 

H
+ 

pumped 

Complex I 39 7 4 

Complex II 4 0 0 

Complex III 10 1 4 

Complex IV 10 3 2 

Complex V 14 2  
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Module P 

Module 
Q 

Module 
N 

matrix (Hofhaus et al., 1991; Grigorieff, 1999). The peripheral arm of complex I 

contains module Q and N. The oxidation of NADH begins in module N where NADH is 

releases its 2e
-
 to the primary electron acceptor –flavin mononucleotide (FMN)(Walker 

et al., 1992) generating FMNH2. These electrons are transferred through a series of 

seven Fe-S clusters to the Q module, the site of ubiquinone reduction. Ubiquinol is then 

released into the intermembrane space.  

 

        (  )           
       ( 

 )          

Equation 1.3. Complex I Reaction 

The reaction catalysed by complex I 

The lipid bilayer embedded arm is home to module P and is responsible for proton 

pumping. Following the transfer of electrons in the peripheral arm conformational 

changes occur which in turn cause physical changes to the membrane arm. This causes 

channels within the P module to open resulting in the translocation of four protons from 

the matrix for every two electrons donated by NADH. The mechanism and order of 

assembly of complex I is not fully elucidated although it appears that anchoring via the 

membrane bound P module may occur first allowing the peripheral arm to form later. 

Experimental evidence exists to suggest a sequential construction of subcomplexes that 

eventually come together to form the final complex.  

                      

     Figure 1.4. Complex I 

The structure of complex I is a 

characteristic L shape composed 

of 3 modules. Module N transfers 

electrons from NADH to iron 

sulphur clusters. In module Q 

electrons from the iron sulphur 

clusters are transferred to Q. 

Module P is responsible for the 

export of H
+
. 
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 Complex II- Succinate ubiquinone oxidoreductase 1.2.2.3

Complex II (succinate ubiquinone oxidoreducatase) is unique amongst the OXPHOS 

complexes, in being solely encoded by nuclear genes. Consisting of just four proteins, 

complex II is also the smallest member of the electron transport chain (Figure 1.5). As 

with complex I, a portion of complex II, the hydrophobic SDHC and SDHD subunits 

exist within the membrane and act as an anchor for the two hydrophilic subunits, SDHA 

and SDHB. Together these matrix dwelling components make up the catalytic core of 

the enzyme succinate dehydrogenase (SDH) (Sun et al., 2005). Within SDHB exists 

three iron sulphur clusters that act as an electron transport link between the covalently 

bound FAD cofactor found within SDHA and the ubiquinone binding site at the 

membrane interface. A haem prosthetic group of unknown function also exists within 

complex II which may have a role in preventing ROS formation by the semiquinone 

intermediate or be responsible for assembly and stability of the complex (Hagerhall, 

1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Complex II 

Complex II is the smallest subunit of the respiratory chain containing only four subunits, SDHA, SDHB, 

SDHC and SDHD. Complex II does not export any H
+ 

ions. 

SDHD SDHC 

SDHB 
 

SDHA 
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Unlike all other complexes of the ETC, complex II does not translocate protons across 

the inner membrane, but acts as an enzyme of the TCA cycle, oxidising succinate to 

fumarate whilst reducing FAD to FADH2  (Equation 1.4). The reoxidation of FADH2 

through a series of electron transfers along the three Fe-S clusters, results in the 

reduction of ubiquinone in two sequential single electron reactions within a 

‘hydrophobic pocket’ formed by SDHB, SDHC and SDHD (Hagerhall, 1997; Sun et al., 

2005).  

 

               (  )                     

                  

Equation 1.4. Complex II reaction 

The reaction catalysed by complex II 

 

 Ubiquinone (Coenzyme Q) 1.2.2.4

Ubiquinone (Figure 1.6), often referred to as coenzyme Q, is a lipid soluble quinone and 

as such is able to move freely within the lipid bilayer. It functions as an electron carrier, 

shuttling electrons from complexes I and II to complex III. Within complex II the 

reduction of ubiquinone (Q) occurs in two single electron transfer steps, with reduction 

by a single electron first forming ubisemiquinone (Q-) before complete reduction 

generates ubiquinol (QH2). 

  

 

 

 

 

 

 

 

 

Figure 1.6. Ubiquinone forms 

Diagram showing the electron acceptor molecule ubiquinone, in its reduced form- Ubiquinol (Q), 

oxidized form- ubiquinone (QH2) and the intermediate- ubisemiquinone (Q
-
). (adapted from 

biochemistrydictionary.org) 

Q Q- 

QH2 
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 Complex III- Ubiquinol cytochrome c oxidoreductase 1.2.2.5

Complex III (Cytochrome c oxidoreductase) consists of 11 subunits forming a 

membrane spanning homodimer of 248kDa. This third complex is responsible for 

catalysing the transfer of 2 electrons within QH2 to an individual cytochrome c 

molecule.  Only one subunit of complex III is mitochondrially encoded (cytochrome b) 

(Sen and Beattie, 1986). The complex contains 5 key redox components, two b type 

hemes, a single c-type heme, the Rieske center (an Fe-S cluster) and ubiquinone (Figure 

1.7). 

 

 

Figure 1.7. Complex III and the Q Cycle 

Schematic of complex III structure and pathways of the Q cycle, for details see text. 

Step 1 

Step 2 
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The electron transfer from ubiquinol to cytochrome c occurs through a process known 

as the Q cycle (Mitchell, 1976) which couples the 2e
-
 oxidation of ubiquinol to the 

release of two protons into the intermembrane space. This two-step process begins with 

the transferal of one electron from ubiquinol (forming semiubiquinone) first to the 

Rieske center where it is passed to cytochrome c1 and subsequently cytochrome c 

(within the Q0 site). The second electron is transferred within the Q1 site to cytochrome 

b where it first binds with low affinity to haem b1 followed by haem bh with higher 

affinity. The redox component ubiquinone is then reduced to form the semiquinone 

intermediate (Q-). A second Q cycle must then commence with QH2 binding the Q0 site 

and the above process is repeated with the exception that haem  bh now fully reduces the 

Q- from the first cycle. Two OH2 molecules therefore are consecutively processed 

within complex III for one complete Q cycle.  The 2 electron oxidation of ubiquinol is 

accompanied by release of two protons into the intermembrane space. 

 

 Cytochrome c 1.2.2.6

Cytochrome c is a small haem protein (13kDa) that is a critical component of the ETC. 

The nuclear encoded highly soluble protein acts as a mobile carrier that shuttles 

electrons from complex III, through the haem group and transfers them to complex IV. 

Release of cytochrome c into the cytosol also initiates apoptosis through its binding 

with Apaf-1. 

 

 Complex IV- Cytochrome c oxidase 1.2.2.7

Complex IV (Cytochrome c oxidase) is the final enzyme of the electron transport chain. 

The protein consists of 13 subunits of which 3 (COX I-III) are mitochondrially encoded 

(Tsukihara et al., 1996). Majority of the complex exists within the membrane, with 

COX I and II making up the majority of the catalytic core. The complex also consists of 

two iron sites, two copper sites and others for zinc and magnesium.  Its role is the 

reduction of the terminal electron acceptor- oxygen and the formation of water. To 

achieve this four electrons are required with cytochrome c oxidase undergoing four 

sequential states (Figure 1.8). 

http://en.wikipedia.org/wiki/Heme
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Figure 1.8. Complex IV 

Complex IV catalyses the reduction of O2 to H2O through the transfer of electrons from cytochrome c 

along a chain of haem and copper centres in a cyclic manner.
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Cytochrome c binds complex IV at the intermembrane space side of the membrane 

where the first electron passes to a double copper centre (CuA) where Cu
2+ 

 is reduced to 

Cu. The electron is then passed to haem a and then to the catalytic site, haem a3 and 

CuB. This pathway is repeated by the second electron but terminates by reducing haem 

a3, producing an ‘active centre’. At this point both CuB and haem a3 are reduced 

enabling O2 to bind generating a peroxide bridge termed the ‘peroxy’ state. The final 

two electrons repeat this process but bring about the conclusion of the peroxy state and 

commencement of the ‘ferryl’ state through binding of 2H+ causing cleavage of the 

peroxide bridge. Finally cytochrome c enters the ‘oxidised’ state with a further 2H+ 

molecules completing the reduction of O2 to H2O (Faxen et al., 2005).  The overall 

reaction can be seen below in Equation 1.5. 

 

  (    )     ( 
 )            (    )         ( 

 )          

 

Equation 1.5. Complex IV reaction 

The reaction catalysed by complex IV 

 

 

 Complex V- ATP synthase 1.2.2.8

The concluding step in the respiratory chain is the production of ATP from ADP and Pi 

via Complex V (ATP synthase). This final complex is around 500kDa consisting of 16 

subunits with ATP 6 and 8 encoded by the mtDNA.  Its structure is divided into two 

structural fractions termed FO and F1 (Figure 1.9). FO module is embedded in the 

mitochondrial inner membrane and contains a rotary ring of 8 hydrophobic c subunits 

that form the proton channel of the complex and subunits involved in the peripheral 

stalk responsible for stabilising the position of F1 (a,b,d,F6 and OSCP) and accessory 

units e, f, g and A6L.  

 

F1 exists in the matrix side of the membrane as a water soluble, globular domain 

containing the catalytic binding sites of ADP and Pi. It is composed of five distinct 

subunits, α, β, ε, γ and δ. The γ and ε subunit form the central stalk of F1 that interacts 

with F0. Surrounding the coiled coil of the γ subunit are 3 α and 3 β subunits arranged 

one after the other forming a cylindrical shape. 
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Both fractions are rotary motors capable of bimodal functioning to either produce or 

hydrolyse ATP. Protons pass through the 8 c subunits of F0, where a glutamate 

molecule within each subunit of the c-ring undergoes protonation and deprotonation, as 

such for a single 360
0
 rotation 8 protons are transferred. The electrochemical gradient 

generated by F0 is then used to generate rotary torque in F1 to drive ATP synthesis 

through the attachment of the F1 central stalk to the c ring. Synthesis of ATP from ADP 

and Pi is then driven at catalytic sites of the beta subunits of F1. These beta subunits 

consecutively exist in three different conformations, open, loose or tight. When loose 

ADP and Pi bind loosely, following rotation of F1 the conformation of these catalytic 

sites changes allowing ADP and Pi to bind to the catalytic site. Upon further rotation the 

beta conformation becomes tight enabling enough energy to produce ATP. The final 

rotation releases ATP as the beta subunits become open.  

 

A complete 360
0 

rotation of complex V therefore produces three ATP molecules 

(Jonckheere et al., 2012) following the translocation of 8 protons. The cost of each ATP 

molecule therefore is 2.7 H+ (Watt et al., 2010). The adenine nucleotide transporter 

(ANT) is then responsible for the export of ATP into the cytoplasm which occurs in 

parallel to the import of ADP into the mitochondrion via a conformational change of the 

ANT antiporter. 
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Figure 1.9. Complex V 

Structural schematic of complex V comprising of the F0 module with can be further divided into the c-ring 

and peripheral stalk and the F1 module containing the central stalk and α3β3 catalytic ring. 
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 Supercomplexes  1.2.2.9

The complexes of oxidative phosphorylation are commonly thought of as independent 

sequential structures linked purely by the mobile carriers cytochrome c and ubiquinone. 

Conversely to the archetypal chain organisation however it is now understood that 

multiple complexes are able to physically interact with each other. The first evidence for 

the existence of these ‘supercomplexes’ in mammalian mitochondria was published in 

2000 (Schagger, 2000). Since then structural (Dudkina et al., 2005) and functional 

(Acin-Perez et al., 2004) observations of supercomplexes have been shown. 

 

The supercomplexes comprising complexes I, II, and IV are termed respirasomes, 

representing the basic unit of respiration within the mitochondrion. Such 

supercomplexes are thought to convey a clear biochemical advantage by increasing 

electron transfer efficiency by maximising the proximity of key ETC complexes and 

enabling substrate channelling. Existing alongside respirasomes however are partial 

complexes often missing Complex IV, the role of these incomplete units is less clear, 

although the interaction between Complex I and III may serve to stabilise the proteins 

(Acin-Perez et al., 2004).  

 

Importantly, supercomplex formation may have implications with relation to human 

pathogenesis. Recent understanding shows that respirasomes, other supercomplexes and 

the assembly of individual complexes are all linked, with intermediates of complex I 

preceding assembly of subunits of complexes III and IV which then precedes final 

formation of complex I through incorporation of its catalytic domain. The coordinated 

construction of complexes and their conglomerates goes some way to explaining how 

mutations within a certain complex can result in combined respiratory defects through 

compromised assembly and impacts within supercomplexes. 

 

 Reactive Oxygen Species (ROS)  1.2.3

Reactive Oxygen Species (ROS) are highly reactive molecules formed through the 

incomplete reduction of molecular oxygen. As such, mitochondria represent an 

important source of ROS. Examples of mitochondrially derived ROS include 

superoxide anion O2-, hydrogen peroxide (H2O2) and the hydroxyl radical (OH).  
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Superoxide is generated when electrons leak from the ETC directly to O2. This 

molecule is highly reactive and as such is converted to a less reactive H2O2 molecule 

through superoxide dismutase. H2O2 is still toxic and requires further enzymes such as 

catalase for its removal. The proximity of the ROS producing ETC to mtDNA means 

that the mitochondrial genome and mitochondrion themselves are particularly 

susceptible to ROS induced damage (oxidative stress). Externally ROS can damage all 

components of cells with numerous diverse implications ranging from reduced 

telomerase activity to affecting the self-renewal capacity of stem cells. For this reason, 

alongside antioxidants, dedicated DNA repair mechanisms exist to limit the impact of 

ROS damage. 

 

In the 1950s Denham Harman proposed the free radical theory of ageing (Harman, 

1956; Harman, 1981). The theory suggests that the accumulation of damage resulting 

from free radicals and the balance of the cells ability to compensate for such damage are 

pinnacle to the ageing process. Increased ROS and increased mtDNA mutations are 

commonly observed in aged tissue supporting the free radical theory. Exceptions to the 

rule however exist and show other factors are at play. For example the naked mole rat 

shows an elevated level of ROS but an extended life span.  

 

The free radical theory was later expanded to the mitochondrial theory of ageing taking 

into account mitochondria as producers of ROS and the proximity of mtDNA to this 

production putting the organelle itself at the precipice of the ageing process (Miquel et 

al., 1980), Harman, 1981). Indeed age associated accumulation of mtDNA mutations 

has been observed in human colon (Greaves et al., 2006), skeletal muscle (Bua et al., 

2006) and the brain (Bender et al., 2006). The age associated accumulation of 

dysfunctional mitochondria would subsequently bring about the gradual deterioration of 

organism functioning. Whether this is alone or more likely in contribution with an 

observed reduction in mtDNA abundance remains debated (Welle et al., 2003).  

 

Although deleterious through many routes, ROS may represent a necessary evil within 

the cell with key roles in intracellular cell signalling that are just beginning to be 

elucidated. By means of example superoxide has been shown to leave through VDAC 

where it signals hypoxia induced transcription and signals to autophagic processes 



Chapter One                      Introduction 

 

22 

 

which are likely to be key to signalling the health of the mitochondrion and metabolic 

state. 

 Calcium Handling 1.2.4

Mitochondria play a pivotal role in the buffering and maintenance of calcium 

homeostasis.  Calcium ions are secondary messengers in many cellular signalling 

pathways including energy transduction where increased Ca
2+

 uptake has been shown to 

activate the Krebs cycle through activation of pyruvate isocitrate and oxoglutarate 

dehydrogenase and increase ATP production (McCormack et al., 1990; Jouaville et al., 

1999). Calcium in also intrinsically linked to apoptosis and necrosis via the 

mitochondrial permeability transition pore (MPT). Ca
2+

 overloading is sufficient to 

induce opening of this pore through which cytochrome c can release and bind apoptotic 

factors in the cytosol. Calcium release from the ER has also been shown to be coupled 

to the exodus of cytochrome c from the mitochondrion (Mattson and Chan, 2003). 

Subsequently, the buffering capacity of mitochondria is crucial for cell homeostasis 

ensuring intracellular calcium signals are equilibrated to alterations in extracellular 

calcium levels.  

 

Found within the inner membrane, the Ca
2+

 uniporter is responsible for the uptake of 

calcium to mitochondria. Here, at high calcium concentrations, calcium binds to the 

cytosolic side of this uniporter causing its activation and is transported across the 

electrochemical gradient.  Conversely, the efflux of calcium from the mitochondrion is 

facilitated through Na/Ca
2+

 exchange, although the molecular identity and complete 

functionality of this channel remains unknown. The process of Ca
2+

 efflux ensures 

equilibrium is never reached meaning, in theory, mitochondria are an unlimited calcium 

sink. 

 

Calcium homeostasis is of particular importance in neurons where the ions are involved 

within signalling of presynaptic terminals. Following stimulation mitochondria are able 

to buffer, generating a Ca
2+

 ‘plateau’ that allows for rapid proceeding stimulations and 

subsequently enhanced responses. Within dopaminergic neurons of the substantia nigra 

Ca
2+

 is known to confer unique pacemaking abilities which may render this cellular 

population particularly vulnerable to dysfunctional mitochondria which are unable to 
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fully buffer calcium. This offers tempting links between mitochondrial functioning, 

calcium and Parkinson’s disease as it is these dopaminergic neurons which suffer most 

dramatic reduction in this condition. 

 Apoptosis 1.2.5

Apoptosis is the highly regulated process of programmed cell death, in stark contrast to 

necrosis, an uncontrolled abrupt cell death caused by trauma or acute cellular injury. 

Apoptosis functions in important developmental stages and displays a distinct pathway, 

including condensation of the nucleus and cytoplasm, or ‘blebbing’ before phagocytosis 

and degradation by other cells (Kerr et al., 1972). Although initially thought to be under 

nuclear control it is clear mitochondria play a huge role in the apoptotic process, not 

least through the nuclear encoded electron carrying molecule- cytochrome c. Despite 

being the most potent signalling molecule of apoptosis it was not identified as a factor 

until 1996 (Liu et al., 1996). The mitochondrion’s role was suggested prior to this 

through BCL-2 protein which is located primarily on the outer membrane.  BCl-2 

family of proteins are known to be crucial regulators of the apoptosis process through 

their interaction with proapoptotic members, Bax and Bak. These proapoptotic proteins 

are known to oligomerize in the outer mitochondrial membrane causing its 

permeabilisation and release of cytochrome c. Once in the cytosol, cytochrome c can 

interact with caspase 9 and APAF1 forming a heptameric protein ring, the apoptosome. 

The apoptosome is necessary for induction of preceding molecular changes required for 

the caspase cascade. Mitochondria are also responsible for the release of inhibitors of 

apoptosis including Smac/DIABLO which prevent the activity of the apoptosome.  

Alongside this, mitochondria release apoptosis inducing factor (AIF), which assists 

apoptosis through the degradation of nuclear DNA (Ye et al., 2002). 
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 THE MITOCHONDRIAL GENOME 1.3

The mitochondrial genome is a 16,569 base pair, closed, circular, double stranded DNA 

molecule. Located within the mitochondrial matrix, mtDNA exists in multiple copies 

that are freely dispersed but packaged into protein-DNA complexes known as 

nucleoids, which associate with the inner membrane (Albring et al., 1977). Within each 

nucleoid, it was thought multiple copies of the genome could exist alongside the protein 

machinery required for transcription, replication and maintenance of the mtDNA (Holt 

et al., 2007). Advances in imaging techniques, notably super resolution microscopy 

have shown most nucleoids actually only contain one molecule of mtDNA (Kukat et al., 

2011). It has also been suggested that complex assembly may take place in the 

peripheral region (Bogenhagen et al., 2008). 

 

 Genome organization 1.3.1

The mitochondrial genome was first sequenced in 1981 (Anderson et al., 1981) and 

following revision in 1999 (Andrews et al 1999) has become commonly known as the 

revised Cambridge Reference Sequence (rCRS). The genome encodes for a total of 37 

polypeptides (including 13 proteins essential to OXPHOS), 22 transfer RNAs (tRNA) 

and two ribosomal RNAs (rRNA) (Anderson et al., 1981) (Figure 1.10). These 13 

proteins can further be divided into 7 subunits of complex I, a single subunit of complex 

III, three subunits of complex IV and 2 of complex V. Why these 37 genes were 

retained by the mitochondrial genome when around 1500 relocated to the nuclear 

genome is unclear but may be due to the hydrophobicity of these particular subunits 

which would pose challenging for transport into the organelle after translation. 

Alternatively, the retention of these genes has been proposed to enable rapid adaption of 

the OXPHOS system if necessitated by environmental changes (Wallace, 2007). 

   

The mitochondrial genome is composed of two strands, named heavy and light 

reflecting their purine to pyrimidine ratio. The heavy chain contains more guanine 

residues in contrast to the abundance of cytosine residues of the light chain. Only ND6 

and 8 of the mitochondrial tRNA genes (MTTs) are transcribed from the light strand, 

the remaining 12 protein encoding genes, 14 MTTs and the two mt-rRNAs are 

transcribed from the heavy chain. The compact mtDNA molecules differ from the 

nuclear genome containing no introns with the only extended non coding region being 
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found within the displacement loop, an area that controls transcription and replication of 

the genome (Clayton, 1982; Clayton, 2003). 

 

 

 

 

 

 

 

 

Figure 1.10. The Mitochondrial Genome. 

The mtDNA molecule encodes 13 proteins, 7 subunits of complex I (blue), 1 subunit of complex III 

(purple), 3 subunits of complex IV (green) and 2 subunits of complex V (turquoise) . Alongside this it 

encodes 2 mRNAs (red) all of which are punctuated by 22 tRNA (orange letters). Both origins of 

transcription (OH and OL) are labelled, areas without labels represent non coding regions. (Figure 

reproduced with permission from Mr Casey Wilson) 
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 Transcription 1.3.2

A promoter region for transcriptional initiation is found on both the heavy and light 

strands of the mitochondrial genome- the light-strand promoter (LSP) and the heavy-

strand promoter (HSP). As such mtDNA transcription occurs bi-directionally. HSP 

transcription is initiated from one of two heavy strand promoters (H1 or H2) with H1 

producing a short transcript encompassing the two rRNAs whilst H2 covers the entire 

length of the genome (Zollo et al., 2012). Transcription initiation of the light chain 

conversely occurs from a single promoter site (L1) but also produces long polycistronic 

molecules corresponding to nearly the entire length of the genome (Montoya et al., 

1982; Chang and Clayton, 1984; Hixson et al., 1986; Taanman, 1999). 

 

 Protein machinery of transcription 1.3.2.1

Three key components for mitochondrial transcription have been described, 

mitochondrial DNA-directed RNA polymerase (POLRMT), mitochondrial transcription 

factor B1 and B2 (TFB1M/TFB2M) and mitochondrial transcription factor A (TFAM).  

 

TFAM was the first transcription factor to be identified in humans in 1988 (Fisher and 

Clayton, 1988). Structurally TFAM consists of two tandem domains separated by a 27 

amino acid linker region and a 25 residue C-terminal tail important for DNA 

recognition (Dairaghi et al., 1995). TFAM is able to unwind and bind DNA which may 

be crucial to exposing the promoter regions for accessibility of other transcriptional 

factors. Its binding has also been shown to induce conformational changes upstream of 

the transcriptional start sites (Fisher et al., 1992). Although once thought to be a critical 

component of transcription it has recently been shown that overexpression of TFAM 

can actually inhibit transcription (Rebelo et al., 2009). Within yeast, the TFAM 

homologue Abf2 is not required for transcription (Xu and Clayton, 1992) as such the 

only indispensable components of transcription are POLMRT and TFB1M or TFB2M, 

with the use of TFB2M shown to have tenfold efficiency for reasons currently unclear 

(Falkenberg et al., 2002). 

 

POLRMT itself is known to contain promoter recognition regions although its function 

requires the assistance of a mitochondrial transcription factor with which it forms a 
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heterodimer. Together these activate transcription through binding with TFAM at 

specific sites in proximity to the promoter regions (Bonawitz et al., 2006). Although 

transcription can occur in the absence of TFAM it is thought that it plays a regulatory 

role in directing transcription initiation (Falkenberg et al., 2007). 

 

TFB1M and TFB2M represent two functional homologues of transcription factor B first 

identified in 2002 (Falkenberg et al., 2002). Although both are known to independently 

support initiation of transcription it would appear TFB2M may show greater efficiency 

due to its ability to directly contact DNA at the transcription start site where it may 

assist in promoter melting (Sologub et al., 2009) and/or stabilise single stranded DNA 

following unwinding by TFAM (Falkenberg et al., 2007). TFB1 is more important in 

methylation role of the diadenine bases in 12S rRNA. 

 

 Termination of transcription 1.3.3

Crucial for the termination of transcription from all three promoters is the family of 

regulators known as mitochondrial transcriptional termination factors (mTERF) of 

which 4 have been identified. With regards to mechanism of termination the H1 

promoter is most well characterized. mTERF1 has been shown to bind the termination 

site of H1- a 28bp region immediately downstream of RNA1(Kruse et al., 1989) but 

also contradictorily the H1 promoter site.  It is thought that the resulting rDNA loop 

structure that contains both rRNA genes resulting from this binding, serves to rapidly 

recycle the transcription machinery (Rebelo et al., 2011). 

 

The three homologues of mTERF1 are less well understood. mTERF2 and 3 have been 

shown to be important for mitochondrial transcription through their binding with 

mtDNA promoter region. Interestingly mTERF3 has been shown to be a negative 

regulator of transcription, whereby its depletion causes increased mitochondrial 

transcription (Park et al., 2007). Conversely, mTERF2 decrease in mice is linked to 

decreased mitochondrial transcription implying it has the reverse effect of mTERF3.  

The role of mTERF4 was until recently relatively unclear although it has now been 

demonstrated to have a role in the regulation of mitochondrial translation through the 
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recruitment of rRNA methyltransferase (NSUN4) to the large ribosomal subunit 

(Camara et al., 2011) this undoubtedly requires further investigation.    

 

 Replication of mitochondrial DNA 1.3.4

 

Mitochondrial DNA has an autonomous mechanism of replication (Figure 1.11). 

Independent of nuclear DNA replication, mtDNA replication can occur throughout the 

cell cycle (Bogenhagen and Clayton, 1977) and within post mitotic cells where nuclear 

replication has halted. Interestingly, despite this independent nature, the machinery for 

replication is entirely encoded by the nuclear genome. Although mechanistically more 

simple than nDNA replication, requiring far fewer proteins, the exact mechanism of 

replication remains debated with two models being proposed. 

  

 

 

 

 

Figure 1.11. Replication of mtDNA 

The autonomous mechanism of mtDNA replication requires the co-ordinated functioning of TWINKLE, 

mtSSB, POLRMT and POLγ. For details see text. 

 

POLRMT 
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 Replication machinery 1.3.4.1

The mitochondrial minimal replisome consists of three proteins. The mitochondrial 

DNA helicase TWINKLE is responsible for unwinding mtDNA in the 5’ to 3’ direction 

in an ATP dependent manner (Korhonen et al., 2003). To achieve this, a fork like 

structure with 5’ and 3’ single stranded stretches of DNA is required (replication fork). 

Mitochondrial single stranded binding proteins (mtSSB) maintain the integrity of DNA 

and prevent ssDNA forming secondary stable structures that would impair the 

functioning of mitochondrial polymerase gamma (POLγ), a 190kDa protein (Gray and 

Wong, 1992) required for replication of the mtDNA. Leading strand synthesis is 

performed by the catalytic subunit of POLGγ- POLγA which forms a complex with two 

subunits of POLγB (Yakubovskaya et al., 2006). The final contributor is POLRMT 

previously described for its role in transcription. 

 

 Initiation of replication 1.3.4.2

Transcription and replication of mtDNA are intrinsically linked. In order for replication 

to begin, premature termination of transcription from the LSP is required (Bonawitz et 

al., 2006). Critical to this process are three conserved sequence blocks (CSBs) located 

downstream of OH and termed CSBI, CBII and CSBIII.  Premature termination occurs 

in around 60% of cases but always at CSBII, leading to a short RNA primer which then 

generates an RNA-DNA hybrid (Xu and Clayton, 1995). Termination is then thought to 

occur through cleavage of the transcript by the RNase mitochondrial processing enzyme 

(RNase MRP) (Lee and Clayton, 1997) or through CSBIIs inherent transcription 

termination qualities (Pham et al., 2006).  

 

The minimal replisome is able to begin DNA synthesis from the origin of heavy chain 

replication (OH) (Wanrooij and Falkenberg, 2010). A triple stranded structure (7S DNA) 

of unknown function is produced when synthesis terminates at the termination 

associated sequence (TAS) (Clayton, 1982). Leading strand synthesis proceeds in a 3’ 

to 5’ direction, whereby the DNA helicase TWINKLE forming a hexameric structure 

unwinds DNA in the 5’ to 3’ direction, revealing the replication fork (Korhonen et al., 

2003).   
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 Models of replication 1.3.5

Two models of mitochondrial replication have been proposed, the synchronous (Holt et 

al., 2000) and asynchronous (Robberson and Clayton, 1972) models. In the original 

asynchronous model replication begins at OH and proceeds around the mtDNA until the 

origin of light strand (OL) is exposed by TWINKLE (Clayton, 1991). This then forms a 

single stranded stem-loop structure which in turn initiates formation of a primer by 

POLRMT and triggers lagging strand replication in the opposite direction (Tapper and 

Clayton, 1981). This first model therefore produces two distinct molecules, one 

consisting of the parental H-strand and a partially synthesised L-strand. MtDNA 

molecules are converted into their closed spherical form once L-strand synthesis is 

complete. 

 

The synchronous model of replication proposed by Holt in 2000 suggests bidirectional 

replication whereby leading strand synthesis is coupled to short stretches of lagging 

strand synthesis from initiation sites revealed as the DNA unwinds. The activation of 

these initiation sites is postulated to occur through binding of Okazaki fragments 

(although unobserved in mitochondria) which act as primers (Wanrooij and Falkenberg, 

2010). Initiation of this model was initially thought to occur at OH although research 

now shows initiation occurs at multiple sites within a broad zone (OriZ) and that OH 

actually acts as a termination point through stalling of the replication fork (Bowmaker et 

al., 2003). A final model, a variation on the synchronous theory is the Ribonucleotide 

Incorportation Throughout Lagging Strand (RITOLS). In this, leading strand replication 

occurs in parallel to synthesis of the lagging strand as RNA which following exposure 

of OL, is replaced with DNA (Yasukawa et al., 2006).  
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 Mitochondrial translation 1.3.6

Mitochondrial translation is a highly complex process that follows transcription and 

post transcriptional RNA modification. The process can be separated into four major 

stages, initiation, elongation and termination and recycling, all of which occur within 

the mitochondrial matrix and require the importation of many nuclear encoded proteins 

(Figure 1.12). Essential to mitochondrial translation are the mitochondrial transfer 

RNAs (mt-tRNAs).  The 22 mitochondrial tRNAs are all encoded by the mitochondrial 

genome, subsequently mutations of these genes are common causes of mitochondrial 

disease. All but two mt-tRNAs show the classical cloverleaf form consisting of 4 stems 

and 3 loops. tRNAs function to recognise the 3-base codon sequences of the mRNA 

bringing the appropriate cognate amino acid to the growing polypeptide.  

 

 Initiation 1.3.6.1

Two essential initiation factors have been identified in mitochondria mtIF2 and mtIF3. 

These function to bring together the initiator tRNA and ribosome. The mitochondrial 

ribosome is surprisingly different in composition to its bacterial counterpart despite 

having a similar mass, mitoribosomes contain over twice as much protein but half the 

quantity of RNA, with many of the bacterial RNA structural components replaced with 

protein.  The mitoribosome contains 2 subunits, the large (39S) subunit, which contains 

approximately 48 proteins and the 16S RNA and the small subunit (28S) containing 

approximately 29 proteins and the 12S RNA. Both RNAs are mitochondrially encoded. 

Binding of the mtIF3 to the small ribosomal subunit (SSU) causes dissociation of the 

large and small subunits. MRNA is then able to bind in a manner that locates the 

methionine initiation codon at the peptidyl site (P site) (Smits et al., 2010). The tRNA 

for methionine (tRNAMet) has functions within both initiation and elongation. 

Distinction between its two roles is made possible through modification to a formylated 

version (mt-tRNAfMet). This mt-tRNAMet has reinforced binding with mt IF2 which 

subsequently prevents its binding to elongation factor Tu (Mikelsaar, 1983; Janiak et 

al., 1990). Human mitochondria do not possess two separately encoded mt-tRNAMets 

for the two roles and as such tight regulation of availability of both forms is necessary 

(Takeuchi et al., 2001). Binding of tRNAfMet to the small ribosomal subunit at the 

Psite is the final, GTP dependent step of initiation and requires the presence of mtIF2. 
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Initiation is complete when mtIF3 and mtIF2 are released and the LSU and SSU are re-

associated. 

 Elongation 1.3.6.2

The peptide chain is elongated through step wise addition of aminoacylated mt-tRNAs 

upon presentation of their associated codons at the acceptor (A) site of the 

mitoribosome. For this to occur mitochondrial elongation factor Tu (meFTu) forms a 

complex with GTP and each of the mt-tRNAs. MtEFTu plays a vital role in carrying the 

mt-tRNA to the ribosomal complex alongside protecting it from degradation.  

Following codon recognition GTP hydrolysis occurs releasing GDP bound mtEFTu. 

The elongation factor Tu is recycled by mtEFTs reducing its affinity for GDP allowing 

its replacement and subsequent reactivation with GTP. At this point the amino acid 

bound to the mt-tRNA in the A site forms a peptide bond with the nascent peptide chain 

which is bound to mt-tRNA at the Psite. Mitochondrial elongation factor (mtEFG1) 

bound to GTP then causes a conformational change in the mitoribosome allowing the 

mRNA to shift by 3 nucleotides so that the A site is once again empty as the A site 

bound mt tRNA moves to the evacuated P site. The P site bound mt tRNA is thought to 

move to the exit site (E site) although there is speculation as to whether this site exists 

in mammalian mitochondria (Mears et al., 2006), this in turn would enable easier frame 

shifting for human ribosomes as only a single anticodon/codon pairing would need to be 

broken. This entire process is repeated enabling the polypeptide to extend through the 

polypeptide exit tunnel before emerging into the matrix where it folds (Sharma et al., 

2003). 

 

 Termination 1.3.6.3

In order for the growth of the polypeptide to be terminated a STOP codon must appear 

at the A site which mt-tRNAs are unable to bind. Instead mitochondrial release factor 1a 

(mtRF1a) recognises the codon which catalyses the hydrolysis of the ester bond holding 

the polypeptide to the mt-tRNA at the P site. Dissociation of the entire mitoribosome 

complex and release of the mRNA and tRNA are achieved through the joint binding of 

mitochondrial ribosomal recycling factor (mtRRF) and mitochondrial elongation factor 

G2 (mtEFG2) at the LSU. Here the final step requires hydrolysis of the mtEFG2 bound 

GTP releasing the LSU allowing the process of translation to begin again.  
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 Hungry Codons 1.3.6.4

The use of specific stop codons in mitochondrial translation differs from other systems. 

Importantly although there were originally thought to be four separate STOP codons in 

mtDNA, namely UAA, UAG,AGA and AGG, the single release factor mtRF1a was 

shown to be unable to interact with either AGA or AGG despite the open reading 

frames for MTCO1 and MTND6 being terminated by AGA and AGG respectively. It is 

now understood that either of these codons within the A site of the ribosome is not 

recognised by mtRF1a or any mt-tRNA. This codon is therefore referred to as a 

‘hungry’ codon. causing a pause in the translation process. Strong secondary structure 

in the respective mt-mRNAs immediately downstream of the hungry codons helps to 

facilitate a single reverse nucleotide frameshift by the mitoribosome aligning a UAG in 

the mitoribosomal A site from immediately upstream of either AGA or AGG codons in 

their respective mt-mRNAs (Temperley et al., 2010). This UAG is recognised by 

mtRF1a, leading to standard termination. The relatively small number of mt-tRNAs 

(Dittmar et al., 2006) also means codon reading must be more flexible in mitochondrial 

translation. Variability is enabled through post transcriptional modification and a 

process known as the ‘wobble hypothesis’ whereby the first base of the anticodon is less 

spatially confined and subsequently able to bind non Watson-Crick pairs. 
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Figure 1.12. Mitochondrial translation 

The schematic highlights the three stages of mitochondrial translation, Initiation, Elongation and 

Termination are shown alongside the required protein machinery. (Figure was taken with permission 

from (Smits et al., 2010) 
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 MITOCHONDRIAL GENETICS 1.4

 Mutations of the mitochondrial genome 1.4.1

Mutations of the mitochondrial genome can exist as point mutations, deletions, 

insertions and large scale deletions. These are all known to occur at a higher rate than 

those of the nuclear genome. This is likely a result of a combination of factors. Firstly 

the close proximity of the mtDNA to the ETC and subsequently free radical production 

means it is exposed to a high level of oxidative damage. Secondly, the lack of non-

coding DNA coupled with an absence of protective histones mean deleterious mutations 

are far more likely to occur. Finally, mitochondria lack the same level of DNA repair 

mechanisms observed within the nuclear genome.  

 

 mtDNA repair mechanisms 1.4.1.1

It is now clear that there are many DNA repair mechanisms within the mitochondrion, 

despite lack of such processes potentially underlying the high mtDNA mutation rate. 

Indeed, there are many forms of DNA repair in mitochondria, but they do lack the major 

nucleotide excision pathways found in the nucleus. To date the most well studied repair 

mechanism is short base excision repair (sBER). In this mechanism mutated bases are 

removed by a DNA glycosylase leaving an abasic site (apurinic/apyrimidinic) which is 

then processed by an AP endonuclease (APE1) leaving a 3’-hydroxyl and 

5’deoxyribose-5-phosphate residue.  This is then filled in by polG activity   and the nick 

sealed by DNA ligase (Bohr et al., 2002). Less well understood and currently 

incomplete pathways exist in the form of long patch base excision repair (which 

functions as short BER but for multiple nucleotides), direct repair of damaged 

nucleotides (Satoh et al., 1988) and mismatch repair (MMR; Mason et al. 2004). 

Research has shown mitochondrial MMR functions independently from nuclear MMR 

(de Souza-Pinto et al., 2009). Crucially, mitochondria lack nucleotide-excision repair, 

evidenced by the observation that UV-induced pyrimidine dimers were not removed 

from mtDNA (Clayton et al., 1974). 

 



Chapter One                      Introduction 

 

36 

 

 Homoplasmy and heteroplasmy 1.4.2

Mitochondrial DNA molecules exist in multiple copies within each cell. A cell whose 

mtDNA molecules are all wildtype or mutant is said to be homoplasmic. However a 

situation can arise whereby wild type molecules can co-exist with mutated molecules 

giving rise to a heteroplasmic situation. This phenomenon has profound implications for 

mitochondrial disease.  It is worth noting that although healthy cells are said to be 

homoplasmic it is likely that even these have a clinically insignificant percentage of 

mutated mtDNA molecules (<1%) (Lightowlers et al., 1997; He et al., 2010). 

 

 The threshold effect 1.4.3

Owing to the existence of heteroplasmy within cells, a situation exists whereby the ratio 

of mutated to wildtype molecules can dictate the clinical presentation of a deleterious 

mutation (Figure 1.13). Although some pathogenic homoplasmic mutations have been 

characterized, heteroplasmic mutants are, by far, more common. The threshold level for 

expression of a biochemical defect varies dramatically for mutation type, individual, 

and tissue, with reports as low as 8% in a very unusual case of a dominant mutation 

(Sacconi et al., 2008). Typically however mutational thresholds and subsequent 

phenotypic expression occur at around 70-90% heteroplasmy, evidencing the recessive 

nature of almost all mutations. One of the complexities of mitochondrial disease 

therefore is the variability in expression between patients dictated by the mutational 

load as well as the mtDNA locus (McFarland et al., 2004; Elson et al., 2009).  Further 

variation occurs when considering inheritance of the mutational level whereby factors 

including the mitochondrial bottleneck and other (as yet poorly understood) 

mechanisms can dramatically alter the heteroplasmy level within the offspring. 

 

 Clonal Expansion 1.4.4

It has been demonstrated that accumulation of mtDNA mutations occurs over time and 

that the pattern of this accumulation is focal (Muller-Hocker et al., 1993; Schwarze et 

al., 1995). This process is known as clonal expansion and has been confirmed in a 

variety of tissues. Although it is known that a single mutational event (be it deletion or 

point mutation) has the capacity to begin in a single mtDNA molecule and eventually 

express in an entire cell or tissue, the mechanism by which it does so is not clear. This is 
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made more complicated by the pattern of clonal expansion differing in tissue type (Liu 

et al., 1998). Several models have been proposed, as yet no definite hypothesis can be 

proven (Elson et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. Threshold and heteroplasmy 

Mitochondrial heteroplasmy means a mixture of wildtype and mutated mitochondria can reside within the 

same cell. When the number of mutant mitochondria reach a level where clinical presentation is observed 

it is termed the ‘threshold’. 
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 Proposed mechanisms of clonal expansion 1.4.5

 

Survival of the fastest proposed by Wallace in 1992, suggests large scale deletions 

may have a replicative advantage over the larger non mutated mtDNA molecules. This 

mechanism however comes under contention when we consider the entire mtDNA 

molecule is capable of replication in less than 90 minutes. This may not entirely dismiss 

the proposed mechanism if we factor in mitochondrial fusion events which would 

render division rates irrelevant. It is also very difficult to explain how single point 

mutations would be able to expand if this hypothesis was correct.  

 

Survival of the slowest put forward by Aubrey de Grey in 1997 suggests that a 

decrease in respiration observed within mitochondria with mutant mtDNA molecules 

offers them selective advantage through decreased ROS production and subsequent low 

level oxidative damage (de Grey, 1997). Less damage would mean reduced degradation 

of mitochondria containing these molecules. This theory again comes under contention 

when considered under the light of fission and fusion events. The sharing of mtDNA 

molecules and subsequent buffering of respiratory challenge would arguable render this 

method implausible.    

 

Random genetic drift unlike the preceding theories negates the requirement of a 

selective advantage.  Data based on simulations within post mitotic tissues suggest that 

random genetic drift alone is capable of causing clonal expansion, made possible by the 

relaxed replication of mtDNA (Birky, 1994; Elson et al., 2001). In this mechanism 

relaxed replication therefore means there is an equal chance of molecules being lost as 

replicated. This model is dependent on knowing the replication rate of mtDNA in these 

tissues.  

 

 Inheritance 1.4.6

MtDNA is strictly inherited down the maternal lineage (Giles et al., 1980; Birky, 1994). 

Following fertilisation maternal mtDNA molecules vastly outnumber the paternal 

contingent and any remaining paternal molecules are actively degraded through 

ubiquitination (Cummins et al., 1997). Only one exception to the rule has ever been 
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reported, a process known as paternal leakage (Schwartz and Vissing, 2002). The 

maternal inheritance is exploited for phylogenetic analysis as mtDNA inheritance is 

devoid of complicating bi-parental recombination (Pakendorf and Stoneking, 2005). 

Evolution of mtDNA can therefore be characterised by the emergence of lineages 

resulting from an extent of mtDNA recombination known as haplogroups. The most 

variable region of the mtDNA is the D-loop (non coding region) and as such much 

phylogenetic analysis is focussed here (Ingman, 2006). Importantly haplogrouping has 

valuable applications with regards to human disease, enabling the rejection of benign 

polymorphisms which would be expected within set groups. 

 

 Mitochondrial bottleneck 1.4.7

Coupled with a high mutation level, in the absence of recombination, the mitochondrial 

genome should undergo mutational meltdown as predicted by Muller’s ratchet (Muller, 

1964). This is however not the case as evidenced in Holstein cattle where the 

predominant mtDNA variant was shown to be capable of switching within just a couple 

of generations (Hauswirth and Laipis, 1982). How this is so with such a high 

mitochondrial copy number and limited recombination was explained through the 

presence of a mitochondrial bottleneck (Figure 1.14).  Multiple studies have now shown 

that mtDNA is not replicated in the early stages of development lowering the number of 

mtDNA molecules/cell.  Both mature mouse and bovine oocytes have been shown to 

have dramatically increased mtDNA compared to somatic controls. It is postulated 

therefore, that the amplification of these uses limited templates and as such few mtDNA 

molecules will predominate in the cell. What’s more, if the templates happen to have a 

certain level of heteroplasmy this could explain the rapid genotypic shifts observed in 

the Holstein cattle reported above and explain why mitochondria escape the fate 

predicted by Muller’s ratchet. 
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Figure 1.14. The mitochondrial bottleneck 

Diagram shows fertilization of a heteroplasmic oocyte and proceeding embryo development. It is 

postulated that a limited number of primordial germ cells (PGCs) provide the templates for amplification 

and as such few mtDNA molecules will eventually predominate in the cell (Reproduced with permission 

from Dr John Yarham). 
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 MITOCHONDRIAL DYNAMICS 1.5

 Fission and fusion 1.5.1

The notion of mitochondria as lone ellipsoid organelles has long past. Mitochondria can 

exist in a multitude of forms, shown to be dynamic, and dependent on numerous factors. 

The transition between elongated reticular networks and punctate structures is 

dependent on two antagonistic processes - fission and fusion, both of which are vital for 

cell survival as they directly affect organelle number/shape and location. The interaction 

between individual organelles is vital for maintaining respiratory function mixing 

mitochondrial contents which benefits mitochondrial DNA stability and is capable of 

rescuing damaged phenotypes. Changes in both these processes have been shown to 

cause certain neurodegenerative conditions and are implicated in the pathogenic 

pathway of many others. 

 

 Fusion machinery  1.5.1.1

Fusion events are mediated through the mitofusins of the outer mitochondrial membrane 

and OPA1 of the inner membrane (Figure 1.15). The Mitofusins in mammals consist of 

the two homologues- Mfn1 and Mfn2, both are large GTPases containing hydrophobic 

heptad repeats, with long transmembrane repeats that contain charged residues. The N 

and C terminal of both protrude into the cytosol (Rojo et al., 2002). The ability to form 

a U shape within the membrane is thought possible through the unusually long 

transmembrane domain and the charged residues within it. Ablation of either Mfn1 or 

Mfn2 in cells causes greatly reduced levels of fusion, removing both, halts all 

mitochondrial fusion. The two mitofusions display similar biochemical roles, with cells 

lacking either protein capable of rescue through overexpression of the other. This said, 

certain cell types appear to rely more heavily on one than the other, for example 

fibroblasts devoid of Mfn1 display a more severe phenotype than those lacking Mfn2 

(Chen et al., 2005). This may be reflective of differing expression levels in different 

tissues or may highlight slight differences in their function, for example OPA1 

(discussed below) seems to be reliant on Mfn1 functioning and not Mfn2 (Cipolat et al., 

2004) 
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OPA1 is situated in the inner membrane and functions within the intermembrane space 

(Griparic et al., 2004). It is a dynamin family GTPase and was first identified through 

its mutation in optic atrophy. Eight protein isoforms are generated through mRNA 

splicing  and possibly more through postranslational processing. Removal of OPA1 

causes loss of mitochondrial fusion as with the mitofusins, but also causes severe 

modification in mitochondrial cristae (Griparic et al., 2004).   

 

 Mechanism of fusion 1.5.1.2

Their positioning in the outer membrane mean the mitofusins play a key role in 

initiating the interaction between two mitochondria. Both organelles require mitofusin 

expression to fuse together, suggesting that they form complexes between the two 

organelles. Mixing of the mitochondrial matrix requires fusion of both the inner and 

outer membranes. These two processes are tightly co-ordinated but mechanistically 

distinct, shown by the fact the two events can be experimentally uncoupled.   

 

 

Figure 1.15. Fusion mechanism 

The mitofusins serve to tether two mitochondria together. Hydrophobic heptad repeats mediate 

homotypic interactions between the two organelles MFN1s. OPA1, located in the inner membrane is 

thought to be involved in controlling tabulation and curvature of the inner membrane although its 

function is also required for outer membrane fusion. 
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 Fission machinery  1.5.1.3

Fission generates individual smaller organelles that are necessary for transportation 

purposes as well as selecting unwanted mitochondria for programmed removal (Figure 

1.16). FIS1 and DRP1 are heavily involved in fission events. Dynamin-related protein 1 

(Drp1) is predominantly found within the cytosol although a subset has been shown to 

localize to mitochondrial tubules. Furthermore, a proportion of these puncta have gone 

on to be fission sites. As a dynamin family GTPase Drp1 contains a characteristic 

GTPase domain, a central domain and a GTPase effector domain. Its removal increases 

mitochondrial length and tubule complexity (Smirnova et al., 2001). FIS1 is a small 

outer membrane protein that contains a single C-terminal transmembrane domain and 

within the cytosolic domain a helical bundle (Dohm et al., 2004). Knockdown as with 

DRP1 causes elongation of mitochondria, whilst overexpression causes fragmentation 

of the mitochondrial network (Lee et al., 2004). 

 

 Mechanism of fission 1.5.1.4

Initially mitochondrial constriction occurs independently of DRP1 as evidenced in yeast 

whereby transient constrictions occur frequently without expression of Dnm1 (Drp1 

yeast homolog). In some cases this stage also coincides with recruitment of Drp1 to the 

mitochondrion although the two events are mechanistically independent, shown by the 

fact that knockdown of FIS1 does not affect DRP1s recruitment (Lee et al., 2004). 

Importantly, the mechanism by which this recruitment occurs is unclear. Once localized 

to the mitochondria Drp1 then functions to further constrict the organelle, most likely 

through hydrolysis of GTP, acting as a mechanochemical enzyme. Following a 

completed fission the Drp1 complex formed during constriction remains on one of the 

two daughter organelles and is subsequently disassembled. Nucleoid positioning is 

thought to occur in parallel to fission events giving rise to daughter mitochondria that 

always contain at least one mtDNA molecule (Legros et al., 2004).  
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Figure 1.16. Fission mechanism 

Several parameters of mitochondrial fission remain unclear. The proteins FIS1 and DRP1 are critical as 

revealed by the lack of fission following their removal. Constriction of individual mitochondria is able to 

occur independently of Drp1 recruitment, the mechanism of which remains unclear. Once localised to the 

mitochondria a subset of Drp1 puncta go on to form sites of active fission, most likely mediated by 

assembly and activation of Drp1. Further constriction occurs eventually resulting in two daughter 

mitochondria. 
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 Mitophagy 1.5.2

If mitochondrial damage is irrecoverable through fusion, the option to remove 

individual organelles through fission and subsequent mitophagy exists. Removal of 

damaged or unnecessary mitochondria is a highly regulated event, with current 

understanding highlighting PINK1 and PARKIN as key to facilitating this process 

(Figure 1.17). It is worth noting however that several factors in this relatively recent 

discovery remain unclear and it is likely that other components of the pathway or indeed 

novel pathways are yet to be uncovered. To highlight just one example, recent work has 

shown that Fbxo7 (MIM 605648) participates in mitochondrial maintenance through 

direct interaction with PINK1 and Parkin and acts in Parkin-mediated mitophagy. 

Mutations in Fbxo7 (encoded by PARK15) also cause early-onset autosomal recessive 

Parkinson's disease (Burchell et al., 2013). PINK1 and PARKIN therefore likely 

function alongside, and dependent on, various factors yet to be revealed. 

 

PINK1 (MIM 608309) encodes a serine threonine kinase with a mitochondrial targeting 

sequence and localises to either the outer or inner membrane depending on membrane 

potential (Jin et al., 2010), PARKIN encodes an E3 ubiquitin ligase (MIM 602544). 

Parkin has been identified as having a role in tagging mitochondria with reduced 

membrane potential and in doing so selecting them for autophagy. Narenda et al 

demonstrated that Parkin is directly recruited to damaged mitochondria followed by a 

subsequent up regulation of mitophagy (Narendra et al., 2008). Upon depolarization of 

mitochondria following damage/uncoupling, PINK1 accumulates on the outer 

mitochondrial membrane recruiting PARKIN which ubiquitinates numerous outer 

mitochondrial membrane proteins including VDAC1 and MFN that signal autophagic 

factors and seal the organelles fate for degradation (Okatsu et al., 2012). Fission is 

known to occur prior to mitophagy in both yeast and mammalian cells (Nowikovsky et 

al., 2007) (Twig et al., 2008), this allows ‘individual’ mitochondria to be easily 

engulfed by the autophagosome and more importantly sections off damaged 

mitochondria for their selective removal.  

 

Any inhibition of this pathway can easily lead to accumulation of mitochondria that can 

then harm other cellular components. Useful components that would ordinarily be 

recycled are confined in these accumulations and the control of apoptotic signals is lost.  
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Parkin translocation has been shown to be highly selective, with accumulation occurring 

on damaged mitochondria but not healthy organelles within the same cell (Narendra et 

al., 2008). Complementing this data, it has been shown that mitochondria containing 

mutations in cytochrome c oxidase subunit 1 are removed selectively when parkin is 

over expressed in cybrid osteosarcoma cells (Suen et al., 2010). In doing so the 

population of wildtype mtDNA molecules in the cell is increased and COX function 

rescued. 
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Figure 1.17. PINK1/Parkin mechanism of mitophagy 

 

Selective degradation of mitochondria occurs through mitophagy. Current understanding of the process 

relies heavily on the involvement of PARKIN and PINK1. Following a drop in membrane potential 

individual mitochondria separate from the mt-network (1). In healthy mitochondria PINK1 is cleaved by 

PARL. Following damage however this no longer occurs, allowing full length PINK1 to accumulate at 

the OMM (2). This accumulation signals for PARKIN recruitment (3). PARKIN ubiquitinates a multitude 

of OMM proteins (4) and subsequently signals for autophagosome formation and encapsulation.  
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 Motility 1.5.3

Mitochondria not only show dynamic movement within the network but also show 

motility throughout cells. For example, around 35% of neuronal mitochondria estimated 

to be moving at any given time (Overly et al., 1996; Waters and Smith, 2003; Chen et 

al., 2007b). Sophisticated trafficking machinery exists to enable mitochondria to be 

readily transported to areas of increased energy demand or returned for degradation. 

Mitochondria typically have set styles of movement. These can be fairly uniform over 

long distances or show more ‘stop-start-reconsider’ characteristics, where movements 

are shorter and often punctuated with a pause that can precede a change in direction.  

 

Within neurons mitochondria are largely moved along microtubules, although 

movement using actin filaments has been reported for smaller distances and within 

dendritic spines and growth cones (Saxton and Hollenbeck, 2012) (Figure 1.18). The 

‘docking’ and ‘shipping’ of mitochondria onto these cellular tracks is facilitated through 

motor proteins and a plethora of adaptor proteins such as Milton, Miro, Myosin and 

Dynactin. Microtubules display uniform polarity in axons with all positive poles 

aligning at the axonal terminal, the tracking of mitochondria along these is mediated via 

different motors dependant on direction. For anterograde movement (towards the axon 

terminal) kinesin motors are employed, conversely, retrograde movement utilises 

dynamin motors (Baas et al., 1989). 

Figure 1.18. Basic machinery of mitochondrial movement in neurons 

Within neurons mitochondria are primarily transported along microtubules, the transportation is 

facilitated through the KHC-Milton-Miro complex. 
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 DEGRADATIVE PROCESSES IN EUKARYOTIC CELLS  1.6

 

Maintenance of homeostasis is vital for cellular survival. A key aspect for conserving 

this steady state is the ability to balance biosynthesis with the removal of unnecessary or 

harmful cellular components. As such, dedicated degradative mechanisms are essential. 

Within eukaryotic cells large scale degradation is carried out by two distinct processes, 

the ubiquitin proteasome system (UPS), and autophagy. Although a degree of similarity 

both in functionality and specifics of action exists, several distinctions can be made as 

summarised in Table 1.2. 

 

 

 

Table 1.2 Degradative processes in eukaryotic cells. 

Autophagy and the ubiquitin proteasome system (UPS) represent two distinct processes that serve to 

degrade intracellular components. 

 

 

A degree of convergence between the two proteolytic pathways has been observed. In a 

form of autophagy known as chaperone mediated autophagy (CMA), protein tags mark 

cellular components for degradation in the lysosomes. Ubiquitin has been shown to 

function as such a tag in the autophagic system as well as in UPS (Korolchuk et al., 

2009a). Similarly, it has been shown that cargo recognition molecules associated with 

autophagy, such as p62, are utilised in both pathways (Lamark et al., 2009). Although 

the remainder of this discussion will focus on autophagy and its role in homeostatic 

control it is worth noting at this point that crosstalk does exist between the two systems 
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and as such may be relevant to disease pathology (Korolchuk et al., 2009b; Korolchuk 

et al., 2009c). 

 Autophagy 1.6.1

Autophagy- literally ‘self-eating’ is the process by which large cytoplasmic constituents 

and longer lived proteins are degraded; including entire organelles such as 

mitochondria. This then makes constituent amino acids accessible to the cell for more 

urgent purposes, for example, maintaining the metabolite pool particularly during 

starvation. Three principle forms exist, macroautophagy, microautophagy and 

chaperone mediated autophagy (CMA). All modes of autophagy share a common end 

point, degradation via the lysosomes (Figure 1.19). These single membrane organelles 

contain a wealth of hydrolase enzymes, all of which are functionally more active at 

around pH 4.5. To allow for maximal enzymatic activity, the lysosomes create a low 

interior pH via an ATP-dependent proton pump located on the lysosomal membrane. 

Although united in a common endpoint, the mode of cargo recognition, sequestration 

and delivery differ across autophagy subtypes. Furthermore the substrates degraded and 

the levels of specificity in each system vary. The main characteristics of each are 

described below- 

 

Macroautophagy- Often referred to in the literature simply as ‘autophagy’, 

macroautophagy represents the most extensively studied form to date. Here, cytosolic 

components are engulfed along with large areas of the surrounding cytosol in a double 

membrane vesicle. Fusion of this vesicle with endosomes or lysosomes completes the 

degradative process. Large scale degradation of organelles and longer lived proteins are 

achieved by this means.   

 

Microautophagy- In this, the formation of the intermediate double membrane vesicle is 

not required. Instead extrusions of the lysosomal membrane itself protrude and engulf 

smaller cytosolic regions. These are then internalised as single membrane vesicles and 

subsequently degraded. 

 

Chaperone-Mediated Autophagy (CMA) - In CMA single proteins are degraded 

individually. Whole organelles therefore cannot be removed by this method.  Similar to 



Chapter One                      Introduction 

 

51 

 

UPS, proteins are tagged for degradation via a specific motif (KFERQ-like) which 

signals for their degradation in lysosomes (Massey et al., 2006). The consensus peptide 

sequence is recognized by a cytosolic chaperone complex. The chaperone is then 

recognized by Lysosomal Associated Membrane Protein (LAMP2A). Next, the protein 

is unfolded and, assisted by a luminal chaperone, translocated to the lysosomal lumen 

where degradation occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19 Types of Autophagy.  

Three main forms of autophagy exist, all of which ultimately result in degradation of cytosolic 

components in the lysosome. The precluding steps to delivery in the lysosome vary for each subtype. In 

macroautophagy (A) a double membrane vesicle forms, expands and eventually encapsulates a whole 

region of cytoplasm before fusing and releasing its contents into the lysosome. In microautophagy (B) the 

lysosome itself sequesters smaller regions of the cytoplasm. Chaperone mediated autophagy (C) (CMA) 

requires recognition of a targeting motif by chaperones that then mediate its delivery to the lysosome. 

Here it is recognised by a receptor and forms a translocation complex. The substrate protein is then 

translocated to the lumen by a luminal chaperone. 



Chapter One                      Introduction 

 

52 

 

 The macroautophagy pathway 1.6.2

Macroautophagy, hence forth autophagy, proceeds in a stepwise manner and relies on 

numerous interactions. Understanding of autophagy has been vastly improved by the 

characterization of several key components in yeast, mammalian homologs of many of 

which have now been identified.  

 Initiation 1.6.2.1

Upon induction (Figure 1.20(1)), via appropriate external or internal stimuli a series of 

sequential events initiate autophagy. The process begins with nucleation (Figure 

1.20(2)) whereby a double membrane crescent known as the isolation membrane or 

phagophore is formed. 

 

Figure 1.20. The Autophagy Pathway.  

Sequential events occur to sequester and deliver a region of the cytoplasm for degradation in the 

lysosome. (1) Induction, (2) nucleation, (3) membrane expansion and (4) fusion with the lysosome. For 

details see text. 
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 Membrane Expansion 1.6.2.2

This initial expansion step requires several autophagy (ATG) proteins and their 

interacting factors (Figure 1.21). Phosphatidylinositol (PI) phosphorylation is crucial for 

the process to progress. Phosphatidylionsitol-3-Phosphate (PtdIns3P) is generated by 

Vps34, a class III phosphatidylinositol 3-Kinase. Activation of Vps34 requires 

formation of the Beclin 1-class III phosphatidylinositol 3-kinase (PI3K)/Vps34 lipid 

kinase signalling complex, the activity of which is modified by several factors in 

response to environmental changes, including Ambra1, UVRAG, Bif-1 and Bcl (Fimia 

et al., 2011).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.21. Nucleation Complex.  

Nucleation requires activation of Vps34, a class III phosphatidylinositol 3-kinase (PI3K). This activation 

is dependent on the formation of a complex containing beclin-1 (the mammalian orthologue of ATG6), 

UVRAG (UV irradiation resistance-associated tumour suppressor gene) and a kinase such as Vps15. 

 

 

 

Following intiation a region of the cytoplasm is encapsulated and membrane 

expansion (Figure 1.20(3)) occurs. The sequestration of cargo and eventual closure of 

the phagophore relies on the formation of two conjugation systems containing the 

ubiquitin like molecule LC3 (the human homologue of yeast ATG8) and ATG12 

(Figure 1.22).  

 

(1) ATG12-ATG5 conjugation requires E1 like enzyme-ATG7 and E2 like enzyme-

ATG10 (ubiquitin activating enzymes).  E1 enzymes bind ubiquitin along with ATP and 

pass the ubiquitin protein to E2, an ubiquitin carrier protein (Hanada et al., 2007). The 
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ATG12-5 complex then goes on to non-covalently interact with ATG16, resulting in 

oligomerisation and the formation of the ATG16 complex (Geng et al., 2008). 

 
 

Figure 1.22. Two ubiquitin like conjugation systems.  

(1) ATG12-ATG5 conjugation and (2) LC3- PE conjugation act sequentially to bring about membrane 

expansion.  

 

(2) LC3-phosphatidylethanolamine (PE) conjugation - Newly synthesised LC3 is 

cleaved at its C terminus by ATG4 (a protease) to generate cytosolic LC3- termed LC3-

I. This can then be conjugated to PE, a process that requires ATG7 and ATG3 (E1 and 

E2 like respectively).  

 

These two conjugations act sequentially with ATG12-ATG5 conjugation occurring first 

which then promotes conjugation of LC3 and PE. This then results in formation of the 

autophagic membrane lipidated form of LC3-referred to as LC3-II. The final stage of 

vesicle expansion requires deconjugation of LC3-II from the outer membrane by ATG4 
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and recycling of the ATG5-12-16 complex. The final retrieval process is not fully 

understood, but recycling of ATG proteins from and to the autophagosomal membrane 

is thought to involve the transmembrane proteins ATG9 and ATG1. 

 

 Completion and lysosomal degradation 1.6.2.3

The resulting vesicle- the autophagosome- is now a sealed double membrane ‘transient 

organelle’ containing cytoplasmic material indistinguishable from the surrounding 

cytosol. Finally and completing the degradative process, fusion with the lysosome 

(Figure 1.20(4)) occurs creating the autolysosome. Here, the inner vesicle of the 

autophagosome is released allowing its contents to be degraded by lysosomal hydrolytic 

enzymes such as lysosomal cysteine and aspartyl proteases, and cathepsins B and D. 

Following lysosomal degradation, macromolecules are released for reutilization through 

the action of ATG22 a vacuolar integral membrane protein (Yang et al., 2006).  

 

 Regulation of autophagy 1.6.3

A range of environmental stresses such as-nutrient depletion, pathogen infection and 

hypoxia can initiate an up regulation of the autophagy system. Similarly, internal 

stimuli such as an increase in protein aggregates can invoke the same response (He and 

Klionsky, 2009). During periods of nutrient starvation autophagy is up regulated and 

conversely in nutrient rich conditions inhibited.  Such dynamic fluctuations are made 

possible by the co-ordination of several signaling pathways. Negative regulation of the 

process occurs primarily through the mammalian target of rapamycin (mTOR). TOR is 

a serine threonine protein kinase well known for its central role in sensing and 

regulating energy status within the cell. TOR exists in two complexes TORC1 and 

TORC2 (Bhaskar and Hay, 2007), TORC2 has been shown to function as an important 

regulator of the cytoskeleton whereas TORC1 is involved directly with autophagy 

regulation. 

 

In all eukaryotic cells, autophagy is activated when mTOR is inhibited (Codogno and 

Meijer, 2005). In yeast TOR impacts on autophagy through its effect on the ATG1-

ATG13-ATG17 complex. This complex is involved in several steps of autophagosome 



Chapter One                      Introduction 

 

56 

 

formation including initiation, nucleation and expansion of the membrane. During 

nutrient rich conditions upstream signals activate TOR and autophagy is suppressed. 

This is achieved through phosphorylation of ATG13 and ATG1 in a TOR dependent 

manner. Once hyperphosphorylated, the complex dissociates. In doing so ATG1 protein 

kinase activity is reduced and subsequently autophagy levels fall (Kamada et al., 2000). 

In the reverse situation, through nutrient depletion or rapamycin treatment, TOR is 

inactivated. This leads to dephosphorylation of ATG13 and increased complex 

formation, which in turn up regulates ATG1 activity and autophagy. As such it is the 

ATG1 complex that integrates the signal from TOR. The human homologues of ATG1 

are ULK1 and ULK2 (UNC51-like kinase). As in yeast and other eukaryotic models, 

protein kinase activity of ULK proteins have been shown as essential for autophagy 

(Scott et al., 2007). It is worth noting that the target of ATG1 has not yet been identified 

(Nair and Klionsky, 2005). Mammalian TOR is by no means the only regulator of 

autophagy. Indeed, numerous mTOR independent regulatory pathways exist. For 

example amino acids and insulin control, as well as inositol and IP3 can modulate 

autophagy in pathways parallel to, or beneath mTOR (Sarkar and Rubinsztein, 2006). 

 

 Autophagy in the Healthy State 1.6.4

A low level of autophagy is occurring in most tissues at all times. This constitutive level 

exists to maintain homeostasis through the elimination of damaged or unnecessary 

organelles and removal of cellular ‘clutter’ in the form of aggregations (Mizushima, 

2005). The importance of this steady state level of autophagy for cellular homeostasis 

has been demonstrated in various tissues in ATG knock out mouse models, with loss or 

reduction of autophagy leading to rapid loss of function and cell death (Komatsu et al., 

2005; Hara et al., 2006). In times of starvation and experimentally with chemical 

interference (i.e. through the addition of rapamycin) these basal autophagy levels can be 

rapidly up-regulated.  

 

Initially believed to function solely as a means of recycling intracellular components, a 

multitude of cellular processes are now understood to be reliant upon autophagy. These 

include defense against external pathogens, having a role in both the innate immune 

response (Levine, 2005) and antigen presentation (Munz, 2006; Crotzer and Blum, 

2009). Autophagy also plays a role in programmed cell death, contributing apoptotic 
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signals (Shimizu et al., 2004) and having the capacity to cause cell death independent of 

apoptosis (Clarke, 1990). Its ability to govern survival and selective death of cells 

means it plays a pivotal role in development and tissue remodeling in various organisms 

(Levine and Klionsky, 2004). Of particular importance to neuronal functioning is axonal 

differentiation and maintenance mediated by autophagy (Zeng and Zhou, 2008). Finally, 

it has been shown that autophagy plays a prominent role in ageing (Terman et al., 2007) 

and the progression of numerous diseases as discussed below. 

 

 Implications of impaired autophagy 1.6.5

Dysfunction of the autophagy system can have a myriad of negative implications. 

Firstly, an inability to clear damaged material increases the amount of damage they 

themselves are able to cause. In the case of compromised mitochondria an increase in 

free radical production may harm many other cellular constituents (discussed in detail in 

1.2.3). Secondly, unwanted material can function as a cellular ‘road block’, hindering 

normal cellular functions. The accumulation of protein aggregates is a hallmark of 

numerous neurodegenerative conditions, including α-synuclein in Parkinson’s Disease, 

amyloid β  in Alzheimer’s Disease and huntingtin in Huntington’s. These inclusions can 

be toxic to the cellular environment and further block degradative pathways. It has been 

demonstrated that autophagy plays a role in prevention of aggregate formation in mouse 

models (Klionsky et al 2006). Furthermore, these collections of ‘cellular junk’ contain 

useful components which the cell is unable to retrieve. This becomes of particular 

importance during times of starvation when the ability to recycle products into more 

urgently needed molecules is vital. An example of this is provision of substrates for 

ATP production from oxidative phosphorylation within the mitochondria during times 

of high bioenergetic demand (Mizushima, 2005). 

 

Inhibition of autophagy has been shown to result in apoptotic cell death (Boya et al., 

2005). In this sense autophagy can be considered a mediator of cell survival, crucially, 

offering an alternative to apoptosis. If this clearance process is damaged or inhibited for 

some reason the only option open to the cell is apoptotic cell death. If autophagy is 

inhibited in numerous cells the result will be en masse cell death. The constitutive level 

of autophagy ensures that only the most efficient organelles remain, and as such, even 

slight perturbations are dealt with early on. It is easy to see that any problems in the 



Chapter One                      Introduction 

 

58 

 

system can quickly become self-perpetuating, with more damaged components 

circulating, which are themselves able to cause damage. Dysfunction and deregulation 

of the lysosomal degradative pathway has been implicated in a broad range of disorders 

including the development of some cancers, immunological disorders, heart disease, 

lysosomal disorders and neurodegeneration (Martinet et al., 2009). 

 

When we consider the multistep nature of autophagy, several areas may become 

dysfunctional. Depending on their point of action, dysfunction can have a range of 

consequences. Errors in initiation from upstream signalling caused by defects in any 

number of the autophagy related genes lead to a debilitated autophagy response. This 

ultimately leads to an accumulation of damaged organelles and aggregates which may 

have a role in the progression of tissue degeneration. Alternatively, the completion steps 

of the autophagy pathway may be contravened in some way. The implication of this is 

observed in several neurodegenerative disorders such as Alzheimer’s disease where 

accumulation of autophagic material is observed in post-mortem tissue (Boland et al., 

2008). Non-completion of the pathway leads to an accumulation of autophagosomes 

alongside the associated problems of a non-functional degradative pathway. Lysosomal 

abnormalities can also occur such as failure of the lysosomal hydrolases and an inability 

of autophagosomes to fuse to lysosomes, resulting, for example, from mutations in 

LAMP2A (Tanaka et al., 2000; Malicdan et al., 2008). Finally more exterior 

complications can impact upon the autophagy system. Autophagosome trafficking for 

example may be hindered by mutations in dynactin, a dynein receptor (Yamamoto et 

al., 2010)   

 

An overall decrease in the activity of autophagy is seen across all cell types with age 

(Yen et al., 2008). Parallel to this a decline in function and an accumulation of damage 

are characteristics of tissues in the ageing phenotype. The role alterations in autophagy 

play in this decline are not fully understood but work into genetic modulations of key 

autophagy genes and a greater understanding of the features of autophagy on the whole 

suggest it plays a substantial role.  
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 Monitoring Autophagy 1.6.6

Observing and quantifying autophagy is difficult because, by definition, it is a dynamic 

process. Given the increasing evidence of its pivotal role in health and disease, research 

into the field is increasing exponentially and alongside this, methodologies are 

advancing. Traditionally, a morphological approach has been taken to monitor 

autophagy, indeed the process was first identified by electron microscopy (EM) by 

Clark in 1957 and the model was further established by Ashford and Porter in 1962. By 

calculating the volume of autophagic vacuoles (AVs) and expressing them as a ratio of 

the total cytoplasmic area, crude quantifications of activity of the process can be made. 

This particular methodology is not without its draw backs. Identifying autophagic 

vacuoles from EM images is a time consuming and labour intensive method requiring 

specific skills. Defining specific stages of autophagy is also extremely difficult by EM 

alone, hence autophagosomes and autolysosomes often being collectively referred to as 

autophagic vacuoles. The utilisation of antibodies as markers of autophagosomes in EM 

is commonly used to assist in the definition and quantification of autophagy. 

 

A somewhat more specific analytical tool is that of autophagy markers, the most widely 

used being LC3. As discussed previously two conjugation systems are required for 

autophagosome formation. ATG12-ATG5 and LC3/ATG8 conjugated to PE. In its 

conjugated, non-soluble form LC3-II stably associates with the autophagosomal 

membrane. As such detection of LC3-II serves as a marker of these structures and can 

be assessed both by microscopy and biochemically, looking at conversion of LC3-I to 

LC3-II. Differentiation between the two is possible via immunoblotting, since LC3-I= 

18kDa and LC3-II=16Kda, the ratio between the two then serves as an estimation of the 

number of autophagosomes. One concern with this method is that LC3-II may be more 

sensitive to the process than LC3-I, and as such may be overestimated. The production 

of chimeric LC3 fused with green fluorescent proteins allows visualisation of the 

location of LC3. Furthermore the fluorescent signal is weaker from autolysosomes due 

to the fact that less LC3-II is membrane bound in autolysosomes, thus distinction 

between the two can be made. Finally, assessing the bulk degradation of long lived 

products may serve as a measurement of autophagic activity. This does not however 

allow for the differentiation of macroautophagy from micro or indeed chaperone 

mediated forms of the process.  

 



Chapter One                      Introduction 

 

60 

 

The effect of dysfunctional autophagy can be observed by experimentally modulating 

the process. Knock down of different autophagy related genes not only help in 

elucidating their physiological role but also allows an insight into the consequences of 

dysfunction at various points. Alongside this, autophagy can be induced or inhibited 

through pharmacological intervention. MTOR functioning as mTORC1 can be inhibited 

by rapamycin treatment and subsequently, autophagy is up regulated. Conversely, 

inhibition of autophagy can be achieved by targeting fusion of the autophagosomes with 

lysosomes by bafilomycin treatment, which inhibits the lysosomal proton pump 

(Rubinsztein et al., 2007). The current methods for studying autophagy all come with 

limitations. Using an array of approaches therefore allows greater confidence in results 

produced. The main drawback of traditional approaches is they are very static in their 

observations. Quantification of autophagic flux is not possible in such techniques which 

measure activity at any given moment. Future approaches may well look at the process 

‘in action’ making use of advances in live cell imaging or taking several measurements 

of factors along the autophagy pathway.  
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 SYNUCLEINOPATHIES 1.7

 Definition of Synucleinopathies 1.7.1

Idiopathic Parkinson’s disease (iPD) and dementia with Lewy Bodies (DLB) are 

prevalent neurodegenerative disorders with overlapping pathological and clinical traits. 

In the UK, Parkinson’s disease alone affects one person in every 500 (~127,000 people 

in the UK). The pathological hallmarks of these disorders include cell loss in pigmented 

brain stem nuclei, gliosis and formation of fibrillar intraneuronal inclusions known as 

Lewy Bodies (LBs). Collectively these disorders are termed synucleinopathies, the 

predominant components of Lewy bodies being insoluble alpha synuclein. Along with 

Parkinson’s disease with Dementia (PDD), PD and DLB represent three main clinical 

phenotypes, which can be regarded as points on a gamut of pathological and clinical 

traits (Figure 1.23). 

 

 

 

 

 

Figure 1.23. The spectrum of Synucleinopathies. 

Synucleinopathies present with various clinical and pathological characteristics which define the 

disorders ranging from Parkinson’s disease with greater SNc loss and dementia with Lewy bodies (DLB) 

where movement disorders are seen later in progression of the disease. 

 

PD and DLB differ in age of onset as well as degree and type of pathology. In PD the 

initial loss of midbrain dopaminergic neurons (responsible for motor symptoms 

associated with PD) is rapid but occurs after pathology appears in other brain regions 

whilst Lewy body formation/ infiltration is slower. Conversely, DLB has a rapid onset 

with denser and more widespread Lewy body distribution (Jellinger, 2009). Clinically 

this presents as predominant cognitive symptoms in DLB and motor symptoms in PD. 

The exact cause of these disorders remain unclear although several pathogenic 

mechanisms have been proposed, including mitochondrial dysfunction and 

perturbations in cellular events. 

PD  PDD                   DLB

Bradykinesia, tremor, muscle rigidity                                       Dementia 
Cognitive Impairment seen later                                                           Movement disorders seen later 
Greater Substantia pars compacta (SNc) neuronal Loss                Earlier involvement of Limbic Lobe? 
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 Symptoms and Pathology 1.7.2

Majority of PD cases arise without known cause and occur sporadically. Roughly 5% 

however are familial and to date several PD related genes have been identified. The 

characteristic symptoms associated with Parkinson’s disease are movement disturbances 

such as bradykinesia, muscle rigidity and tremor. These stem from neurodegeneration 

within the basal ganglia, a collection of structures responsible for the control of 

movement. Structures within the basal ganglia include the striatum, globus pallidus, 

substantia nigra and the subthalamic nucleus (Figure 1.24a). Communication between 

these areas is complex and tightly regulated by both inhibitory and excitatory synapses 

(Figure 1.24b). In PD a severe loss of dopaminergic neurons within the substantia nigra 

pars compacta (SNc) results in a deficiency of dopamine which then affects the basal 

ganglia circuitry. Primarily, reduced dopaminergic impulses restrict communication 

between the substantia nigra and the striatum. This results in increased excitation of the 

subthalamic nucleus and globus pallidus internus. An increased inhibition of the 

thalamus is also observed, inhibiting the motor cortex which gives rise to the loss of 

smooth controlled movement. Several non-motor symptoms are also associated with 

PD. These symptoms likely arise from changes outside of the pathways described above 

within both dopaminergic and non-dopaminergic neurotransmitter systems. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.24. Location and Circuitry of the Basal Ganglia network. 

(A) Location of the substantia nigra and striatum. (B) Inhibitory (grey) and excitatory (red) 

communication between structures in the basal ganglia (Image adapted from brainmaps.com).   

 

A B 
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 Mitochondrial Dysfunction in Synucleinopathies 1.7.3

Mitochondrial dysfunction had been implicated in the pathogenesis of PD since the 

environmental toxin MPTP was found to result in a parkinsonian syndrome. 

Specifically the active metabolite MPP+ was found to inhibit complex I of the electron 

transport chain (Langston et al., 1983). Since this discovery in 1983 further evidence for 

complex I dysfunction in PD has been put forward. In the substantia nigra of PD 

patient’s complex I activity has been shown to be decreased (Schapira et al., 1990). 

Increased levels of carbonyls- caused by the oxidation of amino acid residues on 

proteins, have also been demonstrated in several catalytic subunits of complex I in PD 

brains suggesting excessive oxidative damage of subunits resulting in misassembly and 

subsequent dysfunction (Keeney et al., 2006b). High levels of somatic deletions in 

mitochondrial DNA have been seen within the substantia nigra neurons in aged 

individuals and PD patients (Bender et al., 2006; Kraytsberg et al., 2006). Furthermore 

this can be directly linked to decreased respiratory activity when mtDNA deletions are 

correlated with cytochrome-c-oxidase (COX) activity, increased levels of mtDNA 

deletions correspond with COX deficiency. As a number of complex I subunits are 

encoded by the mtDNA, these deletions will directly affect this complex. Alongside 

this, deletions may cause disruption in protein translation through removal of tRNAs. 

 

Adding to the case for mitochondrial involvement in PD is the discovery that several of 

the gene mutations linked with inherited forms of PD have been shown to encode 

proteins which carry out important functions within mitochondria and/or act to reduce 

oxidative stress. PARK 2 (Parkin) is a cytosolic E3 ubiquitin ligase and has been shown 

to function as a potent mitochondrial protection factor. Parkin over expression prevents 

mitochondrial swelling and cytochrome c release; enhanced expression of complex I 

subunits and reduced accumulation of ROS (Darios et al., 2003). Parkin is also 

selectively recruited to dysfunctional mitochondria expressing PINK1 with low 

membrane potential, which in turn promotes engulfment and destruction in 

autophagosomes (covered in section 1.4.3) (Narendra et al., 2008).  

 

PINK1 (PTEN induced putative kinase 1) is a serine threonine kinase imported into the 

mitochondria via an N-Terminal target sequence (Lin and Kang, 2010). Familial PINK1 

mutations impair the ability of PINK1 to phosphorylate TNF receptor-associated protein 
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1(TRAP1) (Pridgeon et al., 2007). TRAP1 functions as a chaperone and its 

phosphorylation is required to prevent oxidative stress-induced release of cytochrome c 

(Wood-Kaczmar et al., 2008). In human dopaminergic neurons loss of PINK1 leads to 

abnormal mitochondria and reduced viability (Wood-Kaczmar et al., 2008). In SH-

SY5Y cells PINK1 knockdown increases accumulation of mitochondrially targeted 

autophagosomes (Dagda et al., 2009). 

 

PARK 7 (DJ1) is also thought to play a part in protecting the cell from oxidative stress 

(Mitsumoto and Nakagawa, 2001). Under stress the predominantly cytosolic protein 

moves to the mitochondria and later the nucleus suggesting a neuroprotective function. 

It has been proposed that DJ1 may function as a chaperone preventing mis-folding and 

aggregation of proteins under stress (Shendelman et al., 2004). 

 

One of the challenges with regards to studying the impact of mitochondrial dysfunction 

in Parkinson’s Disease is the lack of an appropriate model. Animals treated with MPTP 

are often used as a proxy for PD but do not recapitulate all PD symptoms. This is the 

case for the MitoPark mouse which uses the selective knockout of the mitochondrial 

transcription factor, TFAM in SN neurons to generate mice with progressive 

parkinsonism and intraneuronal inclusions (which do not contain α-synuclein). Within 

these mice the mitochondrial dysfunction is far more severe than the decline we see in 

ageing and develops at 6 weeks in the mice (Ekstrand et al., 2007). In order to fully 

understand how the progressive nature of the mitochondrial defect affects the SN 

neurons of these patients much more subtle models need to be employed. 

 

 Autophagy in Neurodegenerative conditions 1.7.4

The critical role of autophagy as a mediator of neuronal survival has been extensively 

demonstrated.  Increasingly, factors associated with the progression of 

neurodegenerative disorders are emerging as factors that impact upon the autophagy 

process or are themselves affected by autophagic dysfunction. A key aspect of 

neurodegenerative disorders is the accumulation of intracytoplasmic aggregates. 

Ordinarily components of these aggregates are removed by the UPS system. This 

system however, can become overwhelmed in neurodegenerative disorders as a result of 
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misfolded proteins blocking the proteasome or the sheer quantity of ‘junk’ 

overwhelming the system. In such conditions it turns to autophagy to compensate. The 

simple fact these inclusions are able to form would suggest a failing of both degradation 

processes. Initial, UPS failure followed by retarded autophagy unable to compensate 

(due to inherent problems, overwhelming or damage to the system) = less clearance of 

aggregated proteins = increased toxicity. Furthermore, mutated forms of proteins that 

aggregate in common neurodegenerative disorders seem to be preferentially degraded 

by autophagy compared to wild type. This may be due to this inability for the mutated 

forms to enter the narrow entrance of the proteasome. Interestingly in the case of alpha 

synuclein in Parkinson’s Disease clearance of both wildtype and mutant forms is 

increased by up regulated autophagy (Webb et al., 2003). 

 

Several autophagy related proteins have been shown to be affected in various 

neurodegenerative disorders. Beclin1, for example, has been shown to be markedly 

reduced in Alzheimer’s (Pickford et al., 2008). Conversely, mTOR, the main inhibitory 

regulator of autophagy has been shown to dramatically increase in conjunction with Tau 

pathology in Alzheimer’s disease (Caccamo et al., 2010). Recent genetic studies have 

highlighted the importance of constitutive autophagy in neurons. Mouse ATG5 or 

ATG7 knockout studies demonstrate the importance of basal autophagy, the result of 

such ablation causing severe neurodegeneration (Hara et al., 2006). In both drosophila 

and murine models of Huntington’s disease the protein aggregations themselves have 

been shown to suppress mTOR activity and in doing so up regulate autophagy 

(Ravikumar et al., 2004). This could be considered an intrinsic response by the cell to 

clear aggregations. The point of autophagic dysfunction may vary across different 

neurological disorders. In Alzheimer’s disease an accumulation of autophagosomes has 

been observed implying that autophagy is functional to a point, but that the dysfunction 

occurs in the lysosomes or fusion processes.  These differences may become critical 

when modulating autophagy for neurodegeneration therapeutics. 

 

 Autophagy and Synucleinopathies 1.7.5

A link between autophagy dysfunction and the pathology of Parkinson’s disease has 

been drawn previously. Several proteins known to be involved in the autophagy 

pathway are mutated in inherited forms of PD. Mutations in Parkin for example are 
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known to result in recessive cases of PD. Parkin’s physiological role is clearly 

important, demonstrated by its expression in many tissue types and its role in mitophagy 

discussed above.   

 

In drosophila models, parkin has been shown to function in the same pathway as PINK1 

(PARK6)(Clark et al., 2006). Furthermore PINK1 activity is necessary for the 

translocation of parkin from the cytosol (Matsuda et al., 2010). How exactly PINK1 

signals dysfunctional mitochondria’s removal is not fully understood. It may be that 

proteolysis of PINK1 is inhibited within damaged mitochondria leading to its 

accumulation and a subsequent recruitment of parkin (Narendra et al., 2010). 

Ordinarily, proteolysis maintains very low levels of PINK1 in healthy mitochondria 

meaning they avoid parkin mediated mitophagy.  Mutated forms of the PINK1 protein 

have been shown to cause Parkinson’s disease (Hardy et al., 2009), it may be its crucial 

role in mitophagy is compromised in these cases (Geisler et al., 2010).  

 

Further PD associated genes can also be linked with autophagy. DJ-1 (PARK7) is also 

thought to play a role in protecting the cell from oxidative stress (Mitsumoto and 

Nakagawa, 2001). Lack of function of DJ1 has been shown to impair the autophagic 

response to hypoxia (Vasseur et al., 2009). Research carried out by Irrcher et al showed 

DJ1 altered autophagy in murine and human cells (Irrcher et al., 2010). Furthermore, 

specific Leucine-rich repeat kinase 2 (LRRK2) mutations have been shown to cause a 

dramatic increase in autophagic vacuoles (Alegre-Abarrategui et al., 2009). 

 

Blocking mTOR via over expression of the translation inhibitor THOR can reduce PD 

associated pathology, in drosophila for example, a reduction in degeneration of 

dopaminergic neurons is seen. In vivo rapamycin activates this translation inhibitor. 

Recent work by Crews et al showed that in the brains of DLB patients there was an 

increase in mTOR levels and a decrease in ATG7 given by immunoblot and 

immunolabelling (Crews et al., 2010). Furthermore, activating autophagy by rapamycin 

treatment in transgenic mice ameliorated neurodegeneration and reduced accumulation 

of alpha synuclein. 
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Many aetiological factors associated with PD reduce autophagic activity. Alpha 

synuclein, proposed to have a role in synaptic plasticity and the main component of 

intracellular inclusions in PD has been shown to induce cell toxicity at high levels. It 

has been shown that alpha synuclein may interfere with autophagy mechanisms 

(Meredith et al., 2002) and that it can be degraded by lysosomes (Cuervo et al., 2004). 

Normal degradation of wildtype alpha synuclein occurs via the UPS or chaperone 

mediated autophagy (CMA). Mutant forms of the protein have been shown to bind 

LAMP2 with higher affinity than its wildtype counterpart causing a blockage of their 

own and other substrates degradation by this method.  Work by Spencer et al showed 

that over expression of alpha synuclein in both neuronal cultures and transgenic mice 

led to dysfunctional autophagy and subsequent neurodegeneration. The consequence of 

this is a disruption in transportation to the lysosomal lumen and consequently a block in 

chaperone mediated autophagy. Interestingly, this could be reversed by Beclin1 

(Spencer et al., 2009b). The role of alpha synuclein may extend beyond that of its effect 

on CMA as the clearance of the protein has been shown to be mediated by macro as 

well as chaperone mediated autophagy (Webb et al., 2003).Furthermore, mTOR was 

more abundant in neurons displaying alpha synuclein accumulation in DLB brains 

(Crews et al., 2010)  and ultra-structural analysis went on to show abnormal and 

increased autophagosomes.  

 

Further evidence showing a role for autophagy in PD stem from the affect certain 

neurotoxins, shown to invoke PD like symptoms in models of the disease, have upon 

the process. When animals are exposed to MPTP autophagic dysfunction is observed, 

associated with alterations in signal transduction pathways (Zhu et al., 2007). Finally, 

lysosome dysfunction may play a key role in Parkinson’s development as indicated by a 

susceptibility to alpha synuclein aggregation and parkinsonism in some lysosomal 

storage disorders (Raja et al., 2007).  
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 INTERACTIONS  1.8

  Interaction between autophagy and mitochondria 1.8.1

Mitochondria have been associated with the process of autophagy since they were first 

observed within lysosomes and autophagosomes via electron microscopy in the 1950s, 

reviewed in (De Duve and Wattiaux, 1966).  Since then a host of biochemical and ultra-

structural studies have confirmed the removal of these whole organelles via autophagy. 

Although mitophagy, as the main process of mitochondrial quality control has been 

known for some time, questions regarding the specificity of the process remained. Once 

thought to be nonselective, more recent evidence points to a highly regulated and 

specific method in place, with mitochondria selectively targeted for degradation. Studies 

in yeast show regulation of mitophagy is distinct from general autophagy (Kanki et al., 

2008) and whole mitochondria with reduced membrane potential have been shown to be 

selectively removed via autophagy (Twig et al., 2008). When neurons are cultured with 

caspase inhibitors, apoptosis induction results in complete removal of mitochondria by 

mitophagy (Tolkovsky et al., 2002). During apoptosis outer mitochondrial membrane 

(OMM) permeabilization occurs prior to caspase activation and as such these results add 

to the idea that mitochondrial damage can induce mitophagy (Tolkovsky et al., 2002).  

 

Mitochondria are the main source of cellular reactive oxygen species (ROS), a by-

product of oxidative phosphorylation. In a controlled state ROS are known to function 

as signalling molecules within numerous signalling pathways, including autophagy 

(Scherz-Shouval et al., 2007c). A crucial step in the initiation of autophagy is 

conjugation of LC3 to phosphoethanolamine (PE), when complete a deconjugation 

reaction occurs mediated by the protease ATG4.  Recycling of ATG4 is regulated by 

ROS (Scherz-Shouval et al., 2007c). Furthermore ATG4 has been shown as a direct 

target for oxidation by H2O2 during starvation (Scherz-Shouval et al., 2007c; Chen et 

al., 2009). The production of ROS is essential for stress induced autophagy. Indeed, 

amino acid restriction has been shown to trigger mitochondrial ROS production (Azad 

et al., 2009) and oxidised proteins are taken up more efficiently by lysosomes (Scherz-

Shouval et al., 2007a). Taken together these findings indicate ROS, increase autophagy, 

which then serves as a defence mechanism against oxidative stress.  
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As mitophagy serves as the main quality control process for removal of defective 

mitochondria it is easy to understand how the maintenance of healthy mitochondrial 

populations and subsequently cellular homeostasis, crucially depend upon this process. 

An inability to remove damaged mitochondria has two major implications. Firstly, 

damaged mitochondria may produce an increased amount of ROS. ROS mediated 

damage affects various cellular components. Furthermore if damaged mitochondria are 

not removed efficiently, damage builds rapidly which can affect other mitochondria. 

This vicious circle hypothesis of mitochondrial damage has been hypothesised as the 

main driving force behind ageing (Harman, 1972) and thought to occur within 

numerous disease states.  

 

High levels of oxidative stress within a cell cause an accumulation of oxidised proteins 

that can quite conceivably overwhelm the autophagic response, leading to aggregations. 

Furthermore, the lysosomal machinery itself is not immune from ROS related damage 

and as such damage can occur to lysosomal membranes and affect membrane 

permeability (Hwang et al., 2008). Alongside removal of damaged mitochondria, 

mitophagy serves to remove superfluous mitochondria. In maintaining only the essential 

numbers of mitochondria the cell ensures the level of ROS production is as low as 

functionally possible. Aside from ROS production, damage to the outer mitochondrial 

membrane causes a release of Cytochrome c which triggers caspase activity and 

eventually apoptosis.   

 

A lack of functional mitochondria also has profound effects on cellular energetics. 

Specifically, with regards to autophagy, the break down products created upon 

starvation via autophagy need to be reconstructed, a process which is reliant on ATP 

and thus functional mitochondria. Nutrient mobilization is a key role of autophagy but 

without sufficient energy production at every stage of the process, necessary molecules 

fail to be successfully retrieved or incorporated into new components.                                                                                                                                                                                                                 

 

Although still heavily debated, mitochondria have been proposed as contributing to the 

autophagosomal membrane. The origin of which is not fully understood (Overbye et al., 

2007). Work by Hailey and colleagues explored the role of mitochondria in formation 

of the autophagosomal membrane in times of starvation (Hailey et al., 2010). It has 
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been demonstrated that the outer membrane of mitochondria participates in 

autophagosomal biogenesis. The autophagy marker ATG5 was found to localize to 

puncta on the outer mitochondrial membrane which co-localised with LC3. Furthermore 

photo bleaching revealed that membranes of mitochondria and autophagosomes are 

transiently shared. Although previous studies have interpreted this membrane sharing as 

mitophagy, Hailey and colleagues demonstrated a diffusion barrier actually prevents 

delivery of mitochondrial proteins but NOT lipids, suggesting this is not mitophagy but 

mitochondria contributing membranes to autophagosomes (Hailey et al., 2010).  

 

Alterations in mitophagy have massive implications for cells and as a result several 

changes in the process have been observed within different pathologies. Disruption in 

autophagic processes has been postulated to result in neurodegeneration in mouse and 

human models (Komatsu et al., 2006; Jellinger, 2009). Neurons are heavily energy 

dependant post mitotic cells and as such are especially vulnerable to disruptions in 

autophagy. As long lived cells they rely on efficient quality control mechanisms to 

ensure cellular homeostasis and specifically mitophagy for the removal of damaged 

mitochondria. Previous work has shown that deletion of autophagy genes in the CNS 

can result in neurodegeneration (Komatsu et al., 2006).  

 

 Interactions between mitochondrial dynamics and PD 1.8.2

Integral changes in mitochondria have long been implicated in the pathogenesis of 

Parkinson’s Disease (PD), notably in relation to Complex I (CI) of the electron chain 

reviewed in (Papa and De Rasmo, 2013). Mitochondrial bioenergetics, transmembrane 

potential, dynamics and trafficking are interrelated. Complex I dysfunction can affect 

mitochondrial morphology and morphological changes can modulate complex I activity. 

The combined dysfunction of these two is likely to be key to the understanding of the 

development of PD (Figure 1.25).  

 

It is vital for cells to regulate mitochondrial integrity, number and location, to balance 

energy needs, buffer calcium and modulate various signalling pathways. The distinctive 

characteristics of dopaminergic neurons within the substantia nigra, known to undergo 

profound degeneration in Parkinson’s disease, may render this population uniquely 
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susceptible to perturbations in mitochondrial motility. The increased oxidative burden 

placed on dopaminergic neurons through the metabolism of dopamine, alongside their 

unique calcium maintained pacemaking activity are just two individualities that may 

render this population vulnerable to mitochondrial dysfunction. Furthermore, this 

organelles pivotal role in energy provision, ROS production and calcium buffering 

highlights its contribution to neuronal survival in this brain region. 

 

Fission, fusion and motility are intertwined and work shows that the likeliness of one 

event is tied into others. Alterations in these processes are therefore rarely independent 

and subsequently affect many factors controlling mitochondrial stability. Some OPA1 

patients, for example, actually show increased numbers of mtDNA mutations adding to 

the argument that fusion is necessary for maintenance of mtDNA integrity (Amati-

Bonneau et al., 2008). In addition, neurons expressing mutant huntingtin (Htt) or tau 

show impaired mitochondrial movement, specifically suppression of mitochondrial 

fusion with mitochondrial shortening (Schulz et al., 2012). With relation to PD, a loss 

of MFN2 in the nigrostriatal neurons of mice causes retrograde degeneration of 

dopaminergic neurons, indicating alterations in mitochondrial dynamics can 

independently cause PD like nigrostriatal defects (Pham et al., 2012). These data 

highlight the impact of perturbed mitochondrial dynamics on the survival of neurons.  
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Figure 1.25 Implications of CI induced morphological differences in neurons. 

Complex I dysfunction may bring about changes in mitochondrial structure and dynamics. The 

implications of these changes may be felt most prominently in neurons due to their reliance on 

mitochondrial trafficking and their post mitotic, restrictive, extended nature. If complex I dysfunction 

causes fragmentation and/or swelling of the mitochondrial network in neurons this may cause a blockage 

of axons or dendrites. Alternatively, fragmentation may lead to uncontrolled apoptotic signalling or 

instability of the mtDNA due to limited rescue through mitochondrial fusions. Conversely, if elongation of 

the network occurs mitochondria may be unable to escape the cell body and travel along processes. Their 

motility will be restricted due to their size and they may form physical barriers to the trafficking of other 

cellular components. Finally a hyperfused network may be compromised in its ability to segregate and 

degrade damaged mitochondria. 
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 Mitochondrial morphological changes in the pathogenesis of Parkinson’s 1.8.2.1

disease 

Changes to the ultrastructure of mitochondria have been observed in many relevant PD 

models. In fibroblasts derived from patients with PINK1 mutations fragmented 

mitochondria have been observed (Exner et al., 2007). This phenotype can also be seen 

in PINK1 knockdowns in human neuronal SH-SY5Y cells (Dagda et al., 2009). This 

phenomenon however does not appear universal for all cell types, for example in COS7 

cells, elongation of mitochondrial networks have been observed following PINK1 

knockdown (Yang et al., 2008). Discrepancies in findings amongst and within different 

model systems add complexity to understanding the role of mitochondrial dynamics in 

PD but could equally reflect the multicomponent nature of the disease and highlight that 

the pathways are far from fully elucidated. This variation could also explain how it 

takes a unique cellular environment and chain of events to bring about cell death 

following deficiency, as highlighted by the preferential loss of SN neurons.  

 

Pharmacological modulation, for example through toxins that inhibit complex I, are 

used to create PD animal models and links between complex I and mitochondrial 

morphology are tantalizing linked through PINK1, but as yet not fully understood. In 

drosophila for example, no obvious morphological differences have been observed in 

PINK1 mutants, despite this, synaptic dysfunction occurs. Interestingly PINK1 KO cells 

isolated from mouse liver revealed a dramatic decrease in enzymatic activity and 

complex I driven respiration, importantly this finding was unique for complex I. The 

authors therefore conclude that ablation of PINK1 results in a primary functional defect 

in the catalytic activity of complex I. This is made relevant to the human condition 

using human cells expressing PINK1 carrying mutations, which display a severe 

complex I dysfunction similar to that observed in mouse PINK1 knockout cells. 

Furthermore rescue experiments using human wild type PINK1 expression affects 

complex I, but not other electron transport chain complexes (Morais et al., 2009).  

 

Knock-out of both PARKIN and PINK1 show varying levels of oxidative stress and 

changes in respiration in a number of mouse models (Gautier et al., 2008; Mortiboys et 

al., 2008; Gispert et al., 2009). PINK1 null mice, for example, display impaired 

dopamine release, deficient respiration and increased response to oxidative stress 

(Kitada et al., 2007; Gautier et al., 2008). This phenotype increases in severity and 

Microtubule 
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distribution in drosophila  (Greene et al., 2003), while the modulation of PINK1 and 

PARKIN in this model have elegantly displayed that they function in the same pathway 

(Clark et al., 2006). Loss of PINK1 has also been shown to alter mitochondrial 

morphology to differing degrees dependant on cell type, for example a loss of PINK1 in 

dopaminergic neurons leads to a swollen abnormal mitochondrial phenotype in 

conjunction with reduction in viability (Wood-Kaczmar et al., 2008). These 

experiments further highlight the debilitating impact of changes in this pathway and 

further reiterate the links between neuronal survival, mitochondrial fission, fusion and 

mitophagy.  

 

 Mitochondrial motility in Parkinson’s Disease 1.8.2.2

The efficient movement of mitochondria has previously been shown to be compromised 

in numerous neurodegenerative disorders.  The role of mitochondrial motility in PD is 

arguably one of the strongest cases for interplay between movement and 

neurodegeneration, strengthened by the discovery of PINK1 and PARKIN, familial gene 

mutations in autosomal recessive cases of PD. Alongside their role in degradation 

discussed above, these two proteins are known to interact with Mitochondrial RHO 

GTPase (MIRO), an adaptor protein that links a kinesin motor to mitochondria  (Wang 

et al., 2011; Liu et al., 2012). Upon damage and the subsequent decrease in membrane 

potential both PINK1 and PARKIN have been shown to show stronger physical 

interaction with Miro. PINK1 can phosphorylate Miro which marks it for degradation 

and in turn arrests mitochondrial movement in all directions. A second role for 

PINK1/PARKIN may therefore be with regards to confining unwanted mitochondria, 

limiting any harm the damaged organelle can do, avoiding its transportation to critical 

areas and enabling its subsequent encapsulation via autophagosomes. Alterations 

through mutations in these genes may explain why trafficking is altered in PD and why 

ultimately neurodegeneration occurs. It is important to also consider that trafficking 

pathways are not solely dedicated to mitochondria but serve as transport links for a 

plethora of cellular components. Mitochondrial ‘swellers’ such as valinomycin have 

been shown to lead to fast inhibition of organelle movement suggesting steric hindrance 

of mitochondria (Kaasik et al., 2007). This block prevents not only their own, but other 

organelles movement, which in part may explain how simple deviations from normal 

trafficking can quickly bring about collapse of the cellular environment. 
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 Impaired mitochondrial transport is implicated in numerous neurodegenerative 

disorders. Elucidating whether dynamic alterations are primary factors or result from 

other compounding mitochondrial issues remains difficult. The role of mitochondrial 

dynamics in apoptosis must also not be overlooked. Morphology is tightly linked to 

apoptosis demonstrated by the fact MFN2 GTPase activity relies on Bcl2 family 

members (Karbowski et al., 2004) and OPA1 affects apoptosis through availability of 

cytochrome c release (Frezza et al., 2006). Decreased membrane potential may lead to 

increased susceptibility to apoptosis, a process which is modulated through different 

pathways including changes in the morphology of mitochondria (Morais et al., 2009). 

Calcium also serves an apoptotic stimuli (Scorrano et al., 2002), one may postulate that 

areas of increased calcium such as dopaminergic neurons may be quicker to react to 

mitochondrial changes which diminish their calcium sink capabilities and leave 

apoptotic cascades unchecked. 

  

 

 

 AIMS OF THIS RESEARCH 1.9

This project aims to assess the correlation between mitochondrial dysfunction and 

changes to the autophagy process in the context of Parkinson’s disease pathogenesis.  

 

Both mitochondrial dysfucntion and autophagy have been implicated in the progression 

of PD through various different experimental models, and increasing evidence points to 

the two processes synergistically having a role in PD development, notably through 

mitophagy. Crucial to mitophagy and overall mitochondrial function are mitochondrial 

dynamics, encompassing motility, fission and fusion. As such, these processes will also 

be analysed in relation to mitochondrial dysfunction and autophagy. 

 

Given the relevance of complex I in PD pathogenesis, deficiency of this complex will 

serve as the mitochondrial dysfunction analysed in these studies. To enable assessment 

of pathogenic alterations in mitochondria and autophagy in conjunction with elucidating 

possible modes of action, tissue and cell culture based assays will be employed. 
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Cell Model 

1. Characterise bioenergetics and protein expression of cybrid ES cell lines 

containing differing severities of mtDNA mutations. 

2. Assess markers of autophagy in fixed ES cells and newly differentiated neurons. 

3. Analyse morphology of mitochondria within cybrid cell lines. 

4. Analyse motility of organelles in newly differentiated neurons. 

5. Look for further correlation between morphology and autophagy in complex I 

deficient patient fibroblasts. 

 

Tissue model 

1. Optimize dual immunohistochemical fluorescence assay in upper mid brain 

sections, including means to quench autofluorescence and normalise 

quantification. 

2. Assess expression of C120, a marker of complex I assembly, in individual 

substantia nigra neurons in PD and control tissue sections.  

3. Assess expression of autophagy markers in individual substantia nigra neurons 

in PD and control tissue sections. 

4. Analyse relationship between C120 expression and expression of autophagy 

markers. 

5. Assess SNc density in PD vs. control tissue, look for correlation with age and 

autophagy marker expression. 
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 Chapter 2. Materials and Methods 2

 

 MATERIALS 2.1

 Equipment 2.1.1

ABI 3130cl genetic Analyser     Applied Biosystems. 

ABI Gene Amp 9700 Thermal Cycler   Applied Biosystems. 

ABI Prism 7000 sequence detection system   Applied Biosystems. 

AURA PCR UV Cabinet     Bio Air Instruments 

Autoclave       Astell 

Automated plate reader EIx800    Bio-Tek 

Balance: Adventurer OHAUS    Jencons-PLS 

Balance: EK-120A      Salter 

Bench-top Microcentrifuge     Sigma 

Bench-top Centrifuge 3-15     Sigma 

Bench-top Centrifuge 5417 R  (refrigerated)   Eppendorf 

Binder General Purpose Incubator    Philip Harris 

ChemiDoc MP Imaging System    Bio-Rad 

Countess® Automated Cell Counter    Life technologies 

Dry Heat Block (DB.3.A)     Techne 

Electrophoresis power supply model 250EX   Life Technologies 

ErgoOne® Single & Multi-Channel Pipettes  

(P20, P200, P1000)      Starlab 

Grant JB Series Water bath     Grant Instruments  

Horizontal Agarose Gel Electrophoresis Systems  Sci-plas 

InCu SafeTM CO2 Incubator     Sanyo 

Laminar Flow hood      Jencons-PLS 

Light Microscope      Leica 

Microflow Biological Safety Cabinet    Bioquell 

Nanodrop ND-1000 Spectrophotometer   Labtech International 

ND-1000 Software      Labtech International 

NANOpureII Water Purification System    Barnstead 

Neubauer Improved haemocytometer    Millipore 
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Nikon Imaging system (used for live cell imaging) 

 Nikon BioStation CT     Nikon 

 Nikon A1R (Invert)     Nikon 

 Nikon TIRF / Spinning Disk    Nikon 

pH Meter (3510)      Jenway 

PhosphorImager, Storm 860     Molecular Dynamics 

Rotating hybridisation oven      Hybaid 

Seahorse Extracellular Flux Analyser XF24   Seahorse Bioscience 

UV Gel Documentation System    Alpha Innotech 

AlphaImage series 2200 Software    Flowgen 

Vortex Genie 1 Touch Mixer     Wolf Laboratories 

Vortex Genie       Scientific Industries 

Zeiss Imaging System (used for tissue sections). 

Zeiss Axio Imager 2 (with Apotome)   Zeiss 

Axioplan 2iE Light Microscope   Zeiss 

AxioCam HRc digital camera    Zeiss 

AxioVision imagecapture software   Zeiss 

Zeiss Imaging system (used for tissue culture) 

 Axiovert 200M fluorescence microscope  Zeiss 

 AxioCam MR3 digital black and white camera. Zeiss 

 AxioVision image capture software (Ver 4.6.3.0). Zeiss 

Image Analysis Software  

 ImageJ       NIH 

 Volocity 6.2      Perkin Elmer 

 IMARIS 7.2      Bitplane 

 Consumables 2.1.2

0.2ml Thin-Walled PCR tubes    Biogene 

0.5ml Thin-Walled PCR tubes    Biogene 

1.5ml Eppendorf tubes     Biogene 

2.0ml Eppendorf tubes      Biogene 

96 well optical bottom plates     Nunc 

Aerosol resistant Pipette tips      Starlabs 

Coverslips (22x22mm, 22x40mm, 22x50mm)  VWR International 

Cellstar® Disposable Pipettes     Greiner 
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 (5ml, 10ml, 25ml) 

Cellstar® Tissue Culture flasks     Greiner  

(25cm
3
, 75cm

3
, 225cm

3
)  

Countess® Cell Counting Chamber Slides   Life technologies 

Cryotube Vials      NUNC 

Culture Slides       BD Falcon 

Falcon tubes (15ml and 50ml)    BD Biosciences 

Gel Extraction Kit       Qiagen 

Gilson Pipetteman (P2, P10, P20, P200, P1000)  Anachem 

Immobilon Transfer Membranes PVDF   Millipore 

Microscope Slides (76x26x1.0-1.2mm)   Merck 

MILLEX Syringe-Driven Filters (0.22um)   Milipore 

Pasteur Pipettes (glass)     VWR International 

Pipette Tips (Including filter tips)    Starlab 

Polyethylenenaphthalate (PEN) membrane slides  Leica 

QIAamp DNA micro Kit     Qiagen 

Seahorse XF24 Cell Culture Microplates   Seahorse Bioscience  

SlideRite 5 mailerTM      CellPath 

SuperFrost plus Glass Microscope Slides   VWR International 

Syringes        BD Plastipak 

Whatman Grade I Filter paper    Merck 

 

 Solutions 2.1.3

Unless specified otherwise, all solutions listed and others mentioned in the text were 

prepared in nanopure (18 Mega Ohms activity) water. 

 

Coomassie Blue 0.1% (w/v) Coomassie Brilliant 

Blue Reagent 

       7% (v/v) acetic acid 

       50% methanol 

 

Destain Solution      100ml Methanol 

       80ml dH2O 

       20ml Acetic Acid 
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DNA Loading buffer     0.25% (w/v) Bromophenol Blue 

       0.25% (w/v) Xylene Cyanol 

       30% (v/v) Glycerol 

 

Electrophoresis Buffer     100ml 10x TAE 

       900ml NANOpure water 

       80µl ethidium bromide 

 

Lysis buffer 100μl 0.5M Tris/HCl + 52µl 2.5M 

NaCl + 4µl  0.5M MgCl2 

150μl of 7x Roche Protease 

inhibitors 

       20μl Nonidet P-40 

       674µl ddH2O 

 

5% Milk solution in TTBS    5g Skimmed Milk powder 

       100ml TTBS 

 

4% Paraformaldehyde 20g paraformaldehyde in 250ml 

nanopure water 

       250ml 0.2M phosphate buffer 

 

Phosphate Buffer (pH 7.4) 200ml 0.2M di-sodium hydrogen 

phosphate 

50ml 0.2M Sodium dihydrogen 

phosphate 

 

Phosphate Buffered Saline    Prepared from tablets; 1 Tablet in 

       100ml water 

 

Running Buffer (Westerns) 5x        15g Trisma base 

72g Glycine 

5g SDS 

Sample Buffer (Westerns)    10ml Stacking buffer 

       4ml Glycerol 
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       4ml 20% SDS 

       0.02g Bromophenol blue 

       2ml dH2O 

 

10x Tris-Acetate EDTA (TAE)   24.2g Trisma Base 

       5.71ml Glacial Acetic Acid 

       10ml 0.5M EDTA (pH 8.0) 

       DEPC water to 500ml 

 

1M Tris-HCl pH 8.8 (Separating Buffer)  60.55g Trisma base in 500ml 

dH2O. 

 

0.5M Tris-HCl pH 6.8 (Stacking buffer)   30.275g Trisma base in 500ml 

dH2O 

 

Tris EDTA (TE)     10mM Tris-HCL 

       1mM EDTA 

 

TTBS pH7.6      2.42g Trisma base 

8g NaCl 

Made up to 1L with dH2O 

0.1% Tween 20 

 

 

 Chemicals and Reagents 2.1.4

 

100% Ethanol and 100% Methanol Analar  Fisher Chemical 

Liquid nitrogen     BOC 

Normal Goat Serum     Sigma 

Nonidet P40      BDH  

β-mercaptoethanol     Sigma 
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  Histological and Histochemical Reagent. 2.1.4.1

3.3’Diaminobenzidine Tetrahydrochloride (DAB) Sigma 

ATG5 Rabbit pAB     Abcam 

ATG7 Rabbit mAB     Millipore 

ATG12 Mouse AB     Cell Signalling 

Avidin/ Biotin Blocking Kit    Vector 

Beta-tubulin Rabbit pAB    Covance 

Beclin1 pAB      Millipore 

Cy5 Conjugated Mouse secondary   Abcam 

DPXTM Mountant     Merck 

Ethanol Analar     Merck 

Fluorescien Isothiocyanate (FITC) Fluro Antibody Jackson ImmunoResearch 

FITC conjugated GP secondary   Abcam 

Formaldehyde      Merck 

Goat Serum      Sigma 

Haematoxylin      Merck 

HistoclearTM      National Diagnostics 

Hoechst 33342 Fluorescent Antibody   Invitrogen 

Hydrogen Peroxide     BDH 

LAMP2A Mouse mAB    Abcam 

LC3 Rabbit mAB     Cell Signalling 

Methanol Analar     Merck 

Nestin Mouse mAB     Abcam 

OXPHOS Antibodies     Abcam (formally Mitosciences) 

P62 Guinea Pig pAB     Progen 

Paraformaldehyde     Sigma 

Peroxidase Substrate kit    Vector  

Rhodamine Red Fluorescent Antibody  Jackson Immunoresearch 

Sodium Azide      Sigma 

Sodium dihydrogen phosphate   Sigma 

Triton X-100      Sigma 

VDAC1 pAB      ProteinTech 

WDFY3 Rabbit pAB     Abcam 



Chapter Two                                                                                   Materials and Methods 

84 

 

 DNA extraction, precipitation and purification reagent. 2.1.4.2

Ethylenediaminetetreacetic acid (EDTA)  Sigma 

Glacial Acetic acid     BDH 

3M Sodium Acetate pH 5.2    Sigma 

 

 Polymerase chain reaction and Sequencing reagents 2.1.4.3

Ampitaq Gold DNA polymerase   Applied Biosystems 

10x PCR Buffer 

BigDye Terminator v3.1 cycle sequencing kit Applied Biosystems 

Biotin labelled Primers    IDT 

Bovine Serum Albumine    New England Biolabs 

Deoxynucleotide Triphosphates   Roche 

Dimethyl sulfoxide DMSO  

(molecular biology grade)    Sigma 

EDTA (125mM)     Sigma 

ExoSAP-IT      GE Healthcare 

HiDi       Applied Biosystems 

Proteinase K Solution     Invitrogen 

Taqman mastermix     Applied Biosystems 

Sodium Acetate (3M)     Sigma 

Tween-20      Sigma 

 

 Gel electrophoresis reagents 2.1.4.4

Agarose MP      Roche 

Ammonium Persulphate (AMPS)   Sigma 

Bis:Acrylamide 29:1 30%    Sigma 

Bromophenol Blue     Sigma 

Butanol       AnalaR 

1Kb DNA ladder     Gibco BRL 

Ethidium Bromide     Merck 

Gel Red Nucleic Acid Stain    Biotium 

Glycerol      Sigma 
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Hyperladder IV     Bioline 

Tetramethylenediamine (TEMED)   Sigma 

Sodium Dodecyl Sulphate (SDS)   BDH 

Tris acetate EDTA (TAE:10x)   Sigma 

Urea       Sigma 

Xylene Cyanol     Sigma 

 

 Tissue Culture Reagents 2.1.4.5

2-mercaptoethanol     Sigma 

B27 Supplement     Gibco 

Cyto-ID® Autophagy detection kit    Enzo Life Sciences  

Dimethyl sulfoxide (DMSO)    Sigma 

Dulbecco’s modified Eagle Medium (DMEM) Gibco 

DMEM/F12      Gibco 

Foetal Calf Serum     Gibco 

Galactose       Sigma 

Glasgow modified Eagle Medium (GMEM)  Gibco 

JC1 mitochondrial Potential Sensor   Invitrogen 

L-Glutamine (100mM)    Gibco 

Leukocyte Inhibitory Factor (LIF)   Millipore 

N2 Supplement     Gibco 

Non-essential amino acids (NEAA)   Sigma 

Mitotracker red     Invitrogen 

Mitotracker deepred     Invitrogen 

Mitotracker Green     Invitrogen 

Modified Eagle Medium (MEM)   Gibco 

MEM Vitamins      Gibco 

Penicillin and Streptomycin solution (Pen-Strep) Gibco 

Protease Inhibitor tablets    Roche 

Rapamycin      LC laboratories/ 

(20μg/ml stock diluted in DMSO)   Enzo life sciences  

Sodium Pyruvate (100mM)    Sigma 

Trypsin      Gibco 

Uridine      Sigma 
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 Western reagents 2.1.4.6

Bradford Assay Kit     Biorad 

Coomassie Brilliant Blue R    Sigma 

ECL-Plus Western Detection Kit   Amersham 

ECL-Prime Western Detection Kit    Amersham 

Immobilon-P transfer membrane    Millipore 

Kaleidoscope Pre-stained standards   Bio-Rad 

Mouse anti-Porin     Molecular Probes 

Mouse anti-β-Actin     Sigma 

Polyoxyethylenesorbitan monolaurate (Tween 20) Sigma 

Rabbit anti-Mouse HRP conjugated   DakoCytomation 

Skimmed milk Powder    Marvel 

Trizma base      Sigma 

 

 Seahorse reagents. 2.1.4.7

Antimycin      Sigma 

Trifluorocarbonylcyanide Phenylhydrazone  (FCCP)Sigma 

Oligomycin      Sigma 

Rotenone      Sigma 

 

 Functional and Molecular Studies 2.1.4.8

1M Dithiohreitol (DTT)    Sigma 

Acetic Acid      Sigma 

Ampicillin      Sigma 

B-Mercaptoethanol     Sigma 

Bacto Agar      Sigma 

Bacto-Tryptone     Sigma 

Bacto Yeast Extract     Sigma 

Bovine Serum Albumin    New England Biolabs 

Bradford Reagent     Sigma 

Coomassie Dye     Fisher 

Glycine      Sigma 
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NP-40       Sigma 

Protease inhibitor Mini tablets   Roche 

Spectra Multicolour Broad Range Protein Ladder Fermentas 

XL10_Gold Kan UltraCompetent Cells  Fisher 

 

 

 

 

 

 METHODS 2.2

 Standard polymerase chain reaction. 2.2.1

 Polymerase chain reaction. 2.2.1.1

All standard polymerase chain reactions (PCRs) were set up on ice on the bench and 

were performed in a 25μl volume containing: 16.87μl nanopure water, 2.5μl 10x PCR 

buffer (10mM Tris-HCl pH 8.3, 1.5mM MgCl2, 50mM KCl, 0.001% wt/vol gelatine), 

2.5μl 10x dNTPs, 0.13μl Ampitaq Gold DNA polymerase, 2μl primers (forward and 

reverse), and 1μl of DNA. 1μl of wild type murine DNA extract was used as positive 

control. Standard PCR reactions were carried out on a thermal cycler (GeneAmp® PCR 

System 9600) under the following conditions: 95ºC for 10 minutes then 30 cycles of 

94ºC for 45 seconds, 58°C for 45 seconds and 72°C for 1 minute. The final extension 

was at 72ºC for 8 minutes. 

 

 Primer Design 2.2.1.2

Primer pairs for mouse mtDNA were designed to incorporate each of the mutations in 

cybrid cell lines. Wherever possible oligonucleotides with comparable melting 

temperatures (Tm) were used. All primers were obtained from Eurofins UK or 

Integrated DNA Technologies and are listed below. 

 

G3739A F- acgcttccgttacgatcaac  480bp fragment  

R- atgatggcaagggtgatagg  
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Nd5 G12273A F- tatcctcacctcagccaaca  360bp fragment  

R- gaggccaaattgtgctgatt  

Nd6 iC13887  F- aaacctctataatcacccccaat  360bp fragment  

R- gtcgcagttgaatgctgtgt  

 

COI C6247T  F- atcctcccaggatttggaat  420bp fragment  

R- ctccgtgtagggttgcaagt  

 

COI T6589C F- tgggagcagtgtttgctatc  420bp fragment  

R- ggcagccatgaagtcattcta  

 

A8414G  F- ccttccacaaggaactccaa  369bp fragment 

R- ggctgaaaaggctccagtta 

 

All primers were resuspended in sterile NANOpure water to a concentration of 100μM 

and stored in 5μl aliquots at -20
o
C. 

 

 Gel electrophoresis 2.2.1.3

Following amplification, products were ran through a 1.5% agarose gel (1.5g agarose in 

100ml TAE). The agarose was heated in a microwave, following which, 2μl of ethidium 

bromide was added and the gel was cast and allowed to cool. 2µl of each sample was 

then loaded into each well with the addition of 0.5µl loading buffer (0.25% (w/v) 

bromophenol blue, 0.25% (w/v) glycerol). To verify fragment size 2μl of 1Kb DNA 

ladder was loaded alongside the samples. The gel was run in TAE buffer at 75V to 

separate products. Visualisation of the bands was possible using the UV gel 

documentation system following intercalation of ethidium bromide into the DNA.  
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 Sequencing 2.2.2

 Purification of PCR Products 2.2.2.1

Once the correct PCR products had been generated they were sequenced using the 

Applied Biosystems 3130 Genetic Analyser. Prior to sequencing 5μl of each PCR 

product was transferred to a 96 well plate on ice where 2μl of ExoSap (Amersham 

Biosciences) was added, mixed and briefly pulse spun down. The plate was then placed 

in a Geneamp PCR System 9700 where digestion at 37
o
C was undertaken for 15mins. 

Following this, samples were incubated at 80
o
C for a further 15mins to ensure enzyme 

denaturation.  

 

 Sequencing Protocol 2.2.2.2

A master mix is added to each sample consisting of 7μl dH2O, 3μl 5X sequencing 

buffer, 1μl 3.2μM dilution of primers, and 2μl of Big Dye v3.1. The plate is then capped 

and returned to the 9700 thermocycler through 1 cycle of 96
o
C for 1 minute, 25cycles of 

96
o
C for 10 seconds, 50

o
C for 5 seconds and 60

o
C for 4mins.  

 

 DNA precipitation 2.2.2.3

2μl 125mM EDTA is added to each well and the plate gently tapped to ensure delivery 

of the EDTA to the sample. Following this 2μl of 3M sodium acetate is added to each 

sample followed by a brief pulse spin. 50μl of 100% EtOH is then added to each well 

and mixed through inversion 4 times before being left to stand at room temperature for 

15mins. After this, the plate is spun at 2090g for 30mins, the caps are removed and the 

plate inverted onto paper towel before spinning again at 100g to remove supernatants. 

70μl 70% EtOH (Analar) is added to wash samples and spun at 1650g for 8mins. Once 

again the plate is inverted and briefly spun to remove supernatants. The plate is then left 

to dry in the dark for 20mins at room temperature. After this, 10μl of HiDi formamide is 

added to each well of the 96well plate which is then returned to the 9700 for 2mins at 

95
o
C. After completion the plate is placed in the ABI 3100 automated DNA sequencer. 

Outputs are then compared to reference sequences and analysed through Seqscape 

software (ABI). 
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 BIOENERGETIC ANALYSIS 2.3

 Oxygraph 2.3.1

 Oxygraph Preparation 2.3.1.1

The Oxygraph (Oroboros Instruments) was turned on and the temperature set to 37
o
C. 

Stoppers, and the 70% ethanol in which the chambers were stored are removed. The 

chambers were then filled with 100% ethanol and stirred for 3mins. Following this, a 

further wash in 70% ethanol was carried out for 10mins. The stoppers and washers were 

then washed at least three times in dH2O. 2.5ml of ES Growth medium (see Table 2.2) 

was added to each chamber, the stoppers screwed fully down, the chambers fully sealed 

and stirrers turned on. To allow equilibration with atmospheric oxygen, the stoppers 

were then opened half way to allow oxygen to enter the chambers, this was allowed to 

proceed for 20mins, during which time the cells for experimentation were harvested. 

After 20mins, and when both trace lines (oxygen concentration and oxygen 

consumption) were stable, calibration of the machine was performed for each chamber 

based on oxygen solubility (as per the manufacturer’s instructions). 

 

 Oxygraph Measurements 2.3.1.2

The cell pellet was resuspended in 150μl of ES Growth media to create a single cell 

suspension. Stoppers were removed and 75μl of cells added to each chamber. The cells 

were allowed to disperse for 5mins with the stirrers on. 10μl of the cells were then taken 

from each chamber and a cell count performed. Next, stoppers were closed slowly to 

seal the chambers and using the cell count the number of cells/ml was calculated and 

inputted into the software. Sequential addition of reagents allowed for measurement of 

basic mitochondrial parameters. Firstly, 1μl of Oligomycin (2μg/ml-final concentration) 

to inhibit ATP synthase was added. Once the oxygen consumption trace on the software 

had stabilised 1μl of FCCP (0.5μM) was added to uncouple the mitochondria, this was 

repeated until the oxygen concentration trace no longer increased (13μl for ES cells). 

2μl of rotenone (0.5μM) to inhibit complex I was then added, followed by 3μl of 

Antimycin A (2.5μM) to inhibit complex III once the trace had stabilised. Data was then 

analysed by inputting the figures into template excel sheets provided by Oroboros. 
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 Seahorse 2.3.2

 Seahorse Preparation 2.3.2.1

Cells were seeded at a predefined optimal density of 50,000 cells/well (see methods 

development) 24hrs prior to experimentation in 20 of 24 wells of a seahorse 

experimentation plate. Four wells were left as background controls for each run. Each 

well contained 100μl of normal growth media for the culture being investigated.  For 

semi adhesive cell lines (for example the ES cell cybrids), 100μl of 0.1% gelatine was 

used to line the bottom of each well. To allow cells to form a monolayer and avoid 

growth on the sides of wells, cells were allowed to settle in 100μl growth media for at 

least three hours prior to topping up media to 250μl/well. The plate is then left overnight 

in the 37
o
C incubator with 5% CO2. During this time the cartridge was rehydrated in 

rehydration buffer (Seahorse Biosciences) at 37
o
C without CO2. 

 

On day of run, experimentation media was prepared supplemented with 5% FBS, 

10mM pyruvate, 2mM L-Glutamine and 1mg/ml glucose and warmed to 37
o
C. The 

media in the experimentation plate was replaced for this media gradually, removing and 

replacing 200μl at a time to ensure cells were always covered. This was repeated three 

times with the final change topping each well to 500μl. The plate was then left for an 

hour in 37
o
C incubator without CO2 to equilibrate. In this time injections are prepared. 

A total of 4 compounds (Table 2.1) are injected sequentially, from ports A,B,C,D, 

appropriate final concentrations were achieved by adjusting the volumes injected as so: 

 

 

 

Table 2.1. OXPHOS inhibitors used in Seahorse Bioenergetic Analyser 

To assess different parameters of mitochondrial function sequential injections of oxidative 

phosphorylation inhibitors were used at a pre-optimized concentration.  
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After incubation the injection cartridge was then removed from the incubator and each 

OXPHOS inhibitor was added in the following volumes, 50μl A, 55μl B, 60μl C and 

65μl D. This was then placed within the seahorse extracellular flux analyser to calibrate. 

Upon completion of calibration (~15mins) the cells were added and the selected 

protocol was run. 

 

 Normalization 2.3.2.2

To control for variations in cell growth over 24hrs, following each Seahorse run the 

plates were washed in PBS and fixed in 4% PFA for 10mins, then stored in PBS at 4
o
C. 

Visualisation of cell nuclei is achieved through Hoechst staining (30mins 1:200 dilution 

in dH2O) and imaging at 10x magnification using the Axiovert 200M (Zeiss). Four 

images from each well were taken. These images are then run through quantification 

software (Matlab) and all Seahorse measurements are normalised to cell number. 

 

 

 

 Tissue Culture protocols 2.3.3

 

 Basic Media Formulations. 2.3.3.1

 

 

 

 

Table 2.2. Basic Media Formulations 

Growth and differentiation medias were made up in 500ml volumes and filter sterilised prior to use. 
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 Initiating cell growth. 2.3.3.2

The cells to be grown are removed from the -80ºC freezer or liquid nitrogen stores and 

thawed through tituration with 1ml of prewarmed growth media (Table 2.2). The cell 

aliquot is then added to 10ml of growth media and the cells resuspended. The cells are 

spun at 1100rpm for 4 minutes; this releases the DMSO from the cells into the 

supernatant where it can be removed. The supernatant is discarded and the cells are 

resuspended in 7-10mls of medium (depending on the number of flasks to be seeded 

and the number of cells required). An appropriate volume of medium is added to flasks 

(precoated with 0.1% gelatine for non-adherent lines) to be seeded and then the cells are 

added. The flasks are gently agitated and placed in an incubator at 37ºC with 5% CO2 

until confluent. 

 

 Harvesting cells. 2.3.3.3

When the cells are confluent the medium is aspirated, the cells are then gently washed 

in 10mls Phosphate Buffered Saline (PBS), removing all traces of foetal calf serum 

which inhibits trypsin. The PBS is then drained and 1ml of trypsin is added, the trypsin 

is rinsed around the flask ensuring coverage of the entire cell surface. The flask is 

returned to the incubator for 1 minute, and then gently tapped to check that the cells 

have lifted off from the growing surface. 9mls of growth medium (containing FCS) is 

added to the flask, this neutralises the trypsin. The cells are fully resuspended and then 

divided amongst an appropriate number of flasks before being returned to the incubator 

at 37ºC until confluent. 

 

 Freezing cells. 2.3.3.4

The cells to be frozen are harvested as above and the 10mls of cells are added to a 

universal, the cells are then spun at 1200rpm for 4 minutes. The freezing mixture is 

made up, which is composed of 90% complete growth medium and 10% DMSO. This 

freezing mix is then syringe filtered. When the spin is complete, the supernatant is 

removed and an appropriate volume of the freezing mix is added depending on pellet 

size. Cells are resuspended in the freezing mix and aliquoted into cryotubes 

(500μl/vial), tubes are sealed and frozen at -80ºC for 24hrs, if longer storage is required 

the cells are moved to liquid nitrogen.  
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 Neuronal Differentiation 2.3.3.5

Both control and cybrid cell lines were initially differentiated following the 4+/4- 

protocol (Bain et al., 1995). This method (outlined in Figure 2.1) requires the formation 

of embryoid bodies (EBs) in suspension. To achieve this, cells at around 80% 

confluency were dissociated, resuspended in GMEM (without LIF) and transferred to 

non-tissue culture treated petri dishes to minimize adhesion. The cells were then 

allowed to form aggregates for four days with a medium change conducted on the 

second. On the fourth day 0.5µM retinoic acid (RA) is included with the medium 

change and subsequently repeated on the sixth day. RA has been shown previously to 

have a fundamental role in development of the CNS and as such determines a neuronal 

fate for the ES cells. (Maden and Holder, 1992)(Maden and Holder, 1992)(Maden and 

Holder, 1992)(Maden and Holder, 1992)(Maden and Holder, 1992) 

  

After 8days the Ebs are washed three times in PBS and disaggregated in 500µl of 

trypsin incubated at 37
o
C for four minutes. Following this the supernatant containing 

the digested cells was removed and centrifuged. The cells were resuspended in 

neurobasal medium (GIBCO, Invitrogen) to achieve a plating density of 5 x 10
5
 

cells/500 µl. 500µl were then transferred to each well of 6 well plates on PDL/laminin 

coated coverslips with 2mls of 4:1 medium supplemented with 1µg BFGF. The plates 

were then incubated as before up to a maximum of eight days, during this time half the 

medium from each well was removed every other day and replaced with 4:1 medium 

without BFGF.  
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Figure 2.1. Neuronal differentiation through the Bains 4+/4- protocol. 

The diagram shows the main steps for generating neurons from ES cells over a 2 week protocol .For 

details see text. 
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 Western Blot Protocol. 2.3.4

 Whole cell lysis protocol. 2.3.4.1

The lysis buffer is prepared from 170µl of 50mM Tris/HCl 150mM NaCl and 2mM 

MgCl2, 28µl of protease inhibitors (Roche) and 2µl of Nonidet P-40 (NP-40). The cells 

to be lysed are harvested and pelleted and the pellet is then washed in 5ml PBS. The 

PBS is drained off and the pellet resuspended in an appropriate volume of lysis buffer 

dependant on the pellet volume (for a T25 this volume is ~100µl). The pellet is vortexed 

in the lysis buffer for 30 seconds and spun at 2300rpm (560g) for 2 minutes. The 

supernatant is transferred to a fresh 1.5ml centrifuge tube and diluted with an equal 

volume of 10mM Tris-HCL pH 7.5. The cell lysate is then aliquoted and stored at -80ºC 

until required. 

 

 Bradford Assay. 2.3.4.2

Bovine serum albumin (BSA) standards are made by diluting an appropriate volume of 

1μg/μl BSA in water to give standards of 0μg, 2μg, 5μg, 10μg, 15μg and 20μg in 800µl 

dH2O, to which is added 200μl of Bradford reagent (Biorad). The samples of unknown 

protein concentration (cell lysates, prepared as in 2.3.4.1) are then prepared, two mixes 

are prepared one containing 1μl of cell lysate (plus 799μl of water) with 200μl of 

Bradford reagent and the other containing 5μl of cell lysate (plus 795μl of water) with 

200μl of Bradford reagent. The samples are then loaded on to an optical bottom plate, 

which is loaded on to the automated plate reader and a report and standard curve 

generated. The concentration of protein per μl can then be calculated using the standard 

curve. 

 

 Sample preparation. 2.3.4.3

The concentration of protein to be loaded is determined as above using the Bradford 

assay. Each sample is loaded in a final volume of 10µl. 5µl of sample buffer is added to 

5µl of Kaleidoscope prestained standards. The samples and the ladder are then 

denatured at 37ºC for 30mins or 95ºC for 10mins depending on protein to be probed. 

Following denaturation, 10µl of each sample is loaded into each well and the gel is run 

at 75V until the dye enters the separating gel (75V, 17mA for ~15 minutes). When the 
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dye has entered the separating gel the running voltage is increased to 150V and the gel 

is then ran until the dye runs off the bottom (150V, 24-26mA for ~1hour 15 minutes). 

For precast gels (Biorad) the gel is ran for 1hour at 120V. 

 

 Protein Transfer. 2.3.4.4

When the proteins have been separated on the gel they are then transferred to a 

nitrocellulose PVDF membrane. To achieve this transfer the gel is separated from the 

gel running assembly and the bottom right hand corner of the gel is nicked to allow the 

membrane to be properly orientated. The gel is then soaked for 15 minutes in chilled 

transfer buffer on a shaking platform. During this time 4x filter papers (10x8cm) are cut 

as well as one piece of PVDF membrane (Millipore) (5x8cm). The bottom right hand 

corner of the membrane is nicked to allow gel and membrane to be correctly aligned 

and for orientation purposes. The membrane is activated in 100% methanol for 15 

seconds, washed in 5x dH2O and equilibrated in transfer buffer for 15mins, on the 

shaking platform with the gel.  

 

The transfer apparatus is then assembled as follows, (all the components are pre-wet in 

transfer buffer); firstly the black side of the cassette is placed at the back, this is 

followed by a sponge, then 2x filter paper, then the gel, the membrane, 2x filter paper, a 

second sponge and the cassette is then closed. The assembled cassette is then placed 

into the transfer tank with the black side towards the back, closest to the negative 

electrode. The tank is then filled with cold transfer buffer. This is stirred during the 

transfer using a magnetic stirrer. The proteins are transferred by running this assembly 

at 300mA for 3 hours (300mA, 65V). 

 

 Coomassie Blue staining. 2.3.4.5

Following transfer of the proteins the gel is placed in Coomassie blue stain and left for 

30mins-1hour on the shaker at room temperature. The stain is poured off and the gel is 

rinsed in dH2O. The gel is then incubated in de-stain overnight in the cold room. An 

image of the gel can then be captured using white light on the UV gel documentation 

system to check the transfer of proteins to the membrane. 
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 Immunoblotting of the PVDF membrane.  2.3.4.6

Non-specific binding sites are blocked by incubating the membrane in 5% milk in 

TTBS overnight in the cold room on a shaking platform. The following morning the 

membrane is incubated with the primary antibodies (Table 2.3) diluted in 5% milk in 

TTBS for 60mins at room temperature on a shaking platform. The membrane is then 

washed in TTBS for 2x5mins and 1x10mins on the shaker at room temperature to 

remove excess primary antibody. The membrane is then incubated with the appropriate 

horseradish peroxidise conjugated secondary antibody for 60mins at room temperature 

on a shaking platform. Finally, the membrane is washed in TTBS on the shaker for 

2x5mins and 1x15mins. 

 

 

Table 2.3. Antibody concentrations for western blotting 

Table shows manufacturer, size of antigen and optimized dilution. 

 

 Signal development.  2.3.4.7

To detect the secondary antibodies various methods were used. Firstly the Amersham 

Bioscience ECL Plus Western Blotting detection kit was used. 2ml of reagent A is 

mixed with 50µl of reagent B and this mix is then incubated with the membrane for 5 

minutes. The membrane can then be scanned using the phosphor imager or exposed to 

photographic film. For film exposure the membrane is exposed to the photographic film 

in the dark in a cassette for an appropriate time period. The film is then developed in 

developer until bands are at appropriate strength, then washed in fixative and finally 

washed in water. The film is then allowed to dry before imaging. Later runs were 

developed using the Amersham Bioscience ECL prime Western Blotting detection kit. 

1ml of reagent A is mixed with 1ml of reagent B in which the membrane is incubated 
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for 5mins. Bands are then visualised using the ChemiDoc System (Biorad) and analysed 

using Imagelab software (Biorad). 

 

 Immunocytochemistry 2.3.5

 Growing Cells 2.3.5.1

Prior to growing cells for staining, 22mm glass coverslips were treated with 250µl of 

PDL (1µg/ml) for 30mins and following three washes in PBS,  25µl of laminin (2 

µg/ml) for a further 30mins. Cells were seeded at an appropriate density from which 

they would reach ~70% confluency on day of imaging. When sufficient growth was 

achieved cells were washed once with PBS, fixed in 4% PFA for 10mins, washed three 

times in PBS, and left in the final wash at 4
o
C in preparation for staining.  

 

 Staining Cells 2.3.5.2

On day of staining, coverslips are incubated in 100µl 5%NGS (made up in PBST) for 

30mins. Primary antibodies (Table 2.4) are then incubated at room temperature for 

90mins made up in 5%NGS. Following this coverslips are washed three times in PBST. 

Appropriate secondary’s are used at preoptimised concentrations , again made up in 

5%NGS, and incubated for 60mins at room temperature. For fluorophore conjugated 

secondary’s, incubations were undertaken in the dark. After this time, the coverslips 

were once again washed three times in PBST, followed by two washes in PBS. 

Coverslips were inverted onto clean microscopy slides and mounted with 

Vectashield+Dapi (Vector Labs) or ProLong® Gold Antifade Reagent (Life 

Technologies). For long term storage coverslips were sealed with nail varnish and 

stored at -20
o
C in the dark. 

 

Table 2.4. Antibody concentrations for ICC 

Final working dilutions for ICC antibodies. 
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 Immunohistochemistry 2.3.6

 Basic Dual Immunohistochemistry Protocol 2.3.6.1

In order to study two proteins in the same section, a dual immunohistochemical assay 

was performed, staining firstly for a marker of interest followed by C120 to assess 

mitochondrial protein levels. The staining protocol can be seen in Figure 2.2 and briefly 

consisted of deparafinisation through two sequential histoclear incubations and 

rehydration through a series of graded alcohols to water. High temperature EDTA 

antigen retrieval at pressure was used for all antibodies to allow access to the antigen. 

Following a wash in distilled water endogenous peroxide activity was blocked using 

30mins incubation in 3% hydrogen peroxide if the method for signal detection/ 

amplification required it. The sections were then washed in phosphate buffered saline at 

pH 7.4 (PBS) before being blocked in 1% normal goat serum (NGS) made up in PBS 

for 30mins. The blocking stage reduced background staining and nonspecific binding of 

proteins as all primary antibodies were produced in goat.  

 

The protocol then requires two rounds of primary and secondary incubations. All 

primary antibodies were incubated for 90mins or overnight at 4
o
C at predefined 

concentrations and following a PBS wash, appropriate secondary antibodies were added 

for 60mins at room temperature. Upon completion of both incubations and secondary 

detections, sections were counterstained with 1:200 Hoechst made up in dH2O for 

30mins at room temperature before sudan black in 70% ethanol treatment was applied 

to quench autofluorescence for 10mins. Following this 4 fast PBST washes and 3 PBS 

washes are completed over 10mins before mounting and fixation in ProLong® Gold 

Antifade Reagent (Life technologies). 

  

 

 

 

 

 

 

 

Table 2.5. Antibody concentrations for IHC 

Final working dilutions for IHC antibodies. 
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Deparaffinising (25mins at 65 oC) 

Rehydration through Histoclear and graded 
alcohols to water 

40 minutes high temperature retrieval in 1mM 
EDTA, pH 8.0 at pressure 

Washed in Distilled water (dH2O )and 
endogenous peroxidase activity blocked in 3% 

H2O2 for 30mins 

Washed in Phosphate buffered saline pH7.4 (PBS) 

Blocked in 1% Normal Goat Serum (NGS) 

Primary Antibody applied overnight 

Washes in PBS 

Fluoro conjugated secondary applied for 
90mins 

Washes in PBS 

Primary autophagy antibody applied 
for 90 mins 

PBS wash 

Fluoro conjugated secondary applied for 90mins 

PBS Wash 

Hoechst nuclear dye 
applied for 30mins 

PBS wash 

Sudan black treatment for 10mins 

Fast PBST and PBS washes 

Mount and seal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Dual immunohistochemical protocol 

Schematic outlines main stages of dual immunohistochemical assay for day one (pink) and day two 

(blue.) For details see text. 
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 Live Cell Imaging 2.3.7

 Growing Cells 2.3.7.1

Cells were seeded at a density of 30,000-100,000 cells (dependant on cell type) in iBIDI 

dishes (Thistle Scientific) or WillCo-dish® (WillCo Wells). For ES cells the surfaces 

were coated in 400µl of 0.1% gelatine to aid adhesion. All cell types were given 2mls 

normal growth media and allowed to settle for at least 24hrs. Imaging was performed 

when cells were between 50% and 80% confluent. On day of experimentation, cells 

were washed in appropriate assay buffers and all staining incubations carried out in a 

volume of 1ml unless otherwise stated. 

 

 Live cell Dyes 2.3.7.2

All dyes were tested for optimal working concentrations prior to experimentation. For 

Tetramethyl Rhodamine Methyl Ester (TMRM) (Invitrogen) staining, cells were 

washed in KRB buffer with 5.5mM glucose, 1.3mM Ca2 and 5nM TMRM then 

incubated in 1µl 5nM TMRM in normal growth media for ten minutes and finally 

washed and left in growth media for imaging. For PicoGreen (Invitrogen) staining, 3µl 

was used in 1ml of media and added 45mins prior to imaging. 

 

Mitotracker (Invitrogen) was routinely used at a concentration of 150nM (red/deep red) 

and 100nM (green) in normal growth medium and incubated for 20mins, the solution 

was then removed and replaced with prewarmed growth medium. For visualisation of 

mitochondrial membrane potential, JC1 (Invitrogen) was used at a concentration of 

2µg/ml in warm growth media and incubated for 20mins. To image, cells were 

illuminated at 488nm and the emissions were collected between 515/545nm and 

575/625nm. 

 

For live autophagosome detection, CytoID Autophagy Detection Kit (Enzo Life 

Sciences) was used, briefly 500µl of assay buffer was diluted in 4.5mls deionized H2O 

supplemented with 5% FBS, in which cells were washed twice. Dual detection reagents 

were prepared in assay buffer through addition of 2µl cytoID and 1µl Hoechst 

(optional) in 1ml. Cells were incubated in 400µl of dual detection reagent for 25mins 
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before a further wash with assay buffer. Cells were then imaged in assay buffer or 

normal growth media depending on cell type. 

  

 Imaging (Confocal and TIRF) 2.3.7.3

Majority of live cell imaging was undertaken on a Nikon A1R point scanning confocal 

microscope, housed in a 5% CO2 37
o
C controlled chamber. The microscope employs 

hardware focal drift correction and is fully-enclosed in a darkened, heated 

environmental chamber with the ability to set, maintain and monitor temperature, 

humidity, CO2 and O2 levels as imaging conditions dictate. A 65x oil immersion lens 

was routinely used to monitor individual cells. For prolonged time course experiments 

resonant scanning was utilised to minimise cell exposure to lasers and subsequent photo 

bleaching. Temporal image capture was dictated by specific dyes; number of dyes used 

and z stacks captured as well as cell type (see methods development 3.3/3.4). For total 

internal inflection microscopy (TIRF) experiments, Nikon Eclipse Ti inverted 

microscope was used with images being taken every second, captured using a 

Photometrics Evolve 512 EM CCD camera for 20–30 minute periods and recorded 

using Nikon Elements software. 

 

 Quantification and Analysis 2.3.7.4

Analysis of live cell work was carried out on IMARIS software (Bitplane). For 

mitochondria tracking, mitochondria were first defined as surfaces and using a touching 

components algorithm tracked through multiple time points. For analysis of 

autophagosome formation images were captured in z stacks enabling 3D reconstruction 

in IMARIS. Autophagosome number and volume were then measured and compared for 

cell lines. From this, association between autophagosomes and mitochondrial structures 

was analysed. 
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 Cloning, transformation and transfection. 2.3.8

 Growing up plasmid stocks 2.3.8.1

GFP-tagged open reading frame clone of mouse MAPLC3b was obtained from Origene 

Bioscience. Stocks were grown up on agar plates (5g NaCl, 5g tryptone, 2.5g yeast 

extract, 10g agar) containing 100mg/ml ampicillin .   

 

 Transformation 2.3.8.2

An aliquot of SOC medium is removed from the freezer and put into a 42ºC water bath. 

The XL10-Gold Kan Ultra competent cells are thawed on ice. The cells are gently 

mixed by hand and 40µl of the cells are aliquoted into one 500µl eppendorf tube for 

each insert plus one negative control. To this is added 1.6µl of β-mercaptoethanol mix 

(provided with the cells) and the contents of the tube are gently swirled. The cells are 

incubated on ice for 10mins, swirling gently every two minutes. Following this 

incubation, 2µl of the ligated insert is added to the cells and swirled gently; this step is 

discarded for the negative control. The cells and the insert are incubated on ice for 30 

minutes. When the 30 minute incubation has finished the tubes are heat pulsed at 42ºC 

for 30 seconds and incubated on ice for 2 minutes. 450µl of preheated SOC medium is 

added to each tube and this mix is then incubated at 37ºC for 1 hour with shaking at 

225–250 rpm. During this time the required number of plates are removed from the cold 

room and allowed to warm to room temperature. After an hour’s incubation the cells are 

spun at 1000rpm for 10 minutes. The supernatant is discarded and the cell pellet is 

resuspended in 150µl of fresh SOC medium at 42ºC. The 150µl of cells is pipetted onto 

the plate and spread out evenly using the aseptic technique. The plates are then 

incubated upside down overnight at 37ºC. 

 

 Checking for inserts. 2.3.8.3

The following morning the plates are removed from the incubator and the negative 

control is checked for an absence of colonies. Fresh plates are removed from the cold 

room and warmed to room temperature. From each plate 25-35 colonies are selected and 

grown in the 37ºC incubator for approximately four hours. During this time the tubes 

are prepared. 10µl of 10% triton-X is added to as many 200µl PCR tubes as colonies 
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picked. After the 4 hours, a small amount of the smeared colonies is picked and added 

to the triton. 1µl of this triton mix is then added to a standard PCR reaction to check the 

colonies for the required insert.  

 

 Plasmid Purification 2.3.8.4

Qiagen Miniprep was used to purify plasmid from bacterial pellets. To ascertain DNA 

quantity DNA elution was nanodropped before storage at -20
0
C. 

 

 Lipofectamine Transfection 2.3.8.5

Lipid based transfections were carried out using Lipofectamine LTX with PLUS reagent 

(Invitrogen). Cells to be transfected were 70-90% confluent at time of experiment. 

Lipofectamine LTX reagent is diluted in serum-free medium such as Opti-MEM® 

Reduced Serum Medium. Plasmid DNA is then diluted in Opti-MEM® and plus reagent 

added.  Diluted DNA is then added to diluted Lipofectamine (1:1 ratio). The DNA lipid 

complex is then added to cells and incubated for 1-3 days. Following transfection cells 

were returned to the 37
o
C incubator and GFP expression was assayed for after 24hours. 

As per manufacturer’s instructions a complexation plate was created to optimize the 

amount of plasmid DNA being used and the ratio of lipid to DNA. Although high 

numbers of transient transfects were achieved we were unable to attain stable 

transfected cells from this methodology and as such moved onto viral methods. 

  

 Viral Transfections  2.3.8.6

Viral particles for GFP-nuclear reporter tagged LC3 and GFP tagged LC3 were 

purchased from Millipore. The latter being LentiBrite ™ GFP-LC3 Control Mutant 

Lentiviral Biosensor, which importantly did not contain a selectable marker. The GFP-

nuclear tagged LC3 served as a control for the other virus and the affect an additional 

GFP molecule had upon cellular trafficking and mitochondria morphology. All 

transfection work was carried out in Dr Chris Morris’s lab with appropriate risk 

assessments in place. Cells were seeded to reach the optimal confluency of 40% on day 

of transfection. Media was replaced with pre-warmed media containing viral particles of 

MOI of 20. Alongside each transfection a non-viral control was included for each cell 
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line. For viral particles that contained a selectable marker the selection agent was 

applied after 48hrs. Those that were not selectable in such a way were analysed for GFP 

expression via microscopy, and to establish pure stable stocks subjected to FAC sorting.
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3 Chapter 3. Methods Development 

 

Several aspects of this project required novel approaches to answer specific questions. 

As such, time was taken to develop experimental techniques and optimize pre-existing 

methodologies for use with the two main model systems in this work- the ES cybrid cell 

lines and human upper midbrain tissue. Specifically, areas that needed optimization 

were the bioenergetic assays for ES cells, the dual immunohistochemical assay and live 

cell assays including mitochondrial tracking in newly differentiated neurons alongside a 

method for concurrent mitochondria and autophagosome tracking.  

 

 BIOENERGETIC ASSAYS 3.1

 Introduction 3.1.1

Mitochondrial bioenergetics are impacted on, and crucial for, cellular functioning and 

survival. Previous work has shown different mutations induce varying severity of 

respiratory dysfunction in the cybrid cell lines (Kirby et al., 2009). To ascertain the 

extent to which the mutation affected oxidative phosphorylation in our cell lines, 

cellular bioenergetics were assayed. Results from these experiments would complement 

data previously generated on the enzymatic activity of respiratory complexes within 

these cells. 

 

 Aims of Study 3.1.2

To optimize a reliable method of assessing bioenergetics in the embryonic stem (ES) 

cells. 

1. Optimize Oxygraph (Oroboros Instruments™) and Seahorse extracellular flux 

analyser (Seahorse Bioscience™) for use with ES cells. 

2. Record bioenergetic differences between control and cybrid cells. 

3. Assess parameters of mitochondrial functioning using OXPHOS inhibitors. 
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 Oxygraph 3.1.3

Initially, bioenergetic analysis was undertaken using the Oxygraph (Oroboros 

Instruments). After multiple runs it was clear that the system would not enable the 

quantity of data required to be gathered, furthermore the background error was a 

concern (Figure 3.1-arrow). Although some differences were visible between complex I 

cybrids and controls (Figure 3.1 bottom graphs) it was deemed more subtle differences 

would not be picked up by this methodology. As such, bioenergetic assays were 

completed thence forth using the Seahorse extracellular flux analyser XF24 (Seahorse 

Biosciences, Massachusetts). 

 

 

Figure 3.1. Oxygraph measurements. 

Top graphs display traces from Oroboros 

Oxygraph for control and complex I cybrids. 

Arrows highlight background measurements 

that led to the rejection of this methodology. 

Bar charts display calculated parameters for 

the two Oxygraph chambers (top and 

bottom) again for control cells (left) and 

complex I cybrids (right). Cr- Routine resp, 

CrO-following oligomycin addition, Cru- 

Maximal after FCCP addition, CruRA- After 

antimycin addition and CrR- after rotenone 

admission. 
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 Optimization of Seahorse extracellular flux analyser XF24 3.1.4

Various stages of optimization were required as the embryonic stem (ES) cells had not 

previously been used in the seahorse bioanalyser.  Initially, the cells ability to grow in 

the specialized seahorse plates (Seahorse Biosciences, Massachusetts) was assessed, 

noting the need for further plate coating.  Appropriate cell numbers are also essential for 

the success of the seahorse run and value of the data collected. For the ES cells, seeding 

densities ranging from 25,000-100,000 cells/well were assessed (Figure 3.2). The 

composition of the experimental media is also assay dependent, with FBS 

supplementation and pyruvate concentration varying for cell type. As such, these were 

also optimized for the ES cells. Finally, OXPHOS inhibitors were optimized. This was 

especially important with FCCP, as the titration curve is known to be quite sharp, and 

too much FCCP has been shown to diminish responses in Oxygen Consumption Rate 

(OCR), a balance was therefore needed between a concentration capable of achieving 

maximal respiratory capacity without inhibiting OCR. 

 

 

 Results 3.1.5

 Cell Number and plate coating  3.1.5.1

Although ES cells initially adhered to the uncoated seahorse plates, after several hours, 

‘clumping’ was observed, and a number of cells detached from the surface of the plates 

(Figure 3.2). Given the number of washes involved in the seahorse protocol, 100µl of 

0.1% gelatine was used to ensure adherence throughout experimentation in all future 

runs.  The amount of media used throughout the run was also tested (Figure 3.3.A). 

Both 250µl and 500µl showed comparable results. Cell densities of 25,000, 50,000, 

75,000 and 100,000 were assessed. Densities of 50,000-100,000 cells/well were seen to 

provide the desired OCR (~400-800pmoles/min). Future runs were carried out at 75,000 

cells/well. 

 

 Pyruvate and FBS concentrations 3.1.5.2

10mM pyruvate and 2% FBS were added to experimental runs. Serum is ordinarily 

omitted from the final media formulation as it may affect the buffer capacity of the 
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media, however, in the case of the ES cells, it was deemed necessary for maintaining 

cell viability.  Experimental media therefore contained 2% FBS compared to 5% in 

normal growth media. Cell viability was maintained at this level and the addition of 

FBS was not seen to impact on buffering capacity (Figure 3.3.B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Optimization of seahorse extracellular flux plates 

Prior to bioenergetic assays being performed on the Seahorse Extracellular flux analyser Xf24, 

conditions specific to ES cell growth had to be optimized. This included, growth media volume and cell 

density (top panel). The coating of different plates was also assessed for its effect on cellular morphology 

and viability (lower panel). 
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Concentrations of 1-10 mM pyruvate were tested to understand the optimal 

concentration of pyruvate to obtain maximal respiration (Figure 3.3.C). The presence 

and concentration of pyruvate has been shown especially important in obtaining the 

maximal respiratory capacity due to FCCP. Seahorse Bioscience have previously 

reported a number of cells lines in which the omission of pyruvate abrogates the ability 

of cells to respond maximally (above baseline) to FCCP. ES cells were able to respond 

maximally through all concentrations tested.  10mM was selected to ensure pyruvate 

availability could not be a limiting factor in OXPHOS. 

 

 

Figure 3.3. Optimization of conditions for seahorse run 

A. Cell numbers, B. Addition of FBS and C. Concentration of pyruvate were all assessed for seahorse 

runs utilising the ES cells (N=20wells/experiment).  

100,000 Cells/well 

75,000 Cells/well 

A 

B C 
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 Injection Titration 3.1.5.3

OXPHOS inhibitors were tested as per manufacturer’s instructions (Table 3.1). Final 

concentrations were:  

 

 

 

 

 

 

 

Table 3.1. Tested and working concentrations of OXPHOS inhibitors 

Commonly used OXPHOS inhibitors were used at pre-optimized concentrations specific for the ES cell 

bioenergetic assays.  These values were often lower than those routinely used with other cell lines such as 

fibroblasts. 

 

 

 Conclusions 3.1.6

The seahorse extracellular flux analyser (Seahorse Biosciences) provided the most 

robust assay for analyzing the ES cell lines bioenergetic capacity. The multi-plate, 

automated interface enabled several cell lines to be ran in parallel controlling for 

experimental variation. The ES cells morphology and growth rates were not altered by 

the conditions within the seahorse plate, although supplementation with FBS and 

pyruvate was deemed necessary to ensure cell viability. Cell concentration did not 

exceed 100,000 cells/well of the seahorse plate.  
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 IMMUNOHISTOCHEMICAL OPTIMISATIONS 3.2

 

 Introduction 3.2.1

To enable observation of mitochondrial dysfunction and autophagy in human tissue, 

time was spent optimizing a dual immunohistochemical protocol. Several issues had to 

be overcome to establish this methodology. Firstly, the upper midbrain sections being 

used in this study express high levels of autofluorescence; as such a method for 

quenching this signal was required. Autofluorescence in this region is caused by various 

factors; the accumulation of age related inclusions, the naturally occurring 

neuromelanin pigment in substantia nigra neurons and the paraffin fixation process. The 

process of paraffin fixation can result in the production of fluorescent products through 

Schiff-acid base reactions causing high background fluorescence and unspecific 

reactions with antibodies (Beisker et al., 1987).  Importantly, the chosen quenching 

process needed to sufficiently remove the background without diminishing the signal of 

the markers to be studied. 

 

In order to gain the best possible results from the immunohistochemistry, time was also 

spent selecting the most appropriate antibodies and furthermore, the optimal working 

conditions for each of these. Antibody selection was based on a screen of prior peer 

reviewed literature with emphasis on antibodies which had been utilised in the same or 

similar protocol as this study’s. To ensure high sensitivity and specificity, the optimal 

working concentration of each antibody needed to be established. A balance was 

required between maximal signal strength and minimal background noise and/or 

nonspecific staining  

 

 Aims of Study 3.2.2

To optimize dual immunohistochemical assay 

1. Optimize antibody concentrations and incubation conditions  

2. Develop a method of quenching autofluorecence. 
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 Methodological Approach 3.2.3

To assess two markers in parallel two immunohistochemical methodologies were 

initially trialed. Firstly, chromagen staining followed by signal separation through 

nuance imaging software (Perkin Elmer). With this method certain antibodies required 

further amplification of signal, for which, various methods were trialed (3.2.3.1). The 

second method employed fluorescent staining whereby signals of multiple markers 

could be separated on the basis of their different excitation spectra.  

 

As many antibodies were novel to this methodology they were initially optimized 

independently with chromagen staining in human colon to ensure the antibodies were 

working (Figure 3.4). The decision on which concentrations to test were based on a 

combination of the manufacturers’ recommended dilutions (if given), and assessments 

of the literature. For antibodies that had not previously been used in this experimental 

setting the search parameters were widened and a greater number of concentrations 

were tested. When antibodies were shown to be effective, they were then optimized 

fluorescently, again singularly in colon followed by upper midbrain sections.  All 

antibody concentrations were then checked following sudan black treatment to ensure 

the signal and specificity remained. Finally, for dual staining, antibodies were once 

again checked to ensure signal was retained. Throughout optimization, the inclusion of 

a ‘no primary control’ was used where the omission of the primary antibody ensures 

against nonspecific binding.  

 

 

 

 

 

 

 

 

Figure 3.4. Initial trials of autophagy antibodies. 

Preliminary antibody tests were undertaken in control colon tissue and optimized for chromagens (left) 

and fluorescent secondary’s (right). 

WDFY3 

ATG 5  

WDFY3 

ATG 5  

WDFY3 
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 Signal Amplification  3.2.3.1

To increase weak chromagen staining, various different signal amplification methods 

were trialed. 

 

3.2.3.1.1 Avidin Biotin Complex Kit 

Avidin is a glycoprotein that possesses four binding sites for biotin. Biotin is a small 

vitamin that has a single binding site for avidin. The avidin biotin complex (ABC) 

(Vector Laboratories) takes advantage of the high affinity of avidin for biotin (Figure 

3.5). The ABC method utilizes a biotinylated secondary antibody which targets the 

unlabeled primary antibody bound to tissue antigen. The third reagent is a large 

complex of avidin mixed with biotin which has been labeled for example with 

peroxidase. This is mixed prior to application so that proportions of avidin and biotin in 

the complex are adjusted to give just enough free binding sites to bind the biotinylated 

secondary antibody. Detection in this method is achieved through a label conjugated to 

the biotin molecules of the ABC which is then visualized using a chromagen. As many 

biotin molecules are bound in complex there is an increased amount of label at the site 

of reaction, and so amplification of the signal is greater. Certain considerations with this 

technique are that the ABC may become too large and be hindered by steric effects 

while trying to access the bound primary antibody. 

 

3.2.3.1.2 Polymer Kit (Chromagen Staining)  

Following deparaffination, rehydration, antigen retrieval and endogenous peroxidase 

blocking, the primary antibody was incubated for 90mins. Following a TBST wash a 

universal probe (Menapath Kit, A. Menarini Diagnostics), which recognizes the mouse 

epitope of the primary antibody, was applied to the section for 30mins at room 

temperature. Following this incubation the sections were once again washed in TBST 

and incubated with a horse-radish peroxidase (HRP)-polymer (Menapath kit, A. 

Menarini Diagnostics) for a further 30mins at room temperature. This recognizes and 

binds the universal probe. Finally, visualization of the marker was achieved through 

incubation for 5mins with chromagen. Sections are then washed well in distilled water 

for 5 mins to remove unbound chromagen.  
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Figure 3.5. ABC signal amplification method 

In the ABC method binding of the primary antibody to antigen is recognised by a biotinylated secondary. 

The Avidin/Biotinylated enzyme complex then associates, the addition of the enzyme substrate allows for 

visualisation of the marker of interest (taken from Vectorlabs.com). 

 

 

3.2.3.1.3 Tyramide Amplification Kit (fluorescent staining) 

Due to variance in the quality of mitochondrial staining, a new method for amplification 

was trailed. Tyramide Signal Amplification (TSA) (Invitrogen) is an enzyme based 

detection method (Figure 3.6). Incubation with primary antibodies occurs as per normal 

IHC protocol. Secondary detection is achieved through HRP conjugated secondaries. 

HRP converts the TSA reagent to a highly reactive free radical that binds covalently to 

electron-rich amino acids like tyrosine and tryptophan immediately proximal to the 

target resulting in minimal loss of signal localization. The TSA reagent is labelled with 

a fluorophore (alexa fluor 488/ alexa fluor 566) which can then be detected through 

fluorescent microscopy.  
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Figure 3.6. TSA Amplification method 

HRP conjugated secondary’s are used to 

identify primary antibodies (1). HRP 

then converts the TSA reagent to a highly 

reactive radical that binds electron rich 

amino acids close to the primary 

antibody. The TSA reagent is labelled 

with a fluorophore to enable 

visualisation (2). Modified from 

PerkinElmer.com 

 

 

 

 Autofluorescence treatment 3.2.3.2

Several methods of autofluorescence quenching were trailed, including irradiation, 

spectral unmixing and chemical treatments. Photobleaching through UV irradiation has 

previously been shown as an effective method for reducing autofluorescence signal 

(Billinton and Knight, 2001). This is achieved through altering the molecular structure 

of a fluorophore to the point whereby it loses its ability to fluoresce. UV exposure was 

carried out before removal of paraffin, tissue sections were irradiated with UV light at 

room temperature for two hours, after which they were transferred to PBS. A notable 

decrease in some but not all sections was observed, specifically substantia nigra neurons 

still showed high residual levels of autofluorescence. Next Sudan Black was assessed as 

a means for addressing autofluorescence. Chemical removal, specifically with Sudan 

Black has previously been used successfully to quench autofluorescence signal in 

multiple tissue types (Cowen et al., 1985; Mosiman et al., 1997; Clancy and Cauller, 

1998). All experiments used 0.3% Sudan black made up in 70% EtOH, filtered through 

0.2µm syringe tip filters. A range of incubation periods and washing protocols were 

tested as shown below in  

Finally, spectral unmixing was employed to separate signals based on parameters 

predefined by measuring the background fluorescence on unstained sections. Due to the 

sheer level of autofluorescence in these samples and the variance between different 

tissue cases, this method was unable to distinguish actual signal from background 

without prior treatment with UV irradiation or sudan black treatment. 
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Table 3.2 and visualised in Figure 3.7. The method was also tested in combination with 

TSA amplification (Figure 3.8). 

 

Finally, spectral unmixing was employed to separate signals based on parameters 

predefined by measuring the background fluorescence on unstained sections. Due to the 

sheer level of autofluorescence in these samples and the variance between different 

tissue cases, this method was unable to distinguish actual signal from background 

without prior treatment with UV irradiation or sudan black treatment. 

 

 

Table 3.2. Sudan black incubation and wash optimization 

Different lengths of incubation with sudan black and washing protocols were trialled to achieve the 

necessary level of autofluorescence quenching without seeing a marked reduction in signal or 

accumulation of SB precipitates.  
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Figure 3.7. ATG5 optimization with sudan black treatment 

Representative images of ATG5 immunofluorescent staining in upper midbrain sections. Top panel shows 

various concentrations and sudan black treatment (x20). Lower panel shows x40 mag images of SNc 

neurons showing desired pattern of ATG5 staining at 1:400 and following sudan black treatment. 

 

 

1:500 + SB 1:500 1:100 

1:400 



Chapter Three                                                                                  Methods Development 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Sudan black treatment and TSA. 

Sudan black treatment worked alongside tyramide signalling amplification methods. Figure shows upper 

midbrain sections with SNc neurons. Sudan black effectively removed autofluorecence on unstained FITC 

and TRITC channels (top panel). Middle panel shows TSA amplification of autophagy marker (green) 

and mitochondrial marker (red) with optimal exposure. Bottom panel shows signal generated if TSA 

staining is baselined against non-stain controls. 
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 IHC Optimization Results  3.2.4

To study two markers in parallel within the same neurons, different staining 

methodologies were tested. Due to the proximity of many of the markers it was clear 

nuance separation would not suffice for this project, subsequent experiments were 

therefore carried out fluorescently. Throughout the optimization of this project certain 

experimental hurdles had to be overcome. Sensitivity of antibodies, notably the complex 

I markers went through extremely variable phases. As such it was necessary to amplify 

signals using TSA kits described above. Despite successful amplification in some 

sections, variability remained and subsequent investigations established the antigen 

retrieval stage was where this variability was introduced. Upon replacement of the 

decloaker unit, amplification was no longer required and variability in sections was no 

longer an issue. Once this issue had been addressed the antibodies could be re-

optimized. The following antibodies were selected for their specificity and 

reproducibility.  

 

 Autophagy Antibodies 3.2.4.1

 

3.2.4.1.1 Beclin1 

Beclin1 is the mammalian ortholog of ATG6 in yeast and has a crucial role in the 

initiation of autophagosome formation. Human Beclin 1 is 450 amino acids in length 

with a molecular weight of 60kDa and forms part of a lipid-kinase complex, through its 

interaction with UVRAG and class III phosphoinositide 3-kinase (PI3K). The anti-

Beclin 1 antibody (Millipore) recognises the C-terminus of the human beclin 1 protein. 

Concentrations were tested in the range of 1:100-1:2000. Antigen retrieval in the 

Decloaker (A Menrani, UK) immersed in 1mmol EDTA at pH8 was deemed an 

effective method for accessing Beclin 1 antigens along with a final working 

concentration of 1:300 with no further amplification. 

 

3.2.4.1.2 LC3 

Microtubule-associated protein 1A/1B-light chain 3 (LC3) is a ubiquitously expressed 

soluble protein with a molecular mass of ~16-18kDa. A homologue of yeast ATG8, 

LC3 is essential for autophagosome formation and subsequently macroautophagy. Post 
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translational modifications results in two distinct forms of LC3. Immediately following 

synthesis, cleavage of a C-terminal fragment of LC3 occurs to yield the cytosolic form- 

LC3-I (18 kDa). A subpopulation of LC3-I is further converted to a membrane bound 

form- LC3-II (16 kDa). LC3-II is formed through conjugation with 

phosphatidylethanolamine (PE) and subsequent recruitment to autophagosomal 

membranes upon initiation of autophagy. De novo autophagosomes form to engulf 

cytosolic components, including proteins and whole organelles. Once encapsulation has 

occurred the sealed autophagosome fuses with a lysosome where its contents are 

degraded by lysosomal hydrolases. Due to its specific association with autophagosome 

membranes, LC3-II is widely accepted as the most reliant marker of autophagosome 

formation.  

 

The anti-LC3B antibody (Cell Signalling) detects endogenous levels of LC3B protein. 

Both LC3-I and LC3-II are recognised by this antibody although stronger reactivity is 

observed with LC3-II. Optimization of the primary LC3 antibody was performed as 

outlined in 3.2.3. Antigen retrieval in the Decloaker (A Menrani, UK) immersed in 

1mmol EDTA pH8 was deemed an effective method for accessing LC3 antigens. A 

range of concentrations were applied, from 1:100-1:500, in addition to a no primary 

control. A working concentration of 1:200 was settled upon as this required no further 

amplification.  

 

3.2.4.1.3 P62 

P62 also known as sequestosome 1 (SQSTM1), is a ubiquitin-binding scaffold protein 

that colocalizes with ubiquitinated protein aggregates. P62 and LC3 have been shown to 

bind directly via a specific sequence motif. Accumulation of p62 shows indirect 

correlation with autophagy, with an increase observed when autophagy is inhibited and 

decreased expression when autophagy is upregulated. Furthermore, the protein itself is 

degraded via autophagy. As such autophagic flux can be inferred from p62 levels.  The 

anti-P62 antibody (Progen Biotechnik) recognises the C-terminal domain of human p62. 

Optimization was achieved ia a similar methodology to LC3. Again, antigen retrieval 

was achieved through high pressure EDTA incubation. Dilutions in the range of 1:100-

1:200 were trialled. A working concentration of 1:100 was settled upon as this required 

no further amplification steps. 
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3.2.4.1.4 ATG5 

ATG5 is an E3 ubiquitin ligase which associates with the isolation membrane and is 

necessary for elongation of the autophagosomal membrane and subsequent autophagy. 

It is activated by the ubiquitin E1-like enzyme ATG7 and the E2-like enzyme Atg10 

forming a complex with ATG12 and ATG16L1. This complex supersedes, and is 

required for the formation of the LC3-PE conjugation. Heat mediated antigen retrieval 

in EDTA was once again used to gain access to the antigens. The anti-ATG5 antibody 

(Abcam) was tested at the dilution range 1:300-1:2000 with a final working 

concentration of 1:400 with no further amplification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Final concentrations of autophagy markers 

Following optimization final working concentrations were established for all autophagy markers as 

shown above.  

ATG5 
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Beclin 1 
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 Mitochondrial markers 3.2.4.2

3.2.4.2.1 CII9 

CII9/GRIM19 (NDUFA13) is a subunit of the mitochondrial membrane respiratory 

chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons 

from NADH to the respiratory chain. The protein is required for complex I assembly 

and electron transfer activity. Chromagen staining of the anti CII9 antibody (Abcam) 

revealed an effective working dilution of 1:300, however, when the protocol was moved 

to a dual fluorescent platform, sensitivity was severely diminished. To overcome this a 

higher concentration of 1:100 was used.  

 

3.2.4.2.2 CI20 

CI20 (NDUFB8) is an accessory subunit of the mitochondrial membrane respiratory 

chain NADH dehydrogenase (Complex I), that is believed not to be involved in 

catalysis. Importantly, CI20 has previously been associated with Complex I assembly 

(Triepels et al., 2001a; Triepels et al., 2001b; Lebon et al., 2007). Similar weakening of 

the CI20 signal was observed in fluorescent staining compared to chromagen as 

described with CII9. As such, a working concentration of 1:100 was used. Importantly, 

when being used in conjunction with autophagy markers it was found that both 

mitochondrial markers signal diminished if stained for first. All experiments were 

therefore performed with autophagy markers being stained first followed by a 

mitochondria marker. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Final concentrations of OXPHOS antibodies 

Both complex I subunit antibodies were used at a working concentration of 1:100 

C120 

C119 
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 Treatment of Autofluorecence  3.2.4.3

UV treatment was ineffective in this experimental setting as a high level of 

autofluorecence was still observed following irradiation. Sudan black was chosen as the 

most effective method of autofluorecence quenching (Figure 3.11, Figure 3.12). 

Subsequent IHC was carried out to include a final 10 minute incubation with filtered 

0.3% Sudan black made up in 70% ethanol, at room temperature. This was then 

removed with three fast washes in PBST followed by four PBS washes over 5mins to 

ensure no sudan black precipitates were left. These treatments did slightly reduce the 

intensity of immunofluorescent labelling; however, the reduction of these fluorophores 

was far less dramatic than that of the background fluorescence. Finally, for each 

experimental run a no stain sudan black control was incorporated into the protocol. This 

slide was not treated with either of the two primary antibodies but was counterstained 

with Hoechst to allow for correct focal positioning. Sudan black treatment was applied 

to this slide in parallel to the others. During image capture, this slide was used first to 

establish the level of background fluorescence (if any) that existed. The microscope 

settings required to generate a signal were recorded for this no stain control and 

subsequent images were kept below the exposure needed to generate signal on this 

slide.  
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Figure 3.11. Level of autofluorescence in unstained upper midbrain sections. 

Human upper midbrain sections showed high levels of autofluorescence when excited by the three most 

commonly used wavelengths (Left hand graphs). Following sudan black treatment this signal was 

reduced to, or nearing zero (middle graphs). Representative images show signal without any staining. 
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Figure 3.12. Optimization of sudan black treatment. 

Figure shows no sudan black treatment (top row), 30mins SB treatment (second row), and 10mins SB 

treatment (third row). Ten minute incubations sufficiently quenched autofluorescence without diminishing 

signal. Bottom row show dual autophagy and mitochondrial stains with ten minutes sudan black 

treatment showing effective staining.  
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 Conclusions  3.2.5

Careful optimization of antibodies is crucial for the reliability and interpretation of IHC 

results. The inclusion of no primary controls with each antibody optimization allows for 

confidence in the specificity of the antibody. Time was spent at this part of the project 

to ensure antibody concentrations were sufficient to pick up the marker of interest 

without causing unwanted background and/or unspecific staining. The final optimal 

antibody dilutions used for each marker are shown in chapter 2.3.6.1, table 2.5. Dealing 

with autofluorescence in the upper midbrain sections used in this study added an extra 

level of complexity to this study. Following rigorous testing, sudan black treatment in 

conjunction with spectral unmixing was capable of generating a reliable, repeatable 

method of quenching, without diminishing required signal. 

 

 

 

 MITOCHONDRIAL TRACKING IN NEWLY DIFFERENTIATED 3.3

NEURONS 

 Introduction 3.3.1

 

Mitochondrial dynamics are essential for maintaining organelle stability and function. 

Through fission, fusion and mitophagic events, optimal populations of organelles are 

retained. Subsequently, alterations in such processes can have profound effects on the 

individual mitochondrion and the cell within which they reside. Neurons are post 

mitotic, energy dependent cells and as such are particularly vulnerable to alterations in 

cellular bioenergetics and increased stress that may occur as a direct or indirect result of 

mitochondrial dysfunction. The trafficking of mitochondria to areas of higher energy 

requirements, such as synapses, further highlights the importance of efficient 

mitochondrial dynamics in neurons. 

 

As pluripotent cells, the ability to select cell fate in the cybrid cells is retained, for the 

purpose of these experiments a mixed neuronal lineage was created. Previous studies 
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had shown these cell lines to be compromised in their efficiency to generate neurons. 

Only 21% of complex I cybrid cells showed neuronal development, compared with 53% 

in the parental ES cell line (Kirby et al 2009 and discussed in chapter 4); the role of 

dynamics in this is yet to be investigated.    

 

Previous limitations to observing mitochondria within these neurons include the delicate 

nature of the cell type, tendency to phototoxicity, and difficulties visualizing individual 

organelles due to the complex nature of the network in certain regions of the cell. To 

overcome this, Total Internal Reflection Microscopy (TIRF) was employed to limit the 

amount of light the cells were subjected to. Furthermore the enhanced resolution, albeit 

in a limited field, lends itself to imaging neuronal projections, as limiting the 

penetration of excitation ensures only individual organelles are imaged, reducing the 

complexity of the data collected. Independent neuronal projections were selected due to 

their thin structure which forces mitochondria to segregate to move within them. 

 

 Aims of Study 3.3.2

To develop a method of imaging and tracking mitochondria in newly differentiated 

neurons. 

1. Maintaining neuron viability whilst using live mitochondrial markers. 

2. Develop a methodology to track organelles along neuronal processes 

 

 Imaging Methodology 3.3.3

Cells were observed using a 60x objective (Nikon Plan Apo VC 1.49) on a on a Nikon 

Eclipse Ti inverted microscope A1R encased within a fully-enclosed  environmental  

chamber. TIRF allows for selective excitation of fluorophores in a limited field, usually 

less than 100nm. This meant that only events at, or very close to the plasma membrane 

were captured. All images were captured using a Photometrcs Evolve 512 EM CCD 

camera for 5 – 20 minute periods and recorded using Nikon Elements software.  
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 Optimization of TIRF Microscopy 3.3.3.1

The successful analysis of live cell imaging is heavily reliant on high quality image 

capture. As such time was spent optimizing TIRF microscopy of the newly 

differentiated neurons. A balance was required between the speed of image acquisition 

and the overall length of imaging (Figure 3.13). As with all biologically active samples, 

increasing the amount of light the sample is exposed to can result in phototoxicity and 

photobleaching. As such efforts were made to limit the exposure wherever possible, 

however imaging needed to occur frequently enough that individual mitochondria could 

be tracked successfully by the IMARIS software.  

Figure 3.13. Photobleaching in TIRF microscopy 

Increasing length and rate of imaging had inverse effects on image quality with higher exposure causing 

photobleaching. As such the optimal time (y axis) and rate (x axis) of imaging was established. 
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 Analysis 3.3.3.2

Imaris 7.6 (Bitplane Scientific Software) was used for all live image analysis. Individual 

neuronal processes were selected on predefined criteria based on connections and 

excluding regions close to axons, neuronal boutons (excluding areas of increased 

energetic demand) or near neuronal growth cones (the process must not be an area of 

active growth). Regions of these processes were then defined as ROIs within the 

software (within which individual mitochondria did not leave). Mitochondria were then 

defined and tracked through entire image sequences utilizing the methodology shown in 

Figure 3.14. Briefly, Mitochondria were first identified as structures based on average 

mitochondrion size, once these structures were defined they were then tracked through 

each frame using the ‘connected components’ algorithm. Selecting this method enabled 

data to be generated on parameters of movement but also fusion events. The success of 

automated tracking was verified as tracks were routinely assessed for accuracy by eye 

and fusion events were compared from automated data and observed 

 
        

Figure 3.14. Analysis of mitochondrial 

movement 

To track mitochondrial movements neuronal 

processes were filmed for 15mins (A). Regions of 

interest were defined (B-C) and Imaris software 

employed to map each organelles surface (D). 

The movement of each of these surfaces 

(mitochondria) were then followed through 

various time points to ensure correct tracking (E). 

The tracking algorithm was then applied to the 

entire region of interest (F). 
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 Results 3.3.4

 Substantiation of Methodology 3.3.4.1

It was deemed that imaging every second for 15 minutes was sufficient to track 

mitochondria effectively without causing undue stress to the cells and/or reducing 

fluorescent signal to a suboptimal level (Figure 3.13). Previous groups have tracked 

mitochondrial movements utilising different imaging software and filament tracer in 

IMARIS, we are however the first group we are aware of to utilise the automated 

tracking module for neuronal process mitochondria tracking. As such rigorous analysis 

of the methods was necessary. We found numbers of fusion events observed by eye and 

counted automatically through the software were comparable P<0.0001 (Figure 3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Observed vs. automated fusion events 

Analysis of the number of observed fusion events (two surfaces becoming one) were compared with the 

number of structures calculated by Imaris at any given time (A). Track lengths were also routinely 

checked against automated calculations (B). 
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 MITOPHAGY IN REAL TIME 3.4

 Introduction 3.4.1

 

The removal of mitochondria through macroautophagy cannot be elucidated through 

fixed cell/tissue studies.  Although certain things can be inferred from alterations in 

autophagy markers and mitochondrial numbers, to separate mitophagy from general 

autophagy a method of observing the process in ‘real time’ was needed. 

 

To achieve this, live cell markers of both mitochondria and autophagosomes were used 

in conjunction, allowing for the observation of mitophagic events. Several obstacles in 

the development of this methodology needed to be addressed. Firstly, optimization of 

appropriate dyes was required. Next image capture, including, excitation, length of 

image capture and number of z stacks needed to be optimized for both fibroblasts and 

ES cells. 

 

 Aims of this study 3.4.2

To develop a method of imaging and tracking mitochondria and autophagosomes in 

fibroblasts and embryonic stem cells. 

1. Establish markers for autophagosomes and mitochondria that were well tolerated 

in fibroblasts and by the ES cells. 

2. Develop a methodology to track both structures in relation to one another in live 

cells. 

 

 Imaging Methodology 3.4.3

Cyto-ID (Enzo biosciences) was routinely used to stain for autophagosomes in 

fibroblasts as the dye was well tolerated. This was used in conjunction with mitotracker 

red. Analysis of the mitochondrial network and autophagosome number/volume was 

conducted on Imaris 7.6 (bitplane). Correlations between mitochondria and 

autophagosome characteristics were then analysed. To look more in depth at mitophagic 

events the proceeding step was to look at the two-mitochondria and autophagosomes in 
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parallel. As the cybrid ES cell lines were the most valuable for these experiments, time 

was spent establishing a mitophagy assay in these cells. Unfortunately the ES cells are 

particular sensitive to certain dyes, with methods that worked with minimal toxicity in 

fibroblasts causing noticeable morphological changes and in severe cases cell death. As 

such Cyto-ID proved ineffective for the ES cell lines. The decision was made to 

transfect these lines with GFP-tagged LC3. Firstly this was achieved through a lipid 

based transfection kit although no stable transfected lines were generated. The 

experiments then moved onto viral transfection, again with mixed results. Stable lines 

were generated for the complex IV cybrid line only, with complex I lines and controls 

failing to express GFP-LC3. Due to constraints of this project the mitophagy assay was 

developed in this cell line to be utilized with the other cell lines once stable 

transfections had been generated. The analysis described below therefore outlines a 

methodology for future mitophagic observations. 

 

Following successful co-labeling of mitochondria with mitotracker and LC3 through 

GFP transfection, z stacks were generated for both channels. Two types of experiment 

were undertaken- short and long. For short experiments images were captured every 5 

seconds for 15mins, allowing greater resolution of autophagosome number, volume and 

locale, relative to mitochondria. For long experiments, assays were run overnight, with 

image capture occurring every 5mins with reduced laser strength. Although this reduced 

resolution, it ensured photobleaching was not a limiting factor over these longer time 

periods which enabled the assessment of mitophagic events. 

 

 Analysis 3.4.3.1

Analysis was conducted using Imaris 7.6 (Bitplane). For identification of mitochondria, 

‘surfaces’ were mapped (Figure 3.16.2). Autophagosomes were characterized as 

‘particles’ within the software (Figure 3.16.3). Movements of both surfaces and 

particles were then tracked through each time frame with measurements of size, location 

and interaction recorded. 
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Figure 3.16. Autophagosome and Mitochondrial interactions 

Analysis of mitochondria and autophagosomes was undertaken using Imaris 7.6. Through this software 

mitochondria were defined as surfaces and autophagosomes were identified as particles. Parameters of 

these two could then be assessed with regards to localization, size and number. 

 

 

 Results 3.4.4

 

Through transfection of GFP tagged LC3 and mitotracker dyes it was possible to 

develop a methodology that could assess mitochondria and autophagosomes in parallel. 

Characteristics that can now be assessed through this novel methodology are outlined in 

Figure 3.17. 
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Figure 3.17. Measurements achievable through novel mitophagy methodology  

The figure shows example images taken from videos of autophagosomes and mitochondria in live cells. 

From these, measurements of different parameters can be achieved. GFP-LC3 transfected cells can be 

subjected to different treatments (A) and the intensity of autophagosome formations can be measured (B). 

Dual mitochondrial and LC3 staining (C) can reveal formation of characteristic autophagic rings (D), 

which can be assessed in different cell lines. Measurements of autophagosome localization, for example 

in relation to the nucleus, can be calculated (E) alongside total number of autophagosomes/cell (F). 

Finally observations of the interactions between mitochondria and autophagosomes can be made, looking 

firstly at the interactions between the two (G) and more specifically mitophagic events (H,I,J) through the 

measuring of mitochondria engulfed by LC3 (arrows) and colocalizaiton of the two markers (arrow 

heads). 
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 Conclusions 3.4.5

 

To observe dynamic events real time imaging is required, it is clear that static 

observations of mitochondria are no longer sufficient to deduce complex dynamic 

processes that may be key to pathogenic alterations in a range of common disorders. 

The methodology established as part of this project will be essential in assessing live 

mitophagic events and how these differ in cell lines harboring different mutations. 

 

 DISCUSSION 3.5

 

The techniques optimized as part of this chapter will serve as a tool set for experiments 

described in the subsequent chapters. Many of the techniques will be optimized futher 

as the project progresses and used in novel settings for this and other works within the 

group.  
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 Chapter 4. Characterization of Cybrids 4
 

 INTRODUCTION 4.1

 Overview 4.1.1

Cybrids- ‘Cytoplasmic Hybrids’ allow the effects of specific mtDNA mutations to be 

studied by comparing them with control cells containing wild type mtDNA that are 

raised in the same nuclear DNA background. Transmitochondrial cybrids had 

previously been generated and the methods for this are outlined in (Kirby et al., 2009). 

Briefly, the cell lines were generated by treating embryonic stem cells (CC9.3.1 cell 

line) with rhodamine 6G to remove endogenous mtDNA. These were then fused with 

cytoplasts from mouse fibroblasts (L929 cell line) carrying a range of mtDNA 

mutations that were fixed over long-term culture (Figure 4.1). Cell lines were a gift of 

Prof. Anne Voss (Walter and Eliza Hall Institute, Melbourne, Australia).  

 

 

 

 

Figure 4.1. Cybridization process  

Embryonic stem cells are depleted of mtDNA through Rhodamine 6G treatment. These are then fused 

with enucleated mouse fibroblasts containing known mtDNA mutations. (Modified from (Ohta, 2006) 
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 Cybrids used in this study 4.1.2

The cybrids used for this study were mouse embryonic stem cells which contained 

mutations/polymorphic variants in different complexes of the respiratory chain as 

shown in Table 4.1. The presence of mtDNA mutations was established through 

polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) at 

time of cybrid generation (Kirby et al., 2009).  

 

 

Table 4.1. Cybrid Cell Lines 

The cybrids available for use in this study are listed in the table above. Lines have previously been used 

in different experimental settings and therefore have been identified in different ways as shown in the 

existing prefix column. 

 

Two control lines were initially used in the characterization step of this study the E14Tg 

line and CC9.3.1 (true nuclear control). For later experiments the CC9.3.1 cells were 

used independently. The controls alongside complex I, complex IV and tRNAR 

polymorphism mutants were sourced from stocks created within the mitochondrial 

research group, details of their generation can be found in Kirby et al 2009. Three novel 

lines, Complex V, complex IV heteros and RNAI polymorphisms were a gift from 

Professor Jose Antonio Enriquez (Centro Nacional de Investigaciónes Cardiovasculares 

Carlos III, Spain). Complex I and complex IV mutants have previously been classified 

based on severity of enzymatic activity deficiency compared to controls (see below in 

4.1.3). The impact of a scale of bioenergetic dysfunction can therefore be assessed with 

complex I mutants showing a severe phenotype and complex IV a mild phenotype. The 

tRNA polymorphisms provide an important control for the cybrid derivation process, 

ensuring the effects of the mutation are assessed, and not any downstream impact of the 

cybrid construction process. All mutations were homoplasmic with the exception of the 
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complex IV C6247T mutation and the mtND5 point mutation which was 90% 

heteroplasmic. 

 

 Previous findings 4.1.3

Previous studies using the complex I and complex IV cybrid cell lines have quantified 

the consequences of mtDNA variations by measuring respiratory chain enzyme 

activities using spectrophotometricity, measured relative to a matrix marker (citrate 

synthase-CS).  The ratio enzymatic activities are displayed in Table 4.2. The results 

showed that the mtDNA mutations caused a spectrum of biochemical defects. No 

significant alterations in enzymatic activity were quantified for the polymorphic control, 

mild enzymatic decrease was seen in the complex IV cells and severe enzymatic activity 

loss was recorded in the complex I cybrid line. 

 

 

Table 4.2. Respiratory chain enzyme activities in undifferentiated cybrids. 

The activities are expressed relative to the mitochondrial matrix enzyme citrate synthase (CS ratio), as 

percentages of the CS ratio in the parental embryonic stem (ES) cell line. CY-I/RNA polymorphic variant, 

CY2-I/Complex IV and CY3-I/ Complex I. (Modified from (Kirby et al., 2009). 

 

 Neuronal Differentiation 4.1.3.1

As pluripotent cells, the ability to select cell fate in these cells is retained, using a 

differentiation protocol as outlined in Bain’s et al, a mixed neuronal lineage can be 

created (Bain et al., 1995). Previous studies have shown that all the cell lines are 

capable of neuronal differentiation by this methodology, however the efficiency of the 

differentiation capabilities varies for different mtDNA mutations this was shown to 

associate with severity of mutations. β-tubulin expression (a microtubule element of the 
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tubulin family found almost exclusively in neurons) was used to indicate neuronal 

differentiation. Quantification of this staining revealed only 21% of complex I cybrid 

cells showed neuronal development, compared to 53% in the parental ES cell line 

(Abramov et al., 2010). Interestingly the complex IV mutants did not show a significant 

reduction in differentiation capacity implying that this finding is either complex I or 

severity dependent. If the latter is true it would suggest a fairly high threshold for 

differentiation impairment (Figure 4.2). Further studies into the synaptic activity of 

these cell lines using patch clamp recordings revealed neurons with the highest level of 

respiratory deficiency had marked defects, with complex I mutant cells being 

completely devoid of all synaptic currents.  In contrast control and mild mitochondrial 

mutants showed typical spontaneous currents around 2 weeks after plating (Abramov et 

al., 2010).  

 

 

 

Figure 4.2. Differentiation into neurons and astrocytes 

Control, complex I and complex IV cell lines were capable of differentiation into neurons and astrocytes 

as demonstrated by β-tubulin staining (green) and GFAP staining (red f and g). Complex I mutants 

showed a severe reduction in both stains showing diminished differentiation capacity complex IV cells 

were not significantly different. (modified from (Abramov et al., 2010). 
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 Reactive Oxygen Species (ROS) production 4.1.3.2

Mitochondrially generated ROS were measured in cybrid cell lines using hydroethidium 

(cytosolic indicator) and signals from the mitochondrially targeted hydroethidine. ROS 

levels were increased in both complex I and complex IV lines. Oxidative stress 

measured by glutathione depletion suggested a significant increase in complex I but not 

complex IV cell lines. Furthermore this increased ROS was associated with neuronal 

death, highlighted by attenuation through administration of ROS scavengers (Abramov 

et al., 2010).  

 

 Calcium homeostasis  4.1.3.3

Calcium is fundamental to neuronal functioning, transducing molecular from electrical 

signals, alongside universal roles in cell death pathways. As such, the regulation of 

calcium directly impacts on neuronal capabilities. To ascertain the impact the 

mitochondrial mutations had upon calcium homeostasis in the cells, membrane potential 

and calcium concentrations were measured simultaneously. It was revealed using Ca
2+

 

agonists (ATP to stimulate and Potassium chloride -KCL to depolarize plasma 

membrane and subsequently open voltage gated Ca
2+

  channels) neither of the mutants 

induced pathogenic changes to Ca
2+

 signals. This is thought to be possible through a 

maintained membrane potential (Abramov et al., 2010). 

 

 Complex I focus 4.1.4

Initial experiments were conducted using all available cybrid cell lines. However, early 

on in experimental design it was realised that maintaining and controlling variability in 

so many different cell lines was problematic and limited the amount of parallel repeats 

that were possible. For this reason and to use the most relevant model system for PD, in 

which complex I dysfunction has been extensively described, focus was shifted to 

looking at the severe complex I mutants in relation to their nuclear controls, the 

complex IV mild mutants and the cybridization controls. This allowed for tighter 

control of the variables and the opportunity for increased repeats, enabling greater 

confidence and consistency in any observations. 
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 Aims of this study 4.1.5

This chapter aimed to define the nature and extent of dysfunction in cybrid cell lines, as 

well as optimizing growth conditions for future imaging assays. Construction of cybrids 

was accomplished prior to the start of this project and as such data already existed on 

certain parameters of mitochondrial and overall cellular functioning. This study 

therefore aimed to confirm previous findings using novel techniques and build on an 

existing knowledge base, looking at different aspects of mitochondrial function. 

1. Confirm mutations in cell lines 

2. Monitor growth and viability 

3. Define bioenergetic alterations 

4. Confirm decreased differentiation capacity of complex I cybrids 

 

 

 METHODS 4.2

 Sequencing 4.2.1

Once the correct PCR products had been generated they were sequenced using the 

Applied Biosystems 3130 Genetic Analyzer (Life technologies). Briefly, sequencing of 

the DNA is achieved by the addition of fluorescently tagged dideoxynucleotides. When 

DNA polymerase generates a complementary DNA strand it incorporates both normal 

nucleotides but also fluorescently tagged dideoxynucleotides. When a 

dideoxynucleotide is added the reaction is terminated. As incorporation of the 

fluorescently tagged nucleotides is stochastic, strands are randomly terminated and as 

such a mixture of strands of varying lengths is generated. The mixture is then cleaned to 

remove any unwanted material and the samples are put in the genetic analyser for 

electrophoresis. The analyser injects DNA molecules into a capillary array which are 

separated according to size, smaller fragments moving more quickly than larger 

fragments. The fragments are detected via the fluorescent tag incorporated earlier on 

and appear as a coloured peak on the software. The raw data can then be converted into 

a complete DNA sequence using the sequencing program, Seqscape (Invitrogen). 
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 Optimization of growth conditions 4.2.2

To ensure variability of growth conditions would not influence any results gathered 

from cell culture experiments, time was spent optimizing the exact growth conditions 

for the ES cells. Previous studies have successfully cultured these cells and as such 

these conditions were matched. All cells were grown in a humidified incubator at 37
o
C 

with 5% CO2 in tissue culture flasks pre-coated in a 0.1% porcine skin gelatine (Sigma) 

solution.  The cells were initially grown in Glasgow Modified Eagle’s Medium 

(GMEM) with 10% foetal calf serum, supplemented with Non-essential Amino Acids 

(NEAA), Sodium Pyruvate and Glutamine (all GIBCO, Invitrogen). Leukocyte 

Inhibitory Factor (LIF, Millipore) alongside 2-mercaptoethanol (GIBCO, Invitrogen) 

were added to limit spontaneous differentiation of ES cells during propagation.  For 

novel applications of these cells, i.e. growth in imaging dishes the application of 

different coatings was tested to achieve adherence for both undifferentiated and 

neuronal cells. The tolerance to different dyes at a range of concentrations was also 

established for the ES cells and newly derived neurons. 

 

 Measurement of growth 4.2.3

To further characterize the cybrids a method for monitoring their growth was 

developed. Initially, cell counts were taken every 24hrs, where the cells were 

dissociated, collected and counted using the Countess automated cell counter (Life 

Technologies).  The Countess generates cell counts along with measurements of 

viability (live, dead and total cells) using imaging of trypan blue stained cells (Figure 

4.3.A). Alongside this, a second assay was developed using the CT Biostation Live Cell 

imager (Nikon Instruments Inc.) This allowed visualization of the growth alongside 

assessment of morphology. To limit variation all cell lines were grown at the same time 

and seeded to six well plates at a density of 1x 10
5
/500µl. Three wells were seeded for 

each cell line and the plates were loaded into the fully automated Biostation. The 

machine was programmed to take images at three points within each well at hourly 

intervals for a period of 72 hours. This generated videos of each cell line. Still images 

from 12hour intervals were then analysed using area calculations as shown in Figure 

4.3.B. 
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Figure 4.3. Growth Analysis 

Two methods were employed to monitor growth. Firstly a standard growth curve was produced through 

Trypan Blue staining and cell counts (A). A second imaging method was used alongside computer 

analysis of overall growth areas every 12hrs. 
 

 Measurement of steady state protein levels 4.2.4

To assess if steady state levels of certain complex I and complex IV subunits of their 

associated cybrids were affected, immunoblotting was performed as outlined in chapter 

2.3.4. Complex I cybrids were probed for NDUFB8, the 20kDa subunit of complex I 

(C120) which has been previously shown as a reliant marker of complex I assembly. 

Complex IV cells were probed for COXI in which the cybrid contains its mutation. All 

westerns were probed in parallel with housekeeping genes (β-actin and TOM20 

respectively). 

 

 Microoxygraphy 4.2.5

Previous work has shown different mutations induce varying severity of respiratory 

dysfunction. To ascertain the extent to which the mutation affected oxidative 

phosphorylation in our cell lines, cellular bioenergetics were assayed using the Seahorse 
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extracellular flux analyser x24 (Seahorse Biosciences, Massachusetts). Briefly, cells 

were seeded to a Seahorse 24 well plate 24hrs before experimentation at a previously 

optimized density (chapter 3.1.5). Prior to running, growth media was replaced with 

experimental media (without pH buffering) and allowed to equilibrate in a CO2 free 

incubator for 1hour. During experimentation, oxygen consumption rates (OCR) and 

extracellular acidification rates (ECAR) were monitored in parallel. Sequential 

injections of oligomycin, FCCP, rotenone and antimycin were added to allow different 

parameters of mitochondrial function to be measured.   

 

Data were normalized by cell number calculated for Hoechst staining and automated 

nuclei counting post run. From this a number of parameters were assessed. Non-

mitochondrial respiration (NMR) was subtracted from all values. Basal respiration was 

calculated from the average of the first three measurements for each run. Spare 

respiratory capacity was generated by subtracting basal respiration from maximal 

respiration (following FCCP treatment) for which the highest value was taken. Each 

cybrid cell line was run multiple times with a minimum n of 16wells. An unpaired, two-

tailed Student’s t test was performed to determine the significance of any differences 

between the data sets and p values were considered significant at the 95% confidence 

interval. 

 

 Determining differentiation capacity 4.2.6

Previous studies have highlighted the impaired differentiation capacity of complex I 

cybrid cells compared to complex IV mutants, nuclear controls and cybridization 

controls. All cell lines had undergone extensive cryostorage and/or transportation prior 

to this study and as such the decision was taken to regularly quantify neuronal 

differentiation for each cell line during the course of neuronal experiments. To this end, 

cells that were passage matched, equally seeded, differentiated and fixed on the same 

days were routinely imaged at x10 and x40 magnification. These images were then 

analysed for number of neurons/field of view and degree of arborisation (number of 

branches/cell body). These data were combined and plotted as a percentage of controls 

for the complex I cybrids. 
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 RESULTS 4.3

 Sequencing 4.3.1

To ensure cybrid cell lines contained the expected mutation, regions of the mtDNA 

known to contain the mutated site were amplified using primers detailed in section 

2.2.1.2 and subsequently sequenced. Preliminary runs revealed two of the lines were 

lacking the mutations thought to be contained when frozen down. To overcome this, a 

series of earlier passage aliquots were sourced and sequenced until cells retaining the 

mutation were found (Figure 4.4). Stocks from these were then grown up and re-

sequenced to ensure the mutation had not been lost again. 

 

 

 

 

 

 

 

 

 
 

Figure 4.4 Sequencing Data from 

Cybrid Cell Lines. 

 a/ CPC5.5 Complex I mutant iC13887 

b/ CPC5.5 Complex I mutant G12273A 

c/ TMPII-I CV Mutant A8414G d/ 

ICP9.4 CIV Mutant T6589C e/ C2C12 

Complex IV mutant C6247T f/ Repeat 

of C2C12 showing heteroplasmic 

expression of C6247T mutation. 
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 Steady state protein levels 4.3.2

To assess whether the mitochondrial mutations affected the steady state expression of 

their associated proteins, immunoblotting was performed. Both the complex I and 

complex IV cells showed a significant reduction in C120 and COXI respectively 

(Figure 4.5). The westerns were repeated a minimum of three times on lysates collected 

from different passage number cells, obtained on different days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Western Blot Analysis of Steady State Complex Levels in Cybrid Cell Lines.  

A/Control cells compared to complex I mutants for C120 levels showing a marked reduction in 

expression (P=0.0174). B/ Homoplasmic complex IV mutant showing reduced COXI expression when 

compared to control cells (P=0.0224). Quantification shows combined results of 3 blots. 

 

 Growth Conditions 4.3.3

Media constitution and growth conditions were kept the same as previous studies (Kirby 

et al., 2009; Abramov et al., 2010; Trevelyan et al., 2010). Imaging at the resolution 
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required for this project had not been undertaken before on these cells. As such the 

ability to grow on different surfaces was assessed, including glass bottom imaging 

dishes. The cells were routinely grown on 0.1% gelatin to aid adherence to T75s. The 

imaging dishes to be used in this study come pretreated with ibiTreat-a physical surface 

modification. Despite initial settling and growth, all non-coated dishes began to show 

detachment and cell death after 48hrs (Figure 4.6). As such all plates were coated with 

0.1% gelatin which was shown to not adversely affect imaging results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Coating of plates. 

Representative images of cell stability in plates with and without gelatine coating. 

 

 Growth  4.3.4

Analysis of the growth of all cybrid lines was carried out through two parallel 

methodologies. Firstly growth curves were generated from cell counts (live, dead and 

total cell number) carried out in triplicate every 24hrs for 72 hrs. Interestingly no 

measurable differences were observed for cell viability between controls, complex I 

cybrids, complex IV cybrids and polymorphic controls (Figure 4.7.A/B). The rates of 

growth however did vary between cell lines. Initially the complex I cybrids grew 

notably faster than any of the other cell lines. Although at 72hrs growth this difference 

was no longer significant between themselves and their nuclear controls. The E14Tg 

control line appeared to grow slower than CC9.3.1 controls but was not significantly 

different from the complex IV cells, complex V or polymorphic control (Figure 4.7.C). 
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As with the automated counting method, imaging and quantification of the cells through 

the biostation also showed complex I cells had an initial higher growth rate than other 

cells.This increase lost significance after 72hrs. The imaging also revealed 

morphological differences between cell lines with complex I cybrids growing in more 

crowded colonies than controls and complex IV cells showing thinner independent cell 

growth (Figure 4.7.D). All other cell lines showed similar morphologies to controls.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Growth analysis of cybrid cell lines 

Cell showed no significant differences in viability after 24hrs (A) and 48hrs (B). The rate of growth 

showed some level of variation (C). Morphology of the cells varied for complex I and complex IV cell 

lines with complex I cells showing ‘colony style growth’ (white arrow) and complex IV cells showing 

more independent angular cell growth. All counts were performed in triplicate.  
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 Bioenergetics 4.3.5

Following optimization of micro oxygraphy the decision was taken to utilize the 

Seahorse extracellular flux analyser to look at bioenergetics. This 24wp system allowed 

for multiple repeats of several cell lines. Studies revealed significant differences 

between complex I cybrid oxygen consumption rates and controls for basal and 

maximal measurements. All other cell lines showed no such significant changes. All 

OCR measurements taken from the complex I cells were dramatically lower than all 

other cell lines and this difference was most marked when reserve capacity was 

calculated (Figure 4.8).  Extracellular acidification rates (a proxy for glycolysis) were 

significantly higher in the complex I cells compared to controls and complex IV cybrids 

(Figure 4.9). A summary of findings can be seen in Table 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Bioenergetics of cybrids 

A/ Oxygen consumption rates generated through seahorse bioanalyser. B/ Basal Oxygen consumption 

rates of all cell lines. C/ Maximal OCR after FCCP treatment D/ Reserve Capacity generated from 

Maximal and basal measurements.  
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Figure 4.9. Extracellular acidification rates 

Complex I cybrid cells showed significantly higher rates of extracellular acidification (pink line) 

compared to controls (dark blue) and complex IV cells (light blue). Average ECAR is quantified for each 

cell line (*P=0.032). 

 

 

 

 

 

 

 

 

 

 

Table 4.3. Summary of respiratory capacity 

Table shows mean OCRs as a percentage of mean control OCR. 
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 Neuronal differentiation 4.3.6

As previously identified, differentiation capacity was severely compromised in the 

complex I cells compared to controls. With fewer neurons generated from the cybrids 

and those that were showing limited arborisation (Figure 4.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Impaired differentiation of Complex I Cybrids.  

A/ Representative Images of neuronal differentiation in control cells and complex I cybrids. B/ 

Quantification of differentiation capabilities, n=15 images over three differentiations. (***P<0.001), 

(**P=0.002) 
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 DISCUSSION 4.4

 

This chapter summarises the genetic, bioenergetic and differentiation capacity of cybrid 

cell lines used throughout this study. Prior work has utilised some of these cell lines 

and, as such, a level of description already exists from these and preliminary work 

following creation of the cell lines. This work and previous experiments show that 

oxygen consumption rates are diminished in complex I cells. This coincides with 

previous studies that showed a severe reduction in complex I enzymatic activity. 

Interestingly despite showing a smaller but still significant reduction in complex IV 

activity, this cybrid line did not show significant changes in OCR. The tRNA 

polymorphic control did not show statistically significant changes for enzymatic activity 

or OCR levels. Data for enzymatic activity for remaining cell lines was not available but 

OCR studies did not show a significant deviation from the normal range for basal, 

maximal or reserve capacity calculations.  

 

The growth rates of cybrid cell lines was assessed. Interestingly the severe complex I 

mutant cell lines showed an initial greater rate than controls, up to around 24hrs. After 

this initial ‘spurt’ the number of cells balanced out and no significant differences were 

observed. Despite observing an increase in media acidification in the complex I cybrids 

a change in cell viability was not recorded. Growth conditions were kept the same as 

work carried out on the cells previously but utilised 0.1% gelatine as an adherence aid 

and did not utilise a feeder layer. Differentiation capacity was reduced in the complex I 

cells as previously reported. Both number and neuronal morphology were challenged in 

the complex I cybrids whereas no quantifiable difference was seen in the complex IV 

line. Steady state protein levels of subunits of complex I and complex IV were assessed 

for the two cybrid lines. Both showed a reduction in the proteins associated with their 

respective mutations suggesting the mutations affect both function and expression of the 

complexes. 

 

The cybrid cell lines allow a unique means to study the impact of mitochondrial 

dysfunction. Importantly the pluripotent nature of the ES cells allowed the generation of 

neurons. This is particularly important considering the most prominent and disabling 

feature associated with mtDNA mutations is neuronal dysfunction. Furthermore 
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mitochondrial dysfunction and the accumulation of mutations and deletions within 

mtDNA is associated with a plethora of common neurodegenerative disorders, including 

PD and the ageing process itself. Studies at the cellular level such as the cybrid work 

make it possible to increase understanding and hopefully improve therapeutics. Given 

the inability to obtain neuronal material until post mortem, cell models provide 

invaluable insight into processes at work that lead to cellular demise, changes that are 

not observed in tissue samples that represent the end point of disease. Arguably early 

mechanistic changes offer the best possibility of therapeutically modulating cellular 

events to prevent catastrophic cell loss.  The ES cells also enable assessment of the 

impact in non-differentiated and differentiated cells. A transition that may reveal 

important differences in the impact of bioenergetic dysfunction.   

 

Other means to explore the impact of mtDNA mutations include the generation of 

transgenic mice. There are a number of limitations with these methods, firstly producing 

such models is problematic with previous reports showing mouse oocytes harbouring 

mutated mtDNA are quickly lost during oogenesis (Fan et al., 2008). Mouse models 

also rarely recapitulate all disease symptoms and as such are limited in their relevance 

to human disorders. The benefit of the cybrid cell lines is complete control of the 

environment they are cultured in.  In contrast to other cell models the cybrid lines 

contain mutations that are inherent and as such negate the need for administering 

complex inhibitors, toxins that often have a dramatic and acute effect alongside non 

mitochondrial effects.  

 

Several unexpected findings arose from these studies. Notably the variable growth rates 

of the complex I cells, which regularly surpassed their control counterparts. 

Interestingly alongside increased growth, acidification of the media was notably quicker 

in these cells (observations of media pH). These findings could be caused by an initial 

switch to glycolysis over oxidative phosphorylation. Such a phenomenon has been 

previously described in cancer cells (Zheng, 2012). Another unexpected finding was the 

oxygen consumption rates of the complex IV cybrids which showed no statistical 

difference from control lines. The milder mutants still show around 37% complex IV 

enzymatic activity of the controls. Despite this notable deficiency no significant 

reduction in basal, maximal or reserve capacity was observed. It may be that our 

experimental model does not provide enough stress to truly see an effect of this 
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mutation. Indeed all substrates are provided in abundance within the growth media. 

Alternatively it may be that the ability for cells to consume oxygen is related to the 

severity of the mutation and these studies would suggest the threshold for this 

dysfunction is fairly high.  

 

During these studies we confirmed previous reports that complex I cybrids were 

compromised in their ability to differentiate into neurons. The reasons for this are 

unclear at this point but various explanations are plausible. Firstly, it has been alluded to 

that neuronal differentiation may be dependent on complex I activity. A report by Papa 

et al showed a marked increase in the activity of complex I during differentiation of 

mouse hippocampal and glial cells (Papa et al., 2004). Indeed it makes sense that 

increased complex I activity increases energy metabolism that can then respond to high 

energy demand from differentiating cells. The reduction in complex I activity in the 

cybrid cell lines may therefore be unable to respond to this demand and as such create 

fewer and less well defined neurons (limited arborisation).  In line with Papa’s study it 

would seem more likely that a reduction in proliferation of neurons rather than 

increased cell death accounts for the reduction of neurons observed, although the latter 

is possible through increased oxidative stress. This said an increase in cell death was not 

seen in these cells (unquantified observations). In previous complex I models Wong et 

al also showed a decreased production of neurons and glial cells when generated from 

Leber's hereditary optic neuropathy, LHON-NT2 cybrids, containing two of the most 

commonly associated LHON mutations, 11778G>A and 3460G>A (Wong et al., 2002). 

Interestingly this report found no difference in cell morphology, expression of neural 

genes or membrane potential but did reveal an increase in superoxide production in 

differentiated neurons. Differences in findings may stem from complex specificity or 

indeed dependence on severity. 

 

 Areas for future investigation 4.4.1

The cybrids used in this study could be further characterized; importantly measurements 

of bioenergetics in newly derived neurons still need to be undertaken. This may be 

extremely important for understanding any changes seen when neurons are compared to 

undifferentiated cells. Further control of characterization experiments could also be a 

future development. For example controlling for stage of cell cycle and monitoring each 
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cell lines progression through stages of this cycle could ensure this variable is not 

affecting the results and may reveal further differences between the cybrid cell lines. 

Although this thesis has focused on the impact of mitochondrial dysfunction on PD 

pathogenesis (stemming from complex I deficiency) future developments would likely 

include mtDNA disorders. For example, the creation of new cybrid lines and using the 

existing lines that were not encompassed in this study could reveal far more about 

complex and mutation specific bioenergetic and morphological changes.  

 

To continue and build upon methodologies used within this PhD with a focus on 

Parkinson’s disease it would be extremely beneficial to generate PD cybrids, i.e. 

enucleated ES cells, repopulated with known PD mutations. Along these lines the 

incorporation of iPS cells derived from PD patient fibroblasts into similar experimental 

models could provide more PD specific information on how mutations impact on 

bioenergetics, differentiation and mitochondrial characteristics such as morphology and 

dynamics. Both the iPS cells and novel cybrid lines could easily be incorporated into 

methodologies already established for this work but could offer interesting new angles 

that may build upon or explain findings gained from these studies.  Finally the specific 

generation of dopaminergic neurons instead of the mixed culture used in these studies 

will enable greater links to be drawn with PD pathogenesis. Although this was 

attempted as part of this work, newer protocols now exist that would enable greater 

efficiency of specific cell type generation. This said, it will be important to consider the 

impact the cellular milieu has upon cell function and survival. 
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 Chapter 5. Measuring the effect of mitochondrial 5

dysfunction on the autophagy pathway in fixed cells 
 

 INTRODUCTION 5.1

5.1.1 Overview 

Autophagy is a crucial, highly conserved process that functions to remove unnecessary 

or damaged subcellular structures; including mitochondria (reviewed in 1.6). The 

importance of this degradative process is highlighted when it is compromised in 

experimental models, autophagy knockout (KO) cell models for example, show severe 

phenotypes. In mouse ATG5 or ATG7 knockout studies, ablation of either of these key 

autophagy genes causes severe neurodegeneration, highlighting the importance of basal 

autophagy for neuronal survival (Hara et al., 2006). Furthermore, several autophagy 

related proteins have been shown to be affected in various neurodegenerative disorders 

(Son et al., 2012). Beclin1, for example, has been shown to be markedly reduced in 

Alzheimer’s disease (Pickford et al., 2008), LC3-II protein expression shows a marked 

increase in mouse models of Huntington’s disease (Heng et al., 2010) and several 

genetic mutations in Amyotrophic lateral sclerosis (ALS) disturb the autophagic process 

in motor neurons (Chen et al., 2012).  

 

Cellular homeostasis is crucially reliant on maintenance of mitochondrial integrity 

through autophagy and biogenesis. Just as a population of mitochondria rely on 

functional autophagic systems the same can be said of the reverse. Increasing evidence 

is pointing towards a regulatory role for mitochondria in the initiation of the autophagy 

process itself. Conditions as broad ranging as ageing, cancer and neurodegeneration 

imply a connection between mitochondria and autophagy, with a disruption of either 

associated with the pathogenesis of these disorders. Where much data implies that 

dysfunctional autophagy can bring about cellular demise through (amongst other routes) 

accumulation of damaged mitochondria, as yet no evidence discredits the more 

prominent role of mitochondrial dysfunction as an initiating factor. Previous cell models 

of mitochondrial dysfunction have revealed various alterations ranging from up 

regulation to a reduction in the autophagy process (Chen et al., 2007a; Mader et al., 

2012). These changes therefore, seem highly reliant on cell type and means of inducing 

mitochondrial dysfunction.  
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Most models rely on the use of electron transport chain inhibitors or cell lines derived 

from mouse models with mitochondrial dysfunction.  The use of Complex I and II 

inhibitors (rotenone and thenoyltrifluoroacetone) in Hek293 cells for example has been 

shown to induce autophagy and cell death, and this death can be decreased by 

autophagy inhibition (Abramov et al., 2007). Conversely, rotenone administered to 

differentiated SH-SY5Y cells has been shown to inhibit autophagic flux (Mader et al., 

2012). Although at first glance these findings may appear contradictory the inhibition of 

autophagic flux may represent an initial increase of autophagy but blockage of final 

clearance. These discrepancies show that the use of complex inhibitors may be too 

crude to pick up subtle alterations in the autophagy pathway, changes which are likely 

to react rapidly to relatively small bioenergetic changes.  

 

To understand further the relationship between mitochondria and autophagy in this 

study, the cybrid cell line model was employed (reviewed in chapter 4). This had 

multiple benefits as it allowed the assessment of specific mtDNA mutations, known to 

create severe respiratory phenotypes, against cells of the same nuclear background; 

whilst allowing strict control of the cells environment.  

 

5.1.2 Stages of the pathway  

To observe a dynamic event in a relatively static assay, multiple points of the autophagy 

initiation, induction and completion pathway were chosen (Figure 5.1 and reviewed in 

depth in chapter 1.6). Looking at relative levels of each of these would hopefully give a 

more accurate interpretation of events within the biological system. 
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Figure 5.1. Points of autophagy pathway to be assessed. 

A range of markers were used within this study to ensure all aspects of the autophagy pathway, from 

initiation, formation and completion were encompassed.  

 

All of the proteins assayed have been previously studied to some extent with relation to 

Parkinson’s disease or synucleinopathies. A 2009 study for example, revealed that 

Beclin1 gene transfer is able to ameliorate some neurodegenerative pathology in alpha-

synuclein models of the disease. This rescue was proposed to occur through intracellular 

degradation of alpha-synuclein (Spencer et al., 2009a). LC3 II has been investigated 

with relation to PD, a study in 2011 showed that properties of LC3 II were altered and 

levels increased in an insoluble fraction from patients with DLB (Tanji et al., 2011). 

Furthermore rotenone treatment has been shown to up regulate LC3 expression and 

down regulate p62 expression (Xiong et al., 2013). The adaptor protein-p62 has been 

shown to preferentially target alpha-synuclein inclusions and knock out experiments 

have revealed it is required for alpha-synuclein autophagy (Watanabe et al., 2012). LC3 

II accumulation may represent an increase in the autophagy pathway but equally a 

blockage in autophagic flux, i.e. compromised clearance of autophagosomes. P62 also 

known as Sequestosome-1, targets specific cargoes for autophagy and is often taken as a 

proxy for autophagy function as its accumulation shows direct inverse correlation with 

LC3 II. Finally, ATG5 is crucial for initiation of autophagy as demonstrated through 

knock down experiments. Recently, a functional variant within the ATG5 promoter has 

been described in idiopathic Parkinson’s disease (iPD) and shown to significantly 

enhance transcriptional activities of the ATG5 gene promoter (Chen et al., 2013).   
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To better understand the processes at work during complex I dysfunction several 

protocols have been developed to monitor autophagy. Importantly distinguishing 

specific mitophagic events proves problematic given the broad spectrum of targets the 

autophagy pathway is responsible for. Further complexity is encountered as mitophagic 

events are regulated by a number of factors including autophagy flux, autophagosome 

formation, maturation and degradation.  

 

5.1.3 Aims of this study 

This study aimed to analyse the levels of basal autophagy in a cell line model of 

complex I dysfunction. Complex I cybrids were chosen for two reasons, firstly the 

mutations carried within these cybrids were more severe and secondly complex I is 

heavily implicated in the pathogenesis of Parkinson’s Disease, a neurodegenerative 

condition which is well evidenced to have altered autophagy and mitochondrial 

functioning. Importantly the mitochondrial dysfunction in these cells is not brought 

about by pharmacological treatment and is therefore intrinsic to the cells. Prior 

characterisation of these cells revealed dramatic changes in enzymatic and OXPHOS 

capabilities (ch4, table 4.3). The impact of this on stages along the autophagy pathway 

was to be explored. In doing so any alterations that were observed could be tracked to 

their point in the autophagy pathway and possible mechanisms for changes could be 

explored. 

1. Optimize ICC of different autophagy markers 

2. Quantify expression of autophagy markers in stem cells and neurons from 

complex I cybrids and their nuclear controls. 
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 METHODS 5.2

 Basic methodology for undifferentiated cells 5.2.1

Undifferentiated passage matched cells to be used in this study were thawed at least 

48hrs prior to seeding to coverslips, maintained in T75s at 37
o
C with 5% CO2 and 

allowed to reach confluency.  Cells were then harvested and seeded at appropriate 

densities (1x10
5
cells/well) into six well plates containing 22mm glass coverslips, pre-

coated with PDL and laminin. The cells were allowed to settle and grow for 48hrs 

before washes with PBS and fixation in 4% PFA for 10mins, followed by a further three 

PBS washes. Cells were stored in their final PBS wash at 4
o
C until stained. Staining was 

carried out as per the basic immunocytochemical protocol outlined in ch2.3.6.1. For 

each antibody, optimal working concentrations were ascertained by testing a range of 

concentrations as seen in Figure 5.2. Equally, antibodies from different manufacturers 

often gave highly variable results. As such, selecting the most effective antibody from a 

range of producers was vital (Figure 5.3).  



Chapter 5                 The effect of mitochondrial dysfunction on the autophagy pathway 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Optimization of autophagy antibodies for ICC 

All antibodies used in this study were tested at a range of concentrations to gain the best results possible. 

Certain antibodies were deemed ineffective for this application. For example LAMP2A did not reveal 

positive staining where as ATG7 and WDFY3 required high concentrations that were deemed 

unworkable. Importantly, each stain was scrutinized under a range of magnifications as higher 

magnifications often revealed desirable staining patterns often missed at lower magnifications (eg rh 

panels of ATG5 and Beclin1).  Rhodamine was used in some cases as it seemed to be brighter with 

certain antigens. For WDFY3 as the staining was weak, the cells were counterstained with porin to 

ensure correct visualization.  
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Figure 5.3. Variation between antibodies 

Several different antibodies were often trialed for the same marker. LC3 for example was ineffective or 

weak for this application when purchased from certain companies (A and B) but displayed the desired 

pattern of staining, i.e. punctate, when purchased from Cell Signaling (Massachusetts) (C).
 

 Imaging and quantification 5.2.1.1

All cell imaging was carried out using the Zeiss AxioImager at x40 magnification, using 

Axiovision version 4.8. Antibodies showed a range of staining patterns dependant on 

their cellular targetand so, different quantification methods were employed. For markers 

which showed clear punctate staining such as LC3, matlab (Mathworks, MA) was used 

to quantify ‘dots per cell’. The automated program created by Mr. John Grady (PhD 

student, Mitochondrial Research Group) uses parameters such as intensity and diameter 

to count puncta within a cell border defined by the user (Figure 5.4). Optimum 

diameters were calculated using measurement tools within the software. For stains 

which were more diffuse in nature, densitometry was used which quantifies the intensity 

of any given marker, again within a user defined cell area. The numbers generated from 

both methodologies were then compared for different cell lines, and results for each 

marker were tested for significant differences using a Student T test unless otherwise 

stated.  

 

Interestingly, certain markers, namely ATG5 and Beclin1 showed a combination of 

staining patterns. For example although their staining was not ‘truly punctate’ as seen 

with LC3, the stains did show areas within a cell of higher intensity, with densitometry 

these variations are not accounted for as the software generates an average intensity for 

the entire cell area (see Figure 5.6). For this reason both densitometry and a refined 

Puncta 

A B C 

A.Abcam B. MBL International C. Cell Signalling 
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version of the matlab program were employed, in doing so data was generated for both 

differences between the overall marker intensities, and any differences that may occur 

in the accumulation of higher intensity areas within a cell. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Matlab quantification of puncta 

A specially designed matlab algorithm (created by Mr John Grady) was used to quantify puncta/cell. 

Using intensity and diameter parameters the software was able to identify punctate structures within a 

user defined cell border. 

 

 

 Neuronal observations  5.2.2

To look at changes in markers specifically within neuronal populations, the ES cells 

were differentiated as per the protocol outlined in ch2.3.3.5. On day 15 of the Bain’s 

protocol (Bain et al., 1995) neurons were gently washed with PBS, fixed with 4% PFA 

before three further washes in PBS. If storage was required the neurons were left in PBS 

at 4
o
C. Staining was carried out as per undifferentiated cells.  
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 Image capture and quantification. 5.2.2.1

To limit bias when capturing images of neurons, the Axiovision’s mosaic feature was 

employed. Briefly, the automatic stage was programmed to meander taking 8x8 grids of 

x40 magnification images. To ensure image quality throughout, points of ‘focus 

correction’ were programmed in prior to running the imaging protocol. This method 

generated large tiled images that could be separated into smaller tiles for quantification; 

by doing this the population of neurons captured was randomised. As with 

undifferentiated cells, differences between cell lines were analysed through student t 

tests if not otherwise stated. Due to the morphology of neurons, the quantification 

proved slightly more complicated than undifferentiated cells. As such neurons were 

analysed both for whole cells and cellular regions- cell bodies and processes. 

 

 

 RESULTS 5.3

 Undifferentiated cells  5.3.1

All markers revealed differences in staining patterns between complex I cells and their 

passage matched controls. Three independent experiments were carried out and results 

combined to ensure day to day experimental variations were accounted for.  

 BECLIN 1 Staining  5.3.1.1

BECLIN 1 showed significantly lower staining intensities in complex I cybrid cells 

when compared with non cybrid control and cybridization controls (P<0.0001) as 

shown in Figure 5.5.  Although ‘true puncta’ were not observed in the BECLIN1 stains, 

areas of increased staining intensity were seen and as such the same stained sections 

were analysed using the matlab program which had been modified to locate larger 

regions of increased staining intensities. Consistent with the observed data, these results 

revealed a dramatic reduction in high intensity areas (Figure 5.6 arrow). The complex I 

cells showed a uniformly distributed weak signal (Figure 5.6B).  
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Figure 5.5. Beclin 1 staining 

intensities 

 

 A. Average intensities of 

Beclin1 stains for three ES cell 

lines, controls, complex I 

mutants and tRNA polymorphic 

cybridization controls, revealed 

significant reduction in Beclin 1 

positive puncta in  complex I 

cybrid cells (p<0.0001). N=75, 

data collected over 3 separate 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Beclin 1 areas of high intensity 

Images were run through a specially designed matlab program to assess the amount of high intensity 

areas of staining in cells from controls and complex I cells. Controls showed a significant increase in 

high intensity areas (P<0.0001) compared to complex I cells, which reflected the observed results (B). 

N=75, data collected over 3 separate experiments. 
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 ATG5 Staining  5.3.1.2

The intensity of ATG5 staining was not significantly different for any of the cell lines 

studied (Figure 5.7). Although a notable difference in staining patterns was observed 

with areas of high intensity within control cells but absent in complex I cybrids where a 

more uniform diffuse weak stain was seen (lower images).  For this reason the modified 

matlab program was employed to assess for areas of higher staining intensity. These 

studies revealed a significant reduction in higher intensity areas within complex I cells 

(Figure 5.8).  

 

 

 

Figure 5.7. ATG5 staining intensities 

A. Average intensities of ATG5 stains for three ES cell lines, controls, complex I mutants and tRNA 

polymorphic cybridisation controls, revealed no significant changes. Rrepresentative images of control 

(B) and complex I(C) cybrid ATG5 stains. N=75, data collected over 3 separate experiments. 
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Figure 5.8. ATG5 areas of high intensity 

Images were run through a specially designed matlab program to assess the amount of high intensity 

areas of staining in cells from controls and complex I cells. Controls showed a significant increase in 

high intensity areas (P<0.0001) compared to complex I cells (A), which was maintained when normalised 

to cell area (B). N=75, data collected over 3 separate experiments. 

 

 

 LC3 Puncta Results 5.3.1.3

LC3 staining was quantified using matlab, where the number of puncta was counted for 

each cell. Based on puncta numbers generated these were separated into four categories- 

ranging from very high (many intense puncta), through high, medium and low 

(uniformly distributed weak signal) shown in right hand panel (Figure 5.9. C). Analysis 

of the percentage of cells for each line that fell into each category was then analysed 

(Figure 5.9. A). Complex I cells displayed statistically lower percentages of cells in the 

very high or high brackets compared to all other cell lines (P<0.0001). When analysed 

separately from a second experiment actual puncta numbers were again statistically 

lower within the complex I cells (P=0.005) (Figure 5.9. B). 
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Figure 5.9. LC3 puncta stains 

A. Percentages of cells falling into each puncta number category shown in rh panel. Complex I mutants 

showed low levels of cells with very high or high staining, with majority falling into the low bracket 

N=75, data collected over 3 separate experiments. B. Individual puncta counts again showed much lower 

numbers in complex I cells compared to controls (P<0.0001), N=100. 
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 LC3 staining following rapamycin treatment 5.3.1.4

Rapamycin is a known inducer of autophagy, through its action on mTOR. To ensure 

the LC3 antibody was picking up LC3 puncta, its expression was induced using 24hrs of 

150nM rapamycin treatment in control cell lines (Figure 5.10 top panel). An increase 

from medium/high expression to very high expression was observed. The same 

rapamycin treatment was used on the complex I cells (Figure 5.10 bottom panel). 

Interestingly the cells went from low to high/very high LC3 puncta expression, 

implying the capacity to induce autophagy was not lost in these cells; rather a reduced 

basal expression existed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Rapamycin treatment of cells increases LC3 expression 

Cells were treated for 24hrs in 150nM  rapamycin, following which they were fixed and stained for LC3. 

An increase in LC3 expression was seen in both controls and complex I cells following rapamycin 

treatment (rh panels). 

 

 

  
  
  
  
C

o
m

p
le

x 
I  

   
   

   
   

   
   

   
   

   
   

   
   

 C
o

n
tr

o
ls

 

No rapamycin     Rapamycin 

No rapamycin     Rapamycin 



Chapter 5                 The effect of mitochondrial dysfunction on the autophagy pathway 

174 

 

 Western Blots of autophagy markers 5.3.1.5

Immunoblotting was performed on cell lysates of control and complex I cybrid 

undifferentiated cell lines as per methods outlined in chapter 2.4.3. Unfortunately the 

number of antibodies that were effective in the western blot application were limited. 

Despite this, three antibodies showed sufficient signal and specificity, these included, 

LC3, P62 and ATG12. LC3 showed a reduction in overall intensity, however it is the 

conversion of LC3 I to LC3 II that associates with autophagosome function, picking up 

LC3 I signal was difficult and LC3 II sensitivity to the immunoblotting method has 

previously been reported as far greater than that of LC3 I (Figure 5.11). A shows a LC3 

blot demonstrating weak LC3  signal in complex I cybrids. P62 showed a dramatic 

increase in levels compared to control cell lines (Figure 5.11B) implying reduced 

autophagy.  Finally ATG12 whose conjugation with ATG5 is important for vesicle 

expansion and completion showed a reduction in expression at around 58kDa, where we 

would expect to find ATG12-ATG5 heterodimer expression (Figure 5.11C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Immunoblotting of autophagy proteins 

Cell lysates from control and complex I undifferentiated cybrid lines were analysed for steady state 

protein levels of LC3, P62 and ATG 12. LC3 and ATG12 showed a reduction in expression (A,C) whereas 

P62 expression was dramatically increased (B).Blots are representative images from a minimum of three 

experiments.  
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 Neuronal Observations 5.3.2

Following differentiation and fixation at day 15, a mixed neuronal population for both 

control and complex I cybrid cells were stained for autophagy marker expression. 

Analysis of neurons proved more difficult than undifferentiated cells with cell bodies 

often being overexposed in order to visualise neuronal processes. Despite this, several 

differences were noted (Figure 5.12).  

 LC3 staining 5.3.2.1

In cell bodies intensity of staining was greater in controls than complex I cells (Figure 

5.13. A), although no differences were observed in the number of puncta (Figure 5.13. 

B). A noticeable difference however did occur when analysing puncta in neuronal 

processes. The complex I cybrids displayed hardly any puncta outside their cell bodies, 

(Figure 5.13. C), suggesting inhibition of LC3 trafficking or aggregation in cell bodies. 

 

 

 

 

 

Figure 5.12. Neuronal LC3 images 

Control cells showed typical patterns of staining, with puncta seen both within the cell bodies and along 

processes (white arrows).  Complex I cells conversely did not show puncta outside cell bodies.  
 
 

 

 

 

 

 

Figure 5.13. Quantification of LC3 in neurons 

A. LC3 showed higher overall intensities in cell bodies of control neurons compared to complex I derived 

neurons (P<0.0001). B. No differences were observed however for number of puncta in cell bodies. C. 

Numbers of puncta observed in processes was dramatically increased in controls when compared to 

complex I neurons (P<0.0001). N=75 over two separate experiments. 

*** 
*** 

                           Control Cell Lines                                                     Complex I  

A B C 
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 Neuronal ATG5 Observations 5.3.2.2

Day 15 fixed neurons were also analysed for ATG5 expression. Complex I derived 

neurons had statistically higher cell body ATG5 intensities than their control 

counterparts (P=0.0005) (Figure 5.14. B).  The patterns of staining were dramatically 

different between control and complex I deficient cells, with many puncta visible in 

processes of control neurons (white arrows) but entirely absent from complex I derived 

neuronal processes which displayed intense uniform cell body staining (white arrow 

head) (Figure 5.14. A). This phenomena was reflected in the quantification of 

puncta/neurite with a significantly lower number of ATG5 processes having puncta 

(P<0.0001) (Figure 5.14. C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. ATG5 neuronal staining 

A. Representative images of ATG5 staining reveal clear differences, with Complex I cells devoid of 

puncta within their processes (white arrows) and accumulation of staining within the cell bodies (white 

arrow heads). B. Quantification of ATG5 intensities in cell bodies reveals stronger staining in complex I 

cells (P=0.0005) N=75 C. Puncta number was dramatically reduced in neurites of complex I cells when 

compared to controls (P<0.0001) N=50 over two experiments. 
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 Neuronal BECLIN 1 Observations 5.3.2.3

BECLIN1 was also assayed through immunocytochemistry of control and complex I 

cybrid derived neurons. Staining revealed no statistically significant differences in 

patterns (Figure 5.15. A) or intensity of stains (Figure 5.15 .B). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15. Beclin1 neuronal staining 

Control and complex I derived neurons were stained for Beclin1. No differences were observed between 

patterns (A) or intensities of stains (B). N=60 over two experiments. 
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 DISCUSSION 5.4

This chapter focused on the impact of inherent complex I dysfunction on the autophagy 

process in mouse embryonic stem cells. Changes were observed in both undifferentiated 

and newly derived neurons. It would appear complex I dysfunction compromises 

autophagy. In undifferentiated cells, reductions in all markers were seen; in neurons the 

patterns of staining were dramatically different. Given that autophagy and mitochondria 

are both reliant on the other in some way, it is likely that dysfunction in one will impact 

on the other. The interrelation between these processes has previously been investigated 

by other groups. Systems involved in the regulation of autophagy have been shown to 

be compromised with mitochondrial respiratory deficiency, be it through suppression of 

autophagic flux, autophagy gene expression or through stimulation of PKA activity, 

which recruits the ATG1-ATG13 complex to pre-autophagosomal structure (Graef and 

Nunnari, 2011).  

 

This study seems to point towards a decline in autophagy in undifferentiated cells with 

compromised mitochondrial activity stemming from complex I dysfunction. 

Interestingly the same alterations in the autophagy pathway were not observed in 

neurons derived from the ES cells. The same dramatic reduction in autophagy markers 

was not observed in the cell bodies of neurons. However the abundance of puncta 

within neuronal processes of complex I cells was greatly diminished for both LC3 and 

ATG5. Why this was not the case for Beclin1 is unclear but may represent the need for 

further antibody optimization in the neuronal cells, alternatively, Beclin 1 may be 

recruited and/or transported by different mechanisms.   

 

The literature is somewhat divided with regards to defining a single impact of 

mitochondrial dysfunction on the autophagy process. These findings, at least in part, are 

likely to stem from different model systems and assays with results varying dependant 

on the nature and severity of the defect. This work showed a significant decrease in 

markers across the autophagy pathway indicating an overall reduction in autophagy 

correlated with a complex I deficiency in undifferentiated cells. Certain models have 

also revealed a decrease in autophagy following reduced ATP levels and increased 

oxidative stress. In human retinal pigment epithelium cells  for example, a relatively 

minimal decrease in ATP brings about a three times reduction in autophagic activity 
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(Schutt et al., 2012). The use of complex I inhibitors in other studies however has 

shown autophagy to increase in response to the inhibition (Chen et al., 2007c). 

Rotenone, for example, causes autophagic vacuole accumulation without efficient 

lysosome degradation inhibiting autophagic flux prior to inducing cell death (Mader et 

al., 2012).  

 

The discrepancy between some previous findings and these results may arise from the 

unique approach we have taken with the cybrid cell lines, but equally could represent an 

adaptive response with regards to CI dysfunction. Rotenone application by its nature 

creates an acute response and subsequently the increase in autophagy may be an 

adaptive response to clear dysfunction. It is plausible that this response becomes 

overwhelmed (through, for example, ROS accumulation) and subsequently results in 

blockage and decreased autophagic flux. In our model the CI dysfunction is the basal 

phenotype for the undifferentiated cells and as such represents a far more chronic 

dysfunction which may bring about different adaptions. This is likely far more relevant 

to an inherent disease state as it does not occur as an acute insult, rather a gradual 

accumulation of problems bought about through complex I dysfunction. The changes in 

neurons in neurodegenerative disease states or indeed ageing are clearly chronic in 

nature, making this model arguably more appropriate for the study of such events. In 

other models it may be the sudden difference from a baseline CI activity which triggers 

autophagic increase which is not detected in our undifferentiated cells. This may differ 

when a second challenge in the form of differentiation (an energy dependant process) 

occurs and may explain the differences between the stem cells and neurons. It must also 

be considered that autophagy is a highly energy consuming process which may be 

affected by the ATP deficit seen in these cells (Plomp et al., 1989).  Alternatively, a 

decrease in autophagy markers may represent a change in mitophagy which arises due 

to changes in the organelles themselves. Closer investigation with live cell analysis to 

differentiate large scale autophagy from mitophagy will be required to answer this. 

 

 Mitochondria and Autophagy Interplay- 5.4.1

The explanation for the observed results could, at this stage, be explained by several 

theories. Firstly, the reduction in cellular energy brought about by the mtDNA 

mutations may be a contributing factor in lowering basal autophagy. This decrease in 
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autophagy adds further burden to the cellular environment, compromising transport and 

mitochondrial dynamics, through physical blockage and/or energy rationing. Initiation 

of autophagy is energy dependant as too are degradation and biosynthesis following 

release of degraded cellular material. The changes observed may therefore demonstrate 

modulation of the autophagic process in response to the metabolic capacity of the cell. 

More immediately critical cellular processes may take precedence over degradative 

pathways at the long term cost to the cellular environment.  Other studies argue that 

respiratory activity but not ATP is required for autophagy activity i.e. it is the process 

but not ATP itself which signals autophagy. This said, ATP may still be implicated 

through concomitant increase in acidic vesicle pH (Tabb et al., 1992). 

 

An alternative mechanism for mitochondrial mediated control of the autophagy process 

may exist through ROS signalling. Changes in membrane potential and complex I 

deficiency have been reported to induce generation of mitochondrially derived reactive 

oxygen species (ROS) (Abramov et al., 2010). Clearly the cybrid cells display severe 

complex I inhibition (detailed in chapter 4.2.4). Previous studies have shown contrary to 

an expected decrease in membrane potential, the CI cybrids are able to maintain above 

that of the controls (Abramov et al., 2010). These two factors were shown to 

dramatically increase ROS production. The role this has on autophagy must not be 

overlooked. It has previously been proposed that ROS generated from the mitochondria 

could induce autophagy through H2O2 production (Scherz-Shouval and Elazar, 2007) as 

well as superoxides (Kim and Choi, 2008). Specifically the degradation of catalase 

contributes to autophagy, suggesting regulation through H2O2 levels (Yu et al., 2006). 

How this causes autophagy induction is as yet unclear but may occur through regulation 

of the activity of ATG 4 (Scherz-Shouval et al., 2007) or BECLIN 1 (Chen et al., 2012).  

Although the cells used in this study generate high levels of ROS which would imply 

induction of autophagy, the limited flux of ROS levels may mean this signalling 

pathway is quickly overwhelmed or alternatively not triggered. It would be tempting to 

postulate that the high ROS levels may become even greater in neurons and this 

accounts for the observed differences between them and undifferentiated stem cells. 

 

A relatively recent finding, proposes dysfunctional mitochondria bring about defective 

autophagic clearance through altered mobilization of autophagosomes from their site of 

formation to action (Arduino et al., 2012). The fixed cell model described in this 
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chapter is unable to look at what impact the observed changes have upon such dynamics 

but will be addressed in later chapters. Regardless of the cause of downregulated 

autophagy in the complex I cells the potential impact is threefold. (1) limited autophagy 

subsequently leads to an increase in cellular ‘clutter’, (2) preservation of mitochondrial 

integrity is compromised and (3) damaging cellular components are not removed 

leading to further damage and depleted pools of vital macromolecules. Looking within 

the differentiated neurons provided more clues regarding the impact of autophagy 

modulation stemming from mitochondrial complex I dysfunction. It would appear 

within this cell type the impaired trafficking of autophagosomes may be the impact of a 

mitochondrial dysfunction. To answer this more work looking at the dynamics and 

morphology of mitochondria alongside other cellular components; critically 

autophagosomes, will be needed.    

 

 Role in Parkinson’s Disease 5.4.2

Changes in mitochondria and autophagy have been implicated in a range of 

neurodegenerative disorders. Specifically changes in complex I of the mitochondrial 

electron transport chain is frequently highlighted as a pathogenic factor in the 

development of Parkinson’s Disease. Through gene studies, alterations in mitophagy 

have also been highlighted, for example through PINK1 and PARKIN. Mutations in 

both these are known to cause familial forms of the disease and both these proteins have 

roles in signaling dysfunctional mitochondria for mitophagic removal. Looking at 

autophagy changes within the cybrids with complex I dysfunction is beginning to reveal 

how the two changes, complex I dysfunction and alterations in autophagy, may work 

concurrently to ultimately lead to cell death. The studies described within this chapter 

show that complex I dysfunction is independently able to cause changes in autophagy 

proteins, both in terms of expression and within the neurons, localization. Such changes 

may accumulate with complex I dysfunction in ‘real-life’ situations, indeed post 

mortem tissue studies of PD patients show changes in key autophagy proteins and it is 

known CI expression is reduced in neurons of PD patients (reviewed in ch8). The next 

challenge for this work will be to assess these in parallel, in a) living cells to observe 

dynamics and b) in human PD brain tissue samples to relate results gathered this far to 

the human condition. Other familial forms of Parkinson’s disease have highlighted 

alterations in bioenergetics and autophagy. For example rare cases have been shown to 
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be caused by mutations in DJ1, implicated to have roles in modulation of transcription, 

chaperone functions and antioxidant properties (Cookson, 2003).  Importantly cellular 

models of DJ1 KO have shown that its absence results in impaired mitochondrial 

respiration, dynamics and reduced basal respiration (Krebiehl et al., 2010).  

Interestingly the repopulation of cells depleted of mitochondria with mitochondria from 

PD patients is sufficient to reproduce alterations in the autophagic system, commonly 

seen in post mortem PD brains (Arduino et al., 2012). Mutations in PARK9 (ATP13A2) 

cause early onset Parkinsonism, recent work has shown that this previously 

uncharacterized protein is localized to the intracellular acidic vesicular compartments of 

cultured neurons and silencing of it induces mitochondrial fragmentation (Ramonet et 

al., 2012). ATP13A2 has also been shown to regulate mitochondrial bioenergetics 

through macroautophagy. Gudson et al showed that in ATP13A2 deficient cells 

mitochondrial mass and ROS production increased and autophagic flux was decreased 

(Gusdon et al., 2012).   

 

Modulating the autophagy pathway may well serve as a potential therapy in 

synucleinopathies. Through improved clearance of dysfunctional organelles as well as 

improving alpha-synuclein degradation. It is important to note however that simply up 

regulating autophagy to compensate in these disorders is likely to be insufficient. 

Current therapies that work by increasing autophagy are highly unspecific and as such 

numerous pathways are affected. Furthermore, an up regulation of autophagy is seen in 

some disorders so any modulation must be careful not to assist in one problem only to 

create another. As yet the specific molecular component of autophagy affected in these 

disorders is unknown. Elucidating this will be crucial in designing far more specific 

therapies.  

 

 Final Conclusions 5.4.3

These data show that complex I dysfunction is sufficient to bring about dramatic 

changes in autophagy proteins. Mitochondrial function is clearly crucial for 

maintenance of autophagy demonstrated by multiple experimental models whereby 

mitochondrial dysfunction has been shown to affect autophagy. This is possibly best 

demonstrated through the use of rho0 cells, where ATG8 induction was shown to be 
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strictly dependent on both the presence of a carbon source and mitochondrial function 

(Graef and Nunnari, 2011).The implications of this bidirectional relationship are likely 

to be key to a range of age related disorders. Accumulation of respiratory deficient 

mitochondria may be tolerated to a certain level within cells, however once a certain 

threshold has been reached a decrease in the autophagic and mitophagic capacity of the 

cell occurs. This in turn may initiate a negative feedback loop that is responsible for cell 

loss in disease and arguably leads to cellular ageing on a broader scale. The greater 

implication of this work may well stretch to assisting our understanding of many more 

pathologies. As discussed previously, impaired autophagy has been proposed as a 

possible pathogenic mechanism in several neurodegenerative disorders. Moreover, as a 

universal quality control mechanism its role in multiple disease states may have only 

begun to be unravelled. As such correlating mitochondria and autophagy dysfunction 

may open new lines of investigation.   

 

 Areas for future investigation 5.4.4

The results gained from this project imply further investigation into the alterations of 

autophagy in cells with complex I dysfunction will need to continue in a more dynamic 

assay. Changes in mitochondrial dynamics and trafficking are likely to be key, notably 

within neurons. This project therefore formed the jumping board for investigations 

outlined in chapter 6 and 7. Investigating more subtle fluctuations of autophagy markers 

in response to mild to moderate stress would be interesting to see if barriers for 

induction of the autophagy process are altered in the complex I deficient cells. More 

rigorous analysis of autophagy protein levels could also be conducted through the use of 

autophagy inhibitors and inducers.
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 Chapter 6. Mitochondrial Dynamics and Autophagy in 6

Live Cybrid Cells 
 

 INTRODUCTION 6.1

 Overview 6.1.1

Mitochondrial bioenergetics display a tight bidirectional relationship with mitochondrial 

morphology and organisation of the network. Dynamics within the network and 

throughout the cell are vital for mitochondrial integrity and subsequently, maintenance 

of the cellular environment. As such, perturbations in mitochondrial DNA that result in 

a reduction of energy provision, could impart their deleterious effect through not only 

hindering energy dependant processes but also through a secondary impact on 

mitochondrial dynamics.  

 

 Evidence for complex I impact on dynamics 6.1.2

Experimental evidence highlights the links that exist between maintained mitochondrial 

function and dynamic capabilities. Complex I, as the largest complex and entry point to 

the electron transport chain is likely to impart critical alterations to dynamic processes 

through its dysfunction. Conversely, different configurations of the mitochondrial 

network can effect energy provision. Sophisticated studies have demonstrated that 

modulation of mitochondrial dynamics can impact on bioenergetics. For example 

disruption of proteins involved in mitochondrial fusion, including Optic Atrophy 1 

(OPA1) and the mitofusins (MFN1 or MFN2) by RNAi cause a blockage of 

mitochondrial fusion and result in poor cell growth and decreased cellular respiration 

(Chen et al., 2005). Charcot-Marie-Tooth (CMT) disease is known to result from 

mutations in mitofusins, involved in mitochondrial fusion. Loss-of-function MFN2 

mutations lead to reduced glucose and fatty acid oxidation and mitochondrial membrane 

potential, whereas a MFN2 gain-of-function mutation increases glucose oxidation and 

mitochondrial membrane potential (Pich et al., 2005). Conversely modulating proteins 

involved in mitochondrial fission similarly affect bioenergetics. Using small interfering 

RNA (siRNA) targeting DRP1- a member of the Dynamin family, in HeLa cells, creates 

alterations in mt-network morphology which coincided with a significantly lower rate of 

endogenous respiration and strong reductions in mitochondrial ATP synthesis (Benard 
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et al., 2007). The authors suggest that the molecular machinery for ATP generation was 

altered in cells with decreased DRP1 and this resulted from perturbations in membrane 

fluidity. Previous studies have demonstrated a strong dependency of complex V activity 

on membrane fluidity (Aleardi et al.,2005; Ellis et al., 2005; Solaini et al., 1984). These 

results indicate that mitochondrial form can impact on function, however mitochondrial 

function can also change mitochondrial form. 

 

Observations of how impaired bioenergetics impact on form have revealed a range of 

results. Rotenone, a potent complex I inhibitor causes a dose dependant decrease in 

complex I activity alongside a dramatic change in mt-network morphology, with an 

increase in mitochondrial length and branching (Benard et al., 2007). Similarly in 

fibroblasts from patients with defined complex I deficiency caused by mutations in 

nuclear encoded subunits, mitochondrial morphology shows a scale of dynamic 

modulation seemingly correlated to level of CI dysfunction (Koopman et al., 2005). 

Outside of these more ‘extreme’ complex I induced bioenergetic reductions, changing 

mitochondrial morphology seems a normal adaptive response to changes in energy 

availability. For example, stimulating respiration through nutritional modulation has 

been shown to cause network lengthening and increased complexity (Rossignol et al., 

2004).  

 

Mitochondrial dynamics are crucial for cell health and survival, reviewed in depth in 

ch1.4.5. Through alterations in mitochondrial dynamics, bioenergetic dysfunction may 

be having a secondary impact on the cellular environment. What’s more, as the two 

interrelate, any dysfunction is likely to be self-perpetuating. For example, a complex I 

dysfunction may lead to alteration of the mt-network, this in turn may further 

compromise bioenergetics through restriction of the molecular machinery necessary for 

energy production. Alternatively, a primary defect in fission or fusion may hinder 

bioenergetics that then cause further loss of stability of the network. Deciphering the 

exact molecular mechanisms that contribute to this demise will be crucial. 
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 Evidence for an impact of complex I dysfunction on autophagy 6.1.3

A third contributor working in concert with mitochondrial dynamics and bioenergetics, 

is autophagy, or specifically with regards to mitochondria- mitophagy. Reliant on, and 

responsible for maintenance of morphology, dynamics and bioenergetic capacity, 

mitophagy is likely to play a pivotal role in this trifecta. It is possibly easy to 

comprehend how dysfunctional mitophagy can affect morphology, with large or 

damaged mitochondria not being effectively removed. Equally, how this dysfunction 

could alter dynamics and bioenergetics is logical, through the accumulation of 

compromised mitochondria which show reduced bioenergetic capacity which in turn 

can affect energy dependant trafficking. Less clear is how mitophagy can be affected by 

the form and function of mitochondria. Previous studies have shown that a drop in 

membrane potential and subsequent mitochondrial fission is required for mitophagy to 

occur (Twig et al., 2008). Dynamics may also play an important role in transporting 

damaged mitochondria to lysosomes for degradation.  

 

Within neurons mitochondria are largely moved along microtubules, although 

movement using actin filaments has been reported for smaller distances and within 

dendritic spines and growth cones (Saxton and Hollenbeck). The ‘docking’ and 

‘shipping’ of mitochondria onto these cellular tracks is facilitated through motor 

proteins and a plethora of adaptor proteins such as Milton, Miro, Myosin and Dynactin. 

Both trafficking and fission/fusion processes rely on mitochondrial bioenergetics, and 

this may explain how mitophagy becomes compromised through energy deficits, as it is 

reliant on motility and fission/fusion events. Investigating how a process which is 

responsible for dealing with dysfunctional mitochondria is affected by mitochondrial 

dysfunction is a complicated paradox. Indeed, it may seem counter intuitive to suggest 

mitochondrial dysfunction may impair the very system needed to address the 

dysfunction, the single most powerful argument for this remains that if the system was 

indeed perfect, we would not see dysfunctional mitochondria, particularly in aged 

tissues and age related diseases. Clearly there is a point where mitophagy is not 

sufficient for the dysfunction it encounters. At which point the process becomes 

overwhelmed or unable to cope with demand may be crucial to understanding the final 

trigger that leads to total cellular demise and cell loss in Parkinson’s disease (PD) 

amongst other neurodegenerative conditions. 
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 Aim of Study 6.1.4

This study was designed to follow up on previous findings that suggested trafficking 

and dynamics may be compromised in complex I deficient stem cells and newly derived 

neurons, and that this may be impacting on autophagy pathways. This work aimed to 

characterise the morphology of the mitochondrial network within these cells and also 

their bioenergetic state. Following this, newly developed live cell analysis was 

employed to observe these dynamic events in real time and look for perturbations 

between complex I compromised cells and controls. 

 

 

 METHODS 6.2

 Network analysis 6.2.1

To visualise mitochondria in undifferentiated cell lines the network was stained as per 

protocol in ch2.3.7.2, utilising Tetramethylrhodamine (TMRM) or mitotracker red 

(MTR). All cells were at least 48hrs post thaw and passage matched. Seeding densities 

were matched for all experiments to ensure limited variation in experimental conditions. 

Single plane imaging was carried out on a Zeiss AxioImager. To analyse the images a 

series of deconvolution steps were followed as shown in Figure 6.1. Firstly, brightness 

and contrast were adjusted to optimal levels; the filter then serves to simplify the 

images, using deconvolution to smooth the signal. Finally the binary step allows the 

software to identify objects as either mitochondria or not. This allowed automatic 

measurement of the mitochondrial network complexity, generating parameters 

regarding individual organelles or reticular composites. From this data two 

characteristics were generated- form factor, a measurement of length and degree of 

branching (perimeter
2
/4π·area), and aspect ratio which generates data on the length 

based on the ratio between major and minor axes of an ellipse equivalent to the 

mitochondrion. These were recorded from triplicate experiments and compared for 

differences between complex I deficient cells and control cell lines through unpaired t 

tests.  
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 Membrane potential analysis 6.2.2

To ascertain what impact the complex I mutation had upon membrane potential a series 

of imaging experiments using the cationic carbocyanine dye JC-1 were performed. 

Although previous work has identified the complex I cells have a higher membrane 

potential than controls using TMRM staining, for the sake of completeness of this 

project and also to have a visual output of the potential differences, it was decided to 

repeat these experiments using a different methodology. The unique properties of the 

JC1 dye enable visualisation of the membrane potential. Regions of high mitochondrial 

polarization are indicated by red fluorescence due to J-aggregate formation by the 

concentrated dye, as its accumulation is membrane potential dependant. Conversely, 

depolarized regions are indicated by the green fluorescence of the JC-1 monomers. 

Briefly cells were incubated with the membrane potential specific marker for 30 

minutes at 37
o
C. The cells were excited by a 488nm laser and emissions were collected 

between 515–545nm and 575–625nm on the Nikon A1R system. Quantification of the 

ratio of green to red labelled organelles allowed for an estimation of the cells membrane 

potential. These ratios were then compared for control and complex I deficient cells. 
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Figure 6.1. Deconvolution of the mitochondrial network 

To enable automated analysis of combined pico green and TMRM images a series of deconvolution steps 

were followed. Original dual stained images (A) were separated into individual channels (B) a filter was 

then applied to simplify the image (C). The images were then converted to binary (D), outlines were 

mapped and individual particles measured (E).  

 

 Mitochondrial tracking 6.2.3

To look at mitochondrial dynamics within a living cell, numerous protocols were 

trialled (ch 3.3). Utilising the cells in their neuronal form proved advantageous as the 

movements of individual organelles was far easier to define, due to reduced complexity 

of the mitochondrial network and the thin nature of the neuronal processes. Neurons 

were created using the Bains protocol (Bain et al., 1995) and grown on iBIDI imaging 

dishes. On day 15 the cells media was replaced with 1ml prewarmed media containing 

5nM TMRM for 10mins at 37
o
C. These were then placed in a controlled environmental 

chamber and imaged using Total Internal Reflection Fluorescence (TIRF) microscopy. 

TIRF requires a high NA objective lens to produce an evanescent wave that penetrates a 
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short distance beyond the coverslip. TIRF enables selective excitation of fluorophores 

in a very limited field adjacent to the coverslip. The thinness and exponential decay of 

the illumination provides a very thin optical section. The technique effectively improves 

contrast, albeit in a limited field as fluorescent molecules outside of the field of 

excitation are not recorded.  The technique is therefore ideal to image mitochondria 

moving within thin neuronal projections.  

 

Imaging was done every second for 15 minutes. To analyse the movie files Imaris 7.6 

(Bitplane) was used. This allowed the identification and mapping of individual 

mitochondria (using parameters such as intensity and size) before tracking them through 

each separate image file (Figure 6.2). Information was then generated on directionality, 

velocity, size and distance travelled. All parameters could then be assessed in control vs. 

complex I derived neurons using appropriate statistical analyses depending on data 

spread. 

 

 Autophagosome tracking 6.2.4

Due to the limited capacity to quantify purely ‘mitophagic’ events compared to general 

autophagy with previous ICC methods, part of these dynamic studies intended to use a 

combination of autophagy markers and mitochondrial stains in live cells which, at high 

magnification would allow us to observe mitophagic events occurring in real time. A 

range of mitochondrial dyes have been extensively tested in live cell models such as 

TMRM, TMRE, Mitotrackers, ImageIT and CellLight (Invitrogen). The ES cells are 

known to be a fairly sensitive cell type, despite this, both TMRM and a range of 

Mitotrackers were well tolerated. To monitor autophagy events, the decision was taken 

to use a relative new product- Cyto-ID autophagy detection kit (Enzo Bioscience). 

Although pre-existing products have been used in similar settings, such as Lysotracker, 

a lysosome marker, Cyto-ID enabled specific labelling of autophagosomes which was 

beneficial for this assay. Initial experiments were carried out as per manufacturer’s 

instructions and optimized as per ch 3.4.3.  

 

Following disappointing results using the live cell marker the decision to stably 

transfect the cell lines of interest with a GFP tagged LC3 was taken. This had 
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previously been attempted with a lipid based transfection method but proved ineffective 

for establishing stably transfected lines. For future experiments viral transfection was 

utilised, as outlined in ch 3.4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Imaris tracking methodology 

To track organelles within neuronal processes, a region of interest (ROI) was defined (A-B). Using pre-

determined parameters including smallest mitochondrial size and intensity, the software was able to map 

individual surfaces (C). Individual organelles were checked through all time frames to ensure accuracy 

(C-D). Tracking was the applied and data generated on track (shown as coloured lines) characteristics 

(E). 

 

 

 

 

 RESULTS 6.3

 Network analysis 6.3.1

Automated analysis of the mitochondrial network revealed morphological differences 

between control and complex I cells (Figure 6.3). When the complexity of the network 

was analyzed, a significant increase in form factor measurements were calculated 

(P=0.005), implying a greater degree of branching of the mitochondrial network in the 
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complex I cybrid cells. This may occur through alteration of the fission or fusion 

machinery in conjunction with the complex I deficiency. Alternatively the significant 

increase in network complexity may represent an adaptive response to the bioenergetic 

deficiency observed in these cells. Interestingly, a very small proportion of cells 

observed during these experiments showed the complete polar morphology, i.e. 

complete fragmentation of the network. These cells tended to be more rounded and if 

observed for longer periods of time appeared to be apoptotic, i.e. rounding and 

detaching from the surface. The fact that the CI cybrid cells are completely devoid of 

cells matching the control phenotype (i.e. reticular but not as complex) suggests that the 

increase in network complexity may well be a survival mechanism, with any change 

causing collapse of the cellular environment.  

 

 Membrane Potential 6.3.2

Previous studies have displayed significant differences between complex I cybrids and 

controls with regards to the electrochemical gradient maintained over the mitochondrial 

membrane- membrane potential. Through TMRM staining and uncoupling it has been 

demonstrated that the transmembrane potential in complex I cells is actually maintained 

above that of the controls (Kirby et al., 2009). To follow this, JC1 staining was utilized 

to visualize these differences. Our findings agreed with previous studies with a higher 

membrane potential in the complex I undifferentiated cells as displayed in Figure 6.4 

with higher red fluorescence in the bottom panel (complex I cells). 

 

 

 

 



Chapter Six                       Mitochondrial Dynamics and Autophagy in Live Cybrid Cells 

 194 

 

 

 

Figure 6.3. Morphology of mitochondrial network 

TMRM staining was used to visualise mitochondrial networks and deconvolved to enable binary images 

to be generated in control cells (A) and complex I cybrid cells (B). Automated analysis was used to 

generate aspect ratio (AR) and form factor (FF) displaying differences in the two cell lines (C) P=0.0025, 

N=90 over three experiments. Although majority of the complex I cybrid cells displayed reticular 

networks a very distinct small group showed extreme fragmentation of the network (D).  
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Figure 6.4. Membrane Potential 

Analysis of membrane potential was achieved through JC1 staining (A) Control cells showed more green 

fluorescence (top panel) than their passage matched complex I cybrid counterparts (bottom panel). This 

difference was measured as the ratio between green and red fluorescence (B). N=100 over two 

experiments.  
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  Live cell studies 6.3.3

To observe mitochondrial movements, a live cell assay was established which 

minimized the amount of user manipulation once the cells had been placed in the 

imaging chamber. Previous optimization had established neuronal projections were 

most suited to enabling visualization of individual mitochondria (ch3.3.3.1). Changes in 

both morphology and dynamics were seen between mitochondria within control and 

complex I derived neuronal populations.  

 

 Mitochondria length 6.3.3.1

The first observation that came from live cell imaging of mitochondria within the 

neuronal processes was a dramatic difference in the length of mitochondria. In complex 

I derived neurons the mitochondria tended to be much longer (Figure 6.5). Analysis of 

mitochondrial length in newly differentiated neuronal processes confirmed a significant 

increase in mitochondrial size in complex I cells compared to controls (P=0.0115). 

 

Figure 6.5. Mitochondria size in neuronal processes 

The length of individual mitochondria in neuronal processes was assessed for control and complex I 

cybrid derived neurons in the first frames of live cell imaging experiments (A). These were quantified and 

compared for differences between the two cell lines (B). 
 

 

 Mitochondrial movement  6.3.3.2

The tracking of individual mitochondria revealed significant differences in how 

mitochondria from complex I derived neurons moved when compared to controls 

(Figure 6.6). The mitochondria appeared smaller in the control cells which is consistent 
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with the TMRM analysis in undifferentiated cells (Figure 6.3). Mitochondria that were 

tracked in the complex I cybrids showed reduced speed averaging 0.44µm/sec 

compared to 0.85µm/sec in the controls. While further analysis of the distribution of 

mitochondrial velocities revealed slower organelles in the complex I derived neurons 

(P<0.0001) shown in Figure 6.7 (A/B). Interestingly, length and displacement length 

(movement from point of origin) of tracks generated by mitochondria showed no 

difference in median length (Figure 6.7 C/D). However, analysis of the distribution of 

these lengths showed a greater number of longer mitochondrial tracks in the complex I 

derived neurons (P=0.0136). Overall, fewer mitochondria were motile within the 

complex I cybrid derived neurons. The tracks that were generated revealed more fusion 

events (when two mitochondria become one) in mitochondria of the complex I neurons 

than the control counterparts. Fusion events were estimated by looking at the number of 

individual structures in any given time frame (Figure 6.7 E). A reduction in the number 

of structures between two frames shows that fusion has occurred  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Mitochondrial movement in neuronal processes 

Images show three individual points over a time lapse video showing mitochondria moving within 

neurons. Within control derived cells (left panel) mitochondria tended to be smaller and show small more 

uniform, often bidirectional movement (arrows). Mitochondria within the processes of complex I cybrid 

derived neurons (right panel) often formed large accumulations (large red arrow) with mitochondria that 

remained smaller in size travelling further and normally in one direction (thin red arrow).  
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Figure 6.7. Quantification of mitochondrial movement in neuronal processes 

Analysis of tracks generated from videos of mitochondria within neurons revealed difference between 

complex I cybrid derived cells and controls. The velocities of mitochondria in CI cells was reduced 

compared to controls (A)  and is again clear when we look at the number of individual organelles 

reaching speeds above median values (B-red of blue bars). Track length (C) and track displacement 

length (D) showed higher values for mitochondria in complex I derived neurons, implying mitochondria 

that were motile, covered larger distances. Fewer mitochondria were moving in complex I derived 

neurons (E-height of bars) but those that were moving showed more fusion events (e- red of blue bars). F. 

Smaller mitochondria (blue arrows) were general more motile (as shown by coloured tracks) than larger 

mitochondria (red arrows).  
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 Autophagosome tracking 6.3.3.3

Using the live cell autophagosome stain- Cyto-ID initially showed promising results 

within neurons as shown in Figure 6.8. The images show newly derived neurons, where 

certain characteristics that had been observed in the fixed cell ICC seemed to be 

observed again. For example in control cells autophagosomes seemed to extend further 

from the cell body compared to complex I derived neurons, although this was not 

quantified. Following repeat experiments however, it became clear that the neurons 

were clearly affected by the dye, which caused cell death (white arrow) suggested by 

rounding and condensation of cellular contents which caused neurons to detach from the 

surface of the imaging dish. The faint signal also became problematic as evident in 

Figure 6.8 with a strong green ‘haze’ due to the high level of exposure needed to see 

autophagosomes, this high excitation undoubtedly contributed to the toxicity of this 

methodology. Further optimization in undifferentiated cells also revealed cell toxicity 

showing it was not neuron specific (Figure 6.9). 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Cyto-ID Autophagosome staining in neurons 

Control cells showed autophagosomes throughout the cell body and along neurites (A,B) whilst complex I 

derived neurons showed clustering of autophagosomes around the nucleus, which rarely extended into 

neurites. Unfortunately the live cell dye appeared to be toxic to the neurons as shown by increasing cell 

death (white arrow). White stars indicate nuclei.   
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Figure 6.9. Cyto-ID toxicity in ES cells 

Extended exposure to cyto-ID appeared to cause unfavourable characteristics in the cell including cell 

rounding (A) and cell death (B), mitochondrial fragmentation (C) and weak staining (D) The same range 

of concentrations worked effectively within fibroblasts (E). 
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 Autophagosome tracking through GFP-LC3 transfection 6.3.3.4

 

Following disappointing results with Cyto-ID and the ES cells, efforts were made to 

transfect the cells with GFP tagged LC3. Unfortunately due to time restraints of this 

PhD only the Complex IV cell line was successfully transfected. This single line was 

therefore used to demonstrate a methodology for mitophagic assessments in the future. 

In line with previous morphological studies, several dynamic alterations could be 

assessed in this model. For example when live cells were subjected to nutrient 

depletion, a series of events were commonly observed, with characteristic 

morphological changes recorded in both mitochondria and autophagosomes. It appears 

under basal conditions a steady level of autophagosomes are observed alongside visible 

mitophagic events. Over prolonged stress a dramatic increase in autophagosomes is 

observed (although those that can be characterised as mitophagic decrease) in line with 

this an elongation of the mitochondrial network is seen. In the early stages of stress 

mitochondria take on typical morphologies, alongside elongations, we also observe the 

formation of donuts and stem loop structures (Figure 6.10). Eventually, this elongation 

diminishes and an increase in mitophagic events is once again observed (Figure 6.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Stress induced mitochondrial morphological changes 

An early response to nutrient depletion or dysfunction of energy production appears to be the formation 

of stem loop and donut structures (arrows) alongside the aforementioned elongation and increased 

complexity of mitochondrial networks.



Chapter Six                       Mitochondrial Dynamics and Autophagy in Live Cybrid Cells 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.11. Nutrient depletion leads to characteristic morphological changes in autophagosomes 

and mitochondria 

Cells in media with limited glucose reveal characteristic changes over time. Under basal conditions a 

steady level of autophagosomes are observed alongside visible mitophagic events (arrows) (A). Over 

prolonged stress a dramatic increase in autophagosomes is observed (although those that can be 

characterised as mitophagic decrease) in line with this an elongation of the mitochondrial network is 

seen (B,C,D,E,F). Eventually, this elongation diminishes and an increase in mitophagic events is once 

again observed (G,H).
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 DISCUSSION 6.4

The role interplay between mitochondrial dynamics and bioenergetics has in relation to 

pathogenic factors in Parkinson’s disease is gaining prominence. The results from the 

experiments outlined in this chapter reveal that cells with an inherent complex I 

deficiency, known to significantly reduce their bioenergetic capacity, cause changes to 

mitochondrial morphology, dynamics and arrangement of the mitochondrial-network.  

 

 Membrane potential 6.4.1

Morphological changes were shown to coincide with maintenance of elevated 

mitochondrial electrochemical membrane potential in undifferentiated cells. This 

increased membrane potential has been previously reported by Abramov et al in 

undifferentiated cells, astrocytes and neurons derived from the same cells used in this 

study (Abramov et al., 2010). It remains unclear however why the complex I cells 

maintain their membrane potential above that of controls, although several possibilities 

are plausible. Clearly maintenance of the membrane potential is crucial for cell survival 

with loss ultimately resulting in apoptosis. This is highlighted by the fact rho0 cells that 

are devoid of mtDNA still maintain a small membrane potential, demonstrating that this 

is a priority for mitochondria.  

 

How the complex I cells maintain such high membrane potential is also unclear. In 

differentiated cells Abramov et al revealed in response to the impaired activity of the 

respiratory chain, the F1F0 complex switched to ATP consumption mode which 

maintained the membrane potential. This switch has previously been reported following 

impairment of oxidative phosphorylation, where complex V reverses, hydrolysing ATP 

and pumping protons across the inner membrane, maintaining the membrane potential 

Mai et al, 2010). Interestingly, this reversal did not seem to occur in the undifferentiated 

cells which continued to maintain their membrane potential by respiratory chain activity 

(Abramov et al., 2010). Why differentiation caused this switch is unclear although 

authors hypothesise that due to the low glycolytic activity of neurons, enhanced 

consumption of ATP may be especially harmful to this cell type. Hyperpolarised 

mitochondria have previously been shown to stay in the network and escape fission 
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(Twig et al., 2008). This phenomenon may explain how increased network complexity 

can reduce fission events and subsequently mitophagy. 

 Morphological changes 6.4.2

Alongside an increased membrane potential the complex I cybrid cells revealed changes 

in mt-network morphology. Notably an increase in network complexity was revealed 

through form factor analysis (Figure 6.3). This phenomenon has previously been 

reported. Evidence from patient derived primary human fibroblasts also reveals a 

modulation of mitochondrial morphology alongside bioenergetic defects (Koopman et 

al., 2005). An extended reticular network is commonly observed in fibroblasts under 

basal conditions. Dermal fibroblasts from patients with defined isolated complex I 

deficiency have been analysed with respect to mitochondrial shape, CI activity, number 

and ROS production. The degree of mitochondrial fragmentation seems correlated to the 

severity of CI mutation, with most severe complex I deficiency leading to fragmentation 

of the membrane; less severe cases appear to more closely resemble their control 

counterparts. Interestingly a proportion of the less severely affected cell lines revealed 

an increase in mitochondrial network complexity and length. This is supported by prior 

work from the same group, showing that chronic rotenone treatment of healthy 

fibroblasts decreased residual CI activity but increased mitochondrial branching. These 

phenotypes seem most similar to the complex I mt-networks we observed in this study. 

The reason for this isn’t fully elucidated but could represent an adaptive response to 

bioenergetic deficiency. The gene mutations in the patient fibroblasts used in the 

Koopman study described above were all nuclear encoded complex I subunits, 

conversely the cybrids contain two mtDNA mutations, it would be interesting to see if 

the specific gene mutation causing complex I dysfunction affects phenotype or whether 

this is solely dependent on severity. Interestingly, our cybrids display far more severe 

complex I dysfunction than that displayed in the patient fibroblasts (7% residual activity 

compared to a range of 18-75% in fibroblasts) therefore it will be crucial to determine 

why our cells more closely resemble the less severe fibroblasts, possible explanations 

may include different cell types, different species or different gene mutations. 
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 Events governing morphology 6.4.3

Mitochondrial fusion is known to be invaluable in times of high energy demand, the 

conditions within our cells may mimic high demand as the OXPHOS deficiency means 

the working capacity is already fully stretched and subsequently working as if under 

high demand. The suggested adaptive mechanism is particularly attractive when we 

consider the progression from ‘normal’ reticular networks to increased complexity to 

breakdown and fragmentation displayed in parallel with increasing severity of complex 

I dysfunction. Although the diminished CI activity seen in our cells is severe in relation 

to the fibroblasts described above, fragmentation of the mitochondrial network seems to 

precede cell death in our model and as such is not an option for this cell population. On 

this point, although complex I cybrids are able to survive and to some extent 

differentiate, this process is compromised with reduced neurons being produced from 

the severe CI compared to controls. This may well imply the cells have adapted to their 

inherent CI deficiency to survive but when challenged further, i.e. pushed to 

differentiate the implications of this adaption become more apparent. 

 

Both content mixing and extended mitochondrial networks are beneficial during periods 

of high energy demand and as such may be employed by the CI deficient cells to boost 

energy generation.  The idea of hyperfusion as an initial compensatory mechanism is 

not a new one and may also confer protective qualities. Hyperfused mitochondria may 

be resistant to apoptosis and mitophagy, becoming too large to engulf, also fusion acts 

as a means for content mixing to rescue or buffer damage.  Whether the elongation of 

the network represents an adaption in our cells to counter energy deficits is unclear, but 

the reverse, inhibition of fusion is well known to cause loss of respiratory capacity 

(Chen et al., 2005). This coincides with natural morphological differences in cells 

where commonly more interconnected mt-networks are found in more active cells and 

smaller, fragmented mitochondria tend to be more prevelant in respiratory inactive cells 

(Westermann, 2012). How elongation increases bioenergetic capabilities is not fully 

clear, however one suggested hypothesis is that fission ultimately results in population 

of mitochondria devoid of mtDNA required for OXPHOS, meaning they no longer 

contribute to ATP production. Fusion would serve to integrate these components, 

restoring their respiratory activity (Westermann, 2012). The observation that within our 

complex I cybrids membrane potential is elevated and we see an increase of network 

complexity, combined with previous work showing the polarised state of mitochondria 
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is crucial for fission/fusion events and subsequently mitophagy (Twig et al., 2008) 

offers interesting points for consideration. A possible explanation for the autophagy 

alterations reported in the complex I cybrids (chapter 5) may be explained by an 

adaptive fusing of the mitochondrial network that minimises damage caused by the 

complex I deficiency, but in doing so renders the mitochondrial network unable to 

partake in fission and subsequent autophagic degradation. 

 

Other reasons for network elongation may also be relevant to the morphological 

changes observed in our cells. Studies in senescent cells show that there is a DRP1- and 

FIS1-induced, and PINK1-mediated, protective mechanism, which, when compromised, 

could contribute to the age-related progression of common neurodegenerative disorders. 

This mechanism is thought to protect through resistance to oxidative stress. ROS are 

well documented to contribute to accumulation of mitochondrial mutations, particularly 

within PD; our cells may use network elongation to compensate for a high ROS 

environment. Indeed, when mitochondria fuse, complementation of gene products can 

occur rescuing deficient phenotypes (Komatsu et al., 2006).  Adaptive fusion of the 

mitochondrial network has also been shown in response to cell stressors. This stress 

induced hyperfusion is accompanied by increased ATP production. It is proposed that 

this is to allow the cells to optimize mitochondrial function to deal with the stress or 

challenge (Tondera et al., 2009). The hyperfusion in the CI cells therefore may also be 

optimizing a diminished mt-network.  

 

Previous studies have shown that affecting morphology through modulation of fission 

and fusion can impact on energy production in cells. DRP1 knockdown for example has 

been shown to have profound effects on morphology and bioenergetic capacity. The 

compromised cells also displayed differences in the properties of mitochondrial 

membranes with DRP1 siRNA cells showing increased membrane fluidity through DPH 

anisotropy (Benard et al., 2007). Rearrangement of the mt-network on a macro scale 

undoubtedly alters the internal architecture of mitochondria. Cristae morphology is 

important for the energetic capabilities of a mitochondrion. Inner membrane 

morphology influences mitochondrial functioning, a process dependant on fission and 

fusion (Mannella, 2006).  
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Given the two way regulation of bioenergetics and morphology, a decline in regulation 

of one process or function undoubtedly impacts on the other and in a compromised 

system, resulting from ageing, CI deficiency, or similar insults, a vicious self-

perpetuating series of events is likely to occur. The results acquired from this chapter 

were somewhat unexpected as much data would imply that respiratory deficiency leads 

to a fragmentation of the mt-network and a loss of membrane potential. This said the 

consistency of the data implies that this is a true finding within these cells that may be 

demonstrating an adaptive response novel to CI deficient cells. These data also begin to 

explain why despite a supposedly robust selective system for the removal of damaged 

mitochondria we still see evidence of mitochondrial dysfunction in neurons at all. The 

data collected within this project offer at least one plausible explanation for why at 

times the degradation of damaged mitochondria may be avoided. It is also interesting to 

see that cells with mitochondrial dysfunction don’t automatically resign themselves to 

mass mitophagy or apoptosis but modulate their activity to survive. It is likely that these 

adaptions are not universal but dependant on the extent of bioenergetic dysfunction. For 

example with acute dysfunction brought about through complex inhibitors 

fragmentation and increased autophagy is seen, the polar opposite response is observed 

to chronic complex I dysfunction such as within our cybrids. To this extent the 

phenotypes seen in the complex I cells may represent a ‘do or die’ response, where the 

adaptations are by no means ideal but the only other option may be cell death. 

 

 Live cell tracking 6.4.4

In parallel to the single time point analysis carried out on the morphology of 

undifferentiated cells, live cell imaging of mitochondria in neurons revealed significant 

alterations on the dynamics of organelles in complex I cybrid derived neurons. Firstly 

the overall length of mitochondria in complex I neuronal processes was longer than 

those found in control counterparts. This is an interesting finding following on from the 

undifferentiated studies where mitochondrial complexity was also shown to be 

increased in the complex I cells.  In complex I mutants, fewer of the mitochondria were 

seen to be moving with a significant decrease in the number of tracks analysed (62% of 

controls). Several reasons could qualify this result (Figure 6.12), for example the 

reduction in ATP generation within these cybrid cells may render them inefficient in 

energy consuming trafficking. Alternatively, or possibly in combination, the increased 
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size of mitochondria arguably makes them more difficult to transport, if indeed they are 

even recognised as ‘moveable cargo’. Mitochondria that were tracked in the complex I 

cybrids showed reduced speed averaging 0.44µm/sec compared to 0.85µm/sec. Again 

this could be explained by limited energy provision or slower movement of larger 

organelles, indeed within these studies and previous findings, smaller organelles tended 

to move more often and faster.  

 

When the length of tracks, i.e. the distance individual mitochondria covered were 

analysed it was found that there was no statistical difference between the median length 

values. However, an analysis of the histograms through the Kolmogorov-Smirnov test 

revealed a difference in the distribution of track lengths. A greater percentage of both 

track lengths and track displacement lengths within the cybrid lines were longer. 

Whether this represents mitochondria that maintain their motility have to function for 

those which have not is unclear from these studies but could be elucidated from more 

in-depth analysis of these individual organelles. CI induced morphological changes can 

have numerous effects in neurons, and dynamics rely on changes in membrane potential 

to act as cues and allow mechanistic reformation. Subtle changes may be even more 

significant in neurons when we consider directionality is strongly governed by the 

potential of individual organelles with 90% of high potential mitochondria moving 

towards the growth cone and 80% low potential moved towards the cell body (Miller 

and Sheetz, 2004) and potentiality is varied in dendrites and axons, highlighting clear 

membrane dependant functioning (Overly et al., 1996). These differences are likely to 

be crucial for a variety of reasons, notably, transporting more energetically active 

mitochondria to more active areas and returning low potential mitochondria to be 

degraded in the cell body. 
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Figure 6.12.  Implications of CI induced morphological differences in neurons. 

Complex I dysfunction may bring about changes in mitochondrial structure and dynamics. The 

implications of these changes may be felt most prominently in neurons due to their reliance on 

mitochondrial trafficking and their post mitotic, restrictive, extended nature. If complex I dysfunction 

causes fragmentation and/or swelling of the mitochondrial network in neurons this may cause a blockage 

of axons or dendrites. Alternatively, fragmentation may lead to uncontrolled apoptotic signalling or 

instability of the mtDNA due to limited rescue through mitochondrial fusion. Conversely, if elongation of 

the network occurs mitochondria may be unable to escape the cell body and travel along processes. Their 

motility will be restricted due to their size and they may form physical barriers to the trafficking of other 

cellular components. Finally a hyperfused network may be compromised in its ability to segregate and 

degrade damaged mitochondria. 
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 Morphological adaptions 6.4.5

Reasons for the morphological changes in response to complex I deficiency are not fully 

clear but may well be an adaptive response, fusion for example confers apoptotic and 

mitophagic resistance as well as increasing metabolic efficiency (Gomes et al., 2011). 

Importantly previous studies have been conducted in cells following complex I 

inhibition through rotenone which revealed an increase in mitochondrial complexity. 

However cells with prolonged or severe complex I deficiency ultimately show an 

increase in fragmentation. As such, it is hypothesised that elongation may be a short 

lived adaptive response which cannot be sustained. Interestingly in our cells we 

observed a greater number of elongated mitochondria in the complex I cybrid derived 

neurites, we may postulate that this occurs as a compensatory mechanism for the 

inherent complex I deficiency and resulting energy reduction. This however may have 

very specific implications within neuronal populations (Figure 6.12). Previous studies 

for example have shown an increase in mitochondrial volume is associated with a drop 

in motility through steric hindrance (Kaasik et al., 2007). This may go some way to 

explaining why fewer mitochondria in complex I derived neurons were moving at any 

given time. Furthermore, smaller mitochondria have been shown to move faster, a 

possible explanation for the reduction in velocity of mitochondria in the complex I 

derived neurons, which tended to be larger. The proportion of mitochondria that 

travelled further than their control counterparts are particular interesting in this study. If 

they are in some way compensating for slower less motile mitochondria it will be 

interesting to see what differs in these organelles that allows them to continue 

functioning effectively. 

 

Few studies have observed complex I deficient mitochondria in living neurons. It is 

tempting given the preliminary findings of this work to hypothesise that network 

extension seen previously in complex I deficient cells also occurs in neurons derived 

from complex I deficient cells to counter the reduction in energy resulting from the two 

mutations. The differentiation capabilities of the cells are diminished, not only through 

the direct bioenergetic impairment brought about by the complex I dysfunction but also 

the indirect steric hindrance and reduced mitochondrial motility associated with the 

complex I mutations. It is plausible that over time, as motility is reduced, damaged 

mitochondria accumulate and energy demands are not met, total collapse of the cellular 

environment could occur, eventually leading to cell death. Interestingly, mitochondrial 
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mobility dysfunction in neurons with prior stress has been shown to accelerate cell 

death (Schon and Przedborski, 2011). The complex I dysfunction may therefore be 

compounded by the mitochondrial dynamic alterations it brings about. 

 

 Relation to Parkinson’s disease 6.4.6

Morphological and dynamic changes in mitochondria may be key to understanding the 

pathogenic pathways that ultimately leads to cell loss in Parkinson’s disease. Insights 

from familial forms of PD have highlighted a role of mitophagy (autophagic removal of 

mitochondria). Mutations in PARKIN and PINK1, have been shown to have a role in 

committing damaged mitochondria to a mitophagic fate and are the most common cause 

of early onset familial PD cases. It is known that both PINK1 and PARKIN can interact 

with the KHC/MILTON/MIRO complex. Wang et al showed that increasing 

PINK1/PARKIN expression or depolarizing mitochondria arrests mitochondrial 

movement (Wang et al., 2011). This is achieved through phosphorylation of MIRO by 

PINK1 and subsequent ubiquitination by PARKIN which leads to its degradation. 

Halting the transport of damaged mitochondria may be necessary for the isolation and 

eventual degradation of the organelle through mitophagy.  Mutations in these proteins 

may therefore assert their pathogenicity through an inability to stop and remove 

damaged/damaging mitochondria. The effects of this will have the greatest impact in 

neurons due to the complex reliance these cells have upon dynamic processes and their 

limited regenerative capacity. This may go some way to explaining why neuronal cell 

death is prominent in PD, specifically within substantia nigra populations where 

oxidative stress is already high and Ca
2

 buffering is imperative due to the unique Ca
2

 

pacemaking in this cell type. In neuronal models, for example, primary neurons derived 

from PINK1 knockout mice as well as in human PINK1 knock-down dopaminergic 

neurons differentiated from mesencephalic stem cells increased ROS and reduced 

mitochondrial membrane potential has been observed. Interestingly in drosophila and 

mouse models it has been shown that PINK1 deficiency can impact on the function of 

complex I (Morais et al., 2009).  

 

Observing how mitochondria with a known complex I dysfunction such as the cybrid 

model, differ in their mitophagic removal, may provide insight into how these two 

mechanisms are related. Several other genes associated with familial PD have been 
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linked to mitochondrial dynamics such as LRRK2 and DJ-1 (Zhang et al., 2005; Wang 

et al., 2011; Niu et al., 2012). Altered mitochondrial morphologies have previously 

been reported in PD cybrid cells with swollen or enlarged mitochondria clearly present 

in a subset of PD cells (Trimmer et al., 2000). Subtle changes in mitochondrial 

dynamics can quickly become self-perpetuating through reductions in cellular 

energetics. For example, loss of MFN2 in mice has been shown to cause degeneration 

of dopaminergic neurons alongside motor deficits (Pham et al., 2012).  

 

A bidirectional relationship has been shown between mitochondrial organization and 

bioenergetics (Benard et al., 2007). Indeed our data shows reduced bioenergetics 

(complex I mutation) affects mitochondrial organization in the neurites we observed. 

The convergence of several key themes rather than any individual factor, likely brings 

about cell loss observed in Parkinson’s disease. Complex I dysfunction has been shown 

to be important and impacted on by mitochondrial dynamics and mitophagic removal. 

This study shows that complex I dysfunction alone can also cause alterations in 

mitochondrial dynamics suggesting a more prominent and causative role for complex I 

dysfunction in PD, with increases in ROS and oxidative stress secondary effects of the 

dysfunction. 

 

 Concluding remarks 6.4.7

The data produced in this project suggest bioenergetic dysfunction brought about 

through severe complex I mutations affects the morphology and dynamics of 

mitochondria. Dysfunction of electron transport chain components may exert their 

deleterious effects through different mechanisms, be it through decreased ATP, 

increased ROS production or most likely a combination of the two. A further 

mechanism may exist from the control of mitochondrial morphology through 

bioenergetics. Age related changes in the expression of mitochondrial complexes are 

observed in models of ageing, these may represent a preliminary challenge to the 

cellular environment that initiates a series of dynamic changes and may go some way to 

explaining why an increase in neurodegenerative conditions is observed with age.  
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Regardless of the timing changes in motility arise, their contribution to homeostatic loss 

and cell death is unquestionable and is likely to accelerate collapse of the cellular 

environment in concert with other direct and indirect mitochondrial factors. In line with 

this, groups have demonstrated that neurons with prior stress are more susceptible to 

changes in mitochondrial motility. Models of neurodegenerative disease already exist in 

which mitochondrial phenotype can be rescued by correcting motility (Cassidy-Stone et 

al., 2008).  For this reason perusing modulators of mitochondrial motility may be 

valuable to assist restoration of the cellular environment and ultimately prevent 

neurodegeneration.  

 

 Limitations 6.4.8

Monitoring autophagy in these cells proved problematic. The live cell marker chosen to 

visualise autophagosomes was trialled at a range of concentrations and shown to be 

effective in fibroblasts but unfortunately proved toxic at all working concentrations in 

the ES cells and their neuronal derivatives. This added a further step as the cells needed 

to be transfected in order to visualize LC3 in conjunction with a mitochondrial marker.  

 

Studying mitochondrial function in vivo is difficult for obvious reasons; as such cell 

culture is an invaluable model to look at dynamic processes. This said the results must 

be interpreted with caution as different cell lines exhibit different characteristics. What 

more, morphological and bioenergetic changes can be brought about through 

modulation of the culture environment. For this reason all aforementioned experiments 

were carried out with strict variation control.  

 

The development of TIRF imaging in association with IMARIS tracking (described in 

chapter 3) allowed for further scrutiny of the mechanisms altered in the complex I 

cybrid cells. This said the new technique was in very early stages of development and as 

such limited to semi-automatic processing as it was crucial to ensure software was 

effectively tracking appropriate organelle movement.  
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 Future work 6.4.9

To continue this project the development of a robust mechanism to monitor mitophagy 

specific events is necessary. Although this work has gone someway to looking at these 

two processes, a more reliable and consistent method will be necessary. Following on 

from this it will also be valuable to look at similar assays to those described in this 

chapter under different conditions. Stressing the cells is likely to highlight further 

adaptive mechanisms in our complex I cells and may explain why a complex I 

dysfunction in conjunction with other cellular challenges bring about cell loss in 

neurodegenerative conditions. A more in-depth method for analysing fusion events 

would also be beneficial for this work as only inference of such events was possible in 

this study. As such incorporating photoactivatable dyes in combination with tracking 

may prove interesting. Finally assessing types of mitochondrial movement and also 

differences between different neuronal regions may further explain the impact complex 

I dysfunction has in these cells. 
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 Chapter 7. Mitochondrial Dynamics and Autophagy in 7

Patient Fibroblasts 

 INTRODUCTION 7.1

 Overview 7.1.1

NADH: ubiquinone oxidoreductase/complex I (CI), is the largest and most complex 

component of the electron transport chain. As entry point to the OXPHOS system its 

role in initiating the electrochemical potential is key, accepting electrons from NADH 

and transferring them through a series of redox centers to ubiquinone. CI consists of 46 

subunits, 7 of which are encoded by mtDNA. Its prominent role in the process of 

oxidative phosphorylation alongside an array of experimental evidence, implicate its 

dysfunction in numerous disorders (Sharma et al., 2009), noticeably neurodegenerative 

conditions.  

 

Complex I dysfunction in PD is one of the longest established, and most well evidenced 

pathogenic factors in the development of the disorder. Idiopathic PD for example, is 

characterized by a 15-30% reduction in complex I activity (Schapira et al., 1990). To 

this end, this project was undertaken to look at parameters assessed previously in the 

cybrid cell lines, with respect to patients with defined complex I deficiency. The hope 

being, that patterns of dynamic and morphological changes within this patient group 

may enable us to conclude with greater certainty whether complex I dysfunction is 

solely responsible for the observed alterations.  

  

 Isolated complex I deficiency  7.1.2

In parallel to the role complex I dysfunction has in a range of human diseases, its 

dysfunction is responsible for a distinct set of disorders. Complex I deficiency is the 

most frequent mitochondrial defect presenting in childhood and may present itself in a 

variety of disorders, commonly including  Leigh syndrome, leukoencephalopathy and 

other early-onset neurodegenerative disorders; fatal infantile lactic acidosis; 

hypertrophic cardiomyopathy; and exercise intolerance (Kirby et al., 1999). The 

heterogeneity of this group of disorders results from the involvement of different 

nuclear and mitochondrial genes, alongside various assembly factors. Biochemical and 
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phenotypic analysis of patient cell lines have revealed a range of severities with regards 

to enzymatic and bioenergetic capacity. The exploration of morphological differences at 

the subcellular level in this group has also begun to highlight clues that may advance 

understanding of these disorders.  

 

 Previous morphological exploration 7.1.3

Mitochondrial morphology is dependent on a range of external and internal influences. 

Cellular environment, including nutrient availability, metabolic state, development and 

differentiation stage, cell cycle and DNA content, all impact on the form and dynamics 

of the organelle. The severe implications of complex I deficiency therefore 

unsurprisingly affect mitochondrial form and function. For this reason, several groups 

have analysed the impact defined complex I deficiency has upon mitochondrial number 

and shape. Cytopathological assessments of patient fibroblasts by Koopman et al has 

revealed significant differences in terms of form factor (mitochondrial network 

complexity) and mitochondrial number, the same range of variation was not seen in 

control cases (Koopman et al., 2005). Certain patient cell lines displayed increased form 

factor without a significant change in mitochondrial number, implying that these cells 

contained elongated mitochondria. To exclude the possibility that this represented 

juxtaposition of organelles, transduction of patient cell lines was achieved with mito 

EYFP in conjunction with Fluorescence Recovery After Photobleaching (FRAP) 

analysis, that showed these were indeed distinct organelles. 

  

Importantly, Koopman et al showed changes in morphology of patient fibroblasts are 

not universal, several cases displayed a decrease in form factor and/or increase in 

number in conjunction with relatively large reductions in complex I activity. For those 

patients where an elongation was observed, the CI activity reductions were more 

moderate. These differences appeared to segregate with severity.  For this reason the 

group then went on to define mitochondrial complexity (the ratio of form factor to 

mitochondria number) which revealed two distinct groups. Class I cells, that had lower 

mitochondrial complexity, severe reduction  of complex I activity and reduced average 

amounts of fully assembled complex I as given by blue native gel electrophoresis. Class 

II cells conversely, had greater or equivalent complexity to controls and showed higher 

residual complex I activity than the class I cells.     
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 Aim of study 7.1.4

This study was to utilize fibroblasts from patients with confirmed, isolated complex I 

deficiency. Various morphological assessments would be made and compared to 

controls, in line with previous experiments carried out in cybrid cell lines (chapter 6). 

Data gathered through literature reviews and unpublished data generated previously on 

parameters of severity and presentation of each case through the Newcastle 

Mitochondrial Diagnostic Service would then be used to compare to morphological 

changes. 

1. Analyse mitochondrial morphology. 

2. Assess associations between mutation location and phenotypes. 

3. Assess associations between phenotypes and severity 

4. Analyse autophagosome formation with respect to control fibroblasts. 
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 METHODS 7.2

 

 Fibroblast cell lines 7.2.1

Cell lines utilized in this study were sourced from Newcastle Mitochondrial Diagnostic 

service and can be seen in Table 7.1. Two independent control lines were used 

alongside three mitochondrially encoded complex I mutations (2xMTND4 and one 

MTND5) and two nuclear encoded complex I mutations (NDUFS6 and NDUFS2). 

Alongside these, one nuclear encoded dynamin 2 (DNM2) mutation and two novel 

nuclear FBXL4 mutations were analysed. Due to the order in which experiments were 

conducted this chapter focuses first on CI and DNM2 mutants (highlighted below) 

before discussing the results generated from the two FBXL4 mutants. The discussion 

that follows the results considers all cell lines. 

 

 

 

 Complex I patient network analysis 7.2.2

Fibroblasts were grown in 35mm imaging dishes (iBIDI, Thistle Scientific) to 70%–

80% confluency. Cells were incubated at 37
o
C in the growth media described in chapter 

2.5.6, with the addition of 100nM TMRM (Invitrogen) for 25mins. Cells were washed 

in standard media and imaging performed with a 63x oil immersion lens on the inverted 

Axiovert 200M (Zeiss), with shutter speeds of 200ms. Seeding densities were matched 

for all experiments to ensure limited variation in experimental conditions. Single plane 

imaging was carried out to achieve a minimum of 50 images/cell line. To analyse the 

images a series of deconvolution steps were followed as discussed in chapter 5.3.6. 

From these data, two characteristics were generated- form factor, a measurement of 

length and degree of branching (perimeter
2
/4π·area), and aspect ratio which generates 

data on the length based on the ratio between major and minor axes of an ellipse 

equivalent to the mitochondrion. These were recorded from triplicate experiments and 

compared for differences between each individual patient cell line and control cell lines 

through unpaired t tests.  

2x Control 

2x CI nuclear 2x CI Mito 

DNM2 2xFBXL4 
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Table 7.1 Patient fibroblasts used in this study 

Table shows cell lines used in the fibroblast morphological assessments and where available associated 

biochemical and phenotypic data. 
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 Autophagosome analysis 7.2.3

Fibroblasts were once again maintained in 35mm imaging dishes (iBIDI, Thistle 

Scientific) to 70%–80% confluency. Cells were incubated at 37
o
C in standard media. 

On day of imaging, assay buffer and Cyto ID (both Enzo Biosciences) were prepared as 

per manufacturer’s instructions. Cells were washed in assay buffer then incubated for 

30mins in assay buffer supplemented with 1µl cytoID reagent. Cells were washed with 

assay buffer twice then maintained in normal growth media throughout imaging. All 

autophagosome imaging was carried out on the Nikon A1R confocal microscope to 

enable z stacks to be obtained. Optimal z stack depth was established through Niquest 

on the microscope and z stack numbers range between 18-30.  To analyse both number 

and volume of autophagosomes Imaris 7.6 (Bitplane) was employed Figure 7.1. 

Autophagosomes were identified as structures within the software and numbers within 

individual cells recorded. Volumes of individual structures were also recorded and 

compared for controls vs. patient cell lines. 

 

 

 

Figure 7.1. Identification and quantification of autophagosomes in fibroblasts 

Cyto ID was used to stain autophagosomes in live fibroblasts. Z stack images were taken using the Nikon 

A1R and 3D images reconstructed (A). Regions of the cell were defined and structures of 

autophagosomes mapped (B). These characteristics were then applied to the entire image. Measurements 

of autophagosome number and volume were recorded (C). 

 

 

 Network analysis of  FBXL4 patient lines 7.2.4

Alongside complex I deficient cases, two lines containing novel pathogenic mutations 

in the FBXL4 gene and one uncharacterized mutation in DNM2 were also analysed. In 

doing this morphological differences could be assessed in cases outside of complex I 

deficiency and parallels between the two could be analysed. Alongside mitochondrial 

assessments nucleoids were stained with PicoGreen for characterization.  
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 RESULTS 7.3

 Network analysis complex I patients 7.3.1

 

Analysis of the mitochondrial network was undertaken for two nuclear encoded 

complex I mutations, three mitochondrially encoded complex I mutations and a DNM2 

mutant. Control cell lines routinely displayed a complex reticular mitochondrial 

network characteristic of healthy fibroblasts (figures 7.2 and 7.4 left panel). In contrast, 

all patient cell lines showed marked differences in mitochondrial shape. Initially 

networks were analysed based on form factor and aspect ratios. It soon became apparent 

however that this methodology was not suitable for the data generated from these cells. 

Within each patient cell line populations of different morphologies existed. For this 

reason network morphologies were grouped into categories based on their network 

complexities and mitochondrial lengths. The five groups were, ‘as control’, 

‘fragmented’, fragmented and clumped’, elongated throughout’ and elongated with 

perinuclear clustering’. The results of these can be seen in Figure 7.3 and representative 

images are displayed in Figure 7.2 and Figure 7.4 .
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Figure 7.2. Mitochondrial morphologies in patient fibroblasts (1) 

Variation was observed in typical mitochondrial morphologies between cell lines. Control cell lines 

typically displayed extended reticular networks (LH Panel). The MTND4 line showed a combination of 

fragmented and clumped organelles (white arrow) and some with elongated networks (white arrow head). 

The DNM2 mutants showed mostly fragmented mitochondria although some perinuclear clustering was 

observed, an extremely similar phenotype was observed in the MTND5 cell lines (not shown).  
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Control M0158-12 M125-07  MTND4 M0828-11  DNM2 
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Figure 7.3. Proportions of networks falling into each predefined morphological category  

Mitochondrial network morphologies were assessed in six patient cell lines and compared to controls. 

Groups of morphologies were often observed and as such cells within each line were allocated a group 

and proportions calculated as above (n=75 over three separate experiments).  
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Figure 7.4. Mitochondrial morphologies in patient fibroblasts (2) 

Variation was observed in typical mitochondrial morphologies between cell lines. Control cell lines 

typically displayed extended reticular networks (LH Panel). The complex I lines NDUFS2 and NDUFS6 

showed fragmented mitochondria with some of the cells clumping specifically in the perinuclear region 

(examples shown by dotted outlines). 



Chapter Seven                 Mitochondrial Dynamics and Autophagy in Patient Fibroblasts 

 

225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control M0158-12 M0400-12 NDUFS6 M0304-06 NDUFS2 
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Although the data showed an array of proportions, certain patterns could be observed. 

Firstly, majority of cells within the DNM2 mutant showed fragmented mitochondria. 

This was to be expected as dynamin2 is a ubiquitously expressed large GTPase, with 

roles in the regulation of intracellular membrane trafficking through its crucial function 

in membrane fission and has been shown to be necessary for proper mitochondrial 

morphology and function. Interestingly, mitochondria within the MTND5 mutant 

showed similar phenotypes to the DNM2 mutant. No single pattern of morphological 

alterations was observed within the complex I deficient cells although a distinction 

between the nuclear encoded and two of the mitochondrially encoded lines could be 

seen. Both the NDUFS6 and NDUFS2 lines showed (to different extents) populations of 

cells that contained fragmented mitochondria. Conversely, MTND4 and MTND5 lines 

contained elongated mitochondrial networks with particularly the MTND5 line showing 

perinuclear clustering. These results may point towards mutation location specific 

alteration of morphologies in these cells.  

 

 

Patient Fibroblast 

Lines 

(lit reference) 

 

Characteristics 

 

Mutation 

 

          Gene 

   

Mitochondrial 

Morphology 

 

M400-12 

 

pGlu106GInfsX41

(hom) 

 

NDUFS6 

 
Fragmented/ 

Clumping 

 

M304-06 

(Tuppen et al., 

2010) Patient 3 

 

p.Arg118Gln; 

p.Met292Thr 

 

NDUFS2 

 
Fragmented/ 

Clumping 

 

M0607-09 

(Alston et al., 2011) 

Patient 1 

 

m.13514A>G 

 

MTND5 

 
Elongated perinuclear 

 

M034-07 

 

m.13051G>A 

 

MTND5 

 
Fragmented 

 

M0125-07 

 

m.11777C>A 

 

MTND4 

 
Elongated (more variation) 

 

M0828-11 

  

DNM2 

 
Fragmented 

 

Table 7.2. Predominating mitochondrial morphology  

Although variations of mitochondrial morphologies were observed in each cell line, each had a 

predominating phenotype. 
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 Autophagosome Quantification 7.3.2

Quantification of Cyto-ID staining, which visualizes autophagosomes, was performed 

on five of the fibroblast cell lines. These five were selected due to time constraints and 

allowed the assessment of mitochondrial and nuclear encoded CI deficiencies whilst 

giving a variety of mitochondrial network morphologies. Significant differences were 

seen and are discussed below. 

 Autophagosome number 7.3.2.1

The average number of autophagosomes per cell in each cell line was quantified (Figure 

7.5). Due to high variability within cellular populations only the MTND4 patient cell 

line was shown to be significantly higher in autophagosome number when compared to 

controls (P= 0.0483). NDUFS2 showed a trend towards fewer autophagosomes/cell 

although this was not significant (P=0.0725).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Autophagosome number in patient fibroblast lines 

Only MTND4 showed a significant increase in autophagosome number compared to controls N=75 over 

three experiments (P=0.0483). 

 

* 
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 Autophagosome Volume 7.3.2.2

Analysis of autophagosome volume in patient fibroblasts revealed significant 

differences in all but one of the cell lines (Figure 7.6). Both MTND5 and DNM2 lines 

revealed far smaller autophagosomes when compared to controls (P’s<0.001). NDUFS2 

derived fibroblasts conversely showed larger average autophagosome volumes (P= 

0.007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. Autophagosome volume in patient fibroblast lines 

All but the MTND4 line showed significant differences in autophagosome volume when compared to 

controls. Both DNM2 and MTND5 had smaller autophagosomes whilst those quantified in NDUFS2 were 

larger, N=75 over three experiments. 

 

 

 

 Correlation between autophagosome and mitochondrial morphologies 7.3.3

It would appear from the data collected from these five patient fibroblast cell lines that a 

degree of correlation occurs between mitochondrial morphologies and autophagosome 

formation. The DNM2 cell line and MTND5 lines showed very similar mitochondrial 

morphologies with the majority of mitochondrial populations falling into the 

fragmented category. Interestingly the similarities between these cell lines continued 

into autophagosome analysis. Neither showed a significant deviation from the control 

*** 
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autophagosome number (DNM2 P= 0.5019 and MTND5 P= 0.3314). Autophagosome 

volumes however were reduced in these lines. The link between these two cell lines 

may demonstrate that mitochondrial morphology and autophagosome formation are 

interrelated.  

 

The MTND4 line was unique for two reasons. Firstly it was the only line that showed 

mitochondrial elongation throughout the cell. In terms of autophagosome formation, it 

was also unique in that a dramatic increase in autophagosome number was seen, whilst 

the volumes stayed the same. From these preliminary studies it would be tempting to 

hypothesize that fragmented mitochondrial networks are associated with changes to 

autophagosomal volume, potentially reflecting changes in mitophagy. Complex mt-

networks in this study appear to have a larger number of ‘normal’ sized 

autophagosomes. One might suggest that this may reflect mitochondria ‘protecting 

themselves’ from autophagic degradation through fusion, the increase in 

autophagosomes may therefore be associated with the degradation of other intracellular 

components. Further studies will be necessary to see if these associations ring true in the 

case of other morphological alterations.   

 

 Correlations with severity 7.3.4

Unfortunately the prexisiting functional and biochemical data available for these cell 

lines is not sufficient to draw any conclusions with the parallels to morphology of 

mitochondria and autophagosomes. There appears to be a tendancy for reduced CI 

muscle biochemistry and fragmentation of the mitochondrial network, whilst those that 

retained higher functioning were those that retained greater functioning being elongated. 

Further cases and more indepth background from these lines will be needed. 
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Table 7.3. Fibroblasts used in study with associated mitochondrial and autophagosome 

morphologies 
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 Network analysis of FBXL4 lines 7.3.5

FBXL4 is an F-box protein that colocalizes with mitochondria, through whole-exome 

sequencing, Bonnen et al identified recessive nonsense and splicing mutations in 

FBXL4 segregating in three unrelated consanguineous kindreds in which affected 

children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA 

depletion in muscle (Bonnen et al 2013). We looked at the morphology of mitochondria 

through aspect ratio and form factor, alongside nucleoid morphology. This enabled us to 

look at morphological alterations in patient lines without isolated complex I deficiency 

and further characterize how other mitochondrial defects may affect the mitochondrial 

network. This enabled us to assess how these pathogenic mutations affected 

mitochondrial networks alongside aiding characterization of these novel mutations.  

 

Both patient cell lines harbouring the FBXL4 mutations showed a dramatic 

fragmentation of the mitochondrial network (Figure 7.7). Furthermore, nucleoid 

morphology and localization was altered (Figure 7.8). Bonnen et al revealed through 

micro-oxygraphy and protein expression studies that the FBXL4 mutants display a 

severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a 

reduced expression of mitochondrial proteins. The severity of this dysfunction is in line 

with the patient fibroblasts from isolated complex I deficiency which also displayed 

mitochondrial fragmentation. Quantification of images is shown in Figure 7.9. 
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Figure 7.7. Mitochondrial Morphology in FBXL4 patient lines 

Both patient cell lines harbouring the FBXL4 mutations showed a dramatic fragmentation of the 

mitochondrial network.  
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Figure 7.8 Nucleoid morphologies in FBXL4 patient lines 

Nucleoids were enlarged and showed distinct perinuclear clustering in both patient cell lines(M1 and 

M2) compared to smaller more evenly distributed nucleoids within control cells (top panel). 

 

 

 

FBXL
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Figure 7.9. Quantification of AR, FF and nucleoid morphologies 

Aspect ratio (AR) and form factor (FF) were significantly lower in FBXL4 patient lines than controls. 

Control 2 (C2) was shown to have a significantly lower AR and FF than control 1 (C1), however 

following bioenergetic and biochemical assessments it was revealed that this cell line actually displayed 

a mild dysfunction and as such was not a true control. The data contained within the table therefore is 

likely to be a very conservative representation of the true reduction in the FBXL4 cell lines.N=100 over 

two experiments. 
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 DISCUSSION 7.4

These studies highlight changes in mitochondrial morphologies in fibroblasts from 

patients with defined isolated complex I deficiency and patient fibroblasts with novel 

mutation in FBXL4 and DNM2. Through these experiments it is clear that severe 

respiratory deficiency is capable of causing en masse fragmentation of the 

mitochondrial network. Interestingly in the case of the complex I patient lines not all 

morphologies were disrupted in the same way. Certain cases, notably the m.13514A>G 

MTND5 mutant and the m.11777C>A MTND4 mutants showed elongated 

mitochondrial networks. Unfortunately, this study did not have a large enough sample 

size to correlate these differences with any certainty to severity or mutation type 

although it’s worth noting that both these elongated phenotypes occurred in 

mitochondrially encoded complex I mutants. Interestingly it was only the MTND4 

mutant (with its elongated network) that displayed an increase in autophagosome 

number. Further cases will be needed to establish if this is a true association. For certain 

lines that displayed fragmented mitochondria, autophagosome volume was significantly 

increased. Again whether this is due to the mitochondrial network in some way is 

unclear from these experiments alone, modulation of the mitochondrial network through 

pharmacological modulation and parallel assessment of autophagosome structures may 

go some way to answering this. Furthermore, the cause of these morphological 

alterations needs to be elucidated.  

 

Clearly these findings are somewhat contradictory with regards to the ES cells in which 

a reduction in autophagy markers was generally observed in line with complex I 

mutations that resulted in increased complexity of mitochondrial networks. What is 

interesting is that in both fibroblasts and the ES cells the existence of a mitochondrially 

encoded mutation can result in increased branching of the network and elongation. This 

was not the case for nuclear encoded CI mutations. A line of further investigation may 

therefore be to assess the impact of cell to cell variation as clearly mitochondrially 

encoded mutations may show heteroplasmic expression which is not the case for 

nuclear mutations. Whether this phenomenon is responsible for the differing 

mitochondrial morphologies observed in these experiments is unclear. One possible 

explanation is where complex I dysfunction is heteroplasmic and therefore some 

wildtype molecules exist, it remains beneficial to the cells to attempt to ‘rescue’ the 

phenotype through fusion, thus explaining the observed mitochondrial network changes.  
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It has previously been speculated that CI deficient cells and the conditions resulting 

from this deficiency may alter mitochondrial complexity by affecting the expression or 

recruitment of fission or fusion proteins (Koopman et al., 2007). A recent paper looking 

at complex I inhibition by parkinsonian neurotoxins  has shown that this disruption 

causes an oxidative-dependent disruption of OPA1 which, amongst other roles, is 

responsible for maintaining cristae integrity and maintaining tight mitochondrial cristae 

junctions. These results show how complex I dysfunction can directly impact 

mitochondrial form. Although the authors note these experiments were not accompanied 

by mitochondrial fission but a mobilization of cytochrome c from cristae to the 

intermembrane space, in turn lowering apoptotic thresholds in these neurons (Ramonet 

et al., 2013). Increased levels of OPA1 and DRP1 were also proposed to reflect a 

compensatory mechanism to enhance recycling of less functional mitochondria. 

Guillery in 2008 showed long OPA1 isoforms in CI deficient fibroblasts (Guillery et al., 

2008). Elevated MFN2 levels were also observed in two of the three patients which may 

represent a further compensatory mechanism by increasing fusion and 

complementation. An extension of the study above may well be to assess such proteins 

in the patient cell lines.  

 

Another possibility that may work independently to affect mitochondrial morphology or 

in concert with other factors is ROS. It has previously been shown that mitochondrially 

derived ROS are increased in fibroblasts from patients with complex I deficiency (Luo 

et al., 1997) and this is accompanied by induction of superoxide dismutase (Pitkanen 

and Robinson, 1996). In line with this, the work by Koopman et al showed that in the 

Class I patient fibroblasts (those that showed severe reduction in CI activity and reduced 

form factor) ROS levels were significantly higher than class II or controls implying 

ROS is important for mitochondrial shape through ROS production and/or antioxidant 

capacity (Koopman et al., 2007). Interestingly in the work by Guillery described above 

none of the three patients showed an increase in ROS levels (Guillery et al., 2008). 

Reasons for this may be explained by decreased levels of fully assembled CI and as 

such reduced sites of ROS production or an increase in antioxidants, although only one 

patient showed altered levels of one antioxidant (mtSOD2). 

 

Live cell observations of mitochondrial structure and dynamics in patients with defined 

complex I deficiency as well as cases with mtDNA deletion and depletion contain 
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higher proportions of swollen mitochondrial filaments (Pham et al., 2004). Furthermore 

these larger swollen forms showed a reduction in motility activities such as 

displacement, extension and retraction. In line with this, loss of mitochondrial 

displacement activity was also observed in cells treated with respiratory inhibitors, 

which parallel results from fibroblasts derived from complex I deficient patients. A 

further study in 2010 looked at the impact of mutations in the NDUFA1 and NDUFV1 

genes. The results showed a decrease in OCR and growth rates of cells alongside 

delayed mitochondrial network recovery following CCCP treatment (Moran et al., 

2010). Unlike previous studies greater CI severity did not cause fragmentation where as 

one of the three patients (with defined Leigh syndrome) showed increased 

mitochondrial content composed of long tubular mitochondria.  Although different from 

Koopman’s findings, this report is not unique, others have also reported filamentous 

mitochondria despite severe complex I deficiency (Guillery et al., 2008) (Hanson et al., 

2002). The different genetic backgrounds between cases may explain these 

morphological differences. Alternatively, or possibly in conjunction, compensatory 

mechanisms or other OXPHOS complex genes may determine the expression of the 

primary deficiency. Also, synergistic interactions between mtDNA and nDNA may 

impact CI function (Potluri et al., 2009).   

 

It has previously been suggested that there is a precedent for mtDNA mutations as a 

possible heritable primary cause of PD. In 1998 it was shown that within a 

multigenerational Parkinson’s disease family Complex I dysfunction has been inherited 

(Swerdlow et al., 1998). Cybrids generated from mtDNA from maternal descendants 

with PD displayed lower complex I activity, increased reactive oxygen species 

production and more abnormal mitochondrial morphologies, including dense lysosomal 

bodies, and enlarged mitochondria containing fewer cristae. These reports show that 

complex I dysfunction may impart its deleterious effect through morphological changes 

and that this can independently cause PD. In the studies described in this chapter it is 

clear that complex I deficiency impacts heavily on mitochondrial morphology.  

 

Interestingly the two non complex I mutant lines also showed dramatic alterations in 

morphologies. This is possibly not surprising with the DNM2 mutant given its 

association with microtubules and cell motility which are clearly important for 

maintenance of the mt-network. Mutations in the FBXL4 gene are novel pathogenic 
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mutations and as such the impact this has on morphology was completely unknown. 

Further dissection of the exact cellular role of this protein will be necessary to 

understand how morphology is being so dramatically altered, as revealed in these 

studies. The F box family of proteins are involved in a plethora of cellular functions, 

recent studies however have shown fbxo7 and parkin interact and that this protein may 

have an extremely prominent role in mitophagy (Burchell et al., 2013). It may well be 

of value to explore this cellular process with regards to the FBXL4 cell lines and how 

this links with morphology. 
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 Chapter 8. Correlating complex I deficiency and 8

autophagy in human post mortem tissue 

 INTRODUCTION 8.1

 Overview 8.1.1

The cell models described in previous chapters have served to look at the impact of 

complex I dysfunction on autophagy and mitochondrial dynamics (chapter 4,5,6). 

Although the relative simplicity of the cell model allows for observation of 

perturbations and dissection of possible mechanisms leading to the observed 

phenotypes, it excludes many of the contributing factors that exist in whole organisms. 

For this reason, to compliment the cellular data, post mortem tissue offers a means to 

assess changes in relative levels of protein expression, in cells contained within their 

true environment. To relate findings to the human condition, human upper midbrain 

sections were used as this area contains the substantia nigra neurons, shown to suffer the 

most dramatic cell loss in Parkinson’s disease.  

 

The use of human tissue has several benefits for this study. Firstly it allows the 

assessment of changes seen in the cell models in the disease tissue we are proposing 

these effects occur. Information sourced from this model therefore has the ability to 

refute or compliment data gained previously on potential contributors in cellular 

demise, specifically in the context of Parkinson’s disease. Secondly, this highly relevant 

model means that any concerns about the artificial environment the cell culture 

assessments are made within, and the possible affect this has on findings, can be 

removed. 

   

 Complex I, autophagy and Parkinson’s disease 8.1.2

The evidence implicating the dysfunction of complex I and autophagy in Parkinson’s 

disease is compelling and covered extensively in chapter 1.7. Changes in these two 

factors are implicated through familial PD cases and their associated gene mutations; 

animal and cell models. Looking specifically in post mortem tissue, studies have shown 

changes to levels of immunoreactivity and localization of mitochondrial markers or 

autophagy related proteins discussed below.  
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 Complex I alterations in tissue from PD patients 8.1.3

Several pathological observations have been reported in Parkinson’s disease with 

regards to complex I dysfunction. In the substantia nigra of PD patients, complex I 

activity has been shown to be decreased (Schapira, 1993). Increased levels of carbonyls, 

caused by the oxidation of amino acid residues on proteins, have also been 

demonstrated in several catalytic subunits of complex I in PD brains suggesting 

excessive oxidative damage of subunits resulting in misassembly and subsequent 

dysfunction (Keeney et al., 2006a). High levels of somatic deletions in mitochondrial 

DNA have been seen within the substantia nigra neurons in aged individuals and PD 

patients (Bender et al., 2006).  Furthermore this can be directly linked to decreased 

respiratory activity when mtDNA deletions are correlated with cytochrome-c-oxidase 

(COX) activity, increased levels of mtDNA deletions corresponded with COX 

deficiency. As a number of complex I subunits are encoded by the mtDNA, these 

deletions will directly affect this complex. Alongside this deletions may cause 

disruption in protein translation through removal of tRNAs. 

 

 Immunohistochemical observations of autophagy  8.1.4

Focusing on autophagy and post mortem analysis a 1997 ultrastructural examination by 

Anglade et al in neurons of the substantia nigra in PD patients revealed characteristics 

of apoptosis and autophagic degeneration (Anglade et al., 1997). They suggest that even 

at the final stage of the disease, the dopaminergic neurons are undergoing active process 

of cell death. Specifically, features of autophagic degeneration including, condensation 

of chromatin, vaculation of the endoplasmic reticulum and lysosome-like vesicles. 

Interestingly, Lewy Bodies were not found in neurons displaying these charateristics, 

rather in apparently ‘normal’ neurons. Immunohistochemical observations of changes in 

levels of autophagy have been carried out previously with regards to other 

neurodegenerative disorders (Ma et al., 2010). For example a broad range of disorders, 

including MND (Arai et al., 2003) (Nakano et al., 2004), tauopathies and 

synucleinopathies (Kuusisto et al., 2001); show ubiquitin and ubiquitin related proteins 

such as P62 aggregate in inclusions. This is important given that P62 may link the 

recognition of polyubiquitinated protein aggregates to the autophagy machinery 

(Bjorkoy et al., 2006) and is widely accepted as an inverse marker of autophagy 
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function. Its accumulation therefore may suggest a reduction in autophagy within these 

tissues.  

 

In formalin fixed paraffin embedded temporal lobe sections of AD cases 

immunoreactivity and localization of common autophagy related proteins were 

assessed. Fewer ATG12 positive neurons were observed in cases with longer disease 

duration. Furthermore this marker was spatially associated with amyloid beta positive 

plaques. These findings were similar for Beclin1, ATG5 and LC3. Together these 

results suggest an increase in autophagy activation in early stages of disease but that 

these diminish as the disease progresses (Ma et al., 2010). In synucleinopathies, a close 

relationship between parkin and alpha synuclein has been shown. 

Immunohistochemistry shows parkin epitopes are present within LBs of sporadic PD, 

inherited PD and DLB. Furthermore parkin shows tight intermolecular association with 

alpha synuclein through Fluorescence resonance energy transfer (FRET) and 

immunoelectron microscopy (Schlossmacher et al., 2002). As the main constituents of 

Lewy bodies, these findings could suggest alpha synuclein accumulation is in some way 

sequestering Parkin; this clearly impacts on other ubiquitin targets, notably 

mitochondrial outer membrane proteins and subsequently the process of mitophagy.  

 

It is clear from just the small number of citations listed above that data exists to support 

alterations in complex I or autophagy levels in the context of PD. Importantly, 

autophagy and complex I function, have not, to the knowledge of this report been 

assessed in relationship to each other in the PD context. This project therefore has two 

unique components. Firstly, a range of autophagy markers are to be studied in parallel 

to assess various points of the autophagy pathway. Secondly all these markers will be 

analysed relevant to complex I levels. This allows several questions to be addressed, 

firstly if and where autophagy perturbations occur in PD tissue and if this is related to 

mitochondrial function.    
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 Aims  8.1.5

This project aimed to assess the relative levels of complex I dysfunction and a range of 

autophagy markers in individual substantia nigra neurons of human upper midbrain 

sections. A dual immunohistochemical protocol was optimized to enable visualisation 

of two markers in the same cells. As chromagens were not sensitive enough for this 

assay, and fluorescence was utilised, a vital step was the development of effective 

autofluorescence quenching. 

1. Optimize visualisation of two markers in parallel within highly auto fluorescent 

samples. 

2. Quantify autophagy marker levels in PD vs. control tissue 

3. Define complex I deficient neurons and assess the relationship between this 

parameter and autophagy markers. 

4. Assess neuronal density in PD vs. control tissue and look for correlations with 

age, autophagy markers and complex I deficiency.      

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      



Chapter Eight             Complex I deficiency and autophagy in human post mortem tissue 

244 

 

 METHODS 8.2

 Post mortem tissue 8.2.1

All human tissue for this study was obtained from the Newcastle Brain Tissue Resource 

(NBTR). Consent for the use of all tissue had been given by the appropriate local 

research ethics committee and conforms to the UK MRC Guidelines on the use of tissue 

in medical research. Serial transverse formalin-fixed, paraffin-embedded sections of 

upper midbrain tissue were cut at a thickness of 5µm from 5 pathologically confirmed 

PD cases and 5 aged controls with no pathological changes (Table 8.1). Patients ranged 

in age from 76-85 (mean 78yo) and included 4 males and 1 female. Control subjects 

ranged in age from 77 to 94 (mean 85yo) and included 4 females and 1 male. 



Table 8.1. Upper midbrain sections used for immunohistochemical study 

Tissue for this study was obtained from 5 pathologically confirmed PD cases (average 78yo) and 5 aged 

controls (average 85yo).  

                                                                                                                              

 Staining Protocol 8.2.2

In order to study two proteins in the same section, a dual immunohistochemical assay 

was performed, staining firstly for an autophagy marker of interest (detailed in 2.3.6) 

followed by C120 to assess mitochondria protein levels. The staining protocol can be 

seen in chapter 2 and briefly consisted of deparaffinisation, rehydration, and antigen 

retrieval to allow access to the antigen. High temperature EDTA antigen retrieval at 

pressure was used for all antibodies. Following a wash in distilled water the sections 

were washed in phosphate buffered saline pH 7.4 (PBS) before being blocked in 1% 
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normal goat serum (NGS). The blocking stage reduced background staining and 

nonspecific binding of proteins as all primary antibodies were produced in goat. All 

primary antibodies were incubated for 90 minutes and following a PBS wash, 

appropriate secondary FITC conjugated antibodies were applied at room temperature for 

60mins. A further PBS wash was carried out over five minutes before application of the 

complex I antibody which was incubated overnight at 4
o
C. Complex 1 20kDa (C120, 

NDUFB8) is an accessory subunit of the mitochondrial membrane respiratory chain 

complex 1, an NADH-ubiqiuinol oxidoreductase responsible for the transfer of 

electrons from NADH to the respiratory chain. Previous studies have shown C120 as a 

reliable marker for complex I deficiency (Keeney et al., 2006a). Complex I expression 

and mitochondria localization can therefore be estimated from the staining pattern of the 

C120 antibody.  

 

The following day, after 3 PBS washes an appropriate TRITC conjugated secondary 

was applied for 60mins at room temperature. A PBS wash was carried out and sections 

were counterstained with 2ug/ml Hoechst for 30 mins. Washes were once again carried 

out. Due to the overwhelming autofluorescence of the tissue type (aggravated by 

paraffin fixation) it was necessary to address this to obtain quantifiable results. As such 

all sections included the addition of a final 10 minute incubation with 70% Sudan black 

ETOH solution, prior to fixation. Following a final series of PBS washes sections were 

mounted in ProLong® Gold antifade  (life technologies) which was allowed to dry 

fully, sealed with nail varnish and stored at -20
o
C until imaging.  

 

 Imaging and quantification 8.2.2.1

Sections were allowed to warm to room temperature to limit condensation on the slides. 

All imaging was carried out on the Axiovison Axioimager (Zeiss). Each time the 

experiment was performed a no stain control was included. Using this it was possible to 

set the microscope’s gain and offset to a point where no staining (and as such 

autofluorescence) could be seen. These settings were then saved for each wavelength 

and used to scan each section. By doing this, any staining observed was certain to be 

true signal. Each section was imaged to achieve a minimum of 15 neurons for analysis 

for each marker/case. This gave a total of 150 neurons/marker for PD and control cases.  

Regions of substantia nigra neurons were first located at x10 magnification on the 
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brightfield channel. Once a region of interest had been found x40 images were captured 

for all four channels (FITC, TRITC, DAPI and Brightfield).  Quantification of intensity 

of markers was achieved through densitometry (Axiovision). Individual neurons 

containing neuromelanin were identified on brightfield channels and checked to contain 

a nucleus on the appropriate channel. Once confirmed, outlines were traced for these 

individual neurons and copy and pasted onto the remaining channels to ensure the area 

of neuron remained the same. The intensity of each marker (autophagy marker and 

C120) was recorded and data was analysed as described below.    

 

 Statistical analysis 8.2.2.2

Several parameters were to be assessed for this project, both singularly and in 

conjunction with other markers. For this reason the data had to be looked at objectively 

for each analysis. Importantly, despite over 150 data points being collected, each single 

neuron was not from an independent control/PD case as such this had to be considered 

during analysis. Levels of each marker in relation to C120 levels were assessed for each 

case and then tested for statistical significance between control and PD cases. To 

analyse marker levels for complex I deficient neurons, these were first defined. The 

lowest 10% of C120 staining was established for each ATG marker and the 

corresponding ATG marker levels were recorded. This methodology has previously 

been reported in Reeve 2012 et al. To analyse differences, data was collated into all 

non-deficient vs. deficient, PD deficient vs. non deficient and control deficient vs. non 

deficient. Significance was assessed through Student T or Mann Whitney tests 

depending on the distribution of data, and defined as P>0.05. Each marker was also 

presented as a scatter graph correlated against complex I levels with PD and control 

cases plotted on the same axis. Importantly, as the data was assessed through a general 

linear model, transformation of the data was often necessary. The form this 

transformation took was established through a box cox transformation and is displayed 

below in Table 8.2. Statistical significance for the difference in gradient and intercept 

between control and PD cases were recorded. 
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Table 8.2. Box cox transformations of data 

Data was transformed to allow for analysis of significance through box cox. 

 

 

 Cresyl fast violet (CFV) stain  8.2.3

To establish the density of nigral neurons in PD patients and aged controls, two-

dimensional neuronal cell counts were performed as described previously (Lax et al., 

2012).  For each case, two of the 5µm sections as described in Table 8.1 were stained 

with CFV to allow identification of the SN neuronal population.  An outline of the SN 

was created at low magnification (2x), followed by a meander scan which was 

performed at a higher magnification (40x). This enabled a measurement of absolute cell 

number from the entire region of interest. Cells were only counted if they contained a 

defined nucleus, nucleolus and neuromelanin, this excluded neuromelanin 

accumulations commonly observed with age and/or non-dopaminergic neurons. Cell 

density was then calculated from the cell counts and substantia nigra area (mm
2
) and 

averaged for the two sections. 

 

 Statistical analysis 8.2.3.1

Cell densities in Parkinson’s disease and control tissue were compared for differences 

through Student t/ Mann Whitney tests, dependent on distribution of data. Further 

analysis of the data was carried out in relation to patient age. From these data, PD cases 

where cell densities were statistically lower than controls were extracted and compared 

against controls and a PD case where cell density was retained.  
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 RESULTS 8.3

 Correlation of autophagy markers to levels of complex I expression in single 8.3.1

neurons 

Dual immunohistochemistry was performed to detect immunoreactivity of C120 and 

specific autophagy markers in parallel, within individual substantia nigra neurons. 

Neurons were sampled from 5 PD cases and 5 aged controls. Each autophagy marker 

stain was repeated on different days to control for variability in experimental conditions. 

At least 15 neurons were assessed from each case for each marker. The graphs that 

follow show autophagy marker densities plotted against their corresponding C120 levels 

in individual SN neurons (figures 1-6). Figure 1 shows a typical staining pattern in 

C120 deficient and non-deficient cells. All autophagy marker levels were shown to be 

positively correlated to C120 levels. Thus , in cells displaying lower complex I levels, 

there was a reduction in all autophagy markers (P<0.001) as shown in Figure 8.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. Reduced autophagy markers in C120 deficient cells. 

All autophagy markers (in this case ATG5) showed reduced expression in C120 deficient cells (right hand 

cell shown with arrow). Small white stars denote the nuclei of the two cells. 
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P62 recognizes and tags cellular waste, which is then degraded through autophagy. 

These studies revealed no significant differences between the levels of P62 in neurons 

of PD patients and control tissue. However, when analysed against C120 levels, a strong 

correlation was observed (P<0.001), with lower C120 corresponding to decreased P62 

levels (Figure 8.2). This is interesting in the context of previous work carried out within 

the Mitochondrial Research group as it would appear the accumulation of P62 to 

aggregates actually requires functional complex I. This has previously been shown with 

regards to Lewy body accumulation where Lewy Bodies are found in cells that have 

retained complex I function (Reeve et al., 2012). Similarly, previous work by Anglade 

et al showed Lewy Body accumulation occurs in cells devoid of autophagic 

characteristics (Anglade et al., 1997). Taken together these data suggest that maintained 

complex I function allows for Lewy body aggregation and the targeting of cellular 

waste through P62 in an environment where autophagy markers are not observed. This 

may be due to autophagy retaining its function within these cells and subsequently 

autophagic flux continuing at a rate that means markers are transient. Although P62 is 

often taken as an inverse marker of autophagy function, within these tissue studies it 

would appear that complex I dysfunction may add further complexity to the 

relationship. No significant differences were seen in the rate (gradient and intercept) 

between PD and control P62 accumulation (P=0.4939 and 0.0924 respectively).  

 

All other autophagy related markers showed increases correlated to increases in C120 

levels, further verifying that autophagy is decreased in complex I deficient cells 

(Figures 8.3-8.8). Again, no statistical significance was identified for rates of 

accumulation in relation to C120 levels between PD and control tissue for LC3 

(gradient P=0.134, Y-Intercept P=0.7308), Parkin (gradient P=0.1403, Y-Intercept 

P=0.5314), ATG5 (gradient P=0.3083, Y-Intercept P=0.1199) or Beclin 1 (gradient 

P=0.7756, Y-Intercept P=0.4151). Interestingly a significantly different rate of 

LAMP2A accumulation between PD and control cases was observed (gradient 

P=0.0081) with greater LAMP2A immunoreactivity in SNc neurons of PD tissue with 

equivalent C120 levels to that of controls. Taken another way this result shows that 

there is statistically more LAMP2A in SNc within PD cases compared to controls. This 

agrees with previous ultrastructure observations where greater accumulation of 

lysosomes is observed in PD cases.      
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Figure 8.2. Relationship between P62 and C120 levels in PD and control tissue 

A. Raw data of P62 and C120 densitometry levels in individual SN neurons (n=150). A strong positive 

relationship was observed between P62 and C120 accumulation in both PD and control(CA) tissue 

(P<0.001). The rate of P62 accumulation did not alter significantly between PD and control cases 

(gradient P=0.4939, Y-intercept P=0.0924).B. Example images of reduced P62 in C120 deficient neuron, 

Top panel shows combined P62 (green), C120 (red) and nuclear (blue) stains. 

B 

A 
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Figure 8.3. Relationship between Parkin and C120 levels in PD and control tissue 

Raw data of parkin and C120 densitometry levels in individual SN neurons (n=150). A strong positive 

relationship was observed between parkin and C120 accumulation in both PD and control (CA) tissue 

(P<0.001). The rate of parkin accumulation did not alter significantly between PD and control cases 

(gradient P=0.1403, Y-intercept P=0.5314). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.4. Relationship between LC3 and C120 levels in PD and control tissue 

 

Raw data of LC3 and C120 densitometry levels in individual SN neurons (n=150). A strong positive 

relationship was observed between LC3 and C120 accumulation in both PD and control (CA) tissue 

(P<0.001). The rate of LC3 accumulation did not alter significantly between PD and control cases 

(gradient P=0.1364, Y-intercept P=0.7308). 
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Figure 8.5. Relationship between ATG5 and C120 levels in PD and control tissue 

 

Raw data of ATG5 and C120 densitometry levels in individual SN neurons (n=150). A strong positive 

relationship was observed between ATG5 and C120 accumulation in both PD and control (CA) tissue 

(P<0.001). The rate of ATG5 accumulation did not alter significantly between PD and control cases 

(gradient P=0.3083, Y-intercept P=0.1199). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.6. Relationship between Bec1 and C120 levels in PD and control tissue 

Raw data of Bec1 and C120 densitometry levels in individual SN neurons (n=150). A strong positive 

relationship was observed between Bec1 and C120 accumulation in both PD and control (CA) tissue 

(P<0.001). The rate of Bec1 accumulation did not alter significantly between PD and control cases 

(gradient P=0.7756, Y-intercept P=0.4151).
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Figure 8.7.Beclin 1 In C120 deficient cells 

Middle image shows C120 deficient and non-deficient neurons in situ. The deficient neuron is enlarged to 

the left and the non-deficient is shown on the right. Nuclear (blue), C120 (red) and Beclin1 (green) 

staining is shown for both. C120 deficient neurons showed a reduction in Beclin 1 staining; this was not 

observed in C120 normal cells. 
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Figure 8.8. Relationship between LAMP2A and C120 levels in PD and control tissue 

Raw data of Lamp and C120 densitometry levels in individual SN neurons (n=150). A strong positive 

relationship was observed between lamp and C120 accumulation in both PD and control tissue 

(P<0.001). The rate of Lamp accumulation was significantly different between PD and control cases 

(gradient P=0.0081), with greater LAMP2A at equivalent C120 levels in PD vs. controls.  
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 Autophagy markers in neurons defined as being complex I deficient  8.3.2

 

The data presented previously showed a strong correlation between reduced complex I 

levels (C120) and reduced autophagy markers. To further analyze this complex I 

deficient cells were defined (deficient cells were defined as those falling into the lowest 

10% of densitometry values for each marker). 

 

C120 deficient cells for each autophagy marker were then grouped into combined 

(figure 8), control (figure 9), and PD (figure 10). Interestingly differences were seen for 

different groups in some of the markers (Table 8.3).  P62 was found to not be 

significantly reduced in complex I deficient cells for combined data (P=0.532), controls 

only (P=0.1237) and PD only (P=0.2371). For combined control and PD cases (Figure 

8.9) all other markers showed significant reduction in the complex I deficient cells, 

(Beclin 1, P<0.0001, LC3 P=0.001, Parkin P=0.0036, LAMP2A P<0.000 and ATG5 

P<0.0001). Interestingly when these were divided into PD (Figure 8.11) and controls 

only (Figure 8.10),  LC3, LAMP2A and ATG5 remained significant for both. For 

Beclin 1 differences between deficient and non-deficient cells was not significant in 

controls (P=0.1231) but was strongly significant in PD cells (P<0.0001). Similarly 

Parkin staining in deficient and non-deficient cells was not significant for control 

neurons (P=7.122) but significant within PD cells (P=0.0271). 

 

 

 

 

 

 

 

 

Table 8.3. P values of correlation between autophagy markers and C120 levels. 

All combined autophagy markers with the exception of P62 showed a strong correlation with C120 levels. 

When these were further divided into controls and PD tissue controls were no longer significant for Bec1 

and Parkin.   
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Figure 8.9. Autophagy markers in deficient and non-deficient C120 cells, combined. 

All autophagy markers were significantly lower in C120 deficient cells, with the exception of P62 which 

still showed a strong trend. 
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Figure 8.10. Autophagy markers in deficient and non-deficient C120 cells, controls. 

LC3, LAMP2A and ATG5 were significantly lower in C120 deficient cells for control tissue. Lack of 

significance in other markers may represent too small n value in deficient cells category.  

 

 

 



Chapter Eight             Complex I deficiency and autophagy in human post mortem tissue 

258 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.11. Autophagy markers in deficient and non-deficient C120 cells, PD tissue. 

All autophagy markers were significantly lower in C120 deficient cells, with the exception of P62 which 

still showed a strong trend. 
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 Neuronal counts 8.3.3

 

To demonstrate cell density was altered in the PD cases compared to age matched 

controls, and to what extent this may be impacting on the immunohistochemistry 

results, CFV staining was undertaken to gauge substantia nigra neuronal densities/mm
2
 

in each of the sections. The results of this can be seen below in Table 8.4. These 

neuronal density measurements were then plotted against age to see if any correlation 

existed in our data set (Figure 8.12). As expected the control cases displayed mild 

neuronal density reduction in association with increasing age. The PD cases showed far 

greater neuronal loss with the exception of one case- 04/92, who interestingly also lived 

far longer than other PD cases. With this in mind overall neuronal densities were 

compared for all PD cases vs. combined controls. Although a trend was observed 

(Figure 8.12.b) this difference was not significant (P=0.1508) until the outlier, case 

04/92, was removed (Figure 8.12.C) revealing a significantly reduced overall SNc 

density in the remaining PD cases vs. controls (P=0.0159).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.4. Substantia Nigra Cell densities 

Area, cell counts and densities for all tissue cases, listed in order of blinded counts. Grey bars highlight 

PD cases. 
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Figure 8.12. SNc Densities 

A. SNc densities in relation to age for control (green) and PD cases (blue). B. Cell densities for PD and 

control tissue- raw data (P=0.1508) C. Cell densities for PD and control tissue- outlier removed 

(P=0.0159) 

 Autophagy marker evaluation following the subtraction the outlying PD 8.3.4

case in terms of cell density 

Following on from cell density studies it was deemed appropriate to further investigate 

the autophagy markers within the one PD case that retained its cell density. For this 

purpose all control cases were grouped together and compared to the outlier and 

remaining grouped PD cases. The results for each marker can be seen below in Figure 

8.13. As shown previously, cell density was increased in controls vs. PD cases with the 

exception of case 04/92 which remained within the control range of densities. 

Interestingly, autophagy markers in this case were elevated above all other PD cases and 

either fell within the control range of values (such as the case for Beclin 1, Parkin and 

ATG5) or exceeded control values, (P62, LC3 and LAMP2A). These results would 

imply that retained autophagy function in this case may be aiding cell survival.  

A 

B 

C B 
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Figure 8.13. Cell densities and autophagy levels in combined controls, PD tissue and single PD 

outlier 

The cell density of one PD case remained significantly higher than all other PD patients. For this reason 

time was spent analysing the autophagy markers for this case compared to remaining PD cases and 

controls. Within this case P62, LC3 and Lamp2A were significantly elevated above control and PD. 

Beclin1, Parkin and ATG5 were significantly higher than PD cases but fell within the range of control 

values.  
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 Impact on autophagy marker and C120 relationship 8.3.4.1

 

Due to the resounding effect the individual case was having on the data, the decision 

was made to remove this outlier and reanalyze the data. Several marked differences 

were observed. Firstly box cox transformation revealed different data transformations 

were required prior to statistical analysis as shown in Table 8.5. 

Table 8.5. Box cox transformations following removal of outlier. 

 

Following removal of case 04/92 the data was once again analysed for differences 

between gradients of autophagy markers between controls and the remaining PD cases. 

Interestingly, the accumulation of P62, Parkin and ATG5 now showed significant 

differences with all three displaying lower levels of immunoreactivity overall in PD 

cases. LAMP2A was no longer significant between the two groups suggesting the high 

levels of this antigen in case 04/92 were causing a skew of the trend. 

 

Table 8.6. P values for gradient and intercept of PD vs. control cases before and after removal of 

outlier 
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 DISCUSSION 8.4

 Summary of findings 8.4.1

This body of work set out to measure the expression of key autophagy related proteins 

in individual nigral neurons in PD patients, and correlate these to C120 levels. Most 

significantly and unique to this study I have shown autophagy markers are directly 

related to C120 expression. Specifically, a range of autophagy markers show expression 

levels that directly correlate to C120 expression levels i.e. low levels of C120 also 

display low levels of any one of the six tested autophagy markers. This is significant as 

upon first assessment one would expect complex I deficient cells (deemed 

mitochondrial deficient cells), to have their mitochondrial populations targeted for 

mitophagy and subsequently an increase in these markers. Clearly however,the 

relationship is more complex than this with C120 cells containing lower autophagy 

markers. This may imply that mitochondrial function is actually required for autophagic 

function.  

 

These findings compliment observations in the cell models described in previous 

chapters.  In complex I deficient cultured cells a marked reduction in LC3, Beclin 1 and 

ATG 5 were observed in undifferentiated stem cells. In neuronal cultures derived from 

these cells, differences in localization of these markers was also observed. Conversely, 

P62 data from the cell model showed a dramatic accumulation in the complex I 

deficient cells, this was not the case in these tissue studies. The rate of P62 

accumulation correlated with increases in C120 levels, several experimental differences 

could explain this finding and other differences between tissue and cell data. Firstly, 

tissue observations were not performed at a level where processes could be analysed, as 

such data generated came largely from cell bodies excluding the possible accumulations 

at synapses. Previous tissue studies have shown that complex I function is required for 

LB accumulation (Reeve et al., 2012) and LB pathology is often seen in cells devoid of 

autophagy markers (Anglade et al., 1997). This may be relevant with relation to my P62 

data, a marker which aggregates to cellular waste, the lower levels of P62 in CI 

deficient cells in tissue may suggest CI function is required for its accumulation as 

would appear is the case for the accumulation of alpha synuclein. Why this isn’t 

observed in my cell culture studies through immunoblot may be due to the localization 
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of the protein, with overall levels increased but not in aggregations that would be picked 

up by IHC. 

 

Interestingly when I defined cells that were deficient for autophagy markers I 

established some notable correlations. Firstly when all cells (PD and control) were 

combined with respect to deficient and non-deficient CI cells, all markers, with the 

exception of P62, were significantly reduced in deficient cells. The reason for no 

significant alterations in P62 levels may be due to a necessity for retained complex I 

function to mobilize P62 partnered with an accumulation of aggregates, balancing out 

over/under expression. When these two specifics were further divided in PD vs. control 

cases. P62, Beclin1 and Parkin levels in deficient cells were no longer significant in 

controls but retained significance in PD cases, implying that complex I deficiency and 

its associated autophagy reduction may be more marked in this condition.  

 

The experiments detailed above show that in postmortem tissue samples, individual 

substantia nigra neurons show variable patterns of C120 and autophagy marker staining. 

This is reflective of the variation within a population and further highlights multiple 

contributing factors in the development of PD. It is important to consider that the 

underlying cause of these idiopathic PD cases is not known and therefore variation in 

the results is to be expected as it will likely stem from different initial pathogenic 

factors.  This said markers generally fell within a control or PD range and certain 

noticeable differences were observed. Cell density in the PD cases was significantly 

reduced compared to controls. This was also shown to be correlated to age. Importantly, 

this experiment highlighted one PD case which was extremely different from other PD 

cases, with high remaining cell density that was at the upper levels of control data. 

When we further analysed this section with regards to C120 and autophagy marker 

levels, it was found that this case that retained high cell density had high levels of C120 

and autophagy markers in their surviving neurons. This implies that cell density is 

correlated to retained complex I function and higher autophagy levels. There were few 

significant differences observed in this study between control and PD cases for C120 

levels and autophagy markers, this may reflect the relatively small number of cases 

used, but it is also important to note that considerable variation between PD cases and 

within control cases was seen, meaning we possibly wouldn’t expect to see significant 

differences between these two groups, which in themselves are quite diverse. 
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 Evidence for altered autophagy in PD tissue 8.4.2

This study did not show dramatic changes in autophagy markers in PD vs control tissue. 

What was shown was that autophagy markers are lower in cells with complex I 

deficiency. Previous studies, however, have highlighted changes in levels of autophagy 

in neurodegenerative diseases; different experimental approaches are likely behind these 

differences. From earlier electron microscopy assessments showing characteristics of 

autophagic degeneration in PD patients SN neurons to specific autophagy gene ablation 

and expression studies revealing altered levels of key proteins correspond to altered 

disease phenotypes. Mice deficient for just one of the autophagy related proteins 

develop neurodegeneration. Deficiency in ATG7 or PD associated PARK9 cause PD 

like neurodegeneration in vitro and vivo (Decressac et al., 2013). The reasons for 

changes in this crucial process are not fully clear but various reasons may offer 

explanation. Many etiological factors associated with PD reduce autophagic activity. 

Importantly, it is worth noting that a reduction in autophagy activity may not initially 

reveal itself through reduced levels of autophagy markers. Indeed increased LC3 

staining and lysosomal accumulations are observed commonly in PD, it is therefore 

likely that autophagic flux is compromised in this disease.  

 

Alpha synuclein, proposed to have a role in synaptic plasticity and the main component 

of intracellular inclusions in PD has been shown to induce cell toxicity at high levels. It 

has also been shown that alpha synuclein may interfere with autophagy mechanisms and 

that it can be degraded by lysosomes (Meredith et al., 2002). Normal degradation of 

wildtype alpha synuclein occurs via chaperone mediated autophagy (CMA). Mutant 

forms of the protein have been shown to bind LAMP2 with higher affinity than its 

wildtype counterpart causing a blockage of their own and other substrates degradation 

by this method (Cuervo et al., 2004).  Work by Spencer et al showed that over 

expression of alpha synuclein in both neuronal cultures and transgenic mice led to 

dysfunctional autophagy and subsequent neurodegeneration. The consequence of this is 

a disruption in transportation to the lysosomal lumen and consequently a block in 

chaperone mediated autophagy. Interestingly, this could be reversed by Beclin1 

(Spencer et al., 2009a). 
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The role of alpha synuclein may extend beyond that of CMA effects, as the clearance of 

the protein has been shown to be mediated by macro as well as chaperone mediated 

autophagy (Webb et al., 2003). Evidence shows mTOR was more abundant in neurons 

displaying alpha synuclein accumulation in DLB brains and ultra-structural analysis 

went on to show abnormal and increased autophagosomes. In PC12 cells (derived from 

a pheochromocytoma of the rat adrenal medulla) transfected with mutant alpha 

synuclein, treated with wortmannin an autophagy inhibitor an increase in synuclein 

accumulation and cell death is observed (Liu et al., 2013). PD like neurodegenerative 

changes are also associated with excess cellular levels of alpha synuclein alongside a 

decline in markers of lysosomal function and retention of Transcription factor EB 

(TFEB) a major transcriptional regulator of autophagy lysosomal pathway. Furthermore 

in a rat model and human PD midbrain these changes could be reversed by TFEB 

overexpression (Decressac et al., 2013). 

 

Further evidence showing a role for autophagy in PD development stem from the effect 

certain neurotoxins, shown to invoke PD like symptoms in models of the disease, have 

upon the process. When animals are exposed to MPTP autophagic dysfunction is 

observed, associated with alterations in signal transduction pathways (Zhu et al., 2007). 

In an MPTP mouse model of Parkinson’s disease treatment with rapamycin (an 

autophagy stimulating antibiotic) is shown to protect against dopaminergic loss and 

ameliorate the loss of the dopamine metabolite DOPAC (Liu et al., 2013).  

 

 

Finally, lysosome dysfunction may play a key role in Parkinson’s development as 

indicated by a susceptibility to alpha synuclein aggregation and parkinsonism in some 

lysosomal storage disorders (Raja et al., 2007). In humans links between lysosomal 

storage disorders and polymorphisms in LAMP2A and PD have been drawn (Mazzulli 

et al., 2011) (Pang et al., 2012; Winder-Rhodes et al., 2012). Changes in the autophagy 

pathway have previously been linked to advancing age.  In animal models for example 

rat kidneys, levels of ATG7 and LC3 are down regulated. Conversely the levels of p62 

and poly ubiquitin aggregates increases. Associated with swelling and disintegration of 

mitochondrial cristae.  
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 Autophagy is compromised in complex I deficient cells 8.4.3

In this study I have shown a strong correlation between complex I deficiency and a 

reduction in several autophagy markers. This is interesting for several reasons. Firstly it 

goes against the idea that dysfunctional mitochondria are always isolated and selected 

for removal through autophagy. In neurodegenerative disorders, the loss of specific 

neuronal populations is more rapid than that seen in ‘healthy’ ageing. In line with this, 

studies of the density of SN neurons in this study showed a significant reduction in PD 

cases compared to aged controls. Interestingly within the PD cases one outlier that 

retained a high neuronal density was over a decade older at time of death than other 

patients. This is interesting as it implies that certain individuals with confirmed PD fair 

better in terms of cell loss and disease progression. 

 

 Implications  8.4.4

Autophagy is not simply important as a waste disposal mechanism, but rather a 

recycling centre which enables the cell to resupply depleted nutrients in times of 

starvation and to remove damaged protein and organelles. Any dysfunction therefore 

impacts in numerous ways, through accumulation of dysfunction, damage and reduction 

in the pool of available macromolecules. Other less well reported impacts may also be 

important. Previous work has shown key autophagy proteins to be localized to 

mitochondria and conversely several mitochondrial proteins have been shown to 

positively regulate autophagy. mTOR, the main regulator of autophagy has also been 

shown to respond to a number of cellular processes relating to mitochondria for 

example ROS and ATP levels. 

 

The processes which initiate autophagy have begun to be elucidated from a recent 

increase in research into this area, although proteomic studies have still failed to show a 

clear signature for the autophagosomal membrane origin (Overbye et al., 2007). Recent 

work explored the role of mitochondria in formation of the autophagosomal membrane 

in times of starvation (Hailey et al., 2010). The work demonstrated that the outer 

membrane of mitochondria participates in autophagosomal biogenesis. The autophagy 

marker Atg5 was found to localize to puncta on the outer mitochondrial membrane 

which co-localised with LC3.  Furthermore photo bleaching revealed that membranes of 
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mitochondria and autophagosomes are transiently shared. Although previous studies 

have interpreted this membrane sharing as mitophagy Hailey and colleagues 

demonstrated a diffusion barrier actually prevents delivery of mitochondrial proteins but 

NOT lipids. Suggesting this is not mitophagy but mitochondria contributing membranes 

to autophagosomes (Hailey et al.). Taken alongside the results of this study it could be 

that the decrease in mitochondrial proteins and subsequent mitochondrial dysfunction 

means these organelles are no longer able to contribute to the autophagosomal 

membrane thus explaining the observed decrease in markers of autophagy and why 

these damaged mitochondria are not degraded. 

The true importance of autophagy may extend beyond its ability to recycle damaged 

cellular components but also serve as a means of transportation of mitochondria-derived 

factors and lipids. Autophagy has been identified as allowing the movement of lipids 

between disconnected cellular components. In contributing to the membrane healthy 

mitochondria may also play a role in lipid homeostasis. The dysfunctional autophagy 

seen in this study may also result in stunted transport of mitochondria derived factors 

and the transport of lipids, which may also contribute to cellular downfall.      

 

 

 Future work 8.4.5

 

This work will continue to assess further correlations of staining patterns and tissue 

characteristics utilizing more cases. Exploration of the marker levels in relation to Lewy 

body pathology would assist in understanding which neurons survive and how this 

relates to autophagy changes. This could be achieved through defining a level of 

immunoreactivity for each marker as a threshold and grading Lewy body pathology in 

neurons above and below this level.  Furthermore it would be interesting to look at 

information about disease progression and see how this correlates with staining patterns. 

Analyzing length of disease and distributions of complex I and autophagy alterations 

may reveal a timeline of changes in the pathology of PD.  

 

Further scrutiny of the images gathered for this work could also be valuable, for 

example looking at the distribution and localization of markers, possibly colocalizaiton 
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of autophagy markers and mitochondrial stains, for example Parkin and C120 may 

provide information on how specifically, mitophagy is altered in PD.  
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 Chapter 9. Final Discussion 9
 

 

 INTRODUCTION 9.1

Parkinson’s disease is the most common neurodegenerative disorder. Despite advances 

in understanding of the pathophysiology that leads to many of the debilitating 

symptoms associated with this disorder, the exact mechanism behind how and when cell 

loss begins to occur above that of ‘normal’ ageing is unclear. Mitochondrial 

dysfunction, notably through complex I of the respiratory chain have been strongly 

linked to the disorder. Evidence from familial studies further links the organelles as well 

as highlighting the process of mitophagy as contributing to the disease. Increasingly, 

research is focusing on how these processes may act alone or in concert with other 

factors (environment, toxic shock, genetics etc) to bring about en masse cellular demise. 

Mitochondria are irrevocably linked to autophagy through the process of mitophagy, the 

provision of energy and through their dynamics. The synergistic impact of complex I 

dysfunction and alterations to the autophagy pathway have not been investigated. The 

data contained in this thesis aimed to study how complex I dysfunction interacts with 

the process of autophagy and establish possible mechanisms for this to occur. 

 

 OVERVIEW OF FINDINGS 9.2

 

Through parallel studies in complex I deficient cybrid cell lines and human upper 

midbrain sections, this study has shown complex I deficiency is indeed associated with 

gross alterations to the autophagy pathway. Several findings in these two models 

supported one another. In individual substantia nigra neurons of the upper midbrain 

sections we found a direct relationship between complex I expression and autophagy 

markers, implying in complex I deficiency we also see a reduction of autophagy. This 

was also true in the ES cybrid cell lines where the complex I mutants routinely 

displayed far lower levels of autophagy markers through immunocytochemistry and 

immunoblotting. Interestingly, when differentiated into neurons levels of autophagy 

markers in complex I cells were altered (but not always lowered) but more striking was 

the impact on localization of several autophagy markers. Why we did not observe a 

lowered expression of these markers as seen in the tissue samples could be down to 
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numerous explanations. Firstly the severity of the complex I deficiency may be different 

within the two models, this study alone has discussed how increasing severity does not 

always invoke a simple linear response. For example complex I deficiency in patient 

fibroblasts is known in some cases to cause elongation of the mt-network followed by 

fragmentation. Secondly, the cells used in this study were differentiated into a mixed 

neuronal lineage and as such, large proportions of the observations would not have been 

within dopaminergic neurons. Finally, consideration must be given to the impact of the 

cellular milieu and also the accumulation of age related changes within the tissue which 

are likely to impact on results through accumulation of age related pigments such as 

neuromelanin and lipofusicin alongside the cross talk between numerous scaffold and 

assistant cell types. A marker that showed particularly interesting results in this study 

was P62. Immunoblot of complex I deficient cybrid cell lines showed a clear repeatable 

increase of P62 in complex I deficient cells. This can be explained through the 

accumulation of cellular aggregates tagged with this protein in these energetically 

compromised cell lines. Interestingly, the reverse was observed in the complex I 

deficient cells defined within the human upper midbrain sections. As with other markers 

within this experimental method, a decrease of P62 was observed in those cells with 

complex I deficiency. This is interesting in the context of previous work within the 

group where mitochondrial function is required for the accumulation of alpha synuclein 

into Lewy Bodies. These results may show that mitochondrial function is also required 

for P62 tagging and accumulation to protein aggregates. Alternatively, mitochondrial 

function may solely be required for Lewy body formation and the increase in P62 is a 

side effect of greater protein inclusions within which it is sequestered. The latter may be 

more tempting considering in the cell model, complex I dysfunction alone is capable of 

causing an increase in P62, why this is so may be P62 accumulating to oxidatively 

damaged cellular components as the complex I cybrids have been shown to cause an 

increase in ROS. 

 

Mitochondrial dynamics were highlighted as linking complex I deficiency and changes 

to autophagy in the cybrid cell lines. An increase in mt-network was observed in the 

complex I cells compared to controls. Furthermore these static morphological changes 

carried through to dynamic studies in neurons derived from the cells with complex I 

deficiency, with larger and slower organelles observed in these neurites. These data also 

reflect previous observations that the complex I cybrids are associated with an increased 
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membrane potential. Results from this set of work imply that this may be an adaptive 

response to the energy deficit seen within these cells. With high membrane potential 

coupled with fusion of the network, an adaptation that protects from mitophagic 

degradation and thus explain the observed reduction in autophagic markers. Routine 

imaging observations in this study saw decreases in autophagosomes in parallel to 

increased mitochondrial network complexity in the ES cells and control fibroblasts.  

 

Studies within cell lines derived from patients with defined complex I deficiency 

highlight complex I dysfunction is capable of causing mitochondrial morphological 

differences in fibroblast cells as well as the ES lines. Interestingly two novel mutations 

in mitochondrial proteins outside of complex I also revealed dramatic changes to the 

mitochondrial network. These alongside the nuclear encoded complex I mutations 

showed a fragmentation of the network. It was only within mitochondrial encoded 

mutants where we observed elongation of the network which is interesting considering 

our cybrid line where we also saw increased complexity was also mitochondrial 

encoded. Whether this is site of mutation, severity dependent or both will require the 

analysis of greater numbers of cell lines with increased biochemical data. 

 

 RELEVANCE TO PARKINSON’S DISEASE 9.3

Complex I is the target for many pharmacological reagents that are used to generate 

animal models of the Parkinson’s Disease. This said no ‘true’ animal model is available 

that recapitulates all of the human features of the disease. Taken together, this implies 

that complex I dysfunction alone is not responsible for Parkinson’s disease but is a 

factor that when combined with others can initiate the cell loss observed. These studies 

suggest that complex I’s impact on mitochondrial dynamics through its dysfunction and 

the impact this then has on autophagic events within a cell may be one of the pathogenic 

routes through which cells are lost rapidly causing PD. This suggests that modulation of 

mitochondrial turnover or dynamics may represent a real therapeutic target in the 

disorder. Changes in these pathways may be felt with greater bias in the substantia nigra 

neurons of the upper midbrain for several reasons. Firstly, as a highly energy 

demanding area, mitochondria in their role as energy providers may be more crucial 

here than other areas. Furthermore, not only the functioning of mitochondria but also 

correct transportation will be required within these cells as areas of high bioenergetic 
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demand are often transient and/or distal from sites of biogenesis. Finally the link 

between calcium and the substantia nigra neurons highlight this region as highly 

vulnerable to mitochondrial dysfunction. As calcium sinks mitochondria may be crucial 

to these cells due to their Ca
2
 pacemaking capabilities. In efficient transportation of 

mitochondria in this cell type therefore may be felt prior to others in response to 

diminished energy provision through imbalance in intracellular calcium levels. This 

phenomena has been seen in SH-SY5Y cells, where chronic  reduction in complex I 

function much like that seen in Parkinson’s disease and also our cybrid cell lines, show 

alterations in calcium signaling (Sherer et al 2001) that led to increased susceptibility to 

calcium overloading, and cell death. Furthermore, in cells transformed by mitochondria 

from individuals with Parkinson’s disease calcium homeostasis alters, with these cells 

showing reduced mitochondrial calcium stores.  

 

Alongside the aforementioned bioenergetics and homeostatic controls the impact of 

complex I on autophagy has been highlighted in this study and is of clear relevance in 

PD. A reduction in autophagy in relation to complex I dysfunction may further 

compromise the mitochondrial population. Alongside this its role in clearance of other 

cellular components, notably  alpha synuclein aggregates in PD (which are known to 

not be able to be degraded by the UPS or CMA upon aggregation and thus rely on 

macroautophagy) are compromised. Modulating mitochondrial dynamics and/or the 

autophagy pathway may well serve as a potential therapy in Parkinson’s disease. It is 

important to note however that simply up regulating autophagy to compensate in these 

disorders is likely to be insufficient given the various pathways that act prior to and 

downstream of autophagy.  A combined approach addressing dynamics alongside 

autophagy may serve to alleviate cell loss better than either alone. 

 

 FINAL CONCLUSIONS 9.4

 

Previous work has displayed respiratory complexes show changes in activity with age 

(Morel et al., 1995), this is most noteworthy in complex I where age related activity 

decrease is most prominent. Changes in complex I, are likely to have a profound impact 

on morphology, through changes in ATP levels (Meeusen et al., 2004), lipid 

peroxidation and fluctuations in the production of free radicals, which are able to 
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damage and potentially act as signals which directly regulate mitochondrial dynamics 

(Koopman et al., 2005). CI induced morphological changes can have numerous effects 

and dynamics rely on changes in membrane potential to act as cues and allow 

mechanistic reformation. Subtle changes may be even more significant in neurons when 

we consider directionality is strongly governed by the potential of individual organelles 

with 90% of high potential mitochondria moving towards the growth cone and 80% low 

potential moved towards the cell body (Miller and Sheetz, 2004), and potentiality is 

varied in dendrites and axons, highlighting clear membrane dependent functioning 

(Overly et al., 1996). In parallel, morphological changes may cause physical barriers to 

cellular transport and affect autophagy as discussed above 

 

Much experimental evidence points towards a more prominent role for complex I 

dysfunction and the associated mitochondrial morphological changes in the progression 

of PD. This dysfunction may occur through many routes, which may go some way to 

explaining the discrepancy of findings in different experimental models. Conversely, 

mitochondrial morphology can impact on CI and it is likely that changes in either 

quickly become self-perpetuating. The fact that many of the morphological effects in 

experimental models occur outside of basal conditions, i.e. when cells become stressed, 

further highlights the likeliness of a multifactorial model of PD. One challenge for 

future research will be deciphering complex pathways that will separate cause from 

effect.  Distinguishing distinct morphological changes from primary mitochondrial 

dysfunction is difficult. Multiple conditions cause alterations in the movement and form 

of mitochondria and subsequently targeting dynamics may be a limited therapeutic in 

certain conditions. 

 

Regardless of the timing changes in motility arise, their contribution to homeostatic loss 

and cell death is unquestionable and is likely to accelerate collapse of the cellular 

environment in concert with other direct and indirect mitochondrial factors. In line with 

this, groups have demonstrated that neurons with prior stress are more susceptible to 

changes in mitochondrial motility. Models of neurodegenerative disease already exist in 

which mitochondrial phenotype can be rescued by correcting motility (Cassidy-Stone et 

al., 2008).  For this reason perusing modulators of mitochondrial motility may be 

valuable to assist restoration of the cellular environment and ultimately prevent 

neurodegeneration. 
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