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Abstract.  

 

Migratory species undertake prolonged seasonal journeys; monitoring these 

movements is challenging but can sometimes be achieved by observations that 

taken locally and, ideally, using remote methods.  

Amongst the best known examples of migrating fish in Europe, are Atlantic 

salmon (Salmo salar) and sea trout (Salmo trutta) that migrate between river 

and seawater. Characteristics of habitat suitability, feeding opportunities, 

predation, as well as salmonid sensitivity and needs, vary throughout successive 

stages of their anadromous life cycle.  

Since the marine stage is the longest but is also challenging to monitor, in-river 

fish counters are of increasing importance in understanding salmonid patterns 

in abundance. The original contribution of this thesis lies in the use of 

modelling techniques to investigate salmonid migration, based on temporal 

observations produced by an electronic fish counter triggered by salmonid 

passage, as they return to spawn in the River Tyne.  

Small scale observation revealed seasonal differences; aggregation behaviour 

intensified during the middle of the migration season, and explanatory 

covariates varied in both their effect size and relevance to salmonid abundance. 

At the population scale, migration was highly driven by annual periodicity, 

abundance increased with river temperature and there was an NAO effect with a 

four year lag, underlining the importance of marine conditions to parent 

population and/or post-smolts. Differences between distinct populations of S. 

salar and S. trutta appeared related to a species-specific annual periodicity and 

oceanic conditions as salmonids return (more so for S. salar). State-space 

models suggested a complex demographic structure for the two species. There 

was a species identification learning curve that affected the data by 2007. A 

classification algorithm determined that observations are more likely to be S. 

salar for larger signal amplitude, within a higher river flow and earlier in the 

year; characteristics were too similar between the two species to reach a useful 

classification success rate (69%). The project overall suggests specificities 

relating to both species and age-class that cannot be addressed in depth with the 

collected data; emerging limitations and recommendations are discussed. 
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“Home - is where I want to be, 

But I guess I'm already there? 

I come home -she lifted up her wings 

Guess that this must be the place. 

I can't tell one from the other, 

Did I find you, or you find me? 

There was a time before we were born 

If someone asks, this where I'll be . . . “ 

Talking Heads, 1983 
This must be the place (Naive Melody)



 

 
 

 

 

 

 

 

 

 

      C  h  a  p  t  e  r   1 .    . 

 “It cannot but affect our philosophy favorably to be 

reminded of these shoals of migratory fishes, of salmon, 

shad, alewives, marsh-bankers, and others, which 

penetrate up the innumerable rivers of our coast in the 

spring, even to the interior lakes, their scales gleaming in 

the sun; and again, of the fry which in still greater 

numbers wend their way downward to the sea.” 

H.D. Thoreau, 1849. 
A week on the Concord and Merimack Rivers 
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Chapter 1. Introduction. 

1.1.  The Salmonids 

For thousands of years, salmon and trout have had cultural connections to 

societies; the few records of fish in prehistoric iconography contain illustrations 

of both (Desse-Berset, 2011). In Irish Celtic mythology, salmon and trout are 

often associated with symbols of mysterious knowledge, wisdom and power; the 

Salmon of Knowledge gains all the knowledge of the world after eating nine 

hazelnuts that fell into the Well of Wisdom (Rolleston, 1910). The ability of 

salmonids to swim in both fresh and saltwater (two distinct worlds in 

mythology), leap over waterfalls and swim against the flow, also inspired the 

“salmon leap”, a Celtic combat strategy (McKillop, 2004).  

During the Middle Ages, salmon and trout were plentiful in Northern Europe; 

the fish were eaten fresh, smoked or salted and considered a food of the masses, 

poor and rich alike (McLeod et al., 2006). In 1787, a local statute stipulated that 

“local apprentices should not be obliged to dine on salmon off’ner than twice a 

week” (in Gloucester, John Byng 1787 cited by McLeod et al., 2006). Trout was 

also common in medieval cookbooks, as an alternative to salmon or boiled in 

wine (Adamson, 2004). 

Here, the Atlantic salmon, Salmo salar L., and the migratory brown trout (also 

called sea trout), Salmo trutta L., are of particular interest.  

The genus name Salmo (in latin, salmon) is of uncertain origin; possibly linked 

to salir (in latin, to leap; Andrews, 1955).  Atlantic salmon owes its species name 

salar to its spectacular jumps; the name trutta is less obvious and possibly 

originating from trōgein (in Greek, gnaw) (Jonsson and Jonsson, 2011). 

The species S. salar and S. trutta are sibling species. Their morphologies are so 

resemblant that an expert eye is often required to distinguish between the two; 

in addition, genetic and phenotypic variability between the populations of each 

species is high (Jonsson and Jonsson, 2011). This led to several changes in the 
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taxonomic classification of both species over the last centuries, before both were 

eventually separated and contained in the same genus Salmo (Behnke and 

Tomelleri, 2002) and are often referred to as salmonids. 

Both species are of high importance in the UK, where they are exploited for 

sport and food. They both demand very high water quality and specific habitat 

criteria (Heggenes et al., 2002) and their management is often combined as 

they tend to share similar streams.  

The two species are anadromous; they breed in freshwater, yet have a marine 

stage to their lifecycles, where most of the growth and development occurs prior 

to returning to their natal river to breed (Hansen and Quinn, 1998; Gross, 1991).  

The recognition of the return migratory route relies on the detection of olfactory 

cues. Salmonids release olfactory cues in the water such as urine, pheromones 

and the overall secretions produced by each fish; these are used subsequently by 

the salmonids to identify the natal river (Moore et al., 1998) as well as 

conspecifics (Jaensson et al., 2007; Moore et al., 1994). It is currently not 

known whether olfactory cues are released and/or learnt in a specific order or 

not (sequence versus imprinting theory, McCormick et al., 1998). Individual 

recognition implies awareness of the social rank, which allows reduced agnostic 

interactions (Moore et al., 1994) and shorter fights (O’Connor et al., 1999). Kins 

tend to group together and form a stable social system where fish are at-ease 

(Hojesjo et al., 1998; Brown and Brown, 1992).  

Despite all individuals of S. trutta being physiologically able to adapt to 

seawater, there are residents (Brown trout), who do not leave the freshwater 

stream and migratory individuals (Sea trout). Most females are migratory while 

up to 70% of males are residents (Bekkevold et al., 2004). Residency is an 

alternative life strategy from which smaller fish result (Tanguy et al., 1994). 

Here, only migratory S. trutta L. will be considered.  

The particular life cycle of anadromous salmonids has long sparked the interest 

of many studies and is widely described in the scientific literature (the major 

works reviewed here are Eatherley et al., 2005; Klemetsen et al., 2003; Garcia-

Vazquez et al., 2001; Bardonnet and Baglinière, 2000; O’Connor et al., 1999; 

McCormick et al., 1998 and Brobbel et al., 1996). 
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Anadromous life-history demands two important migrations. The first takes 

salmonids to the ocean where they feed abundantly on seawater organisms 

(small crustaceans and fish), grow, and become mature; after which they 

migrate back to their natal rivers to breed. In the UK, the spawning season takes 

place over the spring and summer of each year (Figure 1.1(a)); fry emerge from a 

pebble substrate after a few weeks (Figure 1.1(b)).  

 

Figure 1.1: The major stages of the life cycle of anadromous salmonids.  
The orange arrows represent the annual upstream migration by spawners, which are either 
kelt or grilse depending on the amount of time spent at sea (e). Most salmonids die after 
spawning, the few survivors return to sea (a). 

 

After 2-3 months, fry become parr (Figure 1.1(c)). Parr may be precocious and 

breed without having left the river (i.e. as all resident S. trutta and 5-20% of S. 

salar, in Scotland, SNH, 2007). In both species, these mature parr contribute to 

a considerable part of the population growth and genetic flow. In S. salar they 

have high mortality rates.  

All migratory parr (including precocious) mature in the river for 1 to 4 years 

during which they become smolt. Smoltification is likely triggered by seasonal 

variation in temperature and photoperiod and involves physiological and 

behavioural changes relevant to the transition into seawater (Figure 1.1(d), 

McCormick et al., 1998).  

Physical adaptations to seawater and breeding migration include the 

development of better olfactory and visual aptitudes, higher scope for growth 



Chapter 1 

7 

and an increased tolerance to salinity (McCormick et al., 1998). Smolts become 

of a silver colour and lose the dark lateral bars typical of parr; they also have a 

leaner figure more suited to swimming in seawater (Folmar and Dickhoff, 

1980), organize into schools, and lose their sense of territoriality (Keenleyside 

and Yamamoto, 1962). 

Smolts migrate towards the sea, where they spend one year (grilse) or more 

(kelt) (Figure 1.1(e)). Growth rate increases with feeding availability and the 

high nutritive value of seawater plankton. In spring, breeders return to the natal 

river for the annual breeding migration after which most migratory salmonids 

do not survive. 

The marine phase challenges survivorship as the quality of the habitat directly 

conditions growth, fitness, and survival (Friedland et al., 1993). Global 

monitoring of fish populations is however difficult in vast marine environment, 

and is linked to a lack of knowledge regarding the marine life stage of 

salmonids. 

There is a world-wide need to understand, optimise, and manage fishing, but 

monitoring oceanic phenomena is difficult. Conservationists are concerned with 

the preservation of species and function; world fish catch appeared stable for a 

considerable period of time in the 1980s but the decline that followed the 1989 

peak is still progressing today (Beaugrand and Reid, 2003; Anderson, 1996).  

Under the UN legislation, anadromous salmonids are straddling stocks; these 

refer to fish that occupy both international waters and economic exclusion zone 

of one or more states (200 nautical miles from the coast, McKelvey et al., 2002). 

Populations of straddling fish all over the world are thought to be 

“undermanaged and overfished” (Stokke, 2000). World fish stocks are globally 

poorly managed; policies do not prevent the destruction of populations (fully to 

heavily exploited, over-exploited, depleted or slowly recovering, Anderson, 

1996), and there are not enough practical answers to improving fisheries 

managements proposed to managers by scientifics (Pitcher and Cheung, 2013; 

Fulton et al., 2010). 

S. salar is more abundant than ever but 98% of it is in aquaculture for human 

consumption (Parrish et al., 1998). The remaining 2% of S. salar are wild fish 

and are in global decline (McGinnity et al., 2003). The high abundance of 



Chapter 1 

8 

farmed fish also impacts on the wild populations (e.g. escapees and interactions 

with the wild populations) with both immediate consequences on behaviour and 

competition, and long-term consequences on the wild genetic patrimony 

(Houde et al., 2010).  

In the UK, S. salar is in decline; Scotland holds 80% of the UK stocks and these 

are stable but England’s populations are declining (JNCC, 2007). According to 

the Environment Agency , approximately half of the salmon rivers of England 

and Wales are at risk or “probably at risk” regarding the local conservation 

limits of salmon stocks; the trend is slowly moving towards compliance with 

management objectives since 2004 (Environment Agency and Cefas, 2012). 

Declining trends in migratory salmonids are mainly attributed to the 

anthropogenic use of the freshwater environment, which has led to 

overharvesting, water pollution, dewatering and “main stem dams” 

construction. Factors often co-occur so individual impact is hard to quantify 

(Parrish et al., 1998). 

Construction of dams without fish passages has reduced anadromous species 

around the world (Parrish et al., 1998). Water pollution also had a destructive 

effect in many rivers in Europe. Polluting discharges such as domestic effluent 

and industrial waste (Parrish et al., 1998) engendered critical levels of water 

pollution and pesticides that affect fish reproductive systems, for example the 

pyrethroid pesticide cypermethrin inhibits the olfactory response of males to 

female pheromone release after ovulation, which compromises reproduction 

(Moore and Waring, 2001).  

Little is known about salmonid epidemiology, partly because sick fish are hard 

to track through time (Bakke and Harris, 1998). Hormonal and immune 

systems are closely related. Stress (cortisol) may lead to immunosuppression 

(Felvoden et al., 1993); growth hormone is associated with increased immune 

response; and reproductive hormones lower antibody productivity so that 

spawners are generally more sensitive to infestation than younger individuals 

(Harris and Bird, 2000). There is a risk of homogenization of the gene pool by 

breeding of wild and cultured fish (Bakke and Harris, 1998).  

Common salmonid parasites include sea lice, of which the species 

Lepeophtheirus salmonis is the most studied. Sea lice cause a general physical 



Chapter 1 

9 

weakening due to skin lesions, stress, increased leaping behaviour (Costello, 

2006), and lower swimming speed (Wagner et al., 2003). Without engendering 

direct mortality, sea lice are one of the major threats to salmonids and in 

particular to S. trutta (Freyhof and Kottelat, 2008). As L. Salmonis populations 

increase exponentially at higher temperatures, there are increasing concerns 

over the effect of global warming (Costello, 2006).  

Another stressor for S. salar is infestation by Anisakis simplex which causes red 

vent syndrome, specific skin lesions engendering red, swollen, bloody vent  

(Noguera et al., 2009). A. simplex is a round worm commonly observed in the 

body cavity of wild oceanic fish in which it lives harmlessly. Examples of 

bacterial diseases in wild salmonids include furunculosis, bacterial kidney 

disease, and ulcerative dermal necrosis, none of which have been a cause of 

concern since the 1980s (Noguera et al., 2009). 

Over the last century, industrialized landscapes have pressured salmonids to 

either retreat to streams free of anthropogenic influence, or disappear 

(Montgomery, 2004). This argument is rejected by several instances of return of 

salmonids after recent improvements of river quality. For instance, Atlantic 

salmon were caught in the Seine (Paris) in 2008 for the first time in 70 years (Le 

Monde, 2008). In the UK, while national trends are declining (150,000 fewer S. 

salar recorded between 1994 and 2006), local increases are also recorded, in 

particular in industrialised rivers of the North-East England region (JNCC, 

2007). 

Freshwater ecosystems services include water, food and waste assimilation 

(Folke et al., 1997). Urban streams also provide a higher quality of life to city 

inhabitants (Bolund and Hunhammar, 1999). It is estimated that ecosystem 

support areas require to be 500-1000 times larger than the city they support 

(Baltic cities, Folke et al., 1997) and by 2030, more than 60% of the world’s 

population is expected to be occupying urban areas (UN, 1997). The societal 

need for urban stream ecosystem services will increase accordingly: there is a 

need to insure the sustainability of urban streams and the ecosystem services 

they offer.  

The scientific literature offers several ideas to manage salmonid stocks 

sustainably. Highly migrating fish are particularly prone to overexploitation. In 
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1995, an agreement by the United Unions aimed to create a world-wide 

management plan in order to protect salmonid species and limit the disputes 

originating from the rivalries over fishing stock (Stokke, 2000); the agreement 

required the control of harvest levels to be jointly applied by all fishing 

countries. 

Management tactics of S. salar may however require important local 

adaptations. Great variations of habitat use and demand within species and 

complexity of the aquatic ecosystems (freshwater and oceans) imply a high level 

of specificity in management requirements (Armstrong et al., 1998); effective 

management strategies likely require both large and small scale considerations. 

It may be argued that the conservation of salmonid stocks should be limited to 

the wild genetic pool of genes, making the relevance of hatcheries and breeding 

programs controversial (Nielsen, 1998).  

The precautionary approach is recognised nearly unanimously by the scientific 

community (Dodson et al., 1998); for salmonids, it means that the protection of 

existing salmonid stocks is the priority for their conservation. Cooperation of 

scientists and managers is a necessity to link conservation issues to 

conservation plans (Morishita, 2008; Armstrong, 2006). 

In UK, the Salmon and Freshwater Fisheries Act (1975) regulates most matters 

regarding salmonids. Regulations include: the attribution of fishing licences 

(Part IV), regulations of fishing methods (Part I), the delimitation of fishing 

seasons (Schedule I), the limits of catch size (Part V, F71, release of salmonids 

smaller than 12 inches) and the preservation of the salmonid migratory path 

from anthropogenic constructions and actions (Part II).  

1.2.  The River Tyne 

The River Tyne, in the North of England, flows through the cities of Newcastle-

upon-Tyne and Gateshead. It has two major tributaries of which one is natural 

(South Tyne) and one is regulated (North Tyne) by releases of Kielder Water 

(linked to reservoir management, Figure 1.2).  
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Figure 1.2:  The River Tyne catchment.  
The Kielder Water reservoir is responsible for the increase in minimum flow level. The Riding 
Mill station is located 11km upstream from the tidal limit at Wylam and 61km downstream 
from Kielder Water.  (Map courtesy of Archer, 2013). 

 

Since at least the Middle Ages, the River Tyne has been known as a salmon 

river. However as for many European streams, industrialisation rendered the 

Tyne too polluted to support migratory salmonids (Jonsson and Jonsson, 2011). 

The river became saturated with domestic, industrial, and pharmaceutical 

pollutions (Roberts and Thomas, 2006; Archer, 2003) and was soon one of the 

rivers of North East England the most affected by anthropogenic activity (Hall 

et al., 1997). By the late 1950’s, no salmon was to be caught and numbers 

remained under 400 a year until the 1970’s (Archer et al., 2008).  

In the 1980’s, major changes occurred in the industrial landscape of Newcastle-

upon-Tyne and Gateshead, which greatly benefitted the quality of the River 

Tyne. The Tyneside interceptor Sewerage scheme allowed the interception of 

over 250 effluent discharges that subsequently ceased flowing directly into the 
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estuary; minimum freshwater flow was increased by releases from Kielder 

Water that reduced conditions of drought (Haile et al., 1989 and Figure 1.2).  

At the same time, Kielder salmonid hatchery was created in an attempt to 

restock the river with S. salar (Haile et al., 1989). The improvement of water 

quality was soon matched by a strong return of the migratory salmonid 

populations. Today, the River Tyne is amongst the best salmon rod fishing 

rivers in England and Wales (Archer, 2008) with an estimated 21,000 to 49,000  

annual returns since 2004 (S. salar and S. trutta combined, EA, 2013). 

In 2009, Newcastle city council began to construct a second underwater 

crossing of the River Tyne between East Howden and Jarrow (Figure 1.2). As 

these works disturbed the river bottom through dredging and removal of 

sediments, the New Tyne Crossing Scheme funded an enhanced fishery 

monitoring programme to be undertaken by the Environment Agency.  

The Environment Agency is an Executive Non-departmental Public Body 

responsible to the Secretary of State for Environment, Food and Rural Affairs 

and an Assembly Sponsored Public Body responsible to the National Assembly 

for Wales. The actions undertaken by the agency affect a wide range of 

environmental issues. This study makes use of these data routinely collected by 

the Environment Agency.  
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1.3.  Counting salmonids in the River Tyne 

Salmonid count data were generated by a resistivity counter installed at the 

Riding Mill Station (located on Figure 1.2). Resistivity counters are an array of 

electrodes measuring water electrical resistance.  The counter relies on the 

principle that fish have a lower electrical resistance than the water in which the 

device is placed: the passage of salmonids over the electrodes provokes an 

increase in conductivity between them (Forbes et al., 2000) indicating passage 

of a fish. Each movement of salmonid travelling across the counter generates a 

signal in the shape of a waveform, without affecting the fish (Figure 1.3).   

 

Figure 1.3: The passage of salmonids over counter electrodes and the associated 
waveforms showing the change in resistance.  
The order of peaks describes the direction of the movement and the magnitude of the 
waveform is proportional to the size of the fish (fish counter illustration: Fewings, 1994, 
reproduced with permission of the Atlantic Salmon Trust, Andrews, 2013; signal data: EA, 
February 2013).  

 

There are three noticeable moments of the waveform that correspond to the 

passage of salmonid across three electrodes on the face of the weir at Riding 

Mill station (Figure 1.3). Electrodes at both ends of the array are fed an anti-
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phase sinusoidal signal (3.5 kHz). The central electrode, in the middle of the 

other two, emits no signal and serves as a fulcrum that detects the difference in 

signal (Aquantic, per. com., 2013).  

As a fish swims across the first electrode it reduces the resistance between this 

electrode and the central electrode. The central electrode detects a signal which 

is in phase with the third electrode, and it registers a peak. When a fish is above 

the central electrode, the signals of the other two electrodes are balanced so the 

central electrode signal returns a null value, which corresponds to the zero 

between peak and trough. As the fish travels further through the third electrode, 

the unbalanced signal at the central electrode is in phase with the upstream 

drive, which produces a trough (Aquantic, per. com., 2013). 

There are two distinct uses of the signal data produced. In most instances, 

signals are used to count salmonids passing over the counter. These count data 

are binned at a minimum of 15 minutes intervals. Signals can also be studied in 

terms of amplitude of the waveform. A positive relationship between signal size 

and salmonid size has been previously described (Nicholson et al., 1994) 

however no formal analysis has investigated this relationship for populations of 

the River Tyne. 

The counter is divided into four parallel channels. A video camera was installed 

on one of the channels (channel 4) that allows validating fish presence by visual 

examination of the video records and waveforms (by EA staff members). Also 

for this channel, it is possible to link signal size data to either S. salar or S. 

trutta.  

The resistivity counter was installed in 2003 and the video recordings started in 

2004. Both count data are available from the start until 2011.  
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1.4.  Hierarchy and scale of observation 

“Four blind men are let into a courtyard to experience an 

elephant for the first time. The first grasps the trunk and declares 

that elephants are fire hoses. The second touches an ear and 

maintains that elephants are rug. The third walks into its side 

and believes elephants are a kind of wall.” O’Neil et al., 1986 

Like elephants, animal populations may be studied at different scales and 

provide the observer with different conclusions. A given scale addresses a 

specific problem; a theory contrasts the conclusions. A point of view neither 

encompasses all possible observations nor can be considered more 

fundamental. 

Spatial and temporal scale is an essential characteristic of an observation set 

and is defined by the ecological question (MacNeil et al., 2009; Levin, 1992). An 

observation set includes “phenomena of interest, specific measurements taken 

and the techniques used to analyse the data” (O’Neil et al., 1986). Thus, scale 

may be regulated by the number of measurements and intervals between them 

over a given observation period. The study of a single individual behaviour in a 

determined area may require description at a small scale, while a contrasting 

observation set at a larger scale may describe the species migration pattern.  

Grain is the minimum resolvable time period in the dataset, i.e. the 

measurement interval (also called inner scale or resolution). The observation 

period is the scope in time (also called outer scale, or extent). Fine scales refer to 

fine grain and small extent; large scales refer to coarser grain and larger extent 

(Urban, 2005; Schneider, 2001).  

This thesis seeks to investigate the ecology of salmonid movement and 

migration across a range of ecological questions at different temporal scales, 

using count data and a set of environmental covariates hypothesised as being 

important in determining the movement of fish. 
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1.5.  Environmental covariates 

River parameters monitored by the Environmental Agency include flow, 

temperature, tidal state, turbidity, colour, pH, conductivity (Table 1.1). 

Measurements were taken over four sites (Riding Mill, Bywell, North Shields 

and Northumbria Water’s Horsley treatment works station) at different time 

intervals. In addition, data on solar irradiance, NAO and AMO were retrieved or 

calculated (respectively from NOAA, 2005, JRC, 2012 and Enfield et al., 2001). 

The time ranges covered by the data collection varied (Table 1.2); counter data 

were available from 2003 to 2012 and video records were available from 2004 

to 2012. 

Table 1.1: The parameters monitored on the River Tyne, with location, format 
and source. 

  

Parameter 
(unit) 

Location 
From 

counter 
Measure 
interval 

Source 
Used in 

Chapters 
Scale of effect 

studied 

Flow 
(m3.s-1) 

Bywell 
1km 

down 
15 min EA 2 to 6 Both small and broad 

Temperature 
(°C) 

Bywell 
1km 

down 
15 min EA 2 to 6 Both small and broad 

Tidal state 
(m) 

North 
Shields 

42km 
down 

15 min EA 2 and 6 Both small and broad 

Turbidity 
(NTU) 

Horsley 
8km 
down 

4 hours EA 2 and 6 Small 

Colour 
(HU) 

Horsley 
8km 
down 

4 hours EA 2 and 6 Small 

pH 
(NA) 

Riding 
Mill 

0km 15 min EA 2 and 6 Both small and broad 

Conductivity 
( μS.cm-1) 

Riding 
Mill 

0km 15 min EA 2 and 6 Small 

Solar 
irradiance 
( W.m-2) 

calculated 0km 15 min JRC, 2012 2 to 6 Both small and broad 

NAO 
(index) 

Retrieved NA 1 month NOAA, 2005 3 to 5 Broad 

AMO 
(index) 

Retrieved NA 1 month 
Enfield et al., 

2001 
3 to 5 Broad 
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Table 1.2: The time ranges covered for the covariates in this study. 
Grey cells indicate that the data were at least partly available for the year in question. 

 

The values for solar irradiance were calculated for the specific geographic 

coordinates of Newcastle-upon-Tyne. They are values for global irradiance, 

which combines diffuse irradiance (amount of radiation received by scattered 

atmospheric particles) and direct irradiance (direct from the sun) and were 

corrected by the average monthly cloud cover (JRC, 2012). 

North Atlantic oscillation (NAO) index values refer to the difference in 

atmospheric pressure at sea level between the Icelandic low and the Azores 

high. This difference modulates the strength and direction of westerly winds 

across the Atlantic Ocean; both have an impact on the climate of the whole 

Northern hemispheric (NOAA, 2005). Fluctuations in NAO are not periodic 

(Greatbatch, 2000).  

The index for the Atlantic multi-decadal oscillations (AMO) refers to the 

variations in the North Atlantic sea surface temperatures. AMO is correlated 

with air temperatures and rainfall over the Northern hemisphere and linked to 

climatic conditions over a broad range (from summer rainfall in India to 

Atlantic hurricanes, Ting et al., 2008). The periodicity of AMO is uncertain 

given the number of years of data available; it is assumed to be of a quasi-cycle 

of approximately 70 years, which would imply a peak in 2020 (Enfield et al., 

2001). 

  

Parameter 2003 2004 205 2006 2007 2008 2009 2010 2011 

Flow          
Temperature          
Tidal state          
Turbidity NA        NA 
Colour NA    NA 
pH NA       NA 
Conductivity NA       NA 
Solar 
irradiance 

         

NAO          
AMO          
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1.6.  Scales of observation of salmonids in the River Tyne 

Salmonids of the River Tyne and influential factors associated with their 

migration can be studied at several temporal resolutions migration (Figure 1.4).  

Hypotheses are formulated accordingly as follows.  

 

Figure 1.4: The relationship between the grain of the resolution, the spatial scale 
of observation of the salmonid population and the level of parameters relevant 
to the observation. 
 

For this project, smallest levels of observation related to individual behaviour; it 

is the count of the individual fish as it moves through the counter and the 

factors that determine this movement. These are likely to be stochastic, 

involving intrinsic characteristics of the individual, and challenging to model as 

a response to environmental covariates. The intermediate level is the group. 

Salmonids form loose groups that may or may not be determined by their 

arrival and queuing. There may therefore be group strategies and dynamics 

interacting with the environment in a way that is somewhat better understood 

at the group scale. At the highest level, salmonid movements are observed at the 

population level over their entire territory of occurrence, effectively integrating 

all of the individual behaviour and interactions between individuals and groups. 

Relevant temporal scales of observation of salmonids of the River Tyne involve 

specific combinations of time intervals between measurements and duration of 

the observation period. In Chapter 2, salmonids are studied as individuals 

interacting with others. The small timescale of observation uses intervals 

between counts of 15 minutes and observation periods of 4 days. In Chapters 3 
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to 5, a large timescale of observation is used as salmonids are studied as 

populations. Counts are binned into 14 day intervals and all available years are 

used. Chapter 6 uses instant counts to investigate individual characteristics. At 

each scale, hypotheses are tested concerning the role of environmental 

covariates measured at the same temporal scale. Hence, the influence of 

conductivity, turbidity and colour was considered for the smallest time interval 

since it was hypothesised that this would determine individual movement 

decision by fish as punctually experienced local conditions. Flow, temperature, 

solar irradiance, and tidal state were hypothesised to be concerned with small 

and medium temporal scales of observation. The three former parameters were 

also concerned with a large scale and a coarse grain of resolution; they follow an 

annual cycle which may consequently impact on the salmonids at the large 

annual scale, as well as values of NAO and AMO and the annual seasonal cycle. 

Local parameters were by definition only relevant for the study of small scale 

phenomena; these parameters had a high short-term variability which 

suggested that the potential response of salmonids to the variations in these 

parameters was fast and simultaneous with the environmental changes. 

Intervals between measurements were consequently small and their aggregation 

to several days made little ecological sense. Fluctuations in these parameters 

were not cyclical.  

Intermediate parameters had a seasonal component; daily cycles (temperature 

and solar irradiance), or cycles of 28 days (tide) and/or annual cycles 

(temperature, solar irradiance and flow).  

The strength and direction of tidal currents regulate the level of effort 

experienced by the salmonids on their upstream movement. Salmonids may 

consequently show preferences for specific moments of the tidal cycle to swim 

through the estuary (Smith and Smith, 1997) and the swimming speed is 

affected by the strength of the current (Tang et al., 2000). In turn, the time of 

entrance and swimming speed partly decide of the time of arrival at the counter. 

The tide consequently influences salmonid movements on the short-term, and 

its influence can be detected at the counter level; tidal currents were considered 

local parameters. 
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NAO and AMO are linked to many aspects of the climate in the northern 

hemisphere; they were the highest temporal parameter available for this 

dataset. These indices capture combined information on temperature, rainfall 

(and related flow rate), as well as plankton density and location, i.e. productivity 

in the Atlantic Ocean (Beaugrand and Reid, 2003; Attrill and Power, 2002). As 

salmonids spend several months depending on the oceanic productivity, it can 

be hypothesised that migration routes of both species was likely affected by 

conditions represented by the NAO and AMO indices (Dadswell et al., 2010). 

These values were to some extent, a summary of climatic and productivity 

conditions met during their oceanic phase. 

Additionally at the largest scale, harmonics were used to account the annual 

seasonal periodicity. The year count was also available as a surrogate for 

between-year variations and recruitment occurring during the time spent out at 

sea. Plankton data were not readily available (a dataset was obtained and tested 

externally but the reliability of the data could not be verified). 
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1.7.  Rationale 

Chapter 2 

Salmonids swim up the River Tyne and are seen either alone or as part of a 

group. Can we identify the factors that make individual salmonids aggregate or 

not? Can individual presence and grouping behaviour be described by 

environmental parameters? 

Chapter 3 

The resistivity counter at Riding Mill aims to improve conservation. Can the 

data produced by the counter be used to describe the migration and so be used 

for management? What drives the salmonid migration? As an application, can 

we determine whether the tunnel construction in the River Tyne impacted on 

salmonid populations? 

Chapter 4 

The camera at Riding Mill provides species-specific data. Do video recordings 

constitute an exploitable source of information? Can the migration of S. salar 

and S. trutta be modelled separately based on these records? 

Chapter 5 

Environmental conditions experienced during the migration were described 

using static measurements and time-invariant relationships. Yet, each salmonid 

species covers a specific and considerable geographic range and their relation to 

parameter and parameter measurements may change throughout the year and 

between years. Is time-dependency a tool for improving the description of the 

migration model for each species? 

Chapter 6 

Can we discriminate between the species S. salar and S. trutta in the River Tyne 

based upon a combination of signal data and environmental parameters? 

Chapter 7 

From these observations at various scales, concluding reflections are formulated 

regarding how salmonids are linked to each other and the surrounding 

environment. 
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Chapter 2. A temporal study of fine scale salmonid 

movements. 

2.1.  Introduction 

There is a lack of understanding of salmonid aggregation behaviour and the 

factors driving it, especially in river. Fish commonly form social aggregations 

that are determined socially rather than solely by environmental conditions, 

although abiotic factors contribute to shaping the shoal structure (Tien et al., 

2004). In presence of a threat, a common mechanism of aggregation consists in 

approaching the nearest neighbour in time, which involves consideration of 

movement time, fish position and angle (e.g. in sticklebacks, Gasterosteus 

aculeatus, Krause and Tegeder, 1994). Furthermore, foraging may be optimized 

via transfer of information amongst individuals of the same shoal in habitat 

where food resources are patchy (Tien et al., 2004) (Pitcher, 1985). 

It is a common belief shared by fishermen and scientists that, when at sea, 

anadromous fish organize as shoals; albeit little research exists to confirm the 

theory (Palm et al., 2008). Anadromous salmonids are known to aggregate 

during their seaward “spring” migration (Riley et al., 2002; Krause et al., 

2000). The spring migration is thought to be triggered by both the physiological 

readiness of the fish to the transition between fresh and saltwater (i.e. 

smoltification, McCormick et al., 1998) and external environmental releasing 

factors of which onset of darkness is thought to be the major factor (Riley et al., 

2002). 

Spring migration aggregation behaviour varies with extrinsic and intrinsic 

factors. For instance in the River Conway (Wales), movements of S. trutta were 
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observed at all times in the lower reaches of the estuary but in the upstream part 

of the river, S. trutta were resident in the river during the day and moved 

actively and higher in the water column at night (Moore et al., 1998). The 

duration of residency may also change seasonally for both S. salar and S. trutta, 

and tends to become shorter towards the end of the season (Moore et al., 1998).  

Shoals are cohesive groups, as opposed to random aggregations or individuals 

(Palm et al., 2008). During spring migration salmonids go from being solitary 

to forming shoals further downstream (Riley et al., 2002). The cues initiating 

the downstream migration vary throughout season with, for example, 

downstream movement of S. salar being correlated with the onset of darkness 

in April but independent from abiotic conditions during the rest of the year 

(Riley et al., 2002).  

Antagonistic behaviour is reduced amongst groups of S. trutta composed by 

familiar individuals (Hosjesjos et al., 1998) and a preference for conspecifics 

over heterospecifics has been demonstrated for each species (Brown and Brown, 

1992). Recognition mechanisms remain unclear as much experimentation on 

kin recognition used salmonids reared in groups; recognition may consequently 

be linked to familiar environmental conditions rather than the recognition of 

kin and it has not been demonstrated whether or not the olfactive preferences as 

fry persist until adulthood (Krause et al., 2000).  

There is no evidence that individual S. salar group with kin while in the Baltic 

Sea, but post-smolts S. trutta tend to gather with individuals originating from 

the same English river (Palm et al., 2008). In natal rivers, spawners on their 

return migration are observed either alone or in groups. This study aims to 

determine the extent to which variation in riparian conditions may be used to 

explain levels of aggregation in salmonids of the River Tyne. 

Upstream migration from an estuary to spawning grounds is a succession of 

positive rheotaxis and prolonged stops that are river and species-specific 

(Bazarov and Golovanov, 2003). Wild salmonids tend to travel towards 

spawning grounds without deviating their route, even more for S. trutta than for 

S. salar (Bazarov and Golovanov, 2003). Swimming speed fluctuates from a 

population to another, but there is a general tendency to slow down when 
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approaching spawning grounds and speed is often different for S. salar and S. 

trutta (Bazarov and Golovanov, 2003). 

Benefits for salmonids spending a long period of time in freshwater are unclear, 

especially for S. salar which is both fasting and missing on rich feeding 

opportunities from the sea environment during this part of the migration 

(Fleming, 1996). Residency can be a mechanism to cope with adverse 

environmental conditions. For instance, S. salar displays ‘sit-and-wait’ 

behaviour by marking a pause behind an obstacle to shelter from turbulent flow, 

often downstream of an obstacle such as a rock (i.e. home rock, Haro et al., 

2004). In this instance, the presence of suitable rock and turbulent flow may 

induce residency periods that can last hours.  

In north Norway three phases of movement have been differentiated (Okland et 

al., 2001); direct migration until near the spawning grounds during which 

salmonids may pause or not, followed by seemingly inconsistent movements 

around the spawning territory (possibly a searching phase) and a final period of 

residency before spawning (Okland et al., 2001). In south-west England, S. 

salar also start by migrating up close to their spawning grounds, then rest for a 

considerable period of time (i.e. residency) before migrating to the spawning 

grounds (Heggenes et al., 2002).  

The reasons for residence during upstream migration relate to habitat 

suitability, rather than territoriality and ownership as it may be the case for parr 

of both species (Johnsson and Forser, 2002). The causes of the duration and 

occurrence of residency have not always been determined. During downstream 

migration, smolts of both species are physiologically capable to progress into 

saline environment when they are located in the estuary, so smoltification does 

not appear to play a role (Dempson et al., 2011). In S. salar, residency time 

relates to thermal acclimation, food availability, and tidal currents (Dempson et 

al., 2011). 

The difference between grouping and random behaviour, and the parameters 

influencing the time spent in residence, may be accounted for using different 

generalized linear model (GLM) approaches and through the use of selected 

error distributions. 

GLMs express the dependence of a response variable to a vector of explanatory 
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regressors (Zeileis et al., 2008). GLMs permit analysis of continuous and 

discrete data in a framework similar to the one developed for normal theory 

linear regression, applied to data not normally distributed. Furthermore, 

additional specifications of the mean (link function) and the variance (variance 

function) enable a much wider spectrum of application than with linear 

regression (Breslow, 1996). A GLM is developed in three steps: assuming a 

distribution for the error, specifying the predictor function, and stating the link 

between expected values and the predictor function (Zuur et al., 2009). These 

strong assumptions about the structure of the data require the deviance-based 

residuals of the models to be examined in order to verify that the statistical 

conditions are met (Pierce and Schafer, 1986). In case of a lack of fit, residuals 

may help understanding the relationship between observed values and the 

candidate model (Fox, 2009). 

The Poisson and negative binomial distributions of the error both consider 

discrete positive or null values, which make them suitable to the study of 

salmonid counts. The two distributions handle the data differently. The Poisson 

distribution is skewed to the right and implies that the probability of an event 

occurring is proportional to the interval considered. The events are hence 

considered independent, so that when modelled with a Poisson distribution of 

the error, salmonids are considered individually and their abundance is 

proportional to the duration of the period studied. The negative binomial 

distribution implies a relation between events, here the salmonid counts. The 

abundance in salmonid is then defined as a ratio: the abundance at a given time 

over the number of observation required before a certain abundance is reached. 

In other words, this distribution of the error implies that salmonid counts are a 

fraction of a larger group. 

 Equation (2.1)  E(Yt) = μ = g -1 (a + b Xt) + et 

 Equation (2.2)  Poisson error:  et ~ P (0, v2 = μ) 

 Equation (2.3)  Negative binomial error: et ~ NB (0, v2= μ +μ2/  ) 

GLMs assume response (E(Yt)) was generated by a given distribution, whose 

mean (μ) relates linearly to independent variables (a + b Xt) via a link function 

(g -1). 
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Overdispersion in count data is defined as the variance being greater than the 

mean (Zuur et al., 2009). The Poisson distribution implies mean and variance 

being equal (Equation 2.2), while negative binomial distribution allows the 

variance to be larger than the mean via an extra parameter within the 

mathematical description of the variance (Equation 2.3). 

Consequently, the negative binomial distribution can be used to model 

processes where overdispersion occurs while the Poisson distribution cannot. 

The parameter Theta (θ) of the variance function is the dispersion parameter 

(Zuur et al., 2009); it defines how far from the Poisson distribution the 

distribution is (and hence, how much closer the process corresponds to a group 

behaviour). The Poisson distribution compares to the value of θ becoming 

infinitely high.  Counts following the statistical assumptions of the negative 

binomial distribution (Equation 2.3) may be grouped in clusters, with the 

individuals of one cluster either having a common random term, or being each 

associated with a dispersion parameter also dependent on covariates (Cox, 

1983). So, the level of aggregation increases inversely to the value of Theta, 

which here is assumed to describe the schooling behaviour. 

In this study, salmonids of the River Tyne are observed over a short time, 

allowing the description of individual behaviour. At this reduced scale, null 

count values will be both abundant and meaningful, and may reflect distinct 

aspects of the local behaviour of a salmonid. The values are referred to as false 

zeros or true, structural zeros. Generalized linear models are appropriate to 

model count data; however the ordinary Poisson and negative binomial 

distributions produce biased estimates and standard errors if the abundance of 

zeros is extremely high (Zuur et al., 2010). To more accurately model these data, 

mixture and two-part models will be developed; these models account for the 

abundance of null values and their potentially different origins (Figure 2.1). 

In ecology, a true zero occurs when an absence is due to ecological processes 

(Martin et al., 2005). In reality, null values are also falsely recorded (sampling 

error) and a suitable habitat may not be saturated by chance; both conditions 

lead to what are called here false zeros (Ridout et al., 1998). False zeros are 

attributed to chance, sampling design and sampling or observer errors (Zuur et 

al., 2009). The underlying assumptions of the ZI and ZA designs in this study 

are illustrated on Figure 2.1.  
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Figure 2.1: Illustration of the underlying principles of (a) mixture models (ZI) 
and (b) two-part models (ZA). 
Based on the sketches by Zuur et al., 2012 and Zuur et al., 2009. The ZI design considers that 
a null value may correspond to the habitat being unsuitable or due to the experimental 
design; there is a dual process producing null vales. The ZA design does not make a 
distinction between the two types of zeros and considers one process is causing null values 
and another is causing positive counts. 

 

Explicit modelling of the dual process generating null values may impact on the 

inferences of a study and greatly improves those (Martin et al., 2005). For 

instance, inferences differ whether the non-occurrence of an event relates to the 

unsuitability of a habitat or missed detection (Zuur et al., 2009) or else by 

sampling at-risk or not at-risk populations (Rose et al., 2006). Mixture and two-

part models have recently become popular (Zuur et al., 2009) and are applied in 

varied fields. Agarwal et al. (2002) apply a ZIP model to spatial data and 

demonstrated that zero-inflation in a survey of isopod species is explained by 

the sampling location. Carrivick et al. (2003) analysed counts of injuries in a 

hospital; ZI models allow determining the factors affecting the risk of injury (i.e 

the variations in zero injury). Minami et al. (2007) use ZI models to account for 

the fluctuations in shark catchability responsible for null records not necessarily 

related to the fluctuations in the population density. Sheu et al. (2004) use ZI 
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models to distinguish smokers from non-smokers and reducing smokers who 

have not smoked during the observation period.  

The aim of this chapter is to investigate salmonid movement behaviour at the 

counter located at Riding Mill, with a view to identifying whether movement is 

individual or grouped in nature; and to identify the processes influencing the 

movement of either type as appropriate. 

As they return to spawn, the movement behaviour of salmonids and the 

conditions leading the different types of zeros may be addressed with GLM, 

mixture and two-part models. Seasonal variations in the migratory behaviour of 

salmonids during their upstream migration in the River Tyne, as observed 

during the spring migration in other rivers (Riley et al., 2002; Moore et al., 

1998), may be investigated by defining multiple observation periods along the 

year. 
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2.2.  Material and methods 

2.2.1. Data 

Data were recorded at 15 minutes interval during the year 2008. Salmonid 

counts were recorded by the electronic fish counter at Riding Mill and generated 

a univariate time-series that did not discriminate between S. salar and S. trutta. 

Seven observation periods (a to g) of four days duration (i.e. 384 measurement 

points each) were distributed throughout the migration period (Figure 2.2). 

The first observation period occurred before the start of the migration season 

and the other six observation periods were two replicates of three moments of 

the salmonid migration in the River Tyne. The samples reflected three phases of 

the migration (initial increase in counts, middle and ending periods) and one 

prior to the migration. There were no missing values in the datasets. 

 

Figure 2.2: The salmonid counts recorded at Riding Mill during the year 2008. 
The seven observation periods of 4 days appear in black. 

 

The covariates of interest for this study were of local influence: flow, 

temperature, tidal state, turbidity, colour, pH, conductivity and solar irradiance. 

The river parameters that were measured at a distance from the counter (flow 

and temperature at Bywell, turbidity and colour at Horsely) were lagged 

according to the distance from the counter (respectively 1.36km and 9.27km) 

and the flow regime at the time of measurement before being incorporated in 

the models. Measurement lags were determined by the distance between the 

measurement device and the counter (Appendix A.i, Table A.1) and the 

dominant flow regime occurring during the observation period in relation to the 

annual average (Appendix A.i, Table A.2, temporal variations of flow Appendix 

A.i, Figure A.7.1).  

 Salmonid counts, year 2008 
 Salmonid counts during observation periods (4 days) 
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The counter at Riding Mill is located 41.9km upstream from the Tyne estuary 

and 11km upstream from the tidal limit at Wylam (Figure 1.2, page 11). To 

determine the amount of time between the salmonids reaching the counter and 

the time at which the tidal state may have influenced counts, the fit of hourly 

lags of the tidal values were compared through a complete tidal cycle (12 hours).  

The lags reflected various durations prior to the salmonid being counted, 

augmented by an undetermined number of tidal cycles. The most relevant lag 

was first determined by AICc comparison of different lags in the full model. 

Then, only the relevant lag only was used in the model for each observation 

period. The travel time between the estuary and the counter was likely 

influenced by the river velocity and the tide. However the length of the river 

along which the tidal state was in influential was not determined: so, the travel 

time was not approximated further beyond the relevant tidal lag. 

2.2.2. Models 

Initially, a classic data exploration was undertaken, which was concerned with 

the description of the data distribution and correlations for each observation 

period as for the whole year 2008 (after Zuur et al., 2009). 

Following this, the relationship between the observed salmonid counts and the 

selected environmental covariates was investigated for each observation period 

(a to g). The first step of the analysis consisted in selecting the most 

parsimonious model type for each observation period. The model types were 

Generalized Linear Models (GLM), Zero-Altered (ZA, also called two-part-) 

models and Zero-Inflated (ZI, also called mixture-) models.  

GLM are suited for modelling count data; over-abundant zeros may however 

lead to a lack of fit due to the incompatibility of many zeros with the error 

distributions available for this type of model (Zeileis et al., 2008). In this case, 

ZA and ZI models may be of better fit. The two-part (ZA) models consider a 

process responsible for the generation of zeros, and another distinct process 

generating counts. The zero mass is modelled as a binomial model of the 

probability that a null count is recorded and the count part is similar to a GLM 

on positive counts only (Zuur et al., 2009). 
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The mixture (ZI) models also contain two parts. However this time, the null 

values are modelled by both part of the model. The count part accounts for the 

error distribution except for the excess zeros: it contains the counts 

corresponding to a Poisson or negative binomial distribution, including null 

values. The process generating the excess zeros, which are not explained by the 

count part distribution, is modelled by a binomial model, i.e. the zero mass. For 

this reason, mixture models remain applicable if there are no false zeros (Zuur 

et al., 2012). The zero mass hence models the probability of recording a false 

positive against other types of data (Zuur et al., 2009).  For both mixture and 

two-part models, the count part was referred to as “µ” and the zero mass as “π”.   

The error distribution was assumed either Poisson or negative binomial, the 

systemic part of the model was specified by the aforementioned environmental 

covariates, and there was a log-link function between the mean and the 

predictor function, which ensured that fitted values are non negative. The 

aggregation coefficient (θ) of the negative binomial distribution quantified the 

level of aggregation contained in the count data (Zuur et al., 2009; Ridout et al., 

2001). 

Full models, that contained all covariates, were initially developed for the six 

model types (GLM, ZA and ZI with either Poisson or negative binomial 

distribution of the error for each). The models were compared using the Akaike 

Information Criterion (AIC, Greaves et al., 2006; Burnham and Anderson, 

2002; Sakamoto et al., 1986). AIC quantifies the relative loss of information 

between a set of candidate models (Buckley et al., 2003). AICc was corrected for 

small samples so as to penalize more for extra parameters than AIC, and avoid 

overfitting. Considering n the number of points in each time series and k the 

number of parameters in the model:   

                                                               
        

     
 

The difference in AICc scores between models allowed the selection of the best 

approximating model type amongst the six, for each observation period 

(Rushton et al., 2004; Burnham and Anderson, 2002). 

The influence of covariates was then investigated. First, the optimal lag to apply 

to the tidal state covariate was determined. The Riding Mill station is located on 

the non-tidal part of the River Tyne; the tidal state was consequently of 
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influence downstream from the counter. The distance or time between the 

recording of a given salmonid and location or moment at which the tide was 

influential is undetermined. In case of the tidal state being influential of 

salmonid counts at Riding Mill, it is assumed that the travel time between the 

location where the tide is influential and the counter is a combination of the 

moment of the tidal state cycle that the salmonids selected for initiating 

upstream movement and an additional amount of hours, related to the travel 

conditions within the river which modulate the travel speed of the fish. The 

optimal moment of the tidal state cycle was determined for each observation 

period. The tidal state data were lagged for every hour of a complete tidal cycle. 

Each lag was tested within the full model for every observation period and the 

optimal tidal lag was determined using AICc ranking.  

Second, step-wise deletion was then used to remove non-significant covariates 

and produce a minimal model, that only contained covariates assessed as 

significant by the Wald test (P-value<0.05). The process generated a set of 

candidate models for each observation period. AIC was again computed for each 

candidate model, and used to select the most parsimonious model, or set of 

models, based on a combination of log-likelihood and number of parameters 

within the model (Rushton et al., 2004; Burnham and Anderson, 2002). A 

Pearson Χ2 test allowed quantification of the contribution of each covariate to 

the fit of the model (Breslow, 1996). 

Goodness of fit was further described by the Pearson correlation coefficient and 

the coefficients of the linear regression of the observed versus predicted values 

(Zuur et al., 2009).  Graphical tools were used to validate the underlying model 

assumptions (scatterplots of variance residuals with a view to assess their 

normality, temporal patterns, homoscedasticity and independence) in addition 

to the statistical tests, Zuur et al., 2010; Zuur et al., 2009).  

2.2.3. Software  

The GLM, ZI and ZA models were generated in the MASS (Venables and Ripley, 

2002) and pscl (Zeileis et al., 2008) packages operated in the R.2.15.1 

environment (R Core Team, 2012). Underlying parameter estimation was 

similar for both packages (maximum likelihood).  
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2.3.  Results  

2.3.1. Data exploration 

The seven observation periods contained high proportions of zeros (20.3% to 

98.7%) and the count data for the observation periods c to f were overdispersed 

(Table 2.1). 

Table 2.1: A summary of the count data for each observation period. 
The ratio of the variance over the observed mean indicated overdispersion when greater than 

2. 
 

From a to d, the number of salmonids increased and the proportion of null 

counts decreased then the opposite pattern occurred until October (except for 

the period e in August which departed slightly from this trend). During the 

middle of the migration season, count data were overdispersed, had a broader 

range and more records of two or more salmonids. 

Over the whole year 2008, strong correlations existed between the covariates 

flow and turbidity (0.7), and pH and conductivity (0.7); a lower correlation 

existed between colour and pH (0.6), and colour and conductivity (0.6). The 

covariates flow and conductivity were slightly correlated (0.5) and all other 

correlations were smaller than 0.5 (Appendix A.i, Figure A.7.2). All parameters 

were included in the full models; if correlation occurred to the point of 

preventing model convergence, then the covariate conductivity was omitted. 

Conductivity was less interpretable and independent in comparison with pH 

and colour (conductivity may represent particles density that may change water 

colour and pH depending on the nature of the particles).  

Observation 
period 

a b c d e f g 
6-10 
Feb 

16-20 
May 

28-31 
May 

23-26 
July 

08-11 
Aug. 

15-18 
Oct. 

27-30 
Oct. 

Range of counts  0-2 0-2 0-14 0-11 0-11 0-13 0-5 
Total number of fish 6 39 285 1044 547 805 166 
Count mean 0.02 0.10 0.74 2.72 1.42 2.09 0.43 
Count variance 0.02 0.12 2.27 5.58 3.38 6.16 0.74 
Mean / variance 1.00 1.26 3.09 2.05 2.38 2.94 1.74 
% Null counts 98.70 91.67 64.84 20.31 42.45 35.16 73.70 
% Single counts 1.04 6.51 18.49 18.22 23.70 18.22 15.35 
% Counts>1 0.26 1.82 16.67 61.47 33.85 46.62 10.95 
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2.3.2. Selection of the model types 

The full models for each observation period (GLMs Poisson and negative 

binomial, ZAP and ZANB, and ZIP and ZINB) were ranked according to their 

AICc score (Appendix A.i, Table A.3). The models generating the lowest AICc 

scores are presented in Table 2.2 along with their AICc scores and differences 

with the second-ranked models. 

Table 2.2: The optimal model type for each observation period, based on model 
ranking according to AICc scores. 

 

Given the high AICc weights and high ΔAICc values between first and second-

ranked models, model selection uncertainty was low for most observation 

periods. For the observation periods a, b and g, the full ZIP model was of better 

fit amongst the candidate models; for the periods c, d and e, the ZINB model 

was of better fit. The ZAP and ZANB models could not be computed for the 

period e, explaining the very high ΔAICc with the second-ranked model. 

Model selection uncertainty was high for the observation period f due to 

inconclusive ΔAICc and AICc weight. The first-ranked model was a ZAP model 

and both distributions of the error led to a comparable fit (Appendix A.i, p. 182). 

The ZANB model was retained (the ZAP model was nested in the ZANB model; 

in case of a better fit of the ZAP model the dispersion parameter θ becomes 

infinitely high or insignificant since the negative binomial variance vNB=μ+μ2/θ 

becomes closer to Poisson variance vP=μ). 

2.3.3. Lag of the tidal state 

The optimal tidal lag was determined using AICc ranking of full models 

containing one of the 12 lags (Table 2.3, full list and Figure A.7.4 in Appendix 

A.i). 

 a b c d e F g 
Selected model type ZIP ZIP ZINB ZINB ZINB ZANB ZIP 

AICc 47.4 228.2 801.2 1469.9 1022.5 1239.0 487.5 

ΔAICc with 
second-ranked model 

2.9 4.1 29.4 11.6 42.7 0.3 5.1 

AICc weight 0.728 0.887 1.000 0.997 1.000 0.534 0.928 
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Table 2.3: The optimal lag of the tidal state covariate for each observation 
period. 

2.4.  Analysis of the models 

2.4.1. Comparative analysis of observation periods 

Selected outputs of the most parsimonious models are presented in Table 2.4; 

the comparison of fitted and observed values indicated a good fit of the trend. 

The variance was however underestimated, explaining the failure of the model 

to detect peaks, and the outliers (Table 2.4). The observation period f had the 

highest coefficient of determination (Adj.R2=0.56).  

Table 2.4: The comparison of selected outputs from the most parsimonious 
models for each of the seven observation periods. 
 

The temporal fluctuations in observed and fitted values of salmonid counts are 

displayed in Figure 2.3 for each of the seven observation periods. The models 

detected the global trends but failed to account for peaks, as the difference 

between observed and fitted variance suggested. 

The temporal fluctuations in observed and fitted values of salmonid counts are 

displayed on Figure 2.3 for each of the seven observation periods. The models 

detected the global trends. 

  

Observation period a b C d e F g 
Selected lag  2h 4h 0h 8h 5h 6h 9h 

                Observation  

Fit                      period 
assessment  

a b c d e F g 

6-10  
Feb. 

16-20 
May 

28-31 
May 

23-26 
July 

08-11 
Aug. 

15-18 
Oct. 

27-30 
Oct. 

Obs.  μ 0.02 0.10 0.74 2.72 1.43 2.09 0.43 
Fitted μ 0.03 0.10 0.76 2.71 1.42 2.08 0.43 
Obs. variance 0.02 0.13 2.27 5.58 3.39 6.16 0.75 
Fitted variance 0.03 0.03 0.49 1.85 1.46 3.12 0.27 

Adj-R2 lm (observed~fitted) 0.43 0.27 0.13 0.35 0.46 0.56 0.37 
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Figure 2.3: The observed and fitted salmonid counts for each observation 
period. 
The interval between counts is 15 minutes. Note the difference in scale (y axis), with fewer 
fish at the beginning and end of the migration season. Adjusted R2 values are reported for the 
model of each observation period. 

  

               Observed salmonid counts        Fitted values of salmonid count 
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The sign and significance of the parameter estimates are presented in Table 2.5. 

The values and associated level of significance and the likelihood tests 

quantifying the significance of the contribution of each parameter to the models 

are presented in (Appendix A.i, Table A.4 and Table A.5). 

Table 2.5: The parameters estimated by the most parsimonious models for the 
seven observation periods. 
The sign of the parameter estimates is reported along with the associated level of significance 
(** for P<0.05, * for 0.05<P<0.10, others have P-value>0.10). The model type is the type of 
the most parsimonious model selected for each observation period. ZI stands for zero-
inflated, ZA for zero-altered, P for Poisson and NB for negative binomial. 

 

The optimal error distribution differed throughout the year. For the observation 

periods a, b, c and g, the calculation of Theta was either not applicable (Poisson 

distribution for periods a, b and g) or not estimated with significance (period c). 

The models for the observation periods d, e and f produced varying and highly 

significant Theta values. The ratios of the mean squared counts over the Theta 

values quantified the intensity of the aggregation of the salmonids crossing the 

counter. For the period d the product of the ratio was 1.21 ( 
μ 

θ
     

   ⁄ ) and for 

the periods e and f they were 0.21 and 0.23 (                     ⁄   and 

    
     ⁄ ); the aggregation was the most important for period d, and was lower 

for the periods e and f. 

                Observation  
Model                period 
Parameters 

a b c d e F g 
6-10  
Feb. 

16-20 
May 

28-31 
May 

23-26 
July 

08-11 
Aug. 

15-18 
Oct. 

27-30 
Oct. 

Model type ZIP ZIP ZINB ZINB ZINB ZANB ZIP 
Parameter estimates 
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The period f was the only period when the ZA model type was the most 

parsimonious. The ZA model did not include null values within the count 

process so the overdispersion was assumed to be due to high values only. This 

was confirmed by the mean and the range of counts (μ=2.09, 0-13, Table 2.4) 

and the high proportion of groups of salmonids (49.62%) during this period. 

The number of significant predictors also varied along the year and more 

predictors were significant towards the middle of the migration season.  

The amount of solar irradiance was a recurrent predictor of both the counts and 

the probability of excess zeros. During observation a, both the number of 

salmonids and the probability of excess zeros increase with more daylight (i.e. 

salmonids were in higher number during the day but were recorded less often 

than during the night). Temporal variations in salmonid counts (Figure 2.3b) 

confirmed this assumption. During observation periods c, higher solar 

irradiance was associated with fewer counts and a higher probability of excess 

zeros (i.e. the activity was mostly nocturnal and most null counts were recorded 

during the day). Increased solar irradiance was associated with higher salmonid 

counts and lower probability of excess zeros for the observation periods b, d, e 

and g (i.e. the salmonids moved through the counter during the day and most 

null values are recorded at night). The solar irradiance was not influential of the 

salmonid counts during observation f indicating that the activity was likely 

occurring all day long at comparable numbers, with fewer null counts recorded 

during the night. Shorter days in relation to nights also may limit the ability to 

detect a trend related to daylight. 

Tidal state was an important predictor of excess zeros. In ZI models, excess 

zeros were all false zeros: for the observation periods a to f, a higher tidal state 

was associated with higher probabilities of excess zeros within the count data.  

Turbidity was associated with more excess zeros for all observation periods 

except d and e, in the middle of the migration season. Higher turbidity was 

associated with higher counts for observation d. 

The covariate flow did not affect the probability of excess zeros only in the two 

instances for which the flow regime was high; flow likely only had an effect at 

lower values. Flow values for these periods (e and g) were not extreme; the 
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respective ranges were 37.5m3.s-1 to 153.0m3.s-1 and 57.9m3.s-1 to 191.0m3.s-1, 

with 9.1% and 22.6% of the values above 120m3.s-1.  

2.4.2. Comparative analysis of selected covariates 

Fluctuations in pH values were positively correlated with salmonid counts for 

the observation periods b, c, d and e (Table 2.5). During these observation 

periods the pH values fluctuated daily (Figure 2.4) and reached the daily peak in 

the afternoon (except for period e, Figure 2.4c, no decrease on two nights).  

 

Figure 2.4: The temporal variations of the pH values during each of the seven 
observation periods.  
The scales are different and the observation periods b to d show daily oscillations. 

 

For period e, higher pH values also led to a lower probability of false zeros; the 

counts on the second and third days did not present the same pattern as the first 

and fourth day (Figure 2.3e). Higher pH was associated with an increased 

probability of null counts (both types of zeros confounded) during period f. The 

small range of the fluctuations may be linked to a bias due to the short 

observation period. The ranges of pH values (Figure 2.5 (a)) indicated that the 

observation f presented a relatively small range of values; the pH range and 

fluctuations within it may hence be influential in itself, rather than the pH 

values alone. 
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Figure 2.5: The range of pH and temperature values for each of the seven 
observation periods.  
The mean ± standard deviation is given for each observation period. 

 

Higher temperatures were associated with significantly more salmonid counts 

for observations c and e and significantly fewer counts for observation d (Table 

2.5). The mean temperature increased until July and decreased afterwards; the 

temperatures were highest during the observation d (Figure 2.5 (b)). The 

thermal ranges for periods c and e were lower than for the period d, with all 

temperatures above 13°C. During observations b, e, and f, temperature was 

linked to the probability of excess zeros. 

2.4.3. Goodness of fit of the most parsimonious models 

Table 2.6 shows the coefficients of the linear regression of the predicted versus 

the observed values and the resulting adjusted R2 for the most parsimonious 

model of each observation period.  

Table 2.6: The assessment of the fit of the models for each observation period. 

 

Values for the regression slope were overall close to 1, except for the observation 

periods a and c for which it was indicative of an underestimation (0.55 and 

0.80). Intercept values were close to null except for the observation period c 

(0.14). The Pearson variance residuals showed temporal patterns (Appendix A.i, 

Figure A.7.4), they were not normally distributed and presented outliers 

(Appendix A.i, Figure A.7.5).  

Observation 
period 

a b c d e f g 

Adjusted R2 0.4331 0.2720 0.1335 0.3452 0.4603 0.5621 0.3725 

Slope 0.55 1.03 0.80 1.02 1.03 1.05 1.01 
Intercept 0.00 -0.05 0.14 -0.06 -0.05 -0.09 -0.00 
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2.5.  Discussion 

Models were developed to describe the relationship between the detection of 

salmonids at the counter located at Riding Mill at different stages in the 

migration season, and the conditions occurring simultaneously in the River 

Tyne. The models underlined the role of several riparian covariates in the 

salmonid behaviour within the River Tyne; the comparison of seven observation 

periods along a year indicated temporal variations in the migration behaviour of 

salmonids and their response to covariates. 

During the initial observation periods in early spring (pre-migration season), 

the river covariates provided a poor description of the fluctuations in the 

number and presence of salmonids in the River Tyne; there were few fish to 

model. A better description was obtained for the following observation periods 

occurring during the migration season (end of May until October). The initial 

arrival of salmonids was likely mostly influenced by marine covariates (Jonsson 

and Jonsson, 2011) while the rest of the migration had more influence from 

river and coastal water conditions which may fluctuate jointly. 

On downstream migration of both S. salar and S. trutta, the duration of 

residency varies spatially (distance from the estuary) and temporally 

(seasonally, shortens towards the end of the migration season) (Moore et al., 

1998). Here, the duration of residency was not estimated directly. Rather, the 

probability of excess zeros was assumed to reflect the river covariates that 

engendered a down period for migration upstream towards the counter at 

Riding Mill. Recurrent parameters involved in the generation of excess zeros, 

and presumably causing residency, were solar irradiance, tidal state and 

temperature. Salmonid movement behaviour is described first in relation to the 

environmental parameters, second in terms of the processes involved. 

2.5.1. The salmonid movement behaviour in relation to the 

environmental parameters 

Horizontal movements of water are a combination of currents: the river flow, 

the oscillating tidal currents, the general circulatory system of the oceans and 

currents generated by varying meteorological conditions (Bodwitch, 1802). 



Chapter 2 

 

42 

Previous studies suggested that the effect of tide on salmonids is due to 

fluctuations in water rate (Salveit et al., 2001), however this information was 

not available for this study. The direction of the tidal current is not directly 

related to tidal state and flood and ebb do not necessarily occur at the same time 

as the rise and fall of the tide; inferences from the present models can only 

concern the variations in water level associated with the tide. The tidal state 

likely influences the ability for salmonids to access shallow parts of the river 

however it may not affect the speed or position of the fish (as currents do) and, 

conversely, the covariate flow measured for this study affected only the speed or 

position of the salmonids (not the accessibility of shallow waters ).  

Flow speed is a recurrent factor associated with salmonid migration. Fast 

natural flow triggers downstream migration (Jonsson et al., 2007; McCormick 

et al., 1998); flow speed directly impacts energy demands as salmonids adapt 

their swimming behaviour (Haro et al., 2004), and a minimum flow rate 

conditions the movement of salmonids (Heggenes et al., 1996). In this study, 

the flow regime was high for two of the seven observation periods. Values were 

not extreme (periods e and g 37.5-153.0m3.s-1 and 57.9-191.0m3.s-1) and 

respectively 9.1% and 22.6% of the salmonid counts occurred at a flow rate 

greater than 120m3.s-1 (thought to be the high limiting flow value in the River 

Tyne, Environment Agency, per. com., 2011). This covariate did not affect the 

probability of excess zeros during these observation periods. This may indicate 

that flow values were within suitable monitoring conditions; speed was not so 

low as to limit the salmonid presence and not so high so as to hinder 

movements (false zeros) or allow bypassing the counter. The only observation 

period to be modelled with a ZA design (f, mid-October) presented particular 

conditions in the combination of low flow and high amount of null values (over 

a third of the count data) and provided the best-fitting model (R2=0.56). The ZA 

design did not differentiate between types of zeros (Zuur et al., 2009). This 

possibly indicated that the observation period involved null values due to low 

flow, which were properly accounted for by the model.  

For most observation periods (a to f), increasing tidal state was associated with 

higher probabilities of excess, excess zeros within the salmonid count data. The 

tidal state is not a covariate commonly measured for the study of salmonids; as 

opposed to tidal currents for which various stages are known to be preferred 
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among specific populations of S. salar (Smith and Smith, 1997; Potter, 1988) 

and S. trutta (Moore et al., 1998). The duration of observation periods (4 days) 

implied that the fundamental periodicity of tidal cycle (12hours, 25minutes) was 

very similar to the half-periodicity of diurnal oscillations and the cycles of 

temperature and solar irradiance. The significance of tide as a predictor of 

salmonid movements suggests that tide influenced the upstream movement of 

salmonids within the portion of the river that is influenced by the tide (i.e. tidal 

river). The tidal river was too broad and undefined to estimate the salmonid 

travel time between the estuary and the counter, which was likely related to 

both the solar cycle and the tidal cycle.  

Temperatures play a key role in energy management and the spatio-temporal 

distribution of ectotherms (Hutchinson and Maness, 1979), generating species-

specific requirements of thermal habitats. Higher temperatures associated with 

higher salmonid counts during observation periods c and e which presented 

thermal ranges that were relatively high (14.31°C±1.07 and 14.77°C±0.36); it can 

be assumed that these thermal ranges constituted a suitable thermal habitat. 

During the warmest observation period (d), an increase in temperature was 

associated with fewer salmonid counts. It was determined that for S. salar, a 

thermal habitat of 16.0°C is comfortable and higher temperatures constitute a 

stress; beyond 17˚C heart rate at rest and general metabolism increase and 

resistance to stress is reduced; at 18.4°C S. salar seeks cooler areas, i.e. thermal 

refuges (Anderson et al., 1998). For the warmest observation period d, higher 

probability of false zeros occurred with higher temperatures. This suggests that 

the thermal range (18.36°C±1.2) was beyond the thermal limit typical to S. 

salar. The high temperature range may have cause a period of residency 

downstream from the counter, either within a thermal refuge or to wait for 

thermal conditions to become more suitable. Temperature is also considered a 

major controlling factor in the migration of S. trutta (Byrne et al., 2004). Over 

the seven observation periods, the optimal thermal habitat for salmonids in the 

River Tyne was likely between 13°C and 18°C. 

River turbidity was directly linked to the visibility of salmonids by predators 

(Thorpe, 1994). High turbidity levels limit visual contact, which may cause S. 

salar to struggle to aggregate, as they cannot distinguish one another (Jepsen et 

al., 1998). S. trutta may encounter similar difficulties and also modify their 
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foraging behaviour as they are visual feeders (Klemetsen et al., 2003). Overall, 

turbidity may constitute a constraint as salmonids adapt their vertical 

distribution to the level of turbidity, i.e. deeper waters tend to be under-

exploited if visibility is lower. This may represent a disadvantage when coping 

with predation (Thorpe, 1994) and may force the salmonids to disperse in a 

manner that is not the most energy efficient, and hence cause a time of 

residence. 

pH was a recurrent predictor of migration, and negatively correlated with 

salmonid counts. Extreme pH values may induce problems with olfaction and 

behaviour (pH=5.1, Royce-Malmgren and Watson, 1987) but the ranges 

observed were likely not extreme; so, it appears that the variations in pH 

contributed to variation in counts rather than the pH values alone.  

Respiration produces carbonic acid and photosynthesis absorbs it, causing the 

water to become more acidic or more alkaline (Wurts, 2003). This suggests that 

temporal variation in pH was likely linked to biological activity and 

representative of the interaction between respiration and photosynthesis that 

varyoccur in the River Tyne daily and seasonally. During the first observation 

period in February, pH was relatively high and no temporal trend was observed. 

This observation represents the few live species of occurrence during winter. 

During the following periods (b, c, d, and e) pH fluctuated daily. Carbonic acid 

released during respiration and photosynthesis likely caused the river pH to 

increase during the day and, as the photosynthesis stops at night, the pH was 

reduced every evening until the next sunrise when the cycle started again 

(Wurts, 2003).  

pH values were erratic for the rest of the season (f and g), which may relate to 

the high amount of biological activity occurring at the late stage of the migration 

season. At this stage, salmonids were recorded both at night and during the day. 

Daylight was also the longest of the year, suggesting that photosynthesis took 

place during a longer part of the day. The global pH values were low and 

reflective of the advanced stage of the production season (high biomass and 

respiration, Wurts, 2003). Overall, it is likely that the pH values in the River 

Tyne were both explanatory of the salmonid activity and a by-product of the 

salmonids presence.  
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Salmonid activity took place at different times of the day during the observation 

periods. Recorded movements were initially solely nocturnal (c), then mostly 

diurnal (d and e), then recorded all day long, with daylight being irrelevant to 

variations in numbers (f); movements were solely diurnal during the last 

observation period (g). It is known that the seasonal downstream migration of 

S. salar is initiated by the light (Riley et al., 2002; McCormick et al., 1998). This 

was also likely the case for the upstream migration in the River Tyne, with a 

tendency for diurnal activity for the first part of the migration then for nocturnal 

activity. Upstream migration preferably takes place under minimal predation 

pressure (Smith and Smith, 1997; Potter, 1988). Diurnal migration during warm 

conditions may be an attempt to minimize predation such as birds (McCormick 

et al., 1998). Conversely nocturnal movements may be a strategy to avoid 

reduced flow (Metcalfe et al., 1997).  

The preference for a given time of day for salmonids to be active matched the 

river flow in other studies, i.e. nocturnal activity in summer and diurnal 

otherwise corresponded to respectively low and high flow periods , suggesting 

that preferred conditions consequently related to the optimum visibility (Smith 

and Smith, 1997; Potter, 1988). Absolute water level and change in water level 

were found to be major controlling factors in the migration process of S. trutta 

(Byrne et al., 2004). This pattern may not be applicable to the present study due 

to the minimal river flow is maintained by water releases from Kielder Water 

(Haile et al., 1989).  

2.5.2. Processes of the salmonid movement behaviour 

Within the ZI and ZA models, the negative binomial distribution allowed for 

overdispersion within both the count part of the model and excess null counts. 

In contrast, the ZIP model (Poisson distribution) implied that overdispersion 

was restricted to the zeros (both true and false) and in the ZAP model, 

overdispersion existed in the zero mass only (Zuur et al., 2009). 

The goodness of fit of the negative binomial distribution to the datasets d, e and 

f was emphasized by the relevance of the θ values to model these observation 

periods. The importance of the aggregation was given by the value of the ratio; a 

larger ratio value representing a higer difference with a Poisson distribution and 
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a higher aggregation. The negative binomial distribution in ZI and ZA models 

implied that overdispersion was present. This implied a number of both null 

and high counts values, which corresponded to a grouping phenomenon.  

Theta fluctuated along the migration season of 2008. This heterogeneity may 

indicate instability in the aggregation, potentially because either not all 

salmonids aggregate and several distinct grouping behaviours may occur and 

cannot be quantified at once. For instance, the level of aggregation may be 

species-specific (i.e. two species have a different rate of aggregation and S. 

trutta may displace S. salar during the months of July to October, when the 

counts are estimated most aggregated, E.A., per. com., 2012). Age is 

discriminatory of the start time in salmon (e.g. grilse start before kelt in the 

Dee, Scotland, Jonsson et al., 1990); aggregation may vary with the age-class.  

It is also possible that salmonids do not aggregate constantly and at all times. 

During the third period (c) salmonids may be transitioning from solitary to 

grouping behaviour (given the Poisson distribution prior to c and the negative 

binomial after it). As the salmonid population is composed of two species, each 

composed of several age groups. Grouping patterns may also depend on the 

photoperiod such as seen in caged S. salar (circular schools during the day, 

slower and shallow swim at dusk and interruption of the school, Juell and 

Fosseidengen, 2004). 

The sampling design does not allow definite inferences regarding aggregation 

behaviour. This is because the ability of the models to differentiate between 

random aggregation and shoals may be questioned, as the aggregated counts 

may not be representative of natural salmonid groups. For instance, two 

salmonids located at each end of the counter array, passing the counter at close 

interval, may be recorded as a pair, while their common occurrence may not 

have an ecological meaning. 

Fluctuations in salmonid counts were mostly modelled with a ZI model design 

which implied a dual process behind the generation of null values: it was 

hypothesised that excess zeros were related to the inability of salmonids to 

reach the proximity of the sampling area (i.e. the counter) and that the true 

zeros described unsuitable conditions in the vicinity of the counter.  
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Counts of both species of salmonids were modelled jointly: null values 

corresponded to records of both species simultaneously absent. Excess zeros 

may consequently imply that the ecological characteristics of the river habitat 

considered unfavourable by the model are in fact the conditions that are 

unfavourable to both species (Zuur et al., 2010). If the habitat preferences 

common to both species were modelled, the species-specific requirements likely 

induced false zeros in the sense that the description of the river conditions were 

more suited to a species than the other. During the spring migration in the 

Kumijoki River (Finland) S. salar moves slower than S. trutta (Bazarov and 

Golovanov, 2003). It may be assumed that the response of S. salar to river 

conditions is hence delayed in relation to the response of S. trutta.  

In this study, the proportion of excess zeros varied with observation period, 

associating the notion of ecological site with the sampling time of year. Outside 

the breeding season, conditions in the River Tyne are unfavourable in that they 

are not associated with the salmonid migration. The anadromous salmonids 

concerned in this study migrate long distances in the North Sea for S. trutta and 

even further for S. salar. Excess zeros are consequently linked to the nature of 

the sampling period. This is confirmed by the non-significance of environmental 

covariates in February, when the conditions in the River Tyne likely do not 

affect the salmonids. Excess zeros were not suitably modelled (by covariates as 

by a constant intercept), indicating that marine parameters or time may have 

been relevant to detection probability. The high resolution of the observation 

however rendered the incorporation of broad range climate indices such as NAO 

or AMO rather imprecise. 

River parameters only start having a significant influence of the excess zeros 

from the end of May. It can be assumed that from this time of year onwards, 

environmental conditions brought that salmonids to the river, and the river 

conditions do play a role in whether or not the fish are counted at Riding Mill. 

Consistent with literature about the downstream migration, recurring covariates 

of influence regarding the excess zeros are tide, flow, and solar irradiance. 

Temperature also intervenes but was linked to solar irradiance in previous 

studies, and is investigated further later in this discussion. 

The study of individual movement required measurement intervals to be small. 

It was argued that the duality of the count process (one generating false zeros, 
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the other generating counts and true zeros) should not rest on the selection of 

the scale of the analysis (Lord et al., 2005). For instance, counting car crashes 

over 1/10 of a mile will result in a greater proportion of zeros than over a mile 

(Lord et al., 2005).  

Here, the spatial scale was imposed and the temporal scale was intentionally 

restricted in order to capture local and individual movement (if salmonid counts 

were considered at longer intervals the dataset would contain a smaller 

proportion of null values). Salmonid movement across the counter are 

dependent upon the downstream conditions experienced by the individuals. In 

this regards, the process is dual state; being counted by the counter is 

conditional of experiencing conditions allowing individuals to reach the counter. 

For this reason, downstream conditions were associated with the generation of 

false zeros. All salmonids on their way to the spawning grounds in the River 

Tyne necessarily pass through the counter, so the location of the counter on the 

River Tyne was considered relevant to the study without a bias relating to the 

distance (as opposed to the study by Lord et al., 2005).  

The spatial scale however implied that the conditions recorded corresponded to 

the habitat description by the counter only, not downstream from it. The values 

were not lagged because the travel time of salmonids is within the River Tyne is 

not documented and the level at which the covariates have influenced the 

salmonids behaviour is also undetermined (what level of the river for what 

parameter etc, would result in numerous possible models). It was assumed that 

the measurements were representative of the conditions in the whole river, with 

a more or less extended lag; if this lag was of less than 4 days then the model 

would have picked the relationship between the false zeros and the covariates, 

even if the relationship is lagged. 

False zeros implied the non-detection of the fish by the counter, or the presence 

of fish belonging to an “always zero” group. In the latter case, the fish did not get 

the opportunity to reach the sampled area (i.e. the counter). This may either be 

because the conditions were unsuitable beforehand (but they may be suitable 

within the sampled area) or because the fish remained in the river for a period 

of residency. 
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The opportunities for the production of excess zeros existed at many levels of 

the upstream migration, long before reaching the counter (Figure 2.6).  

As salmonids return to the Tyne estuary, sea conditions dictate whether the fish 

will reach the estuary and when it will occur (Figure 2.6 (I)). No data were 

available to account for this stage, which would also involve lags hardly 

determinable. The lack of information regarding sea conditions may explain the 

contribution of parameters to the model’s fit despite not being significant for the 

first two periods, as these are essential particularly to the first periods studied 

(migration triggers occurring at sea) but not included in the model.  

So, salmonids enter the river immediately or after a residency of variable 

duration (Figure 2.6 (II)), river covariates that potentially influenced this 

behaviour were measured upstream from the estuary and consequently 

occurred before the salmonids experienced them. However, cyclical covariates 

such tidal state and solar irradiance remain relevant. Preferable conditions for 

the entering the river through the estuary were likely linked to minimal 

predation pressure (Smith and Smith, 1997; Potter, 1988). So, low visibility in 

the water may have played a role: flow and light, turbidity and colour may be 

relevant.  

Once in the river, salmonids were subject to freshwater conditions and 

progressed upstream according to how suitable the resulting riparian habitat 

was. Unsuitable conditions may generate two types of zeros. True zeros 

correspond to environmental that lack suitability at the sampling site. False 

zeros correspond to environmental conditions preventing fish from reaching the 

sampling site. Consequently, the influence of the habitat suitability may be in 

the shape of true or false zeros according to the distance to the counter. The 

closer to the counter, the more likely that zeros are true, as they correspond to 

the conditions of the sampling area. However unsuitable conditions responsible 

for the fish to not pursue its travel at a location downstream from the counter 

(in a chronological order of occurrence that may be different from the one 

illustrated on Figure 2.6) engendered false zeros (Figure 2.6 (III)). 
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Figure 2.6: The opportunities that may generate false zeros along the upstream 
migration of salmonids in the River Tyne.  
The scenarios that engender false zeros are in red. For a count to be recorded within an 
observation period, the fish must reach the estuary, enter the river, find the habitat suitable, 
not stay in residency and be detected by the counter; otherwise a false zero will be generated. 

 

Within suitable river conditions, the salmonids may either progress upstream or 

remain resident in the river, in which case false zeros were produced as the fish 

does not reach the counter regardless of the suitability of conditions (Figure 2.6 

(IV)). Residency periods are prolonged stops that can occur several times during 

upstream migration. Residency patterns appear river-specific and also differ 

between individuals. In South-West England salmonids travel close to the 

spawning grounds and rest for a considerable period of residency before 

completing the last part of their journey (McCormick et al., 1998). In North 

Norway, salmonids migrate upstream to spawning grounds with several pauses, 

then move without apparent consistency around the spawning area, with a 

considerable residency period before spawning (Okland et al., 2001). Benefits 

and influences on the residency period are still unclear (Fleming, 1996).  

Travel speed is different between species, with S. salar being generally slower 

(Bazarov and Golovanov, 2003). As both species counts were recorded jointly, 

the reduced speed of S. salar may generate excess zeros, given that the time unit 

per salmonid was implicitly considered identical by the models for all 
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individuals, and consequently for both species. Slower individuals may be 

considered absent while conditions are favourable. 

Finally, salmonids that reached the counter may have missed detection (Figure 

2.6 (V)). High flow values potentially influenced the non-detection of fish due to 

their ability to by-pass the counter when water levels rise; also, the counter may 

occasionally underestimate the number of salmonids by recording single counts 

when two fish or more pass the electrodes simultaneously, or in a manner that 

may be associated with a larger fish instead of several smaller fish (Environment 

Agency, per. com., 2010). This situation may be more likely when the salmonids 

are more abundant, and so the impact on the analysis may be negligible. 

  



Chapter 2 

 

52 

2.6.  Conclusions 

The study used joint counts of two species of salmonid S. salar and S. trutta to 

investigate the behaviour of both species.  

Tide, solar irradiance, and temperature were cyclical variables whose periods 

likely became confounded considering the duration of the observations; their 

effects were significant albeit potentially intricate, mingled and consequently 

difficult to contrast within the models. 

The aggregation behaviour and the response of salmonids to the river covariates 

varied throughout the year. The level of aggregation of individuals increased 

towards the middle of the season. This increase was associated with either a 

higher abundance in aggregating salmonids, or with a higher frequency of the 

aggregating behaviour in the salmonids. 

Whilst this study described the short-term relationship between individual 

salmonids and the River Tyne conditions, the drivers of the annual salmonid 

migration remain to be identified and will be investigated in the next chapter. 
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Chapter 3. Describing the River Tyne Salmonid 

population movements and the impact of the New 

Tyne Tunnel construction works. 

3.1.  Introduction 

The Salmonidae Family is characterised by its salinity tolerance, regardless of 

whether the species is anadromous (Tanguy et al., 1994). Salmonids are part of 

the Salmo taxon, which is one of the 11 genuses of the Family (Integrated 

Taxonomic Information System, 2010). Of the Salmo taxon, two of the 30 

species are of particular interest here: Salmo salar and Salmo trutta.  

Important intra-specific variations exist amongst geographically isolated 

salmonid populations. Differences in S. salar populations have been attributed 

regarding phenotype, behaviour, development, biology, among other life history 

trait variations (Taylor, 1991). S. trutta possess a trait variation from which a 

great aptitude for colonisation results. Habitat range and use, body size, growth 

rate, migration patterns, differ within and amongst populations (Klemetsen et 

al., 2003). Genetic differentiation is possible between some populations and has 

been used as a tool to demonstrate the genetic evolution within the species that 

can be a result of exposure to specific local conditions (in S. trutta, Nielsen, 

1998). S. salar is often cited as an example of local adaptation engendering 

genetic variation (Elliott et al., 1998; Hutchings and Jones, 1998). 

Both S. salar and S. trutta are thought to have been geographically isolated in 

the past but, due to a global decrease in habitat quality, were forced to share an 

increasing proportion of spawning ground over the last decades. Natural 

hybridization between S. salar and S. trutta now happens fairly commonly 

wherever the species are sympatric (Garcia-Vazquez et al., 2001; Jansson and 

Ost, 1997) such as in the River Tyne. The hybrids are believed to be the result of 

either error in mating choice because of the large female trout body (Jansson 

and Ost, 1997) or inter-specific competition, where up to 65% of trout eggs may 

be fertilized by salmon parr (Garcia-Vazquez et al., 2001). 
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Considerable differences between populations have an established genetic 

origin related to the local population isolation and its adaptability to a given 

environment. Salmonid populations over a specific geographic range may hence 

be studied as a whole biological entity. This chapter considers salmonids of the 

River Tyne as a single population.  

Anadromous salmonid populations undergo two important migrations. A first 

migration, after 1 to 4 years in the river, is to the ocean where they become 

mature and fit enough to migrate a second time 1 to 3 years later to their natal 

river and breed. Triggers of salmonid migration remain incompletely 

understood. The most influential parameter may be photoperiod, guiding the 

periodicity of migration, but conditions of water temperature, turbidity and flow 

also intervene and are called “releasing factors” (McCormick et al., 1998). 

Salmonid migration back to the River Tyne for spawning occurs annually, over 

several summer months. Many peaks in salmonid abundance are observed 

within a migration season; these vary slightly between years both in intensity 

and time of occurrence but always according to annual periodicity. 

The annual migration of anadromous salmonids involves significant energetic 

costs in term of swimming, osmo-regulation, and increased mortality due to 

adaptation to different habitats (McCormick et al., 1998). The periodic 

migration is consequently expected to present compensatory biological 

advantages that imply a population dependency on periodic natural parameters. 

The growth of Atlantic salmon follows a light-pituitary axis, whereby the 

endocrine system is regulated photo-periodically (Bjørnsson, 1997). Longer 

daylight increases growth hormones level while the periodicity of daylight 

regulates growth and optimises relationship between body size and length (i.e. a 

“condition factor”). Variation in daylight also influences behavioural and 

physiological seasonal changes and adaptations throughout the year. 

Photoperiod, via its effects on growth hormone, is also directly linked to osmotic 

pressure adaptability, increased dominant feeding behaviour, inhibited anti-

predator behaviour in juveniles, stimulation of swimming, coping with 

starvation, sexual maturation (smoltification, secondary sexual characters), and 

healthy metabolism (Bjørnsson, 1997). In sea-run S. trutta, lower light levels are 

thought to trigger upward swimming and downstream migration (Moore et al., 

1998).  
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The periodicity(ies) contained in River Tyne salmonid counts over time will be 

investigated using the wavelet analysis. This relatively new spectral method 

from the 1980’s (Cho and Chon, 2006) detects scale-dependent regularities 

contained in a time-series. The result is a quantification of the periodicity 

relative to each data point over the study period. The process compares to a 

Fourier transform new ability to represent multi-scale, multi-frequency and 

non-stationary patterns (Grinsted et al., 2004). These properties make the 

wavelet method suited to model patterns presenting transient and/or short-

lived periodicities accross many fields of application (e.g. climatic data, 

Bradshaw and McIntosh, 1994; geophysics, Grinsted et al., 2004; ecology, 

Cazelles et al., 2008). 

Trends in abundance of salmonids are strongly linked to mortality at sea; 

marine conditions as post-smolts enter the Baltic Basin are particularly 

important (Friedland et al., 1998). In S. salar, the highest mortality occurs 

during the first two weeks at sea (28%) after which it is thought to decrease 

quickly (Frieland, 1998).  

As ectothermic fish, the marine habitat requirements of salmonids are largely 

described by the thermohaline circulation; post-smolts disperse as a function of 

sea surface currents, temperature, and salinity. Atlantic and coastal waters 

dominate the surface currents over the North of the UK. Atlantic water moves 

eastwards then south along the coast and coastal waters move south along the 

east coast (Holm et al., 2000). In the Norwegian Sea, the distribution of post-

smolts is determined by a combination of high salinities (>35ppt) and warmer 

temperatures (9-11°C) that correspond to saline Atlantic currents (Holm et al., 

2000). These parameters condition the optimum habitat for post-smolts in 

May, both at the downstream migration stage and as they return to the natal 

river to breed (Holm et al., 2000; Frieland, 1998). The speed and direction of 

the surface currents also influence the dispersal of post-smolts; high velocities 

enable S. salar to reach northern latitudes quickly; salmonids also swim actively 

and may be held by feeding opportunities (Holm et al., 2000). 

Marine temperatures regulate the growth and maturation of salmonids, that in 

turn condition the ability to cope with competition within and between species 

(Friedland, 1998). Survival during the first year at sea is predominantly linked 

to broad scale ocean conditions. Suitability also implies precise timing; warm or 
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cold thermal habitats are more influential depending on the month of the year 

which is directly related to the age, stage of migration and location of S. salar 

(Friedland, 1998) and S. trutta. As the return migration starts many months 

before the start of the spawning season (Jonsson and Jonsson, 2011), the 

demands in habitat suitability extend over several months.  

The ability to predict salmonid migrations requires an understanding of the 

basic biology and the factors potentially disturbing it. Delays in migration due to 

anthropogenic disturbances can have a high impact on the survival of S. salar 

smolts during the downstream migration (Marschall et al., 2011). The 

construction of a tunnel crossing the River Tyne required specific works in the 

river during the end of the year 2009. The construction was likely the source for 

a temporary modification of the river as a habitat, for instance via increased 

sound levels, movement in sediments, vibrations, turbidity, and physical 

hindrance. The impact of this potentially disruptive period will be investigated 

at two levels. Firstly, the long-term population impact will be addressed with the 

broadest available time frame (2004-2011). Secondly, a more local study will be 

carried in order to describe the possible day-to-day consequences of the 

construction works on a more local and individual behaviour of the fish. 

This chapter follows a progressive model building approach. First, the wavelet 

transform will be used to describe the periodicity of signal contained in River 

Tyne salmonid population time-series. The relevant periodicity will be 

incorporated into generalized linear models via harmonics. Generalized linear 

models involve a linear relationship between environmental variables and a 

response that is independently distributed. Mixed-effect models also contained 

fixed effects, comparable to the GLM components in that they were associated 

with the average effect of predictors on the response variable (Pinheiro, 1994). 

In addition, LME models contain variance-covariance components wthat allow 

for modelling of the covariance structure of the random effect terms and 

changing the intercept and slope of the global trend according to specific 

clusters. This feature makes LME models suitable for modelling dependent 

data, whether it is over time or among the subjects sampled (Fox, 2002). A 

simple generalized linear model design will be the basis for further modelling 

and potential addition of random effects. Investigation of the long-term effects 

of the tunnel construction works will use an intervention variable and an 



Chapter 3 

58 
 

interrupted time-series analysis. Short-term effects will be concerned with a 

limited period of time and use a model design to account for the numerous null 

values observed at this small scale of observation analysis.  

3.2.  Material and Methods 

3.2.1. Data 

 Response variable and transformations 

Salmonid counts were obtained from an electronic fish counter installed at the 

Riding Mill station. The study uses data collected over eight years (2004 to 

2012); the response variable is a univariate time series. 

A Box-Cox process was used to estimate the best normalizing power 

transformation of the salmonid count data, improving normality and equalizing 

variances. Such transformations are recognized useful for the robustness of the 

analyses, even non-parametric (Osborne, 2010). The count data were 

augmented by 0.5 in order to avoid infinities when taking logarithms (Breslow, 

1996) and due to the impossibility of applying Box-Cox transformation to null 

values (after recommendations of Yamamura, 1999). Time-series of salmonid 

counts were also log- and Anscombe transformed for the GLMs.  

 Covariates and format 

Models concerned with the study of the general migration pattern used 

covariates related to broad time scale. These were: temperature, flow, year, NAO 

values at various lags, and annual harmonics (see Introduction chapter for 

theoretical justification). Additional AMO data were also tested (Enfield et al., 

2001). All data were pooled into 2 week period bins. Data for the period 2004-

2010 were used to develop the models and data for the year 2011 were used to 

test the forecasting ability of the models.  

Models concerned with the short-term effects of tunnel construction used all 

available covariates (i.e. similar covariates to aforementioned, and turbidity, 

colour, conductivity) and data were binned at a finer grain (one day interval 
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between measurements). The dataset was a subset from 20th September 2009 to 

10th February 2010. The dredging of the trench to accommodate the tunnel 

sections took place between the 9th November 2009 and 15th December 2009. 

This period potentially of greatest impact (EA, 2013) was incorporated to the 

dataset by a covariate with two categorical levels. A second covariate was 

incremented by one every day from the start date of the construction works. 

3.2.2. Analysis 

 Wavelet analysis and periodicity 

The wavelet transform provided a representation of signal periodicity within 

both frequency and time domains. Spectrum plots generated straightforward 

visualization of the fluctuations in periodicity over time. The harmonic analysis 

was based on a continuous wavelet transform that considered all possible scales 

(as opposed to the discrete transform). Morlet wavelets were used to detect 

periodic behaviour present in the response variables. The Morlet wavelet is 

defined as: 

 Equation (3.1)  ψ0(η) =π
−1/4

 e
iω

0
η  

e
−1η* η/2

 

ω0 is frequency (dimensionless) and η is time (dimensionless). The wavelet is 

stretched in time by varying its scale: η= scale * time. The wavelet analysis was 

hence not restricted to stationary periodic events but also allowed the 

visualization of localized intermittent periodicities (Grinsted et al., 2004).  

 Harmonic regression 

Harmonic analysis used a Fourier series to decompose the signal contained in 

the time-series into harmonics made of sine and cosine waves. The resulting 

component was in the form of a trigonometric transformation that included the 

relevant period outlined by the wavelets analysis such as (period expressed in 

number of weeks): 

Equation (3.2)     period of x weeks = a * cos(2π*x/week) + b * sin(2π*x/week)  

Covariates were then included and tested in the models. The coefficients a and b 

of the Fourier series were estimated and used to determine the amplitude c and 
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phase angle d of the harmonic by being combined into a single cosine function 

(Jakubauskas et al., 2001): 

Equation (3.3)          √                                             ( 
 

 
 ) 

                      

The value of the phase angle was then divided by a full period length (2π) and 

multiplied by 52 (i.e. the number of weeks in a year) to locate the peak predicted 

by the model after the start of each year. 

 Models and interrupted time-series analysis 

GLMs were developed using stepwise removal of non-significant covariates 

from a full model containing all covariates, aiming to obtain a most 

parsimonious models containing only covariates for which P-value<0.05. AIC 

was calculated via the log-likelihood value for each model, with n being the 

number of points in each time series and k the number of parameters contained 

in the model:   AIC= -2*log-likelihood + 2k 

Models were assessed in term of overdispersion by the ratio of residual deviance 

over degree of freedom (indicative of overdispersion when above 1, Zuur et al., 

2009). Goodness of fit was quantified by the Pearson correlation coefficient and 

residuals were examined visually for homogeneity, normality and 

independence.  

In LME models, all explanatory variables were initially contained as mixed 

effects and a minimal adequate model was designed by stepwise deletion of 

non-significant variables one at a time. An F-test of the likelihood ratio test and 

the Akaike information criterion (AIC, Sakamoto and Kitigawa, 1986) compared 

the minimal model to the initial full model. An additive forward stepwise 

approach was then followed to choose the covariates associate with the random 

effects explaining the cluster-to-cluster variability. This strategy followed 

previous studies (Buckley et al., 2003; Pinheiro, 1994). Values of AIC were again 

used to decide whether or not to include the covariate. Maximum likelihood was 

applied in order to compare the models and eventually restricted maximum 

likelihood estimates were used as they included fixed effects in the calculation of 

the degree of freedom (MLE does not, Pinheiro, 1994). 
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Two-part and mixture models were designed according to a backward stepwise 

approach; AIC was used for model selection and the significance of each model 

component was quantified via a χ2 test. A binary variable accounting for the 

tunnel construction works period was created and allowed applying an 

interrupted time-series analysis approach by testing the significance of the 

effect of the variable when included in the models (Wagner et al., 2002). 

3.2.3. Software 

The wavelet analysis, GLM, LME and zero-inflated and zero-altered models 

were developed using, respectively, biwavelet (Gouhier and Grinsted, 2012), 

MASS (Venables and Ripley, 2002), nlme (Pinheiro and Bates, 2000) and pscl 

(Jackman, 2012) packages, operated in the R.15.1 environment (R Core Team, 

2012).  
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3.3.  Results 

3.3.1. Harmonic analysis 

Wavelet power spectrums and matching average wavelet power spectrums were 

generated for the time series of salmonid counts (Figure 3.1).  

 

Figure 3.1: The wavelet analysis of the River Tyne salmonid counts over the 
observation period 2004-2011. 
With (a) wavelet power spectrum and (b) associated average power spectrum. The 
interpretation was restricted to the cone of influence; highest power appeared in yellow 
through red on the spectrum and the lowest power was in blue. A thick black line defined the 
contours for significance at the 95% level for all power of all points; the P-value corresponded 
to the average power over a given period, which may vary in value and significance over 
years. The primary period was of 52.48 weeks and the secondary period was of 24.77 weeks. 

 

Significant values were extracted (Table 3.1). The highest power average was for 

a period of 52.48 weeks (P-value<0.001) and appeared constant and strong 

throughout the years. Secondary periodicities were also observed (yellow, 

outlined regions on the average power spectrums). These were transitory 

periodicities, occurring more particularly during the first half of the whole 

observation period. 

Table 3.1: Periodicity values of the time-series of salmonid counts, extracted 
from the wavelet transform for the observation period 2004-2011. 

Consequently the cyclic variations observed in the time-series were likely not 

perfectly sinusoidal during the first half of the observation period (Diggle, 

1990).  

 Duration (weeks) power Z-value P-value 
Primary period 52.48 194.74 7.29 <0.001 
Secondary period 24.77 7.94 1.06 0.14457 
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3.3.2. Response transformation 

Computation of the maximum likelihood function and posterior distribution of 

Box-Cox transformed response variable indicated that a power transformation 

of λ=0.1818 was optimal (after Box and Cox, 1964, Appendix A.ii, Figure A.7.6). 

This power corresponded to count values incremented by 0.5 and was located 

closer to λ=0.5 when this value was lowered. Consequently, the more usual 

square root transformation was also applied.  
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3.3.3. Description of the River Tyne Salmonid migration 

 Generalized linear models 

Outputs from the first-ranked GLMs according to AIC scores are presented in 

Table 3.2. The ratio of the residual deviance over the residual degree of freedom 

indicated a high level of overdispersion in the models, 200 to 400 folds for all 

but the log- and Box-Cox transformed time-series.  

Table 3.2: Statistics of goodness-of-fit and overdispersion for the optimal GLM 
obtained for of salmonid counts according for transformations of the response. 

Transformations reduced overdispersion, with the log- and Box-Cox being more 

acceptable. The non-normality of the residuals distribution however indicated a 

failure in the model type (Figure 3.2). No parsimonious model was obtained 

using the GLMs design.  

 

Figure 3.2: Temporal variations (a&b) and QQ-plots (c&d) of the residuals of the 
first-ranked GLMs, for log- and Box-Cox transformed salmonid counts. 
The residuals were non-normally distributed for both transformation (c&d). 

  

 Residual 
Deviance 

df Ratio 
Pearson 

Cor. 

Normality 
test df 

 W,P 

Count, Poisson 87721.0 196 447.6 0.67 1,<0.001 13 

Count, neg. bin. 87679.7 196 447.3 0.68 1,<0.001 14 

Log(count+0.5) 310.2 203 1.5 0.81 1,<0.001 7 

Anscombe(count) 44470.0 205 216.9 0.64 1,<0.05 5 

√      44590.5 205 217.5 0.64 1,<0.001 5 

count0.182 70.8 204 0.35 0.81 1,<0.001 6 
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 Linear mixed effect model, Box-Cox transformed counts 

The most parsimonious linear mixed effects model included random effects of 

temperature and year (AIC= 238.37, ΔAIC<64.45 with the full model, with 9 

parameters against 18). The random effects provided with a much better 

description of the data than a linear regression (F=13.99, P-value<0.005). The 

coefficients of random effects for the temperature covariate of each year (Table 

3.3) indicated a difference in rate of increase of salmonid counts with 

temperature on an annual basis, in relation to the whole period of study.  

Table 3.3: The random effects coefficients of the most parsimonious LME model 
of the Box-Cox transformed salmonid counts. 
Values are given for intercept and temperature for each year. 

 

 

Likelihood ratio tests indicated significant relationships between the salmonid 

counts and annual periodicity (χ=175.00, df=2, P-value<0.001), temperature 

(χ=3.69, df=1, P-value<0.055), and NAO values with a lag of 4 years (χ=8.849, 

df=1, P-value<0.005). Coefficients of the fixed effects are presented in Table 3.4. 

Table 3.4: Restricted maximum likelihood coefficients of the most parsimonious 
LME model of the Box-Cox transformed salmonid counts. 

Fitted values for the period 2004-2011 along with the forecast of salmonid 

counts for the year 2011 by the same model are presented on Figure 3.3 for the 

back-transformed values. The examination of residuals distribution per year 

pointed a few outliers (Appendix A.ii, Figure A.7.7 and Figure A.7.8) which were 

identified on the plot of residuals over time (Figure 3.3). 

Residuals values were centred around zero (Appendix A.ii, Figure A.7.7). The 

distribution of the model’s residuals was not significantly different from normal 

(Figure 3.4a&b, Shapiro test W=0.99, P-value=0.568). A pattern remained 

when plotting the residuals against fitted values (Figure 3.4c). Autocorrelation 

was present (Figure 3.4d) and there was a strong negative correlation between 

the random intercept and slope, indicating that for an increase by one unit of 

 2004 2005 2006 2007 2008 2009 2010 
Intercept 0.3109 0.145 -0.066 0.101 0.014 -0.011 -0.493 
temperature -0.015 -0.023 0.001 -0.010 0.004 -0.009 0.051 

 Value Std. Error df t-value P-value 
Intercept 2.160 0.238 172 9.081 0.0000 
cos (1year) -0.421 0.152 172 -2.764 0.0063 
sin (1year) -1.030 0.066 172 -15.637 0.0000 
temperature 0.0779 0.023 172 3.384 0.0009 
NAO4yr -0.205 0.056 172 -3.682 0.0003 
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standard deviation of the intercept, the slope would decrease by 0.923 unit of 

standard deviation (Appendix A.ii, Table A.13). The annual periodicity was also 

closely correlated to other fixed effects, which was expected due to the cyclical 

nature of all the parameters. As high levels of correlation may be the sign of an 

ill-conditioned variance matrix, a serial correlation structure was added to the 

model. It accounted for autoregressive correlation without decay with greater 

temporal distance (compound symmetry). The component increased the AIC 

value (ΔAIC=2.00) and did not affect the coefficients nor the level of 

significance of the estimates, so it was not retained. 

 

Figure 3.3: Predictions from the most parsimonious LME model of the Box-Cox 
transformed salmonid counts. 
(a) Back-transformed fitted values based on the period 2004-2011, (b) forecast for the year 
2011 based on the same model and (c) corresponding residuals of the model over the years 
2004-2011.  

 

The model was of good fit for the transformed values (Figure 3.5a) but the 

variance increased for higher values of the raw data (Figure 3.5b). The source of 

this variability could not be accounted for by the model. The forecasting ability 

was tested for year 2011 and appeared of similar goodness of fit (Figure 3.5c&d). 

 

 Observed salmonid counts  LME model residuals 
 Predicted salmonid counts  LME model residuals outliers on Q-Q plot 
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Figure 3.4: Diagnostic plots for the optimal LME model for the Box-Cox 
transformed salmonid counts for the observation period 2004-2011.  
The residuals were non-normally distributed (a&b), and there was (c) some evidence of 
heteroscedasticity and (d) fading cyclical autocorrelation. 

 

 

Figure 3.5: Fitted (2004-2011) and predicted (2011) values against 
corresponding observed values for the model of the Box-Cox transformed 
salmonid counts.  
The figure shows the relationship between predicted and fitted values and Box-Cox 
transformed salmonid counts (a&c) and unchanged salmonid counts (b&d).  

  

 Residuals of LME model  
of (salmonid counts )0.18 

 
Normal distribution 
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 Linear mixed effect model, square root transformed counts 

The most parsimonious model included random effects of temperature and year 

(AIC=1579.97, ΔAIC>26.54 with the full model). Again, random effects allowed 

achieving a better description of the data than a linear regression (P-

value<0.005, F=15.50). The coefficients of random effects (Table 3.5) again 

indicated an annual difference in rate of increase of salmonid counts with 

temperature; estimated differences were more important than when using the 

Box-Cox transformation.  

Table 3.5: The random effects coefficients of the most parsimonious LME model 
of the square root transofrmed salmonid counts for the whole observation 
period. 
Values are given for intercept and temperature for each year. 

 

Comparable relationships existed between salmonid counts and annual 

periodicity (χ=223.05, df=2, P-value<0.001) and temperature (χ=6.5361, df=1, 

P-value<0.05). Estimates had lower values than for the previous model, in 

accordance with the scales of transformation as the power of the Box-Cox 

transformation was a smaller fraction than square root power.  The tunnel 

construction works period appeared related to variations in salmonid counts 

(χ=13.7, df=1, P-value<0.001). The coefficients of these fixed effects are 

presented in Table 3.6. 

Table 3.6: The coefficients for the fixed effects of the optimal linear mixed 
effects model of the square root transformed salmonid counts for the whole 
observation period. 

 

The residuals distribution indicated a considerable lack of conformity to model 

assumptions. Residuals were non-normally distributed (Shapiro test W=0.9854, 

P-value<0.05, Figure 3.6a&b and Appendix A.ii, Figure A.7.12) and presented 

temporal patterns (Appendix A.ii, Figure A.7.13). A horn-shaped distribution 

pointed to a lack of independence and linearity of the variance (Figure 3.6c, 

outlining the relevance of a different power for the transformation); 

heteroscedascticity and autocorrelation were still present Figure 3.6d). 

 2004 2005 2006 2007 2008 2009 2010 2011 
Intercept -0.711  3.419 -0.039 1.868 -0.225 4.050 -5.621 -2.742 
temperature 0.184 -0.582 -0.006 -0.307 0.018 -0.673 0.926 0.440 

 Value Std Error df t-value P-value 
Intercept 15.279 4.558 197 3.352 0.0010 
cos (1year) -7.714 3.169 197 -2.434 0.0158 
sin (1year) -22.924 1.373 197 -16.698 0.0000 
temperature 1.254 0.478 197 2.627 0.0093 
tunnel -18.363 6.176 197 -2.973 0.0033 
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Correlation between effects remained (Appendix A.ii, Table A.14). The higher 

outliers on Figure 3.6b were identified as mostly underestimations of peaks 

during the migration season (Figure 3.7). 

 

Figure 3.6: Diagnostic plots for the optimal LME model for the square-root 
transformed salmonid counts for the whole observation period. 
The residuals were left skewed (a&b), and there was (c) a strong horn-shaped 
heteroscedasticity and (d) fading cyclical autocorrelation. 
 

 

 

Figure 3.7: Predictions from the most parsimonious LME model of the root 
square transformed salmonid counts for the whole observation period. 
Fitted values based on the period 2004-2012 and corresponding residuals over time. 

 

 

 Residuals of LME model of  √                 Normal distribution 

 Observed √                 LME model residuals 

 Predicted √                 LME model residuals outliers on Q-Q plot 
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3.3.4. Impact of tunnel construction on individual salmonid 

The hurdle model with a binomial distribution of the error was the most 

parsimonious (θ=1.962, P-value<0.01 for Log(θ)). The model did not 

differentiate between the types of zeros. The AIC between the full and the most 

parsimonious model was ΔAIC=7.57 (AIC=528.05, df=11). 

The model coefficients are presented in Table 3.7 for both the count and zero 

hurdle parts of the model. Variations in salmonid numbers were negatively 

related to the values of NAO with a lag of 5 years (χ=5.71, df=1, P-value<0.05). 

The tunnel presented a small negative effect (χ=8.45, df=1, P-value<0.005) 

corresponding to a decrease of a third of a fish during the tunnel construction 

works (exp(-1.05)=0.35). The time since the tunnel construction works was 

linked to a lower count of salmonids (χ=41.41, df=1, P-value<0.001). The zero-

part of the model estimated the ratio of probabilities for a non-null count 

(implied by the zero part) divided by the probability of a non-null count 

(implied by the whole model distribution). The odds of zero salmonids at the 

Riding Mill station increased with higher tidal state (χ=6.77, df=1, P-

value<0.01), and during the tunnel construction (χ=3.994, df=1, P-value<0.05), 

with 95.5% more chances for null counts during tunnel period.  Turbidity was 

associated with less null counts (χ=33.30, df=1, P-value<0.001) and the absence 

was strongly related to the annual periodicity (χ=79.17, df=2, P-value<0.001).  

Table 3.7: The count and zero hurdle coefficients for the model of salmonid 
counts during the period 20th September 2009 to 10th February 2010. 

Correlations between covariates of significant effects are presented in Table 3.8. 

Tunnel construction and turbidity were correlated. Temporal covariates 

appeared correlated, whether these were cyclical (sine and cosine waves, tide) or 

a linear measure of time (time since tunnel construction works).  

Estimate Value Std Error Z-value P-value 

C
o

u
n

t Intercept 5.0261     0.1371   36.652   < 2e-16 
NAO, 5year -0.4168     0.1737   -2.400   0.01641 
Time since -0.0835     0.0117   -7.164 7.81e-13 
Tunnel -1.0492     0.3303   -3.176   0.00149 

Z
er

o
 

Intercept 24.0384     10.1064    2.379   0.0173 
Tide 12.0448      5.4851    2.196   0.0281 
Turbidity -1.0563      0.3452   -3.060   0.0022 
Cos(1year) -31.4329     -31.4329     10.842  0.0037 
Sin(1year) -7.5045      -7.5045      2.818   0.0078 
tunnel 3.0560      1.5502    1.971   0.0487 
Log(theta) 0.6740     0.2407    2.800   0.0051 
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Figure 3.8 : Diagnostic plots for the optimal hurdle model for salmonid counts 
for the period 20th September 2009 to 10th February 2010. 
The residuals were left skewed and strongly non-normally distributed with an important 
departure of the right tail (a&b), and there was (c) heteroscedasticity and (d) autocorrelation. 

 

 
 Observed salmonid counts 
 Predicted salmonid counts in observed conditions 
 Predicted salmonid counts supposing no tunnel construction 
Figure 3.9: Observed and fitted values according to the most parsimonious 
Hurdle model for the period 20th September 2009 to 10th February 2010. 
The salmonid counts are predicted according to observed conditions and also supposing that 
no tunnel construction works took place. 

 

Table 3.8: Correlation value and significance between the hurdle model 
components for the period 20th September 2009 to 10th February 2010.  
The correlation coefficients are displayed  in the lower panel and corresponding P-values are 
displayed in the upper panel. Values on grey background are non-significant. 

 

  

 Residuals of hurdle model of salmonid counts  Normal distribution 

 
NAO 

Time 
since 

Tunnel Tide Turbidity 
cos 

(1 year) 
sin 

(1 year) 
NAO . <0.001 <0.05 0.762 <0.001 <0.001 <0.005 
Time since 0.473 . <0.001 <0.005 <0.001 <0.001 0.047 
Tunnel -0.096 -0.452 . 0.585 <0.001 <0.001 <0.001 
Tide -0.261 -0.546 0.272 . <0.001 <0.001 <0.05 
Turbidity -0.066 -0.407 0.676 0.209 . <0.001 <0.001 
cos(1year) 0.553 0.640 0.351 -0.357 -0.001 . <0.001 
sin(1 year) 0.505 0.996 -0.369 -0.539 -0.348 0.705 . 



Chapter 3 

72 
 

3.4.  Discussion 

Fluctuations in River Tyne salmonid numbers during the years 2004-2012 were 

defined by an annual periodicity, NAO values with a lag of four years and river 

temperature. This indicates that migration seasons with high salmonid counts 

were characterized by a synchronized increase in river temperature and lower 

NAO values four years prior to the observations.  

It was hypothesised that other covariates would be of importance but were not 

selected by the models, including the Atlantic Multidecadal Oscillation. AMO 

values induce fluctuations of sea surface temperatures; at sea, S. salar appears 

to be found in lower quantities when the AMO is in a warm phase rather than a 

cold phase (Condron et al., 2005). Likewise, salmon stock survival is correlated 

with spring water temperatures in the Atlantic Ocean, extending into the North 

Sea (Friedland et al., 1998).  

Cycles in sea temperature and fish communities are closely related. Global 

ocean warming has increased plant biomass and turnover in plankton 

communities (Beaugrand and Reid, 2003) and fish (MacNeil et al., 2010) 

towards a community structure more similar to warmer waters. The latter are 

not suitable for salmonids to feed on and the community turnover becomes 

associated to shift in prey base (Beaugrand et al., 2008) that leads to food 

limitations for S. salar and S. trutta. For several fish species in the North Sea 

(e.g. cod Gadus morhua and anglerfish Lophius piscatorius) this turnover has 

also been associated with changes in the spatial distribution and deepening of 

fish assemblages (MacNeil et al., 2010). These processes suggest a possible 

global and persistent decrease in energetic gain from the marine stage of 

salmonids. 

NAO effect on salmonid counts was significant only when lagged. The four year 

lag implies that counts of breeding salmonids were, on average, related to 

temperature at earlier life stages four years previous to being recorded; the stage 

in question depends upon the combination of years spent in river and at sea. 

The duration of the maturation in freshwater varies considerably between 

individuals of the same species (1 to 4 years for S. salar, Klemetsen et al., 2003 

and 1 to 3 years in S. trutta, Bekkevold et al., 2004); time spent at sea also 

fluctuates from one to more years (Friedland et al., 1993). When averaging these 
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conditions over the several indiscriminate age-classes of each species, this 

indicates that the lag of four years in NAO values likely represented the marine 

conditions when the recorded salmonids were either smolts in the river (in 

which case they could not have experienced sea conditions so these are not 

concerned), or post-smolt entering the sea, or the parent population of the 

recoded salmonids as they returned to spawn. NAO values were linked to 

thermal estuarine conditions, which influence numerous fish species either at a 

juvenile stage or by influencing conditions for the parent stock (Attrill and 

Power, 2002). 

The importance of parental stock on abundance of S. salar has been shown by 

stochastic life history models (e.g. Dumas and Prouzet, 2003; Jonsson et al., 

1998) that make use of demographic data and require representative sampling 

to quantify all life stages within a population. Demographic features were not 

incorporated here as demographic data were not available for this study. If the 

freshwater stage is an important source of mortality in S. salar as they return to 

spawn in the River Tyne, it is possible that the lagged NAO value, relating to the 

freshwater stage of S. salar, was selected in the model partly as a representation 

of the spawning population. 

Long-term dependency in environmental conditions has been demonstrated at 

the fry stage for both salmonid species: abundant food leads to a well 

represented age class (match-mismatch, Jonsson and Jonsson, 2004). Scarce 

food at this life stage is associated with low productivity regardless of whether 

conditions improve. Smoltification involves high energetic requirements for 

growth and maturation and is associated with increased food intake (Jorgensen 

and Jobling, 1992). It can be hypothesised that lagged values of NAO are linked 

to feeding conditions in the estuary at the smolt stage, and that these conditions 

significantly influenced how many salmonids of their age class concerned return 

to the River Tyne as breeders. 

In addition, anadromous fish are believed to be highly sensitive to mortality 

when entering the oceanic habitat. Causes of high mortality are poorly known, 

however this totally new environment implies new predation, diseases and food; 

all of which challenge physical and behavioural characteristics (Friedland, 1998; 

McCormick et al., 1998). Anadromous salmonids have a physiological and 

ecological smolt window, periods of time during which smolts survival is 
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heavily dependent upon their readiness for the osmotic change inherent in 

entering the marine environment and habitat suitability (McCormick et al., 

1998). This set of requirements makes the first period of the marine phase most 

challenging for up to 2 months (Friedland et al., 1993). European Atlantic 

salmon populations are habitat dependent beginning at the post-smolt stage: 

associated growth and fitness are consequently compromised if not provided 

with adequate habitat requirements (Friedland et al., 1993). Other authors 

argue that predation is the main factor responsible for marine mortality 

(Hansen and Quinn, 1998). 

The relationship between the sea surface temperature, thermohaline circulation 

and fluctuations in AMO (Mingfang et al., 2009) and NAO (Wang et al., 2010) 

allowed incorporation of indices representative of the oceanic climate in the 

models of salmonid migration. The un-lagged values of NAO and AMO were not 

relevant to the salmonid migration model, implying that marine conditions as 

the salmonids were returning towards the estuary were not significant 

predictors of the temporal abundance patterns in salmonids observed in the 

river.  

It may be hypothesised that because S. salar and S. trutta follow a different 

migration route when at sea, actual marine influences may not be accounted for 

in a single model as movements are species-specific. Post-smolts of both species 

were however exposed to similar conditions as they occupy the Baltic Basin 

simultaneously for the first months of the post-smolt stage. Post smolts of S. 

salar from the River Tyne, like the Scottish natives, likely use near-shore areas 

at the beginning of the marine migration (Malcom et al., 2010) and S. trutta 

tend to remain along the coast (Jonsson and Jonsson, 2011). A single model 

representing the two species jointly was hence relevant to describe this stage of 

the migration and, equally, condition for the parent counted at Riding Mill. 

The relevance of year as a random effect indicated a difference in salmonid 

counts between the years, possibly reflecting differences in marine survival rates 

and/or annual variation in maturation rate (Friedland, 1998). The rate of 

change in counts also varied with temperature, indicating that the relationship 

to temperature is year-specific. Autocorrelation within the residuals persisted in 

the most parsimonious model. Whilst salmonid behaviour is likely to have been 

autocorrelated, many of the environmental predictors used in the models would 
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also show some level of autocorrelation, including the random effects. But, 

allowing correlation in temperature and time would equate to correlated 

random effects for the intercept and slope on the data. This would cause the 

variance of the intercept to approach zero while the covariance of intercept and 

slope stay non-zero, which would be a mathematical impossibility (Bates, 2007). 

Several sources advise against refining correlation structures despite lowering 

AIC scores (Zuur et al., 2009). Attempts to improve the correlation structure 

did not succeed and were considered not suited for the model. 

The fit of models was in most cases improved when the count data were 

transformed. Box-Cox transformations are often applied by using a close value 

of lambda particular to the field of study. Here the power transformation used 

the exact lambda value recommended by the Box-Cox transformation (λ=0.182) 

and models became linear. Stepwise selection of covariates assuming a linear 

relationship when it is not the case, risks retaining a covariate only because it 

carries some level of non-linearity (Royston and Altman, 1994). By transforming 

the response variable, the chances of such erroneous selection are minimized as 

the relationship is closer to linear. Here, the exact lambda value optimized 

modelling the linrst relationship between response and explanatory variables. 

The ecological meaning of lambda may consequently not be obvious initially but 

it is in order to define it as well as possible that this level precision was 

maintained.  

Response transformations help issues related to both heteroscedasticity and 

skewness: lambda informs on the shape of the relationship between response 

and explanatory variables. Selection of the value of lambda is recommended to 

be accomplished in light of the data (Box and Cox, 1964). However here, this 

value can be considered one of the parameters investigated by the model as no 

ecologically meaningful value was apparent due to the complexity of the 

processes involved and the spread in time. In some instances the power 

relationship may simply be defined by the function in question, or may be 

representative of one or several mechanisms that are not described by the 

model. Given that salmonid life history is multiannual, covers a range of marine 

and freshwater habitats and that little data are available about migration for this 

study, there were likely missing covariates. 
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The shape of the response transformation may also be a product of the 

conversion of local data to a more general perspective. The aggregation of the 

dataset allowed matching the scale of the study to the scale of the 

measurements. Counts were standardized to represent 2 weeks but the initial 

data were collected individually and locally. In that regard, this study imposed 

an indirect scaling on the salmonid ecology. Data aggregation may raise 

mathematical concerns for such scaling exercises, including the danger of 

generating nonlinearity by averaging (Marquet et al., 2005). Ecological 

processes may change when moving from a small to larger scale made of 

aggregates of the small scale observations; this phenomenon called 

transmutation has been related to non-linear relationships across scales due to 

spatial (landscape) heterogeneity (King et al., 1991) and salmonid numbers were 

summed over the time intervals but this issue may also be due to averaging of 

explanatory data such as flow, which take on different meanings depending on 

the way they were aggregated (mean or sum).  

A response transformation with a more approximate and traditional (λ=0.5) 

lambda value than the one advocated by Box-Cox methodology (λ=0.182) 

resulted in different sets of predictors being selected for variation in salmonid 

counts. Annual seasonal cycle was retained and higher counts were again 

related to an increase in temperature. Values of NAO were this time not retained 

and the tunnel construction appeared to lower fish counts considerably during 

the period in question. The estimated differences associated with (similar) 

random effects were more important in this model than when using the Box-Cox 

transformation. This possibly indicated that the general trend was not optimally 

accounted for since the model attributed more variability to random effects 

without the residuals being appropriately distributed. This confirmed the 

assumption that a more precise Box-Cox transformation accounts for an 

amount of variability that allows selection that may not be explained with the 

available model components (in regard to linearity and unless there is an 

ecologically meaningful power value, Royston and Altman, 1994); and allows 

the selection of covariate with a reduced bias. 

The Fourier series, containing a trigonometric expression of annual periodicity 

provided were a basic representation the annual seasonal cycle, a controlling 

factor of the temporal variability of many marine ecosystems (Bertram et al., 
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2001). The River Tyne salmonid population was part of a complex marine 

community involving other organisms, themselves responding to external 

parameters according to their own cycles. Plankton dispersal, for instance, 

responds to the annual seasonal cycle and in turn influences salmonid 

distribution (Beaugrand and Reid, 2003). Annual seasonal cycle was admittedly 

a factor in itself, but the significance of the annual periodicity as a covariate also 

indicated that an additional factor, or factors, correlated with annual periodicity 

may affect the salmonid life cycle. 

This becomes obvious in the transient periodicity observed in the wavelet 

transform of the time-series. The presence of periodicities other than the main 

one indicates that the waveform of the salmonid counts may not be perfectly 

sinusoidal (Diggle, 1990). The waveforms synthesised by the most parsimonious 

model are presented on Figure 3.10, along with a simple annual periodicity, the 

secondary periodicity (24.7 weeks) and the sum of both.  

The waveform made of both periods on Figure 3.10d illustrates the imperfect 

sinusoidal shape relevant to the first half of the observation period (2004-

2008). Such a shape was not represented by the stationary models. The double 

hump may represent a change in behaviour of one of both species and/or a lack 

of synchronicity in the return numbers during the years in question. 

Explanations as to why both species were not in perfect phase or how the 

reaction to external parameters may have been time-varying, is addressed 

separately in the following chapter. 

 

Figure 3.10: Illustration of the waveforms relevant to the description of 
periodicity contained in the time-series of salmonid counts. 
The waveforms contain (a) an annual period P1, (b) an annual period with coefficients as 
estimated by the most parsimonious LME model of salmonid counts P1a, (c) a 24.7 weeks 
period P2 and (d) the sum of both periods, over a year time. 
 

The model investigating the tunnel construction works aimed to take into 

account the many null counts recorded during this period. Zero-inflated and 

zero-altered models were both used and only the latter type appeared suitable in 

light of Chapter 2. In this instance, the main difference between the two designs 
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was the ability of the zero-inflated models to separate between true and false 

zeros (Zuur et al., 2009). True zeros implied the absence of salmonid as a 

response to the river parameters rendering the habitat unsuitable; excess zeros 

were null records in conditions where the habitat was good. Winter conditions 

were bound to induce null counts due to unsuitable conditions (i.e. true zero).  

Null counts due to the construction works, whether true (the tunnel creates an 

unsuitable habitat) or false (salmonid are queuing downstream from the 

counter, present but not counter), were consequently confounded and not 

differentiable by the model. This is implied by the selection of a zero-altered 

model which confounds all types of zeros. This also indicates that the tunnel 

construction works took place at a time that was optimal for the non-disruption 

of the salmonid migration pattern. 

Delayed downstream migration of S. salar smolts is associated with lower 

survival because of the mismatch with the fish physiology and environmental 

conditions (Marschall et al., 2011). Descending smolts must reach the estuary 

before temperatures become too high; if a delay prevents the fish to do so then 

mortality increases. The construction works in the Tyne took place in December. 

Natural conditions were either unsuitable (i.e. naturally associated with rare 

counts) or becoming more suitable for migration. A delay was unlikely to be 

associated with a mismatch.  

Strong correlations between covariates existed for this period, some 

coincidental with construction. For instance, turbidity values jumped during the 

tunnel construction period (Appendix A.ii, Figure A.7.14).The measure was 

taken upstream from the tunnel works, so were correlated but unrelated. The 

number of days since construction appeared to lower salmonid counts but was 

again confounded with the natural migration cycle. The period considered 

(September 2009 to February 2010) was considered not representative enough 

to extend the inferences from the model estimates to a broader scale and hence 

not suited to test potential long-term effects. The long-term LME model 

suggested no subsequent impact to be recorded on the available period. 

However, the link with NAO values four years before implies that a long-term 

effect, however unlikely, may be investigated again on a time-series including 

four to five years following the construction works (i.e. with data up to 2014-

2015). 
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3.5.  Conclusions 

Salmonid counts in the River Tyne during the years 2004-2012 were modelled 

using GLMs and LME models which described the characteristics shared by the 

two species constituting the salmonid population: S. salar and S. trutta. 

A positive relationship was established between salmonid counts and the river 

temperature. Values of NAO with a four year lag also appeared influential, 

underlining the importance of sea conditions for the parent population and/or 

at the juvenile stage as they share territory in the North Sea. Marine factors 

consequently controlled annual survivorship in a similar manner for both 

species. Annual seasonal cycle and/or a parameter with an associated cycle, was 

also a predictor of the migration pattern. No covariate reflected the importance 

of marine conditions during migration towards the natal river.   

The tunnel construction appeared to have taken place at an optimal time 

regarding the salmonid migration, engendering no significant disruption to the 

migration pattern. 

The failure of the GLMs, the imperfect diagnostics from the LME models and 

the fractional power transformation required, all pointed towards a potentially 

non-stationary relationship between the counts and the available environmental 

parameters and the dependence of the response. A relationship between 

salmonid counts and time was made explicit in terms of both autocorrelation 

and periodicity; an imperfect sinusoid with a transient component was not 

accounted for by the models. These elements suggested a high level of 

complexity contained in the patterns of salmonid counts, which likely implies 

the existence of several confounded ecological processes. 

This complexity is likely partly due to species-specific traits contained in a single 

time-series. In this case, complexity may be reduced and processes described by 

describing S. salar and S. trutta as distinct populations. In the next chapter, the 

patterns specific to the count of each species will be investigated individually.    



 

 

 

 

 

 

 

 

 

      C  h  a  p  t  e  r   4 .    . 

 “Everything alters me, but nothing changes me”. 

S. Dali 
Quoted in The Secret Life of Salvador Dali  

S. Dali and H.M. Chevalier, 1942. 
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Chapter 4. An analysis of the migration patterns of   

S. salar and S. trutta in the River Tyne. 

4.1.  Introduction 

By definition, migratory species are mobile and adjust their behaviour so as to 

pursue suitable environments throughout the progression of their lifecycle 

(Robinson et al., 2009). Geographic locations for breeding, migrating and non-

breeding stages of their life-cycle vary and meet different criteria of suitability 

(Robinson et al., 2009) so that reproduction and growth are synchronized with 

peaks in specific resources that satisfy the demands of critical life stages (Gill et 

al., 2001).  

The management and conservation of migratory species is particularly 

challenging. Poor knowledge of migration patterns and associated demands are 

a common problem in the conservation of migrants, as well as the variety of 

pressures linked to movements, fluctuations in home range, and the need for 

both local and broad-scale protection that can be difficult over national 

boundaries (Epstein et al., 2009).  

An estimated 3% of fish species are migratory, and little to no knowledge exists 

about their migration conditions (Robinson et al., 2009). S. salar and S. trutta 

are no exception and their differences between the migration add to the 

difficulty in monitoring them. S. salar and S. trutta tend to overlap in time and 

space when migrating both downstream and upstream along natal rivers 

(Jonsson and Jonsson, 2011). However during the marine phase of their 

lifecycle, these salmonids follow distinct routes. Anadromous S. trutta tend to 

feed and remain within coastal waters and estuaries, and rarely venture further 

than 100km from the shore (Jonsson and Jonsson, 2011) but still cover 

appreciable distances (Pratten and Shearer, 1983; commonly 100 to 500km, 

Swain et al., 1960) that are specific to each population and increase with the 

length of the natal river (Jonsson and Jonsson, 2011). In several studies, S. 

trutta was observed in the reaches of non-natal rivers, emphasizing their
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extensive coastal migration (e.g. recaptures of natives from Devon in River 

Tweed, England, Swain et al., 1960; natives from Moray Firth moving between 

the Beauly and Ness Rivers, Scotland, Anonymous, 1930). The migration route 

of S. salar extends well beyond the North Sea basin. It is likely that S. salar 

travel to the North Atlantic sub-polar gyre directly after their downstream 

migration, moving counter-clockwise within these rich feeding grounds until 

migrating back towards Europe (Dadswell et al., 2010); North American and 

European salmon meet on these feeding grounds but the latter move south 

(Windsor et al., 2012).  

Groups also exist within each species; the influence and function of these groups 

on their migratory route is poorly described. The timing of migration sometimes 

differs slightly with regards to age class and/or fish size, in both species (JNCC, 

2007; Birkeland, 1996; Jonsson et al., 1990). The phase difference may or may 

not reflect coverage of a different migration route, but it does imply that 

conditions are not lived concurrently for all groups within a population. 

Dispersal behaviour in S. trutta is potentially sex-biased (Bekkevold et al., 

2004) and the distance covered is highly variable between individuals (Malcom 

et al., 2010). Kelt and grilse of S. salar reach for feeding grounds that are likely 

geographically distinct and not fully described (Gauthier-Ouellet et al., 2009).  

Environmental requirements are however shared by whole populations. 

Notably, the suitability of thermal habitat greatly influences in the abundance of 

both species as they enter the marine environment (Friedland, 1998). Thermal 

conditions, in particular saline Atlantic currents, regulate the dispersal of S. 

salar in May as they return towards their natal river (Holm et al., 2000). These 

conditions are assumed to be partly reflected by the values of AMO and NAO 

(Visbeck et al., 2001). 

In both species, survival at sea is generally estimated by the difference in 

numbers of smolts emigrating towards the sea and breeders returning to the 

natal rivers; the factors responsible for mortality at sea are however poorly 

understood (Windsor et al., 2012). The survival of S. salar is in decline and 

recent regulations of fisheries suggest that other oceanic factors are responsible 

for this trend (Hansen et al., 2012), such as the turnover in communities due to 

ocean warming (MacNeil et al., 2010; Beaugrand et al., 2008). Complete sets of 
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marine data would allow identifying the factors driving the trends in salmonid 

survival during the marine stage and quantify their influence. 

Collaboration between fishermen and scientists is often suggested as a solution 

for improved marine data (Pauly et al., 2013). Such collaboration was tested for 

the monitoring of the Pacific salmon (species of the Subfamily Oncorhynchus) 

with an aim to collect real-time data at sea, and underlined operational issues. 

The harsh and remote sea environment engendered power demand and 

connectivity issues resulting in loss of data and there was an overall difficulty to 

familiarise with the scientific software (Lavrakas et al., 2012). 

In response to this lack of understanding and need for data, the International 

Atlantic salmon research board (IASRB) was established in 2002 as a part of the 

North Atlantic salmon conservation organization (NASCO). The IASRB 

investigates the causes for marine mortality in S. salar and prioritises the 

funding of related projects. In 2012, long-term monitoring of survival, 

distribution, and migration of S. salar in relation to predation and feeding 

opportunities at sea were the highest research priorities (£4.3M spent mostly by 

the European Union and Norway, IASRB, 2012). 

Some of the major findings of IASRB (Hansen et al., 2012) were that 

productivity and abundance of S. salar are influenced by broad-scale factors 

and that the decline in their abundance decline is stronger in multi-sea-winter 

individuals; long-term changes are linked to northern hemisphere sea 

temperatures and the NAO, and there is a Northwards movement of fish and S. 

salar prey in the North Atlantic. Ocean-scale dynamics constitute the factors 

impacting on oceanic organisms (e.g. ocean warming is global but has spatially 

varying effects on bleaching of coral reefs, Graham et al., 2008), however, local 

environmental dynamics may be affected differently by the climate and the 

resulting impacts on age classes of S. salar may hence vary geographically 

(Hansen et al., 2012). A complete understanding of salmonid migration 

consequently requires a description of process in both oceanic conditions and 

local riparian environments. 

Several methods may be used to monitor salmonids in rivers, including 

electrofishing, trapping, in-situ counters, and angling records. In the UK, 

electrofishing is commonly used by the Environment Agency (e.g. Rivers 
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Thames and Tyne, EA, 2013). Electric fields are generated in the water with two 

electrodes that attract the fish and render it numb momentarily, whereby the 

fish are effortlessly caught with a net (EA, 2013). The technique is considered 

uniquely harmful to salmonids as the convulsions induced by the electrical 

shock may cause spinal injuries, internal haemorrhages, and asphyxiation 

(Snyder, 2003).  

The abundance of S. salar and S. trutta in the Rivers Dee, Lune, Tamar, and 

Tyne (EA, 2013) is also monitored by fish traps. Permanent traps temporarily 

capture breeding salmonids travelling upstream and data are collected about 

their physical condition (species, weight, size, injuries, diseases, parasites); the 

fish are also tagged, from which data may contribute to studies of movement 

and distribution. Often, monitoring devices do not cover the whole width of the 

rivers (e.g. River Tees and River Tamar) and abundance is estimated from a 

combination of sources (e.g. fish counter data and trap catches, River Tamar, 

Cornwall). 

Both salmonid species are widely exploited by recreational angling (Curtis, 

2002) and anglers and owners of fisheries contribute to evaluating the health of 

fisheries by declaring catches in a logbook (EA, 2013). Anglers may also choose 

to provide scale samples that are can be analyzed to determine the age of 

spawners and timing of the migration. In Scotland, a questionnaire is sent to 

owners of fisheries annually (section 64 of the Salmon and Freshwater 

Fisheries, Scotland, Act 2003). 

At Riding Mill Station, a video camera installed with a fish counter (Figure 4.1a) 

has recorded upstream movements since 2004 (Figure 4.1b), providing 

abundance data for the populations of S. salar and S. trutta in the River Tyne. 

The dataset was assembled using a non-invasive device, independent of the 

fishing industry, and it includes associated measurements of river parameters 

(flow, temperature, turbidity, colour, pH and conductivity).  

As migratory range differs between S. salar and S. trutta, the way 

environmental parameters influence fish development during the marine phase 

is species-specific. Consequently the study of migration for the two species 

benefits from being considered individually. The main objective of this study is 

to investigate the extent to which it is possible to use the video records from 
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Riding Mill station to develop parsimonious models that adequately describe 

large scale migration patterns of S. salar and S. trutta, according to variation in 

known environmental parameters.  

 

Figure 4.1: (a) The four channels of the resistivity counter at Riding Mill and (b) 
an example of video recording produced by the camera at Riding Mill. 
Channels are numbered (1 to 4) and the camera is located at channel 4. 

 

To investigate the regularities specific to each species over the whole 

observation period, wavelet analysis will be undertaken independently on time-

series observations (Grinsted et al., 2004). Then the synchronicity between 

fluctuations in the abundance of both species will be tested using the wavelet 

coherence (Vadrevu and Choi, 2011). Relevant periodicities will be incorporated 

in GLM, LME, or GLS models if evidence suggests dependence within the data 

(Fox, 2002). The relative proportion of each species count will be studied over 

time.  
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4.2.  Material and Methods 

4.2.1. Data 

 Response variables, transformations 

Three time series were obtained from video records on channel 4 (Figure 4.1) of 

the fish counter at Riding Mill station from 2004 to 2011, resulting in three 

univariate time series counts of S. salar, counts of S. trutta, and a total sum of 

counts. 

The response data were non-normal so the Box-Cox process was used to 

estimate the best normalizing power transformation for the identified count 

data (Osborne, 2010). The two time-series of identified counts were also 

Anscombe- and log-transformed. For the latter transformation, the effect of 

predictors was back-transformed by: 

Back-transformed estimate = 100.emodel estimate -1 

The back-transformed estimate was expressed as the percentage change in the 

response variable for each unit of increase in the predictor. The count data was 

incremented by 0.5 for the Box-Cox and log-transformation (Yamamura, 1999). 

 Covariates and format 

As this study was concerned with general migration patterns, the covariates 

used in the models were related to their higher level of observation. These were: 

temperature, flow, year, NAO values, AMO values at various lags, and annual 

harmonics (see Introduction chapter for theoretical justification) with bins of 

2weeks. Data for the period 2004-2010 were used to develop the models and 

data for the year 2011 were used to test the forecasting ability of the models.  
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4.2.2. Analysis 

 Wavelet analysis and periodicity 

As for Chapter 3, the harmonic analysis was based on a continuous wavelet 

transform, which detected stationary periodic events as well as localized 

intermittent periodicities (Grinsted et al., 2004). Initially this was done with 

each time series separately, then a cross wavelet transform was constructed with 

the two time-series of video counts of S. salar and S. trutta. The analysis 

generated a spectrum showing wavelet coherence between the two time-series 

as well as their common power and phase relationship in the time-frequency 

space (i.e. over time).  

A wavelet coherence function quantified the linear relationship between 

frequencies contained in counts of S. salar and S. trutta. Because the wavelet 

process considered all scales, the coherence function assessed the strength of 

correlation between both species counts for varied frequencies and times (i.e. as 

opposed to calculating individual product moment correlations that may be 

biased or hidden by potential non-significant relationships at certain scales, 

Vadrevu and Choi, 2011). Wavelet coherence is the local correlation between 

two continuous wavelet transforms, but in time frequency space (Grinsted et al., 

2004).  

The spectrum of wavelet coherence illustrated the phase between oscillations 

contained in the two time series via the direction of arrows. The phase was a 

time difference expressed as angles in order to normalize time regardless of 

time period. The time-series were in phase when pointing right (90°), in anti-

phase when pointing left (270°) and there was evidence of a phase lead (i.e. time 

delay) when pointing up or down (0° or 180°) (Gouhier and Grinsted, 2012). 

  Harmonic regression 

As for Chapter 3, a harmonic analysis used the Fourier series to decompose the 

signal contained in the three time-series into harmonics made of a sine wave 

and a cosine wave that were included and tested in the models.  
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 Models 

The relationship between counts of each species and environmental covariates 

was investigated using GLMs. In case of evidence of residuals autocorrelation or 

violation of homogeneity in the variance structure, mixed-effect models were 

investigated. Full linear mixed effect models were run on the same methodology 

as Chapter 3, containing all covariates as fixed effects and using REML in order 

for the models to be compared to a full GLS model. If evidence suggested that 

the use of random effect was redundant, GLS was used.  

Initially, the variance structure of the model was selected, based on visual 

examination of the GLM outputs. Relevant structures were tested on a full 

model so as to maximise the number of explanatory variables in the fixed part of 

the model before complicating the random structure (i.e. random effect 

parameter in LME models, variance in GLS models). Then, the correlation 

structure ARMA(p,q) was selected amongst all combinations of p=0,1,2,3 and 

q=0,1,2,3. The start value was set at 0.2 for both parameters (as in Zuur et al., 

2009).  

As for Chapter 3, all candidate models were assessed in term of overdispersion 

(ratio of residual deviance over degree of freedom), goodness of fit (Pearson 

correlation coefficient), distribution of residuals (homogeneity, normality and 

independence), and AIC score (calculated via the log-likelihood value for each 

model).  

Loess regressions were fitted for the two response time-series in order to 

smooth counts over time. Loess function was computed for all values of counts 

(Cleveland et al., 1990). The loess regression aimed to identify global trends of 

the time-series over the whole observation period. The polynomial degree was 1 

so that the fitting was locally linear, which was generally suitable for data with 

gentle curvature (Cleveland et al., 1990). The value of the loess span determined 

the number of points to be included in the local regression at every point; each 

included point had a neighbourhood weight that decreased with its distance to 

the point being fitted (Cleveland et al., 1990). For instance, a span value of 0.2 

implied that 20% of the data points were used for the local fitting: 10% located 

before and 10% after the fitted point. For increased values of span, the locally 

fitted linear regression became smoother and the weights tended to one; 
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consequently, the value of span was selected so as to keep it as low as possible, 

identical for the two time-series compared, and with reduced confidence 

intervals (as these implied potential null values which had to be minimized in 

order for the loess regression to be usable as components of ratios). 

4.2.3. Software 

The wavelet analysis, GLM, GLS, LME, and loess regression were developed 

using, respectively, biwavelet (Gouhier and Grinsted, 2012), MASS (Venables 

and Ripley, 2002), nlme (Pinheiro and Bates, 2000), and gppois (Hogg et al., 

2012) packages, in the R.15.1 environment (R Core Team, 2012).  
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4.3.  Results 

4.3.1. Harmonic analysis  

 Individual periodicity 

The wavelet power spectrums and matching average wavelet power spectrums 

were generated for the time series for each species (Figure 4.2).  

 

Figure 4.2: The wavelet analysis of non-transformed counts of S. salar and S. 
trutta over the observation period 2004-2011. 
With (a&c) wavelet power spectrum and (b&d) resulting average power spectrum over the 
whole observation period. The interpretation was restricted to the cone of influence; highest 
power appeared in yellow through red on the spectrum and the lowest power was in blue. A 
thick black line defined the contours for significance at the 95% level for all power of all 
points; the P-value corresponded to the average power over a given period, which may vary in 
value and significance over years. The primary period was of 52.48 weeks for both species 
and the secondary period was of 26.24 weeks for S. salar and 17.51 weeks for S. trutta.  
 

Values of interest were extracted and are presented in Table 4.1. Unsurprisingly, 

for both species the highest power average was for a period of 52.48 weeks (P-

value<0.001); this periodicity was constant and strong throughout the years for 

both species.  
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Table 4.1: Periodicity values of counts of S. salar and S. trutta. 
Values were extracted from the wavelet transforms for the observation period 2004-2011. 

 

Secondary periodicities were also observed (yellow, outlined regions on the 

average power spectrums over time, Figure 4.2b&d) and had different durations 

and significance (Table 4.1). They were transitory periodicities, occurring more 

particularly during the second half of the whole observation period. This 

indicated that the cyclic variations observed in both time-series were likely not 

perfectly sinusoidal during the second half of the observation period (Diggle, 

1990). These secondary periods presented low significance level and were 

discontinuous so they were not expected to be well represented by the non-

stationary models. The significance and power of the transient periodicities 

were higher for S. trutta than for S. salar. 

  

 S. salar S. trutta 

 
Duration 
(weeks) 

power 
Z-

value 
P-value 

Duration 
(weeks) 

power 
Z-

value 
P-value 

Primary period 52.48 6.9.104 3.34 <0.001 52.48 3.7.105 4.08 <0.001 
Secondary period 26.24 8.6.103 0.79 0.215 17.51 2.4.104 1.06 0.145 
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 Synchronicity of the two species counts 

The wavelet coherence between counts of S. salar and S. trutta (Figure 4.3) 

displayed highly significant sections with high coherence, high common power 

and high synchronicity (plots showing common power, wavelet coefficients and 

phase relationship in Appendix A.iii, Figure A.7.15). These sections were of high 

significant power on the wavelet power spectrums for distinct counts of S. salar 

and S. trutta. 

 

Figure 4.3: Wavelet coherence between counts of S. salar and S. trutta for the 
whole observation period.  
The regions in time frequency space where the oscillations of the two time series have a 
coherent phase appear in red. The relative phase relationship is shown by arrows. In this 
instance, the significant regions coincide with high power. 

 

There was a significant phase relationship between the abundance of S. salar 

and S. trutta in the River Tyne at periodicities of 32-64 weeks. The most 

important and significant maximum common power was for a period of 52.47 

weeks, equivalent to a year (Z-value=3.26, P-value<0.001).  

The significant regions displayed the evolution of the phase over the whole 

observation period. From mid-2005 until mid-2007, the arrows pointing down 

indicated that the oscillations in counts of S. salar led the oscillations in counts 

of S. salar (by 90°, i.e. one quarter of a period). From mid-2007 until 2008, the 

two time-series were in phase (arrows pointing to the right). From 2008 to mid-

2009 the relative phase relationship became mostly reversed: the oscillations in 

counts of S. trutta led the oscillations in counts of S. salar (arrows pointing 

upwards, again by a quarter of a period). Thus, oscillations in the two time-

series were not phase locked (as the direction of the arrows varied): the 

oscillations in both time-series were not synchronized throughout the 
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observation period and the lead was first in S. salar and started shifting towards 

a lead for S. trutta in 2008. 

4.3.2. Generalized linear models 

Outputs from optimal GLMs according to AICc scores are presented in Table 4.2 

and Table 4.3, for different transformation of the response variable of, 

respectively, S. salar and S. trutta. The ratio of residual deviance over the 

residual degrees of freedom was used to quantify the level of overdispersion 

contained in the models. 

Residuals were non-normally distributed so the response were subjected to Box-

Cox transformation. The computation of the maximum likelihood function and 

posterior distribution of Box-Cox transformed response variable indicated that a 

power transformation of λ=0.14 was optimal for S. salar and a power 

transformation of λ=-0.02 was optimal for S. trutta (after Box and Cox, 1964, 

Appendix A.iii, Figure A.7.16). These powers corresponded to incremented 

counts values (+0.5). 

In S. salar, the GLM of the Box-Cox transformed time-series was 

underdispersed and other models were overdispersed 7 to 27 fold (ratio in Table 

4.2), except when using a negative binomial distribution of the error and for the 

log-transformed counts (Table 4.2). 

Table 4.2: The statistics of goodness-of-fit and overdispersion for the optimal 
GLMs of several transformations of counts of S. salar. 

For the model of log-transformed counts, the low P-value for the normality test 

of the residuals suggested against a normal distribution. The GLM with a 

 
Residual 
Deviance 

df Ratio 
Pearson 

Cor. 

Normality 
test 

AICc 

ΔAIC  
with full 
model 

(+) 

Model 
df  

W , P 

Count, Poisson  4774.21 172 27.76 0.63 0.99, 0.43 1582.7 0.9 14 

Count, neg. bin. 215.46 177 1.22 0.66 0.99, 0.67 1571.4 12.3 7 

Log(count+0.5) 221.85 178 1.25 0.82 0.98,<0.05 567.0 14.1 6 

Anscombe(count) 1343.16 178 7.55 0.79 0.97,<0.01 896.6 11.9 6 

√      1397.08 178 7.85 0.79 0.98,<0.01 903.8 11.4 6 

Count0.14 8.53 178 0.05 0.77 0.98, <0.05 -29.2 14.8 6 
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negative binomial error structure presented residuals which were homogenous 

and normally distributed (Figure 4.4a&b) but auto-correlated (Figure 4.4c).  

 

Figure 4.4: Diagnostic plots of the residuals of the GLM of counts of S. salar 
with a negative binomial distribution of the error. 
The (a) temporal pattern, (b) Q-Q plot and (c) autocorrelation function of the residuals are 
displayed. On (c), the dotted blue represent the 2√n white noise limit with n=183. The 
residuals are homogenous and normally distributed but present autocorrelation. 
 
 

In S. trutta, the GLM of the Box-Cox transformed time-series was again 

underdispersed and other models were overdispersed 15 to 61 folds, except for 

the log-transformed counts (Table 4.3). 

Table 4.3: The statistics of goodness-of-fit and overdispersion for the optimal 
GLMs of several transformations of counts of S. trutta. 

The residuals of the GLM of the log-transformed counts were homogenous and 

normally distributed (Figure 4.5a&b) but autocorrelated (Figure 4.5c).   

 
Residual 
Deviance 

df Ratio 
Pearson 

Cor. 

Normality 
test AICc 

ΔAIC 
with full 
model 

Model 
df 

 W , P 

Count, Poisson  10369.85 171 60.64 0.74 0.90, <0.001 11113.5 1.7 12 

Count, neg. bin. 10578.36 171 61.87 0.73 0.89, <0.001 1589.8 9734.6 15 

Log(count+0.5) 223.11 178 1.25 0.91 0.99, 0.20 568.1 2.9 6 

Anscombe(count) 2777.53 179 15.52 0.84 0.99, 0.21 1027.4 11.7 5 

√      2825.82 179 15.79 0.84 0.99, 0.22 1030.6 11.5 5 

Count0.14 0.08 176 0.00 -0.90 0.99,0.22 -881.9 1.9 8 
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Figure 4.5: Diagnostic plot of the residuals of the GLM of log-transformed 
counts of S. trutta with a Gaussian distribution of the error. 
The (a) temporal pattern, (b) Q-Q plot and (c) autocorrelation function of the residuals are 
displayed. On (c), the dotted blue lines represent the white noise limit. The residuals are 
homogenous and normally distributed but present autocorrelation. 

4.3.3. Linear mixed effect models 

Full LME models were developed, that contained all available covariates as fixed 

effects and year as random effect (Appendix A.iii, Table A.15 and Table A.16); 

they were compared to the full GLS models for S. salar and S. trutta (Table 4.4).  

Table 4.4: The comparison of the full GLS and full LME models for the counts of 
S. salar and S. trutta. 
The comparison uses ANOVA; and variance between and within the random effect term 
(year) of the LME models (i.e. intercept and residuals). 

 

For both species, the AICc values of both models were comparable and the 

likelihood-ratio tests were inconclusive, indicating that the GLS and LME 

models were of comparable fit.  

However because the variability within year was over 14 times the variability 

between years (approximately 14.5 for S. salar and 15.9 for S. trutta), the 

parameter year was not productive as a random effect so the simpler GLS 

models were preferred over the LME models. The high variability between years 

indicated high heterogeneity and consequently the requirement for an explicit 

correlation structure in the GLS model. Log-transformed values were used after 

the outputs of various response transformations used in the GLMs. 

 

 
Model AIC df 

Log-
likelihood 

χ2 P-value 
Variance 

(intercept) 
Variance 
(residuals) 

S. salar 
GLS 1918.37 15 -944.18 

3.28 0.07 
NA NA 

LME 1917.09 16 -942.54 182.64 2653.87 
         

S. trutta 
GLS 2141.34 15 -1055.67 

1.90 0 .168 
NA NA 

LME 2141.43 16 -1054.72 631.10 10027.79 
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4.3.4. General least squares models 

 Variance structure 

The LME models indicated a strong variability between years so a year-specific 

variance structure was selected to account for heteroscedasticity in the GLS 

models. Compared to the GLM, this improved the models significantly with a 

likelihood over 20 fold for S. salar (χ2= 20.15, P-value<0.005) and over 26 fold 

for S. trutta (χ2= 26.06, P-value<0.001).  

 Error structure 

For each species, selected error structures were investigated and compared 

using the full GLS models; the outputs are presented in Table 4.5. 

Table 4.5: The AICc values and ranking for the full GLS models of S. salar and S. 
trutta, for various error structures. 
The models are developed with AR(1) error structure and ARMA(p,q) error structure with 
each combination of p=0,1,2,3 and q=0,1,2,3. 

 

For counts of S. salar, comparable AIC scores were obtained for the error 

structures ARMA(0,2) and AR(1) (ΔAIC<0.5, Table 4.5). The simplest structure 

AR(1) was selected.  For counts of S. trutta, the lowest AIC score was obtained 

for the error structure ARMA(3,2) (Table 4.5). The ΔAICc with the second AIC-

ranked model was too high to justify a simpler structure; the model contained a 

S. salar S. trutta 

Candidate 
error structure 

AICc df ΔAICc 
Candidate 
error structure 

AICc df ΔAICc 

ARMA(0,2) 564.9 25 0 ARMA(3,2) 533.8 28 0 

AR(1) 565.1 24 0.3 ARMA(3,0) 550.7 26 17.0 

ARMA(2,0) 566.1 25 1.3 ARMA(0,2) 552.1 25 18.3 

ARMA(1,1) 566.6 25 1.7 ARMA(2,2) 552.4 27 18.7 

ARMA(0,3) 567.5 26 2.7 AR(1) 553.0 24 19.2 

ARMA(1,2) 567.5 26 2.7 ARMA(1,2) 553.4 26 19.6 

ARMA(3,2) 567.6 28 2.8 ARMA(3,1) 553.5 27 19.7 

ARMA(3,0) 568.3 26 3.4 ARMA(0,3) 553.6 26 19.8 

ARMA(2,1) 568.3 26 3.5 ARMA(2,0) 554.0 26 20.2 

ARMA(0,1) 569.2 24 4.3 ARMA(2,1) 554.0 25 20.3 

ARMA(3,3) 570.1 29 5.2 ARMA(1,1) 554.8 25 21.0 

ARMA(2,2) 570.1 27 5.2 ARMA(2,3) 556.0 28 22.2 

ARMA(1,3) 570.3 27 5.4 ARMA(1,3) 556.6 27 22.8 

ARMA(3,1) 570.9 27 6.1 ARMA(3,3) 557.8 29 24.0 

ARMA(2,3) 573.0 28 8.1 ARMA(0,1) 568.5 24 34.7 
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complex combination of three autoregressive parameters and two moving 

average parameters. 

 Parameters estimation 

The estimated parameters are presented in Table 4.6 for the most parsimonious 

GLS models for the counts of each species. 

Table 4.6: Output from the optimal GLS models of the log-transformed counts of 
S. salar and S. trutta. 

 

For S. salar, the covariance function indicated a difference in particular for 

years 2006 and 2009. The estimated auto-regressive parameter for the AR(1) 

GLS model implied a 0.41 correlation between two lags of counts of S. salar.  

For S. trutta, the autocorrelation between two given lags of count of S. trutta 

was high. The alternation of positive and negative values, for both the 

autoregressive and moving average coefficients, was associated with the 

oscillating decay in the autocorrelation function of the time-series (Appendix 

A.iii, Figure A.7.17). 

 Coefficients 

A plot of the fitted and observed values for each species counts (Figure 4.6) 

showed that the fit of both models was high (for S. salar Adj.R2=0.6664, 

F=364.6 on 1 and 181 degree of freedom, P-value<0.001 and for S. trutta 

Adj.R2=0.8177, F=817.4 on 1 and 181 degree of freedom, P-value<0.001). 

  S. salar S. trutta 
 Covariance function estimates 

Year 2004 1.0000 1.0000 
Year 2005 0.9534 0.8196 
Year 2006 0.4628 0.3773 
Year 2007 1.0353 0.5636 
Year 2008 0.7860 0.7376 
Year 2009 0.6030 0.5959 
Year 2010 0.9443 0.5844 

   Error structure estimates 
AR Ф= 0.41 Ф1 =2.09, Ф2=-1.89, Ф3=0.89 
MA . θ1=-1.52, θ2=0.97 

 Diagnostic criteria 
log-likelihood -230.196 -196.815 
Residual SE 1.1716 1.5770 
df 183 total; 179 residual 183 total; 179 residual 
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The backwards selection using likelihood ratio tests between nested models 

provided the coefficients in Table 4.7. 

 

      Observed counts        Fitted values from the most 
parsimonious GLS models        95% confidence interval band 

Figure 4.6: The fitted values from the most parsimonious GLS models and the 
observed counts of S. salar and S. trutta over the whole observation period. 

 

The variations in counts of both species were largely explained by the annual 

periodicity parameters (in S. salar χ2=70.32, P-value<0.0001 and in S. trutta 

χ2=72.13029, P-value<0.0001).  All fish counts also increased with every unit of 

NAO (increase of 35.01% in S. salar, χ2=10.09, P-value=0.0015 and increase of 

18.51% in S. trutta, χ2=4.94776, P-value=0.0261). 

 

Table 4.7: The estimation of the coefficients for each parameter in the most 
parsimonious GLS models for the count of each species. 

 

The models estimated the coefficients a and b of the Fourier series, which were 

used to determine the amplitude c and phase angle d of the harmonic (Table 

4.8).   

 S. salar S. trutta 
intercept 2.9379 P=0.0000 2.6888 P=0.0000 
NAO 0.3002 P=0.0013 0.1699 P=0.0243 
cos(period 1 year)  = a -1.5162 P=0.0000 -1.7080 P=0.0000 
sin(period 1 year)  = b -1.4131 P=0.0000 -2.6314 P=0.0000 
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Table 4.8: The estimation of the amplitude c, the phase angle d and occurence of 
peak e for the time-series of count of each species. 
The coefficients are estimated from the fourier coefficients a and b estimated by the most 
parsimonious GLS models. The value π was added to the value d, as a<0 for both species;  the 
week during which the peak was predicted to occur was obtained by multiplying the value e 
by 52 (weeks in a year). 

 

As expected, the amplitude of the waveform was smaller for S. salar than for S. 

trutta. The phase angle values suggested an earlier peak in S. salar, as 

illustrated in Figure 4.7 (2weeks earlier in S. salar). The waveforms based on 

the periodicity of the transient periods, detected by the harmonic analysis, are 

also represented. The sum of both waveforms illustrated the shape of a 

hypothetical waveform containing both the fundamental and transient 

periodicities. 

 

     Waveforms based on fundamental periodicity, as in the most parsimonious GLS models 
      Waveforms based on transient periods (26.2 and 17.5 weeks for S. salar and S. trutta) 
      Sum of both waveforms 

Figure 4.7: The synthesis of hypothetical waveforms relevant to the description 
of the time-series of count of S. salar and S. trutta. 
The hypothetical waveforms are based on the sum of the fundamental harmonics (of period 
one year) and secondary periodicities as detected on the wavelet transforms for (a) S. salar 
and (b) S. trutta. The models predict peaks occurring at 32.2 (i.e. first-second week of 
August) and 34.2 weeks (i.e. mid to last week of August). 

 

The shape of the waveforms was different for both species and altered by the 

addition of the second sinusoid. The relevance of transient periodicities may 

indicate a better suitability of these waveforms over the more simple waveforms 

defined by the fundamental periodicity only. 

  

 a b    √              ( 
 

 
 )   

 

  
 

Peak 
(week) 

S. salar -1.5162 -1.4131 2.05 3.89 0.6195 32.2 
S. trutta -1.7080 -2.6314 3.13 4.13 0.6587 34.2 



Chapter 4 

100 
 

 Analysis of residuals 

The normalised residuals were centered around zero across years and 

independent (Appendix A.iii, Figure A.7.18) but outliers occurred (low outliers 

in the middle of most years, and the spread was wider at the beginning and end 

of each year on several occasions. 

For the model of counts of S. salar, the residuals were distributed 

asymmetrically, left skewed and clearly bimodal. The two distinct peaks existed 

on each side of the zero value (Figure 4.8a) and parted from the normal 

distribution (Figure 4.8b). The shape was characterized by two modes and 

heavy lower and upper tails.  

 

Residuals of most parsimonious GLS model Normal distribution 

Figure 4.8: For S. salar and S. trutta: respectively, (a&c) frequency histogram 
and (b&d) Q-Q plot against normal distribution, for the residuals of the most 
parsimonious GLS models.  

 

For S. trutta, the residuals distribution was asymmetrical, skewed to the right 

with events being mostly typical but with a plateau on the negative side in 

relation to the normal distribution (Figure 4.8c&d), rendering the frequency 

distribution seemingly bimodal and with heavy lower and upper tails. 
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4.3.5. Forecast accuracy of selected models 

The forecasting accuracy of the most parsimonious GLS models was tested on 

the data for the year 2011, by predicting the counts of each species based on the 

variations of the river covariates (Figure 4.9).  

 

 Observed counts of S. salar Values predicted by GLS model 

   Observed counts of S. trutta         95% confidence interval band 
Figure 4.9: Predicted counts for the year 2011 based on the optimal GLS models 
and the environmental data for the year 2011, with observed counts of S. salar 
and S. trutta. 

 

The correlation between observed and predicted values was high for both 

species, with the models explaining 75 to 84% of the variations in counts (Table 

4.9).  

Table 4.9: The intercept and slope of the linear regression of observed versus 
predicted counts and the Adjusted R2 values, for S. salar and S. trutta for the 
year 2011. 

 

The models lacked accuracy, reflected by the negative and non-significant 

intercept values of the linear regression. The significant slope values indicated a 

good representation of the trend, with some level underestimation (71% to 84% 

underestimation of observed counts), but the prediction was only over one year. 

 S. salar S. trutta 
Intercept -0.37 P=0.49 -0.20 P=0.58 
Slope 1.39 P<0.0001 1.19 P<0.0001 

Adjusted R2 0.7518 0.8499 
F=76.74, df=24 , P<0.0001 F=142.5, df=24, P<0.0001 
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4.3.6. Relative proportions of species  

The counts of S. salar and S. trutta (Figure 4.10a&b) were represented by local 

regressions loess degree 1 and span 0.3 (Appendix A.iii, Figure A.7.19 and 

Figure A.7.20). This span value implied that each local regression was fitted 

using 30% of the time series (i.e. 54 points or 6 months). The ratio of the two 

regressions presented a fluctuating temporal pattern (Figure 4.10c).  

 

Figure 4.10: The counts of (a) S. salar and (b) S. trutta and (c) the ratio of the 
loess function for counts of S. trutta over the loess function for counts of S. 
salar. 
The values are plotted over the whole observation period. 

 

To a certain extent, the temporal pattern may be matched to shifts in 

synchronicity in the fluctuations of both species counts, observed on the 

coherence wavelet analysis. Outputs of the wavelet coherence function were not 

interpretable before 2005 and after 2010. Between 2005 and mid-2007, peaks 

in counts of S. salar led peaks in S. trutta; from mid-2007 to 2008 the species 

were in phase; S. trutta led S. salar between 2008 and 2010. Also, in S. trutta 

the transient periodicity started from 2008 onwards. Both the shift in lead 

species and the appearance of a transient periodicity in S. trutta were 

synchronized with fluctuations in the relative proportion of each species.  
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4.4.  Discussion 

In this chapter, models were developed to investigate the extent to which counts 

of S. salar and S. trutta can be modelled separately in the River Tyne, based on 

video records collected at Riding Mill weir and a set of environmental 

covariates. The study relied on information collected over the four channels in 

the weir. As species identification was not undertaken over the entire the weir, 

the extent to which salmonid movements in one channel reflect movements of 

the whole population cannot be determined. Records were assumed 

representative of the population throughout the observation period. 

For both species GLMs were overdispersed and did not respect the assumptions 

of normality, homogeneity and independence of residuals (Breslow, 1996). This 

lack of conformity underlined a disparity between the ecology of both species 

and the principles involved in GLMs. This type of model assumes a linear 

relationship between the predictors and the time-series and independently 

distributed errors (Breslow, 1996), implying that fish counts do not influence 

the next counts, i.e. fish are solely responding to external conditions. Failure to 

comply with this condition may reflect a behavioural feature of the migration; 

fluctuations in salmonid numbers observed during the year may be influenced 

by both environmental variation and population behaviour. 

Mixed-effect models allowed the relationship between response and covariate to 

vary according to predetermined groups (Pinheiro, 1994). For both species, 

LME models proved to be unproductively constraining in comparison to GLS 

models, as a random effect did not provide a better model. The latter were 

consequently used and explicitly accounted for characteristics of 

heteroscedasticity and autocorrelation contained in the response data (Fox, 

2002). 

High standard deviations in relation to the means, and evidence of a tendency of 

residuals to increase with higher predicted values, suggested the relevance of 

the log-transformation to stabilise the variance (Leydesdorff and Bensman, 

2006). The most parsimonious GLS models underlined the importance of 

annual periodicity in the prediction of counts of each species in the River Tyne. 

Values of NAO (no lag) were also important predictors. For both species, the 

year count was used to modulate the variance function, possibly as a surrogate 
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for between-year variations due to recruitment during the time spent out at sea. 

The GLS models were of good fit and the prediction of year 2011 displayed good 

forecasting properties.  

The correlation structure of the optimal GLS model for counts of S. trutta was 

complex (5 components for AR and MA parameters) indicating a complex 

and/or changing population structure with interdependence (Zuur et al., 2009). 

Also, the residuals of the most parsimonious models followed a bimodal 

distribution, indicating that these models failed to account for a process 

inducing bimodality for at least some of the observation period.  

The stationary process described by the GLS models implied a constant 

distribution of the error and variance over time (Fox, 2002), which was a 

possible cause for bimodality in the residuals. The Fourier series may, for 

instance, attempt to account for a non-stationary process. If the seasonality was 

incorporated as a constant component while it was in fact changing over time, 

then the change in question may have engendered a second distinct mode in the 

residuals, showing that the process is not being accounted for by the model.  

The harmonic analysis provided evidence of a shift  in periodicity during the 

year 2008 especially for counts of S. trutta. For this species, transient 

periodicities were increasingly significant from 2008, indicating that the 

waveform progressed towards an imperfect sinusoid (Diggle, 1990). The Fourier 

coefficients, as estimated by the most parsimonious model (Jakubauskas et al., 

2001), confirmed that the assimilation of the transient periodicity to the 

fundamental periodicity generated waveforms with double peaks, the first being 

of lower amplitude than the second. The plot of the fitted values and observed 

counts of S. trutta over time exacerbated this pattern (two peaks in counts from 

year 2008 onwards on Figure 4.6, page 98). As S. salar did not exhibit this 

trend, a change in the phase of the two time-series also occurred in 2008 

onwards.  

The wavelet coherence function underlined that the phase shift varied 

throughout the observation period (Grinsted et al., 2004). The lead in arrivals 

was first for S. salar and started shifting towards a lead for S. trutta in 2008. 

This implied that the waveform corresponding to counts of S. salar had a 

tendency to develop earlier than the waveform of counts of S. trutta until 2008, 
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when the opposite trend started. However, it is likely that the double peak from 

year 2008 onwards implied that the first peak in counts of S. trutta occurred 

earlier than for a single annual peak as in the years prior to 2008. This 

explained the reversal tendency in lead species. The proportion of S. trutta was 

always higher than S. salar but for the same reason, this proportion increased 

until 2008 when it reached a peak after which it decreased again. From 2008 

onwards, the peak in S. salar was likely synchronised with a decrease in S. 

trutta (due to a peak before and after) hence decreasing the value of the ratio. 

Geographic ranges of S. salar and S. trutta are distinct over the winter season: 

in summer both species hatch, grow and later breed in the River Tyne but in 

winter, S. salar migrates towards the West of Greenland (Dadswell et al., 2010) 

while S. trutta remains along the coast of Northern Europe (Jonsson and 

Jonsson, 2011). This has implications for the origin of the phase shift reversal 

observed in 2008.  

The analysis suggested that a change occurred in the temporal distribution of 

counts of S. trutta from 2008 onwards, which did not affect S. salar; or at least, 

not to the same degree.  

First, the two species may respond differently to a change that occurred on their 

common ground, i.e. a change occurred in a resource used by S. trutta which S. 

salar does not depend on. For instance, S. salar fast in the River Tyne during 

upstream migration while S. trutta continue to feed (Klemetsen et al., 2003). 

Therefore, fluctuations in feeding opportunities may alter numbers of S. trutta 

without affecting S. salar. However, as feeding opportunities in the river are 

likely reflected by the available covariates used in the model, this hypothesis was 

unlikely as it considered the difference between species without explaining the 

change occurring in 2008. 

Secondly, environmental factors not experienced by both species, where and 

when the two species occupy different grounds, such as the North Sea, where S. 

trutta remains over winter while S. salar migrates further into the Atlantic 

(Jonsson and Jonsson, 2011). Thus, S. trutta spends a large part of the year 

independently in the North Sea basin. During the first years of the observation 

period, the wavelet spectrum showed secondary periodicities, however weak and 

of low significance. It may be suggested that the secondary periodicity may have 
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in fact been the amplification of an existing trend which was initially weak and 

intensified over time until becoming significant in 2008. Similarly in S. salar, 

the secondary periodicity was weak throughout the whole observation period. 

An explanation may be that the reversal observed over time was linked to 

fluctuations of a resource that, again, S. trutta relied on and which is not as 

important to S. salar, or for not as long; which was consistent with this resource 

being located in the North Sea. Thus, the covariate likely affected the fish as they 

were about to come upstream, at the estuary level. The reversal observed in 

2008 may be due to a change in the behaviour of S. trutta due to change in the 

North Sea (i.e. abiotic parameters or abundance of an interacting species), or a 

change in a covariate in the North Sea for which measurements were not 

available for this study.  

Thirdly, the switch from a sinusoidal waveform towards a bimodal trend in 

2008 may be anevidence of the existence of two distinct subpopulations of S. 

trutta in the River Tyne. A comparable temporal bimodality has been observed 

in returns of sockeye salmon (Oncorhynchus nerka) with an early and later run 

responsible for two peaks every year (Canada, Fillatre, 2002). These two runs 

were genetically distinct despite the absence of geographical or physical barriers 

such as the reproductive isolation characteristic of the early stage of speciation. 

Ecological speciation occurs when populations becomes reproductively isolated 

due to evolutionary processes driven by ecological factors (Rundle and Nosil, 

2005). Spatial isolation may occur without barrier and at microgeographic 

scales (Fillatre, 2002). If the two peaks in counts of S. trutta were to represent 

two genetically isolated populations, the mechanisms behind the division may 

be both spatial (i.e. occupying different areas in the North Sea or spawning 

grounds) and/or temporal (i.e. difference in return timing). 

This hypothesis requires genetic analyses and a comparative study of the life 

history characteristics of both runs (body size, sex ratio, age at maturity, time in 

river and sea) in order to confirm the ecological speciation argument (Hendry et 

al., 2000). However if the population was considered to be two distinct runs, 

two distinct management strategies may be required. Non-stationarity under 

this hypothesis would be due to the two runs. The two runs may have been 

synchronised during the first half of the observation period, and then have 
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become temporally distinct. If both runs were spatially distinct, a marine 

covariate may have affected one run but not the other. 

The fastest settling of isolated reproduction documented in S. salar was fewer 

than 13 generations (Hendry et al., 2000). Speciation may manifest as 

differences in phenotype (e.g. size difference in Sockeye salmon, Hendry et al., 

2000), but genotype adaptations have also been observed that had behavioural 

implications (e.g. changes in migratory orientation and timing that may alter 

mating strategies and select against hybrids in European blackcaps Sylvia 

atricapilla, Hendry et al., 2007).  

Over an observation period of seven years, the present study does not pretend to 

demonstrate reproductive isolation. Rather, it suggests that the population of S. 

trutta of the River Tyne may have consisted of two reproductively isolated 

populations over many years, that possibly became temporally or geographically 

distinct; a difference between the two groups may exist in their migration 

grounds and/or timing. 

The most parsimonious models underlined the importance of annual periodicity 

in predicting temporal variation in counts of each species in the River Tyne. 

Annual seasonal cycle is a known controlling factor of temporal variability of 

many marine ecosystems (Bertram et al., 2001), several natural process occur 

with annual periodicity such as northern hemisphere sea temperature (Hansen 

et al., 2012). 

Values of NAO were also important predictors. The values of the NAO index are 

linked to climatic conditions over a considerable part of the Northern 

hemisphere (Wang et al., 2010) and relate to sea surface temperature and 

circulation in the North Atlantic (Visbeck et al., 2001). The NAO is consequently 

linked to thermohaline conditions that determine habitat suitability for it during 

return migration (Holm et al., 2000). 

The importance of marine conditions four years prior to returns was 

demonstrated for the salmonids of the River Tyne in Chapter 3; then, as the two 

species were modelled jointly, it was their common requirements and traits that 

were modelled, i.e. strong habitat requirements as the post-smolt stage and/or 

parent population. In this chapter, traits modelled for each population. 
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Conditions for marine dispersal of S. trutta are not well known (Malcom et al., 

2010). Some evidence of behavioural differences between males and females 

was found, with the males migrating further (Bekkevold et al., 2004). Also, 

there is a 3:1 ratio in the number of females to males migrating as only 25-30% 

of males migrate (Rasmussen, 1986). Females migrate towards the sea after 1 to 

3 years spent maturing in freshwater, implying multiple age-classes (Bekkevold 

et al., 2004). It is also possible that a part of the population of anadromous S. 

trutta of the River Tyne does not migrate as far as the Baltic Sea, but rather 

remains in the Tyne estuary (i.e. slob trout, commonly observed in Scotland) 

and may re-enter freshwater frequently (Malcom et al., 2010). Overall there is a 

high variability in the dispersal of S. trutta that go to sea, (Malcom et al., 2010). 

Also geographically, adult S. trutta display a wide ranging migration which is 

often local, mostly coastal, but sometimes offshore, for undetermined reasons 

(Jonsson and Jonsson, 2011; Malcom et al., 2010) 

Kelt account for the majority of S. salar caught in west Greenland, i.e. multi-sea 

winter individuals (over 90% of catches, Gauthier-Ouellet et al., 2009). There is 

currently no certainty regarding the winter feeding grounds used by grilse of the 

same species, as the Greenland and Faroese fisheries are the main providers of 

data concerned with winter oceanic counts of S. salar (Malcom et al., 2010). 

Two sampling regions may however not be representative of the distribution S. 

salar in the whole Atlantic. In fact, several studies suggest that S. salar grilse 

may use a marine habitat that is much broader than the west Greenland region; 

this habitat is currently poorly defined but it may be because its definition 

involves large scale ocean currents (Dadswell et al., 2010; Malcom et al., 2010). 

This theory has implications for the marine migration route of S. salar. It can be 

assumed that the marine migration towards the River Tyne starts from a wide 

range of locations and that S. salar undergo a broad spectrum of marine 

conditions during their journey and level of their influence may depend on the 

age class of the individuals. 

Although important, differences exist within species, both shared common 

requirements of habitat suitability, as described by the models. A possible 

mechanism for the link between NAO values and estuary conditions is the 

difference in temperature between marine and estuary the NAO is linked to; 

these differences condition the exploitation of optimal thermal habitat (Attrill 
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and Power, 2002). The commonality between species may lie in the estuarine 

conditions, occurs when approaching the estuary for the spawning migration, 

reflected by the relevance of the simultaneous NAO values in the most 

parsimonious models for both species.  

The relationship with the NAO values was twice greater for counts of S. salar 

than for S. trutta (0.30, P-value <0.01 and 0.17, P-value <0.05), indicating that 

temporal fluctuations in counts of S. salar respond to more broad-scale marine 

conditions, such as the NAO index, than S. trutta, which remains more locally 

distributed. 

Simultaneous values of NAO are likely not to correspond to mortality, but rather 

to a varying gradient of habitat suitability. The distribution of thermal habitats 

moves with the NAO in the Atlantic Ocean; isotherms undulate and draw a 

suitable thermal path for S. salar, that is required to reach the targeted estuary 

of the natal river (Friedland, 1998). When, in May, the warm (8-10°C) isotherm 

extends towards the Norwegian coast in May, survival is better for both grilse 

and kelt (Friedland, 1998). 

For both species, the year was used to modulate the variance function. Annual 

change of intercept was possibly a surrogate for between-year variation due to 

survival during the time spent out at sea, potentially accounting for the 

maturation rate known to differ between years for unclear reasons (Friedland, 

1998). 

For S. salar, these conclusions are in accordance with the major findings of 

I.A.S.R.B. (Hansen et al., 2012) that broad-scale factors regulate the abundance 

of S. salar and that long-term changes are linked to the northern hemisphere 

sea temperature and NAO. Further I.A.S.R.B. studies suggest that the decline is 

stronger in multi-sea-winter individuals and that the impact of marine 

parameters varies between age classes of S. salar.  These factors were not 

accounted for by models in this study and may help explain the underestimation 

of abundance by the GLS model.  

Finally, counts from Channel 4 may not represent trends occurring on the whole 

width of the weir, nor for entire populations. In S. trutta, this may imply that 

the peaks observed were indicative of a decrease in the use of this channel in 

mid-summer, rather than a decrease in the overall counts of S. trutta. A quick 
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visual comparison with the counts provided by the fish counter confirmed that 

the double peaks were not observed consistently and did not match the video 

records of S. trutta.  

The fish passing through Channel 4 may be a non-representative sample of the 

populations; they may be smaller fish that prefer to travel up the edges of the 

weir in order to avoid high water velocity (Tang et al., 2000). Under this 

assumption, the decrease in counts of S. trutta in channel 4 may indicate that 

the population contained a larger proportion of large fish during this time; and 

that the large fish used the central channels  

However, this shift would still account for a change in the global population 

structure. Consequently even if the video records were not representative of the 

global population trends, the change observed in 2008 was likely meaningful at 

the population level. There were no species-specific data relating fish size and 

channel use; comparing size between channels would not be informative as both 

species were confounded. This hypothesis was consequently not verifiable with 

the available data.  

However, both species were shown to have distinct responses to the covariates. 

A model is needed, that is able to account for the potential non-stationary and 

species-specific variation suggested by this study; state-space models will be 

used in the next chapter to investigate this issue. 
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4.5.  Conclusions 

Whether video records reflected a behaviour specific to Channel 4 or of the 

whole populations of S. salar and S. trutta, is lekely that these observations had 

implications concerning the whole populations.  

A shift was observed from 2008 onwards in several trends and hypotheses such 

as ecologically driven speciation in S. trutta may be investigated by a study of 

the genetics of the population as well as life history traits and would justify 

telemetry studies to investigate dispersal and time partitioning within both the 

River Tyne and the North Sea environments. 

The most parsimonious models included temporal patterns in abundance of S. 

salar and S. trutta. The models accounted for characteristics shared by all 

individuals in the River Tyne. The relevance of simultaneous NAO values 

reflected that near-shore conditions during return migration mostly explained 

fluctuations in abundance of the two species. 

Differences in migration patterns are also known to occur within species, that 

were not accounted for by a single model and likely explained the occasional 

lack of fit of the models. A better understanding of the age groups contained in 

the species counts may help improve the fit of the models. 

Autocorrelation in population movement, changing periodicity, and transient 

imperfect sinusoids, all suggested that incorporation of time-variation in 

estimates and non-stationarity in the model may improve description of 

fluctuations in counts of each species. In the next chapter, state-space models 

will be used to attempt and describe the time-dependency of the response for 

each species. 
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 “History does not repeat itself, but it does rhyme”. 

M. Twain 
Quoted in Diplomacy and its discontents 

 J.G. Eayrs, 1971. 
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Chapter 5. Modelling time dependency in the 

abundance of the River Tyne salmonid population. 

5.1.  Introduction  

Classical linear regression models assume that a linear combination of 

explanatory variables can describe the mean of a response variable by including 

constant coefficients estimated by the model (Diggle, 1990). The model 

coefficients remain constant over time so the processes described are concerned 

with the entire observation period: model components such as harmonics 

describe seasonality with constant frequency and amplitude and non-linear 

trends can be expressed by a polynomial. 

Dynamic generalized linear models differ in that the regression coefficients may 

fluctuate over time; this allows, for instance, description of changes and 

evolutions contained within seasonal patterns (Lundbye-Christensen et al., 

2009). Observed data may be the result of such dynamic processes. State space 

models may be used to represent both the relationship between seasonality and 

time, and the relationship to response data (Chow et al., 2009). The expression 

“state space” refers to all the possible unobserved states of a dynamic system, 

which these models aim to describe (Commandeur and Koopman, 2007). 

Integration of this information in a model may greatly refine the description of 

seasonality, thus improving the model precision and predictive ability. 

In the preceding chapters, the applications of classical linear regression models 

suggested that the use of dynamic modelling might explain the temporal 

fluctuations in the abundance of salmonids in the River Tyne more completely. 

For instance, the assumption of stationarity in the preceding models (Chapter 4) 

may not represent the time-series accurately. Stationarity implies that the 

relationship between mean and variance is stable over time; it is an underlying 

condition of GLMs, the failure of which tells us that stationarity may not be 

present. GLS models allowed for the adjustment of the variance structure for a 

parameter (i.e. annually) but a lack of fit in the previous chapter suggested
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room for improvement. The annual peaks that characterize temporal 

fluctuations in salmonid counts are a seasonal phenomenon but the variations 

they contains are may not be fully described by a stationary process. 

Additionally, transient periodicities have been shown to arise within the count 

data during the second half of the observation period, which classical models 

did not address. State space models are dynamic and do not require the time-

series to be stationary (Commandeur and Koopman, 2007). 

The use of state-space models in this chapter tests the hypothesis that the  time-

series of salmonid counts contain dynamic properties that evolve through time 

and were not directly measured (Commandeur and Koopman, 2007; Pichler, 

2007; Zivot, 2006). 

State space models quantify a process using a minimum of two separate 

mathematical models, each described by a distinct equation: an observation and 

a transition equation(s). The observation (or measurement) equation describes 

the relationship between state variables and the response; it contains the sum of 

all states at time t, and accounts for the error linked to measurement noise and 

inaccuracy (Orderud, 2005). The transition equation is dynamic; it defines the 

vector of state variables. The state variables are possibly unmeasured; this 

equation represents the evolution of the hidden stochastic processes through 

time, assumed to be driving the state variables (Pichler, 2007).  

The time-dependency is explicitly expressed in the unobservable states by a 

Markovian process (xt+1 depends on xt) and are associated with state noise 

vectors, i.e. error for each innovation (Orderud, 2005). The transition equation 

consequently describes the probability density function of a hidden process.  

An observation includes both a signal and a noise; considering that the process 

described by the state variables is reflected by the response data but not directly 

observable, the signal contained in the response variable corresponds to the 

state variables, gathered in a state vector at time t (Chatfield, 2009). The signal 

(i.e. the state vector) is the observation minus the noise; it equals a filtered 

version of the observation. So, the state equation estimation uses a filtered 

version of the data. 
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Several filtering methods may be used for the state estimation protocol. The 

Kalman filter (Kalman, 1960) is robust and widely used for the estimation of 

both linear and non-linear state dynamics (Orderud, 2005). 

The Kalman filter operates in two-steps: (1) forecasting and (2) updating. 

Firstly, the observation at time t is calculated as a forecast of the observation at 

t-1 (the series consequently lags one time point in comparison to the input data, 

Commandeur and Kooper, 2007). The predicted means are augmented by the 

corresponding variance and the sum, constituting the Kalman filtered state. 

Secondly, the filtered state is updated sequentially by including all available 

observations (i.e. point by point considering all data, not only the preceding 

point) and this updating process adds new information to the model by 

describing the relationship between data points in reverse temporal order 

compared to the initial forecast process (Zivot, 2006). The resulting vector is 

augmented with the estimated variance, yielding the smoothed state.  

Kalman filtering of x implies that state xt evolved from state at xt-1 via state 

transition model Gt, augmented by error wt; the state equation is:  

Equation (5.1) xt =Gt* xt-1+wt wt~N(0,Wt) (state equation) 

The observation equation of y at time t contains the state xt, the measurement 

error vt, and an observation model Ht that maps the state space into the 

observed space: 

Equation (5.2) (2) yt =Ht*xt+vt vt~N(0,Vt) (obs. equation) 

In brief, state space models describe the observation state, transition process, 

and initial observation value, as schematized on Figure 5.1. 

The resulting (possible) time-variation in the state-space model coefficients is a 

powerful feature of state-space models (Aoki, 1987) and justifies a cautiously 

determined set of candidate models in order to avoid overfitting of the covariate 

estimates. State-space models will be developed to investigate whether 

modelling salmonid counts in the River Tyne can benefit from time-varying 

estimation of environmental parameters.  
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Figure 5.1:  An illustration of the structure of state-space models. 
The value of xt depends on the value of xt-1 and the value of yt depends on the value of xt. The 
hidden process is estimated with the Kalman filter Gt. The observation is measured (response 
and measured explanatory variables). 

  
Here, the covariates included in the candidate models were based on inferences 

from preceding chapters. Covariates were described in relation to salmonid 

counts at time t (Figure 5.2). Whether a time-varying coefficient was assigned to 

a given covariate was established before model fitting. 

Model development involved several time frames and related time-dependent 

processes occurring simultaneously: life history, migration, climate, and 

monitoring (Figure 5.2). On the one hand, processes influencing the salmonid 

abundance at time t likely took place over several years preceding the 

observation (Figure 5.2, relevance of NAO with a 4 year lag, Chapter 3). On the 

other hand, the static nature of covariate measurements used for modelling a 

migratory population justified the investigation of time-variation in most 

environmental covariates.  Time-variation in this case was a substitute for the 

varying distance from the point of covariate measurement as the salmonids 

migrate.  

Population dynamics were described by periodic fluctuations with potential 

annual variation in amplitude and phase. Time-varying coefficients allow for 

explicit description of the year-by-year variations in the frequency and phase of 

both the fundamental and transient seasonal patterns (Fanshawe et al., 2008). 

Population dynamics may be described explicitly in order to disentangle them 

from climatic and ecological drivers, especially as these drivers are often spread 

over different scales in studies of migratory species; the separation of these 

population dynamics and environmental processes can be achieved via state 

space modelling (e.g. migratory wader species, Robinson et al., 2009) leading to 

a more complete description of the salmonid migration process.  
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At a given sampling time, the 
observed spawning population 
count is the combined result of 
life history characteristics of 
the salmonids and the 
influence of environment on 
the processes investigated. 
 
NAO conditions four years 
prior to being recorded in the 
River Tyne likely influence 
mortality as smolts enter the 
sea. NAO conditions 
throughout maturation can 
also influence growth and 
survival. Current NAO 
conditions likely influence the 
habitat suitability for 
salmonids as they reach the 
River Tyne estuary. 
 
Seasonal fluctuations in river 
temperature likely condition 
the suitability of spawning 
habitat and salmonid 
movements from the estuary to 
the breeding sites.  
 
Monitoring of salmonid counts 
and temperature in the River 
Tyne is continuous but 
represents only a small part of 
salmonid life history. 

 
Figure 5.2: The life history and selected biological processes relevant to the salmonid migration, and 
relationship with the salmonid data and the environmental covariates available. 
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The last section in this chapter is concerned with the possibility that temporal 

variations partly emerged from problems identifying salmonids as S. salar or S. 

trutta. This is implied by a species identification rate increasing throughout the 

observation period, indicating learning. The learning process was modelled by a 

Michaelis-Menten equation (Menten and Michaelis, 1913, translated by Johnson 

and Goody, 2011) that traditionally describes enzymatic reaction rates 

dependent on substrate concentration and nutrient availability, forming a 

rectangular hyperbola with a plateau at the maximum reaction rate (Bertolazzi, 

2005). It is suggested that a similar relationship can describe learning rate as a 

function of the time spent observing salmonids. Inverse modelling confronts a 

mathematical model with the data and allows modelling unmeasurable 

processes by applying their specific mathematical definition to a process 

(Soetaert and Petzoldt, 2010); species identification learning rate according to 

the Michaelis-Menten equation will be confronted with the observed data in 

order to investigate this hypothesis. 

5.2.  Material and Methods 

5.2.1. Data 

Video camera records from Channel 4 at the Riding Mill counter (Figure 4.1, 

page 85) produced two univariate time-series counts of S. salar and S. trutta 

during the data collection period (2004 to 2012). As for analyses at the 

population level (Chapters 3 and 4), all data were pooled into 14 day bins and 

log-transformed. All values contained in the dataset were determined (no NAs). 

The covariates included were previously identified as influentialat the 

population level. Specifically, these covariates were: NAO (without lag and with 

a 4 year lag), temperature at the Riding Mill station, the fundamental annual 

periodicity, and the transient periodicity specific to fluctuations in each species.  
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5.2.2. Analysis 

As the standard approach to develop state-space models (Pichler, 2007), the 

prior distribution of the error was assumed normal. The state-space model 

calibration was diffuse for the static parameters of the system (i.e. coefficients 

were estimated by maximum likelihood within the model). Estimation of the 

state equation components used the recursive and sequential Kalman filter 

(Kalman, 1960) applied to the two log-transformed time-series, followed by 

smoothing. The model parameters were augmented as part of the state vector 

with the smoothed series; the ensemble constituted the values fitted by the 

state-space model.  

Parsimonious state-space models were selected according to their ranking based 

on an adaptation of AIC, as recommended by Commandeur and Koopman 

(2007): 

Equation (5.3)  AIC =
 

                           (      ) 
 

Values q and w were the number of hyperparameters in the model; q was the 

number of diffuse initial values in the state (i.e. the parameters); and w was the 

total number of estimated error variances (i.e. the number of state equation or 

coefficients to be time-varying). Indices of goodness of fit were the Pearson 

correlation coefficient, the variance residuals and the log-likelihood of the 

model. 

The normality of the distribution of forecast errors was assessed using 

standardized predictions; these were obtained by dividing the forecast error by 

the square root of the forecast variances for the observations (Petris, 2011). 

5.2.3.  Candidate models 

Models were fitted without intercepts as the dynamics modelled by the 

periodicity components and the intercept were similar (i.e. variations in 

amplitude and phase).  
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The equations for the state space models were so that: 

 yt =   xt  + β.temperaturet  
  + δ.NAOt  
  + ζ.(4 year lagged NAO)t  
Equation (5.4)  + a.cos(ω1tt) + b.sin(ω1tt)  
  + c.cos(ω2tt) + d.sin(ω2tt)  
  + vt    vt ~ N (0,Vt) 
 
Equation (5.5) xt = γ xt-1 + wt    wt ~ N (0,Wt) 

The estimated coefficients (β, δ, ζ, a, b, c and d) were constrained to null, or 

constant or time-varying values according to the model assumptions. A time-

varying coefficient implied an additional equation described the transition 

relating to the estimated covariate (Commandeur and Koopman, 2007). 

Omitted covariates implied that the corresponding coefficients were set to null; 

constant estimates held similar assumptions as in the classic regressions 

formerly used. Estimates were allowed to vary with time based on logical 

assumptions (Table 5.1). 

Candidate models implied underlying hypotheses depending on the justification 

for applying a time-varying coefficient to a given covariate. These justifications 

were determined prior to model fitting (Table 5.1). 

Table 5.1: The justifications for applying time-variation or not to the coefficients 
of the covariates of candidate models. 

Parameters 

Time-

varying 

coefficient 

Underlying hypothesis regarding 

time-variation 

In-thesis 

reference 

Temperature Yes (β) 
The response to temperature 

varies through the year 
Chapter 2 

NAO with a 

lag of 4 years 
Yes (ζ) 

Measurement of the parameter is 

static while populations move; a 

parameter may have different 

implications depending on the 

time of influence (e.g. as smolt or 

as spawner) 

Chapter 3 

NAO Yes (δ) Chapter 4 

Fundamental 

period 
Yes (a,b) 

May account for population 

dynamics from a year to another 

(e.g. survival) 

Chapter 3 

Transient 

period 
Yes (c,d) By definition Chapter 4 

Intercept No 

It would account for dynamics 

similar to the ones in time-varying 

harmonics. 

. 
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The estimate β for temperature was allowed to vary with time as it was 

demonstrated that the response to temperature varies throughout the year 

(Chapter 2). The underlying hypothesis was that the description of fluctuations 

in salmonid abundance may be improved by including a time-varying effect of 

temperature on salmonid numbers throughout the year. 

NAO values were also included as potential predictors. Since the data were 

pooled into bins of 14 days, it was assumed that the salmonids responded to 

NAO conditions while in the estuary, where they would have spent most of their 

time. NAO is a broad scale index that describes a large part of the North Atlantic 

Ocean (Hansen et al., 2012), hence it was assumed representative of the 

conditions experienced by the salmonids throughout the whole migration route. 

However the NAO index is also static and the salmonids travel long distances 

which are not fully determined. The time-variation allowed in the coefficient δ 

associated with NAO values, aims to reflect the changing distance of the 

salmonids with regards to the measurement of the NAO. Incorporation of time-

variation in the NAO values with a 4 year lag held similar assumptions. 

Fundamental periodicity was annual in the counts of both species in that they 

fluctuated seasonally, with an increase in spring and summer and rare counts 

over winter (described during the harmonic analysis in Chapters 3 and 4). The 

estimates (a&b) were allowed to vary in time to account for varying annual 

amplitude and phase. The transient periodicities (26.4 and 17.5 weeks for S. 

salar and S. trutta) were also included and the corresponding estimates (c&d) 

were allowed to vary with time as they appeared transient in the harmonic 

analysis of each time-series (Chapter 4). The values for the transient 

periodicities were also estimated by constant coefficients in case they were in 

fact constant but confounded with the fundamental periodicity if it was itself 

time-varying. 

The simplest model had constant estimates only and parameter selection was 

based on AIC. Estimates were made time-varying individually then by pairs, 

until a full saturated model that contained all time-varying estimates was 

obtained. 
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5.2.4. Software 

The state space models (including Kalman filtering) were generated in the sspir 

package (Dethlefsen et al., 2012) operated in the R.15.1 environment (R Core 

Team, 2012). The package allowed model specification of the dynamic 

generalized linear models given normal or Poisson errors. The Michaelis-

Menten equation to fit the learning curve was developed post-hoc in the FME 

package (Stoetaert and Petzoldt, 2010). 

5.3.  Results 

5.3.1. Time-varying estimates 

State-space models of the log-transformed counts of S. salar and S. trutta were 

developed and summarized in Table 5.2 and Table 5.3. 

For S. salar (Table 5.2), stepwise removal of individual covariates led to the 

most parsimonious model having temperature (constant estimate) and a time-

varying estimate associated with the annual periodicity (model 14). The 

temporal fluctuations of the estimates are displayed on Figure 5.3. 

For S. trutta (Table 5.3), the most parsimonious model contained all covariates 

except for both NAO related covariates. All estimates were constant through 

time (model 7).  
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Table 5.2: Candidate state-space model comparisons for time-series of log-
transformed counts of S. salar.  
For each combination, the estimates are either (.) not included, (1) constant, or (tvar) time-
varying. The number of state disturbance variances to be calculated (w) and the number of 
diffuse initial values (q) are the hyperparameters which intervened in the AIC score 
calculation. 

 

Single step covariate removal with fixed effects was developed in models 1 to 6. 

Transient periodicity was the first covariate removed as its removal decreased 

the AIC score of the model (model 6).  NAO with a 4 years lag and current NAO 

were removed individually (models 7 and 8) and jointly (model 9), based on the 

lower AIC obtained after their removal in models 3 and 4. Model 9 had the most 

support given the data, so the three covariates of this model were tested with a 

time-varying estimate (models 10 to 12) before being permanently omitted due 

to lower parsimony (increased AIC scores).  

The covariates in the top AIC-ranked model (temperature and fundamental 

periodicity, model 9) were augmented by a time-varying estimate individually 

(models 13 and 14) and jointly (model 15). Model 14 produced the lowest AIC 

score. The model 16 was saturated in that it contains all available covariates, all 

augmented by a time-varying estimate.  
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Var 
(res) 

R2 
Log-

likelihood 
 

q w AIC 
AIC 
rank 

1 1 1 1 1 1 2.04 0.6110 -422.55 7 0 845.17 4 

2 . 1 1 1 1 1.56 0.6196 -1253.36 6 0 2506.77 6 

3 1 . 1 1 1 2.03 0.6023 -416.59 6 0 833.24 3 

4 1 1 . 1 1 2.04 0.6041 -416.25 6 0 832.55 2 

5 1 1 1 . 1 1.97 0.5178 -443.94 5 0 887.92 5 

6 1 1 1 1 . 2.05 0.6051 -406.77 5 0 813.60 1 

7 1 1 . 1 . 2.03 0.5986 -400.33 4 0 800.69 2 

8 1 . 1 1 . 2.01 0.5968 -400.64 4 0 801.32 3 

9 1 . . 1 . 2.03 0.5906 -394.06 3 0 788.15 1 

10 1 tvar . 1 . 1.71 0.7563 -408.65 4 1 817.34 4 

11 1 . tvar 1 . 1.67 0.7342 -409.74 4 1 819.54 5 

12 1 . . 1 tvar 0.74 0.9456 -414.68 5 1 829.42 6 

13 tvar . . 1 . 0.06 0.9935 -666.81 3 1 1333.65 3 

14 1 . . tvar . 1.24 0.9374 -379.40 3 1 758.84 1 

15 tvar . . tvar . 0.05 0.9970 -676.73 3 2 1353.5 2 

16 tvar tvar tvar tvar tvar 0.03 1.000 -732.84 7 5 1465.80 - 
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Table 5.3: Candidate state-space models comparison for time-series of the log-
transformed counts of S. trutta. 
For each combination, the estimates are either (.) not included, (1) constant, or (tvar) time-
varying. The number of state disturbance variances to be calculated (w) and the number of 
diffuse initial values (q) are the hyperparameters which intervened in the AIC score 
calculation. 

 

Models 1 to 6 show single step covariate removal with fixed effects. NAO was the 

first covariate removed as its removal decreased the AIC score substantially 

(model 3).  Then NAO with a 4 years lag was removed (model 7). Both NAO 

covariates were tested with a time-varying estimate individually (models 8 and 

9) and jointly (model 10).  

Single step covariate removal was pursued (after model 7 of lowest AIC score) 

but no covariate was removed without decrease the parsimony of the model 

(models 11 to 13). Covariates in model 7 were augmented by a time-varying 

estimate one by one (models 14 to 16) then by pairs (models 17 to 19); all 
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Var 
(res) 

R2 
Log-

likelihood 
 

q w AIC 
AIC 
rank 

1 1 1 1 1 1 4.71 0.8410 -383.42 7 0 766.91 3 

2 . 1 1 1 1 4.26 0.8355 -1025.21 6 0 2050.48 6 

3 1 . 1 1 1 4.79 0.8404 -374.72 6 0 749.51 1 

4 1 1 . 1 1 4.79 0.8400 -375.26 6 0 750.58 2 

5 1 1 1 . 1 2.31 0.5105 -631.83 5 0 1263.70 5 

6 1 1 1 1 . 4.73 0.8163 -384.12 5 0 768.28 4 

7 1 . . 1 1 4.88 0.8392 -366.54 5 0 733.12 1 

8 1 tvar . 1 1 3.88 0.8162 -390.14 6 1 780.34 2 

9 1 . tvar 1 1 3.24 0.8163 -393.19 6 1 786.45 3 

10 1 tvar tvar 1 1 2.53 0.8163 -421.02 6 2 842.12 4 

11 . . . 1 1 4.10 0.8438 -1008.96 4 0 2017.96 4 

12 1 . . . 1 1.71 0.4916 -636.27 3 0 1272.58 3 

13 1 . . 1 . 4.81 0.8143 -367.39 3 0 734.81 2 

14 tvar . . 1 1 0.10 0.9982 -678.17 5 1 1356.39 5 

15 1 . . tvar 1 2.39 0.9773 -383.55 5 1 767.15 2 

16 1 . . 1 tvar 1.43 0.9813 -398.85 5 1 797.75 3 

17 tvar . . tvar 1 0.08 0.9995 -688.44 5 2 1376.94 6 

18 tvar . . 1 tvar 0.07 0.9997 -694.69 5 2 1389.45 7 

19 1 . . tvar tvar 1.14 0.9912 -438.63 5 2 877.32 4 

20 tvar tvar tvar tvar tvar 0.05 1.0000 -731.82 7 5 1463.76 - 
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corresponding AIC scores were higher than for model 7. Model 20 was saturated 

(all available covariates augmented by a time-varying estimate). 

 
Figure 5.3: Temporal variation of time-varying estimates for the fundamental 
annual periodicity (most parsimonious model 14, Table 5.2). 
Parameters a and b (a and b) are the coefficients of the annual dynamic harmonic regression 

(a*cos(wt) and b*sin(wt)). Amplitude was calculated from these coefficients (√     ) as 

well as the phase angle (      ( 
 

 
 ), see Chapter 4 for details). The temperature estimate was 

constant over time (β=0.2574). 
 

In the top AIC-ranked model for log-transformed counts of S. salar (model 14, 

Table 5.2), the coefficients a and b associated with the annual cycle changed 

dynamically (Figure 5.3a&b). Additional characteristics of the sinusoid were 

derived from these coefficients (as it was completed in Chapter 4, page 99); the 

amplitude and phase showed substantial temporal variation (Figure 5.3c&d).  

5.3.2. Time-varying identification; learning curve and positive 

identification 

The proportion of salmonids positively identified over all video records was 

described as a function of learning rate and environmental conditions. The 

proportion of identified salmonids was first modelled (GLM) as a function of 

environmental covariates (i.e. water visibility conditions and fish density). The 

most parsimonious model (Figure 5.4a and Table 5.4) indicated that 

identification was higher at night  and lower salmonid density; the covariates 
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were important predictors of proportion of identified salmonids (solar 

irradiance, χ2=29.27, df=1, P-value<0.001, counts in channel 4, χ2=29.42, df=1, 

P-value<0.001).  

The residuals of this model were in turn expressed as a function of the 

hypothetical species identification learning curve as defined by the Michaelis-

Menten equation (Figure 5.4b and Table 5.4).  

 

 Proportion of identified salmonids Fitted proportion of identified salmonids  
  +     Residuals of GLM whose fitted 

values are displayed on (a) 
Fitted values of residuals  
95% confidence interval 

Figure 5.4: (a) The proportion of identified salmonids over time and 
corresponding fitted values based on fish density, visibility and the learning 
curve and (b) the resulting residuals. 

 

The species identification learning rate curve was characterized by a 

decelerating rate. Proportion of identified salmonid became limited after 

overcoming the learning curve (Figure 5.4b).  

Both GLMs explained a relatively low amount of variation (Table 5.4), 

indicating that the covariates included were likely important predictors of the 

proportion of salmonid identified but additional explanatory covariates were 

missing.  
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Table 5.4: Statistics of the GLMs of the proportion of identified salmonids and of 
the resulting the residuals. 

 

The sum of the fitted values of both models provided a representation of the 

proportion of identified salmonids over time which was of better fit (Adj. 

R2=0.4729, F=187.6 on 1 and 207 df, P-value<0.001, Figure 5.5). The residuals 

of this last model showed a heavy lower tail associated with an approximate fit 

to the first year of the data (Appendix A.iv, Figure A.7.21). 

 

 

Figure 5.5: The sum of the fitted values from the GLM of the time-series of the 
proportion of identified salmonids, and the fitted values of the GLM of the 
resulting residuals. 

 

The addition of the learning rate curve to the most parsimonious SSM and most 

parsimonious GLS models (in Chapter 4) did not improve either model 

(increased AIC score). Temporal variation in the hypothetical learning rate was 

significantly correlated with the variations in the time-varying estimates of all 

covariates, in both species (Table 5.5). The strongest correlations occured with 

the NAO values with a lag of 4 years and with the transient periodicity for each 

species. 

GLM of proportion identified GLM of residuals 
Predictor Estimate (s.e.),  P-value Predictor Estimate (s.e.),  P-value 

Intercept 
9.39e-01 (2.59e-02), 

P<0.001 
Intercept -0.49 (0.06), P<0.001 

Solar 
irradiance 

-1.13e-03 (2.04e-04), 
P<0.001 

Values fitted 
by M.-M. 
equation 

0.66 (0.08), P<0.001 
Counts in 
Channel 4 

-7.27e-05 (1.30e-05), 
P<0.001 

Deviance 
explained 

Adj.R2=0.2928,  
F=87.11 on 1 and 207 df 

P<0.001 

Deviance 
explained 

Adj.R2= 0.2506,  
F= 70.55 on 1 and 207 df 

P<0.001 

Proportion of identified salmonids 
Sum of two series of fitted values 
(proportion and residuals) 
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Table 5.5: The Pearson correlation between the rate of the learning curve and 
the fluctuations in time-varying estimates. 
The estimates were in the saturated models of the log-transformed counts of each species; all 
are on on 1 and 207 degrees of freedom.  

 

The initial acceleration in the learning rate curve lasted until approximately 

2007 after which the proportion of positively identified salmonids plateaued 

(Figure 5.4b). Goodness of fit for the GLS models developed in Chapter 4 was 

contrasted for the periods before and after 2007 (Table 5.6).  

Table 5.6: Contrasting the goodness of fit of the GLS models (Chapter 4) 
according to temporal changes observed on the learning curve. 

 

In both species, goodness of fit was higher for 2007-2011 than for 2004-2007 

and the whole observation period 2004-2011 (Table 5.6). 

There were also differences in the residuals of the GLS models fitted before and 

after 2007. In S. trutta the autocorrelation was stronger and more cyclical 

 S. salar  S. trutta 

 Adj. R2 F P-value  Adj. R2 F P-value 

β  (Temperature) 0.0340 8.331 P<0.001  0.1358 33.69 P<0.001 

δ  (NAO) 
0.3012 

90.6

3 

P<0.001  0.2082 55.71 
P<0.001 

ζ (NAO, 4 year 

lag) 
0.4076 

144.1 P<0.001  0.7229 543.8 
P<0.001 

a (P=fundamental) 0.0635 15.1 P<0.001  0.6147 332.9 P<0.001 

b (P= fundamental) 0.0363 8.827 P<0.001  0.1389 34.54 P<0.001 

c (P=transient) 0.5118 219.1 P<0.001  0.5365 241.8 P<0.001 

d (P=transient) 0.4041 142 P<0.001  0.6774 437.9 P<0.001 

Observation period S. salar S. trutta 

2004 - 2007 

Adj. R2= 0.6191,  

F= 126.2,  

on 1 and 76 df, 

P< 2.2 . 10-16 

Adj. R2=0.8390,  

F= 402.2,  

on 1 and 76 df, 

P< 2.2 . 10-16 

2007 - 2011 

Adj. R2= 

0.7053,  

F= 249.9,  

on 1 and 103 df, 

P< 2.2 . 10-16 

Adj. R2=0.8663,  

F= 706.5,  

on 1 and 103 df, 

P< 2.2 . 10-16 

2004 - 2011 

Adj. R2=  

0.6664,  

F= 364.6,  

on 1 and 181 df, 

P< 2.2 . 10-16 

Adj. R2=0.8177,  

F= 817.4,  

on  1 and 181 df, 

P< 2.2 . 10-16 
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during the observation 2007-2011 (Appendix A.iv, Figure A.7.22f). The 

distribution of residuals was further from normal during the period 2007-2011 

for the counts of both species and there was a heavier lower tail compared to the 

normal distribution in S. trutta (Appendix A.iv, Figure A.7.23 and Figure 

A.7.24). 

5.4.  Discussion 

The analyses undertaken in the preceding chapters led to the hypothesis that the 

complex and dynamic behaviour exhibited by S. salar and S. trutta may the 

source of patterns in the fluctuations of salmonid abundance that are not 

stationary. This suggested the use of dynamic modelling that can account for 

temporal variation linked to the static measurements of covariates which vary in 

their distance to the riding Mill station, and are likely specific to S. salar and S. 

trutta. In this chapter, the use of state-space models to describe the counts of 

each species allows two major inferences with regards to time-dependency. 

The dynamic harmonics of the state space models (cosine and sine coefficients), 

are not easily interpretable on their own (Chow et al., 2009). Rather, they 

constituted an efficient tool to identify and describe the changes in amplitude 

and phase of a cycle initially included in the model of the the log-transformed 

counts of S. salar.  

The relevance of the dynamic annual harmonic implied that the harmonic 

coefficients a and b appeared in the vector of state variables (since one state 

equation is formulated per time-varying component) whilst the cosine and sine 

functions were part of the measurement matrix (i.e. with a determined and fixed 

annual period). So, the dynamic harmonic regression was similar to a factor 

analysis model with non-linear constraints on the measured processes (i.e the 

fixed annual period). On one hand, the relevance of time-varying factors may 

imply that the cycle changed in amplitude and phase throughout time. There is 

an alternative type of inference possible (in both stochastic cyclic models and 

dynamic harmonic regression models, Chow et al., 2009), that is reached by 

examining temporal changes in the cosine and sine weights of the cycle (and 

other resulting sinusoid characteristics). By definition, these cyclical 
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specifications require the cycle frequency to be time-invariant. Variation in the 

phase angle imply that the time at which the cycle is estimated to reach its peak 

varies. So, in cases where the frequency contained in the time-series actually 

changes throughout time, these changes become reflected by variation in the 

phase angle value (Chow et al., 2009); variations in the phase may either reflect 

variation in the frequency of the time-series, or, it may imply that multiple 

frequencies contained in the time-series are not all described by the observed 

components of the harmonic regression. 

The first inference from this study is that multiple time-dependencies exist 

within the recorded spawning population of each species. It is likely that each 

age-class represents a specific time-dependency and possibly a specific response 

to the covariates available in this study (and may also be described by a specific 

harmonic, Klemetsen et al., 2003; McCormick et al., 1998). The sampled 

spawning population on year t may be composed of kelts and grilses being born 

up to 5 years prior to the year of record (Figure 5.6). As a result, the youngest 

individuals counted at Riding Mill may be 2 years old (i.e. one year of 

smoltification and one year at sea, not including precocious parr) and the oldest 

may be over 7 (i.e. 4 years of smoltification and 3 years at sea). Therefore, 

spawning population may be composed of five age classes in unknown 

fluctuating proportions. 

This source of heterogeneity in the population supports the use of time-

dependent estimates. In S. salar, kelt and grilse are known for seeking different 

feeding grounds (Jonsson and Jonsson, 2011), so over winter conditions may be 

different for the two age classes. Time-dependent estimates, however, 

accounted for a single pattern and individual age-class dependent 

characteristics were not described. Variation between age-classes was likely too 

high to be modelled without explicitly distinguishing between the natural 

groupings contained in the samples at a given time. The models developed in 

Chapter 4 for the counts of each species, indicated that counts were partly a 

function of the previous counts, which implies an auto-regressive dependency 

which may be modelled as such (Chapter 4), but which may also fluctuate over 

time as a function of variation in age class composition throughout the year.  
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Figure 5.6: An illustration of age-class composition of the spawning salmonid 
population on year t. 
This illustration is based on average durations for S. salar,illustrated for year t. 
Smoltification takes 1 to 4 years so that salmonids may develop into grilse or kelt throughout 
this period. Grilse spend one year at sea and kelt migrate back after multiple winters. On 
average, the spawning population is estimated to contain individuals born 1 to 5 years prior 
to being recorded in the River Tyne.  
 

Capture-mark-recapture experiments have evaluated site-specific demographic 

features of localised populations of S. salar (e.g. recruitment success from egg 

to smolt depending on spawner age class, and between-stage transition rate; 

Rivot et al., 2004; Dumas and Prouzet, 2003; Jonsson et al., 1998). Rivot et al. 

(2004) used Bayesian state-space modelling to derive the dynamics between the 

unobserved stage-dependent population dynamics and the observation process 

using observed counts of S. salar and random sampling of demographic 

features. This study described selected traits of the life history of S. salar, but 

conclusions were limited due to simplification of the stage transitions (i.e. 

combinations of time and rate of transition from smolt to spawner stage), the 

absence of environmental data in the model, and the model’s limited ability to 

account for the evolution of dynamics over time. 

In contrast, the state-space models in the present study made use of 

environmental data and time-variation. It is suggested that the incorporation of 

species-specific demographic data would complete the model. Demographic 

processes appear to be essential to a comprehensive description of the 

fluctuations in salmonid population abundance. 
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The second inference from this study concerned the influence of increasing 

species identification learning rate over time. Ideally, the identification of each 

species would have been assessed (i.e. how identifying individual S. salar 

compares with identifying S. trutta in term of time required to achieving stable 

proficiency over time). The identifiability would for instance compare the 

number of identified S. salar against the true count of S. salar; data on true 

number of S. salar were not available for this study so the identifiability was not 

assessed. 

Several methods were applied to incorporate the influence of identification 

within the state-space models (e.g. a given minimum proportion of identified 

salmonids, duration spent identifiying a given minimum proportion, both at 

several fixed amounts for a given proportion). However the processes involved 

in the biology of both species are complex and vary through time, up to 4 years 

according to the analysis in Chapter 3 (i.e. NAO values 4 years preceding the 

count). Data refinement to exclude subsets of the observation periods during 

which a minimum proportion of identified salmonids was not reached (e.g. 

years 2004-2005 displayed low proportion of identified salmonids) meant that 

the remaining time-series was likely not long enough to reflect the dynamics of 

the salmonid movements which took place over 4 years so this method was not 

retained (several proportions were tested under 50% of identified counts). 

Instead, state-space models indicated that when allowed to vary in time, the 

coefficients of all parameters showed a clear drift in 2008, with a transition 

period (2007-2010) that delimited two distinct trends each time, with a 

different trend before and after the transition period. This indicates that the 

count data were not accurate during the period 2004-2008. The time-varying 

parameter estimation likely attempted to fit a non-representative time-series 

(until 2008) followed by a representative time series (until 2012). 

Identification skills are acquired with experience, a process described by a 

learning curve. The slope of a learning curve may influence the outcome of a 

process. For instance, surgical experience improves the outcome of many kinds 

of procedures; a given amount of time or number of events, specific to the 

procedure, leads to sufficient experience to overcome the learning curve (Atug et 

al., 2006). When it forms a plateau indicating that the outcome from a given 

process is stable in time, the learning curve is overcome. The window of 
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experience required to overcome the learning curve is specific to the process and 

subject. 

Here the proportion of salmonids identified from video data was assumed to be 

a function of proficiency at identification, an unmeasured variable, and the 

observation conditions, which are dependent on both water clarity and the 

density of salmonids (Table 5.7, Eq. (5.6)). First, the proportion of salmonids 

identified was modelled as a function of observation conditions (Table 5.7, Eq. 

(5.7)). Water clarity was represented by solar irradiance and fish density by the 

salmonid counts in Channel 4. The residual variation in this model (Table 5.7, e1 

in Eq. (5.7)) was assumed to be related to the learning curve of an observer. The 

learning rate was described by the Michaelis-Menten equation (Table 5.7, Eq. 

(5.8)) and the residuals were compared to the output of the equation (Table 5.7, 

Eq. (5.9)). 

Table 5.7: Hypotheses considered when modelling the temporal fluctuations in 
the proportion of salmonids identified to the species level. 
The constants e, e1 and e2 are error terms; a is the maximum proportion of salmonids that 
can be identified and b is the Michaelis constant; here it is the time at which the learning rate 
is half of the maximum. 

 

The Michaelis-Menten equation estimated the term a as the maximum learning 

rate, defined as the maximum proportion of salmonids (i.e. considering an 

infinite observation period). The model assumed that learning rate increased 

asymptotically, until approaching a maximum rate proportion of salmonids 

identifiable, likely limited by conditions of visibility.  

The relatively low goodness of fit of the total model indicated that additional 

covariates were required to describe the conditions of identifiability of 

salmonids. There was an impact of the learning on the goodness of fit of the 

model that became apparent when comparing the goodness of fit of the GLS 

models from Chapter 4 to subsets of the count data before and after the year 

2008.  

Eq. (5.6)   Proportion identified ~ Learning rate + Water clarity + Fish density 

+ e 

Eq. (5.7)   Proportion identified ~ Water clarity + Fish density + e1 

Eq. (5.8)   Learning rate ~ 
        

        
                   Eq. (5.9)    e1 ~ Learning rate+ e2 
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The learning curve reached a plateau at approximately 2007. After this initial 

phase, any effect of the salmonid species identification learning rate no longer 

influences the data. However, visibility conditions also appeared to be 

important predictors.  

The proportion of identified salmonids was higher during hours of darkness, 

however the salmonids passing through channel 4 are visible at night due to 

lamps are used in low light conditions and the salmonids are considered easier 

to identify during the day than at night (EA, per. com, 2013).  

When full occupation of the channel occurs, the proportion of salmonids 

identified cannot be maximal as salmonids hide each other and likely hinder the 

detection of classifying features. There was a limitation associated with the 

space available for salmonids and the reduced visibility resulting from higher 

salmonid density, reflected by the influence of the number of salmonids in the 

channel 4 of the fish counter.  

Originally, the Michelis–Menten equation assumes single substrate enzyme 

kinetics (Johnson and Goody, 2011). When applying the equation to the 

learning rate at identification of species on video records, a single learning time-

frame was assumed. However, during the first two years of the video camera 

being in place, there was a considerable turn-over of observers responsible for 

the species identification (EA, per. com., 2013). In a model, this turn-over was 

compared to several time-frames of learning rate being in place during the 

period in question (i.e. one learning rate per observer). The Michaelis-Menten 

equation considered a single observer with a single learning rate, which helps 

explain the lower goodness of fit in the curve at the beginning of the observation 

period (2004-2005). After this initial multi-observer period, a single observer 

produced the video data and the learning rate curve showed a better fit. 

The learning process may also in fact have contained two distinct processes: 

learning to identify S. salar and learning to identify S. trutta. It can be assumed 

that the proportion of unidentified fish varied with the ease with which either 

species was identified. Although the characteristic features of both species are 

thought to be equally discernible, particular features suggest that S. trutta may 

require less observation time to be identified (e.g. S. trutta has spots under the 

lateral line and S. salar does not; E.A., per. com., 2013). This may mean that 
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identification time require for the two species occurs on two observation time 

scales, in which case, the learning rate of identification of S. salar, specifically, 

may have reduced the global learning rate of species identification in this study. 

When variation in observed data are partly due learning, a firm uncertainty will 

exist, that cannot be accurately estimated and is particularly strong with regards 

to predictions (Nemet, 2006). The influence of learning rate here was supported 

by strong correlation with transient periodicities in the video count time-series 

that were not apparent when considering the salmonids as a whole.  
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5.5.  Conclusions 

The hypothesis that stochasticity was an intrinsic feature of the temporal 

fluctuations in the abundance of salmonids in the River Tyne was tested. State-

space models were developed that aimed to describe time-variation in the 

response of S. salar and S. trutta to covariates in explaining the migration of 

both species, according to prior theoretical justifications (Chapters 2, 3 and 4). 

Fluctuations in the abundance of S. salar were described using a dynamic 

harmonic regression that reflected changes in the amplitude and phase of a 

seasonal cycle over time. It also indicated that several natural groups likely exist 

within the counts associated with the different age-classes represented in the 

dynamic harmonic regression.  

A second hypothesis was investigated that considered the existence of a species 

identification learning curve, i.e. an increase in the reliability of the species 

identification data over time. It was shown that the proportion of identified 

salmonids increased and became more stable over time according to the 

progression of a learning rate. Video count data were not sufficiently 

representative of the natural phenomenon occurring during the years 2004-

2008. The learning process was overcome and the video recordings produced 

now display a stable temporal accuracy. 

The age-class composition and the natural groupings contained in the 

populations of each species need to be more precisely described to achieve full 

understanding of the processes involved in the migration of those species. In the 

next chapter, an algorithm will be investigated, that aims to rely on signal size 

and environmental conditions to classify salmonids into S. salar or S. trutta and 

potentially into natural sub-groups within each species.  



 

 

 

 

 

 

 

 

 

      C  h  a  p  t  e  r   6 .    . 

”A practical botanist can usually at the first glance 

distinguish the plants of Africa, Asia, America, and 

the Alps; but it is not easy to tell how he is able to 

do this”. 

C. Linnaeus (1707-1778) 
Quoted in Familiar lectures on botany 

M.L. Phelps, 1856.  
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Chapter 6. Discriminating between S. salar and S. 

trutta when recorded at Riding Mill station. 

6.1.  Introduction 

Non-invasive techniques of species identification are a long-term goal in 

ecology; this is particularly true for marine organisms, challenging to monitor 

and identify at sea (Horne, 2000). Ideally, the processes of detection, 

identification, and enumeration of animals are undertaken without disrupting 

their natural passage and survival, thereby using techniques said to be “stealthy” 

(Parrish, 1999). Marine species are monitored for conservation and/or fishing 

purpose and absence of disturbance is especially necessary for species at risk 

(Eatherley et al., 2005).  

S. salar is of conservation concern (Bardonnet and Baglinière, 2000) and both 

S. salar and S. trutta have a high commercial value (Aprahamian et al., 2010) 

with a need to be managed sustainably. Stock assessment for each species is 

central to their management and this can only be achieved through accurate 

monitoring studies. In comparison with active methods, remote census 

approaches imply reduced costs and may be more accurate (the bias relating to 

the sampling technique is null or smaller than for an active sampling), which are 

both important benefits to resource managers (Horne, 2000). 

Resources required for fish monitoring are proportional to their behaviour and 

habitat size (Côté and Perrow, 2006). Sampling in the marine environment 

incurs high costs in equipment, trained staff and time. Many techniques are also 

destructive (e.g. netting, trawling, hook and lining; Côté and Perrow, 2006), 

with prohibitively detrimental effects on salmonids. This results in a limited 

knowledge of the trends and behaviour of salmonid populations when at sea 

(Friedland, 1998; Smith et al., 1993).  

However while in freshwater, salmonids may easily be caught, trapped, 

observed, or counted remotely (Côté and Perrow, 2006). The automatic fish-
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counting device at Riding Mill weir, on the River Tyne, is an example of remote 

sampling. The counter reports abundance of S. salar and S. trutta combined. 

The array of available remote, non-invasive sampling methods is growing. 

Acoustic sounders are an example of remote sensing techniques used at sea: 

sound is emitted and the responding echoes are used to detect aquatic 

organisms (Kracker, 1999). Soon after the debut this technique, fishermen 

joined their knowledge of marine species habitat characteristics to sounders 

echograms; combinations of habitat characteristics and echogram properties 

can now allow identifying numerous marine species remotely. The process 

developed species reference libraries, containing information discriminating 

between species based on their habitat characteristics and the type of signal they 

produce (Horne, 2000). 

In rivers, resistivity counters monitor the difference in voltage across an array of 

electrodes generated by the passage of salmonids (Coyle and Reed, 2012; Forbes 

et al., 2000), without known incidence. The amplitude of the signal varies with 

the size of the fish (Nicholson et al., 1994) but the counter does not readily 

identify species.  

In some instances, the amplitude of the signal may suffice to assign a fish to a 

predefined category. This is the case for distinguishing rainbow trout from 

steelhead trout, two morphs of Oncorhynchus mykiss. The former is a 

freshwater resident and does not grow as large as its migratory co-specific; the 

size difference is discriminating (McCubbin and Ignace, 1999). No analysis has 

investigated the relationship between signal amplitude, fish size, and salmonid 

species identification in the River Tyne. 

The movement of salmonid across a four-channel resistivity counter generates a 

signal in the shape of a waveform. At Riding Mill, the counter has been 

supplemented by a video camera covering one of four channels (Figure 6.1a), 

enabling the distinction between S. salar or S. trutta on this channel (Figure 

6.1b). In these instances, signal amplitude is linked to the species, time of 

observation, and river covariates. There may be differences between species that 

discriminate between them when counted at Riding Mill. 
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Figure 6.1: (a) The four channels of the resistivity counter at Riding Mill and (b) 
an example of video recording produced by the camera at Riding Mill.  

 

Scientific literature suggests several parameters as classifiers of salmonids to 

the species level. For instance, time of year may be discriminatory as sympatric 

salmonid populations often present slight variation in migration timing (S. 

salar commonly ascend natal rivers before S. trutta, Jensen et al., 2012).  

Flow regime is a recurrent factor associated with the upstream migration rate in 

anadromous salmonids (Lilja and Romakkaniemi, 2002). High flow regimes 

may involve turbulence, which increases the energy cost of swimming 

considerably (by up to 1.5, Enders et al., 2003). S. salar individuals cope with 

high velocities and turbulence better than S. trutta by “sit-and-wait” behind a 

“home rock” for up to 80% of the time (Haro et al., 2004; Enders et al., 2003), 

and rheotaxis positioning (Heggenes et al., 1996); high velocities may select 

against S. trutta. 

Thermal limits in salmonids are also species-specific. S. salar has a higher 

upper critical range (22-33°C) than S. trutta (20-30°C) and a slightly higher 

lower critical range (0-7°C versus 0-4°C, Jonsson and Jonsson, 2009); S. salar 

may be more tolerant to higher temperatures. 

Various stages of the tidal cycle may also differ amongst populations of S. salar 

(e.g. preference for the Ebb tide in the River Dee, Aberdeenshire, Smith and 

Smith, 1997; Potter, 1988) and between species. 

Parameters of conductivity, pH, and turbidity relate to the concentration of 

dissolved particles in suspension in water. The conditioning of water is made via 

urine, pheromones, and other secretions produced by each species; it can be 

assumed that these factors alter water chemistry and potentially impact on the 

detection of olfactory cues (Jaensson et al., 2007). These cues allow recognition 
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of a natal stream during return migration and the identification of conspecifics 

(Moore et al., 1994; Brown and Brown, 1992).  Both species follow a strategy of 

inclusive fitness; individuals benefit from including kin in the optimisation of 

fitness, and fish that fail to detect homing cues may become stranded. Homing 

cues are species-specific so parameters interacting with their detection may be 

discriminating. In particular, olfactory cues are affected by pH level. Response 

to olfactory cues is altered in acidic water in S. salar (pH=5.1, Royce-Malmgren 

and Watson, 1987) and overall, S. salar is more sensitive to low pH values than 

S. trutta (disturbance at pH=6.3 versus pH=5.5 in trout; Jonsson and Jonsson, 

2011). This suggests that acidic conditions may select against S. salar.  

The social structure of S. salar relies on visual cues, where body and eye colour 

distinguish dominant individuals (O’Connor et al., 1999). Strong social 

hierarchy in S. salar limits aggressive interactions to rewarding instances (Suter 

and Huntingford, 2002; O’Connor et al., 1999). In S. trutta, dominants find 

themselves fighting continuously in order to preserve their position in the global 

hierarchy (Petersson and Jarvi, 1997) but when kins are present, S. trutta spend 

less time being alert for potential competition and more time feeding (Hojesjo et 

al., 1998). Low visibility may yet be disruptive as they are visual feeders 

(Klemetsen et al., 2003).  

The two salmonid species display slight differences in habitat requirements and 

preferences. This study aims to formulate an algorithm discriminating between 

S. salar and S. trutta in the River Tyne, on the basis of signal amplitude, time of 

passage, and habitat preferences for each species. Parameters used to 

distinguish between species will be tested based on observations in other 

salmonid populations. 

In a second time, the study will be concerned with the river-specific population 

structure of each species. In several UK rivers (such as Rivers Dee and South 

Esk), grilse exceed kelts by up 7 times (JNCC, 2007); grilse are younger and 

smaller than kelts due to the shorter time they spend at sea. Breeding success is 

directly related to body size (Fleming, 1998), the age ratio for these groups is 

therefore likely to influence the fitness of the population. Estimating the typical 

proportion of smaller individuals for the River Tyne would be useful for local 

management of each species as the information can be integrated in fishing 
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regulations. A classification algorithm to discriminate between categories within 

each species (grilse and kelts or other natural groups) will be investigated. 

Grilse and kelts tend to be structured temporally so that timing of migration 

may discriminate between them. However the order of appearance varies 

among rivers (e.g. kelt first in Norway, grilse first in the River Dee, Scotland; 

Jonsson et al., 1990). Fast growers may migrate younger and smaller, than slow 

growers (Jonsson and Jonsson, 2011). In S. trutta, premature returns (only a 

few weeks after their seaward migration) were observed mostly in smaller fish 

(In Ireland, Birkeland, 1996). In S. salar the size and sex may also affect the 

temporal structure of the migration population (Norway, Jonsson et al., 1990). 

Body size may also be a discriminating factor within species counts. In 

anadromous fish, proficiency in osmotic regulation increases with size and age 

(Jonsson et al., 1990). Lower temperatures render osmotic regulation more 

energy-demanding, so that winters may be more challenging to the least 

resistant, smallest, and youngest fish. The duration spent at sea in spring may 

be limited as a coping strategy and imply early returns of small fish. In addition, 

the relationship between body weight and swimming cost ( Tang et al., 2000) 

suggests that small fish may be more likely to avoid high flow and take 

advantage of flood tide than large fish.  

Covariates interfering with the organization of the social structure will also be 

investigated, under the hypothesis that compromised conditions may select 

against the least dominant fish.  

Two algorithms will be investigated, that each assigns each count of S. salar or 

S. trutta to a predefined category specific to each species based upon time of 

passage and river conditions. Groups will be defined based upon the signal 

amplitude. 

Multiple parameters used to describe the habitats suggests the use of a 

multivariate classification technique. Classification analyses are suited to detect 

and qualify the factors determining a population structure containing 

predefined groups (James, 1985) and have been used in the past in ecology (e.g. 

spider communities, Rushton and Eyre, 1992). 

Here, a linear discriminant analysis (LDA) will be used to classify predictively. 

The LDA will assess the extent to which it is possible to identify salmonid 
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species based on environmental parameters, time, and signal amplitude. 

Secondly, potential groups within each species (grilse and kelts) will be 

investigated; again, LDA will be used to assess whether it is possible to classify 

observations of a given species into one of these groups, based upon the 

environmental parameters and time.  
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6.2.  Material and methods 

6.2.1. Signal and environmental parameters 

The passage of salmonids across the Riding Mill electrode array generated 

sinusoidal signals (Figure 6.2). These waveforms are made of a peak and trough 

corresponding to a difference in resistance between the first and second 

electrodes and the third and second electrodes (description in Chapter 1, page 

13). Here, signal data are concerned with the amplitude of these waveforms.    

 

Figure 6.2: The passage of salmonids over anarray of 3 electrodes and the 
associated waveforms showing change in resistance.  
Fish counter illustration: Fewings, 1994, reproduced with permission of the Atlantic Salmon 
Trust (Andrews, 2013); signal data: Environment Agency (February 2013). 

 

Signal data were instant recordings of the passage of salmonids. Environmental 

data, originally recorded at a fixed time intervals, were merged and aligned to 

correspond with the signal amplitude data. The resulting dataset contained 

synchronized information on the conditions of flow, temperature, tide, 

conductivity, pH, and turbidity, as well as signal amplitude and species (S. salar 
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or S. trutta) for each count. In addition, time indices were included in the form 

of both linear (continuous count of time) and cyclical (trigonometric expression 

of time) predictors for day, week, and month in relation to the year. Data were 

available for years 2004 to 2010 and included a total of 21490 count records of 

fish movement (Appendix A.v, Figure A.7.25). 

The stability in the efficiency of species identification was assessed by studying 

the progression of the proportion of unidentified fish over the years. Loess 

regressions were fitted for the time-series of unidentified fish and the time-

series of total counts per video records. Loess smoothing allowed investigating 

the global trends of the time-series over the whole observation period 

(Cleveland et al., 1990).  

As for Chapter 4, the polynomial degree was 1 so that the fitting was locally 

linear, and the value of span was selected so as to keep it as low as possible, 

identical for both time-series and with reduced confidence intervals (Cleveland 

et al., 1990).  

6.2.2. Discriminant analysis 

Linear discriminant analysis is a special case of the Fisher’s linear discriminant 

with added assumptions of homogeneity of variance and normality (Rao, 1948). 

Using the two species as groups and the environmental parameters as group 

discriminators, linear stepwise discriminant analysis (James, 1985) was used to 

determine the extent to which the species could be separated in terms of 

measured river parameters and signal amplitude. It was assumed that 

parameters predicting the most accurate separation of groups was also the most 

likely to be of greatest significance in determining the species of salmonid 

counted. 

Predictors were ranked and selected according to their local CAT scores 

(correlation-adjusted t-scores) which quantify the relationship between each 

parameter centroid and pooled mean (Zuber and Strimmer, 2009; Strimmer, 

2008). Predictors were trained on a representative subset of the data and tested 

on the remaining data. A comparison of observations with predicted class 

assessed prediction success. The training dataset contained data for years 2004, 

2006, 2008 and 2010; the test data contained the years in between. Alternation 
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of years circumvented a potential source of bias linked to the improvement of 

visual identification of the species through learning. 

River covariates were used in the model based on hypothetical discriminating 

properties as presented in Table 6.1. The use of signal amplitude assumed a size 

difference between the species, detected via the relationship between fish size 

and signal amplitude (Nicholson et al., 1994). For the covariate time, various 

expressions and scale of time were used (hour of the day, and day, week, month 

of the year: each linearly and as a trigonometric expression). 

Table 6.1: The parameters included in the LDA for the classification of salmonid 
observations as S. salar or S. trutta. 
With associated hypothetical discriminative property and reference in literature. 

 

Potential natural groupings within counts of S. salar and S. trutta were assessed 

with a cluster analysis of the signal amplitude data for each species (multimodal 

distribution with finite normal mixture models and selection by BIC value, after 

Fraley and Raftery, 2002). The hypothetical discriminatory properties of each 

parameter for this second classification are presented in Table 6.2. 

Table 6.2: The parameters included in the LDA for the classification of S. salar 
or S. trutta into subgroups of each species. 
With associated hypothetical discriminative property and reference in literature. 

Covariate Hypothesis In literature 
Signal 
amplitude 

S. salar tends to be larger than S. trutta Maitland, 1965 

Time  Timing of migration differs between species 
Jensen et al., 

2012 

Flow 
S. salar is more tolerant to higher velocities 

than S. trutta 
Armstrong et al., 

2003 

Temperature Thermal limits are species-specific 
Jonsson and 

Jonsson, 2009 

Turbidity,  
Conductivity, 
pH 

Suspension particles interfere with detection 
of olfactory cues differently in each species, 
limit visual communication in S. salar and 

limit visual feeding in S. trutta 

O’Connor et al., 
1999, 

Klemetsen et al., 
2003 

pH 
S. salar is more sensitive to acidic water 

than S. trutta 
Jonsson and 

Jonsson, 2011 

Tide 
There is a preference for a given stage of the 

tidal cycle for one or both species 
Smith and Smith, 

1997 

Covariate Hypothesis In literature 

Time of year Migration timing is age-class specific 
Jonsson et al., 

1990 

Flow 
Swimming cost increase with flow, small fish 

do not perform as well as large fish within 
high water velocity  

Tang et al., 2000 

Temperature Larger fish tolerate colder temperatures Jonsson et al., 
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6.2.3. Software 

The LDA, the calculation of false discovery rates and the cluster analysis were 

generated, respectively, in the sda (Ahdesmaki et al., 2012), fdrtool (Klaus and 

Strimmer, 2012) and mclust (Fraley et al., 2012) packages operated in the R.15.1 

environment (R Core Team, 2012). 

  

than small fish due to their better 
osmoregulation ability 

1990 
Parry, 1958 

Conductivity, 
Turbidity,  
pH 

Suspension particles interfere with detection 
of visual and olfactory cues differently in 

dominant and others 

O’Connor et al., 
1999 

Jaensson et al., 
2007 

Tide Swimming cost increase with flow, small fish 
may take advantage of flood tide 

Tang et al., 

2000 
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6.3.  Results 

6.3.1. Discriminating between the two species 

After excluding data with missing explanatory parameters, there remained 

13565 training and 7925 testing observations. The top parameters that 

differentiated between S. salar and S. trutta were volumetric flow rate at 

Bywell, signal amplitude, and week of the year in both the linear and 

trigonometric forms (Appendix A.v, Table A.17).  

The final classification algorithm contained only the trigonometric function of 

the week as it lead to higher prediction success than the linear function. 

Classifiers of flow rate at Bywell, signal amplitude, and week of the year, 

generated 64% of correct classification predictions of species on the test data 

(2836 errors out of 7925 predictions).  

Values of signal amplitude and flow rate are presented on Figure 6.3 for each 

species and the trigonometric expression of week is illustrated on Figure 6.4. 

The maximum probability for a count to be assigned to S. salar was reached on 

the 7th week and the minimum on the 33th week of the year. 

  

Figure 6.3: Distributions of (a) signal amplitude and (b) flow rate experienced at 
Bywell, for each species, in the River Tyne.  
For S. salar the mean signal amplitude was of 26.59(±10.64) which was higher than for S. 
trutta (24.58 ±9.75). Mean flow rate values associated with S. salar were of 30.01(±26.81), 
also higher than for S. trutta (27.63±24.84). High standard deviations underline the 
important overlap in the characteristics of the two species. 

 

(a) (b) 
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Figure 6.4: An illustration of the progression of the trigonometric expression of 
the week of the year.  
The waveform is the result of the equation  

T=cos(week number*2*π/52.5)+sin(week number*2*π/52.5) 
Illustration over two years; the maximum value is reached on the third week of February, the 
lowest on the first week of August. 

 

The use of flow, signal size, and week of the year as classifiers in the algorithm 

generated true positives only (Appendix A.v, Figure A.7.26) and individual CAT 

scores indicated that conditions of higher flow rate combined with greater signal 

amplitude, were indicative of a higher probability of a count being S. salar. 

Conversely, lower flow rates, smaller signal amplitudes, and proximity to the 

end of July, indicated a higher probability of the fish being S. trutta.  

 

 

Figure 6.5: Scatter-plot matrix showing the pairwise relationships between the 
three classifiers of the two species and the bivariate density estimates.  
Data points are in black for S. salar and in grey for S. trutta. Pairwise relationships between 
classifiers appear in the upper panel, and the bivariate density estimates in the lower panel. 
On the upper panel, data points for S. trutta do not cover any trend in points for S. salar. On 
the lower panel, the absence of two distinct modes in the representation of the bivariate 
densities reflects the important overlap of the values for the two species. 

 

 S. salar 
 S. trutta 
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6.3.2. Discriminating within counts of each species 

The results of the cluster analysis indicated that observations of each species 

may be divided into seven groups according to their signal amplitude (Appendix 

A.v, Figure A.7.27). The suggested multimodal distribution is presented on 

Figure 6.6 with the corresponding range of the signal amplitude per cluster on 

Figure 6.7. 

 

Figure 6.6: The frequency density histograms of the signal amplitude data 
generated by the passage of (a) S. salar and (b) S. trutta.  
Original data feature as a histogram and the multimodal distributions suggested by the 
cluster analysis are represented by a plain line. 

 

 

Figure 6.7: The range of signal amplitude contained in each cluster suggested by 
the cluster analysis for (a) S. salar and (b) S. trutta. 

 

In S. salar, of all the parameters considered, hour of the day was the single 

discriminating classifier to generate true positives (Appendix A.v, Figure 

A.7.28a and Table A.18). The maximum classification success rate was only 

27.02% (613 errors out of 840 predictions, Appendix A.v, Figure A.7.28b and 

Table A.19). 

(a) (b) 

(a) (b) 
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In S. trutta, no river parameter significantly discriminated between the 

predefined groups (Appendix A.v, Figure A.7.28b). The top classifier generated 

only 27.77% classification success (1302 errors out of 1800 predictions).  

6.4.  Discussion  

It was determined in Chapter 5 that the efficiency of the visual species 

identification on the video records by the data collectors appears to have 

improved throughout time. More particularly, the two first years of observation 

likely suffered from low efficiency that may have rendered the records 

unsuitable for interpretation. Records provided by the fish counter and covering 

all 4 channels were considered likely to be more representative of fluctuations in 

both populations than video records.  

In this study, several hypotheses were formulated based on observations found 

in the literature, such as: 

- time of year and time of day (Jensen et al., 2012), 

- flow velocity (Armstrong, 2003), 

- river temperature (Jonsson and Jonsson, 2009), 

- conductivity, pH, and turbidity (Jonsson and Jonsson, 2011; Jaensson 

et al., 2007; Klemetsen et al., 2003; Suter and Huntingford, 2002; 

Royce-Malmgren and Watson, 1987; O’Connor et al., 1999), 

- and tide (Smith and Smith, 1997; Potter, 1988).  

The final classification algorithm used a combination of three river parameters 

and generated a classification success of approximately 64%. Values of flow at 

Bywell were the most discriminating river feature, supporting the ability of S. 

salar to cope with strong flow better than S. trutta (Armstrong et al., 2003).  

The second most discriminating feature was the signal amplitude generated by 

the passage of fish across the counter, supporting a positive relationship 

between signal amplitude and fish size (Nicholson et al., 1994), with S. salar 

being larger than S. trutta.  

Third, time of year played a role in predicting which of the two species a new 

count was more likely to belong to. The probability of a count belonging to S. 
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salar was highest on the 7th week of each year and it was lowest on the 33rd week 

(when S. trutta becomes the most likely species). The selection of a 

trigonometric expression of time indicated a progressive evolution of the 

probabilities from these dates before and after these weeks.  

For the second part of the study, cluster analyses were used to detect potential 

subgroups within each species based on signal amplitudes. The relevance of a 

clustering based on fish size relied on the following observations. Kelts and 

grilse may migrate at distinct times of year in the River Tyne (Jonsson et al., 

1990). A preference of small fish for lower flows than larger fish may exist given 

the link between body weight and swimming effort (Tang et al., 2000). 

Similarly, small fish may benefit from moving during flood tide. 

Osmoregulation is more difficult for small fish (Jonsson et al., 1990) and 

becomes more demanding at lower temperatures (Parry, 1958), therefore small 

fish may migrate earlier in order to cope with cold winter conditions. Covariates 

interfering with the conditions favourable to the organization social structure 

(i.e. with olfactory cues, Jaensson et al., 2007, and visibility, Suter and 

Huntingford, 2002; O’Connor et al., 1999) may result in the selection of more 

dominant individuals as their individual fitness is likely less dependent on social 

structure. 

In previous studies showing age and size to be discriminatory of migration 

timing, the salmonid population included two sub-groups with distinct age 

and/or size during the return migration (Jonsson et al., 1990). Here, and for 

both species, the analysis selected an optimal separation into seven clusters. 

The records of counts in Channel 4 may not represent the whole populations 

nor the characteristics across the whole weir and salmonids passing through 

Channel 4 may be a non-representative sample of the populations. For instance, 

there may be smaller fish of each species that prefer edges in order to avoid high 

water velocity (Tang et al., 2000); large fish may have used the central channels 

and not seek shelter from high velocity. Also, although the characteristic 

features of both species are thought to be equally discernible, the observer 

reviewing the video records had more opportunities to discern classifying 

features of salmonids located closer to the video camera. Smaller fish are 

thought to prefer the edges, in particular S. trutta (EA, per. com., 2013), so it is 

possible that a higher proportion of S. trutta was identified over S. salar 
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amongst the salmonids present in Channel 4. This potential bias would affect 

sample representativeness and may have compromised the possibility for an 

effective classification algorithm.  

Assumptions based on equal potential selection of dominant individuals were 

likely also compromised. Dominant fish are not necessarily the largest ones, but 

rather those with a faster metabolism (Metcalfe et al., 1992). A fast metabolism 

implies a relatively high growth potential but more importantly an earlier 

migration age, and vivacity, and aptitude for competition (Fleming, 1996). 

Dominants may hence migrate upstream earlier than the more submissive fish, 

but body size may not be a good hypothesis. 

Visual verification of signals minimized false positives by elimination of signals 

corresponding to, for instance, groups of fish, unsuccessful attempts to cross the 

electrode array, wave action due to wind, and non-fish objects that engender 

block-like signals (EA, per. com., 2013). As a positive relationship has been 

found between counter efficiency and fish size (Nicholson et al., 1994), the main 

source of bias among signal amplitude data was non-detection of fish and most 

likely non-detection of smaller fish. 

In the River Tyne, signals are of reduced amplitude in comparison to other sites 

due to weaker detection conditions from a combination of water depth over the 

electrode array and low water conductivity (EA, per. com., 2013). As a 

consequence, smaller fish may not be counted as regularly as larger ones. A 

threshold appeared around a signal of 26 in amplitude. Signals with amplitude 

lower than this value were rare and considered outliers by the cluster analysis, 

which grouped them with the highest signal values (seventh cluster). When 

clustering according to the signal amplitude (and, indirectly, fish size), some 

essential information related to smaller fish was possibly lacking. The threshold 

(Appendix A.v, Figure A.7.25) questions the efficiency of the counter at 

detecting smaller fish, which in turn compromises the analysis as this bias may 

have impacted differently on the classification between two species and between 

the groups within species. 

The failure of the classification algorithm that divided observations of either S. 

salar or S. trutta into groups suggests that: first, signal amplitude data may be 

too biased for the study of partitioning within each species and second, the 
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underlying process responsible for the temporal structure in the populations 

may be dependent upon environmental parameters not included in the analysis. 

Information linked to climatic cycles were however contained in the time 

indices as all were ordered throughout the year. 

The monitoring of parameters known to affect salmonid species differently may 

improve the performance of the LDA. The installation of a camera covering the 

whole width of the passage may also provide with an additional classifier based 

on the potential preference for a given channel. 

The difference between small and larger fish may be improved by adding 

electrodes spaced more narrowly or using two resistivity counters operating side 

by side. A suggested setting for the two salmonid species of interest here, is an 

electrode array made of 5 electrodes instead of 3; separated by 20cm instead of 

45 cm (e.g. such the one at Morar, Mucomir, Eatherley et al., 2005). 

A confirmation of species-specific habitat preferences of salmonids in the River 

Tyne might further improve the precision of the conditional probabilities used 

in the classification including the channel specificity and depth of occurrence. 

As channel of occurrence was always reported, the classifier could potentially be 

applied to past data and improve the knowledge of a dataset already collected. 

Ultimately, sensory systems used for the identification of species must rely on 

reference libraries containing recognition features; these libraries must be 

created and curated by scientists (Parrish, 1999). By testing the discriminating 

ability of the available parameters in the River Tyne, this study supplies 

information for the reference library of the recognition of salmonid species S. 

salar and S. trutta. 

6.5.  Conclusions 

A classification algorithm using flow, signal amplitude and time of year allowed 

modest discrimination between the two species (approximately 64% prediction 

success). The two species displayed comparable preferences and characteristics 

in the covariates measured. 
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The assignment of counts S. salar and S. trutta to natural sub-groups was 

however not possible using linear discriminant analysis.  

A better description of local habitat preferences of the River Tyne salmonids 

would allow a more accurate discrimination between S. salar and S. trutta and 

may lead to a classification into natural sub-groups within each species. In turn, 

age-class information may be used to feed the models developed in the previous 

chapters of this thesis to help achieve a more complete description of the 

salmonid migration and the factors influencing it. 



 

 
 

 

 

 

 

 

 

 

      C  h  a  p  t  e  r   7 .    . 

 “Stories are webs, interconnected strand to 

strand, and you follow each story to the center, 

because the center is the end. Each person is a 

strand of the story.” 

N. Gaiman, 2005. 
Anansi Boys 

 

“There is no one thing that’s true. It’s all true”. 

E. Hemingway, 1940. 
For Whom the Bell Tolls 
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Chapter 7. Conclusions. 

Salmonid fish are valued as iconic target species around the world and 

represented by Atlantic salmon (Salmo salar) and the brown trout (Salmo 

trutta) in the UK. These fish are anadromous in that they breed in freshwater 

and yet have a marine stage to their lives. Most of their growth, development, 

and natural mortality take place in the North Atlantic, with individuals 

returning to their natal river annually to spawn (O’Connell, 2003; Gross, 1991). 

Both species demand high water quality and specific habitat (Heggenes et al., 

2002). In the past, pollution and intensive use of the UK river system have led 

to substantial declines, with few rivers supporting both species. Salmonids are 

recovering following improvements of the riparian habitats across the UK; 

however, fine-scale assessments are needed to quantify trends in abundance 

and their extent (Eatherley et al., 2005). The River Tyne currently supports both 

species. The present research aimed to improve understanding of salmonid 

migration patterns in the River Tyne by focusing on the analysis of trends in 

abundance as salmonids return to reproduce. 

On the River Tyne, salmonids are observed individually and in groups. The first 

study in this thesis (Chapter 2) attempted to describe a day in the life of 

individual salmonids on the last length of their return journey to spawn in the 

River Tyne. At the individual level, salmonid behaviour was complex, changing 

response to environmental parameters. These salmonids were most abundant 

between July and November, with seasonal characteristics of environment and 

abundance appeared to be involved in their abundance and aggregation 

behaviour. 

Early in the year, salmonids moved upstream individually but became more 

aggregated as the spawning season progressed. It was hypothesised that 

increased abundance likely became a parameter itself in that it influenced the 

response to extrinsic forces occurring in the river. Visibility from predators can 

be less relevant for individuals when surrounded by many conspecifics (Aukema 

and Raffa, 2004; Kozak and Boughman, 2012; McClure and Despland, 2011), 

which suggested that the response to visibility parameters weakened as  
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abundance increased; also because of the reduced volume of water available, 

high densities may have forced the fish to expose themselves. The proximity to 

the limits of the thermal habitat naturally became reduced over the summer, 

which led to a reduced stimulation of salmonid movement by increases in 

temperature. 

In this study, models were limited by the small scale required to the 

investigation of individual fish movements. Cyclical variables (temperature, 

flow, daylight, pH) became confounded because of the short sampling duration. 

The high amount of null values was partly due to the short time interval 

between observations (every 15minutes). By comparing the effect of parameters 

included in the model of each observation period, short-term relationships 

between individual salmonid movements and river conditions were contrasted 

throughout the year. 

Chapter 3 was concerned with longer-term drivers of annual migration. Every 

year in the River Tyne, salmonids start arriving in spring according to a seasonal 

annual periodicity.  S. salar and S. trutta were considered jointly with the 

features and drivers common to the migration of both species modelled 

together. Variation in river temperature had a major influence on salmonid 

movements, suggesting that habitat suitability was defined by thermal criteria 

over and above other available measurements. Oceanic conditions were partly 

represented by North Atlantic Oscillation values and NAO conditions four years 

prior to the salmonids return were essential in predicting magnitude of 

fluctuations in abundance.  

The impact of the construction of the River Tyne tunnel was considered 

minimal; the model used to reach this conclusion was a direct demonstration 

that these count data may be used as a tool to monitor River Tyne salmonids. 

Salmonids were monitored in the River Tyne as they return to spawn, i.e. during 

a point of the migration journey that was momentous but momentary. The 

monitoring at Riding Mill provided data which contributed to the 

understanding of the ecology of salmonids as a population. However, the co-

existence of two species within the population advocated a cautionary approach 

with regards to the model developed as intrinsic differences between the two 

species implies that some level of prediction error is likely to occur if the 
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environmental conditions happened to become different from the ones 

measured during the sampling period. 

This issue was addressed in the study in Chapter 4, in which salmonids were 

considered as two distinct populations of S. salar and S. trutta. Annual 

periodicity remained a fundamental feature of the fluctuations observed in the 

abundance of both species. Seasonal cycles happened to be species-specific, 

suggesting changes in the synchronicity and sinusoidal shape of counts for both 

species. The NAO was relevant in a quasi-instantaneous manner (i.e relevant 

without lag but considering time bins of 14 days). The different migratory routes 

followed by the two species concurred with a species-specific magnitude of the 

influence of the Atlantic conditions (NAO effect of 0.3002, P<0.05 for S. salar 

and 0.1699, P<0.05 for S. trutta).  

Temporal fluctuations in the abundance of Tyne salmonids were sufficiently 

independent to be modelled separately. It was suggested that the video data 

recorded at the Riding Mill station constituted a source of information that was 

not complete but nonetheless informative of the drivers specific to migration 

patterns of each species. 

Chapter 5 suggested learning in the identification of salmonids as S. salar or S. 

trutta by data collectors that may have influenced goodness of fit of models 

considering the species separately (Chapter 4) early in the time series; this 

reached a plateau during the last years of observation. Temporal variation in the 

response of salmonid abundance to environmental parameters was suggested by 

theoretical arguments such as a large geographic range and its description via 

static measurements, as well as empirical arguments such as the seasonal 

variation in response to temperature (Chapter 2), relevance of a complex Box-

Cox transformation of the response data (suspected to be representative of  

several processes with superposed time-scales (Chapter 3) and evidence of 

transient periodicities in fluctuations of salmonid abundance (Chapter 4). 

Fluctuations in counts of S. salar varied periodically. State-space models 

suggested a high complexity within the population demographics of both 

species, via time-varying patterns likely related to age-class specificity in 

response to environmental conditions, suggesting that the records contain 

complex information on population demographics. Understanding of the whole 
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population by modelling is likely to greatly benefit from a detailed partitioning 

of the salmonid counts into age-classes, that would allow accounting for an age-

class specific response to environmental conditions. 

Inferences from the Chapters 3 to 5 demonstrated the importance of oceanic 

conditions as drivers in the observed patterns, for the post-smolts that enter the 

North Sea Basin and as grilse and kelt return to spawn, reflected by the 

relevance of NAO values in predicting abundance.  

Highly nutritious marine organisms eaten by salmonids at sea justify the energy 

put into an anadromous mode of life (Hansen and Quinn, 1998); the growth of 

salmonids is directly dependent upon their access and use of abundant marine 

resources (Thorpe, 1984).  

Temporal variation in plankton index (which reflects quality and quantity of 

plankton for larval cod Gadus morhua, Beaugrand et al., 2004) were compared 

to net catches of S. trutta in the River Tweed for the period 1958-1998 (Bendall, 

The Living North Sea Project and the Rivers Trust). A strong link between the 

abundance of C. Finmarchicus and NAO values was demonstrated for the 

period 1962-1992 (Fromentin and Planque, 1996). This suggests a common 

response to a marine covariate, and so an indirect but still causal relationship 

between plankton and salmonids, as salmonids feed on larger crustaceans and 

are likely not influenced by plankton directly. Increases in phytoplankton 

production are associated with decreases in zooplankton production and S. 

salar,  an increase in temperature and NAO values (Windsor et al., 2012).  

Instead, the influence of NAO values in describing temporal patterns of 

abundance in salmonids was hypothesized to be a partial representation of the 

importance of other components of the oceanic environment. Namely, NAO 

values likely reflected variations in the surface currents, temperature, and 

salinity known to shape the distribution of post-smolts (post-smolt initial 

movements at sea rely on these parameters, Holm et al., 2000). Temperature is 

one recurrent axis of the multidimensional niche of fish (Magnuson et al., 

1979); movements of thermal optima shape fish communities in terms of 

distribution and diversity (MacNeil et al., 2010; Beaugrand et al., 2008). 

Characteristics and importance of thermal habitat may vary according to the 

sensitivity of the fish and hence its life stage. As salmonid post-smolts enter the 
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North Sea Basin, unsuitable thermal conditions may force the fish to swim 

harder and further to reach improved conditions; this creates an energy deficit 

at a crucial life stage that may be lethal (Friedland, 1998). Shifts in oceanic 

conditions may also lead to shift in predators and prey that may lead to the 

post-smolts missing on resources and not reach the body size necessary to face 

the predation associated with the diverse regions covered during migrating 

(Beaugrand, 2004). The conditions at this precise life-stage consequently have 

important and lasting consequences. 

Chapters 3 to 5 concurred with the hypothesis that broad-scale factors are of 

high influence and that long-term changes in the population of salmonids are 

linked to conditions experienced while overwintering in the northern Atlantic 

Ocean (Hansen et al., 2012 about S. salar). It was shown that oceanic 

thermohaline conditions define the extent to which grilse and kelt can detect the 

return route, and are strongly related to NAO that partly draws the required 

thermal path for salmonids up to their natal river (Holm et al., 2000; Friedland, 

1998), and that abundance of spawners on a given year naturally determines the 

abundance of offspring years later (in the River Tyne, the average time appeared 

to be of 4 years). 

In chapter 6, differences between river conditions associated with presence of S. 

salar and S. trutta were investigated. The two species were shown to be distinct 

with regards to extreme values of signal size and flow velocity; time of year also 

contributed to classifying salmonids more reliably. Larger fish found within 

higher flows earlier in the year were most likely S. salar, whilst the opposite 

conditions were associated with a higher chance of being S. trutta. Both species 

were similar in their response to many of the covariates measured in the River 

Tyne, so classification rate success remained low. 

Salmonid migration patterns were described based on models of continuous 

count observations at one point in the River Tyne. Much statistical modelling in 

ecology assumes that the data collected are made up of a large number of 

independent and identical components (Weinberg, 1975). However, ecological 

data are often highly correlated, with dependence between phenomena over 

different scales, driven by environmental parameters which themselves may be 

correlated. This means that data collected longitudinally are typically 

autocorrelated (Roy et al., 2005) and must be modelled appropriately.  
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Variation in response may originate from phenomena that vary over several 

time scales. When changes are rapid relative to the temporal domain, resulting 

in largely independent values (e.g. year-to-year changes produce independent 

values from one year to the other as in individual fish survival rates, Pyper and 

Peterman, 1998), this variability is said to occur at high frequency. In these 

instances, serial correlation is unlikely to interfere with frequentist inference. 

Low frequency variability characterises slow changes. These occur on a long-

term scale and lead to closely related values, e.g. values from one year to the 

other are this time very similar (Pyper and Peterman, 1998). Low-frequency 

variability constitutes a statistical challenge in that it leads to serial dependence. 

Various approaches are available to address the issue of serial dependence 

explicitly. Often, response variable may be transformed so that a particular 

frequency of variability dominates the signal contained in the data. This 

amounts to selecting a type of transformation in accordance with the time-scale 

of the variability that is investigated. For instance, the first differences of a 

response variable remove low-frequency variability (slow changes) contained in 

the original pattern so that high-frequency (rapid changes) may be better 

detected; a smoothed version of a time-series may emphasize low-frequency 

variability (slow changes) that may otherwise obstructed by high 

autocorrelation (rapid changes) (Pyper and Peterman, 1998).  

Transformations may lead to an improved fit of the models but this may be 

combined with a lowered interpretability if the models do not improve the 

understanding of the processes modelled. The distorting effects of a 

transformation on the signal means that they are not always ecologically 

meaningful, which renders the outputs of models challenging to interpret and 

may lead to missing important relationships between different pace of change in 

the processes involved (Pyper and Peterman, 1998). 

In this study, an alternative approach was used to address the issue of serial 

correlation. The scale of observation was adjusted by considering various 

resolutions of the samples. By doing so, variability was investigated at several 

levels; the smallest scale (and highest resolution) investigated the lowest 

frequency variability (Chapter 2, individual behaviour) and the largest scale 

(and lowest resolution) investigated the highest frequency variability (Chapter 

3, salmonid population behaviour). In between, partitioning of salmonid counts 
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into two distinct species groups allowed for refinement of the description of 

high frequency variability (Chapters 4 and 5, species-specific population 

behaviour). Limitations due to assumptions of independence and randomness 

that rarely apply to living systems were avoided by using different and 

complementary modelling techniques, considering small and broad scales and 

investigating different partitioning of the population (i.e. as individuals, as a 

whole, as species).  

Ecological systems contain different levels of complexity that form an 

”organized complexity” (O’Neill et al., 1986). By analysing the complexity of a 

living system, one in fact seeks to define the organization underlying the 

complexity; the latter may be studied and understood with mathematical tools. 

The study of living organisms often requires partitioning observational data into 

arbitrary groups, and many studies consider a single scale made up of closed 

and isolated communities to get around such problems (Leibold et al., 2004). 

Whether considering individuals or communities, ecologically defined entities 

may be thought of as responding individually to temporal and spatial variation 

(Levin, 1992). 

The assumption of an underlying organization reflected by the salmonid count 

data lead to the study of time scales of variability in the processes driving 

salmonid abundance. The scope of ecology contains assemblages of species, 

environmental conditions and processes across scales (Wittaker, 1975). 

Arbitrary structures within a living system amounts to the division of ecological 

processes according to the scale over which they take place; particular scales are 

more important to the description of particular processes (Cash et al., 2006).  

Here, the use and contrast of several scales of resolution amounted to studying 

of different levels of organization within the salmonid population, as if 

observing salmonids from different distances and within with changing fields of 

observation. Resolution of observation related to the size of minimal sufficient 

detail to  describe the living system (Levin, 1992). 

The problem of the correspondence between scale and pattern is considered a 

central problem in ecology due to numerous and confounded scales of space, 

time, and ecological organization as well as the fact that apparent characteristics 

of a living system may be altered by the resolution used to study it (Levin, 1992). 

Short and long-term studies are therefore complementary in that they provide 
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answers to questions posed at different scales, and the combination is necessary 

to a complete understanding of the mechanisms determining the dynamics in a 

system. 

This approach (e.g. MacNeil et al., 2009; Connell et al., 1997) relates to complex 

systems science, which uses tools from both philosophy and mathematics to 

investigate how the relationships between parts of a system can shape a 

collective behaviour, and how in turn the system interacts with the environment 

(Anand et al., 2010). This emerging scientific approach has contributed to 

developing ecological concepts in a new light, including the understanding of 

fluctuations in abundance of natural populations (Anand et al., 2010). Here, the 

signal contained in the observational data was not a perfect sinusoid, but the 

signal was modelled which implies that it was not random. This indicates that 

the living system that was studied was not ordered, nor disordered; the living 

system was a complex system. 

In a study by Cohen (1995), hypothetical population fluctuations were simulated 

using classic population models in which the environmental parameters were 

set as constant white noise. As a result, the population size was set to be 

dependent upon internal dynamics only (i.e. Nt+1 ~ function (Nt), using several 

types of function based on empirical studies). The simulated time-series were 

dominated by high frequency variability, which suggested that the intrinsic 

population dynamics caused rapid changes in the population abundance. 

However, natural time-series are commonly described by models based on low-

frequency variability (i.e. the variability induced by environmental parameters). 

These models may consequently not be accurate for the description of the high 

frequency variability contained in time-series, which is caused by intrinsic 

population dynamics (Cohen, 1995). For this reason, the persistence of 

autocorrelation in the models of ecological data may be considered a witness of 

the importance of the intrinsic population dynamics in describing the 

fluctuations in abundance (as here, in salmonids), rather be considered as an 

diagnostic elements against model selection.  

This concept is a direct product of complex systems science approach to the 

analysis of population time-series (Anand et al., 2010) in that it seeks to 

complement the understanding of a global ecological process by applying a 

concept of a given scale to observational data (i.e. slow response to 
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environmental parameter) and pursue the investigation of the process by 

interpreting the model output using principles emerging from a smaller scale 

(i.e. fast changes due to intrinsic population dynamics), rather than discrediting 

a model function based on a lack of fit to the underlying statistical assumptions. 

In that idea, either there are no scaling laws in ecology or each and every scale 

serve the description of a living system equally well (Levin, 1992). The latter 

suggests that no scale is more relevant to the description of a living system than 

another. So, the scale at which models should be developed depends on the 

question asked. However, using various scales allows the description of different 

ecological processes because the scale either suppresses or emphasizes detail. 

By generating a set of models at different levels of complexity, the internal 

heterogeneity of a system may be understood as well as the essential forces 

driving the broad scale dynamics. Analyses over multiple question-specific 

scales are a powerful tool to understand the development and maintenance of 

living systems. 



 

 

 

 

 

 

 

 

 

      A  p  p  e  n  d  i  c  e  s  .    . 

 “My favourite piece of information is that Branwell 

Brontë, brother of Emily and Charlotte, died standing up 

leaning against a mantel piece, in order to prove it could 

be done. 

This is not quite true, in fact. My absolute favourite piece 

of information is the fact that young sloths are so inept 

that they frequently grab their own arms and legs instead 

of tree limbs, and fall out of trees. 

However, this is not relevant to what is currently on my 

mind because it concerns sloths, whereas the Branwell 

Brontë piece of information concerns writers and feeling 

like death and doing things to prove they can be done, all 

of which are pertinent to my current situation to a degree 

that is, frankly, spooky.” 

D. Adams, 2002. 

The Salmon of Doubt  
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Appendices. 

Appendix A.i   

 

Table A.1: The riparian covariates and relevant measurement lags according to 
the flow regime. 

Parameter Location (N.G.R.) 
Distance to 

counter 
(NZ 027619) 

Measurement lag 

Low regime 
High 

regime 
Flow 

Bywell (NZ038617) 1.36km 45minutes 0 
Temperature 
Turbidity 

Horsely (NZ100643) 9.27km 4 hours 45minutes 
Colour 

 

 

Table A.2: The characteristic values of the covariate flow for each observation 
period.  
All flow values expressed in m3.s-1, the mean in 2008 was 68.04m3.s-1. 

Observation 
period  

Lowest 
flow rate 

Highest 
flow rate 

Mean 
Measurements above 

2008 mean 
Selected 
regime 

a 51.80 133.00 51.80 27.6% Low 
b 11.00 17.70 11.92 0% Low 
c 7.73 10.70 9.42 0% Low 
d 15.40 88.30 39.84 21.6% Low 
e 37.50 153.00 70.25 63.0% High 
f 35.50 129.00 54.05 17.7% Low 
g 57.90 191.00 100.52 76.6% High 
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Figure A.7.1: The values for flow rate as measured at Bywell, for each 
observation period. 
The flow regime was selected based on a comparison with the annual mean flow rate value; 
two periods presented high regimes (e and g) and the others presented low flow regimes. 

  

         Flow at Bywell        Mean flow value for 2008 (i.e. 68m3.s-1) 
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Figure A.7.2: Pair-wise correlations considering the whole year 2008.  
Correlation values are in the upper panel and the associated pair-wise scatter-plots are in the 
lower panel, with the distribution of each covariate in the diagonal. 
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Table A.3: The full model of each type for each observation period (a to g) 
ranked according to their AICc score. 
 

Period a AICc  df  ΔAICc  weight 
Full zero inflated Poisson     47.4  12   0.0   0.7275 
Full zero inflated negative binomial 50.3  13   2.9   0.1749 
Full negative binomial GLM   51.9  9    4.5   0.0777 
Full Poisson GLM  54.6  7    7.2   0.0198 
Full zero altered negative binomial 64.3  13  16.9   <0.001 
 

 Period b         AICc   df  ΔAICc  weight 
Full zero inflated Poisson 228.2  18    0.0  0.887  
Full zero inflated negative binomial 232.3  19    4.1  0.113  
Full negative binomial GLM 246.0  10   17.8  <0.001 
Full Poisson GLM 246.5  9    18.3  <0.001 
Full zero altered Poisson 252.6  18   24.4  <0.001 
Full zero altered negative binomial 254.9  19   26.6  <0.001 
 

Period c       AICc   df  ΔAICc  weight 
Full zero inflated negative binomial 801.2  19    0.0  1      
Full negative binomial GLM 830.6  10   29.4  <0.001 
Full zero altered negative binomial 836.5  19   35.4  <0.001 
Full zero inflated Poisson 877.6  18   76.4  <0.001 
Full zero altered Poisson 879.5  18   78.4  <0.001 
Full Poisson GLM 947.0  9   145.8  <0.001 
 

Period d       AICc    df  ΔAICc  weight  
Full zero inflated negative binomial     1469.9  19     0.0  0.99701 
Full zero inflated Poisson 1481.5  18    11.6  0.00299 
Full zero altered negative binomial 1494.9  19    25.0  < 0.001 
Full zero altered Poisson 1500.2  18    30.3  < 0.001 
Full negative binomial GLM 1520.2  10    50.3  < 0.001 
Full Poisson GLM 1553.5  9     83.6  < 0.001 
  
Period e        AICc    df  ΔAICc weight 
Full zero inflated negative binomial 1022.5  19    0.0  1      
Full zero altered negative binomial 1065.1  19    42.7  <0.001 
Full negative binomial GLM 1082.0 10    59.6  <0.001 
Full Poisson GLM 1092.7  9     70.2  <0.001 
  
Period f AICc    df  ΔAICc weight 
Full zero altered Poisson      1239.0  20     0.0  0.534  
Full zero altered negative binomial   1239.3  21     0.3  0.466  
Full negative binomial GLM 1258.1  11    19.1  <0.001 
Full Poisson GLM 1271.5  10    32.5  <0.001 
  
Period g AICc   df  ΔAICc  weight 
Full zero inflated Poisson 487.5  18    0.0  0.9281 
Full zero inflated negative binomial 492.6  21    5.1  0.0719 
Full zero altered Poisson 523.2  18   35.7  <0.001 
Full zero altered negative binomial 525.8  20   38.3  <0.001 
Full Poisson GLM 536.7  10   49.2  <0.001 
Full negative binomial GLM 536.8  11   49.2  <0.001 
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Figure A.7.3: The differences in AICc scores compared to the best-ranked model, 
for the tidal lags covering one tidal cycle.  
The full models were used for each time period (a to g), using the model type selected 
beforehand. The cyclical properties of the tide engendered a cyclical fluctuation of the ΔAICc 
scores for increasing tidal values. The numbers in red were the lags generating the lowest 
AICc scores, symbols (x) represent no model convergence. 
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Figure A.7.4: The temporal variations of the residuals of each model throughout 
each observation period.  
There were temporal patterns in the residuals. Note the change in scale. 
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Figure A.7.5: The normal Q-Q plots of the residuals of the most parsimonious 
model for each observation period.  
The fitted values (vertical axis) were compared to the normal distribution on the horizontal 
axis. The red dotted line (x=y) represented the normal distribution. For all observation 
periods, the points followed a strongly nonlinear pattern, suggesting that the residuals were 
not normally distributed. 
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Table A.4: The estimates for the most parsimonious model for each observation 
period.  
Note that the tide has a different lag depending on the observation period. 

  a b c d e f g 

 Intercept -1717 -1352.44 46.32 57.42 -28.49 -67.52 24.46 

L
o

g
is

ti
c 

p
a

rt
 Flow -51.90 20.89 -7.76 -0.1 . -0.03 . 

Temperature -452.78 -36.90 . . 5.95 -1.85 -4.61 
Tide 332.14 10.05 2.55 1.04 0.90 -0.21 . 
Turbidity . 14.14 1.10 . . 0.10 0.85 
Colour 50.67 1.96 . . . . . 
pH . 143.85 . . -7.83 10.78 . 
Conductivity . 0.33 . -0.37 . . . 
Solar irradiance 28.98 0.43 0.04 -0.06 -0.19 0.02 -0.14 

 Intercept -229.53 35.24 17.25 34.92 14.44 6.930 -4.42 

C
o

u
n

t 
p

a
rt

 

Flow -1.34 . . 0.02 . -0.038 -0.02 
Temperature  . 0.35 -0.25 0.393 . 0.86 
Tide 24.66 0.06 0.58 . . . . 
Turbidity . . . 0.04 . . . 
Colour 2.31 -0.09 . -0.01 . . . 
pH . -3.08 -2.67 -4.77 -2.678 . . 
Conductivity . -0.02 . 0.04 . -0.028 . 
Solar irradiance 1.82 0.01 -0.00 0.00 0.005 0.007 0.00 

 Log(Theta) . . -0.02 2.18 2.290 . . 

 Theta . . 0.98 8.87 9.872 . . 

 

 

Table A.5: The significance corresponding to the estimates for the most 
parsimonious model for each observation period.  
P-values are reported. Note that the tide has a different lag depending on the observation 
period. 
  a b c d e f g 

 Intercept 1.00 0.07 0.01 0.06 0.271 0.020 0.068 

L
o

g
is

ti
c 

p
a

rt
 

Flow 0.37 0.08 0.01 0.09 . 0.001 . 
Temperature 0.69 0.07 . . 0.003 0.000 0.064 
Tide NA 0.06 0.02 0.04 0.066 0.012 . 
Turbidity . 0.21 0.02 . . 0.001 0.024 
Colour NA 0.14 . . . . . 
pH . 0.05 . . 0.002 0.007 . 
Conductivity . 0.33 . 0.06 . . . 
Solar irradiance NA 0.08 0.00 0.02 0.005 0.000 -0.000 

 Intercept 0.16 0.02 0.00 0.00 0.000 0.000 0.057 

C
o

u
n

t 
p

a
rt

  

Flow 0.19 . . 0.00 . 0.000 0.023 
Temperature . . 0.01 0.00 0.002 . 0.053 
Tide 0.18 0.67 0.00 . . . . 
Turbidity . . . 0.00 . . . 
Colour 0.15 0.01 . 0.00 . . . 
pH . 0.07 0.00 0.00 0.000 . . 
Conductivity . 0.01 . 0.00 . 0.000 . 
Solar irradiance 0.18 0.03 0.00 0.00 0.000 0.000 0.028 

 Log(Theta) . . 0.93 0.00 0.000 . . 
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The stepwise removal of each parameter contained in the optimal model (lowest 

AICc value) for each observation period (a to g) produced the model outputs 

below. Parameters were contained in the count part (μ), the logistic part (π) or 

both. The differences in AICc and likelihood after each removal are reported. 

Parameters are ranked from the most to the least significant. 

Table A.6: The output of stepwise removal of each parameter for period (a). 

 

Table A.7: The output of stepwise removal of each parameter for period (b). 

 

Table A.8: The output of stepwise removal of each parameter for period (c). 

  

Dropped term 
Model 

part 
ΔAICc df Likelihood ratio test 

Tide μ 15.6 10 χ2= 17.719 df=1, P=2.561e-05 
Temperature  π 15.3 10 χ2= 17.462 df=1, P =2.93e-05 
Colour  π 15.0 10 χ2= 17.088 df=1, P= 3.568e-05 
Solar irradiance  μ 14.4 10 χ2= 16.530 df=1, P=4.788e-05 
Flow  π 12.5 10 χ2= 14.668 df=1, P= 0.0001282 
Solar irradiance  π 12.0 10 χ2= 14.105 df=1, P=0.0001729 
Tide π 10.9 10 χ2=  12.974 df=1, P= 0.0003159 
Flow  μ 9.1 10 χ2= 11.242 df=1, P=0.0007995 
Colour  μ 8.8 10 χ2= 10.9639 df=1, P=0.0009639 
None . 0.0 11 . . 

Dropped term 
Model 

part 
ΔAICc df Likelihood ratio test 

Solar irradiance  π 33.0 14 χ2=35.132 df=1, P=3.081e-09  
Temperature  π 21.9 14 χ2=24.061 df=1, P=9.332e-07  
pH  π 18.5 14 χ2=20.693 df=1, P=5.391e-06  
Conductivity  π 16.9 14 χ2=19.039 df=1, P=1.281e-05  
Colour  π 15.9 14 χ2=18.035 df=1, P=2.169e-05  
Tide  π 15.6 14 χ2=17.808 df=1, P=2.444e-05  
Conductivity  μ 14.9 14 χ2=17.102 df=1, P=3.543e-05  
Solar irradiance  μ 13.9 14 χ2=16.020 df=1, P=6.266e-05  
Turbidity) π 12.3 14 χ2=14.486 df=1, P=0.0001412 
Colour  μ 9.6 14 χ2=11.815 df=1, P=0.0005877  
Flow  π 8.1 14 χ2=10.275 df=1, P=0.001349  
Tide  μ 6.8 14 χ2=8.9787 df=1, P=0.002731  
pH  μ 5.3 14 χ2=7.4997 df=1, P=0.006171  
None . 0.0 15 . . 

Dropped term 
Model 

part 
ΔAICc df Likelihood ratio test 

Tide  μ 28.8 10 χ2=30.887 df=1, P=2.735e-08 
pH  μ 23.1 10 χ2=25.266 df=1, P=4.995e-07 
Solar irradiance  π 19.7 10 χ2=21.846 df=1, P=2.954e-06 
Flow  π 19.7 10 χ2=21.821 df=1, P=2.993e-06 
Solar irradiance  μ 13.4 10 χ2=15.502 df=1, P=8.242e-05 
Tide  π 8.9 10 χ2=10.977 df=1, P=0.0009224 
Turbidity   π 7.8 10 χ2=9.8865 df=1, P=0.001665 
Temperature  μ 5.2 10 χ2=7.3565 df=1, P=0.006682 
None . 0.0 11 . . 
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Table A.9: The output of stepwise removal of each parameter for period (d). 

 

Table A.10: The output of stepwise removal of each parameter for period (e). 

 

Table A.11: The output of stepwise removal of each parameter for period (f).  

 

Table A.12: The output of stepwise removal of each parameter for period (g).  

Dropped term 
Model 

part 
ΔAICc Df Likelihood ratio test 

Conductivity  μ 53.8 13 χ2=55.958  df=1, P=7.403e-14  
Solar irradiance π 36.4 13 χ2=38.523  df=1, P=5.411e-10  
pH  μ 28.4 13 χ2=30.512  df=1, P= 3.318e-08 
Flow  μ 19.8 13 χ2=21.922  df=1, P=2.84e-06  
Conductivity  π 18.0 13 χ2=20.174  df=1, P=7.071e-06  
Temperature μ 16.4 13 χ2=18.583  df=1, P=1.626e-05  
Turbidity μ 11.6 13 χ2=13.713  df=1, P=0.000213) 
Solar irradiance μ 10.1 13 χ2=12.258  df=1, P=0.0004634  
Colour μ 6.1 13 χ2=8.2885  df=1, P=0.00399) 
Tide  π 3.3 13 χ2=5.444  df=1, P=0.01964 
Flow  π 2.8 13 χ2=4.9783  df=1, P=0.02567  
None . 0.0 14 . . 

Dropped term 
Model 

part 
ΔAICc df Likelihood ratio test 

Solar irradiance  π 68.6 9 χ2=70.695 df=1, P<2.2e-16 
pH  μ 58.9 9 χ2=60.976 df=1, P=5.777e-15 
Solar irradiance  μ 39.3 9 χ2=41.425 df=1, P=1.225e-10 
pH  π 14.9 9 χ2=16.992 df=1, P=3.753e-05 
Temperature  π 12.0 9 χ2=14.067 df=1, P=0.0001764 
Temperature  μ 6.9 9 χ2=8.9885 df=1, P=0.002717 
Tide  π 2.3 9 χ2=4.4276 df=1, P=0.03536 
None . 0.0 10 . . 

Dropped term 
Model 

part 
ΔAICc df Likelihood ratio test 

Solar irradiance μ 115.5 12 χ2=117.67 df=1, P< 2.2e-16 
Solar irradiance π 97.5 12 χ2=99.62 df=1, P< 2.2e-16 
Flow μ 40.4 12 χ2=42.557 df=1, P=6.864e-11 
Tide μ 31.3 12 χ2=33.416 df=1, P=7.44e-09 
Conductivity μ 26.6 12 χ2=28.703 df=1, P=8.438e-08 
Temperature  π 15.0 12 χ2=17.136 df=1, P=3.48e-05 
Flow  π 10.1 12 χ2= 12.929 df=1, P=0.0004549 
Turbidity π 8.8 12 χ2=10.99 df=1, P=0.0009161 
pH π 5.2 12 χ2=7.2991 df=1, P=0.006899 
Tide π 4.3 12 χ2=6.4057 df=1, P=0.01138 
none . 0.0 13 . . 

Dropped term 
Model 

part 
ΔAICc df Likelihood ratio test 

Solar irradiance  π 61.8 7 χ2=63.885 df=1, P=1.319e-15 
Turbidity  π 5.3 7 χ2= 7.3476 df=1, P=0.006715 
Flow  μ 3.4 7 χ2=5.4591 df=1, P=0.01947 
Solar irradiance  μ 2.9 7 χ2=4.9679 df=1, P=0.02582 
Temperature  π 2.7 7 χ2=4.7799 df=1, P=0.02879 
Temperature  μ 1.8 7 χ2=3.9224 df=1, P=0.04765 
None . 0.0 8 . . 
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Figure A.7.6: The profile log-likelihoods for the parameter λ of the Box-Cox 
power transformation of the salmonid count data. 

 

 

Figure A.7.7: LME model residuals for Box-Cox transformed salmonid counts 
per year for the observation period 2004-2011. 
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Figure A.7.8: Q-Q plots of LME model residuals for Box-Cox transformed 
salmonid counts per year for the observation period 2004-2011. 

 

Table A.13: Correlations for random and fixed effects and within group 
residuals for the optimal LME model of Box-Cox transformed salmonid counts 
for the observation period 2004-2011. 

Random 
effect 

St. 
Dev 

correlat
ion 

Fixed effects 
correlation 

intercept 
Cos 

(1year) 
Sin 

(1year) 
Tempe
rature 

Intercept 0.2932 . Cos(1year) -0.834 . . . 
Temperature 0.0277 -0.923 Sin(1year) -0.625 0.683 . . 
Residuals 0.4271 . Temperature -0.974 0.850 0.634 . 
   NAO, lag 4years -0.079 0.063 -0.107 0.079 

        

Standardized Within-Group Residuals 

Min Q1 Med Q3 Max 

-2.6406913 -0.6576961 0.0810359 0.6460973 2.8867025 
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Figure A.7.9: Diagnostic plots for the optimal LME model for the Box-Cox 
transformed salmonid counts for the whole observation period. 
The residuals were normally distributed (a&b) (Shapiro test: W=0.9963, P=0.8963), there 
was some evidence of (c) heteroscedasticity and (d) autocorrelation. 
 
 
 

 

 

Figure A.7.10: LME model residuals for Box-Cox transformed salmonid counts 
per year for the whole observation period. 
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Figure A.7.11: Q-Q plots of LME model residuals for Box-Cox transformed 
salmonid counts per year for the whole observation period. 

 

 

Figure A.7.12: Q-Q plots of LME model residuals for square root transformed 
salmonid counts per year for the whole observation period. 

 

 

Figure A.7.13: LME model residuals for square root transformed salmonid 
counts per year for the whole observation period. 
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Table A.14: Correlations for random and fixed effects and within group 
residuals for the optimal LME model of square root transformed salmonid 
counts for the whole observation period. 

 

 

 

Figure A.7.14: The temporal variations of NAO (with a lag of 5 years), tidal state 
and turbidity over the tunnel construction period. 
 The components were included in the most parsimonious hurdle model for this period. The 
interval between measure is one day. 

 

Random 
effect 

St. 
Dev 

correl
ation 

Fixed effects 
correlation 

intercept 
Cos 

(1year) 
Sin 

(1year) 
Temper

ature 

Intercept 3.7073 . Cos(1year) -0.893 . . . 
Temperature 0.5974 -0.984 Sin(1year) -0.642 0.637 . . 
Residuals 10.2394 . Temperature -0.972 0.850 0.607 . 
   Tunnel -0.173 0.117 0.201 0.146 

        

Standardized Within-Group Residuals 

Min Q1 Med Q3 Max 

-2.45880254 -0.65749752 0.05155325 0.57114916 3.52157691 
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Figure A.7.15: Additional outputs related to the wavelet coherence between 
counts of S. salar and S. trutta for the whole observation period. 
(a) power of the wavelet coherence, (b) scale of the wavelet and (d) phase. 

 

 

  



Appendix A.iii 

183 

 

Figure A.7.16: The Log-likelihoods profile for the parameter λ of the Box-Cox 
transformation of counts of (a) S. salar and (b) S. trutta. 

 

Table A.15: Summary of outputs from full LME model of count of S. salar. 

 

  

Linear mixed-effects model fit by REML, containing all available parameters as 
fixed effects and year as random effect; 183 observations, 7 groups, 
AICc=1917.085, Log-likelihood=-942.5427 
 
Random effects estimates:  
1| year, Standard deviation intercept=13.5143, Residual=51.5157 
 
Fixed effects estimates:  

                         Value  Std.Error   DF    t-value  P-value 

Intercept    106.4316   27.2801  163   3.9014   0.0001 
cos(p1)  -64.9074   19.1240  163  -3.3940   0.0009 
sin(p1)   -65.3075    8.3605  163  -7.8114   0.0000 
cos(p2)    9.6437    5.6770  163   1.6987   0.0913 
sin(p2)    5.1413    5.9206  163   0.8684   0.3865 
flow                  -0.1492    0.1221  163  -1.2219   0.2235 
temperature   -4.5299    2.5064  163  -1.8073   0.0726 
NAO                 11.8349    6.4722  163   1.8286   0.0693 
NAO, lag=6m -7.0406    6.5507  163  -1.0748   0.2841 
NAO, lag=1yr     6.7540    6.4884  163   1.04094  0.2994 
NAO, lag=2yr    -8.5473    6.7279  163  -1.2705   0.2057 
NAO, lag=4yr   -5.3402    6.9292  163  -0.7707   0.4420 
NAO, lag=5yr    3.0219    7.1814  163   0.4208   0.6745 
tunnel               -42.5420   33.0309 163  -1.2879   0.1996 

 
Standardized Within-Group Residuals: 

Min           Q1          Med           Q3          Max  
-1.6992  -0.5882  -0.0470   0.3961   6.1402 
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Table A.16: Summary of outputs from full LME model of count of S. trutta. 

 

 
 
  

Linear mixed-effects model fit by REML, containing all available parameters as 
fixed effects and year as random effect; 183 observations, 7 groups, 
AICc=2141.43, Log-likelihood=-1054.715 
 
Random effects estimates: 
1 | year, Standard deviation intercept=25.1217, Residual=100.1389 
 
Fixed effects estimates: 
                       Value  Std.Error   DF    t-value  P-value 

Intercept 176.6288 52.63733  163   3.3555   0.0010 
cos(p1)   -102.3189   36.9470  163  -2.7693 0.0063 
sin(p1)   -138.5657   16.2013  163  -8.5528   0.0000 
cos(p2)    -0.1876 11.0332 163  -0.0170   0.9865 
sin(p2)   -12.4725   11.5076  163  -1.0838   0.2800 
flow        -0.1791    0.2371 163  -0.7553   0.4512 
temperature -6.2223 4.8386 163  -1.2860   0.2003 
NAO               14.6117   12.5627 163   1.1631   0.2465 
NAO6m     6.8974   12.7240 163   0.5421   0.5885 
NAO1yr      -12.3936   12.6079  163  -0.9830   0.3271 
NAO2yr   -4.5704   13.0711 163  -0.3497   0.7270 
NAO4yr  -0.2180 13.4652  163  -0.0162   0.9871 
NAO5yr      -11.3392   13.9545  163  -0.8126 0.4176 
tunnel -141.2721   64.1374 163  -2.2026 0.0290 

  
Standardized Within-Group Residuals: 

Min       Q1    Med           Q3          Max  
-2.3400  -0.6086  -0.0589   0.3579 3.7315 
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Figure A.7.17: The autocorrelation function of the residuals of the most 
parsimonious models of log-transformed counts of (a) S. salar and (b) S. trutta. 

 

 

Figure A.7.18: The temporal fluctuations in the residuals of the most 
parsimonious GLS model of log-transformed counts of (a) S. salar and (b) S. 
trutta. 
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Figure A.7.19: Loess fit for counts of S. salar. 

 

 
Figure A.7.20: Loess fit for counts of S. trutta. 
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Figure A.7.21: Diagnostic plots of the residuals of the sum of the fitted values of 
the GLM of the proportion of identified counts and the GLM of the resulting 
residuals. 
With (a) QQ-plot, (b) the autocorrelation function and (c) the frequency distribution, the 
normal distribution is represented by the red dotted line. 
 
 
 

 

Figure A.7.22: The autocorrelation functions of the residuals of the most 
parsimonious GLS models, contrasting before and after 2007. 
In S. salar (a, c, e) and S. trutta (b, d, f). 
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Figure A.7.23: The distribution of the residuals of the most parsimonious GLS 
models, contrasting before and after 2007. 
In S. salar (a, c, e) and S. trutta (b, d, f). The red dotted line represents the normal 
distribution. 

 
 

 

Figure A.7.24: The distribution of the residuals of the most parsimonious GLS 
models, contrasting before and after 2007. 
QQ-plots, in S. salar (a, c, e) and S. trutta (b, d, f). 



Appendix A.v 

189 

Appendix A.v  

 

Figure A.7.25: The available signal amplitude data, both species confounded.  
There is a visible threshold at the amplitude of 26. 
 
 
 
 
 
Table A.17: Summary of square CAT scores. 
CAT scores for the first fourteen river parameters tested as potential classifiers between S. 
salar and S. trutta, ranked from highest to lowest value. Minimal shrinkage was required 

(λ=0.0014). 
 

 

 

Figure A.7.26: The classification properties associated with each river 
parameters based on their local false non-discovery rate and associated P-value.  
False negatives (FN), true positives (TP), true negatives (TN) or false positives (FP) are 
generated by the parameter. Several points overlapping in TP (corresponding to flow, signal 
amplitude, week, hour). 
 

 

River feature CAT score  River feature CAT score 
Flow (at Bywell) 464.77  Conductivity  49.55 
Signal amplitude 365.82  Day of the year (linear) 48.43 
Week of the year 
(linear) 165.57  Hour of the day (trigo) 47.54 
Week of the year 
(trigo) 144.82  Tidal state 35.51 
Hour of the day (linear 
) 130.48  Flow at Reaverhill 35.29 
Turbidity at Riding 
Mill 67.45  

Month of the year 
(linear) 34.09 

pH at Riding Mill 63.50  Flow (at Ugly dub) 14.73 
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Figure A.7.27: The BIC values according to the number of clusters for equal (E) 
and variable (V) variances models, for (a) S. salar and (b) S. trutta.  
The highest BIC value is for 7 clusters and variable variance, for both species. 

 

 

 

Figure A.7.28: The classification properties associated with each river 
parameters for the discrimination of sub-groups within (a) S. salar and (b) S. 
trutta.  
Classification properties were based on their local false non-discovery rate and associated P-
value. False negatives (FN), true positives (TP), true negatives (TN) or false positives (FP) 
were generated by each parameter.  
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Table A.18: The summary of square CAT scores for the first fourteen river 
parameters tested as potential classifiers between clusters identified within 
counts of S. salar, ranked from highest to lowest value.  
Minimal shrinkage was required (λ= 0.0183). 

 

 

Table A.19 The summary of square CAT scores for the first fourteen river 
parameters tested as potential classifiers between clusters identified within 
counts of S. trutta, ranked from highest to lowest value. 
Minimal shrinkage was required (λ= 0.0004). 

 

 

 

River feature CAT score  River feature CAT score 
Conductivity (EA) 117.76  Flow (at Reiver) 27.66 
Conductivity (NW) 88.33  Hour (linear) 27.00 
Flow (at Bywell) 66.24  Flow (at Otterburn) 22.69 
Day (linear) 58.15  Temperature (at U. Dub) 13.49 
Hour (trigo) 53.00  Month (linear) 11.80 
Week (linear) 51.51  Day (trigo) 9.77 
Temperature (at Bywell) 45.11  Flow (at U. Dub) 8.89 

River feature CAT score  River feature CAT score 
Hour (trigo) 38.31  Turbidity (NW) 12.50 
Conductivity (EA) 37.05  Temperature (at Bywell) 9.12 
Flow (at Bywell) 27.68  Day (linear) 8.57 
Hour (linear) 17.69  Temperature (at U. Dub) 8.06 
Flow (at Ugly Dub) 14.60  Month (linear) 7.50 
Week(linear) 13.94  Flow (at Otterburn) 7.32 
Conductivity (NW) 13.37  Tide 6.50 
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Appendix A.vi Published collaborative work 

Soto E., K. McGovern-Hopkins, R. Klinger-Bowen, B.K. Fox, J. Brook, N. 
Antonio, Z. van der Waal, S. Rushton, A. Mill and C.S. Tamaru. 2013. 
Prevalence of Francisella noatunensis subsp. Orientialis in cultured Tilapia on 
the Island of Oahu, Hawaii. Journal of Aquatic Animal Health, 25: 104-109. 

 

The author contributed to this paper by designing and undertaking the analysis, 

writing the description of the modelling approach in the Method section and 

producing the text and plots for the Results section (excluding Bacterial 

identification).  
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