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Abstract 

Mitochondrial DNA mutations are a major cause of disease in the human population. 

Understanding the disease associated with these mutations is complicated by 

heteroplasmy, the mixture of wild-type and mutated mitochondrial DNA. Heteroplasmy 

can vary between cells, tissues, and organs, and the disease associated individual 

mutations is hugely varied on account of this. The mitochondrial genome encodes 

critical proteins of the oxidative phosphorylation system and mutation leads to energy 

deficits in cells and a wide range of secondary effects. The central and peripheral 

nervous system are commonly affected in mitochondrial disease and quality of life for 

patients is severely impaired. 

Although pathogenic mitochondrial genetic mutations were first identified over twenty 

five years ago, little progress has been made in understanding the expected progression 

of disease in patients. The aim of this study was to use statistical modelling to further 

understanding of disease progression in mitochondrial DNA mutations. The Medical 

Research Council Mitochondrial Disease Cohort provided the majority of patient data. 

Patients had been assessed using the Newcastle Mitochondrial Disease Adult Scale, 

which facilitates quantitative research on mitochondrial disease burden.  

This project comprises studies of two of the most common mitochondrial DNA 

mutations. The first study concerns patients with the m.3243A>G mutation, the most 

common pathogenic point mutation, and considers the effect of age and heteroplasmy 

on disease progression. Prediction models of both overall disease burden and specific 

phenotypic features were developed. Important features of the patient cohort were also 

examined, including heteroplasmy in different tissues and differences in disease 

expression between sexes. The second study looks at patients with single large-scale 

mitochondrial DNA mutations. The effect of deletion size, location of the deletion on 

the genome, and heteroplasmy were investigated, and all three predictors were found to 

be significant in understanding disease progression. 
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 Introduction Chapter 1.

1.1. Mitochondria 

Mitochondria are cytoplasmic organelles present in almost all eukaryotic cells which 

house machinery for ATP (adenosine triphosphate) production and perform critical roles 

in apoptosis (Wang and Youle, 2009), calcium homeostasis (Patergnani et al., 2011), 

and iron-sulphur (Fe-S) cluster formation (Rouault and Tong, 2005), as well as 

numerous other functions. In humans, mitochondria are found in all cells other than 

mature red blood cells. Though the vast majority of proteins that make up mitochondria 

are encoded by nuclear DNA (nDNA), mitochondria also contain their own DNA, the 

only extra-nuclear source of DNA in humans, which encodes a small set of proteins 

vital for oxidative phosphorylation (OXPHOS). Mutations in mitochondrial DNA 

(mtDNA) are responsible for a wide range of disease that impact on mitochondrial and 

cellular function as a whole.  

1.1.1. Origins of mitochondria 

Mitochondria have long been believed to have evolved from free Eubacteria that 

became integrated into a primitive eukaryote through endosymbiosis (Margulis, 1971), 

a theory which proposed that the fusion occurred after the emergence of the cell 

nucleus. A competing theory, known as the ‘hydrogen hypothesis’ proposes that the 

mitochondrion and the nucleus formed contemporaneously, after fusion of a hydrogen-

dependent Archaebacterium and a hydrogen-producing Eubacterium (Martin and 

Muller, 1998). In both theories, however, there is a single endosymbiotic event, and a 

subsequent transfer of the majority of the genetic material from the proto-mitochondrion 

to the nucleus. 

1.1.2. Structure 

Traditionally the mitochondria has been viewed as a rod shaped or ovoid organelle 

thought to be approximately 2μm long and 0.5μm in diameter, encapsulated by a double 

membrane (Palade, 1953).  The outer membrane contains an abundance of the voltage 

dependent anion channel (VDAC) otherwise known as porin, which when open allows 

for free movement of molecules and ions of low molecular weight (under 10kDa) 

between the cytoplasm and the inter-membrane space (Alberts et al., 2002).  

The inner mitochondrial membrane (IMM) is essentially impermeable, but contains a 

large number of transport proteins that regulate the flow of material into the 
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mitochondrial matrix contained within the membrane, and is rich in cardiolipin. The 

IMM was traditionally though to be highly folded creating invaginations (known as 

cristae) into the matrix, clearly visible using electron microscopy; however, it is now 

known that the cristae are formed from a distinct membrane connected to the inter-

membrane space through cristae junctions, and thus the IMM can be subdivided into 

two parts, the inner boundary membrane (IBM) and the cristae membrane (CM) (Frey 

and Mannella, 2000). The CM is enriched in proteins involved in oxidative 

phosphorylation, iron-sulphur cluster biogenesis, protein synthesis and mtDNA-encoded 

protein transport, whilst the IBM is rich in proteins responsible for mitochondrial fusion 

and nDNA-encoded protein transport (Vogel et al., 2006). The invaginations of the CM 

create a huge surface area over which OXPHOS can be conducted. 

The mitochondrial matrix contains multiple mtDNA molecules, transcriptional and 

translational machinery, the various proteins responsible for the tricarboxylic acid 

(TCA) cycle, and is the site of Fe-S cluster formation. 

1.1.3. Oxidative phosphorylation 

Mitochondria are often referred to as the powerhouses of the cell, on account of their 

major role in the production of cellular ATP. OXPHOS is a highly efficient process for 

the production of ATP that utilises several intermediate products of the TCA cycle (also 

known as Kreb’s cycle or the citric acid cycle) (Hatefi, 1985). 

Cellular respiration begins with glycolysis in the cytosol, where glucose is broken down 

into pyruvate, producing two molecules of ATP (Equation 1.1). 

                                                      

Equation 1.1. Glycolysis. 

 

The pyruvate is transported across the double mitochondrial membrane into the matrix, 

where the enzyme pyruvate dehydrogenase converts it into acetyl CoA (Equation 1.2). 

                                          

Equation 1.2. Pyruvarte decarboxylation. 

 

Acetyl CoA is one of the major substrates of the TCA cycle, along with NAD+ and 

FADH, and provides the carbon atoms within the acetyl group to be oxidised whilst the 

other two substrates are reduced, becoming electron carriers. The overall TCA cycle is 
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shown in Equation 1.3,   

                                  

                             

Equation 1.3 Outcome of the TCA cycle. 

 

     and       are essential components of the final stages of respiration, 

OXPHOS,  in that they act as electron carriers, donating electrons to complex I and II 

respectively. These complexes in turn transfer electrons to complexes III and IV, 

releasing energy which is used to pump    into the intermembrane space from the 

matrix. This creates an electro-chemical gradient which is then used by complex V 

(ATP synthase) to generate ATP from ADP. 

 
Figure 1.1 Oxidative phosphorylation. 

The protein complexes are embedded in the cristae membrane of the inner mitochondrial membrane. 

Electrons (in red) enter the electron transport chain (ETC) via complexes I and II and are transported to 

complex III via reduction of ubiquinone (Q), which is soluble in the membrane. Complex III re-oxidises 

the ubiquinol (QH2) back to ubiquinone, and the electrons pass via cytochrome c (C) in a further redox 

reaction to complex IV. During this process complexes I, III, and IV pump electrons from the matrix to 

the inter-membrane space, creating an electro-chemical gradient, which drives the ATP synthase 

(Complex V) to produce ATP. Below each subunit the ratio of nuclear encoded to mitochondrially 

encoded subunits is shown. Complex II is the only complex that is entirely encoded by nuclear DNA. 

Image (adapted) courtesy of Eve Simcox. 
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1.1.3.1. Complex I 

Complex I (NADH dehydrogenase (ubiquionone)) couples transfer of two electrons 

from NADH to ubiquinone with translocation of four protons across the inner 

membrane. It is the largest complex of the OXPHOS system, made up of 46 subunits of 

which 7 are mtDNA encoded (Ugalde et al., 2004). The overall reaction is shown below 

(Equation 1.4). 

               
                

  

Equation 1.4 Complex I reaction. 

 

Complex I dysfunction is the most frequently observed OXPHOS defect in humans, 

caused by mutations of both nuclear and mitochondrial origin, and related both to 

mutations in the structure itself and the assembly of the complex (Mimaki et al., 2012). 

Leber’s hereditary optic neuropathy (LHON), for example, is a disease generally caused 

by mutations in genes encoding complex I subunits (Wallace et al., 1988). 

1.1.3.2. Complex II 

Complex II, also known as succinate dehydrogenase (SDH) or succinate ubiquionone 

oxioreductase, is the only complex of the OXPHOS system that is entirely nuclear 

encoded, and is also the smallest, comprising four subunits. It does not translocate 

protons as the other four complexes do, however it plays the crucial role of catalysing 

the conversion of succinate to fumarate whilst generating      , which is then 

oxidised to FAD and the electrons used to reduce ubiquinone to ubiquinol (Hagerhall, 

1997). The overall reaction is shown in Equation 1.5. 

                         

Equation 1.5 Complex II reaction. 

 

Complex II mutations are associated with tumorigenic phenotypes, thought to be 

through caused by excessive generation of reactive oxygen species (ROS)  or 

stabilization of hypoxia inducible factor 1 (HIF1) during normoxia (Hoekstra and 

Bayley, 2013). 

1.1.3.3. Complex III 

Complex III, or ubiquinol:cytochrome c oxioreductase comprises 11 subunits, only one 

of which is mitochondrially encoded, by the MT-CYB gene (cytochrome b). The 
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complex transfers two electrons to cytochrome c from ubiquinol, and also pumps two 

protons into the inter membrane space. The reaction is shown in Equation 1.6. 

                             
                           

  

Equation 1.6 Complex III reaction, the Q cycle. 

 

Complex III abnormalities are rare in humans (Benit et al., 2009). The phenotype of 

Complex III abnormalities are similar to other OXPHOS defects, in particular LHON is 

also associated with Complex III mutation (Brown et al., 1992). 

1.1.3.4. Cytochrome c 

Cytochrome c is a highly conserved nuclear encoded haem-containing protein found in 

the inter membrane space, and has a critical role in the ETC, apoptosis, and also acts as 

a ROS scavenger (Huttemann et al., 2011). In OXPHOS it carries a single electron from 

complex III to IV. 

1.1.3.5. Complex IV 

Complex IV, or cytochrome c oxidase (COX) is the terminal complex of the ETC, and 

comprises 13 subunits, three of which are mitochondrially encoded. It reduces O2 to 

H2O using electrons provided by cytochrome c, and transfers 4 protons per oxidised 

molecule from the matrix to the inter membrane space, as shown in Equation 1.7. Four 

electrons are required for the reduction of one molecule of O2 to H2O, and this step is 

thought to be rate-limiting in the mammalian ETC (Huttemann et al., 2011). 

                     
                             

  

Equation 1.7 Complex IV reaction. 

 

1.1.3.6. Complex V 

Complex V, the FOF1 ATP synthase, is the final step of OXPHOS, which catalyses the 

conversion of ADP to ATP. The complex is made up of two domains, FO located in the 

membrane, and F1 which extends into the matrix. Each unit comprises multiple copies 

of several subunits, the majority of which (14) are nDNA encoded, with two 

mitochondrially encoded subunits, both in the FO domain. Proton movement through the 

FO domain generates rotary torque, which powers the formation of ATP from ADP and 

phosphate. Each molecule of ATP costs 2.7 protons in production (Ferguson, 2010).  
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Mutations in Complex V often lead to very severe disease, characterised by lesions in 

the brain and particularly the striatum, including NARP (neurogenic muscle weakness, 

ataxia, and retinitis pigmentosa) and Leigh Syndrome, a severe infantile neurological 

disorder resulting in infant death, commonly through respiratory failure (Schon et al., 

2001). 

1.1.3.7. Supercomplexes 

It has been shown that the ETC complexes tend to group together into conglomerates 

called supercomplexes; for instance, almost all mammalian Complex I is found 

aggregated with Complexes III and IV (Schagger and Pfeiffer, 2000). It is thought that 

Complexes III and IV are assembled independently, but that Complex I assembly is 

multi-stage and the final stage, the addition of the NADH dehydrogenase catalytic 

module, occurs after supercomplex formation (Moreno-Lastres et al., 2012; Winge, 

2012). From the perspective of disease and pathology this is of fundamental importance, 

as inter-dependence of the complexes is potentially explanatory of genetic defects in 

one complex affecting functional operation or assembly of other complexes, particularly 

as regards Complex III or IV defects affecting Complex I assembly. 

 

1.1.4. Other functions of mitochondria 

1.1.4.1. Iron homeostasis and iron-sulphur (Fe-S) cluster biogenesis 

The production of Fe-S clusters is the sole conserved function of both mitochondria and 

primitive mitochondria (mitosomes) across all eukaryotes, underlying the importance of 

this process. Fe-S clusters are essential in OXPHOS as they facilitate the electron 

transfer by repeated redox changes from Fe
2+

 to Fe
3+

, and form part of complexes I, II, 

and III (Schultz and Chan, 2001). 

Iron within mitochondria is used for haem or Fe-S cluster synthesis or stored in 

mitochondrial ferritin. Import of iron into mitochondria through the inner membrane is 

regulated by mitoferrins (Paradkar et al., 2009), though the transport mechanism from 

the cytosolic iron pool and across the outer mitochondrial membrane remains to be 

elucidated (Richardson et al., 2010).  
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1.1.4.2. Ca
2+

 signalling and homeostasis 

Mitochondria have long been recognised for their role in cytosolic Ca
2+ 

buffering 

(Carafoli, 2003) and by extension extracellular Ca
2+ 

regulation (Cohen and Fields, 

2004), and are able to absorb up to 1000nmol Ca
2+

 per mg of mitochondrial protein, 

imported via the outer membrane VDAC pore and the calcium uniporter located in the 

inner mitochondrial membrane (Kirichok et al., 2004). The importance of this role 

cannot be understated; Ca
2+

 signalling is an essential regulator of cellular function 

(Clapham, 2007) and has a fundamental role in intercellular communication (Hofer et 

al., 2000), induction of apoptosis (Orrenius et al., 2003), regulation of ATP production 

(Griffiths and Rutter, 2009), and regulation of pre-synaptic transmission in neurons 

(Kostyuk, 2007). 

1.1.4.3. Apoptosis 

Programmed cell death, or apoptosis, is a vital function of an organism to eliminate 

unwanted or damaged cells, and is vital for proper embryonic development (Danial and 

Korsmeyer, 2004). It is inducible by both an extrinsic cell receptor mediated pathway, 

and an intrinsic cell damage mediated pathway, contingent upon the release of 

cytochrome c from the mitochondria and subsequent activation of caspase-9 (Wang and 

Youle, 2009). 

1.1.4.4. Reactive oxygen species 

Though mitochondrially produced reactive oxygen species (ROS) were historically 

thought to lack a physiological role and were only associated with cell damage, there is 

growing evidence that ROS have a critical physiological role. It is hypothesised that 

ROS levels at a basal level maintains homeostatic function in the cell, but fluctuations 

in ROS alter signalling pathways; ROS is known to have roles in cell differentiation, 

autophagy, immune cell activity, and metabolic adaptation (Sena and Chandel, 2012). 

ROS have been shown to induce reversible posttranslational modifications of several 

proteins within important signalling cascades (Finkel, 1998; Rhee et al., 2000).  

Complex I and III are both major sources of ROS (Turrens and Boveris, 1980; Sugioka 

et al., 1988), though Complex I is thought to be more a more proliferative producer of 

superoxide O2
-
, predominantly when ATP is not being produced and there is a high 

proton motive force (the sum of the membrane potential and pH gradient), or there is a 

high NADH/NAD
+
 ratio in the matrix (Murphy, 2009). However, Complex III produces 

O2
-
 on both sides of the inner membrane, but Complex I produces it only matrix-side. 
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Overall, though mitochondria are a significant source of cellular ROS, it is not by any 

means certain that they are the major source of ROS within cells, as the endoplasmic 

reticulum and peroxisomes are also known sources (Brown and Borutaite, 2012). 

1.1.5. Biogenesis regulation 

Mitochondrial biogenesis is tightly regulated by cells in order to tailor ATP production 

to suit cellular energy requirements. The peroxisome proliferator-activated receptor γ 

(PPARγ) co-activator 1α (PGC-1α) is the primary controller of mitochondrial 

biogenesis, and has a critical role in signalling cascades involving AMP activated 

protein kinase (AMPK) and the Sirtuin class of proteins that sense energy imbalances in 

cells and regulate mitochondrial biogenesis accordingly (Hardie et al., 2012; Andreux et 

al., 2013).  

1.1.6. Dynamics 

Though traditionally thought of as discrete organelles, mitochondria in fact form a 

dynamic network that undergoes constant fission and fusion (Westermann, 2010). The 

importance of this dynamism is illustrated by the fact that mutations in several nDNA 

encoded proteins with critical roles in fission and fusion are associated with disease, 

including mitofusins 1 and 2 (MFN1 and MFN2), optic atrophy 1 (OPA1), and 

dynamin-1-like protein (DNM1L) (Liesa et al., 2009). OXPHOS generates an electro-

chemical gradient across the inner membrane of the mitochondria, which is maintained 

at around -140mV (Gerencser et al., 2012), and a healthy membrane potential is a 

requirement for fusion to occur (Legros et al., 2002; Meeusen et al., 2004).  

As well as fission and fusion, mitochondria undergo autophagic degredation known as 

mitophagy, which has been shown to selectively target impaired mitochondria (Kim et 

al., 2007; Twig et al., 2008). This process is intimately related to human disease, for 

example in the mutations of the PINK1 and PARK2 genes that are linked to inherited 

early-onset Parkinson’s disease and which are involved in the mitophagic pathway 

(Chen and Chan, 2009). 

The umbrella term ‘mitochondrial dynamics’ also includes consideration of the 

migration and movement of mitochondria within the cytoplasm to areas of high energy 

need, for instance neuronal growth cones, and pre- and post- synaptic sites (Morris and 

Hollenbeck, 1993; Li et al., 2004; Miller and Sheetz, 2004; Chang et al., 2006). 
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1.1.7. The mitochondrial genome 

The human mitochondrial genome (mtDNA) is a 16,569bp double-stranded circular 

intron-less genome located in the mitochondrial matrix. It codes 37 genes; 13 

hydrophobic proteins essential for OXPHOS, 22 tRNAs, and 2 rRNAs. The structure is 

shown in Figure 1.2. The majority of the genes (all but one of the protein encoding

 

Figure 1.2 The human mitochondrial genome. 

The genome encodes 37 genes, including 13 polypeptides, 22 tRNAs, and 2 rRNAs. All but one of the 

protein encoding genes are found on the outer heavy strand of the genome; 6 subunits of Complex I (MT-

ND1-5 and ND4L) , one Complex III subunit (Cytochrome B), three subunits of Complex IV (COX1-3), 

and two subunits of Complex V (ATPase 6 & 8). The final protein encoding gene is the ND6 subunit of 

Complex I on the inner light strand.  The tRNA genes are dispersed around both strands. The D-loop is 

the only major non-coding region of the genome. The origins of heavy (OH) and light (OL) strand origin 

are also shown. Image (adapted) courtesy of Dr Casey Wilson.   
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genes, 14 of the tRNAs, and both rRNAs) are transcribed from the outer (heavy) strand. 

The other 8 tRNAs and the protein encoding gene MT-ND6 are transcribed from the 

inner (light) strand. The only substantial non-coding region, the displacement-loop or d-

loop, contains the major control elements for transcription and replication, and extends 

approximately 1kb in human mtDNA. 

Multiple copies of the mtDNA molecule are found within an individual cell; in general 

mammalian cells house tens to hundreds of mitochondria, and each mitochondrion 

contains several copies of the mitochondrial genome (Wiesner et al., 1992), with an 

estimated 5,000 to 10,000 copies of the genome per cell (Lightowlers et al., 1997). 

mtDNA is packaged into discrete nucleoids composed of mtDNA with some of the 

machinery necessary for replication and transcription of the DNA (Brown et al., 2011). 

The number of DNA molecules per nucleoid is debated, but has recently been measured 

as generally a single copy per nucleoid (Kukat et al., 2011). In this study mitochondrial 

transcription factor A (TFAM) was reported as the bulk constituent of the nucleoid, 

though other proteins are also present, including single-stranded DNA binding protein 

(mtSSB). 

1.1.8. Transcription and translation 

There are three sites of transcription initiation within the D-loop, the L-strand promoter 

(LSP) and the two H-strand promoters (HSP1 and 2); transcription generates long 

polycistronic molecules, as depicted in Figure 1.3. The LSP generates a single transcript 

containing the all the genes on the L-strand, as HSP2 does for the H-strand; HSP1, on 

the other hand, generates a transcript containing only the two rRNA genes and two 

tRNA genes (Montoya et al., 1982; Chang and Clayton, 1984; Zollo et al., 2012). 

Transcription is bi-directional and conducted by the mitochondrial RNA polymerase 

(POLMRT) in conjunction with other proteins including TFAM and mitochondrial 

transcription factor B2 (Rebelo et al., 2011). Termination of transcription is 

implemented by mitochondrial termination factors (MTERF), four of which have so far 

been identified. The roles of these factors are still very much under debate however; it 

has been recently shown, contrary to long standing belief, that MTERF1 does not 

couple rRNA gene transcription initiation and termination but instead appears to block 

transcription to avoid transcriptional interference at the L-strand promoter (Terzioglu et 

al., 2013). 
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Figure 1.3 Mitochondrial DNA transcription. 

The D-loop contains one promoter site for the light strand (LSP) and two for the heavy strand (HSP1 and 2). LSP and HSP2 generate polycistronic transcripts of all the genes on each 

strand respectively, whereas HSP1 generates a shorter polycistronic transcript containing only the two rRNA genes and two tRNAs. Image courtesy of Dr Casey Wilson.   
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Post-transcriptional processing of the polycistronic transcripts is proposed to occur by 

the ‘tRNA punctuation’ model, whereby the cloverleaf-like folding of the tRNAs act as 

a substrate for the RNA processing enzymes, (Ojala et al., 1981; Rorbach and Minczuk, 

2012) though some questions remain unanswered by this, for instance the processing of 

mRNAs not separated by tRNAs (Temperley et al., 2010b). 

Translation of mitochondrial mRNA occurs in three phases; initiation, elongation, and 

termination, and occur in the mitochondrial matrix in mitoribosomes, which are 

constructed of an estimated 80-100 nuclear encoded proteins and the two mitochondrial 

rRNA species, one in each ribosome subunit (O'Brien, 2003; Smits et al., 2010). 

Mitochondrial ribosomes differ from both bacterial and eukaryotic cytoplasmic 

ribosomes in their high protein and low rRNA content. Mitochondrial mRNA 

translation utilises and requires only 22 tRNAs, as compared to the 31 required for the 

nuclear genome (Barrell et al., 1980); 8 of the tRNAs can recognise codons with any 

base in the third position, and 14 of them discriminate between pyrimidine and purines 

at the third position, thus recognising 60 codons in total; two of the remaining four 

codons (UAA and UAG) are stop codons recognised by the mitochondrial translational 

release factor 1a (mtRF1a), and the remaining two (AGA and AGG) are proposed to 

cause a -1 frameshift which moves the ribosome to a recognised UAG stop codon 

(Temperley et al., 2010a). 

1.1.9. Replication 

mtDNA is replicated independently of nDNA and replicates throughout the cell cycle 

(Bogenhagen and Clayton, 1977), including post-mitotic cells such as skeletal muscle 

and neurons (Reeve et al., 2009), though the turnover rate in such cells is thought to be 

very slow compared to mitotically active cells (Wang et al., 1997). Replication and 

transcription have been shown to be highly co-ordinated with the cell cycle, at least in 

cells synchronised by serum depletion; mtDNA replication peaks towards the end of the 

G1 phase preceding nDNA replication in the S phase, and has a second peak towards the 

end of the S phase after nDNA replication preceding mitosis (Chatre and Ricchetti, 

2013) The replication process is reported to take 60 (Clayton, 1982) to 75 (Korr et al., 

1998) minutes. Mitochondria are entirely dependent on nuclear encoded proteins for 

DNA replication and maintenance machinery (Shadel, 2008). 

There are several major competing theories regarding the process of mtDNA 

replication.  The first and more entrenched theory is known as the ‘asynchronous’ or 
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‘strand displacement’ model (Clayton, 1982), which suggests that replication initiates at 

the origin of heavy strand replication (OH)  and two-thirds of the H-strand is replicated 

before OL (the L-strand origin of replication) is exposed and light strand replication 

initiates. Once the strands are completed they are circularised, superhelical turns are 

introduced, and finally the D-loop is replicated. More recently, a second method known 

as the ‘synchronous’ model has been proposed (Holt et al., 2000), based on evidence of 

replication intermediates that are resistant to single-strand nucleases. This model was 

refined based on further experiments that demonstrated replication occurs bi-

directionally, initiates from a broad range of the genome incorporating MT-ND5, MT-

ND6 and MT-CYB and terminates at rather than initiates from OH (Bowmaker et al., 

2003). A third mechanism, was proposed that is similar to the asynchronous model but 

involves simultaneous binding of RNA to the lagging strand (the as yet unreplicated L-

strand) as the H-strand is replicated, which is then subsequently converted to DNA; this 

method is known as RITOLS (ribonucleotide incorporation throughout the lagging 

strand), and was evidenced by the activity of RNase H on replication intermediates, 

since this enzyme acts only on RNA hybridised to DNA (Yasukawa et al., 2006). 

The currently known essential machinery for mtDNA replication are the mitochondrial 

DNA polymerase gamma (POLG) comprising a catalytic unit POLG and accessory 

subunit POLG2, the mitochondrial helicase TWINKLE, the mitochondrial single-

stranded DNA binding protein (mtSSB) and the mitochondrial RNA polymerase 

(POLRMT) (McKinney and Oliveira, 2013). 

1.2. Mitochondrial genetics 

1.2.1. Heteroplasmy 

As cells contain multiple copies of the mitochondrial genome, it is possible for cells to 

harbour mtDNA with different polymorphic or pathogenic variations. This mixture of 

different mitochondrial genomes is termed heteroplasmy. The co-existence of wild-type 

and mutant mtDNA species within individual cells is a fundamental aspect of 

mitochondrial genetics and the phenotypic expression of mutation.  

Quantitatively, the word heteroplasmy is generally used to refer to the proportion of 

pathogenic mutant mtDNA molecules within a cell or tissue, expressed as a percentage. 

The proportion of wild-type is therefore 100% minus the heteroplasmy level in the case 

of a single pathogenic variant. 
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1.2.2. Clonal expansion 

Clonal expansion refers to the process of a mutated mtDNA molecule expanding in 

population within a cell, increasing the level of heteroplasmy. Thus a single mutated 

mtDNA molecule may expand in influence until a cell or tissue (generated through 

mitosis) contains a majority of the mutated molecule or even become homoplasmic.  

The mathematics and biology underlying clonal expansion are not well understood. It 

was initially thought that a mutation such as a deletion would lead to a smaller mtDNA 

molecule that would replicate faster and therefore tend to accumulate (Wallace, 1992); 

though one group does find evidence to support this (Diaz et al., 2002; Fukui and 

Moraes, 2009), this is in non-physiological conditions, and other work in trans-

mitochondrial cell lines it has been shown not to be the case (Tang et al., 2000). It is 

argued that the time between replications is far greater than the replication time (the 

half-life of mtDNA is between 8 and 23 days whereas the time for replication is little 

over an hour (Korr et al., 1998)) and thus faster replication would confer no advantage. 

However, it has also been shown that most mtDNA replication occurs in peri-nuclear 

mitochondria (Davis and Clayton, 1996) which could mean only a small population of 

cellular mtDNA undergo replication at a more rapid rate to maintain the overall 

population; yet this finding is also contradicted by a more recent study that 

demonstrated replication throughout the cytoplasm (Magnusson et al., 2003).  

Other theories that also explain expansion for non-deletion mutations proposed that 

mitochondria with mutations would proliferate in order to overcome respiratory chain 

deficiencies, causing clonal expansion (Yoneda et al., 1992), or that mutated mtDNA 

leads to slower OXPHOS and less ROS than wild-type mitochondria which are 

degraded at a higher rate as a result (de Grey, 1997). It has also been shown, however, 

that even without a selective advantage random intracellular drift leads can lead to 

mutations expanding to high levels (Elson et al., 2001).  

Clonal expansion has been shown to occur with ageing in many tissues, though there are 

tissue specific differences in the mutations that accumulate, for instance point mutations 

but not deletions in the colon (Taylor et al., 2003), whereas deletions are frequently 

found in muscle (Fayet et al., 2002; Yu-Wai-Man et al., 2010a) and the brain 

(Kraytsberg et al., 2006). Though the reasons for this tissue specificity are unproven, it 

is postulated that mitotic tissues may exert negative selective pressure on deletions. 
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1.2.3. Threshold effect 

Pathogenic mutations at a low level of heteroplasmy are thought not to exhibit an 

observable phenotype; OXPHOS impairment and other primary or secondary 

phenotypic effects are observed only when heteroplasmy reaches a critical threshold 

(Rossignol et al., 2003). This has been documented in several tissues, for instance 

muscle fibres from MERRF (myoclonic epilepsy with ragged red fibres ) and MELAS 

(mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) patients, 

where a cellular threshold level of around 80% (Taylor and Turnbull, 2005) or 90% 

(Shoffner et al., 1990) have been reported, though it a threshold for a severe defect has 

also been reported at around 60% (Miyabayashi et al., 1992). Large-scale single 

deletions are generally thought to have a lower threshold at around 60% (Hayashi et al., 

1991; Rossignol et al., 2003). Measurements and estimates vary, but it is thought that 

the threshold is likely to vary according to tissue type, dependent on the level of energy 

requirement or tissue specific nuclear gene expression; it has been recently shown that 

for mtDNA deletions the extra-ocular muscles have a significantly lower threshold for 

expression of an OXPHOS defect than skeletal muscle (Greaves et al., 2010), though no 

difference in threshold for point mutations.  

This issue will be discussed in greater detail with regard to m.3243A>G in Chapter 4 

and single-large scale mtDNA deletions in Chapter 5. 

1.2.4. Segregation 

As a result of continuous replication, segregation of mtDNA mutations is possible in 

both mitotic and post-mitotic tissues. Random segregation was proposed to explain the 

observed tissue specific segregation in many mutations (Macmillan et al., 1993), though 

there is evidence that segregation is not random (Raap et al., 2012), and specific tissues 

demonstrate consistent alteration from the average heteroplasmy level of an individual, 

for instance in m.3243A>G mutation tends to be highest in muscle and urine and lower 

in buccal mucosa, hair, and blood (Chinnery et al., 1999). Specific nuclear encoded 

mitochondrial proteins that affect this segregation are beginning to be identified, for 

example the GIMAP3, an outer mitochondrial membrane GTPase (Jokinen et al., 2010). 

This issue will be considered in more depth in Chapter 4 in relation to the m.3243A>G 

mutation, particularly with regard to the dynamic change of heteroplasmy through the 

life of patients in different tissues. 

 



Chapter 1 Introduction  

16 

 

1.2.5. Inheritance 

Inheritance of mtDNA is thought to be strictly maternal, though there is one 

documented case of an inherited paternal mtDNA deletion (Schwartz and Vissing, 

2002). Destruction of sperm mitochondria is thought to occur post-fertilisation by 

proteasomal degradation (Sutovsky et al., 2000) though autophagy has also been 

demonstrated (Al Rawi et al., 2011), and more recently pre-fertilisation degradation has 

been proposed (Luo et al., 2013). 

The mtDNA in oocytes arise from primordial germ cells, which have been shown to 

have a very low number of mtDNA molecules, around 200 (Jenuth et al., 1996; Cree et 

al., 2008) . This is thought to cause what is termed a ‘genetic bottleneck’; the restriction 

and then re-amplification of mtDNA leads to random shifts of heteroplasmy from one 

generation to the next, observable in the variability of heteroplasmy in the children of 

mothers with pathogenic mtDNA mutations (Taylor and Turnbull, 2005). 

1.3. Mitochondrial disease 

1.3.1. mtDNA mutations 

mtDNA mutations are prevalent, causing disease in at least 1 in 5000 people and 

estimated to be present asymptomatically in at least 1 in 200 live births, whilst de novo 

mutations are thought to occur in at least 1 in 1000 live births (Elliott et al., 2008). 

Current treatment options are limited (Pfeffer et al., 2012) and clinical care is generally 

focussed on management of complications (Horvath et al., 2008). 

The mitochondrial genome is thought to be significantly more vulnerable to mutation 

than the nuclear genome for a number of reasons, including the proximity to ROS 

produced from the ETC, the lack of protective histones for the DNA, and fewer repair 

mechanisms than for nuclear DNA. It is estimated that the mutation rate of mtDNA is 

ten times that of nuclear DNA (Brown et al., 1979). 

Recent research into mtDNA mutation have shown that levels of mutation are often 

surprisingly low even in aged individuals, indicating that repair or degradation 

mechanisms of damaged mtDNA are more robust than previously thought (Shokolenko 

et al., 2009). These mechanisms are entirely nuclear in origin, and include base excision 

repair, single-strand break repair, and mismatch repair (Kazak et al., 2012), and there is 

also evidence of homologous recombination after double-strand breaks (Bacman et al., 

2009; Fukui and Moraes, 2009) (though the possibility of mtDNA recombination is 

hotly disputed (Stewart et al., 2008a)). In spite of this, however, the human 
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mitochondrial genome still has a high mutation rate, and deleterious mutations 

associated with disease are the focus of this particular work. Other mutations, such as 

somatic mutations accumulated through life and associated with ageing, or those 

encountered as ancient regional variations in the human population, are also frequent 

and important areas of research (Wallace, 2010).  

1.3.1.1. mtDNA point mutations 

Point mutations are single base pair substitutions in mtDNA, and were first identified as 

a cause of clinical disease in 1988 when Wallace et al. associated a mtDNA point 

mutation with Leber’s hereditary optic neuropathy (LHON) (Wallace et al., 1988). The 

m.3243A>G related to MELAS was identified shortly afterwards (Goto et al., 1990b; 

Kobayashi et al., 1990), along with the m.8344A>G mutation associated with MERRF. 

Epidemiological studies have estimated the minimum prevalence of the most common 

point mutation, m.3243A>G, to be 3.65/100,000 (Schaefer et al., 2008) or 16.3 

(Majamaa et al., 1998), though the first of these studies was based on attendance at 

mitochondrial clinic and likely to be a significant underestimate, and the second based 

on identification of patients with moderate to severe neurological symptoms. The most 

recent studies in large groups not a priori identified by symptoms reported prevalence 

of 236/100,000 (Manwaring et al., 2007) and 140/100,000 (Elliott et al., 2008), 

considerably higher than previous estimates. 

Mutations in protein coding genes may be synonymous (resulting in an unchanged 

amino acid coding) or non-synonymous. However, the majority of point mutations are 

identified in tRNA genes, and most inherited mutations are tRNA mutations. Studies on 

inheritance of mtDNA mutations in mice using POLG mutator mice (which cause 

frequent sporadic mutations) followed by backcrossing to wild-type males to remove 

the POLG mutation whilst leaving the existing mtDNA mutations demonstrated that 

most non-synonymous changes in protein coding genes were lost within two 

generations, suggesting strong selection against deleterious mutations (Stewart et al., 

2008b). Other studies have also demonstrated similar findings (Fan et al., 2008). Elson 

et al. speculated that the most pathogenic mutations (with the most pronounced 

biochemical defect) would be sporadic rather than inherited, and found that though the 

mutation threshold for respiratory chain deficiency in muscle was not associated with 

inheritance, there was a clear difference in blood, where sporadic mutations were 

generally undetectable (Elson et al., 2009). 
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The most common point mutation is the m.3243A>G mutation; however this mutation 

is the focus of Chapter 4 and will not be discussed further in this introduction. However, 

several other mutations will be discussed briefly. Figure 1.4 depicts the position of 

several known mutations on the mitochondrial genome. Though rare, multiple 

pathogenic point mutations in patients have been reported (Nakamura et al., 2010). 

The m.8344A>G mutation in tRNA
Lys

 is most commonly associated with MERRF 

syndrome (myoclonic epilepsy with ragged red fibres) and was first identified in 1990 

in association with this syndrome (Shoffner et al., 1990; Yoneda et al., 1990). The 

mutation was demonstrated to cause a severe reduction in protein synthesis (Chomyn et 

al., 1991; Yoneda et al., 1994).The mutation is in the TΨC loop of the tRNA, and has 

been shown to cause a loss of the usual taurine modification of the uridine wobble-

position anticodon; this is thought to weaken the codon-anticodon binding and thereby 

impede protein translation, as it has been shown to lead to the tRNA being unable to 

translate it’s cognate codon and leads to ribosomal stalling (Yasukawa et al., 2000a; 

Yasukawa et al., 2001). It does not appear to cause mistranslation of non-cognate 

codons. MERRF is a multi-systemic disorder, characterised by myoclonus, but patients 

demonstrate a wide range of neurological defects such as ataxia, generalised epilepsy, 

weakness, and dementia. 80% of patients with MERR F syndrome carry the 

m.8344A>G mutation. It has recently been suggested that the m.8344A>G mutation is 

more aptly named myoclonic ataxia than myoclonic epilepsy as this seems to be the 

more common phenotypic presentation (Mancuso et al., 2013a). 

Though tRNA mutations are more commonly observed, there are some relatively 

common mutations in protein encoding genes, for instance in the ATPase subunit 6 

gene (MT-ATP6). Mutations in this gene include the m.8993T>G mutation usually 

associated with NARP (neuropathy, ataxia, and retinitis pigmentosa) (Schon et al., 

2001), though it has also been associated with Leigh’s syndrome, a devastating infant 

onset progressive neurological disorder resulting in childhood mortality, with necrotic 

lesions of the brain stem, basal ganglia and thalamus observed post mortem (Leigh and 

Thompson, 1951). Other mutations in this gene associated with Leigh’s syndrome are 

m.9176T>G (Carrozzo et al., 2001) and m.9176T>C (Thyagarajan et al., 1995). 

Most (> 95%) of mutations that lead to Leber’s hereditary optic neuropathy (LHON) 

occur in Complex I subunit genes, for instance MT-ND1 (m.3460G>A), MT-ND4 

(m.11778G>A) and MT-ND6 (m.14484T>C), which all cause loss of retinal ganglion 
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Figure 1.4 Point mutations associated with disease.  

Point mutations and the associated disease phenotypes are shown, connected by an arrow to their associated gene. Abbreviations: LHON – Leber’s hereditary optic neuropathy. LS - 

Leigh syndrome. MELAS - mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. MERRF – myoclonic epilepsy and ragged red fibres. MIDD – maternally 

inherited diabetes and deafness. MILS – maternally inherited Leigh syndrome. NARP – neurogenic muscle weakness, ataxia, retinitis pigmentosa. PS – Pearson’s syndrome.
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cells in the optic nerve, leading to sudden acute or sub-acute visual loss (Chinnery et al., 

2000b). 

1.3.1.2. mtDNA rearrangements 

There are two major forms of mtDNA rearrangement that have been considered in a 

disease context, mtDNA deletions (molecules with missing sections of genetic 

material), and duplications (molecules with extra repeated genetic information). 

1.3.2. Single large-scale mtDNA deletions 

Single-large scale mtDNA deletions are a common cause of mitochondrial disease, and 

are generally found at heteroplasmic levels in multiple tissues of an affected individual. 

Such deletions are found throughout the mitochondrial genome though predominantly 

within the major arc (between the two origins of replication, as shown in Figure 1.2). 

Deletions vary in size, but the most frequently reported is the so called ‘common 

deletion’ of 4,977bp extending from base 8,470 in MT-ATP8 to base 13,477 in MT-

ND5, flanked by a 13bp direct repeat (Zeviani et al., 1988). 

It was long thought that deletions were most likely to occur through errors in mtDNA 

replication (Shoffner et al., 1989), though the proposed mechanism requires unprotected 

single-stranded DNA and, as discussed in section 1.1.9, this is not thought to occur. 

Additionally, mitotic tissues, where mtDNA replication proceeds at a faster rate than 

post-mitotic, should be expected to demonstrate faster accumulation of deleted species, 

however deletions are rarely found in mitotic tissue such as the colon (Taylor et al., 

2003) but are much more commonly found in post-mitotic tissue such as muscle and the 

brain, and have been shown to accumulate with age (Cortopassi et al., 1992; Melov et 

al., 1995; Kraytsberg et al., 2006). More recently a mechanism based on errors during 

repair of double-stranded breaks has been proposed, caused by direct homologous 

repeats on either side of the break, which is consistent with the pattern of deletions 

found in tissues and ageing (Krishnan et al., 2008) and also with the flanking of most 

deletions by direct repeats (Samuels et al., 2004).  

Though common, deletions are generally thought not to be inherited through the 

germline, though there is an isolated report (Shanske et al., 2002).  

Disease associated with single large-scale mtDNA deletions are discussed in depth in 

Chapter 5. 
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1.3.3. Multiple deletions 

Multiple mtDNA deletions are also found, as a secondary effect of nDNA mutation, and 

are discussed in section 1.3.5. 

1.3.4. Duplications and dimers 

A second major class of rearrangement are mtDNA duplications, which have been 

associated with disease in patients with myopathy and multisystemic features (Poulton 

et al., 1989; Rotig et al., 1992; Poulton and Holt, 1994; Martin Negrier et al., 1998). 

However, it has been shown that the disease state of an individual is generally governed 

by the presence of mtDNA species with deletions and that duplications are most likely 

to not exhibit pathological effects (Manfredi et al., 1997). Duplication dimers, 

consisting of repeated deleted mtDNA species, are also reported (Brockington et al., 

1995; Jacobs et al., 2004), though the pathogenicity of these are thought to be the same 

as duplication monomers. 

1.3.5. Nuclear DNA mutations 

Of the estimated 1500 proteins that functionally make up the mitochondrion, the 

mitochondrion itself encodes merely thirteen; the nuclear genome encodes the 

remainder (Zhu et al., 2009). Mutations in these genes are responsible for a great 

number of disease phenotypes. There are over 80 genes in the OXPHOS complexes 

alone, and many others with a critical role in assembly, catalytic regulation, stability, 

and maintenance of the complexes and supercomplexes (Vartak et al., 2013) with novel 

contributors being recognised at a progressive pace (Ikeda et al., 2013). 

The nuclear encoded mitochondrial replication enzymes are a critical breakpoint in 

mitochondrial function. Mutations in the POLG and PEO1 genes encoding the POLG 

cayaltyic subunit and TWINKLE helicase respectively are associated with a spectrum of 

disease caused by transcriptional defects including multiple deletions and point 

mutations that are found in affected tissues, which commonly present as chronic 

progressive external ophthalmoplegia (CPEO) (Hudson and Chinnery, 2006; Fratter et 

al., 2010; Wallace, 2010). Pathogenically low levels of mtDNA are observed in patients 

with POLG mutations that lead to Alpers-Huttenlocher syndrome (Davidzon et al., 

2005) or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), caused by 

mutation in the TYMP gene for thymidine phosphorylase (Nishino et al., 2001). This is 

known as mtDNA depletion. TWINKLE mutations are also associated with mtDNA 

depletion (Sarzi et al., 2007), though they are more commonly associated with the 

CPEO phenotype.  
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Mutations in genes related to mitochondrial dynamics are also a known cause of 

disease, for instance OPA1 which encodes a protein with a critical role in mitochondrial 

fusion is named from its association with autosomal dominant optic atrophy (Delettre et 

al., 2000). 

This is a very brief overview of just a small number of known nDNA encoded 

mitochondrial proteins that have known associations with disease; though this thesis is 

focussed on mtDNA mutation, it is important to acknowledge that the nuclear genome 

is a deeper and broader source of mitochondrial disease. 

1.3.6. Phenotype and progression of mtDNA disease 

The phenotypic presentation of mtDNA disease is highly variable; part of this 

variability has long been attributed heteroplasmy (Ciafaloni et al., 1991), though 

specific mtDNA mutations are also associated with certain characteristic clinical 

phenotypes, such as the m.3243A>G mutation with MELAS or MIDD (maternally 

inherited diabetes and deafness), m.8344A>G with MERRF, and single large-scale 

deletions with CPEO, Kearns-Sayre syndrome (KSS) and Pearson’s syndrome (PS). 

However, the links between genotype and phenotype are not exclusive and frequently 

overlap; MELAS is associated with a host of other mutations, as indeed are MERRF, 

MIDD, and CPEO, which in particular is associated with a variety of mutations, both 

deletions, point, mutations, and nuclear defects. 

The variety of clinical symptoms reported in mitochondrial disease is vast; myopathy 

and cardiomyopathy are common, as are neurological features such as cerebellar ataxia 

and epilepsy, but there are few if any organs or systems that are not reported as affected 

by mtDNA disease in some form. This heterogeneity is a problem for clinical diagnosis 

(McFarland and Turnbull, 2009). 

Though universally recognised as clinically progressive (Zwirner and Wilichowski, 

2001; Arpa et al., 2003; Taylor and Turnbull, 2005; Majamaa-Voltti et al., 2006; 

Whittaker et al., 2007; Horvath et al., 2008; Coku et al., 2010; Chen et al., 2012), 

disease progression in patients with mtDNA mutation is little understood, both in terms 

of the likelihood of development of specific system involvement, or the rate of 

progression of the burden of disease on patients.  

Discussion of the phenotypic presentation of the mutations studied in this thesis will be 

considered in detail in chapters devoted to each mutation.   
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1.4. Data sources 

1.4.1. The MRC Mitochondrial Diseases Patient Cohort Study UK 

The Mitochondrial Diseases Patient Cohort Study UK is a large cohort of living patients 

with genetically and/or biochemically confirmed mitochondrial disease. It is the largest 

such cohort globally, and is funded by the Medical Research Council (MRC) Centre for 

Translational Research in Neuromuscular Diseases. Symptomatic adults and children 

comprise the majority of the cohort, but there are additional asymptomatic individuals 

who have requested genotyping (usually due to a family history) and have proved 

positive. All individuals are phenotypically characterised in out-patient clinics, on the 

basis of examination, clinical history, and detailed investigation. 

This patient cohort forms the basis of the studies conducted for this thesis. 

1.4.2. The NHS Specialised Services for Rare Mitochondrial Diseases 

The NHS Specialised Services for Rare Mitochondrial Diseases is situated in Newcastle 

upon Tyne. A large part of the diagnostic tissue, samples, and genetic information used 

in this work have been provided by the service. 

1.5. The NMDAS 

The Newcastle Mitochondrial Disease Adult Scale (NMDAS) was published in 2006 as 

a semi-quantitative rating scale to monitor mitochondrial disease (Schaefer et al., 2006). 

It is a clinically validated tool, that has been extensively used both at our centre 

(Apabhai et al., 2011; Bates et al., 2012b; Lax et al., 2012) and other specialist 

mitochondrial centres (de Laat et al., 2012; Enns et al., 2012; Orsucci et al., 2012; 

Yatsuga et al., 2012; Kornblum et al., 2013; Mancuso et al., 2013b). The NMDAS 

permits quantitative analysis of both general and system-specific disease progression 

and has already been used in assessment of clinical progression in patients with the 

m.3243A>G mtDNA mutation, although this was not a longitudinal study (Whittaker et 

al., 2009).  The Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) is a 

similar scale used to monitor paediatric mitochondrial disease patients (Phoenix et al., 

2006). 

Development of the NMDAS was prompted by success of other similar assessments for 

other mainly neurological conditions, such as those developed for Parkinson’s Disease 

(Ebersbach et al., 2006). It was developed to meet several key objectives; (1) to reflect 

the multi-dimensional nature of mitochondrial disease, (2) to monitor both the progress 

of the underlying dysfunction and the functional impact of the dysfunction (3) to allow 
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input from multiple sources, including the patient, carer, clinician, and clinical records 

(4) to be concise and straightforward to complete. To achieve this aim, the test 

comprises 4 sections, or domains; I, which assesses current function; II, which measures 

system specific involvement; III, which is a current clinical assessment; and IV, a 

quality of life survey. 

Sections I to III are made up of several questions, each scoring from 0 (no involvement) 

to 5 (severe involvement). Section I comprises 10 questions assessing current function, 

and is in the main concerned with the impact of disease on the daily life and functions 

of the patient. Section II comprises 9 questions assessing system specific involvement, 

including neurological, respiratory and the cardiovascular system. Section III comprises 

10 questions to summarise a general and neurological clinical examination, including 

three cognition tests to generate a combined cognition score. The final section of the 

assessment comprises the SF-12v2 quality of life survey (Ware et al., 1996). The 

NMDAS questionnaire can be found in Appendix I. 

1.6. Aims 

From a clinical care perspective, it is vital to improve understanding of the progression 

of disease in patients with mtDNA disorders, in order that management of the disease 

can be tailored to patient needs, and care and monitoring be pre-emptive rather than 

reactive. Thus the overarching aim of this study is to improve understanding of the 

clinical progression of disease associated with mtDNA mutations.  

To achieve this aim, I chose to study the mutations that are most prevalent in the cohort 

of adult patients regularly monitored in the Newcastle National Commissioning Group 

(NCG) Mitochondrial Disease Service. These are the patients carrying the m.3243A>G 

mutation and the patients with single large-scale mtDNA deletions.  

There were two main focal points in the study of each patient group. The first was to 

improve understanding of the progression of total disease burden of patients, as 

measured by the score achieved on the NMDAS assessment. The second was to 

improve understanding of the development and progression of individual phenotypic 

features associated with each of these mutations, using the individual features examined 

in the NMDAS assessment. For both of these foci I aimed to investigate not only the 

predicted progression over time, using age as a predictor of disease burden, but also 

genetic factors which influenced the progression of disease in patients.
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 Statistical methodology Chapter 2.

2.1. Introduction 

The use of statistics in medical and biomedical fields is widely accepted as a powerful 

and necessary tool in the scientific research process. Statistical methods have been 

derived specifically to address the needs of researchers (Altman, 1981; Altman, 1982; 

Altman et al., 1983), along with guidelines developed for reviewers of statistical 

publications to ensure high standards of peer review (Gore et al., 1992; Altman, 1998; 

Goodman et al., 1998; Altman et al., 2002). However, there is a consensus that 

statistical reporting in medical journals is of low standard, with frequent erroneous use 

of statistical methodology and reporting (Gore et al., 1977; Gardner et al., 1983; 

Andersen and Forrest, 1987; Dar et al., 1994; Porter, 1999; Gardenier and Resnik, 2002; 

Nagele, 2003; Marshall, 2004). Misuse of statistics is unethical and has the potential to 

lead to serious clinical consequences (Strasak et al., 2007). 

As this thesis is focussed on using statistical methodology to understand mitochondrial 

disease, this section will give a brief overview of all the statistical methods employed 

throughout this study. The less familiar statistical techniques will be discussed in more 

detail. 

2.2. Basic statistical techniques 

Basic statistical approaches can be classified into two broad categories of approach, 

parametric and non-parametric. The majority of parametric tests are suitable for use 

with data that is normally distributed. The t-test is ubiquitous and is the basic parametric 

test used throughout statistical analysis. Non-parametric approaches to analysis are 

subject to less stringent criteria regarding the shape or form of the data, but are also 

generally less powerful than the equivalent parametric test. The non-parametric 

equivalent of the t-test is the Mann-Whitney U test. Note that there are still assumptions 

associated with the Mann-Whitney U test; the data must be ordinal for instance. 

Additionally, all observations must be independent. 

2.2.1. Linear regression 

Linear regression is at the heart of many parametric statistical analysis techniques. The 

principles of linear regression are taught from an early age in school (the concept of the 

line of best fit, or regression line). Computational methods for deriving the regression 

line and quantifying the variability of data are more advanced. An understanding of 
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linear regression is a vital foundation for understanding the more complex statistical 

techniques used in this study. 

Figure 2.1 illustrates an example of linear regression (or simple linear regression), and 

defines the residual, which is the distance of each data point from the regression line. 

Residuals allows us to calculate R
2
, the coefficient of determination, a measure of how 

well the model (regression line) fits the data; it is defined by summing the squares of the 

residuals in the fitted model, summing the squares of the residuals without fitting the 

model (so the differences from the average y value), and taking the ratio of these 

quantities. It is subtracted from 1 to give a value that is 1 for perfect correlation and 0 

for no correlation. Mathematically, R
2
 is also equal to the square of the Pearson’s 

correlation coefficient. 

 
Figure 2.1 Example of linear regression. 

The regression line (blue) is shown. The residual for each point, the vertical distance from the regression 

line, can be calculated. Computational methods for regression calculate the regression line by Ordinary 

Least Squares (OLS), which positions the regression line such that the sum of the squares of the residuals 

is minimized.  

2.3. Multiple regression 

Linear regression can be extended to encompass more than one predictor. This is 

difficult to visualise, as it requires a dimension for each predictor (or X). However, the 

principles of regression are the same as for simple linear regression; for two predictors 

the line of regression becomes a plane of regression in a total of three dimensions, with 

three predictors we would need to visualise a four dimensional space, and so on. 
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2.4. General linear model (GLM) 

The t-test is the simplest test for comparison of the difference between the means of two 

groups. ANOVA is the extension of the t-test to multiple groups. The general linear 

model (GLM) subsumes the t-test, linear regression, ANOVA, and several other related 

statistical techniques such as ANCOVA, MANOVA, and MANCOVA into a single 

umbrella analysis; this is possible as they are all based on the same basic linear 

modelling principles. The general linear model can be written as shown in Equation 2.1. 

where y is the vector of observations of the dependent variables(s), X is the vector of 

observations of the predictors,   is the design matrix (that we are estimating with our 

model), and   is the vector of random errors. 

       

Equation 2.1 General linear regression (GLM). 

y is the vector of observations of the dependent variables(s), X is the vector of observations of the 

predictors,   is the design matrix (that we are estimating with our model), and   is the vector of random 

errors. 

 

GLM assumes that the errors in   are independent and normally distributed, with a 

mean of zero. Note that   and X are one larger than the number of dependent variables 

in the model as they include the intercept term of the model. 

For many analyses, there is only one dependent variable, in which case y,  , and   are 

vectors. For multivariate analysis (so the extension of MANOVA and MANCOVA) 

these become matrices.  

2.5. General linear mixed model (GLMM) 

General linear mixed models, also known simply as mixed models, are statistical 

models that incorporate both fixed effects and random effects. A major development 

that separates mixed modelling from its predecessors is that it allows for modelling of 

observations that are not independent, by incorporating into the model the correlation 

structure of the errors. They are particularly useful in situations where repeated 

measurements are taken from the same observation subject (Macchiavelli and Moser, 

1997). 

The mathematical description of the mixed model is shown in Equation 2.2. 
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Equation 2.2 General linear mixed model (GLMM).  

  and   are vectors of fixed effect and random effect regression parameters respectively which are to be 

determined,   and   are matrices relating the observations   to   and  , and   is a vector of normally 

distributed errors with zero mean and equal variance. 

This model has two critical qualities; the (potentially) correlated random effects 

described by   , and the fact that the rows of the vector   are not required to be mutally 

independent as for traditional regression, but can be structured to allow covariance 

between errors. This allows repeated measures analysis to be performed.  

In contrast to GLM, mixed models are fitted using a maximum likelihood approach, 

which unlike least squares methodology is robust in the case of missing data where 

multiple recordings are made from subjects (Moser, 2004). Principal assumptions of 

GLMM are the normality of residuals  , which can be checked by residual diagnostics, 

and the homogeneity of variance across between-subject factors (homoscedacity) 

(Chiarotti, 2004). 

Mixed models are extensively used in biostatistical studies and many other fields as 

they permit a flexibility of model that cannot be achieved by GLM or ordinary linear 

regression (Wolfinger, 1997). The approach has been widely used to understand disease 

progression in many neurodegenerative conditions including dementia (den Heijer et 

al., 2010; Galvin Je and et al., 2005; Hassing et al., 2004; Johnson et al., 2009; 

Knopman et al., 2009; Tornatore and Grant, 2002), Parkinson’s disease (Dobkin et al., 

2011; Johnson and Galvin, 2011; Nandhagopal et al., 2009; Vu et al., 2012) and 

Multiple Sclerosis (Meier et al., 2007). 

2.5.1. Repeated measures 

A key characteristic of the cohort data is that it is longitudinal. Repeated measures is 

used to describe data composed of multiple observations of the same sampling unit. 

Usually it is the case that repeated observations are correlated, and this correlation must 

be incorporated into the linear model for appropriate inferences to be made (Littell et 

al., 2000; Moser, 2004). 

2.5.2. Fixed and random effects 

Random effects allow modelling in which experimental data can be considered samples 

from a larger population. As an example, in a drug trial of two drugs A and B, the effect 

of the drug is a fixed effect, whereas variation attributable to individual patients is 
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considered a random effect. This distinction is important in order to correctly estimate 

variation in the model (Laird and Ware, 1982). 

In a model incorporating random effects the observations are no longer independent, 

even if the errors are, since all observations are dependent on a shared set of random 

predictors.  

For fixed effects we are generally concerned with estimating means, whereas for 

random effects we are not generally interested in specific differences in means between 

one factor and another, but how much variance in the dependent variable can be 

explained by the random factor. 

2.5.3. Covariance structure 

Traditional repeated measures analysis is designed to deal with experimental design that 

has an equal number of measurements taken for each subject at equivalent intervals. The 

data used in this study are considerably more complex in form; data for each subject 

have a generally unique temporal layout, depending on when patients are assessed in 

clinic, and the number of data points available varies considerably. 

The most appropriate covariance structure for such data is a spatial power structure 

(Moser, 2004), the simplest of which, denoted in SAS as SP(POW), can be written as 

Equation 2.3. 

   (        )      
    

Equation 2.3 Spatial power covariance structure. 

  indexes the subjects,   indexes the time points,    is the common variance of the error terms,      is the 

temporal distance between two data points (measured in arbitrary units of years), and   is the correlation 

parameter to be determined.  

2.5.4. Model selection 

The prime imperative of model selection is that the model structure is representative of 

the data and appropriate for the objectives of the model (Diggle, 1988; Lindsey, 1993). 

Secondly, modelling assumptions (normality of residuals, indicator variable 

independence) should be verified. Many graphical approaches used in other modelling 

approaches common to ordinary regression are applicable, including influence and 

residual diagnostics (Christensen et al., 1992). 
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2.5.5. Assessing model fit 

There is no simple objective measure of model fitness for GLMM. However, the 

likelihood based approach provides several useful measures for assessing model fitness, 

such as Akaike’s Information Criterion (AIC) (Akaike, 1974) or Bayesian Information 

Criterion (BIC) (Schwarz, 1978). All such measures utilise the log likelihood and 

penalize in some way to promote model parsimony. AIC is generally used where model 

accuracy of prediction is considered more important than how well the model represents 

the true underlying data structure (Macchiavelli and Moser, 1997). In the model 

evaluation in this thesis a pragmatic approach was taken to use both AIC and BIC where 

they agreed on model preference, and AIC where they did not (Kuha, 2004). It should 

be noted that the lower the AIC or BIC the better the model describes the data. The AIC 

can be used for comparing non-nested models as long as the likelihood estimation 

procedure considers both fixed effects and random effects, i.e. it uses ML (maximum 

likelihood) not REML (restricted or residual maximum likelihood) (Kreft and de Leew, 

1998). 

Generation of a mixed effects model is a multi-step process involving iterative changes 

to fixed effects, random effects and covariance structure, with repeated re-testing of 

previously optimised model choices. 

2.5.6. Restrictions 

Multicollinearity occurs where two correlated fixed effects are included in a model 

together. This must be avoided in model specification, as it leads to imprecise 

estimations and inflated variance of parameter estimates (Silvey, 1969; Wißmann et al., 

2007). Independence of model effects must be verified. 

2.6. Key concepts in statistical analysis 

Many critical considerations of statistical modelling apply to a number of modelling 

approaches including linear regression, GLM, or mixed modelling. In all cases, the task 

of the modeller is to ensure that the model fits the data appropriately and that any 

modelling assumptions are not severely violated, so that reliable inferences can be made 

from the outputs of the model. 

2.6.1. Residuals diagnostics 

Analysis of the residuals from a fitted model is vital to assess whether a model is 

appropriate for the data, and they must meet certain requirements. At a basic level, 

residuals should be compared against the predicted value and each of the predictors, to 
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ensure that there are no trends in the data that show the residuals are not independent. If 

residuals are ill formed then the model needs to be revised. A common approach to 

address such issues would be transformation of the dependent or independent variables, 

discussed in 2.7, in order to improve the linearity of the data.  

2.6.2. Influence and leverage 

Leverage is a measure of how much a change in a data point’s y value will change the 

outcome of a regression. Each point has an associated leverage. High leverage points 

are those that are far away from the average x value.  

Influential data points are those that would result in a significantly changed outcome if 

they were omitted from the calculation. Influential data points will tend to have high 

leverage, but high leverage points are not necessarily influential; if the points happen to 

lie on or near the line of regression that fits all the other points in the data set then the 

influence will be small, despite high leverage. Influential points are those that have high 

leverage but also do not fit the pattern of the other data points very well.  

Looking at residuals does not necessarily reveal influential points, since an outlier at a 

position of high leverage will tend to drag the regression line towards it strongly, which 

masks the effect. Thus specific influence and leverage analysis needs to be carried out. 

The Cook’s distance (Cook’s D) statistic (Cook and Weisberg, 1982) is useful in 

influence diagnostics. Cook’s D for each point is calculated by measuring the effect of 

removal of the point on the errors of the other points in a regression. 

Points with high influence need to be carefully considered, as removal from the model 

may be warranted. 

2.7. Data transformation – Box-Cox analysis 

The most powerful modelling techniques currently available generally rely on a linear 

relationship between independent and dependent variables. However, it is rare for actual 

data, biological or otherwise, to exhibit a direct linear relationship. Non-linear 

modelling techniques are possible and frequently employed, but often the simplest and 

most powerful approach is to attempt to transform the data so that a non-linear 

relationship can be analysed using linear techniques.  

Box-Cox analysis is a specific approach of power transform that is commonly used in 

statistical analysis (Box and Cox, 1964). In essence, Box-Cox analysis is used to find 

the transformation of the dependent variable (either a power, e.g. y
2
 or y

3.5
, or the log 
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transformation) that minimizes the variance of the dependent variable when regressed 

against the independent variable(s). A result of this variance minimization is usually a 

reduction in skew or other distributional features that complicate analysis, and thus 

tends to produce data that is more normal in distribution. 

Box-Cox is by no means a panacea, and will fail to find a suitable transformation where 

no simple transformation is optimal. Additionally, it is of limited use in situations where 

the variance in the model is truly heteroscedastic (Sakia, 1992).  

2.8. Logistic regression 

Linear regression, GLM, and mixed modelling are all restricted to dependent variables 

that are continuous; discrete data cannot be analysed with such techniques. Discrete data 

is commonly encountered however, whether in the form of yes/no binary data, or data 

on a discrete and limited scale, such as the responses to individual questions of the 

NMDAS which have a 6 point (0 to 5) scale. 

Logistic regression is useful for analysis of such data. In contrast to linear regression, 

where coefficients are determined for the linear relationship between predictors and the 

outcome variable, in logistic regression parameters are determined that define the 

probability of an event occurring, e.g. for a given set of predictors the probability of the 

response variable being ‘yes’. The link between the predictors and the outcome is no 

longer linear but defined by the logistic function, which can be written as seen in 

Equation 2.4 for a logistic regression with one predictor: 

           
 

            
 

Equation 2.4 Logistic regression. 

 

Though superficially mathematically more complex than the equation         , 

which is solved for linear regression, the mathematical principles for identifying 

parameters are the same, and involve estimating the optimal parameters ( ). 

Similar to mixed modelling, maximum likelihood estimation is generally used to solve 

the equations to find the optimal parameters, which is an iterative procedure that begins 

with a tentative solution and iteratively tests solutions until convergence is achieved 

(any change in the estimated parameters results either in a poorer solution or one that is 

better by a negligible amount).  
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Logistic regression has an intuitive interpretation, in that the parameter for each 

predictor is the log of the odds ratio for a unit change in the predictor variable.  

2.8.1. Assessing model fit 

Similar to mixed modelling, the goodness of fit of a model can be analysed using the 

likelihood function, and the Akaike Information Criteria (AIC) provides a method for 

assessing the effectiveness of model fit whilst controlling for the number of parameters 

in the model (Akaike, 1974). 

Dichotomous models can also be evaluated by using the ROC (receiver operating 

characteristic) curve (Hastie et al., 2009). The area under the ROC curve (AUC) has a 

simple interpretation; the AUC is the probability that the regression result for a 

randomly selected affected individual will be greater than that of a randomly selected 

unaffected individual. Thus a poor regression has an AUC of 0.5, as this is no better 

than chance, and a perfect regression an AUC of 1.  

2.8.2. Coefficient of determination (R
2
) 

There is general consensus about the use of the coefficient of determination (R
2
) in 

ordinary least squares (OLS) multiple regression to describe the proportion of explained 

variance in a model. However, this is not the case in logistic regression. The problem 

occurs because in OLS there is only one reasonable measure of residual (unexplained) 

variance, the sum of squares of the deviations from predicted values. For logistic 

regression the situation is not so simple, as we have several ways to measure deviation 

(squared difference, entropy,  qualitative difference) which are not mathematically (i.e. 

calculated the same way) or conceptually the same (Efron, 1978). There are also two 

very different ways of looking at the outcome of the model; either consideration of the 

(continuous) predicted probabilities that the model generates, or the accuracy of the 

(discrete) classification of the model. (Menard, 2000). Several pseudo-R
2
 statistics have 

been derived for use in logistic regression, which are discussed by Menard extensively 

(Menard, 2000) and will not be discussed in detail here. However, in agreement with 

several published commentaries on the issue (Menard, 2000; Shtatland et al., 2002) I 

use the pseudo-R
2
 defined by McFadden to compare models (McFadden, 1974) where 

no other comparison was possible.  

2.8.3. Ordered logit and multinomial logistic regression 

Where discrete data has more than two levels there are two approaches to modelling the 

data with logistic regression. Multinomial logistic regression can be used, which 
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requires a set of parameters for each change in level of the dependent variable; for the 

NMDAS data this would require 5 sets of parameters to define the change from each 

level 0 to 4 to the next level. A simpler approach, requiring a much reduced number of 

parameters is to use ordered logit, which makes the assumption of proportional odds 

(McCullagh, 1980); for the NMDAS data, this would mean the odds of scoring 0 vs 1-5 

is the same as scoring 1 vs 2-5, or 2 vs 3-5, etc. This assumption is restrictive and must 

be tested for data conformity, but if the data structure is appropriate it is a statistically 

efficient model for analysing discrete ordinal response data. 

2.9. Generalised linear modelling 

Generalised linear modelling is an extension of mixed modelling that allows non-

identity link functions (linking the predictors to the outcomes) to be used; this opens up 

the possibility of creating models with both fixed and random effects but non-linear 

outcome variables (Nelder and Wedderburn, 1972). For instance, using the logit 

function mixed logistic models can be created, and other link functions extend the 

principles of linear mixed modelling to non-linear modelling. 

2.10. Bootstrapping 

Bootstrapping is a computational method for estimating the accuracy of a sampling 

statistic, first developed by Bradley Efron (Efron and Tibshirani, 1986). It is a simple 

and universally applicable technique for almost any estimation problem and facilitates 

calculation of the accuracy of estimates in situations where the sampling distributions 

are too complex for parametric statistical analysis (Johnson, 2001; Christie, 2004). It is 

one of a set of techniques known more generally as resampling. 

Bootstrapping is particularly useful when we are interested in estimating properties of 

an estimator itself; for example, calculating the accuracy of a measure such as the 

standard error. For illustration, in a particular population we may take a random sample 

of people, measure their heights, and use this to calculate the mean height and the 

standard error. The standard error gives an estimate of the variation of heights in the 

population. However, there is no straightforward statistical way to estimate the accuracy 

of the standard error itself. In this situation, we can use bootstrapping to evaluate how 

accurate the estimate of the population variance is. 

Bootstrapping estimates properties of an estimator by resampling, with replacement, a 

random sample from the original sample. A resample in a bootstrap contains the same 

number of samples as the original sample. For each resample, the relevant estimators 
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(for example sample mean or standard error) are calculated. The set of resampled values 

then gives us an empirical distribution from which we can determine confidence 

intervals for the estimator (or indeed, calculate the standard error of the standard error, 

if the distribution of the estimator is Gaussian). 

Bootstrapping and resampling methodology is used in two contexts in this study. The 

first is in Chapter 3, where bootstrapping is used to estimate the variability in the real-

time assays for measuring mtDNA heteroplasmy and total mtDNA copy number. 

Secondly, it is used several times in Chapter 4, in particular to evaluate which 

measurement of heteroplasmy (blood or urine) best predicts disease progression in the 

m.3243A>G patient cohort. 

The bootstrapping was executed in matlab. The code used can be found in Appendix II. 

  

2.11. General Methodology 

2.11.1. Disease progression modelling 

As several chapters of this thesis use similar statistical methodology, the generic aspects 

of the modelling will be detailed here and referred to in each chapter as appropriate. 

Disease burden analysis utilises the NMDAS assessment scores, as described in section 

1.5. The total NMDAS score is a summary of the disease burden for a patient at a given 

time (assessment date). Though the NMDAS score is actually a discrete scale, in effect 

we can consider it a quasi-continuous scale and thus it can be modelled using 

techniques such as linear regression. The total score of all NMDAS questions was used, 

excepting the score for respiratory function; this was excluded as the scoring system for 

this aspect of the NMDAS is currently under review and the existing scores are not 

considered to reflect the respiratory function of the patients.  

For each analysis, Box-Cox analysis is used to stabilise the variance of the dependent 

variables and to identify optimal transformations of the variables to satisfy assumptions 

of normality,(Box and Cox, 1964) thus enabling the use of parametric testing. Where 

data is already satisfactorily Gaussian in distribution Box-Cox should identify the 

optimal transform as identity. 

For all analyses conducted using the total NMDAS score, Box-Cox analysis has shown 

that the optimal transformation to achieve normality is to take the fourth root of the 
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NMDAS score (NMDAS
0.25

) as the dependent variable. This transformation is used in 

all cases, unless otherwise stated.  

2.11.1.1. Total Disease Burden Basic Statistical Analyses 

For the majority of patients we have several NMDAS assessments recorded. Basic 

analyses assume independence of all data, and thus multiple data for each patient cannot 

be included in basic modelling. Hence, for basic analyses I use a single summary data 

point for each patient, determined by taking the mean NMDAS score and mean age at 

assessment. Basic analyses are conducted using SAS PROC GLM for simple linear 

regression and multiple linear regression.  

2.11.1.2. Total Disease Burden Longitudinal Modelling 

Though basic analyses are useful for a summary understanding of data, longitudinal 

modelling is required for a deeper understanding of disease progression over time. 

PROC MIXED was used for longitudinal mixed modelling using a spatial power 

structure to model covariance of repeated data from the same patient.(Singer, 1998; 

Moser, 2004). Polynomial terms of time up to cubed (time
3
) were included. The Akaike 

Information Criterion (AIC) was used to compare models (Akaike, 1974). Model 

validation included the use of residual, influence, and leverage diagnostics to check 

model assumptions and verify model stability. SAS version 9.2 (Cary, NC) was used 

throughout.  

2.11.2. Statistical reporting conventions 

In all statistical analyses reported in this thesis, the same general conventions are 

adhered to, unless otherwise stated.  

For pre-determined hypothesis testing, significance was determined at P < 0.05, high 

significance at P < 0 .001.  

For multiple regression, I report the standardized coefficient (B) (standardized to have 

unit variance) and significance value (P value) for each parameter estimate, together 

with the number of subjects (N) and the adjusted coefficient of determination (R
2
) for 

the overall regression.  

For simple linear regression I report N, the Pearson’s correlation coefficient (r) and the 

P value.  
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For multiple logistic regression I report N, and the standardized coefficient and P value 

for each parameter estimate. 
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 Methods development Chapter 3.

3.1. Large scale single-mtDNA deletion level measurement assay 

3.1.1. Introduction 

The MT-ND4/MT-ND1 assay was developed for measuring the deletion level, or 

heteroplasmy level, of single large-scale mtDNA deletions (He et al., 2002). For 

diagnostic or prognostic purposes an approximate estimation of the deletion level in 

skeletal muscle homogenate is often sufficient. However, for certain studies a more 

accurate measure of heteroplasmy is required.  Resistance training, for example, has 

been shown to improve muscle oxidative capacity in patients with single large-scale 

mtDNA  deletions (Murphy et al., 2008). This is thought to be the result of activation, 

proliferation, and incorporation of satellite cells; though satellite cells have similar 

deletion levels to the mature muscle cells, the mutations have been shown to be lost 

during the transition from satellite cell to myoblast (Spendiff et al., 2013). It is 

hypothesised that analysis of deletion levels in patients undergoing resistance training 

will reveal lowering of heteroplasmy levels in resistance trained muscles; however, 

sensitive measurement of heteroplasmy in muscle homogenate is a requirement for this 

analysis. 

It has long been known that the MT-ND4/MT-ND1 assay is more accurate at high 

heteroplasmy levels (over 70%) than at lower levels, with an empirically estimated cut-

off of around 30% as a baseline for accurate quantification (Prof Doug Turnbull, 

personal communication). It has also recently been reported that the measurement error 

in real-time PCR (qPCR) is dependent on DNA concentration (Sochivko et al., 2013), 

with empirical error increasing as DNA concentration decreases.  

To date the variation in the MT-ND4/MT-ND1 assay has not been quantified. Accurate 

quantification of this variation is necessary to plan experiments that require subtly 

changes in deletion level to be measured. 

3.1.2. Aim 

The aim of this study is to quantify the variation in the assay with respect to two 

variables, the deletion level (heteroplasmy) of the sample, and the concentration of the 

DNA. 
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3.1.3. Methods 

3.1.3.1.1. Methodological approach 

The methodological approach to the analysis was to repeat each sample the maximum 

number of times possible on a qPCR plate in order to be able to estimate with highest 

accuracy the variability of the assay. Bootstrapping was further used to quantify the 

precision of this variability estimate. 

The accuracy of the assay was then verified with samples of similar deletion level to 

confirm that small changes in deletion level are measurable. 

3.1.3.2. Real-time PCR methodology 

All molecular analyses were performed using total skeletal muscle DNA extracted using 

standard protocols. mtDNA deletion level in muscle homogenate was quantified using a 

validated, multiplex qPCR MT-ND4/MT-ND1 assay (He et al., 2002; Krishnan et al., 

2007).  

Wild-type skeletal muscle DNA from a control subject was used to produce the standard 

curve for each real-time analysis. 

All mtDNA deletion level quantification was performed by Dr Julie Murphy. 

3.1.3.3. Intra-plate variability measurement 

3.1.3.3.1. Study design 

Six patients with a range of previously quantified deletion levels were selected, with 

deletion levels ranging from around 6% up to 80%. All DNA samples were diluted to 

approximately the same concentration on a trial run of qPCR to achieve a target of 

around 20 CTs. These samples were then serially diluted to a range of concentrations to 

achieve final CT values of around 27, 31, and 35 CTs. 

Each plate was made up of 84 replicates; the remaining wells on each 96 well plate were 

used up by no-template controls and serially diluted wild-type total DNA for standard 

curve estimation. 

3.1.3.3.2. Statistical methodology 

Severe outliers, defined as more than 3 times the interquartile range below the lower 

quartile or above the upper quartile, were removed from the data prior to further 

analysis. 
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The standard deviation of the replicates on each plate was calculated. Bootstrapping was 

then used to calculate 95% confidence intervals for the observed standard deviation.   

The standard deviation at high DNA concentration (< 23 CTs) was used to calculate 

minimum detectable differences observable using a two tailed t-test for a range of N 

values at β=0.80 and  α=0.05. 

3.1.3.4. Empirical verification of deletion level 

To confirm the reliability of the assay to measure deletion level changes, 3 different 

samples at a low deletion level (20%-25%) were run on three separate plates. Each 

sample was run with 24 replicates on each plate. This was used to calculate independent 

values for the differences between samples per. The difference between samples 1 and 2 

and the difference between samples 2 and 3 are reported for each plate (samples 1 and 3 

are not compared as this is not an independent comparison, it can be derived from the 

other two differences). 

The same experiment was performed with three samples at high deletion levels (70%-

80%).  

For each pair of samples, the true difference was estimated by taking the mean of all 

replicates on each plate. The deviation for each replicate from this true value was then 

calculated.  

3.1.4. Results 

3.1.4.1. MT-ND4/MT-ND1 assay variability is dependent on DNA concentration 

and heteroplasmy level 

The quantified variation in the assay is depicted in Figure 3.1. As shown in Figure 3.1A, 

for each DNA sample, dilution of the DNA to lower concentration increases the 

variance of the measurement, and heteroplasmy also decreases with increasing 

heteroplasmy. The relationship between heteroplasmy and the assay variation is linear at 

high DNA concentration (below 23 CTs), as seen in Figure 3.1B (r = -0.996, P < 

0.0001). The parameters for the regression equation are found in Table 3.1. 

Whilst Figure 3.1 depicts the data for a selection of the data produced for this study, 

Figure 3.2 depicts all of the data produced, including data at very low DNA 

concentration (> 31 CTs). This illustrates the extreme increase in variation as DNA 

concentration decreases.  
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Figure 3.1 Variation in the MT-ND4/MT-ND1 assay is dependent on heteroplasmy and DNA 

concentration. 

The y axis depicts the standard deviation in absolute percentage points; for example, a 3% standard 

deviation (95% confidence interval approx. ±6%) for a measured 20% heteroplasmy would be 14%-26%. 

(A) Standard deviation of the MT-ND4/MT-ND1 assay as measured for three concentrations of source 

DNA; the average CT of the assay is indicative of the DNA concentration, with the most concentrated 

DNA at lowest average CT. Variance increases with decreasing DNA concentration (increasing CT). At 

each DNA concentration, assay precision increases as heteroplasmy increases. (B) Relationship between 

assay variation and heteroplasmy at low (< 23) CT. Assay precision is linearly related to the heteroplasmy 

level. r = -0.996, P < 0.0001. 

 

Parameter Estimate Std Dev 95% Lower 95% Upper 

Slope -0.03711 0.002468 -0.04234  -0.03188 

Intercept 3.491 0.1225 3.231 3.751 

Table 3.1 Regression coefficients for relationship between assay standard deviation and 

heteroplasmy. 

The estimated value, standard deviation, and 95% confidence intervals are shown for each parameter. 
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Figure 3.2 Relationship between DNA concentration and assay variation at various levels of 

heteroplasmy.  

The y axis is log scaled. At any heteroplasmy level, assay variation increases with increasing CT 

(decreasing DNA concentration). Between 18 and around 28 CTs variation increases slowly at any 

heteroplasmy level. At very low DNA concentrations (above approximately 31 CTs) assay variation is 

extremely high and increases rapidly with average CT. 

3.1.4.2. Verification of intra-plate and quantification of inter-plate variability 

Results for the difference in samples are shown in Figure 3.3. The empirical standard 

deviation for the difference is 3.14% at 20%-25% deletion level and 1.28% at 70%-80% 

deletion level. This can be verified by scrutiny of the figure; the majority of values for 

the deviation at low deletion level are within ±6%, which is an approximate 95% 

confidence interval based on a standard deviation of 2.5%. 

The expected standard deviation for the difference between two deletion levels can also 

be calculated. Using the linear regression coefficients in Table 3.1, at 25% deletion level 

the standard deviation for a single heteroplasmy measure is calculated as 2.56%. Thus 

the standard deviation of the difference of two deletion levels (using the fact that 

variance of the difference of two normally distributed variables is the sum of the 

variances) is calculated as √        3.62%. 
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At 70% deletion level the standard deviation is calculated as 0.89%. The difference of 

two means at this level is, therefore, calculated as √        1.26%. 

The estimate for the inter-plate variation is 0.496% at low deletion level and 0.479% at 

high deletion level, with a pooled estimate of 0.485% using all samples. 

 

 
Figure 3.3 Inter- and intra-plate variability in the measurement of the difference in deletion level 

between samples.  

To confirm the reliability of the assay to measure deletion level changes, 3 samples at a low deletion level 

(20%-25%) were run on three separate plates, 24 replicates of each sample per plate. This was used to 

calculate independent values for the difference between samples. The same experiment was performed 

with three samples at high deletion levels (70%-80%). The graph illustrates the variability in this 

difference; the data is centred by subtracting the best estimate of the actual deletion level difference. The 

mean value for each plate was within 1% of the actual deletion level difference. Variability at high 

deletion level was lower than at low deletion level. 
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Del 

Level 
Standard 

Deviation 

3 5 10 20 

10% 3.12% 9.6% 6.3% 4.1% 2.8% 

20% 2.75% 8.4% 5.6% 3.6% 2.5% 

30% 2.38% 7.3% 4.8% 3.2% 2.2% 

60% 1.26% 3.9% 2.6% 1.7% 1.1% 

80% 0.52% 1.6% 1.1% 0.7% 0.5% 

Table 3.2 Relationship between standard deviation, heteroplasmy levels and sample replicates.  

For the given number of replicates, this table indicates the minimum detectable heteroplasmy difference.  

3.1.5. Discussion 

Severe outliers were removed from the data prior to further analysis. Though this may 

seem questionable considering the assay variability is under investigation, this was 

considered an appropriate pre-filter, in order to eliminate wells which were clearly 

erroneous. A basic interpretation of an outlier taught in many high school textbooks is 

based on points more than 1.5 times the interquartile range below or above the data 

quartiles; using a cut-off of 3 times the interquartile range makes the test much more 

liberal but avoids severely erroneous points being included in the analysis. 

The results in section 3.1.3.4 show that the calculated standard deviation for the 

difference between two samples at high deletion levels (1.26%) is very close to the 

empirical level (1.28%). However, at low deletion level the empirical value (3.14%) is 

somewhat lower than the calculated value of 3.62%. The reason for this unexpected 

precision is unknown, but the value is not sufficiently different from the expected value 

to cause concern. 

The estimate for the inter-plate standard deviation is low, under 0.5%. This implies that 

the advantage to be gained from running repeat plates for a given result is minimal. 

The results from this analysis are important in two respects. Firstly, it has quantified for 

the first time the variability in this assay, and decisions can be made on the number of 

replicates required to precisely estimate deletion level. Many researchers use three 

replicates in any qPCR estimation as a matter of course; it is clear from this analysis 

that this approach is not valid at either low deletion level or low DNA concentration. 

There are limitations to be acknowledged. Though we studied the inter-plate variation, 

this aspect of the study was not comprehensive as only three plates were run for each 
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investigation (six plates in total). It would be desirable to measure this more precisely to 

be confident that a single real-time PCR plate is sufficient to accurately quantify the 

heteroplasmy to a given required precision. Additionally, the linear regression provided 

guidelines for quantification of the variation only for concentrated DNA. The same was 

not done for lower DNA concentrations; however, rough estimates can be obtained by 

interpreting the data from the graphs.  

3.1.5.1. Theoretical basis for the variation in the assay with heteroplasmy level. 

The increasing variability of the assay with decreasing heteroplasmy can be explained 

by the mathematical process used to calculate heteroplasmy.  

The real-time assay measures the relative difference in the expression of the two genes 

MT-ND1 and MT-ND6. At low heteroplasmy levels, the difference between these two 

quantities is small. For instance, at 10% heteroplasmy and a perfectly efficient real-time 

reaction (doubling each time) the CT difference would be 0.152 (log2(0.9), or the log of 

the heteroplasmy subtracted from 100%). The CT difference for a 90% heteroplasmy 

sample in the same circumstance would be 3.32, or log2(0.1). If the errors are constant 

in the CT difference, for example ±0.1 CT, then the CT difference for the 10% sample 

will be measured within (0.052, 0.252), whilst the 90% heteroplasmy sample will be 

measured within (3.22, 3.42). These two ranges then relate to heteroplasmy measures of 

(4%, 19%) and (89.3%, 90.1%) respectively. Thus, the difference in accuracy arises 

most likely because the errors are independent of the CT differences, and thus will be 

proportionately larger for a small difference than a large difference. 
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3.2. Total mtDNA copy number measurement assay 

3.2.1. Introduction 

Low mtDNA copy number has been repeatedly shown to be associated with disease 

(Moraes et al., 1991; Poulton et al., 1995; Barthélémy et al., 2001; DiMauro and 

Hirano, 2005). It has also been shown that exercise improves physical capacity of 

patients mtDNA disease, and that this is associated with an increased mtDNA copy 

number (Taivassalo et al., 1998; Taivassalo et al., 2006). Understanding the 

mitochondrial changes in muscle that lead to improved physical wellbeing is 

imperative, and mtDNA copy number is a potentially significant aspect of this. Copy 

number determination has not been a significant issue within exercise trial studies when 

single muscle fibres are the focus, as mitochondrial DNA levels are normalised per unit 

area. However, to understand overall changes in muscle it is important to look at 

homogenate muscle samples. 

Gel electrophoresis and Southern blotting of nuclear DNA and mtDNA simultaneously 

has been used to measure the relative quantity of mtDNA to nuclear DNA, but this is 

labour intensive and only semi-quantitative (Shanske and Wong, 2004). Most published 

approaches to measuring mtDNA copy number have used real-time PCR (qPCR), using 

regions of the nuclear and mtDNA genomes where  polymorphisms are rare (Venegas 

and Halberg, 2012). The B2M gene has been used in the literature as it is a convenient 

single copy gene in this respect (Malik et al., 2011), and we already use the MT-ND1 

gene to measure heteroplasmy for mtDNA deletions as deletions covering this region 

are very rare, hence we chose to use this as the mtDNA target for quantification. 

Multiplexing mtDNA and nDNA targets together is problematic, since several thousand 

copies of mtDNA are present in muscle cells but nuclear DNA is single copy. This 

presents problems with PCR kinetics and saturation effects in the multiplexed PCR 

reactions. Multi-copy genes can be used that ameliorate this problem to a large extent, 

such as 18S ribosomal DNA which is present around 600 times in the nuclear genome 

(Schmickel, 1973; Stults et al., 2008); this is suitable for normalization for repeated 

samples from the same individual, but unsuitable otherwise due to inter-subject 

variation in the repeat numbers.  Additionally, in a recent study it was found that the 

accuracy of quantitative real time PCR was severely affected by the concentration of 

DNA within the sample (Sochivko et al., 2013) further highlighting the issue of 

comparing high copy number targets to lower copy number targets.  
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To address these issues, it was decided to develop a non-multiplexed assay with an extra 

dilution of the mtDNA target to ensure that both B2M and MT-ND1 are within a 

reasonable range for quantification by real-time PCR (above approximately 17 CTs but 

below 30 CTs, to ensure quantification is in the exponential phase of growth).  

3.2.2. Aims 

As it was expected that the extra dilution step and the lack of multiplexing would 

introduce experimental error into the quantification process, it was decided to quantify 

the experimental variability in order to make recommendations on the number of 

replicates required to ascertain the relative copy number of two samples within a pre-

determined tolerance. As the experimental error is multi-level (intra-plate variability 

nested within inter-plate variability) simulation will be used to determine the number of 

replicates required to determine a given change in copy number. 

3.2.3. Methods 

3.2.3.1. Real-time PCR  methodology 

All molecular analyses were performed using total skeletal muscle DNA extracted using 

standard protocols. mtDNA copy number in muscle homogenate was quantified by 

measuring the relative expression of the mtDNA MT-ND1 gene and the nDNA B2M 

gene.  

MT-ND1 and B2M reactions were run separately, sequentially on the same real time 

machine. Primers and probes used are detailed in Table 3.3, the mastermixes for each 

reaction are found in Table 3.4 and Table 3.5, and standard cycling conditions are 

described in Table 3.6. The same wild-type skeletal muscle DNA from a control subject 

was used to produce the standard curve for each real-time analysis. Sample were run in 

the same well on the paired MT-ND1and B2M  plates to minimize well-to-well error. 

The target DNA concentration for B2M quantification was 100 fold higher than that for 

MT-ND1 quantification, to ensure that the resulting CTs for both samples would be 

within useful range (18-25). Thus the samples for MT-ND1 quantification were diluted 

1 in 100 relative to the samples for B2M quantification, using two serial 1:10 dilutions 

to reduce dilution error. 

All real-time PCR quantification was performed by Dr Helen Tuppen. 
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Primers: Sequence 

MT-ND1 (NC_012920.1)  

L3485-3504  5’- CCCTAAAACCCGCCACATCT -3’ 

H3553-3532  5’- GAGCGATGGTGAGAGCTAAGGT -3’ 

B2M (NG_012920.1)  

B2F (8969-8990) 5’- CCAGCAGAGAATGGAAAGTCAA -3’   

B2R (9064-9037) 5’- TCTCTCTCCATTCTTCAGTAAGTCAACT -3’ 

  

Probes:  

MT-ND1 (L3506-3529) VIC-5’- CCATCACCCTCTACATCACCGCCC -3’-MGB 

B2M (9006-9032) 6-FAM-5’- CCGACATCATTACCGGGTTTTCCTCTTG 

-3’-MGB 

Table 3.3 Primers and probes. 

 

Taqman universal PCR mastermix 10µl 

B2M F (10µM) 0.6µl (final concentration: 300nM) 

B2M R (10µM) 0.6µl 

B2M probe (5µM) 0.4µl (final concentration: 100nM) 

MgCl2 (50mM) 1.2µl (final concentration: 3mM) 

DNA (optimal concentration ~ 10ng/µl) 5µl 

dH2O 2.2µl 

Table 3.4 Mastermix for the B2M reaction. 

 

Taqman universal PCR mastermix 10µl 

MT-ND1 L3485 (10µM) 0.6µl (final concentration: 300nM) 

MT-ND1 H3553 (10µM) 0.6µl 

MT-ND1 probe (5µM) 0.4µl (final concentration: 100nM) 

DNA (optimal concentration ~ 0.1ng/µl) 5µl 

dH2O 3.4µl 

Table 3.5 Mastermix for the MT-ND1 reaction. 

 

2 minutes at 50°C 

10 minutes at 95°C 

40 cycles of 15 seconds at 95°C and 1 minute at 60°C 
Table 3.6 Standard cycling conditions. 
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3.2.3.2. Intra-plate variability measurement 

3.2.3.2.1. Study design 

Test runs of several samples were executed to find two samples with high relative copy 

number difference. These two samples were diluted to approximately equal DNA 

concentration, and then mixed together in three different ratios. This resulted in 5 

samples of different relative copy number, the original two samples plus three 

interpolated DNA copy numbers.  

On each real-time PCR plate 12 replicates of each sample were run, totalling 60 wells. 

The remaining wells were used for standard curve generation and no template controls. 

Six replicates of five standard curve points (30 in total) were run, to ensure highly 

accurate standard curves for optimal quantification. 

3.2.3.2.2. Statistical methodology 

Severe outliers, defined as more than 3 times the interquartile range below the lower 

quartile or above the upper quartile, were removed from the data prior to further 

analysis. 

The MT-ND1/B2M ratio was calculated for each sample well in each plate, yielding 12 

replicate values per MT-ND1/B2M plate pair. These were used to calculate 12 

independent values for the relative copy number of each of samples 2 to 5 compared to 

sample 1, which resulted in 12 replicates of 4 independent sample comparisons per MT-

ND1/B2M plate pair. Four MT-ND1/B2M plate pairs were run, to examine inter-plate 

variability.  

The standard deviation of the replicates on each plate was calculated. Bootstrapping was 

then used to calculate 95% confidence intervals for the observed standard deviation.   

A linear model was used to verify whether the variance of the assay was independent of 

relative copy number. 

Using the calculated inter-plate and intra-plate variability, sample size calculations were 

performed in SAS using PROC POWER, using the formula for the sample standard 

deviation as shown in Equation 3.1, as the intra-plate (replicate) variability is nested 

within the inter-plate (plate-to-plate) variability. 
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Equation 3.1 Calculation of experimental standard deviation. 

The experimental standard deviation       is calculated from the inter-plate (p2p) standard deviation and 

the intra-plate (rep) standard deviation using the formula for the summation of variances. The sample 

variance for the replicates is divided by the number of replicates     , which is then used to calculate the 

number of plates required. 

3.2.4. Results 

 
Figure 3.4 Intra- and inter-plate variability of the copy number assay. 

5 samples of progressively decreasing copy number are analysed on each plate; each sample is replicated 

12 times on each plate, and 4 plates are run in total. This was used to calculate 12 independent samples of 

the relative copy number of sample 1 compared to each of the other 4 samples. The mean relative copy 

numbers for each sample comparison are comparable from plate to plate.  

 

The relative copy number of sample 1 compared to samples 2 to 5 are shown in Figure 

3.4. With 12 replicates of each measure, these are 12 x 4 x 4 = 192 independent samples 

of copy number.  
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The intra-plate (replicate) and inter-plate (plate to plate) variability for the relative copy 

number of each pair of samples is shown in Figure 3.5. These are not all independent 

samples (the first 4 are independent), but are shown to allow comparison of variability 

across the samples. 95% confidence intervals are calculated using bootstrapping 

methodology. 

To calculate a global estimate for the standard deviations a modified bootstrapping was 

employed, using the pool of all sample comparisons (10 comparisons, 12 replicates of 

each comparison on 4 plates, totalling 480 relative copy number measures in total). 

Each copy number estimate was scaled first by dividing by the best estimate of the 

relative copy number of the two samples. This yielded an intra-plate standard deviation 

of 1.066 (95% CI 1.038-1.101) and an inter-plate standard deviation of 1.027 (95% CI 

1.0047-1.069). 

The inter-plate and intra-plate standard deviations were also compared to the relative 

copy number. The results are shown in Figure 3.6. There is no evidence of a 

relationship between the relative copy number and the variability. 

The number of plates/replicates per plate required to detect a given change in copy 

relative number based on the estimated inter- and intra- plate variation is shown in 

Table 3.7. 
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Figure 3.5 Inter-plate and intra-plate variability across samples. 

The relative copy number (ratio) of each pair of samples was calculated, 12 replicates on 4 plates, a total 

of 48 values per ratio. All 48 values were used to calculate the true value, and each sample divided by this 

to normalize the ratios. The intra-plate (replicate) and inter-plate (plate to plate) standard deviation and 

95% confidence intervals were then calculated for each sample comparison using bootstrapping. All 

variability was examined on the log values; the graph shows inverse log standard deviations, which are 

scale factors. The intra-plate variability is consistently higher than the inter-plate variability. The mean 

inter-plate variability is 1.027 and the mean intra-plate variability 1.066.  

 
Figure 3.6 Linear regression of relative copy number against intra-plate assay variation. 

The graph shows no evidence of a linear correlation between relative copy number and the assay intra-

plate variability (P = 0.4614, r = 0.20). Each point is an independent estimate of the standard deviation 

from a single plate. 
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Relative Copy Number 

Change 
5% 10% 15% 20% 50% 

Log10 factor 0.021189 0.041393 0.060698 0.079181 0.176091 

1 replicate 26 / 0.81 

72 / 0.80 

8 / 0.83 

20 / 0.81 

4 / 0.81 

10 / 0.83 

3 / 0.84 

6 / 0.81 

2 / 0.97 

3 / 0.96  

2 replicates 16 / 0.82 

48 / 0.80 

5 / 0.83 

14 / 0.82 

3 / 0.85 

7 / 0.83 

3 / 0.96 

5 / 0.87  

2 / 0.99 

2 / 0.84 

3 replicates 12 / 0.82 

40 / 0.80 

4 / 0.83 

12 / 0.83 

3 / 0.92 

6 / 0.83 

2 / 0.80 

4 / 0.83 

2 / >0.999 

2 / 0.89 

6 replicates 8 / 0.80 

32 / 0.8 

3 / 0.82 

9 / 0/00 

3 / 0.98 

5 / 0.83 

2 / 0.91 

4 / 0.90 

2 / >0.999 

2 / 0.93 

12 replicates 7 / 0.84 

28 / 0.81 

3 / 0.900 

8 / 0.81 

2 / 0.85 

5 / 0.87 

2 / 0.96 

3 / 0.81 

2 / >0.999 

2 / 0.96 

Table 3.7 Number of real-time PCR plates/replicates required to detect a given change in relative 

copy number. 

Each cell shows the number of plates / actual power for a two sample t-test with the given number of 

replicates (per sample) per plate, to detect the given change in relative copy number at minimum power of 

0.80.  In each cell, the top line shows the calculation using the standard deviation estimates; the bottom 

line shows the calculation using the 95% upper bound of the standard deviation estimates.  

 

3.2.5. Discussion 

This investigation has quantified the variability in this novel approach to measurement 

of mtDNA copy number, and provides guidelines on the number of replicates and plates 

of each sample that should be run to achieve a required accuracy.  

The variation in the assay is confirmed as independent of the relative copy number, 

within the range of relative copy number that was investigated (approximately 2 fold 

difference). This is a practically useful finding, as it implies that the number of 

replicates to determine copy number can be made independently of the copy number of 

the samples under investigation. 

It was anticipated that the extra dilutions of the MT-ND1 samples, necessary to ensure 

both targets were within conveniently measurable CT range, may have introduced 

unacceptable experimental error into the procedure. As each plate was run from re-

diluted samples, the inter-plate variability incorporates any variation introduced by this 

extra dilution. The inter-plate variability (1.027 scale factor) is lower than the intra-plate 

variability (1.066), however it is still variability that needs to be accounted for when 

using the assay to accurately determine copy number. 
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Regarding recommendations for the number of replicates/plates to use to detect specific 

minimum changes in copy number, use of the t-test for requires a minimum of two 

plates in order that the sample variance is estimable. This restriction comes from the 

fact that the intra-plate variation is nested within the inter-plate variation. For large 

enough changes of copy number it seems intuitive that a single plate would be sufficient 

to estimate this change, but formal statistical analysis requires a minimum of two plates. 

There are important limitations to be acknowledged.  

Firstly, the number of plates run was small (four), and more plates would allow more 

accurate quantification of the inter-plate variation, a narrower 95% confidence interval 

for the estimates, and one would hope a lower estimate for the number of replicates 

required. The estimates using the 95% upper bound for the standard deviation estimates 

are impractically high for the smaller changes in copy number, and some reduction in 

the confidence interval would be very beneficial in order to have confidence in the 

results of the assay with the minimum experimental effort. The assay is limited by the 

number of samples that can be run on the same PCR plate, which is limited to 96 wells, 

several of which are used to calculate standard curves and for no-template controls.  

Secondly, the inter-plate variability was confounded with the dilution error in this 

experiment; it may have been valuable to run separate repeated dilutions of samples on 

the same plate in order to separate the inter-plate and dilution variation in this assay, 

which may have identified the true inter-plate error to be small enough to ignore for 

practical purposes. However, since the two targets are intended to be run on separate 

plates (to avoid multiple standard curves on the same plate) some level of inter-plate 

variability is inevitable, thus is seems a prudent approach to combine the dilution and 

intra-plate variation and deal with them both concurrently. This is not necessarily a 

trade-off, as reducing the number of replicates per plate allows more samples to be run 

on each plate.  

Though this assay optimisation and variation quantification has been focussed on 

relative copy number (intended for measuring change in copy number in repeated 

samples from the same patient), it can be extended to calculate absolute copy number. 

This would require an absolutely quantified reference sample to be run on each plate 

requiring absolute quantification.  
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3.2.5.1. Muscle specific issues 

Normalisation of the mtDNA copy number by a single copy nuclear gene presents 

difficulties that are specific to muscle homogenate analysis, with two main issues to 

contend with.  

Firstly, muscle fibres are multinucleated, each fibre formed from the fusion of multiple 

mononucleated myogenic cells (Okazaki and Holtzer, 1966). It is thought that each 

nucleus serves a certain volume of cytoplasm, called the myonuclear domain (Hall and 

Ralston, 1989). Historically, it was thought that the size of the domain was relatively 

constant, supported by general biological considerations that nuclear DNA content 

universally appears to be related to cell size (Gregory, 2001) and by specific 

examination of muscle fibres (Landing et al., 1974). However, there are many findings 

from later studies that contradict this; domain size is related to body mass (Liu et al., 

2009), domain size isn’t conserved during hypertrophic growth (Wada et al., 2003), 

domain size varies along the length of muscle fibres and increases with age (Rosser et 

al., 2002), and domain size decreases with muscle wasting and atrophy (Allen et al., 

1995; Ohira et al., 1999; Bruusgaard and Gundersen, 2008). Furthermore, domain size 

has been shown to vary according to fibre type; Type I fibres (slow twitch, and heavily 

dependent on mitochondria for oxidative phosphorylation) have the smallest domain, 

Type IIa fibres (fast twitch, but also oxidative) are intermediate in size, and Type IIx 

(fast twitch glycolytic fibres with few mitochondria) have the largest myonuclear 

domain (Roy et al., 1999; Van Der Meer et al., 2011).  

The second major issue is related to the cell types found in muscle homogenate. Non-

muscle cells, such as adipocytes or cells of the vascular system are present and will 

contribute to both the nuclear and mtDNA assessment. The relative proportion of 

mitochondrial fibre types is also critical, particularly with reference to the proportion of 

Type IIx fibres which have very low mitochondrial content, though Type I fibres also 

have higher mitochondrial density than Type IIa fibres (Sjostrom et al., 1982; Yu-Wai-

Man et al., 2010b) . Thus care must be taken to ensure that muscle samples for 

comparison are comparable. However, it is important to note that for analysis of 

samples to evaluate exercise trail intervention, the relative proportion of fibre types can 

be significantly altered by training; for example, endurance training has been shown to 

significantly increase the proportion of Type IIa fibres at the expense of Type IIx fibres 

(Ingjer, 1979). With this in mind, fibre type changes between biopsies may be genuine 
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changes induced by the intervention rather than sampling errors attributable to 

heterogeneity of muscle tissue.   

Both of these issues must be considered when using normalisation of myDNA copy 

number by nuclear content with this assay. Prior to analysis, biopsies may need to be 

examined histochemically or otherwise to assess the relative proportions of fibre types 

and non-myogenic cells in order to be satisfied that the analysis is correctly determining 

any alterations in mitochondrial content of muscle cells. 
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 Disease associated with the mt.3243A->G mutation Chapter 4.

4.1. Introduction 

The m.3243A>G mutation was one of the first identified causes of inherited 

mitochondrial disease (Goto et al., 1990b). Of the over 250 known pathogenic mtDNA 

mutations (Tuppen et al., 2010), m.3243A>G is the most commonly inherited, at an 

estimated prevalence in the adult population of  236/100,000 (Manwaring et al., 2007), 

though the estimated minimum prevalence of clinically affected people is lower, at 

3.65/100,000 (Schaefer et al., 2008) or 16.5/100,000 (Majamaa et al., 1998). In the 

cohort of 671 patients seen at the Newcastle mitochondrial disease clinic, 199 (29.7%) 

carry the m.3243A>G mutation. 

The mutation is an A to G transition at position 3243 of the mitochondrial genome, in 

the dihydrouridine loop (D-loop) of the mitochondrial tRNA
Leu(UUR)

 (Goto et al., 

1990b). 

4.1.1. Phenotypic presentation 

The earliest patients to be associated with the m.3243A>G mutation were almost 

exclusively MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like 

episodes) (Goto et al., 1990b), though a single patient with the mutation presented with 

CPEO, an early indication of the heterogeneous phenotypic variability shortly to be 

associated with the mutation (Hirano et al., 1992). MELAS is a severe and progressive 

neurological disorder, and though it is not exclusively associated with the m.3243A>G 

mutation, around 80% of patients with MELAS syndrome are carriers of the 

m.3243A>G (Goto et al., 1991). Clinical diagnostic criteria were published in 1992 and 

defined as (a) stroke-like episodes before the age of forty (b) encephalopathy (denoted 

by seizures and/or dementia), and (c) lactic acidosis and/or ragged-red fibres (RRF) 

(Hirano et al., 1992). 

Other common phenotypic presentations that were soon to be associated with the 

mutation were maternally inherited diabetes and deafness (MIDD) (van den Ouweland 

et al., 1994), further CPEO cases (Goto et al., 1990a; Moraes et al., 1993; Koga et al., 

2000) and Leigh syndrome (Rahman et al., 1996; Koga et al., 2000). In common with 

other mtDNA mutations the clinical spectrum associated with the mutation is very 

broad. All of the constituent phenotypic features of both MELAS and MIDD are 

frequently seen in patients carrying the mutation, but there are a host of other common 
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features, both neurological and otherwise, including myopathy and exercise intolerance, 

cerebellar ataxia, visual impairment, migraine, cardiomyopathy, and gastro-intestinal 

disturbance (Ciafaloni et al., 1992; Majamaa-Voltti et al., 2006; Kaufmann et al., 2011; 

de Laat et al., 2012; Nesbitt et al., 2013). Distinct phenotypic characterisation is 

problematic; a recent study has reported that although MIDD is the most common 

classical phenotype observed in patients, less than half of patients present with a 

classical recognised phenotype (Nesbitt et al., 2013).  

Stroke-like episodes are a hallmark feature of the MELAS syndrome. Also known as 

sudden neurological deficits, these often present with hemiparesis, hemianopsia and/or 

cortical blindness (Iizuka and Sakai, 2005). Magnetic resonance imaging (MRI) of the 

brain after a stroke-like episode usually shows changes in both grey and white matter, 

mainly in the occipital and parietal lobes, which strongly resemble infarctions; however, 

the distribution is unrelated to vasculature and often shows a progressive spread (Ito et 

al., 2011). The pathophysiology is still controversial, with several competing theories as 

to the cause of the neurological dysfunction; proposals include mitochondrial 

dysfunction in the vasculature, known as the mitochondrial angiopathy theory; a 

generalised cytopathic mechanism caused by oxidative phosphorylation deficits in 

neurons and glial cells; and a non-ischemic neurovascular cellular mechanism, in which 

the stroke-like episodes are caused by neuronal hyper-excitability and an ATP deficit 

due to oxidative phosphorylation deficits(Iizuka and Sakai, 2005). Diffusion weighted 

imaging (DWI) has been used to examine brains of patients after stroke-like episodes 

and many early reports showed an elevated apparent diffusion coefficient (ADC), which 

contrasts with the reduction seen in ischaemic stroke, and which was consistent with 

vasogenic oedema and the mitochondrial angiopathy theory (Yoneda et al., 1999; 

Oppenheim et al., 2000; Yonemura et al., 2001; Kolb et al., 2003). However, more 

recently patients have been reported to demonstrate a reduced ADC more consistent 

with cytotoxic oedema and thus one of the other two other competing theories (Wang et 

al., 2003; Karkare et al., 2009; Tzoulis and Bindoff, 2009). Whatever the precise 

pathophysiology, the consequences for patients suffering stroke-like episodes are 

severe. 

Diabetes mellitus is a second prominent characteristic feature of m.3243A>G; while it 

has been found to be associated with a small number of other mtDNA mutations at 

higher penetrance than in m.3243A>G, on the whole mitochondrial diabetes is 

dominated by the m.3243A>G mutation (Whittaker et al., 2007). Diabetes can be 
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divided into two broad classes, type I insulin dependent and type II non-insulin 

dependent. Early studies observed a connection between type II diabetes and maternal 

transmission, which put mitochondrial DNA under the spotlight (Alcolado and 

Alcolado, 1991), and it had also been noted in maternal relatives of MELAS sufferers 

(Obermaier-Kusser et al., 1991). Indeed, in the diabetic population as a whole 

m.3243A>G is thought to account for 1%-3% of all cases (Gerbitz et al., 1995), and an 

even higher proportion of familial diabetes. 

Myopathy is a commonly reported phenotypic presentation (Karppa et al., 2005), in 

common with many mitochondrial disorders. Cardiomyopathy, long recognised in 

advanced cases of MELAS (Hirano and Pavlakis, 1994) is also recognised as prevalent 

(Bates et al., 2012a; Bates et al., 2012b), and the pathology has been shown to correlate 

with skeletal muscle heteroplasmy (Hollingsworth et al., 2012). 

Renal disease is also increasingly recognised as a phenotypic presentation of 

m.3243A>G (Damian et al., 1995; Cheong et al., 1999; Guillausseau et al., 2001; Hotta 

et al., 2001; Iwasaki et al., 2001; Suzuki et al., 2003; Piccoli et al., 2012; Seidowsky et 

al., 2013). Proximal tubular cells have a high mitochondrial content and are frequently 

reported as affected in mitochondrial disease patients with Fanconi syndrome like 

features (Rötig et al., 1997; Emma et al., 2011), though focal segmental glomerular 

sclerosis (FSGS) is reported as specifically related to m.3243A>G (Hotta et al., 2001; 

Emma et al., 2011). 

Regarding mortality, cardiac and neurological problems are reported as the most 

common cause of early death in m.3243A>G, and reports of sudden death are common 

(Majamaa-Voltti et al., 2002; Uusimaa et al., 2007; Vydt et al., 2007; Bates et al., 

2012a). 

4.1.2. Genotype-phenotype linkage 

Understanding the connection between phenotype and genotype is complicated by 

heteroplasmy, as for all mtDNA disease (Wallace, 1992). Section 4.4 will consider in 

detail the issue of heteroplasmy in the m.3243A>G mutation.  

Early studies on the m.3243A>G mutation suggested that patients with a high mutation 

load in muscle present at a young age with a MELAS-like phenotype, whilst those with 

lower mutation load present later in life with CPEO, myopathy, and deafness (Chinnery 

et al., 1997). Though this is superficially paradoxical, it was suggested that this may be 

due to focal accumulation of mutant DNA in myopathic patients as compared to more 
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uniform levels of the mutation in MELAS patients (Petruzzella et al., 1994), though this 

study was on a small number of patients from only two families. Other studies support 

this to an extent, showing that patients with myopathic phenotypes have a high 

prevalence of COX negative fibres in muscle but relatively low levels of the mutation 

compared to MELAS patients (Moraes et al., 1993; Hammans et al., 1995). However, it 

must be considered that in general genotype-phenotype correlation has long been 

considered very weak in patients with the m.3243A>G mutation (Kobayashi et al., 

1992; Martinuzzi et al., 1992; Shiraiwa et al., 1993; Liou et al., 1994; Morgan-Hughes 

et al., 1995; Chinnery et al., 1997).  

4.1.3. Pathogenesis 

Early in-vitro studies demonstrated that cells harbouring the m.3243A>G mutation (as 

well as those with the m.8344A>G mutation) impair oxidative phosphorylation at a 

cellular threshold of around 85% heteroplasmy (Chomyn et al., 1991; Kobayashi et al., 

1991; King et al., 1992a). Cells harbouring even higher levels of mutation, around 95%, 

have been shown to be more acutely impaired (Dunbar et al., 1996). 

Processing of the polycistronic transcript is not affected by the mutation (King et al., 

1992b; Koga et al., 1993; Kaufmann et al., 1996). However the proportion of 

tRNA
Leu(UUR) 

that is aminoacylated is reduced (Janssen et al., 1999; Chomyn et al., 

2000; Park et al., 2003), most likely on account of a dramatic 25 fold  reduction in the 

efficiency of the aminoacylation of the mutant tRNA as compared to wild-type (Park et 

al., 2003). Compounding this is the reduced steady state levels of the tRNA species that 

has been repeatedly reported (Chomyn et al., 1992; Janssen et al., 1999; Chomyn et al., 

2000; Park et al., 2003). Though the precise nature of the pathogenesis is still under 

debate, certain post translational modifications of the tRNA are impaired (Helm et al., 

1999; Yasukawa et al., 2000b), which results in impaired protein translation (Yasukawa 

et al., 2000a; Yasukawa et al., 2001).  

However, somewhat contradictory is the report that mitochondrial protein translation is 

not seriously affected by the mutation even at levels which severely impair cellular 

respiration, despite highly reduced aminoacylation of tRNA
Leu(UUR)  

in these cells; 

accelerated protein degradation instead was suggested as the pathogenic mechanism 

(Janssen et al., 1999). 

Complex I deficiency has been frequently reported in tissue analysis from patients with 

m.3243A>G (Goto et al., 1992; Morgan-Hughes et al., 1995) and also in cybrid cell 
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analysis (Dunbar et al., 1996). Of all the respiratory chain complexes, complex I 

contains the highest proportion of mitochondrial encoded leucine (UUR) residues, 

which may explain the selective vulnerability of this complex. It has recently been 

demonstrated in induced pluripotent cells (iPSCs) generated from m.3423A>G 

fibroblasts that the respiratory chain dysfunction caused by the m.3243A>G mutation is 

very much tissue dependent (Hämäläinen et al., 2013). For instance, a combined 

respiratory chain deficiency in the parent fibroblast cells became a specific complex I 

deficiency in differentiated neurons, which is consistent with the pathology commonly 

reported in m.3243A>G  (Moraes et al., 1992). Indeed, this study clearly demonstrated 

that Complex I is specifically degraded by sequestration into PTEN-induced putative 

kinase 1 (PINK1) and Parkin-positive autophagosomes, suggesting that the observed 

Complex I defect is potentially a cellular auto-protective response to mitochondrial 

dysfunction, perhaps to reduce potentially harmful ROS production. 

4.1.4. Sex differences 

The prospect of a difference between males and female in the burden of mtDNA disease 

(Frank and Hurst, 1996; Frank, 2012) has prompted the study of sex differences in the 

m.3243A>G mutation, which is covered in section 4.6. 

4.1.5. Therapeutic strategies 

There are few therapeutic treatments for patients with m.3243A>G. Studies on the 

efficacy of antioxidants and vitamins have failed to demonstrate clear benefit to patients 

(Marriage et al., 2003). Treatment with Coenzyme Q10 (ubiquinone) and idebenone 

(Ihara et al., 1989), an ATP production modulator and antioxidant, is routine and 

supported by research (Haefeli et al., 2011). However, these approaches are focused on 

amelioration of ROS induced cell damage and do not address the underlying problems 

with oxidative phosphorylation. 

There are several promising avenues of research into future therapeutics. tRNA import 

into mitochondria has been demonstrated to ameliorate respiratory defects in vitro 

(Karicheva et al., 2011). Similarly, overexpression of mitochondrial leucyl-tRNA 

synthetase (LARS2) has been shown to restore wild-type levels of respiration in cells 

harbouring the m.3243A>G mutation (Park et al., 2008). This study showed 

dramatically increased steady-state levels of tRNA leucine and mitochondrial 

translation products. Interestingly, protein synthesis levels did not exceed those of the 

mutant cells without the overexpression, supporting the hypothesis that protein 

stabilization is the critical effect. More recently it has been shown that the C-terminus of 
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the tRNA synthetase molecule is necessary and sufficient for this effect (Perli et al.), 

and that the effect extends to defects from mutations in non-cognate tRNA species 

(Hornig-Do et al.). However, translating successful in-vitro therapies to patients is a 

currently insurmountable obstacle. 

4.2. Methods 

4.2.1. Heteroplasmy quantitation 

Heteroplasmy levels are used in many of the analyses in this chapter. Heteroplasmy was 

quantitated using pyrosequencing (White et al., 2005), though older samples were 

quantitated using last-cycle hot PCR (Moraes et al., 1992). All quantitation was 

performed by the NHS Highly Specialised Service for Rare Mitochondrial Disorders in 

Newcastle upon Tyne. 

4.2.2. Statistical methodology 

The statistical methodology employed in each section will be detailed prior to the 

presentation of the results in each section. 
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4.3. Disease Progression 

4.3.1. Introduction 

Though many aspects of disease associated with the m.3243A>G mutation are 

considered progressive by clinicians, the nature and speed of this progression, and its 

relation to predictive factors such as age and heteroplasmy, are poorly understood. 

Understanding of likely progression of the disease burden in patients is critical for 

clinicians to be able to support and care for patients.  

Longitudinal studies are a necessity in understanding disease progression. However, 

systematic recording of disease progression in m.3243A>G mutation carriers is poor. 

Though there are two recent longitudinal studies of patients with the m.3243A>G 

mutation (Majamaa-Voltti et al., 2006; Kaufmann et al., 2011), the follow-up period for 

each study (three and four years respectively) was limited. Additionally, neither study 

considered predictive factors such as heteroplasmy and age. Several other recent studies 

have either examined in detail the clinical phenotype of patients (Nesbitt et al., 2013) or 

examined the correlation between disease burden and heteroplasmy (Whittaker et al., 

2009; de Laat et al., 2012; Liu et al., 2013) but without looking at progression or 

accounting for age. 

It has long been thought that clinical variability is at least in part due to heteroplasmy 

(Ciafaloni et al., 1991; Damian et al., 1995), though association between heteroplasmy 

and clinical presentation in patients harbouring the m.3243A>G mutation have proved 

to be weak (Kobayashi et al., 1992; Martinuzzi et al., 1992; Shiraiwa et al., 1993; Liou 

et al., 1994; Chinnery et al., 1997).  However, recent studies have found that urine 

heteroplasmy correlates better with the severity of clinical features than other sources 

such as hair follicles, buccal mucosa, blood, and even muscle (Ma et al., 2009; 

Whittaker et al., 2009; de Laat et al., 2012). Additionally, urine heteroplasmy is 

reported as stable over time (Blackwood et al., 2010), and is currently widely accepted 

as the most suitable non-invasive measure of heteroplasmy (Whittaker et al., 2009; de 

Laat et al., 2012). 

4.3.2. Aims 

Improved understanding of the disease progression is critical both for clinicians caring 

for patients and for patients themselves, particularly regarding clinical management and 

planning of health and social care. To this end, I aim to utilise the MRC Mitochondrial 

Disease Patient Cohort, which contains a large sub-cohort of patients with the 
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m.3243A>G mutation, to ascertain the progressiveness of disease associated with this 

mtDNA mutation, and to quantify the correlation between disease burden and predictive 

factors of age, urine heteroplasmy, and familial lineage.  

I will use longitudinal mixed modelling to understand the progression of overall disease 

burden (as measured by total NMDAS score), and multiple logistic regression to 

examine the relationship between specific phenotypic features (measured by individual 

NMDAS questions) and the predictive factors of age and heteroplasmy.  

As intra-familial clustering of symptoms has been reported (Hammans et al., 1995) I 

will also look at the significance of familial lineage on disease progression. 

All modelling in this section uses heteroplasmy measured in the urinary sediment. 

4.3.3. Cohort summary 

4.3.3.1. Age and heteroplasmy 

For modelling disease progression, all patients with both NMDAS data and urine 

heteroplasmy have been included. Of the 152 total patients with NMDAS data and urine 

heteroplasmy, 95 are female. One male patient was excluded due to renal transplant, and 

one further male and four female patients were excluded due to insufficiently complete 

NMDAS assessments (only those with at least 26 of 29 questions completed were used). 

Thus the final cohort consisted of 91 females and 55 males, 146 patients in total. 

The age and heteroplasmy profile of the cohort are shown in Figure 4.1, along with the 

number of assessments per patient. The median age of the cohort is 42 years, the 

youngest patient is 16 years old and the oldest 73 years old. The median heteroplasmy 

level is 57%, and the range extends from only just detectable (0.1%) to 99%. The 

median number of assessments is 3 per patient, with a maximum of 15. The clinical and 

molecular characteristics for the cohort can be found in Appendix III. 
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Figure 4.1 The distribution of urine heteroplasmy, age, and number of assessments in the cohort. 

The cohort comprises 148 patients. (A)  The distribution of urine heteroplasmy in our cohort. The median 

is 57%, with lower and upper quartiles of 38% and 76%. The distribution is skewed, with a long tail in 

the low heteroplasmy range. (B) The distribution of age in our cohort. The median age is 42, range 17-73. 

(C) Number of NMDAS assessments per patient. The median is 3 assessments, 90
th

 percentile is 10 

assessments. 

4.3.3.2. Phenotypic spectrum 

The phenotypic overview of the cohort is depicted in Figure 4.2. The most common 

features at any severity are deafness and exercise intolerance, followed by GI 

dysfunction, psychiatric disturbance and ataxia. For scores of 2 or above (panel B), 

deafness and GI dysfunction and are both prevalent at over 60%. Additionally, from the 

current function section of the NMDAS, exercise tolerance and gait stability stand out 

as prevalent at over 40%. From the symptoms (section II) psychiatric disturbance,  

migraine, and diabetes have a prevalence of at least 40%. Seizures affect around 22% of 

patients, stroke-like episodes 17% and encephalopathic episodes 18%. In section III of 

the NMDAS (clinical signs) myopathy and cerebellar ataxia most prevalent, with 

cognitive impairment also relatively common. Ptosis affects 20% of patients and CPEO 

16%. 

4.3.3.3. Common phenotypic features distribution with age 

Figure 4.3 illustrates the proportion of patients in each age group that have the given 

phenotypic features (defined as scoring 2 or above in the NMDAS). Deafness has 

increasing incidence with age, as does CPEO, which only substantially affects the oldest 

patients in the cohort. Ataxia affects a proportion of the youngest patients, and a steady 

proportion of those aged over 45. Stroke and seizure are rare but do not appear linked 

with age, though both are absent in the patients over 60. 
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Figure 4.2 Phenotypic characterisation of the cohort. 

(A-B). Profile of phenotypic symptoms from the cohort. For each patient, the maximum score in any 

NMDAS assessment for each NMDAS question is calculated. A is a stacked bar chart of the frequencies 

of each score (the proportion of the 146 patients that reach or exceed the given score); B summarises the 

frequencies for patients with moderate or severe symptoms (scoring 2 and above). The most common 

symptoms at moderate to severe level in our cohort are hearing loss and GI disturbance, followed by gait 

instability, exercise intolerance and psychiatric disturbance. Seizures and stroke affect 15%-20% of 

patients. (C) NMDAS score profile for four significant phenotypic characteristics of patients with the 

m.3243A>G mutation. Scores range in each case from no symptoms (0) to severe impairment (5). 
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Figure 4.3 Proportion of patients in each age group with particular phenotypic characteristics. 

For each feature, N indicates the total number of patients scoring 2 or above. Each bar shows the 

proportion of patients in that age group scoring 2 or above (the number of patients in each age group can 

be found in Figure 4.1B). The presentation of most phenotypic features is fairly constant across age 

groups, including stroke and seizures, which may have been expected to peak in frequency in younger 

patients; though stroke and seizure are notable absent in the 60+ age groups. Deafness is generally 

increasing in incidence with age; incidence of diabetes peaks around 55-60 and decline thereafter. CPEO 

is more common in older patients.  
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4.3.4. Total disease burden 

4.3.4.1. Introduction 

My examination of total disease burden is done in two parts. The first uses a single 

summary NMDAS score for each patient to get an understanding of how disease burden 

and predictors are related. I look at the relationship of urine heteroplasmy, age and 

disease burden.  

In the second part I use repeated measures mixed modelling to model disease 

progression over time. I used urine heteroplasmy and age as predictors in this model. As 

inter-family clustering of disease phenotype and severity has been noted (Hammans et 

al., 1995), I also introduce familial lineage as a predictor to evaluate the predictive 

effect. 

4.3.4.2. Methods 

The general methods for basic statistical analyses are described in section 2.11.1.1. 

Longitudinal modelling is conducted as described in section 2.11.1.2. Appendix IV 

contains the SAS code to generate the model. 

Each analysis uses the largest cohort of patients available with the appropriate 

predictors.  

4.3.4.2.1. Familial lineage 

To incorporate the family lineage into the longitudinal modelling, I divided the cohort 

into two groups; those with other family members in the cohort (familial) and those 

without other family members (non-familial). The repeated measures statement used 

this grouping to define the covariance structure of the data. To avoid over-

parameterisation, familial lineage was introduced as a random effect. 

4.3.4.2.2. Early-onset 

To investigate whether patients with early-onset had significantly different disease 

progression from other patients, a flag was introduced to identify these patients. Early-

onset was defined as any NMDAS assessment on record under the age of twenty-five 

that scored above a nominally low value of 3. 

Longitudinal mixed modelling used this as a grouping for defining the covariance 

structure of the data. Models incorporating both family and early-onset used both of 
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these groups to define the covariance structure, i.e. in four groups (early-familial, early-

non-familial, late-familial, late-non-familial). 

4.3.4.3. Results 

4.3.4.3.1. NMDAS score is predicted by age and heteroplasmy 

Multiple linear regression was used to investigate the relationship between total disease 

burden and the predictors of age and urine heteroplasmy. Box-Cox analysis identified 

the fourth root of the NMDAS (NMDAS
0.25

) as the optimal transformation, and this 

transformed variable was used as the dependent variable in all analyses. 

Table 4.1 lists the P-values for each effect and overall R
2
 for the model; standardized 

coefficients are also shown for analyses with multiple continuous predictors. Though 

heteroplasmy (P = 0.0063) and age (P = 0.0030) are both significant predictors of total 

disease burden, R
2
 is extremely low for each predictor (5.1% and 6.0% respectively). 

Using multiple linear regression with both predictors, adjusted R
2
 increases to 17.6%, 

and both predictors are highly significant (P < 0.0001). Diagnostic plots for the 

regression are shown in Figure 4.4. 

Model 

Predictors 
N Heteroplasmy Age R

2
 Adjusted 

R
2
 

Age 146 n/a 0.0030 6.0% 6.0% 

Heteroplasmy 146 P = 0.0063 n/a 5.1% 5.1% 

Age and 

Heteroplasmy 
146 P < 0.0001 

b = 0.37 

P < 0.0001 

b = 0.40 

18.6% 17.6% 

Table 4.1 Proportion of variability in total disease burden (as measured by NMDAS score) 

explained by predictive factors.  

P values are shown for each predictive factor, and standardised parameters where all predictors are 

continuous. Age and heteroplasmy together explain 17.6% of the variance in NMDAS score. 
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Figure 4.4 Model fit diagnostics for the multiple regression of age and hetereoplasmy on scaled 

NMDAS score. 

The residuals are normally distributed and there are no highly influential points. There are no observable 

trends between the residuals and either the predicted value of the model or the two predictors of age and 

heteroplasmy. There is evidence of heteroscedacity in the model; the extreme residuals are only found in 

the youngest part of the cohort. The White test (White, 1980) identifies this as non-significant (P = 

0.0554). 

4.3.4.3.2. Longitudinal model fit and development 

A preliminary longitudinal model using age and urine heteroplasmy as predictors was 

created and the fit of the model examined in detail. The residuals of the model were 

analysed in two ways; the distribution of the total set of studentised residuals (N=606), 

for a general understanding of model fit, and also the average studentised residuals for 



Chapter 4 Disease associated with the mt.3243A->G mutation 

74 

 

each patient (N=146), to ensure independence of the data since there is intra-patient 

correlation of the residuals. 

Figure 4.5 (left panel) illustrates that the model is somewhat ill fitting; there is a cluster 

of data points with high residuals that do not adequately fit the model. Though the 

average studentised residuals are independent of heteroplasmy (P = 0.7176, r = 0.02) 

and age (P = 0.3427, r = -.0.08), they residuals did show a significant relationship with 

the predicted value of the model (P = 0.0012, r = -0.26) as seen in Figure 4.11. 

Scrutiny of the data indicated that the patients that were not well described by the model 

were young and with heavy disease burden. To better model these patients, a further 

predictor was added into the model to identify early-onset patients, defined as those 

under twenty five with non-trivial NMDAS scores. This flag dichotomises the cohort 

into two groups, early-onset (N = 28) and late-onset (N = 118). Figure 4.5 (right panel) 

illustrates the residuals of the model with this new parameter included; they are now 

well formed and normally distributed. Analysis of the average studentised residuals 

found they were now uncorrelated with the predicted value (P = 0.3636, r = -0.08), 

heteroplasmy ( P = 0.5565, r = 0.05) and age (P = 0.4469, r = 0.07). Additionally, the 

AIC for the model dropped from 18.5 to -57.2 indicating a significant improvement in 

the model fit. 

All three parameters (time, heteroplasmy, and early-onset) are highly significant (P < 

0.0001). 

Covariance parameters for the model are found in Table 4.2. The model includes 

separate residual variances for the early- and late-onset patients, i.e. residual variance is 

grouped according to this parameter. If the variance is not modelled separately, AIC of 

the model is -34.2, as compared to -57.2, indicating that allowing separate residual 

variances improves the model. 
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Figure 4.5 Residual diagnostics for models with and without early-onset indicator variable. 

(Left) Residuals for the model without early-onset predictor. The residuals are non-Gaussian, indicating 

an underlying non-random error in the model specification. The cluster of points in the top left of the 

diagram have high residual error and low predicted mean; these correspond to early-onset patients with 

severe disease burden. (Right) The same model with early-onset predictor. The residuals are now 

balanced and normally distributed. 

 
Figure 4.6 Average studentised residuals vs. predicted model value for a linear mixed model with 

age and urine heteroplasmy as predictors. 

The graph shows that the residuals are correlated with the predicted value (P = 0.0012, r = -0.26). This 

indicates the model is not a good representation of the underlying data structure. The cluster of points in 

the top left of the graph is particularly problematic, as they are very poorly fitted by the model. 

  



Chapter 4 Disease associated with the mt.3243A->G mutation 

76 

 

Group Spatial Power Residual Variance 

Time  0.000083 

Late-onset 0.9783 0.02352 

Early-onset 0.9998 0.1915 

Table 4.2 Covariance parameters for the longitudinal mixed model. 

The residual variance of the early-onset group is far greater than that of the late-onset group; this is a 

reflection of the more erratic scores from patients in the early-onset group. 

4.3.4.3.3. Longitudinal modelling of disease progression  

Figure 4.7 illustrates the actual NMDAS scores for each patient in the cohort, grouped 

by the heteroplasmy quartiles, which demonstrates the variability in disease burden for 

patients with similar levels of heteroplasmy. 

Figure 4.8 illustrates the longitudinal modelling of total disease burden in patients with 

the m.3243A>G mutation. Both heteroplasmy and age are highly significant predictors 

(P < 0.0001). The graph shows predicted progression for a nominal patient with selected 

heteroplasmy levels, with 95% confidence intervals. 

Figure 4.9 depicts the actual and predicted progression of total disease burden for 

several patients with comparable heteroplasmy levels. The median (60%) and a high 

(90%) level of heteroplasmy have been utilised for illustration purposes. 
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Figure 4.7 Actual NMDAS scores for each patient in the cohort. 

Patients are grouped into 4 

quartiles by heteroplasmy. 

NMDAS scores for each patient 

are joined by solid lines, and 

labelled with urine heteroplasmy 

%. At low heteroplasmy (A, 

<35%), disease progression is 

slow and relatively homogenous. 

In the second quartile of patients 

(B) heterogeneity is seen to 

increase. The two upper quartiles 

(C & D) appear similar in the 

disease burden, though there is a 

shift to the left (earlier 

presentation) in the highest 

quartile (D). There is 

considerable overlap; patients 

with 2% and 7% heteroplasmy 

(A) have similar disease burden 

to patients with 87% and 92% 

heteroplasmy (D) at similar ages. 
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Figure 4.8 Longitudinal modelling of total disease burden. 

Predicted progression 

depicted as dashed lines, 95% 

confidence intervals also 

shown except panel D. Both 

heteroplasmy and age are 

highly significant predictors 

in all cases (P < 0.0001). (A) 

Predicted progression of total 

disease burden for early-onset 

patients with 60% (blue) and 

90% heteroplasmy (red). (B) 

Predicted progression for late- 

onset patients, with 20% 

(green), 60% (blue) and 90% 

(red) heteroplasmy. (C) 

Comparison of predicted 

progression for early (red) 

and late (blue) onset patients 

at 60% heteroplasmy. (D) 

Predicted progression for 

patients with 10% to 90% 

heteroplasmy in 10% 

intervals.  
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Figure 4.9 Examples of individual patient predicted progression. 

Predicted and actual progression for a selection of patients with approximately 90% (A) and 60% (B) 

heteroplasmy. Actual assessment scores are depicted as crosses joined by solid lines. Dotted lines with 

shaded 95% confidence intervals denote predicted progression for each patient. These patients illustrate 

the huge variability of disease burden progression for patients with similar heteroplasmy levels of the 

m.3243A>G mutation. The only early-onset patients are patient A and B in panel A; the confidence 

intervals for their progression are much wider than the other patients, indicative of the higher variability 

for early-onset patients. 
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4.3.4.3.4. Familial lineage is predictive of disease progression 

With mixed modelling familial lineage can be introduced into the model as a random 

effect, allowing the effect of family to be represented with a single parameter that 

represents the variability of the family lineage. 

A number of models with family as a random effect were investigated. The models 

investigated all included early-onset as a fixed effect, and various forms of the residual 

covariance were investigated to find the optimal representation.  

Table 4.3 illustrates the evaluation of model fit. The fall in the AIC with the inclusion of 

family as a random effect indicates the model is improved; this is shown to be 

significant by the likelihood ratio test (P = 0.0343). 

Figure 4.10 shows an example the intra-familial clustering. The graph shows two 

familial lineages with sharply different total disease burden progression rates. The 

average progression rates for all families with multiple members in the cohort (N = 36) 

are show in Figure 4.11.  

  Repeated measures groups 

  Early-onset * familial Early-onset Familial 

Random 

effects 

Patient -80.5 -57.2 -52.8 

Family NC 78.9 72.5 

Patient & family -89.2 -65.6 -64 

Table 4.3 Investigation of optimal model with family as a random effect. 

AIC is shown for each model. NC indicates non-convergence of the model. The familial grouping for the 

repeated measures allows the variance of familial patients (those with other maternal relatives in the 

cohort) and non-familial (those with no maternal relatives in the cohort) to be modelled separately. The 

early-onset repeated measures group allows the variance of early-onset and late-onset patients to be 

separately estimated. An improvement in the AIC indicates that these extra parameters improve the 

model. The optimal model includes both patient and family as random effects, as this has the lowest AIC. 

The repeated measures grouping is the interaction of early-onset and family.  

. 
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Figure 4.10 Intra-familial clustering of total disease burden progression. 

The predicted progression for members of two different families are shown. Actual assessment scores for 

individual patients are shown as crosses joined by solid lines, patients are labelled with their 

heteroplasmy level. Predicted progression for individual patients are shown as dotted lines. The predicted 

progression for a nominal patient from each family with 60% heteroplasmy is shown as a heavy dashed 

line. The family depicted in red has slower disease progression than the family in blue.  

 
Figure 4.11 Predicted progression for a nominal patient with 60% heteroplasmy for each family in 

the cohort. 

Heteroplasmy (P < 0.0001), age (P < 0.0001), and family (P = 0.0003) are all highly significant 

predictors.  
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4.3.4.4. Total disease burden discussion 

The phenotypic variability associated with the m.3243A>G mutation has been 

frequently remarked upon (Hammans et al., 1995; Chinnery et al., 1997; Kaufmann et 

al., 2011; de Laat et al., 2012; Nesbitt et al., 2013) and is well recognised by clinicians, 

however little attempt has been made to quantify this variability. The NMDAS scale 

allows such quantification to be made. I have shown that age and the urine 

heteroplasmy level together account for only around 18% of the variance in total disease 

burden, which is noticeably low, but resonates with anecdotal evidence from clinicians 

on the variability of disease in patients with the m.3243A>G mutation, as well as 

previous studies that have noted the weak association between heteroplasmy and 

phenotype (Kobayashi et al., 1992; Martinuzzi et al., 1992; Shiraiwa et al., 1993; Liou 

et al., 1994; Chinnery et al., 1997).  It is a clear that there is a vast amount of variation 

in disease burden that is unexplained by the predictors currently available in this 

analysis. 

The detailed diagnostic examination of the model is cumbersome but gives reassurance 

about several key points. Firstly, there are no observable trends between the residuals 

and the predicted value, or the predictors. This is an important validation of the 

transformation used (NMDAS
0.25

) and reassurance that no further transformation of the 

predictors are required. Secondly, the spread of the data is even; there are no highly 

influential points at either high or low heteroplasmy or age. This gives confidence in the 

interpretation of the R
2
, as this can be strongly affected by influential data points. This 

reassurance about the shape and composition of the data set is important, not just for the 

basic modelling using single summary data points, but also for the longitudinal 

modelling.  

The heteroscedacity of the residuals in the basic modelling with respect to age needs to 

be noted, however it is not unexpected. Patients in their early twenties or younger have 

a hugely varied disease burden, including severe burden associated with MELAS 

associated stroke-like episodes, but also much milder presentation, and there are a 

number of more or less asymptomatic children who are known to have inherited 

m.3243A>G from affected mothers who contribute to this variation. It is important to 

note that these basic statistical analyses are conducted to gain an overview of the 

relationship between the predictors and total disease burden; longitudinal mixed 

modelling allows modelling any heteroscedacity inherent in the system, and indeed, the 
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covariance parameters from the longitudinal models indicate that this heteroscedacity is 

incorporated. 

The longitudinal modelling graphically illustrates two key points in this regard. Firstly, 

the unexplained variance is noticeably large; though both m.3243A>G heteroplasmy 

and age are highly significant predictors of total disease burden, the confidence intervals 

for progression of a nominal patient at a given heteroplasmy level are wide. Secondly, 

the predictive power of the family lineage is clearly illustrated, which concurs with 

previously reported observation (Hammans et al., 1995), and suggests that a reasonable 

proportion of this unexplained variance can be explained by a combination of genetic 

factors of either nuclear or mtDNA origin, though environmental or other epi-genetic 

modulatory factors cannot be disregarded. Indeed, the nuclear genetic background has 

previously been shown in vitro to impact on m.3243A>G phenotypic expression 

(Dunbar et al., 1995). 

At an individual patient level, the power of longitudinal mixed modelling is well 

demonstrated by the graphical outputs shown in Figure 4.9; the introduction of random 

effects into the model demonstrates that individual patient progression can be modelled 

in spite of the wide confidence intervals observed using heteroplasmy and age as fixed 

effects. This modelling is critical in understanding the expected disease progression of 

individual patients. 

The development of the longitudinal model demonstrates important points. Firstly, the 

model is ill-specified without accounting for a distinct group of early-onset patients. 

This division must be included in the model as a predictor (the early-onset flag); the 

residuals of the model clearly show that the model misrepresents the underlying data 

structure. There are some limitations in this approach. Firstly, the definition of early-

onset relies on an arbitrary cut-off, which I set at the age of twenty-five. This cut-off 

point was derived on preliminary observation of the dataset that indicated poor model fit 

for a large number of patients under this boundary. However, I investigated models with 

lower and higher cut-offs and twenty five was more or less optimal for this data set. 

Secondly, it is a potential limitation of the methodology that inclusion within the early-

onset group is contingent on having an NMDAS assessment under this age; it is feasible 

that there are patients within the cohort that were symptomatic before the age of twenty-

five but not seen in the Newcastle clinic until over this age. However, despite both of 

these caveats, the inclusion of this predictor in the model comprehensively resolved 
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issues regarding the fit of the model, which is indicative of the success of the 

methodology. It might be argued that dividing the cohort by age is superfluous, since 

age is already included in the model as a predictor. However, it is critical to note that 

both age and the early-onset predictor are simultaneously predictive in the model, and 

thus the predictor has been shown to be empirically valuable. 

An imperative to understanding m.3243A>G disease is to deepen understanding of the 

pathological mechanisms that cause variability in phenotypic expression, and early-

onset of symptoms is a fundamental facet of this variability. It is clear from this 

modelling that heteroplasmy alone is not an adequate descriptor of the underlying 

pathology. There are several potential areas for further exploration of this, which will be 

discussed in the discussion on general disease progression in m.3243A>G in section 

4.3.6. 

4.3.5. Individual phenotypic features 

4.3.5.1. Introduction 

An understanding of the expected development of specific phenotypic features is of 

vital import to clinicians in care and management of patients.  

As a semi-quantitative assessment scale, the NMDAS enables modelling of phenotypic 

features. As discussed in section 2.8, logistic regression is necessary to model discrete 

data such as individual NMDAS question scores. However, longitudinal modelling of 

discrete data is considerably less flexible as compared to continuous or pseudo-

continuous data such as the overall NMDAS score, and thus the approach I take is 

constrained by the tools available to analyse the data. 

There are prior studies that have considered the appearance of specific phenotypic 

features and the correlation with heteroplasmy (Chinnery et al., 1997; Liu et al., 2013). 

However, though both acknowledged age as a potential confounding factor, neither 

study incorporated age into their analysis. Since many features of mitochondrial disease 

are considered progressive this is a significant limitation. 

4.3.5.2. Aims 

My aim in this section is to use multiple logistic regression to study the relationship 

between individual phenotypic features and the predictive factors of age and urine 

heteroplasmy. I aim to distinguish which features are correlated with either one of these 

predictors or both.  
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I also will compare the multiple regression models with the simple logistic regression 

models with a single predictor of either age or heteroplasmy, to better understand the 

relationship between these predictors and each phenotypic feature. 

4.3.5.3. Methods 

The general methodology for logistic regression is explained in section 2.8.  

I used two approaches to logistic regression. Both used the predictors of age and urine 

heteroplasmy. For each NMDAS question, a single summary score was determined for 

each patient by taking the maximum score achieved on each question and the age at 

which that score was first recorded. 

The first approach used binary (dichotomous) logistic regression by identifying the 

optimal cut-off point for each NMDAS question to divide the cohort into two groups. 

To identify the optimal cut-off point the area under the ROC curve (AUC) was 

maximized. This was done separately for each individual predictor and for the model 

with both predictors, to allow a full understanding of the use of each predictor. Only 

cut-off points that partitioned the data into sets containing at least 10 patients in each 

group were considered to avoid small numbers of patients skewing the results. The code 

for this model can be found in Appendix V. 

The second approach used a proportional odds multiple logistic regression. NMDAS 

scores were re-categorised as asymptomatic (NMDAS = 0), moderate (1-3), and severe 

(4-5). This re-categorisation was necessary for a majority of phenotypic features for the 

model to conform to the proportional odds assumption. Pseudo-R
2
 values, as described 

in 2.8.2, were used to compare models. The code for this model can be found in 

Appendix VI. 

In both approaches, standardised parameters for the predictors were calculated. 
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4.3.5.4. Results 

4.3.5.4.1. Binary logistic regression 

Using a model with age and urine heteroplasmy as predictors, the area under the ROC 

(AUC) curve was calculated for each phenotypic feature at each dichotomous cut-off 

point that had at least 10 patients in each group (below the cut-off point, and above or 

including the cut-off point). The AUCs for each cut-off point are shown in Figure 4.12. 

The higher the AUC the better the predictive power of the model. Steep gradients or 

inflections in the graphs indicate instability in the predictability of the features, i.e. 

prediction success is heavily dependent on where the cut-off is drawn. Hearing and 

cerebellar ataxia are the only two features to achieve an AUC over 0.8, however 

diabetes scores very close to 0.8. Hearing and diabetes are consistently good predictors 

at almost any cut-off level, and several other features are consistent across the board, 

albeit with less predictive power, including cognitive impairment, migraine, and 

encephalopathic episodes. GI disturbance is poorly predicted at any cut-off point. 

Using the optimal cut-off for each NMDAS feature, models were generated using each 

predictor in isolation and both predictors together. The results are shown in Figure 4.14. 

As seen in panel C, the model with both predictors is the optimal model in almost all 

cases, other than GI disturbance, where the model with age alone was marginally better. 

Age is a better predictor than heteroplasmy for 17 of the 28 features. Migraine is the 

only features negatively associated with age, though not significantly so. 
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Figure 4.12 Area under the ROC curve (AUC) for each phenotypic feature and various score cut-off points with all three predictors in the model (age, heteroplasmy, and 

deletion size). 

The cut-off score is used to divide the cohort into two groups; those scoring the cut-off or above versus those scoring below. For each feature, the cut-offs tested were those with a 

minimum of 10 patients in each group. Only hearing and cerebellar ataxia achieve an AUC of 0.8 at any cut-off, though diabetes scores close to 0.8 at almost all cut-off points. GI 

disturbance is notably poor at all cut-offs. 
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Figure 4.13 Standardised parameters and area under ROC curves (AUC) for each phenotypic 

feature from the NMDAS using age and urine heteroplasmy as predictors. 

(A) Optimal cut-off point for each NMDAS feature, by maximizing AUC for the model with all three 

predictors. Cohort is dichotomised into those scoring the cut-off or above against those scoring below the 

cut-off. (B) Standardised parameters with 95% confidence intervals for the binary logistic model using 

the optimal cut-off with all three predictors. Parameters are statistically significant if the confidence 

interval does not cross the line at Y = 1. (C) The AUC using the optimal cut-off for each lone predictor 

and both predictors together. Hearing and ataxia score above 0.8, indicating strong predictive power. 

Diabetes achieves close to 0.8. In all cases, the regression with both predictors is optimal. Only migraine 

is (non-significantly) negatively associated with age. Twenty-five of 28 features are significantly 

associated with heteroplasmy, 20 of 28 with age. GI disturbance is very poorly predicted, but several 

other features have AUC values under 0.7, including cutting food, psychiatric disturbance, migraine, and 

seizures. 
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4.3.5.4.2. Phenotypic features predicted by age and heteroplasmy using 

multilevel ordered logistic regression 

For multilevel-ordered logistic regression the odds ratios are presented; odds ratios 

relate to decades, i.e. a 10% change in heteroplasmy or 10 years for age. For example, 

the odds of having unaffected hearing decreases by a factor of 0.63 for each 10% 

change in heteroplasmy or by a factor of 0.42 for each decade of ageing. Calculation of 

the actual risk requires intercepts .The odds ratios for both age and heteroplasmy for the 

features in the NMDAS assessment are shown in Figure 4.14 as well as standardised 

parameters which allow comparison of the relative utility of age and heteroplasmy as 

predictors. Additionally, Appendix VII details all parameters required for risk 

calculation, including intercepts, and Appendix VIII is an explanation of how to 

calculate the risk for a given age and heteroplasmy with these parameters. 

All features excepting gastro-intestinal disturbance, visual acuity, and ptosis were 

predictable by heteroplasmy. Several key features of classical m.3243A>G phenotypic 

presentation, including stroke-like episodes, seizures, and migraine, were not 

predictable by age.  

Logistic models using a single predictor (age or urine heteroplasmy) were also 

generated, and compared with the multiple regression model containing both predictors, 

using the pseudo-R
2
. To interpret the results of this comparison, an R

2
 inflation factor 

was calculated, defined as the multiple regression R
2
 divided by the sum of the 

individual R
2
 values for the two simple regression models. An R

2
 value over 1 indicates 

that the regression with the two predictors in the same model is more explanatory than 

the individual models. This is graphically illustrated in Figure 4.15, which shows both 

the R
2
 inflation factor and the individual pseudo-R

2
 values for each feature from the 

NMDAS. Almost all features are explained better by multiple regression. Most features 

from the current clinical assessment (section I) are substantially better predicted by both 

predictors together. There are no features that are significantly predicted by both age 

and heteroplasmy that have an inflation factor of 1 or below. The models for several 

features that are explained by only one of the predictors, for example migraine or 

seizures, are not improved by the inclusion of the second predictor. Figure 4.16 

illustrates the change in P-value of each predictor when moving from simple logistic 

regression to multiple regression with both age and heteroplasmy as predictors. Several 

features are only significantly predicted by both age and heteroplasmy when both are 

included in the model together; cardiovascular dysfunction, ataxia, diabetes, exercise 
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intolerance, and neuropathy are not predicted by heteroplasmy unless age is included in 

the model; and cognition, dysphonia, pyramidal features, and speech are not predicted 

by age unless heteroplasmy is also in the model. 

 
Figure 4.14 Risk of developing specific symptoms as predicted by age and heteroplasmy. 

Standardised parameters (top) and odds ratios with 95% confidence intervals (bottom). Intervals crossing 

the line with odds ratio of 1 or standardised coefficient of 0 are not statistically significant. See the text 

for model development methodology. Phenotypic features are divided into the three sections of the 

NMDAS assessment. Ataxia, hearing, diabetes, and myopathy are the most predictive by heteroplasmy. 

Most features are predicted by heteroplasmy, other than GI disturbance, visual acuity, and ptosis, though 

both of the latter two are only just beyond statistical significance. Several features are not well predicted 

by age, all in the symptoms section of the NMDAS other than extrapyramidal features, though these are 

very rare in the cohort. GI disturbance is the only feature neither predicted by age nor heteroplasmy. 

Comparison of the standardised coefficients shows that age is a stronger predictor than heteroplasmy for 

17 of the 28 features of the NMDAS. 
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Figure 4.15 Pseudo-R
2
 values for logistic regression with age, heteroplasmy, and both predictive 

factors, and R
2
 inflation factors. 

An R
2
 inflation factor greater than 1 indicates that both predictive factors together are more predictive 

than the predictive factors in isolation. Only migraine, seizures, and GI disturbance are not predicted 

better by multiple regression. Hearing, CPEO, and pyramidal features are most improved by multiple 

regression.  
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Figure 4.16 Improvement in statistical significance of predictors using multiple logistic regression 

rather than simple logistic regression. 

Graph illustrates how the P-value for each predictor is affected when moving from simple logistic 

regression (horizontal bar) to multiple regression (symbol). The solid horizontal line is drawn at P = 0.05, 

indicating statistical significance. Almost all features show improvement in significance with multiple 

regression, most notably hearing, ataxia, diabetes, and myopathy. Heteroplasmy is not a significant 

predictor of several features including ataxia, neuropathy, and diabetes, unless multiple regression is used.  

4.3.5.4.3. Risk profiles of deafness with age and heteroplasmy 

I have chosen hearing to illustrate the outputs of the logistic regression model. The 

changing risk of deafness associated with age and heteroplasmy is depicted in Figure 

4.17. Both age and heteroplasmy are highly significant predictors of deafness (P < 

0.0001). At a given age, the risk of moderate or severe deafness increases as 

heteroplasmy increases; and conversely, at a given heteroplasmy the risk of more severe 

deafness increases with age.  
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Figure 4.17 Risk of deafness and its relationship to age and heteroplasmy. 

Each panel indicates the changing risk profile for one of the predictors (age or heteroplasmy) whilst the 

other is fixed at a determined value. (A-C) Changing risk of deafness with age for patients with 20%, 

60%, or 80% heteroplasmy. (D-F) Impact of heteroplasmy on the risk of deafness for patients aged 20. At 

age 60, with 50% heteroplasmy, there is an approximately equal probability of moderate or severe 

deafness and a small probability of being asymptomatic.  

4.3.5.4.4. Risk profile of principal phenotypic features 

Risk profiles for a selection of other phenotypic features are shown in Figure 4.18. Each 

graph is shown with one predictive factor (heteroplasmy or age) fixed at an arbitrary 

value, for illustrative purposes. Both age and heteroplasmy are highly significant 

predictors for deafness (P < 0.0001). For stroke, heteroplasmy is predictive (P=0.0044) 

but age is not (P = 0.1078). Heteroplasmy is a significant predictor of cerebellar ataxia 

(P = 0.0003) and diabetes (P = 0.0026), and age is a highly significant predictor of both 

(P < 0.0001). 
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Figure 4.18 Risk profiles for four key phenotypic features of the m.3243A>G mutation.  

Predicted probability of being 

moderately affected (score 1-3), 

severely affected (4-5), or 

asymptomatic (0). (A) Risk of 

deafness with increasing age at 60% 

heteroplasmy. (B)  Risk of stroke 

with age at 90% heteroplasmy. The 

probabilities have wide confidence 

intervals and change little with age 

compared to features such as 

deafness, illustrating that risk of 

stroke is not well predicted by age 

(P = 0.1078). (C) Risk of diabetes at 

age 40 by heteroplasmy. The 

majority of patients are either 

asymptomatic or severely affected, 

illustrated by the uniformly low risk 

of moderate disease. Risk increases 

with increasing heteroplasmy (P < 

0.0001). (D) Risk of ataxia with by 

heteroplasmy (P < 0.0001). By the 

age of 60, patients are likely to be 

moderately or severely ataxic. 



Chapter 4 Disease associated with the mt.3243A->G mutation 

 95   
 

 

4.3.5.4.5. Interaction of Heteroplasmy and Age 

To examine whether there is an interaction between heteroplasmy and age in the model 

(i.e. the effect of heteroplasmy being different at different ages, or the effect of age 

being different depending on heteroplasmy) the interaction term was introduced into the 

model. The parameters estimates for the interaction term in the model are depicted in 

Figure 4.19. Out of twenty-eight features the interaction was only significant for 

diabetes (P = 0.0025) and cognitive impairment (P = 0.0357). The interaction for 

diabetes showed that the effect of either predictor is stronger at higher levels of the 

other predictor, i.e. a multiplicative effect. For cognition, the effect was reversed, i.e. 

heteroplasmy is a stronger predictor at a young age than at an older age. 

 
Figure 4.19 Age/heteroplasmy interaction in the logistic regression model. 

Parameter estimate and 95% confidence interval are shown for each NMDAS feature. A confidence 

interval crossing zero is not statistically significant. Only diabetes (P = 0.0025) and cognitive impairment 

(P = 0.0357) have the interaction as a significant term. The negative estimate for diabetes indicates that 

the effect of heteroplasmy is increased as age increases, and similarly the effect of age is more profound 

at higher heteroplasmy. The positive estimate for cognitive impairment indicates that the effect of 

heteroplasmy is lessened as age increases. 

4.3.5.5. Individual phenotypic features discussion 

It has previously been suggested that heteroplasmy is a critical determinant of disease 

phenotype and not age (Chinnery et al., 1997). However, comparing standardised 

coefficients of regression age is a better predictor for 17 out of the 28 measures reported 

by the NMDAS. This is an important characterisation of the disease progression in 



Chapter 4 Disease associated with the mt.3243A->G mutation 

 96   
 

m.3243A>G that has not been comprehensively considered in the literature of 

m.3243A>G disease to date. 

There are several interesting observations to be made from the modelling of specific 

phenotypic features. Firstly, certain critical features associated with m.3243A>G, 

including stroke-like episodes, seizures, and migraine, are not significantly associated 

with age, but are predicted by the urine heteroplasmy level. For the former two 

symptoms the lack of association with age is apparent from the graphs of symptoms by 

age group in Figure 4.3; both phenotypic features are present throughout the age range 

of patients. Migraine, on the other hand, is negatively associated with age, though non-

significantly; however, this concurs with reports in the literature of declining 

susceptibility to migraine with age (Dahlof et al., 2009). Secondly, deafness and ataxia 

are the most highly correlated with age and heteroplasmy, suggesting that these features 

are particularly degenerative in nature. Thirdly, though gastro-intestinal dysfunction is 

prevalent, the severity is predicted neither by age nor heteroplasmy. The reasons for this 

are unclear.  

Two previous studies have reported that some features of m.3243A>G disease are 

negatively correlated with heteroplasmy, namely myopathy, CPEO, and deafness in a 

study by our own group (Chinnery et al., 1997), and deafness and diabetes in another 

(Liu et al., 2013). In this study, I find to the contrary that these features are all directly 

correlated with heteroplasmy. However the prior studies did not incorporate age as a 

predictive factor, which was indeed acknowledged as a concern by both studies and I 

believe to be a critical omission, as demonstrated by the results from multilevel logistic 

regression models with only one predictor (age or urine heteroplasmy). For example, if I 

exclude age as a predictor in the modelling, heteroplasmy is not predictive of many 

common phenotypic features including diabetes, deafness, and cerebellar ataxia. The 

apparently paradoxical findings of these two previous studies clearly indicate the 

necessity of taking into account confounding factors such as age. 

The motivation for examining the interaction between heteroplasmy and age is that it 

might be expected that some features would show a different relationship with 

heteroplasmy for different age groups, or that the progressiveness of the features in time 

would be modulated by heteroplasmy. The results from this section showed that the 

interaction is only significant in two features, diabetes mellitus and cognitive 

impairment. However, the most useful finding of this analysis is that no highly 
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significant interactions were found, which may have undermined the findings of the 

model without interaction terms.  

Deafness is the most prominent symptom in this cohort; although only around 12% of 

patients suffer from complete deafness, 75% of patients have some form of hearing loss. 

It is also the symptom most predictable using heteroplasmy and age. It should be 

observed that prevalence does not go hand in hand with predictability; gastro-intestinal 

disturbance is almost as prevalent yet not predictable by either age or heteroplasmy. 

Deafness is so common in m.3243A>G patients that it has been suggested as a critical 

diagnostic criteria for identifying carriers of the mutation indeed, in a study of 1482 

patients with post-lingual hearing loss, over 1% of patients were found to carry the 

m.3243A>G mutation (Iwanicka-Pronicka et al., 2012). Another study found that the 

proportion was even higher (7.8%) in those with known sensorineural hearing loss 

(Majamaa et al., 1998). The progression of deafness in m.3243A>G patients has been 

characterised as abrupt and stepwise usually occurring with encephalopathic or stroke-

like episodes (Sue et al., 1998a; Chinnery et al., 2000a). However, the prevalence of 

deafness in this cohort far exceeds that of encephalopathic or stroke-like episodes, and 

thus most of the hearing loss, though it may be stepwise, cannot be so associated. The 

correlation between hearing loss and muscle heteroplasmy has previously been reported 

(Chinnery et al., 2000a), and this study has augmented that finding by incorporating age 

as a co-predictor. Deafness was amongst the symptoms with high R
2
 inflation factors 

and demonstrated a dramatic reduction in P-value with multiple regression, indicating 

that the population level inter-correlation of age and heteroplasmy masks the strong 

association of both of these predictors with symptom severity. 

Sixty-three percent of patients are ataxic to some degree, and 39% are at least 

moderately affected. The prevalence of ataxia in mitochondrial disease has been noted 

in the literature (Lax et al., 2012), and though it is generally acknowledged as a 

progressive symptom, this has not been fully characterised. The modelling documented 

here demonstrates that ataxia is both predictable by heteroplasmy and age. Indeed, the 

pseudo-R
2
 value indicates that it is the most clearly progressive symptom of all in this 

cohort.  

Though gastro-intestinal disturbance stands with deafness as one of the two most 

common phenotypic features seen in patients with m.3243A>G, it is the only feature not 

predicted by either age or heteroplasmy. The reasons for this are unclear. Whilst gastro-



Chapter 4 Disease associated with the mt.3243A->G mutation 

 98   
 

intestinal disturbance is common within the general population, the incidence in our 

patients is striking. Previous studies have demonstrated respiratory chain deficiency of 

the bowel smooth muscle which could explain the symptoms (Betts et al., 2008), and a 

recent study also found a previously unreported high incidence of coeliac disease in 

children with mtDNA mutations (Mazzaccara et al., 2012). However, it remains unclear 

why the dysfunction would not correlate better with age and heteroplasmy. It is clear 

from the phenotypic characterisation of the cohort seen in Figure 4.2 that NMDAS 

scores of 5 for GI disturbance are very rare indeed, and scores of 4 are also rare. Thus 

either high levels of GI disturbance are rare in the cohort, or this analysis has 

highlighted an issue with the NMDAS data collection which needs to be addressed; 

patients with severe disease who have been hospitalised may not be being accurately 

assessed for criteria such as GI disturbance due to difficulty in performing the NMDAS 

assessment fully (Dr Andy Schaefer, personal communication).  

The methodology employed in this section requires some discussion. To avoid the need 

to deal with repeated measures and the implicit correlation between repeated scores for 

individual patients, I have taken a single summary score for each patient as described in 

section 4.3.5.3. However, a necessary shortcoming of this approach is that the full 

potential of the dataset is not being exploited; nor is it longitudinal analysis. 

Longitudinal analysis using techniques analogous to repeated measures mixed 

modelling would support inferences about individual patients and their expected 

progression by the incorporation of random effects into the model; repeated measures 

multiple logistic regression with random effects would be a desirable approach to 

modelling this data in order to provide prognostic information for individual patients 

based on their phenotypic progression to date. However, current analytical tools for 

conducting such analysis are limited. Though SAS does support incorporation of 

random effects into logistic regression using PROC GLIMMIX, and modelling of the 

covariance structure in repeated measures from the same patient, this analysis is limited 

to dichotomous data. Thus progression from asymptomatic to moderate to severe 

disease cannot be conducted. An additional and more serious issue currently is that for 

most patients there is no noticeable progression in many of the clinical symptoms over 

the period of assessment. As more NMDAS data is collected this form of modelling will 

become more feasible. 
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4.3.6. Disease progression discussion  

This section has used a variety of approaches to examine disease progression in a large 

cohort of patients with m.3243A>G, both examining the progression in total disease 

burden, and the risk of developing specific phenotypic features according to age and 

heteroplasmy. 

Taken together, these analyses have shown that heteroplasmy has some utility as 

predictor of both overall disease burden and most individual phenotypic features, and 

that multiple regression with age is vitally important in order to fully recognise the 

prognostic potential. However, there is a strong imperative to research a more clinically 

relevant and easily measurable predictor of disease progression. 

The basic challenge facing understanding of disease associated with the m.3243A>G 

mutation is identifying further predictors that will transform unexplained variance in 

phenotype and disease progression into explained variance. Understanding the links 

between genetics (both nuclear and mitochondrial), epigenetic modifiers and the 

resulting clinical phenotype is critical future work.  

There are several interesting lines of enquiry in this regard. Firstly, a recent study has 

indicated that wild-type mtDNA copy number, rather than heteroplasmy, may be a more 

useful prognostic indicator than heteroplasmy (Liu et al., 2013). Investigation of 

mtDNA copy number is therefore a priority in furthering this modelling work. 

Secondly, it has been demonstrated in a homoplasmic point mutation in the 

mitochondrial tRNA isoleucine gene (MT-TI) that levels of the cognate tRNA 

synthetase modulate the penetrance of the mutation and the resulting clinical phenotype, 

in this case hypertrophic cardiomyopathy (Perli et al., 2012). To my knowledge, there 

has been no study of patients carrying the m.3243A>G mutation to identify if tRNA 

synthetase levels correlate with clinical phenotype. Indeed, the leucyl tRNA synthetase 

is particularly interesting as it has been shown to act as an amino acid sensor 

modulating the mTORC1 pathway that regulates protein translation, cell size, and 

autophagy (Han et al., 2012), and overexpression of the synthetase corrects the 

m.3243A>G phenotype in cybrid cells (Li and Guan, 2010). Thus there are several 

motivations for understanding how tRNA synthetases modulate disease burden and 

phenotypic expression in m.3243A>G patients. 

Thirdly, it has been reported that a critical difference between MELAS and other 

phenotypic presentations, such as CPEO, is that MELAS patients have a relatively 
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homogeneous distribution of mutant mtDNA in muscle fibres, whereas patients with a 

CPEO-like phenotype appear to have focal accumulation of mutant mtDNA in selected 

fibres (Moraes et al., 1993; Petruzzella et al., 1994). It is speculated that this distinction 

may also be apparent in clinically affected tissues of the CNS though this is yet to be 

reported on. However, it should be noted that in these studies patient age is a 

fundamental confound, since the accumulation of defective mtDNA in fibres is likely to 

be a time-dependent process, and both studies had a significantly younger MELAS 

cohort than the comparator cohort.  

The statistical modelling I have employed is novel in two regards; firstly, in 

comprehensive longitudinal modelling of total disease burden; and secondly, the 

predictive modelling of individual phenotypic features, using both age and 

heteroplasmy as predictors. Though previous studies have used heteroplasmy as a 

predictor of phenotype (Chinnery et al., 1997; de Laat et al., 2012; Liu et al., 2013) this 

approach is limited and risks confounding any findings by not accounting for age. 

Indeed, multiple regression using both factors simultaneously is critical, since at the 

population level urine heteroplasmy and age are negatively correlated, as previously 

reported (de Laat et al., 2012) and confirmed in this cohort. This significant Pearson’s 

correlation is the cause of the increased explanatory power of heteroplasmy and age 

together as compared to either factor as singular predictors. 

There are some limitations in this study which need to be acknowledged. Firstly, I have 

used urine heteroplasmy throughout; though it has been shown to correlate well with 

clinically affected tissues (Blackwood et al., 2010), a more invasive measure of 

heteroplasmy, for example skeletal muscle, may reduce the unexplained variance and 

improve the modelling. This will be discussed further in the next section on 

m.3243A>G heteroplasmy. 

Secondly, I have not considered in the model the baseline level of disease found in the 

normal ageing population, which would be necessary in order to ascertain the degree of 

disease progression attributable to the mtDNA mutation alone. However, from a clinical 

care perspective the overall disease burden for patients is the more relevant quantity. 

Thirdly, as previously discussed in the section on individual phenotypic features, 

longitudinal modelling of specific features has not been conducted, and it is anticipated 

this would be valuable information for clinicians and patients alike.  
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In conclusion, I have produced two model systems for understanding disease burden 

and progression in patients with the m.3243A>G mutation, both utilising age and 

heteroplasmy as predictive factors; a longitudinal model of overall disease burden 

progression, and models to predict the severity of specific phenotypic features. Both 

these models provide critical information to clinicians for the care and management of 

patients with the m.3243A>G mutation. 
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4.4. Heteroplasmy in m.3243A>G 

4.4.1. Introduction 

Heteroplasmy levels in m.3243A>G remain a rich area for research, and though much 

has been studied and reported there are still large gaps in knowledge.  

Since the earliest reports of blood heteroplasmy decline in the m.3243A>G mutation 

(Poulton and Morten, 1993; Hammans et al., 1995), the decline has been repeatedly 

studied. An earlier study of 18 patients reported an average linear decline of 0.69 

percentage points per year (t Hart et al., 1996); Rahman et al., in a study of six patients, 

compared blood from Guthrie cards taken at birth to blood taken at MELAS disease 

diagnosis and found a linear decline of an average 1.4 percentage points per year 

(Rahman et al., 2001); Pyle et al. reported a linear decrease of 0.6 percentage points per 

year in a longitudinal study of 11 patients (Pyle et al., 2007); Mehrazin et al. quantified 

the loss as 0.53 percentage points per year in MELAS patients and 0.22 percentage 

points per year in carrier relatives in a study of 34 patients (Mehrazin et al., 2009). 

Rajasimha et al., in a departure from the other studies, proposed that the decline in 

blood was exponential rather than linear, provided a coherent model based on 

progressive loss of haematopoietic stem cells which had accumulated high levels of 

mutant mtDNA by random genetic drift, and validated their model by comparison with 

experimental data (Rajasimha et al., 2008). They quantified the decline as an 

approximate compound 2% loss per year. However, it should be noted that some studies 

that have examined longitudinal changes in blood heteroplasmy did not find the change 

significant (Kaufmann et al., 2011), though this is generally attributed to small sample 

size or insufficient time between measures. 

Heteroplasmy changes in other tissues are less well understood. It was shown early on 

that intra-patient heteroplasmy levels in many post-mitotic tissues are similar, for 

instance skeletal muscle heteroplasmy is thought to be broadly representative of the 

level in the neurons within the CNS (Ciafaloni et al., 1991; Macmillan et al., 1993). 

Several studies have reported a negative correlation between heteroplasmy and age in 

diverse samples including urine, skeletal muscle, and buccal mucosa  (Frederiksen et 

al., 2006; Kaufmann et al., 2011; de Laat et al., 2012), though as none of the studies 

were longitudinal it was not possible to draw firm conclusions about decline with age.  

However, there are wide variations in heteroplasmy levels in different tissues. Shiraiwa 

et al., for instance, found the lowest mutation level in the spleen (Shiraiwa et al., 1993). 
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Interestingly, there are reported consistent differences in the average heteroplasmy 

levels between certain tissues. Chinnery et al. reported that the distribution of mutant 

mtDNA was non-random, and that the mutation load in tissues correlated with the cell 

turnover rate in each tissue; levels in muscle were highest, followed by hair follicles, 

buccal mucosa, and lowest in blood (Chinnery et al., 1999). This hierarchy is supported 

by data from several other research groups, many of whom also added heteroplasmy 

measured in urine, which is generally found at a level similar to that found in muscle 

(Shanske et al., 2004; Frederiksen et al., 2006; de Laat et al., 2012). De Laat, for 

instance, quantified that heteroplasmy levels in urine were 11 percentage points higher 

than in buccal mucosa and 23 percentage points higher than blood. 

Non-random segregation of mutant mtDNA was consistent with the finding that foetal 

heteroplasmy levels are strikingly homogeneous (Matthews et al., 1994), and strong 

evidence against the hypothesis that heterogeneous heteroplasmy levels in tissues were 

caused by random mitotic segregation in early embryogenesis (Huang et al., 1996). It 

was also reported that though heteroplasmy levels vary from tissue to tissue there are no 

differences observable between the average levels of tissues originating from the three 

germ layers (Frederiksen et al., 2006), further evidence against early embryonic random 

mitotic segregation, and evidence that variations in heteroplasmy are mainly due to 

selection pressures on either wild-type or mutant DNA during life.  

The significant loss of the mutation in blood contrasts with other rapidly dividing 

tissues which do not exhibit such decline, such as hair follicles (Sue et al., 1998b) and 

the urinary epithelium (Blackwood et al., 2010), though has been speculated as due to 

the low energy requirement of such cells, and it is suggested that in rapidly dividing 

tissues random genetic drift accounts for alterations in heteroplasmy unless a severe 

respiratory deficiency exerts pressure and results in active selection of wild-type 

mtDNA (Rahman et al., 2001). 

Interestingly, variation between hair follicles from the same individual has been shown 

to be very large (Shanske et al., 2004); this was attributed to the fact that individual hair 

follicles develop from one or a small number of stem cells in each follicle bulb 

(Ghazizadeh and Taichman, 2001) and thus random segregation will result in such 

mosaicism whilst maintaining a uniform average heteroplasmy level. 
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4.4.2. Aims 

In this section, I examine the Newcastle cohort data to probe the inter-relationships 

between the various measures of heteroplasmy available for this cohort (urine, blood, 

and skeletal muscle), and also age.  

I have two major aims. The first is to examine urine and muscle heteroplasmy for 

evidence of longitudinal change and to characterise any dynamic shift. The second is to 

examine the decline of blood heteroplasmy in the Newcastle cohort and to validate and 

characterise the proposed exponential decline model (Rajasimha et al., 2008). 

4.4.3. Methods 

4.4.3.1. Exponential decline of blood heteroplasmy (longitudinal) 

This analysis was restricted to those patients with multiple measurements of 

heteroplasmy more than two years apart. 

Exponential decline, defined by a rate parameter here called Rate, can be expressed as 

shown in Equation 4.1. 

                                                             

Equation 4.1 Exponential decline. 

 

For convenience I define the decline factor to be 100% - rate. Thus a decline factor of 

5% indicates a compound decline of 5% (the result of multiplication by 0.95) each year. 

A negative decline factor indicates an increase in heteroplasmy. 

The decline factor is hence calculated as shown in Equation 4.2; e.g. for a patient with a 

decline factor of 5%, if the starting heteroplasmy was 50%, after one year the 

heteroplasmy would decline to                 , after two years        

             , and so on for each year of decline.  

                          
                             

                           

Equation 4.2 Decline factor calculation. 

 

4.4.3.2. Exponential decline of blood heteroplasmy (using urine heteroplasmy) 

A second method I chose to investigate the decline of blood heteroplasmy was to use 

muscle, urine heteroplasmy, or another putatively static heteroplasmy measure as a 
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nominative starting heteroplasmy level at birth. As I have only a limited number of 

muscle heteroplasmy levels recorded, I used urine heteroplasmy as the nominative level. 

Where multiple urine heteroplasmy records are available, I take the mean value.  

Similarly to section 4.4.3.1, I define an exponential decline factor, but this time, I use 

age plus 9 months as the time period, as I am assuming that the urine heteroplasmy level 

is indicative of blood heteroplasmy at conception and that any selective pressure is 

exerted from that point. 

4.4.4. Results 

4.4.4.1. Cohort 

There are 192 patients with m.3243A>G in the Newcastle cohort in total, excluding two 

patients who have had renal transplants and are excluded from heteroplasmy 

investigations for this reason. Figure 4.20 illustrates the number of patients available 

with the respective heteroplasmy levels. The full data can be found in Appendix III. 

Figure 4.20 Number of patients with 

heteroplasmy data available. 

Venn diagram illustrating the number of 

patients with urine, blood, and skeletal muscle 

heteroplasmy. Fourteen patients have no 

measure of heteroplasmy; 35 have all three 

measures. For each analysis. I use the maximum 

number of patients available with the required 

data. 

 

 

4.4.4.2. Relationship between heteroplasmy and age 

4.4.4.2.1. Urine  

The regression of urine heteroplasmy and age is shown in Figure 4.21A. Although there 

is a clear correlation, and the relationship is reasonably linear, the distribution is 

asymmetric. However, Box-Cox identifies the identity function (no transformation) as 

optimal. 
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Figure 4.21 Heteroplasmy and age. Linear regression with 95% confidence and prediction 

intervals. 

(A) Though there is a clear correlation between urine heteroplasmy and age, the relationship is not quite 

linear; the line is reasonably well fitting, but the residuals are asymmetric and do not follow a Gaussian 

distribution (P = 0.0004 Shapiro-Wilk). N = 175, R = -0.41, P < 0.0001. (B) Non-linear relationship 

between blood heteroplasmy and age. Box-Cox identifies the square root as the optimal transform. (C) 

Once transformed the relationship between blood and age is more clearly linear (R = -0.49, P < 0.0001). 

However the residuals are non-Gaussian and do not pass normality tests (P < 0.0001, Shapiro-Wilk). N = 

159 (D) The relationship between SKM heteroplasmy and age is not significant though there is a negative 

trend (P = 0.0664, R = -0.30, N=39). 

4.4.4.2.2. Blood 

The relationship of blood heteroplasmy and age is shown in Figure 4.21B. Age and 

blood are clearly correlated (P < 0.0001); Box-Cox identifies the square root transform 

as optimal, and the linear regression of this is shown in Figure 4.21C. Though this 

improves the fit, the residuals still remain non-normal.  

4.4.4.2.3. Muscle 

Figure 4.21D shows the regression of SKM heteroplasmy against age. Though there is a 

declining trend with age, it is not statistically significant in this cohort (N = 39, P = 

0.0664). 
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4.4.4.3. Urine and blood heteroplasmy levels are linearly related 

On inspection, the relationship between urine and blood heteroplasmy levels is clearly 

non-linear (data not shown). Box-Cox identifies the appropriate transformation of the 

blood heteroplasmy as the square root. Figure 4.22 illustrates the relationship between 

urine heteroplasmy and the square root of the blood heteroplasmy level. The two 

quantities are highly significantly correlated (P < 0.0001, R
2
 = 66.4%, N = 158). 

Residual diagnostics confirm that the errors in this relationship are clearly Gaussian in 

distribution, indicating that the relationship is well formed.  

 
Figure 4.22 Urine heteroplasmy is linearly correlated with the square root of blood heteroplasmy. 

The regression line and both 95% confidence and prediction intervals for the linear correlation are shown. 

The square root relationship is identified by Box-Cox as the appropriate transformation. Residuals are 

Gaussian in distribution, indicating that the relationship is well formed. N = 158, R
2
 = 66.1%, P < 0.0001. 

4.4.4.4. Age at biopsy improves the linear relationship between urine and blood 

heteroplasmy 

As blood heteroplasmy is thought to decline with age, I also examined the relationship 

between urine heteroplasmy, blood heteroplasmy, and age. This analysis also uses the 

square root transformation of blood heteroplasmy. 

Figure 4.23 illustrates the outcome of the multiple linear regression. Both urine 

heteroplasmy (B = 0.69, P < 0.0001) and age (B = -0.30, P < 0.0001) are highly 

significant predictors of blood heteroplasmy (R
2
 = 74.0%). The interaction of age and 

urine heteroplasmy is also highly significant (P < 0.0001) yielding standardised 
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parameters for urine heteroplasmy (B = 0.69, P < 0.0001), age (B = -0.33, P < 0.0001) 

and the interaction (B = -0.15, P < 0.0001) (R
2
 = 76.2%). 

 
Figure 4.23 Multiple regression with age at biopsy improves the correlation between urine and 

blood heteroplasmy. 

The linear regression lines for three age groups are depicted. Adjusted R
2
 increases to 76.2%, from 66.4% 

for the model without age (Figure 4.22). Both age and urine heteroplasmy are highly significant 

predictors (P < 0.0001). The gradient of the line relating urine and blood heteroplasmy is age dependent 

(P < 0.0001). N = 158. P-values are for age as a continuous predictor; graphs show age as a categorical 

variable for illustrative purposes only. 

4.4.4.5.  Urine and SKM heteroplasmy levels are linearly related 

Figure 4.24 illustrates the relationship between urine and muscle heteroplasmy. Where 

repeated measures of urine heteroplasmy are available the mean of the two values is 

used. The two measures are highly significantly linearly correlated (P = 0.0006, r = 

0.53). The regression line defines the relationship between the two measures of 

heteroplasmy shown in Equation 4.3. 

                                                          

Equation 4.3 Relationship between muscle and urine heteroplasmy. 

Age is not a significant factor in this relationship (P = 0.8535). The 95% confidence 

interval for the gradient in this equation is (0.24, 0.81). 
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Figure 4.24 Urine and muscle heteroplasmy levels are linearly correlated. 

Regression line with 95% confidence and prediction intervals are shown. r = 0.53, P = 0.0006, N = 39. 

The gradient (0.53) is significantly non-zero (95% CI 0.24, 0.81). The line y = x is also drawn on for 

comparison, as this would be the regression line describing equality of urine and muscle heteroplasmy 

values. 

4.4.4.6. Longitudinal urine heteroplasmy analysis 

For the patients with at least two sequential urine heteroplasmy measurements (N = 79) 

the percentage point change in heteroplasmy was calculated for the points furthest apart 

in time. As shown in Figure 4.25A, the changes in heteroplasmy were not significantly 

different from zero (P = 0.8487). The mean change is 0.26% (95% CI -2.4% - 2.9%). 

The sample standard deviation is quantified as 11.8%.  

The changes in heteroplasmy were also regressed against several other quantities to 

investigate any trends, as depicted in Figure 4.25B-D. Heteroplasmy change was not 

significantly correlated with age at sampling (P = 0.1791, r = 0.15), though there was a 

non-significant trend towards increasing heteroplasmy with age. Nor was it correlated 

with the years between measurements (P = 0.6126, r = -0.06). Only the initial 

heteroplasmy level showed a significant correlation with the change over time with a 

trend towards falling heteroplasmy at high initial levels (P = 0.0035, r = -0.33).  

The White test for heteroscedacity indicated that the variance in the heteroplasmy 

change was not correlated with years between measurement (P = 0.3652) or age (P = 

0.6569). 
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Multiple regression with age and initial heteroplasmy finds that the significance of age 

as a predictor of heteroplasmy changes from P = 0.01791 to 0.9830, whilst initial 

heteroplasmy remains significant (P = 0.01) (R
2
 = 0.11). 

The standard deviation (11.8%) of the urine heteroplasmy was analysed using 

bootstrapping to establish a confidence interval for the estimate. This generated a 95% 

confidence interval for the standard deviation of (9.62%, 14.01%). 

4.4.4.7. Longitudinal blood heteroplasmy decline is exponential 

The decline factor is calculated as explained in section 4.4.3.1. Twenty-seven patients in 

the cohort had serial blood heteroplasmy records at least two years apart. The results are 

shown in Figure 4.26. Panel A shows that the decline factor is independent of age; panel 

B shows that the factor is not independent of the initial heteroplasmy level. 

As the distribution of the decline factor is non-Gaussian I use non-parametric testing to 

assess whether the decline factor is significantly non-zero. The median decline factor is 

1.30% (95% CI 0.00% to 2.53%). The result is not significantly non-zero (P = 0.0773). 

4.4.4.8. Urine as a nominative initial blood heteroplasmy level provides a 

consistent blood heteroplasmy decline level 

The concept of using urine as a nominative initial starting heteroplasmy to investigate 

blood heteroplasmy decline is considered in Figure 4.27. There are weak and 

insignificant trends with both the decline period and initial heteroplasmy level. Mean 

decline is 2.99% per year. 
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Figure 4.25 Longitudinal changes in urine heteroplasmy over time. 

For each patient with sequential urine measurements (N = 79), the change in heteroplasmy was calculated 

and compared to various potential correlates. Regression graphs depict regression lines with 95% 

confidence and prediction intervals. (A) Change in heteroplasmy is not significantly different from zero 

(P = 0.8487). (B) Change in heteroplasmy over time is not correlated with time between measurements (P 

= 0.6126, r = - 0.06). (C) Change in heteroplasmy is correlated with the initial level of heteroplasmy (P = 

0.0035, r = -0.33) (D) Change in heteroplasmy over time in not significantly correlated with age (P = 

0.1791, r = 0.15).  
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Figure 4.26 Examining the exponential decline of blood heteroplasmy. 

The annual rate of exponential decline of blood heteroplasmy is computed for those patients with serial 

blood measurements more than two years apart (N=27). Linear regression with 95% confidence and 

prediction intervals. A positive factor indicates decline in heteroplasmy over time, a negative  factor 

indicates increasing heteroplasmy (A) The decline factor is independent of age (P = 0.8661, r = - 0.034). 

(B) The decline factor is directly correlated with the initial heteroplasmy level (P = 0.0460, r = 0.387).  
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Figure 4.27 Exponential decline of blood heteroplasmy using urine heteroplasmy as nominative initial level. 

The urine heteroplasmy level is taken as a nominative initial heteroplasmy level at birth, and is used to calculate an exponential decline factor for blood heteroplasmy (N = 155). 

Regression line with 95% confidence and prediction intervals is shown. (A) The relationship between the period of decline and the decline factor. There is a downward trend but it is 

not statistically significant (P = 0.0923, r = -0.14). (B) The relationship between the initial heteroplasmy level and decline factor. There is a non-significant downward trend (P = 

0.3848, r = -0.07), the mean decline is 2.99% per year. 
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4.4.5. Discussion 

4.4.5.1. Heteroplasmy and age 

Several studies have reported a negative correlation of heteroplasmy with age, using 

samples from a variety of sources including buccal mucosa, urine, and skeletal muscle 

(Frederiksen et al., 2006; Kaufmann et al., 2011; de Laat et al., 2012), and these 

observations are confirmed in my analysis of urine and skeletal muscle, though the 

correlation with skeletal muscle in the cohort is not significant. It needs to be considered 

that the sample size of the muscle heteroplasmy data is much lower than that of urine 

and blood. Though some researchers extended these observations to speculation about 

longitudinal changes in patients (de Laat et al., 2012), this has not been studied in a 

large cohort to date in any sample source other than blood. However, it should be noted 

from the outset that a negative correlation in heteroplasmy in all tissues with age is 

potentially explained by the fact that older patients in the cohort are likely to have 

presented with disease later in life and thus be expected to have lower heteroplasmy. 

Thus a negative correlation may be simply a result of sampling bias. 

4.4.5.2. Is urine heteroplasmy static or dynamic? 

The data in section 4.4.4.6 shows that there is no trend in urine heteroplasmy levels 

either upwards or downwards in general. Nor were there any significant trends with the 

age of the patients or the period of measurement. These findings in a large sample are 

strongly supportive of a conclusion that urine heteroplasmy levels do not systematically 

increase or decrease over time. Although this has previously been speculated to be the 

case based on a small cohort of 11 patients (Blackwood et al., 2010), this is the first 

comprehensive report of longitudinal change in heteroplasmy recorded from any source 

other than blood. 

There is, however, a significant correlation with the initial heteroplasmy level; those 

with high heteroplasmy levels are more likely to show a decrease over time, and those 

with low heteroplasmy levels are more likely to show an increase. The association, 

though significant (P = 0.0035), is weak (r = 0.33), and drawing conclusions from this 

association is difficult, as such trend could easily be accounted for by floor and ceiling 

effects when interpreting changes in extreme (low or high) heteroplasmy levels. 

Multiple serial measurements in a large cohort would be needed to better understand if 

there are true longitudinal changes.  
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This observation should be considered in tandem with the relationship observed 

between urine and muscle heteroplasmy levels. It is interesting to note that the linear 

regression implies that for low heteroplasmy levels muscle heteroplasmy exceeds urine, 

but at high levels, muscle is lower than urine. This is a curious observation; though 

urine heteroplasmy levels are not systematically moving either up or down observing 

the cohort as a whole, there is systematic divergence of urine and muscle heteroplasmy 

levels at low and high heteroplasmy levels. These two observations are superficially in 

direct conflict; for example, a urine heteroplasmy level of 80% would tend to show 

decrease over time, but relative to muscle heteroplasmy it appears to be inflated. How 

can these observations be reconciled? 

One explanation is that one or both of these observations is a statistical anomaly, 

perhaps derived from ascribing a linear relationship where there is non-linear 

relationship, which in this case is likely on account of the finite limits (0% to 100%) of 

heteroplasmy measurements. This can only be correctly ascertained by collecting 

further data, as the sample size is not large enough to draw firm conclusions. However, 

it should be considered that divergence of heteroplasmy levels between tissues suggests 

that at some point during development or later life heteroplasmy levels have 

dynamically shifted, though it is unclear here whether the shift has occurred in muscle, 

the cells found in the urinary sediment, or both. Heteroplasmy levels in muscle, as post-

mitotic tissue, are expected to be relatively static, and thus the cells that are found in 

urinary sediment are put into the spotlight. Indeed, in section 4.6, I show that urine 

heteroplasmy in males is significantly higher than females despite similar blood 

heteroplasmy levels, which is further evidence of a potential dynamic shift in 

heteroplasmy in the tissues from which cells in urinary sediment originate.  

A major question is the origin of mtDNA in urinary sediment. Though the cells are 

generally expected to be urothelial cells from the bladder lining and urinary tract 

(Blackwood et al., 2010), this has not been specifically investigated in mitochondrial 

disease and m.3243A>G in particular. Renal dysfunction is common in patients with 

m.3243A>G (Cheong et al., 1999; Guillausseau et al., 2001; Hotta et al., 2001; Iwasaki 

et al., 2001; Suzuki et al., 2003; Piccoli et al., 2012; Seidowsky et al., 2013) and renal 

dysfunction may lead to the presence of renal cells in urine (Simerville et al., 2005). 

Thus it may be that the elevated levels of heteroplasmy in urinary sediment in 

comparison to other measures of heteroplasmy may be indicative of renal dysfunction 

and denote a genuine accumulation of the mutation in such tissue. It may therefore be 
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useful to investigate the relationship between measures of kidney function, such as the 

urine/creatinine ratio, with heteroplasmy or disease burden in this cohort. 

In conclusion, this section does satisfy the question of whether urine heteroplasmy 

levels in general move upwards or downwards; they appear to remain static. The 

question of whether individual patients can or do show systematically changing 

heteroplasmy over time cannot be answered by this dataset however; for this we require 

patients with three or more longitudinal measurements of heteroplasmy.  

4.4.5.3. Variability in urine heteroplasmy measurement 

I have quantified the variation in urine heteroplasmy measurement in this cohort as 

11.8% (the standard deviation of the sequential measurements) and used bootstrapping 

to estimate the confidence interval for this estimate (9.62%, 14.01%). The White test for 

heteroscedacity illustrates that this variance is not dependent on the time between 

measurements. This supports the conclusion that this variation originates either in 

random fluctuations within the biological systems that contribute to the cells found in 

urinary sediment or the heteroplasmy measurement assay itself; however, the same 

assay is used for measuring heteroplasmy from other sources without such extreme 

variation and thus the heteroplasmy of the cells in urine themselves are the most likely 

source.  

Though previous studies have commented on the variation in urine heteroplasmy 

(Blackwood et al., 2010), to my knowledge, this is the first formal quantification of the 

variation. The standard deviation of urine heteroplasmy is troublingly large. Urine 

heteroplasmy has been recommended as the best correlate for disease burden (Whittaker 

et al., 2009), but a confidence interval of ±23% (calculated from the mean standard 

deviation of 11.8%) seriously impacts on the ability of clinicians to understand the 

expected level of heteroplasmy in other tissues when using urine heteroplasmy as a 

guide. The source of this variation is currently unknown. A prior study investigated 

urine heteroplasmy levels, and found that the time of day that urine was collected was 

not a significant factor in the variation (Blackwood et al., 2010). Interestingly, they 

found that even measuring heteroplasmy on the same day sometimes recorded 

differences of up to 20% from the median measurement, which is consistent with the 

standard deviation reported here.  

If urine levels are to be used, it would appear that a single value alone is not sufficient. 

Multiple repeated testing will reduce the variation, for instance 4 samples will halve the 
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standard error. Such an approach is laborious however; though it may be preferable to 

an invasive technique such as a muscle biopsy.  

4.4.5.4. Blood heteroplasmy decline 

The results in section 4.4.4.6 expand current understanding of blood heteroplasmy 

decline whilst raising new questions.  

The exponential decline rate is shown to be independent of age in this cohort. This is 

supportive of the hypothesis that the blood decline is indeed exponential. Additionally, 

though the exponential rate is not statistically significantly non-zero in this cohort, this 

may be due to insufficient power, as I had a limited number of serial measurements in 

blood, and the data is suggestive of blood heteroplasmy decline over time, with a 

median decline factor of 1.3%.  

The significant relationship between the decline factor and the initial heteroplasmy level 

is of concern, as it would indicate that the rate of decline is dependent on the 

heteroplasmy level (note that since we have calculated an exponential decline factor, the 

relationship we are looking at is multiplicative, and should be independent of the actual 

heteroplasmy levels). Scrutiny of Figure 4.26B reveals that this trend is perhaps due to 

the existence of patients with apparently increasing heteroplasmy in the low (0-20%) 

heteroplasmy range. A potential contributor to this is that small errors in measurement 

at low heteroplasmy levels translate into large errors in the multiplicative factor; a 

change from 4% to 5% heteroplasmy in a year translates as a decline factor of -25%, but 

a change from 30 to 31% is a mere -3.3%. To minimise such errors, N must be 

increased or heteroplasmy measured over as long a time period as possible, so that the 

effect of measurement error and random fluctuations are diluted. However, even if we 

restrict the data to measurements taken 5 or more years apart, this relationship still 

exists, albeit not statistically significant (P = 0.1233), though the sample is much 

reduced (N = 14). The cluster of points that show negative decline (and thus increasing 

heteroplasmy) suggest that at heteroplasmy levels below around 20%, decline is no 

longer occurring in general. Furthermore, several patients above this level also show no 

decline over prolonged periods; for instance, a patient with 48% blood heteroplasmy 

demonstrated no decline over a period of 7 years, and several others have similar 

periods of static and relatively high blood heteroplasmy (the full dataset can be found in 

Appendix III). This suggests that some patients may have an asymptotic level of blood 

heteroplasmy far above zero. To my knowledge, there is no discussion in the literature 
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of the asymptotic level to which heteroplasmy is declining, nor a consideration of the 

intra-patient variability in this decline. Indeed, all the discussion appears to implicitly or 

explicitly assume that heteroplasmy levels decline to zero or negligible levels, most 

apparent in the published exponential decline model (Rajasimha et al., 2008). This 

belief is strongly reinforced by the fact that older patients tend to have very low levels 

of heteroplasmy. However, interpreting these very low levels at older age in this way 

misses the point that patients presenting at older age generally have milder disease 

phenotype and are thus likely to have had lower heteroplasmy levels initially. The only 

way to correctly analyse intra-patient variation in heteroplasmy decline is a thorough 

longitudinal analysis, but further investigation of this will require a larger cohort of 

patients studied for a longer period. However, we can conclude that non-zero 

asymptotic levels of blood heteroplasmy is a possible explanation of the shape of the 

data seen here, and this is a potentially significant observation. It will be considered 

further later in this discussion, and in the discussion of disease progression in 

m.3243A>G in section 4.5.5. 

A second approach to studying blood heteroplasmy decline is seen in section 4.4.4.8, 

which uses urine heteroplasmy as a nominative initial level at conception. This 

approach is justifiable on account of the stability over time of urine heteroplasmy, and 

the close correlation of urine heteroplasmy and levels in other tissues, both of which 

have been previously discussed. In section 4.4.4.8, I have demonstrated that there is a 

noticeable, albeit non-significant, relationship between the decline rate and the period of 

decline. It is also important to note that the mean decline factor of around 3% is 

considerably higher than that calculated using the repeated blood heteroplasmy data. 

There are several potential explanations of this.  

The first is that urine heteroplasmy could systematically overestimating the embryonic 

haematopoietic heteroplasmy level and thereby inflate the decline factor estimate. 

However, the relationship with skeletal muscle heteroplasmy suggests this is not the 

case, though it may be overstated at high heteroplasmy levels. 

Secondly, though the mechanism of haematopoietic heteroplasmy decline is not fully 

understood, it has been proposed to occur due to loss of stem cells through a mitosis-

dependent mechanism (Rajasimha et al., 2008). With this in mind, comparative stem 

cell cycling rates in embryogenesis and later life may be critically important. It has been 

shown in mice that during embryogenesis almost the entire population of 
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haematopoietic stem cells (HSCs) cycle every twenty four hours, from around 

embryonic day 7 (E7) until around 3 weeks post natal; after this point 95% become 

dormant and cycle every 145 days, whilst the remaining 5% cycle every 36 days 

(Pietras et al., 2011). If the cell cycling rates are similarly rapid during human 

embryonic development it would be expected that blood heteroplasmy decline would be 

greatly accelerated during this period. This would be expected to significantly inflate 

the decline factor.  

However, it must also be considered that embryonic stem cells are not heavily reliant on 

oxidative phosphorylation for their energy requirements and are more reliant on 

glycolysis in the hypoxic embryonic environment (Shyh-Chang et al., 2013); thus 

oxidative phosphorylation defects are not expected to express a strong phenotype in 

stem cells. However, it is also true that adult stem cells are also glycolytic in general, 

and in particular HSCs (Suda et al., 2011) (Simsek et al., 2010), speculated as a 

necessity in the hypoxic environment of the bone marrow niche. Thus any argument 

against a stem cell driven mechanism applies equally to adult and embryonic HSCs. 

Importantly, however, any long term changes in heteroplasmy in the haematopoietic 

system are almost certain to originate in the HSCs. Though the problem of lack of an 

oxidative phosphorylation driver for selection has been long problematic, recently it has 

been  shown that mitochondrial transcription is heavily regulated in HSCs, despite 

exhibiting relative low mitochondrial membrane potential and thus low oxidative 

phosphorylation activity (Norddahl et al., 2011). It has also been shown that even early 

embryonic changes in HSCs are observable in mutagenic mtDNA mice, which are 

hypothesised to be caused by subtle ROS or redox environment changes (Ahlqvist et al., 

2012). Thus even in the absence of active oxidative phosphorylation, mtDNA 

dysfunction has been shown to affect HSC activity and differentiation. Rajasimha et al. 

proposed a mechanism whereby stem cells with high levels of mutation are 

progressively lost (Rajasimha et al., 2008); a feasible hypothesis is that oxidative 

phosphorylation defects may alter the differentiation products of stem cells, as 

suggested by the aforementioned studies (Norddahl et al., 2011; Ahlqvist et al., 2012). 

Stem cells can divide in three fundamental ways; symmetrically into two further stem 

cells, symmetrically into two progenitors, or asymmetrically into one of each kind. A 

subtle shift towards either of the latter two mechanisms would result in a declining 

heteroplasmy level in the stem cell population. Alternatively, the shift in heteroplasmy 

may result from the ROS-induced senescence of HSCs with high levels of mutant 
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mtDNA (Shao et al., 2011). Whatever the mechanism, a study on the relationship 

between blood heteroplasmy at birth (measured from Guthrie cards) and sources of 

relatively stable heteroplasmy measured in adults (such as urine or muscle) may give 

useful insight into embryonic blood heteroplasmy decline. 

4.4.5.5. Relationship between urine and blood heteroplasmy 

The linear relationship between urine heteroplasmy and the square root of blood 

heteroplasmy has not been previously reported and is intriguing. Firstly, it is further 

evidence against blood heteroplasmy decline to a nominally low level and in support of 

an asymptotic level of blood heteroplasmy related to the initial level of heteroplasmy in 

the embryo. This does need to be verified, by long-term longitudinal observation of 

blood heteroplasmy in m.3243A>G patients. However, this study does suggest that in 

the majority of older patients blood heteroplasmy levels have neared a plateau level. 

This offers an insight into the mechanism of blood heteroplasmy decline, and 

contradicts the mechanism suggested by Rajasimha et al. that assumed an asymptotic 

level of zero irrespective of the starting point (Rajasimha et al., 2008).  The significance 

of age in this relationship suggests that heteroplasmy does continue to decline 

throughout life, though as said the asymptotic level is related to the initial heteroplasmy 

level.  

4.4.5.6. Conclusion 

The variability in urine heteroplasmy has been quantified (s.d. 11.9%), which 

demonstrates that a single measurement of urine heteroplasmy is imprecise and 

undermines confidence in this measurement for prognostic purposes. It has also been 

confirmed that urine heteroplasmy does not appear to change systematically over time 

in patients at a population level. 

Blood heteroplasmy has been shown to decline as previously reported, however 

evidence against the previously proposed model of exponential decline to a negligible 

level has been presented; the asymptotic level of blood heteroplasmy appears to be 

linearly related to levels in other tissues, as demonstrated by the relationship to urine 

heteroplasmy.  
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4.5. Comparative value of blood, urine, and SKM heteroplasmy in prediction of 

disease progression 

4.5.1. Introduction 

Though skeletal muscle was long been considered the gold standard for measuring 

heteroplasmy levels, urine, as discussed, is generally accepted as the most suitable non-

invasive measure of heteroplasmy, and indeed has been shown to be more correlated to 

disease phenotype (Whittaker et al., 2009; de Laat et al., 2012).  

Blood heteroplasmy has repeatedly been shown to be unrelated to disease phenotype 

(Mehrazin et al., 2009), in contrast to studies that report the utility of skeletal muscle 

(Macmillan et al., 1993; Chinnery et al., 1997; Jeppesen et al., 2006). When blood 

heteroplasmy has been found useful, it is not in comparison with other measures of 

heteroplasmy (Laloi-Michelin et al., 2009). However, though blood heteroplasmy has 

historically been disregarded as suitable for analysis of disease phenotype, the results 

from section 4.4 suggest that it may in fact be of utility, since, when suitably 

transformed, blood heteroplasmy is highly linearly correlated with urine heteroplasmy 

and thus should be expected to exhibit reasonably similar predictive properties, and 

indeed improved, if the variability in blood heteroplasmy measurement is lower.  

4.5.2. Aims 

I aim in this section to compare the comparative value of the three measures of 

heteroplasmy that are available in the cohort (blood, urine, and skeletal muscle) to 

assess which is the best predictor for disease burden and progression, particularly in the 

light of observations made in the previous section regarding the variability of urine 

heteroplasmy. Though I also consider muscle heteroplasmy, this is more limited in 

scope for drawing conclusions as the number of patients with samples available is 

considerably smaller. 

4.5.3. Methods 

I look at a variety of the analyses from the previous section on disease progression and 

compare the merit of blood and urine heteroplasmy as predictive factors. 

For the section comparing blood and urine, I use only the cohort of patients that have 

both urine and blood heteroplasmy measured, hence N values are smaller than for 

previous sections. For other comparisons, e.g. with muscle heteroplasmy, I use the 

largest cohort available with all appropriate measures of heteroplasmy. 
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To facilitate the ability to draw firm conclusions regarding superiority of one predictor 

over another I implemented a bootstrapping (resampling) methodology, as described in 

section 2.10. This extends the modelling technique and allows me to calculate a 

confidence interval for the comparative success of predictors, rather than a simple point 

estimate using the entire cohort. 

4.5.3.1. Bootstrapping 

For each comparison, bootstrapping was used to resample the dataset. Bootstrapping for 

the basic statistical comparisons using a single estimate is a straightforward resampling 

of the data. For longitudinal modelling, bootstrapping was done at the patient level, not 

the individual observations, i.e. patients were chosen with replacement from the pool of 

patients, and all observations for each patient were included in the analysis each time. 

This was to ensure that the resampling was concerned with statistically independent 

units. The longitudinal modelling utilised for comparison did not contain random 

effects, as the intention was to evaluate the effectiveness of the fixed effects. 

Each bootstrapping used 1000 resamples to evaluate the distribution of the statistic 

under investigation and 95% confidence intervals were calculated.  

A variety of statistical measures were suitable for bootstrapping. For multiple regression 

I used the difference in R
2
 as the statistic for comparison. For longitudinal modelling the 

difference in log likelihood is utilised. The methodology is in accordance with 

published guidelines (Lewis et al., 2011). 

For each bootstrapping the distribution of the chosen statistic was examined to ensure 

the distribution was reasonable and the statistical approach appropriate. 

4.5.4. Results 

4.5.4.1. Cohort 

134 patients with NMDAS data have both urine and blood heteroplasmy recorded. 34 

patients have both urine and SKM heteroplasmy data, 31 have both blood and SKM 

heteroplasmy. 

4.5.4.2. Blood heteroplasmy is a better predictor of NMDAS score than urine 

using multiple regression 

I use multiple logistic regression with age and heteroplasmy as independent variables, 

and the summary NMDAS score as the dependent variable. Parameters and data from 
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the model are found in Table 4.4. Blood heteroplasmy increases R
2
 to 27.8% from 

19.7% with urine heteroplasmy.  

Bootstrapping was used to compare blood and urine heteroplasmy as predictors. Figure 

4.28A depicts the distribution of the percentage point ratio increase observed when 

using blood rather than urine heteroplasmy. The mean increase in R
2
 is 7.7%, and the 

change is significantly above zero (P = 0.042). 

Model N Age Heteroplasmy R
2
 

urine 134 P < 0.0001 

B = 0.416 

P < 0.0001 

B = 0.401 

19.7% 

blood 134 P < 0.0001 

B = 0.608 

P < 0.0001 

B = 0.585 

27.8% 

     

urine 134 n/a P = 0.0070 5.3% 

blood 134 n/a P = 0.0125 4.6% 

Table 4.4 Comparison of the correlation between NMDAS score and blood or urine heteroplasmy.  

Using the same cohort of patients, multiple regression with age and either urine and blood heteroplasmy 

is used to compare model fit. P values and standardised coefficients for each predictor are shown, with the 

R2 for the overall model. Blood heteroplasmy increases R2 to 27.8% from 19.7%, and standardised 

coefficients for age and heteroplasmy both improve. Simple linear regression without age was also 

conducted with each predictor; urine is shown to be marginally more predictive. 

 

Figure 4.28 Resampling comparison of blood and urine heteroplasmy for the total disease burden 

multiple regression model. 

N = 134 1000 resamples with replacement of the patient pool are used to generate the above distributions. 

The percentage point increase of R
2
 when using blood instead of urine heteroplasmy is shown, using 

multiple regression with age and heteroplasmy as predictors. Mean increase is 7.7%, and the change is 

significantly greater than zero (P=0.042).  
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4.5.4.3. Blood heteroplasmy is better than urine heteroplasmy in longitudinal 

modelling of total disease burden; SKM heteroplasmy is not significantly better than 

either urine or blood heteroplasmy. 

The longitudinal model is the same as that described in section 4.3.4, however, the 

cohort is slightly smaller as it is restricted to those patients with both urine and blood 

heteroplasmy (N = 134). The model includes the early-onset flag as a predictor, as this 

is necessary for correctly formed residuals (N = 27 early-onset, 107 late-onset).  

Both urine and blood heteroplasmy are highly significant predictors of total disease 

burden in this slightly smaller cohort (P < 0.0001), as are age and early-onset (both P < 

0.0001 in each model). 

The models were initially compared using the AIC, as shown in Table 4.5. The blood 

model is superior to urine by comparing the AIC values in each case. Note that the AIC 

value for urine differs from that previously described as the cohort is smaller. In 

addition, bootstrapping was performed to investigate the stability of the improvement in 

model fit by using blood heteroplasmy; the results are shown in Figure 4.29. 

To further validate the model using blood heteroplasmy, the average (per patient) 

studentised residuals were examined against the predictors of heteroplasmy and age. 

The results are shown in Figure 4.30. The residuals in the model are not significantly 

correlated with either predictor, demonstrating that the model is well formed. 

Muscle heteroplasmy was also compared to both urine and blood. The results are also 

found in Table 4.6. The cohort in both cases is small, and no statistical significance is 

reported in either comparison, however, both blood and urine explain more variance in 

these smaller cohorts than muscle heteroplasmy. 

Model AIC P value R
2
 

Urine -45.0 0.1285 1.74% 

Blood -57.3 0.3636 0.62% 

Table 4.5 Comparison of blood and urine heteroplasmy models using AIC.  

The table shows the AIC value for the overall model. The P value and R
2
 relate to the regression of the 

predicted value of the model versus the average studentised residuals; significance in this relationship 

would indicate poor model fit. Both urine and blood have residuals that are uncorrelated with the 

predicted values of the model.  
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Figure 4.29 Resampling comparison of urine and blood heteroplasmy using the longitudinal mixed 

effects model. 

The AIC difference for 1000 bootstrapped resamples is shown; a positive AIC difference indicates blood 

is a better predictor than urine. The AIC difference is significantly above 0 (P = 0.046) indicating that 

blood is a consistently better predictor than urine. 

 

  
Figure 4.30 Average studentised residuals of the longitudinal mixed model compared to the model 

predictors of age and blood heteroplasmy. 

(Left) Residuals are not significantly correlated with age (P = 0.4302, r = -0.05). (Right) Residuals are 

not significantly correlated with blood heteroplasmy (P = 0.5565, r = 0.03). 
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  AIC difference    

Comparison N Mean 95%L 95% U P(diff>0  Conclusion 

Urine minus 

Blood 
134 17.5 -2.8 41.9 0.0460 blood significantly 

better than urine 

Muscle minus  

Blood 
31 5.7 -12.9 23.2 0.1840 blood better than 

muscle, not significant 

Muscle minus 

Urine 
34 12.9 -3.7 32.6 0.0600 urine better than 

muscle, not significant 
Table 4.6 Comparison of urine, blood, and muscle heteroplasmy for longitudinal modelling of total 

disease burden.  

The mean AIC difference and 95% confidence limits calculated using bootstrapping are shown. The 

significance value (P) is the proportion of resampled values with a difference greater than 0. Blood is 

significantly better than urine heteroplasmy. The cohort of patients with muscle is small and no 

significant difference can be found between muscle and either blood or urine, though both blood and 

urine are in general more predictive than muscle heteroplasmy. 

4.5.4.4. Comparison of blood and urine heteroplasmy in predicting individual 

features from the NMDAS. 

Bootstrapping was used to probe the logistic regression model incorporating age and 

heteroplasmy as predictors. For each simulation the blood and urinary heteroplasmy 

models were compared to identify the best fitting model. Figure 4.31 illustrates the 

proportion of resamples in which urine heteroplasmy is the better predictor; the line at 

50% separates those features better predicted by urinary heteroplasmy (upper half) and 

those better predicted by blood heteroplasmy (lower half). Cut-off lines at 20% and 

80% are also drawn to identify those with a strong bias in favour of either heteroplasmy 

measure. The features that are better predicted by urinary heteroplasmy are ptosis, 

pyramidal and extra-pyramidal features, and migraine. The first three of these are rare in 

the cohort; migraine is common but not strongly correlated with either age or urinary 

heteroplasmy. Several common features are predicted better by blood heteroplasmy, 

including cerebellar ataxia, diabetes mellitus, cognition, exercise intolerance, and visual 

impairment. 
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Figure 4.31 Blood and urine heteroplasmy model comparison for individual phenotypic features. 

For each feature, the patient pool was resampled 1000 times and the models compared to see which of the 

two models (blood or urine heteroplasmy) was the better predictor. Cerebellar ataxia, cognitive 

impairment, diabetes mellitus, exercise tolerance, gait stability, myopathy, and visual acuity are better 

predicted by blood heteroplasmy; extra-pyramidal, migraine, ptosis and pyramidal by urinary 

heteroplasmy.   

4.5.5. Discussion 

I have used urine heteroplasmy throughout the modelling of disease burden and 

progression. This is on account of various studies that have identified urine 

heteroplasmy as the preferred non-invasive heteroplasmy measure in m.3243A>G 

(Whittaker et al., 2009; de Laat et al., 2012). However, the results in this section show 

that blood heteroplasmy is more predictive of both total disease burden and also several 

individual phenotypic features of m.3243A>G disease. 

Blood heteroplasmy has been repeatedly discredited as being of prognostic value 

(Mehrazin et al., 2009; Whittaker et al., 2009); this was intuitively consistent with the 

finding that blood heteroplasmy levels are not static and decline over time. However, 

the results presented in section 4.4 provide substantial evidence in support of the merit 

of blood heteroplasmy as a more useful predictor than urine heteroplasmy. It is 

significantly better in predicting total disease burden, both using basic statistical 

analysis of the average NMDAS score for each patient, and also using longitudinal 

modelling of disease progression. With regard to individual phenotypic features the 

picture is not so clear; there are several features that are better predicted in our cohort by 

urine rather than blood. However, the features with a strong bias towards urine 

heteroplasmy are generally rare in the m.3243A>G cohort, such as extra-pyramidal and 
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pyramidal features. Migraine is the only feature in this group that is common, however 

it has already been shown in section 4.3.5 that migraine is poorly predicted by either age 

or urine heteroplasmy. Conversely, the features that are strongly biased towards blood 

heteroplasmy are both common and also strongly predictable by urine heteroplasmy, 

including cerebellar ataxia, diabetes mellitus, exercise tolerance, myopathy, and 

cognitive impairment. The notable exception to this is deafness; 67% of resamples 

found urine a better predictor than blood.  

Muscle is not significantly better than urine or blood heteroplasmy in this cohort, and 

indeed the trend is in the opposite direction. However, the sample size (31/34 patients) 

is relatively small, and statistical significance would be difficult to achieve with this 

size of cohort, particularly considering that I have shown heteroplasmy predicts little of 

the overall variation in total disease burden. However, if urine is indeed more predictive 

than muscle, despite being highly variable as reported in section 4.4, the reason for this 

is unknown. I will return to this discussion in section 4.6.4.4 with regard to sex 

differences in the m.3243A>G mutation. 

I speculate that blood heteroplasmy may be a useful prognostic indicator for two 

reasons. The first is that the level of heteroplasmy in blood, though in decline, are more 

consistent than measures of urine or muscle heteroplasmy. I have already been shown 

that urine heteroplasmy measurements vary considerably for single patients; if blood is 

also superior to muscle heteroplasmy it may indicate that a single muscle biopsy 

heteroplasmy level is also a poor estimate of average heteroplasmy. 

The discussion on the utility of heteroplasmy must be put into the context of how useful 

heteroplasmy as a measure of the underlying pathology. It is clear from the basic 

modelling using GLM that heteroplasmy is a poor predictor of disease burden. This 

begs the question of whether another easily measurable quantity may be more useful, 

for example wild-type mtDNA copy number. It has been shown in a recent study that 

wild-type mtDNA copy number is a more useful predictor of disease phenotype than 

heteroplasmy (Liu et al., 2013). As for previous studies (Whittaker et al., 2009) urine 

was noted as superior to blood, however both of these studies fail to incorporate age 

into their modelling.  

Liu et al. convincingly shows that wild-type mtDNA copy number is a better indicator 

than heteroplasmy; however, their results are potentially confounded by the lack of age 

as a predictor. They found that younger subjects had lower mtDNA copy number. Total 
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mtDNA copy number was significantly higher in the m.3243A>G patients than in 

controls. The data shown for total copy number by age group was interesting. For both 

blood and urine total mtDNA copy number, the highest copy number was found in the 

10-20 age group; the lowest was found in the < 10 age group, and above 20 years of age 

the copy number was in between the two. The control data is perhaps the more 

informative of the two data sets here, since it is not biased by more severe disease 

phenotype found in younger patients in the m.3243A>G patients. It would appear that 

copy number is significantly higher in the 10-20 group than the other groups, in both 

blood and urine. This would suggest a non-linear trend of total mtDNA copy number 

with age, which would potentially confound any use of this measure for prediction, 

unless age adjusted correctly. 

There are some caveats to add to this analysis, and all analyses using heteroplasmy 

measures. The methodology for assessment of heteroplasmy has changed and improved 

over the years, and heteroplasmy levels used in this analysis span over 13 years. Though 

this is not expected to materially affect the analysis in general, it may affect the 

variability in the heteroplasmy measurements.  
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4.6. Sex differences in m.3243A>G mutation 

4.6.1. Introduction 

There are diseases associated with mtDNA mutations that have a clear difference in 

expression between sexes, for instance Leber’s hereditary optic neuropathy (LHON), to 

which males are four to five times more susceptible (Yu-Wai-Man et al., 2009). 

However, it is less clear whether there are sex differences in other mitochondrial 

mutations. The prospect of more severe male disease was raised in 1996 by Frank and 

Hurst, who hypothesised that maternal inheritance would open up the prospect of more 

severe phenotypic disease for males, particularly relating to infertility, but also other 

systems exhibiting male-female dimorphism as mutations deleterious only to males 

would not be selectively filtered from the germline (Frank and Hurst, 1996). 

From the phenotypic perspective, there is recent work that highlights the potentially 

critical importance of male-female dimorphism, particularly as regards ageing. Camus 

and colleagues showed that ageing is accelerated in Drosophila melanogaster by 

deleterious mitochondrial mutations, but only in males, not females (Camus et al., 

2012). 

4.6.2. Aims 

The aim of this chapter is to explore sex differences in the m.3243A>G cohort. I chose 

to focus on m.3243A>G, as it is the largest set of patients in the MRC cohort. 

The principal question for exploration in this chapter is whether there any differences in 

the phenotypic expression of the m.3243A>G mutation between sexes. This will 

encompass examining differences in heteroplasmy levels, disease burden, and specific 

phenotypic features. 

Several large studies in m.3243A>G have been conducted, and in each case females 

outnumber males in a ratio of approximately 2:1. To explore the cause of this 

imbalance, I chose to investigate maternal family inheritance to establish whether there 

is any difference in the ratio of males and female children born to mothers carrying the 

m.3243A>G mutation. 

4.6.3. Methods 

4.6.3.1. Cohort 

I utilise the same cohort of patients as described in section 4.3. All families with 

recorded pedigrees were used in the pedigree analysis. For other analyses all patients in 
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the cohort with the appropriate factors (blood, urine, and muscle heteroplasmy) were 

included. 

4.6.3.2. Meta-analysis 

For analysis of the sex ratio at birth, I also collated data on family trees from published 

literature to compare with the data from our own cohort.  

A search was done in PubMed for any of 3243, MELAS or MIDD, together with 

PEDIGREE, and any publications with defined pedigrees were included. In addition, 

any pedigrees from publications that were reviewed in the wider investigation into 

m.3243A>G were included. 

4.6.3.3. Sex ratio methodology 

Each maternal family lineage was considered separately, and a female/male birth ratio 

was calculated for each family.  

All generations of descendants through the maternal line below the earliest known 

m.3243A>G mutation carrier were included; the total number of females and total 

number of males were summed and the ratio calculated. The top level mother was not 

included in the ratio. It was not always necessary for the top-level mother to be a 

confirmed carrier by genetic testing. For instance, if two or more siblings (non-identical 

twins excepted) at any level were confirmed by genetic diagnosis to be carriers of the 

mutation then their mother is assumed to be a carrier, since the chance of separate 

sporadic mutation events in two siblings is negligible.  

4.6.3.4. Statistical analyses 

For sex differences in disease burden I used multiple regression to look at heteroplasmy, 

age, and NMDAS score. 

All tests on sex ratio differences were non-parametric. 

4.6.4. Results 

4.6.4.1. Cohort 

The cohort is the same as used in section 4.3, consisting of 146 patients in total. 
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4.6.4.2. Gender balance in large cohort studies of m.3243A>G 

Table 4.7 shows the balance of male and female participants in several recent large 

cohort studies on m.3243A>G, including our own. Each study comprises an 

independent and non-overlapping cohort. 

Source Male Female Female 

Proportion 

Newcastle cohort 72 124 63.3% 

(Majamaa-Voltti et al., 2006) 33 67 67.0% 

(Kaufmann et al., 2011) 30 56 65.1% 

(de Laat et al., 2012) 42 85 66.9% 

(Suzuki et al., 2003) 36 77 68.1% 

Table 4.7 Male female balance in large cohort studies on m.3243A>G. 

All studies show a consistent proportion of around two thirds female to one third male participants. 

4.6.4.3. Sex ratio at birth 

4.6.4.3.1. General population 

Table 4.8 shows the females proportion in live-births in the in the general population. 

Population Proportion at birth 

(Estimated) 

Proportion in population 

over 65 

World 48.3% 56.2% 

UK 48.8% 55.6% 

Table 4.8 Proportion of females in the population.  

At birth the proportion of females in the population is slightly less than half, at similar proportions both 

worldwide and in the UK. Above the age of 65 the balance shifts to a female dominated population. 

(Central Intelligence Agency, 2013). 

4.6.4.3.2. Analysis of m.3243A>G carriers 

Nineteen separate publications were found for the meta-analysis, detailing 39 separate 

pedigrees. Twenty-two separate pedigrees were identified from the patients in the 

Newcastle cohort. Source data for the analyses can be found in Appendix IX and 

Appendix X. 
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The proportion of female live-births was calculated for each pedigree. The distribution 

for each data set is depicted in Figure 4.32. In the Newcastle cohort the median female 

proportion (58.8%) is significantly higher than that of the general population (P = 0.045, 

N = 44). The median proportion in the meta-analysis (61.5%) is also significantly higher 

than the general population (P = 0.0005, N = 39). 

 
Figure 4.32 Proportion of live-births that are female in the meta-analysis and this cohort. 

The proportion of female live births is significantly different from the proportion of the general 

population. In the meta-analysis the estimated median is 61.5% (P = 0.0005, N = 39), in the Newcastle 

cohort the estimated median is 58.5% (P = 0.045, N = 44). The proportion for the general population is 

taken as 48.8%, as seen in Table 4.8. 

4.6.4.4. Sex differences in heteroplasmy 

For each of the three heteroplasmy measures (urine, blood, and muscle) I used multiple 

regression to examine the effect of age (at biopsy) and sex as predictors. 

As shown in Figure 4.33, urine heteroplasmy is significantly higher in men than in 

women (P < 0.0001, R
2
 = 26.5%, N=145). It is not for significantly different in blood (P 

= 0.8770, R
2
 = 37.0%, N=134) nor in muscle (P = 0.1784, R

2
 = 10.6%, N = 36). 

The relationship between blood and urine heteroplasmy is also modulated by sex. In 

multiple regression with urine heteroplasmy, age at biopsy, and sex as predictors, and 

the square root of blood heteroplasmy as the dependent variable, sex is a highly 

significant predictor (P < 0.0001) as well the other two predictors. (N = 159, R
2
 

=78.0%). 
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Figure 4.33 Sex differences in heteroplasmy levels.  

(A) Urine heteroplasmy levels are significantly lower in females than in males (P < 0.0001, R
2
 = 26.5). 

(B) Blood heteroplasmy levels are not significantly different between males and females (P = 0.8770, R
2
 

= 37.0%). (C) Muscle heteroplasmy is not significantly different between males and females (P = 0.1784, 

R
2
 = 10.6%). 
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4.6.4.5. Sex differences and NMDAS progression  

To investigate whether sex has a significant impact on NMDAS score and progression, I 

first conducted multiple regression with age and sex as predictors, using the scaled 

NMDAS score (NMDAS
0.25

) as the dependent variable. I first examined two models; 

one without an interaction term (allowing different intercepts but not gradients for sex), 

and the second with the interaction term (allowing both intercept and gradient to differ). 

The first model finds that the gradients are not significantly different (P = 0.6552, N = 

146, R
2
 = 6.1%). The second model is illustrated in Figure 4.34. The gradients are not 

significantly different (P = 0.2403, R
2
 = 7.0%).  

I also investigated whether sex differences in NMDAS progression are observable when 

urine heteroplasmy is included in the model. In this model, sex is also not found to have 

a significant effect on NMDAS score (P = 0.3392, R
2
 = 18.3%, N = 146). 

With blood heteroplasmy, sex is also not a significant effect (P = 0.6005, R
2
 = 27.3%, N 

= 135). 

 
Figure 4.34 Scaled NMDAS score, age and sex.  

Linear regression with 95% confidence intervals are shown for males and females. Sex is not a significant 

effect in NMDAS score (P = 0.6552) and the gradients are not significantly different (P = 0.2403). N = 

146. There are no significant sex differences observable in NMDAS score. 
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4.6.4.6. Specific phenotypic features 

As in section 4.3.5, I used logistic regression to model the effect of age and 

heteroplasmy (both urine and blood) on the severity of phenotypic features as identified 

by the NMDAS. I use the same modelling approach here, but introduce sex as a third 

predictor. The results are shown in Figure 4.35. Using urine heteroplasmy, only the 

severity of ptosis is significantly more severe in males than females; however, exercise 

intolerance and myopathy are more severe in females. Using blood heteroplasmy, males 

are significantly more severely affected in several features, namely ptosis, vision, 

cutting food, hearing, cardiovascular dysfunction, and encephalopathic episodes. There 

are no features where females are significantly more severely affected than males. The 

odds ratios for almost all other features show that the (non-statistically significant) trend 

is for females to be less affected than males; the exceptions to this are diabetes, GI 

disturbance, exercise tolerance, and myopathy. 
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Figure 4.35 P-values and odds ratios for the predictive effect of sex on the risk of developing 

specific phenotypic features. 

For each feature, I look at the effect of sex on the logistic model incorporating also age and heteroplasmy 

(either urine or blood). Both graphs use log scales. Solid line on the P-value graph indicates P = 0.05; 

blow this line indicates statistical significance. An odds ratio significantly above 1 implies that males are 

more affected than females at the same age and heteroplasmy; an odds ratio below 1 that males are less 

affected than males. Using urine heteroplasmy, only ptosis is significantly more severe in males, whereas 

exercise intolerance and myopathy are more severe in females. Using blood heteroplasmy, males are 

more severely affected in several features, namely ptosis, vision, cutting food, hearing, and 

encephalopathic episodes. There are no features where females are significantly more severely affected 

than males. 

4.6.5. Sex differences discussion 

As shown in Table 4.7, cohort studies on m.3243A>G are almost invariably female 

heavy in their makeup, with females outnumbering males in a ratio of approximately 

2:1. This is not necessarily an indication that there are more female carriers of the 

m.3243A>G mutation than male, for several reasons. The first is that females are more 

frequent users of health services than men in general (ONS, 2010), for which reason one 

might expect more women to be identified as potential carriers of the mutation than 

men. The second is related to a peculiarity of maternal inheritance of mitochondrial 

mutations; when a patient is identified as a carrier of a potentially inherited mtDNA 
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mutation such as m.3243A>G, it would be normal clinical practice to assess the mother 

of the patient to identify whether the mutation is sporadic or inherited, which would 

swell the number of females assessed (Dr Andrew Schaefer, personal communication). 

The third is a confound that derives from the asymmetrical ageing profile of the sexes; 

due to various factors, and in spite of a slightly higher male birth rate, the population 

above the age of 65 is female dominated (Central Intelligence Agency, 2013). 

To avoid population dynamics confounding my investigation, I chose to look at the 

female/male ratio in live births to females known to carry the m.3243A>G mutation. 

Conventionally the ratio is expressed as the ratio of male births to female births (1.07 

for the worldwide ratio in 2013 (Central Intelligence Agency, 2013)), but when looking 

at small populations such as individual maternal lineages proportions are preferred to 

ratios, to avoid division by zero when a family has only female children. Hence I 

consider the proportion of female births, with extreme values of 0 (all male offspring) 

and 1 (all female offspring). 

The data shows that both in the Newcastle cohort and the meta-analysis there is a 

significant deviation from the normal birth ratio in favour of female offspring. This is a 

novel observation, and has not been reported previously in literature to my knowledge. 

There are two potential causes of this imbalance; an influence on the sex determination 

of the embryo pre-fertilization, or a pathogenic effect specific to males. 

The concept of an adaptive sex ratio has long been of interest to researchers, since the 

seminal theory of Trivers and Willard that first proposed a link between maternal 

characteristics and the sex ratio of offspring (Trivers and Willard, 1973). A second 

theory by Myers agreed with the outcome, but not the reasoning; he theorised that 

mothers under nutritional stress are more likely to give birth to daughters as daughters 

are nutritionally less expensive than sons (Myers, 1978). Factors which modulate the 

sex ratio in mammals have been studied in a variety of species. Diet, for example, has 

been shown to affect the sex ratio (Rosenfeld and Roberts, 2004). Indeed, it has been 

shown in a large number of studies that mothers in good physical condition produce 

more male offspring (Rosenfeld and Roberts, 2004). In humans, a study of the changing 

sex ratio during and after the 1959-1961 famine in China concluded that mothers in 

poor condition are more likely to give birth to daughters (Song, 2012). Pregravid 

diabetes has been shown to bias the sex ratio in favour of female offspring (Ehrlich et 

al., 2012); this is particularly relevant to the discussion regarding m.3243A>G 
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considering the prevalence of diabetes in the cohort. The physiological mechanism 

underlying this adaptive response remains unknown (Helle et al., 2008), but in line with 

the prior research it seems reasonable to infer that mitochondrial dysfunction could lead 

to energy stress in mothers and thus a trend towards female progeny. 

The second possible explanation of the altered sex ratio is that the mutations are more 

pathogenic for male offspring. Sex differences in mitochondrial disease have been 

discussed recently in the scientific literature, prompted by the prospect of mitochondrial 

replacement (MR) therapy (Reinhardt et al., 2013). The argument made by Reinhardt  et 

al. applies to any of the proposed mechanisms of MR, both pro-nuclear transfer (Craven 

et al., 2010) and mitotic spindle transfer (Tachibana et al., 2009). The argument rests on 

the co-ordination between nuclear and mitochondrial gene expression, which is highly 

integrated and tightly co-regulated (Woodson and Chory, 2008). From the perspective 

of mitochondrial evolution males are an evolutionary dead end, since the effects of 

mitochondrial genetic mutations on males are irrelevant as they are not passed on down 

the male line (Parsch, 2011). This leads to the curious situation that mutations that are 

deleterious to males but not females can potentially be successfully passed on without 

fear of genetic selection (Frank and Hurst, 1996). Indeed, mitochondrial replacement in 

fruit flies has been shown to lead to a major change in nuclear gene expression in males 

but not females (Innocenti et al., 2011), which is suggestive of potential major 

differences between mitochondrial gene expression between males and females.  

If the m.3243A>G mutation were indeed more pathogenic for males than females, it 

could be expected that males would exhibit faster disease progression and more severe 

disease phenotype. However, the most appropriate way to assess this is not 

straightforward. I have already shown in 4.6.4.4 that urine heteroplasmy is higher in 

males, but that blood heteroplasmy is not significantly different between sexes. I chose 

to retain heteroplasmy (either blood or urine) and age in the model when looking at both 

overall disease burden progression and also the severity of specific phenotypic features, 

so as to control for the correlations observed between sex and heteroplasmy. However, I 

also investigated the relationship between sex and disease burden and severity with 

heteroplasmy absent from the model altogether. 

Regarding overall disease burden progression (section 4.6.4.5), sex is not a significant 

predictor. This is true whether heteroplasmy of any source is included as a predictor or 

not. This lack of an effect with or without heteroplasmy is slightly puzzling, since I 
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have also shown that urine heteroplasmy is significantly higher in the male patients of 

the cohort (section 4.6.4.4). It was therefore expected that one of the two models, either 

blood heteroplasmy or urine heteroplasmy, would exhibit sex differences.  

The modelling of individual phenotypic features is more illustrative, particularly 

comparing the effect of sex as a predictor when using the different heteroplasmy 

measures as predictors. Here there are several phenotypic features in which males are 

more severely affected when using blood heteroplasmy. Several of these features are not 

observably different between the sexes using urine heteroplasmy as a predictor. This 

suggests that the sex difference in the heteroplasmy level observed in urine is 

potentially explanatory of some of the variation in phenotypic severity; however, it 

should be noted that blood heteroplasmy is in general a better predictor for almost all 

phenotypic features. Of the features that have more severe disease burden for females 

(albeit non-significantly for blood heteroplasmy), it is notable that both myopathy and 

exercise intolerance are features that are more severe in females than in males; both of 

these are related to muscle, in which there are known sex differences (Staron et al., 

2000). 

The discussion of sex differences in m.3243A>G must be examined in the context of 

fundamental physiological differences between males and females. It is not disputed 

that females live longer than males (Austad, 2006; Frank, 2012). There are numerous 

reported differences in males and females reported that are related to ageing however, 

and no consensus on the root causes of the difference in longevity and whether a slower 

ageing process is the root cause of this. However, it has been shown that females 

demonstrate slower immune system ageing (Hirokawa et al., 2013), suffer less 

oxidative DNA damage (Proteggente et al., 2002), and, most relevant to a discussion 

about mitochondrial disease, it has been shown that females have higher mitochondrial 

antioxidant levels and lower mitochondrial oxidative damage than males, directly 

attributable to oestrogen levels (Borras et al., 2003),which is highly supportive of the 

oxidative stress hypothesis of ageing. Thus there may be a natural asymmetry in disease 

progression that is not attributable to mitochondrial disease per se and more related to 

general differences also observed in the general non-diseased population. 

To truly understand whether the mechanism underlying the altered sex ratio is a 

pathogenic mechanism post-conception or selection pre-conception would require a 

study of pregnancies that fail to carry to term and an examination of the sex ratio in 
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unviable foetuses. However, on balance it seems more reasonable to assume that the 

changes in the live birth sex ratio in m.3243A>G are caused by the same mechanism as 

other changes discussed previously, such as seen in nutritional deprivation or diabetes. 

It is important to acknowledge potential limitations of this study. Firstly, any potential 

source of bias in the reporting of family pedigrees must be considered. Secondly, 

caution must be expressed with regard to conclusions of statistical significance; the 

analysis we are carrying out does involve multiple testing, and caution should be 

observed in interpreting the p-values of the effects. However, whilst acknowledging the 

limitation of determining statistical significance in analyses such as this, I believe that 

the analysis has merit regardless and is informative as to the effect of sex on disease 

progression and severity. 

4.7. m.3423A>G discussion 

There are several novel aspects to the work presented here on disease progression 

associated with the m.3243A>G mutation.  

Regarding disease progression, to my knowledge this is the first study to investigate 

disease burden and progression using multiple regression techniques, which has been 

shown as invaluable in understanding the relationship between disease burden, 

heteroplasmy, and age. Without multiple regression techniques the correlation between 

heteroplasmy and age at a population level severely hampers any attempt using a single 

predictor at a time. 

Secondly, longitudinal mixed modelling has been used to provide predictive models of 

total disease burden progression. Again, this is novel, and is important for clinicians in 

understanding the likely course of progression of disease burden.  

Thirdly, the risk profiles for individual phenotypic features using age and heteroplasmy 

as predictive factors are novel and are fundamentally important for understanding the 

link between age, heteroplasmy, and specific features of disease in patients with 

m.3243A>G. 

The investigation into heteroplasmy also demonstrates several novel findings. Firstly, I 

have quantified the variability of urine heteroplasmy.  This is vitally important, as this is 

routinely used by clinicians to understand the likely disease burden of patients and this 

high variability is a serious limitation of urine heteroplasmy as a prognostic measure. 

The characterisation of the relationship between urine and blood heteroplasmy is also 
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novel, as is the observation that blood heteroplasmy levels are likely to be 

asymptotically non-zero in many patients.  

The report of the altered sex ratio in favour of female progeny is novel, and opens up 

further questions about the mechanism behind this alteration. The investigation into sex 

differences in disease associated with m.3243A>G has demonstrated clear differences 

between males and females as regards urine heteroplasmy, which is of concern. 

However, the examination of disease burden and specific phenotypic features indicate 

that the higher urine heteroplasmy level in males may potentially reflect a genuinely 

higher disease burden. 

In conclusion, though much has progress has been made in understanding disease 

progression in patients with the m.3243A>G mutation, the limitations of heteroplasmy 

as a prognostic measure have been clearly demonstrated, and the case for improved 

metrics more useful than heteroplasmy in predicting disease progression has been 

clearly made. 
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 Disease progression in single large-scale mtDNA deletions Chapter 5.

5.1. Introduction 

Single large-scale mtDNA deletions are amongst the more commonly reported 

mutations in mitochondrial disease. Population prevalence in adults is estimated at 

between 1.2/100,000 (Chinnery et al., 2000b) and 2.9/100,000 (Remes et al., 2005). In 

the cohort of 671 patients seen at the Newcastle mitochondrial disease clinic, 86 

(12.8%) have single large-scale mtDNA deletions. 

Single large-scale mtDNA deletions were the first identified genetic cause of mtDNA 

disease (Holt et al., 1988). The clinical phenotypic associated with single large-scale 

mtDNA deletions is traditionally divided into three main presentations (Schon et al., 

2012). The mildest phenotypic presentation is chronic progressive external 

ophthalmoplegia (CPEO) (Moraes et al., 1989), which principally involves weakness of 

the extra ocular muscles and ptosis, but is often associated with more widespread 

muscular weakness. A second major presentation is Kearns-Sayre syndrome (KSS) 

(Kearns and Sayre, 1958), a multi-system childhood or teenage onset syndrome. KSS 

was first characterised with ophthalmoplegia, retinal pigmentary degradation, and 

cardiomyopathy as principal features; the criteria for diagnosis have since been adjusted 

to onset under twenty years of age, PEO, and pigmentary retinopathy. However, other 

features such as cerebellar ataxia, broader myopathy, and other organ involvement are 

also common. Pearson Syndrome (Pearson et al., 1979) is an infantile onset syndrome 

that is often fatal, characterised by sideroblastic anaemia and exocrine pancreatic 

dysfunction. In those who survive infancy it often develops into KSS (Simonsz et al., 

1992).  

As many studies attempting to analyse phenotypic presentation have noted, these 

divisions are somewhat imprecise and misrepresent the true spectrum of single mtDNA 

deletion-related disease; patients denoted CPEO are often sub-divided into groups such 

as ‘classic CPEO’ at the mild end of the spectrum, ‘severe CPEO’ or ‘CPEO+’, and 

‘partial KSS’ or ‘CPEO + Multisystem’ (Auré et al., 2007). Discrete phenotypic 

classification is severely problematic. 

The earliest investigations of disease associated with single large-scale mtDNA found 

little connection between mitochondrial genetics, biochemical defects and clinical 
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phenotype (Zeviani et al., 1988; Holt et al., 1989a; Moraes et al., 1989; Rotig et al., 

1995). More recent studies are rather contradictory. For example, SKM heteroplasmy is 

has been reported as non-predictive of either phenotype or age at onset (Yamashita et 

al., 2008), predictive of onset but not phenotype (López-Gallardo et al., 2009), or 

predictive of both to an extent (Sadikovic et al., 2010).  Similarly, mtDNA deletion size 

is variously reported as either predictive of phenotype and disease severity (Yamashita 

et al., 2008) or not predictive (López-Gallardo et al., 2009). Two recent studies found 

that the location on the genome of the mtDNA deletion was predictive of phenotype or 

age at onset, though with contrary findings. One study found that mtDNA deletions 

including one of the three mtDNA-encoded structural components of cytochrome c 

oxidase (COX) (MT-CO1, MT-CO2 or MT-CO3 genes) or complex V (MTATP6 or 

MTATP8 genes) had significantly earlier-onset (Yamashita et al., 2008). However, 

another study found that deletion of the mitochondrial cytochrome b (MT-CYB) gene 

was significantly associated with the more severe KSS phenotype as compared to CPEO 

(López-Gallardo et al., 2009). 

To improve analysis of disease burden and phenotype, researchers have attempted to 

better segregate patients into groups that are more appropriate for analysis. Auré et al 

segregated patients by the presence of a neurological phenotype, distinguished by the 

presence of cerebellar involvement (Auré et al., 2007); a second group looked at 

whether the phenotype was purely myopathic in nature (López-Gallardo et al., 2009).  

However, as is true for many mitochondrial genetic disorders, the disease spectrum is 

multidimensional, with a wide range of potential systems involved, each to varying 

degrees of severity. This severely hampers any attempt to discretely classify the disease. 

In this context, the NMDAS is a significant aid in understanding disease severity, 

progression, and the correlation with predictive factors, and offers a route to 

understanding disease progression that sidesteps the issue of discrete phenotypic 

classification.  

5.2. Aims 

In this study, I chose to use repeated measures mixed modelling with the collated 

NMDAS data to test the hypothesis that mtDNA heteroplasmy levels and mtDNA 

deletion size and location are predictive of single, large-scale mtDNA deletion disease 

progression.  
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I also aimed to apply multiple linear regression analyses to examine the relationship 

between these predictors and outcome measures such as age at onset, clinical 

phenotype,  the level of biochemical defect (as determined by COX-deficient fibre 

density) in both our cohort and a meta-analysis of previously published data.  

Finally, I aimed to use logistic regression to examine the relationship between 

individual phenotypic features and predictive factors. 

5.3. Methods 

5.3.1. Newcastle patient cohort 

All the patients in this cohort were investigated by the NHS Highly Specialised Service 

for Rare Mitochondrial Disorders in Newcastle upon Tyne. The majority (55 out of 87) 

were recruited to the MRC Mitochondrial Disease Patient Cohort UK  and followed in 

our clinic at regular 6 or 12 monthly intervals, and assessed using the NMDAS at each 

visit (Schaefer et al., 2006). The remaining 32 patients comprise individuals not seen in 

our clinic and for whom we have limited clinical information, and those for whom we 

do not have NMDAS data available. For some of these patients we have been able to 

ascertain disease onset from medical records. A full listing of the clinical and molecular 

characteristics of the patient cohort can be found in Appendix XI. 

For phenotypic analysis the patients were divided into two groups, those classified 

either as CPEO or as CPEO with myopathy (combined together, N = 54) and those 

classified as KSS (N = 9). 

5.3.2. Meta-analysis 

The meta-analysis is based on a previous meta-analysis by López-Gallardo et al. 

(López-Gallardo et al., 2009) which includes data on patient age at disease onset, age at 

biopsy, clinical phenotype, SKM heteroplasmy, mtDNA deletion size, and in many 

cases specific mtDNA deletion breakpoints. I used the data as published by López-

Gallardo et al. except where review of the literature identified differences between the 

published data and that used by this group (three cases) or where there was 

inconsistency between the reported mtDNA deletion size and location of the 

breakpoints (one case). I also eliminated those cases where the reported mtDNA 

deletion was characterised by restriction endonuclease digests and there was uncertainty 

as to whether specific genes under scrutiny (MT-CO or MT-CYB genes) were deleted 

(seven cases) or other mutations were reported concurrently for the same patient (nine 

cases). One patient with a highly unusual mtDNA deletion in the minor arc of the 
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mitochondrial genome was also excluded. Also excluded are any patients that have been 

reported in studies from this centre. 

The data was augmented with other cases from subsequent studies or those not included 

by López-Gallardo et al. that were identified through PubMed  (Johns et al., 1989; Mita 

et al., 1989; Larsson and Holme, 1992; Oldfors et al., 1992; Ishikawa et al., 2000; 

Gellerich et al., 2002; Jacobs et al., 2004; Sadikovic et al., 2010).  

All data from the meta-analysis can be found in Appendix XII. All amendments and 

exclusions are listed in Appendix XIII. 

For phenotypic analysis, patients classified by López-Gallardo et al. as “CPEO without 

non-muscular signs” were combined with patients classified “CPEO” or “CPEO + 

myopathy” from the other sources (101 cases in total). This patient group was compared 

to the patients classified as “KSS” from all sources (104 cases in total). For other 

analyses, we used the patients in the meta-analysis that had all the appropriate 

information available. 

5.3.3. Muscle biopsy histochemistry data 

Sequential cytochrome c oxidase (COX)/succinate dehydrogenase (SDH) histochemical 

reactions were performed on SKM sections following standardised protocols (Old and 

Johnson, 1989). The percentage of COX-deficient fibres (measuring the extent of COX 

deficiency) was determined by counting all the fibres in a section (minimum 200). 

Counting was performed by a single researcher to ensure consistency.  

All muscle biopsy histochemistry was conducted by Gavin Falkous. 

5.3.4. Determination of level of mtDNA deletion 

All molecular analyses were performed using total SKM DNA extracted using standard 

protocols. mtDNA deletion levels in muscle homogenates was quantified using a 

validated, multiplex real-time PCR (qPCR) MT-ND1/MT-ND4 assay (He et al., 2002; 

Krishnan et al., 2007).  

All mtDNA deletion level quantification was performed by Georgia Campbell and 

Thiloka Ratnaike. 

5.3.5. Determination of mtDNA deletion size and location 

Long-range PCR was used to amplify ~ 9.5 kb region of the mitochondrial genome 

across the major arc using a single primer set corresponding to nucleotides 6378-15896 

(GenBank Accession number: NC_012920.1). PCR reactions used ~100ng of DNA 
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which was added to PCR mastermix (dH2O, LA Taq buffer (TaKaRa), 10mM dNTPs, 

20mM forward and reverse primers and XX units of LA Taq enzyme (TaKaRa)) to a 

total volume of 50μl and subjected to the following cycling conditions: 94°C for 1 

minute; 35 cycles of 94°C for 30 seconds, 58°C for 30 seconds and 68°C for 11 

minutes; final extension of 72°C for 10 minutes. Amplified products were separated 

through a 0.7% agarose gel, using a 1kb DNA ladder to estimate product size and 

determine mtDNA deletion sizes.  

Long-range PCR products were further assessed by restriction digests to map the 

precise location of the mtDNA deletion breakpoints (Khrapko et al., 1999). PCR 

amplimers (5µl) were digested to a series of DNA fragments of known length and 

position within the mitochondrial genome using restriction enzymes Xho I, BamH I, 

Xcm I and Dra I (New England Biolabs) prior to separation through a 0.7% agarose gel. 

The size of restriction products allows the location of the mtDNA deletion within the 

genome to be estimated, guiding the choice of appropriate sequencing primers 

(Supplementary Table 4) to characterise mtDNA deletion breakpoints by Sanger 

sequencing. (BigDye v3.1 terminator cycle sequencing chemistries using an ABI 3130xl 

Genetic Analyser; Applied Biosystems). 

All mtDNA deletion breakpoint determination was carried out by Georgia Campbell. 

5.3.6. Statistical analyses 

5.3.6.1. Basic statistical modelling 

The general methods for basic statistical analyses are described in section 2.11.1.1. 

5.3.6.2. Longitudinal modelling of disease progression 

Longitudinal modelling is conducted as described in section 2.11.1.2. Appendix XIV 

lists the SAS code to generate the models used in this section. 

5.3.6.3. Data transformation 

As described in section 2.11.1.2, Box-Cox analysis was used to investigate the 

relationship between the NMDAS score and age at assessment. In addition to this, I 

wished to investigate the relationship between the other independent variables 

(heteroplasmy and deletion size) with the scaled NMDAS score. 

This was done in two ways; the first used PROC TRANSREG and Box-Cox analysis, 

but with the QPOINT option to allow examination of quadratic surfaces, i.e. the 
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introduction of simple powers of the dependent variables and cross interactions to see 

the effect on variance stability. 

QPOINT identifies simple powers of independent variables that stabilize the variance of 

the data, but does not explore other transformations such as the log function. It was 

hypothesised that the effect of heteroplasmy may have increased exponentially as 

heteroplasmy approaches 100%. Hence the transformation hetlog=log(1-het) was 

examined to see the effect of this transformation on the fit of the model and variance 

stability. 

5.3.6.4. Individual phenotypic features 

The general methodology for logistic regression is explained in section 2.8.  

I used two approaches to logistic regression. Both used the three predictors of age, 

muscle heteroplasmy, and deletion size. For each NMDAS question, a single summary 

score was determined for each patient by taking the maximum score achieved on each 

question and the age at which that score was first recorded. 

The first approach used binary (dichotomous) logistic regression by identifying the 

optimal cut-off point for each NMDAS question to divide the cohort into two groups. 

To identify the optimal cut-off point the area under the ROC curve (AUC) was 

maximized. This was done separately for each individual predictor, each pair of 

predictors, and the three predictors together in the model, to allow a full understanding 

of the use of each predictor. Only cut-off points that partitioned the data into sets 

containing at least 6 patients (10% of the cohort) in each group were considered to 

avoid small numbers of patients skewing the results.  

The second approach used a proportional odds multiple logistic regression. NMDAS 

scores were re-categorised as asymptomatic (NMDAS = 0), moderate (1-3), and severe 

(4-5); this re-categorisation was necessary for a majority of phenotypic features for 

model to conform to the proportional odds assumption. Pseudo-R
2
 values, as described 

in 2.8.2, were used to compare models. 

In both approaches, standardised parameters for the predictors were calculated. 

5.4. Results 

5.4.1. Patient cohort 

The number of patients used in the various analyses are detailed in Table 5.1. 
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The distributions of age, heteroplasmy, deletion size, and number of NMDAS 

assessments in the Newcastle cohort are shown in Figure 5.1.  

5.4.1.1. Phenotypic spectrum 

The phenotypic profile of patients in the cohort is shown in Figure 5.2. There are 

several features that are absent or rare in the cohort, including seizures, stroke-like 

episodes, diabetes, and both pyramidal and extra-pyramidal features. The majority of 

the other features are present in the cohort at level of at least 50%. CPEO and ptosis are 

100% penetrant, vision is also affected in 80% of people according to the current 

function (section I), whilst visual acuity is impaired in 70% of patients. Exercise 

tolerance is affected in 77% of patients, though 93% of patients are myopathic. 

Cerebellar ataxia is prevalent at 80%, with gait stability affected in 70% of patients.  

 With 

NMDAS 

Without 

NMDAS 

Cohort 

(total) 

Meta-

analysis 

Number of patients with mtDNA deletion 

size and muscle mtDNA heteroplasmy data 

55 32 87 256 

Number of patients with mtDNA 

breakpoints identified 

52 31 83 184 

     

Number of patient with  age at onset data 52 8 60 117 

Number of patients with age at onset data 

and mtDNA breakpoints identified 

49 7 56 83 

      

Number of patients with  COX-deficient 

fibre density data and mtDNA breakpoints 

identified 

49 23 72 40 

     

Number of patients presenting with a 

CPEO, CPEO + Myopathy or KSS 

phenotype 

36 27 63 205 

Number of patients presenting with a 

CPEO, CPEO + Myopathy or KSS 

phenotype and mtDNA breakpoints 

identified 

35 26 61 149 

Table 5.1 Summary of Newcastle patient cohort and available data in literature.  

SKM heteroplasmy and deletion size data was available for all patients. The sub-cohort of patients with 

identified mtDNA breakpoints is used where gene location is under investigation; the larger cohort with 

mtDNA deletion size is used where location is not considered. The small number of patients with 

phenotype data reflects the fact that patients with a multisystem phenotype are excluded from the 

analysis; this number is restricted to patients with CPEO, CPEO + Myopathy, or KSS.  
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Figure 5.1 Age, heteroplasmy, deletion size, and number of assessments in the cohort. 

The patients with heteroplasmy, deletion size, and NMDAS data are considered in this graph (N = 55). 

(A) Age is positively skewed with a median age of 42 year, minimum 18 years and maximum 82 years. 

(B) Muscle heteroplasmy is negatively skewed, with a median of 46.5%. Heteroplasmy ranges from 

undetectable (0%) to 85%, with an interquartile range of 35%. (C) Deletion sizes range from 2.3kB to 

9.1kB, and the distribution is fairly uniform other than the great peak at around 5kB, which are in the 

main common deletion (4,977kB) patients. (D) The median number of assessments is 4.5, with a 

maximum of 12, and an interquartile range of 5. 
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Figure 5.2 Phenotypic profile of the single large-scale deletion cohort. 

All patients with NMDAS data are included (N = 55). Bars show the stacked NMDAS score. All patients suffer from ptosis and CPEO to some extent, and 94% from more 

widespread myopathy. Visual impairment and cerebellar ataxia are the next most common symptoms. General encephalopathy, including stroke and seizure, are almost entirely 

absent from the cohort, as is diabetes mellitus. Pyramidal and extra-pyramidal features are rare. Mild neuropathy is common but more severe neuropathy is very rare. 
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5.4.2. Association of NMDAS score and traditional phenotypic classification 

NMDAS score was shown to correlate with the traditional phenotype classification, as 

shown in Figure 5.3 NMDAS score and classical phenotype are highly significantly 

correlated. 

 
Figure 5.3 NMDAS score and classical phenotype are highly significantly correlated. 

P-values for significant individual comparisons are shown; other comparisons are not significant (P > 

0.05). The three comparisons significant at P < 0.0001 are highlighted in red. Pure CPEO phenotype 

patients have a narrower range of NMDAS scores than the other phenotypes; KSS patients have the 

largest range. KSS patients have the highest NMDAS scores, followed by multisystem, CPEO + 

myopathy, then CPEO patients. NMDAS scores for patients with a purely CPEO phenotype patients are 

highly significantly lower than the other three phenotype groups.  

5.4.3. Data transformation 

Box-Cox identified the fourth root of the NMDAS score (NMDAS
0.25

) as the optimal 

transformation for linear regression with the single independent variable of age, 

hereafter called scaled NMDAS score. 

The QPOINT option of PROC TRANSREG in SAS with heteroplasmy, deletion size 

and age as independent variables found the square of the deletion size (size
2
) to be 

optimal. The transformation hetlog=log(1-het) was also found to stabilise the variance 

and improve the model fit. These transformations were used throughout the disease 

progression modelling.  Only the basic investigations into inter-correlations between the 

predictors used untransformed heteroplasmy and deletion size.  



Chapter 5 Disease progression in single large-scale mtDNA deletions 

154 
 

5.4.4. Putative predictors of disease burden and progression are inter-correlated 

Before considering the relationship between the putative predictors of disease 

progression and disease progression itself, I chose to look for inter-correlations between 

the various predictors. In the Newcastle patient cohort I observed a strong negative 

linear correlation between the mtDNA heteroplasmy and mtDNA deletion size (N=87, 

r=-0.49, p <0.0001) (Figure 5.4A). This observation was confirmed in the meta-analysis 

(N=256, r =-0.18, p=0.0032).  

mtDNA deletion size and location were also highly significantly correlated in the 

Newcastle cohort (N=83, r=-0.48, p<0.0001) (Figure 5.4B), and again this was 

confirmed by the meta-analysis (N=184, r=-0.29, p<0.0001).  

Highly significant correlations were also found between mtDNA heteroplasmy, mtDNA 

deletion size, and the two proposed genetic loci (MT-CO and MT-CYB genes) that were 

identified as significant in previous literature (Yamashita et al., 2008; López-Gallardo et 

al., 2009) (Table 5.2)  

5.4.5. Clinical phenotype, age at disease onset, and NMDAS progression, are 

correlated with muscle heteroplasmy and mtDNA deletion size  

The square root of age at onset was used in these analyses, which was identified by 

Box-Cox as the optimal transform. For the subjects in the Newcastle cohort with known 

age at onset (N=60), age at onset was significantly correlated with both mtDNA 

deletion size (b=-0.41, p=0.0039) and muscle mtDNA heteroplasmy (b=-0.42, 

p=0.0027) using multiple linear regression (R
2
=0.18) (Figure 5.5A). Similarly, in the 

meta-analysis (N=117), both mtDNA deletion size (b=-0.30, p=0.0008) and muscle 

mtDNA heteroplasmy (b=-0.30, p=0.0010) were significantly correlated with age at 

onset (R
2
=0.15).   

In the phenotypic analysis comparing KSS patients to CPEO patients (excluding 

intermediate phenotypes, as described in the methods), in the Newcastle cohort (N=64) 

I found that both mtDNA heteroplasmy (b=-1.4, p=0.0020) and mtDNA deletion size 

(b=-0.74, p=0.0318) were significantly correlated with phenotype using multiple 

regression. Similarly, in the meta-analysis (N=192), both mtDNA heteroplasmy (b=-

0.56, p<0.0001) and mtDNA deletion size (b=-0.18, p=0.0453) were significantly 

correlated with phenotype. 
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Figure 5.4 Putative predictors of disease progression are inter-correlated.  

Regression lines with 95% confidence intervals are shown in each case. (A) SKM heteroplasmy is negatively correlated with mtDNA deletion size in the Newcastle cohort. N=87, 

r=-0.49, p<0.0001. The dense cluster of points just below 5.0kB represents the cohort of patients with the 4,977bp common mtDNA deletion. (B) mtDNA deletion size is negatively 

correlated with the location of the mtDNA deletion midpoint in the Newcastle cohort. N=83, r=-0.48, p<0.0001. 
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The scaled NMDAS score was divided by the age at assessment to measure NMDAS 

progression. In the Newcastle cohort (N=55), I found that both mtDNA deletion size 

(b=0.49, p<0.0001) and mtDNA heteroplasmy (b=0.70, p<0.0001) were significant 

predictors of NMDAS progression using multiple regression (R
2
=0.49) (Figure 5.5B). 

 mtDNA 
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(-0.99,-0.42) 

<0.0001 

+0.54 

(1.6, 3.2) kB 

0.0069 

+0.29 

(0.34, 2.0) 

kB 

mtDNA 

deletion 

midpoint 

(kB) 

0.1260 

+0.11 

(-0.67, 5.4) 

%/kB 

<0.0001 

-0.29 

(-0.62, -0.21) 

 <0.0001 

-0.73 

(-2.7,-1.8) 

kB 

<0.0001 

+0.46 

(0.72, 1.8) 

kB 

MT-CO gene 

deletion 

0.1262 

-0.11 

(-15, 1.9)% 

<0.0001 

+0.47 

(1.42, 2.48) 

kB 

<0.0001 

-0.72 

(-2.3, -1.7) kB 

 0.0180 

-0.28 

N/A 

MT-CYB gene 

deletion 

0.1625 

+0.10 

(-2.1, 13)% 

<0.0001 

+0.39 

(0.93, 1.89) 

kB 

<0.0001 

+0.55 

(1.1, 1.6) kB 

<0.0001 

-0.28 

N/A 

 

Table 5.2 Inter-correlations between putative predictors of disease burden and progression.  

Shaded cells (upper right triangle) show for our cohort p values, correlation coefficients, and 95% 

confidence intervals for linear regression gradient or estimated difference due to specific mtDNA gene 

deletion; unshaded cells (bottom left triangle) show the same for the meta-analysis. Units for 95% 

confidence intervals identify y and x for linear regression, except in the case of mtDNA deletion size (kB) 

vs. mtDNA deletion midpoint (kB). The strongest correlations in each dataset are between mtDNA 

deletion midpoint or size and MT-CO gene deletion; larger mtDNA deletions tend to include MT-CO 

genes. MT-CYB deletion is also associated with larger mtDNA deletion size and mtDNA deletions. The 

same trends are seen in all cases in our cohort and the meta-analysis, excepting that in our cohort MT-

CYB gene deletion is significantly associated with lower mtDNA heteroplasmy, whereas in the meta-

analysis there is a non-significant trend relating MT-CYB gene deletion with higher mtDNA heteroplasmy 

levels. 
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Figure 5.5 Heteroplasmy and deletion size are linearly correlated with age at onset and NMDAS 

score progression.  

For both graphs, mtDNA deletion size is dichotomous for visualization only; regression is performed with 

deletion size as a continuous predictor. (A) Age at onset is predicted by both mtDNA heteroplasmy and 

deletion size.  Y axis shows the square root of age at onset. Data is from the Newcastle cohort. N=60, 

R
2
=0.18. Both mtDNA heteroplasmy (p=0.0027) and deletion size (p=0.0039) are significantly correlated 

with age at onset using multiple regression. (B) NMDAS progression (scaled NMDAS points per year) is 

highly significantly correlated with both mtDNA deletion size (p < 0.0001) and heteroplasmy (p < 

0.0001). N=55, R
2
=0.49. Y axis shows scaled NMDAS score per year.  

 



Chapter 5 Disease progression in single large-scale mtDNA deletions 

158 
 

5.4.6. Disease burden and progression of patients with the 4,977bp common mtDNA 

deletion are correlated with heteroplasmy 

I also examined the cohort of patients whose mtDNA disease is associated with a 

common 4,977 bp single, large-scale mtDNA deletion (Schon et al., 1989).  For this 

analysis I combined both the Newcastle cohort and the meta-analysis, as neither cohort 

was large enough in isolation for analysis of the common deletion patients. I observed 

that SKM mtDNA heteroplasmy was a significant predictor of both clinical phenotype 

(N=85, OR for 10% change in heteroplasmy 1.43 95%CI (1.13, 1.81), p=0.0030) and 

also age of disease onset (N=37, r=-0.44, p=0.0063). 

5.4.7. COX deficient fibre density is dependent on muscle heteroplasmy and deletion 

location but not deletion size 

I next studied the relationship between the proportion of COX-deficient muscle fibres in 

patient biopsies, mtDNA heteroplasmy, and MT-CO gene deletion (namely, deletion of 

part or all of at least one of the MT-CO1, MT-CO2 or MT-CO3 genes). The square root 

of COX-deficient fibre density was used in all analyses, which was identified by Box-

Cox as the optimal transform. 

In the Newcastle cohort (N=72) I observed that both SKM mtDNA heteroplasmy 

(b=0.68, p<0.0001) and MT-CO gene deletion (b=0.31, p=0.0018) were significantly 

correlated with COX-deficient fibre density using multiple linear regression (R
2
=0.43) 

(Figure 5.6). Similarly, in the meta-analysis (N=39), both mtDNA heteroplasmy 

(b=0.49, p=0.0012) and MT-CO gene deletion (b=0.34, p=0.0192) were significantly 

correlated with COX-deficient fibre density (R
2
=0.31).  

In both the Newcastle cohort and the meta-analysis the inclusion of MT-CO genes 

within the deleted mtDNA region was significantly correlated with a larger mtDNA 

deletion size, as seen in section 5.4.4. Hence I chose to examine whether there was a 

correlation between mtDNA deletion size and COX-deficient fibre density.  For this I 

used multiple regression with all three predictors. In the Newcastle patient cohort 

(N=72), mtDNA deletion size (b=-0.081, p=0.5104) was not a significant predictor, 

although both mtDNA heteroplasmy (b=0.65, p<0.0001) and MT-CO gene deletion 

(b=0.35, p=0.0028) remained significant even with deletion size in the model (R
2
=0.44). 

Similarly, in the meta-analysis (N=39), mtDNA deletion size (b=-0.00010, p=0.5586) 

was not a significant predictor, however both mtDNA heteroplasmy (b=0.48, p=0.0016) 

and MT-CO gene deletion (b=0.43, p=0.0445) remained significant (R
2
=0.32). 
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Figure 5.6 COX-deficient fibre density is dependent on SKM mtDNA heteroplasmy and 

deletion of MT-CO genes. 

Y axis shows the square root of the COX-deficient fibre density %. Data are from the Newcastle cohort, 

N=72, R
2
=0.43. Heteroplasmy (p<0.0001) and deletion of MT-CO genes (p=0.0018) are both significant 

predictors. Separate regression lines are shown for those that delete or partially delete one or more MT-

CO genes (N=63, 95% confidence interval for regression line shown) and those that do not (N=9, gradient 

of regression line is not significantly non-zero, confidence interval not shown). 

5.4.8. Longitudinal mixed modelling shows that mtDNA heteroplasmy, mtDNA 

deletion size and location are predictors of disease progression 

Using longitudinal mixed modelling I found that muscle mtDNA heteroplasmy 

(p<0.0001) and mtDNA deletion size (p<0.0001) were both highly significantly 

correlated with NMDAS progression in our patient cohort (N=55) (Figure 5.7). The 

interaction between mtDNA deletion size and mtDNA heteroplasmy was also 

significant (p=0.0046), which is exemplified by comparing panels A to B, where 

mtDNA deletion size has a stronger effect at high mtDNA heteroplasmy levels than low 

mtDNA heteroplasmy levels, and C to E, where mtDNA heteroplasmy has a strong 

effect with large mtDNA deletions but negligible effect with small mtDNA deletions.   

The location of the mtDNA deletion within the mitochondrial genome was also shown 

to affect disease progression. With mtDNA heteroplasmy and mtDNA deletion size in 

the model, deletion of the MT-CYB gene is significantly predictive of faster progression 

(p=0.0085, N=52) (Figure 5.74F). 
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Figure 5.7 The effect of mtDNA deletion size and heteroplasmy on NMDAS progression. 

All panels show 95% confidence intervals. (A-B) The effect of mtDNA deletion size at 80% and 40% 

heteroplasmy respectively. Deletion size is shown to have a greater impact at high heteroplasmy than at 

low heteroplasmy. (C-E) The effect of mtDNA heteroplasmy for a 2.0kB, 5.0kB and 8.0kB mtDNA 

deletion respectively. For small deletions the effect of heteroplasmy on NMDAS progression is 

negligible, but for larger deletions the effect is substantial. (F) The effect of deletion location for a 5.0kB 

deletion present at 80% heteroplasmy; progression is faster when MT-CYB is included in the deleted 

region. Panels A-E are generated from a model using time, deletion size and heteroplasmy as predictors. 

The model used for Panel F has an additional deletion location predictor (MT-CYB gene inclusion). 
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5.4.9. Individual patient progression can be modelled longitudinally 

Mixed modelling allows incorporation of random effects to model unknown variance in 

a given system. Hence I was also able to use the clinical and molecular genetic data to 

model the progress of individual patients and predict the expected course of progression 

for their overall disease burden.  Progression graphs were produced for all patients; in 

Figure 5.8 I present the predicted progression for five individual patients. The model 

used to produce these graphs incorporated muscle mtDNA heteroplasmy, mtDNA 

deletion size, and deletion of the MT-CYB gene as predictive factors. Expected 

progression is shown with 95% prediction intervals. Patients 4 and 5 have similar 

heteroplasmy but different deletion sizes, and thus exemplify the effect of deletion size 

on disease progression. Patients 1 and 3, conversely, have similar sizes of deletion 

(6.9kb and 6.5kB respectively) but different heteroplasmy levels. Patient 2 demonstrates 

rapid progression, despite low heteroplasmy, on account of the exceptionally large 

deletion size (9.1kB mtDNA deletion). Patient 1 demonstrates that even a single 

NMDAS score can represent a useful prognostic input. 
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Figure 5.8 Longitudinal 

modelling of five 

individual patients with 

single, large-scale 

mtDNA deletion disease. 

The chosen patients are 

representative of the range 

of rates of disease 

progression found in our 

cohort. Actual NMDAS 

assessment scores are 

depicted as crosses joined 

by solid lines. Each 

patient is shown with their 

predicted progression 

trendline with 95% 

prediction intervals, and is 

labelled with deletion size 

and heteroplasmy. Only 

patient 2 includes part of 

the MT-CYB gene in their 

deletion. 
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5.4.10. Individual phenotypic features 

Using a model with age, muscle heteroplasmy, and deletion size as predictors, the area 

under the ROC (AUC) curve was calculated for each phenotypic feature at each 

dichotomous cut-off point that had at least 6 patients (10% of the cohort) in each group 

(below the cut-off point, and above or including the cut-off point). The AUCs for each 

cut-off point are shown in Figure 5.9. The higher the AUC the better the predictive 

power of the model. Steep gradients or inflections in the graphs indicate instability in 

the predictability of the features, i.e. prediction success is heavily dependent on where 

the cut-off is drawn. Cognitive impairment is notably poor at a cut-off of 2. Hearing is 

highly predictive at high cut-off points but poor at low cut-offs. 

Using the optimal cut-off for each NMDAS feature, models were generated with each 

combination of the three predictors of age, heteroplasmy, and deletion size. The results 

are shown in Figure 5.10. As seen in panel C, the combination of all three predictors 

was the optimal model in almost all cases, other than psychiatric and CPEO, where the 

addition of deletion size (psychiatric) or age (CPEO) into the model reduces the AUC 

slightly. Of the lone predictors, heteroplasmy is generally the most predictive, deletion 

size the least predictive. Age is highly predictive of several features, most noticeably 

neuropathy and migraine, as neither of the other two predictors contribute much to the 

AUC. The most highly predicted features were hearing, exercise tolerance, and ptosis, 

though speech, dressing, and visual acuity also achieved AUCs over 0.8. The lowest 

AUCs were observed in myopathy and psychiatric disturbance, though gait stability, 

cutting food, and handwriting are also noticeably poorly predicted. Migraine and 

psychiatric disturbance are the only features negatively associated with age. 

A second approach used the proportional-odds logistic regression with three levels 

(asymptomatic, mild/moderate, and severe), results are shown in Figure 5.11. Again, 

heteroplasmy appears to be generally the most valuable predictor, out of age, 

heteroplasmy, and deletion size, and is significantly associated with half of the 22 

features. Exercise tolerance is the most predictable feature, and all three predictors are 

statistically significant; the only other features significantly associated with all three 

predictors are ptosis and handwriting, though handwriting has a low pseudo-R
2
. 

Deletion size is a statistically significant predictor for 7 of 22 examined features, most 

notable exercise tolerance and cerebellar ataxia.  Hearing is noticeably poorly predicted 

in this model as compared to the dichotomous model. 



Chapter 5 Disease progression in single large-scale mtDNA deletions 

164 
 

 

 
Figure 5.9 Area under the ROC curve (AUC) for each phenotypic feature and various score cut-off points with all three predictors in the model (age, heteroplasmy, and 

deletion size). 

The cut-off score is used to divide the cohort into two groups; those scoring the cut-off or above versus those scoring below. For each feature, the cut-offs tested were those with a 

minimum of 6 patients (approximately 10% of the cohort) in each group. Exercise tolerance, dressing, hearing, visual acuity, dysphonia/dysarthria, cognition, and ptosis achieve an 

accuracy above 80% using the ROC curve, however most features achieve 70% accuracy for at least one cut-off point. Some features are poorly predicted at any cut-off, for instance 

psychiatric involvement, migraine, and myopathy, and several features from the current function assessment. Hearing is much more accurately predicted at higher levels of 

dysfunction, whilst exercise tolerance is fairly well predicted across the spectrum. 
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Figure 5.10 Standardised parameters and area under ROC curves (AUC) for each phenotypic 

feature from the NMDAS using age, urine heteroplasmy, and deletion size as predictors. 

(A) Optimal cut-off point for each NMDAS feature, by maximizing AUC for the model with all three 

predictors. Cohort is dichotomised into those scoring the cut-off or above against those scoring below the 

cut-off. (B) Standardised parameters with 95% confidence intervals for the binary logistic model using 

the optimal cut-off with all three predictors. Parameters are statistically significant if the confidence 

interval does not cross the line at Y = 1. (C) The AUC using the optimal cut-off for each lone predictor 

and combination of predictors. Nine features achieve an AUC over 0.8, indicating strong predictive 

power. In almost all cases the regression with all three predictors is optimal, though in CPEO and 

cognition age is not predictive. Deletion size is generally the weakest predictor, though age is noticeably 

poorer in predicting gait stability and myopathy. Age is the principal predictor of migraine and 

neuropathy, and noticeable predictive of vision, dressing, hygiene, GI disturbance, ptosis, and ataxia.  

Heteroplasmy is better than the other lone predictors for many features, and significantly predictive for 15 

out of 22 features. Migraine is the only feature that decreases in severity with age.  
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Appendix XV details the parameters required for risk calculation in the proportional-

odds, including intercepts, and Appendix VIII is an explanation of how to calculate the 

risk for a given age and heteroplasmy with these parameters. 

Models were also generated with a further predictor included in addition to age, 

heteroplasmy, and deletion size, indicating the presence or absence of specific genes in 

the deletion. Both MT-CYB and MT-CO genes were tested. Cerebellar ataxia was the 

only feature significantly predicted by MT-CYB gene inclusion (P = 0.0151). No 

features were significantly predicted by MT-CO gene inclusion. 

 
Figure 5.11 Pseudo-R

2
 and standardised parameters for the logistic modelling of individual 

phenotypic features. 

Logistic models include age, heteroplasmy, and deletion size as predictors. Pseudo-R
2
 indicates that 

exercise tolerance and ptosis are the most predictable features using this model. Standardised parameters 

are statistically significant if the 95% confidence interval does not cross zero. Deletion size is only 

statistically significant for exercise tolerance, ataxia, neuropathy, GI disturbance, and cognitive 

impairment. Heteroplasmy is in general the strongest predictor of the three and is significant for 11 of the 

22 features, including almost all of the current function assessment (section I). Cerebellar ataxia is the 

most predictable by age, indicating this is particularly progressive.    
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5.5. Discussion 

Single large-scale mtDNA deletions are a common cause of mitochondrial disease, and 

the challenges in understanding the progression of disease for these patients highlights 

many of the challenges observed with other mtDNA deletions. 

The significant finding of the work presented in this chapter is that SKM mtDNA 

heteroplasmy levels, mtDNA deletion size and mtDNA deletion location are all 

important in understanding the expression and progression of clinical disease in patients 

with single large-scale mtDNA deletions. 

Two major factors have helped to reach this understanding. The first is a validated 

rating scale that covers the major clinical features of mitochondrial disease, the 

NMDAS. This, as a quantitative measure of mitochondrial disease burden, permits the 

study of disease progression in a manner which was previously unfeasible. Though I 

have presented the correlation between traditional phenotypic classification and 

NMDAS scores in the Newcastle cohort, the difficultly in using a discrete phenotype 

classification is clearly apparent. Longitudinal modelling of successive NMDAS 

assessments for patients demonstrates the benefits of a quantitative approach. It also 

highlights the dynamic nature of the patient phenotype. 

The second major factor is the use of statistical techniques, including multiple 

regression analyses that I have applied to both the Newcastle cohort data and those 

previously published in the literature. This includes use of the Box-Cox transformation 

to identify optimal transformations to normality, which allows the use of more powerful 

parametric statistical tests where appropriate. Multiple regression, however, is of high 

valuable in this particular study; where there is inter-correlation between the predictive 

factors, such techniques are required to correctly identify significant findings.  

5.5.1. Predictability of disease progression 

The longitudinal modelling shows that disease burden and progression is predicted by 

muscle mtDNA heteroplasmy level, mtDNA deletion size and the location of the 

mtDNA deletion within the mitochondrial genome. These findings are supported by 

other findings from both the Newcastle cohort and the meta-analysis; both phenotype 

and age at onset are predicted by mtDNA deletion size and mtDNA heteroplasmy, and 

also heteroplasmy is a significant predictor of phenotype in the cohort of patients with 

the common 4,977bp mtDNA deletion. Previous studies have been contradictory 

regarding the utility of these factors as predictors. It has been reported that both 
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phenotype and age at onset were dependent on mtDNA deletion size, but not 

significantly related to mtDNA heteroplasmy (Yamashita et al., 2008), however it has 

also been shown that the clinical phenotype was related to mtDNA heteroplasmy, but 

unrelated to mtDNA deletion size (although age at onset was related to both factors) 

(López-Gallardo et al., 2009). In a study specifically addressing disease progression it 

was reported that SKM mtDNA heteroplasmy and mtDNA deletion size were not of 

utility in disease progression prediction (Auré et al., 2007). More seminal studies also 

reported inconsistently on the utility of these predictors in predicting phenotype or age 

at onset (Holt et al., 1989b; Moraes et al., 1989; Goto et al., 1990a). However, we 

found that multiple regression identifies consistent correlation between disease 

phenotype or progression and both mtDNA heteroplasmy and deletion size. 

Furthermore, multiple regression of previously published data is revealing; for example, 

whilst López-Gallardo and colleagues found that mtDNA deletion size is not predictive 

of phenotype (P = 0.3953), multiple regression with both deletion size and heteroplasmy 

shows that deletion size is indeed a significant predictor of phenotype (P = 0.0330); in 

this case, the negative correlation between heteroplasmy and deletion size leads to the 

masking of the effect of deletion size when simple linear regression is used.  

5.5.2. Inter-correlation of heteroplasmy, deletion size, and location 

The correlations observed between the predictive factors are themselves of interest. 

López-Gallardo and colleagues noted the negative correlation between muscle 

heteroplasmy levels and mtDNA deletion size (López-Gallardo et al., 2009). From this 

they surmised that shorter mtDNA deletions do not have a replicative advantage, since 

one would expect in this case large deletions to be found at higher heteroplasmy levels, 

not lower. However, I would speculate that the observed correlation between muscle 

mtDNA heteroplasmy and mtDNA deletion size is more likely a reflection of the 

spectrum of disease that presents with a clinically-recognisable phenotype within the 

population, and is not an outcome of an intrinsic biochemically driven relationship. This 

speculation is supported by the results presented here on disease progression; small 

mtDNA deletions at low heteroplasmy levels would not be expected to be pathogenic 

and therefore patients with such deletions would not present clinically with symptoms. 

This is also consistent with the observation that potentially pathogenic mtDNA 

mutations are widespread at sub-threshold levels in the non-diseased population (Elliott 

et al., 2008).  

5.5.3. Deletion location and pathogenicity 
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I have shown that deletions including all or part of the MT-CYB gene are associated 

with faster disease progression. This is consistent with the report by López-Gallardo et 

al. that deletion of the MT-CYB gene was linked to a more severe phenotype (López-

Gallardo et al., 2009). The reason for this remains uncertain, but could potentially 

indicate that complex III deficiency has a particularly important role in the disease 

mechanism. 

I also showed that MT-CO gene deletion (that is, deletion of part or all of any of MT-

CO1, MT-CO2 or MT-CO3) is predictive of COX-deficient fibre density. Though 

previous studies reported no such link (Goto et al., 1990a; Oldfors et al., 1992), using 

multiple regression to reanalyse these studies reveals the same trend in all cases, indeed 

at statistical significance when the study is large enough (Goto et al., 1990a).  

It has been widely accepted for some time that the root of the pathogenicity of mtDNA 

deletions is the deletion of mitochondrial tRNA (mt-tRNA) genes (Schon et al., 2012). 

This hypothesis is somewhat challenged by the results presented in this study, 

consequently I will discuss the studies which have contributed to this hypothesis and re-

evaluate them in the light of the current study. 

Mita et al. showed that COX deficiency in SKM fibres was associated with low level 

wild-type mtDNA and high levels deleted mtDNA, which is a non-contentious finding 

(Mita et al., 1989). They also found that the distribution of mRNA demonstrated that 

the deleted mtDNA species was undergoing transcription. However, although COX 

subunit IV (nuclear encoded) was present using immunocytochemistry, COX subunit II 

(mitochondrially encoded) was absent; this was despite the fact that COX subunit II was 

not part of the deleted region. This showed that a deletion could affect mitochondrially 

encoded translation products that were outside the deleted region. However, it should be 

noted that this study was on a single KSS patient. 

A study published the following year showed that deletion of a single tRNA gene could 

compromise mitochondrial protein translation (Nakase et al., 1990). Using cloned 

fibroblasts from two KSS patients with different deletions they showed that the mutant 

DNA was transcriptionally active and produced RNA species, though the fusion mRNA 

spanning the deleted region in each case was not translated. Their conclusion was that 

the biochemical defects were due to lack of translation of the mtDNA encoded proteins 

in mitochondria harbouring mutant mtDNA, most likely due to tRNA insufficiency. 

They concluded that the mutant DNA species must be segregated from the wild-type for 
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lack of complementation to occur (i.e. tRNA from the wild-type mtDNA supplementing 

the lack of tRNA from the deleted mtDNA species). 

Hayashi et al. (Hayashi et al., 1991) introduced deletions into HeLa cells, and found 

that below 60% heteroplasmy there was normal translation of proteins in mitochondria, 

but above this level mRNA levels mismatched protein levels and thus showed that 

translation was impaired. An interesting conclusion that can be drawn from this study is 

that there is functional complementation of mutant mtDNA by wild-type in the same 

mitochondrion, which contrasted with the conclusion of Nakase et al.; however, this 

complementation breaks down above approximately 60% heteroplasmy and overall 

translation is impaired. They suggested that the lack of complementation cited by 

Nakase et al. was most likely due to exceeding the threshold for normal translation, and 

competition for tRNA interfering with translation throughout the mitochondrion. This 

work was consistent with an earlier study by Shoubridge et al. that showed that deleted 

mtDNA species are functionally dominant over wild-type, since they accumulate in 

ragged red fibres and impair biochemical activity despite normal wild-type levels of 

mtDNA in these cells (Shoubridge et al., 1990).  

More recently this functional complementation has been confirmed by a study in which 

two cell lines, each with distinct and non-overlapping mtDNA deletions, were fused, 

and restoration of mitochondrial protein translation was demonstrated, despite the two 

mtDNA species existing in discrete nucleoids within the same mitochondrion 

(Gilkerson et al., 2008).   

In summary, the conclusion that pathogenicity is based on tRNA insufficiency is 

predicated on a lack of correlation between the quality (size and location) of the deletion 

and the resulting biochemical defect and clinical phenotype. However, in this study I 

have demonstrated that both the biochemical defect (COX deficiency) and the clinical 

phenotype (disease burden) are correlated with both deletion size and location, which is 

evidence that tRNA insufficiency is not entirely responsible for the pathogenicity of 

deletions. However, a more comprehensive data set would be required to elucidate the 

relative importance of mt-tRNA genes, specific oxidative phosphorylation protein 

genes, and other potential pathogenic mechanisms as regards biochemical defects and 

the resulting clinical phenotype.  
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5.5.4. Pathogenic threshold level 

An important implication of this study regards is that threshold level for pathogenicity 

of a mtDNA deletion (Rossignol et al., 2003). Since the biochemical defect and the 

resulting clinical phenotype are dependent on the deletion size and location, the 

threshold for phenotypic expression at the cellular level would be expected to be 

dependent on the location and size of the deletion.  

5.5.5. Specific phenotypic features 

It has been shown that many individual phenotypic features are predictable by either 

age, heteroplasmy, or deletion size, or some combination of these factors. Exercise 

tolerance and ptosis are notably predictable, and this is not unexpected since 

neuromuscular features are prominent in disease associated with single large-scale 

mtDNA deletions. There are several other features that are strongly predictable, for 

instance dysphonia/dysarthria, which is a noted feature of single deletion disease (Auré 

et al., 2007), cerebellar ataxia, and cognitive impairment.  

Though most features demonstrated similar outcomes in the two approaches to logistic 

modelling (binary and multi-level proportional odds), hearing is noticeably different in 

the two, predicted by the dichotomous model but not by the multi-level model. 

However, as was noted in Figure 5.9, hearing is not predicted well when looking at low 

cut-off points in the NMDAS score, and significant effects of the predictors may only 

be apparent at higher levels of impairment.    

Hearing is also interesting from another perspective, in that the improvement seen in 

moving from a single- or two-predictor model to a model with all three predictors is 

very large; in particular, adding age into the model with heteroplasmy and deletion size 

improves the AUC from 0.7 to over 0.85. This is a strong reinforcement of the necessity 

for multiple regression techniques.  

CPEO is a second feature that was not well predicted by the multi-level model but that 

is reasonably predicted by the dichotomous model; the reason for this is found in the 

optimal cut-off score for CPEO of 5, which is more or less the only level between which 

prediction can be made for CPEO. However, both 4 and 5 scores are grouped together 

in the multi-level model. This emphasises the importance of thorough analysis of data 

from a number of perspectives, and also highlights the importance of optimising the 

analysis on question by question basis. CPEO is also curious in that heteroplasmy alone 

is almost entirely responsible for the prediction of this feature; age and deletion size are 
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not contributory. In this CPEO stands out from the other features. This is surprising, 

since the very nature of CPEO is progressive, and thus association with age should be 

expected. However, this finding may be related to the rating scale itself; CPEO is a 

ubiquitous feature of single large-scale mtDNA deletions, and over 50% of the cohort 

score maximally on this feature, suggesting that if CPEO continues to be progressive for 

these patients the severity range is inadequate for this group. 

Age appears to be almost the sole contributor to vision decline (from the current 

function part of the NMDAS), psychiatric disturbance, and migraine, suggesting that 

these features may be more related to general ageing than factors due to mtDNA 

deletion. Indeed all of these features are indeed common in the general population and 

associated with ageing. Interestingly migraine is the only NDMAS feature to 

significantly decrease with age, and this reflects the reported pattern in the general 

population (Dahlof et al., 2009). Psychiatric disturbance is the only other feature to be 

negatively associated with age; again, this is the reported trend in the population (Jorm, 

2000). 

Heteroplasmy and age are shown to be reasonably consistent predictors of most 

phenotypic features, however deletion size is generally less effective and less consistent. 

This has already been seen in the longitudinal modelling, but it is assuring to see the 

same pattern at the level of the individual phenotypic features. That deletion size is 

predictive but secondary to heteroplasmy and age for many phenotypic features does 

suggest that the pathogenic nature of the deletions may be to a large extent deletion-size 

independent, and may be due the effect of tRNA gene deletion. However, the growing 

understanding of the role of supercomplexes (Vartak et al., 2013) suggests a second 

pathway by which a deletion of any of the OXPHOS genes may affect the structural 

integrity and function of other complexes further up or down the respiratory chain. 

The location of the deletion did not prove to be a significant predictor of any phenotypic 

features excepting cerebellar ataxia. Interpretation of this finding as statistically 

significant would be naïve, and no firm conclusions can be drawn from this. However, 

the lack of significant association is not of great concern; the dataset used for these 

analyses is summary, containing only a single predictive point per patient; with 

heteroplasmy, age, and deletion size in the model already it is no great surprise that the 

model lacks statistical power to expose any significant relationships between deleted 

genes and phenotypic features. This is an important area for future research with a 
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larger dataset however; though the study on total disease burden is informative 

regarding the pathology of the mtDNA deletions, characterising and understanding 

association between specific phenotypic features and the properties of the deletion 

would be fascinating indeed. 

Though I have not displayed any graphical risk profiles of the individual feature 

modelling, the purpose of this section has not been to present the model outputs but to 

discuss the utility of the various predictors for understanding phenotypic feature 

development. However, the modelling of m.3243A>G did present models for several 

features, and the model outputs for this section would be similar in form. All models 

from this section of work will be available at https://research.ncl.ac.uk/mitoresearch as 

an aid to understanding the outcomes of this work.  

5.5.6. Limitations and future work 

Although this study provide new insights into disease progression in patients with 

single, large-scale mtDNA deletions, much further work is still required.  

Firstly, both mtDNA deletion size and the location parameter used in the longitudinal 

modelling (MT-CYB gene deletion) are perhaps merely proxies for the underlying 

pathogenic nature of the mtDNA deletion. A more nuanced characterization of these 

mtDNA deletions may better predict pathogenesis and mitochondrial disease 

progression. It is unclear, for instance, why MT-CO gene deletion is associated with 

more severe COX deficiency in cells but it does not have a clear modulatory effect on 

overall disease progression. However, expanding the model to characterise the deletions 

more fully would potentially involve a large number of parameters, in which case a 

larger dataset would be required to achieve reasonable statistical power.   

Secondly, it is notable that we do not have any predictor that encapsulates the 

sometimes multi-system nature of disease. In this regard, Auré et al. found that the 

presence of the mutation in blood was predictive of a neurological phenotype (Auré et 

al., 2007), and a similar trend in urine, a result confirmed by Blackwood et al. with 

regard to severe early-onset disease as compared to milder phenotypic presentation 

(Blackwood et al., 2010). These reports suggest that blood or urine mtDNA 

heteroplasmy levels, in tandem with SKM mtDNA heteroplasmy, may lead to an 

improved prediction of disease prognosis. For this to be included in the model blood or 

urine samples will need to be collected for the patients included in the model, but these 

are not available for the Newcastle patient cohort at the current time.  

https://research.ncl.ac.uk/mitoresearch
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Thirdly, the impact of other mitochondrial DNA rearrangements has not been 

considered in this study, for instance duplications (Poulton et al., 1989). However, it is 

not generally thought that duplications have a pathogenic effect. 

Fourthly, though most of the findings from our cohort are corroborated by the meta-

analysis, there are differences in the datasets, and in particular the correlations between 

predictors are on the whole stronger in the Newcastle cohort than in the meta-analysis. 

These differences may arise in part from the fact that the data from the Newcastle 

cohort are more homogeneous, but also because the makeup of this cohort is somewhat 

different; there are relatively few patients with the KSS phenotype as compared to the 

meta-analysis.  

Finally, though I do not use Bonferroni adjustment in the analyses for reasons well 

documented in the literature (particularly where a priori hypotheses are under test) 

(Thomas, 1998), the large number of statistical tests employed do open up the potential 

for more frequent type I statistical errors. However, consistent findings in both the 

Newcastle cohort and the meta-analysis provide support for firm conclusions to be 

drawn. Multiple testing is particularly relevant in the section on the prediction of 

specific phenotypic features. However, though caution must be taken in interpretation of 

statistical significance, the analytical techniques employed remain valid. 

5.5.7. Web tool 

The finding that deletion size, heteroplasmy, and deletion location are predictors of 

disease progression is important for all clinicians looking after patients with single, 

large-scale mtDNA deletions. A web based tool is therefore under development 

(https://research.ncl.ac.uk/mitoresearch) to support clinicians in their management of 

these patients. This tool currently uses the predictive longitudinal model detailed in this 

chapter to provide progression graphs, but is intended to also provide individual 

phenotypic feature risk profiles. 

5.5.8. Conclusion 

I have demonstrated that muscle heteroplasmy, deletion size and deletion location are 

predictive of disease severity and progression in single large-scale mtDNA deletions. 

Using these predictors together with the NMDAS, a quantitative measure of total 

disease burden, longitudinal modelling of disease progression can be performed both at 

a population level and for individual patients, as well as calculation of risk of 

developing specific phenotypic features. The end result is that advice and care plans for 

https://research.ncl.ac.uk/mitoresearch
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patients can be given on an individual basis, and discussions about the expected course 

of their disease burden can be provided.  
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 Discussion Chapter 6.

The principal aim of these studies has been to further understanding of the nature and 

progression of mtDNA disease. Despite the fact that the first mtDNA mutations were 

described over twenty five years ago (Holt et al., 1988), this remains challenging.   

There are several areas in which these studies have presented novel data and 

significantly progressed knowledge of disease progression in mtDNA disease. The 

study on m.3243A>G has expanded the current understanding regarding the predictive 

nature of disease associated with the mutation, both in terms of overall disease burden 

and also specific phenotypic features; it has provided new understanding of the dynamic 

(or not so dynamic) nature of heteroplasmy in various tissues of patients with the 

m.3243A>G mutation; it has generated several observations on sex differences in 

disease phenotype and heteroplasmy; it has presented novel data on the altered live-birth 

sex ratio; and it has shown that blood may be a more appropriate source of 

heteroplasmy than urine for use as a prognostic measure, in contradiction to long 

standing belief. Regarding single large-scale mtDNA deletions, there are several novel 

observations on stronger than previously understood connections between the genetic, 

biochemical, and clinical phenotype that shed new light on the pathology of large scale 

mtDNA deletions; and, as for m.3243A>G, the disease modelling provide useful 

prognostic data for clinicians in the care and management of patients. 

These studies have convincingly demonstrated the importance of simultaneous 

consideration of multiple factors when trying to understand the link between genotype 

and phenotype in mitochondrial disease, due to population level inter-correlation of all 

the predictive factors including age, heteroplasmy, and in the single large-scale 

deletions, deletion size and location. Without proper consideration of these relationships 

either true relationships between putative predictive factors and disease burden and 

progression are obscured, or false causal relationships are suggested. 

They have also clearly demonstrated the utility of the NMDAS as a tool for recording 

and understanding disease burden and progression in mitochondrial disease. This 

clinical tool has enabled the development of the prognostic models for overall disease 

burden and individual phenotypic feature progression, which are valuable tools for 

clinicians in the care and management of patients. 
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There are numerous avenues to explore in progressing the work begun in this thesis. 

Both in m.3243A>G and single large-scale mtDNA deletions factors to improve the 

prediction models have been identified, whether mtDNA copy number, alternative 

sources of heteroplasmy data, or investigations into the wider genetics and biochemical 

activity of the cells in mtDNA disease patients, for instance the role of tRNA 

synthetases. In particular, the limitations of heteroplasmy as a predictor of disease 

burden and progression in m.3243A>G have been clearly demonstrated, and improving 

on this prognostic ability is a critically important area for future research. The 

limitations of urine heteroplasmy in particular as a prognostic device have been clearly 

demonstrated, and the analysis strongly suggests that though urine has good properties 

for diagnostic identification of the presence of the m.3243A>G mutation, it performs 

poorly as an indicator of average heteroplasmy for a patient, and the existing 

recommendations for its use in this manner should be reviewed. The dynamism of 

heteroplasmy, particularly in patients with the m.3243A>G mutation, is also a rich area 

for exploration. 

The scope for further research is much wider however. This study has considered only 

two of the most common of the large number of mtDNA mutations, and the scope of 

mitochondrial disease is far wider indeed than even these, encompassing a huge number 

of nDNA mutations. Extending the techniques and understanding gained in these 

mutations to a wider array of genetic defects will be important future work.  

The models developed here are open for a great deal of further development. For 

instance, the logistic regression models presented are only analyses of the prevalence of 

each feature within the population of patients with the respective mutations; though this 

is an important characterisation of the phenotypic presentation of m.3243A>G and 

single large-scale mtDNA deletion disease, from the perspective of clinical care it is 

imperative to develop models to predict their expected progression of specific 

phenotypic features for individual patients, in a similar manner to the models provided 

for overall disease burden, by incorporating random effects and repeated measures 

analysis. This is important future work to be conducted on these cohorts of patients.  

A final important consequence of this modelling is that it has a very practical use as a 

baseline from which to measure the effectiveness of any future treatments for 

mitochondrial disease. Without a thorough understanding of the expected progression of 

disease then interventions cannot be confidently assesses for efficacy. 
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In conclusion, much progress has been made in understanding disease progression in 

patients with the m.3243A>G mutation and single large-scale mtDNA deletions, but 

much progress remains to be made, not only in these particular mutations, but in 

mitochondrial disease in general. 
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Appendix I The NMDAS Assessment. 

 

THE NEWCASTLE 

MITOCHONDRIAL DISEASE ADULT SCALE 

(NMDAS) 
Name: ________________ 

Date of birth: ________________ 

Date of assessment: ________________ 

Height: ____________ 

FVC - 1st attempt ____________ 

FVC - 2nd attempt ____________ 

FVC - 3rd attempt ____________ 

 

Section I- Current Function 
 

Rate function over the preceding 4 week period, according to patient and/or 

caregiver interview only. The clinician’s subjective judgement of functional ability 

should not be taken into account. 

 

1. Vision with usual glasses or contact lenses 

0. Normal. 

1. No functional impairment but aware of worsened acuities. 

2. Mild - difficulty with small print or text on television. 

3. Moderate - difficulty outside the home (eg bus numbers, road signs or shopping). 

4. Severe - difficulty recognising faces. 

5. Unable to navigate without help (eg carer, dog, cane). 

 

2. Hearing with or without hearing aid 

0. Normal. 

1. No communication problems but aware of tinnitus or deterioration from prior 

‘normal’ hearing. 

2. Mild deafness (eg missing words in presence of background noise). Fully corrected 

with hearing aid. 

3. Moderate deafness (eg regularly requiring repetition). Not fully corrected with 

hearing aid. 

4. Severe deafness - poor hearing even with aid (see 3 above). 

5. End stage - virtually no hearing despite aid. Relies heavily on non-verbal 

communication (eg lip reading) or has cochlear implant. 

 

3. Speech 

0. Normal. 

1. Communication unaffected but patient or others aware of changes in speech patterns 

or quality. 

2. Mild difficulties - usually understood and rarely asked to repeat things. 

3. Moderate difficulties - poorly understood by strangers and frequently asked to repeat 

things. 

4. Severe difficulties - poorly understood by family or friends. 

5. Not understood by family or friends. Requires communication aid. 
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4. Swallowing 

0. Normal. 

1. Mild - sensation of solids ‘sticking’ (occasional). 

2. Sensation of solids ‘sticking’ (most meals) or need to modify diet (eg avoidance of 

steak/salad). 

3. Difficulty swallowing solids - affecting meal size or duration. Coughing, choking or 

nasal regurgitation infrequent (1 to 4 times per month) but more than peers. 

4. Requires adapted diet - regular coughing, choking, or nasal regurgitation (more than 

once per week). 

5. Requiring enteral feeding (eg PEG). 

 

5. Handwriting 

0. Normal. 

1. Writing speed unaffected but aware of increasing untidiness. 

2. Mild – Has to write slower to maintain tidiness/legibility. 

3. Moderate – Handwriting takes at least twice as long or resorts to printing (must 

previously have used joined writing). 

4. Severe – Handwriting mostly illegible. Printing very slow and untidy (eg ‘THE 

BLACK CAT’ takes in excess of 30 seconds). 

5. Unable to write. No legible words. 

 

6. Cutting food and handling utensils (irrespective of contributory factors – eg 

weakness, coordination, cognitive function etc. This is also true for questions 7-10) 

0. Normal. 

1. Slightly slow and/or clumsy but minimal effect on meal duration. 

2. Slow and/or clumsy with extended meal duration, but no help required. 

3. Difficulty cutting up food and inaccuracy of transfer pronounced. Can manage alone 

but avoids problem foods (eg peas) or carer typically offers minor assistance (eg cutting 

up steak). 

4. Unable to cut up food. Can pass food to mouth with great effort or inaccuracy. 

Resultant intake minimal. Requires major assistance. 

5. Needs to be fed. 

 

7. Dressing 

0. Normal. 

1. Occasional difficulties (eg shoe laces, buttons etc) but no real impact on time or effort 

taken to dress. 

2. Mild – Dressing takes longer and requires more effort than expected at the patient’s 

age. No help required. 

3. Moderate - Can dress unaided but takes at least twice as long and is a major effort. 

Carer typically helps with difficult tasks such as shoe laces or buttons. 

4. Severe – Unable to dress without help but some tasks completed unaided. 

5. Needs to be dressed. 
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8. Hygiene 

0. Normal. 

1. Occasional difficulties only but no real impact on time or effort required. 

2. Mild – hygienic care takes longer but quality unaffected. 

3. Moderate - bathes and showers alone with difficulty or needs bath chair / 

modifications. Dextrous tasks (eg brushing teeth, combing hair) performed poorly. 

4. Severe - unable to bathe or shower without help. Major difficulty using toilet alone. 

Dextrous tasks require help. 

5. Dependent upon carers to wash, bathe, and toilet. 

 

9. Exercise Tolerance 

0. Normal. 

1. Unlimited on flat - symptomatic on inclines or stairs. 

2. Able to walk < 1000m on the flat. Restricted on inclines or stairs - rest needed after 1 

flight (12 steps). 

3. Able to walk < 500m on the flat. Rest needed after 8 steps on stairs. 

4. Able to walk < 100m on the flat. Rest needed after 4 steps on stairs. 

5. Able to walk < 25m on the flat. Unable to do stairs alone. 

 

10. Gait stability 

0. Normal. 

1. Normal gait - occasional difficulties on turns, uneven ground, or if required to 

balance on narrow base. 

2. Gait reasonably steady. Aware of impaired balance. Occasionally off balance when 

walking. 

3. Unsteady gait. Always off balance when walking. Occasional falls. Gait steady with 

support of stick or person. 

4. Gait grossly unsteady without support. High likelihood of falls. Can only walk short 

distances (< 10m) without support. 

5. Unable to walk without support. Falls on standing. 

 

Section II – System Specific Involvement 
 

Rate function according to patient and/or caregiver interview and consultation with the 

medical notes. Each inquiry should take into account the situation for the preceding 12 

month period only, unless otherwise stated in the question. 

 

1. Psychiatric 

0. None. 

1. Mild & transient (eg reactive depression) - lasting less than 3 months. 

2. Mild & persistent (lasting more than 3 months) or recurrent. Patient has consulted 

GP. 

3. Moderate & warranting specialist treatment (e.g. from a psychiatrist) - eg. bipolar 

disorder or depression with vegetative symptoms (insomnia, anorexia, abulia etc). 

4. Severe (eg self harm - psychosis etc). 

5. Institutionalised or suicide attempt. 
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2. Migraine Headaches During the last 3 months, how many days have headaches 

prevented the patient from functioning normally at school, work, or in the home? 

0. No past history. 

1. Asymptomatic but past history of migraines. 

2. One day per month. 

3. Two days per month. 

4. Three days per month. 

5. Four days per month or more. 

 

3. Seizures 

0. No past history. 

1. Asymptomatic but past history of epilepsy. 

2. Myoclonic or simple partial seizures only. 

3. Multiple absence, complex partial, or myoclonic seizures affecting function or single 

generalised seizure. 

4. Multiple generalised seizures. 

5. Status epilepticus. 

 

4. Stroke-like episodes (exclude focal deficits felt to be of vascular aetiology) 

0. None. 

1. Transient focal sensory symptoms only (less than 24 hours). 

2. Transient focal motor symptoms only (less than 24 hours). 

3. Single stroke-like episode affecting one hemisphere (more than 24 hours). 

4. Single stroke-like episode affecting both hemispheres (more than 24 hours). 

5. Multiple stroke-like episodes (more than 24 hours each). 

 

5. Encephalopathic Episodes 

0. No past history. 

1. Asymptomatic but past history of encephalopathy. 

2. Mild - single episode of personality or behavioural change but retaining orientation in 

time/place/person. 

3. Moderate - single episode of confusion or disorientation in time, place or person. 

4. Severe – multiple moderate episodes (as above) or emergency hospital admission due 

to encephalopathy without associated seizures or stroke-like episodes. 

5. Very severe - in association with seizures, strokes or gross lactic acidaemia. 

 

6. Gastro-intestinal symptoms 

0. None. 

1. Mild constipation only or past history of bowel resection for dysmotility. 

2. Occasional symptoms of ‘irritable bowel’ (pain, bloating or diarrhoea) with long 

spells of normality. 

3. Frequent symptoms (as above) most weeks or severe constipation with bowels open 

less than once/week or need for daily medications. 

4. Dysmotility requiring admission or persistent and/or recurrent 

anorexia/vomiting/weight loss. 

5. Surgical procedures or resections for gastrointestinal dysmotility. 
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7. Diabetes mellitus 

0. None. 

1. Past history of gestational diabetes or transient glucose intolerance related to 

intercurrent illness. 

2. Impaired glucose tolerance (in absence of intercurrent illness). 

3. NIDDM (diet). 

4. NIDDM (tablets). 

5. DM requiring insulin (irrespective of treatment at onset). 

 

8. Respiratory muscle weakness 

0. FVC normal (≥ 85% predicted). 

1. FVC < 85% predicted. 

2. FVC < 75% predicted. 

3. FVC < 65% predicted. 

4. FVC < 55% predicted. 

5. FVC < 45% predicted or ventilatory support for over 6 hours per 24 hr period (not 

for OSA alone). 

 

9. Cardiovascular system 

0. None. 

1. Asymptomatic ECG change. 

2. Asymptomatic LVH on echo or non-sustained brady/tachyarrhythmia on ECG. 

3. Sustained or symptomatic arrhythmia, LVH or cardiomyopathy. Dilated chambers 

or reduced function on echo. Mobitz II AV block or greater. 

4. Requires pacemaker, defibrillator, arrhythmia ablation, or LVEF < 35% on 

echocardiogram. 

5. Symptoms of left ventricular failure with clinical and/or x-ray evidence of pulmonary 

oedema or LVEF < 30% on echocardiogram. 
 

Section III – Current Clinical Assessment 

 
Rate current status according to examination performed at the time of assessment 

 

1. Visual acuity with usual glasses, contact lenses or pinhole. 

0. CSD ≤ 12 (ie normal vision - 6/6, 6/6 or better). 

1. CSD ≤ 18 (eg 6/9, 6/9). 

2. CSD ≤ 36 (eg 6/12, 6/24). 

3. CSD ≤ 60 (eg 6/24, 6/36). 

4. CSD ≤ 96 (eg 6/60, 6/36). 

5. CSD ≥ 120 (eg 6/60, 6/60 or worse). 

 

2. Ptosis 

0. None. 

1. Mild ptosis - not obscuring either pupil. 

2. Unilateral ptosis obscuring < 1/3 of pupil. 

3. Bilateral ptosis obscuring < 1/3 or unilateral ptosis obscuring > 1/3 of pupil or prior 

unilateral surgery. 

4. Bilateral ptosis obscuring > 1/3 of pupils or prior bilateral surgery. 

5. Bilateral ptosis obscuring >2/3 of pupils or >1/3 of pupils despite prior bilateral 

surgery. 
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3. Chronic Progressive External Ophthalmoplegia 

0. None. 

1. Some restriction of eye movement (any direction). Abduction complete. 

2. Abduction of worst eye incomplete. 

3. Abduction of worst eye below 60% of normal. 

4. Abduction of worst eye below 30% of normal. 

5. Abduction of worst eye minimal (flicker). 

 

4. Dysphonia/Dysarthria 

0. None. 

1. Minimal - noted on examination only. 

2. Mild – clear impairment but easily understood. 

3. Moderate – some words poorly understood and infrequent repetition needed. 

4. Severe – many words poorly understood and frequent repetition needed. 

5. Not understood. Requires communication aid. 

 

5. Myopathy 

0. Normal. 

1. Minimal reduction in hip flexion and/or shoulder abduction only (eg MRC 4+/5). 

2. Mild but clear proximal weakness in hip flexion and shoulder abduction (MRC 4/5). 

Minimal weakness in elbow flexion and knee extension (MRC 4+/5 - both examined 

with joint at 90 degrees). 

3. Moderate proximal weakness including elbow flexion & knee extension (MRC 4/5 or 

4 -/5) or difficulty rising from a 90 degree squat. 

4. Waddling gait. Unable to rise from a 90 degree squat (=a chair) unaided. 

5. Wheelchair dependent primarily due to proximal weakness. 

 

6. Cerebellar ataxia 

0. None. 

1. Normal gait but hesitant heel-toe. 

2. Gait reasonably steady. Unable to maintain heel-toe walking or mild UL dysmetria. 

3. Ataxic gait (but walks unaided) or UL intention tremor & past-pointing. Unable to 

walk heel-toe – falls immediately. 

4. Severe - gait grossly unsteady without support or UL ataxia sufficient to affect 

feeding. 

5. Wheelchair dependent primarily due to ataxia or UL ataxia prevents feeding. 

 

7. Neuropathy 

0. None. 

1. Subtle sensory symptoms or areflexia. 

2. Sensory impairment only (eg glove & stocking sensory loss). 

3. Motor impairment (distal weakness) or sensory ataxia. 

4. Sensory ataxia or motor effects severely limit ambulation. 

5. Wheelchair bound primarily due to sensory ataxia or neurogenic weakness. 

 

8. Pyramidal Involvement 

0. None. 

1. Focal or generalised increase in tone or reflexes only. 

2. Mild focal weakness, sensory loss or fine motor impairment (eg cortical hand). 

3. Moderate hemiplegia allowing unaided ambulation or dense UL monoplegia. 

4. Severe hemiplegia allowing ambulation with aids or moderate tetraplegia (ambulant). 

5. Wheelchair dependant primarily due to hemiplegia or tetraplegia. 
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9. Extrapyramidal 

0. Normal. 

1. Mild and unilateral. Not disabling (H&Y stage 1). 

2. Mild and bilateral. Minimal disability. Gait affected (H&Y stage 2). 

3. Moderate. Significant slowing of body movements (H&Y stage 3) 

4. Severe. Rigidity and bradykinesia. Unable to live alone. Can walk to limited extent 

(H&Y stage 4). 

5. Cannot walk or stand unaided. Requires constant nursing care (H&Y stage 5). 

 

10. Cognition 

Patients undergo testing using WTAR, Symbol Search and Speed of Comprehension 

Test. 

0. Combined centiles 100 or more. 

1. Combined centiles 60 - 99 

2. Combined centiles 30 - 59 

3. Combined centiles 15 - 29 

4. Combined centiles 5 - 14 

5. Combined centiles 4 or below. 
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Appendix II Matlab resampling code. 

function [ stats answers] = Do_Resample( no_resamples, data, 

nColsToUse, nRepsToUse, dopower, drawfigs, remove_outliers, 

ratio_check) 
%work out dimensions. each column is a single GROUP containing 

replicates 
nCols = size(data,2); 
nReps = size(data,1); 
nSets = size(data,3); 
%Don't use remove outliers anymore! Remove them before calling. 
removed = 0; 
ratio = 0; 
n = 0; 
if remove_outliers == 1, 

%Work out the acceptable limits for the data. The output of this 

is the limits variable 

  
std_dev_before = 0; 
std_dev_after = 0; 
[data removed ratio] = remove_outliers_using_iqr_1(data); 

end 

     
number_of_vals = sum(isnan(data(:))); 
fprintf('%d of %d reps, %d of %d groups, %d points total, %d outliers 

removed\n', nRepsToUse, nReps, nColsToUse, nCols, 

nColsToUse*nRepsToUse, removed); 
stats = []; %3 rows, for each of the above estimate 
samples = zeros(2,no_resamples);%we just record the differences 

  
if drawfigs==1, 
       figure; 
       hist(data(:,:,1)); 
end 

     
%Note - this actual answer is calculated from the values we supply, 

but really we should be using the answer calculated from ALL the 

values. So be careful about requesting ratio_check. 
actual_answer =  nanmean(nanmean(data(:,:,1))); 
answers = zeros(1,no_resamples); 
for rs = 1:no_resamples; 
        actualSet = randi(nSets, 1, 1); 
        %Do it col by col, so that we can remove  
        actualCols = randi(nCols,1,nColsToUse); %Multiple columns for 

the group dist 
        actualReps = randi(nReps,1,nRepsToUse); %Some of the summaries 

use the actual reps 
        vals = data(actualReps,actualCols,actualSet); %Both cols 
        if ratio_check==1, 
           vals = vals - actual_answer; %subtract the true ratio, so 

that we are comparing relatively  
        end 

         
        switch dopower, 
            case 1, 
            vals = 10.^vals; 
            case 2, 
            vals = 1-10.^vals; 
            case 3, 
            vals = 10.^(vals+2); %This is for the B2M MT-ND1 assay 

that is 100 fold different. 
            case 4, 
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            vals = vals+2; %This is for the B2M MT-ND1 assay that is 

100 fold different, looking at logs. 
        end 

         
%The groups are arranged in cols, so we need to take the mean of each 

col and then look at std. 
        samples(1,rs) = nanstd(nanmean(vals,1)); %rawgroup 
        samples(2,rs) = nanmean(nanstd(vals)); %rep 
        samples(4,rs) = nanmean(nanmean(vals,2)); %actual value. 
        answers(rs) = samples(4,rs); 
    end 

    
%For the overall variance, this is tricky... Samples4 contains the 

actual values we come out with each time. 
%We need to look at the variance within this. So we actually need to 

resample the resamples.... to get a variance for these 
    x = samples(4,:); 
    no_x = size(x,2); 
    %just do 1000 for this 
    overall_std = zeros(1,1000); 
    for i = 1:1000, 
        overall_std(1,i) = nanstd(x(randi(no_x,1,no_x))); 
    end 

     
    if no_resamples == 1, 
%If we are just doing one resample, we pass back all the values as the 

answer 
        answers = vals'; 
    else 
samples(3,:) = abs(sqrt(samples(1,:).^2 - 

samples(2,:).^2/nRepsToUse)); %this is the adjusted VARIANCE, which 

measures the GROUP. We need to take the square root to get the final 

answer. 
        stats(1,1:4) = calculate_rep_group_stats(samples(2,:), 

nRepsToUse); %rep variance 
        stats(1,5:8) = calculate_rep_group_stats(samples(3,:), 

nColsToUse); %group variance 
        stats(1,9:12) = calculate_rep_group_stats(samples(4,:), 0); 

%actual values 
        stats(1,13:16) = calculate_rep_group_stats(overall_std, 0); 

%overall variance 
        stats(1,17) = removed; 
        stats(1,18) = ratio(1,:); %Note - this takes the ratio of the 

front page of data. The second should be zeros anyway... 
        stats(1,19) = nReps - number_of_vals; %This will give is 

number of rows minus any NaNs that we have removed, so how many good 

vals we have. 
    end 
function output = remove_outliers_using_iqr(data) 
%Removes outliers using a threshold level that detects changes to the 
%standard deviation above and beyond acceptable limits 
sz = size(data,1); 
mul = 2; 
prcs = prctile(data, [25 75]); 
iqr = prcs(2) - prcs(1); 
lims = [(prcs(1) - iqr*mul) (prcs(2) + iqr*mul)]; 
sum(data < lims(1) | data > lims(2)) 
data(data < lims(1) | data > lims(2)) = NaN; 
output = data; 
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Appendix III m.3243A>G Heteroplasmy data, with sequential measurements. 

For each patient, the table lists the heteroplasmy data available and the age at sample. The age column 

records the age of the first sample, and age diff records the time in years between two samples(where two 

samples are available). A blank age diff implies only one sample is available; 0 implies repeated samples 

taken very close together in time. The number of NMDAS assessments for each patient is also shown. 

 Urine Heteroplasmy Blood Heteroplasmy Muscle Heteroplasmy  

ID Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

No. 

NMDAS 

1 34.8 10.8 35 32 34.8 9.8 6 7 45.6   52   11 

2 46.2 10.5 93 66 52.9 3.8 20 19         6 

3 37.8 10.1 29 15 37.1 10.8 18.5 13         3 

4 62.9 9.4 49 49 72.3  10      12 

5 29.5 9 80 88 36.9   26   34.1 4.1 67 91 7 

6 50.7 8.8 74 67     54.9 0.2 62 64 14 

7 47.1 8.8 54 48 55.9  5  47.1  53  9 

8 44.4 8.4 8 11 44.4 10.3 2 2 44.4   11   10 

9 17.8 8.4 65 32 17.8 8.4 8 13     2 

10 51.3 8.1 42 59 50.4 6.3 8 6         12 

11 30.7 7.9 62 89 30.7 7.7 15 19 30.5   67   5 

12 37.1 7.9 72 60 37.1   14   41.9   69   3 

13 52.5 7.9 52 44 60  13      11 

14 50.8 7.8 20 33 50.8   9   54.7 4 60 62 3 

15 41 7.6 82 56                 9 

16 21.2 7.5 77 68 21.2 7.5 64 53     13 

17 42.4 7.5 82 87 42.4  28  46.2  26  7 

18 16 7 73 73 16 7 48 48     5 

19 40.1 6.9 75 79 46.1 3.3 12 11 40.3   57   6 

20 39.2 6.9 50 61 46.2  13      9 

21 46.8 6.7 23 22 44.3 8.8 9 11         4 

22 65.3 6.6 6 11 65.3 6.6 3 4     1 

23 28.7 6.5 4 3 35.1   1           4 

24 25.6 5.3 57 53 25.6 5.3 38 38         2 

25 41.2 5.2 87 86 41.2 5.2 37 25     8 

26 43.7 5 83 74 43.7  16  43.7  53  3 

27 23.7 4.9 98 93 23.8 4.9 48 41     8 

28 30.3 4.9 44 44 30.3 4.9 7 7 30.7   24   7 

29 44 4.4 38 52 44 4.4 27 12 48.4  73  6 

30 20.4 4.4 82 72 20.4  46      7 

31 15.6 4.2 64 55 15.6 4.2 41 40     1 

32 43.3 4.2 48 51 43.3  5  43.3  46  6 

33 40.3 4 43 72 40.3 4 21 19 41 2.5 73 78 8 

34 15.7 4 85 72 15.7 4 45 42 19.8   72   6 

35 43.9 3.9 72 63 43.9   16           10 

36 43.3 3.7 52 57 43.3   8   43.3   50   2 

37 52.9 3.6 39 59 52.9 3.6 16 16 52.9  78  2 
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 Urine Heteroplasmy Blood Heteroplasmy Muscle Heteroplasmy  

ID Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

No. 

NMDAS 

38 19.5 3.5 73 81 19.5 3.5 50 45         5 

39 45.7 3.1 80 89 45.5   23           10 

40 43.5 3 6 6 43.5 
  

0.1 
  -

60.5 
0 2 2 

4 

41 60.4 3 29 29 59.4  2  60.4  27  9 

42 41.1 2.7 88 86 41.1   24           4 

43 57.2 2.7 27 33 57.2   18           4 

44 49.3 2.6 46 40 49.3   21           2 

45 30.2 2.4 77 94 30.2 2.4 47 43     2 

46 35.4 2.3 80 92 35.4 2.3 34 31         7 

47 36.3 1.9 42 44 35.8 0.4 32 26         3 

48 44.5 1.7 14 12 44.5   4           2 

49 20.3 1.5 91 87 20.3 1.5 48 51     3 

50 40.3 1.5 40 45 40.3 1.5 19 24         2 

51 59.1 1.5 71 62 59.1  14      2 

52 56.7 1.4 50 34 51.8 6.3 15 18     3 

53 54.5 1.4 46 53 54.3 1.5 22 20 54.4  66  7 

54 5.4 1.4 92 91 5.5   68            

55 49.9 1.4 19 24 49.9   13           1 

56 31.7 1.2 71 64 32.7 0.1 12 11     1 

57 46 1 76 85 46 1 25 27     4 

58 26.9 0.9 93 92 26.9 0.9 39 39         1 

59 41.1 0.9 74 71 41.1   23           3 

60 57.9 0.7 22 35 56.3   7           3 

61 43.7 0.6 56 78 43.7 0.6 27 27 44.2   89   2 

62 22 0.6 89 91 21.5 0.5 33 34     2 

63 24.6 0.6 92 96 24.6   44           5 

64 23.4 0.6 54 60 23.4  34      7 

65 38 0.6 64 53 38  12      2 

66 39.4 0.6 64 47         4 

67 49.3 0.5 60 66 49.3   13           1 

68 32.8 0.5 57 65 32.8  30      4 

69 53.1 0.5 72 60 53.1   9           2 

70 34.9 0.4 78 71 34.9 0.4 28 28     4 

71 47.2 0.4 73 77 47.6  29      3 

72 24.9 0.2 87 57 24.9 0.2 40 29     1 

73 37.7 0.2 87 85 37.7   30           3 

74 37.4 0.2 47 56 37.6   10            

75 31.6 0.1 99.9 99 31.6 0 38 40     3 

76 56.8 0.1 41 49 56.8 0 8 7         8 

77 20.5 0.1 27 50 20.5   10           1 

78 51.9 0.1 20 29 51.9  2       
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 Urine Heteroplasmy Blood Heteroplasmy Muscle Heteroplasmy  

ID Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

No. 

NMDAS 

79 36.2   37   36.2 6 0.1 0.1 41.2   41   2 

80 13  93  19.7 2.8 62 54     3 

81 22.5   71   21.8 0.7 35 31         1 

82 39.3   63   38.8 0.6 23 21         2 

83 45.7  88  45.5 0.5 24 24     2 

84 19  82  18.5 0.5 57 60     1 

85 24.7  92  24.7 0.2 54 48     15 

86 64.7   54           73.5 0.2 12 66 11 

87 7.1  99      6.9  94  7 

88 14.1  96  13.8  47      12 

89 8.4  96          2 

90 10.3   96                   5 

91 9.7   93   9.7   66            

92 12   91   12   62           1 

93 22   91   22   38            

94 46.3  91          1 

95 43.3   88   41.3   46           2 

96 17.1   86   16.7   53           1 

97 26.2  86  26.2  44  26.7  86  1 

98 23.2  85  23.2  41      1 

99 26.3   82   26.3   49           5 

100 8.7  82  8.7  46      1 

101 54.3   79   54.3   27           6 

102 25  78  25  31      10 

103 4.4  78          5 

104 25.9   77   25.9   23           10 

105 38.2  76  38.2  25      3 

106 45.2   76   44.9   23   44.9   78   1 

107 55.1  76          3 

108 37   75   37   22           3 

109 59.8  74  57.1  16      8 

110 9.7   72   9.7   44           8 

111 31.6  72  31.6  16      4 

112 31.2  71  31.2  48      4 

113 14.6  71  14.6  40       

114 35.4   70   35.4   25           2 

115 0   69   0   68           1 

116 55.2  68           

117 19   67   19   44            

118 27.5   62   27.5   27           3 

119 37.8  61          4 

120 60  60  61  17  64.2  62  3 
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 Urine Heteroplasmy Blood Heteroplasmy Muscle Heteroplasmy  

ID Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

No. 

NMDAS 

121 23.2   59   23.2   18           2 

122 32.2  57  39.2  23  31  66  2 

123 44.9  57  44.9  9      2 

124 29.3   56   29.3   33           1 

125 55.1   56   55.1   18   54.8   70   1 

126 45.8   56   45.8   14   41.9   52   2 

127 70.6  56  70.5  3      2 

128 38.2   55   45.2   13           1 

129 25.1  55  22.3  12      1 

130 55.1  55  55.6  6  55.1  39   

131 18.2  54  18.2  19       

132 52.8   54                    

133 39.8   53   39.8   25            

134 26.5  52  26.5  29  26.7  63  2 

135 37.2  51  37.2  17      3 

136 14.1  50  14.1  43       

137 25   47           24.6   77   1 

138 23.5  44  23.5  23  23.5  64   

139 25.8   42   25.8   18            

140 46.2  40  46.2  22      1 

141 49.7   40   49.7   20           1 

142 23.2  40  23.2  8      1 

143 26.2  39  26.2  15      2 

144 32.5   38   32.5   13           1 

145 27.7   35   27.7   7   27.7   17   1 

146 20.5   34   20.5   48           1 

147 55  34  55  16      1 

148 51.7   34                   1 

149 19.3   32   19.3   16           1 

150 59.1  32  59.1  7      2 

151 49.5   31   49.5   13           2 

152 43.4  31  43.4  8       

153 60  26  51.3  1.6      1 

154 69.4   26   68.8   0.001   68.8   58   1 

155 29.1   23   29.1   14           1 

156 35.4   23   35.9   8   35.3   47   1 

157 42.9   22   42.9   10           1 

158 49.8  22  49.4  6      1 

159 62.5   22                   1 

160 27.3  18  27.3  1  27.5  41  5 

161 20.8  15.5  20.8  0.1       

162 36.9  14  36.9  0.1      12 
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 Urine Heteroplasmy Blood Heteroplasmy Muscle Heteroplasmy  

ID Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

Age Age 

Diff 

Het 

First 

Het 

Last 

No. 

NMDAS 

163 59.9   12   59.9   0.1           3 

164 37.1  11          7 

165 67.4  10  67.4  0.1      3 

166 26.7   7   26.7   1           2 

167 45.3  6  45.3  0.1       

168 78   5   78   3           5 

169 61.7   3   61.7   1           2 

170 19.7  2  19.7  2       

171 29.6  1  29.6  1       

172 43.7  0.1  43.7  0.1       

173         41   30            

174         41.7   28           1 
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Appendix IV m.3243A>G Longitudinal Model SAS code. 

 

Create table sasuser.n3243 as  

Select patient_id, family_id, sex, aao, avg_age, no_ass,  

het_wt_muscle*100 as hm, het_wt_urine*100 as hu, het_wt_blood*100 as 

hb, (dt_nm - dt_birth)/365.0 as time, scaled_score, log_score, 

max_response from connection to odbc  

(Select dd.*, ddd.avg_age, stroke_seizure from data_sum_with_pd_ct dd 

inner join patient_sum_ct ddd on dd.patient_id = ddd.patient_id  

left join patient_melas_phenotype mel on dd.patient_id = 

mel.patient_id) where genetics = 14 and exclude_flags is null  and 

institution = 1 and max_response >= 130 

 order by patient_id asc, time asc  ;  

 

data n1; 

set sasuser.n3243; 

dv = scaled_score**0.25; 

time_scaled = time*1000; 

if family_id = 99999 then family_group = 'other'; else family_group = 

'individual'; 

het = hu; 

if not missing(hu); if not missing(hb); 

run;quit; 

 

proc sql; 

create table p_fam_temp as select family_id, patient_id, count(*) from 

n1 group by family_id, patient_id; 

 

create table p_fam as select family_id, count(*) from p_fam_temp group 

by family_id having count(*) < 2; 

update n1 set family_id = 99999 where family_id in (select family_id 

from p_fam); 

create table p_fam_uniq as  select family_id, count(*) from n1 where 

family_id < 99999 group by family_id ; 

run; 

 

proc sql; 

create table young  as select patient_id, count(*) from n1 where time 

< 25 and scaled_score > 3 group by patient_id; 

create table n1 as select n1.*, case when young.patient_id is not null 

then 1 else 0 end as young  from n1 left join young on n1.patient_id = 

young.patient_id ; 

create table n1 as select n1.*, case when melas.patient_id is not null 

then 1 else 0 end as melas from n1 left join melas on n1.patient_id = 

melas.patient_id ; 

select young, count(distinct patient_id) from n1 group by young; 

run; 

 

proc mixed data=n1 method=ml plots=all; 

class patient_id young; 

    model dv =  time time*time time*time*time time*hu time*young /s 

noint outp=PredR outpm = PredF residual; 

 repeated /type=sp(pow)(time_scaled ) subject=patient_id 

group=young ; 

random time /subject=patient_id; 

run;
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Appendix V Binomial logistic regression SAS code. 

 

data q; 

set sasuser.allq; 

t = age_at_ass/10; 

h  = hu; 

run; 

 

data stuff; do max=1 to 5 by 1; output; end; 

data q_id;  do q_id=1 to 29 by 1; output; end; 

data q_id_filtered; set q_id;  

if  q_id ne 18 ;  

run; 

 

proc sql; 

create table q1 as select max, case when q_max >= max then 1 else 0 

end as qval,q.* from stuff cross join q order by q.q_id, q.q_text, 

max; 

create table qs as select qif.q_id, q1.max, sum(case when qval = 1 

then 1 else 0 end) as yes,  sum(case when qval = 1 then 0 else 1 end) 

as no from q_id_filtered qif inner join q1 on qif.q_id = q1.q_id group 

by qif.q_id, q1.max; 

create table qs1 as select *, yes+no as total from qs where yes >= 10 

and no >= 10; 

create table qdata as select q1.* from q1 inner join qs1 on q1.q_id = 

qs1.q_id and q1.max = qs1.max; 

drop table qs; drop table q1; drop table qs1; 

run; 

 

proc sort data=q; by q_id; run; 

 

*Find the optimal cutoff point; 

ods html close;  

proc logistic data = qdata plots = none; by q_id q_text max; 

model qval =  h  /stb rsq CLPARM=PL; 

ods output Association=Assoc1; 

run; 

ods html; 

 

*Create the data sets using the optimal cutoff point; 

proc sql; 

create table out as select q_id, q_text, max, 

round(sum(nValue2),.0001) as c from Assoc1 where label2 = 'c' group by 

q_id, q_text, max; 

create table best_cutoff as select t.q_id, t.max as max, t.c from out 

t inner join (select q_id, max(c) as c from out group by q_id) a2 on 

t.q_id = a2.q_id and t.c = a2.c; 

create table qbestcutoff as select q.*, max as cutoff, case when 

q.q_max >= qbest.max then 1 else 0 end as score from q inner join 

best_cutoff qbest on q.q_id = qbest.q_id order by q_id, q_text; 

drop table out; drop table Assoc1;  

run; 

 

proc logistic data = qbestcutoff plots = none; 

by q_id q_text ; 

model score =  h  /stb rsq CLPARM=PL; 

ods output ParameterEstimates=ParsBest ClparmPL=ParsCLBest 

Association=AssocBEST  FitStatistics = Fit2;; 

output out = PredR p=Pred stdxbeta=StdErrPred lower=Lower upper=Upper 

PREDPROBS=(I); 

run;  
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Appendix VI Multilevel ordered logistic regression SAS code. 

data q; 

set sasuser.allq; 

decade = age_at_ass/10; 

het_10 = hu/10; 

 

if q_max > 3 then q_hml = 2; else if q_max > 1 then q_hml =1 ; else 

q_hml = 0; 

 

het_10  = hu/10; 

het_10  = hb/10; 

if not missing(hu); 

*if not missing(hb); 

run; 

 

 

proc sql; 

create table young as select patient_id, count(*) from n1 where time < 

25 and scaled_score > 3 group by patient_id; 

 

create table q1 as select q.*, case when young.patient_id is not null 

then 1 else 0 end as young  from q left join young on q.patient_id = 

young.patient_id ; 

run; 

 

*this is to do analysis of frequencies; 

proc sql; 

create table q_summary as select q_text,  

sum(case when q_max = 0 then 1 else 0 end)/count(*) as q_0, 

sum(case when q_max = 1 then 1 else 0 end)/count(*) as q_1, 

sum(case when q_max = 2 then 1 else 0 end)/count(*) as q_2, 

sum(case when q_max = 3 then 1 else 0 end)/count(*) as q_3, 

sum(case when q_max = 4 then 1 else 0 end)/count(*) as q_4, 

sum(case when q_max = 5 then 1 else 0 end)/count(*) as q_5, 

count(*) as n from q group by q_text; 

run; 

 

proc sort data = q; by q_text; run; 

 

proc logistic data = q plots=EFFECT(X=decade at(het_10 = 0.5 4 6.5)) 

plots=EFFECT(X=het_10  at(decade = 2 4 6)); 

by q_text; 

model q_hml =  decade het_10   /stb rsq CLPARM=PL; 

ods output OddsRatios=OddsDia ParameterEstimates=ParsDia 

CumulativeModelTest=TestDia FitStatistics=FitDia RSquare=R2Dia 

ClparmPL=ParsCL; 

output out = PredR p=Pred stdxbeta=StdErrPred lower=Lower upper=Upper 

PREDPROBS=(I); 

run; 
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Appendix VII. Parameters for calculation of risk profiles for m.3243A>G multilevel ordinal logistic model. 

Each parameter is shown with its standard error. The het parameter is for urine heteroplasmy decades, age is for age decades. Standardised parameters are also shown in the final two 

columns. 

Item Int 0 S.E P Int 1 S.E P Het S.E P Age S.E P Het STD Age STD 

Cardiovascular 3.612 0.976 0.0002 7.251 1.195 1E-09 -0.253 0.089 0.0044 -0.478 0.152 0.0017 -0.347 -0.371 

Cerebellar ataxia 4.660 0.939 7E-07 8.767 1.184 1E-13 -0.313 0.083 0.0002 -0.928 0.161 8E-09 -0.436 -0.742 

CPEO 5.011 1.094 5E-06 7.134 1.185 2E-09 -0.324 0.095 0.0007 -0.547 0.156 0.0004 -0.452 -0.428 

Cognition 2.002 0.748 0.0074 3.785 0.795 2E-06 -0.259 0.072 0.0003 -0.236 0.121 0.0511 -0.361 -0.185 

Cutting food 4.106 0.991 3E-05 7.023 1.143 8E-10 -0.247 0.088 0.0051 -0.460 0.145 0.0015 -0.345 -0.369 

Diabetes mellitus 5.384 1.025 2E-07 5.857 1.044 2E-08 -0.276 0.086 0.0014 -0.873 0.161 5E-08 -0.386 -0.685 

Dressing 3.829 0.912 3E-05 6.353 1.015 4E-10 -0.258 0.081 0.0015 -0.482 0.137 0.0004 -0.361 -0.383 

Dysphonia/dysarthria 3.820 0.975 9E-05 6.984 1.131 7E-10 -0.336 0.090 0.0002 -0.324 0.142 0.0228 -0.469 -0.254 

Encephalopathy 4.252 1.137 0.0002 5.451 1.176 4E-06 -0.335 0.104 0.0012 -0.260 0.162 0.1078 -0.469 -0.203 

Exercise Tolerance 1.699 0.730 0.0199 3.984 0.797 6E-07 -0.173 0.068 0.0111 -0.428 0.122 0.0004 -0.242 -0.341 

Extrapyramidal 7.713 2.411 0.0014 10.151 2.616 0.0001 -0.564 0.224 0.0118 -0.352 0.285 0.2171 -0.787 -0.276 

Gait stability 2.529 0.785 0.0013 5.719 0.913 4E-10 -0.188 0.073 0.0097 -0.539 0.131 4E-05 -0.263 -0.436 

Gastro-intestinal -0.174 0.757 0.8178 3.083 0.815 0.0002 -0.039 0.071 0.5865 -0.145 0.126 0.2472 -0.054 -0.116 

Handwriting 3.429 0.876 9E-05 5.841 0.970 2E-09 -0.222 0.079 0.0047 -0.442 0.134 0.0009 -0.311 -0.352 

Hearing  4.438 0.874 4E-07 7.664 1.050 3E-13 -0.460 0.083 3E-08 -0.873 0.148 4E-09 -0.644 -0.695 

Hygiene 4.442 0.970 5E-06 6.340 1.043 1E-09 -0.308 0.086 0.0003 -0.538 0.142 0.0002 -0.431 -0.425 

Migraine Headaches 0.308 0.717 0.6673 2.134 0.739 0.0039 -0.167 0.067 0.013 0.011 0.117 0.9229 -0.234 0.009 

Myopathy 3.583 0.881 5E-05 7.376 1.065 4E-12 -0.275 0.080 0.0005 -0.652 0.145 7E-06 -0.383 -0.514 

Neuropathy 4.706 0.971 1E-06 8.345 1.170 1E-12 -0.216 0.083 0.0093 -0.821 0.155 1E-07 -0.301 -0.657 

Psychiatric 0.991 0.755 0.1895 4.149 0.841 8E-07 -0.161 0.071 0.0229 -0.209 0.125 0.0961 -0.226 -0.164 

Ptosis 2.191 0.796 0.0059 4.792 0.886 6E-08 -0.132 0.073 0.0711 -0.313 0.126 0.0131 -0.184 -0.250 

Pyramidal 5.855 1.594 0.0002 8.221 1.751 3E-06 -0.350 0.140 0.0125 -0.431 0.214 0.0438 -0.488 -0.337 

Seizures 3.108 1.005 0.002 4.489 1.045 2E-05 -0.289 0.094 0.0021 -0.093 0.150 0.5361 -0.404 -0.073 

Speech 3.853 0.942 4E-05 7.171 1.111 1E-10 -0.306 0.085 0.0003 -0.409 0.140 0.0034 -0.429 -0.324 

Stroke-like episodes 5.085 1.361 0.0002 5.658 1.380 4E-05 -0.368 0.124 0.003 -0.299 0.186 0.107 -0.514 -0.234 

Swallowing 3.972 0.938 2E-05 6.307 1.033 1E-09 -0.258 0.084 0.0021 -0.473 0.138 0.0006 -0.360 -0.381 

Vision with glasses 2.536 0.827 0.0022 7.816 1.336 5E-09 -0.186 0.075 0.0139 -0.406 0.134 0.0024 -0.260 -0.321 

Visual acuity 2.704 0.840 0.0013 7.053 1.148 8E-10 -0.128 0.076 0.0929 -0.472 0.136 0.0005 -0.179 -0.378 
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Appendix VIII Calculation of odds ratio and probability. 

The tables in the following appendices contains the parameters for calculating individual features of m.3243A>G and single-large scale mtDNA 

deletions in model with age, heteroplasmy, and deletion size (for single deletionos)  as predictors.  

Int 0 is the intercept for calculating the probability of being asymptomatic.  

Int 1 is used to calculate the probability of being asymptomatic or moderate (it is cumulative).  

To calculate the probability of being moderately affected, subtract the probability of being asymptomatic (calculated using Int 0) from the probability 

of being asymptomatic or moderate (calculated using Int 1). To calculate the probability of being severely affected subtract the probability of being 

asymptomatic or moderate from 100%. 

The formula is 

                                                           

e.g. For m.3243A>G and cerebellar ataxia, the log odds of being asymptomatic at age 20 and heteroplasmy level 80% is                     

     . 

To convert a log odds to a probability, 

             
         

            
 

Thus in this case Probability = 3/(1 + 0.3) = 23.1%. 
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Appendix IX Proportion of female offspring in pedigrees from the Newcastle cohort. 

The proportions are calculated from the total of live-born offspring for each generation below that of the 

first mother known or suspected to carry the m.3243A>G mutation.  

No Female Male Female 

Proportion 

1 1 4 20% 

2 1 4 20% 

3 1 2 33% 

4 2 0 100% 

5 2 0 100% 

6 1 2 33% 

7 1 3 25% 

8 0 2 0% 

9 13 6 68% 

10 1 1 50% 

11 1 2 33% 

12 1 2 33% 

13 1 3 25% 

14 3 0 100% 

15 4 3 57% 

16 4 3 57% 

17 12 14 46% 

18 1 1 50% 

19 2 0 100% 

20 7 0 100% 

21 8 5 62% 

22 2 2 50% 

23 12 8 60% 

24 1 1 50% 

25 8 10 44% 

26 10 7 59% 

27 13 5 72% 

28 1 2 33% 

29 1 2 33% 

30 2 1 67% 

31 2 1 67% 

32 1 1 50% 

33 3 5 38% 

34 2 0 100% 

35 2 0 100% 

36 3 3 50% 

37 5 2 71% 

38 6 4 60% 

39 3 0 100% 

40 0 1 0% 

41 2 0 100% 

42 4 2 67% 

43 1 0 100% 

44 2 0 100% 
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Appendix X Proportion of female offspring in pedigrees from the meta-analysis. 

The proportions are calculated from the total of live-born offspring for each generation below that of the 

first mother known or suspected to carry the m.3243A>G mutation. Some studies contain multiple 

pedigrees; multiple values are included for each study in this case. 

Source Female Male Female 

Proportion 

(Chen et al., 2012) 2 2 50% 

(Conway et al., 2011) 5 5 50% 

(de Wit et al., 2012) 3 2 60% 

(Doleris et al., 2000) 5 3 63% 

(Doleris et al., 2000) 3 0 100% 

(Dougherty et al., 1994) 8 7 53% 

(Gilchrist et al., 1996) 1 4 20% 

(Hammans et al., 1995) 4 2 67% 

(Hammans et al., 1995) 7 2 78% 

(Hammans et al., 1995) 4 2 67% 

(Hammans et al., 1995)) 4 2 67% 

(Hammans et al., 1995) 8 3 73% 

(Hammans et al., 1995) 13 9 59% 

(Hammans et al., 1995) 2 3 40% 

(Hotta et al., 2001) 1 3 25% 

(Hotta et al., 2001) 5 0 100% 

(Hotta et al., 2001) 2 1 67% 

(Iwasaki et al., 2001) 2 3 40% 

(Iwasaki et al., 2001) 5 2 71% 

(Iwasaki et al., 2001) 1 1 50% 

(Iwasaki et al., 2001) 1 0 100% 

(Iwasaki et al., 2001) 0 3 0% 

(Iwasaki et al., 2001) 1 1 50% 

(Kobayashi et al., 1992) 1 1 50% 

(Kobayashi et al., 1992) 1 1 50% 

(Koga et al., 2000) 5 1 83% 

(Koga et al., 2000) 2 0 100% 

(Koga et al., 2000) 1 1 50% 

(Koga et al., 2000) 4 2 67% 

(Li et al., 2008) 3 2 60% 

(Massin et al., 1999) 4 1 80% 

(Salsano et al., 2011) 5 0 100% 

(Shanske et al., 2004) 1 2 33% 

(Sue et al., 1998a) 8 7 53% 

(Sue et al., 1998a) 15 22 41% 

(Sue et al., 1998a) 1 1 50% 

(Tay et al., 2008) 7 1 88% 

(Walter, 2009) 16 6 73% 

(Zhang et al., 2009) 4 0 100% 
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Appendix XI Single large-scale mtDNA deletion Newcastle cohort data. 

No Phenotype Age at 

Onset 

Age at 

Biopsy 

COX 

% 

Deletion 

Size 

Break 

point 5’ 

Break 

Point 3' 

NMDAS 

Assessments 

Het 

% 

1 KSS 11 27 10 9120 6468 15588 7 37% 

2 Multisystem 6 46 15 8704 7175 15879 4 13% 

3 CPEO  57 4 8560 5942 14502  6% 

4 CPEO 30 34 40 8039 7637 15676 3 36% 

5 CPEO  65 25 7977 6537 14514  45% 

6 CPEO 38   7958 6033 13991 1 32% 

7 CPEO+MM 15 25 25 7768 6352 14120 7 44% 

8 Multisystem 14 59 10 7676 6323 13999 5 39% 

9 Multisystem 55 85 12 7671 6741 14412  23% 

10 Multisystem 5 28 22 7648 6341 13989 4 33% 

11 CPEO 20 38 0.5 7595 7845 15440 4 6% 

12 CPEO 39 72 5 7500    10% 

13 CPEO 30  15 7498 7130 14628 2 28% 

14   113  7451 8287 15738  5% 

15 CPEO+MM  60 3 7355 7168 14523  24% 

16 CPEO+MM  59 20 7284 6774 14058  51% 

17 CPEO 18 30 15 7144 5772 12916 4 37% 

18 CPEO 16 16 20 7129 8543 15672  7% 

19 CPEO+MM  68  6978 7821 14799  56% 

20 CPEO 27 63 13 6864 7128 13992 3 35% 

21 KSS 11 23 50 6864 7128 13992 1 90% 

22 CPEO+MM 22 36 20 6549 6006 12555 6 40% 

23 KSS 10 24 30 6472 7540 14012 8 73% 

24 Multisystem 15 41 45 6058 8838 14896 2 50% 

25 CPEO+MM   15 5958 6002 11960  45% 

26 CPEO  41  5906 8324 14230  20% 

27 CPEO 15 40 12 5899 9523 15422 7 35% 

28 CPEO 16 33 20 5813 9754 15567 1 25% 

29 CPEO+MM 15 34 35 5470 6603 12073 7 71% 

30 Multisystem 9 31 25 5340 6714 12054 5 45% 

31 Multisystem 18 49 20 5160 9258 14418 11 53% 

32 Multisystem 12 32 49 5000   4 79% 

33 Multisystem 11 56 16 5000   1 42% 

34 Multisystem 12 20 20 4999 6625 11624  75% 

35 CPEO 23 51 32 4977 8470 13447 8 58% 

36 Multisystem 28 40 20 4977 8470 13447 7 75% 

37 CPEO+MM 14 31 10 4977 8470 13447 6 62% 

38 Multisystem 16 37 43 4977 8470 13447 6 67% 

39 Multisystem 10 34 30 4977 8470 13447 5 61% 

40 CPEO+MM 27 55 14 4977 8470 13447 5 34% 

41 Multisystem 28 41 80 4977 8470 13447 5 78% 

42 CPEO 20 28  4977 8470 13447 3 54% 

43 KSS 12 15 30 4977 8470 13447 2 76% 

44 KSS 15 33 35 4977 8470 13447 1 78% 

45 CPEO+MM 19 43 60 4977 8470 13447 1 81% 
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No Phenotype Age at 

Onset 

Age at 

Biopsy 

COX 

% 

Deletion 

Size 

Break 

point 5’ 

Break 

Point 3' 

NMDAS 

Assessments 

Het 

% 

46 CPEO+MM 33 41 70 4977 8470 13447 1 78% 

47 CPEO  35 8 4977 8470 13447 1 26% 

48 CPEO+MM  43 30 4977 8470 13447 1 56% 

49 CPEO+MM 18 57 40 4977 8470 13447  57% 

50 CPEO 45  16 4977 8470 13447  30% 

51 CPEO  18 6 4977 8470 13447  48% 

52 CPEO+MM  25  4977 8470 13447  71% 

53   37 14 4977 8470 13447  42% 

54 CPEO  39 60 4977 8470 13447  65% 

55 CPEO+MM  40 20 4977 8470 13447  63% 

56 CPEO  46  4977 8470 13447  13% 

57 CPEO+MM 15   4963 10105 15068 1 23% 

58 KSS  16  4959 8474 13433  88% 

59 CPEO 39 61 7 4909 8814 13723 4 1% 

60 CPEO 37  28 4885 7205 12090 1 34% 

61 CPEO  27  4851 10747 15598  65% 

62 CPEO 23 63 15 4770 9349 14119 1 35% 

63 CPEO+MM   60 4770 9349 14119  56% 

64 CPEO 15 40 12 4752 8289 13041 9 50% 

65 Multisystem 15 26 26 4641 10946 15587 3 83% 

66 CPEO+MM 34 38 34 4604 9057 13661 5 65% 

67 KSS  17 17 4599 9752 14351  60% 

68 CPEO  41 15 4596 9528 14124  35% 

69 KSS 15 29 50 4500   9 85% 

70 Multisystem 27 58 30 4392 8576 12968 4 22% 

71 CPEO+MM 21 32 45 4382 8586 12968 6 69% 

72 CPEO 21 25 40 4372 8929 13301  53% 

73 Multisystem 30 45 25 4241 9498 13739 8 39% 

74 Multisystem 25 40 48 4237 9486 13723 6 81% 

75 CPEO 47 60 13 4237 9486 13723 6 46% 

76 CPEO  70 22 4223 9500 13723  76% 

77 CPEO+MM 16 32 20 4113 11262 15375 9 72% 

78 KSS 15   3979 11657 15636  50% 

79 Multisystem 24 44 10 3693 9756 13449 7 47% 

80 CPEO  63 50 3527 7729 11256  55% 

81   105 11 3039 10950 13989  55% 

82 Multisystem 36 50 5 2803 11637 14440 11 72% 

83 CPEO+MM  40 30 2308 12113 14421  87% 

84 CPEO 35 50 20 2300 12112 14412 9 55% 

85 Multisystem 48 72 17 2300 12112 14412 9 41% 

86 CPEO   18 2300 12112 14412 1 76% 

87 CPEO  56 25 2297 12115 14412  55% 
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Appendix XII Single large-scale mtDNA deletion meta-analysis data. 

 

No Original 

Study 

Phenotype Age at 

Onset 

Age at 

Biopsy 

COX 

% 

Del 

Size 

Break 

point 5’ 

Break 

point 3’ 

Het% In López-

Gallardo et al. 

1 López-Gallardo et al., 2009 KSS    11041 4166 15207 84% Yes 

2 Marin-Garcia et al., 2002 KSS 3 15  11000 4500 15500 20% Yes 

3 Kornblum et al., 2005b CPEO 55 59  10900   23% Yes 

4 Kornblum et al., 2005b CPEO 56 60  10900   49% Yes 

5 De Coo et al., 1997     10000   1% No 

6 Solano et al., 2003 KSS 8 17  9438 6003 15441 87% Yes 

7 Gellerich 2002   0 27 9000 6000 15000 69% No 

8 Fromenty et al., 1996 CPEO 3 18  8800   32% Yes 

9 Ishikawa 2000     8731 6903 15634 55% No 

10 Emma et al., 2006 KSS 1 14  8661 7836 16497 60% Yes 

11 López-Gallardo et al., 2009 KSS 6   8477 6123 14600 82% Yes 

12 Solano et al., 2003 KSS 9 20  8431 7515 15946 86% Yes 

13 Degoul et al., 1991 CPEO 28 45  8137 5786 13923 25% Yes 

14 Simaan et al., 1999 KSS 3 13  8000   18% Yes 

15 De Coo et al., 1997 KSS    8000   60% Yes 

16 Blok et al., 1995 KSS 10 14  7865 6238 14103 25% Yes 

17 Heddi et al., 1994 KSS    7768 7669 15437 74% Yes 

18 Goto et al., 1990 CPEO 7 15 14.5 7700 6000 13700 20% Yes 

19 Matsuoka et al., 1992 CPEO Multi  15  7700   20% Yes 

20 Matsuoka et al., 1992 KSS  21  7700   20% Yes 

21 Goto et al., 1990 CPEO Multi 7 7 15.3 7700 6000 13700 30% Yes 

22 Goto et al., 1990 CPEO 9 16 27.2 7700 6000 13700 40% Yes 

23 Matsuoka et al., 1992 CPEO  16  7700   40% Yes 

24 Sadikovic 2010 Multisystem   40  7673 6331 14004 24% No 
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point 3’ 

Het% In López-

Gallardo et al. 

25 Solano et al., 2003 KSS    7663 6331 13994 64% Yes 

26 Johns et al., 1989 CPEO    7650 6250 13900 25% Yes 

27 Montiel-Sosa, 2013   10  7628 7437 15065 85% No 

28 Sadikovic 2010 CPEO  59  7603 8469 16072 22% No 

29 Kiyomoto et al., 1997 CPEO Multi 6 12 15 7565 7827 15392 66% Yes 

30 Sadikovic 2010 CPEO + MM  48  7544 7865 15409 14% No 

31 Oldfors 1992   56 9 7534 8366 15900 52% No 

32 Oldfors 1992   5 30 7534 8366 15900 73% No 

33 Odoardi et al., 2003 KSS 7 21  7521 7983 15504 38% No 

34 Schroder et al., 2000 CPEO  30  7500   15% Yes 

35 Kornblum et al., 2005a CPEO Multi 10 34  7500   16% Yes 

36 Barrientos et al., 1995 CPEO Multi 10 47  7500   23% Yes 

37 Kornblum et al., 2005a CPEO Multi 14 42  7500   26% Yes 

38 Schroder et al., 2000 CPEO  34  7500   26% Yes 

39 Schroder et al., 2000 CPEO  26  7500   27% Yes 

40 Barrientos et al., 1995 KSS 12 20  7500   40% Yes 

41 Odoardi et al., 2003 CPEO + MM 8 18  7500   42% No 

42 Barrientos et al., 1995 CPEO Multi 3 12  7500   50% Yes 

43 Kornblum et al., 2005a CPEO Multi 10 38  7500   58% Yes 

44 Sadikovic 2010 Multisystem   18  7436 8637 16073 45% No 

45 Goto et al., 1990 CPEO 13 31 17.2 7300 6000 13300 40% Yes 

46 Oldfors 1992   13 5 7300 8600 15900 43% No 

47 Sadikovic 2010 Multisystem   46  7213 8427 15640 47% No 

48 Sadikovic 2010 KSS   31  7213 8427 15640 82% No 

49 Matsuoka et al., 1992 CPEO  16  7200   5% Yes 

50 Moraes et al., 1992 KSS    7100   70% Yes 
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No Original 

Study 

Phenotype Age at 

Onset 

Age at 

Biopsy 

COX 

% 

Del 

Size 

Break 

point 5’ 

Break 

point 3’ 

Het% In López-

Gallardo et al. 

51 Sadikovic 2010 Multisystem  6  7039 8623 15662 70% No 

52 Zeviani et al., 1988 KSS 8 15  7025 5275 12300 45% Yes 

53 Schroder et al., 2000 KSS  19  7000   20% Yes 

54 Kornblum et al., 2005a KSS 12 31  7000   66% Yes 

55 Goto et al., 1990 CPEO 22 49 11.6 6800 8600 15400 30% Yes 

56 López-Gallardo et al., 2009 CPEO 31   6798 6024 12822 30% Yes 

57 Barrientos et al., 1995 KSS 14 24  6500   56% Yes 

58 Kornblum et al., 2005b CPEO 25 51  6500   58% Yes 

59 Schroder et al., 2000 CPEO  50  6500   60% Yes 

60 Schroder et al., 2000 KSS  21  6500   66% Yes 

61 Fromenty et al., 1996 KSS 8 22  6495 7836 14331 31% Yes 

62 Solano et al., 2003 KSS 12 13  6366 7949 14315 69% Yes 

63 López-Gallardo et al., 2009 CPEO    6279 7409 13688 21% Yes 

64 Solano et al., 2003 CPEO    6213 7407 13620 7% Yes 

65 Sadikovic 2010 CPEO + MM  26  6119 9516 15635 32% No 

66 Larsson and Holme, 1992 KSS 7 16 5 6100 8800 14900 59% No 

67 Kornblum et al., 2005a CPEO Multi 8 61  6000   46% Yes 

68 Schroder et al., 2000 CPEO  49  6000   46% Yes 

69 De Coo et al., 1997 CPEO    6000 9500 15500 70% Yes 

70 De Coo et al., 1997     6000   82% No 

71 Zeviani et al., 1988 KSS 4 7  5980 9020 15000 66% Yes 

72 Solano et al., 2003 CPEO    5928 9816 15744 29% Yes 

73 Sadikovic 2010 KSS  42  5905 8467 14372 70% No 

74 Marie et al., 1999 KSS 1 5  5900   30% Yes 

75 Sadikovic 2010 KSS  11  5867 8558 14425 65% No 

76 Okulla et al., 2005 CPEO 12 13  5800   32% Yes 
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No Original 
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Phenotype Age at 
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Biopsy 
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% 
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Break 

point 5’ 

Break 

point 3’ 

Het% In López-

Gallardo et al. 

77 Sadikovic 2010 CPEO + MM  38  5630 8429 14059 33% No 

78 Kornblum et al., 2005a CPEO Multi 28 52  5600   85% Yes 

79 Sudoyo et al., 1993 CPEO 12 34  5500 8000 13500 39% Yes 

80 Kornblum et al., 2005b KSS 16 47  5500   58% Yes 

81 Schroder et al., 2000 KSS  40  5500   58% Yes 

82 Goto et al., 1990 KSS 11 12  5500 7500 13000 80% Yes 

83 Zeviani et al., 1988 KSS 3 12  5448 10600 16048 57% Yes 

84 Sadikovic 2010 MM  26  5438 8140 13578 11% No 

85 Goto et al., 1990 KSS 2 13 23.9 5400 7000 12400 60% Yes 

86 Shanske et al., 2002 CPEO    5355 10004 15359 40% No 

87 López-Gallardo et al., 2009 KSS    5311 7450 12761 73% Yes 

88 Sadikovic 2010 CPEO + MM  57  5225 6076 11301 13% No 

89 Goto et al., 1990 KSS 4 14 40.6 5200 8500 13700 90% Yes 

90 López-Gallardo et al., 2009 CPEO    5113 8477 13590 80% Yes 

91 Sadikovic 2010 Multisystem   34  5112 8468 13580 50% No 

92 Goto et al., 1990 KSS 12 30 14 5100 10059 15159 70% Yes 

93 Carta et al., 2000 CPEO  28  5049 9570 14619 55% Yes 

94 Vazquez-Acevedo et al., 1995 KSS 4 17  5026 10050 15076 86% Yes 

95 Johns and Hurko, 1989 KSS 13 43  5014 8708 13722 65% Yes 

96 Kornblum et al., 2005a CPEO Multi 55 61  5000   5% Yes 

97 Schroder et al., 2000 CPEO  39  5000   26% Yes 

98 Moraes et al., 1992 KSS    5000   36% Yes 

99 Barrientos et al., 1995 CPEO Multi 8 16  5000   42% Yes 

100 Kornblum et al., 2005a CPEO Multi 12 50  5000   53% Yes 

101 Tanaka et al., 1989 CPEO 14 32  5000 8600 13600 53% Yes 

102 Schroder et al., 2000 CPEO  38  5000   53% Yes 
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Gallardo et al. 

103 Schroder et al., 2000 KSS  18  5000   54% Yes 

104 Moraes et al., 1992 CPEO    5000   55% Yes 

105 Schroder et al., 2000 CPEO  30  5000   55% Yes 

106 Schroder et al., 2000 KSS  19  5000   58% Yes 

107 Vielhaber et al., 2002 CPEO  44  5000   58% Yes 

108 Vielhaber et al., 2002 CPEO  29  5000   68% Yes 

109 Matsuoka et al., 1992 CPEO  14  5000   70% Yes 

110 Kornblum et al., 2005b CPEO 30 48  5000   72% Yes 

111 Schroder et al., 2000 CPEO  42  5000   72% Yes 

112 Vielhaber et al., 2002 CPEO  47  5000   72% Yes 

113 Kornblum et al., 2005a CPEO Multi 16 57  5000   74% Yes 

114 Vielhaber et al., 2002 KSS  13  5000   74% Yes 

115 Moraes et al., 1992 KSS    5000   76% Yes 

116 Kornblum et al., 2005a KSS 9 39  5000   78% Yes 

117 Schroder et al., 2000 KSS  29  5000   78% Yes 

118 Sadikovic 2010 PEO  24  4995 5835 10830 58% No 

119 López-Gallardo et al., 2009 CPEO    4978 8482 13460 6% Yes 

120 Wong, 2001 KSS  26  4978 8482 13460 10% Yes 

121 Odoardi et al., 2003 CPEO 39 43  4978 8482 13460 12% Yes 

122 Bernes et al., 1993 CPEO 16 24  4978 8482 13460 15% Yes 

123 Pineda et al., 2004 CPEO    4978 8482 13460 15% Yes 

124 López-Gallardo et al., 2009 CPEO    4978 8482 13460 16% Yes 

125 Goto et al., 1990 CPEO 20 53 5 4978 8482 13460 20% Yes 

126 Odoardi et al., 2003 CPEO 12 14  4978 8482 13460 26% Yes 

127 Odoardi et al., 2003 CPEO 35 45  4978 8482 13460 31% Yes 

128 Odoardi et al., 2003 CPEO 15 36  4978 8482 13460 33% Yes 



Appendices 

209 

 

No Original 

Study 

Phenotype Age at 

Onset 

Age at 

Biopsy 

COX 

% 

Del 

Size 

Break 

point 5’ 

Break 

point 3’ 

Het% In López-

Gallardo et al. 

129 Wong, 2001 KSS  28  4978 8482 13460 33% Yes 

130 Degoul et al., 1991 CPEO Multi 4 31  4978 8482 13460 34% Yes 

131 Gellerich 2002     4978 8482 13460 39% No 

132 Poulton et al., 1991 KSS 14 14 3 4978 8482 13460 40% Yes 

133 Goto et al., 1990 CPEO 14 32 12.8 4978 8482 13460 40% Yes 

134 López-Gallardo et al., 2009 CPEO 20   4978 8482 13460 40% Yes 

135 Chen et al., 1998 CPEO    4978 8482 13460 44% Yes 

136 López-Gallardo et al., 2009 CPEO    4978 8482 13460 45% Yes 

137 Wong, 2001 KSS  20  4978 8482 13460 45% Yes 

138 Wong, 2001 CPEO  60  4978 8482 13460 45% Yes 

139 Goto et al., 1990 CPEO 12 15 18.5 4978 8482 13460 50% Yes 

140 Shoffner et al., 1989 CPEO Multi 20 61  4978 8482 13460 50% Yes 

141 López-Gallardo et al., 2009 CPEO 48   4978 8482 13460 50% Yes 

142 Wong, 2001 KSS  34  4978 8482 13460 51% Yes 

143 López-Gallardo et al., 2009 CPEO    4978 8482 13460 54% Yes 

144 Gellerich 2002     4978 8482 13460 61% No 

145 López-Gallardo et al., 2009 KSS 4   4978 8482 13460 62% Yes 

146 López-Gallardo et al., 2009 KSS    4978 8482 13460 62% Yes 

147 Obermaier-Kusser et al., 1990 KSS 11 26  4978 8482 13460 63% Yes 

148 Wong, 2001 KSS  16  4978 8482 13460 63% Yes 

149 Wong, 2001 KSS  36  4978 8482 13460 64% Yes 

150 Boles et al., 1998 KSS 1 5  4978 8482 13460 65% Yes 

151 Wong, 2001 KSS  6  4978 8482 13460 65% Yes 

152 Gellerich 2002    48 4978 8482 13460 66% No 

153 Degoul et al., 1991 KSS 7 27  4978 8482 13460 68% Yes 

154 López-Gallardo et al., 2009 CPEO    4978 8482 13460 68% Yes 
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155 Odoardi et al., 2003 KSS 6 17  4978 8482 13460 69% Yes 

156 Goto et al., 1990 KSS 10 14 41.4 4978 8482 13460 70% Yes 

157 Wong, 2001 KSS  44  4978 8482 13460 70% Yes 

158 López-Gallardo et al., 2009 KSS 12   4978 8482 13460 72% Yes 

159 Ponzetto et al., 1990 KSS    4978 8482 13460 72% Yes 

160 López-Gallardo et al., 2009 KSS    4978 8482 13460 72% Yes 

161 Consalvo et al., 1997 KSS 9 19  4978 8482 13460 80% Yes 

162 Degoul et al., 1991 KSS 10 31  4978 8482 13460 80% Yes 

163 Goto et al., 1990 CPEO 22 26 40.2 4978 8482 13460 80% Yes 

164 López-Gallardo et al., 2009 KSS    4978 8482 13460 80% Yes 

165 Johns et al., 1989 KSS    4978 8482 13460 83% Yes 

166 Odoardi et al., 2003 KSS 6 10  4978 8482 13460 85% Yes 

167 Johns et al., 1989     4978 8482 13460 86% No 

168 Sadikovic 2010 CPEO + MM  60  4977 8470 13447 6% No 

169 Sadikovic 2010 KSS  26  4977 8470 13447 10% No 

170 Kiyomoto et al., 1997 CPEO 30 44 1 4977 8483 13460 14% Yes 

171 Sadikovic 2010 Multisystem   24  4977 8470 13447 24% No 

172 Sadikovic 2010 Multisystem   14  4977 8470 13447 27% No 

173 Sadikovic 2010 CPEO + MM  78  4977 8470 13447 27% No 

174 Sadikovic 2010 KSS  28  4977 8470 13447 33% No 

175 Sciacco et al., 1994 KSS  35  4977 8470 13447 36% Yes 

176 Sadikovic 2010 CPEO + MM  39  4977 8470 13447 42% No 

177 Sadikovic 2010 KSS  20  4977 8470 13447 45% No 

178 Sadikovic 2010 CPEO + MM  60  4977 8470 13447 45% No 

179 Sadikovic 2010 Multisystem   45  4977 8470 13447 49% No 

180 Sciacco et al., 1994 CPEO 61 66  4977 8470 13447 50% Yes 



Appendices 

211 

 

No Original 

Study 

Phenotype Age at 

Onset 

Age at 

Biopsy 

COX 

% 

Del 

Size 

Break 

point 5’ 

Break 

point 3’ 

Het% In López-

Gallardo et al. 

181 Shanske et al., 1990 KSS    4977 8470 13447 50% Yes 

182 Kiyomoto et al., 1997 CPEO 15 33 8.5 4977 8483 13460 54% Yes 

183 Sciacco et al., 1994 KSS 11 13  4977 8470 13447 55% Yes 

184 Sadikovic 2010 CPEO + MM  56  4977 8470 13447 55% No 

185 Sadikovic 2010 CPEO  39  4977 8470 13447 60% No 

186 Sadikovic 2010 KSS  13  4977 8470 13447 61% No 

187 Sadikovic 2010 KSS   16  4977 8470 13447 62% No 

188 Sudoyo et al., 1993 CPEO 4 41  4977 8470 13447 64% Yes 

189 Sadikovic 2010 MM  36  4977 8470 13447 64% No 

190 Sadikovic 2010 Multisystem   6  4977 8470 13447 65% No 

191 Sadikovic 2010 Renal tubular 

acidosis 

 8  4977 8470 13447 67% No 

192 Sadikovic 2010 CPEO + MM  9  4977 8470 13447 67% No 

193 Sadikovic 2010 CPEO + MM  36  4977 8470 13447 70% No 

194 Sadikovic 2010 KSS  44  4977 8470 13447 70% No 

195 Sciacco et al., 1994 KSS  28  4977 8470 13447 75% Yes 

196 Kiyomoto et al., 1997 CPEO Multi 12 14 18 4977 8483 13460 77% Yes 

197 Mita 1989 KSS  30 51 4977 8483 13460 80% No 

198 Sadikovic 2010 CPEO + MM  27  4977 8470 13447 85% No 

199 Sadikovic 2010 PEO  20  4977 8470 13447 88% No 

200 Solano et al., 2003 CPEO    4958 8380 13338 30% Yes 

201 Pistilli et al., 2003 KSS 10 36  4949 8631 13580 60% Yes 

202 Oldfors 1992   27 20 4914 7586 12500 79% No 

203 Barrientos et al., 1995 KSS 3 28  4800   38% Yes 

204 Larsson and Holme, 1992 KSS 5 12  4800 10800 15600 87% No 

205 López-Gallardo et al., 2009 KSS    4754 11292 16046 45% Yes 
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No Original 

Study 

Phenotype Age at 
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Age at 

Biopsy 
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% 
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Break 

point 5’ 

Break 

point 3’ 

Het% In López-

Gallardo et al. 

206 Oldfors 1992   11 1 4700 10500 15200 87% No 

207 Degoul et al., 1991 KSS 18 25  4500 11300 15800 30% Yes 

208 Johns et al., 1989 CPEO    4500 9300 13800 55% Yes 

209 Zeviani et al., 1988 KSS 14 26  4500 9000 13500 62% Yes 

210 Zeviani et al., 1988 KSS 14 28  4500 9000 13500 75% Yes 

211 Solano et al., 2003 KSS 7 18  4421 10951 15372 80% Yes 

212 Kiyomoto et al., 1997 KSS 4 15 3.5 4420 10952 15372 20% Yes 

213 Sadikovic 2010 Multisystem   8  4420 10560 14980 55% No 

214 Wong, 2001 KSS  8  4420 10560 14980 55% Yes 

215 Sadikovic 2010 Multisystem   48  4369 9256 13625 38% No 

216 Carod-Artal et al., 2003 CPEO 19 26  4238 9500 13738 55% Yes 

217 Solano et al., 2003  CPEO    4238 9485 13723 55% No 

218 Goto et al., 1990 CPEO 40 52 19 4200 5850 10050 30% Yes 

219 Zeviani et al., 1988 KSS 17 27  4200 9000 13200 66% Yes 

220 Pineda et al., 2006 KSS 7 8  4124 11033 15157 72% Yes 

221 Blakely et al., 2004 CPEO   20 4115 11262 15375 66% Yes 

222 Gellerich 2002     4093 10057 14150 62% No 

223 De Coo et al., 1997 KSS    4000   60% Yes 

224 Kiyomoto et al., 2006 CPEO 60 62 14 3800   4% Yes 

225 Vielhaber et al., 2002 CPEO  48  3800   10% Yes 

226 Kornblum et al., 2004 CPEO 28 35  3800   45% Yes 

227 Solano et al., 2003 KSS 14 31  3720 11727 15447 50% Yes 

228 Kiyomoto et al., 1997 CPEO 27 43 8 3716 10845 14561 44% Yes 

229 Kiyomoto et al., 2006 CPEO 18 28 12 3700   65% Yes 

230 Degoul et al., 1991 CPEO 31 51  3513 7483 10996 40% Yes 

231 Wong, 2001     3500   16% No 
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Gallardo et al. 

232 Gellerich 2002     3500 11300 14800 58% No 

233 Kornblum et al., 2005a KSS 20 37  3500   62% Yes 

234 Schroder et al., 2000 KSS  30  3500   62% Yes 

235 Schroder et al., 2000 CPEO  29  3500   65% Yes 

236 Lertrit et al., 1999 KSS 35 37  3485 10280 13765 37% Yes 

237 Barbiroli et al., 1995 CPEO 22 30  3300   20% Yes 

238 Wong et al., 2003 KSS 29 36  3079 8419 11498 92% Yes 

239 Sadikovic 2010 Multisystem   25  3030 10958 13988 47% No 

240 Sadikovic 2010 KSS  41  2976 8388 11364 92% No 

241 Goto et al., 1990 CPEO 35 45 16.6 2800 11500 14300 50% Yes 

242 Kornblum et al., 2005a CPEO Multi 44 49  2700   32% Yes 

243 Gellerich 2002    22 2600 11000 13600 62% No 

244 Kornblum et al., 2005b CPEO 48 48  2500   39% Yes 

245 Ohno et al., 1996 KSS 26 27  2500   88% Yes 

246 Solano et al., 2003 KSS    2434 10620 13054 77% Yes 

247 Solano et al., 2003 KSS    2310 12112 14422 70% Yes 

248 Kiyomoto et al., 1997 CPEO 20 47 20 2309 12113 14422 59% Yes 

249 Kiyomoto et al., 1997 CPEO 21 31 4 2309 12113 14422 89% Yes 

250 Goto et al., 1990 CPEO 39 70 10.7 2300 11000 13300 50% Yes 

251 Moraes et al., 1992 CPEO    2300   80% Yes 

252 Goto et al., 1990 CPEO 34 37 7.2 2200 12000 14200 50% Yes 

253 Goto et al., 1990 CPEO 52 55 19.3 2200 12000 14200 60% Yes 

254 Zeviani et al., 1988 KSS 24 33  2060 7440 9500 60% Yes 

255 Schroder et al., 2000 CPEO  45  2000   32% Yes 

256 Goto et al., 1990 KSS 35 36 12.6 1800 13000 14800 50% Yes 
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Appendix XIII Single large-scale mtDNA deletion meta-analysis exclusions. 

Details of the excluded case and reasons for exclusion are noted.  

Study Pheno- 

type 

AAO Age at 

Biopsy 

COX 

% 

Deletion 

Size 

Break 

point 3’ 

Break 

point 5’ 

Het% Notes In 

López-

Gallardo  

Mori et al., 1991 KSS 2 6  6596 6383 12979 60% Deletion size does not match original publication yes 

Larsson et al., 1992 KSS 16 26  4667 7697 12364 70% Deletion size does not original publication yes 

Goto et al., 1990 CPEO 13 31 50% 5300 9206 14506 90% Deletion size is inconsistent with reported breakpoints yes 

Schaefer et al., 2005 CPEO 15 24  7400   8% In our cohort  yes 

Zoccolella et al., 2006  6 32  1813 3505 5318 70% Location is unlike any other deletion in the study yes 

Reynier et al., 1994 CPEO  41      50% Other mutations; also contains a point mutation yes 

Odoardi et al., 2003 KSS 20 27  4978 8482 13460 51% Other mutations; Dimers yes 

Odoardi et al., 2003 CPEO 30 40  7000   51% Other mutations; Dimers yes 

Brockington et al., 

1995 

KSS 12 19  8562 7354 15916 27% Other mutations; Dimers and duplications yes 

Brockington et al., 

1995 

KSS 4 22  4978 8482 13460 89% Other mutations; Dimers and duplications yes 

Jacobs et al., 2004 PS/KSS 0 3  8034 7934 15968  Other mutations; Dimers and duplications no 

Jacobs et al., 2004 PS 0 1.5  3444 6097 9541 64% Other mutations; Dimers and duplications no 

Tengan et al., 1998 KSS 5 12  9660 5784 15444 65% Other mutations; Duplications yes 

Vazquez-Acevedo et 

al., 2002 

KSS 8 23  4978 8482 13460 75% Other mutations; multiple deletions yes 

Tanaka et al., 1989 CPEO 39 70  2100   36% Uncertain breakpoints yes 

Oldfors 1992   52 10% 3940 10060 14000 76% Uncertain breakpoints no 

Kunz et al., 1997 CPEO  34  3200   53% Uncertain breakpoints yes 

Kunz et al., 1997 CPEO  55  4700   67% Uncertain breakpoints yes 

Kunz et al., 1997 CPEO  32  2600   84% Uncertain breakpoints yes 

Marzuki et al., 1997 CPEO 20 59  5020 9780 14800 16% Uncertain breakpoints and multiple deletions yes 

Sudoyo et al., 1993 CPEO 25 60  2664 12336 15000 55% Uncertain breakpoints and multiple deletions yes 
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Appendix XIV Single large-scale mtDNA deletion longitudinal model SAS code. 

 

data n1; 

set sasuser.n3243; 

if scaled_score = 0 then scaled_score = 0.1; 

dv = scaled_score**0.25; 

time_scaled = time*1000; 

if missing(family_id) then family_id = 99999; 

if family_id = 99999 then family_group = 'other'; 

else family_group = 'individual'; 

het = hu; 

if not missing(hu); 

if not missing(hb); 

run;quit; 

 

 

proc sql; 

create table p_fam_temp as select family_id, patient_id, count(*) from 

n1 group by family_id, patient_id; 

create table p_fam as select family_id, count(*) from p_fam_temp group 

by family_id having count(*) < 2; 

update n1 set family_id = 99999 where family_id in (select family_id 

from p_fam); 

create table p_fam_uniq as  select family_id, count(*) from n1 where 

family_id < 99999 group by family_id ; 

run; 

 

proc sql; 

create table young  as select patient_id, count(*) from n1 where time 

< 25 and scaled_score > 3 group by patient_id; 

create table n1 as select n1.*, case when young.patient_id is not null 

then 1 else 0 end as young, from n1 left join young on n1.patient_id = 

young.patient_id ; 

run; 

 

proc mixed data=n1 method=ml plots=none RATIO COVTEST ; 

 class patient_id young family_group family_id; 

       model dv =  time time*time time*time*time time*hu time*young  

/s noint outp=PredR outpm = PredF residual; 

  repeated /type=sp(pow)(time_scaled ) 

subject=patient_id(family_id) group=young*family_group ; 

 random time /subject=patient_id(family_id) ; 

  random time /subject=family_id ; 

 ods output FitStatistics=fm SolutionF=SFfm; 

run; 
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Appendix XV. Parameters for calculation of risk profiles for single large-scale mtDNA deletion multilevel ordinal logistic model. 

Each parameter is shown with its standard error. The parameters are age in decades (Decade), the square of the deletion size in kB (Size
2
), and the natural log of (100%-

heteroplasmy) (ln(1-h)). 

Item Int 0 Std P Int 1 Std P Decade Std P ln(1-h)  Std P Size
2
 Std P 

Vision 3.451 1.989 0.083 6.614 2.166 0.002 -0.559 0.263 0.033 1.523 0.689 0.027 -0.008 0.019 0.657 

Hearing 5.241 2.297 0.023 6.616 2.371 0.005 -0.324 0.290 0.265 1.819 0.755 0.016 -0.041 0.021 0.054 

Speech 7.904 2.583 0.002 10.941 2.846 0.000 -0.811 0.325 0.013 2.689 0.842 0.001 -0.037 0.022 0.096 

Swallowing 5.748 2.096 0.006 7.705 2.219 0.001 -0.641 0.273 0.019 1.980 0.695 0.004 -0.044 0.019 0.021 

Handwriting 6.313 2.388 0.008 9.606 2.674 0.000 -0.641 0.300 0.032 1.661 0.767 0.030 -0.031 0.021 0.148 

Cutting food 5.819 2.454 0.018 

   

-0.428 0.300 0.154 1.575 0.806 0.051 -0.043 0.023 0.058 

Dressing 5.134 2.253 0.023 8.345 2.520 0.001 -0.488 0.285 0.088 1.006 0.728 0.167 -0.035 0.021 0.089 

Hygiene 7.247 2.301 0.002 10.130 2.528 <.0001 -0.900 0.298 0.003 1.953 0.733 0.008 -0.034 0.020 0.086 

Exercise tolerance 6.710 2.163 0.002 8.718 2.410 0.000 -0.733 0.271 0.007 2.858 0.789 0.000 -0.048 0.020 0.015 

Gait stability 5.047 2.133 0.018 

   

-0.584 0.282 0.039 1.821 0.726 0.012 -0.045 0.021 0.030 

Psychiatric disturbance 0.123 1.959 0.950 

   

0.176 0.270 0.514 0.225 0.654 0.730 -0.010 0.019 0.590 

Migraine headaches -1.430 1.986 0.472 -0.457 1.981 0.818 0.469 0.283 0.097 0.232 0.642 0.717 0.002 0.019 0.933 

Seizures 13.613 8.089 0.092 

   

-0.778 0.955 0.415 2.729 1.999 0.172 -0.106 0.057 0.064 

Encephalopic episodes 18.914 17.916 0.291 8.421 2.283 0.000 0.507 1.811 0.780 8.162 7.682 0.288 -0.192 0.170 0.259 

GI disturbance 4.653 2.097 0.027 8.028 2.379 0.001 -0.642 0.278 0.021 0.029 0.672 0.966 -0.055 0.021 0.010 

Diabetes mellitus 9.718 4.806 0.043 

   

-1.093 0.589 0.064 0.031 1.860 0.987 -0.046 0.035 0.180 

Cardiovascular  7.145 2.620 0.006 8.958 2.742 0.001 -0.631 0.325 0.053 1.930 0.817 0.018 -0.051 0.022 0.021 

Visual acuity 1.708 1.916 0.373 4.930 2.071 0.017 -0.297 0.255 0.243 0.649 0.645 0.314 0.011 0.019 0.562 

Ptosis 3.190 2.284 0.162 5.473 2.345 0.020 -0.690 0.312 0.027 2.736 0.960 0.004 -0.036 0.022 0.108 

CPEO 

   

1.373 2.702 0.611 -0.254 0.369 0.491 1.758 1.119 0.116 -0.022 0.027 0.419 

Dysphonia/dysarthia 9.760 2.984 0.001 12.907 3.293 <.0001 -0.942 0.356 0.008 3.492 0.986 0.000 -0.046 0.024 0.055 

Myopathy 1.165 1.997 0.560 4.737 2.131 0.026 -0.266 0.274 0.332 0.965 0.693 0.164 -0.002 0.019 0.912 

Cerebellar ataxia 8.338 2.484 0.001 11.819 2.814 <.0001 -1.048 0.321 0.001 2.327 0.799 0.004 -0.052 0.022 0.017 

Extrapyramidal 18.161 7.621 0.017 

   

-1.584 0.797 0.047 5.118 2.278 0.025 -0.088 0.052 0.092 

Neuropathy 47.364 102.800 0.645 

   

-0.838 10.196 0.935 -7.010 59.590 0.906 -0.647 0.996 0.516 

Cognitive impairment 2.698 2.119 0.203 3.816 2.154 0.076 -0.038 0.278 0.890 0.959 0.765 0.210 -0.034 0.020 0.093 
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