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Abstract 

Nephronophthisis (NPHP) is a major cause of pediatric renal failure. Currently 

there is little understanding of the aetiology of the disease. In order to identify 

the molecular events leading to NPHP, we have created a novel mutant mouse 

strain containing a truncating mutation in the Cep290 gene.  

Patients with mutations in CEP290 present with a ciliopathy phenotype that 

includes retinal dystrophy, cerebellum defects and NPHP. Characterisation of 

Cep290LacZ/LacZ mice confirms that they display all the features of the human 

condition. Microarray analysis of newborn kidney tissue was used to explore 

initiating events leading to NPHP.  

Ciliopathies have recently been associated with either disrupted Wingless 

integrated (Wnt) or sonic hedgehog (Shh) signaling. We show that mutant 

kidneys display abnormal Shh signaling in the absence of Wnt signaling 

abnormalities. Primary cell cultures of collecting duct (CDT) cells (isolated from 

Cep290LacZ/LacZ mice and wild-type litter mates crossed with the “immorto” 

mouse) were established and characterised.  

CDT cells expressed the mineral corticoid receptor (MR) and the epithelial 

sodium channel (ENaC) alpha subunit. The CDT cell lines formed epithelial 

layers and formed tubules when maintained in 3D culture media. 

Cep290LacZ/LacZ CDT cells displayed ciliogenesis abnormalities as well as 

abnormal spheroids with loss of lumen when grown in 3D culture. 

Pharmacological activation of Shh signaling (purmorphamine) partially rescues 

the spheroid and ciliogenesis defects in Cep290LacZ/LacZ CDT cells.  

This implicates abnormal Shh signaling in the onset of NPHP and suggests that 

targeted treatment of Shh antagonists have therapeutic potential. 
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β-Trcp   β-transduction repeat containing protein 
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Chapter 1 Introduction 

 

1.1 Polycystic Kidney Disease (PKD) 

Polycystic kidney disease is usually an inherited disorder characterised by cyst 

initiation and expansion of the renal tubules, it can also be acquired at end 

stage renal failure (Dell 2011). The disease can be inherited in two forms; 

autosomal dominant (AD) and autosomal recessive (AR) (Halvorson, Bremmer 

et al. 2010).  

1.2 Autosomal Dominant Polycystic Kidney Disease (ADPKD) 

ADPKD has a worldwide prevalence of 1:400 to 1:1,000 (Torres and Harris 

2009) with renal failure occurring by the fifth/sixth decade of life (Chapman 

2008). In the U.K., ADPKD accounts for 9.6% of all adults requiring 

dialysis/transplantation (Byrne, Steenkamp et al. 2010). There are 2 causal 

genes (PKD1 and PKD2) that when mutated result in ADPKD (Torres and 

Harris 2009). The ADPKD mutation database http://pkdb.mayo.edu/ currently 

lists 619 known PKD1 pathogenic mutations compared to 129 known PKD2 

pathogenic mutations. 85-90% of ADPKD cases result from PKD1 mutations 

and the other 10-15% from PKD2 mutations (Mochizuki, Tsuchiya et al. 2013). 

Mutations in PKD1 tend to lead to more severe disease than mutations in PKD2 

due to cyst development occurring at an early age in patients with PKD1 

mutations (Torres and Harris 2009). The clinical effect of mutations in both 

PKD1 and PKD2 are highly variable, even within families (Rossetti and Harris 

2007).  

ADPKD was first described over 200 years ago and since then has been 

considered an untreatable condition (Chang and Ong 2013). Recently however 

results from the Tolvaptan Phase 3 Efficacy and Safety Study in ADPKD 

(TEMPO 3:4) trials have demonstrated that the cystic disease and loss of renal 

function can be slowed in humans (Torres, Chapman et al. 2012). The 

identification of the molecular mechanisms associated with ADPKD in the 

kidney, will lead to the translation of new ADPKD treatments which will aim to 

reduce the expansion of renal cysts. Extra renal manifestations can also occur 

in patients with ADPKD which include, polycystic liver disease, intracranial 

http://pkdb.mayo.edu/
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aneurisms (Rossetti and Harris 2007), mitral valve disease (Pirson 2010), 

pancreatic cysts and colonic diverticulae (Kumar, Adeva et al. 2006). 

1.3 Autosomal Recessive Polycystic Kidney Disease (ARPKD) 

ARPKD has traditionally been referred to as the “juvenile” form of PKD (Dell 

2011). In contrast to the relatively frequent ADPKD, the incidence of ARPKD is 

much rarer and is approximately 1 in 20,000 (Torres and Harris 2009; Dell 

2011). ARPKD is caused by mutations in the PKHD1 gene (Zerres, Mucher et al. 

1994). The Polycystic Kidney and Hepatic Disease 1 (PKHD1) gene is one of 

the largest human genes characterised to date containing 86 exons (Onuchic, 

Furu et al. 2002). PKHD1 mutations are often unique to single families, highly 

variable and seem to be found scattered across the exons of the gene (Blyth 

and Ockenden 1971; Bergmann, Senderek et al. 2004). ARPKD, like ADPKD, 

also presents with extra renal manifestations which include congenital hepatic 

fibrosis (Ward, Hogan et al. 2002), pulmonary hypoplasia, characteristic facial 

and spine and limb abnormalities (Harris and Torres 2009). 

1.4 Pleiotropic PKD disorders. 

The protein products of the genes mutated in both ADPKD and ARPKD are 

localised to the primary cilium of renal cells linking PKD to a common 

pathophysiology (Nauli, Alenghat et al. 2003; Harris and Rossetti 2004; Dell 

2011). New advances in research have identified other pleiotropic PKD 

disorders which include nephronophthisis (NPHP), Senior-Loken syndrome 

(SLS), Joubert syndrome (JBTS), Meckel syndrome (MKS), Bardet-Biedel 

syndrome (BBS) and orofacial digital syndrome (OFDS). Collectively these 

forms of PKD are now well established as “ciliopathies” as the protein products 

of the genes mutated in these disorders are localised to the centrosome/basal 

body of the primary cilium (Harris and Torres 2009). 
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1.5 NPHP 

NPHP is the most common cause of end-stage renal disease in the first 30 

years of life (Hildebrandt and Zhou 2007). The initial symptoms of NPHP 

include polyuria, polydipsia, and a decreased urinary concentrating ability 

(Gusmano, Ghiggeri et al. 1998; Salomon, Saunier et al. 2009).  

The renal histology of NPHP consists of cortico-medullary cysts, tubular atrophy 

with thickened or thinned tubular basement membrane and interstitial fibrosis. 

Patients with NPHP have normal or small sized kidneys, in marked contrast to 

patients with ADPKD and ARPKD where kidneys are enlarged up to 10 fold 

(Zollinger, Mihatsch et al. 1980; Waldherr, Lennert et al. 1982; Wolf and 

Hildebrandt 2011).  

Currently there are 20 genes known to cause NPHP (Table 1.1). The list of 

NPHP genes has continued to grow since the identification of the first NPHP 

gene 16 years ago (Hildebrandt, Otto et al. 1997; Saunier, Calado et al. 1997). 

10-15% of patients with NPHP have extra renal manifestations including retinal 

degeneration, JBTS and liver fibrosis (Wolf and Hildebrandt 2011).  

Table 1.1 lists the known NPHP and JBTS genes. Numerous patients with 

NPHP mutations also have extra renal characteristics (for example retinal 

degeneration (RD) or JBTS). This information is highlighted in table 1.1 to 

emphasize that it is very common to see RD and JBTS in association with 

NPHP. Interestingly 50% of patients with JBTS have a mutation in the 

CEP290/NPHP6 gene (Valente, Brancati et al. 2013). The known JBTS genes 

are also listed in Table 1.1. 

Despite 20 known genetic causes of NPHP (Table1.1), to date approximately 

60% of patients with NPHP do not have a detectable mutation in any of the 

coding regions of these known genes (Halbritter, Porath et al. 2013). Therefore 

this list of known genes will more than likely continue to grow. 
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Nephronophthisis (20 Known Genes) Joubert Syndrome (20 Known Genes) 

Official 
Gene 

Symbol 

Other 
known 
gene 

symbols 

NPHP  
Reference 

Extra renal manifestations 
also observed in patients 

include 

Extra organ 
Reference 

Official
Gene 

Symbol 

Other 
known 
gene 

symbols 

JBTS  
Reference 

Other organ 
manifestations also seen 

in patients include; 

Extra Organ 
Reference 

NPHP1 JBTS4 
(Hildebrandt, Otto et al. 1997; 
Saunier, Calado et al. 1997) 

(A) Tapeto-RD 
(B) Joubert syndrome 

(A) (Caridi, Murer et 
al. 1998)  

(B) (Parisi, Bennett et 
al. 2004) 

JBTS1 INPP5E 
(Saar, Al-Gazali et al. 1999; 
Bielas, Silhavy et al. 2009)  

RD and retina coloboma,  
(Travaglini, Brancati et al. 

2013) 

NPHP2 INVS (Otto, Schermer et al. 2003) Situs inversus, Ventricular septal defect (VSD) 
(Tory, Rousset-

Rouviere et al. 2009) 
CORS2  

JBTS2/ 
TMEM216 

(Valente, Logan et al. 2010)  
NPHP, ocular motor apraxia, 

developmental delay 
(Valente, Salpietro et al. 

2003) 

NPHP3 MKS7 (Olbrich, Fliegauf et al. 2003) 

(A) SLS 
(B) embryonic lethal, MKS, situs inversus, 

Choroid plexus cysts, Dandy-Walker 
malformation 

(C) VSD  

(A) (Omran, Sasmaz 
et al. 2002) 

(B) (Bergmann, 
Fliegauf et al. 2008) 
(C) (Tory, Rousset-

Rouviere et al. 2009) 

AHI1  
JBTS3 
ORF1 

(Dixon-Salazar, Silhavy et al. 
2004; Ferland, Eyaid et al. 
2004; Lagier-Tourenne, 
Boltshauser et al. 2004)  

Nystagmus, hypotonia  
(A) RD, no verbal communtication NPHP 

(A) (Lagier-Tourenne, 
Boltshauser et al. 2004) 

NPHP4  
(A) (Mollet, Salomon et al. 

2002) 
(A) Cogan syndrome 

(B) SLS 
(B) (Otto, Hoefele et 

al. 2002) 
NPHP1  JBTS4 (Parisi, Bennett et al. 2004)  See NPHP1 for extra organ information 

IQCB1 NPHP5 (Otto, Loeys et al. 2005) SLS - CEP290 JBTS5 (Sayer, Otto et al. 2006)  See NPHP6 for extra organ information 

CEP290 
JBTS5, MKS4, 
BBS14, NPHP6 

(A) (Sayer, Otto et al. 2006)  
(A) Tapeto-RD; congenital amaurosis (bilateral); 

cerebellar vermis aplasia 
 
- 

TMEM67  JBTS6 / MKS3 (Baala, Romano et al. 2007)  See NPHP11 for extra organ information 

GLIS2 NPHP7 
(Attanasio, Uhlenhaut et al. 

2007) 
- - RPGRIP1L  

JBTS7/ 
NPHP8 

(Arts, Doherty et al. 2007; 
Delous, Baala et al. 2007) 

See NPHP8 for extra organ information 

RPGRIP1L 
JBTS7, MKS5, 

NPHP8 
(A) (Delous, Baala et al. 2007)  

(A) Cerebella ataxia, mental retardation, 
oculomotor apraxia, nystagmus, retinitis 

pigmentosa (B) Ocular coloboma 

(B) (Wolf, Saunier et 
al. 2007) 

ARL13B  JBTS8 
(A) (Cantagrel, Silhavy et al. 
2008) 

 (A) encephalocele, retinopathy  
(B) NPHP 

(B) (Otto, Ramaswami et 
al. 2011) 

NEK8 NPHP9  (A) (Otto, Trapp et al. 2008) 
(A) Retinis pigmentosa 

(B) Renal-hepatic and pancreatic dysplasia 
(B) (Frank, Habbig et 

al. 2013) 
CC2D2A JBTS9 

(A) (Gorden, Arts et al. 2008; 
Tallila, Jakkula et al. 2008) 

(A) RD, nystagmus, liver fibrosis, 
encephalocele 

(B) (MKS), PKD, polydactyly 

(B) (Tallila, Jakkula et al. 
2008) 

SDCCAG8 
BBS16, 
NPHP10 

(Otto, Hurd et al. 2010)  
RD, mental retardation, hypogenitalism, 

peripheral neuropathy, obesity. 
- OFD1 

CXORF5/ 
JBTS10 

(A) (Rakkolainen, Ala-Mello et 
al. 2002) 

(A) Facial dysmorphism, cleft palate, tooth 
aplasia, tongue abnormalities, PKD, 

mental retardation (B) polydactyly low set 
ears+ (A features) 

(B) (Coene, Roepman et 
al. 2009) 

TMEM67 
JBTS6, MKS3, 

NPHP11 
(Otto, Tory et al. 2009) and 

JBTS 
Liver fibrosis, RD, mental retardation.  TTC21B  

JBTS11/ 
NPHP12 

(Davis, Zhang et al. 2011) See NPHP12 for extra organ information 

TTC21B  
JBTS11, 
NPHP12, 
IFT139 

(Davis, Zhang et al. 2011) JATD   KIF7  JBTS12 (Dafinger, Liebau et al. 2011) 
Polydactyly, facial dysmorphism, mental 

retardation, retinal coloboma 
(Dafinger, Liebau et al. 

2011) 

WDR19 NPHP13 (Bredrup, Saunier et al. 2011) 
Retinitis pigmentosa.  

Short 2
nd

 and 5
th
 toes and fingers. 

 TCTN1  JBTS13 
(Garcia-Gonzalo, Corbit et al. 
2011) 

bilateral frontotemporal pachygyria - 

AHI1 JBTS3 (Utsch, Sayer et al. 2006)  RD, Joubert syndrome 

(Dixon-Salazar, 
Silhavy et al. 2004; 
Ferland, Eyaid et al. 

2004) 

TMEM237  JBTS14 
(Huang, Szymanska et al. 
2011) 

PKD, coloboma, cleft palate, 
encephalocele, hydrocephaly, polydactyly, 

liver fibrosis, ventricular septal defect 
- 

ATXN10  (A) (Sang, Miller et al. 2011) (A) Cerebral atrophy, seizures and liver fibrosis. - CEP41  JBTS15 (Lee, Silhavy et al. 2012)  
Leukoma, liver abnormalities, polydactyly, 

growth hormone deficiency, micropenis 
- 

ZNF423  
NPHP14 
JBTS19 

(Chaki, Airik et al. 2012)  
Cerebellar vermis hypoplasia, situs inversus, 

breathing abnormalities, LCA and RD 
- TMEM138  (Lee, Silhavy et al. 2012) 

PKD, RD, polydactyly, oculomotor apraxia, 
coloboma 

 

CEP164 NPHP15 (Chaki, Airik et al. 2012)  
RD, LCA, nystagmus, cerebellar vermis 

hypoplasia, facial dysmorphism, developmental 
delay, polydactyly, obesity 

 C5ORF42 JBTS17 
(Srour, Schwartzentruber et al. 
2012) 

Developmental delay, limb abnormality, 
oculomotor apraxia, breathing 

abnormalities 
- 

ANKS6  (Hoff, Halbritter et al. 2013) N/A N/A TCTN2  (Sang, Miller et al. 2011) Nystagmus, muscle hypotonia - 

NPHP-like 

XPNPEP3 (O'Toole, Liu et al. 2010) 
Cardiomyopathy, muscle fatigue, hearing loss, 

tremors 
 TCTN3 JBTS18 

(Thomas, Legendre et al. 2012) 
and RD 

Polydactyly, oral abnormalities, PKD, bile 
duct proliferation of the liver, ventricular 
septal defects, horseshoe kidneys, cleft 

palate, bowing of long bones 

- 

SLC41A1 (Hurd, Otto et al. 2013) Bronchiectasis,frequent episodes of fever, 
coughing and respiratory infections since 1 
month old. Inflamatory infiltrates in lungs 

Hurd, Otto et al. 2013 
ZNF423  

JBTS19/ 
NPHP14 

(Chaki, Airik et al. 2012)  
Cerebellar vermis hypoplasia, situs 

inversus, breathing abnormalities, LCA and 
RD 

- 

TMEM231  JBTS20 
(Srour, Hamdan et al. 2012) 
and RD 

Oculomotor apraxia, breathing 
abnormalities, limb abnormalities, RD+ 

PKD 
- 

Table 1.1  List of known genes mutated in NPHP and JBTS. 
List of known NPHP and JBTS genes. The other organ manifestations found in patients with either NPHP or JBTS are also recorded along with the reference citing the other organ 
manifestations. (JATD) Jeune asphyxiating thoracic dystrophy; LCA Leber congenital amaurosis, RD Retinal Degeneration  
Note (A) highlights the reference that corresponds to the extra organ manifestations (Also highlighted by A) identified in a study investigating patients with mutations in a particular NPHP/JBTS 
gene. If another study identified other extra organ defects from mutations in the same NPHP/JBTS gene (B) highlights the reference and the type of extra organ manifestations identified in that 
study.
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1.6 Clinical effect of NPHP genetic mutations 

NPHP1 mutations accounts for 20-25% of patients with NPHP (Hildebrandt, 

Attanasio et al. 2009). Nonsense mutations and small deleted sections in the 

NPHP1 gene can present with a cystic kidney phenotype alone (Hildebrandt, 

Otto et al. 1997) but large deletions of the NPHP1 gene may cause a SLS 

(Caridi, Murer et al. 1998) or JBTS phenotype (Parisi, Bennett et al. 2004). 

Mutations in NPHP2 cause “infantile” NPHP (Otto, Schermer et al. 2003). 

Infantile NPHP slightly differs from juvenile NPHP as there is moderate renal 

enlargement, cortical microcysts and cystic Bowman’s spaces with no tubular 

basement membrane disruptions (Simms, Eley et al. 2009).   

NPHP3 mutations are associated with SLS as well as NPHP (Omran, Sasmaz 

et al. 2002). In 2005 NPHP4 was found “localized to the primary cilia in 

epithelial tubular cells suggesting that nephrocystin proteins may play a role in 

ciliary function” (Mollet, Silbermann et al. 2005). NPHP4 expression was also 

detected at the centrosomes of dividing cells and close to the actin cytoskeleton 

(Mollet, Silbermann et al. 2005). From the study by Mollet and Silbermann in 

2005 the relationship between the pathogenesis of NPHP and the function of 

primary cilia was further considered (Hildebrandt and Otto 2005) and is still 

being investigated to this day.  

A number of different phenotypes have been observed in patients with 

mutations in either the NPHP and/or the JBTS genes (Table 1.1). 
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1.7 NPHP6 mutations 

Intriguingly NPHP6 mutations (also known as CEP290 which it will be called 

from herein) have been found in patients with a multitude of disorders which 

include BBS (Leitch, Zaghloul et al. 2008), JBTS (Sayer, Otto et al. 2006), LCA 

(den Hollander, Roepman et al. 2008), MKS (Baala, Romano et al. 2007) and 

SLS (Valente, Silhavy et al. 2006). CEP290 is the most intriguing gene of all 

NPHP genes because of the collection of disorders associated with it.  

So far 128 CEP290 mutations have been identified according to the CEP290 

database. The majority of CEP290 mutations identified in patients are truncating 

mutations. 48 mutations were reported as truncating mutations, 40 nonsense 

mutations, 29 unknown (the affects are unknown at this time from base pair 

substitutions but are predicted pathogenic) and 3 are reported as in-frame 

deletions http://medgen.ugent.be/cep290base/overview.php . The database 

links phenotypes to detailed mutation information. In addition the database also 

includes variants in other genes which interact with CEP290 variants providing 

links to genetic modifier loci associated with clinical manifestations (Coppieters, 

Lefever et al. 2010). 

1.8 Current Nphp mouse models  

Animal models are required to understand more about the molecular 

mechanisms of NPHP. In order to identify potential target drug treatments 

animal models are necessary as there are currently no therapeutic therapies 

available to treat the cyst pathology for patients with NPHP (Nagao, Kugita et al. 

2012). Table 1.2 details a list of mouse models with a mutation in one of the 

known Nphp genes. 

http://medgen.ugent.be/cep290base/overview.php
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Mouse Models with mutations in the Nphp genes  
Official Gene 
Symbol 

Mouse Model 
Information on Mouse model 

Phenotype Reference 

Nphp1 Nphp1
del20/del20

 Targeted null exon 20 Sterile males (Jiang, Chiou et al. 2008) 

Nphp2 Inv/Inv 
47kb deletion removing exons 3-11 of 

INVS 
Renal cysts, enlarged kidney 
Situs inversus  (Die after P6) 

(Morgan, Turnpenny et al. 1998) 

Nphp3 
(A) Pcy 

(B1) Nphp3
Ko/Pcy

 
(B2) Nphp3

Ko/Ko
 

Exon12 T1841G 
(spontaneous mutation) 

(A) Hypomorphic Nphp3 allele = cysts  
(B2) Null allele = situs inversus, congenital 

heart defects and embryonic lethality in 
mice 

(A) Renal cysts at 2 weeks 
(B1) Extensive renal cysts  

at 4 weeks 

(A) (Omran, Haffner et al. 2001); (Olbrich, 
Fliegauf et al. 2003); (Gattone, Wang et al. 

2003)  
(B) (Bergmann, Fliegauf et al. 2008) 

Nphp4 Nphp4
nmf192/nmf192

 Nonsense mutation exon 4 of NPHP4 
Retinal degeneration by 9 weeks old. 

Males are sterile 
(Won, Marin de Evsikova et al. 2011) 

Iqcb1 - - - - 

Cep290 
Rd16/Rd16 

(B) Cep290
-/- 

(C) Rd16Nrl
-/-

 

In-frame deletion of 897bp (exons35-39) in 
the Cep290 gene 

(B) Floxed region (containing exons 36 
and 37 of 52 exons) Cep290 mice lack the 
full length cep290 protein (data not shown) 
(C) crossed Rd16 mouse with Nrl mouse. 
Nrl is associated with retinitis pigmentosa 

Retinal degeneration from P19/ Loss of Olfactory 
function 

(B) Cep290
-/- 

mice present with a midline fusion defect 
and retinal degeneration 

(C) Retained cone photoreceptors disproportionate 
cone function loss 

(Chang, Khanna et al. 2006)/ (McEwen, 
Koenekoop et al. 2007) 

(B) (Lancaster, Gopal et al. 2011) 
(C) (Cideciyan, Rachel et al. 2011) 

(D) Nrl mice origninated from (Mears, Kondo et 
al. 2001) 

Glis2 

Glis2
LacZ/LacZ

 Disrupted Glis2 at exons 3-5 Renal atrophy and fibrosis from 8 weeks old (Attanasio, Uhlenhaut et al. 2007) 

Glis2
mut

 
1.5kb region encoding exon 6 of Glis2 

deleted 
Renal atrophy reduced life span due to renal failure 

(Some mice survived to 12 months) 
(Kim, Kang et al. 2008) 

Rpgrip1l 

Ftm
-/- 

(homologous to RPGRIP1L) 

Truncated mutation lacks the last 2 of the 
3 Coil-Coiled domains in the Ftm gene 

C2+RID domain 

Ftm
-/- 

die at birth showing reduced eye size, polydactyly, 
craniofacial defects and at earlier stages of 

development Situs inversus 
(Vierkotten, Dildrop et al. 2007) 

Rpgrip1L
-/-

 
In frame deletion  

(exons 8-17) of the RPGRIP1L gene 

Exencephaly, deep set eyes cleft lips dilated ventricles, 
cerebellar hypoplasia and microcystic kidneys and bile 

duct proliferation (E18+E16.5) 
(Delous, Baala et al. 2007) 

Nek8 
(A) Jck

-/- 

(B) Nek8
-/-

 

(A) Sequence change at bp 1346-1348 
results in Gly to Val substitution at aa 448 

(B) Targeted null after exon 2 

Cystic collecting ducts, Enlarged multinucleated cells,  
abnormal actin cytoskeleton.(Observed at 6-7 weeks) 

Survival age not defined (B) Left right asymmetry 
defects cardiac anomalies and glomerular cysts 

(A) (Liu, Lu et al. 2002)  
(B) (Manning, Sergeev et al. 2013) 

Sdccag8 - - - - 

Tmem67 
(A) bpck/bpck 
(B) Tmem67-/- 

(A) Spontaneous deletion of Tmem67 
Tmem67

-/- 
lack exons 2-3 

 (A) Hydrocephally at 2 weeks, 
Polycystic kidneys, death at 3 weeks of age  

(B) Mice die shortly after birth are severely growth 
retarded, and have cystic kidneys at E18.5 

(A) (Cook, Collin et al. 2009) 
(B) (Garcia-Gonzalo, Corbit et al. 2011) 
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Mouse Models with mutations in the Nphp genes (Continued) 
Official Gene 
Symbol 

Mouse Model Information on mouse model Phenotypes Reference 

Ttc21b Aln
-/-

 
A→C mutation converts glutamine to proline 

(highly conserved).  
Absence of Thm1 protein in Aln

-/-
 

Pre-axial polydactyly, split and fused ribs, cortically layer 
abnormalities Defects in eye, brain and neural tube development 
and craniofacial defects (E10.5 +) some survive until birth but die 

shortly after. 

(Herron, Lu et al. 2002; Tran, Haycraft et al. 
2008; Stottmann, Tran et al. 2009) 

Wdr19 
Ift144

twt 

Ift
dmhd

 

(WDR19 encodes Ift44) N-ethyl-N-nitrosourea 
(ENU)hypomorphic missense mutation 

(Ift
dmhd

null allele) 

Survive up to birth.Exencephaly Polydactyly, truncated ribs, 
craniofacial abnormalities 

(Ashe, Butterfield et al. 2012) 

Ahi1 Ahi1
-/-

 Knockout mouse model 
Cystic kidneys at 5 months, 

Retinal degeneration between 2-4 weeks of age, Cerebellar 
hypoplasia and a vermis-midline fusion defect 

(Lancaster, Louie et al. 2009; Louie, Caridi et al. 
2010; Lancaster, Gopal et al. 2011) 

Atxn10 Sca10 Expanded ATTCT repeat in the ATXN10 gene 
Locomotive dysfunction (ataxic gait) died of seizures, neuronal 

loss survive to 6 months of age 
(White, Xia et al. 2012) 

Znf423 Nur12
-/-

 
Knockout mouse model  

Znf423 expression deleted 
Loss of corpus callosum, reduction of hippocampus and 

malformation of cerebellum / midline structures 
(Alcaraz, Gold et al. 2006) 

Cep164 - - - - 

Anks6 Han:SPRD 
cy/+

 Missense mutation Proximal tubule cysts and expression in the cortex (P36), 
(Brown, Bihoreau et al. 2005) (Note Rat Model 

not mouse)  

XPNPEP3 - - - - 

SLC41A1 - - - - 

Arpkd 

Ift88
Orpk/Orpk

 
A deletion of 2.77kb of genomic DNA at 

transgene integration site but no exons deleted 
Polycystic kidneys, hyperplastic and dysplastic bile ducts liver 

fibrosis 
(Moyer, Lee-Tischler et al. 1994) 

cpk/cpk Spontaneous mutation Die at 5 weeks, enlarged cystic kidneys, cysts are grossly visible (Mandell, Koch et al. 1983) 

Bpk
-/-

 Knockout model 
Die at 1 month of age with renal failure and cystic kidney disease. 
Renal cysts proximal and collecting duct, hyperplasia in the biliary 

tract 
(Nauta, Ozawa et al. 1993) 

Table 1.2  List of published mouse models associated with NPHP. 
Green highlights JBTS phenotypes seen in NPHP mouse models. Blue highlights retinal degeneration phenotypes seen in NPHP mouse 
models. ARPKD mouse models are at highlighted at the  of the table. If there is more than 1 mouse model for a particular NPHP gene (A) 
represents the 1st mouse model generated and the phenotype and reference associated with that mouse. (B) represents the 2nd mouse 
model with a different mutation in the same nphp gene, (B) also highlights the phenotype associated with the 2nd mouse model and the 
reference associated with the 2nd mouse model. (C) represents the 3rd mouse model generated with a different mutation in the same 
NPHP gene and highlights the phenotype for that particular mouse and the reference for that particular mouse. E10.5, 18.5, 16.6 
Embryonic Day 10.5. 18.5 and 16.5. P36, 36 days after the first day of birth and P6 is 6 days after the first day of birth. 
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1.9 JBTS 

NPHP phenotypes may also be observed in patients with JBTS (Table 1.1). 

Patients with mutations in 16 of the 20 JBTS genes highlighted in Table 1.1 

presented with abnormalities which included NPHP. NPHP is the main renal 

condition associated with JBTS and it occurs in up to 25% of patients with JBTS 

(Brancati, Dallapiccola et al. 2010). 

JBTS was first described in 1968. 4 siblings in a consanguineous family 

presented with ataxia, developmental delay, oculomotor apraxia and breathing 

abnormalities (Joubert, Eisenring et al. 1968). Magnetic resonance imaging 

(MRI) scans of the brain are used to identify the midbrain-hindbrain 

malformation which appears as a “molar tooth” image in the middle/back of the 

brain of an affected JBTS individual. Maria and Hoang first described the molar 

tooth sign in MRI scans of patients with JBTS (Maria, Hoang et al. 1997).  The 

prevalence of JBTS is estimated to be about 1:100,000 worldwide (Parisi, 

Doherty et al. 2007; Kroes, van Zon et al. 2008). JBTS prognosis is usually 

dependent on the severity of the other organ manifestations associated with 

JBTS which includes liver fibrosis or the NPHP phenotype which will eventually 

lead to liver or kidney failure (Sattar and Gleeson 2011).  

JBTS mouse models may be ideal models in understanding the disease course 

of NPHP and JBTS phenotypes. A list of JBTS mouse models is highlighted in 

Table 1.3.  

The majority of JBTS mouse models are lethal prior to birth or just a few days 

after (Table 1.3). In order to study the disease course of NPHP, a novel mouse 

model is required, which displays a NPHP phenotype but is not lethal. Such a 

mouse model would need to develop cysts at an early time point in 

development to mimic the childhood disease but would also need to survive in 

order to be able to test various targeted therapies. 
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Mouse Models of JBTS 

Official 
Gene 

Symbol 

Mouse 
Model 

Information on Mouse model Phenotypes Reference 

Jbts1/ 
Inpp5e 

Inpp5e
∆/∆

 Knockout mice 
Died at birth, bilateral anophthalmos, postaxial hexadactyly, ceased eye development at 

optic vesicle stage, cystic kidneys, skeletal abnormalities and cleft palate 
(Jacoby, Cox et al. 2009) 

Cors2 
Jbts2 

Hty
-/-

 
Severe truncation or in-frame deletion 

identified C2cd3 ortholog is close to the 
critical chromosomal region of JBTS2 

Lethal, neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, situs 
inversus, polydactyly Embryonic lethalithy between E11 and E13 

(Hoover, Wynkoop et al. 2008) 

Ahi1, Nphp1, Cep290, Tmem67, Rpgrip1l                                                                                    Table 1.2 for mouse model information / phenotype 

Arl13b Hnn
-/-

 Null allele of Arl13b 
Defects in neural tube patterning, limbs (polydactyly) and eye defects. Survive until 

E13.4-E14.5 Cilia half the length of wild type in node 
(Caspary, Larkins et al. 2007) 

Cc2d2a Cc2d2a
-/-

 Truncation mutation after exon 11 Randomised left-right axes, holoprosencephaly, microphthalmia, embryonic lethal. (Garcia-Gonzalo, Corbit et al. 2011) 

Ofd1 Ofd1
∆4-5

 
Ofd1 exons flanked by loxP sites 

 
Craniofacial and limb abnormalities, cleft palate, skeletal defects (newborn autopsy = 

brain disorganisation, reduced lungs and cystic kidneys. Died at birth 
(Ferrante, Zullo et al. 2006; D'Angelo, De 

Angelis et al. 2012) 

Ttc21b Table 1.2 for mouse model information / phenotype 

Kif7 
(A) Kif7

-/- 

(B) Kif7
maki

 

(A) Loss of Kif7 function 
(B) T to C missense substitution disrupting 

Alul restriction site creating a RFLP 

(A) Exencephaly, oedema and polydactyly, ceased eye development, hedgehog 
signalling defects survive until E10.5 

(B) Polydactyly, Negative regulation of hedgehog pathway die at end of gestation 

(A) (Cheung, Zhang et al. 2009; Liem, He 
et al. 2009) 

Tctn1 Tctn1
-/-

 Knockout mouse model of Tctn1 gene 
Required for ciliogenesis 

E10.5 mutants reduced telencephalon size and holoprosencephaly 
(Reiter and Skarnes 2006) 

Tmem237 - - - - 

Cep41 Cep41
Gt/Gt

 Knockout model  
Malformed hindbrain, exencephaly, brain hemorrhage, dilated pericardial sac and 

lethality (Phenotypes observed between E10-E13) 
(Lee, Silhavy et al. 2012) 

Tmem138  - - - - 

C5orf42 - - - - 

Tctn2 Tctn2
-/-

 Knockout mouse of Tctn2 gene 
Neural tube closure defect, hedgehog signalling defects, cleft palate and polydactyly 

(embryonic lethal) 
(Sang, Miller et al. 2011) 

Tctn3 - - - - 

Tmem231 Tmem231 Tmem231 Gene disrupted after Intron 1 
Embryonic lethal (http://www.mmrrc.org/catalog/sds.php?mmrrc_id=32667/032667.html  

Note another Tmem231 knockout mouse model is described in Table 1.6  
(Tang, Li et al. 2010) 

MRE11 Mre11 Hypomorphic mouse 
Exclusively cell cycle components observed in oocytes from E17.5 E18 days of 

gestation in mice (mice lethal) 

(Cherry, Adelman et al. 2007) 
http://flybase.org/reports/FBgn0020270.ht

ml 

Table 1.3  List of known mouse models associated with JBTS 
RFLP Restriction Fragment Length Polymorphism. Blue highlights RD phenotype observed in JBTS mouse models. Yellow highlights 
cystic kidney phenotype observed in JBTS mouse models. (A) highlights the first mouse model associated with a mutation in the JBTS 
gene highlighted and (B) highlights the second mouse model with a different mutation in the same gene. The phenotypes and references 
for each mouse model for that selected gene are highlighted accordingly; as (A) and (B). 
 

http://www.mmrrc.org/catalog/sds.php?mmrrc_id=32667/032667.html
http://flybase.org/reports/FBgn0020270.html
http://flybase.org/reports/FBgn0020270.html
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1.10 MKS 

The vast majority of human MKS cases result in prenatal lethality, usually due 

to a number of different organ defects including neural tube defects, kidney 

cysts, microphthalmia, occipital meningoencephalocele, hepatic cysts and 

postaxial polydactyly (Otto, Tory et al. 2009; Hurd and Hildebrandt 2011; 

Bergmann 2012). A number of NPHP genes are also MKS genes which include 

NPHP3/MKS7, NPHP6/MKS4, NPHP8/MKS5 and NPHP11/MKS3. MKS 

phenotypes have been seen in a number of nphp/jbts mouse models which 

include the Rpgrip1L-/- mouse model, the Ift144twt mouse model, the Kif7-/- 

mouse model and the Cep41Gt/Gt mouse model to name a few (See table 1.2 

and 1.3 for references). 

1.11 BBS 

A recent review article described the clinical characteristics of BBS to include 

“obesity, hypogonadism, retinal degeneration, polydactyly, mental retardation 

and renal disease; with renal disease being the major cause of mortality in 

patients with BBS” (Bergmann 2012). Recently the BBS4 protein was found to 

genetically interact with CEP290. Increased body weight and accelerated 

photoreceptor degeneration was evident in the Cep290rd16/rd16 mice with an 

additional loss of Bbs4 allele when compared to Cep290rd16/rd16 mice.  

Cep290rd16/+; Bbs4+/-  double heterozygote mice also saw increased body 

weight when compared to Cep290rd16/rd16 mice suggesting that Bbs4 modifier 

loci are affecting the Cep290 phenotype (Zhang, Seo et al. 2013). 
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1.12 Sub cellular location of NPHP and JBTS protein products 

Animal models have helped identify the sub cellular location of the current 

known NPHP and JBTS proteins.  

The most recent article describing the sub cellular locations of each of the 

known NPHP protein products was in 2012 and only 11 of the NPHP genes 

were discussed (Shiba and Yokoyama 2012), even though there were more 

than 11 NPHP genes published at this stage. The sub cellular locations of the 

other 9 NPHP proteins have been identified and are highlighted in Table 1.4.  

In 2010 the sub cellular location of JBTS protein products was described in a 

review article (Lee and Gleeson 2010), however only 5 JBTS protein products 

were shown, even though there were a number of additional JBTS genes 

published. Table 1.5 highlights the sub cellular location of each of the JBTS 

proteins. An updated account of each of the NPHP and JBTS protein products 

subcellular locations is required for future studies. The subcellular location of 

the protein products may aid in providing links to disease mechanisms and 

interacting proteins. 

The 20 NPHP and JBTS protein products locations are summarised in table 1.4 

and in table 1.5. In total 40 genes were assessed and only 1 of the genes’ 

(JBTS17/C5ORF42) sub cellular location is currently unknown (Srour, Hamdan 

et al. 2012).  
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NPHP protein products location in relation to the primary cilium 

Gene Symbol 
Protein Product 
Location 

Reference 

NPHP1/JBTS4 Transition zone, length of the cilium 
Adherence junctions, focal adhesions, 
cell-cell 

(Hildebrandt and Otto 2005; 
Fliegauf, Horvath et al. 2006), 

NPHP2/ NPHP3/ 
NPHP9 
 
(B) NPHP2 

Proximal part of the cilium 
“Inversin compartment” 
 
(B) Cilia, basal body and nucleus, cell-
cell junctions 

(Shiba, Yamaoka et al. 2009; 
Shiba, Manning et al. 2010) 
 
(B) (Morgan, Eley et al. 2002; 
Nurnberger, Bacallao et al. 2002) 

NPHP4 Transition zone, basal body, centrosome 
and length of cilium 

(Mollet, Silbermann et al. 2005; 
Winkelbauer, Schafer et al. 2005). 

IQCB1/ NPHP5 Length of the primary cilium (Otto, Loeys et al. 2005 

CEP290 / NPHP6 Centrosomal protein, located at the 
transition zone and co-localises with 
CC2D2A at the basal body 

Andersen, Wilkinson et al. 2003; 
Sayer, Otto et al. 2006; Gorden, 
Arts et al. 2008; Tallila, Jakkula et 
al. 2008; Craige, Tsao et al. 2010) 

GLIS2 / NPHP7 Nucleus (Zhang, Nakanishi et al. 2002) 

RPGRIP1L/ 
NPHP8 

Basal body 
Localises to the  
(B) centrosome complex with NPHP4 
and CEP290 
(C) And the transition zone complex with 
JBTS14 

(Arts, Doherty et al. 2007) 
 
(B) (Delous, Baala et al. 2007) 
 
(C) (Huang, Szymanska et al. 
2011) 

NEK8/ NPHP9 Centrosomal and ciliary location 
(B) Inversin compartment 
(C) Nucleus  

(Otto, Trapp et al. 2008), 
(B) (Shiba, Manning et al. 2010), 
(C) (Habbig, Bartram et al. 2012) 

SDCCAG8/ 
NPHP10 

Centrosome and nuclear foci in hTERT-
RPE cells 

(Chaki, Airik et al. 2012) 

TMEM67/ JBTS6 Transition zone 
 
(B) basal body 

(Garcia-Gonzalo, Corbit et al. 2011) 
(B) (Adams, Simms et al. 2012) 

TTC21B/ JBTS11 Cilium (Davis, Zhang et al. 2011) 

WDR19/ NPHP13 Cilium (Efimenko, Blacque et al. 2006) 

AHI1/ JBTS3 Mother centriole (Hsiao, Tong et al. 2009) 

ATXN10 Basal body (Sang, Miller et al. 2011) 

ZNF423/ 
NPHP14 

Transition zone as it interacts with 
CEP290 

(Chaki, Airik et al. 2012) 

CEP164/ 
NPHP15 

Mother centriole/ distal appendages 
Also co-localises with NPHP10 and 
NPHP14 in the nuclear foci 

(Chaki, Airik et al. 2012). 

ANKS6 Proximal part of the cilium similar to 
NPHP2,NPHP3 and NPHP9 

(Hoff, Halbritter et al. 2013) 

SLC41A1 Transporter  encodes Na
+
/Mg

2+
 

exchanger when SLC41A1 expression is 
inhibited Na

+
/Mg

2+
 exchanger 

expression is also inhibited 

(Kolisek, Nestler et al. 2012) 

XPNPEP3 Mitochondrial (O'Toole, Liu et al. 2010) 

Table 1.4  Subcellular localisation of NPHP protein products. 
Subcellular location of the known proteins mutated in NPHP and the connection 
of the protein products to the primary cilium. (B) and (C) highlight additional 
studies and the subcellular location of where the NPHP protein product was 
found in that study.  human immortalized retinal pigmented epithelial (hTERT-
RPE) cells 
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JBTS protein products location in relation to the primary cilium 

Gene Symbol 
Protein Product 
Location  

Reference 

1 JBST1 Ciliary axoneme and basal body (Bielas, Silhavy et al. 2009) 

2 CORS2/ JBTS2 
Colocalises with TCTN1, 
JBTS5,JBTS6 and TCTN2 to the 
transition zone 

Garcia-Gonzalo, Corbit et al. 
2011) 

3 AHI1/ JBTS3 Table 1.4 

4 NPHP1/ JBTS4 Table 1.4 

5 CEP290/ JBTS5 Table 1.4 

6 TMEM67/ JBTS6 Table 1.4 

7 
RPGRIP1L/ 
JBTS7/NPHP8 

Table 1.4 

8 ARL13B/ JBTS8 Ciliary axoneme (Blacque, Perens et al. 2005 

9 CC2D2A/ JBTS9 
Basal body  
Ca

2+
 sensor 

(Li, Gerdes et al. 2004) 
(Noor, Windpassinger et al. 
2008) 

10 OFD1/ JBTS10 Centrosome (Romio, Wright et al. 2003) 

11 
TTC21B/ JBTS11/ 
NPHP12 

Table 1.4 

12 KIF7/ JBTS12 
Primary cilium base and 
translocates to the tip when shh 
pathway is activated 

Liem, He et al. 2009) 

13 
TCTN1/ JBTS13 
 

Colocalises with JBTS2, 
JBTS5,JBTS6 and TCTN2 to the 
transition zone 

Garcia-Gonzalo, Corbit et al. 
2011) 

14 TMEM237/ JBTS14 Transition zone 
(Huang, Szymanska et al. 
2011) 

15 CEP41/ JBTS15 Basal body and primary cilium (Lee, Silhavy et al. 2012) 

16 TMEM138 Base of the cilium (Lee, Silhavy et al. 2012) 

17 C5ORF42/ JBTS17 
Subcellular location currently 
unknown 

(Srour, Schwartzentruber et 
al. 2012) 

18 TCTN2 
Colocalises with TCTN1, 
JBTS5,JBTS6 and JBTS13 to the 
transition zone 

Garcia-Gonzalo, Corbit et al. 
2011) 

19 TCTN3 Transition zone 
(Thomas, Legendre et al. 
2012 

20 TMEM231 Transition zone and basal body Chih, Liu et al. 2012) 

Table 1.5  Subcellular localisation of JBTS protein products. 
Subcellular location of the known proteins mutated in JBTS and the connection 
of the protein products to the primary cilium  
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1.13 The primary cilium and NPHP/JBTS protein products 

Table 1.4 and Table 1.5 highlight that most of the known protein products 

associated with NPHP and JBTS mutations are located in and around the 

primary cilium which includes the basal body, transition zone and the inversin 

compartment, with a few of the mutated genes protein products found in the 

nucleus, adherens junction of the cell and in the mitochondria (XPNPEP3). The 

latest NPHP-like gene, SLC41A1 was identified as a transporter, encoding the 

Na+/Mg2+exchanger. 

Figure 1.1 is a schematic illustration featuring the sub cellular locations for each 

of the known NPHP and JBTS protein products described in Tables 1.4 and 1.5. 

The primary cilium has been described as a membrane bound organelle that 

projects from the apical surface of the collecting duct tubule into extracellular 

space and use their surface area to detect environmental cues (Satir, Pedersen 

et al. 2010) and (Goetz and Anderson 2010). In the kidney, primary cilia are 

thought to act as mechanosensors and chemosensors, bending in response to 

fluid flow (Rodat-Despoix and Delmas 2009);(Berbari, O'Connor et al. 2009).
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Figure 1.1  Schematic representation of the primary cilium and 
subcellular locations of the protein products from the known genes 
mutated in NPHP and JBTS. 
 

An interesting review paper previously discussed the role of cilia in disease 

summarising “that compromised cilia function/structure can have profound 

consequences for cellular homeostasis” (Bisgrove and Yost 2006). Cilia 

assembly occurs in a series of well-organized steps. The first step in 

ciliogenesis involves the differentiation of the mother centriole into the basal 

body which in turn generates the transition zone then the axoneme and finally 

migrates to the apical cell surface (Ishikawa and Marshall 2011; Kim and 

Dynlacht 2013). The transition zone and the inversin compartment are required 

for ciliary trafficking through intraflagellar transport (IFT). IFT is required for the 

assembly and the maintenance of primary cilia (Pazour and Rosenbaum 2002). 

An example highlighting the importance of IFT proteins maintaining primary cilia 

assembly in kidneys was identified in a mouse model of ARPKD (the Tg737 

mouse model).  
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Mice homozygous for a mutation in the Tg737 gene (which encodes a protein 

homologous to the IFT88 subunit, previously shown to be required for flagellar 

assembly in Chlamydomonas) developed PKD. Scanning electron microscopy 

of the kidneys from Tg737 mutant mice showed abnormal cilia (Pazour, Dickert 

et al. 2000). 

As the majority of the protein products of genes mutated in NPHP/JBTS are 

located in/around the primary cilium, the integrity of the structure/function of the 

primary cilium is crucial for maintaining kidney homeostasis. Therefore cilia 

structure and function should be assessed in each Nphp and Jbts mouse model 

created.  

It has been hypothesised that “the primary cilium is a sensory organelle, acting 

as a mechanosensor in the kidney coordinating multiple signalling pathways 

with nuclear trafficking of some molecules” (Sang, Miller et al. 2011; Bergmann 

2012).  

1.14 Linking Shh and Wnt signalling with NPHP and JBTS 

During the investigation to identify the sub cellular locations of the protein 

products for each of the known NPHP and JBTS genes, a link between cilia and 

defective sonic hedgehog signalling (Shh) and/or Wnt signalling was identified 

(Figure 1.1,Table 1.6).  

Figure 1.1 highlights the NPHP and JBTS protein products (when the genes are 

mutated) which were found to disturb the normal signalling processes of both 

the Wnt and the Shh pathways.  

NPHP and JBTS mouse model phenotypes were investigated and it was found 

that the majority of NPHP and JBTS mouse models presented with defects in 

neural tube patterning which was associated with abnormal Wnt or Shh 

signalling expression (Table 1.6). 
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Gene Hedgehog signalling Wnt signalling Reference 

Jbts1 ND 

Cors2/ 
Jbts2 

Gli3 disrupted in E10.5 Hty and C2cd3
GT

  embryos ND Hoover, Wynkoop et al. 2008) 

Ahi1 

Not assessed in the kidney. 
In the cerebellum of Ahi1

-/- 
mice there were no differences in gene 

expression levels of n-myc, ptch1 and Gli in the Ahi1
-/-

 mouse when 
compared to the wild type mouse  

(A)Lef1 expression was down-regulated in 5 month old Ahi1
-/-

 kidneys 
(B) Decreased Wnt reporter activity evident at the site of hemisphere fusion in the 
developing cerebellum 

(A) (Lancaster, Louie et al. 2009) 
 
(B) (Lancaster, Gopal et al. 2011) 

Jbts4/ Nphp1 ND and Jbts5/Cep290 ND 

Tmem67/ 
Jbts6/ 
Nphp11 

Shh expression reduced in Tmem67
-/- 

mice. E11.5 floor plate and 
notochord and the neural tube had short bulbous cilia (Classified as 
the MKS group) 

Increase level of β-catenin expression in the neuroepithelial cell of the fourth ventricle. 
Protein levels of β-catenin and Dvl-1 also increased in knockout Tmem67 MEFS. 
Axin2 decreased in P0 Tmem67

-/- 
cortex mice died at birth from neurodevelopmental 

disorders (Classified as the JBTS group) 

(Abdelhamed, Wheway et al. 
2013) 

Rpgrip1l/ 
Jbts7/ 
NPHP8 

(B) Ftm
-/-

 shows JBTS7 is necessary for left-right asymmetry 
patterning of neural tube and limbs and Gli3 activator to Gli3 
repressor is disrupted in E11.5 Ftm

-/-
 embryos  

 

(A) RPGRIP1L destabilises dishevelled, acts in a complement with Nphp2 and 
Nphp4 to modulate dishevelled stability using co immunoprecipitation experiments 

(A) (Mahuzier, Gaude et al. 2012) 
(B) (Vierkotten, Dildrop et al. 
2007)  

Arl13b/ 
Jbts8 

Hnn mouse model null mutation of Arl13b open neural tube die at 
E14.5. low ptch1 expression in the ventral to dorsal gradient. cilia are 
short in the embryonic node at E8.5 
(B) Arl13b regulates the cilia entry of smoothened 

Disrupted Wnt1 in the posterior of Hnn embryo 

(Caspary, Larkins et al. 2007) 
(B) (Larkins, Aviles et al. 2011) 

Cc2d2a/ 
Jbts9 

Cc2d2a
-/-

 MEFs when treated with SAG showed reduced ciliary 
localisation. 

ND 
(Garcia-Gonzalo, Corbit et al. 
2011 

Jbts10  

(A) Ofd1 deficient mice, Shh expression absent in neural tube, ptch1 
and Gli1 reduced in ventral neural tube,  
(C)  Ofd1 deficient embryoid bodies display defects in both the Wnt 
and Shh signalling pathway. When Shh pathway activated wild type 
showed a 3 fold increase in Gli1 and ptch expression where as Ofd1 
remained the same. Also Gli3 processing could not be activated when 
Shh activated its processing remained as the truncated repressor 
form 

(B) Ofd1
-/-

 ES cells lack cilia and when Wnt3a was added the ES cells were hyper-
responsive to Wnt3a suggesting primary cilium modulates wnt transduction 
(C) Ofd1 deficient embryoid bodies when activated with Wnt3a showed increased 
responsiveness to Wnt3a compared to wt using axin2, c-myc and cyclinD1 as Wnt 
target genes. 

(A) (Ferrante, Zullo et al. 2006) 
 
(B) (Corbit, Shyer et al. 2008) 
(C) (Hunkapiller, Singla et al. 
2011) 

Ttc21b/ 
NPHP12 

“Ttc21b is required to restrict Shh activity in the mouse forebrain” Wnt1expression reduced in the diencephalon of aln mutants (Stottmann, Tran et al. 2009) 

Kif7/ 
Jbts12 

Also known as kif7. Kif 7 is a known regulator of shh signalling (Goetz 
and Anderson 2010) “Kif 7 acts downstream of Smo and upstream of 
Gli2 and has both negative and positive effects on Shh signalling”. 
(Liem, He et al. 2009). (B) Kif7 also regulates Gli transcription factors 

ND 
Liem, He et al. 2009) 
(B) Cheung, Zhang et al. 2009) 

Tctn1/ 
Jbts13 

Tctn1 regulates Shh signalling downstream of smoothened. Shh is 
not expressed in Tctn1 mutant neural tube. Gli1 and ptch is reduced 
in the neural tubes of tctn1 mutants 

ND 
 
(Reiter and Skarnes 2006) 

Tmem237/  
Jbts14 

 Tmem237 increased levels of β-catenin observed in Tmem237 transfected mouse 
inner medullary collecting duct cells when compared to wt cells 

(Huang, Szymanska et al. 2011) 

Cep41/ Jbts15-Tmem138/ C5orf42/Jbts17                                                                                                                                                                ND 
Tctn2 Polydactyly and neural tube defects consistent with Shh defects. SAG activation of Shh pathway in MEFS (Shh agonist) resulted in negligible ND  
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responsiveness compared to wt with a 20 fold increase. Tctn2
-/- 

emrbryos had increased expression of Gli3 activator compared to wt. Tctn2 is important 
for Gli3 processing. 

 
(Sang, Miller et al. 2011) 

Tctn3/ 
Jbts18 

Tctn3 is necessary for the transduction of Shh pathway as revealed 
by abnormal Gli3 processing in patient cells. Tctn3 cells failed to 
respond to Shh agonist 

ND 
 
(Thomas, Legendre et al. 2012) 

Tmem231 

Gli1 reduced in Tmem231 knockout embryos by qRT-PCR. Only 10% 
of Tmem231 knockout MEFs contained a primary cilium while 55% 
wild types contained a primary cilium. Die at E15.5 with severe 
vascular defects. Phenotypes which are consistent with defective Shh 
signalling microphthalmia and polydactyly. 

ND 

 
 

(Chih, Liu et al. 2012) 

Nphp1 ND ND ND 

Nphp2 
Conflicting results in the invs/invs kidney no change observed in wnt pathway (A) in invs/invs MEFs β-catenin target genes are upregulated        Also See 

JBTS7, NPHP3 and NPHP4 as NPHP2 interacts with these genes resulting in defective Wnt signalling defects. 

(A) (Sugiyama, Tsukiyama et al. 
2011), (B) (Veland, Montjean et al. 

2013) 

Nphp3 ND 

(A) Interacts with invs (Nphp2), inhibits Wnt signalling by inhibiting dishevelled, also 
gastrulation and neurulation defects as well as shortened body axis and dorsal 
bending in xenopus occured which suggest a role in Wnt pathway.  
(B) studies in Human embryonic kidney cells suggest that Nphp3 inhibit the wnt 
signalling pathway as well  

(A) (Bergmann, Fliegauf et al. 
2008) 
(B) (Simons, Gloy et al. 2005) 

Nphp4 ND 

(A) Inhibits canonical Wnt signalling negatively regulates β-catenin signalling 
(B) Nphp4 represses the wnt pathway in zebrafish cloaca and in mammalian kidney 
cells in culture by interacting with Invs/Nphp2  and dishevelled regulating dishevelled 
stability and subcellular localisation 

(A) (Borgal, Habbig et al. 2012) 
(B) (Burckle, Gaude et al. 2011) 

Iqcb1 Alias Nphp5     ND ND ND 
Cep290 Shh signalling reduced in JS human fetal purkinje cells ND (Aguilar, Meunier et al. 2012) 

Glis2/ 
Nphp7 

Also known as Glis2 (Gli similar 2), Glis2 is a functional component of 
Shh signalling. Glis2 is necessary to inhibit the Shh signalling 
pathway to maintain tubular epithelial phenotype in the adult kidney. 
Glis2

LacZ/LacZ 
mouse model n-myc Downregulated. Glis2 interacts with 

sufu subjecting it to ubiquitination. 

(B) At amino acid 170-193 Glis2 interacts with β-catenin. This region also contains the 
1

st
 zinc finger motif of Glis2 and this study suggests that Glis2 functions as a negative 

regulator of β-catenin/TCF medicated transcription using yeast 2 hybrid screening 
systems. It was also found that Glis2 represses the Wnt/β-catenin pathway as it 
represses the human cyclin D1 gene which is a natural Wnt target gene 

(Li, Rauhauser et al. 2011) and 
(Attanasio, Uhlenhaut et al. 2007) 
(B) (Kim, Kang et al. 2007) 

Rpgrip1l/ 
NPHP8 

See JBTS7 above 

Nek8  Jck deficient mice repressed β-catenin expression in the wnt pathway in osteocytes (Sabbagh, Graciolli et al. 2012) 

Sdccag8 ND ND ND 
Tmem67 / Nphp11 and Ttc21b/ Nphp12                                                                                                                  See Jbts6 above and Jbts11 above 

Wdr19/ 
Nphp13 

Ift144twt MEFs did not respond to Shh agonist SAG like the wild type 
MEFs did by Ptch1 expression, WISH showed an increase of Ptch1 
expression in whole mount embryos particularly in the facial 
prominences and limbs 

ND 

(Ashe, Butterfield et al. 2012) 

AHI1 See Jbts3 above 

Atxn10,Znf423/ Nphp14, Cep164/Nphp15, Anks6. Xpnpep3 and Slc41a1                      Currently no links to shh or wnt signalling identified-as they have not been investigated 

Table 1.6  Linking NPHP and JBTS mutations to disrupted Wnt and Shh signalling pathways. 
Table 1.6 highlights the disrupted Wnt and or Shh signalling pathways previously associated with NPHP and JBTS mouse models or cell lines. ND not discussed/not defined. MEFs (Mouse Embryonic 
Fibroblasts);Wt (Wild type). Note (B) and (C) represent other studies and the references for those studies, linking either defective Wnt and or Shh signalling pathways with mutations in the same gene.
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1.15 Defective Shh/Wnt signalling identified in Nphp mouse 

models  

Two of the Nphp/Jbts mouse models mentioned in Table 1.6 present with late 

onset NPHP, the Ahi1-/- mouse model and the Glis2-/- /Nphp7-/- mouse model 

(Lancaster, Louie et al. 2009; Li, Rauhauser et al. 2011).  

The Ahi1-/- mouse model showed reduced Wnt signalling in 5 month-old Ahi1-/- 

kidney samples when compared to wild-type mice. Expression levels of the Lef1 

gene (downstream target of the Wnt pathway) was reduced in the Ahi1-/- mice 

therefore suggesting Wnt signalling was reduced (Table 1.6) (Lancaster, Louie 

et al. 2009).  

The Nphp7 mouse model showed that Glis2 (Gli similar 2), is a functional 

component of the Shh pathway. Gli transcription genes are activated when the 

Shh pathway is active. The Glis2-/- mouse model identified that “Glis2 interacts 

with Sufu subjecting it to ubiquitination and therefore affecting the signalling 

cascades of the Shh pathway”. Sufu is an important for maintaining the balance 

between Gli activators and repressors. In the absence of Glis2 Shh activity was 

increased in the kidney when the organ was fully matured (Li, Rauhauser et al. 

2011).  

“Hedgehog signalling is crucial during embryogenesis as it controls tissue 

patterning and cell fate specification” (Ingham and McMahon 2001). In a mouse 

model of Nphp, Glis2 was found to be mutated in NPHP type 7 (Attanasio et al., 

2007). Glis2 mice displayed features of NPHP including renal atrophy and 

prominent fibrosis (Attanasio et al., 2007). Loss of Glis2 resulted in the up-

regulation of genes that promote epithelial to mesenchymal transition, possibly 

providing an explanation for the fibrosis associated with NPHP and loss of Gli2 

also implicates the Shh pathway in the pathogenesis of cystic kidney diseases 

(Hurd and Hildebrandt 2011). 

The Ahi1-/- and the Glis2-/- mouse models develop kidney cysts when the 

kidneys are fully matured i.e. when the mice are classified as adults. Currently 

there are no murine models for the juvenile form of NPHP. Therefore there is a 

gap in understanding the defected signalling mechanisms associated with 
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juvenile NPHP. Hence a novel mouse model of juvenile NPHP may lead to a 

new understanding of disease pathogenesis. 

1.16 Defective Shh signalling in JBTS/MKS mouse models 

Intriguingly 15 of the 40 mutated NPHP/JBTS protein products were associated 

with disrupted Shh pathway signalling, in comparison to 10 of the mutated 

NPHP/JBTS protein products associated with Wnt signalling defects (Table 1.6).  

Neural tube defects were observed in 6 of the 12 genes associated with Shh 

signalling defects which included mouse models with mutations in the 

JBTS6/NPHP11, JBTS8, JBTS10, JBTS11/NPHP12, JBTS13, and TCTN2 

genes (Ferrante, Zullo et al. 2006; Reiter and Skarnes 2006; Caspary, Larkins 

et al. 2007; Vierkotten, Dildrop et al. 2007; Stottmann, Tran et al. 2009; Larkins, 

Aviles et al. 2011; Sang, Miller et al. 2011; Abdelhamed, Wheway et al. 2013).   

There are known specific downstream transcription factors of Shh (Ruiz i Altaba 

1997). Ci is a specific downstream factors and correct levels of functioning Ci is 

required to mediate Shh signalling in flies and in frog embryos. Ci is a family 

member of the Gli transcription factors (Ruiz i Altaba 1997).  

Since the discovery of abnormal Ci functioning in the fly was linked to Shh 

signalling defects, abnormal Gli processing has been found in NPHP/JBTS 

murine models associated with developmental defects including neural tube 

patterning defects and polydactyly (Ferrante, Zullo et al. 2006) and (Hoover, 

Wynkoop et al. 2008).  

The JBTS mouse models with abnormal Gli processing in neural tube patterning 

and limb morphology include; the Ftm-/- mouse model representing mutations in 

JBTS6/NPHP11; the Tctn1-/- mouse model representing JBTS13 mutations, the 

Tctn2 mouse model and the Tmem231-/- mouse model. These all showed 

abnormal Gli processing which were linked to Shh signalling defects (Table 1.6).  

NPHP/JBTS mutations which have been associated with defective Wnt or Shh 

signalling have mostly been identified in the developing neural tube, in the brain 

or MEFs (Table 1.6). However, to date there are no reports of which signalling 

pathway may be influencing the juvenile form of NPHP associated with known 

NPHP/JBTS genes. 
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1.17 CEP290 mutations and Cep290 animal models  

A broad range of ciliopathy phenotypes are caused by CEP290 mutations 

(Aguilar, Meunier et al. 2012), therefore a novel Cep290 mouse model would be 

an ideal model to study the molecular mechanisms associated with the 

NPHP/JBTS phenotype caused by mutations in the Cep290 gene.  

The number of identified mutations in the CEP290 gene is continuously rising 

and a CEP290 database has been generated to accumulate the mutations in 

one online resource http://medgen.ugent.be/cep290base/overview.php .The 

majority of CEP290 mutations identified in patients are truncating mutations 

(Coppieters, Lefever et al. 2010) hence a novel mouse model with a truncated 

mutation in the Cep290 gene is required.  

To date there is only one Cep290 mouse model described in detail, known as 

the Rd16 mouse. In the Rd16 mouse model a 300 amino acid in-frame deletion 

of Cep290 exclusively causes retinal degeneration without any renal or 

cerebellum involvement, as the splicing mutation affects the eye tissue but not 

renal tissue (Chang, Khanna et al. 2006; Hildebrandt and Zhou 2007). 

Cep290 knockdown experiments in zebrafish resulted in defects of JBTS, 

comprising of retinal degeneration, cerebellar abnormalities with an abnormal 

mid-brain to hindbrain malformation associated with hydrocephaly and 

pronephric cyst formation (Sayer, Otto et al. 2006; Schafer, Putz et al. 2008). 

http://medgen.ugent.be/cep290base/overview.php
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1.18 CEP290 and its sub cellular location in primary cilia 

Previous studies have demonstrated that Cep290 is required for cilium 

formation and that Cep290 is located in the transition zone of cultured mouse 

neural progenitor cells (Aguilar, Meunier et al. 2012), hTERT-RPE1 cells and 

from Inner medullary collecting duct 3 (IMCD3) cells (Tsang, Bossard et al. 

2008; Garcia-Gonzalo, Corbit et al. 2011; Sang, Miller et al. 2011). In the G0 

phase CEP290 was found on both the daughter and mother centriole of the 

primary cilia assembly in transfected human cells (Tsang, Bossard et al. 2008).  

Cep290 expression was previously detected in the connecting cilia of rod cells 

of the mouse retina (Chang, Khanna et al. 2006; Sayer, Otto et al. 2006) and in 

olfactory sensory neurons, Cep290 was also found to localise to the dendritic 

knobs (McEwen, Koenekoop et al. 2007). Hence this suggests that JBTS 

patients with CEP290 mutations may be caused by ciliary defects but they have 

not proven it. There is still no evidence of the exact mechanism (whether ciliary 

defects and/or signalling through the cilium are involved) that is defective in 

NPHP patients from CEP290 mutations.  
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1.19 CEP290’s interacting partners. 

In epithelial cells, CEP290 was found to interact with ATF4/CREB2, a 

transcription factor known to be implicated in cAMP- dependent kidney cyst 

formation (Sayer, Otto et al. 2006). cAMP pathway is thought to play a role in 

cell proliferation, stimulating apical chloride secretion and driving the 

accumulation of cyst fluid in kidney cyst formation in both ADPKD and ARPKD 

renal epithelia (Calvet and Grantham 2001) and (Sweeney and Avner 2006).  

CEP290 interacts with several centrosomal and ciliary proteins (Coppieters, 

Lefever et al. 2010). Coimmunoprecipitation experiments using mouse or 

bovine retinal extracts showed that Cep290 is in a complex with dynactin 

subunits p150Glued and p50- dynamitin, kinesin subunit KIF3A, kinesin-

associated protein (KAP3), centriolar components γ-tubulin and pericentrin, 

centrin, pericentriolar material (PCM1), ninein, chromosomal partition protein 

(SMC)1, SMC3, retinitis pigmentosa GTPase regulator (RPGR0RF15) and 

RPGRIP1 (Chang, Khanna et al. 2006). 

CEP290 was also found to interact with CP110 (known to suppress ciliogenesis) 

and it is suggested that CP110’s main role in interacting with CEP290 is to keep 

CEP290 inactive in growing cells until cells are ready to undergo ciliogenesis 

(Tsang, Bossard et al. 2008). The same study also suggests that CEP290 

cooperates with Rab8a (a protein required for ciliary biogenesis to promote 

ciliogenesis (Yoshimura, Egerer et al. 2007) and (Tsang, Bossard et al. 2008). 

CEP290 was also found to specifically interact with CC2D2A at amino acids 

703-1130 which contain the coiled-coil domains 4-6 (Gorden, Arts et al. 2008). 

CC2D2A mutations were found in a subset of JBTS patients. CC2D2A encodes 

a coiled-coil domain with predicted structural similarity to RPGRIP1L/NPHP8 

(Gorden, Arts et al. 2008). Intriguingly CC2D2A mutations can also cause multi-

spectrum disorders which include BBS, JBTS, LCA and renal cysts (Arts, 

Doherty et al. 2007; Delous, Baala et al. 2007; Gorden, Arts et al. 2008). The C-

terminal region of CC2D2A is related to the CEP76 protein (Andersen, 

Wilkinson et al. 2003). This is significant as CEP76 was also found to react with 

CP110 (Tsang, Spektor et al. 2009) and it was found that CEP76 and CP110 

together to suppress cilia assembly (Spektor, Tsang et al. 2007). 
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Cep290 was found to be recruited to centriolar satellites along with BBS4 by 

PCM-1 which is required for the organisation of the cytoplasmic microtubule 

network (Kim, Krishnaswami et al. 2008). Cep290 was also found to bind 

RPGRORF15 in the Rd16 mouse leading to aggregation of RPGRORF15 in the 

inner segments and redistribution of rhodopsin and arresting throughout the 

plasma membrane (Chang, Khanna et al. 2006). Another example of CEP290 

interacting with a protein associated with a ciliopathy disease is NPHP5. 

NPHP5 was shown to specifically bind to a region of CEP290 encompassing 

both the coil coiled 3 domains and part of the SMC homology domain (Schafer, 

Putz et al. 2008). From these examples it is clear that CEP290 is required for 

ciliogenesis and therefore it is an important gene to investigate using a novel 

mouse model. 

1.20 Expression patterns of CEP290 in human embryonic and 

fetal tissue 

Recently we have shown that CEP290 expression is prominent in the spinal 

cord, the developing cerebrum, choroid plexus, the developing hindbrain and 

the retina in human fetal embryos (Cheng, Eley et al. 2012). 

CEP290 expression was also observed in the developing renal collecting duct 

tubules and glomeruli of human fetal embryos (Cheng, Eley et al. 2012) . 

Therefore mutations in the CEP290 gene (leading to a loss of CEP290 function) 

could result in defects in the normal development of collecting duct tubules.  
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1.21 The normal physiology of collecting duct tubule (CDT) 

cells are required to aid in understanding disease 

pathology of NPHP. 

Some NPHP phenotypes are characterised by collecting duct cysts (Hildebrandt 

and Otto 2000) which are hypothesised to arise due to altered fluid and 

electrolyte transport in the collecting duct (Saigusa, Reichert et al. 2012).   

In using animal models and collecting duct tubule (CDT) cell lines derived from 

these animal models, an insight into understanding the physiological role of the 

collecting duct tubule in the kidney has been accomplished.  

The CDT is the final site of renal regulation of Na+ and water balance, with the 

vasopressin responsive aquaporin 2 (AQP2) water channel playing an important 

role (Rohatgi, Greenberg et al. 2003). AQP2 expression is localised to the 

apical cell membrane of the collecting duct system in the presence of 

vasopressin/anti-diuretic hormone (Devuyst, Burrow et al. 1996). Vasopressin 

binds to the basolateral membrane resulting in intracellular cAMP levels 

increasing the phosphorylation of AQP2 by cAMP- dependent protein kinase, 

AQP2 then fuses to the apical membrane causing the cell to be water 

permeable (Sands, Naruse et al. 1997).   

Within the CDT, Na+ is reabsorbed from the urinary space into principal cells 

through the apical ENaC where it is pumped out of the cell at the basolateral 

membrane in exchange for K+ via the Na+-K+-ATPase (Garty and Palmer 1997; 

Satlin 1999). ENaC aids in maintaining fluid homeostasis and blood pressure 

under the control of aldosterone (via the RAAS system) acting on the 

mineralcorticoid receptor (Canessa, Schild et al. 1994; Garty and Palmer 1997). 
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1.22 ARPKD CDT cell lines previously studied 

Numerous ARPKD CDT cell line models have been generated.An example of 

an ARPKD CDT cell line study involved the generation of conditionally 

immortalised cells from fetal kidneys diagnosed with ARPKD renal cysts where 

they showed that Na+ absorption (through ENaC expression) is increased in the 

CDT by at least twofold greater than wild type CDT cells (Rohatgi, Greenberg et 

al. 2003). 

In the orpk ARPKD mouse model CDT cells were isolated and cultured 

confirming that Na+ absorption was up regulated in an ARPKD model (Olteanu, 

Yoder et al. 2006). Such studies indicate that ENaC mediated sodium 

absorption is an important ion transport pathway which when disrupted may 

influence the development of cysts (Zheleznova, Wilson et al. 2011). 

1.23 Using animal models to test potential target ADPKD 

drugs. 

From the use of studies determining the physiological state of CDT cysts, a 

target V2 receptor antagonist drug called OPC-31260, was found to lower renal 

cAMP and reduce cystogenesis,  i.e slow the effect of PKD in three animal 

models of ADPKD and ARPKD which included the PCK rat (ARPKD) (Gattone, 

Wang et al. 2003; Wang, Gattone et al. 2005), pcy mouse (NPHP3- adolescent 

NPHP) (Gattone, Wang et al. 2003) and the Pkd2-/tm1Som mouse 

(ADPKD)(Torres, Wang et al. 2004) as reviewed by (Torres 2004; Nagao, 

Kugita et al. 2012).  

Another V2 receptor antagonist drug the OPC-41061, (a more potent V2 

antagonist than the OPC-31260 for humans) was also tested in PCK rats to 

confirm that this antagonist also lowers renal cAMP and slows the effect of PKD. 

The conclusion from the OPC-41061 PCK rat study was that OPC-41061 is an 

effective V2 receptor antagonist as it slows cyst progression in PCK rats and 

the study suggested that this drug should be used in ADPKD clinical trials 

(Wang, Gattone et al. 2005).  

Peroxisome proliderator-activated receptor (PPAR)- γ agonist are pharmalogical 

agonists which inhibits growth by causing the cell cycle to arrest, by down 

regulating the ERK/mTOR pathway and decreasing inflammation and fibrosis by 
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downregulation of TGF-β. PPAR- γ agonists has been found to improve animal 

models of PKD (Yoshihara, Kurahashi et al. 2011; Nagao and Yamaguchi 2012; 

Yoshihara, Kugita et al. 2012). 

The receptor tyrosine kinase (RTK) pathway when activated stimulates the 

mitogen-activated protein kinase (MAPK) components, Raf, MEK and ERK 

which were increased in the number of cyst-lining cells in the kidneys of Cy rats 

(ADPKD) (Nagao, Yamaguchi et al. 2003), PCK rats (Nagao, Nishii et al. 2006), 

pcy mice (Omori, Hida et al. 2006) and jck (Smith, Bukanov et al. 2006) mice. 

Treatment with tyrosine kinase inhibitors decreased PKD progression in the Cy 

rat and the orpk and bpk mouse models (Richards, Sweeney et al. 1998; 

Sweeney, Chen et al. 2000; Torres, Sweeney et al. 2003). 

A somatostatin drug called octreotide (known to inhibit cAMP) was given to PCK 

rats to inhibit renal cyst growth. The study found that octreotide inhibited cAMP 

levels and slowed cyst growth. The kidney weight and cyst volume from PCK 

rats treated with octreotide were reduced, concluding that octreotide is a 

potential drug for treating ADPKD (Masyuk, Masyuk et al. 2007). 

Interestingly by increasing water intake, reduced intracellular cAMP was evident 

through reduction of plasma levels by vasopression and therefore decreased 

the progression of PKD in the PCK rat (Nagao, Nishii et al. 2006). Therefore 

increasing water intake could potentially aid in decreasing the progression of 

PKD in coherence with other target therapies. 
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1.24 Treating PKD patients 

Currently there are no drugs which are suitable for treating renal cysts in 

ADPKD, ARPKD and NPHP. Patients with PKD are currently “managed” by 

controlling blood pressure and cardiovascular management as 40% of PKD 

patients have high blood pressure http://www.pkdcure.org/research/clinical-

trials/blood-pressure.  

Rapamycin is a pharmaceutical drug which has been found to inhibit the mTOR 

pathway (Sabers, Martin et al. 1995). An increase in kidney volume was found 

in patients treated with rapamycin (Stallone, Infante et al. 2012) (which is also 

consistent with the decline of GFR when the kidney volume reaches 1500ml 

(Walz, Budde et al. 2010)). There were also a number of side effects associated 

with rapamycin treatment which include hyperlipidemia, pneumonia, oral ulcers, 

and oedema. In higher doses of rapamycin treatment (3ng/ml) a reduction in 

cyst volume was evident however it was concluded that it does not significantly 

affect the progression of ADPKD (Stallone, Infante et al. 2012). 

Everolimus is another mTOR inhibitor and has been recently used in a clinical 

trial involving 433 patients with ADPKD. It was found that Everolimus slowed 

kidney volume but had no effect on the cystic phenotype. There were also a 

number of side effects associated with the use of everolimus which include 

leukopenia, thrombocytopenia, hyperlipidemia, increased cholesterol levels and 

angioedema to name a few, therefore this drug is not suitable for treating 

ADPKD patients (Walz, Budde et al. 2010). Another 2 clinical trials using a 

mTOR inhibitor called Sirolimus also found similar results to rapamycin and 

everolimus treatments confirming that mTOR inhibitors alone are not suitable 

for treating PKD (Serra, Poster et al. 2010) and (Perico, Antiga et al. 2010). 

Octreotide (a somatostatin agonist) was recently used in an ADPKD clinical trial. 

ADPKD patients treated with octreotide had minimal changes in kidney volume 

in response to octreotide as well as minimal changes in glomerular filtration rate 

although they did see a reduction in cyst growth. The adverse side effects 

included hair loss, diarrohea, abdominal cramps, nausea, vomiting dizziness 

and headaches. The study concluded that combination therapies would be 

required and that longer and larger clinical trials would also be required to 

establish the long term efficacy of octerotide (Hogan, Masyuk et al. 2010). 

http://www.pkdcure.org/research/clinical-trials/blood-pressure
http://www.pkdcure.org/research/clinical-trials/blood-pressure
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A phase III clinical trial using Tolvaptan (also known as OPC-41061) in ADPKD 

patients has recently been completed. Tolvaptan is a vasopressin V2-receptor 

antagonist (Shiba and Yokoyama 2012). The results of the tolvaptan 3 year 

clinical trial show a slowed increase in renal volume and decline in renal 

function (when measuring serum creatinine levels) when compared to a placebo, 

overall slowing the rate of disease progression. However, there have been 

adverse side effects of tolvaptan seen in the trial which include elevated liver 

enzyme levels and events related to aquaresis (excretion of electrolyte-free 

water) which contributed to a high discontinuation rate (Torres, Chapman et al. 

2012).  

The results from the clinical trials highlight that other target therapeutic drugs 

are required in order to manage PKD at an earlier time point in the disease 

course, in order to give the juvenile NPHP patients a better standard of living. 

Of note, the patients in the clinical trials above were 18 yrs old and older 

http://www.pkdcure.org/research/clinical-trials.  

Blood pressure maintenance is crucial for slowing the progression of PKD. 

Currently there are 2 stage 3 clinical trials in the USA recruiting 8-21 yr old 

patients to test the effect of Statin therapy on PKD disease progression. Statins 

targets the angiotensin II pathway reducing hypertension (Cadnapaphornchai, 

George et al. 2011). This is the only drug which is currently and has ever been 

used in clinical trials for patients younger than 18 yrs of age with PKD. As the 

clinical trial is still ongoing no results are available as of yet. 

As mentioned earlier increased water intake in the PCK rat decreased the 

progression of PKD. A pilot study was recently carried out in 8 ADPKD patients 

to determine if increased water intake would reduce PKD progression it is 

thought that this will aid in slowing the disease however it will not cure the 

disease (Wang, Creed et al. 2011). 

http://www.pkdcure.org/research/clinical-trials
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1.25 Aims of this study  

Currently there are no suitable therapies for treating juvenile NPHP. Also there 

are no representative animal models of juvenile NPHP. There are published 

articles of Nphp mouse models with defective Shh and Wnt signalling in the 

neural tube, MEFs and limb tissue. However these signalling pathways have not 

been investigated in the early stages of a cystic phenotype in renal tissue of 

Nphp mice. 

This study aims to focus on; 

1. Generating a novel Cep290 NPHP mouse model and a CDT cell line 

model derived from this novel Cep290 NPHP mouse model. 

2. Investigate and resolve if there is defective Shh and or Wnt signalling 

implicated in the early stages of a cystic phenotype in this novel juvenile 

NPHP mouse model. 

3. To identify abnormalities prior to overt cyst formation; at the earliest 

stages of disease 

4. Provide a novel juvenile CDT cell line and mouse model for potentially 

testing new target drugs prior to an overt cystic kidney phenotype.  
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Chapter 2 Materials and Methods 

A range of molecular techniques, histological techniques and tissue culture 

techniques were employed in this study. These techniques were employed in 

order to characterize a novel Cep290 mouse model and to investigate possible 

signaling pathway defects associated with juvenile NPHP. The tissue culture 

techniques were utilised on a collecting duct tubule cell line isolated from the 

Cep290 mice and this cell line was used to test the effects of a potential Shh 

therapeutic agonist purmorphamine. 

2.1 DNA extraction. 

Genomic DNA was extracted from mouse ear clips/cell pellets after boiling in a 

lysis solution at 95°C for 30 min in 100µL of 25mM NaOH;0.2mM ethylene 

diamine tetra acetic acid (EDTA). The DNA was neutralised using 100µL of 

40mM Tris-HCl at pH 5.0. 5µL of DNA was then added to each PCR reaction 

required.  

2.2 Mouse genomic DNA extraction. 

Mouse ear clips/cell pellets were lysed in 25mM NaOH/0.2mM EDTA (typical 

volume 100ul) at 95°C for 30 min. The reaction was neutralised with an equal 

volume of 40mM Tris-HCl pH 5.0.  

2.3 Genotyping, Polymerase Chain Reaction (PCR) 

Genotyping was required to distinguish between A) Cep290 wild type, 

heterozygous (will have one copy of the wild type and one copy of the mutant 

DNA) and homozygous animals and B) Immortal (H-2Kb-tsA58) wild type and 

heterozygous animals. DNA extracted from transgenic mice was amplified from 

Genomic DNA (Table 2.1 for oligonucleotide primers used for genotyping.) The 

immorto mouse primers used were designed by (Kern and Flucher 2005). The 

Cep290 primers were designed using online tools i.e http://frodo.wi.mit.edu/  

 

 

 

http://frodo.wi.mit.edu/
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Gene 
Name 

Forward 
Oligonucleotide 

Primer 

Reverse Oligonucleotide 
Primer 

Predicted 
DNA bp 
length 

Cep290 F4 5’-CATGTCTGCCTCCTTTAGTG-3’ 
CEP290 R2   

5’-GGCCTGCTAAACCTGAAC-3’ 
Wild type 
(550bp) 

Cep290R5 5’-CATGTCTGCCTCCTTTAGTG-3’ 5’-CACTTCACATGGTATTGCTC-3’ 
Mutant 
(300bp) 

Immorto_wt 5’-GATCTGCCTGAGGTGTTACTTG-3’ 5’-GGATGGCATCACTAGTCATGAC-3’ 
Wild type 
(509bp) 

Immorto_tsA 5’-AGTCCTCACAGTCTGTTCATGATC-3’ 5’-GGATGGCATCACTAGTCATGAC-3’ 
Mutant 
(300bp) 

Table 2.1  Cep290 and Immorto mouse genotyping primers.  
Forward and reverse primer pairs for identifying the genotype of Cep290 and 
Immorto mice. The PCR reactions including annealing temperatures are shown 
in section 2.3 

2.4 PCR protocol 

A typical PCR reaction consisted of 50-100ng of DNA, 10pmol of each primer 

and Taq PCR Mastermix provided by Qiagen (cat # 201443) with a final 

concentration of 1.5mM MgCl2 and 200µM of each dNTP). Cycling conditions 

were as follows; 95°C for 3 min, 94°C for 5 s, 57°C for 1 min, 72°C for 1 min for 

30 cycles, 72°C for 10 min and a final hold of 4°C. The annealing temperature 

step of 57°C was adjusted according to the melting temperature of each primer 

pair. A 4°C hold was required to stabilise the PCR product and to prevent 

degradation.  

2.5 Agarose Gel Electrophoresis 

PCR products were analysed using agarose gel electrophoresis. Typically 1X of 

loading buffer (New England Biolabs cat # B7021S) was added to 50ng of PCR 

reaction and loaded on a 2% w/v agarose gel (NBS biological Agarose Low 

EEO cat # NBS-AG500) with 1X TAE. A 2% gel was generally preferred as the 

products were approximately 200bp-600bp in length. Gel red was added to 

agarose prior to pouring the gel for casting to visualise the DNA bands. 100 bp 

ladder (New England Biolabs cat # N3231L) was also included to calculate the 

size of the DNA bands. DNA bands were sufficiently separated after 60 minutes 

at 100V. 

2.6 Ribosomal Nucleic Acid (RNA) extraction from Tissue. 

Whole mouse kidney was isolated and homogenised in 500µl - 3mls TRIzol® 

reagent (the amount required depended on the size of the tissue) 

(Invitrogen,Cat# 15596-026) on ice for  ~2 min or until the tissue was disrupted. 

The excess kidney and insoluble material was pelleted following centrifugation 
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at 12,000g for 10 min at 4°C and the supernatant was transferred to a new 

screw cap tube. For every 1ml of TRIzol used to disperse the tissue, 200µL of 

chloroform reagent (Sigma, cat # C2432-25ml) was added to the sample 

followed by vigorous agitation by hand for 10 s. The sample was immediately 

incubated for 3 min at room temperature followed by centrifugation at 12,000g 

for 10 minutes at 4°C to separate the organic phase from the aqueous phase. 

The aqueous phase (the supernatant) was transferred to a new screw cap tube 

and RNA precipitation occurred by adding 500µL (amount relative to 1 ml of 

TRIzol used for dispersing tissue) of Isopropanol. This was then incubated at 

room temperature for 10 min and centrifuged at 12,000g for 10 min at 4°C. The 

supernatant was removed and the pellet was resuspended in RNAse-free 70% 

ethanol to remove any excess isopropanol; followed by centrifugation at 7,500g 

for 5 min at 4°C. The supernatant was removed and the RNA pellet air dried for 

20 min. The RNA pellet was re-suspended in 20µL RNAse-free water, aliquoted 

and stored at -80°C. RNA was quantified (as ng/µL) at an absorbance of 260-

280nm using the Nanodrop spectrophotometer ND-1000. 

2.7 Illumina Microarray  

The Illumina MouseWG-6 v2 Expression BeadChip (Source Bioscience) was 

critical for studying an unbiased list of genes, their expression levels and their 

link to the molecular pathways influencing the cystic renal phenotype of this 

novel Cep290 mouse model. “More than 45,200 transcripts, along with the 

accessibility of testing six samples simultaneously, are available on a single 

BeadChip. The BeadChip content is derived from the National Center for 

Biotechnology Information Reference Sequence (NCBI RefSeq) database (Build 

36, Release 22), supplemented with probes derived from the Mouse Exonic 

Evidence Based Oligonucliotide set as well as exemplar protein-coding 

sequences described in the RIKEN FANTOM2 database.” 

http://www.illumina.com/products/mousewg_6_expression_beadchip_kits_v2.il

mn 

2.7.1 Illumina Microarray sample preparation. 

The left kidney from newborn Cep290+/+ and Cep290LacZ/LacZ mice were 

dissected and RNA was extracted as described in section 2.6 for microarray 

analysis. Total RNA (measured with the Nanodrop spectrophotometer ND-1000) 

http://www.illumina.com/products/mousewg_6_expression_beadchip_kits_v2.ilmn
http://www.illumina.com/products/mousewg_6_expression_beadchip_kits_v2.ilmn
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of 50-500ng in diethylpyrocarbonate (DEPC) treated H20 with an absorbance of 

1.9 or greater at 260-280nm was sent for microarray analysis. The quality 

control measures utilised by Illumina included the use of spectrophotometry 

(LSN-X-013) and an agilent bioanalyser (LSN-X-024) which analyses the 

sensitivity of total RNA in a sample.  

2.7.2 Normalisation of Illumina Microarray Data. 

The dataset generated from the Illumina MouseWG-6 v2 Expression BeadChip 

required normalisation to remove non-biological variation between samples and 

quality control tests (t-tests, fold changes) for differential expression using the 

Beadstudio analysis programme. A non-biological variation can vary between 

high back round on an array, low signal or poor stringency. A microarray 

experiment performance can be achieved by clustering samples using sample 

clustering (biological replicates from the same cellular origin will cluster 

together), box plots (a quick way to identify variation within an array- some 

samples may show abnormally high levels of signal intensities) or scatter plots 

(an asymmetrical scatter plot may be an indication of a poor quality sample). 

2.7.3 Data analysis 

Data Analysis and normalisation was kindly provided by Dr. Matthew Bashton 

from the Bioinformatics Support Unit, Newcastle University. Briefly data analysis 

was carried out using the R (bioconductor) lumi package with a superior 

normalisation method.  A list of genes was generated from the package with 

cut-offs adjusted to a p value of 0.05 and a fold change of 1.0 

2.8 Reverse Transcription (RT) 

Reverse transcription was required to produce cDNA from RNA using 

Superscript III® reverse transcriptase as per manufacturer’s instructions 

(Invitrogen cat # 18080-044). For each RT reaction 1µL of 10mM dNTPs mix 

(containing dATP, dCTP, dGTP, and dTTP) and 1µL of 0.1M random hexamers 

was added to 2µg of RNA. This solution was then incubated at 65°C for 5 

minutes to allow annealing of the random primers and immediately returned to 

ice. The following was then added to the RNA-primer mix;  

1. 4µL of 5X first strand buffer (containing 250 mM Tris-HCl [pH 8.3 at room 

temperature], 375 mM KCl, and 15 mM MgCl2),  
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2. 1µL of 0.1M DTT (DTT is required for RT and Taq polymerase as it 

reduces disulfide bonds),  

3. 40 Units of RNaseOUT™ (Invitrogen cat # 10777-019) [note 

RNaseOUT™ inhibits 200ng of RNase A by 50% using cytidine 2´, 3´ 

cyclic monophosphate (cCMP) as the substrate]  

4. 200 units of Superscript  III® (Invitrogen cat # 18080044) [note 

Superscript  III® is a purified enzyme from E.coli containing a modified 

gene of Moloney Murine Leukaemia Virus, this enzyme is used to 

synthesise cDNA of 100bp up to > 12kb from single stranded RNA.   

cDNA was then generated using the following cycling conditions; 50°C for 50 

min, 70°C for 15 min and cooled to 4°C. The cDNA was then stored and 

aliquoted at -20°C until required. 

2.9 Quantitative PCR (qPCR) 

Genes selected for analysis (from the list of genes generated using the lumi R 

package in section 2.7.3) were quantified using qPCR techniques. Primers were 

designed across exons before and after the probe sequence obtained from the 

microarray to remove and residual genomic DNA amplification. The software 

programme used to design the qPCR primers was 

http://www.ensembl.org/index.html (to obtain the cDNA sequence of the gene of 

interest) and http://frodo.wi.mit.edu/ (to design primers around the area of 

interest).  

10µL reactions for qPCR consisted of 1µg of cDNA, RNase free H20, 10µM of 

forward and reverse primers and 2X of sybergreen solution (Sigma cat # s4438) 

[sybergreen is a fluorescent dye that binds all double-stranded DNA and 

detection is monitored by measuring the increase in fluorescence at 494nm 

throughout the PCR cycle]. The conditions were as follows; 95°C for 15min, 

95°C for 30s, then for 39 cycles, 60°C for 30s, 72°C for 30s, 74°C for 10s with a 

final melt curve incubation consisting of 68°C for 10s up to 99°C for 10s. All 

primers used for qPCR can be found in Appendix 1. The housekeeping genes 

chosen were Gapdh and Hprt. The minimum information for publication of 

quantitative real-time PCR experiments (MIQE) guidelines were utilised as they 

were necessary to ensure the minimum set of requirements were adhered to 

http://www.ensembl.org/index.html
http://frodo.wi.mit.edu/
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enable other researchers to replicate our findings (Bustin, Benes et al. 2009; 

Bustin, Beaulieu et al. 2010; Bustin, Benes et al. 2011). RT-PCR was also 

carried out qualitatively. The PCR cycling conditions for this were as per section 

2.3. We used housekeeping genes consisting of Gapdh and Hprt (as above) to 

provide normalisation of the cDNA samples. Samples were compared to 

controls visually (when there were comparable differences by eye). 

2.10 Mouse Husbandry. 

Cep290 mice were generated using customised ES cell lines obtained from the 

Sanger Institute Gene Trap Resource (SIGTR). Cep290LacZ/+ animals were 

maintained on the C57BL/6J and the129/Ola background (Charles River UK). 

Litter frequency and back ground generations used can be seen in chapter 3 

characteristics of a novel Cep290 mouse model.  

2.11 Tissue preparation for histology 

Mouse tissues were dissected and fixed in 4% paraformaldehyde/PBS(PFA) 

(Sigma cat # 158127) at 4°C for various durations of time depending on the age 

of the tissue (Table 2.2), the type of tissue sample (liver/eye were stored for 1 

week/overnight) and if X-gal staining (10 min) was to be applied on the tissue. 

Eye samples were not embedded in wax (Section 2.11.2) 

Incubation 
Required 

Newborn 
Kidney/ 

Eye tissue 

2 week old 
Kidney 

1 month 
old  

Kidney 

6 month 
old 

Kidney 

1 year  
old  

Kidney/Liver   

Temperature  
Required 

4% PFA Overnight 2 nights 3 nights 5 nights 1 week 4°C 

 PBS wash 5min (3 X) 5min (3 X) 5min (3 X) 5min (3 X) 5min  (3 X) Room Temp 

50% 
EtOH/ddH20 

1h (X2) 2h (x2) 3h (x2) 5h (x2) 5h(x2) Room Temp 

70%  
EtOH/ddH20 

1h (X2) 2h (x2) 3h (x2) 5h (x2) 5h(x2) Room Temp 

95% 
EtOH/ddH20 

1h (X2) 2h (x2) 3h (x2) 5h (x2) 5h(x2) Room Temp 

100% 
EtOH/ddH20 

1 h (X2) 2 h and O/N 3 h and O/N 
5 h  

and O/N 
5 h 

and O/N 
Room Temp 

100% 
Histoclear 

20min(x2) 20min(x2) 30min(x2) 1h (x2) 1h (x2) Room Temp 

Histoclear * 
/ Wax 

30min 40min 40min 1h 1h 
Heat at  
60-65°C 

Wax  
30 min(x6) 40 min(x6) 40 min(x6) 1h(x6) 1h (x6) 

Heat at  
60-65°C 

Table 2.2  Paraffin wax embedding protocol for various kidney tissues. 
All kidney tissues are fixed in 4% PFA for various times depending on the age and size of the 
tissue. The renal tissues are then processed through a series of EtOH increments with a final 
immersion in Histoclear before hot paraffin wax is added to start the embedding process. The 
incubation times for an aged matched kidney are clearly labelled from the 4%PFA stage through 
to EtOH washes, histoclear incubation and finally wax embedding. * Histoclear was obtained 
from National Diagnostics cat # HS-200. Samples were then embedded in paraffin in a 
dispomould (Cell Path cat # GAD 1502 O2A) and left to solidify overnight at 4°C. O/N Overnight.  
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The renal tissue in paraffin blocks were trimmed and 8μM tissue sections were 

cut using a microtome (Leica Model # RM 2235) The sections were transferred 

to a 37°C ddH20 waterbath where they were stretched out (Thermo Scientific 

cat # 12638566) and then retrieved for adherence to the superfrost plus slides 

(VWR 631-0447. The slides were then left at room temperature overnight to 

remove any residual H20. Superfrost plus slides have a permanent positive 

charge which aids in adhesion of the tissue to the slides. 

2.11.1 Whole mount X-gal staining. 

The Cep290 gene trap contains a β-galactosidase reporter gene. β-

galactosidase expression in various tissues of the Cep290 mouse can be 

visualised by X-gal staining. X-gal is a chemical analog of lactose that 

hydrolyses to the β-galactosidase enzyme. Fixed mouse tissue was 

permeabilised in 0.1M X-gal wash buffer (containing 0.1M phosphate buffer 

pH7.3, 0.01% Na-deoxycholate, 0.02% Nonidet-P40 and 2mM MgCl2) for 3x15 

minutes. Tissue samples were then stained in X-gal staining solution (10mM 

postassium-ferrocyanide, 10mM ferricyanide and 1mg/ml X-gal in 0.1M X-gal 

wash buffer) overnight at 37°C in the dark. X-gal itself is colourless however in 

the presence of an active form of β-galactosidase and ferrous and ferric ions 

(which provide the electrons for the dimerisation and oxidation reactions) a 

stable blue product forms. The pH of the staining and wash solution is critical at 

pH7.3 to allow penetration of the X-gal solution into the tissue samples. When 

overnight staining was complete the tissue specimens were washed in 0.1M X-

gal wash buffer (3 x 30min washes or until the solution no longer turned yellow 

from the tissue specimens), fixed in 4% PFA overnight at 4°C and stored at 4°C 

in PBS. Tissue samples were then processed for paraffin embedding. 

2.11.2 OCT embedding 

Mouse tissue samples were fixed at 4°C for 1h in 4% PFA and embedded in 

Optimal cutting temperature media (OCT) (obtained from Thermo Scientific cat 

# LAMB/OCT) on dry ice for 20-25min. 8μM sections were cut using a cryostat 

(Microm AG Model # HM560) and mounted on to Superfrost plus slides (VWR 

631-0447). The sections were stored at -20°C for short term storage and at -80° 

with a desiccator (for optimal preservation) inserted into each slide box for long 

term storage until immunofluorescence staining was required. Prior to 
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immunofluorescene and Haematoxylin and Eosin (H&E) staining OCT sections 

were brought to room temperature for 1h. 

2.12 Histology methods. 

2.12.1 Brain MRI Imaging. 

As described in section 2.11 Cep290 brain tissues were fixed in 4% PFA at 4°C 

for various times depending on the size of the brain tissue (Table 2.2 for times) 

and then stored in PBS. MRI processing and imaging was carried out by Dr. 

Pete Thelwall at the Newcastle Magnetic Resonance Centre, Newcastle 

University. The processing involved immersing fixed mouse brains in a 10% 

neutral buffered formalin solution containing 10 mM gadoteric acid (Dotarem, 

Guerbet, Shirley, UK) for a period of at least 4 weeks to allow equilibration of T1 

contrast agent through the brain. Samples were then removed from fixative 

solution and blotted dry, and immersed in a sealed cylindrical plastic container 

perfluorotributylamine (a susceptibility-matched solution that does not contribute 

signal to an MRI image). MRI of brain samples was performed on a 7T 

horizontal bore preclinical scanner (Varian Inc, Yarnton, United Kingdom) 

equipped with a 25mm diameter 1H birdcage coil (Rapid Biomedical, Rimpar, 

Germany). Images were acquired using a T1-weighted 3D gradient echo 

sequence (TE = 9.5 ms, TR = 35 ms, FOV = 20.48 × 20.48 × 20.48 mm, 

acquisition matrix = 512 × 512 × 512) with a resultant isotropic image resolution 

of 40 µm. 6 averages were acquired, resulting in an acquisition time of 15.3 

hours. Multiplanar reformatting of resultant datasets was performed using OsiriX 

(http://www.osirix-viewer.com/) [ OsiriX: An Open-Source Software for 

Navigating in Multidimensional DICOM Images. J Digit Imaging. 2004 

Sep;17(3):205-216] to generate coronal, sagittal and transverse views of brain 

structure. 

2.12.2 Rehydrating kidney tissues embedded in paraffin. 

Rehydration of paraffin embedded sections was required prior to histological 

staining. Slides were sequentially added to 100%, 90%, 70%, 50% EtoH/ddH20 

for 2 min each, with a final wash in ddH20 for 5 min.  

http://www.osirix-viewer.com/
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2.12.3 H+E staining and Mounting coverslips. 

H+E staining is a widely used stain to identify any structurally abnormalities in a 

tissue sample. The haematoxylin stains the nuclei a blue purple colour and 

eosin stains the collagen and cytoplasm red. Slides were immersed in Harris 

Haematoxylin (Thermo Fisher Scientific cat # Lamb/230-D) for 30 seconds, 

rinsed in ddH20 until the ddH20 ran clear, followed by immersion in 1% Aqueous 

Eosin (Thermo Fisher scientific cat # Lamb/100-D) for 5min and rinsed again in 

ddH20 until ran clear. Tissue sections were then dehydrated through a series of 

EtoH (30%, 50%, 70%, 90% and 100%) for 2 min each with a final rinse in 

histoclear for 10min A drop of DPX (A mixture of Distyrene, a plasticizer, and 

xylene) mountant (VWR cat # 360294H) was added to the sections and a 

coverslip placed over the top. 

2.12.4 Trichrome Masson Staining 

Trichome Masson was used to detect collagen fibers in the kidney specimen. 

Trichome Masson staining was employed as per manufacturer’s instructions 

(Sigma cat # HT15-1KT) to detect abnormalities in the connective tissue of the 

kidney, particularly to identify fibrosis in the renal tissue of Cep290LacZ/LacZ mice. 

Sections were immersed in haematoxylin for 30s, rinsed in ddH20 followed by 

biebrich scarlet acid fusion staining for 5min, rinsed in ddH20, immersed in 1 

part Phosphomolybdic acid solution to 1 part phosphotungstic acid solution, 

quickly followed by 5min in Aniline blue solution. Slides were then placed in 1% 

acetic acid solution for 2min subsequently coverslips were mounted with DPX 

onto the slides. 

2.12.5 Sirius Red Staining 

Sirius Red was used to detect if fibrosis was evident in newborn kidneys 

samples by binding to all types of collagen. All stages of this protocol was 

performed at room temperature. Briefly paraffin wax sections were immersed in 

xylene for 10 min, 100% EtoH for 2 min, 95% EtoH for 2 min and rinsed in 

running water for 2 min before washing in 0.1% acetic acid for 2 min. Slides 

were then incubated in 0.1% Sirius red F3B for 1 h and washed twice in 0.1% 

acetic acid. Slides were then rapidly dehydrated in 3 washes of 100% EtoH at 

2min each and cleared in xylene for 10 min before mounting in Di-N-Butyle 

Phthalate in Xylene (DPX). 
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2.12.6 Nuclear Fast Red Staining 

X-gal stained tissue was counter stained with- nuclear fast red solution, (Sigma 

cat # N3020) to distinguish between LacZ (blue) expression and nuclei (red) 

expression. Sections were rehydrated as described in section 2.12.2, immersed 

in nuclear fast red for 5 min, rinsed in ddH20, dehydrated and mounted on 

coverslips as described in section 2.12.3 Microscopy. 

2.13 Light Microscopy 

All histology staining samples were visualised with a Zeiss Axioplan microscope. 

Images were stained as .tif files with scale bars burned into each image and 

stored on a portable 1 tera byte hard drive and on the Newcastle University 

hard drive system.  

2.14 Electron Microscopy Methods 

Processing and imaging techniques for both SEM and TEM were provided by; 

1. Dr. Kath White and Ms Tracey Davey, EM Research Services, Newcastle 

University 

2. Caroline Miller, Electron Microscopy Centre, IU School of Medicine, 

Department of Anatomy & Cell Biology, Indianapolis, Indiana. 

2.14.1 Scanning Electron Microscopy (SEM) 

Kidneys dissected from Cep290 mice were fixed at 4°C in 2% gluteraldehyde 

sorensons phosphate buffer solution (provided by Newcastle University EM 

services). Briefly samples were rinsed in Sorenson’s phosphate buffer several 

times, dehydrated in EtoH solutions (25%, 50%, 75% and 100% - 30 minutes 

each) with a final dehydration in C02 in a Baltec Critical point dryer. Specimens 

were mounted on aluminium stubs with Achesons Silver Dag and dried 

overnight. A Stereoscan 240 Scanning Electron Microscope was use employed 

and images were acquired using the Orion6.60.6 software (protocol provided by 

EM research services, Newcastle University).   

2.14.2 Transmission Electron Microscopy (TEM). 

Fresh Cep290 mouse kidney tissues were fixed at 4°C in 2% gluteraldehyde 

containing 0.1% sodium cacodylate with a secondary fix in 1% Osmium 
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Tetroxide for 1h at room temperature. Note the fixation (minimum overnight) 

time-span at 4°C depended on the size of the tissue for both SEM and TEM 

techniques.  

Samples were dehydrated through various acetone solutions, (25%, 50%, 75% 

and 100% - 30min each) infused with 25% resin in acetone, followed by 50%, 

75%, 100%  30min each and a final 100% resin in acetone for embedding at 

60°C for 24h. 

1µm sections were cut and stained with 1% Toluidine Blue in 1% Borax. 

Ultrathin sections (70nm) were then cut using a diamond knife on a Leica EM 

UC7 ultramicrotome. Sections were stretched with chloroform, thus eliminating 

compression and mounted on Pioloform filmed copper grids. 

The grids were examined on a Philips CM 100 Compustage (FEI) Transmission 

electron microscope and digital images were required using AMT CCD camera 

(Deben). 

2.15 Tubular basement membrane measurements 

The tubular basement membrane thickness was determined by taking 

measurements across three different areas of the tubule to determine a mean 

tubular basement membrane thickness. Statistical analysis methods (Section 

2.30) were then employed to determine the significance of the results. 

2.16 Immunofluorescent staining in Cep290 renal tissue. 

Cryosections were fixed in 4% PFA in PBS and then permeabilised with 0.5% 

triton/PBS (Sigma cat # X-100) for 10min prior blocking then incubated 

overnight with shaking at a speed of 24rpm in primary antibody diluted in 

blocking buffer at 4°C. The following day, the tissue specimens were washed in 

PBS for 20min, three times. Secondary antibody was applied for 1 hour at room 

temperature. After washing as previously described, nuclei were stained with 

VectorShield with 4’6-diamidino-2-phenylindole (DAPI) mounting media (Vector 

Laboratories H-1200). Tissue specimens were visualised with a Zeiss 

Axioimager 2 with Apotome microscope. The filter sets used are 488nm (FITC) 

and 594nm (Rhodamine). Antibodies used in this study along with their dilutions 

can be found in the appendice 2 and 3.  
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2.17 Breeding Cep290: H-2Kb-tsA58 mice to generate an 

immortal collecting duct cell lines 

The H-2Kb-tsA58 mouse line, a kind gift from Dr. Helen Arthur was crossed with 

the Cep290 mouse (described above) to generate double transgenic 

Cep290LacZ/LacZ:: H-2Kb-tsA58+/- and Cep290+/+:: H-2Kb-tsA58+/- mice. The 

transgene in these mice is usually dormant and can only be activated by 

culturing explanted cells at 33°C.  The tsA58 is activated permanently at 33°C in 

vitro specifically by the H-2kb promoter driven by interferon gamma (IFN–γ) 

within all cells previously expressing Cep290 under the control of the splice 

acceptor ribosomal re-entry site driving the Cep290 gene trap. All transgenic 

mouse lines were maintained on the inbred C57Bl6/J background (Charles 

River UK).  

All mouse work was performed under a personal licence (PIL No. 60/12787) 

granted from the Home Office (United 33 Kingdom) in accordance with the 

guidelines and regulations for the care and use of laboratory animals outlined 

by the Animals (Scientific Procedures) Act 1986.  

2.18 Cep290 CDT Cell Culture 

The Cep290LacZ/LacZ ::H-2Kb-tsA58+/- collecting duct cell lines were isolated from 

kidneys of one month old transgenic mice. Kidney samples were removed, 

sliced using a sterile scalpel and digested with 0.1% collagenase type II 

(Worthington Biochemical corportation cat # 41H12763) (0.5%wt/volume) in 

0.1% Bovine serum Albumin (Sigma cat # A2153) for 30min at 37°C. This cell 

suspension digest was then mixed in 1:1 dilution of (cortical collecting duct) 

CDT media as described by Bens et al.,(Bens, Vallet et al. 1999) (outlined in 

section 2.18.1) and plated onto 6 well plates coated with 10 mg/ml Dolichos 

Biflorus Agglutinin (DBA) (Sigma cat # L-2785) (10µg/ml in 0.1M NaHC03) 

overnight at 33°C. DBA specifically binds collecting duct principal and 

intercalated cells. Unbound cells were removed with gentle washing in fresh 

culture media added and cells were incubated at 33°C in 5% C02. 
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2.18.1 CDT media (Bens, Vallet et al. 1999) 

A specialised media was used to maintain CDT cells. This consisted of 

Dulbecco’s modified Eagle’s high glucose medium [DMEM] (Invitrogen cat # 

41966029) and Ham’s F12 (GIBCO cat # 21765029) media 1:1 (vol: vol), 

5μg/ml insulin (Sigma, culture grade, cat # I 1882), 50nM dexamethasone 

(Sigma, culture grade, cat # D 8893), 60nM sodium selenate (Sigma, culture 

grade, cat # S 9133), 5μg/ml transferrin (Sigma, culture grade, ref: T 1428), 

1nM Triiodothyronine (Sigma, culture grade, cat # T 5516), 10ng/ml Epidermal 

growth factor (EGF) from mouse (Sigma, culture grade, cat # E 4127), 20mM 

Hepes (GIBCO x100 concentrated, cat # 15630-056), 2mM glutamine (GIBCO 

cat # 25030024), 2% heat inactivated Fetal calf serum (GIBCO cat # 10106-

169), 1% penicillin/Streptomycin (Sigma cat # P4333) and 15μg IFN-γ 

(Invitrogen Recombinant mouse IFN-γ Cat # PMC4031) 

2.18.2 Maintenance of Cep290 CDT immortal cells 

CDT media was changed every 48-72 hrs to replenish the cells with nutrients 

and IFN-γ and cultures were passaged when approximately 70-80% confluent. 

Cells were briefly washed in PBS and then incubated in 0.05% trypsin- EDTA 

with phenol red (Invitrogen, Cat # 25300-- 40054) for 5 min at 33°C to dissociate 

cells from each other and the flask surface as confirmed by light microscopy. An 

equal volume of heat inactivated fetal calf serum was added to neutralise the 

trypsin. Trypsinised cells were then centrifuged at 500xg for 5 min and re-

suspended in CDT culture medium for continued growth or in recovery cell 

culture freezing medium (Life Technologies cat # 12648-010)  and stored for 

long term storage in liquid nitrogen. 

2.19 Purmorphamine treatment in Cep290 CDT cells 

Purmorphamine was previously shown to activate the Shh signalling pathway 

(Wu, Walker et al. 2004). Approximately 25,000 Cep290 renal collecting duct 

cells were seeded onto 6 well plates and grown to 80% confluency. Cep290 

collecting duct cells were then subjected to 2µM Purmorphamine/DMSO 

treatment for 72 hrs (DMSO was used as a negative control) and protein/RNA 

was then collected for analysis. In order to assess the role of the Shh pathway 

in Cep290 cells Gli3 Repressor and Activator levels were examined between 
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wild type and mutant cells (treated and untreated). Samples were compared to 

controls by visual examination.  

2.20 Hedgehog Pathway Inhibitior- 4 (HPI-4) treatment in 

Cep290 CDT cells. 

HPI-4 was previously shown to inhibit the hedgehog signalling pathway. 

Cep290 cells were treated with HPI-4 using the same dosage and controls as 

purmorphamine treatment (section 2.19). (Hyman, Firestone et al. 2009) 

2.21 Immunofluorescent labelling in Cep290 CDT cells.   

Approximately 25,000 Cep290 renal collecting duct cells were seeded onto 

coverslips plated on 6 well plates and grown to 80% confluency. Cells were 

either fixed in 100% methanol on ice for 3 minutes or in 4% PFA for 10 min at 

room temperature. Fixed Cells were then blocked in 5% BSA in PBS for 30 

minutes at room temperature. Immunofluorescence staining was then carried 

out as per section 2.16. 

2.22 Measuring cilia lengths in Cep290 CDT cells. 

Cep290 collecting duct cells were stained by immunofluorescent techniques as 

described in 2.21 with mouse acetylated tubulin to highlight cilia present in the 

cells. Z-stack images were taken using the Zeiss Axioplan. The cilia length was 

determined by noting the μM slice measurement at the tip of the cilia and at the 

end of the cilia and subtracting these two figures (where the tip is first in focus 

to where the end of the cilia is in focus). The significance of this data was 

assessed by using a student’s t-test to determine if the length of the cilia was 

statistically significant between wild type and mutant cells using a prism 

software programme graph pad http://www.graphpad.com/scientific-

software/prism/ . 

2.23 3D culturing of Cep290 CDT cells. 

Processing and imaging of Cep290 collecting duct cell 3D cultures was kindly 

provided by Dr. Rachel Giles, University Medical Centre Utrecht, Netherlands. 

3D cultures require extracellular matrix components (provided by Collagen I 

solution) and the hormone human growth factor in order to grow as tubular 

spheroids as described by Elia & Schwartz, 2009 (Elia and Lippincott-Schwartz 

http://www.graphpad.com/scientific-software/prism/
http://www.graphpad.com/scientific-software/prism/
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2009). Markers were used to identify adherence and tight junctions of the 3D 

spheroids. The markers used included; Zona occludens (Zo1) for tight junctions, 

β-catenin (for adherens junctions) and acetylated tubulin to identify if cilia were 

protruding in the apical layer of the epithelial cell. Identification of tubule 

morphology, the 3D cultures were treated as per section 2.19 and section 2.20 

(Elia and Lippincott-Schwartz 2009). 

2.24  Protein Extraction  

2.24.1 Whole cell protein extraction 

Cep290 collecting duct cells were grown to confluency on 6 well plates and 

treated as described in section 2.19 and 2.20 and rinsed in PBS to remove any 

floating dead cells, media especially BSA. 200µl of protein extraction buffer 

(90.75M Urea, 0.5M Tris pH 6.8, 20% SDS, 500µL β-mercaptoethanol and 50% 

glycerol in ddH20) was added and the cells were removed from the 6 well plate 

using a cell scrapper for 2min each.  

2.24.2 Whole tissue extracts 

For whole tissue extracts approximately 1mL (amount changed depending on 

size of tissue) [similar to section 2.6] protein extraction buffer was added and 

the tissue was homogenised to disperse the protein from the tissue on ice to 

reduce heat build up and denaturation. Samples were aliquoted and stored at -

20°C until required. 

2.25 Western blotting 

Western blotting was required to confirm knockdown of the gene trap at the 

protein level and also to analyse the molecular pathways which may play a role 

in Cep290 mutation of Joubert syndrome disorders 
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2.26 Acrylamide Gel preparation and separation of proteins 

Proteins were resolved by electrophoresis on 6%,10%, 12% and 15% 

polyacrylamide gels; (Table 2.3 for kDa size separation) 

Polyacrylamide 

Gel percentage 

Size 

separation 

range 

 

6% 50-200 kDa 

10% 25-200kDa 

12% 20-100kDa 

15% 10-50kDa 

Table 2.3  The protein sizes which resolve on 6%, 10%, 12% and 15% 
acrylamide percentage gels and a representative image of how the 
proteins separate on each gel.  
The protein sizes which can be resolved on 6%, 10%, 12% and 15% are clearly 
labelled. The 3rd column on this table is a visual representation of the proteins 
resolved on 6%, 10% 12% and 15% acrylamide gels. Section 2.26 describes 
how each % gel was made.  
 

Each acrylamide gel comprises of a resolving gel (1.5M Tris-HCL pH 8.8, 30% 

Acrylamide mix, 10% sodium dodecyl sulphate (SDS), 10% ammonium per 

sulphate and 0.003% Tetramethylethylenediamine) and an acrylamide stacking 

gel (1.5M Tris-HCL pH 6.8, 30% Acrylamide mix, 10% SDS, 10% ammonium 

per sulphate and 0.003% Tetramethylethylenediamine ) with a running buffer of 

Tris, Glycine and 20% SDS. The protein samples were denatured at 95ºC for 

5min and then resolved at a constant voltage of 200V until bands of the correct 

size were resolved. Separation was visualised using a Multi Spectra wide range 

protein ladder (Thermo scientific cat # 26634). 
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2.26.1 Transferring an acrylamide gel to a nitrocellulose membrane 

The resolved proteins were transferred from the acrylamide gel to a 

nitrocellulose membrane (sigma N7892). Figure 2.1 for transfer procedure 

 

Figure 2.1  Transferring an acrylamide gel to a nitrocellulose membrane.  
A representative figure of the layers required when transferring your acrylamide 
gel to a nitrocellulose membrane. The first part of the sandwich is the sponge, a 
filter paper is placed on top of this, followed by the acrylamide gel, then the 
nitrocellulose membrane, followed by another filter paper and with a final 
sponge to complete the sandwich.  
 

The transfer procedure involved immersing 2 sponges, 2 filter papers and a 

nitrocellulose membrane in ice-cold transfer buffer (25 mM Tris, 192 mM glycine 

and 10% methanol). The sandwich began with one of the sponges, followed by 

a filter paper, then the acrylamide gel, a nitrocellulose membrane another filter 

paper and the final sponge (Figure 2.1). Transfer was carried out at constant 

current of 350mA for 60min at 4ºC.  

2.27 Confirming the transfer of proteins to a nitrocellulose 

membrane 

Following transfer the nitrocellulose membrane was immersed in Ponceau 

(Sigma P7170) (Ponceau is a negatively charged stain which binds to positively 

charged amino acids of proteins transferred to the nitrocellulose membrane) 

and rinsed with ddh20 to remove excess ponceau staining that did not adhere to 

the proteins on the membrane. The position of the lanes were marked and 

divided as appropriate depending on the antibody to be detected.  



 

49 
 

2.28 Detecting a protein of interest on a nitrocellulose 

membrane  

The nitrocellulose membrane blot was blocked (to prevent non specific binding 

of proteins) in 5% Milk (Marvel original dried skimmed milk) containing a   

mixture of Tris-Buffered Saline and Tween (TBST) for 1-2 h at room 

temperature. All antibodies were diluted in the 5% Milk TBST solution and 

incubated with the membrane whilst shaking at room temperature for 1-2h or at 

4°C overnight (Appendix 3 for antibody dilution and incubation conditions). The 

membrane was then washed 3 times for 15min in TBST at room temperature 

with shaking of 60 rpm to remove any unbound antibody.  A horseradish 

peroxidase-conjugated (HRP) secondary antibody was then added to the 

membrane for 1h at room temperature. The membrane was washed in TBST as 

above to remove any unbound secondary. Enhanced Chemi-Luminescence 

(ECL) Western blotting detection solution was added to the blot (Thermo 

Scientific cat # 32109) for 5 minutes, excess detection solution was removed by 

blotting with paper and the proteins were visualized on an X-ray film. The X-ray 

film was scanned and saved as a jpeg image.   

2.29 Imaging storage and manipulation 

Histological and immunofluorescent images were saved as a TIFF file format 

and scale bars were added to each image when applicable. Adobe Photoshop 

was employed to stitch a series of images together in the case of whole kidney 

images when the kidney section was greater than P0. 

2.30 Statistical analysis 

Student’s t –test was used to analyse the length of cilia in 2 populations of cells, 

tubular basement membrane thicknesses between Cep290+/+ and 

Cep290LacZ/LacZ mice and the urine mean urine output between Cep290+/+ and 

Cep290LacZ/LacZ mice. Graphs were created using the GraphPad Prism software. 

The standard error of the mean was also calculated using GraphPad Prism 

software. All t-tests are two-tailed, unpaired mean+/- standard error of the mean. 
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Chapter 3 Characterisation of a novel Cep290 mouse 

model. 

3.1 Introduction 

The clinical phenotype of Cep290 pathogenic mutations varies markedly in 

patients ranging from the embryonic lethal MKS to BBS, JBTS, NPHP and LCA. 

These ciliopathy phenotypes typically affect the central nervous system, retina, 

kidneys and liver (Coppieters, Lefever et al. 2010).  

Children and adolescents are continuously growing and maturing until they 

reach sexual maturity. The therapies which are currently being suggested as 

treatments for ADPKD could cause devastating effects in children and 

adolescents. The mTOR inhibitor rapamycin for example is a drug which is 

currently been tested in clinical trials for ADPKD (See chapter 1). In various rat 

and mouse models of ADPKD rapamycin treatment reduced the size of renal 

cysts. Rapamycin is a powerful immunosuppressive and has anti-proliferative 

properties (Tao, Kim et al. 2005; Shillingford, Murcia et al. 2006; Wahl, Serra et 

al. 2006; Wu, Wahl et al. 2007). The adverse effects this drug may have on 

children who are still growing and not fully matured could be devastating and 

therefore limits its use in the paediatric setting.  

This chapter investigates the physiological appearance of a novel transgenic 

NPHP mouse model with a truncated mutation in the Cep290 gene. 

A novel Cep290 mouse model provides an opportunity to mimic the renal 

functional decline associated with NPHP, assess the molecular mechanisms of 

renal cystogenesis and evaluate potential therapeutic treatments for the 

paediatric population suffering with this debilitating form of renal failure.  

It is hoped that this study will provide the means of following this NPHP 

ciliopathy disease in an animal model that is genetically, anatomically and 

physiologically similar to human juvenile NPHP patients. Given the limitations of 

studying ciliopathies in juvenile patients, a good mouse model is invaluable in 

order to reveal targeted treatment approaches using new or existing therapies.  
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This chapter investigates the phenotypes/genotypes of novel Cep290 mutant 

mice (named Cep290LacZ/LacZ for this study) and ascertains whether the 

phenotypes observed are consistent with the patient forms of NPHP/JBTS.  

3.2 Aims   

1. In order to determine the effect of the gene trap insertion on the murine 

Cep290 gene, an analysis to determine the evolutionary conservation of 

Cep290 between mice and other model organisms was carried out. 

2. In order to confirm the precise location of where the gene trap was 

inserted in the Cep290 gene; RT-PCR and DNA genotyping was 

performed from tissue samples and ear clips were taken to identify 

Cep290+/+, Cep290LacZ/+ and Cep290LacZ/LacZ mice. 

3. In order to determine expression profiles of Cep290 in Cep290LacZ/+ mice, 

LacZ staining was utilised. Using LacZ staining, the expression of 

Cep290 in the cerebellum, retina and renal tissues was determined. 

4. In order to determine if there was a true JBTS phenotype occurring in 

Cep290LacZ/LacZ mice; the retina, renal, liver and brain tissues were 

examined. Cep290 mice were inbred on a 129/Ola mouse colony and a 

mixed C57Bl/6J mouse colony. Cep290 mice were also inbred up to the 

F6 generation on the C57Bl/6J mouse strain. The different mouse 

colonies were employed to determine whether the phenotype was 

influenced by genetic modifiers. 
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3.3 CEP290 

The human full length amino acid sequence transcript of Cep290 (a 290 kDa 

centrosomal protein) has 13 putative coiled coiled domains, a region with 

homology to chromosome segregation, a bipartite nuclear localization signal, six 

RepA/Rep+ protein Kinase inducible domain (KID) motifs, three tropomyosin 

homology domains (TM) and an ATP/GTP binding site motif A (Sayer, Otto et al. 

2006). (Figure 3.1).  To determine homology conservation of amino acids 

clustalW2 http://www.ebi.ac.uk/Tools/msa/clustalw2/ was used to align the 

mouse full length protein sequence with the human full length protein sequence. 

From this programme it was determined that the mouse and human full length 

proteins are 88% homologous. The predicted protein domains of CEP290 are 

conserved (>80%) across 5 species selected (M. musculus, R. norvegicus, C. 

lupus and H. sapiens), Figure 3.2.  

The Cep290 mouse model was generated from ES cells with which contained a 

“gene trap” from the Sanger institute gene trap library. Sequencing has 

confirmed that this gene trap is located at intron 24 of the Cep290 gene. (More 

detail on the generation of this Cep290 mouse model will follow in section 3.4). 

Therefore, given the site of the gene trap, it is predicted that Cep290LacZ/LacZ 

mice will not carry the SMC homology region the KID domain the bipartite 

nuclear localization signal (NLS-BP) and the P-loop (Figure 3.1). 

SMC is thought to be crucial for maintaining functional chromosomal 

segregation (Nasmyth and Haering 2005). The KID motifs are also involved in 

chromosomal segregation and cell cycle regulation (Sayer, Otto et al. 2006) . A 

disruption of the NLS-BP was also identified in the NPHP2 INVS model of cystic 

kidney disease. End stage renal failure occurred at 14 months of age in patients 

with mutations disrupting the NLS-BP of NPHP2 (Otto, Schermer et al. 2003). 

The KID domains mediate multiple cell signalling networks linked to cell growth 

and differentiation (Locascio and Donoghue 2013). The loss of the KID domain 

in Cep290LacZ/LacZ mice suggests that cell signalling mediation processes may 

no longer be functioning.

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Figure 3.1  Exon structure of (A) mouse and (B) human CEP290 cDNA and protein motif representatives (below exons) shown 
in relation to the position of the exons coding them. 
 

The human CEP290 gene measures 93.2kb and extends over 55 exons (Sayer et al., 2006). The CEP290 start codon in humans is 
located in exon 2 and the last codon is located at exon 55. The Cep290 mouse start codon is located in exon 1 and the stop codon is 
located in exon 53. The mouse Cep290 gene measures 80.6 kb and extends over 54 exons (Ensembl). 
CC ,coiled coil domain (yellow); TM, Tropomyosin (blue); KID (red); NLS-BP, bipartite nuclear localisation signal (green); P-loop (purple); 
Structural maintenance of chromosomes (SMC) homology (Orange) 
Human exon structure and protein TM, KID, NLS-BP and P-loop domains adapted from Sayer et al., 2006 and imported in the mouse 
protein motif accordingly. Coil-coiled domains for both mouse and human protein motifs obtained from Ensembl. 
The forward primer sequence (denoted as F4 >) was created at the start of exon 23 in the Cep290 gene. The gene trap was inserted in 
the intron prior to exon 24 of the Cep290 gene and thus the Cep290 gene is terminated after exon 23 in Cep290LacZ/LacZ mice due to the 
poly A tail inserted at the end of the gene trap.  
In order to identify Cep290LacZ/+ and Cep290LacZ/LacZ mice a reverse primer was generated to amplify a segment of the gene trap 
sequence analogous to the β-galactosidase sequence (denoted as <R5) the product size for identifying Cep290LacZ/LacZ mice is 330bp.  
In order to identify Cep290+/+ animals a reverse primer sequence was created at the start of exon 25 in the Cep290 sequence (denoted 
as <R2) the product size for identifying Cep290+/+ mice was in total 550bp. The Cep290LacZ/+ mice will amplify one copy of the Cep290+/+ 
product (550bp product) and one copy of the gene trap primer pair product (300bp) Image of genotyping results can be seen in Figure 
3.4 . (See methods section chapter 2 for primer sequences).
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A 

H. SAPIENS         1   MPPNINWKEIMKVDPDDLPRQEELADNLLISLSKVEVNELKSEKQENVIH   50 

M. MUSCULUS        1   MPPNIKWKELIKVDPDDLPRQEELADKLLISLSKVEVNELKNEDQENMIH   50 

R.NORVEGICUS       1   MPPNIKWKELIKVDPDELPRQEELADKLLISLSKVEVNELKNEDQENMIH   50 

C.LUPUS            1   MPPNINWKEIIKVDPDDLPRQEELADNLLVSLSKVEISELKTESQENVIH   50 

D.RERIO         1   MPAAADWRLLMGMDPEDLGDEDEKICDLILM---VKPRDLKADDSEKMIQ   47 

 

H. SAPIENS        51   LFRITQSLMKMKAQEVELALEEVEKAGEEQAKFENQLKTKVMKLENELEM  100 

M. MUSCULUS       51   LFRITQSLMKMKAQEVELALEEVEKAGEEQAKFENQLKTKVMKLENELEM  100 

R. NORVEGICUS     51   LFRITQSLMKMKAQEVELALEEVEKAGEEQAKFENQLKTKVMKLENELEM  100 

C.LUPUS           51   LFRITQSLMKMKAQEVELALEEVEKAGEEQAKFENQLKTKVMKLENELEL  100 

D.RERIO        48   LFRISQTLLRMKLDEIKCAYEVVDSAGAEQARIENELKAKVLKLESELEM   97 

 

H. SAPIENS       101   AQQSAGGRDTRFLRNEICQLEKQLEQKDRELEDMEKELEKEKKVNEQLAL  150 

M. MUSCULUS      101   AQQSAGGRDTRFLRDEIRQLEKQLEQKDRELEDMEKELDKEKKVNEQLAL  150 

R. NORVEGICUS    101   AQQSAGGRDTRFLRDEIRQLEKQLEQKDRELEDMEKELDKEKKVNEQLAL  150 

C.LUPUS         101   AQQSAGGRDTRFLRDEIRQLEKQLEQKDRELEDMEKELEKEKKVNEQLAL  150 

D.RERIO  098   AQRVMGGGDKHFLRDEIRQLESHLERKEKEVTQLEKEMGKERKSNEELAL  147 

 

H. SAPIENS       151   RNEEAENENSKLRRENKRLKKKNEQLCQDIIDYQKQIDSQKETLLSRRGE  200 

M. MUSCULUS      151   RNEEAENENSKLRRENKRLKKKNEQLRQDIIDYQKQIDSQKESLLSRRGE  200 

R. NORVEGICUS    151   RNEEAENENSKLRRENKRLKKKNEQLRQDIIDYQKQIDSQKESLLSRRGE  200 

C.LUPUS         151   RNEEAENENSKLRRENKRLKKKNEQLRQDIIDYQKQIDSQKETLLSRRGE  200 

D.RERIO      148   RAEEAEEKNRKLKREIKQLTRKNEQLQQDIEFYRKEAEQRES--LQTKEE  195 

 

H. SAPIENS       201   DSDYRSQLSKKNYELIQYLDEIQTLTEANEKIEVQNQEMRKNLEESVQEM  250 

M. MUSCULUS      201   DSDYRSQLSKKNYELVQYLDEIQTLTEANEKIEVQNQEMRKNLEESVQEM  250                                        

R. NORVEGICUS    201   DSDYRSQLSKKNYELVQYLDEIQTLTEANEKIEVQNQEMRKNLEESVQEM  250 

C.LUPUS         201   DSDYRSQLSKKNYELVQYLDEIQTLTEANEKIEVQNQEMRKNLEESVQEM  250 

D.RERIO  196   SNEIQRRLTKANQQLYQCMEELQHAEDMAANLRSENEHLQKNLEESVKEM  245 

 

H. SAPIENS       251   EKMTDEYNRMKAIVHQTDNVIDQLKKENDHYQLQVQELTDLLKSKNEEDD  300 

M. MUSCULUS      251   EKMTDEYNRMKALVHQSDAVMDQIKKENEHYRLQVRELTDLLKAKDEEDD  300 

R. NORVEGICUS    251   EKMTDEYNRMKAIVHQTDTVMDQIKKENEHYRLQVRELTDLLKAKDEEDD  300 

C.LUPUS         251   EKMTDEYNRMKAIVHQTDNVMDQLKKENDHYRLQVQELTDLLKAKNEEDD  300 

D.RERIO      246   EKMTDEYNKMKIAVQQTDAIMDQLRKDRDHAKLQVRELTDQIQARVEEDD  295 

 

H. SAPIENS       301   PIMVAVNAKVEEWKLILSSKDDEIIEYQQMLHNLREKLKNAQLDADKSNV  350 

M. MUSCULUS      301   PVMMAVNAKVEEWKLILSSKDDEIIEYQQMLQSLRGKLKNAQLDADKSNI  350 

R. NORVEGICUS    301   PVMMAVNAKVEEWKLILSSKDDEIIEYQQMLQSLRGKLKNAQLDADKSNI  350 

C.LUPUS         301   PVMAAVNAKVEEWKLILSSKDDEIIEYQQMLHNLREKLKNAQLDADKSNV  350 

D.RERIO      296   PVMAAVNAKVEEWKSVLSGKDLEILEYQQMIRDLREKLRTAQMDSDKSNI  345 

 

H. SAPIENS       351   MALQQGIQERDSQIKMLTEQVEQYTKEMEKNTCIIEDLKNELQRNKGAST  400 

M. MUSCULUS      351   MALKQGIQERDSQIKMLTEQVEQYTKEMEKNTFIIEDLKNELQKDKGTSN  400 

R. NORVEGICUS    351   MALKQGIQERDSQIKMLTEQVEQYTKEMEKNTFIIEDLKNELRKDKGTSN  400 

C.LUPUS         351   MALQQGIQERDSQIKMLTEQVEQYTKEMEKNTFIIEDLKNELHRNKGAST  400 

D.RERIO  346   IALQQAVQERDNQIKMLSEQVEQYTTEMERNAMLIEELKRPLKKDKGHSS  395 

 

H. SAPIENS       401   LSQQTH-MKIQSTLDILKEKTKEAERTAELAEADAREKDKELVEALKRLK  449 

M. MUSCULUS      401   FYQQTHYMKIHSKVQILEEKTKEAERIAELAEADAREKDKELVEALKRLK  450 

R. NORVEGICUS    401   IYQQTHYMKIHSKVQILEEKTKEAERTAELAEADAREKDKELVEALKRLK  450 

C.LUPUS         401   LSQQTHYMKIQSKVQMLEEKTKEAERTAELAEADAREKDKELVETLKRLK  450 

D.RERIO      396   -DHQRRLEDLSAKLQVAERKVLEAQRAAQLAERDARDKDKELNDTLSRIR  444 
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http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=109255234
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=163965444
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=209364558
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=73977515
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B 

H. SAPIENS       450   DYESGVYGLEDAVVEIKNCKNQIKIRDREIEILTKEINKLELKISDFLDE  499 

M. MUSCULUS      451   DYESGVYGLEDAVIEIKNCKAQIKIRDGEMEVLTKEINKLEMKINDILDE  500 

R. NORVEGICUS    451   DYESGVYGLEDAVIEIKNYKAQIKIRDGEIEVLTKEINKLEMKINDVLDE  500 

C.LUPUS         451   DYESGVYGLEDAVIEIKNCKNQIKIRDREIEVLTKEINKLELKINDFLDE  500 

D.RERIO      445   LYESGTDGLEAAISEIKECKNQIRVRDREIEGMIKEINQLEMKINNLLDE  494 

 

H. SAPIENS       500   NEALRERVGLEPKTMIDLTEFRNSKHLKQQQYRAENQILLKEIESLEEER  549 

M. MUSCULUS      501   NEALRERAGLEPKTMIDLTEFRNSKRLKQQQYRAENQVLLKEIESLEEER  550 

R. NORVEGICUS    501   NEALRERAGLEPKTMIDLTEFRNSKRVKQQQYRAENQILLKEIESLEEER  550 

C.LUPUS         501   NEALRERVGLEPKTMIDLTEFRNSKSLKQQQYRAENQILLKEIESLEEER  550 

D.RERIO  495   NEDLRERLGLNPKEELDLSEFRRSKILKQRQYKAENQVLLKEIERLEEER  544 

 

H. SAPIENS       550   LDLKKKIRQMAQERGKRSATSGLTTEDLNLTENISQGDRISERKLDLLSL  599 

M. MUSCULUS      551   LDLKRKIRQMAQERGKRNAASGLTIDDLNLSETFSHENKIEGRKLNFMSL  600 

R. NORVEGICUS    551   LDLKRKIRQMAQERGKRSAASGLTIDDLNLTETFSHGDKIGERKLNFISF  600 

C.LUPUS         551   LDLKKKIRQMAQERGKRAATSGLTMEDLNLTENFSQENKIGERKFDFTSL  600 

D.RERIO  545   LELKQRIRALVKDKGVTVVSNSL-------LDNSVEEKPV--RSLRPSSG  585 

 

H. SAPIENS       600   KNMSEAQSKNEFLSRELIEKERDLERSRTVIAKFQNKLKELVEENKQLEE  649 

M. MUSCULUS 601   NNMNETQSKNEFLSRELAEKEKDLERSRTVIAKFQSKLKELVEENKQLEE  650 

R. NORVEGICUS    601   NNMNETQSKNEFLSRELIEKEKDLERSRTVITKFQNKLKELVEENKQLEE  650 

C.LUPUS         601   KNMNEAQSKSEFLSRELTEKERDLERGRTTITKFQNKLKELAEENKQLEE  650 

D.RERIO  586   STDDEIKRKNERLQKELSNKEKELELRRSESTQFKAKLNEMLNENKQLEQ  635 

 

H. SAPIENS       650   GMKEILQAIKEMQKDPDVKGGETSLIIPSLERLVNAIESKNAEGIFDASL  699 

M. MUSCULUS      651   GMKEILQAIKDMPKDSDVKGGETSLIIPSLERLVNAMESKNAEGIFDASL  700 

R. NORVEGICUS    651   GMKEILQAIKDMPKDSDVKGSETSLIIPSLERLVNAMESKNAEGIFDASL  700 

C.LUPUS         651   GMKEILQAIKEMQKDPDVKGGETSLIIPSLERLVNAIESKNAEGIFDANL  700 

D.RERIO      636   GMKEILQAIQDTQKKTPTSTG---VSIPSLERLVNALEMKYSEGKFDASL  682 

 

H. SAPIENS       700   HLKAQVDQLTGRNEELRQELRESRKEAINYSQQLAKANLKIDHLEKETSL  749 

M. MUSCULUS      701   HLKAQVDQLTGRNEELRQELRQSRKEAVNYSQQLVKANLKIDHLEKETDL  750 

R. NORVEGICUS    701   HLKAQVDQLTGRNEELRQELRESRKEAVNYSQQLVKANLKIDHLEKETDL  750 

C.LUPUS         701   HLKAQVDQLTGRNEELRQELRESRKEAINYSQQLAKANLKIDHLEKETIL  750 

D.RERIO  683   HLRTQVDQLTGRNEELRQEMKTAREEAANTLSQLTKANEKIARLESEMES  732 

 

H. SAPIENS       750   LRQSEGSNVVFKGIDLPDGIAPSSASIINSQNEYLIHLLQELENKEKKLK  799 

M. MUSCULUS      751   LRQSAGSNVVYKGIDLPDGIAPSSAYIINSQNEYLIHLLQELDNKEKKLK  800 

R. NORVEGICUS    751   LRQSSGSNVVYKGIDLPDGIAPSSAYIINSQNEYLIHLLQELDNKEKKLK  800 

C.LUPUS         751   LRQSEGSNVVFKGVDLPDGIAPSSANIINSQNEYLIHILQELEYKEKKLK  800 

D.RERIO      733   MSKSTGSSIPHKTLALPEEMTPTSAEAINALNEYTVQLLQEIKNKGDSIE  782 

 

H. SAPIENS       800   NLEDSLEDYNRKFAVIRHQQSLLYKEYLSEKETWKTESKTIKEEKRKLED  849 

M. MUSCULUS      801   HLEDSLEDYNRKFAVIRHQQSLLYKEYLSEKDIWKTDSEMIREEKRKLED  850 

R. NORVEGICUS    801   HLEDSLEDYNRKFAVIRHQQSLLYKEYLSEKDVWKADSEMIKEEKRKLED  850 

C.LUPUS         801   NLEESLEDYNRKFAVIRHQQSLLYKEYLSEKETWKTESETVKEEKKKLED  850 

D.RERIO  783   QLGSALEEYKRKFAVIRHQQGLLYKEHQSERESWQKERDSFAELKSKLEE  832 

 

H. SAPIENS       850   QVQQDAIKVKEYNNLLNALQMDSDEMKKILAENSRKITVLQVNEKSLIRQ  899 

M. MUSCULUS      851   QAEQDAVKVKEYNNLLSALQMDSNEMKKMLSENSRKITVLQVNEKSLIRQ  900 

R. NORVEGICUS    851   QAQQDAVKVKEYNNLLNALQMDSNEMKKMLSENSRKITVLQVNEKSLIRQ  900 

C.LUPUS         851   QIQQDAIKVKEYNNLLSALQMDSDEMKKTLSENSRKITVLQVNEKSLIRQ  900 

D.RERIO  833   QREVDAVKIKEYNHLLETLEKDPSEIRREMAETGRKIVVLRVNEKCLTRR  882 

 

Figure 3.2  Amino acid sequence alignments of CEP290 across 5 
different species 
Panels (A –C); amino acid sequences of Cep290 reference sequences from 
zebrafish (NP_001161739.1), mouse (NP_666121.2), rat (NP_001129227.1), 
wolf (XP_539708.2) and human (NP_079390.3) using the ClustalW alignment 
tool(Sievers, Wilm et al. 2011) prior to where the gene trap is inserted in this 
novel Cep290LacZ/LacZ mouse model.  
Gaps in sequence alignments are highlighted by dashes. Dark grey are 
homologous residues in >80% of aligned sequences between mouse, rat, 
zebrafish, wolf and humans.
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3.4 Generation of a novel Cep290 mouse model. 

As confirmed in section 3.3 the Cep290 amino acid sequence and domain 

structure is highly homologous across various species. The Cep290 murine 

gene is orthologous to the human CEP290 gene and Cep290 mutations are 

associated with a wide range of disorders. Over 128 CEP290 disease causing 

mutations have been identified 

http://medgen.ugent.be/cep290base/overview.php. The vast majority of these 

CEP290 mutations identified in patients are truncating mutations (Coppieters, 

Lefever et al. 2010). A novel Cep290 mouse model with a truncated mutation in 

the Cep290 gene was generated in order to study the phenotypes and 

molecular mechanisms associated with a truncated mutation occurring after 

exon 23 in the Cep290 gene.  

Using database searches (http://www.ncbi.nlm.nih.gov/nucgss/), a “gene trap” 

ES cell line was identified and (DU635568.1, Sanger Institute Gene Trap Library) 

in which the murine Cep290 was disrupted at intron 24 (at position 3.308kb on 

the Cep290 gene, located by a primer within En-2 intron 1 of the construct) to 

induce a truncated mutation.  

The gene trap contains a β-galactosidase and a neomycin reporter gene with a 

ribosomal re-entry site followed by a poly A tail. The ES cells altered by the 

gene trap were injected into blastocysts to create chimeric mice. Male chimeras 

(with 50% 129/Ola<->C57BL/6J) were mated with either 129/Ola (for an inbred 

Cep290 mouse strain, because ES cells were 129/Ola) or with C57BL/6J 

females to generate (firstly a F1 generation continued on to create up to the F6 

generation) heterozygous mice for the Cep290LacZ/LacZ truncated mutation 

(Figure 3.3). 

The heterozygous mice generated (with one copy of this gene trap) were 

named Cep290LacZ/+ mice.  A combination of 3 oligonucleotide primers was used 

in order to genotype the mice and distinguish between wild type, heterozygous 

and homozygous mice. Two of the oligonucleotide primers were located on 

either side of the insertion site of the gene trap to identify (in the absence of the 

gene trap) wild type alleles and an internal oligonucelotide primer specific to the 

gene trap was used to identify insertion of the gene trap sequence (Figure 3.1) 

for location of primers in relation to the Cep290 gene. Thus, primers were 

http://medgen.ugent.be/cep290base/overview.php
http://www.ncbi.nlm.nih.gov/nucgss/
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designed such that in heterozygous animals, two PCR products are amplified 

(wild type and a copy of the gene trap sequence) and in the homozygote 

animals, oligonucleotide primers will only amplify the gene trap. (Figure 3.4 

panel B).     

Cep290LacZ/+ mice from both strains were mated to generate Cep290LacZ/LacZ 

mice and the genotypes were confirmed by DNA Genotyping, Reverse 

Transcriptase-PCR genotyping and Western blotting (Figure 3.4). Once 

Cep290LacZ/LacZ mice were generated the mice were mated with Cep290LacZ/+ 

mice to confirm that the mice were not sterile. 

On the C57BL/6J genetic background of both the F2 and the F6 generations 

analysed the Cep290LacZ/LacZ mice were smaller and presented with a domed 

shaped head at 4 weeks of age compared to their Cep290+/+ littermates (Figure 

3.4 a). 

Primers targeting the mRNA sequence of the Cep290 gene were also 

generated (Primers spanned Intron exon boundary of exons 41-42 of the 

Cep290 gene). It was observed in the Cep290LacZ/LacZ mouse that there was 

partial expression of the Cep290 gene downstream of the gene trap suggesting 

a truncated mutation in Cep290LacZ/LacZ mice (Figure 3.4). 

Western blot analysis from kidney extracts from 1 month old Cep290LacZ/LacZ 

mice identified that the full length Cep290 protein expression profile was lost 

(Figure 3.4), suggesting that any full length protein derived from the truncated 

mutation is below the limit of detection by western blot. Ensemble have not 

identified any other mouse Cep290 transcripts 

http://www.ensembl.org/index.html .  

http://www.ensembl.org/index.html
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Figure 3.3  Generation of a novel Cep290 mouse followed by breeding strategies for Cep290 mice on a C57BL/6J and a 129/Ola backround. 
A wild type C57BL/6J female pseudopregnant mouse was injected with a blastocyst containing modified ES cells which had a truncated mutation in the Cep290 gene. This female gave birth to 
a chimeric male offspring. The chimeric male offspring was then mated with wild type C57BL/6J females to produce a F1 generation on the C57BL/6J strain or with the 129/Ola female mouse to 
generate pure mice heterozygous for the Cep290  truncated mutation.  
In order to study the effects of the Cep290 mutation on this mouse model the mice are bread to a “purer” generation by breading a Cep290LacZ/+ mouse (highlighted in yellow) with a C57BL/6J 
wild type mouse to eliminate any genetic modifiers. The heterozygous mice were given specific identities (J3 from F1 generation, J54 from F2 generation, etc.) by the use of ear clips and cage 
number identifications to ensure the correct generations were generated. The morphological phenotypes analysed on  the C57BL/6J mouse strain are described alongside the F2 generation 
and the F6 generation of the C57BL/6J mice. The morphology of the pure genetic backround in the 129/Ola mice was also analysed as described above. Mouse images were adapted from 
(Strachan 2004) 
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Figure 3.4  The phenotype of Cep290LacZ/LacZ animals, genotyping of Cep290LacZ/LacZ animals and western blotting of whole 
kidney protein extracts from Cep290LacZ/LacZ animals. 
Panel (A). Cep290LacZ/LacZ and wild-type litter mates at 1 month of age on the F3 C57BL/6J generation. Cep290LacZ/LacZ mice are smaller 
and some survive to 12 months of age.   
Panel (B) DNA Genotyping PCR of Cep290 mice. Cep290+/+ mice amplify a single 550bp product whilst Cep290LacZ/LacZ mice amplify a 
single 300bp product. DNA isolated from Cep290LacZ/+ mice will amplify both products. (Figure 3.1 shows where the primers were 
generated in the Cep290 gene and where the gene trap was inserted in the Cep290 gene).  
Panel (C). RT-PCR analysis of mRNA which amplify exon intron boundarys between exons 23-26 and 41-42 of the Cep290 gene in 
Cep290+/+ and Cep290LacZ/LacZ 1 month old kidney samples. There is an absence of product equivalent to exons 23-26 in Cep290LacZ/LacZ 
animals and an insertion of a β-geo fusion cassette. mRNA representing exons 41-42 downstream of the gene trap insertion show 
reduced expression in Cep290LacZ/LacZ animals. Hprt is shown as a loading control.  
Panel (D). The mutation leads to loss of Cep290 protein expression in 1 month old Cep290LacZ/LacZ kidneys, as shown by western blotting 
with a Cep290 antibody.  
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Mouse 
Genotype 

Mixed /F1+2 
gen 

 
129/Ola 
(99.9%) 

F3 gen 
C57BL/6J 

F4 gen 
C57BL/6J 

F5 gen 
C57BL/6J 

F6 gen 
C57BL/6J 

F6 gen 
embryos 
E10.5- 
C57BL/6J 

Cep290+/+ 141 54 2 10 6 14 8 

Cep290LacZ/+ 267 91 3 5 7 25 13 

Cep290LacZ/LacZ 56 38 0 0 0 2 3 

Total 464 183 5 15 13 41 24 

Cep290+/+ % 30.39 29.51 40.00 66.67 46.15 34.15 33.33 

Cep290LacZ/+ % 57.54 49.73 60.00 33.33 53.85 60.98 54.17 

Cep290LacZ/LacZ % 12.07 20.77 0.00 0.00 0.00 4.88 12.50 

Table 3.1  Cohort of Cep290 mice generated. 
Table 3.1 Identifies the total number of mice utilized in this study. Mouse strains (129/Ola or C57BL/6J) were categorized and the 
generation of each strain studied was recorded. The C57BL/6J Cep290LacZ/LacZ strain did not follow Mendelian ratios.A few embryos from 
the Cep290LacZ/LacZ 6th generation on the C57B/6 background were analysed to test for possible developmental implications. Embryo 
analysis was inconclusive due to the low numbers of Cep290LacZ/LacZ embryos available (n=3). The 129/Ola mice mendelian numbers 
were significantly improved compared to C57B/6J mice. Percentages of each genotype identified for each mouse strain were 
documented. The Mendelian ratio is 1:2:1 for Cep290+/+: Cep290LacZ/+: Cep290LacZ/LacZ in the 129/Ola inbred mice. 
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3.5 Examining CEP290 expression in Cep290LacZ/+ mice. 

In order to examine the expression of Cep290 in detail, Cep290+/+ and 

Cep290LacZ/+ mice were stained with 5-bromo-4-chloro-indolyl-β-D-

galactopyranoside (X-gal) and analysed.  In particular we needed to know 

where the truncated mutation is expressed in these Cep290 mice. Cep290+/+ 

kidney brain and eye tissues samples analysed did not show X-gal expression 

(Figure 3.5) and therefore this confirms there were no endogenous β-

galactosidase activity and no background staining occurring.  

The X-gal staining in this study prompted the in situ hybridisation studies on 

human embryonic fetal tissue (Cheng, Eley et al. 2012). In the kidney of the 

Cep290LacZ/+ mice there was X-gal expression at the cortical medullary border, 

consistent with the known cortico-medullary location of cysts in patients with 

NPHP. Recently we have shown that CEP290 expression is prominent in the 

brain and spinal cord, the developing cerebrum, choroid plexus and the 

developing hindbrain in human fetal embryos (Cheng, Eley et al. 2012). 

In this study Cep290 expression was observed in the choroid plexus of the brain. 

The choroid plexus is a highly ciliated structure vital for maintaining sufficient 

levels of cerebrospinal fluid (Lindvall and Owman 1981). Finally Cep290 

expression was also found in the retinal layers of the eye, which is consistent 

with our findings in human fetal embryos (Cheng, Eley et al. 2012).  

In conclusion β-galactosidase expression was evident in the kidneys, brain and 

eye tissues of heterozygous mice (Cep290LacZ/+) (Figure 3.5). As mentioned 

above Cep290 expression was evident in the cortio medullary region of the 

kidney consistent with the known location of cysts in patients with NPHP. In the 

Glis2 mouse model (the NPHP7 mouse model) Glis2 expression was evident 

closer to the medulla region (Figure 3 (C) (Attanasio, Uhlenhaut et al. 2007)). 

The Glis2 mice shows extensive fibrosis, apoptosis and loss of tubules but there 

is little evidence of cystogenesis (Attanasio, Uhlenhaut et al. 2007) which is one 

of the contributing factors of the NPHP phenotype. The Glis2 mouse model is a 

good example of why additional NPHP mouse models are required as not all 

NPHP features are in one mouse model. 
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Figure 3.5  Xgal staining in the Cep29LacZ/+ mouse.  
(A-B) Whole mount staining of 6 week old Cep290+/+ (A) and (B) Cep290LacZ/+ kidneys. (C-D) Cep290+/+ and Cep290LacZ/+  mouse 
embryos at E16.5, identifying β-galactosidatse expression in the (CP) choroid plexus at the anterior part of the brain. (E-H) LacZ staining 
is evident in the retinal layers of the Cep290LacZ/+ mice at E13.5 (F) and 1 month of age (H). (E+G) Cep290+/+ retinal layers at the same 
time points. Scale bars (A+B) 1mm (C-H) 50µM. 
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In order to determine the phenotype of Cep290LacZ/LacZ mice on the C57BL/6J 

mouse strain (F3 generation) urine analysis, EM analysis, 

immunohistochemistry and histology techniques were employed. The organs 

and tissues analysed included the kidney, brain and retina as this is where 

Cep290 expression was observed when LacZ staining was employed. 

3.6 Cep290LacZ/LacZ mice develop polyuria at 1 month of age. 

In the first decade of life patients who develop NPHP initially present with a 

urinary concentration defect, following this they typically develop cystic kidney 

disease and finally progress to end stage renal disease by the second or third 

decade of life (Salomon, Saunier et al. 2009).  

At 1 month of age polyuria was evident in Cep290LacZ/LacZ mice compared to 

their wild type and heterozygous littermates bred on the C57BL/6J strain (Figure 

3.6). A 1 month old mouse from the C57BL/6J mouse strain is comparable to a 

12 and a half year old human (Flurkey 2007). The comparison of mouse life 

phase equivalencies to human age equivalents was identified in 2007. The life 

phases of C57BL/6J mice were analysed which consisted of a cohort of 150 

male and 150 female C57BL/6J mice. A survival curve was generated and the 

maturational rates of both human and mice were compared (Flurkey 2007). This 

data allows us to infer that a 1 month old mouse is roughly equivalent to an 

adolescent human. 
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Figure 3.6  Cep290LacZ/LacZ mice are polyuric at 1 month of age. 
Panel A) An increase in urine output is evident in 1 month old Cep290LacZ/LacZ 

mice on the C57BL/6J F3 generation compared to Cep290LacZ/+ and Cep290+/+ 
mice. The average Cep290LacZ/LacZ mouse urinated 1.5mls after 24 hours in a 
metabolic cage compared to littermates which urinated approximately 0.8mls in 
24 hours. Panel B image of the metabolic cage utilized in this study. Urine was 
collected from 3 Cep290+/+ mice and 6 Cep290LacZ/LacZ mice. Standard deviation 
of the error of the mean for Cep290+/+ mice was 88.19 and the standard 
deviation of the error of the mean for Cep290LacZ/LacZ mice was 781.20. These 
results are not significant as the p value is 0.56. More experimental repeats 
would be needed to identify if there is a significance in urine out put as there 
seems to be a trend when raw data is observed. 

A Cep290LacZ/LacZ mouse from this mixed generation passed approximately 

50mls of urine in 24 h and consumed over 32g of H20 within the 24 h. This 

phenomenon occurred in only 1 Cep290LacZ/LacZ mouse. After this analysis the 

mouse died at 6 weeks of age, the kidneys were analysed by H+E staining and 

there was no observable renal damage evident (Appendix 4). This suggests that 

this mouse was an outlier with a phenotype that was not representative of its 

littermates. Polyuria occurs in the first decade (approximately 12.5 years of age) 

of life in patients who go on to develop NPHP (Salomon, Saunier et al. 2009). 

With more experimental repeats the trend of urine output observed in Figure 3.6 

suggests that Cep290LacZ/LacZ mice may mimic the NPHP patient’s initial 

symptoms of polyuria.  
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3.7 Investigating the renal morphology of Cep290LacZ/LacZ mice.  

Polyuria and loss of concentrating ability is a precursor of NPHP. In addition to 

polyuria, renal cysts followed by renal failure are prominent features of this 

disease. Patients may present with problems relating to renal failure which can 

include fatigue, nausea, growth retardation or anemia (Hildebrandt, Attanasio et 

al. 2009).  

The renal biopsy of NPHP patients may demonstrate collecting duct cysts as 

well as proximal tubule cysts, glomerular cysts, interstitial fibrosis and tubular 

basement membrane defects (Hildebrandt, Attanasio et al. 2009).  

All three renal manifestations were examined in the Cep290+/+ and 

Cep290LacZ/LacZ mouse model using various histological techniques. Renal cysts 

are predominantly characterized by tubular dilatation with increased epithelial 

cell layer proliferation. Kidney sections from Cep290Lacz/LacZ and Cep290+/+ mice 

were stained with H+E to assess renal histology. This showed evidence of cysts 

in the cortex and medulla of 1 month old kidneys (Figure 3.7). 

Interstitial fibrosis can be determined using Trichrome Masson staining (TMS) 

or Sirius red staining techniques. Kidney sections from the Cep290+/+ and 

Cep290LacZ/LacZ F3 C57BL/6J generation was analysed for fibrosis using 

Trichrome masson stain. 

Fibrosis was identified as TMS stains the collagen deposition surrounding the 

cysts are blue colour in the Cep290Lacz/LacZ mouse at 2 months old. Collagen 

deposits are a classic hallmark of fibrosis in histological sections (Figure 3.7). 

EM techniques were employed to determine tubular basement membrane 

defects in the Cep290Lacz/LacZ mice. (EM figure 3.11 and 3.12). All three 

techniques confirmed renal phenotype similar to that seen in NPHP patients 

(Figure 3.7- 3.8 and Figure 3.11 and Figure 3.12).
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Figure 3.7  Renal cysts evident in Cep290LacZ/LacZ  mixed strain mice  
Panels (A-B) Haematoxylin and Eosin staining on 1 month old Cep290 kidneys. 
Trichome Masson staining of Cep290+/+ and Cep290LacZ/LacZ at 2 months (Panel 
C+D). A simple kidney cyst in Cep290+/+ 1 month old mouse (E). Magnified 
image of cyst in the Cep290Lacz/LacZ kidney stained with Trichome Masson 
staining (Panel F). An asterisk highlights a cyst evident in Cep290LacZ/LacZ 
kidneys. Panel (E-F) scale bar 20µm 
 
The Cep290LacZ/LacZ kidney tissue was affected with multiple cysts compared to 

its wild type littermate. Trichome masson staining was used to determine if 

fibrosis was evident. Collagen deposition was evident (blue staining surrounding 

cysts) in Cep290 mice; this is a well known marker for interstitial fibrosis. (Panel 

F).. The Cep290LacZ/LacZ kidney presents with cysts in the cortex and 

corticomedullary region of the kidney (Figure 3.7). The cysts vary in shape and 

size however all have an epithelial cell layer surrounding the cyst (hallmark of 

cyst). This cystic and fibrotic phenotype has been confirmed in10 animals for 

both Cep290+/+ and Cep290LacZ/LacZ type mice from the C57BL/6J F3 generation. 
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Cep290 kidneys at birth (n=2), 1 month (n=6), and 1 year (n=2) were also 

analysed on the F3 generation. Cep290LacZ/LacZ mice at these time points also 

have renal cysts. Of the 56 Cep290LacZ/LacZ mice born on the F2-F3 generation, 

11 Cep290LacZ/LacZ mice were analysed for histology. 10 of the Cep290LacZ/LacZ 

mice exhibited cysts. Fibrosis was only evident at 2 months of age and later. 

The renal images from the Cep290LacZ/LacZ mice at birth and 1 year are not 

shown as the cystic nature was variable in mixed crosses.  

3.8 Confirming the cellular location of Cep290LacZ/LacZ renal 

cysts  

NPHP patients’ cysts originate from the dilatation of collecting duct tubules and 

are predominantly found in the corticomedullary region of the kidney. To 

address the issue of which nephron segment the Cep290LacZ/LacZ mice renal 

cysts originated from, immunofluorescent staining antibodies were utilised. The 

antibodies utilised target specifically principal and intercalated cells of the 

collecting duct tubule in kidney cells.  

AQP2 is a member of a family of water channel proteins originally found in the 

collecting duct of the kidney (Fushimi, Uchida et al. 1993). AQP2 

immunofluorecent specific antibodies may be used to identify the apical surface 

of principal cells of the collecting duct. 

ATP6V0A4 is a protein expressed by intercalated cells of the collecting duct and 

specific antibodies towards ATP6V0A4 can be used to identify these cells.  

AQP3 is expressed in the basolateral cell membrane of principal collecting duct 

cells. Antibodies directed towards these 3 proteins may be used as collecting 

duct markers, and confirmed that the renal cysts are located in the collecting 

duct tubules of murine kidney (Figure 3.8). 

Every cyst seen in Cep290LacZ/LacZ mice were positive for markers of collecting 

ducts, no other cysts were seen in proximal or distal tubules or the loop of henle. 

ADPKD cysts are evident in multiple segments of the nephron (Wilson 1997).  
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Figure 3.8  Cep290LacZ/LacZ renal cysts are collecting duct in origin 
Immunofluorescent staining of Cep290LacZ/LacZ renal cysts. Panel (A) renal 
section of Cep290LacZ/LacZ cysts at 12 weeks. AQP2 (green) stains the apical 
surface of cells of collecting duct tubules. ATP6V0A4 (Red) stains the 
intercalated cells of collecting duct tubules.  Panel B corresponding section of 
Cep290LacZ/LacZ renal cysts at 12 weeks. AQP3 (green) stains the basolateral 
layer of collecting duct tubules. Blue = dapi to identify nuclei. 

3.9 Are primary cilia evident in Cep290LacZ/LacZ collecting duct 

cysts?  

An example of a mouse model with renal cysts occurring early in development 

was the Kif3a mouse model and the cysts in this mouse model lacked primary 

cilia (Lin, Hiesberger et al. 2003).  

Another example of a mouse model with cystic kidneys lacking cilia is the Ift20 

mouse model (Jonassen, San Agustin et al. 2008). The Ift20 gene is highly 

expressed in kidneys and is responsible for the assembly and maintenance of 

cilia assembly. Knockdown of Ift20 blocks cilia assembly and also reduces the 

expression of Pkd2 a well known gene implicated in polycystic kidney disease 

(Jonassen, San Agustin et al. 2008). 

Therefore it was reasonable to investigate whether a loss of cilia was the main 

determinant of renal cysts in the Cep290LacZ/LacZ mouse, hence kidney sections 

were stained with anti-acetylated tubulin (an antibody that binds to primary cilia, 

centrioles, mitotic spindles and microtubules) (Piperno and Fuller 1985).  
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The kidney sections of Cep290+/+ and Cep290LacZ/LacZ were analysed. Within the 

Cep290LacZ/LacZ cystic epithelia, primary cilia were clearly evident, although it 

was not possible to determine whether or not there was a reduction in the 

number of cilia (Figure 3.9).  

SEM and TEM were employed to identify if there was a loss of cilia in renal 

cysts. Collecting duct cysts were primarily identified by SEM analysis and 

acetylated tubulin staining and it was confirmed that cilia were present after 

both sets of analysis (Figure 3.9 and 3.10). This set of data therefore confirms 

that in the renal tubule cysts of Cep290LacZ/LacZ cilia were not completely absent. 

 

Figure 3.9  Presence of cilia is evident in Cep290LacZ/LacZ renal cystic 
collecting ducts. 
Immunofluorescent staining of primary cilia (stained with acetylated alpha 
tubulin antibody) in (A) Cep290+/+ collecting duct and (B) Cep290LacZ/LacZ cystic 
epithelium. Cilia are evident in the Cep290LacZ/LacZ collecting duct. Scale bar 
5µM. 
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3.10 Is there structural primary cilia defects evident in renal 

Cep290LacZ/LacZ mice?  

From figure 3.9 and figure 3.10 it is clear to see that Cep290LacZ/LacZ cystic 

collecting ducts have primary cilia. However not all PKD mouse models with 

cystic kidney disease have shown a complete loss of cilia, some have identified 

malformed and shortened cilia, for example the Pkd2ws25/- mouse model 

(Thomson, Mentone et al. 2003). The Pkd2ws25/- mouse model is a 

representative of the ADPKD phenotype. 

The Tg737orpk mouse model (Moyer, Lee-Tischler et al. 1994; Pazour, Dickert et 

al. 2000) identified shortened cilia in renal epithelial cells. The phenotype of this 

mouse model represents ARPKD. There have been no pathogenic mutations 

found in the Tg737 human orthologue (IFT88) in patients with ARPKD to date 

(McIntyre, Davis et al. 2012). 

Finally the congenital polycystic kidney (cpk) mouse model also observed 

varying lengths in mutant cilia and differences in the morphology of cilia using 

SEM analysis (Winyard and Jenkins 2011). 

To address the hypothesis of a structural cilia defect occurring in 

Cep290LacZ/LacZ mice after the findings observed from other PKD mouse models, 

Cep290LacZ/LacZ mice were analysed for malformed or shortened cilia. TEM 

techniques were employed to answer this question. Cilia were visible using 

TEM but due to the orientation of the cilia and the small number of cilia 

identified, cilia length could not be quantified (Figure 3.10). 

2D TEM images were able to show that the cilium was protruding into the apical 

lumen of the cyst. Cross section images of the primary cilium were also 

captured, however no structural defects were evident in the cross sections. 

(Figure 3.10). 

This study is consistent with a functional role of Cep290 within the cilia/basal 

body rather than a structural role. Cep290 is likely to be a gatekeeper at the 

transition zone providing a platform for IFT particles to be loaded and unloaded 

at the base of the cilium (Craige, Tsao et al. 2010).  
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Figure 3.10  EM analysis of renal tubular epithelium in Cep290+/+ and 
Cep290LacZ/LacZ kidneys.  
TEM images of 2 week old Cep290+/+ and Cep290LacZ/LacZ renal collecting ducts 
(Panels A+B). Scale bar 10 micron. Panels (C+D) Cep290+/+ and 
Cep290LacZ/LacZ cilium protruding into the lumen of the collecting duct. Scale bar 
500 nm. Panels (E+F) Cross sections of Cep290+/+ and Cep290LacZ/LacZ cilia. 
Scale bar 100nm. There was no striking difference between cilia lining the cysts 
of Cep290LacZ/LacZ renal collecting ducts compared to Cep290+/+ collecting duct 
cilia. Additional images would be required to identify if there was a difference 
between cross sections of primary cilia in Cep290+/+ and Cep290LacZ/LacZ mice. 
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3.11 Using TEM analysis to identify other NPHP characteristics 

Using Trichrome Masson staining in renal tissues we show that Cep290LacZ/LacZ 

mice at 2 months develop interstitial fibrosis (Figure 3.7). Cystic and non cystic 

collecting ducts were also visualized by TEM techniques and it was evident that 

collagen deposition was present in Cep290LacZ/LacZ cystic collecting ducts 

(asterisk on figure 3.11).  

3.12 Investigating renal tubular basement membrane (TBM) 

morphology in Cep290LacZ/LacZ mice 

Electron microscopy of TBM morphology in patients with NPHP revealed 

thickening and lamination of the TBM (Ashizawa, Miyazaki et al. 2005). 

Abnormal thickening of the TBM was evident in Cep290LacZ/LacZ kidneys when 

compared to Cep290+/+ controls (Figure 3.12). TBM thickness was measured in 

7 different images. 
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Figure 3.11  Collagen deposition is a hallmark of fibrosis and is evident in 1 month Cep290LacZ/LacZ renal collecting ducts cysts. 
SEM images of Wild type (A) and Cep290LacZ/LacZ kidneys (B+C) at 1 month of age. Cysts are evident in the Cep290LacZ/LacZ kidney (Panel 
B). Cilia are present in cysts of Cep290LacZ/LacZ kidney (Panel C) highlighted by red arrow. TEM images of wild type and Cep290LacZ/LacZ 
renal collecting duct cells (Panels D+E) Scale bar (D+E) 10µm. Scale bar (F) 2µm. Collagen deposition in between the tubular 
endothelium is evident in the Cep290LacZ/LacZ renal cysts (red asterisk), implicating that loss of Cep290 results in a loss of endothelial 
maintenance and integrity. (L) Lumen of collecting duct cyst 
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Figure 3.12  TBM defects in Cep290LacZ/LacZ mice.  
TEM images of (TBM) in renal tissues of Cep290 mice.Panel A+B) Cep290+/+ and Cep290LacZ/LacZ (TBM) highlighted by dashes. Panel C) 
Student t test measuring the TBM thickness from 7 renal TEM images for both Cep290+/+ and Cep290LacZ/LacZ mice. 20 measurements 
were taken in total approximately n=3 measurements per image. Scale bar 500nm. Direct Magnification for each image measured was 
18500X. 
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3.13 Investigating the morphology of retina cell layers in 

Cep290LacZ/LacZ mice  

Cep290 mutations are the most frequent cause of LCA, (accounting for ~15% of 

cases), a severe retinal dystrophy causing blindness in paediatric patients (den 

Hollander, Roepman et al. 2008). Retinal degeneration is due to the loss or 

dysfunction of the outer nuclear cell layers (ONL) of the retina specifically the 

photoreceptor layer (a highly ciliated layer of the retina). Retinal dystrophy 

affects 1:2,000 of the UK population. Currently there are no effective 

preventative treatments; however research is on going for various biological 

treatments at the Institute of Ophthalmology, London. The treatments currently 

being investigated include cell transplantation, gene transfection and the use of 

growth factors to delay cell death (http://www.ucl.ac.uk/ioo/research/bird.htm).  

Possible treatment strategies for the maintenance of retinal dystrophy are 

currently being investigated. However mouse models are required to test 

treatments prior to clinical trials. An early onset of retinal degeneration occurs in 

children with JBTS. As stated previously Cep290 mutations are the most 

frequent cause of LCA in children. Therefore novel mouse models with 

mutations in the Cep290 gene are ideal model organisms used to investigate 

potential therapies for these children.  

The rd16;Nrl-/- double mutant mice harbor an in frame deletion in the Cep290 

gene and the mice begin to present with retinal degeneration by 2 weeks of age 

and by 1 month of age the rod photoreceptors have completely degenerated 

with only a single layer of cone nuclei remains in the ONL of these mice. As the 

rd16;Nrl-/- mouse model showed a high loss of photoreceptors cells by 1 month 

of age (Cideciyan, Rachel et al. 2011), it was hypothesised that this novel 

Cep290LacZ/LacZ mouse model may also exhibit a retinal dystrophy phenotype. 

Cep290+/+ and Cep290LacZ/LacZ mice were examined at various time points to 

investigate if retinal degeneration was evident. The Cep290LacZ/LacZ mice 

presented with retinal degeneration which slowly progressed in severity from 2 

weeks to 1 month of age. By 6 months of age all outer layers of the retina were 

completely degenerated (Figure 3.13). The rd16;Nrl-/- mouse model which 

contains a hypomorphic mutation in the Cep290 gene confirms that this 

Cep290LacZ/LacZ model phenocopies an established published mouse model.  

http://www.ucl.ac.uk/ioo/research/bird.htm
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Figure 3.13  Retinal degeneration is evident in Cep290LacZ/LacZ mice on a C57BL/6J backround  
Haematoxylin and Eosin staining of retina layers in 2 week, 4 week and 6 months old Cep290+/+ and Cep290LacZ/LacZ mice. The outer 
retinal layers (ONL and PL) in the Cep290LacZ/LacZ mouse degenerate over time. By 4 weeks of age the ONL layer is reduced by half and 
by 6 months of age the OPL, ONL and PL are no longer evident. (GCL)-Ganglion Cell Layer, (IPL) Inner Plexiform Layer, (INL) Inner 
Nuclear Layer, (OPL) Outer Plexiform Layer (ONL) Outer Nuclear Layer and (PL) Photoreceptor layer, RPE (Retinal Pigmented 
epithelium) RPE is brown in colour in the images above. Scale bar 20µM. 
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3.14 Investigating the cerebellum morphology of 

Cep290LacZ/LacZ mice. 

JBTS is a ciliopathy disease caused by malformations of the midbrain and 

hindbrain. Patients presenting with this disease display symptoms that include 

ataxia, hypotonia, developmental delay and intellectual disability (Hodgkins, 

Harris et al. 2004; Parisi, Doherty et al. 2007; Doherty 2009).  

It has been estimated that 50% of JBTS patients have a mutation in the 

CEP290 gene (Valente, Brancati et al. 2013). An investigation into the 

morphology of the Cep290LacZ/LacZ brain was employed by means of MRI 

imaging. MRI imaging identified that hydrocephaly was evident in 

Cep290LacZ/LacZ mice at 2 weeks of age (P14) (Figure 3.14). Hydrocephaly was 

also evident in the Ahi-/- mouse model of JBTS (Lancaster, Gopal et al. 2011). 

 

Figure 3.14  Hydrocephally is evident in Cep290LacZ/LacZ mice at 2 weeks. 
Brain MRI images of Cep290+/+ and Cep290LacZ/LacZ at birth (Panel A) and at 2 
weeks of age (Panel B). Hydrocephally is not evident at birth (n=5) however 
hydrocephally is visually evident from 2 weeks in Cep290LacZ/LacZ mice 
(highlighted by asterisks). 
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3.15 Embryonic lethality in Cep290LacZ/LacZ mice on the 

C57BL/6J background. 

The phenotypes of the Cep290LacZ/LacZ mice described in figures 3.4-3.14 were 

from a mixed generation (F2-3 mice) of the C57BL/6J mouse strain. Although the 

mice presented with hydrocephally, only 10% of the F2-3 mice on the C57BL/6J 

mouse strain were viable (Table 3.1), this supports the published Ahi1-/- mouse 

model of JBTS where there was only a 20% survival rate noted on their 

C57BL/6J mixed mouse strain and the cause of lethality was unknown (Louie, 

Caridi et al. 2010).  

The number of live births of Cep290LacZ/LacZ mice on a C57Bl/6J F6 generation (4 

out of 95 pups born) and from a mixed generation (56 out of 454) did not follow 

Mendelian characteristics (Table 3.1) and therefore it was hypothesised that 

C57Bl/6J Cep290LacZ/LacZ embryos were dying in utero.  

To assess this possibility of embryos dying in utero as a consequence of the 

Cep290 mutation embryos were analysed at E11.5 to ascertain the causation of 

the lethality (Figure 3.15). It was speculated that the embryos presented with 

severe brain or heart abnormalities as the embryos did not survive until birth 

and hence these were the organs that were investigated (Figure 3.15). A 

possible failure of neural groove closure was observed in the Cep290LacZ/LacZ 

mice. There were 24 embryos collected in total on the 6th generation C57Bl/6 

mouse strain. The collective number of embryos obtained were as follows; 8 

Cep290+/+, 13 Cep290LacZ/+ and 3 Cep290LacZ/LacZ  . Tail clippings from each 

embryo were gathered in order to confirm genotypes. Even though this is a 

small cohort and statistical methods are not employed, only 12.5% of embryos 

collected on the 6th generation C57BL/6J backgrounds were Cep290LacZ/LacZ. If 

the Cep290 mice on the C57Bl/6J strain were following Mendelian ratio 25% of 

embryos should have been Cep290LacZ/LacZ.  

Unfortunately, due to the lack of embryonic numbers there was no conclusive 

evidence for the cause of the re-absorption of Cep290Lacz/LacZ mice on the 

C57BL/6J strain. The main aim of this study was to analyse and assess the 

roles of PKD in a Cep290LacZ/LacZ mouse model. The inbred 129/Ola mice 

followed Mendelian characteristics (Table 3.1) and therefore this study 

continued investigating and assessing the phenotype of a truncated Cep290 



 

79 
 

mutation from the 129/Ola mouse strain. There was evidence of a failure neural 

groove closure in the Cep290LacZ/LacZ embryos analysed on the F6 generation of 

C57BL/6J mice, which results in anencephaly. Anencephaly is a feature of the 

embryonic lethal MKS (Paetau, Salonen et al. 1985). A failure of neural groove 

closure of the hindbrain was also observed in the recently published Nur12 -/- 

mouse Figure 3E (Alcaraz, Gold et al. 2006) and the Tmem67-/- JBTS-like 

mouse model (Figure 1 B) (Abdelhamed, Wheway et al. 2013).  

 
Figure 3.15  Cep290 6th generation C57BL/6J embryos. 
Panels (A+C) Transverse sections through the hearts of Cep290LacZ/+  and 
Cep290LacZ/LacZ embryos at approximately E11.5. The LacZ staining did not 
penetrate through to the tissues so therefore no conclusive evidence can be 
made as to where Cep290 is specifically expressed in the heart. Panels (B+D) 
Horizontal brain sections of Cep290LacZ/+  and Cep290LacZ/LacZ embryos possible 
failure of neural tube closure (asterisk).  
Panels (A-D) Scale bars 200µm. (RA) right atrium, (LA) left atrium, (DoA) dorsal 
aorta, (SAC) superior atrioventricular cushion tissue.  
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3.16 Renal cysts in neonatal pups from Cep290LacZ/LacZ F6 

generation C57BL6/J mice. 

Table 3.1 highlights the total cohort of Cep290 mice utilised in this study. Prior 

to the observation that only 4% of Cep290LacZ/LacZ mice survived to gestation on 

the F6 generation, Cep290LacZ/LacZ kidneys were analysed at birth (n=2) and 

extensive microcyst dilation was observed compared to wild-type littermates 

(Figure 3.16). 

 

Figure 3.16  Gross cysts in newborn kidneys of 6th generation C57BL/6J 
Cep290LacZ/LacZ. 
 
Newborn kidneys of F6 C57BL/6J Cep290+/+ (Panel A) and Cep290LacZ/LacZ mice 
(Panel B), which survived to birth. At birth the kidneys were dissected and 
analysed for H+E histology. Note cysts were only evident in the Cep290LacZ/LacZ 
kidneys (n=2). There was no cysts evident in Cep290+/+ or Cep290LacZ/+ (n=3). 
Cysts (arrowed) were located in the corticomedullary region of the kidney. Scale 
bar 500µm.  
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3.17 Concluding results from the Cep290LacZ/LacZ C57BL/6J 

mouse colony. 

In summary the Cep290LacZ/LacZ mouse model created on an inbred C57BL/6J 

mouse strain phenocopies a severe juvenile MKS phenotype. It should be noted 

that Cep290LacZ/+ animals were tested alongside wild type and Cep290LacZ/LacZ 

littermates for the phenotypes observed. There was no evidence of renal cysts 

in Cep290LacZ/+ mice analysed up to 1 year of age (Appendix 4, panel B). There 

was also no evidence of hydrocephaly (Figure 3.14) observed in Cep290LacZ/+ 

mice. 

However, as only 10% of the Cep290LacZ/LacZ mice from the F2-3 generations 

were viable. Some of the mice were dying at 1 month and others surviving to a 

few months of age. The Cep290 mutation was deleterious through the 

backcrosses of C57BL/6J mice for 6 generations. The effect of the mutation is 

most likely modified by modifier loci. It is presumed that the clinical variability of 

CEP290 related diseases may be caused by second site modifier alleles 

(Coppieters, Lefever et al. 2010) and (Zhang, Seo et al. 2013). 

On the F6 generation C57BL/6J mouse strain only 4% of Cep290LacZ/LacZ mice 

were born. Overall it is likely that the inheritance pattern observed was due to 

the difference between the genetic backgrounds of the transgenic strains 

utilised and to the Cep290 truncated mutation in this study.  

It is common for mouse strains to show phenotypic differences over generations 

of breeding due to genetic drifts. In relation to the variability of phenotype 

observed, previous ARPKD mouse model studies have shown that disease 

penetrance and severity can be modulated depending on the genetic 

background. For example the cpk mutant mouse bred on the C57BL/6J strain 

did not present with the biliary ductal plate malformation lesions but in other 

mouse strains lesions were evident (Guay-Woodford, Green et al. 2000).  

Another recent study withTmem67 knockout mice (Abdelhamed, Wheway et al. 

2013) found inter-individual variation in phenotypes between Tmem67-/- 

littermates on a C57BL/6J inbred strain, which supports the variation in cystic 

phenotypes , low birth rates and varying ages of mortality rates between 

littermates observed in this novel C57BL/6J Cep290 mouse model.  



 

82 
 

Following on from the results above Cep290 129/Ola mouse strain phenotypes 

and Mendelian characteristics were assessed. 

3.18 Cep290LacZ/LacZ 129/Ola inbred mice. 

The Cep290LacZ mutation was also placed on a pure inbred 129/0la background. 

On this background the gross phenotype appeared less severe with the 

Cep290LacZ/LacZ mouse numbers being close to a Mendelian fashion (Table 3.1).  

3.19 Cep290 129/Ola mice at 1 year. 

In comparison to the cranial morphology of the Cep290LacZ/LacZ mice on a 

C57BL/6J background (Figure 3.4 panel A) a domed head was not visible in the 

Cep290LacZ/LacZ129/Ola mice at 1 year of age (Figure 3.17).   

Unlike the Cep290 C57BL/6J mouse strain where the Cep290LacZ/LacZ mice were 

visibly smaller, there were no differences in the length/ size of 129/Ola 

Cep290LacZ/LacZ mice when compared to their wild type littermates and the 

kidneys are not obviously smaller (Figure 3.17).  

To date, reports do not indicate that patients with JBTS are smaller in height nor 

do they present with obvious structural cranial abnormalities. Given this 

observation the 129/Ola mice are anatomically similar to the patients with JBTS 

compared to the Cep290LacZ/LacZ mice bred on a C57BL/6J background. 

Cep290LacZ/LacZ mice on a C57BL/6J background present with a domed head 

and a smaller stature compared to wild type littermates.  

In ADPKD gross cysts are present within the kidney in patients/ mouse models 

affected with this disease. The cystic phenotype is much more subtle in patients 

with ARPKD, with tubular dilatations rather than huge cysts. This more subtle 

cystic phenotype is evident in the Cep290LacZ/LacZ 129/Ola colony and the 

C57BL/6J mouse colony as gross cysts are not present on the extremities of the 

kidneys (Figures 3.17).
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Figure 3.17  Cep290 mice at 1 year of age.  
Cep290+/+ and Cep290LacZ/LacZ 129/Ola inbred mice at 1 year of age (Panel A). 
There are no differences in appearance between mice at 1 year of age unlike 
C57BL/6J mice where the Cep290LacZ/LacZ mouse is physically smaller. Mice 
from the 129/Ola background survive to 1 year of age. Wild type and 
Cep290LacZ/LacZ kidneys are approximately 1cm in length at 1 year of age (B). 
Gross cysts are not evident in the 129/Ola Cep290 mouse model however when 
sectioned there are cysts evident in the cortical medullary region of the 
Cep290LacZ/LacZ mouse as can be seen in figures (3.18-3.19). 
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3.20 Comparing renal histology between Cep290LacZ/LacZ 

C57BL/6J mice and Cep290LacZ/LacZ 129/Ola mice at 1 

month of age. 

Cep290LacZ/LacZ 129/Ola were analysed at 1 month of age. A total of 6 mice 

histological phenotypes were analysed for Cep290+/+ and Cep290LacZ/LacZ 

(Figure 3.18 for overview of three kidneys from each genotype analysed).  

A comparison of the 129/Ola renal phenotype to the C57BL/6J renal phenotype 

at 1 month of age was addressed. It was evident that the cysts were 

concentrated to the corticomedullary region for both colonies; however the cysts 

also protruded more into the medulla in C57BL/6J mice as well as infiltrating the 

borders of the cortex.  

At 1 month of age the Cep290LacZ/LacZ 129/Ola mouse colony cysts were similar 

in size and shape (Figure 3.18), unlike the C57BL/6J mice where an increase in 

size of cysts between individual Cep290LacZ/LacZ mice were apparent (Figure 3.7).  

A steady state phenotype was observed in Cep290LacZ/LacZ 1 month old mice 

born on a 129/Ola background, which is ideal for studying the molecular 

mechanisms implicated in a constant steady inclined rate of cystogenesis in 

mice with NPHP. There is less variation in Cep290LacZ/LacZ 129/Ola mice 

compared to Cep290LacZ/LacZ C57Bl/6J which is a further indication that genetic 

modifiers on certain backgrounds produce some variability of phenotype  
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Figure 3.18  Representative features of 129/Ola Cep290+/+ and Cep290LacZ/LacZ kidneys at 1 month. 
Renal cysts are evident in the cortex and medulla of the kidney in Cep290LacZ/LacZ mice (Panel D-F) compared to their wild type litter 
mates (Panel A-C). Scale bar 100µM. Magnified images (D.1-F.1) of the Cep290LacZ/LacZ kidneys demonstrate an epithelial cell layer 
confirming cysts highlighted by black, red and blue arrows. Scale bars 50µM. (Co) Cortex and (Me) Medulla. Cysts vary from 50μm in 
width to 150μm at this time point.  
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3.21 Determining the renal morphology of Cep290LacZ/LacZ 

129/Ola inbred mice at 1 year of age 

It has been established that Cep290LacZ/LacZ 129/Ola mice survive to 1 year of 

age and that there is a consistent renal cystic phenotype at 1 month of age in 

Cep290LacZ/LacZ mice.  

In order to determine the long term progression of cystic kidney phenotype and 

look for a fibrotic phenotype, the kidneys were examined in Cep290+/+ and 

Cep290LacZ/LacZ mice at 1 year (n=4). Cysts were evident in the Cep290LacZ/LacZ 

corticomedullary renal tissues (Figure 3.18 and 3.19).  

Interstitial fibrosis is one of the renal histological phenotypes associated with 

NPHP. Sirius Red staining was employed in order to examine the fibrotic nature 

of renal tissue from Cep290LacZ/LacZ 129/Ola mice at birth and at 1 year of age.  

At birth in Cep290 129/Ola mice there was no apparent difference between 

Cep290LacZ/LacZ and wild type kidneys. At 1 year of age there was a substantial 

amount of collagen deposits in Cep290LacZ/LacZ renal tissue surrounding cysts 

and various parts of the corticomedullary junction confirming a fibrotic 

phenotype at 1 year of age in Cep290LacZ/LacZ mice (Figure 3.20). 
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Figure 3.19  Renal cysts are prevalant in 1 year old 129/Ola Cep290LacZ/LacZ mice. 
Panels (A-B) Images of Cep290+/+ (C-D) Cep290LacZ/LacZ kidneys sections through the cortex, medulla and papilla. Scale bar 100µm. 
Panels (E-F) Magnified images of cysts in the Cep290LacZ/LacZ kidneys highlighted by a black arrow and an asterisk. Scale bar 50µm. 
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Figure 3.20  Sirius red staining to measure fibrotic changes in Cep290 129/Ola mice at birth and 1 year of age. 
Panels(A-D) Newborn Cep290+/+ and Cep290LacZ/LacZ kidneys. Panels (E-H) 1 year Cep290+/+ and Cep290LacZ/LacZ kidneys. Sirius red 
stains collagen red on a pale yellow background. In newborn kidneys for both wild type and Cep290LacZ/LacZ samples the sirius red 
staining are comparible. By 1 year of age there are large deposits of collagen in the Cep290LacZ/LacZ sample across the corticomedullary 
junctions compared to the wild type sample. The collagen deposits are also concentrated around cysts of the Cep290LacZ/LacZ kidney. 
Scale bar A+B 100µm. Scale bars C+D 20 µm. Scale bar E+F 200µM. Scale bar G 20µm. Scale bar H 100µm. 
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3.22 MRI scanning images of Cep290LacZ/LacZ  mice  

As seen in figure 3.14, the C57BL/6J mice (from the F2-3 generation) presented 

with hydrocephaly at 2 weeks of age. MRI scans of the brains from 6 week old 

129/Ola inbred mice were also obtained. 

In 2010 the Ahi1-/- mouse model of Joubert syndrome identified a “mild defected 

cerebellar vermis foliation pattern” (Lancaster, Gopal et al. 2011). Given the 

observation of cerebellar vermis foliation defects in the Ahi1-/- mouse model the 

cerebellar vermis foliation patterns of the cerebellum in Cep290LacZ/LacZ 129/Ola 

mice were investigated and there was no evidence of any foliation defects 

(Figure 3.21).  

However hydrocephaly was evident in the Cep290LacZ/LacZ 129/Ola mice at 6 

weeks of age (Figure 3.21) as seen previously in this chapter for the 

Cep290LacZ/LacZ C57BL/6J mouse strain albeit less severe and less pronounced 

(Figure 3.14). 
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Figure 3.21  MRI imaging of Cep290+/+ and Cep290LacZ/LacZ mice brains at 6 weeks of age.  
Panels (A-B) Images of cerebellum foliation in Cep290+/+ mice. Panels (C-D) Images of cerebellum foliation in Cep290LacZ/LacZ mice at 6 
weeks. There are no extra foliations of the cerebellum observed in Cep290LacZ/LacZ mice however hydrocephaly was still evident at 6 
weeks of age (Panels C-D). Scale bar 2.5mm.
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3.23 Concluding remarks for Cep290LacZ/LacZ mice on an inbred 

129/Ola back ground. 

As shown through figures 3.18-3.21 the Cep290LacZ/LacZ mouse on an inbred 

129/Ola colony present with the cystic kidney defects and brain abnormalities 

associated with JBTS.  

An in-depth analysis into the retinal and cerebellum phenotypes of Cep290 

129/Ola mice was not preformed as it was confirmed on the C57BL/6J 

background and the main aim of this section of the study was to confirm and 

utilise the cystic kidney nature for further experimentation in one or both 

colonies of Cep290LacZ/LacZ mice. 

CEP290 mutations can cause a wide spectrum of diseases which have multi 

organ specific phenotypes ranging from embryonic lethal MKS, BBS and LCA, 

NPHP as well as JBTS (see chapter 1).  

Extra organ specific manifestations seen in JBTS can range from polydactyly 

and hepatic fibrosis and/or liver cysts. This mouse study saw no evidence of 

cysts or fibrosis of the liver in Cep290LacZ/LacZ mice (figure 3.22) and there was 

no evidence of polydactyly occurring in both colonies of mice.  
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Figure 3.22  Liver phenotype in Cep290LacZ/LacZ mice. 
Panels (A-D) Haematoxylin and Eosin staining of Liver samples from Cep290+/+ and Cep290LacZ/LacZ mice at 1 year of age. Panels (E-H) 
Trichrome Masson staining of Cep290+/+ and Cep290LacZ/LacZ liver samples at 1 month. No cystic or fibrotic phenotype evident in 
Cep290LacZ/LacZ mice. Scale bar 100µm (Panels A-B). Scale bar 50µm (Panels C-D). Panels (E-F) Scale bar 200µm. Panels (G-H) Scale 
bar 100µm.Asterisks highlight bile ducts which are not cystic
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3.24 Discussion 

In summary, the aims of this chapter were to determine the genotype and 

phenotype of mice with a truncated Cep290 mutation and to investigate in detail 

renal phenotypes of this Cep290LacZ/LacZ model. From this analysis it was 

determined if this novel Cep290 mouse model is an appropriate model of NPHP 

and JBTS.  

As two different mouse colonies with a truncated mutation in the Cep290 gene 

were utilised in this study the phenotypes of both mouse strains were assessed. 

It was discovered that the Cep290LacZ/LacZ mice for both inbred strains had multi-

organ defects which included midbrain-hindbrain defects, retinal degeneration 

and renal cysts which were consistent with previous analyses carried out on 

patients with defects in the CEP290 gene.  

The reduced life expectancy in inbred Cep290LacZ/LacZ C57BL/6J mice is due to 

the strain specific variation in penetrance from the C57BL/6J back ground strain 

of the mice. The 129/Ola Cep290LacZ/LacZ mice conformed to a normal Mendelian 

inheritance pattern. Unknown modifier genes which are present in C57BL/6J 

mice seem to affect the function of Cep290LacZ/LacZ mice consistant with 

variability seen in JBTS/NPHP patients.  

Collecting duct cysts in Cep290LacZ/LacZ mice generated from the 129/Ola colony 

are specific to the corticomedullary region where as the C57BL/6J mice cysts 

were also found in the cortex and junction of the medulla and papilla. NPHP 

patient’s cysts are located specifically in the corticomedullary region. Therefore 

the Cep290LacZ/LacZ mouse on the 129/Ola model is an appropriate 

representative of the NPHP phenotype in JBTS.  

Importantly the proteins mutated in cystic kidney disease are all localised to the 

primary cilia. Previous studies have shown that the sensory roles of the primary 

cilia in the kidney are required for the maintenance of fluid secretion and cellular 

proliferation. Polycystic kidney disease is a consequence of increased fluid 

secretion and cellular proliferation caused by defects in the sensory roles of the 

primary cilium in the kidney (Torres 2004). From these previous studies 

investigating the signalling mechanisms in each of the tissues affected by JBTS 

it is tempting to speculate that the Cep290 truncated mutation is causing 
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defects in the signalling mechanisms required for; maintaining the balance of 

CSF in the cerebellum, preventing the maintenance of photoreceptor cells in the 

eye and maintaining the balance of fluid secretion and cellular proliferation in 

the kidney.  

JBTS and NPHP phenotypes are caused by mutations in the protein products of 

genes which are found in the primary cilium. As confirmed by SEM and TEM 

analysis primary cilia are present in the cysts of Cep290LacZ/LacZ kidneys. The 

cystic phenotypes present in Cep290LacZ/LacZ mice may therefore be due to a 

loss of the sensory function of the primary cilium. 

In the study recently published determining the expression patterns of CEP290 

in humans, a strikingly pronounced expression of CEP290 was observed in the 

developing choroid plexus in young fetal embryos, corresponding to the LacZ 

expression seen in this novel Cep290 mouse model. Furthermore, CEP290 

human embryonic expression patterns were observed in the retinal pigment 

epithelium layers of the developing fetus which was also confirmed in this novel 

Cep290 mouse model (Cheng, Eley et al. 2012).  

It is now well established that primary cilia are present on the choroid plexus 

and that they act as chemosensors in maintaining the production of 

cerebrospinal fluid (Narita, Kawate et al. 2010). A disruption in the sensory 

function of the primary cilium in the choroid plexus will lead to excess 

cerebrospinal fluid production resulting in hydrocephaly.   

Finally and most importantly for this study, the data previously published from 

the expression of CEP290 in humans revealed prominent expression of 

CEP290 in the developing collecting duct tubules in the human fetal embryos 

(Cheng, Eley et al. 2012). This Cep290LacZ/LacZ study documents the same 

pattern of Cep290 expression in the brain retina and renal tissue of Cep290LacZ/+ 

mice that was previously found in the human fetal data (Cheng, Eley et al. 

2012). 

Overall the phenotype of the Cep290LacZ/LacZ mouse model was consistent with 

the characteristics of patients with JBTS.  

This Cep290LacZ/LacZ mouse model is a potentially valuable model organism 

which is required to dissect the pathways which are affected in NPHP. In the 
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future this novel mouse model will be beneficial for testing targeted therapeutic 

treatments to prevent or to prolong the inevitable juvenile form of renal failure 

associated with NPHP. 

This Cep290LacZ/LacZ mouse model recapitulates the cystic kidney phenotype of 

this human ciliopathy. The Cep290LacZ/LacZ129/Ola mouse model had less 

variable features compared to the Cep290LacZ/LacZ C57BL/6J which manifested 

very variable cystic features. 
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Gene 
Mouse model 
name + strain 

used 

Phenotype 
Reference 

Kidney Brain Eye 

Nphp1 
Nphp1

del20/del20 

(C57BL/6J) 
No change ND ND 

(Jiang, Chiou et 
al. 2008) 

Nphp2 
Inv/Inv 
(ND) 

E15 collecting duct cysts ND ND 

(Morgan, 
Turnpenny et al. 
1998; Phillips, 

Miller et al. 2004) 

Nphp3 

(A) Pcy 
(B)Nphp3

Ko/Pcy
 

(C) Nphp3
Ko/Ko 

(DBA/ 
C57BL/6J) 

(A) Cysts from 2 weeks 
(TBM atrophy and dilation) 

(B) Cysts from 4 weeks 
old 

(C) NE 

ND ND 

(A) (Omran, 
Haffner et al. 

2001) 
(B) (Bergmann, 
Fliegauf et al. 

2008) 

Nphp4 
Nphp4

nmf192/nmf192

(DBA+ 
C57BL/6J) 

No change in morphology ND 
Photoreceptor 

Degeneration by 
P14 

(Won, Marin de 
Evsikova et al. 

2011) 

Iqcb1 ND ND ND ND ND 

Cep290 
 

Rd16/Rd16 
(BXD-24/Ty) 

No change in 6 month old mice RD 1 month 
(Chang, Khanna 

et al. 2006) 

Cep290
-/- 

(C57BL/6J) 
ND 

Midline fusion 
defects E16.5 

RD (not shown) 
(Lancaster, Gopal 

et al. 2011) 

Rd16Nrl
-/- 

(C57BL/6J) 
ND ND 

Dis-functional 
cones 

(Cideciyan, 
Rachel et al. 

2011) 

Cep290
LacZ/LacZ 

(C57BL/6J) 

Collecting duct cysts at 1 
month, TBM dilation, 
fibrosis at 1 month 

Hydrocephaly RD at 2 weeks This study 

Cep290
LacZ/LacZ 

(129/Ola) 

Microscopic collecting duct 
cysts at birth, fibrosis not 
evident until after 1 month 

Hydrocephaly ND This study 

Glis2 

Glis2
LacZ/LacZ 

(C57BL/6J) 

Loss of corticomedullary 
differentiation, small 
kidney resulting from 

reduced size in medulla 
over time, fibrosis by 8 

weeks and TBM atrophy. 
Mild cystic phenotype at 8 

weeks 

ND ND 
(Attanasio, 

Uhlenhaut et al. 
2007) 

Glis2
mut 

(C57BL/6J) 

At 4 months reduced 
kidney size TBM 

thickening in proximal 
tubules, proteinuria, 

increased creatinine die of 
renal failure (NO CYSTS) 

No change ND 
(Kim, Kang et al. 

2008) 

Rpgrip1l 

Ftm
-/- 

(Die at birth) 
(ND) 

ND 
Floor plate 
induction 
affected 

Microphthalmia 

(reduced eye size) 

(Vierkotten, 
Dildrop et al. 

2007) 

Rpgrip1l
-/- 

(Die at birth) 
(C3H and 
C57BL/6J) 

E18.5 microcysts of 
proximal tubule 

Dilated brain 
ventricle and 

cerebellar 

hypoplasia 

Microphthalmia 

(reduced eye size) 
(Delous, Baala et 

al. 2007) 

Ft/Ft 
(Die- 

midgestation) 
(C3H and 
C57BL/6J) 

ND Exencephaly 
Microphthalmia 

(reduced eye size) 
(Anselme, Laclef 

et al. 2007) 

Nek8 
Jck-/- 

(C57BL/6J) 

Collecting duct cysts at 2 
weeks, tubule cytoskeletal 

disorganisation 
ND ND 

(Liu, Lu et al. 
2002) 

Sdccag8 ND ND ND ND ND 

Tmem67 

bpck/bpck 
(B6C3FeF1/J) 

Death by 3 weeks from 
PKD 

Hydrocephaly 
a few days 
after birth 

ND 
(Cook, Collin et al. 

2009) 

Tmem67
-/- 

(C57BL/6J) 
Cysts at E18.5 

(Die at birth but ND how) 
ND ND 

(Garcia-Gonzalo, 
Corbit et al. 2011) 

Ttc21b 
Aln

-/-
 

(A/J and FVB) 
ND 

Delayed 
forebrain 

development 

Microphthalmia 

(reduced eye size) 

(Herron, Lu et al. 
2002; Tran, 

Haycraft et al. 
2008) 
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Gene 
Mouse model 

name + 
(strain) used 

Phenotype Reference 

Kidney Brain  Eye 

Wdr19 
Ift144

twt  

(FVB/NJ) 
ND Exencephaly 

Anopthalmia 
(Lack eyes) 

(Ashe, Butterfield 
et al. 2012) 

 

Wdr19 
Ift

dmhd 

(FVB/NJ) 
Die at E11.0 (Reason for death ND) 

(Ashe, Butterfield 
et al. 2012) 

 

Ahi1 
Ahi1

-/- 

(C57BL/6J) 

Micro cysts, tubular 
dilation, tubular 

collapse, fibrosis at 1 
year 

Cerebellar midline 
fusion defects 

underdeveloped 
vermis with 

foliation defects 

RD 

(Lancaster, Louie 
et al. 

2009)Lancaster, 
2011 #35(Louie, 

Caridi et al. 
2010)} 

Atxn10 
Sca10 

(FVB/N) 
ND 

Neuronal loss at 
hippocampus at 6 
months vacuoles 
in the frontal lobe 

ND 
(White, Xia et al. 

2012) 

Znf423 
Nur12 

(Mixed strains) 
ND 

Ataxia cerebellar 
vermis hypoplasia 

defects 
ND 

(Alcaraz, Gold et 
al. 2006) 

Cep164 ND ND ND ND ND 

 
Han:SPRD 

cy/+ 

(Rat model) 
Proximal tubule cysts 

at P36 
ND ND 

(Brown, Bihoreau 
et al. 2005) 

Xpnpep3 ND ND ND ND ND 

SLC41A1 ND ND ND ND ND 

Jbts1 
Inpp5e

∆/∆ 

(Mixed strains) 
Multiple cysts E18.5 

Exencephaly and 
Anencephaly 

Development 
arrest at optic 

vesicle stage 

(Jacoby, Cox et 
al. 2009) 

Cors2 
Hty

-/- 

(C3H/HeN) 
ND Exencephaly ND 

(Hoover, 
Wynkoop et al. 

2008) 

Jbts3=(Ahi1), Jbts4=(Nphp1),Jbts5=(Cep290), Jbts6 =(Tmem67),Jbts7= (Rpgrip1l) 

Arl13b 
Hnn

-/- 

(C3H) 
ND 

“Open neural tube 
in the head” 

Abnormal eye 
defects (E14.5) 

(Caspary, Larkins 
et al. 2007) 

Cc2d2a 
Cc2d2a

-/-

(C57BL/6J) 
ND 

Forebrain failed to 
develop 

Microphthalmia 

(reduced eye size) 
(Garcia-Gonzalo, 
Corbit et al. 2011) 

Ofd1 
Ofd1

∆4-5 

(Mixed) 
Autopsy of P0 = cystic 

kidneys 
Exencephaly ND 

(Ferrante, Zullo et 
al. 2006) 

Ttc21b = Nphp12 

Kif7 

Kif7
-/- 

(Mixed) 
ND Exencephaly ND 

(Cheung, Zhang 
et al. 2009) 

Kif7
maki 

(C57BL/6J) 
ND ND ND 

(Liem, He et al. 
2009) 

Tctn1 
Tctn1

-/- 

(C57BL/6J) 
ND 

Forebrain fails to 
develop 

ND 
(Reiter and 

Skarnes 2006) 

Tmem237 ND ND ND ND ND 

Cep41 
Cep41

Gt/Gt 

(C57BL/6J) 
ND 

Exencephaly 
lethal at E10 

ND 
(Lee, Silhavy et 

al. 2012) 

Tmem138 ND ND ND ND ND 

C5orf42 ND ND ND ND ND 

Tctn2 
Tctn2

-/- 

(Mixed) 
+(C57BL/6J) 

ND 
(Mixed) 

Exencephaly 
E13.5 

(C57BL/6J) 
Microphthalmia 
(reduced eye 

size) 

(Sang, Miller et al. 
2011) 

Tctn3 ND ND ND ND ND 

Tmem231 
Tmem231

-/- 

(C57BL/6J-Tyr
c-

Brd
) 

Embryonic lethal ND 
(Tang, Li et al. 

2010) 

Mre11 
Mre11 
(Mixed) 

Embryonic lethal ND 
(Cherry, Adelman 

et al. 2007) 

Table 3.2.  Revised table 1.2 and 1.3 comparing Nphp/Jbts mouse 
models phenotypes to the Cep290LacZ/LacZ mouse model phenotype. 
Not Discussed/Defined (ND) RD (Mixed= not inbred mice and mice are not bred 
on the one strain). 
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In examining the kidney phenotype alone from each of the Nphp/Jbts mouse 

models (Table 3.2), the Cep290LacZ/LacZ mouse model is a potentially valuable 

mouse model to use for targeting novel treatments for the juvenile form of 

NPHP.  

Cep290LacZ/LacZ mice present with renal cysts from birth and survive until 

adulthood with a modest increasing cystic phenotype.  

The Nphp2, Jbts1 and Jbts10/Ofd1 mouse models died at birth, although cystic 

kidneys were present in these animals it is not the juvenile form of nphp as the 

animals do not survive. The Tmem67/Nphp11 mouse model is an accelerated 

model of nphp as the mice die from a cystic kidney phenotype at 3 weeks old 

hence monitoring the disease would be difficult. The Tmem67//Nphp11 mouse 

reflects the infant form of NPHP rather than the juvenile form of NPHP.  

The Nphp3 mouse model has been used for treating PKD as mentioned in 

chapter 1 however the Nphp3 mouse model is a slowly progressive cystic 

kidney disease model which mimics adolescent NPHP. Also interestingly 

23/800 pcy/pcy mice did not have a PKD phenotype and therefore these mice 

were also modulated by modifier genes (Woo, Nguyen et al. 1997).  

The last 2 mouse models to discuss with a cystic kidney phenotype include the 

Ahi1 mouse model and the Glis2 mouse model. The Ahi1 mouse model only 

presents with a Nphp phenotype and micro cysts at 1 year of age therefore this 

mouse model is not suitable for comparing to the juvenile form of NPHP.  

Finally the Glis2 mouse model would be a good mouse model to use for treating 

juvenile NPHP however the mice only have micro cysts and are more of a 

fibrotic/epithelial to mesenchymal model. Hence the cystic phenotype of NPHP 

cannot be treated in the Glis2 mouse model.      
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Chapter 4 Morphological and functional 

characterisation of a novel Cep290LacZ/LacZ immortal 

CDT cell line. 

4.1 Introduction 

This chapter focuses on an in vitro model of this Cep290LacZ/LacZ ciliopathy by 

generating an immortal Cep290 CDT cell line. The H-2Kb-tsA58 mouse line 

(published as the Immorto mouse (Jat, Noble et al. 1991)), was crossed with the 

Cep290LacZ/LacZ mouse to generate double transgenic Cep290LacZ/LacZ ::H-2Kb-

tsA58+/- and Cep290+/+ ::H-2Kb-tsA58+/- mice. The Cep290 immorto mouse 

generated was then utilised to produce immortal CDT cells. 

The H-2Kb-tsA58 transgenic mouse strain was first described in 1991. This 

mouse model’s genetic code is modified to contain the simian vacuolating virus 

(SV40) large tumour (T) antigen (Ag)- (TAg). The H-2Kb-tsA58 transgenic 

mouse strain was created to conditionally immortalize many different cell types 

ex vivo (Jat, Noble et al. 1991). A modified thermo labile known as tsA58 TAg 

construct was exploited to reduce the normally high levels of proliferation and 

tumour genesis associated with TAg expression in vivo (Jat, Noble et al. 1991).  

In order to ensure expression of the SV40 T antigen construct into a range of 

tissues, a histocompatability complex H-2Kb class I promoter was also utilized. 

The H-2Kb gene is active in many cells and can be induced by interferons (IFNs)  

thus adding an additional level of control (Wallach, Fellous et al. 1982; Israel, 

Kimura et al. 1986; David-Watine, Israel et al. 1990) .  

The “immorto” transgene in the mice is usually dormant and can only be 

activated by culturing explanted cells at 33°C. At 33°C the A58 strain is 

activated and in the presence of IFN-γ expression the H-2Kb promoter is 

activated and expressed.  

Cep290LacZ/+ mice were mated with H-2Kb-tsA58+/- transgenic mice in order to 

isolate conditionally immortalized Cep290+/+, Cep290LacZ/+ and Cep290LacZ/LacZ 

kidney CDTs (Figure 4.1).   
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Immortal collecting duct cells are desirable as NPHP cysts are localised to the 

collecting duct epithelial cells. Mutations in Cep290 cause NPHP and therefore 

CDT cells maybe a useful model study this disease at the cellular level. 

Cep290LacZ/LacZ mice as previously shown present with a collecting duct cystic 

kidney phenotype. 

Unlike other cell lines derived from siRNA knockdown studies (described in 

further detail later in this chapter), the cells isolated in this study originated from 

a novel mouse model presenting with NPHP. The cysts are collecting duct in 

origin and therefore are the target cells at which the mutation in Cep290 is 

expressed (Figure 4.2) 

Importantly, CDT cells isolated from a mouse model of NPHP can be 

manipulated and subjected to various treatments and experiments and unlike 

animal models the direct affect on the cells can be easily followed. 

In addition to the benefit of subjecting the cells to various treatments, CDT cells 

can be studied in more detail. Gene expression differences which influence a 

cystic phenotype in CDT’s can be investigated in more precise detail compared 

to whole kidney tissues.  
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Figure 4.1  Breeding strategy for tsA58 transgenic Cep290LacZ/LacZ mice and isolation of CDT cells from these mice. 
A Cep290LacZ/+ male mouse was crossed with a heterozygous H-2Kb-tsA58 transgenic female mouse to generate mice heterozygous for 
Cep290 and H-2Kb-tsA58.These double heterozygous Cep290:: H-2Kb-tsA58 mice were then backcrossed to a heterozygous Cep290 
mouse to generate compound mutant transgenic mice (known as the immortal Cep290 homozygote mouse). Control mice for the 
immortal homozygote mouse were Cep290+/+ mice with a single copy of the H-2Kb-tsA58 transgene. When the mice were 1 month old 
the kidneys were dissected. One kidney was analysed for histology phenotype and the other kidney was used to generate immortal 
collecting duct cells. Mouse images adapted from (Strachan 2004). 
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4.2 Aims 

A powerful tool for this study was to compare Cep290LacZ/LacZ and Cep290+/+ 

immortal CDT cells during in vitro differentiation. An investigation into the 

morphology of the CDT cells lines generated was essential for the remainder of 

this chapter prior to any other experiments to ensure the cells represent a 

model of renal collecting duct cells.  

In order to generate a Cep290LacZ/LacZ CDT cell line, the kidney phenotype of 

Cep290LacZ/LacZ and Cep290+/+ mice bred with the H-2Kb-tsA58+/- transgenic mice 

needs to be assessed. Once the cystic kidney phenotype is confirmed in 

Cep290LacZ/LacZ mice bred with the H-2Kb-tsA58+/- mice the CDT cell line was 

generated from the kidneys of the double transgenic animals and the CDT cell 

line was characterised to confirm the cells were CDT cells. As NPHP is known 

as a ciliopathy related disorder the morphology of primary cilia from 

Cep290LacZ/LacZ CDT cell was also assessed and compared to Cep290+/+ CDT 

cells and the results are as follows.  

4.3 Generation and characterisation of CDTs. 

One kidney from the offspring of the Cep290:: H-2Kb-tsA58+/- transgenic mice 

was analysed for renal morphology and a cystic phenotype (Figure 4.2). The 

other kidney dissected was employed for enriching CDT cells (see chapter 2 for 

enrichment procedure). It was confirmed that Cep290LacZ/LacZ:: H-2Kb-tsA58+/- 

mice presented with a cystic kidney phenotype while the Cep290+/+ and 

Cep290LacZ/+ did not (Figure 4.2).  

 



 

103 
 

 

Figure 4.2  Renal phenotype of Cep290:: H-2Kb-tsA58+/- transgenic mice and PCR confirming genotypes of H-2Kb-tsA58 mice. 
Haematoxylin and Eosin staining of renal sections from Cep290 LacZ/+/H-2Kb-tsA58+/- (A+C) and Cep290 LacZ/LacZ/H-2Kb-tsA58+/- (B+D) 
transgenic mice. This figure illustrates that the heterozygous Cep290/ H-2Kb-tsA58 mice do not express a phenotype of a cystic nature 
(Panel A+ C - no evidence of cysts) and thus phenocopy the heterozygote Cep290 mouse. This figure also demonstrates that the 
Cep290 LacZ/LacZ/H-2Kb-tsA58+/- (B+D) transgenic mice phenocopy the Cep290LacZ/LacZ mouse presenting with cysts in the cortiex region of 
the kidney. Thus, these new double heterozygote/homozygote breedings phenotypically represent the Cep290 mouse model Panel E 
Genotyping PCR of H-2Kb-tsA58 mice. PCR distinguishes between wild type, heterozygous and homozygous H-2Kb-tsA58 transgenic 
mice. Wild type H-2Kb-tsA58 mice have a 500bp product and Cep290LacZ/LacZ mice have a 300bp product. The wildtype and 
Cep290LacZ/LacZ animals are clearly distinguishable and heterozygote animals have a copy of each of the products. 
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A single copy of the H-2Kb-tsA58 transgene is sufficient to immortalize CDT 

cells. A previous study has created olignonucleotide primers identifying wild 

type immortal mice from heterozygous and homozygous immortal mice (Kern 

and Flucher 2005).  

The H-2Kb-1 transgene is located in chromosome 17 (whilst murine Cep290 is 

on chromosome 18 therefore there is no risk of interfering with the Cep290 

gene) of the mouse genome with 6 coding exons. The 5’ end of the H-2Kb-1 

transgene was fused to the SV40tsA58 coding sequence. The genes were 

fused together using the 4.2kb EcoRɪ-Nru ɪ fragment which contained the H-2Kb 

promoter sequence ligated to 2.7kb Bgl ɪ - BamHI derived from the early region 

coding sequence of the tsA58 gene (Jat, Noble et al. 1991).    

Before the study by Kern, G & Flucher B. E 2005, it was impossible to 

distinguish between heterozygote and mutant H-2Kb-tsA58 mice, as the 

localization of the transgene was unknown. The mutant mice were reported to 

have a reduced life span compared to the heterozygous mice as the penetrance 

of 2 copies increase the thymic hyperplasia phenotype (Jat, Noble et al. 1991). 

Another report published that only 1/5th of the homozygous H-2Kb-tsA58 

females reproduced and if they did reproduce they only were able to reproduce 

once. It was determined that this study would focus on cells isolated from 

Cep290 mice with only one copy of the H-2Kb-tsA58 transgene (Figure 4.2 for 

genotyping results). 

Kidney tissues were dissected from Cep290+/+, Cep290LacZ/+ and Cep290LacZ/LacZ 

mice heterozygous for the H-2Kb-tsA58 gene. The method for extracting and 

enriching for the CDT cells has been described in the methods section and the 

cells were maintained as described in Chapter 2. Briefly kidney slices were 

digested in collagenase II digest the CDT cells were then enriched using DBA 

coated plates. DBA has been described as a marker of the collecting duct 

tubule in mammalian species including the mouse rat and rabbit (Watanabe, 

Muramatsu et al. 1981; Holthofer 1983; Holthofer, Schulte et al. 1987; Laitinen, 

Virtanen et al. 1987; Holthofer 1988; Plendl, Schoenleber et al. 1992; Kovacs, 

Zilahy et al. 1997; Grupp, Troche et al. 1998; Schumacher, Strehl et al. 2002).   

An example of an immortalised CDT cell line from SV40 transgenic mice was 

first described in 1991 (Stoos, Naray-Fejes-Toth et al. 1991). This cell line 
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exhibited some features of cortical collecting duct cells which included a typical 

epithelial appearance and cortical collecting duct specific antigens; however the 

cells lost their capability for aldosterone-stimulated Na+ absorption via the 

activation of the MR (Stoos, Naray-Fejes-Toth et al. 1991). 

MR expression is crucial for regulating salt water transport in the kidney. CDT’s 

are responsible for the final regulation of maintaining sodium levels of 

reabsorption. Cells which exhibit aldosterone-stimulated Na+ absorption can be 

easily identified using RT-PCR method to show any levels of expression of the 

MR.  

Another important feature of CDT cells is to maintain expression of the epithelial 

sodium channel ENaC a membrane protein present in the apical membrane of 

principal cells of the cortical collecting tubule. The ENaC is responsible for 

apical Na+ reabsorption in collecting duct cells (Hummler and Horisberger 1999).  

In order to confirm the Cep290 cells isolated were conditionally immortalised 

CDT cells (after DBA enrichment), the following parameters were examined:  

1.) Bright field images of the cells at confluency were compared to published 

images of collecting duct tubules revealing that Cep290+/+ and Cep290LacZ/LacZ 

CDT cells were morphologically similar to previously published images of CDT 

cells after every passage that has been investigated in this study (Figure 4.3 

A+B). 

2.) The cells were re-genotyped to confirm the presence of Cep290 status by 

DNA genotyping and RT-PCR (Figure 4.3 C+D). 

3.) The cells were assessed via western blotting to ensure the Cep290LacZ/LacZ 

cells did not express the full length Cep290 protein product (Figure 4.3 E). 

4.) To ensure cells were collecting duct in origin primers for MR and E-NaC 

were designed and their expression levels were tested and cells were analysed 

for confluent epithelial monolayers (Figure 4.3 F). 
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Figure 4.3  Phenotype and genotyping of Cep290LacZ/LacZ cells, heterozygote for the H-2Kb-tsA58 gene, western blotting of 
whole cell protein extracts for Cep290 and confirmation of CDT cell types. 
(Panels A+B) Bright field imaging of Cep290+/+ and Cep290LacZ/LacZ immortal confluent CDT cells. (Panel C) Genotyping of cells to confirm 
Cep290 expression. (Panel D) RT-PCR of HPRT normalisation gene expression levels, expression of Exon23-26 of the Cep290 gene 
only expressed in Cep290+/+ cells as the gene trap truncates the Cep290 protein, Expression of β-geo only in the Cep290LacZ/LacZ sample 
and expression of exon 41-42 of Cep290 gene after the gene trap. Panel E Western blot of Cep290+/+ and Cep290LacZ/LacZ immorto CDT 
cells. The Cep290LacZ/LacZ does not express the full 290kDa Cep290 protein product. Finally (Panel F)a RT-PCR showing the expression 
of MC receptor and E-NaC alpha subunit in the immortal Cep290+/+ and Cep290LacZ/LacZ CDT cells, a positive control from whole kidney 
extract and a negative control of H20. 
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In summary CDT cells for both Cep290LacZ/LacZ and Cep290+/+ samples are 

morphologically similar to previously published studies of CDT cells. Also the 

gene expression levels of MR and E-NaC confirm the cells are CDT cells. 

Importantly figure 4.3 reveals expression of both Cep290LacZ/LacZ and Cep290+/+ 

alleles in CDT cells.   

4.4 Are there any defects in the primary cilia of cystic 

Cep290LacZ/LacZ CDT cells? 

As discussed previously, mutations in genes encoding cilia-associated proteins 

have been identified in patients with NPHP. The primary cilia in renal tissue 

protrude from apical cells into the lumen of collecting duct tubules. Cilia with 

abnormal structure or function (or sometimes both) are thought to be involved in 

cyst formation. The mutated gene products identified in NPHP and JBTS are 

generally localised to the primary cilium/basal body/centrosome (Chapter 1).   

Various mouse models presenting with renal cysts have shortened or 

malformed cilia.  The Tg737orpk mouse model presenting with an ARPKD 

phenotype, as an example, presents with polycystic kidneys and shortened cilia 

were observed on the renal epithelial cells. The Ift20 (postnatal) mouse model 

presents with cystic kidneys and the kidneys have no cilia. A final example is 

the Kif3α mouse model which is embryonic lethal. The cysts lining the epithelial 

cells of the Kif3a mouse model also have no cilia. The lack of cilia in mutant 

kidneys is generally associated with embryonic lethal mouse models (Moyer, 

Lee-Tischler et al. 1994; Takeda, Yonekawa et al. 1999; Pazour, Dickert et al. 

2000; Jonassen, San Agustin et al. 2008; Ko and Park 2013).   

An investigation to ascertain if there were any structural cilia defects in the renal 

tissue of the Cep290LacZ/LacZ mice via SEM and TEM techniques was analysed 

in chapter 3. No conclusive evidence of structural defects in the primary cilia 

was found in the Cep290LacZ/LacZ kidney samples; however the data was 

inconclusive due to technical difficulties in orienting the images to discern the 

length and end of the cilium. Thus measurements of the primary cilium length 

and cross sections would have been inconclusive however there was subtle hint 

that perhaps the cilium appeared more bulbous in the Cep290LacZ/LacZ mouse 

collecting duct tubule compared to the Cep290+/+ littermate (Chapter 3 Figure 

3.10).  
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CDT cells provided a tool to analyse the primary cilium in greater detail than 

renal tissue, specifically as the CDT’s are the target cells which are the source 

of NPHP cystic kidney disease.  

In order to investigate the structure of the primary cilium at the cellular level, the 

assembly of the primary cilium was analysed (Figure 4.4). The protein products 

of the genes mutated in NPHP are located in the primary cilium. The primary 

cilium assembles and disassembles at different stages of the cell cycle. When 

the cilium is assembled ciliary signalling pathways are activated controlling 

multiple pathways. The primary cilium is disassembled prior to mitosis which 

involves the separation of daughter chromosomes and ending with cell division 

(cytokinesis) (Pan, Seeger-Nukpezah et al. 2012). 

In Figure 4.4 the primary cilium is fully assembled at the G0 phase when the 

cells are quiescent. The CDT cells of renal tissue in the adult mammalian body 

are consistently in quiescence.  

In order to investigate in further detail the effects on the primary cilium in 

Cep290LacZ/LacZ CDT cells, at the cellular level, immortal Cep290LacZ/LacZ CDT 

confluent cells were subjected to 48h of serum starvation to induce primary cilia 

expression.  

Serum starvation arrests the cell cycle to enter into the G0, quiescent state.  

In non dividing cells the centrioles migrate to the cell surface where the mother 

centriole forms a basal body that organises the formation of a cilium. 

Immunofluorescent techniques were utilised in order to study the phenotype of 

the primary cilium in immortal Cep290LacZ/LacZ CDT cells (Figure 4.5). 
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Figure 4.4  Primary cilia assembly and disassembly during the cell cycle. 
The primary cilium extends from the cell surface after cytokinesis and is fully assembled at the G0 state when the cells are in quiescence. 
The cilium starts to re-enter the cell at G1-S transition phase, and it is completely re-absorbed at early prophase. This process is crucial 
for maintaining orderly cellular division and cellular proliferation. Figure adapted from (Pan, Seeger-Nukpezah et al. 2012).  
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Figure 4.5  Cep290 is required for functioning ciliogenesis in renal CDT cells. 
Immunofluorescence images of confluent immortal CDT cells grown on coverslips after 48h of serum starvation. Staining with acetylated 
α-tubulin (red) and pericentrin (green) phenotypically shows the cilia and basal body structure in immortal Cep290+/+ CDT (A+C) cells. 
The Cep290LacZ/LacZ CDT cells present with short stumpy cilia (Panel B+D) in serum starved cells after 48h. There was a significant 
reduction in cilia formation at the G0 phase in Cep290LacZ/LacZ cells compared to Cep290+/+ cells (Panels A+B). It was also evident that the 
Cep290LacZ/LacZ cells which acquired a primary cilium were noticeably shorter than the Cep290+/+ CDT cell (Panel C+D). Panel E+F 
Images of primary cilia from confluent CDT cells on coverslips.blue staining represent DAPI. Ki67 staining was negative after 48 h serum 
starvation thus confirming the cells were in quiescence (data not shown).
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4.5 The primary cilium of Cep290LacZ/LacZ CDT cells 

In Cep290+/+ CDT cells, the cilium assembles after the cells exit mitosis (G0 

phase) and is resorbed as part of cell cycle re-entry. However in Cep290LacZ/LacZ   

CDT cells the primary cilium appears to be abnormal. The truncating mutation 

of Cep290 resulted in both a clear reduction in ciliogenesis and aberrant stumpy 

cilia in the few cilia that did form when the cells were in quiescence (Figure 4.5). 

A similar phenotype was observed following siRNA knockdown of centrosomal 

proteins which included Cep131, Cep152 and in Cep57 in serum starved cells 

on hTERT-RPE1 cells (Graser, Stierhof et al. 2007), suggesting that mutations 

in centrosomal proteins result in ciliogenesis defects.  

In 2008 Kim et al., demonstrated that siRNA knockdown of Cep290 hTERT-

RPE cells revealed a similar cilium phenotype to that we have shown in 

Cep290LacZ/LacZ CDT cells (Figure 4.5). Kim et al., saw a loss of primary cilia in 

quiescent cells and found that a depletion of Cep290 almost completely 

prevented primary cilium formation (Kim, Krishnaswami et al. 2008). The 

studies described involved the use of hTERT-RPE cells.  

These studies suggest that Cep290 is required for maintaining ciliogenesis in 

both the retina and the kidney epithelia.
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As observed in Figure 4.5 (Panels A-B) Cep290LacZ/LacZ CDT cells when serum 

starved express less primary cilia. The total amount of visible cilia in serum 

starved CDT cells was calculated (Figure 4.6). 

Over 200 cells were investigated in both Cep290+/+ and Cep290LacZ/LacZ CDT 

cells. 55% of Cep290+/+ CDT cells expressed a primary cilium. For the 

Cep290+/+ cells; 227 cells were counted and from these cells 127 cilia were 

counted. However for the Cep290LacZ/LacZ CDT cells only 5% expressed a 

primary cilium (P<0.0001). For the Cep290LacZ/LacZ cells; 284 cells were counted 

and from these cells only 13 cilia were present. 

 

Figure 4.6  A Cep290 truncated mutation reduced the proportion of 
ciliated cells in CDT cells. 
Immunofluorescence images were analysed to determine the proportion of cilia 
present in a collection of CDT cells from Cep290+/+ and Cep290LacZ/LacZ samples.  
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The length of primary cilia from both Cep290+/+ and Cep290LacZ/LacZ CDT cells 

was measured. There was a statistical significant difference between 

Cep290LacZ/LacZ CDT cells primary cilia lengths compared to the Cep290+/+ CDT 

cells primary cilia lengths (P=0.001) (Figure 4.7). 

 

Figure 4.7  Mutations in Cep290LacZ/LacZ CDT cells present with a reduced 
cilium length in serum starved cells.  
Immunofluorescent images were employed to determine the length of the 
primary cilia present in a collection of CDT cells from Cep290+/+ and 
Cep290LacZ/LacZ CDT cells. Lengths were compared using students t-test. 
 

The Cep290+/+ CDT cells mean primary cilium length was 3.5µm with a 

standard error of the mean at 0.177, however for the Cep290LacZ/LacZ CDT cell 

mean primary cilium length was only 2.4µm with a standard error of the mean at 

0.124. A student’s t-test p value of the length of the primary cilium was p 0.001 

determining the results are statistically significant. Cilia lengths were taken 

from >12 different primary cilia on Cep290+/+ and Cep290LacZ/LacZ CDT renal 

cells serum starved for 48h. Primary cilium length was also investigated in 

Cep290LacZ/LacZ CDT cells when CDT cells reached confluence without serum 

starvation.  



 

114 
 

4.6 Cep290 is required for ciliogenesis. 

A functional primary cilium is crucial for maintaining the homeostasis of the 

renal CDT cell. Any defects which occur to the function of the primary cilium 

during ciliogenesis may cause disruption to the rest of the cell cycle in the renal 

CDT. Functioning ciliogenesis requires IFT machinery to move cargo towards 

the ciliary tip for many different cellular pathways. As observed in figure 4.6 

there was a significant reduction in the percentage of ciliated Cep290LacZ/LacZ 

renal CDT cells when compared to their Cep290+/+ controls. It was also 

determined that the cilia in Cep290LacZ/LacZ CDT cells were much shorter 

compared to Cep290+/+ CDT cells (Figure 4.7). 

This lack in number of cilia and the reduction of cilia length in Cep290LacZ/LacZ 

CDT cells suggests that signalling cascades may be altered as receptors for 

hedgehog, PDGF and Wnt signalling pathways are normally active along the 

length of the primary cilium. These receptors are also required for maintaining 

the structural polarity and the maintenance of the kidney CDT.  In the Cep290 

mouse model this would suggest the lack of primary cilia and the reduction of 

cilia length in the Cep290LacZ/LacZ CDT is affiliated with the cystic kidney 

phenotype in the Cep290LacZ/LacZ mice. 

A reduction of cilium length in quiescence was confirmed in Cep290LacZ/LacZ 

CDT cells (Figure 4.7) compared to normal growing conditions. In the fully 

formed renal CDT of mice the CDT’s are normally in quiescence.  

The entire mechanism involved in the growth of the primary cilium is not known 

however many key proteins have been identified which are crucial in order to 

maintain ciliogenesis.  

A previous study has identified that Cep290 is one of the key proteins for 

maintaining ciliogenesis. Cep290 expression was found on both the mother and 

the daughter centrioles during ciliogenesis (Tsang, Bossard et al. 2008). The 

mother centriole during each cell cycle assembles the primary cilium and a loss 

of Cep290 in the mother centriole maybe influencing the improper assembly of 

the primary cilium. (Tsang, Bossard et al. 2008). 
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4.7 Determining the tubular morphology of Cep290LacZ/LacZ 

CDT cells 

In order to determine the tubular morphology of Cep290+/+ and Cep290LacZ/LacZ 

CDT cells, the CDT cells were cultivated in a 3D culture system consisting of a 

collagen I solution and a hormone HGF to provide extracellular matrix 

components in order to grow the cells as tubular spheroids.  

Imaging 3D spheroids is a valuable tool in order to study the epithelial structure 

and morphogenesis of CDT cells which closely mimic their natural physiological 

conditions (Elia and Lippincott-Schwartz 2009). In this section the phenotype of 

the tubular spheroids were analysed. Spheroids were stained with DAPI to 

analyse the nuclear morphology of the in vivo tubules. Cep290LacZ/LacZ CDT 

spheroids appeared to have less cells than wild type controls (Figure 4.8). The 

presence of primary cilia in 3D spheroids was detected using antibodies to anti-

acetylated tubulin. As observed earlier in the 2D culture systems only 5% of cilia 

form in the Cep290LacZ/LacZ CDT cells. The cilia that do form in Cep290LacZ/LacZ 

CDT cells are visually shorter than the Cep290+/+ controls confirming a 

ciliogenesis defect. In 3D culture however there are no cilia present in 

Cep290LacZ/LacZ CDT cells. The lack of cilia in Cep290LacZ/LacZ CDT 3D spheroids 

suggests a much more severe phenotype than previously thought. 

Tight junction assembly of the spheroids were analysed using an antibody to 

zona occludens-1 (ZO1) which is a scaffolding protein. ZO1 highlights the 

shape, form and location of the polarity of the spheroid. The expression of the 

tight junction protein ZO1 was down-regulated in Cep290LacZ/LacZ 3D spheroids 

and this therefore highlights a defect in the epithelial organistation of the CDT 

(Figure 4.8). β-catenin was employed to assess the phenotype of the adherens 

junctions in these 3D spheroids. β-catenin is also a key component downstream 

of the canonical wnt signalling pathway and therefore any visual defects found 

in the Cep290LacZ/LacZ 3D spheroids suggests there might be a defect in the wnt 

signalling pathway. The majority of β-catenin is localised to the cell membrane 

and is involved in the regulation of cell adhesion. Partial defects of the adherens 

junctions were observed in Cep290LacZ/LacZ 3D spheroids (Figure 4.8). 
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Figure 4.8  3D culture imaging of Cep290 immortal CDT cells. 
(Panels A-E) Cep290+/+ immortal CDT  cells and (Panels F-J) Cep290LacZ/LacZ immortal CDT  cells. (Panels A+F) Dapi staining the nuclei 
of the spheroids, Panels B+G Anti-acetylated tubulin immunofluorescence marker staining primary cilia of the apical cells in the lumen of 
the spheroid. Note the Cep290LacZ/LacZ cells only seem to posses 1 primary cilium compared to the Cep290+/+ cells. (Panels C+H) ZO1 
staining illuminating the tight junctions of the spheroids. The tight junctions are disorganised in the Cep290LacZ/LacZ cells. (Panels D+I) 
stain the adherence junctions of the spheroid using β-catenin marker. (Panels E+J) merged image of DAPI, acetylated tubulin, ZO1 and 
β-catenin on the spheroid tubule.Tubules with misaligned nuclei were defined as abnormal. (Images collected by R Giles)
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The 3D culturing system of CDT cells closely resembles the cellular nature of 

kidney collecting duct tubules. A previous study utilizing retroviral knockdown of 

Cep290 expression IMCD3 examined the tubule structure of the Cep290LacZ/LacZ 

cells using a 3D culturing system. The structure of the spheroids was examined 

when Cep290 was depleted. Abnormal structures of the 3D spheroids were 

observed and a reduction in cilia numbers was also evident (Ghosh, Hurd et al. 

2012). 

Microscopic investigation of the Cep290+/+ 3D CDT cells identified tight epithelial 

junction complexes and apical microvilli which are hallmarks of a polarized 

epithelium. The Cep290+/+ 3D CDT cells also maintained tight adherence 

junctions. 190 spheroids were analysed and over 50% of the cells contained a 

primary cilium which was as expected as 55% of cells contained a primary 

cilium in 2D cultures. This analysis concluded that the Cep290+/+ tubule 

spheroids are functioning and represent a model of renal tubules. 

In the Cep290LacZ/LacZ 3D CDT cells 20% of the spheroids form a tubule like 

structure but lack cilia. 80% of the Cep290LacZ/LacZ CDT spheroids analysed 

showed reduced tight junctions and reduced β-catenin staining with small 

lumens. Interestingly the cell number per spheroid in the Cep290LacZ/LacZ CDT 

cells is also reduced.  

The Cep290LacZ/LacZ CDT 3D spheroids are disorganised and lack primary cilia 

suggesting that Cep290 is required for the maintenance of ciliogenesis.  

In order to further verify ciliogenesis defects caused by mutations in Cep290 in 

patients with NPHP the 3D spheroids of Cep290 CDT’s cells (in vitro model) 

were compared with the collecting duct tubules sections isolated from Cep290 

mouse kidneys (in vivo model). Acetylated tubulin staining was carried out in 

both models to test cilia morphology. In the Cep290LacZ/LacZ mouse model 

primary cilia were still evident in CDT, however it was not accessible to count 

exactly how many cilia were evident in normal collecting duct tubules compared 

to cystic collecting duct tubules in the in vivo model. Therefore it could not be 

confirmed if there was a loss of cilia formation in the renal tissue of 

Cep290LacZ/LacZ mice. However both the 2D and the 3D cellular models of 

Cep290LacZ/LacZ renal CDT’s demonstrated loss of cilia, suggesting that Cep290 



 

118 
 

might possibly organise cell polarity or receptor trafficking in the absence of cilia 

as suggested previously by (Sang, Miller et al. 2011). 

 

Figure 4.9 Quantifying ciliogenesis in Cep290 3D spheroids  
Quantifying ciliogenesis in Cep290+/+ and Cep290LacZ/LacZ cells from 
immunofluorescent images of 3D cultures . All spheroids were serum starved 
for 24hrs prior to staining. Lengths were compared using students t-test. 
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4.8 Discussion 

The transgenic immorto mouse used in this study exhibits only modest thymic 

hyperplasia and does not present with tumours, suggesting that the levels of the 

thermolabile large T antigen are sufficiently low in vivo to prevent excessive 

cellular proliferation. The Cep290LacZ/LacZ CDT cell line is immortalised as the 

cells were grown under the conditions of interferon-γ (IFN-γ) which expresses 

the large T antigen. Over 50 passages have occurred and the cells do not lose 

their characteristics nor has there been a drift occurring due to the repeated use 

of passages. The cells have maintained the characteristics of parental cells 

which they have been derived from and are still maintained which also confirms 

cells are immortalised.  

The conditionally immortalised Cep290+/+ and Cep290LacZ/LacZ CDT cells express 

collecting duct characteristics and retain properties characteristic to renal 

collecting duct tubules. The characteristics were confirmed by the growth of 

spheroids in 3D cultures and by PCR analysis, which confirmed E-NaC and MC 

receptor expression in the Cep290+/+ and Cep290LacZ/LacZ CDT cells.  

From this study it was observed that a truncated Cep290 mutation presents with 

fewer and shorter cilia in renal Cep290LacZ/LacZ CDT cells compared to 

Cep290+/+ controls. Therefore it can be concluded that a Cep290 truncated 

mutation suppresses ciliogenesis. Cilium assembly is a tightly coupled process 

consisting of IFT, polarized protein secretion and modification of the ciliary 

axonome. We found that only 5% of cells formed a primary cilium compared 

with 55% of Cep290+/+ control cells, clearly demonstrating that Cep290 is 

indispensible for primary cilia formation. 

These Cep290LacZ/LacZ CDT cells have shown that ciliary assembly is affected. 

This Cep290LacZ/LacZ CDT system is a valuable cell system for ex vivo studies, 

leading the way to breakthroughs in our understanding of molecular 

mechanisms of NPHP. This Cep290LacZ/LacZ CDT system is also a powerful in 

vitro cell system for use in studies of renal physiology and pathophysiology 

associated with NPHP. 
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Chapter 5 Gene expression profiling in 

Cep290LacZ/LacZ mouse renal tissue 

5.1 Introduction 

In chapter 3 a Cep290LacZ/LacZ mouse model of NPHP was described, followed 

by a depiction of a defective assembly process of the primary cilia in renal CDT 

enriched cells isolated from this Cep290LacZ/LacZ mouse (chapter 4). The next 

step of this study was to try to identify possible pathways which may influence 

NPHP. 

Despite numerous genetic discoveries little is known in the literature about 

possible pathways influencing NPHP, other than all the protein products of the 

genes known to be defected in NPHP are located in or around the primary 

cilium (Hildebrandt, Attanasio et al. 2009; Winyard and Jenkins 2011).  

Previous studies of NPHP have yet to reveal consensus pathways leading to 

the disease. In order to identify gene expression differences between 

Cep290LacZ/LacZ and Cep290+/+ kidneys prior to an overt cystic kidney disease 

gene expression profiling was employed.  

Illumina bead arrays were chosen because over 34,000 genes gene expression 

profiles are examined at once, it is highly reproducible, efficient and cost 

effective (http://www.lifesciences.sourcebioscience.com/genomic-

services/gene-expression-/microarray-platforms.aspx) and will help to reveal 

unknown genes in NPHP. These unknown genes determined by the microarray 

may also help link possible pathways/biological processes affected in NPHP. 

As discussed in the methods section (Chapter 2) newborn kidneys were 

isolated from inbred Cep290LacZ/LacZ and Cep290+/+ 129/Ola mice and whole 

renal RNA samples were collected. Genome wide gene expression profiling of 

cDNA from Cep290LacZ/LacZ and Cep290+/+ mouse kidneys was employed by the 

Illumina MouseWG-6 v2 Expression BeadChip (Source Bioscience). It was 

hypothesised that possible gene expression differences linked to NPHP would 

be revealed.  

In order to determine genes which were involved in the development of NPHP¸ 

RNA from Cep290LacZ/LacZ and Cep290+/+ mouse kidney samples were collected. 

http://www.lifesciences.sourcebioscience.com/genomic-services/gene-expression-/microarray-platforms.aspx
http://www.lifesciences.sourcebioscience.com/genomic-services/gene-expression-/microarray-platforms.aspx
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The kidney samples collected were gender selected, (all samples chosen were 

female; confirmed via Sry genotyping [data not shown]), to ensure that 

differences in gene expression levels were not gender specific. The 

Cep290LacZ/LacZ and Cep290+/+ kidneys were collected between 10am and 

12noon on the day of birth to rule out any artefacts which could be caused by 

differences in the animals’ circadian rhythms. The left kidney of each mouse 

was collected for RNA and the right kidney was collected for histology. Recent 

studies have suggested that defects in the normal pattern of the circadian clock 

can lead to abnormalities in renal function (Stow and Gumz 2011). In ensuring 

that only female kidney samples were sent for microarray analysis this 

prevented an increase/decrease in gene expression differences occurring in sex 

specific genes. As both male and female Cep290LacZ/LacZ mice present with a 

cystic kidney phenotype either gender could have been chosen for microarray 

analysis. The Cep290LacZ/LacZ and Cep290+/+ female mice used for microarray 

analysis were inbred on a 129/Ola background to prevent any strain specific 

variation in gene expression levels occurring from breeding with other mice. The 

design of this microarray experiment eliminates many variables by ensuring the 

animals are inbred, kidneys isolated were only from female Cep290LacZ/LacZ and 

Cep290+/+ mice and the kidney samples are collected at the same time of day. 

Therefore the changes in gene expression levels are likely to be small and the 

changes in gene expression levels maybe primary or a secondary effect from a 

cystic kidney disease as whole kidney samples were isolated for the Illumina 

Microarray.  

5.2 Aims  

In order to identify other genes contributing to the beginning of cystic kidney 

disease when there is a known truncated mutation already found within the 

Cep290 gene, global differential gene expression was employed using kidneys 

derived from Cep290LacZ/LacZ mice and age matched Cep290+/+ controls. The list 

of genes generated from the Illumina Microarray will need to be confirmed via 

semi quantitative RT-PCR and quantitative RT-PCR (qRT-PCR). 

Also in order to identify the relevance in changes found from a list of genes 

generated by the microarray, the biological processes of a number of genes 

assigned by the microarray were assessed. It was also speculated how the 
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gene expression profile changes in the microarray might contribute to a cystic 

kidney phenotype. 

5.3 Results 

A total of 8 Cep290+/+ and 5 Cep290LacZ/LacZ newborn 129/Ola kidneys were 

tested for quality control analysis prior to microarray analysis (See Table 5.1). 

The quality and concentration of total RNA was quantified using a LSN-X-013 

spectrophotometer (Source Bioscience). 

Genotype 
Sample 

Name 

Prior to shipping  
Results 

Source Bioscience 
Results 

Total 
Conc. 

(ng/µL) 

Abs 
260-280nm 

RNA 

Total 
Conc. 

(ng/µL) 

Ratio 
28S/18S 

RNA 

Cep290LacZ/LacZ 6217 339.70 1.96 474.73 0.72 

Cep290LacZ/LacZ 6218 432.10 1.90 1627.04 N/A 

Cep290LacZ/LacZ D 106.70 1.90 188.21 2.40 

Cep290LacZ/LacZ E 61.80 1.81 214.85 2.19 

Cep290LacZ/LacZ F 418.60 1.88 1983.00 1.95 

Cep290+/+ 6222 270.40 1.91 156.24 1.33 

Cep290+/+ 6223 106.70 1.91 166.35 0.93 

Cep290+/+ A 527.20 2.08 1557.47 1.32 

Cep290+/+ 6225 385.20 2.01 653.01 1.17 

Cep290+/+ 6226 101.70 1.86 44.26 N/A 

Cep290+/+ 6227 377.60 2.03 2214.57 N/A 

Cep290+/+ B 552.30 1.94 570.74 1.70 

Cep290+/+ C 386.00 1.91 239.13 2.06 

Table 5.1  Newborn kidney RNA QC analysis prior to shipping and QC 
analysis from Source Bioscience.   
Cep290LacZ/LacZ (n=5) and Cep290+/+ (n=8) newborn kidneys RNA concentration 
was measured. The samples chosen for microarray analysis are highlighted in 
yellow (n=3 for each genotype) and labelled A-F. 

An electropherogram was utilised by source bioscience to separate out the 

components (18S, 28S) of each RNA sample and the quality of the RNA was 

determined (Figure 5.1). In general when the quality of RNA is acceptable for 

microarray analysis it is displayed on an electropherogram as follows; the 28S 

RNA peak would be at least twice the size of the 18S RNA peak. As observed 

from Table 5.1 the 28S/18S RNA ratio for the samples chosen for microarray 

analysis varies (1.32-2.40). The samples lower than 2 are probably due to 

enzymatic degradation that occurred during the RNA procedure. (The 

homogenisation step in RNA extraction can shear the RNA and cause 

degradation.  
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Figure 5.1  Electropherogram of the 6 samples chosen for Microarray analysis. 
(Panels A-C) Newborn Cep290+/+ kidney RNA samples. (Panels A+B) indicate that a small amount of RNA degradation has occurred in 
these 2 samples as there is no base line between the M (marker) and the 18S peak; this was confirmed by measuring the 28S/18S ratios 
in table 5.1. Panel C shows superior quality RNA when compared to panels A and B as the 3 peaks are clearly distinguished from the 
base line; also the 28S peak is twice the size of the 18S peak (confirmed in table 5.1 ratios). (Panels D-F) are newborn Cep290LacZ/LacZ 

kidney RNA samples. When the samples for microarray analysis were chosen they were normalised to 100ng. Qualitative and 
quantitative QCs were carried out on 1.5ug of RNA which was then hybridised to the mouse WG-6.v2 chip and scanned by the 
BeadArray Reader (LSN-X-036). (Source Bioscience). 
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Figure 5.2  Principal component analysis (PCA) on newborn Cep290 
whole kidney microarray samples. 
(A-C) Cep290+/+ newborn kidney samples (highlighted in black). (D-F) 
Cep290LacZ/LacZ newborn kidney samples (Highlighted in red)  
The samples chosen for analysing the microarray data in groups of Cep290+/+ 

were A+C and Cep290LacZ/LacZ samples were D+E. (Image collected by Matthew 
Bashton, Bioinfomatics, Newcastle University) Interestingly samples D+E were 
from the same litter consisting of a litter of 4 newborn mice and (F) was from a 
litter of greater than 4 in size. 
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5.4 Interpreting PCA analysis 

PCA is a programme that clusters samples by their similarities and the 

differences within a data set. The samples chosen for gene spring analysis 

(which determines a list of genes using a Benjamini Hochberg false discovery 

rate correct p-value of 0.05 and a fold change of 1.0 as cut-offs), were closely 

clustered samples identified by PCA.  

The Cep290+/+ samples chosen for Gene Spring analysis were (A+C) and the 

Cep290LacZ/LacZ samples chosen for gene spring analysis were (D+E). 

Coincidentally the samples chosen for Gene Spring analyses by the use of PCA 

were also the samples which showed clear concise peaks for the 

Electropherogram QC analysis (Figure 5.1 Sample A+C for Cep290+/+ samples, 

Sample D+E for Cep290LacZ/LacZ samples). The PCA plot reveals one global 

outlier (Cep290+/+ sample B) and one Cep290LacZ/LacZ sample(F) that shows 

similarity with two clustered Cep290+/+ samples (A+C). This analysis highlights 

the sensitivity of the array and can be interpreted as indicating that other 

variables in addition to genotypes are being detected (for example perhaps 

stages of development).  

In order to determine why the PCA analysis clustered a Cep290LacZ/LacZ sample 

with the Cep290+/+ samples the litter sizes for each pup used in PCA analysis 

was analysed. Litter sizes were investigated because mice born to a litter of 6 

will be much smaller in size and will be less developed compared to mice born 

to a litter of 2 as they will have received more nutrients from their mother during 

embryogenesis. Cep290LacZ/LacZ samples (D+E) were from the same litter 

consisting of 4 pups. Cep290LacZ/LacZ sample (F) and Cep290+/+ samples C+B 

were also from the same litter which were greater than 4 pups suggesting that 

sample F may be developmentally smaller than samples D+E. However the 

Cep290+/+ (A) sample was also from a litter of 4 therefore ruling out that perhaps 

the other samples are developmentally smaller. An investigation into the litter 

sizes did not explain why a Cep290LacZ/LacZ (sample F) clusters with the two 

Cep290+/+ samples (A+C) therefore variations between litter sizes are not 

accounting for the differences observed by PCA.  

The clustering from PCA is therefore not just influenced by genotype other 

unknown variables are affecting the clustering. The experiment set up for 
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microarray analysis was a tight controlled experiment ensuring that the kidney 

samples isolated from Cep290+/+ and Cep290LacZ/LacZ newborn inbred 129/Ola 

were female and taken at the same time of day.  

The PCA analysis is a representative of all the genes on the microarray (34,647 

genes) and is depicted as relative values. For this reason slight differences of 

unknown variables between individual newborn inbred Cep290 mice may be 

highlighted. Given the similarity and care of experimental design, the contra 

lateral kidney for each sample (A-F) was analysed by histology. 

 A closer inspection of the right kidneys’ histology revealed that Cep290LacZ/LacZ 

newborn kidneys already showed evidence of NPHP (microcysts were evident) 

(Figure 5.3). Sample F was an outlier as it appeared to have slightly more 

numbers of micro cysts evident than the other 2 samples. From the renal 

histology observed in Cep290LacZ/LacZ mice it was therefore hoped that the 

varying gene expression levels detected were primary to the cysts and not as a 

secondary effect of the cystic phenotype.  
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Figure 5.3  Cysts are present at birth in Cep290LacZ/LacZ kidneys 
(A-F) Haematoxylin and Eosin staining of paraffin embedded kidneys at birth. 
Haematoxylin stains the nuclei of cells blue; eosin stains cytoplasm and 
collagen in various shades of red and pink. (A-C) Cep290+/+ mice with tightly 
packed collecting duct tubules. (D-F) Cep290LacZ/LacZ mice display early signs of 
nephronophthisis with cysts (black arrows). The cysts are located between the 
cortex and medulla (in the corticomedullary junction). Patients with 
nephronophthisis also display cysts in this corticomedullary region of the kidney. 
(G-I) Magnified images of epithelial cell layered cysts highlighted previously by 
black arrows in images (D-F). The width of the cysts at birth is approx 50-75µm. 
Scale bars (A-F) 500µm, (G-I) 50µm.Note samples A-F correspond to samples 
A-F in Table 5.1 and Figures 5.1 and 5.2. 
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Table 5.2  List of upregulated genes in Cep290LacZ/LacZ kidneys 
generated by Illumina Microarray. 

A list of up regulated genes generated by the Illumina Microarray. The up 
regulated genes were generated when comparing Cep290LacZ/LacZ kidney mRNA 
with Cep290+/+ kidney mRNA. In total 49 genes (excluding 7 repeats- Ren1, 
F13b, Slc13a3, Slc12a3, Apom, Slc22a1, Upb1) were up regulated in the 
Cep290LacZ/LacZ kidneys. A total of 7 genes were up regulated with a logFC of >2. 
The genes shaded in green expression levels were confirmed when comparing 
Cep290LacZ/LacZ newborn kidneys with Cep290+/+ newborn kidneys via RT-PCR 
techniques. A list of genes was generated using a Benjamini Hochberg false 
discovery rate correct p-value of 0.05 and a fold change of 1.0 as cut-offs. (List 
generated by Matthew Bashton, Bioinformatics, Newcastle University). 
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A list of genes was generated using a Benjamini Hochberg false discovery rate 

correct p-value of 0.05 and a fold change of 1.0 as cut-offs. (List of genes was 

generated by Matthew Bashton, Bioinformatics, Newcastle University) Table 5.2 

and Table 5.3. 

Semi quantitative real time PCR (RT-PCR) and quantitative PCR (qPCR) 

techniques  were employed to confirm the top 3 up regulated gene expression 

profiles found by data generated on the Illumina microarray (Highlighted in 

green in Table 5.2)  

The microarray genes that were chosen for confirmation by semi quantitative 

and quantitative RT-PCR analysis were chosen due to the high log fold change 

in expression levels observed and or the links already established in the kidney 

from previous review papers.  

The genes were also chosen because when the probe was (basic local 

assignment search tool) blasted in ensemble the gene had more than 2 exons. 

In order to design primers which were suitable for QPCR analysis, the gene 

needed to have an intron/exon boundary between at least 2 exons as this 

removes DNA outliers.  

The genes which were on the list as duplicates were not chosen to be  

confirmed via semi-quantitative and qRT-PCR methods as they were already 

confirmed via the microarray as the microarray used a different probe to show  

the same up/down regulation identified previously by another probe. 

Some probe sequences when blasted hit 2 genes and therefore it was decided 

that they would not be ideal genes to confirm. 
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5.5 Cep290LacZ/LacZ upregulated genes identified by the 

Illumina microarray. 

The most up-regulated gene in Cep290LacZ/LacZ newborn kidneys when 

compared to Cep290+/+ newborn kidneys identified by the microarray was Myo-

inositol oxygenase (MIOX), which is a renal specific aldo-keto reductase and 

catalyzes the first step of myoinositol metabolism (Arner, Prabhu et al. 2001) 

MIOX was previously identified to be confined to the cortex of the kidney 

(Charalampous 1959; Koller and Hoffmann-Ostenhof 1979; Hu, Chen et al. 

2000; Arner, Prabhu et al. 2001).  

Several published papers have shown that Myo-inositol depletion is identified in 

patients with diabetic nephropathy, retinopathy, neuropathy and diabetic 

cataracts (Greene, Chakrabarti et al. 1987; Del Monte, Rabbani et al. 1991; Lin, 

Reddy et al. 1991; Cohen, Wald et al. 1995; Arner, Prabhu et al. 2006) .  

 

The exact mechanism of Myo-inositol depletion is unclear however MIOX 

catalyses the first step of the Myo-inositol pathway and therefore MIOX may be 

responsible for the depletion found in the diabetic complications above (Yang, 

Hodgkinson et al. 2010). There have been no reported cases of mutations in 

Miox and polycystic kidney disease to date.  However an increase in MIOX 

expression may influence the fibrotic phenotype seen later in this Cep290 

model of cystic kidney disease.  

 

In this study Miox expression increased by ~3 fold in Cep290LacZ/LacZ newborn 

kidneys compared to Cep290+/+ littermates using data generated from an 

illumina microarray.  The illumina microarray results were confirmed in Figure 

5.3; an increase in Miox expression was identified in Cep290LacZ/LacZ newborn 

kidneys using semi-RT-PCR and qPCR techniques.  Semi quantitative PCR 

demonstrated an increased expression of Miox in Cep290LacZ/LacZ kidneys. In 

order to quantify the fold change in expression in mRNA transcript levels, qPCR 

was carried out. In Cep290LacZ/LacZ kidney mRNA transcripts there was an 

increase in Miox expression compared to Cep290+/+ kidney mRNA (up regulated 

8-fold; p = 0.0012, n=6). 
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Figure 5.4  Miox gene expression is up regulated in Cep290LacZ/LacZ 

newborn kidneys. 
(Panel A). Semi-quantitative RT-PCR highlighting differences in Miox 
expression in Cep290+/+ and Cep290LacZ/LacZ newborn kidneys. Hypoxanthine-
guanine phosphoribosyl transferase (HPRT) is reported as a constitutively 
expressed housekeeping gene in RT-PCR (de Kok, Roelofs et al. 2005) when 
compared with 12 other known housekeeping genes. HPRT is used as a 
reference gene against the expression level of the Miox gene under 
investigation. Semi-quantitative RT-PCR highlights an increase in expression of 
Miox in Cep290LacZ/LacZ kidney samples compared to Cep290+/+ kidney samples. 
(Panel B) qRT-PCR of differences in Miox expression in Cep290+/+ and 
Cep290LacZ/LacZ newborn kidneys. qRT-PCR identifies an increase of 8 fold 
change in expression of Miox in Cep290LacZ/LacZ kidneys compared to Cep290+/+ 
littermates (p=0.0012, n= 6).  
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5.6 Parvalbumin (Pvalb) 

Pvalb was the second most up regulated gene identified in newborn 

Cep290LacZ/LacZ mice from the illumina microarray data generated in this study. 

PVALB was previously reported to be expressed in the distal convoluted tubule 

in human and mouse kidneys, Cep290 expression is found in the collecting duct 

tubules of the kidney, therefore this suggests that an increase in Pvalb may be 

as a result of a secondary compensatory mechanism. PVALB expression was 

also found in the brain, skeletal and heart muscles (Celio 1990; Schwaller, Dick 

et al. 1999; Olinger, Schwaller et al. 2012). Pvalb is a high affinity calcium ion 

binding protein. The protein product of Pvalb was reported to be involved in 

shuttling the Ca2+ and Mg2+ ions in the kidney (Ollinger, Schwaller et al., 2012). 

The distal nephron in the kidney plays a major role in the reabsorption of NaCl 

and the regulation of Ca2+ and Mg2+ excretion. Variants in PVALB have been 

described previously but the relevance to kidney function has not been 

investigated (Ollinger, Schwaller et al., 2012). 

A knockout mouse model of Pvalb revealed that the mice presented with 

polyurea, kaliuresis and an increase in the mineralocorticoid hormone 

aldosterone and hypocalciuria (Belge, Gailly et al. 2007). In this study Pvalb 

expression was increased in Cep290LacZ/LacZ mice. An investigation into 

increased Pvalb expression in kidneys from previously reported microarray data 

from GEO profiles was carried out 

(http://www.ncbi.nlm.nih.gov/geoprofiles/?term=pvalb+kidneys). It was reported 

that over expression of the hypertension related calcium-regulated gene 

(HCaRG) in a stably transfected (Human embryonic kidney) HEK-293 cell line 

resulted in over expression of Pvalb. The study however does not confirm the 

over expression of Pvalb nor do they discuss the increased expression of Pvalb 

in their findings (El Hader, Tremblay et al. 2005). To date there are no published 

reports on the consequences of over expression of Pvalb in the kidney. As 

observed in Table 5.2 a 3 fold increase in expression of Pvalb was identified in 

Cep290LacZ/LacZ newborn kidneys compared to Cep290+/+ kidneys. This 

increased expression in Pvalb in Cep290LacZ/LacZ kidneys was investigated using 

semi quantitative PCR and qPCR methods. The increase in Pvalb expression 

was confirmed using semi-quantitative RT-PCR and qRT-PCR methods (Figure 

5.4). An increase in expression was observed in Cep290LacZ/LacZ kidneys 

http://www.ncbi.nlm.nih.gov/geoprofiles/?term=pvalb+kidneys


 

133 
 

compared to Cep290+/+ kidneys (up regulated 65-fold; p=0.0004, n=6) (Figure 

5.4).

 

Figure 5.5  Pvalb gene expression is up-regulated in Cep290LacZ/LacZ 

newborn kidneys. 
(Panel A) Semi quantitative RT-PCR of Cep290+/+ and Cep290LacZ/LacZ newborn 
kidney mRNA transcripts levels. Hprt (housekeeping gene; used as a reference 
gene against the expression level of the Pvalb gene under investigation). Using 
semi quantitative techniques Pvalb expression is up-regulated in the 
Cep290LacZ/LacZ newborn kidney mRNA. (Panel B) qRT-PCR confirmed an 
increase of 65 fold change in expression of Pvalb in Cep290LacZ/LacZ samples 
compared to Cep290+/+ samples (p=0.0004, n=6).  
 

5.7 Renin (Ren1) 

Ren1 was the 3rd top up regulated gene in accordance to LogFC identified by 

the illumina microarray in this study. Ren1 was previously reported to be 

released by the juxtaglomerular cells of the kidney and catalyzes the first step in 

the activation of the angiotensin pathway (Pentz, Lopez et al. 2001; Sequeira-

Lopez, Weatherford et al. 2010). Angiotensin is a hormone that causes 

vasoconstriction and a subsequent increase in blood pressure which is 

determined by the total amount of Na+ in the body. The correct balance of Na+ 

in the human body is controlled by the kidney (Guyton 1991). Previous studies 

identified that salt and water reabsorption is under tight control by the renin 

angiotensin system reviewed in (Eladari, Chambrey et al. 2012). Renin is 

released when serum Na+ levels are low to try to conserve the salt water 
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balance as referred to in a review titled “The renal renin-angiotensin 

system”(Harrison-Bernard 2009). 

As Na+ absorption occurs through ENaC, maintaining a correct balance of 

ENaC function in the kidney is crucial for Na+ handling by the kidney (Hummler 

1999; Schild and Kellenberger 2001; Stockand 2002; Hummler 2003; Schild 

2004; Zaika, Mamenko et al. 2013). Therefore due to the increase of Ren1 

there is a possibility that there also might also be differences in ENaC 

expression in Cep290LacZ/LacZ kidneys when compared to Cep290+/+ kidneys  

In a previous ADPKD study, Ren1 expression was increased in patients in the 

early stages of ADPKD, these patients also presented with hypertension and 

therefore the link between the renin-angiotensin pathway and cystic kidney 

disease was identified (Chapman, Johnson et al. 1990). Hypertension was also 

reported as a common trait found in ARPKD patients. In the juvenile form of 

ARPKD chronic renal insufficiency and hypertension have also been linked 

(Guay-Woodford and Desmond 2003). According to a review on NPHP, polyuria 

and polydypsia are related to the loss of sodium which occurs early in NPHP 

(Salomon, Saunier et al. 2009). It is possible that polyuria is evident in this 

Cep290LacZ/LacZ mouse model however there were not enough experimental 

repeats of urine samples measured in Cep290 mice to confirm this in chapter 3. 

Renin generates a cascade of events via the angiotensin II pathway which in 

turn exerts a negative feedback on Renin release. Any stimuli preventing 

angiotensin generation therefore increases Renin synthesis and release. During 

embryonic development Renin is expressed in the metanephric mesenchyme 

before vascularisation of the kidney occurs. Renin is also expressed later in 

embryonic development where it is found in the large intrarenal arteries, the 

glomeruli and the interstitium. Expression of Renin was also found in the 

collecting ducts of hypertensive rats (Prieto-Carrasquero, Harrison-Bernard et al. 

2004; Sequeira Lopez, Pentz et al. 2004; Prieto-Carrasquero, Botros et al. 

2008). As hypertension was previously described in patients with ARPKD 

(Guay-Woodford and Desmond 2003) and ADPKD (Chapman, Johnson et al. 

1990) Increased RENIN expression may therefore influence the cystic kidney 

phenotype in PKD. 
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Homozygous or heterozygous mutations in Ren1 were previously identified in 

patients with renal tubular dysgenesis, hyperuricemic nephropathy (Gribouval, 

Gonzales et al. 2005; Zivna, Hulkova et al. 2009; Gribouval, Moriniere et al. 

2012). Sufficient levels of Ren1 are therefore required to maintain homeostasis 

of kidney development.  

According to a study using a Lewis rat model of polycystic kidney disease, renal 

cyst development plays a key role in the initiation of hypertension (Phillips, 

Hopwood et al. 2007) however another study suggests that hypertension occurs 

prior to cyst formation (Loghman-Adham, Soto et al. 2004). Therefore it is still 

unknown if increased Renin expression is released prior to or subsequent to 

cyst formation. 

In this study, Ren1 was increased by ~3 fold in newborn Cep290LacZ/LacZ kidneys 

when compared to newborn Cep290+/+ kidneys (from the data generated by the 

illumina microarray). The increase in Ren1 expression was also confirmed by 

semi quantitative RT-PCR and qRT-PCR techniques in newborn Cep290LacZ/LacZ 

kidneys when compared to newborn Cep290+/+ kidneys (up regulated 14-fold; 

p= 0.0001, n=6) (Figure 5.5).  
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Figure 5.6  An increase in Ren1 expression in Cep290LacZ/LacZ newborn 
kidneys was confirmed using semi quantitative RT-PCR and qPCR. 
(Panel A) Semi quantitative RT-PCR of the relative expression levels of Hprt 
and Ren1 in Cep290+/+ and Cep290LacZ/LacZ newborn kidneys. Semi quantitative 
RT-PCR confirms an increase in Ren1 expression in Cep290LacZ/LacZ newborn 
kidneys. (Panel B) qRT-PCR confirmed an increase of 14 fold change in 
expression levels of Ren1 in Cep290LacZ/LacZ newborn kidneys compared to 
Cep290+/+ newborn kidneys (p=0.0001, n=6). 
 

Using complementary techniques, the top 3 up-regulated genes (Miox, Pvalb 

and Ren1) generated by the Illumina Microarray were confirmed in newborn 

Cep290LacZ/LacZ kidneys. Miox was previously reported to be confined to the 

cortex of the kidney; Pvalb was previously reported to be expressed in the distal 

convoluted tubules of the kidney and Ren1 in the juxtaglomerular apparatus. 

Ren1 was also found expressed in collecting duct cells of the kidney (Prieto-

Carrasquero, Harrison-Bernard et al. 2004; Prieto-Carrasquero, Botros et al. 

2008; Harrison-Bernard 2009);Pentz, Lopez et al. 2001; Sequeira-Lopez, 

Weatherford et al. 2010.  

Another interesting result regarding the list of up regulated genes identified from 

the illumina microarray was that 10 of the up regulated genes were solute 

carriers and 3 of these solute carriers (Slc13a3, Slc12a3 and Slc22a1) were 

repeated twice in the list of genes. Solute carriers are extremely important for 

maintaining kidney homeostasis by “mediating trans-membrane movement of 

electrolytes, nutrients, vitamins from one cellular compartment to another 
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(Anderson and Thwaites 2010). The 3 repeated up regulated SLC genes 

suggests the up regulation identified is true to Cep290LacZ/LacZ renal tissue as 

two different probe sets confirm an up regulation in each of the SLC genes 

repeated.  

The solute carrier Slc26a4 was one of the Slc genes regulated in 

Cep290LacZ/LacZ renal tissue according to the Illumina Microarray’s results. 

Slc26a4 is an apical Cl-/HCO3
- exchanger in intercalated cells of the collecting 

duct tubule (Royaux, Wall et al. 2001). When Slc26a4 is disrupted Cl- 

absorption is also disrupted in the collecting duct tubule and this normally 

occurs in coherence with a lack of Na+. Therefore there is a knock on effect 

from the increase of Ren1 expression levels (Wall, Kim et al. 2004; Eladari, 

Chambrey et al. 2012). The increase of Ren1 and Slc carriers therefore 

corroborates that there is a compensatory mechanism occurring in 

Cep290LacZ/LacZ kidneys due to NaCl wasting.  

F13b, Apom and Upb1 were 3 other genes which were confirmed twice as up-

regulated genes in Cep290LacZ/LacZ newborn kidneys. F13b is a β subunit of the 

human coagulation factor protein but there are no reports for its role in the 

kidney (Nonaka, Matsuda et al. 1993). During human and mouse 

embryogenesis Apom was found exclusively expressed in kidney tissues 

(Zhang, Dong et al. 2003; Zhang, Jiao et al. 2004) suggesting that Apom is 

required for kidney morphogenesis  
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5.8 Cep290LacZ/LacZ downregulated genes identified by the 

Illumina microarray. 

There was also a list of down regulated genes identified in Cep290LacZ/LacZ 

newborn kidney mRNA compared to Cep290+/+ newborn kidneys generated 

from the Illumina Microarray.  

A total of 15 down regulated genes were generated with a logFC of less than -1 

and a p value of 0.0003 or less. Of the 15 down regulated genes there were 3 

repeats of genes (Mest, Dlk1, Dmkn). These 3 repeats are confirmed in addition 

to the previously verified genes as two different probe sets have confirmed a –

Log FC in expression levels for these genes (Table 5.3). 

Interestingly Mest was found to play a role in “mammalian metanephric 

development” (Kanwar, Kumar et al. 2002) as high expression of Mest was 

exclusively found in the metanephric mesenchyme at E13.5. Mest expression 

slowly decreased during kidney development with little to no expression 

observed in newborn kidneys (Kanwar, Kumar et al. 2002). Mest was down-

regulated in Cep290LacZ/LacZ newborn kidneys suggesting that there may have 

been a lack of Mest expression in Cep290LacZ/LacZ kidneys during development. 

Mutations in Dlk1 have not been identified in NPHP disorders however, Dlk1 

expression was recently found in renal cell carcinomas and not in control kidney 

tissue of mice and humans (Chi Sabins, Taylor et al. 2013) suggesting that 

defective Dlk1 expression results in unstable signalling in the normal balance of 

kidney homeostasis. 

Dmkn expression was found in the tubular epithelium of the kidney and was 

found to be overexpressed in inflammatory diseases (Naso, Liang et al. 2007). 

In this study Dmkn was reduced in Cep290LacZ/LacZ kidneys hence suggesting 

that reduced Dmkn expression may play a role in cystic kidney phenotype.  

Two of the down regulated genes identified by the Illumina microarray data 

were chosen to confirm the down regulation of expression levels in 

Cep290LacZ/LacZ newborn kidneys compared to Cep290+/+ newborn kidneys using 

semi-quantitative RT-PCR and qRT-PCR techniques.  

The down regulated genes tested for gene expression levels using semi 

quantitative and quantitative RT-PCR methods were Gdnf andTff2. The 15 
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down regulated genes had a p value of <0.0001 or less and a log fold change of 

-1.0 or less. A logFC of -1 is not very convincing by changes in expression 

levels but the p value of less than 0.05 makes this change significant. 

Briefly, the genes which were confirmed were chosen because when the 

Illumina Microarray probe was blasted in Ensembl the gene had more than 2 

exons, the genes were “top hits” according to LogFC from the Illumina 

Microarray and the genes were significant. The gene needed to have an 

intron/exon boundary between 2 exons in order to design primers which were 

suitable for QPCR analysis as this removes DNA outliers.  

The genes which were on the hit list as duplicates were not chosen to be  

confirmed via semi-quantitative and qRT-PCR methods as they were already 

confirmed as the microarray used a different probe to show  the same down 

regulation identified previously by another probe. 

Some probe sequences when blasted hit 2 genes, suggesting non-specificity of 

the probe and therefore it was decided that they would not be ideal genes to 

confirm. 
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Microarray analysis of genes 
differentially expressed in  

Cep290LacZ/LacZ kidneys 

Gene Symbol Log FC P. Value 

Csda -1.00632 0.000111 

Mest -1.02908 1.89E-05 

Crlf1 -1.0557 0.000123 

Btbd11 -1.06398 1.93E-05 

Gdnf -1.07427 0.00013 

Fus -1.0749 0.000377 

Dlk1 -1.10407 8.62E-06 

Xlr4a -1.11382 8.12E-06 

Prrc2c -1.11824 8.75E-05 

Col2a1 -1.12927 7.69E-05 

Cited1 -1.15672 9.58E-06 

Tff2 -1.15967 5.32E-05 

Dmkn -1.18445 0.000193 

Six2 -1.18477 1.19E-05 

Dlk1 -1.22732 5.11E-06 

Mest -1.24164 6.59E-06 

Dmkn -1.24463 0.000107 

Suv420h1 -1.45311 6.65E-05 

Csda -1.00632 0.000111 

 

Table 5.3  List of downregulated genes in Cep290LacZ/LacZ kidneys 
generated by Illumina Microarray. 
A list of down regulated genes generated by the Illumina Microarray. The down 
regulated genes were generated by comparing Cep290LacZ/LacZ kidney mRNA 
with Cep290+/+ kidney mRNA. A total of 15 genes (excluding 3 repeats- Mest, 
Dlk1, Dmkn) were down regulated in the Cep290LacZ/LacZ kidneys when 
compared to Cep290+/+ kidneys. The genes shaded in red have been confirmed 
in Cep290LacZ/LacZ newborn kidneys when compared to Cep290+/+ newborn 
kidneys via RT-PCR techniques (List generated by Matthew Bashton, 
Bioinformatics, Newcastle University). 
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The down regulated genes which were on the list as duplicates (Mest, Dlk1 and 

Dmkn) were not chosen for confirmation via semi-quantitative and qRT-PCR 

methods as they were already confirmed using different probes from the 

microarray.  

Crlf1 is a signalling effector of the rearranged during transfection (RET) which 

has shown to play an important role in cancer (Sims-Lucas, Di Giovanni et al. 

2012; Santarpia and Bottai 2013) 

5.9 Glial cell derived neurotrophic factor (Gdnf)  

Gdnf was the first down regulated gene (identified by the Illumina Microarray) 

confirmed by RT-PCR methods in this study.  Gdnf is required for kidney 

morphogenesis and is expressed by the metanephric mesenchyme which 

promotes growth of the uteric bud branching tree that develops into the 

collecting duct system of the kidney (Durbec, Marcos-Gutierrez et al. 1996; 

Trupp, Arenas et al. 1996; Basson, Watson-Johnson et al. 2006). 

Gdnf expression is found in both foetal and adult human kidney collecting duct 

tubules (Lee, Chan et al. 2002). Increased Gdnf expression was previously 

reported in the epithelia of collecting duct cysts of polycystic kidney patients, 

which suggests that increased Gdnf may contribute to the pathogenesis of 

cystic collecting ducts (Lee, Chan et al. 2002). Increased GDNF expression in 

uteric bud cultures formed cysts when cultured on 3D collagen gels confirming 

that increased GDNF expression can cause cysts (Ye, Habib et al. 2004). 

Previous studies identified that the RET/GDNF signalling pathway is crucial for 

the correct formation of collecting ducts and also for nephrogenesis, reviewed in 

(Schedl and Hastie 2000). When kidneys are grown in vitro with excess GDNF, 

collecting duct branching is increased (Vega, Worby et al. 1996; Sainio, 

Suvanto et al. 1997; Davies and Davey 1999). 

In this study Gdnf expression was reduced in Cep290LacZ/LacZ newborn kidneys. 

The correct level of GDNF expression is critical for the signalling and direction 

of collecting duct branching/morphogenesis and therefore a reduction in Gdnf 

expression in this mouse model may contribute to the cystic kidney phenotype 

observed in this novel Cep290 mouse model.  
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Mice with mutations in Gdnf present with kidney aplasia and dysplasia, 

sympathetic ganglia defects and intestinal obstruction. Mice heterozygous for 

Gdnf occasionally display unilateral or bilateral kidney dysplasia (Pichel, Shen 

et al. 1996; Sanchez, Silos-Santiago et al. 1996). 

Semi quantitative RT-PCR and qRT-PCR confirmed Gdnf expression was 

down-regulated in Cep290LacZ/LacZ newborn kidneys compared to kidneys 

isolated from Cep290+/+ littermates (down regulated 0.7-fold; p <0.0001, n=6). 

Figure 5.7 

 

Figure 5.7  Reduced Gdnf expression in Cep290LacZ/LacZ newborn kidneys. 
Panel A) Semi quantitative RT-PCR of the expression levels of Hprt and Gdnf in 
Cep290+/+ and Cep290LacZ/LacZ newborn kidneys. Gdnf expression is reduced in 
Cep290LacZ/LacZ newborn kidneys.  
Panel B) qRT-PCR demonstrated a slight decrease in Gdnf expression in 
Cep290LacZ/LacZ newborn kidney mRNA. (p <0.0001, n=6) 
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5.10 Trefoil factor 2 (Tff2) 

There is little known about the role of Tff2 in the kidney.  Previous studies have 

shown that Tff2 is a secretory product of the mucous epithelia and is essential 

for maintaining the integrity of these epithelia (Hoffmann, Jagla et al. 2001; 

Hoffmann and Jagla 2002; Hertel, Chwieralski et al. 2004). As the collecting 

duct tubules have an epithelial cell layer lining the lumen of the collecting duct 

perhaps the epithelial integrity is disrupted in Cep290LacZ/LacZ mice. 

Tff2 knockout mice show that tff2 plays an important role in gastric 

cytoprotection and repair (Farrell, Taupin et al. 2002; Quante, Marrache et al. 

2010). Tff2 expression was found in the proximal tubules and the glomeruli of 

the kidney in a mouse model where a CreERT2FrtNeoFrt cassette was inserted 

in a bacterial artificial chromosome containing the Tff2 gene. The expression of 

Tff2 increased in these mice when epithelia were damaged (Quante, Marrache 

et al. 2010). From these previously published papers Tff2 may therefore not 

directly affect collecting ducts but cause a secondary effect to the epithelial cells 

protruding into the lumen of collecting duct cells in the kidney when a cystic 

phenotype is beginning to occur. 

In this study Tff2 expression was down regulated inCep290LacZ/LacZ newborn 

kidneys compared to Cep290+/+ kidneys form data generated by the Illumina 

Microarray. Tff2 was not previously identified in collecting duct cells in previous 

literature therefore this down regulation in expression of Tff2 is a secondary 

effect of gene expression differences. 

Semi-quantitative RT-PCR and qRT-PCR was employed to confirm the 

decrease in expression of Tff2 in other Cep290LacZ/LacZ newborn kidney mRNA 

samples when compared to Cep290+/+ controls (down regulated 0.5-fold; 

p<0.0001, n=6). (Figure 5.8). The fold change in expression was only 

decreased by 0.5 fold this therefore is not a big difference when compared to 

the up regulated genes which saw an average fold change in expression of >10 

for each gene when confirmed by qRT-PCR. 

 



 

144 
 

 

Figure 5.8  TFF2 expression is reduced in Cep290LacZ/LacZ newborn 
kidneys.  
Panel A) Semi quantitative RT-PCR of the expression levels of Hprt and Tff2 in 
Cep290+/+ and Cep290LacZ/LacZ newborn kidneys. Tff2 expression is reduced in 
Cep290LacZ/LacZ newborn kidneys.  
Panel B) qRT-PCR demonstrated a decrease of 0.5 fold in Tff2 expression in 
Cep290LacZ/LacZ newborn kidney mRNA when compared to Cep290+/+ newborn 
kidney mRNA (p<0.0001, n= 6). 
 
This study identified numerous up regulated (49 up regulated genes) and only a 

few down regulated genes (15) in Cep290LacZ/LacZ mice compared to Cep290+/+ 

mice. The increased number of up regulated genes to down regulated genes 

also suggests that a compensatory mechanism may be operating to counter the 

loss of the Cep290 gene as many more genes are up regulated than down 

regulated. Also the fold changes in gene expression levels for the up regulated 

genes were more significant for both the microarray analysis and the qRT-PCR 

analysis when compared to the down regulated genes as there fold changes 

were 1 fold change or less. 
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5.11 Clustering the candidate Illumina Microarray genes into 

biological processes 

In order to cluster the microarray genes into biological processes which may 

contribute to the cystic kidney phenotype of Cep290LacZ/LacZ mice, pathway 

analysis software was employed. A Database for Annotation, Visualisation and 

Integrated Discovery (DAVID) determined the link between the genes generated 

from the Illumina Microarray and the biological processes associated with these 

genes which have been previously reported in literature 

http://david.abcc.ncifcrf.gov/tools.jsp .  

Results from the pathway analysis software programme called DAVID identified 

that differentially expressed genes are involved in several biological processes 

including signalling pathways, secreted pathways; transport pathways, ion 

transport pathways, oxygen reduction pathways, symport pathways and sodium 

transport pathways (Table 5.4). 

 

Term % PValue 

signal (25 genes) 35.21 1.49E-04 

Secreted (19 genes) 26.76 3.98E-06 

transport (16 genes) 22.54 6.96E-04 

ion transport (9 genes) 12.68 0.001034 

oxidoreductase (8 genes) 11.27 0.00598 

Symport (6 genes) 8.45 5.94E-05 

Sodium (5 genes) 7.04 6.41E-04 

Sodium transport (5 genes) 7.04 8.49E-04 
Table 5.4  Functional annotational chart of genes that were differentially 
expressed from the Illumina Microarray using a programme called DAVID. 
Table generated from DAVID representing the biological clustering of genes 
identified by the Illumina Microarray. The % was calculated using the genes 
involved/ total genes. A total of 74 genes were identified by the Illumina 
microarray. A modified Fisher Exact P-value was calculated from an EASE 
score of 0.1. The smaller the P-value, the more enriched. 26 genes did not 
make the functional annotation chart. The minimum number of genes for a 
corresponding term was set to 5 genes. 
 

 

 

http://david.abcc.ncifcrf.gov/tools.jsp
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The top hit identified by the software programme DAVID involved a cluster of 

genes linked to “signalling” pathways. 25 genes clustered together were linked 

to “signalling” processes from data generated by the Illumina Microarray.  

It is clear from many previous studies that cilia are involved in maintaining the 

balance of sensory signalling in the kidney and therefore an up regulation of 

signalling genes (22 genes of the 25 signalling genes identified were up 

regulated Table 5.5) also suggests that a compensatory signalling mechanism 

is required to try to maintain the natural balance of the kidney in Cep290LacZ/LacZ 

mice.  

The cilia from collecting duct tubule cells isolated from this Cep290LacZ/LacZ 

mouse model are shorter in length and there are only 5% of cells which contain 

a primary cilia compared to 50% in Cep290+/+ controls (Chapter 3), and 

therefore one could speculate that extra signalling cascades are required to try 

and compensate for the lack of primary cilia in both length and numbers. 

Biological Process Clustered Gene symbols 

Signal                                    
(25 genes) 

Angptl7,Apoa2, Apom,F13b, Col2a1, Col4a3, C2, Cfi, 
Crlf1, Defb1, Defb19, Dlk1, Dmkn,Dpep1, Enpp6, 
Gdnf, gpx3, Kl, Ren1, retsat, Spp1, Spp2, Scn4b, 
Tcn2, Tff2 

Secreted                               
(19 genes) 

Angptl7, Apoa2, Apom, Col2a1, Col4a3, C2, Cfi, Crlf1, 
Defb1, Defb19, Dmkn, Gdnf, Gpx3, Kl, Ren1, Spp1, 
Spp2, Tcn2, Tff2 

Transport                              
(16 genes) 

Apoa2, Apom, Bc021785, ostA, Pex13, Scn4b, 
Slc12a3, Slc13a3, Slc13a1, Slc22a1, Slc22a18, 
Slc26a4, Slc6a20b, Slc7a9, Tcn2, Trpm6 

Ion Transport                          
(9 genes) 

Wnk1, Bc021785, Scn4b, Slc12a3, Slc13a3, Slc13a1, 
Slc22a1, Slc22a18, Slc26a4, Tcn2, Trpm6 

Oxidoreductase                      
(8 genes) 

Nox4, Acadl, Cyp2j9, Cyp4a14, Gpx3, Hgd, Miox,  
Retsat. 

Symport                                  
(6 genes) 

Bc021785, Slc12a3, Slc13a3, Slc13a1, Slc22a18, 
Slc6a20b 

Sodium+ Sodium Transport            
(5 genes) 

Bc021785, Scn4b, Slc12a3, Slc13a3, Slc13a1 

Table 5.5  Summary of the genes clustered in each biological process. 
Biological processes representing the genes that were differentially expressed 
in Cep290LacZ/LacZ newborn kidneys compared to Cep290+/+ newborn kidneys 
using a programme called DAVID. Yellow highlights genes confirmed via semi-
quantitative RT-PCR and qRT-PCR techniques. Teal represents genes which 
were down regulated in Cep290LacZ/LacZ newborn kidneys from the data 
generated by the Illumina microarray. Genes highlighted in red are all involved 
in the transport of sodium or organic ions into a cell membrane and are all these 
genes were up regulated in the Cep290LacZ/LacZ newborn kidney. 
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There are 2 main signalling pathways which have been recognised as defective 

in mouse models of NPHP/JBTS (Table1.6). The 2 main signalling pathways 

defective are the Shh signalling pathway or the Wnt signalling pathway. 

Defective Shh signalling was investigated on human fetal samples with JBTS, it 

was found that the rate of proliferation in cerebellular granule cell progenitors 

(GCP)s and the response of GCPs to Shh, was severely disrupted in the 

cerebellum of JBTS patients (Aguilar, Meunier et al. 2012). GCP’s proliferation 

rate was determined by staining fetal cerebellar sections with anti-Ki67 to label 

the GCPs. Shh expression was assessed in JBTS fetal samples by in situ 

hybridisation techniques on the cerebellum and from the combined results it 

was concluded that GCP proliferation is in harmony with active Shh signalling in 

the developing human cerebellum (Aguilar, Meunier et al. 2012).  

The Ahi1-/- mouse model of JBTS identifies defective Wnt signalling in the 

developing cerebellum (Lancaster, Gopal et al. 2011). Ahi1-/- mice at E12.5 and 

E13.5 were treated with lithium (a wnt pathway agonist) and were assessed at 

E16.5. Lithium treatment reduced the midline fusion defect observed in Ahi1-/- 

mice therefore confirming defective wnt signalling in the developing cerebellum 

(Lancaster, Gopal et al. 2011). A previous study examining kidneys of Ahi1-/- 

mice also identified defective Wnt signalling defects in 5 month old kidneys from 

Ahi1-/- mice (Lancaster, Louie et al. 2009). 

Disruptions in both the Wnt and Shh pathway are linked with NPHP mutations 

(Table 1.6). Chapter 6 will investigate in further detail these 2 signalling 

pathways and determine if they are disrupted in Cep290LacZ/LacZ kidneys. 

Note Cep290 was not on the Illumina Microarray beadchip. Only 23 genes from 

the 40 NPHP/JBTS genes listed in chapter 1, table 1.1 were on the beadchip. 

The 23 genes included NPHP3, NPHP4, NPHP1, XPNPEP3, ANKS6, SLC41A1, 

CEP164, ATXN10, IQCB1, GLIS2, NEK8, INPP5E, TMEM216, AHI1, 

RPGRIP1L, ARL13B, CC2D2A, TCTN1, TMEM237, TMEM138, TCTN2, TCTN3 

and TMEM231. The PKD1 gene was also on the Illumina Microarray beadchip 

however there were no changes in gene expression levels observed for any of 

these genes.  
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5.12 Discussion 

Pvalb and Ren1 can be linked by the angiotensin pathway however the pathway 

analysis tool DAVID did not find a link with Pvalb and any other gene in the list 

of genes associated with the Illumina Microarray suggesting that there are still 

flaws in the DAVID software programme (Table 5.6 for a list of genes not linked 

to any other gene in the microarray list according to biological processes 

identified by the software programme DAVID). 

Illumina ID Gene Symbol Log FC from microarray 
ILMN_3139253 BTBD11 -1.063975765 

ILMN_2646166 ndrg1 1.10539241 

ILMN_1236537 06100087F07Rik 1.368965182 

ILMN_1225602 S100A1 1.175395011 

ILMN_2965669 Xlr4a -1.113816244 

ILMN_2628174 acss1 1.492222958 

ILMN_2674979 fus -1.074898405 

ILMN_2610706 Hrsp12 1.176760628 

ILMN_2725617 khk 1.108664074 

ILMN_2615035 Mgst3 1.172024453 

ILMN_1218223 Pvalb 3.312463183 

ILMN_1243875 Suv420h1 -1.453114399 

ILMN_2624031 Tmem16 1.028059537 

ILMN_2516705, 
ILMN_2870788 

Upb1 1.129406619 

Table 5.6  Genes excluded from DAVID Functional annotational chart. 
The genes represented in this table did not make the functional annotational 
chart of genes generated from Figure 5.9. The cut off value of 2 (minimum 
number of genes for a corresponding term) excluded this list of genes from 
analysis. 
 

The DAVID software programme also clustered 19 genes together under the 

biological process called “secretion”. Without the use of the Illumina Microarray 

the Slc (solute carriers) genes would not have been identified. Also it was 

identified that future studies would require monitoring the levels of Na+ and Cl- 

secretion in Cep290LacZ/LacZ urine samples as low levels are due to an increase 

of Ren1 and Slc26a4 expression. This would not have been identified without 

the use of the microarray data. The information gathered from the gene list 

identified by the Illumina Microarray aided in determining that physiological 

studies are required to determine the renal physiological phenotypes associated 

with Cep290LacZ/LacZ mutation. 
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A number of genes clustered together in ion/sodium transport. Each of the 

genes which clustered in the ion/sodium transport were up regulated in 

Cep290LacZ/LacZ kidneys suggesting that the Cep290LacZ/LacZ kidney is 

overcompensating due to excessive wasting of Na+ and Cl- and these 

physiological changes in ionic and sodium transport are contributing to a cystic 

kidney phenotype. As mentioned earlier Renin is released when Na+ levels are 

low to try to conserve the salt water balance as referred to in a review article 

(Harrison-Bernard 2009). 

An NPHP review, describes the phenotypes of polyuria and polydypsia 

occurring due to the loss of sodium which occurs early in NPHP (Salomon, 

Saunier et al. 2009). It is possible that polyuria is evident in this Cep290LacZ/LacZ 

mouse model however there were not enough sample numbers for urine 

measurement in Cep290LacZ/LacZ mice to reach statistical significance (Chapter 

3). 

A study briefly mentioned earlier, using a Lewis rat model of polycystic kidney 

disease, suggested that renal cyst development plays a key role in the initiation 

of hypertension (Phillips, Hopwood et al. 2007). Another study suggested that 

hypertension occurs prior to cyst formation (Loghman-Adham, Soto et al. 2004). 

From this study increased Renin expression occurs subsequent to micro cysts 

evident in Cep290LacZ/LacZ kidneys and therefore confirms the theory that renal 

cyst development plays a role in the initiation of hypertension (Phillips, 

Hopwood et al. 2007) in Cep290LacZ/LacZ kidneys. 

As mentioned earlier in this chapter early onset hypertension can occur in 

patients with ARPKD and an increase of Renin leads to hypertension. Renin is 

only released when Na+ levels are low to try to conserve the salt water balance 

in the kidney. In the Cep290LacZ/LacZ newborn kidneys there is an up-regulation 

of genes associated with sodium and sodium transport suggesting that Na+ 

levels are low in Cep290LacZ/LacZ kidneys. Assuming the Cep290LacZ/LacZ mice are 

polyuric due to salt wasting, raised Renin is more than likely due to a secondary 

effect to try and raise blood pressure via renin-angiotensin-aldosterone axis. 

Defects of Na+ handling in the collecting ducts of Cep290LacZ/LacZ mice are 

evident from data generated by the illumina microarray data as collecting ducts 

are required for efficient salt handling in the kidney.  
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The symport biological process involves the transport of solutes across a 

biological membrane in one direction. Interestingly all the proteins clustered in 

the symport biological processes are solute carriers and are all up regulated in 

Cep290LacZ/LacZ newborn kidneys once again suggesting a compensatory overall 

transport mechanism for the few cilia numbers identified in the cells. Some of 

the proteins clustered in symport are also clustered in sodium/sodium transport 

and transport biological processes therefore concluding that there is a lack of 

sodium, ions and other proteins transported around the kidney of 

Cep290LacZ/LacZ newborn kidneys (Table 5.5). Collecting duct cells are 

responsible for ion secretion and re-absorption (Taal, Chertow et al. 2011). The 

collecting ducts in Cep290LacZ/LacZ kidneys are not functioning normally due to 

the Cep290 truncated mutation 

As mentioned earlier Na+ absorption occurs through ENaC, maintaining a 

correct balance of ENaC function in the kidney is crucial for Na+ handling by the 

kidney (Hummler 1999; Schild and Kellenberger 2001; Stockand 2002; 

Hummler 2003; Schild 2004; Zaika, Mamenko et al. 2013). In the introduction to 

this study the orpk ARPKD mouse model was highlighted. The orpk ARPKD 

mouse model saw an increase in Na+ absorption in cystic CDT cells in their 

mouse model (Olteanu, Yoder et al. 2006). In another study utilising a CDT cell 

line isolated from the orpk mouse model abnormal trafficking of Aqp2/V2R was 

identified and it was concluded that this lead to enhanced Na+ and H20 

absorption (Saigusa, Reichert et al. 2012). 

Future studies will be required to assess if ENaC function and/or Aqp2 

trafficking is disrupted in the Cep290LacZ/LacZ CDT cells and assess if disrupted 

ENaC and or Aqp2 expression are involved in the cystic kidney disease 

phenotype associated with Cep290 mutations. Future studies could also involve 

measuring the blood pressure of animals to determine if they are hypertensive. 

Juxtaglomerular hypertrophy can also occur in patients with severe salt wasting 

future studies could involve reassessing the histology of Cep290LacZ/LacZ kidneys 

to identify if the juxtaglomerular cells are hypertrophic.  

The main challenge in any study using microarray platforms is assigning the 

molecular functions of the vast number of genes generated from microarrays.  



 

151 
 

Chapter 6 Investigating the possible signalling pathways 

disrupted in NPHP caused by a truncated Cep290 

mutation. 

A common feature for NPHP is that the mutated proteins are all normally 

located in either the primary cilium or the centrosome, hence defects to the 

structure or the function of cilia are linked to renal cyst development 

(Hildebrandt, Attanasio et al. 2009).  

Ciliopathy gene products regulate signal transduction pathways and these 

pathways are often abnormal in cystic collecting ducts (Winyard and Jenkins 

2011). The pathogenesis of NPHP is not known and therefore this 

Cep290LacZ/LacZ mouse model and the collecting duct cell line derived from the 

Cep290LacZ/LacZ mouse model will be used to help understand the signalling 

events which may be involved.   

NPHP is a heterogenous disorder and therefore previously published NPHP 

review papers suggests that defects occur in a number of signalling pathways 

(Hildebrandt, Attanasio et al. 2009; Winyard and Jenkins 2011). Mouse models 

with mutations in the Nphp/Jbts genes have previously been linked to both the 

Wnt signalling pathway and the Shh pathway (Chapter 1, Table 1.6).  

6.1 Aims 

In order to determine which of these two pathways (Shh or Wnt) are affected in 

Nphp (linked with a truncated Cep290 mutation), this chapter investigated if 

there were any differences in protein expression levels in known target Shh and 

Wnt candidate genes between newborn Cep290LacZ/LacZ renal tissue and their 

Cep290+/+ controls.  

If a change in protein expression level was identified in either of the two 

pathways in the renal tissue of newborn Cep290LacZ/LacZ mice when compared to 

wild type controls, Cep290LacZ/LacZ CDT cells would then be employed to 

examine if that particular pathway was abnormal in the CDT cells affected by 

cysts.  
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6.2 Results 

The first aim of this chapter was to gain an understanding of the process of the 

Wnt signalling pathway (Figure.6.1). 

 

Figure 6.1  Overview of the Wnt Signalling pathway in terms of Lef1/Tcf1 
processing. 
The Wnt signalling pathway is activated when the Wnt ligand binds to the 
frizzled/low density lipoprotein receptor related protein complex (LRP5/6), 
activating dishevelled (Dvl). How Dvl is activated has not been fully understood 
in the literature but it is suggested to be partly phosphorylated by casein kinase 
1 and 2 (CK1 and CK2). Dvl inhibits the activity of the β-catenin-Axin-
adenomatous polyposis coli-glycogen (APC) syntase kinase (multiprotein) 
complex which results in the accumulation of cytosolic β-catenin. The β-catenin 
then translocates to the nucleus where it activates/binds to the T-cell factor 
(Tcf/Lef) family of DNA binding proteins leading to transcription of wnt target 
genes. When wnt is absent, Axin recruits CK1 to the multiprotein complex and 
initiates β-catenin phosphorylation by GSK-3β. Phosphorylated β-catenin is 
then degraded by the proteosome by the β-transducin repeat-containing protein 
(β-TrCp) and therefore the Lef1/Tcf proteins expression levels are reduced 
(adapted from (Aguilera, Munoz et al. 2007). 
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6.3 Is there any evidence of defective Wnt signalling in 

Cep290LacZ/LacZ kidneys 

Once a candidate Wnt gene was identified, the protein levels of expression in 

the Wnt candidate gene were assessed in Cep290LacZ/LacZ and Cep20+/+ renal 

tissue. In order to test if there is defective Wnt signalling, the endogenous Wnt 

component, lymphocyte enhancer-binding factor (Lef1) (Filali, Cheng et al. 2002) 

was used to test for a defect in Wnt signalling. Lef1 expression was also 

examined in the Ahi1-/- mouse model (Lancaster, Louie et al. 2009).  

The Ahi-/- mouse model identified lower expression of the Wnt responsive full-

length isoform Lef1 in Ahi1-/- kidneys when compared to littermate controls at 5 

months and at 1 year of age. The Ahi1-/- study concluded that a Wnt signalling 

defect was associated with the cystic kidney phenotype occurring due to 

mutations in Ahi1. Ahi1-/- mice present with a cystic kidney phenotype at ~5 

months of age (Lancaster, Louie et al. 2009). The Cep290LacZ/LacZ mice 

described in this study however have microscopic renal cysts present at birth. 

Western blot analysis was employed to test if the full length isoform expression 

of Lef1 was reduced in Cep290Lacz/LacZ newborn, 6 months and 1 year old 

kidneys when compared to Cep290+/+ age matched controls (See figure 6.2). 

The expression levels of the full length Lef1 isoform between Cep290+/+ and 

Cep290LacZ/LacZ littermates were comparable unlike the Ahi-/- mouse model which 

saw a dramatic decrease in full length expression levels in the mutant mice.  

The short isoform of Lef1 protein begins at amino acid 116 within the full length 

LEF1 sequence and is missing the β-catenin-binding domain and a portion of 

the context dependent activation domain (Hovanes, Li et al. 2001). Lef1 

transcription factor’s main function is to interact with β-catenin and play a role 

as a nuclear effector of Wnt signalling. As the Lef1 short isoform is missing the 

β-catenin-binding domain, it is likely that the level of Lef1 short isoform 

expression is not as significant as the level of expression identified in the full 

length isoform of Lef1 seen in Ahi1-/- mice.   

In order to probe Wnt signalling further antibodies for another member of the 

Wnt pathway the T-cell factor 1 transcription factor (Tcf1) was utilised to 

determine if there was a difference in the level of Tcf1 expression between 

Cep290LacZ/LacZ kidneys and Cep290+/+ controls. 
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Figure 6.2  Testing differences in levels of expression between Cep290LacZ/LacZ mouse kidneys and age matched wild type 
controls using two transcription factors involved in wnt signalling. 
Panel A) Lef1 western blot analysis of whole kidney lysates from Cep290+/+ and Cep290LacZ/LacZ littermates at birth, 6 months and 1 year 
of age. Panel B) Tcf1 western blot analysis of whole kidney lysates from Cep290+/+ and Cep290LacZ/LacZ littermates at birth, 6 months and 
1 year of age. Lef1full length (FL) isoform 57kDa, Lef1 short length (SL) isoform 37 kDa. Tcf1 47 kDa 
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Lef1/Tcf1 proteins are downstream effectors of Wnt signalling and β-catenin 

interacts with the amino acid termini of Lef1/Tcf1 (Molenaar, van de Wetering et 

al. 1996; Brannon, Gomperts et al. 1997; Kengaku, Capdevila et al. 1998; 

Eastman and Grosschedl 1999). From these previous studies Lef1 and Tcf1 

were good candidate Wnt target genes to measure and determine if there were 

any signalling defects occurring in the Wnt pathway in Cep290LacZ/LacZ kidneys. 

There were no changes in the expression of Tcf1 in Cep290LacZ/LacZ newborn 

kidneys when compared to Cep290+/+ littermates from western blot results 

(Figure 6.2). Overall there were no changes in the expression levels of Wnt 

candidate genes in renal tissue of Cep290+/+ and Cep290LacZ/LacZ mice at birth. 

These results therefore suggested that Wnt signalling may not be causing the 

micro cystic phenotype occurring at birth in Cep290LacZ/LacZ mice.  

However Wnt signalling seems to be down regulated in Cep290LacZ/LacZ 1 year 

old kidneys consistent with Ahi1-/- mice. This suggests deregulated Wnt 

signalling is therefore occurring later on in the cystic kidney disease.  

Cep290LacZ/LacZ mice at 1 year of age are fibrotic when compared to 

Cep290LacZ/LacZ mice at birth (See Figure 3.20). Fibrosis occurs after the cystic 

kidney phenotype and at a later stage of the disease in Cep290LacZ/LacZ mice. 

Previous review articles have linked fibrosis with defects in the Wnt signalling 

pathway and therefore Wnt signalling defects are secondary to the cystic and 

fibrotic kidney phenotype in 1 year Cep290LacZ/LacZ mice (Surendran, Schiavi et 

al. 2005; He, Dai et al. 2009; Kawakami, Ren et al. 2013). 

As micro cysts were evident at birth in Cep290LacZ/LacZ kidneys it was therefore 

hypothesised that the pathway disturbed at birth may contribute to the initiating 

events leading to the cystic kidney phenotype associated with Cep290 

mutations. In conclusion the analysis carried out on whole kidney lysates 

extracted from Cep290LacZ/LacZ mice using Lef1 and Tcf1 as Wnt target genes 

suggested that there may not be defects in the Wnt signalling pathway at birth. 
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6.4 Is there any evidence of defective Shh signalling in 

Cep290LacZ/LacZ kidneys  

Mutations in KIF7, RPGRIP1L and INPP5E were all identified in a subset of 

JBTS/NPHP patients and mutations in these genes have been implicated in the 

Shh signalling pathway (Wolf, Saunier et al. 2007; Dafinger, Liebau et al. 2011; 

Otto, Ramaswami et al. 2011; Travaglini, Brancati et al. 2013). Kif7 is a ortholog 

of the Drosophila Costal 2 (Cos2) which is implicated in the hedgehog pathway 

through smoothened (Katoh and Katoh 2004). The loss of function in the 

Kif7/Costal2 mouse model was previously shown to regulate sonic hedgehog 

signalling by preventing activation of the Gli2 transcription factor and therefore 

this caused an expansion of ventral neural cell types in the neural tube because 

of an expanded domain of expression of Shh target genes (Liem, He et al. 

2009). 

The Rpgrip1l mouse model (known as the Ftm null mouse model) also showed 

Shh signalling defects as there was a loss of Gli3 activator to Gli3 repressor 

expression in Ftm-/- animals (Vierkotten, Dildrop et al. 2007).  

The Inpp5e mouse model presented with polydactyly, exencephaly, skeletal 

defects, early lethality, multi cystic kidneys (including proximal tubule cysts) 

which are features of abnormal Shh signalling and the JBTS/NPHP phenotype 

(Jacoby, Cox et al. 2009). 

TCTN3, a transition zone protein (like Cep290) was disrupted in JBTS/NPHP 

patients.TCTN3 is necessary for the transduction of the Shh pathway as 

abnormal Gli3 processing was identified in patient fibroblast cells with mutations 

in TCTN3 (Thomas, Legendre et al. 2012). Linking NPHP/JBTS candidate 

genes to Shh, is therefore well studied but abnormal Shh signalling has not 

been assessed in kidney specimens of a NPHP/JBTS model. 

There are other examples of Shh deficiency in JBTS/NPHP cases. In a study 

using human fetal brain tissues detectable levels of Shh was strongly reduced 

in purkinje cells (Aguilar, Meunier et al. 2012). Impaired Shh signalling was also 

found in human brain fetal samples in three other JBTS/NPHP genes which 

include the TMEM67/MKS3, CC2D2A and an unidentified mutation. This 

suggests that Shh defects might be common in a number of ciliopathies (Aguilar, 

Meunier et al. 2012).   
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In order to determine if there was a defect in the Shh pathway in renal samples 

of newborn Cep290LacZ/LacZ mice when compared to Cep290+/+ controls the first 

aim was to understand the process of the Shh signalling pathway which is 

outlined in Figure.6.3. 

 

Figure 6.3  Overview of the Shh pathway when activated by 
purmorphamine and inhibited by patched (ptch1) in terms of Gli3 
processing. 
In the absense of Shh, Sufu is bound to Gli3A is phosphorylated and cleaved 
into a truncated peptide that represses the transcription of Shh-target genes 
while promoting the production of Gli3R via proteolytic cleavage of the C-
terminal region of Gli3A. Gli3 processing is reduced when IFT is disrupted 
therefore Gli3R formation depends on cilia. Both anterograde and retrograde 
motors have the same effect on Hh signalling (both are required for the neural 
tube and for processing of Gli3. Purmorphamine treatment can activate smo. 
Active Smo blocks Gli3 repressor formation, allows Smo to translocate to the 
primary cilium and triggers Gli3/sufu dissociation and recruits them to the tip of 
the cilium. After Gli3A is released from Sufu, Gli3A translocates to the nucleus 
where it acts as a transcriptional activator of Shh target genes. (Figure and text 
adapted from (Huangfu and Anderson 2005; Caparros-Martin, Valencia et al. 
2013). 
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Previous studies have examined the differences in Gli3 repressor (Gli3R)  and 

activator (Gli3A) expression levels to measure if there were any defects in the 

Shh signalling pathway (Vierkotten, Dildrop et al. 2007; Caparros-Martin, 

Valencia et al. 2013). Gli3 expression levels determine the outcome of Shh 

signalling by the relative amount of Gli3R to Gli3A which leads to patterning of 

the neural tube (Briscoe and Ericson 2001).  

In the absence of Shh signalling, an increase of Gli3R when compared to Gli3A 

is evident (Jacob and Briscoe 2003; Vierkotten, Dildrop et al. 2007). When Shh 

is absent, Sufu binds to the full length Gli3 transcription factor/Gli3A and 

promotes the production of the Gli3R by proteolytic cleavage of the C-terminal 

region of Gli3A (Wang and Li 2006; Humke, Dorn et al. 2010; Caparros-Martin, 

Valencia et al. 2013) 

In order to determine if there was a defect in the Shh signalling pathway in 

whole kidney lysates isolated from Cep290LacZ/LacZ mice, the differences in 

expression levels of the Gli3R to Gli3A were compared to Cep290+/+ whole 

kidney lysates. 

Gli3 processing was examined in newborn Cep290+/+and Cep290LacZ/LacZ whole 

kidney lysates via Western blot analysis, using an antibody against the N-

terminus of Gli3 that interacts with both the full-length (190kDa –Gli3A) and the 

processed short (83 kDa-Gli3R) forms of Gli3. This antibody has been used in a 

recent previously published Evc and Evc2 mouse model where Gli3 expression 

was reduced in cilia tips (Caparros-Martin, Valencia et al. 2013) (See Figure 

6.4). 

Maintaining the regulation of Gli3R via cleavage of Gli3A is crucial for 

nephrogenesis, however the exact molecular mechanism by which Gli3 controls 

renal embryogenesis is not known (Hu, Mo et al. 2006). Shh-/- mice have no 

kidneys (Hu, Mo et al. 2006), therefore from this we speculate that there will still 

be modest amounts of Shh signalling occurring in the Cep290LacZ/LacZ  kidneys 

but perhaps much less than the Cep290+/+ control samples. 
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Figure 6.4  Comparing Gli3 expression in newborn kidneys of 
Cep290LacZ/LacZ andCep290+/+ mice. 
Expression of Gli3 Activator (A) highlighted by an asterix and Gli3 Repressor (R) 
in newborn kidneys of Cep290+/+ and Cep290LacZ/LacZ mice.  
Gli3A = 190kDa and Gli3R = 83kDa.  Gapdh was loaded on a 10% 
polyacrylamide gel. The same volume and concentration of whole kidney lysate 
samples were loaded on the 10% gel polyacrylamide to act as a loading control. 
In Cep290LacZ/LacZ kidneys the Gli3R is increased compared to wild type control 
levels which is a indication of Shh signalling defect. At least 3 samples of each 
genotype have been analysed. Although there is no activator band in the 
Cep290+/+ samples the repressor band is still much stronger in the 
Cep290LacZ/LacZ animals suggesting defective Shh signalling. 
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In Cep290+/+ newborn renal tissue, Gli3 is efficiently processed into its repressor 

form (83kDa-Gli3R) Figure 6.4 panel B lane 1. From this we can only assume 

that this is the normal expression levels of Gli3 processing for mice at birth, as 

Cep290+/+ animals do not have a cystic kidney phenotype and the levels of 

Gli3R and Gli3A protein expression levels are not known in the literature for 

newborn renal tissue.  

By contrast however in the Cep290LacZ/LacZ homozygous mutant newborn renal 

tissue; Gli3 protein was present as unprocessed, full length form (190kDa-Gli3A) 

(Figure 6.2 panel B lane) and also had a much higher increase in level of Gli3R 

when compared to Cep290+/+ Gli3R levels.  

As a result the level of Gli3R:Gli3A expression was dramatically increased in 

the newborn Cep290LacZ/LacZ renal tissue. This suggests that Cep290 acts 

upstream of Shh signalling (at least) partly through the regulation of Gli3 

proteolytic processing and that Shh signalling is affected by a truncated Cep290 

mutation in renal tissue of newborn Cep290LacZ/LacZ mice .  

6.5 Do Cep290+/+ CDT cells respond to Shh treatment? 

Given the results of Gli3R:A expression levels in newborn Cep290LacZ/LacZ 

kidney tissue, an investigation was carried out to determine Shh signalling at a 

functional level. Cep290+/+ primary CDT cells were manipulated with a 

pharmacological Shh pathway agonist (Purmorphamine) and a pharmacological 

Shh pathway antagonist (HPI-4). The effects of the Shh agonist and antagonist 

manipulation on Cep290+/+ primary CDT cells were then tested (See Figure 6.5). 
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Figure 6.5  Effect of purmorphamine and HPI-4 on primary Cep290+/+ CDT 
cells 
Panel A) Gli3 expression levels in Cep290+/+ CDT cells with 2µM of DMSO and 
2µM of PUR. Panel B) Gli3 expression levels in Cep290+/+ CDT cells with 2µM 
of DMSO and 2µM of HPI-4. Both Gli3A and Gli3R are decreased in Cep290+/+ 

CDT cells treated with HPI-4.  Gli3A highlighted by an asterisk. 
Note Cep290+/+ CDT cell were treated for 72 hours. Gapdh was loaded on a 
10% polyacrylamide gel for each of the samples analysed. The same volume 
and concentration of Cep290 CDT cell lysates were loaded on the 10% gel 
polyacrylamide to act as a loading control (n=3). 
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Cep290+/+ primary CDT cells respond to Shh agonist (PUR) and antagonist 

(HPI-4) manipulation (See Figure 6.5).  

Purmorphamine was previously described to activate the hedgehog pathway by 

targeting smoothened (Sinha and Chen 2006). HPI-4 was previously reported to 

act downstream of Sufu modulateing Gli processing, activation and trafficking. 

HPI-4 does not completely block Smo trafficking to the cilium but causes a 

decreased extent of ciliary smo accumulation in response to Shh (Hyman, 

Firestone et al. 2009). Purmorphamine treatment decreased Gli3R expression 

Cep290+/+ CDT cells. Therefore purmorphamine treatment activates the Shh 

pathway in Cep290+/+ CDT cells (See figure 6.5). HPI-4 treatment decreased 

overall Gli3 expression levels in Cep290+/+ CDT cells confirming that Cep290+/+ 

CDT cells respond to both the Shh agonist and the Shh antagonist. 

6.6 Investigation to determine if a Shh agonist rescues 

tubular morphology of Cep290LacZ/LacZ CDT cells when 

grown in 3D cultures.  

As demonstrated in Chapter 4, tubular morphology and ciliogenesis are 

disrupted in Cep290LacZ/LacZ CDT cells when compared to Cep290+/+ CDT cells 

grown in a 3D culture matrix (Figure 4.8).  

The 3D culturing system of CDT cells closely resembles the in vivo nature of the 

kidney collecting duct tubules unlike the 2D culturing system. The 3D culturing 

system of CDT cells is more representative than 2D culturing systems, as CDT 

cells adhere to each other rather than to the plastic on the 6 well plates, show 

polarity, form a lumen, producing tubular/spheroids behave more like CDT 

would in their natural cellular environment of the kidney. 

In order to determine the effect of defective Shh signalling on the morphology of 

3D cultured Cep290LacZ/LacZ CDT cells, the Cep290LacZ/LacZ CDT cells were 

treated with purmorphamine and their morphology was studied. 
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Figure 6.6  Purmorphamine treatment partically rescues ciliogenesis and 
tubular morphology in Cep290LacZ/LacZ CDT cells 
Panels (A-D) Cep290LacZ/LacZ CDT cells treated with 2µM DMSO and Panels (E-
H), Cep290LacZ/LacZ CDT cells treated with 2µM Purmorphamine(PUR). Panels 
(A,E) Dapi staining the nuclei of the spheroids, Panels (B,F) Acetylated tubulin 
immunofluorescence marker staining primary cilia of the apical cells in the 
lumen of the spheroid. Panels (C,G). β-catenin stains the adherence junctions 
of the spheroid tubules. Panels (D,H) merged images of all Dapi, A-tubulin and 
β-catenin (3D cultures/staining and images collected by Rachel Giles).  
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Purmorphamine treatment of Cep290LacZ/LacZ CDT cells partially rescues CD 

tubular morphology (Figure 6.6).  

Larger lumens (greater than 10µm), were observed in112/150 spheroids. In 

Cep290LacZ/LacZ CDT cells without purmorphamine treatment virtually no lumens 

(22/150 spheroids) were observed Cep290LacZ/LacZ CDT cells where lumens 

were observed had a diameter of less than 10µm (66/150 spheroids). Increased 

polarity was evident in Cep290LacZ/LacZ CDT cells treated with purmorphamine.  

The number of primary cilia observed in the Cep290LacZ/LacZ CDT spheroids 

treated with purmorphamine increased by about 25% (296/1004 nuclei) when 

compared to untreated Cep290LacZ/LacZ CDT spheroids (n= 880).  

The reduction of Shh signalling is a functional consequence in Cep290LacZ/LacZ 

kidney collecting ducts and this reduction of Shh signalling is contributing to the 

cystic phenotype in Cep290LacZ/LacZ CDT cells, as purmorphamine can partially 

rescue tubular morphology and ciliogenesis in Cep290LacZ/LacZ CDT cells.  

Previous studies discuss that the activation of Shh requires the translocation of 

smo to the primary cilium following binding of Shh ligand to the Patched 

receptor.  If there is a loss of cilia then this process cannot occur (Corbit, 

Aanstad et al. 2005). Cilia numbers are reduced in 2D and in 3D cultures of 

Cep290LacZ/LacZ CDT cells (identified in chapter 4).  Therefore this study also 

confirms that the expression of Shh signalling was decreased in both the CDT 

cells and also in newborn Cep290LacZ/LacZ kidneys compared to Cep290+/+ age 

matched controls when testing Gli3 expression levels. 

6.7 Investigation to determine if a Shh antagonist will disturb 

tubular morphology of Cep290+/+ CDT cells when grown in 

3D cultures.  

From the 3D culturing results of treating Cep290LacZ/LacZ CDT cells with 

purmorphamine it was then decided to test Cep290+/+ CDT cells treated with 

HPI-4 to examine the morphology of Cep290+/+ CDT 3D cultures after HPI-4 

treatment (Figure 6.7). 



 

165 
 

 

Figure 6.7  HPI-4 treatment disturbs ciliogenesis and tubular morphology 
in Cep290+/+ CDT cells 
Panels (A-D) Cep290+/+ CDT cells treated with 2µM DMSO and Panels (E-H), 
Cep290+/+ CDT cells treated with 2µMHPI-4. Panels (A,E) Dapi staining the 
nuclei of the spheroids, Panels (B,F) Acetylated tubulin immunofluorescence 
marker staining primary cilia of the apical cells in the lumen of the spheroid. 
Panels (C,G). β-catenin stains the adherence junctions of the spheroid tubules. 
Panels (D,H) merged images of all Dapi, A-tubulin and β-catenin (3D 
cultures/staining and Images collected by Rachel Giles).  
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Quantification of ciliogenesis from 3D spheroids with and without 

Purmorphamine and HPI-4 treatment was carried out. Cep290LacZ/LacZ cells 

treated with 2µM Purmorphamine for 72 h restored ciliogenesis from 24% 

(DMSO control) to 48% (Figure 6.8 A). Data is shown by means ± s.e.m., P = 

0.0063 determined by an unpaired t test. Cep290+/+ cells when treated with 

10µM HPI-4 for 36 h showed a reduction in ciliogenesis from 75% (DMSO 

control) to 11%. Data is shown by means ± s.e.m., P = 0.0002 determined by an 

unpaired t test (Figure 6.8 B). This confirmed that ciliogenesis is disrupted in 

Cep290LacZ/LacZ cells when Shh signalling is reduced and ciliogenesis is rescued 

in cells stimulated with Shh. 

 

Figure 6.8 Quantifying ciliogenesis in Cep290 3D spheroids before and 
after purmorphamine and HPI-4 treatment. 
Panel A Quantifying ciliogenesis in Cep290LacZ/LacZ cells without treatment (2µM 
DMSO) and with 2µM purmorphamine treatment after 72 h. Panel B Quantifying 
ciliogenesis in Cep290+/+ cells without treatment (2µM DMSO) and with 10µM 
HPI-4 treatment after 36 h. All spheroids were serum starved for 24hrs prior to 
staining. Lengths were compared using students t-test. 
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6.8 Investigating the Illumina microarray’s candidate gene 

expression levels in Cep290LacZ/LacZ CDT cells 

For the remainder of this study an investigation was carried out to determine if 

the differences in gene expression levels observed in Cep290LacZ/LacZ whole 

kidney extracts from the Illumina microarray (Chapter 5) were also evident in 

Cep290LacZ/LacZ CDT cells. The genes previously confirmed in Cep290LacZ/LacZ 

whole kidney extracts via qRT-PCR techniques were Miox, Ren1, Pvalb, Gdnf 

and Tff2.  

If the candidate genes expression levels in Cep290LacZ/LacZ CDTs were following 

the same pattern as Cep290LacZ/LacZ whole kidney mRNA, this confirms that the 

genes affected are likely to contributing to cystogenesis (Figure 6.9). 

 

Figure 6.9  Investigating the expression levels of the genes identified 
from whole kidney extracts using an Illumina Microarray in Cep290LacZ/LacZ 
CDT cells by semi-quantitative RT-PCR. 
Semi quantitative RT-PCR of Cep290+/+ and Cep290LacZ/LacZ CDT cells. mRNA 
was used to determine if the genes identified by the Illumina Microarray in 
chapter 5 on Cep290 whole newborn kidney extracts were following the same 
pattern of expression in Cep290 CDT cells.  
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Miox, Pvalb and Ren1 were all up regulated in Cep290LacZ/LacZ newborn kidney 

mRNA when compared to Cep290+/+ controls (chapter 5). In CDT cells however 

using semi quantitative techniques Miox and Pvalb did not follow the same 

pattern of expression which could suggest that the changes observed in these 2 

genes, in Cep290LacZ/LacZ whole kidney extracts were either secondary to the 

micro cysts observed or that the changes in gene expression levels were 

affecting other cell types of the kidney as a consequence of the micro cysts. 

Miox was previously shown to be expressed in the cortex of the kidney 

(Charalampous 1959; Koller and Hoffmann-Ostenhof 1979; Arner, Prabhu et al. 

2001), and therefore changes in Miox expression levels may not influence the 

cystic collecting ducts. Pvalb was previously described to be expressed in the 

distal convoluted tubule of the kidney (Celio 1990; Schwaller, Dick et al. 1999; 

Olinger, Schwaller et al. 2012). As Pvalb was previously expressed to be in 

distal convoluted tubules of the kidney and these Cep290 cells are collecting 

duct in origin this confirms that the change in Pvalb expression is affecting 

another cell type of the Cep290LacZ/LacZ kidney. As previous studies have not 

described expression of Pvalb in cells of the CDT’s this also confirms that these 

novel Cep290 CDT cells selected by DBA are CDT cells and not expressing 

distal convoluted tubule markers such as Pvalb. 

An increase in Ren1 expression was observed in Cep290LacZ/LacZ CDT cells 

when compared to Cep290+/+ CDT cells using semi-quantitative RT-PCR 

methods (See Figure 6.9). Ren1 expression was originally found in the 

juxtaglomerular apparatus of the kidney but expression was also reported in 

CDT’s (Jones, Sigmund et al. 1990; Rohrwasser, Morgan et al. 1999; Lantelme, 

Rohrwasser et al. 2002; Prieto-Carrasquero, Harrison-Bernard et al. 2004). A 

previously published murine model (known as Apo E-/- mice) with a cystic kidney 

phenotype also showed levels of increased Ren1 expression. These mice were 

treated with Angiotensin II which induced the polycystic appearance (Kaliappan, 

Nagarajan et al. 2012). As mentioned in chapter 5 Renin catalyses the first step 

in the angiotensin pathway (Pentz, Lopez et al. 2001; Sequeira-Lopez, 

Weatherford et al. 2010). Therefore this increase in Ren1 expression which was 

observed in both the Cep290LacZ/LacZ kidney and the Cep290LacZ/LacZ CDT cells 

and the Apo E-/- mouse model with a cystic kidney phenotype suggests that an 

up regulation in Ren1 expression contribute to cystogenesis 
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Ttf2 and Gdnf expression levels were decreased in newborn Cep290LacZ/LacZ 

kidneys from data generated by an Illumina Microarray and by semi-quantitative 

RT-PCR and quantitative RT-PCR techniques. The log fold change in 

expression levels of these genes from the data generated by the microarray 

was less than 2 therefore suggesting that the changes seen in Ttf2 and Gdnf 

were not as significant as the up regulated genes identified which had a Log FC 

of greater than 2. However, in chapter 5 the down regulation of both Ttf2 and 

Gdnf gene expression levels was confirmed by semi-quantitative RT-PCR and 

quantitative RT-PCR.  

The fold change in expression levels (confirmed by quantitative RT-PCR) for 

each of the down-regulated genes was all less than one when compared to the 

up regulated genes which showed a fold change in expression of greater than 

20 for each gene (Chapter 5). 

In both Cep290+/+ and Cep290LacZ/LacZ CDT cells, Ttf2 was below the threshold 

of detection which therefore suggests that this down regulation in expression 

level is also a secondary effect of cystogenesis perhaps affecting other cells of 

Cep290LacZ/LacZ kidneys (See Figure 6.9).  

Gdnf was found to be expressed in Cep290+/+ CDT cells but not in 

Cep290LacZ/LacZ CDT cells (Figure 6.9). Gdnf is required for nephrogenesis 

(Schedl and Hastie 2000) and Gdnf knockout mice present with renal agenesis 

therefore a reduction in Gdnf expression may influence a cystic collecting duct 

phenotype (Sanchez, Silos-Santiago et al. 1996).  

Gdnf was only expressed in Cep290+/+ CDT cells when compared with 

Cep290LacZ/LacZ CDT cells; this suggests that the changes in the level of 

expression of this gene may be linked to the development of the cystic kidney 

phenotype associated with CDT cells. Gdnf expression was also reduced in 

Cep290LacZ/LacZ whole kidney extracts. qRT-PCR methods was required to 

confirm if the changes in Ren1 and Gdnf identified by semi quantitative methods 

in Cep290 CDT cells was significant (Figure 6.9). qRT-PCR was also carried 

out on the other genes as it is more sensitive than semi- quantitative RT-PCR in 

determining if the genes are having an effect on cystogenesis.  
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Figure 6.10  Investigating the differences in gene expression levels of 5 
candidate microarray genes in Cep290+/+ and Cep290LacZ/LacZ CDT cells by 
qRT-PCR. 
qRT-PCR of Cep290+/+ and Cep290LacZ/LacZ CDT cells. RNA extracted from CDT 
cells was used to determine if the genes identified by the Illumina Microarray in 
chapter 5 on whole newborn Cep290LacZ/LacZ kidney extracts were following the 
same pattern of expression in Cep290LacZ/LacZ CDT cells. A student’s t-test p 
value was calculated for each gene determining the results are statistically 
significant 
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qRT-PCR methods did not confirm the changes in level of expression found by 

semi-quantitative RT-PCR methods. Ren1 was up regulated in Cep290LacZ/LacZ 

CDT cells by semi quantitative RT-PCR methods however via qRT-PCR 

methods it was not.  

Gdnf expression levels were down regulated in Cep290LacZ/LacZ CDT cells by 

semi quantitative RT-PCR and this is the only gene which was confirmed via 

qRT-PCR methods in Cep290LacZ/LacZ CDT cells. Therefore these results 

suggest that only Gdnf may influence a cystic kidney phenotype and the rest of 

the genes expressed are a result of a secondary effect of cystogenesis.  

The low level of Gdnf expression seen in Cep290LacZ/LacZ CDT cells mimicked 

the low levels of Gdnf gene expression levels previously observed from data 

generated by the Illumina Microarray using RNA extracted from Cep290LacZ/LacZ 

newborn kidney samples. 
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6.9 Discussion 

In this Cep290LacZ/LacZ mouse model Shh signalling was at birth as Gli3R 

expression was higher in Cep290LacZ/LacZ whole kidney protein lysate when 

compared to Cep290+/+ kidney controls.  

Therefore Cep290 is necessary for the normal process of Shh signalling 

pathway in kidney tissue as revealed by abnormal Gli3 processing in 

Cep290LacZ/LacZ renal tissue and CDT cells. 

This study has shown that cilia formation and proteolytic processing of Gli3 are 

disrupted in Cep290 mutants. The results generated in this study indicate that 

Cep290 is required for ciliogenesis in renal tissue and that Cep290 is required 

for cilium-dependent Shh signal transduction. 

Renal tubular cells possess primary cilia which project into the lumen of the 

renal tubule, and are likely to have a sensory role (Praetorius and Leipziger 

2013). Therefore one can speculate that this specific projection into the lumen is 

important to their function, for their ability to respond to Shh signal, or for 

maintaining the correct morphology of the renal tubule (Praetorius and Leipziger 

2013). 

Gli proteins are localised in the distal tip of the primary cilium (Haycraft, Banizs 

et al. 2005). The length of the primary cilium in Cep290LacZ/LacZ CDT cells was 

marginally shorter in 2D culturing systems.  Only 5% of Cep290LacZ/LacZ CDT 

cells were found to have a primary cilium when compared to 55% of Cep290+/+ 

CDT cells (Chapter 4). A disruption of Gli3 signalling was identified in 

Cep290LacZ/LacZ newborn kidneys and CDT cells isolated from Cep290LacZ/LacZ 

mice. Gli proteins may not be efficiently processed or reaching the tip of the 

cilium in Cep290LacZ/LacZ mice. 

Interestingly homozygous Gli3 mice (named Xt mice- where the Gli3 gene is 

deleted), die before birth with; a midbrain exencephaly, poorly developed eyes 

(Dunn, Winnier et al. 1997) and the “kidneys had indentations which were 

previously thought to be due to the close proximity of other organs,” (Johnson 

1967). Could this phenotype observed in the Gli3 mutant kidneys be what we 

know today as a cystic kidney phenotype? The brain and eye phenotypes 

mentioned in Gli3 /Xt homozygote mutants were also observed in this 



 

173 
 

Cep290LacZ/LacZ mouse in a much milder form as inbred mice on a 129/Ola 

background survive to 1 year of age. This study also corroborates that a 

reduction of Gli3 processing perhaps may be affecting the JBTS/NPHP 

phenotype.  

Intriguingly zebrafish Cep290 knockout embryos demonstrated defects in the 

PCP, these fish present with renal cysts, retinitis pigmentosa and cerebellar 

defects (Sayer, Otto et al. 2006; Hildebrandt and Zhou 2007).  

As this Cep290LacZ/LacZ mouse model has a truncated mutation and mutations in 

Cep290 can cause a wide spectrum of disorders the phenotypes seen in the 

knockout zebrafish model may therefore be influenced by a different pathway. 

Together these data indicates that the cystic nature associated with a truncated 

mutation in the Cep290 gene may most likely be due to the lack of functioning 

cilia in Cep290 mutants with a defect of the Shh signalling pathway. 

It seems that the altered dosage of Gli3 protein expression in this 

Cep290LacZ/LacZ mouse model disrupts the hedgehog pathway and cell 

homeostasis of the kidney in Cep290LacZ/LacZ mice. 
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Chapter 7 Concluding remarks and final Discussion 

7.1 Cep290LacZ/LacZ mice are a representative model of juvenile 

NPHP 

Microcysts were evident in Cep290LacZ/LacZ mice inbred on the 129/Ola strain at 

birth, tubuar atrophy and thickened TBM was also evident in Cep290LacZ/LacZ 

mice. Renal fibrosis occurred at a later time point in the disease, confirming that 

this Cep290LacZ/LacZ mouse model recapitulates the cystic kidney phenotype of 

this human ciliopathy and other associated phenotypes. In comparison to the F6 

C57BL/6J newborn mice (Figure 3.16) the cystic renal phenotype is consistent 

in the 129/Ola colony and therefore this mouse strain is suitable for 

investigating NPHP (See Figure 3.17).  

50% of patients with JBTS have Cep290 mutations (Valente, Brancati et al. 

2013). In this study cerebellum defects were evident in the form of hydrocephaly. 

Finally 15% of LCA cases are caused by Cep290 mutations (den Hollander, 

Roepman et al. 2008), this study also identified retinal degeneration occurring in 

the Cep290LacZ/LacZ mice from 2 weeks of age. Cumulatively these results 

suggest that this Cep290LacZ/LacZ mouse model is a faithful model of the juvenile 

form of NPHP/JBTS associated disorders. 

7.2 Defective Shh signalling is evident in newborn kidneys of 

Cep290LacZ/LacZ mice. 

The Ahi1-/- mouse model is the only published NPHP mouse model where the 

molecular mechanisms of NPHP have been investigated and it was identified 

that kidneys of Ahi1-/- mice had defective Wnt signalling which was suggested to 

cause the NPHP phenotype. The Ahi1-/- mouse unfortunately only presents with 

a late onset NPHP phenotype, occurring at 5 months of age (Lancaster, Louie 

et al. 2009). Wnt signalling defects were investigated in this Cep290LacZ/LacZ 

mouse model, however no Wnt signalling defects were evident at the early and 

mid stages of NPHP in Cep290LacZ/LacZ mice. Shh signalling was also 

investigated and it was identified that Gli3 processing was disrupted in newborn 

kidneys of Cep290LacZ/LacZ mice. Cep290LacZ/LacZ CDT cells were employed to 

investigate this in further detail. 
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7.3 Cep290LacZ/LacZ CDT cells aid in identifying disrupted Shh 

signalling pathway. 

The immortal Cep290LacZ/LacZ CDT cell line created from Cep290LacZ/LacZ mice 

(recapitulating a NPHP phenotype) is a vital cell model for studying the NPHP 

disease pathology at the cellular level. The Cep290LacZ/LacZ CDT cell line 

maintained CDT cell characteristics and the Cep290+/+ CDT cell line formed 

large spheroids with well defined lumens and 61% of nuclei had primary cilia 

projecting into these lumens when grown in 3D cultures. Cep290LacZ/LacZ CDT 

cells on the other hand however formed fewer spheroids and the spheroids that 

did form had no lumen or a lumen of less than 10 microns with only 5% of the 

nuclei being ciliated (confirming ciliated nuclei observed using 2D culturing 

methods).  

Stimulation of the Shh pathway restored the Cep290LacZ/LacZ CDT abnormal 

spheroid structural phenotype with cilia present in 26% of nuclei and the lumens 

were over 10 microns in size in 3D culture. This suggests that Shh signalling 

partly regulates ciliogenesis and the establishment of CDT spheroids in 3D 

cultures. 

The addition of the Shh antagonist (HPI-4) resulted in disrupted Cep290+/+ CDT 

spheroids, lumen structure and ciliogenesis in 3D cultures, hence confirming 

that Shh is defective in Cep290LacZ/LacZ CDT cells. The physiology of the 

Cep290 CDT cells were not the focus in this study however this Cep290LacZ/LacZ 

CDT cell line is a potentially valuable cell model for future studies in 

understanding the pathophysiology of the CDT in NPHP. 

Cep290 is required for the morphologic integrity and function of the kidney. This 

study reveals a potential new mechanism for the regulation and maintenance of 

collecting duct cells in cystic kidney disease  
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7.4 Conflicting defective signalling mechanisms identified in 

renal tissue of 2 NPHP mouse models.  

Shh signalling was only investigated in the Ahi1-/- cerebellar granule neurons 

(CGNs) by the means of N-myc staining (a proliferative gene target of Shh 

signalling) where it was concluded that Ahi1-/- was not decreased in the 

cerebella. Western blot analysis of N-Myc and Ptch1 expression in Ahi1-/- 

animals in whole cerebellum lysates (at P3) concluded that N-Myc and Ptch1 

expression in Ahi1-/-animals was equal to wild type controls. The last set of 

experiments used to test for Shh signalling defects in the cerebellum of Ahi1-/- 

mice involved analysing qRT-PCR for 3 Shh target gene mRNAs (N-Myc, Gli 

and Ptch1). No differences were observed in the 3 chosen Shh target genes 

expression levels in the mRNAs of Ahi1-/- mice when compared to littermate 

controls (Lancaster, Gopal et al. 2011). From this set of results in the Ahi1-/- 

mouse model it was concluded that there was no Shh signalling defects 

occurring in the Ahi1-/- mice.  

The kidney however is a different organ to the brain and it would be interesting 

to see if there were any Shh signalling defects occurring in Ahi1-/- mice prior to 

the fibrotic and cystic phenotype observed in the adult Ahi1-/- kidney.  

It is well known that Shh signalling is mediated via members of the Gli 

transcription factors family to control cell determination, tissue patterning and 

organogenesis (Ingham and McMahon 2001). Until the Ahi1-/- mouse model is 

used to measure the differences in Gli transcription levels it cannot be truly 

ruled out that defective Shh signalling may be influencing the kidney phenotype 

observed. The Ahi1-/- study also generated a Cep290-/- mouse model (Lancaster, 

Gopal et al. 2011). Midline fusion defects and retinal degeneration were 

identified in the Cep290-/- mouse model, with no mention of a cystic kidney 

phenotype at E16.5. The phenotype of only 3 mice for each genotype was 

evaluated at E16.5. There were no RT-PCR/ qRT-PCR or Western blot results 

mentioned or shown to confirm if the Cep290 protein product was knocked 

down (Lancaster, Gopal et al. 2011). Therefore there are still a lot of 

unanswered questions from the knockout Cep290 mouse model regarding the 

kidney phenotype. As CEP290 mutations cause the largest number of 

ciliopathies (Aguilar, Meunier et al. 2012) more mouse studies are required to 

understand the role of Cep290 in NPHP. 
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Gene 
Shh 

signalling 
Wnt signalling Cystic 

Kidneys 
Lethal Reference 

JBTS1 ND ND ND ND ND 

JBTS2 ↓ ND ND Yes (Hoover, Wynkoop et al. 2008) 

JBTS3/ 
AHI1 

No change ↓ 
5 months-1 

year 
Only 20% 
survived 

(Lancaster, Louie et al. 2009) 

JBTS4/ 
Nphp1 

ND ND None ND (Jiang, Chiou et al. 2008) 

JBTS5/ 
CEP290 ↓ No change NPHP at birth 

Not in Ola/129 
inbred mice 

This study and (Aguilar, 
Meunier et al. 2012) 

JBTS6/ 
NPHP11 ↓ ↑ 

Yes PKD at 
E18.5 

Yes Tmem67
-/-

 
(Abdelhamed, Wheway et al. 
2013) and (Garcia-Gonzalo, 

Corbit et al. 2011) 

JBTS7/ 
NPHP8 ↓ ↓ 

Yes E18.5 
cysts 

Yes 
(Delous, Baala et al. 2007) and 
(Mahuzier, Gaude et al. 2012) 

JBTS8 ↓ ↓ ND Yes (Caspary, Larkins et al. 2007) 

JBTS9 ↓ ND ND Yes 
(Garcia-Gonzalo, Corbit et al. 
2011) 

JBTS10 ↓ ↓ Cystic at P0 Yes 
(Ferrante, Zullo et al. 2006), 
(Corbit, Shyer et al. 2008) and 
(Hunkapiller, Singla et al. 2011) 

JBTS11/ 
NPHP12 ↑ ↓ ND ND 

(Stottmann, Tran et al. 2009) 
and (Herron, Lu et al. 2002)  

JBTS12 ↑ ND ND Yes 
(Cheung, Zhang et al. 2009) 
and (Liem, He et al. 2009). 

JBTS13 ↓ ND ND ND (Reiter and Skarnes 2006) 

JBTS14 ND ↑ ND ND (Huang, Szymanska et al. 2011) 

JBTS15 ND ND ND ND ND 

JBTS16 ND ND ND ND ND 

JBTS17 ND ND ND ND ND 

TCTN2 ↑ ND ND Yes (Sang, Miller et al. 2011) 

TCTN3 / 
JBTS18 ↓ ND ND ND (Thomas, Legendre et al. 2012) 

TMEM231 ↓ ND ND Yes (Chih, Liu et al. 2012) 

NPHP1 ND ND ND ND (Jiang, Chiou et al. 2008) 

NPHP2 ND 

↓ in inv/inv  mefs 
and not involved in 
kidney (conflicting 

results) 

E15 cysts No 

(Morgan, Turnpenny et al. 
1998), (Sugiyama, Tsukiyama 

et al. 2011) and (Veland, 
Montjean et al. 2013) 

NPHP3 ND ↓ 
Yes at 2 
weeks 

No 

(Bergmann, Fliegauf et al. 
2008), (Simons, Gloy et al. 

2005) and (Omran, Haffner et 
al. 2001).  

NPHP4 ND ↓ No change No 
(Won, Marin de Evsikova et al. 

2011) and (Borgal, Habbig et al. 
2012) 

NPHP5 ND ND ND ND ND 

NPHP6 See JBTS5 above 

NPHP7 ↓ ↓ No No 
(Attanasio, Uhlenhaut et al. 
2007) and (Kim, Kang et al. 

2007) 

NPHP8 See JBTS7 above 

NPHP9 ND ↓ 2 weeks No 
(Liu, Lu et al. 2002) and 

(Sabbagh, Graciolli et al. 2012) 

NPHP10 ND ND ND ND ND 

NPHP11 See JBTS6 above 

NPHP12 See JBTS11 above 

NPHP13 ↑ ND ND Yes (Ashe, Butterfield et al. 2012) 

AHI1 See JBTS3 above 

ATXN10, NPHP14, NPHP15, ANKS6, XPNPEP3 and SLC41A1 
currently no links to either pathway have been investigated 

Table 7.1  Revising defective Shh and Wnt signalling defects as a 
consequence of a NPHP/JBTS mutation  
An increase in the expression of either the Shh or Wnt pathway is denoted by ↑. 
A decrease in expression of either the Shh or the Wnt pathway is highlighted by 
↓. ND not defined/not determined. Yellow highlights the studies where Shh 
and/or Wnt signalling was investigated in kidney samples of NPHP/JBTS mice. 
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Only 4 studies (including this study) have investigated whether defective Wnt 

and/or Shh signalling is evident in the kidney samples of NPHP/JBTS mutant 

mice. Ahi1-/- as discussed previously confirmed a reduction in Wnt signalling in 

5 month-1 year old kidney samples (Table 7.1).  

The Glis2LacZ/LacZ mouse model suggests that Shh signalling is increased as Gli1 

gene is upregulated in expression levels however they also state that other 

known Gli targets like Bmp4, Pax2, Sall1, Ccnd1, N-Myc were not (Attanasio, 

Uhlenhaut et al. 2007). The Glis2LacZ/LacZ study also concludes their study by 

suggesting that “a loss of downstream effectors of Shh signalling may lead to 

the NPHP phenotype” (Attanasio, Uhlenhaut et al. 2007). This statement 

suggests reduced Shh signalling leads to the NPHP phenotype which is what 

we have seen in this novel Cep290LacZ/LacZ mouse model. 

The inv mice have contrasting evidence regarding defective Wnt signalling 

(Sugiyama, Tsukiyama et al. 2011) and (Veland, Montjean et al. 2013). In the 

inv/inv renal study there was no evidence of defective Wnt signalling occurring 

in renal samples of inv/inv mice (Sugiyama, Tsukiyama et al. 2011). However in 

the inv-/- MEF study several β-catenin target genes were upregulated which is 

consistent with increased Wnt signalling (Veland, Montjean et al. 2013). As this 

study was only carried out on MEF cells therefore it cannot be determined 

whether or not the same increase in Wnt signalling would be evident in inv-/- 

kidney samples. 

To date, this study of Cep290LacZ/LacZ mice is the first to identify defective Shh 

signalling pathway associated with NPHP. Gli3 activator and repressor isoforms 

were utilised in this study to measure Shh activity. It was found that there was a 

dramatic increase in Gli3 repressor in Cep290LacZ/LacZ newborn kidney samples 

which is indicative of reduced Shh signalling (Figure 6.4). Increased Gli3 

repressor expression levels were also seen in patients with TCTN3 mutations 

(Thomas, Legendre et al. 2012) and the embryos of E11.5 Ftm-/- mice 

(Vierkotten, Dildrop et al. 2007).  
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7.5 Gene expression profile changes will aid in identifying 

early stages of juvenile NPHP. 

The gene expression profile changes identified by the microarray are potentially 

a valuable resource for identifying early changes in NPHP. Newborn 

Cep290LacZ/LacZ mice have micro cysts and their gene expression profiles 

identified a number of up regulated solute carriers.  

An up regulation in expression of solute carrier genes suggests the normal 

physiology of the kidney is disturbed as the maintenance of the CDT cell’s 

identity is the result of the balanced expression and repression of hundreds of 

genes. These changes in solute carrier gene expression levels could be 

assessed in renal biopsies of patients potentially thought to have NPHP to test 

for the first signs of cellular changes occurring in NPHP leading to an early 

diagnosis.  

Clinical diagnosis alone of ciliopathies provides little information into possible 

therapeutic remedies. The varying degree of distinction of phenotypes 

associated with ciliopathies are often blurred therefore molecular diagnosis is 

required and will be valuable for clarifying pathogeneic mechanisms, (Rachel, Li 

et al. 2012) as it may be that not all NPHP mutations will have disrupted Shh 

signalling like the Cep290LacZ/LacZ mouse with a truncated mutation in the 

Cep290 gene.  
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7.6 Impact of this work on the field of NPHP related disorders. 

At present there are no therapeutic drugs offered for treating NPHP 

http://www.pkdcure.org/research/clinical-trials/blood-pressure . Clinical trials are 

only available for adults and are primarily focused on end stage renal failure or 

when the cystic phenotype is severe, to slow the rate of disease progression.  

Hence it was crucial to study the changes in the onset of cystogenesis 

(performed by the Illumina microarray data in this study) in NPHP and to identify 

disrupted signalling pathways leading to the cystic kidney phenotype. 

7.7 Limitations of the work presented in this thesis 

To this day it is still unknown what causes the different combinations of the 

spectrum of disorders in JBTS patients. The huge clinical variability in CEP290 

mutations even within one family cannot be explained by classical Mendelian 

inheritance patterns with single locus allelism.  

There are a few theories which suggest the explanation of the phenotypic 

diversity associated with NPHP/JBTS patients including; the differences in the 

disease causing mutation, genetic modifiers and environmental modifiers. 

Genetic modifiers were also suggested to influence the phenotypic variation of 

affected males with X-Linked retinal pigmentosa (XIRP) in one recent study 

(Fahim, Bowne et al. 2011). 

Unidentified genetic modifier loci are perhaps influencing the JBTS phenotype 

seen in Cep290LacZ/LacZ mice. When comparing Cep290LacZ/LacZ inbred C57BL6/J 

mice with Cep290LacZ/LacZ inbred Ola/129 mice the Cep290LacZ/LacZ inbred 

C57BL6/J mice are embryonic lethal.  

Unidentified genetic modifiers are also evident in the Ahi1-/- model as 

approximately 80% of the Ahi1-/- mice did not survive to adulthood (Lancaster, 

Louie et al. 2009). Shh signalling pathway transcription factors (Gli1-3 for 

example) were not investigated in the kidneys of Ahi1-/- mice (Lancaster, Louie 

et al. 2009) and therefore it is unknown if Shh signalling is influencing the cystic 

kidney phenotype observed later in development in this Ahi1-/- mouse model.  

http://www.pkdcure.org/research/clinical-trials/blood-pressure
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Candidate modifier loci will need to be chosen on the basis of previously 

demonstrated protein-protein interactions with CEP290 to determine if there is 

any significant association with disease severity  

The Pcy and the Tmem67 mouse model also recognise that modifier alleles 

determine the severity of the NPHP/JBTS disease between different strains of 

mice (Nagao, Hibino et al. 1991; Abdelhamed, Wheway et al. 2013). 

7.8 Possible future directions for the study of NPHP disorders 

from data presented in this thesis. 

As cysts are located in CDT’s in patients with NPHP, gene expression 

differences in CDT’s between wild type and Cep290LacZ/LacZ mice will aid in the 

confirmation of which genes are involved in the cystic phenotype rather than 

genes which may be involved as a consequence of a cystic nature.  

Physiological studies are required in order to identify the changes in distribution 

patterns of transport proteins in the Cep290LacZ/LacZ CDT cells as this will aid in 

identifying other key signalling pathways which contribute to cystic kidney 

disease. The CDT is important for maintaining fluid and electrolyte balance, this 

balance is controlled by hormones such as aldosterone and arginine 

vasopressin (Canessa, Schild et al. 1994; Garty and Palmer 1997).  

Given the variability of ciliopathy phenotypes, genetic modifier loci must be 

considered both in patients and in animal models. One simple experiment, for 

example, (that uses existing resources) would be to backcross the Ahi1-/- strain 

onto the 129/0la genetic background to see if this results in a phenocopy of the 

Cep290LacZ/LacZ mouse. 
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7.9 Appendix 1 

Gene  Forward Oligonucleotide 

Primer 

Reverse Oligonucleotide 

Primer 

Smo 5’-GACTCGGACTCGCAGGAG-3’ 5’-ACACAGCAGGGGCTGGAT-3’ 

Miox 5’-CCCTGGGTGCAAGAGTT-3’ 5’-GTCAATCAGCCCTTGATAGT-3’ 

Gdnf 5’-GAAGTTATGGGATGTCGTGG-3’ 5’-CATCAAACTGGTCAGGATAA-3’ 

Ren2 5’-AGTACGGACTACGTGCTACAG-3’ 5’-CGATTGTTATGCCGATCAAACT-3’ 

Pvalb 5’-GATGCCAGAGACTTGTCTGCT-3’ 5’-TAGAGGATGGGGGAGTAAAAA-3’ 

Col2a1 5’-CCCTGAAGGATGGCTGCACG-3’ 5’-GTTCAGCCCCTCCAATGTCCA-3’ 

Tff2 5’-GTGTCATGGAAGTGTCAGCTC-3’ 5’-TAAGGGTCAAGATGGTTTTA-3’ 

Hprt 5’-CTGGTTAAGCAGTACAGCC-3’ 5’-CAACTTGCGCTCATCTTAG-3’ 

Lef1_S 5’-GATGGCAGGGGTGGTCAGAC-3’ 5’-GACATGTACGGGTCGCTGTTC-3’ 

Lef1_L 5’-GAAGAGGAGGGCGACTTAGC-3’ 5’-GACATGTACGGGTCGCTGTTC-3’ 

Immorto

_wt_ 
5’-GATCTGCCTGAGGTGTTACTTG-3’ 5’-GGATGGCATCACTAGTCATGAC-3’ 

Immorto

_tsA 
5’-AGTCCTCACAGTCTGTTCATGATC-3’ 5’-GGATGGCATCACTAGTCATGAC-3’ 

Cep290

ex23_F 
5’-ATGGAAGCCGAAGTCACTG-3’  

Cep290 

ex26_R 
 5’-CTGTTTGTCATTGATTTCTTAGCC-3’ 

Β-geo_ 

fus_Rev 
 5’-CGACGGGATCCTCTAGAGTC-3’ 

ENAC 5’-GTGTGCATTCACTCCTGCTT-3’ 5’-AGAAGGCAGCCTGCAGTTTA-3’ 

cDNA mouse primers 
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7.10 Appendix 2 

Primary  
Antibody 

Species 
raised 

in: 

Dilution 
required 

Incubation 
period 

Secondary 
Antibody 

Dilution 
required 

Incubation 
period  

Acetylated 
Tubulin.  
Sigma 
T6793 

 
Mouse 

 
1:1,000 

1h room 
temperature 

Anti-mouse 
Alexa Fluor 

594. 
Invitrogen 

A21203 

 
1:200 

1h room 
temperature 

 
Anti-

Pericentrin 

 
Rabbit 

 
1:1,000 

1h room 
temperature 

Anti rabbit 
FITC 

Jackson 
111-095-

114  

 
1:200 

1h room 
temperature 

AQP2 
Santa Cruz  
sc-28629 

 
Rabbit 

 
1:200 

1h room 
temperature 

Anti rabbit 
FITC 

Invitrogen 
A21206  

 
1:200 

1h room 
temperature 

ATP6VOA4 
Gift from 

Fiona Karet 

 
Rabbit 

 
1:3,000 

1h room 
temperature 

Anti rabbit 
CY3 

Sigma C-
2306 

 
1:200 

1h room 
temperature 

Smo 
Gift from 
Jeremy 
Reiter 

 
Rabbit 

 
1:200 

 
O/N at 4°C 

Anti rabbit 
FITC 

Jackson 
111-095-

114 

 
1:200 

1h room 
temperature 

List of immunofluorescent primary and secondary antibodies. 
O/N (overnight). 
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7.11 Appendix 3 

Primary  
Antibody 

Species 
raised 

in: 

Dilution 
required 

Incubation 
period 

Secondary 
Antibody 

Dilution 
required 

Incubation 
period  

 
Gapdh  

Cell 
Signalling 

(14C10) 

 
Rabbit 

 
1:15,000 

1h room 

temperature 

Anti- Rabbit 
HRP 

Dako P0399 

 
1:2,000 

1h room 

temperature 

 
Cep290 
Covalab  

 
Rabbit 

 
1:100 

1h room 

temperature 

Anti- Rabbit 
HRP 

Dako P0399 

 
1:2,000 

1h room 

temperature 

Gli3 
(R&D 

Systems 
AF3690) 

 
Goat 

 
1:3,000 

2h room 
temperature 

Anti- Rabbit 
HRP 

Jackson 

 
1:2,000 

1h room 

temperature 

Lef1 
Cell 

Signalling 
(C12A5) 

 
Rabbit 

 
1:1,000 

 
1h room 

temperature 

Anti- Rabbit 
HRP 

Jackson 

 
1:2,000 

1h room 

temperature 

Tcf1 
Cell 

Signalling 
(C63D9) 

 
Rabbit 

 
1:1,000 

1h room 
temperature 

Anti- Rabbit 
HRP 

Jackson 

 
1:2,000 

1h room 

temperature 

List of western blot primary and secondary antibodies. 

*Cep290 Coval antibody is directed towards murine Cep290 and was custom 
made (CovalAb, Cambridge), targeting the antigenic sequence a the C-terminus 
of the Cep290 protien. The Peptide  (2427-2440): C-DLKYNYKEEVKKNI-
coNH2, whose sequence is conserved between mus and human was used to 
generate a rabbit polyclonal antibody.  
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7.12 Appendix 4 

 

H+E image of kidneys isolated from Cep290LacZ/LacZ and Cep290LacZ/+ mice 

Panel A Overview of kidney isolated from the homozygote mouse which exhibited polyuria (50mls in 24h). Panel B Overview of 1 year old 

Cep290LacZ/+ kidney. The morphology of each of the kidneys (A+B) appears healthy, as there are no extra deposits of collagen which 

occur in fibrotic kidneys and there is no evidence of cysts in the corticomedullary region of the kidney (See figure 3.7 for comparison of 

wild type and Cep290LacZ/LacZ kidneys which present with cysts). 
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