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Preface 
 

The work in this thesis is preceded by a Master of Research in Marine Technology project 

between September 2004 and October 2005.  The project was supervised by Professor 

Martin Downie and was carried out with significant time present in the field, working 

closely with Olympic sailors from multiple different classes.  This project was funded by 

UK Sport and considered a pilot project to investigate the feasibility of using data logging 

equipment with GPS in the marine Olympic environment. 

A series of prototype systems were engineered to meet the requirements specified by the 

Royal Yachting Association.  The engineering and validation of the software and hardware 

formed a key part of the project to ensure that the results obtained were accurate and 

repeatable.  This included software design within two different software platforms as well as 

embedded hardware developments.  Significant testing and development were implemented 

in the laboratory as well as on the water during the beginning of the project and as a 

continuous background task throughout the project.  Over eighty days were spent in the field 

developing and testing hardware and software as well as determining the optimum 

performance analysis methods. 

Data loggers were fitted to several Olympic class boats during the evaluation process to 

ascertain the performance of the data logging system as well as the performance of the boat 

and crew.  Data was logged from the onboard GPS and accelerometers and analysed post 

training.  Later in the project, wind information was also collected and fused together with 

the onboard data post training.  The hypothesis was to demonstrate performance gains in the 

participating classes through the means of quantitative analysis.  Prior to the project the 

performance analysis had been almost entirely qualitative.  Through the course of the project 

various techniques were developed allowing quantitative performance analysis to 

supplement the efforts of the training group and coach. 

Key performance factors were determined by data analysis techniques developed during the 

project.  One of the significant tools developed was a tacking performance analysis routine 

which analysed multiple different styles of tacks, calculating the distance lost with respect to 

wind strength and course length resulting in an important strategic tool.  Other tools relating 

to starting performance and straight line speed were also developed in custom software 

allowing rapid analysis of the data to feed back to the teams in the debrief. 
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At the close of the project, when wind measurement was used for the first time with data 

collected from the target boats, the truly dynamic problem of modelling high performance 

dinghies was apparent.  This resulted in a search for a method that would be able to cope 

with the highly dynamic environment with temporal datasets.  An extensive search in future 

methods was conducted primarily focussing on creating a VPP for dinghies, or using Neural 

Networks to model the performance of the boat. 

After the pilot project was concluded, sufficient evidence had been demonstrated to UK 

Sport to ensure that further research could improve the performance of the Olympic classes, 

leading on to a deeper investigation and a PhD in Marine Technology at the University of 

Newcastle upon Tyne. 
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Abstract 
 

Throughout the years ever more sophisticated modelling techniques have been developed in 

order to improve the sailing performance of yachts.  These have been almost exclusively in 

the higher echelons of yacht racing, most notably the Americas Cup (AC).  The performance 

of these large displacement yachts is viewed as almost steady state due to their large 

momentum.  This view is adopted in more than one modelling technique, most notably the 

Velocity Prediction Program (VPP).  Through these techniques the performance of these 

large displacement yachts is very well understood from years of research and racing. 

There is, however, one area of sailing where it is very difficult to measure the performance 

of yachts accurately.  This is in the light and ultra light displacement yachts, and constitutes 

the scope of this project - the sailing dinghy classes of the 2008 Olympic Games.  It is very 

difficult to model accurately most of the Olympic classes with traditional methods as it is not 

valid to use the quasi static approach due to the dynamic environment.  This is due to the 

boats possessing a highly dynamic performance due to low momentum and the constant 

changes to the settings of the boat by the crew. 

This project focuses on creating a modelling technique which is able to analyse accurately 

the performance of the various Olympic classes.  This is achieved through the use of Neural 

Networks which learn the performance of the yacht and the crew together in relation to the 

environmental factors influencing the boat.  This novel approach creates a powerful new tool 

which enables direct comparison of performance between boats and crews.  This is 

accomplished by inserting the collected raw environmental data experienced by the yacht 

into a trained Neural Network which effectively sails another boat in exactly the same 

conditions.  This eliminates the randomness caused by the differences in conditions as the 

wind is never consistent. 

This technique also allows the creation of other tools by including well known methods of 

predicting performance such as a velocity prediction programme (VPPs).  With these two 

modelling techniques included, accurate polars may be created by correcting VPPs at 

relevant points of sailing.  With these techniques employed improvements in boat 

performance were achieved in a number of classes for the 2008 Olympic Games, most 

notably the Finn and the Star which both won gold medals. 
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Chapter 1 

 

Introduction 

 

1.1 Context 

 

The propulsion of boats and ships by wind power has been exploited since ancient times and 

has continued to be developed for, predominantly, sailing leisure craft and the auxiliary 

assistance of larger ships.  Historically, evolution in the design of sailing vessels to improve 

performance was mainly based on experience to achieve a small progression from a previous 

successful design.  This process can be viewed as almost ‘Darwinian’ as hull and rig designs 

evolved highly suited to their intended purpose.  Due to this evolutionary development, the 

design of sailing craft was traditionally viewed as more of an art based craft than a science.  

Over the last three centuries a more scientific approach to naval architecture has developed.  

However, the field of yacht design has largely remained craft based and has lagged behind 

shipbuilding in the adoption of more scientific methods of assessing performance.  This is 

particularly true in yacht racing, where the majority of the performance assessment methods 

are still mostly based on human interpretation in an otherwise highly technical and 

competitive arena.  This approach nevertheless has provided very good quantitative results 

despite the qualitative nature of the human input. 

Although sailing yacht design has lagged behind the other fields of naval architecture it has 

certainly developed significantly with the increasing adoption of rigorous scientific methods 

of assessing performance.  One of the major driving forces behind this progress is the 

Americas Cup (AC) which, with large budgets, enables teams to refine designs and produce 

measureable incremental differences in performance.  This is also the case for other yacht 

high level racing where significant resources are expended on the design of more 

competitive boats, including the Volvo Ocean Race and the Olympic Games. 

Some of the advanced techniques in performance prediction that have become well 

established and have facilitated such further refinements in performance include Velocity 
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Prediction Programs and extensive tank testing closely coupled with high level 

Computational Fluid Dynamics simulations (CFD). 

It is of particular note that none of these tools include the dynamic input from the crew and 

they are largely based on steady state modelling assumptions. Such assumptions are more 

valid for large displacement yachts with significant momentum but in small and ultra light 

displacement yachts they are no longer applicable due to the highly dynamic nature of the 

yachts and the influence of the crew. 

 

1.2 Aims and Objectives 

 

In addition to its academic objectives, this study had clearly defined aims and objectives set 

by the sponsors of the project, UK Sport and the RYA. The principal aim in this respect was 

to produce a method capable of correctly modelling and assessing the performance of 

Olympic sailing classes and their crews. The key objectives to meet this aim were: 

• The collection of data using innovative equipment and procedures that continued 

from the MRes project. 

• To develop and enhance the procedures and techniques for the collection of data 

using novel equipment. 

• To use the data to develop hardware and software tools for performance prediction 

and the assessment of discrete skills for multiple Olympic sailing classes. 

• To verify and validate the performance models developed in the work.. 

• To apply the approaches developed to support the sailing programme and enhance 

the competitiveness of boats and crews for future Olympic sailing events. 

In addition to the research implicit in realising the above objectives, the academic objectives 

of this study included the development of a novel approach to performance assessment based 

on neural networks; the development of a methodology allowing the separate objective 

assessment of the different components making up ‘performance’; and, an understanding of 

the effective use of this approach to the practical enhancement of the performance of 

realistic competing systems. 

It is recognised that there have been various attempts in the past to model small high 

performance boats through various approaches with varying success.  The aim of this project 
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was to build upon these methods and attempt to develop a novel and more accurate 

modelling technique for small boat performance assessment than is currently available. 

The principal challenge of this project was that the steady state assumptions of existing tools 

are not appropriate for representing the more chaotic time series data associated with small 

high performance sailing boats. An associated, not insignificant, challenge was the 

collection of the necessary data on such boats where weight and space limitations make it 

difficult to instrument the boat due to the weight and bulk of the equipment required to 

collect accurate data. 

The problem of producing a better modelling technique for small boat performance is an 

open ended one which has multiple solutions. In the scope of this project, only one of many 

potential paths to solving the problem was pursued to the full extent due to time restrictions, 

hardware development and the time consuming process of instrumenting boats and 

collecting data in the field. 

 

1.3 Chapter Outline 

 

The chapters in this thesis follow in a logical progression starting with an investigation into 

the existing techniques that are used to model the performance of yachts.  After a review of 

this area in Chapter 2 the main topic of the thesis, Neural Networks are introduced in 

Chapter 3. .  It starts by assembling the components that form an Artificial Neural Network 

(ANN), before reviewing the different designs and techniques used to produce effective 

ANNs as well as the known pitfalls 

Chapter 4 examines existing performance analysis techniques.  These methods fall under the 

umbrella of optimising the design of experiments based on the findings of chapter 2.  

Various pieces of equipment are analysed as well as different aspects of the data collection 

procedures. 

Chapter 5 integrates the material in the previous three chapters by building upon their 

strengths and ideas, and demonstrates the processing of data through the two main methods 

of ANNs.  In this chapter the key work and development carried out by the author in this 

area is illustrated, and several new concepts and modelling techniques are introduced before 

presenting the final results with the analysis at the end. 
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Chapter 6 builds upon the ANN methods that were used in the previous chapter and 

develops an accurate diagram of polar performance for all of the Olympic classes.  This is 

achieved through correcting two different VPPs.  To complete this chapter, the polar 

performances are then used in a performance analysis format which is compared to the 

methods developed in Chapter 5. 

Chapter 7, in essence, sums up the new ideas and results that have been formed from this 

project.  The first half, however focuses on the outline development of an image recognition 

technique that was proposed in this project as a further refinement to the performance 

modelling.  This is carried out by extending some of the more advanced concepts that were 

explored in Chapter 2, which were cut short in the project due to funding and time 

restrictions.  In the final section further aspects of performance analysis and modelling are 

discussed, and the potential for the results from this project to be developed further with 

more modelling considered. 

The Appendices contain a variety of extra images and tables that were too numerous to fit 

into the main body of text.  Appendix 4, however, is different from the other appendices as it 

contains the methods that the author used for building the original VPP.  This differs to the 

last section of Chapter 6 as it is presented without the correction techniques discussed in the 

main body of this thesis. 
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Chapter 2 

 

Methods of Yacht Performance Analysis 

 

2.1 Introduction 

 

In this section, the current methods of predicting and measuring performance in the sailing 

environment shall be explored.  This exploration shall begin by investigating the Velocity 

Prediction Program (VPP), before moving on to looking at current data collection methods 

and performance analysis techniques.  The calculation methods of the traditional VPP shall 

also be examined.  The final part of this chapter shall investigate another method of 

performance analysis on yachts which is the analysis of sail shape through different 

available methods.  During the early stages of the project, it was clear that there was a 

considerable lack of ANN based research that had been carried out in the area of 

performance analysis in sailing. 

 

2.2 Velocity Prediction Programs 

 

2.2.1 VPP Background 

 

The fundamental theories of sailing are well established and have been known for a 

considerable amount of time (Philpott et al, 1991).  With this understanding of the basic 

principles of boat performance it was a natural progression that yacht performance would be 

represented as some sort of algorithm.  This algorithm is commonly referred to as a VPP, 

which calculates the performance of a yacht through balancing all of the forces that the 

sailing yacht experiences in all wind conditions through an iterative process (Fassardi, 

2002).  These forces and moments are made up of several components: 

• The heeling moment and righting moment that are equal and opposite as the boat is 

assumed to be in equilibrium; 
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• The driving force generated from the sails is counteracted by the total resistance of 

the boat due to aerodynamic and hydrodynamic drag; 

• The buoyancy of the boat is equal to the weight, due to gravity; 

• The side force is counteracted by the side force which holds the boat in a steady 

horizontal plane; 

• The pitching moment is counteracted by the restoration moment provided by reserve 

buoyancy; 

 

As mentioned earlier there are multiple forces and moments that require balancing in order 

to solve the VPP, by optimisations with respect to maximising boat speed, and therefore the 

yacht performance can be determined for a given condition.  There are several different 

types of VPPs that can be used; the most well known one uses the Delft Systematic Yacht 

Hull Series (DSHYS) for the simplest and quickest solution.  The DSHYS is a collection of 

different yacht design models now totalling 50, which are varied in multiple parameters.  

There has been extensive testing on this series and more designs have been added over the 

years (Gerritsma et al, 1991).  VPPs can also work in conjunction with Computational Fluid 

Dynamics (CFD), which have greatly improved over recent years with better simulations 

(Scarponi, 2007).  These function by replacing the empirical aerodynamic corrections with 

Reynolds-Averaged Navier-Stokes (RANS) simulations (Korpus, 2007).  Towing tank data 

can also be used in a VPP as it can provide more accurate hydrodynamic data than the 

DSHYS (Graf, 2005). 

This knowledge and understanding led to the foundations of the VPP being laid in the 1970s 

with one of the most noted applications being the development of the handicapping system 

(Kerwin, Newmann, 1978).  Before the Kerwin paper, handicaps had been relatively crude 

and determined by a mainly empirical method, and race results, with handicaps such as the 

Thames Measurement having multiple loop holes.  A deeper history of the yacht 

handicapping history is described by Strohmeier, (1975). 

As yacht racing evolved and different designs of boats were racing against each other some 

designs and sizes were faster than others.  In order to create a fair method of racing against 

each other a time correction factor was created dependent on aspects such as water line 

length.  This process is known as a handicap and is known in several different formats today.  

VPPs became the backbone of more than one handicapping system, the first of which rule 

was the Measurement Handicap System (MHS) which developed into the International 

Offshore Rule (IOR) in 1970 (Pedrick, 1979).  There were several different versions of IOR 

which each in turn tried to close loopholes exploited in previous versions.  Unfortunately the 
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IOR rule encouraged a higher centre of gravity (CoG), by favouring strong hulls and rigs 

which had a higher CoG and penalising boats with a lower CoG.  This actually encouraged 

light racing yachts to have little or no lead in the keel, which would lead to spectacular 

broaches in downwind breezy conditions (Strohmeier, 1979).  This combination of 

unseaworthy boats can be considered to have contributed in part, to the infamous Fastnet 

disaster in the summer of 1979 (Fisher, 1980).  The IOR rule developed into the 

International Measurement System (IMS) rule which is still active today, but no longer as 

popular.  With the introduction of IMS, more and more sophisticated VPPs were produced 

by designers and the Offshore Racing Council (ORC) who managed the IMS rule.  With this 

increase in sophistication also came an increase in the complexity of the IMS rule, which 

started using changes in wind shifts and strengths to handicap boats more accurately (Cane, 

1994).  This complexity eventually led to the virtual downfall of the IMS rule. 

VPPs have historically have always been applied to displacement yachts.  In the scope of 

this project, the boats that will be featured differ greatly from the types of yachts which have 

traditionally used VPPs.  The Olympic classes, most notably boats such the 49er and 

Tornado, are by no means displacement boats.  Even the heavier boats such as the Star and 

Yngling will plane and surf downwind in sufficient breeze.  Another factor which would 

differ from the traditional VPP is that most Olympic classes are sailed with the boat flat, 

whereas in VPPs the yacht is generally allowed to heel.  Traditionally, the VPPs are also a 

static solution to a static problem, whereas the Olympic classes are very dynamic in the way 

which they respond and are sailed.  With these smaller boats, there is significantly more 

rudder movement coupled with the dynamic movement of the crew to also factor into a VPP.  

This leads to a complex model being required in order to simulate the crew’s response to 

environmental conditions. 

There are, however, two notable VPPs that are able to predict the performance of small 

planing dinghies.  Carrico, (2005) produced a Laser VPP written in Visual Basic and Excel, 

with the hydrodynamic data collected in a full scale test.  The other notable VPP is that of 

the Wolfson Unit which has relatively recently added a dinghy and Olympic class package 

into their program.  The latter package is viewed as one of the best in the assessment of 

sailing yacht performance. 

The Carrico VPP assumes a similar strategy to the previous VPPs that we examined, by 

assuming that the boat is in equilibrium and also governed by iteratively balancing the six 

equations of motion.  The area where the paper differs is in the hydrodynamic data which is 

neither derived from the Delft series nor collected from the tow tank.  In this case the Laser 

dinghy is towed alongside a motorboat with a load cell attached to the end of a pole which is 
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then attached with a rope around the mast of the Laser.  The data collection was conducted 

in a canal with no tide or wind affecting the results.  Once the hydrodynamic data was 

collected the rest of the VPP process was fairly similar to a conventional VPP.  In order to 

get the correct sail coefficients the data was borrowed from the Finn dinghy.  The results of 

the VPP for the Laser can be seen in Figure 1 below, with TWA on the Y-axis and boat 

speed on the X-axis.  There do seem to be some irregularities with the finished polar plot, as 

the boat speed does not drop below the optimum TWA speed even when sailing downwind.  

Carrico also mentions in his conclusion that the VPP is producing some strange results in the 

higher wind speeds which could be to do with maintaining the equilibrium. 

 

 

Figure 1 – Laser VPP Output, (Carrico, 2005) 

The Wolfson Unit VPP shall be examined later in the project. 

 

2.2.2 VPP Methods 

 

There are several methods used to create a VPP, with varying degrees of complexity.  This 

investigation into VPPs will be based on one of the less sophisticated methods.  Here the 

emphasis is on the simpler methods as this was found to be most appropriate for the given 

time scale and project aims.  VPPs have until recently been generally viewed as expensive 

and relatively unreachable for the average yacht designer (Martin, 2001) explained in greater 

detail than before the methods that are used to produce a VPP. 

The VPP requires various hydrodynamic and aerodynamic forces requiring balancing.  In 

terms of the resistance components that require balancing, they can be summed up by the 
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Equation (1) below (Keuning et al, 1998).  In this section a few of the basic methods and 

equations shall be examined from previous VPPs and methods.  The calculation of resistance 

shall be looked at first before moving onto the stability and sail forces calculations. 

 

�78�� = �:ℎ + ��ℎ + �<�� + ��� + ∆�:ℎ8 + ∆��ℎ8 + ∆���8 + ∆��8� + ∆��ℎ�   (1) 

 

Where �78�� is the total resistance of hull with appendages and leeway, �:ℎ represents the 

frictional resistance of hull, ��ℎ is the residual resistance of hull, �<�� corresponds to 

viscous resistance of keel and rudder and ��� is the residual resistance of keel.  The changes 

in resistance can be summed by ∆�:ℎ8 which is the change of frictional resistance of the 

hull due to heel, ∆��ℎ8 symbolising the change of residual resistance of the hull due to 

heel, ∆���8 which stands for the change of residual resistance of the keel due to heel, 

∆��8� is the induced resistance of the hull and keel and finally ∆��ℎ� stands for the 

change of residual resistance due to trim. 

Equation (1) is reduced to Equation (2) as seen below (Martin, 2001) and in the next section 

each of the components of total resistance shall be examined and the various methods used 

to determine the total hydrodynamic resistance of the yacht. 

 

��)��
 = �
 + �� + �( + �� + �)��*�+     (2) 

 

Where the �
 represents total frictional resistance on hull and appendages, ��  is the residual 

resistance on canoe body, �( corresponds to the induced resistance, ��  is the resistance due 

to heel and the final component is �)��*�+  which covers the resistance of other components.  

The next five sections shall examine methods for calculating each of the components that 

produce ��)��
. 
 

2.2.2.1 Frictional Resistance 

 

A known method for calculating frictional resistance is with the 1957 ITTC extrapolator 

which can be seen below, Equation (3).  With this equation it is possible to calculate the 
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coefficient of frictional resistance (�
) to be used in Equation (5) which calculates the total 

frictional resistance. 

�
 = 6.6>?
�@AB�CD�EF�G      (3) 

Where Reynolds number (�#) is calculated from Equation (4). 

 

�# = H⋅J
K        (4) 

Where L is the length, 3 the kinematic viscosity and V, which is the velocity of the yacht.  

This then allows the frictional resistance to be calculated. 

 

�
 = 1 2N -	 ⋅ &F ⋅ ./ ⋅ �
      (5) 

Where ./ is the wetted surface area. 

The surface areas and frictional coefficients of the keel, rudder and hull can be substituted 

into the equation in turn and the total resistance can be calculated. 

Another aspect to consider is the need for form factor �.  Its value for a keel can be 

calculated by (Keuning and Sonnenberg): 

�1 + �� = O1 + 2P�/Q + 60 P�/QTU     (6) 

If there is a bulb on the underneath of the keel this can be calculated by the following 

equation as suggested (Keuning and Binkhorst, 1997). 

�
V = W ⋅ .V ⋅ �
V X1 + 1.5 P�
Q
GZ + 7P�
Q\]    (7) 

 

2.2.2.2 Residuary Resistance 

 

The other major component of the resistance of a yacht hull is residuary resistance; it is 

produced by the wave making effect of the yacht.  There is a simplification in this process as 

it does not include all the appendages.  To calculate the residual resistance a table produced 

by Gerritsma et al, (1991), provides values of residual resistance for different Froude 
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numbers.  The range of the table is between 0.125 and 0.45 and from 0.475 to 0.75 and can 

be seen in full in Appendix 4.  There is some dispute on the size of the residuary resistance 

on the appendages when the hull is upright and can sometimes be ignored.  However, it was 

shown by Keuning (1998) that this was not always the case, especially when there is a large 

sweep back of the keel. 

The residual resistance formula that uses the table discussed on the previous page is 

described by the polynomial given by (Gerritsma, 1991). 

C^
∆_ × 10\ = �6 + �a�� + �F��F + �\%�� + �T�%���F + bcdefg_ + bhJij

∇kZ    (8) 

 

2.2.2.3 Induced Resistance 

 

When a yacht is moving through the water, especially at higher speeds, the hull produces lift 

which has the effect of partially counteracting the heeling force experienced by the yacht.  

The induced resistance is proportional to the square of the side force or leeway and can be 

shown by the following equation (Gerritsma et al, 1993), (Helvacioglu, 1995). 

�( = a
l⋅bCm

noGp⋅q_      (9) 

Where ��r  is the effective aspect ratio of the combined sail plan, �" stands for the heeling 

force of the sails, q = 1 2N -&F and ./ corresponds to the calculated wetted surface area of 

the hull. 

 

2.2.2.4 Added Resistance due to Heel 

 

As most yachts heel the wetted surface area increases and hence resistance.  For the types of 

boat considered here, heel may not be a major factor as the majority of classes are sailed 

upright apart from the displacement classes.  There are a couple notable exceptions to this 

rule in the form of the Tornado and Star classes.  The Tornado experiences a drop in 

resistance when there is sufficient heel to lift the windward hull just out of the water.  The 

Star has a prominent chine which acts efficiently to reduce the wetted surface area at certain 

angles of heel.  A VPP which uses the DSHYS will not recognise the chine and hence the 

reduction in wetted surface area.  A more advanced VPP with a Lines Processing Plan (LPP) 

is able to recognise the chine and calculate the correct resistance due to heel.  The equation 
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for added resistance due to heel which was derived by Gerritsma et al in 1993 can be seen 

below in Equation (10). 

�" = W ⋅ ./ ⋅ �" ⋅ �#F ⋅ 'F    (10) 

Where the coefficient of heel is determined in Equation 11 below 

�" × 10\ = 6.747 Pg_gQ + 2.517 Pdijg_ Q + 3.71 Pdijg_ Q ⋅ Pg_gQ   (11) 

The resistance of heel is dependent on the heel angle ('), Froude number (Fn) and the 

resistance coefficient of heel (�") as stated by Gerritsma et al, (1993). 

 

2.2.2.5 Other Resistance Components 

 

There are several additional resistance components that affect the performance of a yacht; 

these are regarded as minor but need to be considered for completeness  These include a 

change of frictional resistance due to heel, this considered only minor as the wetted surface 

increase is only minor.  The same conclusion was also drawn by the DSYHS (Gerritsma, 

1991).  Other minor increases in resistance include the increased resistance due to trim, 

however for this project it is safe to assume that this would be maintained close to the 

optimum setting by the crews sailing the boat.  All the components of resistance that have 

been investigated so far have assumed that the yacht has been sailing in flat water.  Including 

waves into the VPP would produce a more accurate assessment of the performance of the 

yacht in real conditions.  Flat water assumptions are considered valid for the approach 

adopted here.  In the next section the stability forces shall be examined before concluding 

with the sail forces. 

 

2.2.2.6 Righting Forces 

 

Stability of a yacht falls into two different regimes: the static and dynamic stability, 

including the addition of the crew weight.  This can be summarised by Equation (12). 

�� = ∆�uv +�v� ⋅ wx#' +��/     (12) 

Where ��/  is calculated in Equation (13). 

��/ = �	 ⋅ �&�%�� ⋅ yzw' ⋅ �����   (13) 
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Where ��  is shown as the righting moment of the yacht,  in the displacement, �	  is the 

average weight of the individual crew, �&�%�� is the number of crew that are able to move 

in the tacks and provide ballast and ����� is the distance from amidships to the hiking 

position of the crew. 

Gerritsma shows in Figure 2 how the righting moment equation is calculated. 

 

Figure 2 - Righting moment derivation (Gerritsma et al, 1992) 

MN is calculated with Equation (14) below. 

�v ⋅ wx#' = �{F ⋅ ' ⋅ �# + {\ ⋅ 'F�     (14) 

Where the dynamic increment coefficients {F and {\ substitute into Equation 14. 

{F = |0.0406 + 0.0109 dijg_ | 0.00105 Pdijg_ Q
F
   (15) 

{\ = 0.0636 | 0.0196 dijg_      (16) 

 

2.2.2.7 Side Forces 

 

There are several different methods for calculating the side forces affecting the yacht which 

produce leeway.  The simplest method and one of the most robust is approach of Gerritsma 

et al, (1993) given in Equation (17). 
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�+(�* = ~⋅p⋅q_/)+� ��a PgGq_Q + �F PgGq_Q
F + �\ Pg_gQ + �T Pg_gQ PgGq_Q�   (17) 

Where � is the yacht’s leeway in radians, T is the total draft of the yacht including hull and 

keel, 0/ is the draft of just the hull, and ./ symbolises the surface area of hull and finally 

�a | �T which are the lift slope coefficients for different angles of heel. 

Gerritsma’s equations have had more focus rather than the more recent work by Keuning et 

al due to reduction of complication.  In the next section the hydrodynamic forces acting on 

the yacht shall be examined.  This includes the windage on the hull and the rig. 

 

 

2.2.2.8 Lift and drag of Sail Forces 

 

There are several different methods which can be used to determine the sail forces, we shall 

examine the method first suggested by Larsson and Eliasson which is based on the Hazen 

method (Hazen, 1980) for initial sail force calculations.  The lift and drag forces can be 

calculated with Equations (18 and 19) below (Hansen et al, 2002). 

% = 	�
 1 2N -~12F�D      (18) 

{ =	�� 1 2N -~12F�D      (19) 

Where �
 is the coefficient of lift for the sail combination based on �D, ��  stands for the 

coefficient of drag for the sail combination based on �D, 12 is the apparent wind speed at 

the centre of effort of the sails, �D is the sum of �
 and ��, the �
 is the area of fore 

triangle calculated by 0.5 JI, and finally the area of the mainsail is represented by ��  and 

calculated by 0.5 PE. 

Two of the most difficult variables to obtain correctly are sail coefficients for lift and drag.  

They can be collected experimentally as demonstrated by Marchaj (2003) with wind tunnel 

measurements at different TWS and TWA.  In the Marchaj method the following formula is 

used: 

�J = J
q�×6.66aa�H�G    (20) 

�� = �
q�×6.66aa�H�G    (21) 
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The output from this experiment is a polar diagram which represents lift and drag values for 

different angles of incidence.  The two curves show the lift and drag coefficients as 

experienced by the sail.  The diagram clearly shows that the driving force on a yacht changes 

from relying on lift upwind to drag downwind to maximise performance, in Figure 3 

(Marchaj, 2003). 

 

Figure 3 - Lift and Drag w.r.t. change of angle of attack (Marchaj, 2003) 

The coefficients are provided by Claughton, for the main, jib and spinnaker at several 

different TWAs.  Larsson also provides similar coefficients, both tables can be found in 

Appendix 4.  These cover the polar angles sufficiently and are regarded as an approximation.  

For TWAs in between Larsson’s points an interpolation is used.  There are other factors 

included in the sail coefficients including reefing in the higher wind speeds.  In terms of 

correcting the polar with the ANN the usual correctional method is to modify the sail 

coefficients in order to match the desired point. 

 

2.2.2.9 Hull and Rig Drag 

 

In order to calculate the windage of the hull and the rig a windage drag coefficient is used 

which is shown by Equation (22) below. 

��) = 1.13����� !����� + ����	. ��{���/�D    (22) 
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Where EMDC is the average mast diameter, ���� =	1�F/1�F, 1� is the TWS relative to the 

hull, 1� at z = �� !/2 and 1� at z calculates the CE.  ���� was proposed by Claughton 

(1999), where the above equation for the treatment of windage drag is derived.  It was 

recognised that the dynamic pressure at the centre of effort of the sails is higher than the 

height of the hull.  With this last segment now complete the total drag can be shown as 

Equation (23). 

�� = ��� + ��( + ��)       (23) 

 

 

2.3 Performance Data Collection 

 

In this section the data collection methods of large displacement yachts shall be 

investigated initially.  In the next section two examples of data collection and processing 

methods for dinghies shall be explored, finishing off with some ANN analysis. 

2.3.1 Yacht Data Collection Methods 

 

There are other alternatives to modelling performance than by VPPs which have also 

evolved from displacement yachts.  Collecting data and analysing it by comparisons to 

previous data or predictions has been used for almost thirty years in the world of 

performance yacht sailing.  Onboard computers first came into favour in the late 70s after 

Lawson’s publication in 1978.  An example of one of the early onboard computers can be 

found in “A Microcomputer Beats to Windward”, (Clauser, 1979) 

The computer, as described by Clauser, used four different sensors; an anemometer; a wind 

vane; a water turbine for measuring boat speed; and an accelerometer for measuring leeway.  

With these inputs, other values were able to be derived such as Velocity Made Good (VMG) 

which can be calculated from Equation (24) (Clauser, 1979). 

&�u = &� cos�� + ��     (24) 

Where &V is the boat speed, &� stands for the apparent wind (AWS), &� corresponds to the 

true wind speed (TWS), � is the apparent wind angle (AWA) and the leeway is represented 

by the symbol of �. 
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The system was crude compared to today’s standards but an important step forward as it was 

able to monitor these inputs and also record the performance of the yacht, which could be 

used for performance analysis. 

One of the most famous uses of onboard computers, and post processing of collected data, 

was from the famous victory of Australia II in the 1983 Americas Cup.  The main driving 

force for using the computer system aboard the Australia II was that the tune up boat had 

been sold to the British so there was no direct benchmark (Oossanen, 1985).  The computer 

system allowed the track of the boat to be plotted, and also for data to be compared against 

previously saved data which was stored in a polar format and used as performance targets 

for the crew.  An example of the data is shown in Figure 4 (Oossanen, 1985). 

 

Figure 4 - Performance analysis as used by Australia II, (Oossanen, 1985) 

The plots shown in Figure 4 are more sophisticated than Clauser’s plots and, as well as 

plotting the position traces, they included the lap times of each leg and were able to evaluate 

the strategy and tactics that they had employed.  In the following text, newer methods are 

employed in the performance analysis with an examination of the 1987 Stars and Stripes 

Americas Cup campaign. 

The main difference between the 1983 Australia II and the 1987 Stars and Stripes campaign 

was that the latter was able to use two boat testing from the beginning.  A great deal of the 

collected data was able to be validated with this method even though the two boats were 

sailing in slightly different conditions (Letcher, 1987).  Letcher also states that there was 

also the use of a telemetry system which transferred the collected data from both yachts back 

to a following tender.  Once the tender had received the data, it saved the data onto a hard 
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disk and also processed both sets of data to produce a summary of performance analysis.  

There were two main problems that had to be overcome in the data collection and testing 

process.  The instrumentation that was used was not accurate enough to measure small 

differences, the TWD was only accurate to the level of integers and the Vb measurement was 

accurate to plus or minus 0.1 knots.  Letcher also chooses to ignore the dynamic affects that 

are present and decides to use only quasi-steady analysis.  Letcher is able to ignore the 

dynamic affects as the dynamic affects of the 12 metre AC yacht are small compared to the 

overall steady-states forces.  For the scope of this project, that assumption could not be 

applied for the Olympic classes apart from the heavier displacement boats.  This is due to the 

highly dynamic behaviour of the boats as the TWS, TWD and Vb are never stable enough to 

use a static model.  The end result of the data process not only allowed detailed analysis but 

also the production of useful target polars to be produced, as shown in Figure 5 below 

(Letcher, 1987). 

 

Figure 5 - Early performance analysis (Letcher, 1987) 

The data collection and analysis process was once again improved in the third to last Stars 

and Stripes campaign in the 1992 AC.  This process used the combined input of 

Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and towing tank data 

as well as the full sized data performance analysis (Todter et al, 1992).  With these 

processes, superior equipment, and data analysis techniques a comparison of the VPP polar 

and the filtered collected data was able to be compared in a real time format.  A polar 

diagram displays the performance of the boat through a range of wind speeds and true wind 

angles.  Head to wind is aligned to the top of the page and dead downwind at 180 degrees 

pointing towards to the bottom of the page.  Each curve signifies a different wind speed and 

the further the curve is from the centre of the plot the higher the speed of the yacht.  
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Maximum VMG can also be found via using a polar diagram with respect to the highest 

point on each individual curve having the highest maximum VMG.  At this point the true 

wind angle and boat speed can be found.  The opposite is true for sailing downwind with the 

lowest points having the best VMG.  An example of this can be seen in Figure 6 below 

(Todter et al, 1992).  From Figure 6 it can be seen that there is quite a lot of scatter in the 

polar plot data; this could be due to the assumption of the static model approximation as 

mentioned in Letcher’s paper earlier. 

1  2 

 

Figure 6 - Stars and Stripes polar data, (Todter, 1992) 

Another observation of the data which links into the measurement error of the equipment is 

that in some cases the data plotted in the scatter is at a higher VMG than the data plotted in 

at the theoretical optimum point.  This is highlighted by point number one.  The error could 

be due to the delay or difference of measuring the wind data at the top of the mast to the 

course that the helm is steering from following the telltales lower down.  This is also true of 

the data plotted at point two which also highlights similar errors in the data. 

Modern data analysis tools are similar to the 1992 AC Stars and Stripes campaign except 

again with better instrumentation and superior software.  Below is a screenshot from a 

program used by the 2003 British AC challenge in Figure 7 (Elliot,2004).  The similarities 

between the previous performance analysis techniques can be readily seen.  However, the 

software uses a commercial navigational tool known as Deckman (Elliot,2004).  Images of 

the sails are also added into the software package which allows the crew to relate different 

performances to sail settings.  The software also includes a data replay control which allows 

the crew to assess their performance during or after training sessions.  Similar to Letcher’s 
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paper, the performance analysis also relies on a static model.  It is interesting to note that 

when comparing the Polar Window of Figure 7 to the same plot in Figure 5 the scatter and 

therefore the accuracy of the points are very similar.  This could be due to the shortcomings 

of the static model assumption as some of the data could have been collected in gustier 

conditions which could have produced a slower performance.  This, however, is not 

quantified. 

 

 

Figure 7 - Screenshot from the previous British AC challenge 

 

2.3.2 Dinghy Performance Analysis 

2.3.2.1 49er Methods 

 

The final and most recent work to be examined is that of Julian Bethwaite, with his research 

into designing a new rig for the 49er class.  The work of Bethwaite is particularly relevant as 
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it was written in early 2008 and uses the 49er, one of the Olympic class boats.  Bethwaite’s 

aim is to produce a polar performance for a 49er with three different rigs, the first is the 

current rig and the other two are potential rigs.  With a polar performance for each 

combination, Bethwaite aims to select the fastest rig through a quantitative decision.  The 

experimental set up uses a ½ Hz GPS unit which was accurate to 0.2 knots, a 49er, a 

compass for measuring the TWD and an anemometer for measuring TWS.  There was also a 

meteorological station a mile from where the testing was carried out which was used for 

wind information.  During the data collection the wind was also measured every two minutes 

and within 200 metres of the 49er (Bethwaite, 2008).  Some of the data collected can be seen 

below on the left of Figure 8 in its raw format (Bethwaite, 2008).  There is a great deal of 

scatter in the data but it was processed by averaging the Vb for every TWA for each TWS.  

This filtered polar can be seen in the right of Figure 8. 

 

Figure 8 - Bethwaite’s polar performance plot of the 49er (Seahorse, 2008) 

Comparing Figure 7 to Figure 8, the scatter of the data is vast; this could be due to several 

reasons.  Firstly the 49er is very dynamic compared to an America’s Cup boat which results 

in rapid fluctuations in Vb and TWA, possibly explaining some of the scatter.  This was also 

found in Tatano’s Flying 15 paper (1978), however the scatter was less than experienced by 

Bethwaite due to poor experimental design.  However a Flying 15 is less dynamic than a 

49er due to significantly more displacement.  One of the other factors is that the TWS and 

TWD were not continuously logged which would add some smearing of the data.  There 

would also have been some significant errors in using the data from a meteorological station 

a mile away.  The sampling rate of the GPS was also lower and the accuracy was less than 

the previous examples that we have studied so far.  The data from Bethwaite was also 
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collected on tidal water which could explain why the raw data plot in Figure 8 is slightly 

skewed showing the port tack slower upwind and faster downwind.  The main reason why 

the data quality is not as good as the AC collected data is due to the fact that the 49er is a 

very light displacement boat and significantly restricting the amount of equipment that can 

be carried on the boat due to weight considerations.  All of the issues need to be considered 

carefully in order to avoid infringing on the performance of the boat. 

 

2.3.2.2 Masayuma Methods 

 

The last part of the collected data section shall be an examination into alternative existing 

performance analysis techniques that have been used.  In these techniques two different 

dynamic models are used to measure the performance of a yacht.  In this section we shall 

first examine the paper by Masayuma, written in 1993, which uses conventional naval 

architectural methods to model dynamic performance with a static polar.  As mentioned 

previously the lack of literature containing Artificial Neural Networks (ANNs) was stated in 

terms of performance analysis Masayuma, (1995) also investigates modelling tacking with 

the aid of ANNs.  Although tacking is only a small part of racing around a course, an 

investigation into the methods that Masayuma used is critical for the scope of this project. 

The experimentation that Masayuma carried out in 1993 consisted of a 10.6 metre yacht with 

the various usual instrumentation described in the previous AC projects.  However, 

Masayuma used a wave rider buoy in order to measure the waves that the yacht would be 

experiencing.  The dynamic measured data was compared to VPP predictions that had been 

carried out previously and the two matched relatively well.  There were some problems with 

the experimentation as the testing had to take place in close proximity to the wave rider 

buoy.  However, as the experiment included modelling the performance of the boat in waves 

in various wind speeds there was significant scatter in the data collected, as can be seen on 

Figure 9 below.  Masayuma also states that there was lack of data in the 10 knot wind which 

reduces the accuracy of the data. 
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Figure 9 - Masayuma’s Flying 15 polar plot 

In the subsequent paper (Masayuma, 1995) it focuses on an investigation into tacking with 

mathematical modelling and also an ANN, he is able to train an ANN without giving it the 

equations of motion and instead feeding the following channels of data into the ANN.  They 

are fed in as individual channels and also as the derivatives of each of the data channel for 

the time step.  Channels that are logged are the rudder angle, heading angle, roll angle, Vb 

and Vb in sway. 

During the training process there are two different styles of tacking that are carried out.  

These are a small and a large rate of turn for which the ANN is fed both.  The ANN is of the 

Multi Layer Perceptron (MLP) variety and has two hidden layers.  Masayuma’s ANN, 

however does not have a Genetic Algorithms (GA) optimising the ANN structure of Cross 

Validation (CV) checking the training procedures.  The ANN produces a very low MSE of 

less than 3× 10E? after over 30,000 iterations which is an acceptable level of error.  The 

output of the ANN is compared to the output of the yacht’s motions during the tacking 

procedure.  This can be seen in Figure 10, Figure 11 and Figure 12; however the correlation 

seems better in Figure 10 than the other two figures.  The output of the yacht’s motions are 

from newly acquired data, the ANN does show some relatively large differences to the 

output data from the yacht in the top trace which is the heading ‘ψ’ comparisons.  However, 

the second trace roll ‘φ’ and the trace at the bottom, velocity ‘Vb‘ outputs are not too 

different from the output of the ANN.  This could be due to the Vb being at a largely constant 

speed which could be helped by filtering. 
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Figure 10 - ANN Tacking (Masayuma, 1995) 

 

Figure 11 - ANN Tacking (Masayuma, 1995) 

 

Figure 12 - ANN Tacking (Masayuma, 1995) 
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It is also interesting to note that the heading ANN output for Figure 11 and Figure 12 is very 

similar even though the turning rates are different.  This could suggest a possibility of 

overtraining the ANN (Tzafestas, 1996).  The two hidden layer MLP is prone to overtraining 

with such a large number of iterations, which is perhaps why there is a large difference in ψ.  

The presence of Cross Validation would have stopped the overtraining from happening as 

discussed later in this document.  Masayuma, states that there is a lack of data which was 

used for the training of the ANN.  Another inherent weakness of the MLP compared to other 

ANNs as discussed later is that they do require a lot of training data to produce an accurate 

answer.  The variety of inputs does show the flexibility of ANNs to cope with very varied 

problems as demonstrated by Masayuma. 
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Chapter 3 

 

Artificial Neural Networks 

 

3.1 Introduction 

 

During the early stages of the project it was decided that one of the routes to explore was 

that of the Neural Network as it was anticipated it would be able to understand the complex 

relationships between performance and the marine environment.  An extensive literature 

search was conducted by the author.  During this literature search and early testing it became 

apparent that this was the most promising route for the project to take as initial data was 

encouraging.  The Neural Network subject area therefore is the core focus of this project and 

begins with the history of Neural Networks, before delving deeper into the various design 

and structural aspects of the network and finishing with the conclusion. 

 

3.2 The Development of Artificial Neural Networks 

 

There are two types of Neural Networks, Biological Neural Networks (BNN) and Artificial 

Neural Networks (ANN).  Neural Networks consist of assemblies of simple processors or 

neurons (Siegelmann, 1999), which are commonly found in both biological and artificial 

networks.  In this project the focus has been on ANNs but it is instructive to consider 

Biological Networks initially as they were the forbears of the ANN. 

The Biological Neural Network has existed for thousands of years and consists of real 

neurons that are connected in a network to form the nervous system of higher life forms.  In 

the human brain there are billions of cells called neurons and they are formed into a complex 

Neural Network.  An example of a biological neuron is illustrated in Figure 13 below 

(Petriu, 2004). 
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Figure 13 - A biological neuron (Petriu, 2004) 

It is clear from the figure that a neuron is composed of multiple parts which each play an 

important role in the function of the neuron.  The dendrites carry electrical signals into the 

neuron body and the axon is a single long nerve fibre that carries the signal from the neuron 

body to the other neurons (Petriu, 2004).  The purpose of the synapse is to connect the 

dendrites to other dendrites in the system.  Communication by biological neurons is 

significantly slower than in computers but the parallel arrangement of the human brain 

allows it to process more efficiently than have so far been achieved by computers 

(Rumelhart, 1986). 

The concept of neural computing has appeared in the literature for approximately 60 years, 

since McCulloch and Pitts (1943) first published their paper entitled A Logical Calculus of 

the Ideas Immanent in Nervous Activity (1943).  In their paper they list five assumptions 

governing the operations of a class of neurons that have since become known as the 

McCulloch-Pitts neuron, and which are familiar to computer scientists working in the field 

(Anderson and Rosenfeld, 1988).  The concept of Neural Networks spread increasingly 

through the late forties and fifties until Rosenblatt produced the first ANN that was practical 

and effectively functioned as a perceptron.  However, after Rosenblatt’s paper (1958), the 

subject of ANNs was relatively neglected due to other Artificial Intelligence (AI) advances.  

During the 60’s the research dwindled on the subject of ANNs further due to limitations of 

perceptron networks which was discussed by Minsky and Papert (1969) in their book 

entitled Perceptrons (1969).  There were several issues raised by Minsky and Papert over the 

real-world usefulness of Neural Networks.  In particular they presented the example of a 
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perceptron with linear threshold functions which was shown to fail the XOR problem 

classification problem as will be examined further in the next section. 

There were other factors that slowed down the development of ANNs such as the 

widespread resistance to the whole idea of actually building an artificial “chunk of brain” 

(Widrow, 1987).  The media were also partially responsible, with brain models lending 

themselves well to dramatic, almost science-fiction like news stories, and reporters for daily 

newspapers in the 1960s that were not noted for their scientific understanding (Anderson & 

Rosenfield, 1988).  It was not until the 80’s that the area of Neural Networks saw a revival 

after an influential book was published by Rumelhart and McClelland (1986).  In 1987 the 

revival was such that the International Neural Network Society was formed, and today it has 

over 2000 members.  During the late 80’s and 90’s computer hardware and software became 

more powerful enabling more users to adopt ANNs.  From then on the general usage of 

ANNs increased significantly and today they are used in a wide variety of applications in 

areas such as speech, image recognition and financial predictions, where the mechanism of 

the problem is difficult to model (Huang, 1997).  Since ANNs are used as solutions in 

multiple application styles they are therefore available in several different designs.  Each of 

these designs have various strengths and weakness and are mostly suited to a narrow band of 

applications.  These changes in design and style shall be looked at later on in the chapter. 

 

3.3 Implementation of Artificial Neural Networks 

 

An example of a simple ANN, otherwise referred to as a perceptron, is illustrated below in 

Figure 13Figure 14. 

 

Figure 14 - Neuron as described by Minsky 
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In the figure, XN, which could be in a variety of formats or types, are the inputs to neurons 

used in an application such as function approximation or a classification problem.  Each 

input is assigned a weighting, Wi which is used to form a weighted sum and the result is 

passed though through a nonlinearity to produce an output of the desired form (Sanchez et 

al, 1992).  In this example, a bias is added before passing the result through the activation 

function.  The final step of the process is producing the output. In an ANN that has been 

trained, the final values of Wi are such that known input data produces an accurate estimate 

of known corresponding outputs.  

The key components of a network are known as Processing Elements (PEs), which in 

mathematical terms may be thought of as linear regressors. Their basic form is illustrated 

with just one PE in Figure 15. 

 

              xi 

                   yi 

            +1 

 

 

where xi and +1 are inputs, w is the scales input, b stands for the multiplier bias, yi is 

represented by the output as a linear value and ∑ symbolises the PE. 

 

The ANN used in the present study is one of the most commonly used ANNs, referred to as 

a Multilayer Perceptron (MLP) ANN. It is instructive to consider error minimisation in 

ANNs before discussing the wider issues in their training and testing. 

 

3.4 Assessing ANN Performance 

 

3.4.1 Measuring Error 

ANNs may be optimised with respect to a measure of the error between the desired response 

and the actual output from the ANN, such as their mean square error (MSE).  The MSE can 

Figure 15 - A simplified Neuron with one PE 

w 

∑ 

b 
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be calculated from the estimated data on the basis of an L2 criterion, an efficiency measure, 

(Cassella et al, 1999) as in equation (22).  

�.� = a
F�∑ �(F�(�a     (22) 

 

Where N stands for the number of observations and ε is the instantaneous error.  The MSE in 

this form gives a definitive measure of the performance of the ANN as it is independent of 

factors such as the structure of the ANN or the number of PEs in the network unlike some of 

the other methods of measuring performance.  The calculation of the MSE can also be 

viewed as twice the average cost. 

Equation (22) can be expanded for a larger network to use other components including the 

number of exemplars in the data set and the number of PEs as shown in Equation (23) 

below: 

�.� = 	∑ ∑ ����E����G�������� �	�      (23) 

 

Where P is the number of PEs, yij is the actual output for exemplar i at PE j and dij is the 

desired output for exemplar i at PE j. 

 

It is worth noting that the MSE can also be normalised, which is useful for comparing the 

size of the error to the data that is used for training the network.  The final major measure of 

error is the percentage error between the desired and actual output.  This is calculated by 

using Equation (24) below. 

%���z� = 	 a66�� ∑ ∑ �����E���������
�(�6� �6      (24) 

 

Where P stands for the number of output processing elements, N is the number of exemplars 

in the data set, dyij is the denormalised network output for the i exemplar at processing 

element j and ddij is the corresponding denormalised desired output.  The percentage error is 

a useful measure of the error but it can also be misleading in some cases.  This can happen 

when there is a large numerical range of data and when the desired and actual outputs are 

close together and small compared to the size of the numerical range. 
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There are other performance measuring parameters for ANNs such as Akaike's Information 

Criterion (AIC) and the Rissanen's Minimum Description Length (MDL), which shows the 

relationship between the training performance and the size and the number of degrees of 

freedom compared to the error respectively (Murata, 1994).  The AIC can be written as: 

�¡���� = v¢#��.�� + 2�     (25) 

The MDL can be written as: 

�{%��� = v¢#��.�� + 0.5�¢#�v�    (26) 

 

where k is the number of network weights and N the number of exemplars. 

 

These equations can be useful when considering the effectiveness of network size such as 

the number of hidden layers and the affect of the data set used for training the ANN.  Larger 

datasets and more hidden layers increase the training times for only marginal improvements 

in performance of the ANN. 

 

3.4.1 Goodness of Fit 

 

A measure of how well the regression equation represented by the PE fits the data is given 

by the correlation coefficient, as expressed by Equation (27).  The value of the correlation 

coefficient approaches unity as the PE tends towards a perfect fit to the data.   It is not 

to be confused with fitness which the MSE provides as the correlation coefficient represents 

the outputs moving in the same direction. 

� = ∑ �£�¤£¥��� ¦�¤¦¥��
§∑ �¦�¤¦¥�G� � §∑ �£�¤£¥�G� �

      (27) 

 

Where � is known as the correlation coefficient.  The output and desired output in the 

equation are designated as x and d.  The range of the correlation coefficient is between -1 

and 1.  A higher number suggests a better correlation of the data whereas number closer to -

1 would suggest a negative correlation.  A correlation that results in a value that is close to 0 

suggests that there is little or no correlation. 
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3.5 Training Neural Networks 

 

3.5.1 Error Minimisation 

 

The ANNs are ‘trained’ by adjusting the weights in the performance surface, as shown by 

Figure 16, so that the differences between the predicted and the measured results are 

minimised.  One approach to this is to use a gradient descent optimisation method.  The 

gradient descent method effectively allows the ANN to become “aware” of its performance 

and modify its parameters in such a way as to determine the optimum solution (Principe et 

al, 2000).  The gradient descent method is applied to a performance surface based on a MSE 

equation.  Firstly the boundaries of the system are changed, which are w and b.  These two 

parameters are important as they are used in the least squares method to reduce the 

difference in desired and actual output.  Then b is set to zero which reduces the MSE 

equation to a function of w as seen below in Equation (28) (Principe et al, 2000): 

 

� = a
F�∑ �¨( |4©(�F( = a

F�∑ �©(F4F | 2¨(©(4( + ¨(F�   (28) 

 

With w as a variable and the other parameters set at constant, J can be seen to be a positive 

quadratic.  This quadratic forms the major component of the gradient descent method and is 

known as the performance surface.  The performance surface can be plotted for ANNs 

during training on computers and is usually represented by a scatter plot of an L2 Criterion.  

The L2 Criterion represents the quadratic cost between the output and desired responses.  

This shows the plot of the performance surface, which is effectively plotting weightings (w) 

on the x axis and cost (J) on the y axis.  We are then able to use the performance surface to 

understand how the MSE is affected by the weights.  The minimisation of the performance 

curve by the gradient descent method has been represented graphically by Principe et a al. 

(2000) as shown in Figure 16. 
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Figure 16 - Showing the performance surface 

The aim of the procedure is to find the minimum point on the performance surface, w,
*
 by 

conducting a series of univariate searches in the direction of steepest descent defined as the 

opposite direction to that of the local gradient, and as represented by equation (29) (Shu-

Heng Chen, 2006). 

4�� + 1� = 4��� | $∇����     (29) 

 

Where the descent controller, $, determines the step length adopted during the search and 

∇���� is the gradient.  The step size can be determined manually or can be automatically 

adjusted during the training. 

 

An example of the gradient descent method can be seen in Figure 17 (Principe et al, 2000) 

below, as it searches for the minimum point.  The curve that the gradient descent method is 

searching is known as the performance surface and can also be seen on the figure below. 
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Figure 17 - Gradient descent method on the performance surface 

 

3.5.2 Rattling and Step Size 

 

In the previous section the parameter, $, which controls the descent rate in the gradient 

descent method, was introduced.  If the step size in the search procedure is chosen 

inappropriately the phenomenon known as Rattling may occur.  Rattling can sometimes be 

seen during the training process in network output plot.  The problem of Rattling appears 

when the gradient descent method is close to w
*
 and the gradient of the curve is very similar 

to that obtained for the previous w.  The larger the step size the greater the risk and the 

increased severity of Rattling that appears.  When Rattling occurs, larger values appear in 

the MSE due to the gradient descent method finishing a distance from w
*
, commonly known 

as the misadjustment (M), as can be seen in Equation (30). 

� = ª«�¬�jEª­�¬ª­�¬      (30) 

 

In order to avoid Rattling the obvious choice is to decrease the step size in the search for w
*
.  

This however means that the search time for w
*
 will be longer as more iterations are 

required.  The appropriate magnitude of the step size is a trade off between the importance 

of a low MSE is compared to obtaining a quicker training time and solution.  A limited 

number of iterations (epochs) could also prevent the solution being found. 

There is a technique which uses a variable step length and is known as scheduling.  This 

method starts off with a large step size in order to get near w
*
 quickly.  As it gets closer and 
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closer to w
*
 the step size is gradually reduced in linear format for each iteration by β.  This 

can be seen in Equation (31). 

$�� + 1� = $��� | �     (31) 

 

The size of the constant β is determined by trial and error.  If β is too large there is a risk of 

stalling, conversely if β is too small the calculation time tends to take a lot longer. 

 

3.5.3 Momentum 

 

The gradient descent method with linear changing step size is almost one of the most robust 

search methods, especially compared to Newton’s which has a higher performance but a 

much lower robustness (Moller, 1990).  Its performance can be further improved using the 

concept of momentum.  Adding momentum to the gradient descent method effectively 

speeds up the convergence and also stops the search from identifying a local minimum as the 

global minimum (see Figure 27) through Equation (32). 

4( �# + 1� = 4( �#� + $®(�#�© �#� + ���4( �#� | 4( �# | 1��   (32) 

 

Where �� is the momentum and usually is between the following range (0.5-0.9). 

 

The difference between a gradient descent search method with or without momentum can be 

seen in Figure 18 below.  Without momentum the gradient descent can mistake w
L
 as the 

global minimum whereas with momentum it can find w
*
, which is the actual global 

minimum.  The concept of momentum can be viewed as a ball rolling down a slope similar 

to Figure 18 from right to left.  The ball starts at the start of the curve and rolls down the first 

hill.  If the ball does not have momentum it will stop at the local minimum w
L
.  However if 

the ball has a greater momentum it will roll past 4(F and find the global minimum at w*.  

Adopting the momentum approach in the optimisation procedure leads to an improved 

estimate of the minimum, and hence a lower MSE and leading to a better solution (Gautama, 

et al, 2003; Sontag 1988). 
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            w
L
 

 

Figure 18 - Local versus global minimum solutions 

 

3.6 Neural Network Designs 

 

In the previous section the mathematical techniques behind ANNs were explored in some 

detail.  This section will consider the many different types of ANNs that could be used in 

this project as well as such core concepts such as backpropagation and cross validation.  The 

discussion, which could be more wide ranging, will be limited to the software resources 

available for use in the project.  The following types of ANNs will be reviewed: 

• Multilayer Perceptron (MLP) 

• Generalized Feed Forward (GFF) 

• Modular Neural Network (MNN) 

• Jordan/Elman Network (JEN) 

• Principal Component Analysis (PCA) 

• Radial Basis Functions (RBF) 

 

3.6.1 Multilayer Perceptron (MLP) 

 

The MLP ANN is probably one of the most common ANNs.  Several other ANNs are 

derived from the basic structure of an MLP ANN including all of the ANNs in the list above.  

The standard MLP is a good starting point for early initial research into new data and has 
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proved useful in the current project.  During the review of the MLP we shall also cover some 

of the other core topics mentioned in the introduction. 

The MLPs that shall be examined are all feed forward networks with multiple hidden layers.  

Usually only one hidden layer is used initially but additional hidden layers can be added if 

the learning power of the ANN is not sufficient.  Additional hidden layers add more PEs to 

the ANN and therefore more power to solve the problem.  It might appear to be a good 

strategy to add several hidden layers in the ANN but adding more layers increases the 

training time and also the danger of over training the data (Principe, et al, 1999).  Over 

training occurs when generalization performance begins to reduce as the network includes 

the noise in the model.  When it is tested on new data the result will be inferior to that of a 

network with guards against over training.  Hidden layers allow the use of back propagation, 

this method increases the learning power of the network through supervised learning which 

informs the network which neuron is producing errors (Rumelhart, et al, 1986).  MLPs also 

have the problem of requiring a lot of data to train the ANN successfully which means 

spending longer on collecting good data compared to other network designs.  An example of 

an MLP can be seen on the following page in Figure 19 (Kong, 1998). 

 

Figure 19 - An MLP with one hidden layer 

This example of an MLP shows the structure very well with one hidden layer (j).  The inputs 

(i) can be seen at the bottom of the figure with the outputs (k) at the top.  The two bias axons 

are also featured to the right of the main ANN.  Axons are paths between the hidden layers.  

A bias Axon is used for non linear solutions or as an output (Principe et al 1999).  The 

weightings (Wkj) and (Wji) are featured on the left hand side. 

This MLP features backpropagation which enables the network to measure the progress of 

training (Kong, 1998).  Werbos was the first to describe backpropagation in 1974 but it was 

not until 1986 that it was a recognised feature (Rumelhart et al, 1986).  Backpropagation 

functions by sending the calculated errors further back into the ANN.  This uses the method 
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of gradient descent which allows the weights with the smallest error to be found (Werbos, 

1994; Ballard 1987). 

Below in Figure 20 is an example from the NeuroSolutions software of an MLP that the 

author designed and built for early data testing. 

 

Figure 20 - A NeuroSolutions MLP with one hidden layer 

1 2 3 4 5   6 7 8 9 

The format of the MLP in Figure 20 enables the user to gather more information from the 

MLP than the ANN in Figure 19.  The features of interest of this typical MLP shall be 

include: 

1. Back, Genetic and Static Control Inspectors which control a multitude of settings for 

the ANN. The Back Inspector enables the ANN to use batch or online 

backpropagation and which search method to use, in this case gradient descent is 

chosen (Han, 1996).  The Genetic Inspector controls the Genetic Algorithm (GA) 

which controls the number of generations, population size, progression and the cost 

to minimise.  The cost to minimise is cross validation (CV) in this scenario.  The 

final part is the Static Inspector which controls the number of epochs and data set. 

2. This is the File Input Axon which controls which data sets are imported into the 

ANN from various file locations. 

3. This is an Input Axon which forms part of the backpropagation feature. 

4. Momentum Inspector for implementing the gradient descent function which is 

normally hidden. 

5. This is the first hidden layer which in this case is a Tanh Axon Inspector. 

6. This is the synapse that connects the layers together. 

7. Another Tanh Axon Inspector, however this one is not hidden and has two data 

writing functions for the outputs. 

8. Data graph feature which enables the user to view the progress of the training for the 

ANN.  This is both in the training and CV function. 
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9. Implementation of L2 Criterion as described in section 3.4.1 as various forms of 

error measurement.  The icon with blue writing features the output matrix that shows 

the performance of the ANN during training, testing and production. 

An important feature of the ANN that was briefly mentioned in point one above is the GA 

function.  This feature allows the optimisation of the ANN through GAs which changes the 

inputs, number of hidden PEs as well as the learning rates of the ANN (Plumer, 1996).  GAs 

are usually used for optimisation problems which are loosely based on an evolutionary 

process.  There are several different procedures for finding the optimal solution.  The most 

common procedure used in this project consists of a stochastic method of selecting the 

chromosomes with the best fitness for each generation.  There are multiple chromosomes per 

generation and several generations in the evolutionary process.  The GA fine tunes the 

design of the ANN through several generations, each of which consists of several 

chromosomes where a new ANN is trained for each of them (Ignizio, Soltys, 1996).  When 

GA is enabled for the ANN, this process takes considerably longer than the standard ANN 

training, however, the final result is more accurate. 

Cross Validation was also mentioned in point one; this is an important feature in testing and 

training of the ANN.  A good example is an MLP with two hidden layers that has a longer 

than usual training schedule, these are sometimes associated with overtraining.  Overtraining 

occurs when the ANN starts to match the output data too closely to the desired data and 

begins to be unable to recognise unknown data (Tzafestas, 1996).  An example of 

overtraining can be seen below in Figure 21 (Tzafestas, 1996). 

 

Figure 21 - An example of ANN overtraining 

Looking at Figure 21, the training curve that we would ideally see is the lower one called 

Ftraining set.  If we were training an ANN with no CV this would be the only curve visible and 

the assumption would be that the network has trained well.  However with CV we are able to 

see the performance on the test set which is not used in training represented by the upper 
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curve called Ftraining test set.  With the ability to see the training test set it is clear that training 

should have been terminated at the point where the arrow is as the Ftraining test set begins to 

increase suggesting overtraining.  It is worth noting that termination can be adjusted through 

other methods such as detecting a rise in the MSE after a certain number of Epochs 

(Srivaree, et al, 2000).  When training and testing an MLP ANN on the computer it is 

possible to cut out a percentage of the input data to be used for CV and testing.  On the 

previous page in point number 8, the data graph feature was mentioned.  In this feature, 

during training and testing, it is possible to watch the ANN terminate overtraining from the 

CV plots and the testing data. 

The fifth item in the list of ANN features presented above relates to ANNs with hidden 

layers.  As mentioned earlier in this section of the literature review the addition of hidden 

layers enables the use of backpropagation which compares the ANNs output with the desired 

output and calculates the errors.  It then adjusts the weights of the individual neurons to 

reduce the output errors.  Backpropogation was not used or recognised until the late eighties 

after the work by Rumelhart et al.  With hidden layers and backpropagation the XOR 

problem described by Minsky in his 1969 paper can be solved as follows. 

Below in Table 1 is the well known XOR truth table used for the inputs and expected 

outputs of the ANN. 

 

Table 1 – XOR Truth Table 

IN1 IN2 Expected 

Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

The aim is to teach the perceptron to output the Boolean value of 1 when the inputs are 

different and zero if the inputs are the same as can be seen in Table 1.  The perceptron is 

faced with three different types of combinations of inputs.  When the inputs are both zero 

this is well below the threshold of 0.5 and 0 is the output which is correct.  When one input 

is 0 and the other 1 this raises the net input above 1 so the output is therefore one.  The third 

and final combination of having both inputs as 1 is where the perceptron fails.  This is due to 

the lack of a hidden layer, with no hidden layer there can be no backpropagation.  With no 
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hidden layer the network can be considered only first order, the hidden layer increases the 

power of the network to second order status which has no problem in solving the XOR 

problem (Sejnowski, et al, 1986).  With backpropagation however the third combination 

would initially fail as the difference between the desired and actual output is very large.  

Once the ANN has found such a large delta it corrects the weights of the neurons and enters 

another iterative cycle until the error measure such as MSE is under the acceptable level.  

The actual outputs would be within a couple of percent of the desired. 

 

3.6.2 Generalized Feed Forward (GFF) 

 

As mentioned earlier, the GFF ANN is a well known modification of the MLP.  In structural 

terms it is very similar but it has the ability to jump over multiple layers of the network.  

GFFs can therefore solve some problems much more efficiently than MLPs as they require 

less significantly less epochs (Han, 1995).  There is one famous example of this known as 

the double spiral problem (Singh, 1997).  The double spiral problem is often used as a 

benchmarking test as shown by Singh in his 1997 paper, where he compared Parametric 

Feed Forward (PFF) ANNs with different backpropagation settings.  The double spiral can 

be below in Figure 22 (Singh, 1997).  Other testing has been conducted on the double spiral 

problem which is regarded generally as a challenging problem to solve (Hwang et al, 1993).  

To solve the network needs to be capable of using temporal data and also reduced back 

propagation (Han et al, 1996). 

 

Figure 22 - The classic spiral problem 
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The GFF ANN is able to solve this problem more efficiently due to a number of factors such 

as the design and weights being fully optimised, “the training results are robust against 

changes of these parameters” and there are no random numbers that are being used 

(Tomandl, 2001).  There are a few disadvantages, such as slow training with a high number 

in the dataset and the lack of ability to ignore bad data as inputs.  The lack of ability to 

ignore bad or noisy data which is inputted could have some negative effects on performance.  

As mentioned before, the data gathered in the sailing environment will be noisy as it is a 

naturally noisy environment and the boats are also very dynamic (Holley, 2007).  In the next 

section we will look at another major type of network the MNN ANN. 

 

3.6.3 Modular Neural Network (MNN) 

 

Similar to the GFF ANN, the MNN is a special development of the MLP.  MNNs consist of 

several MLPs working in parallel in a variety of structures (Guler, 2005).  They have several 

layers that are arranged in a modular format; in the NeuroSolutions software package there 

are four different modular layouts that are available.  Compared to the MLP, the GFF has a 

smaller number of weights and PEs which increases the training speed without 

compromising on accuracy.  The MNN consists of more than one network, normally of the 

expert and gating variety (Hodge et al, 1999).  There is competition between the expert 

networks which are being trained, and the gating networks control this competition between 

the expert networks (Sharma et al, 2003).  MNNs are also able to function with GAs which 

optimise the structure and weightings.  There are some difficulties with the design of MNNs 

due to the fact that there are several ways to structure an MLP into each of the modules and 

there is no real link between the topology and the data.  The optimum structure of the MNN 

would have to be determined by some experimentation with early datasets.  An example of 

an MNN network can be seen below in Figure 23. 
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Figure 23 - A MNN developed in NeuroSolutions 

Figure 23 shows that the MLP modules are situated in the top and the bottom of the ANN 

and that they are using backpropagation.  The gradient descent with momentum is being 

used and that GA’s are also optimising the ANN.  The ANN in Figure 24 is also of the fully 

feed forward design, similar to design 3 in Figure 24 below, but with the first layer also fed 

to the last layer.  Other popular modular designs can be seen below in Figure 24. 

 

           Design 1                  Design 2 

 

 

               Design 3 

 

 

 

 

 

3.6.4 Jordan/Elman Network (JEN) 

 

The JEN is yet again an extension of the MLP, however the main difference is that they have 

a component called a context unit, giving them an important advantage over the other 

models.  The previous models are static in terms of temporal data whereas the JENs are able 

to solve dynamic problems with a time base.  The Context PE unit gives the JENs a memory 

Figure 24 - Different configurations of the MNN ANN 
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capacity for storing previous data and they are known as recurrent networks (Pham, 1998).  

Recurrent networks are also better able to deal with noise.  As mentioned previously the 

environment that the data is being collected in is very noisy, so the dynamic JEN could be 

better suited for the problem than static ANNs (Holley, 2007). 

The main difference between the Jordan and the Elman networks is that in the Elman 

network the results from the PEs, which are hidden, are fed directly into the context unit.  

However, in the Jordan network the output of the total network is fed into the context units.  

A Jordan ANN can be seen in Figure 25, with the outputs being fed back into the context 

unit to the right of the diagram (Jordan, 1986).  In comparison, Figure 26 is an Elman ANN 

which shows again the hidden layer feeding back into the hidden context units. 

 

 

Figure 25 - Jordan ANN 
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Figure 26 - Elman ANN 

 

As mentioned previously the JENs are able to cope with time due to having a context unit, 

which gives them a dynamic feature.  This should not be confused with Time Lagged 

Recurrent Networks (TLRN) which have a smaller network size than MLPs for solving time 

series based problems.  The problem with these networks is that they require considerable 

processing power, they have a habit of getting stuck in a local minima, the time constant is 

also difficult to tune correctly.  The JENs are less versatile dynamically as the time constant 

is normally fixed and the past is “exponentially attenuated” (Principe et al, 2000). 

There is a possibility that the JENs could have an advantage over the static models as the 

data that is fed into the ANN will be of a time series format (Elman, 1990).  This was 

investigated with an extensive testing process as discussed in a later section.  In the next two 

sections, the PCA and RBF ANNs shall be examined in detail before looking at relevant 

literature in the scope of this project and finishing with conclusions drawn. 

 

3.6.5 Principal Component Analysis (PCA) 

 

The PCA networks have a fundamental difference from the static and dynamic networks that 

have been described so far in this chapter.  The main difference is that PCAs use supervised 

and unsupervised learning and are well known for being used for image analysis and 

enhancement applications (Bao et al, 1999).  During the training process, the PCA is 
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performed before the MLP in order to make the computational processes more efficient.  

Figure 27 below shows an example of a typical PCA ANN. 

    1 

 

Figure 27 - A PCA ANN with two hidden layers 

Looking at Figure 27 at a first glance the structure appears very similar to that shown in 

Figure 20.  However there is an additional important component known as the SangersFull 

Inspector (SI) as shown by point 1.  This part of the ANN is the unsupervised Hebbian 

learning procedure which is the key component of the PCA ANN (Sanger, 1989).  PCAs are 

very powerful and often converge very quickly with the PCA able to reduce the amount of 

data.  The performance of this network will be examined later in this project during the ANN 

testing procedure. 

 

3.6.6 Radial Basis Functions (RBF) 

 

RBFs are similar to PCAs in the sense that they both use supervised and unsupervised 

training procedures.  They differ in that their sole hidden layer uses a Gaussian transfer as 

opposed to a sigmoidal transfer, as used by the other ANNs that have been considered so far.  

Compared to the MLP the RBF requires significantly fewer PEs to train effectively (Selmic, 

2000).  RBFs are also better at coping with noise than MLPs and also generate a better 

estimate of pure error (Tsai, 2004).  An RBF can be seen below in Figure 28. 

   1    2 

 

Figure 28 - RBF ANN with a conscience for competitive learning. 
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Similar to Figure 27, the PCA ANN structure of the MLP is still visible in the three 

inspectors on the right hand side.  The interesting aspect of this type of ANN is called a 

ConscienceFull (point 1) component which allows the competitive learning to take place.  

The learning is unsupervised and normally of a low number of Epochs, and as for the PCA 

ANN, occurs before the supervised learning takes place.  The second aspect of interest is 

known as a GaussionAxon component (point 2).  In Figure 28 there is a ‘crack’ in this 

component which means that the supervised segment of the ANN is not active.  However 

once the training has been completed in the unsupervised section (1) the GaussionAxon (2) 

becomes active once again and the rest of the network is able to run.  The MLP is able to 

solve the same problems that a RBF can, however the advantage that the RBF offers over the 

MLP is that the latter requires more weights and training which produces a slower 

convergence than the RBF. 

 

3.7 Conclusion 

 

The review of the RBF concludes this part of the literature review, now that a thorough 

examination of the inner workings and the different types of ANNs has been studied.  It was 

mentioned earlier in this project that ANNs are sometimes regarded as black box 

applications which has been shown as untrue in this chapter, due to the wide variety of 

designs.  In the next chapter the material that has been reviewed in this section shall be used 

in various different formats and designs to maximise the performance of various types of 

boats and crews.  Building on this chapter various internal parameters of the ANNs shall be 

optimised for each problem. 
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 Instrumentation and Data Collection 

 

4.1 Introduction 

 

Having established in chapter two that an ANN based approach as shown by Masayuma can 

provide valuable information, the next important consideration was concerned with the 

instrumentation of the boats when sailing to allow collection of the necessary data.  During 

the early stages of the project there was a lot of development on the hardware and software 

platforms.  This was implemented in order to ensure repeatable and good quality data was 

being recorded.  The hardware and software packages were supplied by a company called Pi 

Research, a motor sport based company which was making the transition into the 

performance sailing market.  During the final quarter of 2006 the development process for 

the equipment was complete and encouraging data was being produced by the ANNs.  

Several different ANNs were being tested with the final choice being the NeuroSolutions 

software due to the configurability of the Networks and the superior stability when running 

simulations. 

It is also worth noting that there were several other small projects taking place at the same 

time, such as the optimisation of GPS settings with the help of (Gilbert 2006)from Dettica.  

Roger and the author also were testing and developing the telemetry system for the GPS 

units.  There was also significant training required for the author and the rest of the RYA 

technical team in areas such as presenting complex technical data into a simple format for 

the sailors in order for the sailors to fully understand and interpret the results and also 

optimising the location of the GPS units on the boat to minimise multipaths.  In a couple of 

the situations, brackets had to be designed and built in order to improve the quality of the 

data. 
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The data collected was logged on an embedded system with a 5 Hz GPS.  Figure 29 shows 

the unit on a Yngling boat.  The aerial is for the telemetry system and the GPS unit was 

sufficiently sensitive that it was able to function below deck. 

 

 

Figure 29 – Pi Research data logger secured onboard a Yngling boat. 

 

 

4.2 Summary of Data Collected 

 

Throughout the project mainly four Olympic sailing classes were focused on, normally 

following requests from the coaches for problem solving or optimisation.  There was work 

carried out in the majority of other classes, bar the windsurfers, but the amount of data was 

never sufficient in these to train an ANN to an acceptable error level with a minimum 

collection selected dataset of approximately an hour.  These classes chronological order 

were the Star, Tornado, 49er and Finn. 

The Star (method 1) ANN work was carried out near the end of 2006 with data collected 

remotely from Miami.  The use of the NeuroSolutions software was for the first task able to 
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significantly reduce the raw data scatter with the ANN and aided presentation in a useful 

polar format.  With this ANN produced polar the sailor and sail designer were able to 

improve the performance of the Star as the performance of the boat was more accurately 

known which enabled new sails to be designed more accurately from the ANN polar which 

had a positive impact. 

During early 2007 the author worked with the Tornado (method 2) squad producing upwind 

polars for the class.  During the early data collection and analysis there were significant 

problems with training the ANN effectively as the Tornado was significantly more dynamic 

in terms of boat-crew interaction than the Star.  This started off an extensive program of 

ANN design and testing, using several different inputs and types of ANNs.  After a few 

months the error was reduced to an acceptable level and the virtual tuning tool was created.  

The virtual tuning process trained the ANN by teaching it the performance of a boat and 

crew through a range of different wind conditions.  Then the wind conditions of the target 

boat were inserted into the ANN and the response compared to the raw data produced from 

the target boat.  This tool was applied in assessing quality of kit and changes of ability 

between different time periods.  During the middle of 2007 the idea was formed to produce 

an image recognition program for analysing the sail stripes and feeding the data into the 

ANN.  This led to the development of a Matlab based tool. 

Near the end of 2007, an opportunity arrived to work with the 49ers (method 3) in 

optimising rig settings with the ANN.  Data was collected in Weymouth with the rig settings 

recorded and fed in as inputs allowing various models to be designed and built.  This was 

then tested in early 2008 in Palma in theory and practice. 

This chapter focuses on the methodology, analysis and discussion of the ANN virtual tuning 

tool that was developed during this period of learning and improvement and builds upon the 

data collection and instrumentation. 

 

4.3 GPS 

 

Throughout the project the Global Positioning System (GPS) is one of the primary 

measurement tools in all the data collection and a thorough understanding of the GPS unit 

and system as a whole is critical to ensure that valid data is collected as this ensures the 

validity of the proposed approach.  The chapter will start by looking at the development of 

the system and then move on to investigate all the relevant concepts of the GPS system and 

then lead to the applications of GPS for this project. 
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4.3.1 Historical 

 

The GPS is a satellite based radio navigation system used to compute precise time and three 

dimensional positions anywhere on the Earth (Kaplan, 1996).  The GPS system has been 

around for several decades but it is only since 1986 that it has been made available for 

civilian use.  During the early days of GPS the only user was exclusively the United States 

military and the system was then known as the TRANSIT system (Navstar GPS, 1996).  

Development of the system began in 1958, and a prototype satellite was launched in 

September 1959 (Guier, Weiffenbach, 1997).  Its main purpose was to provide position fixes 

for the Fleet Ballistic Missile Weapon System Submarines (Danchik, 1984).  This system 

calculated the position through measuring the Doppler Shift from the orbiting satellite.  

Compared to the GPS as we know today the performance of the system was significantly 

less accurate with a positional accuracy of approximately 200 metres (Kaplan, 1996).  The 

other problem with the TRANSIT system is that there was a lack of constant availability 

mainly due to there being only six satellites.  The TRANSIT service was terminated in 1996 

however the satellites were then adapted into the Navy Ionospheric Monitoring System 

(NIMS) (Lunt, 1999). 

The TRANSIT system was replaced by the NAVSTAR system, which is the system that is 

widely used today.  The NAVSTAR system consists of 24 satellites in six planes with four 

satellites in each (Dana et al., 1996).  As of September 2007 there have been seven 

additional satellites added to the constellation.  The additional satellites improve the 

precision of GPS receiver calculations by providing redundant measurements.  With the 

increased number of satellites, the constellation was changed to a non uniform arrangement.  

Such an arrangement was shown to improve reliability and availability of the system, 

relative to a uniform system, when multiple satellites fail (Massatt, Wayne, 2002).  The 

orbits are arranged so that at least six satellites are continuously within the line of sight from 

almost anywhere on the Earth’s surface (US Department of Homeland Security Navigation 

Centre).  The NAVSTAR system was initially only available to the US military but in 1983, 

President Ronald Reagan issued a directive in making the system available free for civilian 

use as a common good (History of GPS, 2006).  Initially the units were of low volume 

production and very expensive for the average user compared to today.  The GPS also had 

inaccuracies built into it on purpose called Selective Availability (SA), which represented 

the dominant error source for stand-alone users of the Global Positioning System (Braasch et 

al., 1992). 
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With SA included all civilian GPS units experienced a spoofing problem which reduced the 

accuracy of the position to approximately 100 metres (U-Blox Reference Dictionary, 2001).  

However on the 1
st
 of March 2000 SA was turned off and the positional accuracy was 

greatly improved to approximately 15 metres (Zogg, 2002).  With the accuracy of the GPS 

improved by approximately an order of magnitude it was the start of the higher number of 

GPS units being owned commercially.   

There are several methods to obtain a more accurate position than 15 metres, one of these is 

to use a Wide Area Augmentation System (WAAS) GPS.  There are several advantages to 

using WAAS GPS systems compared to the ordinary single phase GPS.  The advantages are 

from correcting the GPS satellites instantaneous positions and clock errors as a fast 

correction and also the WAAS uses ground stations at known locations to receive GPS 

satellite signals and calculate corrections for atmospheric errors (Adams et al., 1996).  The 

typical improvement in horizontal position is under three metres as long as the GPS unit can 

receive the WAAS correctional signal.  Currently the WAAS signal is only available in 

North America, however several other augmentation systems are either in test phase or close 

to being developed.  The other most notable system is the European Geostationary 

Navigation Overlay Service (EGNOS) which has suffered from multiple delays but has a 

theoretical accuracy of less than two metres.  EGNOS was supposed to become operational 

from 2006/2008 onwards (Gauthier, 2001) however a recent update predicts the date of full 

certification some time in 2009 (GPS World, May 2008).  During publication the system has 

still not been certified.  The coverage and accuracy can be seen in Figure 30 below. 

 

Figure 30 - Showing EGNOS coverage and availability (GPS World, 2008) 
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There are other signal correctional GPS methods, the most notable is Differential GPS where 

the position is corrected by reference to a known position station that broadcasts the 

observed error, however this system is being replaced by the WAAS system which does not 

require the extra complexity of an additional correction being broadcast.  Differential GPS 

provided very beneficial improvements in accuracy when SA was enabled as it effectively 

provided a means of correcting for the effect of SA. 

Several other GPS methods are also available with much higher accuracy.  Of particular note 

is the Real Time Kinematic (RTK) navigation technique that has typical low latency 

horizontal position accuracies of typically 1 to 3 cm (Neumann, 1996).  However these 

systems are not suitable for the application considered here as they are typically too bulky 

and heavy to mount on any of the Olympic class boats and they are also are significantly 

more expensive than a WAAS enabled GPS unit. 

 

4.3.2 A Summary of the GPS Functional Requirements 

 

There is a considerable amount of literature readily accessible in this area.  The GPS system 

is a complex structure that is compromised if three distinct components or segments; namely 

the space; control and user segments.  Consideration of each of these provides understanding 

of how the GPS system functions and allows position data to be determined. 

The space segment consists of 31 satellites, which transmit signals on two phase modulated 

frequencies, P(Y)-codes and C/A codes (Leick, 1995).  Even though the signal is travelling 

at the speed of light it takes time to reach the GPS unit on the ground.  This delay in the 

signal being sent and received allows the unit to calculate the distance to the satellite.  If the 

GPS unit is locked onto four or more satellites then it is able to calculate its precise latitude 

and longitude.  This process can be seen below in Figure 31. 
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Figure 31 - Calculation of position (Kaplan, 1996) 

The satellites orbit the earth at approximately 20,200 kilometres (Featherstone, 2003), each 

satellite makes two complete orbits each sidereal day (Agnew, Larson, 2007).  In each of the 

satellites is an atomic clock which were initially yielding an uncertainty of a few parts in 

10
13

.  The reason why such an accurate clock is needed is due to such a short time between 

the satellite transmitting the signal and the user on the ground receiving it which is known as 

the pseudorange.  Any small error in the timing makes a large difference in the positional 

calculations.  In the cluster of satellites there are five different types of satellites: Block I, II, 

IIA, IIR and IIF.  Each newer version of the satellites are more sophisticated than the 

previous with the IIA version able to function up to 180 days without interaction from the 

ground control segment through momentum management capability.  Whereas the Block IIR 

satellites have a crosslink feature for inter-satellite communication which enables autonav 

capabilities allowing graceful degradation (16m SEP) of navigation accuracy up to 180 days 

without ground contact (Aparicio et al., 1996). 

 

The control segment is responsible for operating the GPS system (Leick, 1995).  The master 

control system is based in Colorado Springs in the USA.  The control segment maintains and 

corrects clock and orbit corrections.  There are four other control segments which are based 

around the world on US and UK soil, the locations of all the stations can be seen in Figure 

32.  These stations monitor the condition of the satellite and are responsible for all 

operational control functions, such as navigational information processing, satellite data 

upload, vehicle command control and overall system management (Francisco, 1996). 
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Figure 32 - Location of the GPS control centres (Francisco, 1996) 

 

The user segment is, as its name suggests, controlled by the user of the GPS system.  With 

this GPS unit users are able to determine position, time, speed and bearing with also a 

variety of specific data including the accuracy and number of satellites that the unit is locked 

onto.  As mentioned in the space segment the units are able to determine their position from 

calculating the pseudoranges.  The pseudorange is calculated by the GPS receiver for each 

satellite of which it needs four to solve the four unknowns which can be linked to the non 

linear equation found below in Equation 21. 

�( = ¯��©( | ©�F + �°( | °�F + �5( | 5�F | y��    (21) 

 

Where ‘i’ is the satellite index , R stands for pseudorange, xi, yi, zi are the coordinates, x, y, z 

are the coordinates of the user, c represents the speed of light and b is the bias of the clock. 

 

The GPS unit that was used in this project is a development of a system with which 

experience was gained in a previous study. (Reid, 2005).  This unit is a 4 Hz rate Satellite-

Based Augmented System (SBAS) enabled GPS which can be considered as a relatively 

high quality unit at the time of manufacture.  Understanding the previous GPS segments 

allows for some appreciation of the problems that could be encountered in using such a 

system to collect position and speed data.  A thorough understanding of what can cause there 
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errors and how they can be avoided is crucial for the collection of data of sufficient quality 

for the intended purpose. 

 

4.3.3 Sources of GPS Errors 

 

The reliability of the GPS is affected by the possibility of errors in all three segments of the 

GPS system.  In the next section the source and effects of the principal errors shall be 

examined.  The errors that shall be investigated are satellite orbit prediction, satellite orbit 

drift, Ionospheric dealt, Tropospheric delay, receiver clock offset and signal multipath 

(Townsend et al, 1994). 

 

4.3.3.1 Satellite Error Due to Orbit Prediction and Drift 

 

The orbit error is one of the smallest producers of errors in the GPS system and is the 

responsibility of the monitoring process of the control segment.  It has improved over the 

previous decade in terms of accuracy.  This is demonstrated by Lachapelle (1997) noting 

errors of between 5 and 10 metres.  Comparatively, recently the orbit accuracy of GPS-based 

Precise Orbit Determination (POD) has been improved to 1 cm in radial direction due to 

various improvements in data, GPS orbit quality, mean gravity and other force models 

(Haines et al., 2003, Kang et al.,2007). 

 

4.3.3.2 Ionospheric Delay 

 

The Ionospheric delay is potentially one of the greater error sources for the GPS system with 

a range of errors between two and fifty metres (Aparicio, 1996).  GPS signals must travel 

through the ionosphere in order to arrive at a receiver located on the Earth’s surface or at a 

low height, as is the case of the ML1 station. In doing this they suffer from refraction by the 

Ionosphere (Meza et al, 2002).  The Ionosphere is also greatly affected by the Sun.  This is 

due to solar flares that produce intense X-rays that attack the Ionosphere and produce 

Sudden Ionospheric Disturbances (SID) (Mitra, 1974).  This area is out of control of the 

equipment that will be used and the only defence against it is the monitoring of the GPS 

quality through the analysis program produced by the board manufacturer ublox. 
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4.3.3.3 Tropospheric Delay 

 

The word troposphere derives from the Greek tropos for turning or mixing, reflecting the 

fact that turbulent mixing plays an important role in the troposphere’s structure and 

behaviour.  Most of the phenomena associated with day to day weather occurs in the 

troposphere (Danielson et al, 2003).  It has been shown that azimuthal asymmetries in the 

Tropospheric path lead to errors of the estimated horizontal and vertical station coordinates 

(MacMillan, 1995).  The magnitude of the errors according to Lachapelle in 1997 is between 

two and thirty metres.  This is dependent on the amount of water vapour in the atmosphere.  

Similar to the approach for assessing the Ionospheric interference the solution is to monitor 

the GPS quality with ublox before a data collection session. 

 

4.3.3.4 Receiver Clock Offset 

 

The major source of clock error used to be SA when it was engaged, now without SA the 

clock errors are significantly smaller.  As previously discussed, the clocks on each of the 

satellites are extremely accurate so there is very little drift in the time.  This drift is 

continuously monitored by the control segment and the master control station is able to 

estimate the drift and transmits clock correction parameters to each of the satellites.  This 

correction in time is also altered in the navigation data broadcasted to the GPS units.  The 

clock offset errors are significantly smaller than the Ionospheric and Tropospheric delays 

(Lanyi, 1984).  Similar to other errors, the best method of discovering they are present is by 

monitoring the GPS data with u-blox during data collection. 

 

4.3.3.5 Signal Multipath 

 

Townsend (1994) states that the term multipath is derived from the fact that a signal 

transmitted from a GPS satellite can follow a ‘multiple’ number of propagation ‘paths’ to the 

receiving antenna.  Figure 33 (Rama et al, 2006) provides a good description of the 

multipath problem. 
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Figure 33 - Typical multipath situation (Rama et al, 2006) 

With a GPS system mounted onboard a sailing boat, the multipath issues will be limited to 

the influence of the sails and the rig, producing a multipath off the target boat and other 

boats if they are in close proximity.  The reflective nature of the water surface environment 

normally causes a high potential multipath effect which could contribute to an error of up to 

a few metres (Zhang, 2005).  However, if the unit is situated below deck level there could be 

several opportunities for multipaths to form and produce invalid data.  With all the 

possibilities of introducing multipath errors into the data there are means of preventing this 

phenomenon from being used by the GPS receiver.  For this project a ublox SAM-LS GPS 

Smart Antenna Module was being used to gather the data.  This module has an active 

multipath detection and removal feature built into it which helps in collecting valid data.  

The GPS also has a large array of programmable features that allow the user to customise 

the settings, such as altering the Dynamic Platform Model and the ability to use different 

NMEA sentences.   

During the data collection process a unit was left onshore monitoring the GPS coverage to 

ensure that the coverage was sufficient.  Also during the placement of the data logger on the 

boat, the signal strength and number of satellites was monitored to ensure that the GPS 

positioning, speed and course over ground were accurate. 

More information on the feature is presented in Appendix 1. 
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4.4 Instrumentation Set Up 

 

4.4.1 Introduction 

 

In this section the equipment that was used in the data gathering process is described.  The 

design of experiment shall also be discussed which includes the methods used in order to 

collect higher quality data.  The equipment selected reflected the aims of the project with 

enabling the appropriate inputs into the model to be logged. 

During the final data collection it was necessary to use an extensive range of equipment in 

order to collect the necessary level of data collection required. This data collection initially 

took place in Weymouth before the final collection and testing in Palma, Spain.  The 

equipment used is as follows:  

 

Figure 34 – RYA weather boat with instrumentation and wind processor. 
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• Rigid inflatable boat (RIB) to provide a platform for the environmental measurement 

equipment. 

• Weather Mast and wind processor with logger, display, compass and GPS. 

• Two GPS and logging units. 

• Three Custom Strain Gauges 

• Sensor junction Box 

• 49er dinghy 

• Laptop and offload loom. 

 

4.4.2 Weather Mast and Logger Box 

 

The weather mast is one of the most important components in the experimental setup as 

without it there is no TWS or TWD with which to synchronise it.  The anemometer used was 

of the sonic type that allows excellent accuracy especially at low wind speeds with a 

minimum sensitivity of 0.02 m/s.  Figure 34 shows the anemometer onboard.  It also has the 

benefit of not being affected by inertial effects due to pitch and roll as there are no moving 

parts in the sensor.  The accuracy of the sensor is accurate to two percent of the wind speed 

and three percent of the wind direction.  The validation of the equipment was carried out 

early on in the project with the manufacturer.  The weather mast also has a processing unit, 

also shown in Figure 34, that removes the effect of the waves and the motions of the RIB on 

the wind speed and direction readings which is an important feature and means that the true 

wind speed and direction can be calculated while the RIB is moving as it is connected to a 

GPS as well.  The GPS and compass are situated inside the rectangular horizontal platform 

seen in front of the mast in Figure 34.  The processing unit is located slightly above engine 

height and is located aft of the mast.  The display unit, a Hercules B&G 2000 unit, can be 

seen on the console of the ribs as well.  This is a useful tool as real time readings can be 

noted on the water. 

The masts are attached to the rib via a base plate on the floor of the RIB and three ratchet 

straps which hold the mast in place.  The actual mast structure is made out of carbon fibre 

tubing and is very stiff which provides a more accurate reading as there is virtually no flex.  

The GPS units, as described previously; are of a custom design and manufacture in 

collaboration by UK Sport and Pi Research.  The cases of the GPS units also contained other 

components a three axis accelerometer, multi channel data logger and a telemetry board.  

The units have a sophisticated connector which allows a large variety of components to be 

connected and logged, such as Inertial Measurement Units (IMU) or the strain gauges which 

were considered previously.  The full data sheet of the GPS can be found in Appendix 1.  
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Another feature of the GPS unit is that it has a button that allows the user to insert a marker 

into the data which can be used for reference during the data analysis.  This allowed the start 

and finish of each of the data runs to be indicated on the data collected from the GPS into the 

RIB that then in turn provided a reference for the GPS data collected onboard the target boat 

during the data fusion process.  This saved time during the subsequent data analysis process.  

During the data collection process an additional GPS units was left on shore logging the 

performance of the GPS system during the training session.  The variables that were being 

examined were different measures of accuracy such as the dilution of position (DOP) which 

is determined by the number of the satellites and multiple other factors that are mentioned 

earlier in this chapter.  The logger was attached to a laptop and the dilution of precision 

value was found through using a program from u-blox.  Other factors were also monitored 

such as the position of the satellites as these would have an effect on accuracy.  A screen 

shot from this program showing the monitoring in progress can be found in Appendix 1. 

 

4.4.3 Strain Gauges 

 

As there were also investigations into the rig settings, custom strain gauges (Figure 35), they 

were designed and manufactured to fit all the Olympic classes.  The gauge had three 

different bridges to deform the wire, this depended on the gauge of the wire and they were 

all pre calibrated.  The gauge used a conventional bridge which was amplified into a 0-5 volt 

single.  The 0-5 volt signal was then calibrated in the data logger against force.  These were 

plugged into the units and logged at the same time as the other channels.  A validation 

process was carried out beforehand in order to test the quality of the strain gauges  This was 

carried out by hanging known and accurate weights off a wire with the gauges attached and 

checking the data.  During this process three of the six strain gauges were found to be faulty.  

This unfortunately reduced the number of useable strain gauge inputs to three.  This reduced 

the desired inputs from 6 to 3.  Figure 35 illustrates the strain gauges fitted to a 49er before a 

data collection session.   



62 

Chapter 4 Instrumentation and Data Collection 

 

 

Figure 35 – Custom strain gauges fitted on a 49er 

The junction box connected the wires from the strain gauges to a single loom that was fed 

into the GPS unit.  The junction box has a capacity to receive up to six different strain 

gauges. 

The strain gauges were mainly used with the 49er boat.  Data collection in the 49er class was 

it was the only time that was designated to a pure data collection session, whereas during 

previous methods the data collection had to fit around various exercises that the coach was 

trying to run at the time.  This limited the quality of the data and also the amount that was 

collected.  During the first two methods a good day’s data collection would produce 30 

minutes of good data due to other objectives by involved with training.  With method three 

this was extended to several hours. 

 

4.4.4 Experimental Method 

 

During all of the data collection methods the weather boat was required to motor along as 

close to the target boat as possible while not affecting it with the wake of the boat or the 

wind shadow.  In method one the relative difference in position was much higher than 

method two and three due to the author not being in control of the experiment.  Through 

analysing the effectiveness of training and testing of the ANN this distance should be no 

more than ten metres away.  Throughout most of the collected 49er data this distance was 

reduced to six or seven metres.  During Method 3, when strain gauges were used, the rig 

settings were also noted as a backup in case the strain gauges failed or were not effective 
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enough to train the ANN.  Throughout the rig optimisation process the rig settings were 

adjusted incrementally from what the sailors thought was optimum to when they felt the 

performance dropping off significantly. 

In the data collection runs of Methods 2 and 3 the crew had to sail in three different upwind 

modes which were pinching, normal and footing.  The pinching mode is closer to the wind 

than optimum by a couple of degrees and footing is the opposite.  This enabled more of the 

polar curve to be collected.  In method one this was not apparent at the time and the results 

were initially disappointing as there was no obvious curve generated.  This was due to the 

Star crew sailing at only one TWA which was optimum.  Most of the data was collected in 

non tidal locations; where there was current this was measured and combined with the 

collected data.  The measurement was relatively crude, a tide stick was dropped into the 

water near a known reference point such as a buoy and timed for two minutes.  The distance 

was then measured between the start and end point.  However to produce the best data non 

tidal locations were preferable. 

As the methods progressed, more sophisticated methods of reducing the MSE were used 

from better ANN design and training to positioning of the weather boat with respect to the 

target boat.  This was due to the intrinsic problem of TWS and TWA measurement which 

was due to the location of the weather boat.  Situating the anemometer on top of the target 

boat’s rig would have produced lower quality readings through mast twist and deflection as 

well as components of upwash and adding significant weight onto the target boat.  Some of 

the classes it was also not practical to mount and anemometer on the mast such as the Laser 

sailing dinghy.  Locating an anemometer at the top of a mast is not the optimum choice 

either due to the up wash effect from the sails.  Thus with the external wind readings 

interesting situations developed where the weather boat, shown by point 3, would measure a 

shift or gust and the target boat, shown by point 2 would not have reached it yet and vice 

versa.  This can be illustrated by Figure 36 and the opposite in Figure 37 below.  This effect 

was even greater downwind when the target boat was catching up gusts shown by point 1 in 

front in the windier conditions that the weather boat would take time to reach. 
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   1  2        3 

 

 

     2        3  1 

 

The length and duration of the shifts and gusts was variable and dependent on the conditions 

of the day as well as the randomness of gusts.  The affect on the data would be amplified 

even more if the weather boat was running parallel inside a band of higher wind and the 

target boat was not, however this scenario did not happen often.  Several of the data runs 

were aborted when unusual events happened such as a power boat crossing the path of the 

data run or any other major experimental influences.  This was one of the reasons why the 

Star data in method 1 was not as accurate as the other methods as the author was not able to 

ensure correct data collection.  In the next section Neural Networks shall be investigated 

which acts as a foundation before moving on to the chapter which uses these techniques. 

 
WIND 

 

Figure 36 - The target boat is in a gust and weather boat not 

WIND 

Figure 37 - The weather boat is experiencing the gust and the target boat is not 
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4.4.5 Summary 

 

Throughout the project the sophistication of the equipment and the data collection 

techniques adopted were evolutionary.  This was especially true with the GPS equipment as 

there was a severe problem with synchronising all the data with the time stamp as well as 

determining the optimum location of the unit.  This was due to the GPS board having 

synchronisation problems with the other units and switching between GPS time and GPS 

UTC which have a difference of 14 seconds.  The methods of collecting data also improved 

significantly from data collected during or between training sessions which was of poor 

quality, to sessions specifically designed for data collection.  The latter resulted in a larger 

quantity of data which was also of a better quality.  This was particularly crucial in the more 

dynamic classes such as the 49er and Tornado.  With the improved data collection methods 

more accurate analysis and conclusions could be drawn. 
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Chapter 5 

 

Neural Network Data Processing and Analysis 

 

5.1 Introduction 

 

In this section the evolution of the data analysis techniques will be presented.  To begin 

with, standard methods of performance analysis will be considered starting with a similar 

method to that which Bethwaite (Bethwaite, 2008) used in his 49er performance analysis.  

More sophisticated methods of data processing will be discussed, building on the ANN 

literature that was reviewed in the previous chapter, before producing the virtual tuning tool 

and the data results with it.  In the next section the evolution of the modelling techniques 

shall be reported. 

 

5.2 Existing Methods of Performance Analysis 

 

At the start of the project there was already, and has been for several years, a generally 

accepted method for optimising boat performance.  This is known as two boat testing, which 

is used by all of the Olympic coaches today.  This testing usually involves two boats sailing 

upwind in close proximity to each other and used an iterative procedure to find the optimum 

settings, identified when one boat appears faster than the other.  This procedure takes a 

significant number of runs and is very time consuming.  The two boat testing can take 

several thousand hours during a campaign and also requires significant resources.  There are 

also several pitfalls in using the two boat testing method such as sailing into a shift which 

resulted in a header, which always favours the boat to leeward, or sailing into a shift which 

resulted in a lift which has the opposite effect.  This problem is sometimes hard to detect and 

can produce some anomalous results.  In the next section the current testing methods will be 

considered. 
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5.3 Current Performance Analysis Methods 

 

Early in the project during the final testing of the new software and hardware a standard 

performance analysis technique was used, plotting the unfiltered data in a polar or 

time/distance format.  This technique is widely used and can be considered the standard 

method.  Plotting the raw data produces the ‘blob’-like effect that can be seen below in 

Figure 38.  This technique is a valid method of analysing performance and is an 

improvement from two boat testing, or can be incorporated into two boat testing.  However, 

the margins of error are very large due to the nature of the data that is collected, due to the 

unsteady nature of the data relating to wind measurement and boat performance, and it also 

requires almost as many data runs as the two boat testing in order to produce a valid 

quantitative answer.  This method does work better on larger keelboats, as seen in the 

literature review, due to their greater momentum, but there is still a high standard deviation 

in the data due to scatter. 

 

Figure 38 – Unfiltered polar data 

The example shown in Figure 38 is from one of the early Tornado data collections.  There is 

a large scatter but this is significantly less than the scatter seen by Bethwaite, (Bethwaite, 

2008) in Figure 8, mainly due to the higher quality equipment used for the wind recording 

and onboard data logging.  From a scientific perspective this blob is of little value and 

actually tells us very little about the performance of the boat as there is approximately a 

three knot deviation in Vb for a minute long data run.  The plot of the data is open to 

qualitative analysis that could also be potentially misleading.  During the data run there was 

a four knot difference in the TWS that would have affected the polar as well due to the 

unsteady conditions. 
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An improvement on this method, which is also adopted by Bethwaite, is to filter the data 

with a moving average for the TWA and TWS.  In addition to filtering the data, the average 

Vb was calculated for each of the modes that the crew were sailing in.  This can be seen in 

Figure 39 below. 

 

Figure 39 - A first stage improvement of the raw data plot 

This polar plot is from a different data run than Figure 38 and the TWS range is binned 

between 7.5-8.5 knots.  The three modes can be clearly seen on the plot with the sailor’s 

opinion of optimum being the middle point.  It is interesting to note that the sailor’s 

optimum is not quite at the maximum VMG.  However, the methods and reliability of the 

data could not fully support this as the TWS could have been on average less than the other 

two points.  The TWD variation could also have produced harder conditions to sail in.  This 

method of analysis also highlighted another flaw in the collected data method, namely that it 

is very difficult to produce a polar for exactly eight knots, as there is very little data that is 

close to any specific TWS.  This is the reason why there was a half knot region either side of 

the eight knot TWS in the figure as there was only small amounts of data. 

Another problem with plotting raw or filtered data is associated with the unknown dynamic 

affects of the environment.  There are two scenarios which highlight this.  The first is when 

the target boat is sailing in for example 8 knots of wind and sails into a gust.  At the instant 

the gust hits, the boat is performing lower than expected as it takes time to accelerate.  Using 

the standard method of interpolating between polars this would produce large errors in 

modelling the data.  The same effect is also true when the boat, again sailing at a constant 

TWS, sails into a lull.  This also produces a large error in the performance model as the boat 

will be over performing until its Vb is that for the given TWS. 
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In the next section the first usage of the ANN to model the performance of the boat 

effectively will be presented.  First, the Star will be considered before moving onto 

discussing the final method that created the virtual tuning tool. 

 

5.4 Star ANN Performance Analysis Methods 

 

As mentioned in the introduction to this chapter the Star was the first boat that the ANN was 

used on.  The Star was chosen as it was one of the least dynamic boats, being one of the 

highest displacement boats, and also having one of the best crews.  The Star is a very 

technical boat with an open design on the sails and rig, within the class rules.  This produces 

a multiple variables to consider in order to achieve optimum performance. 

To begin with, the ANN design was only related to the TWS and time, with TWA and Vb as 

outputs as this combination of inputs and outputs produced the most stable ANNs with less 

sophisticated models.  The MLP was the network which was used to produce the model.  

The design was as in Figure 40 with one hidden layer which can be seen below.  There was 

also CV present using 10 percent of the data and also GA enabled to produce the best 

weights and design.  The computation time for this model was approximately ten hours. 

 

 

 

This process enabled a significant reduction in scatter on the polar plot and was also able to 

produce a response from a TWS and arbitrary point in time.  This therefore enabled an array 

of conditions to produce a Vb and TWA response which was able to produce a polar point for 

a given TWS rather than a small range of TWSs.  This reduced scatter polar can be seen 

below, alongside the raw data scatter polar in Figure 41 and post ANN processing in Figure 

42 respectively.  The reason for reducing the error was to produce a more repeatable and 

accurate model to allow real changes in boat performance to be demonstrated. 

Hidden Layer 

Time 

TWS 

Vb 

TWA 

Figure 40 - Early ANN model 
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Figure 41 - Raw data example 

 

Figure 42 - Early ANN processing for the Star 

 

It can be seen from looking at the two figures above how much of an improvement the usage 

of an ANN produces compared to the raw data.  The reduction in standard deviation of the 

boat speed data is from 0.26 to 0.15 which is a significant improvement.  In terms of the 

other technique which is the response to an array of TWS and time inputs, a single point is 

produced which is shown below in Figure 43. 
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Figure 43 – ANN derived upwind targets for the Star 

After producing the Star polar response it was used in the sail design process, and compared 

to a gold standard VPP that Juan Garay (Garay, 2008) was using, the Vbs were very similar 

but the TWA was always slightly less.  This was because the ANN response was a dynamic 

model whereas the VPP is a static interpretation of the yacht’s performance.  It is dynamic in 

the sense that the crew are able to sail higher than the theoretical TWA due to the fact that 

when, or just before, a gust hits in hiking conditions the crew was able to anticipate it and 

sail slightly higher to reduce the heeling moment. 

In terms of ANN performance the results were acceptable compared to the standard lookup 

interpolation method.  The Vb prediction was quite accurate but the TWA output errors on 

the training and especially the CV analysis were significantly higher than the Vb prediction.  

This is due to position of the weather boat, sometimes the weather boat would be in the gust 

and the target boat not and at other times the opposite would occur.  There were other factors 

as well, such as the corrections to the data because it was collected in a tidal area, which is 

never as perfect as non tidal data.  As the Star is a relatively slow boat this has a larger affect 

compared to something like a 49er or Tornado in terms of percentage of Vb.  The results of 

the ANN can be seen below in Table 2.  In this situation the MSE and NMSE are relatively 

high due to the low amount of training data available and also because of its reduced quality.  

The percentage error is deceptively low as described in section 3.4.1 with Equation (24).  

The design of the ANN was also far from the optimum; later in this section improvements 

are shown but it is an enhancement from previous performance analysis methods. 
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Table 2 - Performance of the Star ANN 

 Active CV 

MSE 0.161 0.131 

NMSE 1.36 1.71 

% Error 5.98 5.6 

r 0.26 0.61 

 

5.5 Tornado ANN Performance Analysis Methods 

 

Although the results shown in Table 2 were deemed to be at an acceptable error level, the 

model is not appropriate for the Tornado.  The Tornado has twice the performance of the 

Star and weighs significantly less due to its highly dynamic characteristics.  This meant that 

a whole new phase of design and testing had to take place in order to reduce the error level 

in the ANNs when applied to Tornados.  From the re-design of the ANN, several other 

factors also changed, such as better data collection procedures and also the amount of data 

collected being greater.  The Tornado data collection ultimately changed the design of ANN 

to the configuration shown below in Figure 44.  One of the interesting aspects of the study 

was the improved performance of the ANN when time was not used as an input.  The 

performance was improved due to more inputs and a second hidden layer. 

 

 

The new design of the ANN used three inputs including the wind direction as well as speed, 

and also the boat COG.  This improved design of the ANN allowed the levels of the errors to 

be reduced to an acceptable level.  The difference in performance of the two designs of the 

ANN can be seen below in Table 3.  The MSE and NMSE have reduced quite considerably 

which produced better testing results.  The correlation coefficient is also better suggesting a 

much better fit to the data. The value of the percentage error is misleadingly high as the 

Hidden Layer 

TWS 

TWD 

COG 

Vb 

TWA 

Figure 44 - ANN used for Tornado data processing 
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nature of the data conforms to the criteria described by equation 24.  The improvement of 

performance can also be linked into introducing an additional hidden layer. 

Table 3 - Showing the change of inputs 

 MSE NMSE r % Error 

Old ANN 0.16 1.3 0.25 5.93 

New ANN 0.12 1.1 0.56 14.05 

 

After the initial data collecting and testing, the ANN was then set the task of predicting the 

boat performance in Palma before the sailors’ first event of the year using the same crew but 

with different sails and boats.  The boats which the sailors were sailing during the early data 

collection process in England were training boats, which were not as well maintained and 

had older equipment.  In theory, the sailors should be able to sail faster in Palma with the 

better equipment and boats. This was tested by using data collected in Palma for the two 

Tornado crews as input to the ANN trained on data collected in Weymouth and the outcome 

was as expected.  The detailed results can be seen below in Table 4 in which the faster data 

runs are highlighted by the green coloured VMG cells on the right of the table, obtained 

from the ANN trained on the Palma data.  During the training time in Palma it was found 

that Rashley was quicker 80% of the time than Gimson in the moderate to heavy conditions.  

This trend however was reversed in the lighter conditions.  The first of the comparisons in 

Table 4 is the data collected in the old boats in Weymouth against Rashley’s data collected 

in Palma with a newer boat but with the same crew in both tests.  This was a comparison of 

the raw data collected in Palma versus the response from the ANN for those conditions 

which was based on the Weymouth data.  In all the cases the performance was better in 

Palma than the Weymouth benchmark due to the better equipment and perhaps some 

improvement in sailing ability of the crews after a whole winter’s training in the UK.  On 

average, the differences in VMG between Rashley in Palma and the ANN benchmark was 

about 0.1 of a knot.  This increase in performance was also visible in the raw data but the 

environment was too noisy to produce as definitive an answer as the ANN.  Other factors 

such as water density, temperature and viscosity were not included in the modelling. 
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Table 4 - Showing the Tornado Weymouth and Palma comparisons. 

Rashley Palma vs Weymouth Benchmark

TWA VB TWS VMG

Run 5 Weymouth 44.85 11.88 18.5 8.42

Palma 44.84 12.18 18.5 8.64

Run 6 Weymouth 47.98 12.5 19.2 8.37

Palma 46.88 12.41 19.2 8.48

Run 7 Weymouth 49.18 12.52 16.39 8.18

Palma 50.88 12.98 16.39 8.19

Run 8 Weymouth 50.88 12.98 15.32 8.19

Palma 50.27 12.95 15.32 8.28

Gimson vs Rashley Raw Palma

Rashley Run 7 50.88 12.98 16.39 8.19

Gimson Run7 52.72 12.97 16.39 7.86

Rashley Run8 50.27 12.95 15.32 8.28

Gimson Run8 50.61 12.61 15.32 8

Rashley Run9 44.81 11.28 12.33 8

Gimson Run9 40.27 10.78 12.33 8.23

Gimson Palma vs Rashley Benchmark

Run 7 Gimson Raw 52.72 12.97 16.39 7.86

Rashley 50.52 12.66 16.39 8.05

Run 8 Gimson Raw 50.61 12.61 15.32 8

Rashley 49.83 12.67 15.32 8.17  

The second section of the table consists of raw data collected in Palma.  This is due to some 

of the early ANN results suggesting that the sailors were not sailing at the optimum TWA 

upwind as suggested in Table 4.  This was discovered when the sailors were asked to sail in 

the three different modes upwind and the ANN suggested that they were sailing slightly too 

high to produce the optimum VMG.  This test was carried out in Palma several times 

between two of the Tornados lined up against each other in a two boat testing format.  Every 

time the test was carried out the footing boat was always quicker than the boat that was 

sailing at the previous optimum.  After a discussion with the coach it was concluded that it 

was faster to sail with a greater TWA but it was not always possible in a race environment 

due to the influence of other competitors nearby.  The result of this study enabled the sailors 

to adjust their optimum upwind angle during training and when permitted on the race course. 

The final section of the table is a comparison of Gimson against Rashley’s Weymouth 

benchmark. In both situations, Rashley’s Weymouth benchmark was faster than Gimson in 

Palma.  This was obvious as well on the water and in the previous testing and can be mainly 

attributed to the short length of time that Gimson had spent in the Tornado.  This can also be 

seen in Figure 45 which shows graphically the difference in performance between Gimson’s 

raw data and Rashley’s ANN response.  The main contributing factor of the difference in 

performance is the better height that Rashley has than Gimson and even though Gimson has 

a higher Vb, Rashley’s VMG is better overall.  This could be due a wide variety of factors 

such as rig set up or choice of sails. 
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Figure 45 – Desired boat speed (Gimson) versus ANN boat speed (Rashley). 

 

 

Figure 46 – Desired wind angle (Gimson) versus ANN TWA (Rashley). 

In the next section, the developments of the ANN for the Tornado are taken onto the next 

stage of ANN performance processing with the 49er.  Other aspects of performance are 
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investigated in this section including a rig optimisation process and also more ANN 

validations. 

 

5.6 49er Performance Analysis Methods 

 

The 49er ANN is the culmination of the ANN performance analysis method and also 

produces the virtual tuning tool which is validated against the Olympic squad’s tuning guide.  

There was more data collected from the 49er than the other major data collection sessions of 

the Star, Tornado and Finn combined due to reduced restrictions on data collection length.  

At the start of the 49er data collection it was supposed that the current ANNs would be able 

to cope, given the highly dynamic environment which was experienced with the Tornado.  

However, in the event this was not the case and another ANN design and testing process had 

to be undertaken.  The differences could be due to the Tornado being naturally form stable 

(being a catamaran) whereas the 49er is notorious for being very unstable in certain 

conditions.  Some of the additional knowledge gained by the author during the early stages 

of the 49er ANN data collection was from collaborative work with the University of the 

West of England (UWE).  This collaborative work was in assessing the accuracy of 

modelling performance and decision making through the method of data mining.  The author 

was able to use the knowledge of Professor Bull with not only developing new ideas but 

validating the existing work with his design and use of ANNs (Bull, 2007).   

During the early data collection, before the use of ANNs in performance analysis, the author 

had worked with the 49ers trying to model performance using existing performance analysis 

techniques.  During this initial work there were several problems experienced with 

multipaths and loss of signal from the positioning of the GPS.  To counteract this, a carbon 

fibre bracket was designed and built to mount the GPS units off the stern of the 49er.  This 

improved the performance of the GPS to an acceptable level and can be seen below in 

Figure 47. 
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Figure 47 - Final position of the GPS unit on the 49er 

It is worth noting that during the measurements, data was collected in almost all TWAs, with 

reaching and running sailing modes included, in order to build a full performance model.  

However, the errors for the down wind conditions were relatively large, mainly due to TWS 

and TWD measurement errors.  These were due to the poor positioning of the weather boat 

adopted so as not to adversely affect the target boat’s wind.  Partly for this reason, method 3 

focuses on the optimum performance upwind. 

There were two different designs of ANNs that were used for method 3.  The first can be 

seen in Figure 48, which uses the dynamic rig settings and is known as the Alpha design.  

The second design is an evolution of the Tornado ANN, known as the Beta design, which is 

a higher performance ANN and is shown in Figure 49.  This ANN compares the base setting 

data with individual data runs that are on different settings, and attempts to optimise them by 

relative performances. 

 

TWS 

TWA 

Lowers 

Shroud 

Caps 

Vb 

Figure 48 - Alpha Design 
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One of the new inputs was distance; this is the distance between the weather boat and the 

target boat.  TWA was no longer used as an output as this improved the accuracy of the 

modelling.  This was an evolution of the ANN design which improved performance by the 

ANN giving more weighting to data which had a smaller distance.  This meant that the 

closer the weather boat was to the target boat the more accurate the data.  The distance was 

calculated by using the spherical law of cosines formula which can be seen below in 

Equation (33). 

¨xw72#y± = cosEa�sin	�%27a� × sin�%27F� + cos	�%27a� × cos	�%27F� × cos	�%z#´F |%z#´1��×�  (33) 

 

where r is the radius of the Earth and the values of 1 represent the target boat and 2 is the 

weather boat. 

The other inputs which feature in the tuning guide were adjusted by the crew of the boat for 

the given conditions and were usually left the same for several of the data collection runs as 

the conditions remained relatively similar.  The design and analysis of the two ANNs can be 

seen in the following sections, before comparing the results and completing the validation 

between predicted and actual performance. 

 

5.6.1 ANN Alpha Design 

 

Alpha design used the largest number of inputs for an ANN so far.  With the dynamic rig 

loads set as inputs it was hoped that it could provide a more accurate Vb output.  Various 

different types and designs of networks were tested for the Alpha method.  It was found that 

the Alpha design method with the standard MLP configuration produced the optimum 

results.  The other promising design was that of the Jordan/Elman Network (JEN), however 

there were stability issues, in particular with the Elman ANN in NeuroSolutions and so it 

TWS 

TWA 

Distance 

Vb 

 

Figure 49 - Beta Design 
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was rejected.  This was disappointing as the early results proved promising.  The optimum 

results of the Alpha method can be seen in Table 5 below, while the full set of results can be 

found in Appendix 3.  Compared to the final ANN method which was used for the Tornado, 

the MSE and other errors are significantly lower.  This is due to better ANN design and also 

the amount and the quality of the data that was used to train the ANN.  In a direct 

comparison, the two methods can be viewed below in Table 5. 

Table 5 – Illustrating the improvement of Alpha design 

Design  MSE NMSE R % Error AIC MDC 

Alpha 0.07 0.724 0.58 9.09 -277.48 124.7 

Beta 0.12 6.51 -0.06 24.98 -221.49 231.39 

 

It is easy to see that design Alpha has a superior performance to that of the Tornado method 

that was employed beforehand.  This is true for all the measures of error and the plots of the 

testing as can be seen in Appendix 3.  However, in the initial testing phase the results of the 

two methods were very similar but they were trained using slightly different datasets due to 

the training and testing data selection procedures, which changed the outcome of the result 

slightly.  One important feature in the testing of performance is the data selected to test the 

ANN as this is critical to the outcome.  In NeuroSolutions there is a testing feature that uses 

set aside data from each of the data sets.  This is usually chosen randomly and is therefore 

different for each ANN.  This produces a wide variety of ANN performances as some data is 

naturally less noisy or difficult for the ANN to interpret than other sections.  To counteract 

this, data was set aside which enabled the same test to be carried out on each of the ANNs.  

This therefore enabled fair testing throughout and relative performance between the methods 

is more important than absolute accuracy. 

 

5.6.2 Beta Design 

 

The Alpha design was expected to produce better results than the Beta design as more 

elements of a realistic sailing model and environment were being measured and used as 

inputs.  However, the design which can be seen in Figure 48 was produced as a verification 

of the accuracy of the Alpha design, which did not quite reach the levels of accuracy 

expected.  This was due to measuring too few variables on the rig.  A reduction in 

performance of the ANN was noted when the crew were on trapeze wires as increased 

TWS’s are accompanied by decreased rig loads, which provided confusing input for the 
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ANN.  This problem is in theory similar to the XOR problem that was investigated in the 

literature and the ANN should be able to solve it with the use of backpropagation.  A couple 

of investigatory ANNs were designed and built to explore this in greater detail and which 

aimed to predict TWS from the dynamic rig loads as well as Vb.  This was investigated to 

improve the wind speed measurement data into the model.  The design of the TWS 

prediction ANN can be seen below in Figure 50.  The ANN design of predicting Vb from the 

rig inputs can also be seen in Figure 51.  The level of ANN performance for both were lower 

than expected, this could be due to the only partial measurement of the sailing model.  In the 

49er there are many active and dynamic controls that are continually adjusted such as the 

mainsheet and rudder, which have the largest effect 

 

 

 

 

Figure 51 - ANN prediction of Vb 

 

The results of these ANNs can be found in Appendix 3 alongside plots of the data tests.  

Sufficient numbers of strain gauges could have eliminated the errors produced by the 

incomplete set of inputs not producing a full model.  The results of Beta design can be seen 

in table 6 below, alongside those of Alpha.  Beta design is of a different type, using the 

Jordan design from the JEN method.  There were some stability issues with the Elman 

methods in NeuroSolutions but the Jordan design proved to have sufficient performance. 
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Figure 50 - ANN prediction of TWS 
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Table 6 – A comparison of Alpha and Beta methods 

Design MSE NMSE r % Error AIC MDC 

Beta 0.039 1.29 0.55 12.66 4365.29 7247.26 

Alpha 0.07 0.724 0.58 9.09 -277.48 124.71 

 

In terms of performance comparisons between the two ANNs, the measurement errors 

produce some mixed answers with most of them favouring the Alpha design.  In the 

literature review the various different error measurement techniques were reviewed and the 

most critical one in terms of absolute performance was the MSE measurement of error.  

Measurements such as the NMSE, r, % error, AIC and MDC suggest that Alpha is a better 

design.  In terms of efficiency, the five error measures are correct in suggesting that Alpha is 

better in design.  This is due to a more efficient design and training of the MLP as well as 

the additional simplicity.  This was highlighted especially in the training as the Jordan ANN 

took three times as long as the MLP to train.  However, the absolute accuracy, rather than 

the efficiency of the ANN is paramount in the scope of this project.  In the Beta design there 

were further optimisations in design with the modification of the context unit which gave it 

an advantage over the MLP.  These affects of modifying the context unit can be seen in 

Figure 52 and the full table of optimised results can be found in Appendix 3.  The context 

unit is modified in increments of 0.2 and plotted against the MSE to show the effects of this 

optimisation process.  The use of a context unit can also be viewed as a low pass filter.  This 

has the effect of forming a weighted average for the most recent inputs.  The formula that 

the integrator axon uses for the context unit can be seen below in Equation (34), 

0�5, 4(� = ��aE	��aE	��¶¤k      (34) 

where β is the gain factor, 4( is the weighting and T is time. 

 

5.6.3 Context Unit Optimisation 

 

As the data is naturally very noisy Context Unit Optimisation is deemed to have a positive 

effect on the performance of the ANN although some of the context unit values produced a 

better performance than others.  The Context Unit is a parameter in the model which governs 

the amount of temporal data used.  Various moving averages (MA) were used in the early 

ANN training but this had an adverse effect on the performance of the ANN.  The use of a 

low pass filter affect does produce a superior end result to that of the standard MLP.  There 
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were again problems with ANN stability and program stability in NeuroSolutions for the 

Elman ANNs.  This was experienced when CVs and GAs were used to improve the structure 

of the ANN.  In performance terms, without these optimisation processes the performance 

between the Jordan and Elman ANNs was relatively similar.  With the capability of using 

the optimisation processes the MSE could be reduced to a similar level to that of Beta design 

if not more. 

 

Figure 52 - A plot of context optimisation for the Jordan ANN 

The context units are assigned a value between 0 and 1, with 0 using only the present time 

data and 1 including all the past data.  It can be seen from Figure 52 that the highest 

performing ANN, in terms of minimising the error, is the one with a context unit at 0.8.  

Changes below 0.5 showed only minor variations in performance of the ANN.  Context 

values of 0.7 and 0.8 were significantly better than the others, as the context value gets 

closer to 1 this shows a marked decrease in performance as the stability of the ANN reduces.  

Modifying the context unit in the ANN model was not a lengthy task but retraining the 

model took over 24 hours.  Values which are over 1 lead to severe stability problems and are 

therefore ineffective. 

An attempted improvement in the above performance was conducted with the inclusion of 

time as one of the inputs into the ANN.  It was envisaged that the input of time would help 

the ANN understand the difference in time between effects measured on the RIB and 

experienced on the target boat.  This however had an adverse affect on performance of the 

ANN with a reduction of MSE by 0.017.  This is due to the varying time delays experienced 

between the weather boat and the target boat as described in Figure 36 and Figure 37.  A 

more detailed table of this comparison can be found in Appendix 3. 
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5.7 49er Rig Optimisation 

 

With the fully optimised ANN selected, the next step was to optimise the rig settings and 

validate them against the tuning guide.  During the data collection period the conditions 

allowed data to be collected in virtually all of the wind ranges.  All of the data collection 

produced successful results apart from the lighter wind range as the performance of the 

ANN was significantly reduced.  This was due to the relatively high degree of variation in 

TWS and TWD, which is often found in these conditions.  The data presented below was 

collected in the moderate range of the TWS.  This was initially carried out by collecting 

several runs under base settings for the given conditions.  This forms the benchmark of the 

ANN and is the same data set that was used for the ANN optimisations and can be 

considered the base setting.  The data collected from the other seven runs was compared 

directly with the base line data as they fall within the TWS range of the benchmark.  The 

other runs are labelled by the rig setting that they were adjusted to.  This was measured in 

number of turns down or turns up on the bottle screw, which is connected to the caps and 

shrouds, e.g. ‘2d’ would signify two turns down.  The lowers were untouched.  The 

comparison was made by inputting the TWS, distance and TWA into the benchmark ANN 

and comparing the response directly to the collected data at the different rig setting.  This 

would not be possible without the use of an ANN, as the average TWS differed for each of 

the runs, ranging from 14.7 to 16.8 knots.  There was also a variation of standard deviation 

in TWS and TWA as can be seen in Table 7. 

 

Table 7 – Environmental variances of the 49er data runs 

Setting TWS SD 

TWS 

SD 

TWD 

4u 16.43 2.25 5.9 

2u 15.05 2.19 6.51 

1u 15.26 1.72 6.67 

0.5u 14.7 1.65 5.26 

BASE 16.81 1.18 7.22 

0.5d 14.94 1.73 5.03 

1d 15.18 1.54 4.95 

2d 15.65 2.91 8.63 
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Figure 53 shows the rig settings results plotted on the next page, there was one data run per 

setting bar the base setting which had multiple to train the ANN.  Each point in Figure 50 is 

the difference between the ANN Vb and the raw Vb from the tuning run in knots.  For 

example ‘4u’ was four turns under and over 0.6 knots slower than the ANN in the same 

wind.   The error bars are the same value as the accuracy of the modelling in knots.  The 

wind strength for each run is shown above every data point.  The table of data for the plot, 

which contains more details, can be found in Appendix 3.  There are several interesting 

factors to be drawn from this plot.  All of the average TWS values fall into the same rig 

setting bracket, which is between 16-19 knots and cover the whole of that range.  One 

example that shows the power of the ANN is the ability to compare the performance of two 

similar settings in a different average TWS, which is highlighted between BASE and 0.5u 

setting.  This is due to the ANN understanding the relationship between the wind strength 

and the boat performance.  There are, however other factors that also affect the performance 

shown, which include the strength and frequency of the wind shifts and gusts as previously 

mentioned.  During the Weymouth data collection the TWD was always in the offshore 

direction, producing harder conditions to sail the boat fast in compared to a steadier wind.  

This was most notable in the base and 2d settings which was lower than expected.  There 

was also more variation in the TWD for the base setting compared to the other data runs.  In 

the given TWS range, change in TWD has more of an affect than the change in TWS which 

would also explain why the base setting is lower than the surrounding runs 

The sizes of the error bars in Figure 53 are relative to the accuracy of the equipment and the 

accuracy of the ANN in production mode.  The difference in knots, shown on the Y-Axis, is 

between the output of the benchmark ANN and the individual data run at each setting.  Some 

of the settings are shown to be faster than the BASE setting in Figure 53, which could be 

attributed to the other individual influences mentioned above.  The only point with the error 

bars clearly higher than the base setting is ‘0.5u’.  During the data collection, the author also 

noted feedback from the crew after each of the runs.  After the ‘0.5u’ the crew reported that 

it felt as good if not slightly better than the base setting in terms of performance.  This could 

suggest either the setting suited the crew better than the squad standard or  
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Figure 53 - Validation of 49er rig tuning guide 

It is worth noting that one of the reasons why the validation was carried out with the ANN is 

due to the fact that the 49er is soon to have an upgraded mast and sails.  This upgrade is 

based on the research carried out by Bethwaite, previously discussed in the literature review.  

The tuning time for a new rig can last for a considerable period. However, by using ANNs in 

the method shown in this section, that time can be cut dramatically.  The Weymouth data 

collection period had a duration of three days with an extra two days of testing in Palma. 

The two boat dynamic comparisons were also able to be calculated in a similar format to the 

Tornado, except with a better accuracy.  An example of this can be seen below in Figure 51, 

with the benchmark of Evans which was collected in Weymouth compared against the raw 

data from Pink which was collected in Palma.  This again ran the measured TWS, TWA and 

distance through the benchmark ANN to get a response.  The performances of the two boats 

are very similar; however there are a few interesting points of relevance in the plot.  In some 

places, such as around 300 and 425 seconds, there are relatively large differences in Vb, 

which initially produced some confusion.  It was concluded that since the benchmark data 

was collected in Weymouth, where the conditions were offshore and relatively gusty due to 

the effect of the land, the performance would be naturally lower than that indicated by the 

data collected in Palma.  The air and water temperature would also have been different 

between the two locations.  The wind in Palma was from an onshore direction which 

reduced the frequency of gusts and shifts.  With easier sailing conditions the boats would 

naturally have a higher performance.  The difference in performance between Pink and 

Evans was very close and well within the error bars of half a meter in terms of gain over a 

duration of three and a half minutes sailing time. 
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Figure 54 - Comparison of two boats through the usage of ANN 

To account for the difference in wind stability the data was also collected from Evans in 

Palma in addition to Weymouth.  This enabled the difference in performance to be corrected 

through two different methods.  The first, which was very simple and relatively crude, was 

to add the difference in performance onto the output of the benchmark.  This led to a 

sensible answer of approximately two boat lengths difference between boats.  The second 

was to add the data collected in Palma to the benchmark’s training data and build a new 

ANN, which would be able to recognise the change in conditions, and test it on unseen 

Palma data.  Again there were also other factors which could affect the ANN performance, 

such as the improvement in sailing ability of the crew over the winter.  More plots showing 

comparisons in boat performance, such as the Evans versus Fletcher plot, can be found in 

Appendix 3.  The Evans versus Fletcher plot is interesting as it used the same method which 

produced the plot in Figure 54 but also had the two boats sailing together in a two boat 

testing format.  This enabled the differences in the ANN to be measured directly with the 

relative performance between the two boats on the water.  The difference in performance 

between beta design and beta design + with Palma data can be seen in Table 8 below. 

 

Table 8 - A comparison of the last two evolutions of ANN 49er designs with and without Palma data 
included 

Type MSE NMSE R % Error AIC MDC 

Beta + 0.07 5.39 0.59 32 2658 6755 
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Beta 0.09 7.41 0.63 36.6 3213 7458 

All of the error measurements agree that there is a significant gain in ANN performance 

when some of the Palma data is added to the dataset.  This is due to several factors, firstly 

the data set is larger and more data generally produces better results.  The ANN has learnt 

that not all gusts initially reduce the performance of the ANN due to the reduction of model 

error.  Lastly, the data collected in Palma is also of better quality due to the steadier 

conditions experienced.  The data that is used to test the performance of the ANN is from a 

different 49er crew, previously unseen by the ANN, from which the data was also collected 

in Palma.  This is a true comparative test of the performance of both networks. 

There are however some problems with the creation of the Beta + ANN which are that if 

Weymouth data was fed into the ANN, the performance would be reduced compared to Beta 

design.  This leads to a condition sensitive based ANN which uses more than one ANN 

depending on the conditions.  So for conditions with more variance in TWD and TWS the 

Weymouth ANN of Beta would be more suitable and vice versa for Beta +. 

 

5.8 Conclusion 

 

This chapter started by considering  the current performance analysis methods in the sense 

of two boat tuning and plotting raw or lightly filtered data, such as in Bethwaite’s method.  It 

is worth noting that the typical Olympic coach still regards the two boat tuning method as 

the best technique for optimising boat performance.  Then methods building upon both of 

these techniques were presented, introducing more and more sophisticated methods and 

analysis techniques.  As the analysis progressed the results also became more accurate and it 

was demonstrated that it is possible to produce precise models of the boats in order to 

improve performance. 

One of the objectives defined earlier in the thesis was to accurately model the performance 

of the Olympic classes.  Using ANNs this has introduced a much more accurate modelling 

method to analyse boat performance than the existing static methods. 

The two current methods of optimising boat performance were combined with the ANNs to 

produce a model that used the strengths from both of these methods and more.  The ANNs 

were validated on the water in the two boat testing methods as well as against the tuning 

guide of the Olympic Development Squad.  With the ANN model, accurate performance 

data was able to be fed to the squad coach.  This was in various formats such as metres per 
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minute or seconds per mile.  The end result of the development and optimisation of the ANN 

was a virtual tuning tool (VTT).  This was able to be used as a benchmark by the sailors as 

shown for example in Figure 54.  The VTT has several advantages over the traditional two 

boat tuning in multiple areas.  The VTT always sails at the same performance, two boat 

tuning can suffer from one of the sailors having a bad day or not trying as hard as the other 

crew.  The VTT is not influenced by these effects, it is also not affected by changes in TWS 

conditions or headers or lifts, which ruin a two boat tuning session.  Before using the VTT, it 

was notable in the debrief after the training session that a significant amount of the 

discussion is taken up debating whether there was a header, or if the boat to leeward was 

faster in a tuning run. 

During the data collection it was planned to produce a polar diagram from the collected data 

or the ANN.  In some segments of the data collection runs the crew sailed in a lower and 

higher than optimum mode than they usually do in order to collect some additional data.  

This with the current ANN techniques and methods was not powerful enough to produce a 

full polar plot.  The poor performance of the ANN downwind also made it difficult due to 

large TWS and TWD measurements because of poor weather boat positioning. 

In the next chapter techniques used to produce accurate polar diagrams through the use of 

VPPs and ANNs will be considered.  This will produce a full performance model of various 

classes for all TWS and TWA outside of the ANN model for beating and the VTT that has 

been created in this chapter. 
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Chapter 6 

 

VPP Correction with ANNs 

 

6.1 Introduction 

 

It was discussed at the end of the last chapter that the VTT was able to produce a very 

accurate sailing performance comparison but had problems producing a full polar diagram 

for the different TWS.  This chapter describes the development of a full polar performance 

model for the relevant Olympic classes using ANNs and VPPs.  The methods that were used 

for constructing a polar diagram solely from the ANN, building upon the previous chapter, 

will be described, and then the explicit VPP produced to resolve problem will be presented.  

The final solution embraces the strengths of both of these tools to produce an accurate polar 

model. 

The polar diagram that is normally produced by a VPP is considered a static model, whereas 

the ANN is able to produce a dynamic model based on the conditions it experiences.  This 

polar is effectively a snapshot based on the conditions of the inputs that is fed into the ANN 

to produce a polar.  The final model presented in this chapter produces a VPP polar diagram 

that is tuned from the ANN for the conditions experienced during the training of the ANN, 

and that could be considered to represent an average performance of the boat under those 

conditions.  For this model it is considered to be flat water with gusty conditions.  The 

weakness of the VPP is that it is usually designed for displacement yachts and has difficulty 

coping with dynamic and ultra light displacement small dinghies such as the 49er. The use 

of ANNs allows the resolution of these problems. 

 

6.2 ANN Polar Derivations 

 

The knowledge and experience gained during the development of the VTT was invaluable 

for trying to develop an ANN based polar diagram of boat performance.  With a better 
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understanding of the application of ANNs, encouraging results were able to be obtained 

more quickly and an appropriate model developed.  In this section methods of producing a 

response from the ANN that agrees with a polar diagram of actual data will be presented. 

To create a polar diagram the first thing needed is an input that will produce the output in the 

correct form.  The input has to be in the same parameters in which the polar diagram is 

measured, namely TWA and TWS.  An example of an input can be seen in Table 13 in 

Appendix 3 which was used successfully in some of the early attempts.  The table specifies 

the wind speed and angle which the ANN produces the outputted boat speed as per a VPP.  

‘Distance’ had to be included in order to improve the ANN model as it was found to have a 

positive influence on the training of the model.  For the input, ‘distance’ was taken as a fixed 

value, determined as the average distance between the weather and target boat as modifying 

the distance could have an involuntary effect on the model. 

In the early pure ANN polar plots the ANN was having difficulty in recognising that at very 

low TWAs the boat was slowing down due to being close to head to wind.  This was 

partially due to the fact that there was only a very small amount of data collected when the 

boat was almost head to wind.  This produced quite a large error at small TWAs.  One of the 

techniques used to counteract this phenomenon was for the author to artificially insert data 

for head to wind which was of course zero.  With this data included and a new ANN trained, 

the ANN was able to produce a much better polar.  There was however a trial and error 

process as too many artificial data points added for head to wind would skew the other 

results in the ANN.  A variety of marginally modified data sets were tried and tested with 

the aim of the curve passing through the centre of the axis.  A good example of a pure ANN 

derived upwind polar is shown in Figure 55.  The plot used an interpolated curve with data 

points in the true wind axis of every five degrees. 
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Figure 55 – Upwind 49er Pure ANN Derived Polar 

 

In the data collection process for the 49er, downwind and reaching data was also collected, 

as a full ANN polar was anticipated.  In the early stages the author attempted to use one 

ANN to produce a response for upwind and downwind.  After trying several different 

designs and structures of ANNs an accurate enough response was not possible due to the 

significant reduction in accuracy over the entire wind speed and angle range.  Therefore two 

separate ANNs were designed and trained for upwind and downwind.  This was an 

improvement on the combined ANN for two reasons.  Firstly the upwind ANN was not 

affected by the larger errors produced from the downwind ANN, and secondly the training 

of the ANNs was quicker and more robust than the previous method.  Large errors were 

present in the downwind ANN due to the difficulty of measuring the same wind that the boat 

was experiencing without affecting it.  There were however some issues at 60 degrees TWA 

due to the joining of the ANNs, these are visible in Figure 56 below.  The errors above 60 

degrees at the join of the two models are not that important as when the boat is racing it 

normally does not sail at these angles.  Due to the windward leeward course the boat is 

either sailing upwind at an angle in the region of forty degrees or downwind at an angle of 

over 130 degrees true wind angle. 
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Figure 56 - Dual ANN polar response for the 49er 

One of the possible factors why there was such a jump between the two ANNs is due to the 

small amount of data collected in this region.  It was also not possible to collect data in this 

region in the windier conditions as the boat became too hard to sail and had a tendency to 

become dynamically unstable or nose dive.  It is clear from looking at the downwind section 

of Figure 56 that the maximum VMG and Vb is continuously found to be close to directly 

downwind.  Whereas, in reality the optimum zone is expected to be approximately thirty 

degrees higher and with a large reduction in VMG performance close to 180 degrees TWA.  

This was attributed to the errors from the data collection for the downwind data in a similar 

scenario to Figure 36 and in Figure 37 but with an increased magnitude.  Positioning the 

weather boat for downwind data collection was difficult as measuring the wind alongside the 

target boat affected the wind and there was also interference from the wake of the weather 

boat.  Measuring the wind in front of the target boat would have affected it even more from 

the wake of the weather boat.  Hence the only position to collect data without affecting the 

target boat was from directly behind.  This would produce the situation where the 49er 

would catch up with gusts in front and it would take a significant time for the weather boat 

to measure the increase in TWS or change of direction.  Another factor was that since the 

weather boat was travelling faster, errors in corrections in dynamics for the TWS and TWD 

readings also increased as the motions of the rib were more violent. 

Due to the difficulty in producing polars with just the ANN it was decided to use a VPP to 

complement the ANN.  A VPP was written by the author based on the work by Martin 

(2001) as discussed in Chapter 2.  The sophistication of the VPP is not as advanced as 

today’s commercial packages with full hull form modelling, but this is not important as the 
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VPP will have been calibrated using ANN in those areas known to be accurate and 

validated.  Using the ANN to ‘tune’ the VPP also produces an improvement in the standard 

VPP.  VPPs are regarded as static models whereas the ANN is a dynamic model.  One 

example of this in reality is when the helmsman anticipates a gust and is able to sail higher 

than in theory by luffing.  The ANN is able to model this and correct the VPP for the wind 

speeds when this technique is being used.  In the next section the methods used for 

constructing the VPP and correcting it with the ANN will be described.  The VPP methods 

shall be covered in brief with the full workings and equations in Appendix 4. 

 

6.3 VPP Building Methods 

 

It was discussed in chapter two that the forces and moments in the VPP model need 

balancing in order to satisfy equilibrium conditions.  Each of these components is produced 

from several different calculations and factors.  For the simplified VPP developed for the 

project the forces needing balancing are listed as below: 

• ��**
 = ��(!�� 	
• ��**
 = �+(�* 	
• ���( * = ��)��
 	

��**
 is the sum of the components that produce a heeling force on a yacht.  This is 

produced from the sails and is calculated from the nominal sail areas of the main and jib.  

Other factors such as calculating the TWS at the CoE of the sail plan is also taken into 

account.  The counteracting force to this is the righting moment of the yacht, known as 

��(!�� , which from the balancing equations has to be equal to the heeling force.  The 

righting moment is calculated using Larsson’s principles (Larsson, 1994) based on the 

characteristics of the hull and the centre of gravity of the yacht. 

��**
 is the third component is produced from the lift and drag of the yacht’s sails with 

respect to the TWA at several different angles.  It is worth noting that ��**
 must be 

calculated first in order to determine the component��**
 .	 	 �+(�* is one of the smaller 

components and one of the most difficult to calculate accurately or even measure in reality 

without sophisticated equipment.  In the scope of this project the �+(�* is calculated using a 

look up table derived by Gerritsma. (Gerritsma et al, 1991)  The table enables the calculation 

of �+(�* through several different coefficients of heel at different angles.  In between these 
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angles the standard cubic interpolation method produces an accurate enough answer.  The 

rudder angle is not included in these equations due to the assumption of a balanced model. 

The penultimate component that needs balancing is ���( * which is the driving force of the 

yacht generated from the sails and is similar in calculation methods to the drag of the heeling 

force of the yacht that was covered earlier.  The driving force is calculated from initially 

determining the sail areas, before the coefficient of lift, which in turn calculates the lift 

generated by the yacht.  The lift is then calculated with the TWA and the drag to produce 

���( *.  The counteracting and final force to ���( * is the resistance of the yacht in a 

hydrodynamic perspective known as ��)��
.  This is one of the more complex areas of the 

VPP as there are several factors that influence the resistance.  These range from the 

appendages to the calculation of the canoe body resistance in several different forms of 

resistance ranging from residual to frictional. 

In order to balance the forces discussed on the previous page an optimisation process must 

be used.  In this case the VPP was written in Microsoft Excel which enabled the author to 

use the well known Solver tool, which used the Generalized Reduced Gradient (GRG2) 

method to optimise a variable based on various constraints set by other functions.  There are 

nine constraints that need to be followed as well as maximising the speed of the yacht for 

every TWA and TWS.  Maximising the speed of the yacht is crucial as without this feature it 

would be very easy to balance the equations with the yacht stationary or travelling at a slow 

speed.  Maximising the theoretical performance at each different TWA is also the aim for 

producing a realistic and more accurate model.  In the next paragraph the constraints shall be 

examined in turn.  One of the important features to note from using an iterative process like 

solver is that every time it is run it could produce a very slightly different answer to the 

previous run for the same inputs and conditions.  The size of these differences in results is 

insignificant in relation to the result produced as it is several order of magnitudes smaller 

than the error of the modelling technique.  This is due to the nature of the GRG2 and also the 

size of the error bands that were specified by the author in the design of the VPP. 

The nine constraints are split into two different sections, the first is designed to ensure that 

the model works effectively and the second part is the balancing equations as mentioned 

previously.  It is worth noting that not all of the constraints are necessary but without all of 

them the reliability of the program is reduced.  This is found when solver is not able to find a 

solution based on the constraints and inputs that the user has specified.  It is worth noting 

that some of the forces are left out and assumed to be in equilibrium, such as the weight and 

the buoyancy being in balance.  There is no yawing moment as the keel and mast are 

assumed to be in the optimum location.  
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6.4 VPP First Section Constraints 

 

The first constraint is leeway which is specified to be greater or equal to zero for the model 

to balance.  Without this, solver could start to use negative leeway which would greatly 

reduce the validity of the VPP.  Reefing and flatteners are used by the VPP in the higher 

wind ranges when the heeling force becomes too large in order to still balance the model.  In 

all but one of the Olympic classes the sailors do not have the option to reef or to use a heavy 

weather jib, so the reef and flattener were regarded as other depowering components used by 

the crew, such as increased bending of the mast, using more Cunningham or changing the 

sheeting angle as this would have a similar effect.  It is worth noting that the depowering 

constraints were changed for each of the classes, as the boats with larger sail areas were 

overpowered much quicker than something like an Yngling.  This constraint was added in 

order to limit the size of the reefing and flattener as the model could change this to over 1 in 

the lighter conditions in order to improve performance. 

In the VPP described by Martin (2001) he uses a constraint on the distance that the crew are 

able to sit to windward measured from the amidships (CRARM).  As Martin’s VPP was 

designed to be used for large displacement yachts it assumes that the crew is hiking.  For this 

project most of the crew have their body weight outside the sheer line of the boat by either 

hiking with toe straps or trapezing by wire, which means that a change in constraint is 

needed for the formula, hence Equation (35) changes to Equation (36) for hiking boats and 

Equation (37) for trapeze. 

 

0.01 <= ����� <= �� 2N � | 	0.015	     (35) 

0.01 <= ����� <= �� 2N � + 0.5	    (36) 

0.01 <= ����� <= �� 2N � + 1.4		    (37) 

 

The final variable at the end of each of the equations is changeable based on the height and 

mass of the sailor as this varies considerably between the different Olympic classes.  There 

are also several different hiking techniques that are used, for example the straight legged 

Laser hiking technique is very different from the crew of a Star which is drop hiking which 

would result in a change of performance. 
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One of the assumptions that the VPP makes is that since there is wind there will always be a 

heel of some magnitude in order for the balancing equations to function.  This is due to not 

being able to an angle of heel of zero which would produce invalid results.  Hence Martin 

(2001) specified a minimum heel close to zero and up to a maximum of thirty five degrees.  

In the VPP for this project, it is a known fact that the sailors do not sail the boats heeled 

anything close to thirty five degrees.  In some classes such as the Tornado or Star heel at a 

certain angle is good in order to reduce wetted surface area by lifting a hull or using a chine.  

The maximum heel will have to be changed dependent on each of the classes. 

The final constraint from the first section is the minimum speed that the boat is travelling at.  

This was set to be greater than 0.5 knots as below this speed there are larger errors in the 

calculations of drag and lift for hydro and aero forces. 

 

6.5 VPP Second Section Constraints 

 

The second set of constraints that solver has to optimise are similar to those which Martin 

used in his program.  However, the error bands that solver has to work within are increased 

as initial work found some problems with stability in finding a solution.  The acceptable 

error bands have increased from 0.05 percent to 0.1 percent.  One of the reasons why there 

was an increase in the allowable error was that modelling smaller yachts than those which 

Martin modelled were often harder to solve, especially at the higher wind speeds when 

beating upwind.  The three equations can be seen below which relate back to the equations 

specified at the start of this section. 

����( * | ��)��
�/	��)��
 <= 0.001	   (38) 

���**
 | �+(�*�/�+(�* <= 0.001	   (39) 

���**
 |��(!���/��(!�� <= 0.001	   (40) 

 

There are several inputs which are used in a VPP to specify the parameters and dimensions 

of the yacht which is being modelled.  However some of these inputs need to be inserted as 

an initial estimate into the solver program to start the iterative process.  Inputs such as 

principal dimensions also need to be defined for the model to function.  The values inserted 

are only a starting point but solver needs them to be specified in order to begin the process.  

A guess of boat speed is needed, the closer the guess for each of these inputs the quicker the 
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solution can be found.  The other inputs that need an initial input are also the constraints 

listed in the first section. 

6.6 The VPP Program 

 

Since the program is based on various formulae and relations in an Excel spreadsheet, the 

data is easy to manipulate.  However inserting data for every different TWA, TWS and 

estimating the values for the starting points is a very laborious task.  Therefore the author 

decided to write a program in Visual Basic that was able to manipulate the Excel spreadsheet 

that the VPP was in by automatically changing the values and presenting the results.  This 

was done through the use of Excel Automation.  This enabled a full program to run but also 

small adjustments to be made to the VPP as well.  The program was initially validated 

against a program called Sail Performance Analysis, SPAN, developed by the company 

Formation Systems.  Further details of the formulae used and some of the techniques 

employed can be found in Appendix 4. 

 

6.7 VPP Correctional Methods 

 

When the particulars for the Star were initially entered into the VPP it was impossible to 

determine how accurate it was.  The Star is a difficult boat to measure in a traditional VPP as 

it has an unusual hull form due to a very prominent chine.  The Star is also considerably 

smaller than the usual yacht that would be analysed with a VPP.  However, once data was 

collected from the Star and processed using the ANN it was possible to produce an upwind 

optimum sailing angle for a variety of conditions.  This then allowed the author to modify 

the VPP by matching the optimum upwind points of the ANN with the VPP.  It would also 

include the crew interaction correction into the VPP polar plot.  The methods that the 

author’s VPP is based on are a generic interpretation of performance which means that 

several of the calculations are approximations, such as the lift and drag calculations with 

respect to the sail coefficients.  In some of the TWSs and TWAs the performance of the 

ANN and VPP were relatively similar.  However especially in the windier conditions the 

results tended to differ due to the VPP having difficulty in balancing the equations and a 

difference in theoretical and actual hull shape.  This was due to the fact that the VPP finds it 

harder to balance the yacht in those conditions.  The results before the ANN correction are 

method alpha and post correction from the ANN method beta. 
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Table 9 - Before and after correction has been applied 

 Alpha method Beta method 

TWS TWA Vb TWA Vb 

5 47 4 44.6 4.03 

10 40 5.5 37.6 4.98 

15 38 5.6 36 5.28 

20 40 5.8 36.1 5.39 

 

There are clearly differences between the two methods.  After the correction had been 

applied to the polar the difference in the plot was clear to see.  The largest difference in 

performance was between 45 and 90 degrees.  The downwind performance was relatively 

similar between the two methods.  This is due to the fact that the coefficients of lift are no 

longer as important due to the driving force on the sail changing from lift to drag.  The 

comparative polar can be seen on the next page, to keep the diagram simpler the plot for 10 

knots TWS is only shown in Figure 57.  Method Alpha is the plot in red and Beta in black is 

the corrected version. 

 

 

Figure 57 - Alpha versus Beta method for the Star in 10 knots TWS 



99 

Chapter 6 – VPP Correction with ANNs 

 

In the final year of the PhD, a set of polars were needed for each of the classes for the 

Olympic Games in order to enable tidal calculations to be performed.  With a very accurate 

knowledge of the tide at locations across the race course and an accurate polar performance 

known the strategy could be determined before the race.  This involved a more sophisticated 

VPP as the author’s VPP was not very reliable and did not cater for smaller yachts or 

planing dinghies.  Hence work began with Dr. Martyn Prince of the Wolfson Unit at 

University of Southampton.  More on this further step can be found in the next section.  A 

few other examples of the Star polar can be found in Appendix 6 for different TWSs.  It is 

interesting to note when examining the other wind speeds that at the higher wind speeds the 

VPP has difficulty balancing the boat when it is beating. 

 

6.8 Wolfson VPP 

 

Using the author’s VPP and the ANN method, as described in the previous section, produced 

good results for the Star class as there was sufficient data and the type of boat is significantly 

closer to a conventional keelboat than the other Olympic classes.  The author’s VPP was not 

able to cope with the lighter displacement classes even with the ANN corrections as there 

were severe problems with model stability.  This is due to the nature of the VPP that was 

used especially in areas such as calculating resistance. 

A solution was found for this problem and that was by using the Wolfson VPP (WinDesign).  

The Wolfson VPP is also partially based on the Delft series that was used in this project but 

has a higher level of sophistication.  The Wolfson VPP is a much more accurate VPP than 

the author’s but the most important factor is that it has a dinghy section.  This dinghy section 

is simpler than the rest of the VPP and focuses more on length and wetted area for the 

calculation of performance.  It is able to model the performance of the boat when it planes 

significantly better than the author’s VPP.  It does have a reduced performance in the 

transitional zone when the boat is just starting to plane but this is usually limited to a ten 

percent error. 

Therefore using the Wolfson VPP and correcting it with the ANN in a similar way to the 

Star method was the logical step.  This was enabled through better modelling from the VPP 

and also the expertise of Dr. Martyn Prince of the Wolfson Unit.  The difference between the 

Wolfson VPP and the ANN was significantly smaller than the previous attempt of the author 

but correction of the VPP was still needed.  There were differences in the TWA in the higher 

wind ranges as expected upwind as the ANN was able to sail the boat higher than the static 
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VPP as it included the input from the crew.  There were usually a couple of iterations before 

the final polar was produced for each of the classes.  One of the first polars was that of the 

49er as the author had a well trained ANN and the Wolfson Unit had some good data for that 

boat.  The ANN was able to correct the VPP upwind through manipulation of the sail 

coefficients, and the VPP is able to produce a downwind performance.  An example of the 

finished 49er polar can be seen on the next page in Figure 58.  As mentioned previously in 

the chapter the Wolfson VPP was corrected to known points derived from the ANN and the 

two were joined together.  In the majority of the curves the transition is smooth, however for 

the wind speeds between 4 and 7 knots this transition is less smooth between 60 degrees and 

80 degrees.  This could be due to the sudden drop off of apparent wind sailing with reduced 

wind speed and no spinnaker hoisted. 

The interesting part of Figure 58 is that the VPP is powerful enough to determine the 

optimum downwind angles.  This was not possible with Carrico’s VPP which was discussed 

in chapter two possibly due to the sail coefficients as it determined the optimum angle to be 

at 180 degrees TWA.  This problem was initially found in the Finn as VPPs in general 

struggle with the aerodynamics of single sails close to dead downwind due to the difficulty 

in determining the lift coefficients of the sail.  However with the sail coefficient correction it 

produces a much more realistic polar diagram.  A couple of the other combined polars can 

be found in Appendix 6 from the Tornado and the Star classes.  In the next section further 

data analysis techniques shall be examined using the software and ANNs written by the 

author. 
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Figure 58 - The final 49er polar based on the results from the ANN and the Wolfson VPP 
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6.9 Custom Software 

 

Near the end of the development of the ANN and its analysis techniques, a need arose to use 

the new methodology in a user friendly format with a few other additional features added.  

This requirement originated from the RYA technical department who intended to use the 

package after the end of the project, under the title of the RYA Performance Analysis Tool 

(RYAPAT).  The software revolves around the use of the ANN and also some of the work 

that was carried out with the Dr. Prince at the Wolfson Unit.  In the next section an 

examination of the features and functions of the program will be presented and it will be 

explained how they help in modelling the performance of yachts quantitatively. 

 

6.9.1 Program Features 

 

The program has multiple features and tools, all designed with the aim of providing the user 

with answers to boat performance queries.  In the software an attempt has been made to 

eliminate qualitative assertions about performance and replace them with accurate 

quantitative performance descriptors.  These can take a variety of formats such as ‘the yacht 

is twenty seconds per mile quicker than the baseline performance’ or alternatively, for the 

non technical user, that it is simply quicker.  In the next section the various aspects and 

segments of the program shall be described.  Further information and illustrative screenshots 

can be found in Appendix 10.  The features discussed will include the data pre-processing 

and fusion, the ANN response and running the data analysis tool.   

6.9.2 Data Pre-Processing 

 

During a training or testing session the data is usually offloaded into Pi Toolbox for quick 

analysis.  It is then possible to export the data from the weather boat and the target boat into 

Excel.  Pi Toolbox exports data using a procedure named RYAPAT that, fuses them into a 

pre-determined format ready for the analysis program to process.  Once this is complete the 

data is displayed in the windows in its raw format in a time distance plot and in polar format.  

The trace of the yacht can also be seen in a bird’s eye plot.  If there is any tide where the 

data has been collected this can be corrected for in the program by entering the tidal speed 

and direction.  The vectors are then resolved to remove the tidal component.  Ideally, the 

data collection is carried out in non tidal waters as the tidal effects can only be represented 

approximately and are a source error, however small. 
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6.9.3 ANN Processing 

 

In the software, as mentioned earlier, the ANN is the main component and it acts as a very 

powerful and flexible performance analysis tool.  The ANN is produced by using a feature in 

NeuroSolutions, Custom Solution Wizard, which builds a .dll file, based on the ANN that 

has been created.  This effectively produces six different files that are used for producing a 

response from the ANN based on the input data.  To produce a new ANN and six new files, 

the new ANN has to be trained in NeuroSolutions first before loading it into the software.  It 

is possible to allow the training and testing of ANNs in the software but this was disabled 

due to the cost of the higher user level and the complexity involved in the training of the 

ANNs, which produced a recall only ANN.  The recall only facility allows users to evaluate 

themselves against the benchmark but not train new ANNs. 

Once the data has been successfully loaded into the ANN from the pre-processing method or 

directly from a complete file it is simply a matter of using two buttons to produce a 

numerical and graphical response of the ANN against the raw data in terms of the boat 

speed. 

The next step is to investigate how the raw data compared against the ANN in a variety of 

terms, as illustrated in Figure 59.  The figure shows (1), the data analysis tab which consists 

of a time distance plot of both boat performance; (2) a dial which shows how it compared 

with colour coding; and (3) tables with more detailed numerical data. This display can be 

altered depending on the needs of the user, which are graduated at four different levels.  The 

first gives a basic view which shows the dial and the percentage difference in performance 

with the time distance plot showing all the available features for the advanced user.  The 

level above this enables the selection of different ANNs and allows the capability to load 

them in.  This level is secured in order to reduce the chance of the user changing the ANN 

loaded in mistakenly.  A screen shot of this tab can be seen on in Figure 56 with the 

important features labelled. 

The next level allows the user to select different segments of the data collection run and 

analyse them individually.  When a section is selected the analysis is automatically run and 

can be compared to the overall performance.  This feature is particularly useful when a sailor 

or coach feels that the sailor was faster or slower in one section through a change in 

technique or setting on the boat. 
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Figure 59 - Showing the data analysis tab after processing 49er data 

The results of the data analysis can be saved into an Excel file if desired.  One of the later 

features that was added to the program is one of the most important, which is the re-

importing of data into Pi Toolbox with the ANN included.  This feature included the 

information of the data analysis tab but with the added function of producing a latitude and 

longitude trace of the raw and the ANN data.  This produced a feature that displayed the raw 

data sailing, with the ANN sailing alongside in the same conditions, almost as a ghost boat.  

A screenshot of this feature can be seen on the next page in Figure 60. 

The method for producing the comparative trace was based on using the spherical 

trigonometry calculation with the new bearing and speed of the ANN for the inputted wind 

conditions.  Dr. Martin Smith of Nottingham University contributed some invaluable help 

with this feature.  The method is an approximation and there are two other methods which 

can be used for the calculation.  Due to time constraint these other methods were beyond the 

scope of the study.  The first of these alternative methods involved using the Haversine 

method while the third and most complex approach was to build and use a Kalman filter. 
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The spherical trigonometry method used the sine cosine rules and assumed that the Earth 

was a perfect sphere.  The notes for this method were kindly provided by Dr. A Sowter of 

the same department. 

 

Figure 60 - The comparative analysis of performance through producing an artificial latitude and 
longitude ANN trace 

Figure 60 clearly illustrates a very powerful tool for the sailors in the debrief and when 

analysing various aspects of performance.  One of Pi toolbox’s features is the 

synchronisation of data with video, with the trace running in synchronisation with video, 

further techniques can be analysed by the coaches as it would show direct indications in the 

performance of the trace.  In the next section the uses of VPPs shall be examined in the 

program. 

 

6.9.4 VPP Analysis 

 

One of the additional benefits of producing the Wolfson based polars for the Olympics was 

that they could be used in performance analysis.  The technique in which they were used is 

similar to the method that Deckman uses, which is by interpolating between the values for a 

given TWA and TWS.  This feature was added to enable performance analysis for classes 

where there was little or no collected data, such as the 470.  Since the performance is relative 
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to the ANN corrected polar, the modelling technique would be a static one.  In a comparison 

of how the VPP based analysis compares to the raw data and the ANN analysis, a 

comparison was conducted which can be seen below in Figure 61. 

 

 

Figure 61 - A comparison of the VPP interpolation, the ANN and the raw data 

The differences in performance between the VPP output and the ANN show the difference 

in modelling technique between the static and dynamic methods.  Since the VPP is static, as 

soon as the TWS drops, the VPP produces the relevant drop in performance whereas in 

reality it takes time for the yacht to slow down due to momentum.  This also happens with 

gusts and changes in the direction of the wind.  However, it is clear to see from Figure 61 

that in constant conditions the VPP and ANN produce similar results.  This is encouraging to 

see as the VPP was tuned from the ANN.  The plot in Figure 61 is from a 49er, which is hard 

to model accurately with just the VPP.  A heavier displacement boat such as a Yngling or 

Star would be better for modelling. 

This concludes the chapter on ANN and VPP based data processing and analysis.  In the 

next section the results shall be looked at in a broader sense before concluding in the 

following chapter. 
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Chapter 7 

Sail Based ANN Performance Analysis 
 

7.1 Introduction 

 

One of the common themes throughout the project was that for every question answered or 

problem solved further issues of interest were identified.  One example of this is that after 

the initial development of the ANN for the Tornado class it was considered desirable to 

include a further input to the ANN to try and improve the accuracy of the model. The input 

selected, because of its influence on the performance of this class, was shroud tension as 

measure by strain gauges located on the shrouds.  As a corollary of this, another input that 

was considered worthy of exploring was the resulting sail shape.  To do this an image 

recognition system was used to monitor characteristics of the sail shape and this was time 

stamped to allow it to be synchronised with the other logged data, to provide a further input 

to the ANN.  It was hoped that the change in sail shape could then be directly related to the 

performance of the boat and vice versa.   

Image recognition may seem like a significant change of direction from the main focus of 

this study but it was initiated with the idea of being able to use the sail characteristics as 

inputs for the ANNs.  In the following sections the history of sail image recognition is 

discussed along with existing sail image recognition tools.  The static and dynamic sail 

image recognition techniques investigated are then compared. 

 

7.2 Sail Image Recognition Background 

 

One of the key skills of sailors is the ability to trim a sail correctly.  Trimming a sail 

effectively may be considered to be a skill developed from both understanding and 

experience that relies on qualitatively judging the correct sail shape by eye as there is no 

quantitative measure of sail shape used.  Nevertheless, the experienced sailor can trim sails 

very effectively to allow the maximum performance to be obtained.  A related and more 

difficult skill is to take this understanding of sail shape and apply it to the design of sails.  In 

designing a sail there are several parameters and dimensions that need to be ‘optimised’ as 

well as observing constraints on the maximum allowable size of the sail.  When trimming, or 
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designing a sail, there are several key factors that need to be considered, these are apparent 

in the points labelled in Figure 62: 

• Maximum draft position in the sail (Point 2); 

• Maximum camber of sail (Point 3); 

• Entry angle (Point 4); 

• Exit angle (Point 1); 

• Twist in the sail. 

The twist is not visible in the Figure as the picture is taken looking upwards.  The twist 

measurement is defined as the angular difference between the boom and the top draft stripe.  

Figure 62, (Halsey, 1999), is from the literature used to describe the commercial sail makers 

sail program ‘AccuMeasure’. It is one of the more widely used manual fitting programs 

currently in use and shall be discussed further in the next section. 

 

1   2  3    4 

 

Figure 62 - Looking up a mainsail (taken from UK Halsey, 1999) 
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7.2.1 Fitted Spline Sail Analysis (FSSA) 

 

There are two different types of sail analysis programs, fitted and automated.  The fitted 

method has been in existence for around a decade, originally coming from the work carried 

out in preparation for the America’s Cup (AC) races.  However, it has found its way into the 

commercial market and is now more widely available for use by sail makers.  Normally the 

shape of the sail is measured at three or four different heights in order to get a good 

understanding of the overall sail shape.  These points can usually be recognised by sail 

stripes, which can be seen in Figure 62 above in red.  In the fitted method the user takes a 

picture from the bottom of the sail at a known reference point that is sometimes marked on 

the sail.  The aim is to fit in all the sail stripes from a view point that is almost underneath 

the sail.  If the picture is taken from the wrong place then the sail dimensions will become 

distorted. 

The characteristics of the sail are measured by the user manually fitting a spline to each of 

the sail stripes.  There are various control points along the spline that are adjusted until they 

align with the sail stripe.  Once the two have been aligned properly the program is able to 

calculate the various characteristics of the sail at that point.  This process takes 

approximately ten minutes per picture and is regarded as a relatively laborious task.  There is 

also scope for errors in aligning the spline with the sail stripe as can be seen in Figure 63 

below. 

 

Figure 63 - An example from the North Sails program 
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Since it is such a labour intensive process, multiple pictures in a sequence can be very time 

consuming to analyse.  While this method has proved effective for larger keelboats it would 

not be as suitable for most of the Olympic classes as the rigs are very dynamic, namely they 

tend not to be in a steady state; one image could look very different to another in the same 

wind conditions if one of them is taken at the time the boat encounters a wave.  This 

problem has led to the recent development of an automated system, which has a number of 

potential benefits. 

 

7.2.2 Automated Spline Analysis System (ASSA) 

 

The automated system has again come from the AC arena and is the Sail Vision software 

(Sail Vision).  This is a significant step forward from the manual fitting version, as all the 

splines are fitted automatically, saving a lot of time and ensuring better accuracy.  One of the 

most important features of the software is that it is time stamped and included in the dataset.  

This means that the usual performance analysis of the yacht can be carried out but the sail 

data can be added to this as well in order to assess the performance of the trimmers or the 

design of the sail.  The principal disadvantage of using such a system is that multiple 

cameras need to be fitted to the boat with two on the mast head and two a little lower than 

the forestay fitting on the mast.  The two at the top are able to analyse the mainsail and the 

twist of the mainsail from the boom reference.  The two below the forestay are for analysing 

the genoa; the twist in this case is from the sheeting position.  A sample of the main sail 

analysis can be seen below in Figure 64 (Sail Vision Report, 2007) and the genoa in Figure 

65 (Sail Vision Report, 2007). 

 

Figure 64 - Sail Vision Mainsail Analysis (Sail Vision Report, 2007) 
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Figure 65 - Sail Vision Genoa Analysis (Sail Vision Report, 2007) 

There are other advantages of using an automatic system such as the analysis of more than 

one sail at the same time.  Taking images from the top of the rig enables all of the sail to be 

included in the image.  Quite often in the manual process, when taking a photograph from 

under the boom, it is not possible to fit all the draft stripes in.  The smallest draft stripe 

which is the one near the top of the sail is normally the hardest to see, so having the camera 

at the top of the rig enables it to be the closest. 

 

7.2.3 Assessment of Current Sail Vision Systems 

 

Having discussed the main positive and negative features of both systems, the automated 

system is potentially the better system for application to the types of boats considered in this 

study.  As mentioned previously, for boats with highly dynamic characteristics, such as the 

Olympic classes, it is difficult to analyse sail shapes without an automated system.  A static 

system only gives a single snapshot at one moment in time of the overall dynamic system. 

The use of image recognitions systems in the past have been met with varied results.  The 

FSSA and ASSA techniques can be viewed as static and dynamic methods as the Fitted 

Spline method is based on a brief snapshot of the sail whereas the Automatic Spline method 

can be applied at specified time intervals. 

In the Olympic classes the coaches regularly work with sail designers and manufacturers in 

the build up to the Olympic Games with the aim of optimising the sail design.  In this 

process they use manually fitted spline method with the sail designers.  An option was to use 

the Sail Vision system but it was not deemed suitable due to space requirements and cost.  
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With the author’s dynamic system it differs to the Sail Vision system that was reviewed in 

chapter two as the data processing is not analysed in real time.  This means that the data can 

be captured and analysed at a higher rate, as time and processing power is no longer a 

constraint.  In the Sail Vision system the processing has to be instigated by the user and 

cannot be carried out readily. 

Hence a program was written in Matlab using the image processing toolbox.  The program 

used several well known techniques that shall be discussed in the next section before looking 

at the program in action in the demonstration. 

 

7.3 Image Recognition Methods 

 

The image recognition system consists of two major components, the camera and recording 

system hardware and the accompanying software that processes the information recorded. 

The aim of the software is to extract the sail stripe from the image and then calculate the 

shape of the sail from analysing the extracted stripe.  In the initial investigation into the sail 

image processing techniques the colour day glow red was chosen.  This was used as it stands 

out well from the colour of the water and from the white boats and sails.  In this section the 

methods used by the software to isolate the stripes is outlined. 

 

7.3.1 Pixel Labelling 

 

The first step in the process is to apply a colour space transform to the image.  A colour 

transformation structure is created which changes each of the pixels from the RGB format to 

an L*a*b* format which is a different colour system encoding.  It is then possible to apply 

this colour transform to the image using the three different areas such as luminosity ‘L’.  The 

second of the three processes in the L*a*b* format ‘a’ determines how much green and red 

the pixel has.  The third and final section ‘b’ performs the same analysis as ‘a’ but in the 

respect of blue and yellow.  This is done for each of the pixels and a colour marker is then 

attributed to it.  The time needed to label all of the pixels is related to the processing power 

of the computer and the resolution of the image. 
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7.3.2 Cluster Indexing of Pixels 

 

After each of the pixels have been labelled by the L*a*b* method the next step is to label all 

the pixels with a cluster index.  The cluster index can be optimised with respect to the 

distance between clusters and partitions.  This, through the use of K-means, enables the 

clusters to be arranged in an optimum format.  K-means allows natural clusters of data to be 

identified through an iterative procedure.  There are various controls of the K-means 

clustering such as using replicates to avoid local minima in the iterative process.  Other 

factors such as the calculation of distance between the clusters can be altered and in this case 

the squared Euclidean method was used.  One other variable of the K-means method is the 

alteration of the number of colours that are used in the process.  In this application, isolating 

red sail stripes made the process easier and the value was set at 3 accordingly. 

After this process is complete it is then possible to label each of the images with the results 

from the K-means segmentation.  This has the effect of producing three images that all 

consist of segmented pixels.  In these three images the sail stripes are finally isolated from 

the rest of the colours with two other segmented images.  An example of the extracted sail 

stripe can be seen in Figure 66. 

 

Figure 66 - A segmented image taken from looking up the author’s RS 400 jib 
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Once the sails stripes are isolated, further processing is needed to produce an image that can 

be analysed.  This is done by firstly changing the RGB image to a greyscale image for the 

desired segmented image.  The next step is to detect the edge of the stripes through the use 

an edge detection algorithm.  This can be done using several different such methods, ranging 

from the Sobel to the Prewitt methods.  During early testing, several different methods were 

tested and the best performance was judged to be given by the Canny edge detection 

method.  Once the edges have been isolated the last image processing step is to trace the 

edge with the boundary tracing method.  After it has been traced the image is then ready for 

calculating the actual variables of the sail shape, such as maximum draft and entry angle.  

After this process is complete it can be plotted graphically as shown in Figure 67. 

 

Figure 67 - An example of graphical analysis 

An example of the other segmented images can be found in Appendix 5.  The important 

output of the software is not in the graphical representation of the sail but quantifying the 

parameters required and providing them as numerical output characterising the sail shape.  

An example of this can be seen in Figure 68.  The values for each of the parameters are time 

stamped at the same frequency as the other logged data in order to aid the synchronisation 

process.  
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The software was originally written a few months before the hardware testing began as the 

initial work was based on static pictures of sail shapes.   

Deciding on the best hardware proved to be more difficult than the software development as 

there was a trade off between the cost of the required camera(s) and the quality of the image 

that they provide.  There were four demonstration tests in total which used hardware from 

two different companies.  The first test used the hardware that the RYA already possessed, 

which consisted of a bullet camera and a waterproof MiniDV tape recorder.  This system 

was tested on the author’s RS400 with red sails stripes and the camera taped to the top of the 

mast.  The results of the first demonstration indicated that the hardware was not of a 

sufficient quality with respect to the resolution of the camera and the length of the analogue 

cabling.  The quality of the captured image was so poor that an almost random colouring on 

the edges of the images was experienced.  This had a drastic affect on the segmentation 

process and produced a lot of scatter, which can be seen in Figure 82 in Appendix 5.  Hence 

an investigation into finding more suitable equipment began. 

 

Figure 68 - Showing the output of the image recognition 

The first search for better image acquisition hardware resulted in two demonstrations with a 

company called First Site.  The hardware that was trialled was significantly superior to that 

of the initial demonstration with the RYA equipment.  This was due to a better camera, 

which used Ethernet connections to a computer, producing a much better image quality with 

better saturation and there was also significantly less reduction of the signal quality.  The 
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computer or tablet was able to store the images in a more efficient manner than the MiniDV 

tapes, as there was a function to ‘rip’ the desired images as they were recorded.  An example 

of one of the ripped images can be seen in Figure 70.  This however added to cost and 

weight of the hardware, which was considerably more expensive than the RYA equipment, 

and also needed water proofing. 

7.4 Hardware Selection Trials 

 

The camera system was tested with an old B14 jib simply held so as to provide a shape 

representative of a set sail.  Again the jib had red day glow stripes on the battens and the 

camera was filming from above the head of the sail.  This test was far more successful than 

the first one with the acquisition system producing a much better image.  The results of this 

image processing can be found in Figure 70.  Compared to the RYA equipment the results 

are far superior.  The conditions for testing were not as good as the first demonstration as the 

light level was falling but the results were nevertheless encouraging.  The other segmented 

images can be found in Appendix 5.  First Site were also able to provide a camera 

calibration service that corrects the ‘fish eye’ effect that is found from using a digital 

camera.  This mainly affects the top draft stripe as it is close to the edge of the image.  It is 

worth noting that the Sail Vision system does not include this image calibration. 

 

Figure 69 - Raw image from the second demonstration 
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Figure 70 - Analysis from the second demonstration 

In the image analysis process the bottom and middle stripes were partially hidden from the 

camera that meant that a full analysis could not be conducted on the two stripes.  This was 

due to the fact that the jib was very old and the battens had stretched the material around the 

draft stripes and this was therefore sagging compared to the surrounding areas of the sail so 

were hidden from view.  The bottom draft stripe could also be larger as it is the most 

difficult to view.  This is a common technique used on the AC yachts, the bottom stripe can 

sometimes be as wide as a meter since the location of the camera is relatively far away.  

Moving the camera away from the mast would improve the view of the draft stripes but this 

would then effectively distort the shapes of the stripes further. 

A second test session was conducted a couple of months later by First Site in determining 

the optimum location of the cameras on the author’s RS400.  This however was a flawed test 

as the camera was not set up correctly and the colours captured were distorted or faded.  

Correction to the images was attempted but was not to a sufficient level of accuracy. 

At the time of the third test another company, DogCam, was found producing suitable 

hardware.  Their hardware represented a good compromise between the RYA and the First 

Site hardware in terms of quality and price.  It had the advantage of the RYA equipment in 

terms of ruggedness, but not as high quality as the First Site hardware.  The final 

demonstration was conducted at DogCam using the ME1 configuration which can be seen in 

Appendix 5.  This demonstration was by far the most successful with the acquisition and 

processing systems functioning well on the first attempt.  This was mainly due to the 

functionality of the hardware and software provided by DogCam.  The Matlab code was also 



Chapter 7 – Sail Based ANN Performance Analysis  118 

 

updated which sped up the processing and improved the stability of the program.  The 

segmented images can be found in Appendix 5 and the processed image can be seen in 

Figure 68. 

 

Figure 71 - The final image recognition output 

After this successful test, a proposal was written to purchase the equipment for further on the 

water testing.  However this was not possible due to a change of financial constraints at the 

RYA so this aspect of the study was not able to be progressed further but these experiences 

and the method developed are considered to provide a useful starting point for further work 

in this area. 

 

7.5 Conclusion 

 

With the finance to purchase the camera system hardware, and the time to develop it into a 

useable system, a very powerful tool could be created.  This tool would be different to Sail 

Vision as all the analysis is done in a post processing format and the characteristics and 

dynamic behaviour of the sails could be analysed in greater detail.  This is due to the high 

frequency of capture and the automation of the software.  This tool could then be used to 

provide additional inputs for inclusion into the ANN model.  This could give the user the 

performance of the sails with respect to the performance of the boat and crew.  After the 

ANN learns several similar sail shapes it could be used as a performance prediction tool 

where future sail shapes could be entered in order to determine the performance of the yacht.  
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This is just one example of how the method presented could be extended; in Chapter 8 

further comment is made about future work in the application of ANN to performance 

prediction. 
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Chapter 8 

Conclusions and Future Work 
 

8.1 Conclusions 

 

A novel approach in modelling yacht performance analysis has been developed in this 

project through taking advantage of the power of ANNs. The new approach has advanced 

yacht performance analysis from quasi static analysis and modelling to a truly dynamic 

performance evaluation technique.  In contrast to the majority of current performance 

analysis and prediction techniques it is able to provide both a higher level of accuracy and 

also to include, for the first time, the performance of the crew in the model. This ability to 

include explicitly the performance of the crew in the model is considered to be a very 

significant original contribution of the work presented. 

Determining the final ANN design was a lengthy process with many alternative solutions 

investigated in order to establish the most appropriate ANN design types and configurations 

for each class of boat modelled.  Some designs were found to be more suitable than others 

for different applications and had various advantages and disadvantages.  For example in 

Chapter 5, the Jordan ANN produced the best performance for the 49er, but had the longest 

training time.  In contrast the MLP design trained quickly and was able to give approximate 

answers relatively quickly and robustly for new or exploratory methods.  Similarly, the 

performance of the MLP proved to be superior compared to the Jordan ANN when the rig 

settings were used for the 49er. 

Throughout the project data collection techniques improved which also helped the training 

and accuracy of the ANN model.  Dedicated days of data collection runs were implemented 

which improved the whole process further as described in Chapter 5. 

In terms of advancing the field of performance monitoring and evaluation, the use of an 

ANN allows the development of a novel and purely quantitative model by reducing the 

reliance on the qualitative inputs and responses.  It represents a step change from current 

methods where modelling performance is at best based on regression of raw or filtered data 
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integrated with qualitative assumptions.  With this core tool, various other features can be 

created that can be used to monitor the performance of sailing yachts; examples include the 

rig optimisation tool, and the ANN comparative positional trace plot.  Chapter 6 

demonstrated that the main additional feature that was created was the facility to produce an 

accurate polar diagram from a corrected VPP.  This capability enabled the sail designer for 

the UK Olympic team to produce better designed sails for various classes of boats.  The 

technique was used in the Star and Finn classes for the sail design.  It enabled the sail 

designer to improve the CFD model allowing better sails to be designed. 

The project was used as the basis for developing new methods and approaches to training the 

Olympic sailing team.  Implementing this culture change was one of the more challenging 

aspects of the whole project.  Up to this point the sole approach had been based on the 

conventional technique of changing various parameters on the boats in order to improve the 

performance through qualitative inputs and outputs.  The project introduced new concepts 

and methods that were able to model performance more efficiently and objectively than 

before by almost removing the human factor in the assessment through the use of ANNs and 

allowing, for the first time, the human influence on sailing performance to be assessed 

objectively.  This improvement in modelling more than satisfied several of the original 

pragmatic requirements of the project.  An aspiration of the work was to transform the level 

of yacht performance analysis techniques and modelling to that of performance prediction 

used in Formula One motor racing.  A good indicator of this increased investment at a higher 

level in sailing is the converging professionalism and budgets of the America’s Cup with 

Formula One.   

This project has gone some way to changing attitudes to training in the sport, with many 

coaches working with different Olympic class recognising the associated benefits in 

preparing for the 2008 Olympics. This shift in attitude has not been altogether universal with 

some classes, such as the 470 and RSX windsurfer, yet to benefit from these approaches. 

Some classes are continuing to use these tools to prepare for 2012, particularly those where 

early data collection was accepted.  For these classes there has been a change in attitude in 

the team from initial reluctance to mounting the GPS units to the boats, to proactive requests 

for data collection and access to the performance analysis techniques developed from this 

project.  This has acted as a major factor in closing the loop of including the influence of 

boat and crew performance on boat design, the training of crews and sail design.   
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8.2 Future Work 

 

The use of ANNs has proved to be a very powerful tool in the area of performance analysis 

of yachts.  Their unique ability to model complex environments much more effectively than 

previously used methods opens up a world of alternative and future uses of ANNs in the 

sailing environment.  This project has only scratched the surface in terms of using ANNs for 

modelling sailing performance.  There are several different routes that were discussed and 

envisaged to be of potential interest in further research past this project. 

8.2.1 Separating out Boat and Crew Performance 

 

During a training session it is often difficult to determine whether the improvements in 

performance of the crew and the yacht are in relation to the improvement of the crew; a 

technical enhancement of the yacht; or just that the yachts being compared are sailing in 

different environmental conditions.  ANNs would provide an approach to solving this 

problem.  A model would be trained with the original boat and crew, then the crew would be 

replaced or elements of the crew replaced and they would sail against the model.  With the 

yacht remaining the same and the only difference the crew it would be possible to ascertain 

the individual performance characteristics of the crew.  If sufficient data were collected, this 

approach could be extended to modelling different members of the team sailing the same 

boats in identical environmental conditions, thus isolating crew performance.  By the same 

token different rig configurations can be tested by having the same crew sailing the yacht 

repeatedly in the same environmental conditions, but with different rig settings.  

Additionally, using similar techniques, the best yacht in a group can be identified for 

particular weather conditions. 

 

8.2.2 Rig Optimisation  

 

At the time of writing, the 49er class has recently adopted a new mast and sail plan.  This 

provides an opportunity for the settings of the new rig to be optimised in preparation for the 

next Olympics. This could be based upon the techniques described in Chapter 5 and could 

potentially be developed further with the use of more sophisticated measurement techniques.  

Improved GPS units would improve the accuracy of the measurement of Vb by almost an 

order of magnitude.  More advanced methods of producing and comparing boat performance 

could be developed with the use of ANNs primarily by building upon the ‘Alpha’ design that 
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was also discussed in Chapter 5.  The ‘Alpha’ design could be improved upon further by the 

addition of further inputs, such as mainsheet load, trapeze line load, forestay load and 

various other controls such as kicker and Cunningham that could all be logged at the same 

time as the other variables.  This increase in inputs could potentially improve the 

performance of the ‘Alpha’ design over that of the ‘Beta’ design method and also reduce the 

amount of data collection time.  It would however require significantly more time setting up 

the equipment in the target boat. 

 

8.2.3 Telemetry and Real Time Modelling 

 

A telemetry system does exist for the GPS units that the RYA currently employs and which 

was used in the early part of this project.  One of the ideas for further work in this area is to 

use the telemetry system to show the performance of the target boat compared to the ANN.  

This system would function by sending the Vb and COG to a receiver in the weather boat.  

The receiver would be connected to a tablet computer that also has the input for TWD and 

TWS.  With these inputs the ANN could produce an output of predicted boat speed in a 

similar manner to the results previously described for desired and actual Vb but in real time.  

The result of the comparison of the raw data to the ANN could then be shown in real time on 

a display for the coach in terms of the relative performance of the boat with respect to the 

target ANN prediction.  A further development could be sending the results back to the 

subject boat via telemetry on a small display for the crew to monitor their relative 

performance also.  This could be conducted more easily on a larger yacht with onboard 

computers. 

 

8.2.4 Integration with Existing Software 

 

An extension of the previous idea of real time performance monitoring and benchmarking 

performance would be to apply it to larger displacement yachts, such as Americas Cup Class 

boats, which have the space and capability to have significant computing resources onboard.  

This could be integrated with existing proprietary software packages used to monitor 

performance and augment their functionality further.  The main advantage of this would be 

to allow much quicker analysis and subsequent comparisons as the data bandwidths would 

be significantly higher than via telemetry.  It would also be a useful tuning tool for large 
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yachts as in most cases the testing is conducted in secret or where there are no other identical 

types of yachts to conduct boat on boat testing with.   

 

 

8.2.5 Performance Prediction for Boat Design 

 

One of the areas in which ANNs have been used in the marine industry is with respect to 

predicting resistance in the design process for larger vessels.  The ANN uses tank test data 

and provides an alternative to traditional statistical regression approach for interpolation. 

The work involving ANNs in this project with performance analysis could potentially be 

combined with the towing tank data for various yacht forms to produce a resistance 

evaluation tool for use in design.  The various design parameters that would have an effect 

on the performance of the yacht in the towing tank or in reality could be investigated using 

the ANN model with a view to identifying forms with improved resistance and performance 

characteristics. 

 

8.2.6 Virtual Racing and Benchmarking 

 

Since the performance of the yacht and the crew can be modelled with ANNs it should be 

possible to combine this with a virtual racing simulation.  Several papers have been written 

on decision making and simulation of a fleet race or match race.  The work by Scarponi 

(Scarponi, 2007) is a good example of an approach that it could be combined with. 
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Appendix 1 GPS Board Specification 

         u-blox AG 
 Zürcherstrasse68 

 8800 Thalwil 
 Switzerland 
 www.u-blox.com 

 Phone +41 1722 7444 
 Fax+41 1722 7447 
 info@u-blox.com 

 SAM-LS 

 GPS Smart Antenna Module 

 Data Sheet 

 

Sheet 

 Abstract 

 This document describes the features and specifications of the 
 SAM-LS Smart Antenna Module, a low power GPS receiver 
 macro-component with integrated patch antenna. Based on the 
 ANTARIS GPS technology, it ® offers high GPS performance 

 

ata 
 combined with easy and fast systemintegration  
                 your position is our focus 
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Features 

• 16 channel GPS receiver 

• 8192 simultaneous time-frequency search bins 

• 4Hz position update rate 

• ANTARIS Positioning Engine 

• ATR0620 Baseband IC with ARM7TDMI inside 

• ATR0610 Low noise amplifier IC 

• FLASH memory (min. 4 Mbit) 

• DGPS and SBAS(WAAS, EGNOS) support 

• FixNOW™ power saving mode 

• Operating voltage 2.7 to 3.3 V 

• Battery supply pin for internal backup memory and real time clock 

• Industrial operating temperature range ´ 0 to 85°C 

• Small size 

• Size 31.5 x 47 x 9.5 mm 

• Weight 23g 
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                                                                   your position is our focus 

 2 Performance Specification 
 Parameter Specification 

 Receiver Type L1 frequency,C/A Code, 

 16-Channels 

 8192 search bins 

 Max Update Rate 4 Hz 

 Accuracy Position 2.5 m CEP 3 5.0 m SEP 4 

 (SelectiveAvailability off) 

 Position DGPS/ SBAS 2 2.0 m CEP 3.0 m SEP 

 Acquisition 5 FastAcquisition Normal High Sensitivity 
 Mode Mode Mode 

 34 s 36 s 41 s 
 Cold Start 6 

 33 s 
 Warm Start 

 <3.5 s 
 Hot Start 

 Signal Reacquisition <1 s 

 Sensitivity FastAcquisition Normal High Sensitivity 

 Mode Mode Mode 

 Acquisition -132 dBm -136 dBm -138 dBm 

 Tracking -141 dBm -144 dBm -147 dBm 

 Dynamics δ 4 g 

 Operational Limits COCOMrestrictions 

 Table 4: Performance Specification 

 2 Dependson accuracyof correction data of DGPSor SBASservice 

 3 CEP= CircularError Probability: Theradiusof a horizontal circle,centered at the antenna’strue position, containing 50% of the fixes. 

 4 SEP= SphericalErrorProbability. Theradiusof the sphere,centered at the true position, contains50% of the fixes. 

 5 Thedifferent start-up modeslike cold, warm and hot start are described in the System Integration Manual [1] 

 6 Measured with good visibility and -125 dBmsignalstrength 

 SAM-LS- Data Sheet Performance Specification 

 GPS.G3-SA-03002-F Page 7 



135 

Appendices 

 

During the data collection sessions the performance of the GPS was continually monitored 

in order to produce the best results possible.  This was accomplished using a program from 

u-blox who are also the manufactures of the GPS.  A screenshot of the performance 

monitoring in action can be seen below in Figure 72. 

 

Figure 72 - Showing the performance of the GPS with the u-blox program 
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Appendix 2 49er Optimisations 

 

Table 10 - The Olympic squad tuning guide for the 49er 

 

TWS 
(knots) 

Shroud 
(turns) 

Cap 
(turns) 

Lower 
(turns) 

Tack/Jib 
(mm) 

Board 
(inches) 

Outhaul 
(inches) 

Notes 

0-7  -1 14.5 0 + 9-14  Down 1.5  

6-9  0 14.5 0 + 7-10 Down 1.5-2  

8-12  +5 14.5 0 +2-7 Down 2-2.5  

11-15 9-10 14.5 0.5 +0-4 Down 2.5  

14-17 14 14.5 0.5 -0-4 Down 2.5  

16-19 16-17 14.5 0.5 -4-10 Up 2.5 2.5  

19+ 35 14.5-

13.5 

0.5-1 -10-18 Up 5-10 2-1.5  

 

Figure 73 - More comparisons of performance with ANN predictions, TWS is included in this plot 

 

Table 11 - Showing the optimisation process of the context unit 

 

Context MSE NMSE r 

% 

Error AIC MDC 

0.1 0.07 3.71 0.54 20.76 4374.7 7532.7 

0.3 0.0698 3.684 0.55 20.63 4370.1 7528.9 

0.5 0.0693 3.672 0.57 20.61 4369.4 7527.4 

0.7 0.0615 3.23 0.57 19.05 4305.9 7463.9 

0.8 0.056 2.97 0.58 18.3 4264.1 7422.4 

0.9 0.078 4.13 0.56 22.17 4428.5 7586.5 
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Table 12 - Alternate ANN methods 

 

ANN type MSE NMSE r % Error AIC MDC 

TWS       

Vb 0.269 2.63 0.42 17.31 -173.6 12.33 
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Appendix 3 Residual Resistance and ANN Inputs 

 

 

Table 13 - Showing the input used to generate the pure ANN polar, note the fixed distance between the 
weather and target boats in the right hand column 

 

TWS TWA dist 

2 30 0.35 

2 35 0.35 

2 40 0.35 

2 45 0.35 

2 50 0.35 

2 55 0.35 

2 60 0.35 

2 65 0.35 

2 70 0.35 

2 75 0.35 

2 80 0.35 

2 85 0.35 

2 90 0.35 

2 95 0.35 

2 100 0.35 

2 105 0.35 

2 110 0.35 

2 115 0.35 

2 120 0.35 

2 125 0.35 

2 130 0.35 

2 135 0.35 

2 140 0.35 

2 145 0.35 

2 150 0.35 

2 155 0.35 

2 160 0.35 

2 165 0.35 

2 170 0.35 

2 175 0.35 

2 180 0.35 
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   Between Froude numbers of 0.125 & 0.45     

Froude No a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 Rr 

0            

0.125 -6.735654 38.36831 -0.00819 0.055234 -1.99724 -38.8608 0.956591 -0.00217 0.272895 -0.01752  

0.15 -0.38287 38.1729 0.007243 0.026644 -5.29533 -39.5503 1.219563 0.000052 0.824568 -0.04784  

0.175 -1.503526 24.40803 0.0122 0.067221 -2.44858 -31.9137 2.216098 0.000074 0.244345 -0.01589  

0.2 11.29218 -14.51947 0.047182 0.085176 -2.67302 -11.4182 5.654065 0.007021 -0.09493 0.006325  

0.225 22.17867 -49.16784 0.085998 0.150725 -2.87868 7.167049 8.600272 0.012981 -0.32709 0.018271  

0.25 25.90867 -74.75668 0.153521 0.188568 -0.88947 24.12137 10.48516 0.025348 -0.85494 0.048449  

0.275 40.97559 -114.2855 0.207226 0.250827 -3.07266 53.0157 13.02177 0.035934 -0.71546 0.039874  

0.3 45.83759 -184.7646 0.357031 0.338343 3.871658 132.2568 10.86054 0.066809 -1.71922 0.095977  

0.325 89.20382 -393.0127 0.617466 0.460472 11.54327 331.1197 8.598136 0.104073 -2.8152 0.15596  

0.35 212.6788 -801.7908 1.087307 0.538938 10.80273 667.6445 12.39815 0.166473 -3.02613 0.165055  

0.375 336.2354 -1085.134 1.644191 0.532702 -1.22417 831.1445 26.18321 0.238795 -2.45047 0.139154  

0.4 566.5476 -1609.632 2.01609 0.265722 -29.2441 1154.091 51.46175 0.288046 -0.17835 0.018446  

0.425 743.4107 -1708.263 2.435809 0.013553 -81.1619 937.4014 115.6006 0.365071 1.838967 -0.06202  

0.45 1200.62 -2751.715 3.208577 0.25492 -132.042 1489.269 196.3406 0.528225 1.379102 0.013577  

            

   Between Froude numbers of 0.475 & 0.7      

  c0 c1 c2 c3 c4 c5 Rr     

0.475 180.1004 -31.50257 -7.45114 2.195042 2.689623 0.00648      

0.5 243.9994 -44.52551 -11.1546 2.179046 3.857403 0.009676      

0.525 282.9873 -51.51953 -12.9731 2.274505 4.343662 0.011066      

0.55 313.4109 -56.58257 -14.4198 2.326117 4.690432 0.012147      

0.575 337.0038 -59.19029 -16.0698 2.419156 4.766793 0.014147      

0.6 356.4572 -62.85395 -16.8511 2.437056 5.078768 0.01498      

0.625 324.7357 -51.31252 -15.346 2.334146 3.855368 0.013695      

0.65 301.1268 -39.79631 -15.023 2.059657 2.545676 0.013588      

0.675 292.0571 -31.85303 -15.5855 1.847926 1.569917 0.014014      

0.7 284.4641 -25.14558 -16.1542 1.703981 0.817912 0.014575      
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Appendix 4 VPP Calculations 
 

In this appendix the methods and techniques used in the author’s VPP shall be examined 

alongside several screen shots of the program.  At the beginning of chapter 5.1 the forces 

that needed balancing were described in turn.  In this section we shall examine the methods 

used to produce each of these forces in turn beginning with a few other essential equations 

before moving onto the calculation of the first of these which is Rtotal. 
 

One of the most essential components to determining the characteristics of a yacht is the 

water plane area ��	� which is calculated through the usage of Equation (41) below. 

�	 = �	
 ⋅ %	
 ¼1.313 ⋅ �� + 0.0371 XJij
∇_k ZN ] | 0.0857 ⋅ �� X Jij

∇_k ZN ]¾   (41) 

Where 

�	
 = beam of the yacht at the waterline 

%	
 = waterline length 

�� = prismatic coefficient 

∇/ = volume of displacement of the hull 

One of the other important equations that is used in the VPP is the midship coefficient (��) 

which can be summarised by Equation (42) below. 

�� = ∇¿�Jij⋅dij⋅g_⋅ÀÁ�      (42) 

Where �Τ/�is the draft of the hull of the yacht. 

The third and final preliminary equation which the midship coefficient feeds into is the 

calculation of the wetted surface area (./).  This is a particularly important equation in terms 

of resistance calculation and can be seen below in Equation (43). 

./ = Ã1.97 + 0.171 dijg_ Ä ⋅ Ã6.Å?À­ Äa \N ⋅ Æ∇/ ⋅ %	
Ça FN     (43) 
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Hydrodynamics 

Resistance 

 

��)��
 is a combination of multiple different components of resistance which can be 

summarised in the format of Equation (44) below. 

��)��
 = �
 + �� + �( + �� 	    (44) 

Where 

�
 = The frictional resistance of the hull and appendages. 

��  = The residual resistance of the hull. 

�( = Induced resistance 

��  = Increased resistance due to heel. 

To begin with, the frictional resistance shall be calculated but in order to do so it requires the 

Reynolds number ��#� of all the hydrodynamic components including appendages.  This is 

calculated using Equation (45) which can be seen below. 

�# = H⋅J
K       (45) 

Where 

& = the velocity 

3 = the kinematic viscosity 

% = The average length of the chord for the rudder, keel, bulb and 0.7 × %	
 for the hull. 

Then in turn the coefficient of friction is calculated for each of the components using 

Equation (46) below. 

�
 = 6.6>?
�@AB�CD�EF�G      (46) 

If there is a bulb which in most of the Olympic classes there is not the following equation is 

used to produce the friction coefficient for it. 

�1 + �� = X1 + 1.5 P�
Q
F \N + 7P�
Q\]    (47) 
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The frictional resistance can now be finally found by multiplying each of the previously 

calculated coefficients by its respective area.  These are then added and the total is 

multiplied by the stagnation pressure which varies based on water density as seen below. 

�
 = W ⋅ �./ ⋅ �
/ + .� ⋅ �
� + .� ⋅ �
� + .V ⋅ �
V�    (48) 

This completes the first of the four segments which make up the total hydrodynamic 

resistance of the yacht.  In the next section the residual resistance shall be examined.  The 

VPP is able to calculate the residual resistance of the yacht at various different Froude 

numbers.  It is able to do this through the use of two large tables produced by Gerritsma et al 

in 1993 which contains all the coefficients of residual resistance.  In the VPP program it is 

possible to select the correct coefficient through the use of the lookup function in Excel.  

Again to find values in between the data points the linear interpolation method is used.  The 

first table is for Froude numbers between 0.125 and 0.45.  The second covers the range from 

0.475 to 0.7.  This table can be seen in the previous chapter in Appendix 4.  There are two 

different equations for calculating the residual resistance, one for each table.  The equation 

for the lower table can be seen below in Equation (49) and the higher in Equation (50). 

�� = ΔÉ Êa6 + aa ⋅ CÌ + aF ⋅ LCB + a\ PÏÐÑÒ¿ Q + aT XÓÐÑ
∇¿k ZN ] + a? ⋅ CÌF + aÅ ⋅ CÌ XÓÐÑ

∇¿k ZN ] + a> ⋅
LCB2+a8Lwl∇c132+a9Lwl∇c133/1000                 

(49) 

�� = ΔÉ Êc6 + ca PÓÐÑÏÐÑQ + cF X ÕÐ
∇¿G ZN ] + c\ ⋅ LCB+ cT PÓÐÑÏÐÑQ

F + c? PÓÐÑÏÐÑQ XÕÐ
∇¿G ZN ]

\Ö/1000      (50) 

These two equations complete the section on residuary resistance, the next component of 

resistance is induced resistance.  The calculation of this part is more straightforward than the 

previous segments, it is however as mentioned in the literature review a simplification of the 

process.  The first step is to calculate the effective draft �0r) which uses several coefficients 

which are based on the heel of the yacht.  These are shown below first in Equations (51 to 

53). 

�a = 4.8080 + 0.0370 ⋅ ' | 4.983 ⋅ '\		 	 	 �51)	
�F = |4.179 | 0.809 ⋅ ' + 9.670 ⋅ '\			 	 	 �52)	
�\ = 0.055 | 0.0339 ⋅ ' | 0.0522 ⋅ '\    (53) 

These then feed into Equation (54) which calculates the effective draft. 
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0r = 0 ��a Pg_gQ+ �F Pg_gQF + �\ Pdijg_ Q�     (54) 

The final step is to substitute the result from Equation (54) into Equation (55) to calculate 

the induced resistance of the yacht. 

�( = noGl⋅gmG⋅p       (55) 

The final segment of the resistance calculation is the resistance due to heel.  In the scope of 

this project most of the Olympic classes will sail at a very small angle of heel, however 

some classes such as the Star sail at a certain angle of heel constantly upwind to minimise 

the wetted area.  The amount of heel allowed was adjusted on a class by class basis.  The 

method of calculation is relatively simple with the coefficient of heel being calculated first 

before substituting it into the final equation.  This method can be seen below in the two 

equations respectively. 

�" = Å.>T>P×_× QØF.?a>PÙij×_ QØ\.>a6PÙij×_ Q⋅P×_× Qa666      (56) 

�" = W ⋅ ./ ⋅ �" ⋅ �#F ⋅ '		     (57) 

Equation (57) concludes the calculation of resistance which is probably one of the more 

complex parts of the VPP.  In the next section the stability of the yacht shall be focussed on 

with showing the method used for determining the righting moment. 

 

Righting Moment 

 

To calculate the righting moment two equations have to be solved and are called the 

dynamic increment and the GZ.  These two equations (58 and 59) feed into to the righting 

moment equation; the dynamic increment shall be examined first. 

{F = |0.0406 + 0.0109 dijg_ | 0.00105 Pdijg_ Q
F
     (58) 

{\ = 0.0636 | 0.0196 dijg_       (59) 

�v ⋅ wx#' = �{F ⋅ ' ⋅ �# + {\ ⋅ 'F�     (60) 
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Now that the equation for MN has been calculated it feeds into the GZ equation which in 

turn feeds into the final righting moment calculation along with the crew weight righting 

moment (��/).  These three equations can be seen below. 

uÚ = �u� +�v� ⋅ wx#'      (61) 

��/ = 70 ⋅ �&�%�� ⋅ yzw' ⋅ �����     (62) 

MVBLCR is number of crew that are able to move in the yacht and in this project are hiking 

or trapezing over the side.  CRARM is the distance between the centreline of the yacht and 

the centre of gravity of the crew. 

��(!�� = �uÚ ⋅ Δ ⋅ ´� +��/      (63) 

 

Side Force 

 

The next and final section of the hydrodynamic section is the side force acting on the yacht.  

This again uses a look up table which was derived by Gerritsma et al in 1993.  This table is 

present in Excel and linear interpolation is used between the data points and can be seen 

below.  The lookup function is also used for this table, in this case the heel angle is in 

radians. 

Table 14 - Gerritsma side force calculation method 

 

Φ b1 b2 b3 b4 

Lift 

Slope 

0 2.025 9.551 0.631 -6.575 0.335807 

0.17453293 1.989 6.729 0.494 -4.745 0.324726 

0.34906585 1.98 0.633 0.194 -0.792 0.308166 

0.52359878 1.762 -4.957 -0.087 2.766 0.259373 

 

The columns b1 to b4 are all coefficients which are used in Equation (64) to calculate the lift 

slope.  This can be seen in the last column. 

�+(�* = ~⋅p⋅q_/)+� ��a PgGq_Q + �F PgGq_Q
F + �\ Pg_gQ + �T Pg_gQ PgGq_Q�   (64) 

Where � is leeway 



145 

Appendices 

 

In the next section the methods for calculating the aerodynamic forces that the yacht 

experiences shall be examined in detail.  One part of the calculations which uses the aspect 

ratios shall be shown in its original form before modification from the ANN, the modified 

version can be found in the main body of the text. 

 

Aerodynamics 

 

The aerodynamic calculations are again an approximation from a variety of sources and 

similar to the techniques used by Martin (2001).  In this section the three remaining forces 

shall be calculated which completes the equations that require balancing for the VPP.  To 

begin with the centre of effort and aspect ratios are calculated for the sails which enables 

coefficients for lift and drag to be derived.  This process uses a generic lift and drag 

coefficient table from Claughton (1999), which is what is modified by the ANN in the main 

text.  After the windage of the hull and rig has been calculated the results are combined to 

produce ���( * and ��**
.  From these two forces the final force of ��**
 can be calculated. 

 

Centre of Effort Calculation 

 

Initially the mainsail and jib areas are calculated based on a variety of inputs such as J and 

BAD.  This list of inputs enables the areas of the individual sails to be calculated before 

finding the CoE of each of the sails.  The final stage is to combine the two and produce a 

CoE for the whole boat.  The list of inputs can be seen below. 

• BAD = Boom above deck measurement 

• E = Foot of the mainsail length measurement 

• P = Maximum hoist of the mainsail above the BAD measurement 

• I = The maximum hoist of the genoa. 

• J = The distance between the bow and the mast 

• LPG = The shortest distance between the clew of the jib and the forestay 

• EHM = The height of the mast above the deck 

• EMDC = The average diameter of the mast section 

The CoE formula can be seen below in Equation (65) with the various inputs shown below. 
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�� = b­⋅Àr­Øb�⋅Àr�b­Øb�       (65) 

Where 

�� = 1 2N Û�	
�  = 1 2N %Ûu�¡F + �F�a FN 	
��� = 0.39Û + ��{	

��  = 0.39¡	
 

Aspect Ratio Calculation 

 

Another important feature that needs calculating is the aspect ratio.  For this the method 

derived by Claughton in 1999 shall be used.  This equation can be seen below including the 

lift and drag from the nominal areas (�D) calculations that feed into it. 

�
 = 0.5�¡	
�D = �
 + ��	

�� = ���
�r"�Øn�ÜÝ��Gb¬       (66) 

Where 

�ℎ: = Rig height factor which varies between 1.1 and 1 dependent on TWA. 

�� ! = The average freeboard of the yacht. 

 

Wind Speed Correction 

 

In the next section the TWS shall be corrected for the CoE of the yacht.  This technique was 

first described by Milgram in 1993 in Equation (67) below. 

&��5� = &��10�Æln�5� | ln�5)�Ç/�ln�10� | ln�56��    (67) 

Where 
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 &��10� = The TWS at ten metres above the water.  This is considered to be the maximum 

velocity of the wind at this height.  All of the Olympic classes with have a CoE of 

considerably less than this. 

5)	= The lowest point of the measurement which is considered to be the surface of the water. 

 

Apparent Wind Speed Calculation 

 

The next part is to calculate the effective apparent wind speed �1��, shown in Equation (68), 

that is experienced by the yacht.  This is in terms to the yacht’s course and therefore can also 

be used to calculate the effective apparent wind angle (��) as shown in Equation (69).  Heel 

is also taken into account for this calculation and the method described by Larsson in 1994 

shall be used.  Figure 74 below shows the velocity triangle that is described by Larsson. 

1� = Æ�&��5�wx#��yzw'�F + �& + &��5� ⋅ yzw���FÇa FN    (68) 

�� = ��	ÉAÞ	�HØHß�à�⋅/)+�ß�á�       (69) 

Where 

&��5� = The TWS at the height of z. 

�� = The TWD with respect to the course of the yacht. 

V = The velocity of the yacht. 
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Figure 74 - Showing the different velocities experienced by a yacht (Larsson, 1994) 

 

Lift and Drag Coefficients 

 

With this diagram and the previous two formulae it is now possible to calculate the lift and 

drag coefficients of the main and the jib using the coefficients described by Claughton.  

These can be seen in the table below before the modification from the ANN. 

Table 15 - Original lift and drag coefficients that were altered 

 

  Lift Coefficients Drag Coefficients 

AWA Main Jib Combined Main  Jib Combined 

0 0 0 0 0.04 0.03 0.047553 

20 1.6 1.45 2.1511       

27 1.67 1.48 2.211911 0.02 0.02 0.028756 

50 1.41 1.42 2.037255 0.08 0.25 0.28432 

80 1.04 0.77 1.226429 0.25 0.57 0.678125 

100 0.77 0.4 0.738638 0.4 0.72 0.893794 

180 0 0 0 1.2 0.9 1.426601 

 

Between the points interpolation is used for the missing TWAs.  The coefficients of lift and 

drag can be calculated using the following two formulae shown in Equations (70 and 71) 

respectively. 

�
 = �Àj­⋅b­ØÀ��⋅b��b¬       (70) 



149 

Appendices 

 

��� = �À¦Á­ ⋅b­ØÀ¦�Á⋅b��b¬      (71) 

Flattener and Reef 

 

The VPP also has to make other adjustments for the lift and drag in order to keep the model 

balanced in stronger winds.  It does this through the use of the flatner and the reefing 

features in solver.  When a reef is used, the CoE changes and the VPP is able to recalculate 

the new position.  The three following equations, show how each of the coefficients are 

calculated and also the change of the CoE. 

Lift coefficient = �
 ⋅ �±±:F ⋅ :¢27 
Drag coefficient = ��� ⋅ �±±:F 

New CoE = �� ⋅ �±±: 

The last major segment is the calculation of the drag coefficient which is compromised of 

several pieces.  In the next section the effects of windage on the hull and the rig shall be 

examined.  Below is Equation (72) showing the induced drag coefficient (��(), the �� is the 

same as was calculated in this chapter. 

��( = �
F P a�l⋅bC�+ 0.005Q      (72) 

 

Windage Calculation 

 

Equation (73) below shows the formula as described by Claughton for determining the 

windage of the rig and the hull. 

��) = a.a\P�d⋅n�ÜÝ⋅â^�ß�Ø�r"�⋅r��À�Q
b¬      (73) 

Where 

� = the beam of the hull 

���� =	1�F1�F	
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 ��)  is the final part of the equation enabling the complete drag coefficient (��) to be 

calculated.  ��)  is substituted into the equation with the other components and is shown by 

Equation (74) below. 

�� = ��� + ��( + ��)       (74) 

 

Lift and Drag Calculation 

 

A complete value of lift and drag with respect to the sails can now be calculated using the 

following two formulae shown in Equations (75 and 76) respectively. 

%x:7 = �
 1 2N -� ⋅ 1�F ⋅ �D     (75) 

{�2´ = �� 1 2N -� ⋅ 1�F ⋅ �D	    (76) 

Where 

-� = The density of air which is set at 1.225 kg/m
3 

 

Drive and Heeling Force 

 

It is now possible to calculate the driving and the heeling force that is experienced by the 

yacht with the two simple equations shown below. 

���( * = %wx#�~ | {yzw�~     (77) 

��**
 = %yzw�~ + {yzw�~     (78) 

As mentioned near the start of the chapter, with the heeling force it is now possible to 

calculate the heeling moment (��**
).  This is shown below in Equation (79) and is the last 

calculation needed for the VPP.  The distance of lateral resistance to the waterline (h) 

calculation method is also shown below which is required for the final equation. 

 

Moment of Heel 

 

��**
 = ��**
 ⋅ ��� + �� ! + ℎ�    (79) 
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ℎ = 0 O0.414 | 0.165 Pg_gQU     (80) 

With the ��**
 value calculated the VPP is now able to balance all of the major forces with 

the aim of maximising the speed at the given TWA.  One of the screenshots from the output 

from the VPP can be seen on the next page.  It is from the Star without the ANN correction.  

A screenshot showing the Excel spreadsheet that was used with Solver displayed can also be 

seen on the next page in Figure 75. 

 

 

Figure 75 - Star polar in 10 knots of wind 

 



152 

Appendices 

 

 

Figure 76 - A screenshot from the VPP program with solver in the top right hand corner 
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Appendix 5 Image Processing 
 

Images from the initial still picture segmentation process.  Figure 77 is the desired output for 

this process. 

 

Figure 77 - A segmented image 

 

Figure 78 - A segmented image 
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Figure 79 - A Segmented image 

 

Figure 80 - A segmented image that is used for further analysis 
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In this section the segmented images from the first demonstration can be seen.  Upon 

viewing these images it is clear that the quality of the image acquisition system was not 

sufficient.  It is so poor that in Figure 81 the analysis of the image is not possible. 

 

Figure 81 - The raw image captured from the first demonstration.  The washed out colours show the poor 

quality of the captured image with the red stripes considerably faded. 

 

Figure 82 - Cluster image of a segment from the first RS 400 test 
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Figure 83 - Another segmented image from the first demonstration 

 

 

Figure 84 - The segmented image which was meant to show only the stripes 



157 

Appendices 

 

 

Figure 85 - Failed draft stripe analysis 

The next three images are the segmented images from the second test conducted at First Site.  

This demonstration was deemed to be a success even though the bottom battens were 

hidden. 

 

Figure 86 - From the second test at First Site 
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Figure 87 - A segmented image from the second test 

 

Figure 88 - The third segmented image from the test 

The next three images are from the final demonstration using the DogCam hardware and a 

modified version of the author’s software.  The first is the original image and the second two 

are segmented images from the program. 
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Figure 89 - The raw input image from the camera demonstration with time stamp 

 

 

Figure 90 - The first cluster 

 



160 

Appendices 

 

 

Figure 91 - The second segmented image 

 

 

Figure 92 - The draft stripes isolated as one of the outputs 
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Appendix 6 Additional Polar Diagrams 
 

In this section the remaining polars from the author’s VPP shall be shown for different 

TWS.  The TWS for these shall range from 5 to 20 knots missing out the 10 knots previously 

shown in chapter five. 

 

 

Figure 93 - 5 knots Star Polar 
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Figure 94 - 15 knots Star Polar 

 

Figure 95 - 20 knots Star Polar 
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In this section a couple examples of the other polars that were derived and corrected by the 

VPP and the ANN can be seen.  These are from the two other classes with sufficient data 

which are the Star and the Tornado. 

 

  

Figure 96 - Tornado Polar Diagram 
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Figure 97 - Star Polar Diagram 


