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Abstract 

Recent large scale flood events in the UK and the continued threat of a major North Sea surge 

have motivated a re-appraisal of how flood risk is modelled. A new generation of flood risk 

models are starting to consider the spatial and temporal dependencies in flood events. This is 

important for a wide range of risk based decision making, with one of its most significant 

applications being the understanding of insurance exposure.  

The aim of this thesis is to increase understanding of flood risk exposure in the UK and identify 

areas where existing modelling capabilities and data limitations contribute to large 

uncertainties in the estimation of risk.  Illustrating a successful collaboration between 

academia and the insurance industry, a case study of one company’s exposure from static 

caravans is used to develop a methodology for flood risk assessment at multiple sites nested 

within a national framework. This novel nested approach allows for greater detail to be 

included at sites of interest resulting in increased understanding of the risk driving processes 

while retaining the large scale dependence structure. This is demonstrated at high risk 

locations on the Lincolnshire and North Wales coastline and inland on the Rivers Severn and 

Thames. The proposed methodology takes a flexible component based approach and has 

potential adaptations to different receptors and end users.  

A systems based model is used which explicitly considers all key components of risk. Extreme 

fluvial and coastal events are modelled statistically using the conditional dependence model of 

Heffernan and Tawn (2004). Coastal flood defences are essential for the protection of static 

caravan sites however their inclusion in existing risk models contributes significant 

uncertainties. The quality of data available on flood defence heights is reviewed and a 

methodology to incorporate spatial variations is proposed. The failure of flood defences is 

modelled using fragility curves and inundation modelling is used to route water on the 

floodplain. Finally the damage to the static caravans is modelled using depth-damage curves 

with reference to the impact of limited observed data on flood damage for caravans. 

One of the biggest challenges of considering dependencies across multiple scales within a 

systems model is matching the data requirements across each component. To address this 

problem this thesis investigates the relationship between skew surge and wave height to 

estimate the total inshore water level, and develops a UK specific method to transform daily 

mean flow to peak flow. The modular structure of the proposed methodology means different 

component models can be used to suit the available data; here the integration of both 1D and 

2D floodplain inundation models is demonstrated.  
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1 Introduction 

1.1 Flood risk in the UK 

The cost of extreme weather events globally has doubled each decade since the 1970s 

(Association of British Insurers 2005a).  In the UK floods present the most significant risk and 

are expected to have an increasing impact in the future as the climate change (Defra and HM 

Government 2012; cite Rowland 2012). The Environment Agency estimate that one in six 

homes are currently at risk of flooding in England and Wales, with 2.8 million properties in 

areas at risk of flooding from rivers or the sea (Environment Agency 2009a). Notable flood 

events in the UK over the past century include the North Sea floods of 1953 and widespread 

inland flood events in 1998, 2000 and 2007. The Summer 2007 floods were the most costly 

flood in the world in 2007 (Pitt 2008). They resulted in the most costly insured weather event 

in the UK to date, with 165,000 insurance claims and £3 billion in pay outs (Association of 

British Insurers 2007), the equivalent of four years of normal claims (Pitt 2008).  In societal 

terms the summer 2007 floods caused the largest loss of essential services since World War II 

(Pitt 2008).  

The type of flood event that affects the UK is varied. In general the UK has a temperate climate 

with wet winters and dry summers. Heavy winter rainfall is expected to coincide with frontal 

systems from the Atlantic (Barrow and Hulme 1997) leading to frontal driven floods such as in 

Easter 2000. Summer floods are caused by intense local storms which lead to flash flooding 

such as in Boscastle in 2004 (Met Office 2011a). However the past five years has seen an 

increase in summer flooding for example in June and July 2007 and most recently in June 2012. 

These summer events have occurred following extended periods of wet weather followed by 

heavy storm events, possibly caused by a shifting of the jet stream from northern Scotland to 

the south east of England (Pitt 2008).  Coastal events usually occur in the winter, driven by 

deep Atlantic low pressure systems causing storm surges which are a particular concern along 

the North Sea coastline (Haslett 2000; Pugh 2004).  

The impact of extreme weather varies based on the local topography, geology, the presence of 

flood defences, the location of vulnerable assets and the ability of people to respond to flood 

warnings. Being able to correctly understand and model flood risk is of importance to a wide 

variety of people from property developers wanting to build on potential floodplains to the 

emergency services who provide the first response during a flood event. In the UK the 

Environment Agency (EA, in England and Wales) and the Scottish Environment Protection 

Agency (SEPA, in Scotland) are responsible for the management of most main watercourses in 
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the UK and for providing a flood warning service , as such many of the developments in flood 

risk modelling have been led by these bodies. The insurance industry also has a vital role to 

play in enabling people to continue living and working in areas of flood risk (Crichton 2003) 

and a vested interest in accurate modelling. Being able to understand the drivers of flood risk 

allows effective management of floods by both individuals and organisations, and enables 

prediction of how the risk might change in the future in response to climate and societal 

change.  

1.2 Modelling flood risk 

Models of flood risk take various forms depending on their purpose. Some focus more on the 

statistical distributions of extreme events (for example  Keef, Lamb et al. 2009a), others on the 

hazard rather than a full consideration of risk (for example the Environment Agency flood 

maps 2009b). Increasingly it is becoming important to explicitly consider the uncertainty in 

flood risk models to enable informed flood risk management decision making (Beven et al. 

2011). This presents additional challenges in communicating the uncertainty to end users in an 

accessible manner (Pappenberger and Beven 2006).  

A fully integrated flood risk model requires consideration of sources of risk, pathways, 

receptors and consequences of flooding. Examples of these systems based models have been 

developed in the UK as part of the Risk Assessment for Strategic Pathways (RASP) project (Hall 

et al. 2003), in Europe by researchers at the University of Postdam (Apel et al. 2006), and by 

Catastrophe (Cat) modelling companies for insurance pricing, for example Risk Management 

Solutions (RMS) inland (RMS 2010) and coastal (Wood et al. 2005) models for the UK.   

1.2.1 Sources 

Flood risk is the UK is driven by extreme weather in the form of heavy rainfall or storm surges. 

Statistically an event is considered extreme if it exceeds some pre-specified threshold or is the 

largest in a specified set of observations. Extreme value theory is a special type of statistical 

modelling for events that meet these criteria. It addresses the difficulties of modelling events 

for which there are limited observations and where extrapolation beyond the observed data is 

required (Coles 2001). There is a long history of statistical analysis of extreme flood events in 

the UK, much of which was consolidated in the Flood Studies Report (NERC 1975) and updated 

in the Flood Estimation Handbook (CEH 1999).   

In the case of flood risk, consideration of multivariate extremes is often required for events 

which cover large areas or are caused by multiple sources for example a combined fluvial and 

coastal event.  Multivariate extremes present additional difficulties as they require identifying 
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which observations belong to the same underlying event across multiple sites. The area over 

which the event is classified also affects the extremeness, as the most extreme events tend to 

be very localised. Keef et al (2010) estimate the return period of the Summer 2007 floods for 

the week of the 19th July 2007 across the UK as 1 in 28 years, whereas flows at some individual 

gauges were estimated with return periods of over 1 in 150 years (Environment Agency 2008). 

Previous studies which have investigated the multivariate dependencies between extreme 

events in the UK include Svensson and Jones (2002; 2004) who used dependence measures to 

investigate the relationship between extreme sea surge, river flow and precipitation around 

the British coastline, Dixon and Tawn (1994; 1995; 1997) who conducted extensive research 

into spatial dependencies of extreme sea conditions around the UK, and Hawkes et al (2002) 

who developed a joint density statistical approach incorporating dependencies between wave 

height and period. The newest advance is the Heffernan and Tawn model (2004), a flexible 

multivariate model that allows relationships between variables to change as events gets more 

extreme and can be used when extreme values of all variables are unlikely to occur together. It 

is this model which has provided the basis for much of the recent work in the area of spatial 

dependencies of flood risk across the UK including the Environment Agency study “Spatial 

Coherence of Flood Risk” (SC060088/SR Keef et al. 2009a).  

1.2.2 Pathways 

Pathways refer to the obstacles between the meteorological sources and the receptors of 

flooding. They include the catchments, river system and flood defences water must pass 

through before any damage can occur.  

In most cases high value receptors are protected by flood defences. The Environment Agency 

maintains 24,000 miles of defences in England and Wales (Environment Agency 2012). 

Insurance cover for properties located within the floodplain is dependent on continued 

investment in flood defence infrastructure (Association of British Insurers 2008). While flood 

defences are essential to many communities their failure can be catastrophic as seen during 

the North Sea floods of 1953 and New Orleans in 2005. 

Construction of flood defences has been somewhat piecemeal with defence heights gradually 

being increased as flood risk increases (Muir-Wood et al. 2005). Coupled with this is the 

problem that information on flood defence structure and condition is limited (Hall et al. 2003). 

In spite of these difficulties work by the FLOODsite project (for example Allsop et al. 2007 and 

Morris et al. 2009a), has made significant improvements in understanding flood defence 

failure mechanisms. The challenge remaining is to incorporate this detailed site level analysis 

into large scale models of flood risk. At present this is largely achieved through simplified 
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scenario based modelling (for example Hall et al. 2003) or by using simplistic empirical rules to 

enable breaches to be considered within a large risk sample (see Muir-Wood and Bateman 

2005). In spite of continued research in the area, consideration of breaching remains a critical 

source of uncertainty in flood risk modelling (Muir-Wood and Bateman 2005). 

1.2.3 Receptors and consequences 

There is no risk from flooding if there are no receptors to suffer damage. In most flood risk 

applications receptors are considered to be property (Merz et al. 2010), however increasingly 

the impact on the economy, the environment, communities, and individuals is being 

considered (Messner et al. 2007). The standard means of assessing the impact on receptors is 

through the use of depth damage curves (for example see Penning-Rowsell et al. 2005), 

whereby damage is specified as a function of flood depth. Damage curves provide a quick and 

efficient means of assessing damage however they make large assumptions about the 

construction of structures, and are based on limited observed data and expert judgement. As 

such damage curves can contribute a major source of uncertainty to flood risk models (Merz et 

al. 2010).  

1.3 Flood insurance in the UK 

Insurance is the process by which individuals can transfer risk from themselves onto an 

insurance company. The provision of insurance for natural catastrophes is invaluable to society 

as it helps communities recover from a flood event  and enables property owners to secure a 

mortgage (Crichton 2003).  Due to a historic agreement between Government and the 

insurance sector established around 1960 (Humber 2004), and the island geography of the 

country (Muir-Wood 1999), property owners in the UK are in a unique position compared to 

other countries as flood insurance is available to almost all properties as part of their standard 

household or business insurance. The agreement has continually changed over time, its 

current form, known as the Statement of Principles, states that the Association of British 

Insurers (ABI) will provide insurance cover to properties in areas where flood risk (including 

areas benefiting from defences) is less than 1 in 75 years provided that the Government 

maintains investment in flood defence infrastructure (Association of British Insurers 2005b).  

Following the summer 2007 floods, the ABI is reviewing the Statement of Principles but is 

committed to ensuring that flood cover remains as widely available as possible (Pitt 2008). To 

do this they require continued improvements in flood risk modelling.  

The cost of flood insurance premiums is calculated based on estimation of the annual 

premiums needed to cover loses over time, termed the average annual loss (AAL) (Grossi and 

TeHennepe 2008), combined with a factor accounting for how much surplus insurance 
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companies require to be comfortable covering the risk (the Risk Load), and an allowance for 

their expenses and profit margins (Expense Load) as shown in Equation 1.1 (Grossi and 

Kunreuther 2005).  
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The AAL is the sum of expected losses for a set of natural disasters events each with an annual 

probability of occurrence, pi, and an associated loss, Li (Equation 1.2). Events are assumed to 

be independent however multiple events can occur each year.  
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1.2 

The calculation of AAL is subject to uncertainty in both the probability and loss terms. The 

insurance industry bases estimation of these terms on process based Catastrophe (Cat) models. 

A Cat model generally comprises of four modules (Sanders et al. 2002); 

1. A stochastic module used to randomly generate catastrophic events 

2. A hazard module used to determine effects based on local conditions 

3. A vulnerability module used to calculate damages 

4. A financial module which quantifies the financial loss  

 

The first three of these modules correspond to the source-pathway-receptor terms outlined in 

Section 1.2. The financial module converts the damage to losses to the insurance company, for 

example by including the impact of policy excesses.  One limitation of Cat models is that they 

are complex process based models which use a mixture of numerical and statistical methods 

making it difficult for the end user to fully understand the underlying processes. 

1.4 Identification of research needs 

Over the past decade the importance of taking a risk based approach to flood management 

has been realised and new methodologies have been developed covering different national 

and international contexts (e.g. Hall et al. 2003; Apel et al. 2006). While the risk from individual 

sources and at specific locations is extensively modelled, there is a growing need for 

understanding of risks from multiple sources and across large geographical areas. As yet there 

is no integrated risk model that incorporates all contributing factors and the spatial and 

temporal dependencies between them to enable integrated risk management strategies to be 

developed. 
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Recent large scale flood events in the UK and the continued threat of a major North Sea storm 

surge have motivated a reappraisal of how well flood risk is estimated by insurance companies. 

The new European Solvency II Framework (Directive 2009/138/EC European Parliament 

Council 2009) requires insurance companies to show evidence of understanding of the 

processes and potential uncertainties within their risk models. While the exact date of 

application is continually being revised (European Parliament Council 2012), from 2013 

companies will be required to demonstrate greater understanding of, and transparency in, 

their risk pricing mechanisms. When considering extremes it is difficult to know which 

representation of risk is most accurate. Rather, the most suitable representation depends on 

the particular asset of interest, its geographical location and vulnerability, and the insurance 

company’s appetite for risk. Therefore it is useful for an insurance company to increase its 

understanding of risk outside of the Cat modelling framework. This additional knowledge can 

then be compared with data produced by the Cat models and used to inform risk based 

decision making regarding the management of insurance policies. 

An increasing openness from both Cat modelling companies and the insurance industry to 

work with academia has led to a new era of collaboration on flood risk modelling, for example 

through the Lighthill Risk Network (2011) from which this PhD initiated, and the Willis 

Research Network (2011).  This sharing of expertise is beneficial to both parties as Cat models 

have long since been criticised for not being subject to peer review (Smith 2009) however the 

resources available to the insurance industry are far greater than those in academia and 

therefore collaboration provides unique opportunity to improve flood risk science.  

Drawing together the need for continued advance in flood risk modelling to cover multiple 

sources and large geographical areas and the requirement for increased understanding of 

insurance risk pricing, this thesis develops a new methodology for considering multisite 

concurrent damage from fluvial and coastal flood events using a case study of risk to an 

insurance portfolio of static caravan located across the UK. The portfolio is underwritten by 

Catlin (Catlin Group Limited 2009) who have provided a CASE studentship and expertise on Cat 

modelling and insurance pricing for this project. Static caravans provide a useful example of 

the application of this methodology as they are generally located on large sites close to water, 

are distributed across the whole country and are particularly vulnerable to flood damage. A 

particular concern for Catlin is that their portfolio covers 80% of the static caravan stock in the 

UK, therefore if risk to the portfolio is not correctly modelled there is potential that following a 

major flood event Catlin may find that they were overexposed.  
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This thesis builds on the application of Heffernan and Tawn’s (2004) multivariate conditional 

dependence model for the consideration of spatial and temporal dependencies in flood risk by 

Keef et al (Keef 2006; Keef et al. 2009a; Keef et al. 2009b; Keef et al. 2009c; Lamb et al. 2010) 

and shows how this robust but complex statistical model can be used in an applied case study 

and integrated into a full systems based approach.  The methodology presented in this thesis 

was developed to address the issues facing Catlin’s caravan portfolio, however due to its 

modular nature it can be adapted for use with a wide range of flood management decisions in 

the future, and is especially useful for spatially distributed risks.  

1.5 Aims and objectives 

The aim of this project is to develop a new method for multisite concurrent damage due to 

multiple weather related extremes based on spatial statistics and physical processes and to 

apply the method to assess the vulnerability of UK caravan sites. The research is unique as it 

will consider multivariate sources of risk rather than just fluvial or coastal flooding. It will be 

spatially distributed, looking at sites across the UK and it will take a whole system approach by 

investigating the influence of pathways on the system response.  

By explicitly considering all major drivers in the risk system, the research aims to highlight 

potential weaknesses in the existing modelling of flood risk, with particular reference to Cat 

models and the pricing of insurance portfolios. Through working with Catlin it is hoped to be 

able to increase understanding of their caravan portfolio, the risks it is affected by and how the 

risk is modelled and priced. At a high level the project aims to start to make a contribution to 

the Solvency II requirements and help enable insurance companies to continue to provide the 

high level of cover currently available.   

The project objectives are to; 

1. Review the geographical disposition of fixed caravan sites in the UK and their 

approximate financial values and investigate trends in historic flood damage to these 

sites. 

2. Establish a multivariate spatial extreme value statistical model for river flow, surge and 

waves at selected sites.  

3. Develop a process-based method to connect these source terms with variables (e.g. 

flood depth) from which damage can be computed. 

4. Consider the representation of flood defences and potential failure mechanisms in 

flood risk models and incorporate this into a systems based risk model. 
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5. Review the importance of each component in the systems risk model and discuss how 

the improved knowledge about each component and the links between them can help 

improve insurance pricing decisions and wider flood risk management 

1.6 Thesis outline 

This thesis brings together multiple specialities within the area of flood risk modelling and 

management. The thesis is structured in a way that clearly defines the contribution of each 

area but also demonstrates the importance of the interconnections between them. Following 

this introduction, Chapter 2 provides an overview of existing methods of flood risk modelling 

and analysis, discussing both insurance industry risk models and those used for wider flood risk 

management. This is followed by a summary of the specific way in which risk is modelled for 

the Catlin caravan portfolio in Chapter 3 and a review of historic events which have affected 

the portfolio. Chapter 4 then details the development of a new methodological framework for 

multi-site risk analysis. From this point the thesis largely follows the Source-Pathway-Receptor-

Consequence (SPRC) structure outlined in Section 1.2. Chapter 5 reviews the spatial and 

temporal dependencies between extreme weather events in the UK and existing 

methodologies that have been used to model them. In Chapter 6 details the modelling of 

multivariate spatial extremes through a statistically based conditional dependence model. 

Chapters 7 and 8 cover the pathways term, discussing the conversion of simulated peak flow at 

gauges into water levels at the sites of interest, the incorporation of waves into the simulation 

of coastal flood events and the modelling of spatially variable flood defence reliability. Finally 

the assessment of damage is outlined in Chapter 9 followed by consideration of how to 

calculate multi-site risk and the embodied uncertainties in this calculation. Chapter 10 provides 

some final concluding remarks on the significance of the methodology developed in this thesis 

for improving understanding of dependencies in flood risk and identifies areas for futher work.  
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2 Flood risk modelling and analysis 

2.1 Introduction 

Flood risk modelling is a complex science that includes multiple contributors with multiple 

priorities. As such a range of methods have been developed. This chapter will the review the 

available statistical and systems based methods of analysis current in use by flood risk 

managers, the insurance industry and academic researchers. In doing so it will identify areas 

where the existing methods can offer useful tools to meet the aims and objectives set out in 

Section 1.5 and where there are limitations to the existing approaches that need to be 

addressed.  This review is used to inform the development of a methodological framework for 

multi-site risk analysis as outlined in Chapter 4.  

2.2 Defining risk 

Much debate exists in the literature over how to define flood risk (For example see Sayers et al. 

2003). Multiple definitions exist (some of which are listed by Kelman 2003), influenced by the 

social and cultural positioning of those making the definition and the purpose of the analysis. 

There is no universal definition of risk that is suitable for all (Sayers et al. 2002) however a 

common engineering definition is that risk equals the probability of an event multiplied by the 

consequence (Sayers et al. 2003). This is the definition that is used in this thesis. However it is 

acknowledged that a simplistic definition such as this is limited in its ability to represent risk in 

all situations since the way people respond to high probability low consequence events is 

different to their response to low probability high consequence events (Sayer et al. 2002). The 

insurance industry focusses on monetary risks which are devolved from societal weightings, 

however they are not immune from these issues. Although multiple high probability low 

consequence events could have the same impact as one low probability high consequence 

event, it is the low probability event that will cause a major shock to the industry and expose 

weaknesses in the risk management decision making of companies that are not fully prepared. 

High losses from low probability events also trigger re-insurance contracts. Re-insurance is the 

process by which insurance companies protect themselves from large losses by sharing the risk 

with other companies, often termed ‘insurance for insurers’(Swiss-Re 2002). Correctly setting 

the price point for re-insurance and the amount of cover required necessitates accurate 

modelling of high risk events.  

The benefit of taking a risk based approach is that it deals with outcomes (Sayers et al. 2002) 

allowing decision makers to compare a wide range of options. Over the past 15 years risk 

based approaches have become commonplace in flood risk management and the 

methodologies behind them have become increasingly sophisticated. In spite of this there is 
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often still a lack of distinction between flood risk and flood hazard (Rougier, Sparks et al. In 

press). The Environment Agency Flood Risk Maps in the UK could more accurately be described 

as flood hazard maps since they consider only the return period of an event and the associated 

flood outline rather than an assessment of the consequences. De Moel et al (2009) identify 

that this is the case for most flood risk national mapping programs in Europe; however this will 

have to change in the future as the EC Flood Directive requires vulnerability to be incorporated 

into risk analysis.  

The units of risk depend on how the probability and consequence of an event are quantified. 

Probability may be expressed as a dimensionless percentage. This is usually given for a specific 

time frame, for example an annual exceedance probability (AEP).  Probabilities may also be 

expressed as frequencies defining the number of expected occurrences of an event within a 

particular time period, for example a one in 100 year flood event (Sayers et al. 2003).  

Consequence may be expressed in a variety of quantitative or qualitative forms depending on 

the consequence of interest for example number of deaths or degree of social interruption. 

Here the focus is on insured loss so the units of consequence are monetary.  

Combining the probability and consequence terms gives the risk term. For financial analysis 

this usually takes the form of an Exceedance Probability (EP) Curve as shown in Figure 2.1, or it 

can be combined into a summary measure such as the AAL (Equation 1.2). An interesting 

mathematical aside is that the area under the EP curve is equal to the AAL. 

The AAL is a useful comparative measure for insurance purposes as it specifies the minimum 

value at which the portfolio should be priced to ensure the company breaks even. Other 

insurance based risk metrics include the Value at Risk (VaR) and the Tail Value at Risk (TVaR) 

which can provide a useful means of assessing the sensitivity of the risk calculation to the 

extremes (Denuit et al. 2005; Society of Actuaries in Ireland 2011).  

 



Flood risk modelling and analysis 2 

 

11 

 

Figure 2.1 Example exceedance probability curve 

2.3 Who models flood risk?  

With one in six properties in the UK at risk of flooding from rivers or the sea (Environment 

Agency 2011a) consideration of flood risk forms an essential part of many decision making 

processes. 

The Environment Agency is responsible for the management of most watercourses in the UK 

and for providing a flood warning service. As such a large proportion of the analysis of flood 

risk is carried out by, or for, the Environment Agency or DEFRA. This may take a number of 

forms, for example: 

• Large scale, high level studies such as Catchment Flood Management Plans (CFMPs) 

and Shoreline Management Plans (SMPs), 

• Detailed scientific studies such as the ‘Spatial Coherences of Flood Risk’ study (Keef et 

al. 2009a) discussed further in Chapter 5. The output from these detailed studies often 

informs the standard protocols for flood risk assessment for other purposes. 

• Local applied studies for example to assess the need for, or design of, flood defence 

schemes in a specified area. 

• High profile projects such as the National Flood Risk Assessment (NaFRA) scheme 

(Environment Agency, unkown date) which produces up to date flood maps of all main 

watercourses in the UK. The output of which is publically available (Environment 

Agency 2009b) and is used extensively for flood risk management in the form of 
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planning and flood warnings. The flood maps are also provided to the insurance 

industry. 

Other organisations with a role in flood risk management include local councils and property 

developers who are required to produce Strategic Flood Risk Assessments (SFRAs) and follow 

the PPS25 (Communities and Local Government 2006) guidance on development in flood risk 

areas.  

The insurance industry has a vested interest in understanding flood risk and uses Cat models to 

estimate the probability of flooding. These are large scale process driven models consisting of 

a stochastic event module which is then translated into risk through a hazard, damage and 

financial module as illustrated in Figure 2.2. Initially, in the UK, Cat models were developed for 

coastal storm events however the major floods of 1998 and 2000 promoted the development 

of inland flood models. As well as the high profile Cat models, the insurance industry also 

carries out independent studies into flood risk in an attempt to keep abreast of recent 

developments in the science, for example Lloyds produces its own flood map (Lloyds 2010) and 

the Willis Research Network provides a platform for exploring new areas of interest in the field. 

Cat models are discussed further in Section 2.4.3.  

Modified from Grossi and TeHennepe (2008) 

 

Academic research has also played an important role in the development of flood risk model, 

either through collaborations with other stakeholders or in independent studies. The benefit 

of academic research is that it usually has more freedom to explore particular areas of interest 

without being constrained by applications or commercial deadlines. However there is often a 

significant time lag between the results of research projects being implemented in applied 

studies or assessment guidelines. This can be due to difficulties in communication between the 

Figure 2.2 Basic structure of Catastrophe Models 
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two groups and time and financial constraints on applied studies. One of the aims of the 

Environment Agency Science Program is to try to bridge this gap.  

Flood risk is clearly not confined to the UK. Many of the key developments in the field originate 

in countries where particular issues are especially important, for example the Netherlands is 

particularly vulnerable to failures in its flood defence system and as such has been 

instrumental in developing methods of analysis for flood defence reliability such as the PC-

RING software (Steenbergen et al. 2004). Similarly the long river systems such as the Rhine and 

Danube in mainland Europe have motivated cross border studies involving a strong 

consideration of spatial and temporal dependencies in flood risk (for example Apel et al. 2006). 

2.4 How is flood risk modelled? 

The methods used to assess risk depend on the scale of analysis and the resources available. 

Flood risk modelling requires consideration of both the probability of an event and its impact. 

As such a variety of different modelling methodologies are usually drawn upon. Setting up a 

flood risk model requires; 

1. Establishing the required outputs  - either event based such as the risk from a 1% AEP 

event, or references quantities such as the AAL, 

2. Choosing the scale of analysis -  ranging from single site up to national or international 

assessment, 

3. Identifying the main focus of analysis – either a full systems based model or focussing 

on particular elements such as the driving forces or defence reliability, 

4. Selecting appropriate analysis methods for each component in the risk system based 

on the scale, focus and required output – methods may be statistical or physically 

based, scenario driven or fully probabilistic. 

 

In most cases flood risk assessment methodologies can be broken down into a Source-

Pathway-Receptor-Consequence framework (S-P-R-C), although this does not always form an 

explicit part of the methodology. As illustrated in Figure 2.3 the S-P-R-C framework considers 

all stages in the risk process identified in Chapter 1.  If any one component of the S-P-R-C 

framework is missing there is no risk. For example a large event in a rural catchment may 

cause a flood however if there are no receptors in the floodplain there are no consequences 

and hence no risk.  
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Figure 2.3 Conceptual Source-Pathway-Receptor-Consequence model 

 

Models that explicitly consider all stages of the S-P-R-C framework are known as systems 

based models. The first modelling framework to consider a full systems based approach was 

the UK RASP methodology (Hall et al. 2003), further details of which are given in Section 2.4.2. 

A similar approach was taken by Apel et al (2006) working on the River Rhine in Germany. 

Insurance industry Cat models also have an underlying S-P-R-C framework and can be thought 

of a special case of systems based models. The development and construction of Cat modelled 

is discussed further in Section 2.4.3 

A limitation of systems based models is that due to the multiplicity of factors involved it is 

difficult to assess the uncertainty in the model and in most cases it is not possible to go further 

than an uncertainty assessment for each component (Rougier et al. In press). The implications 

of this are discussed further in Section 9.4.  

Systems based models are complex and computationally demanding, as such it is common for 

modellers to focus on the particular area of interest such as the source or flood outline 

without full consideration of all components. Models focussing on the source term usually take 

a statistical approach as discussed in Section 2.4.1 and may be coupled with simplistic 

inundation models to generate flood outlines for hazard focussed assessments. 

The following sections discuss in further detail the types of model most relevant to this study, 

statistical models, systems based models and Cat models.   

(Source: Sayers, Gouldby et al. 2003) 
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2.4.1 Statistical models 

Statistical models largely only consider the event probability and not the risk, however by 

focussing on one aspect of the problem they can provide detailed analysis of the 

characteristics of extreme events. Often the output from statistical models is used as the basis 

of full risk based methods. A critical difficulty in the study of floods is the lack of data on very 

large events. A family of statistical methods known as Extreme Value Theory (EVT) provides a 

robust framework for overcoming this problem (readers with limited knowledge of EVT may 

find Coles 2001 a useful introduction to the subject). This section highlights some of the 

existing research and main resources covering the statistical modelling of extremes. Further 

details are provided in Chapter 5.  

In the UK standard guidelines are available for estimating extreme fluvial events as part of the 

Flood Estimation Handbook (FEH) (CEH 1999). The main purpose of these guidelines is to 

enable users to create flood frequency curves from observed data to estimate design events 

such as the 1% AEP peak flow. Recently the Environment Agency has developed a set of 

guidelines (R&D SC060064) for coastal analysis which also enables users to establish a design 

event storm surge (McMillian et al. 2011a) and significant swell wave height (McMillian et al. 

2011b) for any point on the UK coastline. These guidelines are less comprehensive than the 

FEH, but do represent the first application driven guidelines for extreme coastal events. A 

more comprehensive statistical assessment of extreme sea levels is provided by Dixon and 

Tawn (1997) although this does not include a wave component. 

While single site statistical models for individual sources can be useful in enabling hazard maps 

to be drawn for given locations, they are of limited use for informing systems based models 

since there may be more than one driving event and many interacting processes within the 

system. In most cases there is some form of dependence structure exhibited in the variables of 

interest which can have spatial, temporal or multivariate components. This dependence 

structure requires specialised statistical modelling. There are a variety of existing studies that 

have investigated the importance of modelling the UK specific multivariate extremes of 

interest in this thesis. These are listed in Table 2.1 along with their findings which indicate the 

importance of including the dependence between extreme meteorological events in a risk 

analysis. More details of statistical models for multivariate spatial extremes are provided in 

Chapter 5.  

An alternative to statistical modelling is continuous simulation. This is argued by Hawkes et al 

(2008, p329) to provide the “simplest and most transparent approach to joint probability 

analysis” since the correlations between variables are implicitly included.  Continuous 
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simulation has been investigated for flood risk modelling in the UK by CEH (Calver et al. 1999), 

however given the known difficulties in creating a useable model and the computational costs 

involved, it has not been considered further in this thesis.  

The challenge of statistical modelling of flood risk is to use a statistical framework which is 

robust enough to preserve the extremal properties of the data and simple enough to be used 

in practical applications. Also fundamental to all applied statistical models is the problem of 

ensuring that reliable and long data records are available for the areas of interest (Hawkes et 

al. 2008). Often this is not the case and solutions have to be found to work with the available 

data sets.  

The Environment Agency project ‘Spatial Coherences of Flood Risk’ (SC060088, Keef et al. 

2009a) provides a good example of a framework for incorporating a multivariate spatial 

dependence model into practical flood risk applications, including consideration of the 

limitations of data availability (originally developed by Keef 2006). The scope for using the 

conditional dependence model for a variety of applications is discussed in a proof of concept 

report (Lamb et al. 2009) and by Lamb et al (2010). At present this method has seen limited 

application beyond the original authors of the report, however there is clearly potential to 

extend the method for use in a full systems based model. Further details of the method and its 

potential extensions are discussed in Chapters 5 and 6.  
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Table 2.1 Existing work of multivariate extremes in the UK 

Variables 

considered  
Reference Summary of method Summary of results 

River flow Keef et al. (2009a); Keef et 

al. (2009c) 

Uses the conditional dependence model of 

Heffenan and Tawn (2004) for daily mean flow 

(DMF). Estimates dependence statistics 

conditional on at least one gauge in the network 

being extreme.  

 

• Lower spatial dependency in flows where catchment characteristics 

change rapidly over a small area and in areas with large water bodies 

in catchments or low permeability  

River flow and 

rainfall 

Keef (2006); Keef et al. 

(2009b) 

Uses the conditional dependence model of 

Heffenan and Tawn (2004) for DMF and rainfall 

data. Estimates dependences statistics 

conditional on at least one gauge in the network 

being extreme. 

• Events become more localised in space as they become more 

extreme.  

• Rainfall displayed weaker spatial dependence in upland areas and 

strongest dependence in the South-East 

• Flows displayed stronger spatial dependencies than rainfall 

 

Coastal surge, 

river flow and 

rainfall 

Svensson and Jones (2002); 

Svensson and Jones (2004) 

Uses the threshold based χ measure (see Coles, 

Heffernan et al. 1999) for daily series of maximum 

surge, daily mean flow and daily precipitation 

accumulation 

• Dependence between flow and surge stronger in winter than 

summer for the East and South West coast 

• Strongest dependence between flow and surge occurs in North East 

Scotland and hilly western areas, due to more rainfall and flashier 

catchments  

• Low dependence in South East where permeable catchments 

respond slowly to rainfall 
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Variables 

considered  
Reference Summary of method Summary of results 

Sea level and 

wave height 

Hawkes et al. (2002) Uses a joint density approach based on water 

level, wave height and wave period. Fits GPD to 

each variable and then fits dependence between 

pairs of variables to simulate a large sample from 

fitted distribution.  

• The dependence between surge and wave height can be masked by 

the astronomical tidal component of sea level. 

• More extreme conditions show stronger dependencies than 

everyday conditions. 

• Modest correlation between waves and surge height. On the East 

coast strong northerly winds producer both large surges and swell. 

On the west coast the swell may be less correlated to local weather 

conditions.  

 

Sea Level Dixon and Tawn (1994); 

Dixon and Tawn (1997); 

Dixon et al. (1998) 

Uses the Spatial Revised Joint Probability Model 

(SRJPM) to consider relationship between tide 

and surge then applied spatial model across 

whole coastline. Range of other models also 

investigated included r-largest, JPM and RJPM. 

• Extreme sea level caused by high tide and moderate surge in all areas 

except Cromer to Dover where it is caused by high tide and extreme 

surge 

• In regions with complex bathymetry there is high spatial variability in 

sea level between locations due to changes in tide 

• Suggest ignoring tide surge interaction could lead to over estimation 

of extremes by 5% 
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2.4.2 Systems based models 

System based models do not necessarily seek to develop new methods for analysis of all parts 

of the system but rather draw on existing methodologies to create frameworks for analysis of 

risk that explicitly consider all of the interacting processes. The driving source variables are 

modelled using the statistical approaches outlined above and the consequences are estimated 

using derived depth-damage curves (for example see Penning-Rowsell et al. 2005) which are 

discussed further in Chapter 9. 

One area where system based models have contributed significantly to new component 

methodologies is in the consideration of flood defence failure. Although the traditional 

reliability analysis of flood defence has taken place in engineering projects such as FLOODsite 

(for example see Morris et al. 2009a; Morris et al. 2009b; Morris et al. 2009c) there was no 

consideration of how to include defence failure in flood risk analysis in the UK beyond a 

simplistic scenario based approach prior to the work of Hall et al (2003) as part of the RASP 

project (DEFRA 2004). A probabilistic approach forming the basis of the PC-RING software 

(Steenbergen et al. 2004) had previously been developed in the Netherlands, however, as 

illustrated by Buijs et al (2003; 2004) this approach was not directly transferable to the less 

heavily engineered defence systems found in the UK. The recent work of Apel and Vorogushyn 

et al (Apel et al. 2006; Apel et al. 2009; Vorogushyn 2009; Vorogushyn et al. 2010) in Germany 

has built on the work from RASP and PC-RING and further enhanced the consideration of 

defence failure to incorporate varying spatial and temporal loading of the defences throughout 

the system. More details of flood defence failure methodologies are discussed in Chapter 8.  

The modelling framework that is drawn on most in this project is that of RASP. The RASP 

approach is outlined below to illustrate the structure of a systems based model although 

contributions from the work of Apel and Vorogushyn et al are discussed throughout the 

remainder of this thesis.  

2.4.2.1 RASP 

RASP is a set of methodologies developed to address the challenges of making risk based 

decisions at a range of scales given the restrictions of data availability and computational time. 

The strength of the methodology lies in its ability to incorporate analysis of defence 

overtopping and failure methods with limited data and without the need for multiple, time 

consuming hydraulic model runs. RASP incorporates a hierarchy of risk assessment 

methodologies (Hall et al. 2003) depending on the scale of application. The benefits of this 

approach mean that some form of risk assessment can be made even if the available data are 
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limited. This is particularly important given the limited data on flood defence properties in the 

UK.  

The original ideas behind the RASP methodology were outlined in a paper by Hall et al in 2003 

and extended to the more detailed regional level methods by Gouldby et al (2008). The 

methodology is now widely used in the UK including high profile applications as part of the 

Environment Agency National Flood Risk Assessment process (NaFRA) and in projects such as 

the Thames Estuary 2100 (TE2100) as well as local SFRAs. Through collaboration with 

international organisations the ideas are also being applied outside the UK, for example in 

China as part of the ‘China-UK Scenario Analysis Technology for River Basin Flood Risk 

Management in the Taihu Basin’ project (Harvey et al. 2009). The existing RASP tools were 

recently improved to allow further exploration of future flood risks and management options, 

and new software developed to allow Monte Carlo based assessment of uncertainly when 

using the RASP methodology for NaFRA (HR Wallingford 2009a). The Environment Agency has 

accepted the methodology as the framework around which flood risk decision making in the 

UK should be based. A strong indicator of the significance of this is the inclusion of RASP 

methodologies in the new Multiple Decision Support Framework Software (MDSF2) which will 

provide a GUI for application of the RASP methodologies by all flood risk practitioners (HR 

Wallingford 2009b).   

Within RASP, for each flood event, any given defence section (di) can either fail (Di) or not fail 

(��� ). The probability of failure is a combination of the probability of an extreme load (l) and the 

defence resistance to that load. 

���� = 	! ��" 
#

$
����|" �" 2.1 

 

A variety of failure mechanisms are considered by using fragility curves developed following 

reclassification of the Environment Agency National Flood and Coastal Defence Database 

(NFCDD) based on defence type, crest width, external protection, construction, and defence 

condition assessment, further details are provided by Hall et al (2003).  The simplest failure 

mode to consider is breaching following overtopping. An example fragility curve for this 

scenario is shown in Figure 2.4. The loading variable is defined based on a factor (x) of the 

standard of protection (SOP) of each defence.  
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Source: Hall et al. (2003, p239) 

Figure 2.4 Overtopping fragility curves used in national flood risk assessment 

 

The amount of water on the floodplain is calculated from the rate of flow over or through the 

defence for an appropriate duration based on standard discharge equations as given in Hall et 

al (2003). The main differences between the high and detailed methodologies occur in the 

floodplain inundation modelling. For the high level methodology water is distributed across 

pre-specified flood outlines based on valley type (Hall et al. 2003) however for the regional 

level methodology raster based flood routing is used (Gouldby et al. 2008). Given the 

development in computational power since 2003, arguably there is no longer a reason for this 

difference unless suitable Digital Elevation Model (DEM) data are not available.   

The RASP methodology provided the first systematic approach to incorporate flood defence 

failure into risk models in the UK.  It was therefore an important step forward in flood risk 

modelling however the defence failure methodology is based on three key assumptions (Hall 

et al. 2003); 

1. Loading of all defences in the system is fully dependent, meaning all defences are 

subjected to the same load at the same time.  

2. The strength of each defence section is assessed independently therefore although the 

load is the same, the probability of failure is unique for each defence section. 

3. The resistance within each defence section is fully dependent meaning the whole 

section responds in the same way. 
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The first of these assumptions is arguably the hardest to sustain since it means that if a 

defence breaches upstream, the downstream defences continue to be subjected to the same 

load even though the stress of the downstream defences would be relieved by storage of 

water behind the upstream breached defence. Apel et al (2006; 2009) investigate the impact 

of spatially variable loading across a defence system and illustrate that for areas with 

significant floodplain storage behind the defence structure this assumption could lead to 

errors in the risk assessment. The third assumption is met by restricting the length of any 

individual defence section to 600m. The reasoning behind the value of 600m is largely based 

on the sampling frequency of observations on defence properties, however given the spatially 

varying nature of defences and the significance of random points of weakness (Institution of 

Civil Engineers 1953) this could lead to errors in the assessment of risk. The implications of 

these assumptions are discussed further in Chapter 8.  

2.4.3 Catastrophe models 

Cat models are a particular type of system based model used by the insurance industry to 

predict the probability and associated costs of extreme events. They provide a means of 

“event-specific stochastic modelling of highly correlated multi-location loss” (Muir-Wood 1999, 

p1). They are useful as the infrequent, highly severe and unpredictable nature of catastrophic 

events is such that catastrophe claims data are of limited use for setting policy rates (AIR 

Worldwide 2009). Cat models are usually developed by specialised modelling companies and 

then licenced for use by insurance companies. The results from the models are usually used to 

set policy prices although recent advances have seen the models being used for wider flood 

risk management (Shah 2008).   

Cat modelling originated from the field of property fire insurance and from the practice of 

measuring natural hazards such as earthquake magnitude in the 1800s.  Its current form, 

influenced by developments in measuring techniques and Geographical Information Systems 

(GIS), was born in the USA in the 1980s but did not become widely accepted until the 

destruction caused by Hurricane Andrew in 1992 highlighted the need for more sophisticated 

approach to catastrophe risk management (Grossi and Kunreuther 2005; Grossi and 

TeHennepe 2008).  

Following their development in the USA, Cat models are now used across the developed world 

for a variety of natural hazard risks. In Europe the greatest risk is acknowledged to be 

windstorms which account for 80% of European Insured losses (RMS 2009) as such windstorm 

Cat models have been in used in the UK for over 20 years.  There are also a number of models 

available for storm surge along the East coast of the UK motivated by fear of a repeat of the 
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1953 storm surge.  Development of UK inland flood models is a relatively new aspect of Cat 

modelling. Arguably as following the relatively dry years of the early 1990s when Cat models 

were starting to develop, there was little political or economic incentive to develop a UK inland 

flood model. The widespread flood events of recent years have changed Cat modellers’ 

perspectives. Risk Management Solutions (RMS) launched a UK Flood model following the 

2000 events and AIR launched its inland flooding model in 2008 post the 2007 floods.  EQECAT 

currently has a European inland flood model and is in the process of developing a UK model. A 

list of available Cat models for the UK is provided in Table 2.2.  

As the prominence and capabilities of Cat models increases there is concern within the 

industry that insurers are relying too heavily on Cat models rather than their own judgement 

(Gray reported by Lloyd's 2006; Clarke reported by Gusman 2008). Clarke highlighted the need 

for the insurance industry to use Cat models as a tool rather than the absolute truth and to be 

aware of the limitations and assumptions contained within the models. This concern is 

reflected in the new Solvency II legislation which requires insurances companies to be able to 

justify any decisions and assumptions they make when pricing insurance (European Parliament 

Council 2009).  

Table 2.2 Available catastrophe models for the UK 

Company Model Name Risk 

AIR UK Flood Coastal flooding 

Inland Flood Model Inland flooding 

Extra Tropical Cyclone (ETC) 

 

Wind 

Benfield Grieg UK GAPWind  Wind 

UK GAPFlood Coastal flooding 

 

EQECAT Eurowind Wind 

UK wind Wind 

UK Flood Coastal flooding 

 

JBA Consulting JCALF catastrophe modelling framework Inland flooding 

 

RMS Europe Windstorm Wind 

UK River Flood Inland flooding 

East Coast UK Storm-Surge Flood Model Coast flooding 

 

Cat modelling companies, and the insurance companies who use the models, are in direct 

competition with each other. As such there is a lack of detailed information about Cat models 

available in the public domain. Some limited information is provided on the Cat modelling 

companies website although this is largely marketing material and unlikely to give an unbiased 

description. A review article by Sanders et al (2002) discusses a range of Cat models and draws 

some comparisons between different models, however this report is becoming increasingly 
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out of date as models are continually being updated in response to technology developments 

and demands for more detailed modelling. The RMS Storm Surge model is discussed in papers 

by Muir-Wood et al (Muir-Wood and Bateman 2005; Muir-Wood et al. 2005) with reference to 

flooding on the East coast of the UK. Beyond this online financial commentaries and 

publication of industry conference material can also provide a useful insight into progress 

made by, and issues facing the insurance and Cat modelling communities, although they are 

unlikely to provide any detailed information about the models themselves.  

This lack of information has a threefold effect; firstly the insurance industry users need a 

better understanding of Cat models to use the results effectively. Secondly the general public 

is becoming more aware of climatic risks and as such are demanding more information on how 

these risks are modelled. Thirdly Cat models have traditionally been subjected to very little 

peer review, there is no benchmark to evaluate Cat models against and no one within the 

industry has taken responsibility for evaluating them. This means Cat models are being used 

without full knowledge of their ability (Pielke, reported by Green 2005). 

Cat modelling companies are beginning to respond to this information gap with more 

information available online (for example RMS 2008) and AIR’s new Inland Flood Model has 

been peer reviewed by experts from universities, HR Wallingford and CEH (AIR Worldwide 

2008). The industry is realising that to enhance both its science and its credibility stronger links 

are required between insurers, Cat modellers, the regulator (Lloyd’s) and academia. Research 

groups such as Wills Research Network and the Lighthill Risk Network are a means of achieving 

this, as is a strong presence at academic conferences, for example Guanasekera and Foote 

from Willis convened a session at EGU 2011 (NH9.1/EG8) at which work from this thesis was 

presented (Speight et al. 2011). An acceptance is starting to emerge amongst the Cat 

modelling companies that “today there are very significant differences between the various 

catastrophe models on the market, and it is in our interest that these differences be 

understood and evaluated by the users of modelling results” (AIR Worldwide 2009).  The 

requirements of the new Solvency II legislation (European Parliament and the Council of the 

European Union 2009) also mean that insurance companies will have to show more scientific 

justification for their modelling and pricing decisions in the future which may promote more 

transparency within the industry. However much of the detailed information about the models 

is still only available to subscribed customers. The following review should be read in light of 

these constraints.   
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2.4.3.1 Cat model structure 

The basic Cat model structure was illustrated in Figure 2.2. The following two sections outlines 

the main components, focussing on the RMS models as these form the basis of Catlin’s 

modelling capabilities. Unless otherwise stated, the information used in this review is available 

from the RMS website (RMS 2009).  

RMS UK River Flood 

The RMS UK River Flood model provides high resolution modelling of risk on and off the 

floodplain including; major and minor rivers, temporary stream flow, surface water flows, 

ground water and drainage overflow in urban areas, and can capture correlations between 

different sources of flood risk. In total around one million kilometres of river and surface water 

flow routes are modelled on a 10m DEM grid. Since its first release in 2000 the model has been 

updated to include continuous simulation modelling for incorporating antecedent conditions, 

seasonality, and enhanced flood defence data from the Environment Agency database.  

The weather input to RMS River Flood is based on a UK wide stochastic rainfall event set 

derived from the RMS time-stepping European precipitation model which simulates 100,000 

years of frontal and convective extreme events over Western Europe. The spatial-temporal 

rainfall patterns have been verified against 45 years of reconstructed European rainfall. In total 

around 700 stochastic events are used in the River Flood model. Events are classified into four 

categories, Frontal, Mesoscale Convective Complexes (MCC), Thunderstorms and East Coast, 

with the areal extent of each event determined based on rainfall totals above 25mm. 

Rainstorms are assumed to be elliptical in shape with the greatest intensities in the centre of 

the ellipse. The storms can travel along predefined storm tracks with a stochastic velocity 

variable. Thunderstorms are assumed to be stationary (Smith 2009).  

The model uses a continuous simulation approach to account for antecedent conditions and 

seasonality.  Stochastic rainfall inputs can be specified as single or multiple events up to a 

duration of 168 hours (based on standard re-insurance event specification) allowing loss 

dependency between different locations on the same river to be incorporated (Sanders et al. 

2002).   

The statistical rainfall-runoff methods, as described by the FEH are used to convert rainfall into 

flow (Smith 2009). Different components of the system are modelled in different ways 

including a numerical model of major rivers and a hydrodynamic physical model of flooding on 

minor floodplains and surface water using separate models for each catchment. The model 

uses a variable resolution grid, up to 50m. Defences, and their potential of failure, are included 
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in the floodplain inundation model. Damage functions are calculated based on occupancy, 

height, age, and construction type. They include 12 risk modifiers to allow the client to change 

factors such as the presence of basements or particular vulnerability to water. If no building 

inputs are available then the model uses a database of typical building characteristics for the 

area. The damage function approach has been derived using a combination of theory and 

claims data from recent flood events (1998, 2000 and 2007). Results are produced at a 

postcode level.  

The model can be used to produce return period flood maps, flood risk rating tools and 

probability loss models in RMS Risk Link. Analysis is possible at a range of scales including 

single sites referenced by latitude and longitude, street address, postcode units, postcode 

sectors and CRESTA zones (areas used as the basis for insurance portfolio analysis).  

Table 2.3 Summary of RMS UK Inland Flood model 

 
Event Module 

Hazard 

Module 

Vulnerability 

Module 

Description • Uses a stochastic 

event set of 700 UK 

rainfall events 

• Rainfall is converted 

to flow using FEH 

Rainfall -Runoff 

methods 

 

• Allows modelling of on 

and off floodplain hazard 

including rivers, 

temporary streams, 

surface water, ground 

water and drainage 

overflow 

• Numerical model of 

major rivers 

• Hydrodynamic physical 

model of floodplain and 

surface water 

 

• Damage function 

based on: 

occupancy, height, 

age, and 

construction type 

• 12 risk modifiers 

available for client to 

change vulnerability 

• Results given at 

postcode level 

 

Data sources • RMS European 

precipitation model 

 

• 10m DEM 

• Environment Agency 

Flood Defence database 

 

• Theory and recent 

claims data from 

1998, 2000 and 2007 

 

RMS UK Storm-Surge 

The RMS storm surge model covers the East Coast from Hornsea in the Humber Estuary to the 

Thames Estuary at Margate.  A detailed description of the model is provided by Muir-Wood 

(1999), this is summarised below. An application of the model to investigate the impact of a 

repeat of the 1953 storm surge is described by Wood et al (2005). The model is based on 

stochastic storm surges with associated wind fields and different tidal states and includes a 

defence failure model. The wind fields are derived from the RMS European Windstorm model 

(summarised in Table 2.5) which is run in conjunction with the storm surge model. Floodwater 
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inundation is modelled using a time stepping approach which allows both the depth and 

duration to be accounted for. Tide data are used from 25 gauging stations along the East Coast.  

The most intensive North Sea surges are caused by wind storms from three types of Extra 

Tropical Cyclones (ETCs) in the North Sea; 

1. Northern North Sea – storms moving east across the north North Sea which cause 

northerly winds on the East Coast  

2. South East tracking – storms moving to the South east of the eastern North Sea which 

cause high winds across the western North Sea and cause a storm surge along the East 

Coast towards the Netherlands. It was this type of weather system that caused the 

1953 storm surge 

3. Southern North Sea – storms moving slowly across the southern North Sea which 

become compressed by anticyclones over Norway and creates strong on-shore north-

easterly winds.  

 

Wind fields from historic events of these types were reconstructed and checked against surge 

forecasting models. Within the RMS European Windstorm model there are 586 stochastic 

windstorms that cause events of this type. As the surges are derived from the windstorm 

model it is possible to assess the correlations between windstorms and coastal surges using 

this model.  

To account for the fact that storm surges may arrive at different points in the tide cycle and 

will have a different effect depending on the tidal state, the stochastic windstorm events are 

separated into groups of three potential outcomes dependant on the tide surge interaction. 

The more dominant the tide, the shorter the duration of high water during the event (Wood et 

al. 2005). Tide and surge are then combined at 69 reference points along the coast to define 

local water levels. The water levels were checked against Dixon and Tawn’s (1994) statistical 

analysis of extreme water levels around the UK coastline (Wood et al. 2005). The model also 

takes account of the impact of extreme waves associated with the surges.  

All of the East Coast is protected by either manmade sea defences or natural defences such as 

cliffs, sand dunes and pebble embankments. The sea defences have been modelled based on 

data from the Environment Agency’s 1996 Sea Defence Survey. Each defence is assigned the 

water height of the nearest reference point. The probability of breaching or overtopping is 

then calculated based on defence fragility curves derived from the defence condition, length 

and duration of the event. The equations used to model breach failure are described by Wood 

et al (2005). If breaching occurs the defence is assumed to erode rapidly to ground elevation. 
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Each stochastic event is divided into two breach scenarios, passive response (no breaching) or 

breaching response. Combined with the tidal interactions, this gives a maximum of six possible 

surge events per generating windstorm.  

Flood water propagation inland is modelled based on the water flux, topography and ground 

roughness on a 50m grid. Vulnerability functions were developed based on RMS’s historic 

flood data based on property type, height and content. The impact of high velocity water, 

which can cause significant structural damage, was included in the damage functions through a 

multiplier effect for depths of over 1.5m and decreasing exponentially with distance from the 

source.  

Table 2.4 Summary of RMS UK Storm-Surge model 

 Event Module Hazard 

Module 

Vulnerability 

Module 

Description • Combines 

characteristics of 

observed storm surge 

with stochastic wind 

fields likely to drive 

these events 

• Combines surge and 

tide at 69 reference 

points along the coast 

to give total water 

level 

• Adds an extreme 

wave component 

 

• Consideration of defence 

breaching using fragility 

curves for defence 

condition, defence length 

and event duration 

• Inland propagation 

calculated on 50m grid 

based on topography and 

ground roughness 

• Damage function 

based on: 

occupancy, and 

construction type 

• Includes multiplier 

function for high 

velocity flows 

Data sources • 25 tide gauges 

• RMS European 

Windstorm model 

• EA Sea defence survey • Observed flood 

losses database 

 

Table 2.5  Summary of RMS European Windstorm model 

 Event Module Hazard 

Module 

Vulnerability 

Module 

Description • ETC large scale wind 

events and summer 

thunderstorm 

downdrafts 

• Simulates storm tract 

with associated wind 

speeds for each event 

 

• Model produces 3 second 

peak gusts and 10 minute 

mean wind speeds on a 

1km grid. 

• Wind speeds are adjusted 

for roughness up to 80km 

away 

• Damage function 

based on: occupancy 

and construction 

• Results given at 

postcode level 

Data sources • European dataset of 

2500 wind events 

• Numerical models use 

to develop stochastic 

windstorm event set 

• Roughness values from 

satellite data and aerial 

images 

• Performance of 

different building 

types under 

laboratory and 

observed conditions 
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2.4.3.2 Data quality 

The increasing sophistication of Cat models means that they are now more sensitive to high 

resolution data. Poor data quality accounted for up to 45% of the difference between 

modelled and actual loss following hurricane Katrina (Lavakare and Mawk 2008). Given the 

various different components involved in Cat models there are multiple data sources that can 

contribute to uncertainty including meteorological observations, resolution of spatial data 

such as DEMs and vulnerability data. Improving data quality has become a competitive 

advantage point between rival Cat modelling companies but at present there is no industry 

standard for data, although this is an issue that is currently being addressed by the industry 

(Lavakare and Mawk 2008).  

2.4.3.3 Modelling assumptions 

Cat models, like all other types of model, embody a number of assumptions and are forced to 

make a compromise between complexity, accuracy, available data, knowledge and 

computational costs. Cat models are heavily reliant on historic data to generate the stochastic 

event sets. Like all models, the data needs to be reliable and cover a long enough period to 

include the most extreme events in the record. Most Cat modelling companies have compiled 

their own event catalogues from a variety of sources to ensure that this assumption is met. 

The use of historic event data also relies on the premise that the past is a good approximation 

for the present and means that the models are of limited use to predict the impact of climate 

change as they do not appear to include any means of modifying the stochastic event set. This 

is not a major issue for insurance companies as they only need to price policies for the short 

term. Therefore so long as the Cat model is updated frequently with new observations the 

models are fit for purpose.  

The generation of extreme events is the core element of Cat models and as such incorporates 

many assumptions. Cat models are all based on an event duration of seven days. This is 

motivated by re-insurance contracts which will pay out on losses sustained within a seven day 

period. This artificial constraint could result in correlated events being split into two insurance 

events by not fully considering the lag time, for example between a low pressure system 

causing coastal flooding and heavy rainfall and fluvial flooding. However given the nature of 

events in the UK, and the relatively short river length this is unlikely to be a major problem as 

previous research suggests these features will be contained within a two day window (Keef et 

al. 2009a). A linked concern is the effect of flood events like summer 2007 where two separate 

low pressure systems bought heavy rainfall to the UK within a four week window, the July 
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flooding therefore was partly dependant on the preceding event causing wet and waterlogged 

ground. These issues are discussed further in Chapters 5 and 6.  

The stochastic event generators are assumed to simulate realistic event sets. Smith (2009) 

conducted a review of the stochastic rainfall module of RMS River Flood and concluded that it 

suffers from several limitations and assumptions, mainly due to the analysis of extreme events 

not adequately reflecting the variability in extreme rainfall and the variable storm generating 

mechanisms across the UK. However Smith concludes by saying that many of these limitations 

are not necessarily a deficiency of the model as more complex methods should only be used if 

the observed data supports them. Similar observations could be drawn for the windstorm and 

storm surge models, for example RMS have recently identified that the large scale correlations 

in wind gusts are not represented in their European Windstorm model (Bonazzi et al. 2011) 

and are therefore working on means to better represent this in future releases.  

Awareness of the relationships between different sources of risk is starting to become 

apparent within the insurance industry (Collins 2008a; Collins 2008b). This is important as 

insurers need to be aware of risks that could affect their entire portfolio at the same time, 

however correlations between input sources are not explicitly represented in Cat models. The 

use of historic observed data to generate stochastic events implicitly represents the spatial 

correlations within events. However at present there is limited consideration of the links 

between fluvial and coastal flood events. The RMS Windstorm and Storm-Surge models can be 

linked together but the Inland Flood model must be run separately.  

2.4.3.4 Variation between models 

The degree of variation between different models depends on the phenomenon being 

modelled. Hurricanes are well understood so there is less difference between different 

companies’ hurricane models than between different UK Flood models (Royal Meteorological 

Society 2010). The degree of variation also depends on the component or value being 

compared. For example the variation between the mean values may be different from the 

variation between the most extreme values (Royal Meteorological Society 2010).   

The general structure of Cat models is very similar and from the high level descriptions 

available for review it is difficult to identify the major differences between them. An 

alternative method is to run the same portfolio through all available models and compare the 

results however the licensing fees prevent most companies from being able to do this. For the 

large companies and regulators who are able to (such as Willis and Lloyds), the terms of their 

license present the results from being made public.  
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Although the general structure is the same, differences are likely to occur within all of the four 

modules identified in Figure 2.2 due to the use of different data sets, different stochastic event 

generation, different flow propagation function, and assumptions around the defence fragility 

and the vulnerability calculations. Some qualitative remarks can be made, for example 

according to Jewson, the head of Cat modelling for RMS in the UK, one of the major 

differences between the models is in the vulnerability functions due to the lack of knowledge 

of how buildings may respond (Royal Meteorological Society 2010).  Saunders et al (2002) 

make some more quantitative observations as part of their review, most interestingly for 

coastal models that EQECAT’s probably maximum losses (PMLs) can be up to eight times 

higher than RMS’ and RMS’ assumptions regarding sea defence failure probabilities are more 

optimistic than EQECAT’s.  

The variation between models is due to epistemic and epistemological uncertainty. One model 

is not necessarily better than another but rather provides a different, but equally valid, 

representation of reality given current levels of data and scientific understanding (Royal 

Meteorological Society 2010). Communicating this to insurance companies is an on-going 

challenge for the regulators and modelling companies.  

2.5 Informing risk based decision making  

This chapter has identified a variety of flood risk assessment methodologies at various scales 

of analysis. To fully address all of the components of the flood risk system and the important 

interactions between them it is recognised that a systems based approach is required.  

Cat models are an example of a specialised systems model for insurance pricing. Cat modelling 

companies have traditionally been criticised for the lack of information available about their 

models. The review of RMS’ inland flood model and storm surge model provided in this 

chapter has illustrated that by combining information from a number of different sources it is 

possible to get a good overview of the main model components. In spite of this Cat models are 

essentially “plug and play” modelling systems and only the Cat modelling companies 

themselves are able to develop the models and have access to the internal knowledge about 

the processes and assumptions within the models. This limits the use of Cat models as a tool to 

help increase understanding of flood risk by end users. This situation could potentially be 

improved in the near future with the advent of Open Source Cat modelling which is a concept 

that appeals to a number of stakeholders in the area due to its potential to open up the Cat 

modelling business. One example is the OASIS project (OASIS 2012) supported by the Lighthill 

Risk Network which is developing, amongst other perils, a UK flood model. However there are 
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numerous political and logistical issues to be addressed before open source Cat modelling can 

become mainstream.  

Despite the increasing partnerships between the insurance industry and academia the debate 

over the commercial sensitivity of Cat models is on-going and unlikely to be solved in this PhD. 

Instead the focus here is on developing a framework to help insurers better understand the 

type of questions they should be asking themselves when using Cat models. To do this the next 

chapter investigates how Catlin’s portfolio is currently modelled using RMS’ Cat models and 

then a systems based model is proposed in Chapter 4 which explicitly considers all of the 

important aspects of the flood risk process including sources, pathways, receptors and the 

links between them. 

Rather than focusing on developing increasingly complex models, there is a need for the end 

users of Cat models to better understand the processes involved to meet future legislation and 

to improve their risk management. Systems based approaches are continually being developed 

and offer a coherent framework to achieve this aim. Research has been done on most 

individual components of systems model but there has been limited work on an end to end 

systems approach that incorporates all the relevant improvements in science and technology, 

and is focussed on the end user. Developing a framework that can be used by the insurance 

industry to aid understanding of Cat model output and inform insurance pricing would be a 

useful contribution to the area. Such a framework would also be beneficial for wider flood risk 

management.  

Through this review of existing methods some essential modelling criteria emerge that would 

be beneficial for informed risk based decision making. Ideally the proposed model should be: 

• Transparent – with well-defined methodology, assumptions, and input data quality  

• Adaptable – to cope with varying data availability and potential natural and manmade 

changes in the future 

• Flexible – for focussing on particular aspects of importance in any given system or area 

of interest 

• Efficient - to run quickly enough to simulate a large sample set for risk based analysis 

while still providing a robust and realistic framework 

• Simple – to enable end users to understand the system and potential uncertainties 
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3 Case study 

3.1 Introduction 

The methodology developed in this thesis is motivated by a case study exposure dataset of 

static caravan sites provided by Catlin (Catlin Group Limited 2009). Catlin is an international 

specialty property and casualty insurer. Established in 1984 it is a large and well recognised 

company, owning and operating the largest syndicate at Lloyds and writing $4069m of 

premiums globally in 2010 (Catlin Group Limited 2010).  

Catlin currently insures around 80% of the fixed caravan stock in the UK. This equates to a total 

insured value of over £4 billion. They have been providing cover for this portfolio since 2001. 

Catlin do not provide cover to the remaining 20% of static caravans in the UK due to 

restrictions on the insurance provision, including not providing insurance to caravans that have 

previously been flooded, are below threshold levels set by previous flood events or to caravans 

over five years old.  Catlin believe it is these restrictions that prevented them suffering major 

losses during the autumn 2000 and summer 2007 floods in the UK when other caravan 

insurance providers had to pay out considerable claims.  

Having run commercial models to assess the risk to their caravan stock, Catlin are concerned 

that the commercial models may be under estimating risk, particularly from flooding. This is a 

particular concern given the large proportion of caravan stock insured by Catlin and the 

potential over exposure risk from a large event affecting multiple sites. Catlin are therefore 

interested in gaining additional understanding of the weather related extremes affecting their 

stock which can then be used to help improve insurance pricing.  

Catlin’s caravan portfolio is separated into four sub profiles;  

• Compass Caravans which covers static caravans, chalets, park homes and residential 

buildings, 

• Compass General which covers general commercial structures on the sites for example 

the shop, 

• Compass Private Clients for individual clients taking out insurance through the 

company, and 

• Compass Direct which mainly covers park homes. 

 

The largest sub portfolio is Compass Caravans, which incorporates 57% of the Total Insured 

Value (TIV) of the whole portfolio (JLT Re 2008a). For simplicity in data management, and to 

avoid the added complexities of dealing with commercial properties, this study has focussed 
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on the data associated with the Compass Caravan account only. The Compass Caravan 

portfolio is continuously changing in terms of both the stock insured and the way Catlin’s 

exposure is modelled. This description of the portfolio is based on data and modelling 

information from March 2009. This section has been compiled using data from two reports on 

the Compass portfolio (JLT Re 2008a; JLT Re 2008b) and information from Catlin. 

The aim of this chapter is to establish the current practice when modelling the portfolio and 

identify potential areas where further investigation would be beneficial. The first part of this 

chapter reviews the caravan portfolio and related risk exposure. This includes a discussion of 

how risk to the portfolio is currently priced, identification of the major limitations of this 

approach, and, analysis of the past claims data from the portfolio. The second half of the 

chapter concentrates on particular areas at risk and establishes a subset of the caravan sites 

that will be investigated in more detail through the remainder of the thesis.  

3.2 The caravan portfolio 

The TIV of stock in the Compass caravan account is over £2billion. This is predominantly from 

caravans as shown in Figure 3.1 

 

Figure 3.1 Accommodation type in the Compass Caravan account  

 

The caravan stock is distributed around the UK as shown in Figure 3.2. Over a third of the sites 

are located within 1km of the coast with other notable concentrations in popular holiday 

hotspots such as the Yorkshire Dales and Lake District National Parks. The highest 

concentrations of insured values are in North Wales and along the Lincolnshire coastline as 

shown in Figure 3.3. 



Case study 3 

 

35 

Figure 3.2 Compass Caravan Account site 

locations 

Figure 3.3 Compass Caravan Account Total 

Insured Value by postcode sector 

 

3.3 Pricing risk to caravans  

Catlin price their caravan policy using the RMS Inland Flood and RMS Wind and Storm Surge to 

calculate the AAL however Catlin currently take a conservative approach to pricing risk to the 

caravan account, adding 30% to 40% to the modelled losses to account for uncertainty.  

Although Catlin provide the insurance cover they are not responsible for selling the insurance, 

this is done through an external company. The implication of this is that the information Catlin 

knows about the caravans to put into the Cat model is limited, in most cases only containing 

the site location at postcode level and the value of caravans, chalets, park homes and 

residential property at the site (Table 3.1). Various assumptions have to be made about the 

value of each unit, the total number of units at the site and the construction characteristics of 

each unit as discussed below. 
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Table 3.1 Data provided to Catlin about each insurance policy 

Category Description 

Postcode Usually given to 6 digits 

Park name and address  The address is used for geo-coding if no postcode is given 

Insured value of caravans, chalets, park 

homes, other structures 

Total insured values for each structure type included in the 

policy 

Total insured value Sum of all structure types 

Risk Reference Reference number assigned to each policy 

 

3.3.1 Unit value assumptions 

Catlin has estimated the number of units at each site from the TIV based on the following 

assumed values (rounding down with the minimum number of units set to 1); 

• Park Homes and chalets: £75,000 

• Caravans: £20,000 

• Other (residential): £125,000 

The estimated number of units is used to calculate the deductable (excess) for each loss which 

Catlin specifies at £50 per unit.   

A sensibility check was carried out on these assumptions using the value of individual units 

insured under the Compass Private Clients and Compass Direct schemes (rather than the per 

site values reported for the Compass Caravan scheme). Based on the insured value of 9432 

individual caravans, the mean insured value was £19,352 (Table 3.2) indicating the assumed 

value of £20,000 is suitable. However there is a long tail to the distribution (Figure 3.4) with 

the maximum insured value reaching £117,500 (although it is possible that a single customer 

could insure more than one caravan under the same policy). Of particular note in the table 

below is that the mean insured value for park homes is more than double that for chalets. The 

two structure types are grouped together in Catlin’s assumptions meaning that Catlin are likely 

to significantly underestimate the number of chalets on a site, especially as the minimum 

insured values are similar but there is a £90,000 difference in the maximum insured values. No 

data was available for other individual residential structures in the direct or private accounts.  

Table 3.2 Summary of insured values of individual site structures in the Compass Private 

Clients and Compass Direct Schemes 

Type Number in 

data set 

Mean insured 

value 

Max insured 

value 

Min insured 

value 

Standard 

deviation 

Caravans 9432 £19,352 £117,500 £2,500 £11,056 

Chalets 1270 £39,990 £160,000 £7,500 £22,625 

Park Homes 6363 £85,153 £250,000 £6,001 £31,357 

Chalets and Park 

Homes combined 

7606 £77,612 £250,000 £6,001 £34,463 
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Figure 3.4 Histograms of insured values for each accommodation type in the Compass 

Caravan Account 

 

 

McEwen et al (2000) conducted a review of the value of caravan site structures based on 

caravan sales websites and conversations with site owners. The results are shown in Table 3.3 

and do not account for contents. Comparison of Table 3.3 with Catlin’s assumed values also 

indicates that the assumed values are suitable although McEwen’s data again confirms that 

combining park homes and chalets is likely to overestimate the number of chalets on a site. 

McEwen et al’s data are from 2000 and hence some account needs to be taken of inflation. A 

review of caravan prices in 2010 from internet sales sites reveals that the values for static 

caravans are still appropriate. 
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Table 3.3 Cost to buy new of different types of caravan site accommodation 

Name Cost to buy new  Description 

Touring Caravan  £7000 - £15,000 Temporary  

Static Caravan £15,000 -£30,000 Semi-permanent 

Mobile Home £45,000 - £60,000 Prefabricated construction, built on park, more 

stable than static caravan but can still be removed 

if required 

Chalet £60,000 - £130,000 Wooded, semi-permanent structure 

Source: McEwen et al (2000) 

 

As well as the values, it is also possible to check the assumptions based on the number of units 

per site. Since it is difficult to identify if park structures are caravans, park homes or other 

residential buildings a check has been carried out comparing aerial photography and insured 

values for sites that can easily be delimitated and which only have caravans and no other 

residential structures insured. It should be noted that not all caravans on a site are necessarily 

covered by the Compass Caravan account so in general the TIV per unit estimated from the 

photography is expected to be higher.  A larger sample would be needed for conclusive results 

however Table 3.4 shows the results from five sample sites. There is a broad range of errors 

between the assumed and observed number of units which could be due to the inclusion of 

caravans not insured by Catlin, or because the site is a particularly high end site with a few 

valuable units rather than many cheaper units. In general, given the large standard deviation in 

caravan values, Catlin’s assumptions produce a reasonable estimate of the number of caravans 

at each site especially when the interest is in the profile as a whole rather than individual units. 

The sensitivity of the damage and loss calculation to the unit value is assessed in Section 

9.1.4.2. 

Table 3.4 Comparison of Catlin assumed number of units on caravan sites with aerial 

photography for given sample site locations 

Site 

location 

From Catlin data From aerial  photograph 

TIV 

(£1000) 

number of units - 

assuming £20,000 per 

unit 

Number of 

units 

TIV  - assuming £20,000 

per unit 

(£1000) 

Somerset £2,273 113 146 £2,920 

Cumbria £1,107 55 28 £560 

Essex £2,077 103 347 £6,940 

Devon £1,128 56 76 £1,520 

Fife £6,894 344 516 £10,320 

Fife £1,054 52 55 £1,100 
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3.3.2 Unit construction and occupation assumptions 

Within RMS RiskLink Catlin can set construction and occupation classes. Catlin specifies the 

construction type of park homes as “wood structure” and caravans as “unknown”. Where 

buildings are classified as “unknown” RMS RiskLink uses the occupancy to identify the type of 

building. There is no differentiation in RiskLink between mobile and static caravans. Catlin has 

coded the occupancy as “single occupancy summer houses” and “mobile homes” as 

appropriate. RMS RiskLink does provide a construction class for “manufactured / mobile 

homes” which could potentially be used to improve the damage calculations, however no 

details are available as to what assumptions this construction class makes and it is not 

currently available in the Windstorm model.   

No information is specified about the split between buildings and contents insurance although 

both are covered. Normally this would be assumed to be around 60% buildings and 40% 

contents but as caravans are assumed to contain minimal possessions and most of the 

furnishings are part of the construction of the caravan, the buildings to content split for the 

portfolio has been assumed at 90% buildings and 10% content. 

RMS RiskLink also allows additional information about buildings to be included through the use 

of modifiers such as the presence of basements or particular types of roof construction which 

makes properties more or less vulnerable during a catastrophic event. Catlin has not specified 

any modifiers for the Caravan account. However as Catlin do specify certain criteria before 

they will offer insurance (see Section 3.1), the modifiers could potentially be used to take 

account of this.  

Catlin are aware of the importance of correctly specifying the unit construction and occupation 

types when modelling their exposure risk and have in the past carried out some simple 

sensitivity testing to identify the effect of varying the construction type and vulnerability of the 

caravans. Some of the options selected by Catlin were very extreme for example roof type as 

“thatched”, or occupancy type as “small marina.” Although this gives an impression of how 

sensitive the loss is to construction vulnerability, in reality it would not be sensible to model 

the caravans in this way. Results are presented in Figure 3.5 to Figure 3.6 for the most 

significant modification tested. Expected loss is standardised based on the 0.001 AEP (10 000 

year) expected loss for each peril from the currently modelled construction class. Analysis of 

loss curves in this way can help understanding of the damage functions used in RMS. It should 

be noted that the exposure dataset used in Figure 3.5 and Figure 3.6 is different from the 2009 

exposure dataset used in Figure 3.7 and Figure 3.8 
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The results show that the shape of the Occurrence Exceedance Probability (OEP) curve is 

similar for all construction and occupation types. The flood losses to mobile homes (as Catlin 

has coded them) are initially higher than for other construction and occupation types, and 

increases faster. This indicates a high vulnerability to flood damage.  It is unknown what 

construction type RiskLink applies when the occupation is specified as mobile homes but 

comparing the modelled losses to the construction type wood, occupancy mobile homes curve 

indicates a more vulnerable construction type.  

For flood losses the modifiers have a significant impact for example a 7% decrease in loss is 

expected for a 0.004 AEP event if the caravans are raised up to 1m above ground level, and a 

15% increase in loss is expected for if there are large flood carried missiles. The flood missiles 

could be other caravans moved by the flood, site equipment or general flood debris such as 

trees in the flood water. 

 

Figure 3.5 Results of previous Catlin analysis of the effect of changing construction and 

occupation class on flood losses 
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Figure 3.6 Results of previous Catlin analysis of the effect of changing vulnerability modifiers 

on flood loss 

 

New sensitivity testing runs were made for this PhD by modelling Catlin’s exposure through 

RMS RiskLink for flood, wind, and combined wind and storm surge losses by comparing three 

scenarios:  

1. As currently modelled, construction = “unknown”, occupancy  = “mobile homes”  

2. Construction = “unknown”, occupancy = “residential” 

3. Assuming that a more representative coding for caravans could be occupancy = 

“mobile homes”, construction = “manufactured / mobile home”, floor level = up to 

0.5m  

 

Figure 3.7 and Figure 3.8 illustrate the high vulnerability of caravans under all perils compared 

to residential properties. It is also interesting to note that when the construction type is 

specified as “manufactured / mobile home” the vulnerability increases compared to Catlin’s 

current modelling values. This is most notable in the wind storm results since the effect of 

specifying the floor height at 0.5m above ground level reduces the flood losses for the other 

models. There is a step change in the loss curve around an AEP of 0.01 for flood losses which is 

not seen in the residential class. This is possibly indicative of a point in the damage function at 

which minor damage changes to major or irreparable damage. Further details of damage 

functions for caravans are discussed in Chapter 9.  
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Figure 3.7 New sensitivity analysis of the effect of construction class on fluvial flood losses  

 

 

 

Figure 3.8 New sensitivity analysis of the effect of construction class on wind and storm 

surge losses 

 

The various sensitivity tests presented in this section show that Catlin’s assumptions for 

modelling caravans are suitable and give a conservative estimate of OEP when compared to 

other construction and occupancy types. Changing the construction to “manufactured / mobile 

home” would provide a more conservative modelling code. The RMS loss curves are 

particularly sensitive to the modifiers for flood losses, raising the ground flood level by 1m or 

specifying large flood missiles result in a 25% variation of the OEP. Catlin do not know this 

amount of detail about the individual units and sites, for example are the site structures such 

as fences and fuel storage, well situated or are they likely to become missiles during a flood 

event, are individual caravans raised above ground level or is there significant property stored 

beneath the caravan which would be damaged. Therefore it is difficult to use the modifiers 
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efficiently. Lack of knowledge about individual caravan construction therefore represents a 

major source of uncertainty in Catlin’s ability to accurately estimate risk to its portfolio.  

3.3.3 Location assumptions 

The caravan site locations are specified as six digit postcodes. RMS uses these postcodes to 

geo-code the data before using it in the model. The geo-coding process matches the postcode 

to a known geographical unit within the model and assumes the site is located at the centre of 

this unit. The Compass Caravan account data has good geo-coding, 98.7% of sites are modelled 

based on postcode units, the remainder are modelled at city or CRESTA level (CRESTA zones 

are large aggregated areas used for insurance and re-insurance purposes. 

The geo-coding means that a site is either modelled as flooded or not flooded based on 

whether the central point in the postcode unit is flooded. This method is standard across most 

Cat models and in most cases provides a reasonable approximation of location. However when 

considering caravans there are a number of particular considerations to take into account; 

• Caravan sites are usually located in rural areas where the postcode units are large 

• Caravan sites include multiple individual units, which for large sites may not all be 

represented by the postcode location of the site office 

• The geo-coding assumption may result in an over or under estimation of risk where 

part of a site is flooded depending if the flooded area covers the centre of the 

postcode unit. 

 

Figure 3.9 and Figure 3.10 illustrate the difference between the geocoded postcode locations 

and the observed spatial extents of the caravan sites for an inland location near Stourport-

upon-Severn and for the Lincolnshire coastline near Ingoldmells. The coastal example 

illustrates a situation whereby the spatial extent of the site is much greater than the postcode 

point location, at its widest point the large concentration of sites in Figure 3.9 is 0.8km x 1.8km. 

The Stourport-upon-Severn example shows two sites where the point postcode location does 

not lie within the site outline. The largest discrepancy between the point location and the 

centre of the site is 0.4km. The sensitivity of damage to location assumptions is tested in 

Section 9.1.4.1. 
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Figure 3.9 Discrepancies between caravan site postcode points and site outlines: Ingoldmells 

 

 
Figure 3.10 Discrepancies between caravan site postcode points and site outlines: Stourport-

on-Severn 

Red stars show point postcode locations, yellow shading indicates site outlines 

Red stars show point postcode locations, yellow shading indicates site outlines 
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3.4 Past claims data 
Insurance claims data from 2006 – 2009 were reviewed to identify the claims resulting from 

key events, and to identify any trends in the claims data. A review of claims data provides a 

useful addition to analysis of the observed hydro-meteorological event data, especially when 

carrying out a consequence based study. Both flood and wind storm events are reviewed due 

to the link between the wind and surge model.  

Table 3.5 lists the information recorded for each claim. The claims data relating to caravans 

(reported as “Caravan Flood” or “Caravan Storm”) is reviewed in this section for both the 

number of claims and the total incurred loss. The number of claims can give an idea of how 

widespread an event is while the total incurred loss indicates the severity of the event.  The 

value of loss for individual events is not reported due to data confidentiality. Losses are 

reported proportional to the total loss incurred between 2006 and 2009. This is calculated 

separately for flood and storm events.  

Table 3.5 Information recorded for each claim in the caravan account  

Category Description 

Claim reference Claim reference  

Policy holder Name of policy holder, either name of individual or name of caravan site 

Policy number Policy number  

Loss date Date of the event 

Claim description Brief description of the claim e.g. “flood damage”, “storm damage to roof” 

Catastrophe code When a large event occurs it is assigned a code and all claims resulting from 

that event are coded the same. This allows for easy identification if re-

insurance thresholds are reached. 

Heading Code identifying type of claim 

Heading description Description identifying type of claim e.g. “Caravan flood”, “Caravan storm”, 

“Chalet flood”, etc.  

Claims paid Amount awarded to the client 

Fees paid Fees paid by the client  

Incurred loss Claims plus fees 

 

3.4.1 Quality of claims data 

Catlin do not process claims directly and therefore do not keep their own claims record. The 

claims data available from the external company is poor and of limited use for a number of 

reasons; 

• The detail of the event and resulting damage is limited, for example the record may 

just say “Flood” under description. 

• Coding of events is unclear, the claim may be coded as “Caravan Storm” but the 

description refers to water damage. This could be due to errors in data coding, for 



Case study 3 

 

46 

example a wind storm event causing damage to the caravan which results in water 

ingress by rainfall, or most importantly because there is no clear definition in the event 

coding between a wind storm event and a coastal surge event. 

• Cross referencing between the claims event and the exposure dataset is difficult as the 

claim reference (Table 3.5) does not relate to the risk reference used by Catlin (Table 

3.1).  Therefore manual cross referencing must be used based on the name and 

address of the claimant and the addresses of the insured site however this does not 

always result in a direct match.  

• There is no separation of claims from the four different accounts listed in Section 3.1. 

• A site may make one claim for all affected units on the site or individual claims for each 

unit. This will affect the number of claims made per event.  

• Once a site has been flooded, Catlin are unlikely to continue to provide insurance so 

the site may no longer appear in the portfolio. Analysis of records of past exposure 

portfolios is therefore required. 

 

These factors make it difficult to identify the location of claims and to compare the claims data 

with the exposure database to establish the proportion of loss compared to insured value. In 

addition to these general inadequacies there is also evidence of poor reporting of the timing of 

events, particularly for wind storms which have possibly been grouped and recorded on 1st of 

the month.  

Although a loss adjuster attends each site after a claim is received and makes more detailed 

reports of the damage, it was not possible to review the data from the loss adjusters as part of 

the project. Access to this data would have provided a more robust and detailed damage 

dataset to work with, and would have provided a useful dataset to validate the systems model 

with.  

The following review makes the best use of the available data but should be viewed in light of 

the limitations of data quality, reliability and availability. 

3.4.2 Review of past claims  

In general the portfolio has performed well. During the large flood events of June and July 

2007 only minimal losses, less than the estimated AAL of the combined Compass policy, were 

incurred. There have been no large scale coastal events over the past three years and given 

that the greatest concentrations of sites are located along the coast the portfolio performance 

may have been significantly different if a storm surge had occurred. The flood events that have 

occurred have resulted in a low number of high value claims. This is shown in Figure 3.11 
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which displays the proportion of total losses from flood and wind events over the claims 

period (2006 – 2009) sustained from each event. A 15% proportional loss on a given day means 

that 15% of the total flood losses from 2006 and 2009 were recorded on that date. Five key 

flood events, resulting in 49 claims, account for 76% of the total flood losses between 2006 

and 2009. Details of the significant events over the claims period are listed in Table 3.6. This is 

in contrast to the five largest windstorms over the same period which accounted for 37% of 

the total wind storm loss but resulted in 875 claims. This is indicative of the vulnerability of 

caravans to flooding but is also a function of larger flood events being experienced over the 

past three years but no major windstorm events.  

Table 3.6 Description of main flood events in the claims period 2006:2009 

Event window Description of event Number of 

flood 

claims 

Proportion of 

total flood 

losses 

13
th

 December  

2006 

Severe weather across Scotland with flooding in a 

number of areas (BBC News 2006) 

5 14% 

19
th

 June  

2007 

Large inland flood event affecting the North East 

and the Northern Midlands (Environment Agency 

2007) 

15 15% 

18
h
 July  

2007 

Large inland flood event affecting much of 

central England including the Rivers Severn, 

Warwickshire Avon, Bedford Ouse, Trent and 

Thames (Environment Agency 2007) 

9 11% 

10
th

  March 

2008 

 

Combination of low pressure system and spring 

tide leading to coastal flooding, especially in the 

South West (BBC News 2008) 

12 20% 

10
th

 November 

2008 

Strong winds and rain across South West and 

South Wales resulted in local flooding in South 

Wales (BBC News 2009) 

8 16% 

 

An initial aim of this thesis was to investigate if there is any correlation between extreme flood 

and wind events. A simple means of doing this is to look at the number of flood and wind 

claims resulting from the same event. There are 42 days with insurance claims for flood 

damage. The number of wind claims and associated damage occurring on the same day as 

these flood claims is shown in Figure 3.11. Only 13% of the losses due to wind events over the 

period 2006 – 2009 occur on the same day as flood events. Small scale wind claims are 

received throughout the year.  This is a recognised issue when working with insurance claims 

data (Donat et al. 2011) and although localised small events do occur it is indicative of policy 

holders claiming even though there is no wind event. It was therefore expected that there 

would be some wind damage on each of the flood event days. There is one event on 10th 

March 2008 where there is a notable number of wind claims indicating a link between the 

wind and flood events. However it is more common in the dataset to see flood events which 
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have little corresponding wind damage such as June and July 2007.  Two events where there 

are multiple wind claims but only one low value flood claim are 1st February 2008 and 1st 

January 2008, this could be a wind event with little corresponding flood damage although both 

these events occur on the first day of a month and could therefore be a function of poor data 

recording as discussed in Section 3.4.1.  

 

 

Figure 3.11 Proportion of claims between 2006 and 2009 occurring on the same day as flood 

events 

 

3.4.3 Use of claims data 

It was hoped that the past claims data would provide a useful means of both identifying 

preliminary trends in the claims data which could be investigated further to help understand 

exposure and to provide a means of validating the methodology. However given the concerns 

with data quality listed in Section 3.4.1 and the limited record length of only three years the 

use of the claims data is limited to the above qualitative review of the portfolio performance 

over the past three years.     

Although the claims data does not show a significant correlation between flood and wind 

losses, it is acknowledged that a link does exist, particular between coastal flood events and 

windstorms as identified in the existing statistical researched reviewed in Chapter 5. However 

in this thesis the focus is on risk from fluvial and coastal flooding only.  
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3.5 Sites at risk 

A full review of Catlin’s exposure was carried out to identify areas of high flood risk or with 

particular risk driving issues. Sites were deemed to be at risk if they were located within the 

Environment Agency Extreme Flood Outline (EFO) (Environment Agency 2009b). A map of the 

at risk sites is shown in Figure 3.12. It is not possible to model risk for all Catlin’s caravan 

exposure within the PhD time frame. Instead a nested multi-site model has been developed 

which allows more detail to be included at particular sites of interest while still maintaining the 

national structure. Further discussion of the motivation behind a nested multi-site model is 

given in Chapter 4.  

Risk clusters were identified around each caravan site, summing up the TIV within a 25km 

radius of the site. The clusters were then ranked by TIV to identify the highest risk areas, 

ensuring no overlap between the clusters. Four risk clusters were selected for inclusion into 

the multisite model based on: 

• The value of assets at risk 

• Achieving a balance of fluvial and coastal sites 

• Accessibility of data  

• Good spatial distribution of sites 

• Links between risk processes across the cluster 

 

The clusters selected are shown in Figure 3.12. Further reasons for selecting each cluster are 

detailed below. It is acknowledged that the EFO only considers fluvial and coastal flood risk 

and sites may also be exposed to pluvial flooding. Although pluvial flooding is modelled in RMS 

it is not considered as part of this thesis.   
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Figure 3.12 Selected risk clusters 

 

3.5.1 Cluster 1. East Coast 

The Lincolnshire coastline has the highest concentration of at risk caravan sites in the UK, 27.7 % 

of Catlin’s portfolio. The location and value of the sites is shown in Figure 3.13 and Table 3.7.  
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The area being considered is very low lying with 69 sites below sea level as shown in Figure 

3.14. The area of low lying land extends approximately 10km inland before starting to rise. The 

flood risk is predominantly tidal and the area is particularly vulnerable to coastal surges in the 

North Sea. There are continuous flood defences along the coastline comprising of sea walls, 

flood banks and some natural dune defence systems. Some sites may also be at risk from 

flooding from small drainage channels behind the coastal defences which could back up during 

a high tide event if water is unable to discharge into the sea. The assessment of fluvial risk in 

this area is complicated as the low lying land is managed with a complex pumping system to 

promote drainage.  

Two main areas of connected flood risk have been identified north of Skegness (Ingoldmells) 

and at Mablethorpe. A breach in the flood defences in either of these areas would result in 

rapid inundation of the low lying caravan sites, many of which form a continuous zone of 

caravan sites along the coastline, as shown in Figure 3.15. 

Detailed information is available from the Environment Agency for the coastal flood defences 

in this area. This means that it provides a good case study for investigating the importance of 

correctly modelling flood defence reliability given the available data and heavy reliance on 

flood defences.   
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Figure 3.13 Total insured value of at risk sites: Lincolnshire coast 

 

 

Table 3.7 Exposure risk summary: Lincolnshire coast 

Number of sites at flood risk Fluvial: 1 Coastal: 126 Combined: 4 

Proportion of Catlin’s portfolio at risk 27.7% 
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69 sites < 0m AOD 

 

108 sites < 2m AOD 

 

119 sites < 4m AOD 

Highlighted light blue points show caravan sites below the specified elevation.  

Other sites are coloured by insured value as per Figure 3.13 

 

Figure 3.14 Lincolnshire site elevation 

 

 

Source: Google maps 

 

 

 

 

 

Source: Wilkinson (2004) 

 

 

 

 

 

 

 

Figure 3.15 Spatial extent of multiple caravan parks at Ingoldmells 

 

3.5.2 Cluster 2. North Wales 

A large proportion of Catlin’s risk is located in sites along the North Wales coast, with the 

concentration of risk second only to Lincolnshire. The location and value of the sites is shown 

in Figure 3.16 and Table 3.8.  
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Figure 3.16 Total insured value of at risk sites: North Wales coast 

 

 

Table 3.8 Exposure risk summary: North Wales coast 

Number of sites at risk Fluvial: 9 Coastal: 32 Combined: 42 

Proportion of Catlin’s portfolio at risk 11.1% 

Caravan sites in this area are at risk of coastal flooding and fluvial flooding from the River 

Clwyd. Many of the sites in this area are located along the sea front and are bounded on the 

inland side by the A55, the main transport link in the area, as shown in Figure 3.17. 
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There are flood defences protecting most of the 

urban areas consisting of flood walls and clay 

embankments. Similar to the East coast sites, most of 

the sites included in the North Wales cluster form a 

continuous line of caravan sites along the coastline 

(Figure 3.18) 

The greatest flood risk in this area is acknowledged by 

local experts to be tidal flooding around the Kimmel 

Bay area from where the River Clwyd meets the sea 

south to Abergele. A major flood was experienced in 

Towyn in 1990 when a combination of high sea levels, 

high tides and strong winds caused a breach in the 

flood embankments flooding 3000 properties. The 

flood lasted four days with successive high tides flowing through the breach. EA staff (personal 

communication) recall that many of the caravans came dislodged from their bases. 

There are numerous small streams draining the low lying coastal area and anecdotal evidences 

from Conwy Council suggests that there is also some flood risk associated with the small 

stream running parallel to the coast however data are not available for these small scale 

features so they are not included in this analysis.  

Source: Google maps 

Figure 3.18 Continuous location of multiple sites along the North Wales Coast 

 

 

Source: North West England and North 

Wales Coastal Group (2008) 
 

Figure 3.17 Caravan site at Abergyll 
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3.5.3 Cluster 3. River Severn near Stourport-on-Severn 

A cluster of caravan sites located in the River Severn catchment near Stourport-on-Severn 

provides the greatest concentration of sites at risk from fluvial flooding. The location and value 

of the sites is shown in Figure 3.19 and Table 3.9.  

This area has been chosen as a suitable site to develop the methodology for fluvial dominated 

risks. This is an area at risk from fluvial flooding from multiple river systems including the 

Severn, the Leam and the Stour, all with different flooding regimes. It therefore provides a 

useful case study to investigate the dependence between flood risks on different rivers in the 

catchment system. Unlike the coastal sites where individual sites are located adjacent to each 

other, the fluvial sites in Worcestershire tend to be more spaced out, therefore requiring 

individual consideration of pathways in the S-P-R-C model.   
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Figure 3.19 Total insured value of at risk sites: River Severn near Stourport-on-Severn 

 

 

Table 3.9 Exposure risk summary: River Severn near Stourport-on-Severn 

Number of sites at risk Fluvial: 27 Coastal: 0 Combined: 0 

Proportion of Catlin’s portfolio at risk 3.3% 
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3.5.4 Cluster 4. River Thames near Hurley 

Flood risk in the River Thames catchment is receiving high levels of research and media 

attention at present and as such it is desirable to test the methodology in this area where it 

may have future application for other at risk assets. Two sites on the River Thames at Hurley 

have been identified as the initial focus of the analysis (Figure 3.21 and Table 3.10).  

Flood risk at Hurley is fluvial from the River Thames. It is complicated by management of the 

weir system at Hurley. In contrast to the coastal sites, the main site at Hurley is spread out 

(Figure 3.20) potentially meaning that the whole site is unlikely to flood at the same time 

except in very large events.  

 

Source: Google Maps 

Figure 3.20 Caravan sites on the Thames at Hurley 
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Figure 3.21 Total insured value of at risk sites: River Thames 

 

Table 3.10 Exposure risk summary: River Thames 

Number of sites at risk Fluvial: 2 Coastal: 0 Combined: 0 

Proportion of Catlin’s portfolio 0.9% 



Case study 3 

 

60 

 

3.6 Summary of Catlin’s caravan exposure 

Catlin’s exposure from the Compass Caravan account is high due to the large proportion of UK 

caravan stock covered and the clustering of sites in high risk locations along the coastline. 

This chapter has illustrated that Catlin’s assumptions regarding the construction and 

occupation classes used to determine loss in RMS RiskLink are suitable given the limited data 

available to validate the assumptions. However losses have been shown to be particularly 

sensitive to modifiers such as the floor height, which is concerning as Catlin do not know this 

level of detail about individual units. Further analysis of the sensitivity of risk estimates to the 

damage functions will be investigated in Chapter 9.  

 The main limitation to how much additional understanding can be gained regarding the 

damage to caravans during a flood event is due to the lack of detailed claims data. It is 

recommended that Catlin collect, as a minimum, cross referenceable data, and ideally, more 

detailed data from any future flood event to help understand if their assumptions regarding 

caravan vulnerability are suitable.  

The remainder of this thesis focuses on risk to the four key clusters identified in this chapter; 

1. Lincolnshire East Coast 

2. North Wales Coast 

3. River Severn near Stourport-on-Severn 

4. River Thames near Hurley 

 

Using these multiple nested sites allows a detailed process based understanding of risk from 

both coastal and fluvial sources to be developed which will help improve understanding of 

exposure risk across the portfolio as a whole.  
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4 A methodological framework for multi-site risk analysis 

4.1 Modelling approach 

As introduced in Chapter 2, the optimal approach to flood risk modelling is a systems based 

model that is transparent, adaptable, flexible, efficient and as simple as possible. This chapter 

sets out the proposed means of achieving this in the context of a risk based framework to help 

inform insurance portfolio analysis. The proposed model also has wider uses for flood risk 

management and could be applied to any spatially distributed receptor.  

4.1.1 Systems based approach 

The benefits of a generic systems based approach were summarised in Chapter 2. Figure 4.1 

illustrates the components of the S-P-R-C model relevant to this thesis. Further details on the 

modelling of each component are given in Section 4.2. 

 

Figure 4.1 Components of system model as considered in this thesis 

 

By considering each of these components separately a modular framework is developed. This 

allows explicit consideration of all of the important factors in the risk system and the links 

between them.  

A modular approach allows for changes in one component of the system without having to 

change all components. This also means that additional components can easily be included, for 

example an additional source variable. A further advantage of a modular approach is that it 

enables each stage of the process to be validated independently. This is important when taking 

a whole system approach as validation of the end to end system model can be difficult as 

discussed in Section 4.4.  

4.1.1.1 Sources 

A brief synopsis of the causes of extreme weather in the UK was given in Chapter 1. The 

sources of interest in this thesis are extreme river flows and sea level. River flow has been 

selected in preference to rainfall as although in most cases the rainfall record is longer and has 
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a finer spatial resolution; using rainfall data incorporates an additional uncertainty through 

rainfall-runoff modelling. Using the flow data directly includes all of the spatially variable 

rainfall-runoff process. A constraint of using flow data is that it limits the use of the model for 

potential climate change analysis which is more naturally incorporated through the use of 

weather generators using rainfall as the primary variable (see Kilsby et al. 2007 for details). 

Although it is useful for insurance companies to have a long term view of how their risk 

exposure may change in the future, insurance pricing is carried out on an annual timeframe. 

Climate change is therefore not considered as a fundamental part of this research since 

providing the source data are up to date there is no requirement for explicitly modelling 

climate change impacts.  

Extreme sea levels are a combination of the deterministic tide and stochastic storm surge, plus 

a wave component. The wave component is particularly important for defence overtopping 

but due to modelling complexities is often poorly represented in coastal analysis (Hawkes et al. 

2002). These three variables are known to be correlated especially the wave and surge 

components in extreme events which are driven by meteorological forcing (Hawkes et al. 

2002). Total water level can also be restricted by the tide due to the mediating effect of 

shallow water on wave height (Thomas and Hall 1992; Coles and Tawn 2005b). All three 

variables are considered in this thesis.  

4.1.1.2 Pathways 

The pathways are the routes by which water reaches the sites of interest. Here the main focus 

is the reliability of flood defences as this is likely to cause the greatest variability in flood risk.  

Also considered as part of the pathway term is the link between extreme water levels 

observed at gauging stations and the extreme water level at the sites of interest. This requires 

the use of physically based transformation methods to convert offshore waves to inshore sea 

level and to interpolate from river gaging stations to ungauged locations.  

Hydraulic modelling of the river section of interest is required to estimate the water levels at 

the defence structures from the river flow. Should overtopping or breaching occur, the final 

pathway is the floodplain, the topography of which can either prevent water reaching the 

receptors or encourage preferential flow routes for example along low lying ground or roads.   

4.1.1.3 Receptors 

The receptors considered in this thesis are static caravans as detailed in Chapter 3. The 

caravans are located on large sites across the UK, many of which are located near to water 
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bodies due to its scenic and recreational value. This results in clustering of exposure in certain 

areas, such as along the Lincolnshire coastline. 

Due to the modular nature of the framework, the proposed methodology could be applied to 

other spatially distributed receptor. Examples might include electricity substations or transport 

infrastructure. 

4.1.1.4 Consequences 

The consequence of interest is insured loss. This is based on a flood damage model combined 

with a simple financial losses model. Due to their flimsy constructions, caravans are 

particularly vulnerable to flood damage since any amount of water ingress can quickly cause 

significant structural damage (Hall et al. 2000; McEwen et al. 2000). The development of 

caravan specific damage curves is discussed in Chapter 9. The damage functions could easily be 

changed to adapt the framework to a different receptor in the future.  

4.1.2 Nested multi-site approach 

The consideration of flood risk for insurance pricing or for other large scale flood risk 

management decisions requires analysis over national scales (or larger in other non-island 

nations).  Computational it is not possible to carry out detailed analysis at the national scale 

therefore alternative solutions must be sought.  

The RASP project (Hall et al. 2003) outlined a hierarchy of assessment methods for different 

scales of analysis. While this approach allows for increasing levels of detail to be included at 

smaller scales it does not support cascading of information from one level to the next. For 

example the most detailed level recommends continuous simulation of hydraulic loads, since 

this is not possible at a national scale, there is no consideration of wider scale dependencies in 

the detailed analysis. 

The ‘Spatial Coherences of Flood Risk’ project (Keef et al. 2009a) produced a national scale 

assessment of spatial and temporal correlations in flood risk. This assessment mainly focused 

on correlations between extreme river flows at gauged locations and used an interpolation 

method (discussed further in Chapter 7) to provide data between the gauging stations. In 

recognition of the computational load of a national scale model the study outlined a relatively 

simplistic methodology by which the output from the statistical model could be used to assess 

the impact of extreme river levels on receptors (Keef et al. 2009a; Lamb et al. 2010).  

The solution proposed in this thesis draws on both of the above ideas to develop a nested 

multi-site approach. In this way more detailed analysis can be carried out at the sites of 
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interest including consideration of defence failure and detailed inundation modelling while still 

maintaining a national structure and incorporating the broad scale spatial correlations 

between sites. This nested approach is similar to that used by the climate modelling 

community in Global Climate Models (GCM) to Regional Climate Model (RCM) downscaling 

where the output from large scale models provides the boundary conditions for more detailed 

regional models while maintaining the larger scale spatial structures. The proposed nested 

model structure is shown in Figure 4.2.  

 

Figure 4.2 Nested framework structure of systems components 

 

Rather than fitting the dependence model to a large national set of gauges, a smaller subset 

(referred to as the network) is selected consisting only of gauges connected to the sites of 

interest. By only using a subset of gauges it is possible to incorporate national scale spatial and 

temporal dependencies while restricting the dimensionality of the statistical dependence 

model to a realistic level for use in a risk based model. For example the UK National River Flow 

Archive contains a standard dataset of around 200 gauges (CEH 2009a). Using the conditional 

dependence model outlined in Chapter 5 with 200 gauges and 10,000 simulated events per 

gauge, 100 of which are likely to be extreme events over the 0.99 threshold leads to 20,000 

simulation points per gauge and 4x106 for the full network when the conditional flow at all 

other gauges in the network is simulated from each conditioning gauge. To extend this to 

include temporal dependencies within a 7 day window of the conditioning extreme event leads 

to over 3x107 simulation points for the whole network.  

Although not all these simulations would be carried through the full system model due to 

rejection sampling (See Chapter 6), it is immediately obviously that to extend the dependence 
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model to include the other variables of interest from the coastal gauges results in high 

computational costs. By using a nested approach and only including gauges located close to 

the sites of interest the large scale spatial and temporal dependencies are preserved without 

unnecessary computation cost. This is illustrated in Figure 4.3 for an example event (each dot 

represents a gauge in the network shaded by event magnitude). This also allows for inclusion 

of more gauges in the areas of interest for example to better incorporate loading patterns near 

tributary confluences.  

 

Figure 4.3 Illustration of how spatial dependence is maintained through the nested model  

 

An additional benefit of reducing the number of gauging stations in the dependence model is 

that the probability of having missing data for any gauge in the network on any given day is 

reduced. The problem of missing data is discussed further in Section 6.3.5.1.  

Maintaining the national dependence structure in the risk model is important for insurance 

applications since simultaneous losses across large areas are likely to result in large payouts. In 

contrast areas where the exposure is low make a minimal contribution to total losses, 

therefore there is limited additional benefit in including these areas in a risk model. This type 

of nested approach could also be useful for wider flood risk management for example in the 

2007 floods temporary flood defences, support equipment and personnel were moved from 

one area to the other (Environment Agency 2007; Pitt 2008). Knowledge of the large scale 

spatial structure of flood events and the local impacts could provide a valuable tool for 

improving logistical risk management decisions such as these.   

The key to a successful nested model is careful selection of the areas to include to maintain 

good coverage of the national structure while also including key areas with high risk exposure. 

Details of the process used to make this selection for this thesis were provided in Chapter 3.  
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4.2 Outline of the risk model  

An overview of the proposed risk assessment framework is shown in Figure 4.4 illustrating the 

methodological flow from national level to local scale assessment. The methodology explicitly 

couples large scale spatial dependencies in extreme events with local scale dependencies in 

defence crest height, defence reliability and defence loading. The novel aspects of the 

methodology are in the nested model structure, the simulation of extreme events and 

consideration of the defence system. The methodological framework is outlined in Sections 

4.2.1 to 4.2.7. More details of each component are discussed in the remaining chapters of this 

thesis.  

 

Figure 4.4 Overview of the risk assessment methodology 

4.2.1 Sources input 

For each event, i, daily mean flows are simulated at all the gauges in the network using a 

conditional dependence model. The total sea level is assumed to comprise of a tide, surge and 
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wave component. The tide component is modelled deterministically using the full tidal range 

at the sites of interest. The surge component is modelled using the conditional dependence 

model fitted to the skew surge from each event. The swell waves from the nearest wave rider 

gauge are also modelled using the conditional dependence model. The simulated vector of 

sources across the network, Xi, represents a large scale spatial event with probability, P(Xi).  

The local dependencies are then addressed at each site or risk cluster, s. The daily mean flow 

at the nearest gauge to the site is labelled qi. The procedures for transferral to ungauged sites 

are discussed in Section 7.2.2. The daily mean flow is then converted into a peak flow and 

hydrograph, Qi, such that;       

&� = '�(� , �*  4.1 

where ks is the ratio of daily mean flow to flood peak specified for each site.  

The combined coastal component at the site of interest is labelled zi. This is then transformed 

to represent inshore wave heights (See Section 7.3 for details) at the site of interest such that,  

+� = '�,� , ℎ*  4.2 

where hs represents the local bathymetry between the wave rider and shoreline of interest.  

4.2.2 Defence system 

Consider a flood defence system with n sections, d1 to dn, characterised by their construction 

type and standard of protection. Any one of the defences can fail in one or more locations 

resulting in inundation of the floodplain. Within each defence section it is assumed that the 

crest height varies along the length of the defence. The degree of variation depends on the 

defence type and condition such that;  

	.,�	 = '	��
'
�	
	/0�
, �
'
�	
		����/���  4.3 

Where c is the simulated crest height and resistance to load of any given defence, j. The 

combined vectors of crest height for the whole system is referred to as Ci.   

4.2.3 Water level and overtopping 

The water level is referred to as Li through the modelled reach or shoreline, or lj,i at a particular 

defence section. Coastal water level is determined by inshore transformation of the simulated 

sea state from Equation 4.2. The fluvial water level is simulated using the hydraulic model for 

the specified flows and defence crest heights; 

�� = '�1�, &�  4.4 
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Overtopping of defences is considered deterministically based on the modelled water level 

conditional on the simulation of the defence crest height. The probability of overtopping, P(OTi) 

depends on the probability of the extreme event, however due to the variation in crest height 

��23�|�� = 42� 	≠ 1. Defence overtopping occurs when the water level at the defence is 

greater than the crest height. This can be defined throughout the model OTi, or for individual 

defences, �/.,� or points within an individual defence, �/.,7,�, where y is the chainage along the 

defence section from 1 to t.  

23� = '�1� , ��  4.5 

4.2.4 Defence failure 

A defence is said to have failed if it has breached in one or more locations. Overtopping is 

considered directly via the modelled water level so failure only relates to breaching. The failure 

of defence dj is labelled as event Dj. The non-failure of defence dj is labelled as ��.. 

The probability of failure for any given event, P(Dj,i) is conditional on the loading variable, 

amount of overtopping, and defence reliability such that for any given defence;  

�8�.,�9 = 	'�".,� , �/.,� , �.,�  4.6 

 

This can be extended to consider any point along the defence;  

�8�.,7,�9 = 	'�".,7,� , �/.,7,� , �.,7,�  4.7 

 

Assuming that breaches are independent, the probability of breaches at locations y=1 and y=2 

is; 

�8�.,:,�9 	× 	�8�.,<,�9 	× 	�8��.,=,…,?,�9 4.8 

 

The probability of defence failure for any given load is defined using a fragility curve, giving the 

conditional failure probability P(Dj|lj), in this case the load is defined as the water level at 

defence j. The unconditional failure probability, P(Dj) is given by; 

�8�.9 = 	! �8".9���.
#

$
@".9�" 4.9 

 

Where p(lj) is the probability density function of the water level, l, at defence j. 
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4.2.5 Sample probabilities of breach scenarios 

A central assumption of the RASP methodology is that all defence sections are loaded at the 

same time (Hall et al. 2003). In practice this may not be the case due to the potential reduction 

in water level following an upstream breach, particularly in areas with significant floodplain 

storage (Apel et al. 2009).  

An iterative sampling procedure is proposed to incorporate the dependence on previous 

upstream breaches for fluvial loading. Firstly the hydraulic model is run assuming no failures to 

give ��,AB,…,ACDDDDDDDDDDD. Successive sequences of one or more defence breaches, Dss, are sampled based 

on the conditional failure probabilities at each point in the defence ���.,7|��,AB,…,ACDDDDDDDDDDD) until 

�(�**|��,AB,…,ACDDDDDDDDDDD) → 0. The hydraulic model is run for each sequence with a standard breach 

size and growth rate to provide water levels at each section including the impact of potential 

reduction in water level from upstream breaches. The probability of each failure sequence 

P(Dss),is the product of the failure probability at each breach point P(Dj,y,i), for the modelled 

water level ".,7,�,AGG. One of the failure sequences, Dss,i, is sampled from the probability 

distribution p(Dss) for each event. Each breach in Dss,i is assigned a maximum width such that;   

H**,�	 = '(	�� , �
'
�	
	/0�
, '"����"���	��,
	���	�ℎ��
, /���I	�'	J�
�	ℎ) 4.10 

 

For coastal loading there is unlikely to be a reduction in total water level and the fluvial 

locations selected for further analysis in this thesis (see Chapter 3) do not contain significant 

storage behind levees. The above steps are therefore included for completeness if the 

methodology were to be applied in different areas in the future, however they have not been 

tested in this thesis.  

By not considering the sequential failure probabilities there is no need for iterative model runs 

and the probability of each failure sequence P(Dss),is the product of the failure probability at 

each breach point P(Dj,y,i), for the modelled water level ��,AB,…,ACDDDDDDDDDDD. 

4.2.6 Damage conditional on event  

For each event, Xi, for the specified defence state variables, Ci, Dss,i, and Wss,i, the hydraulic 

model is run to calculate water level in the channel and flows onto the floodplain. A raster 

based floodplain inundation model is used to calculate flood depths across the floodplain. 

Using caravan specific depth damage curves these floodplain depths are converted to loss 

estimates at each site using a simple financial model, and summed together to give the loss 

across the portfolio conditional on the event. Loss conditional on event is denoted φ�. 
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4.2.7 Calculating risk 

As discussed in Section 2.2, risk is commonly defined as the probability of an event multiplied 

by the consequence (Equation 4.11) 

R = 	! f(∝) V(∝)	d ∝ 
4.11 

where f(α) is the joint probability function and V(α) is the damage function. 

F(α) is established empirically assuming a large enough sample size such that: 

α� = 	1σ�X*	 >	��,*	|	U:,…,*V:
W

XY:
>	��,:,…,*V: 

4.12 

where σ is the sample size, s is the closest gauge to the site or risk cluster, k is the total 

number of gauges in the system, x  is the simulated value at each gauge for event i, and X is a 

vector of all simulated values at each gauge. The event probability is established from the 

probability at the gauging stations (P(Xi)). V(α) is the damage function which is a sum of 

damage sustained at all sites of interest for the event. This is equivalent to φ�. 

One way of evaluating this integral is by Monte Carlo integration, based upon η Monte Carlo 

samples from f(α), in which case: 

R	 ≈ 	1[�C(∝)
]

^Y:
 

4.13 

This thesis has also considered the effect of flood defence systems in modifying the probability 

of flooding. In the simplest instance, for a system of n flood defence sections, there are t= 

1,…,2n  possible system states, each of which has a probability of failure which is conditional 

upon the loading variables, written P8DXX,a|α9. In this case the risk is calculated as follows: 

R = 	!�f(α)V(α)
<b

aY:
P8DXX,a	|	α9		dα 

4.14 

 

and the Monte Carlo estimate is:  

R	 ≈ 	1[��V(α)
<b

aY:

]

^Y:
P8DXX,a|α9 

4.15 

 

If the event probabilities are calculated on an annual scale, and damage are calculated in terms 

of insured losses then AAL can be used as the risk metric. The EP curve can be constructed by 

plotting the conditional event probability against event loss for all simulated events.  
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4.3 Data sources 

A major consideration of a full system based model is the large amount of data required. The 

multisite approach restricts this to specific areas, however the range of data needed is still 

considerable. Table 4.1 lists the main data components required for the systems based model 

outlined in Section 4.2 and identified potential data driven limitations. Further details of each 

data set are given in the signposted chapters.   
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Table 4.1 Data requirements for a system based model 

Model 

component 
Data required Source Data format Known limitations 

Further 

details 

Source  

(Fluvial) 

Concurrent flow data for 

river reaches of interest 

Centre for Ecology and Hydrology 

(CEH) National Rivers Flow Archive 

(NRFA) 

Daily mean flow (DMF) 

at each gauging station 

Limited number of extremes in record. 

Gauges not necessarily located near caravan sites. 

DMF doesn’t provide flood peak. 

Chapter 5 

Chapter 6 

Chapter 7 

Source  

(coastal) 

Concurrent still water 

level including tidal and 

surge components for 

coastlines of interest 

British Oceanic Data Centre (BODC) 

UK Tide Gauge Network 

15 minute to hourly 

predicted and 

observed sea level 

Limited number of extremes in record. 

Gauges not necessarily located near caravan sites. 

 

Chapter 5 

Chapter 6 

Chapter 7 

 

Source  

(coastal) 

Concurrent significant 

wave heights for 

coastlines of interest 

Centre for Environment, Fisheries 

and Aquacultural Science (Cefas) 

Wavenet network 

Wave height, period 

and direction at up to 

30 minute resolution 

Wave data recorded at offshore buoys, requires 

transformation to near shore 

Chapter 5 

Chapter 7 

Pathway River channel 

dimensions 

Environment Agency Lidar Raster tiles at 2m 

resolution 

Interpolation required below water level. Chapter 7 

Pathway Flood defence location, 

type and height 

Environment Agency National 

Flood and Coastal Defence 

Database (NFCDD) 

GIS files of defence 

location and other 

available data 

Poor spatial resolution of data. 

Limited data for defence reliability analysis. 

Chapter 8 

Pathway Floodplain geometry Environment Agency Lidar 

 

Raster tiles at 2m 

resolution 

 Chapter 7 

 

Receptor 

 

Location and value of 

caravan sites / units 

Catlin exposure database Postcode locations of 

total insured value at 

each site 

Number / value of individual units at any given site is 

not known. 

Postcode location may not be suitable. 

Chapter 3 

Chapter 9   

Receptor 

 

Damage functions for 

caravans 

Catlin historic claims 

Cat model EP curves 

Multi-Coloured-Manual (MCM)  

Expert knowledge 

Depth-damage curve Commercial sensitivity of Cat model damage functions 

Limited caravan specific data. 

Generalisation of curves. 

Chapter 3 

Chapter 9 
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4.4 Consideration of uncertainty 

Inherent to any systems based risk model are a large number of potential sources of 

uncertainty. These can be aleatory uncertainties due to variability in input variables or 

epistemic uncertainties stemming from a lack of knowledge and understanding of the 

processes involved. There are considerable difficulties in validating complex flood risk models 

which incorporate deterministic and probabilistic components and there is limited published 

work looking at this problem (Environment Agency, 2012b).  

Several approaches have been established to try to identify the contribution of different 

sources of uncertainty in systems risk models for example Dawson et al (2008) used sensitivity 

analysis to attribute risk to different components of the system while Hall et al (2011) outline a 

Bayesian approach to the problem which incorporated prior knowledge about the ability to 

model different components within the system model to estimate the relative contribution to 

uncertainty of different components.  

Some of these uncertainties including event definition, quality of defence data, breaching 

processes and spatial distribution of caravan units will be assessed as part of the modelling 

process. Others such as the potential errors in 1D hydraulic models or the accuracy of DEM 

data are assumed an inherent part of flood modelling and are not considered further.  

Existing work on uncertainties in flood risk models can be used to rank the potential 

significance of sources of uncertainty in a systems based risk model. Uncertainty around the 

extreme value statistics are generally assumed to be much larger than other factors (Apel et al. 

2004). This provides justification for omitting many of the additional sources in an uncertainty 

analysis. Apel et al (2004) found the second major source of uncertainty in their model was in 

the breach module due to poor knowledge of breaching processes and defence properties. 

High sensitivities to breaching were also identified by Muir Wood et al (Muir-Wood and 

Bateman 2005; Muir-Wood et al. 2005) as the critical component in RMS’ coastal flood risk 

models  

Based on past experience and existing preconceptions, Catlin (Personal Communication) 

assume that there are large errors in the calculation of flood damage from the depth-damage 

curves used in Cat models. The risk assessment is also likely to be influenced by the location 

assumptions surrounding the positioning of caravans. This is reflected in the output of the 

NaFRA 2005 which was found to be particular sensitive to property floor level (Environment 

Agency, 2012b). 
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The critical sources of uncertainty may change for different magnitude events, for example for 

a large event that substantially overtops the flood defences, the consideration of breaches 

may not have as significant an effect on the resulting flood depths as for a smaller event where 

there would be no flooding without a defence breach.  

4.5 Informing decision making 

The focus of this thesis is to develop a research framework that can be used to help explore 

some of the issues facing insurers.  Through discussion with Catlin, and with reference to the 

emerging issues facing wider flood risk management, a set of output questions have been 

established. The key issues fall into two categories; investigating the spatial and temporal 

dependencies in flood driving events (Section 4.5.1), and identifying which components of the 

risk model the resulting risk estimates are most sensitive to, and hence where future 

improvements in modelling or increased awareness for risk pricing are needed (Section 4.5.2). 

The level of detail used in this thesis, for example the “average” caravan construction value 

used in the depth-damage curves, is not sufficient for making insurance pricing decisions 

directly. Rather the framework is used to identify the relative importance of different 

components and to investigate high level spatial structures such as the dependence between 

flood driving events. The proposed framework itself is a robust structure that includes all 

important risk driving sources, therefore by incorporating additional detail into the model 

components, the framework could be used by insurance companies, or for other detailed flood 

risk assessment purposes in the future. 

4.5.1 Investigating the spatial and temporal dependences in flood driving 

events 

The use of a statistical model to incorporate the spatial and temporal dependencies in source 

variables into the risk model allows for the importance of this component to be explicitly 

investigated. In particular the following questions are of interest: 

• If there is a large event at location A what is the probability that there will also be a 

large event at location B and do these probabilities change as events get more 

extreme? 

• How important is the event definition (or assumed event duration) to the risk estimate 

over different spatial scales? 

• Is there a significant correlation between extreme fluvial and coastal events and how 

much impact does including this correlation have on the risk estimate? 

• How important is the contribution to risk from fluvial and coastal events? 
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4.5.2 Identifying critical components of the risk model 

Cat models are essentially black boxes where the end user has limited ability to investigate 

individual components in the model. Therefore where assumptions are made about the 

modelling of each component it is difficult to identify the impact each of these assumptions 

has on the final risk estimate. By using a systems based risk model it is possible to run multiple 

scenarios and identify the sensitivity of the risk estimate to changes in individual components. 

Key components that will be investigated are: 

• The shape of the damage curve and the point at which write off is assumed to occur. 

• The spatial distribution of individual caravans across a site. 

• The consideration of flood defences including correctly specifying input data and 

investigating the importance of breaching.  

4.6 Summary of methodological framework 

This chapter has provided an overview of the proposed methodological framework for risk 

assessment. It has demonstrated how each component in the S-P-R-C system will be 

investigated both individually and as part of the system framework. Further details of each of 

the components are discussed in the remaining chapters of this thesis. Each chapter provides a 

review of existing work in the area and details of the modelling carried out in this project. 

Chapter 9 illustrates how the methodological framework can be used to produce risk estimates 

to help inform risk based decision making, particularly for the insurance industry.  

In reference to the five criteria for a flood risk model as set out in Section 2.5 the proposed 

methodology can be seen to be:  

• Transparent as each component and the links between them is individually considered. 

All relevant assumptions are outlined and where the assumptions used in previous 

methodologies appear restrictive these have been identified and investigated. 

• Adaptable as the structure of the framework is such that if any component changes in 

the future, for example a new defence is built or longer data records of input sources 

become available, the relevant component can be re-run to account for this change (all 

subsequent stages would also need to be recalculated). Similarly if improved data 

becomes available the framework can be modified to take account of the 

improvement. For example if better data on flood defence crest height and strength 

becomes available in the future, the simulation of spatially varying defence properties 

can be removed and the improved data used directly.  
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• Flexible as the focus of the framework can be changed as required. Here the main 

focus is on the spatial and temporal dependencies in the driving source of risk and the 

consideration of flood defence failure. In the future if there was more interest in the 

damage functions more work could be done in this area and the consequences 

component improved while still maintain the rest of the model structure. However it 

should be born in mind that improving one component significantly more than the rest 

of the model relies on the uncertainties in the model as a whole being small enough to 

support more detail in particular areas.  

• Efficient as the nested model approach enables the input data required and number of 

model runs to be reduced to just consider the areas of interest while still maintaining a 

national structure. 

• Simple as although some individual components of the methodology are complicated 

(such as the statistical dependence model) the overall framework is clearly visible 

throughout as illustrated in Figure 4.4. Consideration has been given to the best means 

of communication the results with end users and a simplistic interactive tool 

developed that allows end users to explore the system and relevant uncertainties. 
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5 Multi-variate spatial extremes 

5.1 Defining “extreme” 

The definition of extreme is dependent on the context. The media coverage of extreme events 

often verges on sensationalism, largely because “extreme weather makes news” (Nature 2011, 

p131) and sells newspapers (Hudson 2011). Another difficultly is that what is classed as 

extreme changes over time. Bryan Utteridge, head of flood defence at the EA, commented 

during the 1998 floods in Evesham “we’ve seen nothing like this in living memory” (cite BBC 

News 1998) however nine years later the floods of 2007 exceeded the 1998 water level by 

300mm (Environment Agency 2007). One problem is that there is often increased funding for 

studies into extremes immediately following major events. This leads to biased analysis as the 

datasets used inevitable show the largest events occurring at the end of the record (Coumou 

and Rahmstorf 2012).  

The statistical definition of an extreme event is an event that exceeds some pre-specified 

threshold or is the largest (or smallest) in a specified set of observations (Coles 2001). Studying 

extremes is of cross disciplinary interest from the meteorological extremes central to this 

thesis through to financial and medical applications. With climate change models predicting an 

increase in extreme weather events in the future it is becomingly increasingly important to 

understand and predict extreme events.  

Studying extremes presents some unique difficulties as by definition there are not many 

events to base analysis on; in the UK flow records at most sites are less than 40 years long 

(Robson and Reed 1999). In addition, a particular interest is in estimating the probability of 

events more extreme than anything that has occurred before which requires extrapolation 

beyond the existing data. Multi-variate extremes present additional difficulties as it is 

necessary to define extreme events at multiple sites and identify which observations belong to 

the same underlying event. The area over which the event is classified also affects the 

extremeness, as the most extreme events tend to be very localised (see Section 1.2.1).  

The remainder of this chapter begins by outlining the meteorological conditions that cause 

extreme events in the UK (Section 5.2). It then moves on to consider the established statistical 

methods used to model single sites and multi-variate extremes (Section 5.3) and the practical 

issues involved in their use for applied studies. The final Section (5.4) outlines the 

requirements of the statistical model for the sources component of the system model 

developed in this thesis, and justifies the use of the conditional dependence model of 
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Heffernan and Tawn (2004) for this purpose. The application of the conditional dependence 

model to this thesis is discussed further in Chapter 6.  

5.2 Extreme events in the UK 

5.2.1 What causes extreme events in the UK? 

As identified in Chapter 1, flooding presents the greatest climatic risk in the UK. The UK has a 

temperate climate with wet winters and dry summers. Location within the UK affects the 

dominant weather systems experienced and the type of catchment and antecedent conditions 

affect runoff processes leading to spatial variation in the flooding climate.  There are known 

relationships between inputs.  Mid-latitude cyclones bringing rainfall to the UK cause sea level 

to rise due to the effects of low pressure at the centre of the cyclone.  The associated wind 

from the cyclone drags the sea water in a similar direction as the wind causing a surge in sea 

levels coinciding with the heavy rainfall event (Svensson and Jones 2002).  These interactions 

are discussed further in Section 5.2.2.  

It is useful to have a basic understanding of the physical components of extreme events before 

considering how to model them. A brief overview of fluvial and coastal extremes is given in 

Sections 5.2.1.1 and 5.2.1.2. 

5.2.1.1 Fluvial extremes 

Rainfall events 

Precipitation in the UK arises from three main sources; frontal systems, convective instabilities 

(thunderstorms) and orographic uplift (Barrow and Hulme 1997). There is a distinct 

precipitation gradient with more rain in the west caused by orographic uplift and frequent 

frontal systems blowing in from the Atlantic. The difference can be up to five times the annual 

total, however in summer the rainfall totals are similar across the country due to higher 

frequencies of thunderstorms in the south east (Barrow and Hulme 1997).  

The classification of rainfall events as extreme depends on both the amount of rainfall and the 

event duration (Collier et al. 2002). Convective events result in intense rainfall for a short 

period of time which can lead to flashy localised flooding. The spatial dependences for 

convective events are usually low (see Section 5.2.2). Frontal events effect larger areas and 

lead to less intense rainfall over a longer period of time which can lead to widespread flooding.  

Using rainfall records and other historic sources, Collier et al (2002) identify 50 extreme UK 

rainfall events from convective, orographic and frontal sources. Figure 5.1 shows the 

distribution of event type illustrating both the acknowledged timing for different event types, 
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with convective storms dominating the summer months and frontal systems being most 

prevalent through the autumn, and the generally accepted trend for the most extreme events 

in the UK to be localised convective storms. The variation in total rainfall for this set of 

extreme rainfall events is shown in Figure 5.2. 

 

Figure 5.1 Number and type of extreme rainfall events by month as identified by Collier et al 

(2002) 

 

Figure 5.2 Rainfall totals by type of extreme event as identified by Collier et al (2002)  

 

Different types of rainfall events produce different responses depending on the catchment 

characteristics (see Ledingham 2011) and antecedent conditions. As discussed in Section 5.2.2, 

how a catchment responds to rainfall influences the strength of the spatial and temporal 

correlations during flood events.  For this reason, for a flood risk study such as this, it is easier 

to use flow data directly as this removes the uncertainty associated with rainfall run off 

modelling (see Section 4.1.1.1). 

Historic events 

Recent significant, large scale, fluvial events in the UK include the floods of Easter 1998, 

Autumn 2000 and Summer 2007. All three of these events occurred due to changes in the 

normal weather patterns resulting in unseasonal amounts of rainfall. Prior to these events the 
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benchmark flood was in 1947 when a rapid thaw combined with heavy rainfall caused 

extensive flooding across the UK. Many of the flood levels experienced in 1947 have been 

exceeded by subsequent events. 

In April 1998 prolonged, slow moving and heavy rainfall was experienced across in a band 

across the Midlands from Evesham in the south west and the Wash to the north east. The 

wettest areas experienced over 75mm of rainfall in a 24 hour period. This rain fell on 

previously saturated soil and caused widespread flooding. River levels rose rapidly at a speed 

around twice as fast as had been previously recorded, 42000 properties were flooded causing 

insured losses of £500 million (Met Office 1998; Horner and Walsh 2000).  

Again in autumn 2000 pre-saturated ground conditions from an unusually wet summer and the 

wettest autumn in England since records began (Climatepredictions.net) led to widespread 

flooding. The period from September to November saw a series of widespread and prolonged 

rainfall events with seasonal frontal weather systems tracking across the UK further south than 

usual. The worst affected regions were the South East, Wales and Yorkshire. Around 10000 

properties were flooded with losses estimated to be £1billion. The extended duration and 

widespread nature of the flooding was more significant than the magnitude of flows in many 

cases. The local response was complex with different areas flooding at different times and 

some flooding more than once over the autumn (Climatepredictions.net; Marsh and Dale 

2002).  

The 2007 floods were a result of unusual weather conditions with a combination of warmer 

sea temperatures and the Jet Stream located further south than usual bringing heavy, 

unusually long rainstorms over southern and central parts of the UK. The exceptionally wet 

May to July period caused the ground to saturate and reservoirs to fill up, leading to 

widespread flooding in late June and early July. As well as river flooding, the 2007 event 

caused widespread surface water flooding from the intensity of the rainfall. There were two 

main events; the period of June 24th -25th saw flooding in South Yorkshire and Hull then on July 

19th a slow moving depression caused heavy rainfall over south-east England onto already 

saturated ground causing flooding along the Rivers Avon, Severn and Thames. In total 13 

people lost their lives, approximately 48,000 households and nearly 7,300 businesses were 

flooded and over £3bn of insured losses occurred (Environment Agency 2007; Pitt 2008). A 

map of the areas affected in Summer 2007 is shown in Figure 5.3. The emergency response to 

the 2007 floods was compromised due to the unprecedented scale of affected locations with 

Pitt referring to it as the “largest peacetime emergency since World War II” (Pitt 2008). 
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Source: Environment Agency (cite BBC News 2007) 

Figure 5.3 Map of areas affected by the summer 2007 floods 

5.2.1.2 Coastal extremes 

The still water level at the coast comprises of two main components, the deterministic tide, 

which can be predicted based on the relative positions of the earth, moon and sun, and the 

non-tidal residual, or surge component, which is meteorologically driven. The combination of 

these two components is shown in Figure 5.4. The highest water levels are observed when a 

strong positive surge occurs at the same time as a high tide. The seasonal variation in water 

level is relatively low. The largest surges tend to occur in winter while the largest tides are 

most often observed in spring and autumn (Dixon and Tawn 1999). Further details of the 

driving forces behind the tidal and surge components are discussed below.  The still water 

level may be further increased by waves.  
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Figure 5.4 Components of still sea level 

Tide 

The tide is caused by the gravitational forces of the moon and the sun. In the UK there is a 

semi-diurnal tidal cycle lasting on average 12 hours and 25 minutes meaning there are two 

high tides per day. The physics behind predicting the tide are well understood (for details see 

Pugh 2004) and allow for accurate forecasting of the predicted tide at any given location well 

into the future.  

The maximum tidal ranges, known as Spring Tides, occur when the sun and moon are aligned 

at new and full moons every 14.8 days. There are also longer term tidal cycles which should be 

considered. The most important are the 18.61 year lunar nodal cycle, which is caused by the 

difference between the earth and moons position relative to the sun, and the 8.85 year cycle 

of lunar perigree, which peaks when the moon aligns closest to the earth in its elliptical orbit. 

In practice the lunar perigee cycle has a quasi 4.4 year peak due to the positioning of the sun 

during the cycle (Pugh 2004; Haigh et al. 2011). In the UK the lunar perigee cycle is dominant 

(2011), the highest tides are therefore expected when this cycle peaks, next forecast to be in 

2015. Using data records shorter than these significant tidal cycles is likely to lead to under or 

over estimation of the tidal sea level depending where in the cycle the data originates from.  

Surge 

The surge component is the difference between the observed water level and the predicted 

tide. During an extreme event this is normally termed the storm surge, and at other times it is 

often referred to as the non-tidal residual. Unlike the tide, storm surge is not easily predictable 
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in advance and depends on a combination of atmospheric pressure and wind drag.  The impact 

of the meteorological driving forces on the observed water level is further influenced by the 

water depth and the shape of the coastline, with the greatest effects seen in shallow water. 

The atmospheric pressure changes the pressure forces acting on the sea surface. Extra tropical 

cyclones (ETCs) travelling over the ocean with a deep low pressure system at their centre 

cause the sea level to rise beneath the low pressure.  Theoretically a decrease in atmospheric 

pressure of one milibar will produce an increase in sea level of one centimetre.  Pugh (2004) 

suggests in a typical year the extra tropical atmospheric pressure ranges between 980mb and 

1030mb which when compared to the standard atmospheric pressure of 1013mb results in sea 

level changes between +0.33m and -0.17m. The surge formed by the atmospheric low then 

propagates towards the coastline. Surges can also be produced by strong winds which cause 

wind drag along the water surface. This is known as the locally generated surge.  

The effects of both the wind drag and atmospheric pressure surges are greatest over shallow 

seas. The effects are also enhanced when the surge is travelling into an enclosed or narrowing 

area. The worst case surge scenario would be a low pressure system leading to storm 

conditions with very high onshore winds, especially if the storm was blowing into an enclosed 

sea at high tide (Haslett 2000).  

The North Sea is particularly susceptible to storm surges (Haslett 2000; Pugh 2004). This is 

because of its location as ETCs travelling across the North Atlantic cross the northern entrance 

to the North Sea; its shallow depth as pressure gradients develop between the deep Atlantic 

Ocean and the shallow shelf waters of the North Sea; and its shape becoming shallower and 

narrower towards the south. The travel time of a storm surge between the Forth Estuary in 

Scotland and the Thames Estuary is around nine hours (Pugh 2004).  

Skew surge 

Statistical modelling of extreme sea level using the combination of tide and surge is difficult 

due to timing issues. Correctly modelling the timing of peak tide and peak surge is important, 

for example a large storm surge occurred in the UK during November 2007 however the 

impact of this event was low as the peak of the surge occurred at low tide (JBA Consulting 

2007). The interaction between surge and tide, especially in shallow water, means that the 

maximum surge residuals tend to occur at low to mid tide as the tide rises (Horsburg and 

Wilson 2007).  

An alternative method is the concept of skew surge.  Skew surge is the difference between the 

maximum observed sea level and the maximum predicted tide from the nearest tidal cycle, as 
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illustrated in Figure 5.5. Using skew surge avoids having to account for the tide-surge 

interaction as skew surge is independent of the tide height (Keef et al. 2009a). Skew surge is 

used in preference to the surge residual in many recent studies on coastal flood risk including, 

UKCP09 (UK Climate Projections 2009),  and the EA Coastal Flood Boundary Conditions project 

(McMillian et al. 2011a) and Spatial Coherences of flood risk project (Keef et al. 2009a). For 

these reasons skew surge is used as the basis of analysis in this thesis.  

 

Source: UK Climate Predictions (2009) 

Figure 5.5 Calculating skew surge 

Waves 

Waves are produced by wind blowing over open water.  While the wind is still actively forming 

the waves they are known as wind waves. Once formed, waves can continue to travel 

hundreds of kilometres without the active intervention of the wind. These waves are then 

known as swell. Swell waves are generally more damaging to costal defences than wind waves 

as they have a longer period and greater power. A longer period increases the run-up and 

wave overtopping compared to wind waves of an equivalent height (Environment Agency 

2011b). As a wave travels towards the coastline it is affected by local bathymetry and water 

depth.  

The consideration of waves is particularly important as during storm surge events the waves 

can impact coastal defences above the designed height and may overtop the defence causing 

damage to the rear face (Wolf and Flather 2005). This is especially relevant on exposed 

coastlines such as in Lincolnshire. In many cases the consideration of waves in coastal flood 

risk studies is limited. This is largely due to the complexity of including waves and the lack of 

easily useable datasets.  The EA (Environment Agency 2011b) has recently published guidelines 
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for the inclusion of waves in coastal studies so there may be improvements in this area in the 

future.  

Historic events 

The worst historic coastal flood in the UK occurred in January 1953 when a major storm surge 

hit the East Coast, causing multiple defence breaches, flooding 24000 homes and causing the 

loss of 300 lives (Spalding 1953). The storm originated from a low pressure system located off 

the Iceland coast. The depression then travelled southwards and centralised itself in the North 

Sea between Aberdeenshire and Southern Norway. At its lowest point the depression 

measured 966mb and the resulting surge was amplified as it travelled southwards along the 

East Coast. At the same time a high pressure ridge was building in the Atlantic causing steep 

pressure gradients which led to winds of up to Force 10 piling up the water and waves up to 

8m high (Met Office 2011b).  The surge took 9 hours to travel from Northumberland to the Isle 

of Thamet. Luckily the surge did not correspond with the high tide in the UK (Snell 1953). 

While this reduced the peak water levels, it did mean that levels remained high for an 

extended period of time.   

Another event of interest occurred in February 

1990 on the North Wales coast. A low pressure 

system, recording 947mb at its lowest point 

(Met Office 2011c) moved southwards from 

Greenland to the UK. This resulted in strong 

winds in the Irish Sea creating exceptionally high 

waves and a storm surge of 1.5m (Williams 

2010). The arrival of the low pressure system 

coincided with the highest spring tides of the 

year and led to the highest recorded water 

levels for the North Wales coast. In Towyn this 

led to the failure of the sea defences and 

flooding of nearly 3000 properties (NGfL Cymru 

2011) and caravan parks (see Figure 5.6). 

5.2.2 What known relationships exist between extreme events? 

The above discussion has illustrated that extreme events are caused by a number of different 

weather conditions. When different variables respond to the same weather conditions they 

can be considered meteorologically dependent (Hawkes et al. 2008, p328), however the 

Source: Bowen and Pallister (2001) 

Figure 5.6 The Chester to Holyhead 

railway and flooded caravan site at 

Towyn during the 1990 event 
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physical response also depends heavily on the local topography and geology (Svensson and 

Jones 2002; 2004; Keef et al. 2009b).   

The degree of dependence is related to the type of extreme event.  Frontal events tend to 

affect large areas of the UK simultaneously and therefore display widespread spatial 

dependence. The most extreme rainfall totals are often from convective storms which are very 

localised meaning that the dependence changes as events get more extreme (McSweeney 

2007; Johnson 2008; Keef et al. 2009b). The influence of the type of storm event also means 

that the spatial dependence has seasonal variability as localised, convective storms are more 

common in the UK in summer than winter (Keef 2006). The inverse is true of coastal events 

where the surge driving cyclonic events are more frequent in winter and the interactions with 

the determinist tides means the relationship between extreme sea levels and wave height is 

strongest for the most extreme events (Hawkes et al. 2002). An added complication is that 

these correlations are likely to change in the future as the climate changes. This section 

presents the main findings from previous studies of dependencies in extreme events in the UK.  

Building on the work of Keef (2006) in her thesis, Keef et al (2009b) investigated the 

dependence between extreme river flows and precipitation (see Section 5.3.3 for details of 

their methodology). They found large scale spatial dependence structures in extreme rainfall 

events which they attribute to topography. The spatial dependence in rainfall was found to be 

higher in the southeast than in the mountainous northwest. Keef et al (2009b) suggest a 

possible reason for this is that orographic precipitation varies at the same spatial scale as 

topography.  An example of the output is shown in Figure 5.7. The map was produced using 

the spatial dependence measure introduced in Section 5.3.3.5, using a 30km radius and a 55 

year return period. The dots on the map show each gauging station, shaded by the probability 

that if the rainfall at one station exceeds a 55 year event what is the probability that other 

gauges within a 30km radius will also experience an extreme event. The dependencies in the 

extremes were found to be lower than the rest of the data and to fall rapidly to zero.  

The spatial dependencies in flow were shown to be greater than for precipitation (as 

illustrated in Figure 5.8 using the same spatial dependence measure as for rainfall). Keef et al 

(2009b) suggest this is because flow represents an areal averaging of response compared to 

the point rainfall measurements. The flow results however do not show the same NW to SE 

dependence characteristics. Keef et al (2009b) conclude that a major factor determining the 

dependence in river flows is catchment characteristics, where similar catchment occur 

together the dependence is high but where catchment characteristics vary over a small 

distance a decrease in spatial dependencies is seen for example where highly permeable 
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catchments in the SE are located next to less permeable ones or where the storage capabilities 

of lakes and reservoirs in the catchment affect response such as in Western Scotland.  

 

Figure 5.7 Spatial dependence in rainfall for a 

55 year event over a radius of 30km 

 

Source: Keef et al. (2009b) 

Figure 5.8 Spatial dependence in river flows 

for a 50 year event over a radius of 30km 

 

The importance of catchment characteristics in determining spatial dependence between 

extreme events was also identified in the earlier work by Svensson and Jones (2002; 2004) who 

looked at river flows, rainfall and storm surge around the UK coast using the pairwise 

dependence measure χ presented in Section 5.3.2.2. They found that the highest dependence 

between surge and flow is found in hilly areas with a southerly to westerly aspect as these 

areas respond faster to rainfall. Using rainfall data to help interpret their findings they 

conclude that the surge-flow dependence can vary greatly over short distances due to 

different catchment responses for example due to catchment area or geology. They also 

observe that the type and direction of cyclonic activity is important and found that rivers 

showed stronger dependence to surges that occurred north of them than south (Figure 5.9). 

Svensson and Jones also considered the temporal dependence between variables and note 

that the dependence is greatest for flows and surges occurring on the same day and remains 

high for lags of up to one day (Figure 5.9). They also looked at the seasonal variation in the 

process and found that the flow-surge dependence on the East and West Coasts is strongest in 
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winter but north of Wales it is stronger in summer. The reasons for this are suggested to be 

seasonal changes in the rainfall-runoff relationship and to the metrological conditions causing 

storms. Events on the East Coast are generally caused by cyclones passing NW of Scotland 

which are most frequent in winter. However Keef et al (2009a) do not consider seasonality due 

to the short record lengths when observations are split into seasons. Given that Svenssson’s 

and Jones method cannot be extended beyond the observed data (see Section 5.3.2.2) their 

seasonal observations should therefore be taken with caution. 

 

Lines connect station pairs with χ exceeding 0.1 (Source: Svensson and Jones 2002, p1163) 

Figure 5.9 Dependencies between river flow and sea surge for different time lags on the East 

Coast 
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Previous work on the spatial dependence structure of sea levels around the UK was carried out 

by Dixon and Tawn (1994; 1995; 1997) using the revised joint probability model (RJPM, see 

Section 5.3.2.2). They concluded that while extreme tides are relatively frequent; the greatest 

concern was extreme surges occurring at the same time as extreme tides. They found that the 

surge variability was greatest on the East Coast and more consistent on the West Coast. In 

areas of shallow water around the coast, the most extreme water levels were caused by 

different combinations of surge and tide (Dixon and Tawn 1994); 

• For Lerwick to Immingham - high tide combined with moderately extreme surges; 

• For Cromer to Dover and Heysham to Portpatrick - extreme surges occurring on a high 

tide; 

• For Newlyn to Holyhead and Ullapool to Stornoway - high tidal level combined with a 

moderate surge. 

 

Hawkes and Gouldby et al (2002) conducted further analysis of coastal water levels around the 

UK, including wave height which is known to have a significant impact on defence overtopping. 

In general they found that waves and water level are usually partially dependent, displaying a 

moderate correlation which varies around the coastline, however the dependence between 

surge and wave height is often masked by the tide which is not meteorologically driven. They 

conclude that on the East Coast “strong northerly winds produce both surges and high waves, 

but there tends to be a time lag between the occurrence of the peak values of the two 

variables.” The West Coast shows little time lag between surges and waves but “wave 

conditions tend to include higher swell component unrelated to the local weather conditions.” 

(Hawkes et al. 2002, p242). Unlike rainfall and flow events, they observe that the most 

extreme sea conditions show a higher dependence than more commonly occurring conditions. 

This is likely to be due to the increased influence of the tide under less extreme conditions. 

Hawkes et al (2002) also acknowledge the importance of local scale conditions on total water 

level, for example the interaction with currents in shallow water, however this is not explored 

further in their analysis and is unlikely to be possible in any analysis carried out at a national 

scale.  

Figure 5.10 provides a geographical summary of the dependencies in rainfall, flows and sea 

level identified in previous research by Keef et al (Keef 2006; Keef et al. 2009b), Svensson and 

Jones (2002; 2004) and Hawkes et al (2002).  
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Figure 5.10 Summary of past research on spatial dependencies of UK extreme events 

5.3 Modelling extreme events 

Modelling multi-variate extreme events requires consideration of the event at each individual 

location and the relationship across different locations and time steps. Hawkes et al (2008) 

recommend that meteorological dependence is best studied using statistical modelling. They 

suggest “the essential elements of a joint probability extremes assessment are the distribution 

of each variable, the extreme values of each variable, and the dependence for each variable 

pair coupled with a method to combine all this information in a meaningful way” (P329).  
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Statistical modelling of events at individual sites can be achieved using a number of methods 

based on the principles of Extreme Value Theory (EVT). The most common include the 

Generalised Extreme Value Distribution (GEV), Generalised Pareto Distribution (GPD) and the R 

largest methods. These three methods are summarised in Appendix A as well as the 

Generalised Logistic method (GL) which is common in engineering studies in the UK since it is 

recommended for use by the Flood Estimation Handbook (FEH, Robson and Reed 1999). The 

popularity of different methods depends on both their statistical robustness and suitability for 

the required purpose as well as political motivations (see Griffis and Stedinger 2007a; 2007b; 

2008; 2009 for an interesting discussion on the issues involved in selecting a suitable extreme 

value distribution of modelling floods in the USA). It is assumed that readers have a basic 

understanding of statistics and EVT. For those that require an introduction to the subject Coles’ 

(2001) informative text book on extreme value theory is recommended. 

As well as the core methods themselves, analysis of meteorologically driven extremes requires 

consideration of the natural clustering of extreme values in time.  To meet the assumptions of 

EVT, data must be de-clustered before they can be used in a statistical model. The available 

methods for doing this are reviewed in Section 5.3.2.  

Statistical modelling of events across different spatial and temporal scales requires 

modification of the standard EVT methods. Numerous statisticians and hydrologists have 

developed methods to do this, many of which are reviewed by Hawkes et al (2008).There are 

two approaches, either the statistical approach of developing a method with a simulated or 

simplified data set or an engineering driven approach of fitting a model to a real dataset. There 

are pros and cons to each method. The first allows the development of a sophisticated, generic 

approach however modifications are often required when applying the method to real data 

sets. The mathematics involved are often highly complex and present difficulties in both 

understanding for practical end users of the method and high computational loads. These 

issues often result in a long lead time between methods being first published and their general 

uptake by the hydrological community. The latter approach is often driven by an end user 

problem and as such has a much shorter time frame between inception and application. 

However in order to achieve this, the statistics involved may be less robust and the method 

less suitable for use in a wide range of applications due to the need to meet a number of initial 

assumptions.  

The methods reviewed in Section 5.3.2.2 tend towards the engineering, end user based 

approach but still have a strong statistical basis. Reviewed methods include simple distance 
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based correlation methods, the χ dependence measure of Svensson and Jones (2002; 2004) 

and improved  χD method of Coles et al (1999), the Joint Return Period Method (JRPM) of Dixon 

and Tawn (1995; 1999) and the conditional dependence model of Heffernan and Tawn (2004), 

applied to fluvial, pluvial and coastal extremes by Keef et al (2009a; 2009b).  

The modelling framework in which methods are applied is also significant, for example using a 

Bayes framework allows the user to include their existing knowledge of the processes of 

interest within the statistical model which can be useful in improving efficiency by constraining 

the parameter optimisation within a specified range. This is touched on further in Section 5.3.4.  

The final stage of modelling extreme events is to acknowledge that all models have their 

limitations and will not be a true representation of the process of interest. To this ends an 

assessment of the uncertainty in the statistical model is required as discussed in Section 5.3.4. 

5.3.1 Extreme value theory 

EVT is a special type of statistical modelling that deals with extreme events and addresses the 

difficulties of limited observations and extrapolation beyond observed data (Coles 2001). The 

GPD model is used in this thesis, a summary of which is provided below. The reason for 

selecting the distribution was because it had previously been used successfully by Keef et al 

(Keef et al. 2009a; Keef et al. 2009b; Keef et al. 2009c) however it is acknowledged that other 

distributions could have been used in its place and a summary of the strengths and 

weaknesses of different methods is provided in Appendix A. Extreme value theory is based on 

the central assumption that above a certain threshold data are asymptotic, meaning they tend 

towards some absolute value. If this is not the case an alternative statistical model should be 

sought. The assumption that hydrological events are asymptotic causes some disagreement 

amongst hydrologists, some of whom disagree that the distribution of extreme floods can be 

bounded. This is a disagreement that has been ongoing since Gumbel first started working on 

estimating the return periods of floods in the 1940s. Further discussion can be found in Katz et 

al (2002). Here it is assumed that the extremes of interest are asymptotic and EVT is valid.  

EVT also assumes that data are independent identically distributed (IID). In many 

meteorological cases this is not the case due to temporal sequencing of events therefore pre-

processing is required to de-cluster the data as described in Section 5.3.2.1. 

The extreme variables of interest in this study, river flow, storm surge and wave height, are all 

continuous variables and therefore the probability distribution for each variable is defined by a 

probability distribution function; 
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d(�) = ��eU ≤ �g  5.1 

 

Using peaks over threshold data (with the threshold defined as u)  and the GPD, the probability 

distribution for the Peaks over threshold (POT) data described using three parameters, the 

location parameter, μ, the scale parameter, σ, and the shape parameter, ε as shown in 

Equation 5.2. The shape parameter is dominant and when ε equals zero the distribution takes 

a different form as given by Equation 5.3. 

h(0) = 1 − j1 +	k0σl mV: n⁄
 

   where: σl = σ + 	ε(u − μ) 

 

5.2 

 

h(0) = 1 − exp j−0σlm
 

 

5.3 

 

5.3.1.1 Defining thresholds 

A central requirement of any EVT model is establishing the threshold at which events can be 

considered extreme. This process is seen by some statisticians to incorporate a potentially 

subjective component to the model. The following example explores the issues of threshold 

definition when using the GPD model. 

For a series of independent variables, X1, X2, …, Xn extreme events are defined as those of the 

Xi which exceed some defined high threshold, u. The threshold must be set high enough that 

the GPD is a good model for the POT series. The threshold can be selected either using 

exploratory techniques before the model is fitted or by testing the stability of the parameter 

estimates following fitting the distribution for a range of thresholds. The former of these is 

based on the fact that the mean of the excesses (Xi-u) is a linear function of u : u > u0, where u0 

is the minimum threshold at which the assumptions of the GPD are met (and hence will also be 

met at any higher threshold, u). Therefore above a threshold u0, if the plot of mean excess 

against u (termed the mean residual life plot) is approximately linear the GPD can be seen to 

provide a valid approximation to the excesses distribution. The downside of this method is that 

is can often be difficult to interpret the mean residual life plot, therefore Coles (2001) 

recommends using both methods in parallel. 

Figure 5.11 shows an example of a mean residual life plot for DMF data at Kingston on Thames. 

Interpretation of this plot would suggest a suitable threshold for the GPD at around u = 150 

m3/s. However a scatter plot of the data (Figure 5.12) suggests that 150m3/s is a particularly 

low threshold as the average number of exceedences per year at this threshold is 39.  
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Figure 5.11 Example mean residual life plot 

for Kingston upon Thames flow data 

 

 

Figure 5.12 Scatter plot of Kingston on 

Thames daily flows by year 

 

Given the concerns raised above about the initial threshold selection and the advice of Coles 

(2001) to use both methods in parallel, the POT analysis was repeated using several thresholds 

and the parameter stability reviewed. The results are shown in Table 5.1 which suggest a more 

suitable threshold of 250 m3/s, this equates to a total of 326 exceedances with an average of 

10.9 exceedences per year. Table 5.1 also shows the problem with increasing the threshold too 

high. For a threshold of 350, both the shape parameter and 1% AEP estimate are considerably 

different from the other thresholds. This is because there are only 44 exceedences above 

350m3/s, an average of 1.5 events per year resulting in an increase in parameter variability. 

Table 5.1 Parameter stability assessment for a GPD model fitted to DMF at Kingston on 

Thames for multiple thresholds 

Threshold (m
3
/s) 1% AEP return level (m

3
/s) Shape parameter 

150 469 -0.251 

200 471 -0.243 

250 474 -0.022 

300 474 -0.240 

350 461 -0.457 

5.3.2 Dependence structures 

For environmental variables, particularly the ones of interest in this thesis, the assumption of 

independence is invalid. Data can be dependent on previous observations in the sequence, for 

example high river flows on one day increases the probability of high flows on the following 

day; related to other variables, for example high rainfall and river flows are likely to occur 

simultaneously during a storm event; or spatially dependent, for example a high sea level 

recorded at one coastal location is likely to be seen in neighbouring stations.  
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The primary issue is to identify what defines an event. When looking at single sites the most 

common ways of doing this are to either specify a fixed time window, for example the 

insurance industry define events as lasting seven days, or to specify a threshold which once the 

observations fall below the event is classified as over. These definitions form the basis of the 

de-clustering methods discussed in Section 5.3.2.1. When looking at multiple locations or 

different variables the definition of an event is complicated as it may take time for the 

meteorological system driving the event to travel across all the locations, or there may be a lag 

in the physical appearance of the event for example as flood flows travel downstream. 

Sections 5.3.2.2and 5.3.3 introduce several methods and statistical constructs that go some 

way towards addressing these issues for multi-variate spatial dependence.  

5.3.2.1 Temporal dependence 

Stationary Processes 

If flows at a particular location are high on any given day, it is likely that flows will also be high 

on the preceding or following day. This temporal structure is known as a stationary process 

and violates many of the assumptions of EVT.  

A stationary process is one where for a random process X1, X2, ...,Xn any given set of integers 

{i1, ..., ik} and any integer m, the joint distribution of (Xi1,..., Xik) and (Xi1+m, …, Xik+m) are identical. 

Therefore Xi can be dependent on previous values however this dependences must be 

consistent throughout the dataset, meaning trends such as seasonality are not included when 

assuming stationary.  Processes may also be termed as weak stationary processes when the 

mean and variance for any subset of the sequence are identical even if the joint distributions 

are different. 

Both the GEV and GPD models can still be applied to stationary processes allowing for some 

small adaptations for example de-clustering of extremes in the POT series. A simple example is 

illustrated here for sea level data at Southend 1988 to 2000.  

The 25 highest sea levels for the years 1997 to 2000 are shown in Figure 5.13. Two things are 

immediately obvious from the scatter plots, firstly the peak water levels have a seasonal cycle, 

mainly occurring between September and April. Secondly many of the events occur on the 

same day or adjacent days. This means that the events are dependent on the same storm 

surge and therefore form a stationary sequence with the peak tide level more likely to be high 

if the preceding level was also high. Ignoring the seasonality the focus of this example is on 

removing the dependence between events. 
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Figure 5.13 Peak sea levels at Southend 1997 - 2000 

 

The rank ordered data series for each year was de-clustered using the following algorithm;  

1. Select the date of the largest event 

2. Check all smaller events and remove from the data set if the event is within two days 

of the selected event 

3. Repeat for the next (none removed) largest event, until all events have been checked. 

 

Reproduction of the plots for the 25 largest events from 1998 to 2001 shows that the 25 

largest events no longer occur during the same storm surge event (Figure 5.14).  
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Figure 5.14 De-clustered peak sea levels at Southend 1997 - 2000 

 

The disadvantage of de-clustering in this way is that the de-clustering method reduces the 

number of observations available to fit the model to from 730 to 112. The seasonality of the 

events is also less defined. While the largest events are still maintained in the sequence, so are 

much lower peak levels, making the choice of thresholds increasingly important.  

There are several variations on data based de-clustering methods discussed in the literature. 

The most prevalent of which are reviewed by Nadarajah (2001). The simplest is to assume that 

each event is of a standard length and select the maximum value from within this moving time 

window, as applied above (see Tawn 1988).  This is the approach taken by Keef et al 2009a) in 

existing applications of the Heffernan and Tawn (2004) conditional dependence model. An 

alternative approach which allows for more variability within the event, is to define an event 

as having ended once a certain number of occurrences fall below a specified threshold (as per 

Smith 1989; Coles 2001). This is termed a “fixed termination time approach” by Walshaw 

(1994) or “runs de-clustering” by Smith and Weissman (1994) and in the R software.  More 

complex approaches include Smith’s (1984) development of parametric models fitted to the 

data to estimate the time between independent events.  

The first stage in de-clustering time series data is to define the period of time over which peaks  

at the subject site are dependent and belong to the same event. This can either be defined by 
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the user or from the data. For example within the insurance industry an event is defined as 

seven days. This definition is easy to understand and apply however the arbitrary window of 

seven days does not account for potential variability in catchment response. A more physically 

robust definition can be established from the data itself. For example Keef et al (2009a; 2009b) 

test the time period over which the value of �(U?vw	 > xy|U? > xy  changed for values of τ up 

to 50, for vp equal to the 0.99 probability threshold at gauge X (See Section 5.3.3.3), and used 

this to define a suitable de-clustering time window.  

De-clustering of continuous data to extract an independent series of flood peaks is an essential, 

but seemingly arbitrary, process in applying extreme value models. The choice of de-clustering 

method is important as the method used can introduce bias into the results. A balance needs 

to be found between maintaining enough data to fit the statistical model while ensuring an 

independent time series. There is no clear consensus as to which method is best. Smith (1989) 

comments of his parametric modelling approach that it offers no improvements over using 

simpler methods, while Smith and Weissman (1994) suggest that runs de-clustering reduces 

the bias compared to a time window method and allows for more variability within the event. 

Their observation is based on a theoretical discussion and is not proven with meteorological 

data however the application in Section 5.3.3.6 further illustrates the suitability of runs de-

clustering for use with variable meteorological data. Fawcett and Walshaw (2006) argue that 

using any form of de-clustering incorporates bias into the results and therefore propose 

bypassing de-clustering methods entirely and using Markov chains to incorporate the temporal 

dependence structure in the data. While de-clustering is a useful tool for applications where 

the cluster behaviour is important, statisticians seem able to provide justification for using 

most available de-clustering methods based on their aims and objectives.   

Markov Chains 

Markov chains provide a means of further defining the dependence behaviour of a random 

process. A first order Markov Chain process is defined where the value of Xi depends on Xi-1. 

More complex kth order Markov Chain models can be defined where the value of Xi depends on 

the most recent k observations. Furthermore the dependence on previous values in the chain 

can diminish as distance increases, thereby allowing for the influence of recent events in the 

series to have a greater effect than distant events. Markov chains are explored further in 

Section 8.4 as a means of representing spatially varying defence crest heights.  

Non-stationary sequences 

Non-stationary occurs when processes change systematically through time for example 

seasonal changes in the weather or long term trends such as rising sea levels.  If systematic 
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trends do persist in the data it is important to model them as accurately as possible, especially 

when extrapolating beyond the observed data as any biases may be amplified (Coles 2001). 

EVT methods can be adapted to incorporate non-stationary dependence (see Walshaw 1994; 

Coles 2001).  

5.3.2.2 Multivariate dependence 

Multivariate dependence structures exist between multiple sites recording the same variable 

(this may also be referenced to as spatial dependence), or between different variables 

recorded at the same or multiple locations.  

It is particularly important that dependence is correctly estimated when studying extremes, 

especially when extrapolating beyond the observed data. Dependence in the tails can take two 

forms, asymptotic dependence where high values of both variables occur together or 

asymptotic independence where the probability of the most extreme values occurring 

together is zero. Two variables may not be dependent but can still display positive extremal 

association if the joint extremes of the two variables occur more often than if they were 

independent. If the sum of two variables is of interest, for example the maximum tide level 

and maximum surge, assuming them to be independent when they are not leads to under 

estimation of the maximum value (Keef et al. 2009a).   

In the following sections various methods of dealing with multivariate dependence structures 

are presented, the most sophisticated of which is the Heffernan and Tawn conditional 

dependence model explained in Section 5.3.3. This method is particularly attractive as it is able 

to deal with changing dependencies as events get more extreme.  

Distance based correlation coefficients 

Meteorological data are known to be spatially dependant, for example if it rains in one 

location it is more likely to also rain in other neighbouring locations. A simplistic method of 

accounting for this is to correlate by distance as illustrated using rainfall data from the Thames 

catchment (as shown in Figure 5.15 ). The distance correlation coefficients between each pair 

of gauges were calculated, the results for four example gauges are shown in Figure 5.16. Each 

of the four gauges is highly correlated with the gauges located closest to it and the degree of 

correlation decreases with distance between the gauges.  

The analysis was repeated for extreme events over a threshold, taken as 25% of RMED (the 

median annual maximum rainfall) which resulted in an average of 10 events per year being 

retained. As shown in Figure 5.17 the correlation coefficients are much lower, decreasing to 

<0.2 compared with 0.5 for the full event set. This provides a good example of the changing 
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dependencies as events get more extreme and illustrates the importance of localised storm 

events in the South East of England.  

However rainfall does not depend on distance alone and may be further influenced by other 

factors such as distance to the sea, site elevation and rain shadow effects. Multivariate 

dependence therefore often requires more detailed analysis than distance alone.  

 

 

Figure 5.15 Location of raingauges in the Thames catchment 
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Figure 5.16 Thames rain gauges distance correlation coefficients 

 

 
Figure 5.17 Thames rain gauges distance correlation coefficients for extreme events 
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Joint probability models 

Sea level is an example of a multivariate problem with dependence components (see Section 

5.2.1.2). To fully describe sea level a joint probability model of the deterministic tide and 

stochastic storm surge is required. One means of doing this is the revised joint probability 

method (RJPM) used by Dixon and Tawn (1995; 1999). In the RJPM the distribution of the 

annual maximum still water level in year i is: 

z�(,) = 	 {|d},�|~	(, − U?|U?)
�

?Y:
�
��	� �⁄

  

 

5.4 

 

Where d},�|~	is the distribution of the surge, Y, in year i conditional on the tide X. Xt is the 

hourly tide level and T and N are the number of hours in a nodal tidal cycle and year, and θt is 

the extremal index of the still water level series. The choice of d},�|~	is an important feature of 

the model as this accounts for the tide surge interaction. This is discussed further in Dixon and 

Tawn (1999). 

The RJPM model has been shown to offer significant advantages over standard GEV models, 

particularly in areas where the tide surge interaction is high due to non stationarity in the tide 

data (Dixon and Tawn 1999). The RJPM was used by Dixon and Tawn (1994; 1995; 1997) in 

their detailed study of extreme sea levels around the UK after being found to be the most 

suitable method for sites with at least 5-10 years of data. This study remains the most 

comprehensive review of extreme sea levels in the UK to date.  

Coles and Tawn (2005a; 2005b) also formulate a joint probability model to account for tide and 

storm surge such that for  a multivariate random variable which is a vector of random variables 

X = (X1,…Xk). The joint distribution function of X is given by; 

( ) { }kk xXxXxF ≤≤= ,,Pr 11 K

 
Where x = (x1,…,xk) 

 

5.5 

 

The joint density function for continuous random variables, Xi  is; 
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5.6 

 

The covariance of variables X and Y, having join density function f X,Y is; 
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The dependence between components can therefore be defined with the correlation 

coefficient; 

( ) ( )
( ) ( )YVarXVar

YXCov
YXCorr

,
, =

 
 

 

5.8 

 

An alternative means to deal with the relationship between tide and surge is to use the 

concept of skew surge as detailed in Section 5.2.1.2. 

Dependence measure χ and �D  

The dependence measure χ describes the probability that one variable (U) is extreme, given 

that the other variable (V) is also extreme based on a user specified threshold, u. Values of χ =1 

signify asymptotic dependence and values of χ=0 signify asymptotic independence or negative 

dependence. χ is calculated as; 

�(�) = 2 − "� ��(� ≤ �, � ≤ �)"� ��(� ≤ �)  
 

 

5.9 

 

The dependence measure χ, forms the basis of Svensson and Jones’ (2002; 2004) work on 

estimating the dependence between sea surge, river flow and precipitation around the UK. An 

example application is developed here showing the use of χ for characterising asymptotic 

dependence between rainfall and flow data for an area in Worstershire on the River Severn. 

This area corresponds to one of the caravan risk clusters identified in Chapter 3. In this area 

there are three different main river systems, the Severn, the Leam and the Stour, all with 

different flooding regimes so it is useful to understand how processes on one river system 

relate to another. The main river in this area is the River Severn which has its headwaters in 

mid Wales. It is therefore expected that the dependence between the River Severn flow gauge, 

54001, and the rain gauges will be low. The gauges are detailed in Figure 5.18, Table 5.2 and 

Table 5.3. 
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Figure 5.18 Location of sample rain and flow gauges around the Severn risk cluster 

 

 

Table 5.2 Rain gauges near the Severn risk cluster 

SRC Number Station Name Start date End date 

10638 Bromyard, Down House 2/1/1961 31/12/2006 

9988 Enville 2/1/1961 1/08/2005 

10108 Old Storridge 2/4/1963 31/12/2006 

635 Malvern 2/1/1900 31/12/2006 

 

Table 5.3 Flow gauges near the Severn risk cluster 

Number Station Name Start date End date 

54001 Severn at Bewdley 1/1/1921 31/12/2006 

54008 Teme at Tenbury 1/1/1956 31/12/2006 

54024 Worf at Burcote 1/1/1969 31/12/2006 

54034 Dowles Brook at Oak Cottage 1/1/1971 31/12/2006 
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The first step is to set a suitable threshold, u, above which the observations can be considered 

extreme. As the magnitude of U and V may differ, the threshold, u, is defined using the non-

exceedance probability for individual observations of U and V. The annual maximum non 

exceedance probability, a is; 

� = ��	(�����"	����	 ≤ �)  5.10 

where x is the magnitude of the variable. It relates to the return period, T, as T – 1(1/a) and 

can be defined using the POT sequence; 

� = 
�� �− � − 0.5� �  

 

5.11 

 

Where N is the number of years of observations and i is the rank of the POT series.  

The value of a needs to be low enough to allow sufficient data points to exceed it and high 

enough to be considered extreme. In their study, Svensson and Jones found that using an 

annual maximum non-exceedance probability of greater than 0.5 resulted in values of χ that 

tended to zero as there were no threshold exceedances. They used a threshold of a=0.1 which 

means that the annual maximum will exceed this threshold in 9 out of 10 years.  

Specifying a = 0.1, The value of i was calculated as; 

� = �8−"�(�)9 + 0.5  5.12 

The ith value of the declustered POT sequence was extracted for each gauge record to form the 

thresholds (x* and y*) shown in Table 5.4. Since the distributions of the variables of interest 

are unlikely to be the same, the data and the specified thresholds are transformed to 

uniformity on [0,1]. 

Table 5.4 Rain and flow gauge threshold for the χ dependence measure  

Rain gauge threshold (mm) Flow gauge threshold (m
3
/s) 

10636 9988 10108 653 54001 54008 54024 54034 

23.0 21.6 23.6 23.3 266.8 78.1 4.7 3.3 

 

Equation 5.9 is calculated by counting the number of observation points (X,Y) such that; 

��(� ≤ �, � ≤ x) = 	��J
�	�'	(U, �)��	ℎ	/ℎ�/	U ≤ �∗	���	�	 ≤ 0∗
3�/�"	��J
�	�'	(U, �)   

5.13 

 

And 
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"� ��(� ≤ �) = 12 "� ���J
�	�'	U ≤ 	�∗
3�/�"	��J
�	�'	U ∙ ��J
�	�'	� ≤ 0∗

3�/�"	��J
�	�'	��  
5.14 

 

The results are shown in Table 5.5. As would be expected, the rain gauges show the strongest 

correlation with each other and a much lower correlation with the flow gauges due to the 

influence of additional catchment processes. In some cases it can be assumed that the flow 

and rain gauges show asymptotic independence, for example between 54024 and 9988.   

Table 5.5 Dependence measure χ for all pairs of gauges around the Severn risk cluster 

 Rain gauges Flow gauges 

10636 9988 10108 653 54001 54008 54024 54034 

R
a

in
 

g
a

u
g

e
s 10636 1 0.461 0.677 0.625 0.329 0.265 0.075 0.215 

9988 0.461 1 0.405 0.518 0.337 0.235 0.009 0.106 

10108 0.677 0.405 1 0.742 0.275 0.216 0.074 0.174 

653 0.625 0.518 0.742 1 0.026 0.130 0.117 0.181 

F
lo

w
 

g
a

u
g

e
s 54001 0.329 0.337 0.275 0.026 1 0.489 0.598 0.448 

54008 0.265 0.235 0.216 0.130 0.489 1 0.503 0.476 

54024 0.075 0.009 0.074 0.117 0.598 0.503 1 0.377 

54034 0.215 0.106 0.174 0.181 0.448 0.476 0.377 1 

 

Although variables may be asymptotically independent, χ=0, there may still be some 

dependence within the extremes in the form of positive extremal association which it is 

important to understand (Keef et al. 2009a). In addition there is some uncertainty around the 

value χ(u) for high thresholds. To describe this issue formally consider Figure 5.19, taken from 

Coles et at  (1999), which shows that for higher values of u, the values of χ(u) converge 

towards 0 i.e. as the threshold is raised and the events being considered become more 

extreme the dependence is less. For values of χ (u) > 0 the convergence is abrupt as u → 1 

meaning that χ(u) is considerably greater than zero for values of u close to 1 and hence 

estimates of χ(u) may appear positive and constant for asymptotically independent variables 

(Coles et al. 1999). The joint survivor measure �̅  (Equation 5.15) presented by Coles et al 

(1999) is used to provide additional information on the dependence structure in these cases. 

�̅	(�) = 	 2 "� ��	(� > �)"� ��	(� > �, � > �) − 1 
Where -1 ≤ χD≤1  

for all 0≤ u≤1 

 

 

5.15 

 

Estimation of both χ and χD provide pairs of summary measures (χ, χD ) such that (χ > 0, χD =1) 

signifies asymptotic dependence and χ can be used as a measure of the strength of 

dependence, and (χ = 0, χD <1) signifies asymptotic independence with χD determining the 

strength of extremal association (Coles et al. 1999).  

Figure 5.20 shows the added clarity of using this approach compared to χ in Figure 5.19. 

Without the use of the additional measure �̅, Keef et al (2008b) suggest that the analysis of 

dependence by sea surge, river flow and precipitation by Svensson and Jones (2002; 2004) is of 
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limited value as it cannot be compared to other dependence estimates as variables may be 

classified as dependent instead of the alternative classification of asymptotic independence 

with extremal association.   

 

Figure 5.19 Dependence measure χ(u) 

as u → 1 

Source: Coles et al (1999) 

 

Figure 5.20 Dependence measure �D (u) 

as u → 1 

 

Since all the values of χ in Table 5.5 are > 0, �̅ has been estimated for all the gauge pairs (Table 

5.6). In all cases �̅ is > 0 but <1 confirming the previous findings that the rain and flow gauges 

show some degree of asymptotic dependence but are not completely dependent and 

identifying χ as a suitable measure for describing the dependence structures.  The weak 

dependence between 54024 and 9988 is again highlighted, given that χ ≈ 0 and �̅ ≈ 0, it can be 

concluded that this pair is asymptotically independent and shows near independence under 

the assumption of independence. The pair 54001 and 653 also shows near independence 

under both measures. 

Table 5.6 Dependence measure ��  for all pairs of gauges near the Severn risk cluster 

 Rain gauges Flow gauges 

10636 9988 10108 653 54001 54008 54024 54034 

R
a

in
 

g
a

u
g

e
s 

10636 1 0.300 0.512 0.455 0.197 0.152 0.039 0.120 

9988 0.300 1 0.254 0.350 0.202 0.133 0.004 0.056 

10108 0.512 0.254 1 0.590 0.159 0.121 0.039 0.095 

653 0.455 0.350 0.590 1 0.013 0.069 0.062 0.100 

F
lo

w
 

g
a

u
g

e
s 

54001 0.197 0.202 0.159 0.013 1 0.324 0.427 0.288 

54008 0.152 0.133 0.121 0.069 0.324 1 0.336 0.313 

54024 0.039 0.004 0.039 0.062 0.427 0.336 1 0.232 

54034 0.120 0.056 0.095 0.100 0.288 0.313 0.232 1 

 

A more complex method for analysis of spatial structures in extremes is detailed in Section 

5.3.3.   
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5.3.3 A conditional dependence model for multivariate extremes 

Many of the existing extreme value models available in the literature are based on the 

assumption that variables are either asymptotically independent or asymptotically dependent 

(see Section 5.3.2.2). While this is attractive as it reduces model complexity, it reduces the 

choice of variables that can be used and the distance over which the model can be assumed to 

be valid. For example while flows in the same catchment may be asymptotically dependent, 

the same assumption cannot be made for river flows over the entire country. 

Heffernan and Tawn (2004) proposed a more flexible model that is able to account for both 

asymptotically dependent and independent data and can model the changes in dependences 

as events get more extreme. The model describes the distribution of Y | X given that X is large 

for independent, identically distributed data without missing values (Keef et al. 2009a), where 

X is a vector of data from a single gauge and Y is a matrix of data at all other gauges in the 

network.  The model is particularly useful for extremes as the model describes the relationship 

between variables based on the residuals. The residuals are independent of the size of the 

conditioning variable and therefore the model can be used to extrapolate beyond the range of 

the data through statistical simulation. This is an additional benefit when compared to 

alternative methods such as Svensson and Jones’ (2002; 2004) work with the dependence 

measure χ, which are empirical. The conditional dependence model can theoretically be 

applied to any number of variables over variable time lags providing flexible scope for the scale 

of analysis. Due to computational memory limitations Keef et al (2009a) suggest a practical 

limitation of 50 variables (or site) with time lags of +/- 5 time steps. 

Heffernan and Tawn (2004) originally demonstrated the model using air quality data but it has 

since been used extensively for fluvial and coastal flood risk analysis by Keef at el in the UK 

(Keef 2006; Lamb et al. 2009; Keef et al. 2009a; Keef et al. 2009b; Keef et al. 2009c; Lamb et al. 

2010). The following description of the model is based on the above references, a discussion 

meeting with Lamb, Keef and Tawn held at Newcastle University in December 2008 and 

subsequent personal communication.   

5.3.3.1 The method 

The method separates the marginal and dependence characteristics and models them 

separately through the use of a Copula. For an introduction to copulas readers are referred to 

Nelsen (2006). The benefit of using Copula functions is that the marginal and dependence 

characteristics can be separated, therefore reducing the dominance in the tails of variables 

with a large scale compared to variables with smaller scales (Keef et al. 2008a). 
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The copula function works by separating the joint distribution into m marginal distributions 

and a joint distribution function, C (Keef et al. 2009b). The Copula is the function which assigns 

the value of the joint distribution function to each pair of values (Nelsen 2006), meaning that 

the joint distribution function of X given in Equation 5.16 can be represented by Equation 5.17. 

( ) { }kk xXxXxF ≤≤= ,,Pr 11 K

 
Where x = (x1,…,xk) 5.16 

( ) ( ){ }mm xFxFC ,...,11   5.17 

 

There is a unique Copula for each multivariate distribution.  Keef et al (2009a; 2009b; 2009c) 

use a Gaussian copula for their work on rainfall and fluvial extremes. It is acknowledged that 

this may not be the most appropriate copula for studying extremes (see AghaKouchak, 

Bardossy et al. 2010) however it was not realistic to consider changes to the core of the 

dependence model as part of this thesis  

Within the conditional dependence model the marginal characteristics are modelled using a 

standard GPD (although theoretically other extreme value distributions could be used). As the 

model is primarily concerned with modelling extreme events, the distribution below the 

threshold is assumed to follow an empirical distribution, d�~�(�). This results in the marginal 

model for FXi shown in Equation 5.18 where uXi is the high threshold for variable Xi, i = 1,…,d, 

and βi and εi are the GPD scale and shape parameters respectively.  

 

F��^(x) = �1 −	e1 − F��^(u�^)ge1 + ε^(x − u�^)/β^g±:/��
F��^(x)  

For x>uXi 

For x≤ uXi 
5.18 

 

The data are then transformed to Gumbel marginal using the probability integral 

transformation shown in Equation 5.19 to allow comparison between variables of different 

magnitudes.  

Y^ = 	−log�−log F��^(X^)¡¢  5.19 

 

The central motivation of the model is that there are some vector normalising functions a(x) 

and b(x) such that; 

�� �� − �(�)J(�) £ U = �� → 	z(,) 

as x → ∞ 5.20 
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With the condition that; 

lim¦§→#z.	 8,.9 = 1 For all j, j=1,…,d 5.21 

 

So there is no mass at +∞ in any margin.  

Assuming that the limiting relationship 5.20 holds exactly for all values of X above a suitably 

high threshold, vp, with the probability p of being exceeded,  the random variable Z can be 

expressed as equation 5.22 when X = x with x > vp.  

+ =	� − �(�)J(�)  

 5.22 

 

 

Z is independent of X and has distribution function G, therefore allowing simulation beyond 

the range of the data. Theory suggests that there should always be some threshold, vp, above 

which the independence of Z and X is an appropriate assumption.  

The dependence model can then be given as a multivariate semi parametric regression model 

of the form; 

� = �(�) + 	J(�)+  5.23 

 

For multivariate cases the distribution of Zj is estimated as;  

+. = 	�. − �.(�)J.(�)  

For j=1,…,d 5.24 

 

 

Heffernan and Tawn (2004) identified the characteristics of the normalising functions a(x) and 

b(x) for various different distributions. They found that the functions were special cases of the 

parametric family; 

�(�) = 	�� + �e¨Y$,©ª$g(	 − �"�I(�)) 

J(�) = 	 �©
 

 5.25 

 

 

Where a, b, c and d are vector constants such that 0 ≤ aj ≤ 1, -∞ ≤ bj ≤ 1, -∞ ≤ cj ≤ ∞ and 0 ≤ dj 

≤ 1, and I is an indicator function.  
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The parameter a describes the overall strength of dependence between the two variables. 

Larger values of a indicate stronger dependence. The b parameter describes how the 

dependence changes as events get more extreme. For positive values of b, the variance of Y|X 

= x increases as x increases, therefore small values of Y can only occur with large values of X if 

b is large. The dependence between Yj and X can be formally classified as follows (Keef et al. 

2009a); 

• If aj =1 and bj = 0  then Yj and X are asymptotically dependent, else Yj and X  are 

asymptotically independent; 

• If 0 < aj < 1  or bj > 0 then the variables exhibit positive extremal dependence; 

• If aj = dj = 0   and bj  ≤ 0 then the variables exhibit extremal near independence;  

• If aj = 0, dj < 0 and bj < 0 then the variables exhibit negative extremal dependence.   

In practice, for most flood risk applications it is possible to assume that the variables exhibit 

either asymptotic dependence or asymptotic independence with positive extremal association 

(Keef et al. 2009a).  In this case c = d = 0, giving the normalising functions as;  

�(�) = �� J(�) = 	�© 

The a and b parameters do not capture all of the dependence between the Yj variables. The 

additional dependence is modelled non-parametrically through the Zj parameter. Keef et al 

(2009a) illustrate this using Figure 5.21. 

 

Solid lines indicate dependencies modelled 

parametrically, dashed lines indicate 

dependencies modelled non-parametrically 

(Source: Keef et al. 2009a, p42)  

 

Figure 5.21 Diagram of modelled spatial dependencies in the conditional 

dependence model 
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5.3.3.2 Estimating parameters and residuals 

Equation 5.23 is fitted by assuming that each independent random variable Zj is from a normal 

distribution with mean µj and standard deviation σj. Combined with the assumption of 

Equation 5.20, the mean and standard deviation of the variables Yj | X = x, x > vp can then be 

specified as; 

μ«8y«9 = 	 a«y« +	μ«x®¯
  5.26 

 

and; 

σ«8y«9 = 	σ«x®¯
  5.27 

 

The parameters are estimated by minimising Function 5.28 with respect to µj, σj, aj, and bj.  

∑ ±"�I σ«x®¯¡ + :
< �²¯V	³¯´V	µ¯´¶¯

·¯´¶¯ ¸<¹�§?Y:   
 5.28 

 

 

where Tj is the number of observations of yj when x > vp. 

The estimated residuals at time t can then be defined as; 

+º.,? = 	0.,? − �».�?
�?©

�§  

 5.29 

 

 

Where �» and J� are the values of aj and bj that minimise Function 5.28. 

Keef (personal communication) found that the Nelder-Mead optimisation method was the 

most suitable for use with the conditional dependence model however it does not provide the 

ability to constrain parameter estimates. The optimisation method is also sensitive to the 

initial starting value of the parameters. To overcome these problems several additional steps 

have been built into the optimisation by Keef to help improve the stability of the model. R 

code to apply these steps was provided by Keef for use in this thesis. The model is also known 

to be unstable if there are less than 30 occurrences of Y when X > u, therefore Keef’s 

optimisation method produces null values if this criteria is not met.  

5.3.3.3 Consideration of temporal dependencies 

There are two areas where consideration of temporal dependence is vital when fitting the 

conditional dependence model, firstly to establish a series of independent peaks at each sites 

and secondly to incorporate the time lag between peaks occurring at different sites.  
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At site temporal dependence 

Based on the moving window de-clustering method (see Section 5.3.2.1), Keef et al (2009a; 

2009b; 2010) investigated how the empirical estimate of �(U?vw	 > �|U? > �  changed for 

values of τ up to 50, where τ is the time lag between events in days. This allowed identification 

of the temporal dependence structure at each gauge.  In general they found that the at site 

temporal dependence in the extremes is lower than in the main body of the data. Plotting the 

dependence against catchment characteristics showed a clear link between temporal 

dependence and Base Flow Index (BFI) , with higher BFI values maintaining temporal 

dependence over longer time periods. Although for some high BFI catchments the dependence 

remained high at a lag of 5 days, for most sites, Keef et al conclude a time window of +/-5 days 

sufficiently defined an independent event.  The DMF data was therefore de-clustered using a 

moving window of +/- 5 days from the highest peak event as described in Section 5.3.2.1. The 

analysis of Keef et al is repeated in Figure 5.22 using a dataset of 145 of the standard CEH DMF 

gauge network to represent a variety of catchment characteristics. The data set used was 

created for calibrating and validating the DMF to peak flow methods presented in Chapter 7.  

 

 

Figure 5.22 Relationship of conditional dependence measure Pr(Xt+τ > u | Xt > u ) with 

BFIIHOST 

 

The temporal dependence structure of the data set is clearly visible including the decaying 

dependence at lags of 5 days compared to 1 day for catchments with a BFI of <0.7. However 

for catchments with BFI values of > 0.7 there is little change in the temporal dependence 
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structure up to lags of 7 days. This indicates that peak flow events in the baseflow dominated 

catchments have a duration of more than the 10 day window adopted by Keef et al. Another 

significant concern with the window based method is that although the dependence falls, 

there is still a 20% chance that xt+5>u |xt>u for catchments with BFI between 0.5 and 0.7. 

Analysis for this thesis (See Section 6.3.3) has shown that this could have a significant impact 

on the fit of the conditional dependence model and hence the resulting simulated data. As 

such an alternative de-clustering method is presented in Section 6.3.3.  

Between site temporal dependence 

When modelling multiple sites it is unlikely that the event peaks will occur at the same time. 

Therefore consideration of the time period for which events at multiple sites can be assumed 

simultaneous is required.  

The pure travel time between flood peaks provides a useful means of visualising the impact of 

temporal dependence between sites on the same river or coastline, however in terms of the 

conditional dependence model, it is more useful to consider when probability of large events 

occurring at any two sites within a given lag (τ) peaks. This measure is termed by Keef et al 

(2009a) as �(w)(�) and is calculated as: 

�(w)(�) = 	�(�?vw	 > xy|U? > xy  5.30 

 

Keef et al (2009b) found that for their data set of 256 UK DMF gauges, ��w �� 	peaked at 96% 

of the flow gauge pairs for |¼½¨¾| ≤ 3. A suitable τ value for coastal data is investigated in 

Section 6.3.3.2.  

Keef et al (2009a) illustrate the inclusion of multiple time lags into the conditional dependence 

model using Figure 5.23. The solid lines indicate dependencies modelled parametrically 

through the a and b parameters. The dependencies shown by the dashed lines are modelled 

semi-parametrically through the residuals, Z. The bold blue lines are directly equivalent to 

those shown in Figure 5.21 and incorporate no time lag. 



Multi-variate spatial extremes 5 

 

115 

 

Modified from Keef et al (2009a, p45) 

 

Figure 5.23 Modelling temporal dependence in the conditional dependence model 

 

5.3.3.4 Simulating from the conditional dependence model 

One of the main advantages of the conditional dependence model is that it is possible to use 

the model to simulate data beyond the range of the observations using the fitted parameter 

values. The process of doing this is as follows; 

1. New values of X are simulated from the fitted GPD distribution in Equation 5.19 (Xsim) 

2. The simulated Xsim data are converted to Gumbel margins as described in Equation 

5.20 

3. A matrix of Z values (Zsim) the same length as Xsim is generated by resampling (with 

replacement) from the observed Z. The same event is used to provide the Zsim value for 

all gauges. 

4. Values of Y are simulated by applying Equation 5.23 using the fitted values of a and b 

and Zsim for all time lags up to τ.  

5. The simulated Y values (Ysim) are on the Gumbel scale, they can be converted back to 

real values by rearranging Equations 5.18 and 5.19 

 

Keef et al (2009a; 2009b; 2009c) use the conditional dependence model to simulate flood 

peaks at multiple sites belonging to the same event (henceforth referred to an event peak 

simulation). It is also possible to use the conditional dependence model to simulate full time 

series. This is explored further in Chapter 6. Keef et al (2009a) found that using this process 

directly resulted in too many extreme events being simulated compared to the observed data. 
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Therefore simulations are only kept in the sample if Xsim is more extreme than the associated 

values in Ysim.  

5.3.3.5 Measures of spatial dependency 

Keef et al (2009a) propose two summary dependence measures that can be used with the 

simulated data from the conditional dependence model. Firstly Equation 5.31 describes the 

probability that Y is greater than a given threshold given that X is above the threshold.  

�.(�) = Pr8�. > �y@U >	 �y) 5.31 

 

This is difficult to use as a summary measure as it provides a result set for each gauge which 

are time consuming to compare. However it does provide useful information about the 

behaviour of individual gauges. 

The second more general summary measure Keef et al use is the expected proportion of 

gauges in Y over a given threshold given that X > u: 

N(p) = 	E	8# j	 ∈ ∆∶ Y > uÈ¡|	X > 	uÈ	9#ej ∈ ∆g	  
5.32 

 

 

This measure can be applied over a specified search radius or the full gauged network. It is 

useful for identifying the spatial structure of extreme dependencies and forms the basis of 

Keef et al’s (2009b) assessment of spatial dependencies in fluvial flows, the results of which 

were discussed in Section 5.2.2. 

5.3.3.6 Practical issues 

The conditional dependence model was originally demonstrated for a small air pollution case 

study. When using the conditional dependence model with large spatial data sets of 

meteorological events there are a number of practical issues which arise due to the availability 

and suitability of the data. Some of these issues have been addressed by Keef et al (2009a; 

2009b; 2009c), some still require further work and some are unique to the nested multi-site 

model presented in this PhD and therefore have not been considered previously.   

Data requirements 

To fit the conditional dependence model across all gauges in the network concurrent data at 

each gauge is required. Ideally continuous data would be used however taking an example 

gauge with 20 years of 15 minute flow data this equates to over 700,000 data points to analyse. 

Scaling this up to a moderate network of gauges soon results in an unmanageable amount of 
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data. To overcome these issues Keef et al (2009a; 2009b; 2009c)  use daily mean flow data as 

input to the conditional dependence model. This provides one data value per day for each 

gauge, however the daily time step limits the application of the model for flood risk inundation 

modelling where a peak flow is required as input to the hydraulic model. Methods for 

overcoming this limitation are presented in Chapter 7.   

Missing data 

The nature of environmental data in the UK is such that there are periods of time when data 

records are not complete, for example gauges are put out of service for a period of time or 

there are problems with the gauging station structure or recording equipment. The 

requirement for concurrent data sets at all gauges means missing data restricts the application 

of the conditional dependence model.  

Keef (2006) developed a means of using the conditional dependence model to re-simulate the 

missing data based on the assumption that the available data can provide information about 

the missing data. The model is fitted to the available observed data and then the missing data 

is infilled for days when at least one observed gauge exceeds u using the fitted values of a and 

b to simulate the missing data. Z values for the infilled data are generated from the conditional 

distribution of the observed Z values by assuming a multivariate normal copula (2009a). 

While this approach is elegant, the computation involved in applying this infilling technique is 

significant and the process is not transparent to a none statistically trained end user. In light of 

these limitations a number of alternative infilling methods and investigated in Section 6.3.5.1.  

De-clustering data 

Keef et al de-cluster their data series using the moving window method detailed in Section 

5.3.2.1. While testing this methodology a problem was identified that once the data had been 

de-clustered in this manner there were some occurrences where the lagged sequence 

produced flows at t≠0 which were greater than at t=0.  

Take the example shown in Figure 5.24 for gauge 54001 for February 1946 plotted on a 

Gumbel scale. The moving window de-clustering method takes the highest flow in the 

sequence. In this case 8.5 on day 14 (X1, t0), and then remove all x > u for -5 < t < 5. This 

removes the second peak, on day 9, from the de-clustered series. The next remaining highest 

flow value (X2, t0) occurs on the day preceding the removed day 9 peak.  When the conditional 

dependence model is then fitted to the full series of time lagged data conditional on X2, the 

time series shows a higher flow at day X2, t1. This effect is then reproduced in the simulated 

time series and causes uncertainty in the estimates of the a and b model parameters since the 
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conditional dependence model assumes that the flow at Xi,t0 is the peak value in any given 

event. This problem is not identified by Keef et al, probably because it only becomes apparent 

when simulating time series of data at the conditioning gauge which has not previously been 

tested.  

The underlying question is whether these two events are independent peak events or whether 

they are part of the same event and hence only the maximum of the two peaks should be 

retained. Arguably this is a research topic in its own right and much discussion of these types 

of questions is available in the statistical literature. It is however possible to address this issue 

through the use of runs de-clustering rather than the moving window approach. Runs de-

clustering requires identification of the threshold, u, and the number of occurrences below the 

threshold, r, which is signals the start of a new event (see Section 5.3.2.1). This method, which 

is recommended by Coles (2001), provides a more robust alternative to the moving window 

approach as it ensures only the peak events are included in the conditional dependence model. 

Application of runs de-clustering for use in the conditional dependence model is discussed in 

Section 6.3.3. 

 

Figure 5.24 Temporal inconsistencies in moving window de-clustering method 

 

Downstream sensibility tests 

The negative log likelihood function (See Section 5.3.3.2) checks the suitability of the 

parameter estimates for each gauge pair but it does not explicitly check the suitability across 

the whole set of gauges. Keef et al (personal communication) have assumed that the negative 

log likelihood function will ensure physically realistic flows across the whole network.  
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For a small to moderate sized network such as used in this application it is possible to check if 

the simulated flows are physically realistic by establishing sensibility rules such that the 

upstream peak flow cannot exceed the downstream peak flow, and that the upstream peak 

must occur before the downstream peak. 

In the application of the conditional dependence model discussed in Chapter 6 there are no 

paired gauges on the same watercourse to apply a sensibility check to, however prior testing 

of the model to an example case study in South Wales and the Midlands showed that the 

sensibility rules were met for simulated flows at gauges on the Rivers Severn, Avon and Usk, 

indicating that the model fitting procedures do insure physically realistic simulations.  

5.3.4 Uncertainty in statistical models 

The statistical modelling of extremes necessitates consideration of uncertainty for reasons that 

have already been identified in this chapter; there are limited observations and hence the data 

are only a sample of the possible values that could be observed; the interest is often in 

extrapolating beyond the range of the data; the data measurements themselves can be 

subjected to uncertainty; and, in the face of climate change and continuing human 

development, we cannot assume that past observations provide a suitable basis for predicting 

the future. Therefore these issues need to be explicitly considered in the analysis. 

The assessment of uncertainty in statistical methods largely depends on the modelling 

framework in which the analysis has been made. Engineering based approaches are often 

closely related to the empirical data and incorporate limited physical knowledge, therefore 

uncertainty estimates from these types of method are possible using bootstrap methods of 

uncertainty (Anderson 2009). 

Max stable models (for example see Smith 1990) and hierarchical models (see Fawcett and 

Walshaw 2006) are model based, that is they assume that there is some form of underlying 

influence or model structure that can be used to better represent the process of interest.  

Anderson (2009) observes that this means the assumption in the models are explicit and 

possible to test. He comments that estimates of uncertainty are possible, however the 

estimates are conditional on the model and therefore if the model is wrong then the 

uncertainty estimates are also wrong.   

Taking a Baysian approach to statistical modelling means including other prior sources of 

knowledge in the analysis for example known physical constraints such as the maximum 

possible value, understanding of related processes, and historical evidence that there is no 

observed data for such as anecdotal accounts (Coles and Tawn 1996). Bayesian analysis may 
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also sometimes proceed on the basis of “non-informative” priors, a method which is used to 

reduce bias in the model. Taking a Bayesian approach, for example as Coles and Tawn have 

done for rainfall data (Coles and Tawn 1996) and coastal surges (Coles and Tawn 2005b) can 

provide a means for reducing uncertainty due to the scarcity of extreme data by providing a 

means of increasing input data supply.  

5.3.4.1 Measurement error 

Statistical methodology is reliant on large external data sets and therefore it is not always 

possible to check the reliability of observations.  The uncertainty due to measurement errors 

can be minimised by using good quality data sets from reliable sources (see Section 4.3). Initial 

graphical checks can be carried out to identify any very large or very small values and any 

significant trend changes can be investigated for example by checking for changes in the gauge 

history such as relocation or changes in the rating curve for flow gauges.  

5.3.4.2 Statistical modelling error 

Uncertainty in the statistical model used can arise due from the setting of the threshold for 

extremes and from the parameter estimation in the fitted model arising as the data used to fit 

the model are only a sample of the possible values that could be observed. The issues 

surrounding threshold selection have previously been discussed and the uncertainty here can 

be estimated from analysis of the parameter variability around the threshold. The uncertainty 

in the fitted model can be estimated using bootstrap methods as illustrated by Heffernan and 

Tawn (Heffernan and Tawn 2004). 

Bootstrapping methods involve generating multiple samples of data and using the variability 

within these samples to estimate the overall variability. The process is as follows (see Davison 

and Hinkley 1997; Keef, Lamb et al. 2009a);  

1. Generate a univariate sample of identically distributed data, X, of size n, and estimate 

the parameters of interest, θ, from X 

2. Resample X with replacement from the modelled distribution to obtain a bootstrap 

sample X*, also of size n 

3. Calculate θ� from X* 

4. Repeat B times to obtain sample θ�Ê of θ� of size B 

5. Assess the variability of θ for example by calculating the 95% confidence intervals.  

 

This process can be extended to consider multivariate data where X = (X1…..Xd) by resampling 

the vector observations Xi, i=1…n to maintain the dependence between observations. This is 
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the method which is used by Heffernan and Tawn (2004) however as identified by Keef et al 

(2009a) this method does not preserve the temporal dependence such as seasonality and 

short term dependencies in the data series. Instead they use a block bootstrapping method 

which divides the data into blocks before resampling. The size of the blocks is chosen to 

maintain the temporal dependence but also to allow a large number of potential combinations 

in each sample. For meteorological data which displays strong seasonal trends a suitable block 

size is one year. It is assumed that the data in each block is independent of other blocks. Keef 

(2006) investigated this for fluvial data and found that specifying yearly blocks starting on 1st 

August when most rivers are in the middle of their dry season provided a means of minimising 

the dependence between flood events in consecutive blocks.  Keef at al assume that the same 

annual break point is also suitable for coastal data but do not investigate this further.  

As well as sampling uncertainty due to finite datasets, the choice of statistical model also leads 

to potential uncertainty which can be difficult to identify. For example Dixon and Tawn (1999) 

identified that using the RJPM produced significantly different results than the standard EVT 

model for certain sites however this problem had not previously been identified due to the 

particular sites that had been selected for previous analysis not having high tidal variations.  It 

is relatively common practice for modellers to compare their results to previous studies or trial 

multiple methods allowing assessment of the robustness of the model choice. A more formal 

approach is outlined by Draper (1995) who used Baysian model averaging to establish 

uncertainty bounds around results from a suit of possible models.  There is no evidence of this 

approach being applied in an extreme value setting however it would be a useful study to 

compare the relative uncertainty from model choice and data quality in the extremes.  

5.3.4.3 Assumptions of stationarity 

There are increasing arguments that the concept of stationary is no longer valid within water 

resources research due to changes in catchment and river management and climatic forces 

meaning that hydrological patterns are not the same from year to year (Milly et al. 2008). The 

ability of past observations to provide a suitable means of predicting the future therefore 

depends on the time period over which predictions and management decisions are to be made.  

Flood risk studies often try to account for potential changes due to climate change by 

providing some permutations of their results including future changes. The means of doing this 

has improved recently with the publication of UKCP09  (UK Climate Projections 2009) which 

explicitly contains a series of possible future climate scenarios embodying the inherent 

uncertainty in climate change modelling. 
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What is often not so well addressed in flood risk investigations is the assumption that data 

records are assumed to provide a stationary picture of the historic flooding regime at a 

particular gauge. Recent research by Lane (2008) has highlighted that the UK climate cycles 

through flood rich and flood poor periods and therefore depending on when the gauge record 

begins the trends identified within the data set will vary. This is in addition to other short term 

changes such as channel erosion and human influence on flooding regimes. In general this has 

a greater effect on fluvial data, while sea level is known to be rising around the UK, this is due 

to climate change and isostatic movement and other processes are unlikely to be significant. 

As these effects are not well understood at a national level it is difficult to quantify them in a 

study of this type although it is important to be aware of these issues throughout the analysis.  

5.4 Selection of suitable statistical method to pro vide a robust ‘Sources’ 

component for the system model 

The choice of model for a particular problem should be as simple as possible. Models can be 

evaluated by assessing how much of the variance is explained by one model compared to 

another which can be used to justify a more complex model however it should be remembered, 

as voiced by Coles (2001), that “the model is required as a description of the process that 

generated the data, not for the data themselves, so it is necessary to assess the strength of the 

evidence for the more complex model structure.”  Using this framework it is important to have 

a thorough understanding of the processes being studied and not just the data themselves, 

hence the importance of the discussion of what causes extreme events in the UK in Section 5.2. 

As well as being a simple as possible it is important that the model is fit for purpose and does 

not violate the assumptions of extreme value theory. 

The final section of the chapter establishes the modelling requirements for this thesis and 

evaluates the suitability of the methods presented in this chapter. The statistical model that 

has been chosen to provide the event simulation for the sources component of the risk model 

is the conditional dependence model of Heffernan and Tawn (2004). The reasons for this 

choice are given in Section 5.4.1.1.  

5.4.1 Modelling requirements 

To assess the suitability of a model or method it is first essential to assess the modelling 

requirements. In this thesis, the aim of the modelling is to estimate the probability of large 

scale floods simultaneously affecting different areas or from different sources. A set of 

modelling criteria for this thesis have been established (influenced by the criteria used by Keef 

et al. 2009a). The statistical model should; 
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• Consider multiple variables and locations and be flexible in allowing more detail to be 

incorporated around sites of interest 

• Incorporate spatial and temporal dependence structures such as lag times between 

gauges and a suitable event definition for use in the insurance application  

• Describe the dependence in the extremes 

• Describe the changes in dependence as events get more extreme 

• Incorporate data that are not extreme 

• Allow extension to full event simulation rather than just event peaks 

• Be suitable for use in an end user focused application 

 

5.4.1.1 Method selection 

Following a review of the available EVT methods, where suitable data exists a POT based 

statistical method is preferable in this case to block maxima or r largest as it provides the most 

efficient and consistent use of available data, however care is needed to select a robust 

threshold. The POT series is generally thought to provide a more complete picture of the flood 

regime at any particular site than annual maximum (Walshaw 1994; Robson and Reed 1999), 

however using POT methods often results in added model complexity due to the need to 

consider event clustering. 

The analysis of temporal dependence structures in Section 5.3.2.1 and Section 5.3.3.6 highlight 

the importance of correctly defining events before applying an extreme value model. For 

environmental extremes which display natural variability due to different event types or 

catchment characteristics, a runs de-clustering method has been shown in Section 5.3.3.6 to 

provide the most robust means of de-clustering data prior to further statistical analysis. The 

definition of the r value is application specific and discussed further in Chapter 6. For 

multivariate analysis it is also necessary to specify a lag time over which observations at 

different gauges can be assumed to be from the same event. Keef et al’s (2009a; 2009b; 2010) 

method for accounting for this was illustrated in Section  5.3.3.3 where it was shown that for 

most catchment pairs in the UK a lag of five days was appropriate. Similar analysis is repeated 

in Chapter 6 for coastal data.  

In light of the review of available methods given in Section 5.3 and given the demonstration of 

its practicable ability in Keef et al’s (2009a) work on spatial coherences of flood risk for the 

Environment Agency, the conditional dependence model of Heffernan and Tawn (2004) is used 

to provide a strong statistical basis for the risk modelling in this study. The conditional 

dependence model meets many of the modelling requirements listed in 5.4.1 in that it can be 
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used for any number of variables and can characterise dependence over a full range of event 

magnitudes and correlation structures. It can be used for event or time based applications and 

explicitly incorporates spatial and temporal dependence patterns.  Theoretical any suitable 

model could be used to characterise the marginal dependence structure in the extremes, 

however as discussed above the GPD model is thought most suitable in this case as this is the 

model that was originally used by Heffernan and Tawn (2004) and Keef et al (2009a; 2009b; 

2009c).  

A disadvantage of the Heffernan and Tawn (2004) model is that it is theoretically complex and 

therefore presents challenges for communicating risk to the end user. Practical concerns have 

been raised about the model suggesting that the model’s complexity restricts its use to those 

with professional connections to Heffernan and Tawn, or with very strong statistical 

backgrounds.  There is some evidence of the conditional dependence model being used by 

researchers with no obvious connection to its original authors (for example Mendes and 

Pericchi 2009).  This PhD should serve as evidence of an applied use of the conditional 

dependence model by someone with limited formal statistical training. Theoretical criticisms 

have also been made over the development of the multivariate structure from pairwise 

datasets.  However the flexibility of the model and strength of the results produced by Keef et 

al (2009a; 2009b; 2009c) for flood risk analysis demonstrate its suitability for use in analysis of 

meteorological extremes and it is used here to provide a robust statistical underpinning to the 

sources component of the risk model. 
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6 A Multisite conditional dependence model for the selected 

risk clusters 

6.1 Introduction 

This chapter builds on the theoretical discussion of the conditional dependence model 

presented in Chapter 5 and illustrates how the model has been used to simulate events for the 

source component of the systems based risk model outlined in Chapter 4. Firstly the 

availability of suitable data sets is reviewed (Section 6.2.1) leading to the development of a 

gauged network in Section 6.2.2. Section 6.3 discusses the pre-processing required to generate 

a consistent data series across multiple gauges for fluvial and coastal data, including 

calculation of skew surge and de-clustering. Consideration is then given to fitting the 

conditional dependence model to the processed data including infilling missing data (Section 

6.3.5.1) and the simulation of event peaks and time series (Section 6.3.6). Finally, in Section 6.4, 

the simulated data set is used to review the spatial and temporal dependence structures 

across the selected risk clusters. The conversion of the simulated events to the physical 

components that cause flooding is discussed in Chapter 7.  

The conditional dependence model is also used as a means of representing the relationship 

between skew surge and wave heights however some modification of the model was required 

to achieve this which is discussed independently in Chapter 7.   

6.2 Establishing a gauged network for selected risk  clusters 

6.2.1 Data sources 

Hawkes et al (2008, p325) suggest that “data selection and preparation are probably the most 

important elements of extreme analyses”. Ideally the data set used for statistical analysis of 

extremes needs to be as long as possible to ensure multiple extreme events are recorded. For 

multivariate analysis long overlapping data sets are required. The observation frequency 

should be appropriate for the variable of interest; average monthly rainfall totals are of limited 

use for studying pluvial flooding which can occur on a timescale of minutes to hours. For a 

receptor focused study such as this it is important to balance the requirements of long and 

reliable record lengths with selecting gauges located close to the sites of interest to provide an 

accurate reflection of conditions at the receptors. 

In the UK the most readily available source of extreme flow data is the Environment Agency 

HiFlows-UK database (Environment Agency 2010a). This is the data set recommended for use 

in FEH analysis (Robson and Reed 1999). This data set is restrictive as it only provides annual 

maximum and POT series which are of limited use for correlation analysis. An alternative to 
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using annual maximum or POT data is to use continuous data series which allows analysis of 

data when the event is not extreme at all gauges, when used on a national scale this it is likely 

to result in un-manageable data sets (See Section 5.3.3.6). Instead processed data can be used 

such as daily mean flows which are available from the National Rivers Flow Archive (NRFA) ran 

by the Centre for Ecology and Hydrology (CEH). DMF data provides a necessary compromise 

between requiring concurrent data for all sites while still maintaining a manageable data set. 

However further calculation is required to estimate the flood peak required in the fluvial risk 

model from the DMF data. This issue is discussed further in Chapter 7.   

For coastal flood risk, observed sea level and predicted tide are available from British 

Oceanographic Date Centre (BODC). The data are available at 15 minute intervals. Pre-

processing of the data is required to convert it into a comparable format to the DMF data and 

maintain a manageable data size (see Section 6.3.1). Wave data at a half hourly resolution, was 

downloaded from the Centre for Environment, Fisheries and Aquaculture Science (Cefas) 

WaveNet project (Cefas 2009). Again pre-processing is required to generate a comparable daily 

wave height. The statistical modelling of wave height is discussed separately in Chapter 7.   

6.2.2 Selection of gauged network 

Using the clusters identified in Chapter 3, a list of available gauges for fluvial, tidal and wave 

data was complied.  

The NRFA provides a standardised set of daily flow data for around 200 gauges across the UK 

freely available to download from the NRFA website (CEH 2009a). This dataset formed the 

basis of the gauge selection however where data gaps occurred additional gauges were 

identified in the areas of interest and requested from NRFA. In addition to the daily mean flow 

data, The Environment Agency HiFlows-UK database (Environment Agency 2010a) was 

reviewed and suitable gauges extracted. The POT data from HiFlows-UK is used for the DMF to 

peak flow conversion detailed in Section 7.2.1. 

NRFA updated its database to include 400 sites in November 2011 (CEH 2011). Many of the 

relevant sites from this extended database are included in this PhD as they were requested 

from NRFA before the release of the new database, however due to the timing of the release a 

full review of the extended database has not been carried out.   

For coastal risk still water data was obtained from the British Oceanographic Date Centre 

(BODC) network of tide gauges (BODC 2009) which provided predicted tide height and 

observed water level with a frequency of up to 15 minute intervals. Wave data was 



A Multisite conditional dependence model for the selected risk clusters 6 

 

127 

downloaded from Cefas. The decision to use observed wave data rather than hindcast data is 

discussed in Section 7.3.3.  

Once a list of available gauges had been identified, each gauging station was reviewed for its 

suitability for inclusion in the model.  Given the nested site approach of this study it was 

possible to do this individually for each station rather than using generalised selection criteria. 

The review criteria were; 

• Location  

Does the location of the gauging station add value to the risk model? For example is it 

located on the same watercourse as a caravan site or does it provide useful ‘donor’ data?   

• Record length  

Is the record length at the site sufficiently long to allow fitting of the GPD and conditional 

dependence model? Keef (Personal Communication) suggests a minimum record length of 

30 years however in some cases this restriction has been relaxed for particularly well 

located sites and for wave gauges where the record length is relatively short for all stations.  

• Reliability at high flows 

Sites were assumed suitable for high flows if they were rated as suitable for QMED 

estimation by HiFlows-UK. For stations without a HiFlows-UK classification, a review was 

made of available information from NRFA about the performance of the site. 

• Additional influences  

Are there any artificial influences such as reservoirs, pumping stations or flood defence 

schemes that affect the flow regime at the gauging station or is the site located in an area 

where the event may be enhanced, for example tidal gauges in estuaries? This is most 

important where the degree of influence changes over the period of record. 

The following sections review the available gauges for each risk cluster area. A map of the 

gauge locations for each cluster is provided along with tables listing the characteristics of the 

potentially useful gauges. The core gauges which are used direct in the conditional 

dependence model are listed in Table 6.8. The remaining gauges are used to provide additional 

data to support the DMF to POT conversion, to infill missing data, or to help interpolate 

between gauging stations to estimate events at sites of interest. 

6.2.2.1 East Coast 

Fluvial 

Risk on the East coast is mainly from the sea, although the Great Eau and particularly the Lymn 

could potentially cause fluvial flooding. Gauges on both watercourses are suitable for inclusion 
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in the model.  Since the conditional dependence model is based on the relative positions of the 

event rather than the actual value, the potential bypassing at 29009 is not a major concern as 

the relative magnitude of the event will be maintained.  

Table 6.1 Details of available East Coast fluvial gauges 

Gauge 

ref. 

Watercourse Location Catchment 

area (km
2
) 

Record 

length 

(years) 

POT 

data 

Comments 

29002 Great Eau Claythorpe 

Mill 

77.4 48 yes Bypassed at very 

large flows 

30004 Lymn Partney Mill 61.6 49 yes  

29003 Lud Louth Weir 55.72 42 yes No spot gaugings 

at high flows 

30011 Bain Goulceby 64.11 38 yes Weir non modular 

at high flows 

 

Coastal 

There are two tide gauges to the north and south of the risk cluster. Both of these gauges have 

reliable data. 

There are four waveriders in the vicinity. West Silver Pit, Northwell and Blackney Outfall have 

very short record lengths (less than 1.5 years) and have changed ownership during their 

lifetime which could result in inconsistencies in data recordings. Dowsing, although located 

further offshore provides a longer consistent data record and is therefore used to provide data 

on wave conditions for the East Coast. 

Table 6.2 Details of available East Coast coastal gauges 

Gauge ref. Location Type Record length (years) 

IMM Immingham Tide gauge 58 

CRO Cromer Tide gauge 38 

62289 Dowsing Waverider 7.5 

62040 West Silver Pit Waverider 0.5 

62041 Northwell Waverider 1.5 

62042 Blackney Outfall Waverider 1.5 
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Figure 6.1 Gauging station locations: East Coast 
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6.2.2.2 North Wales 

Fluvial 

The North Wales cluster consists of two catchments, the Conwy which is gauged at 66011 and 

the Clwyd and Elwy system which has a series of gauges. Given that there are only three low 

value caravan sites on the Conwy, this river system is not modelled as part of this project 

however the Conwy gauge is included as it has a long record length and may provide useful 

data for infilling missing data at the other gauges. The best located gauges for the Clwyd and 

Elwy are 66025 and 66002 however these sites have short record lengths which do not overlap 

therefore 66001 and 66006 provide useful alternatives. Another advantage of using 66001 

over 66025 is that it includes POT data.  

Table 6.3 Details of available North Wales fluvial gauges 

Gauge 

ref. 

Watercourse Location Catchment 

area (km
2
) 

Record 

length 

(years) 

POT 

data 

Comments 

66001 Clwyd Pont-y-

Cambwll 

404 51 yes  

66025 Clwyd Pont Dafydd 430.8 14 no Short record 

66011 Conwy Cwm Llanerch 344.5 47 yes  

66002 Elwy Pant yr Onen 220 14 yes Short record 

66006 Elwy Pont-y-

Gwyddel 

194 38 yes  

 

Coastal 

There is considerable coastal risk in North Wales to sites located near Towyn and extending 

East towards Rhyl and Prestatyn.  

Interpolating between the tide gauges at Llandundo and Liverpool provides details of the still 

water conditions. Although LLA appears to have a long record, there are considerable periods 

of missing data (see Figure 6.6). The gauge at Holyhead is included as it can provide useful data 

for infilling the significant missing records at Liverpool and Llandudno. The waverider bouy in 

Liverpool Bay is used for wave conditions.  

Table 6.4 Details of available North Wales coastal gauges 

Gauge 

ref. 

Location Type Record 

length 

(years) 

Comments 

LIV Liverpool Tide gauge 20 Short record length 

LLA Llandudno Tide gauge 40 Significant missing data 

HOL Holyhead Tide gauge 47  

62287 Liverpool Bay Waverider 8  
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Figure 6.2 Gauging station locations: North Wales 
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6.2.2.3 Midlands – The River Severn 

Fluvial 

The primary concern in the River Severn cluster is to model risk at the caravan sites located 

around the Severn-Stour confluence. The most suitably located gauges for this area are 54034, 

54001 and 54006. Unfortunately there is no downstream gauge on the River Severn except 

54032 which includes flows from the River Teme and is tidally influenced. Gauge 54032 also 

has the potential to be influenced by high tides and by tidal gates on the River Avon at 

Tewksbury. In light of these difficulties no downstream gauge will be used and the flows at the 

downstream extent of the hydraulic model will be estimated by area scaling of the simulated 

upstream flows for the combination of the three rivers (see Section 7.2.2).  

Table 6.5 Details of available River Severn fluvial gauges 

Gauge 

ref. 

Watercourse Location Catchment 

area (km
2
) 

Record 

length 

(years) 

POT 

data 

Concerns 

54034 Dowles Brook Oak Cottage 40.8 40 yes  

54001 Severn Bewdley 4325 90 yes  

54032 Severn Saxons Lode 6850 39 yes Bypassing at high 

flows. Affected 

by high tides  

54006 Stour Kidderminster 

Callows Lane 

324 57 yes Flood alleviation 

scheme built in 

2003 

54063 Stour Prestwood 

Hospital 

89.9 36 no  

54029 Teme Knightsford 

Bridge 

1480 39 yes  
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Figure 6.3 Gauging station locations: River Severn 
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There is an additional complication with the gauged data for the River Stour as a flood 

alleviation scheme was built between gauges 54006 and 54063 in 2003 (Wyre Forest District 

Council. 2008) to protect Kidderminster from floods up to a 1% AEP event by restricting flows 

leaving the storage area to 27m3/s (Environment Agency 2010a), events larger than the design 

standard will overspill the culvert.  

The impact of this scheme means that flows prior to 2003 will potentially be higher than those 

recorded after the flood alleviation scheme, effectively reducing the useable record length to 

eight years.  

A review of the observed DMF and POT data at gauges 54006 and 54063 for POT events shows 

that the average ratio of flows between the two sites is affected by the scheme, especially for 

the most extreme events which are attenuated in the flood storage area between the two 

gauges (Table 6.6) however there is no clear trend to this relationship for all events (Figure 6.4). 

There is only one event prior to 2003 large enough to be affected by the flood alleviation 

scheme, this was in December 1981 when a DMF of 26.2m3/s was recorded at gauge 54006. 

This is close to the culvert capacity, therefore if the alleviation scheme had been in place it 

would have probably reduced the peak flow but had minimal impact on the daily mean. Based 

on these observations and given the requirement for long concurrent data records, it is 

deemed sufficient to use the full data record at 54006 without modification for the flood 

alleviation scheme.  

Table 6.6 Ratio of DMF peaks between 54006 and 54063 before and after the installation of 

the flood alleviation scheme in 2003 

 Average ratio of peak DMF 54006 / DMF 54063 

All events Events above Q99 threshold at 

54034 

Pre flood alleviation scheme 2.05 1.34 

Post flood alleviation scheme 1.92 1.10 

All events 2.01 1.25 
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Figure 6.4 Relationship between gauges 54006 and 54063 for POT events before and after 

the installation of the flood alleviation scheme in 2003 

 

6.2.2.4 The River Thames 

Fluvial 

In the Thames cluster gauges 39138, 39130 and 39009 are well located for the sites of interest. 

However the record length at these sites is short (between 11 and 22 years), in addition the 

observation period for 39009 is 1959-1982 which provides a very limited period of overlapping 

record. On the Thames itself sites 39072, 39001 and 39002 provide long record lengths 

although there are multiple tributary interactions between 39002 and the caravan sites of 

interest and a very large difference in catchment area between all three sites. In light of the 

added complication of including multiple tributaries, a single gauge will be used to provide 

estimates for the Thames, 39072 at Royal Windsor Park. The only gauged tributary between 

39072 and the sites of interest is the Wye. This is a small groundwater dominated catchment 

(Environment Agency 2010a) and unlikely to have a major influence on flows in the River 

Thames. There are no POT data available at 39072 therefore 39002 will be used as a donor site 

to estimate peak flows as described in Section 7.2.  

Table 6.7 Details of available River Thames fluvial gauges 

Gauge 

ref. 

Watercourse Location Catchment 

area (km
2
) 

Record 

length 

(years) 

POT 

data 

Concerns 

39007 Blackwater Swallowfield 354.8 58 Yes  

39016 Kennet Theale 1033.4 49 yes Possible 

groundwater 
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Gauge 

ref. 

Watercourse Location Catchment 

area (km
2
) 

Record 

length 

(years) 

POT 

data 

Concerns 

interaction 

39138 Loddon Twyford 751.8 12 No Short record 

length 

39022 Loddon Sheepbridge 164.5 44 Yes Some bypassing  

at high flows 

39023 Wye Bourne End 137.3 47 Yes  

39002 Thames Days Weir 3444.7 72 Yes  

39009 Thames Bray Weir 6915.3 22 No Short record 

length 

39130 Thames Reading 4633.7 17 No Short record 

length 

39072 Thames Royal Windsor 

Park 

7046 31  

no 

 

39001 Thames Kingston 9930.8 111 yes Early record 

probably 

inaccurate 
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Figure 6.5 Gauging station locations: River Thames 
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6.2.2.5 Gauges used in conditional dependence model 

The fluvial and tidal gauges which will be used directly for simulation of extreme events for the 

risk model are identified as core gauges in Table 6.8. The remaining gauges in Table 6.8 are 

used to infilling missing data (see Section 6.3.5.1) and to support the interpolation methods 

outlined in Chapter 7.  

The conditional dependence model requires long concurrent data records without missing 

data. As shown in Figure 6.6, all core gauges have 31 years of data from 1979 to 2010 without 

significant periods of missing data except the North Wales coastal gauges at Llandudno and 

Liverpool. The degree of missing data for the fluvial gauges is minimal. For coastal gauges 

missing data presents more of a potential problem. The procedures for dealing with missing 

data are discussed in Section 6.3.5.1.  

Table 6.8 Selected gauges for use in conditional dependence model 

Gauge 

ref 

Cluster Location Start date End date Record 

length 

(years) 

Main 

purpose 

30004 East Coast R. Lymn 01/01/1962 31/12/2010 49 Core 

IMM East Coast Immingham 01/01/1953 31/12/2010 58 Core 

CRO East Coast Cromer 01/01/1973 31/12/2010 38 Core 

29002 East Coast R. Great Eau 01/10/1962 31/12/2010 48 Infill 

29003 East Coast R. Lud 05/07/1968 31/12/2010 42 Infill 

30011 East Coast R. Bain 01/08/1971 31/12/2010 39 Infill 

66001 North Wales R. Clwyd 01/10/1959 31/12/2010 51 Core 

66006 North Wales R. Elwy 01/01/1973 31/12/2010 38 Core 

66011 North Wales R. Conwy 01/06/1964 30/11/2011 47 Infill 

LIV North Wales Liverpool 01/01/1991 31/12/2010 20 Core 

LLA North Wales Llandudno 31/12/1970 31/12/2010 40 Core 

HOL North Wales Holyhead 01/01/1964 31/12/2010 47 Core 

54034 Severn Dowles Brook 01/01/1971 31/12/2010 40 Core 

54001 Severn R. Severn 01/01/1921 31/12/2010 90 Core 

54006 Severn R. Stour 01/10/1953 31/12/2010 57 Core 

54063 Severn R. Stour 01/08/1972 31/12/2008 36 Infill 

54029 Severn R. Teme 01/04/1970 31/12/2010 39 Infill 

39001 Thames R. Thames 01/01/1900 31/12/2010 111 Infill 

39002 Thames R. Thames 01/10/1938 31/12/2010 72 Infill 

39072 Thames R. Thames 20/7/1979 31/12/2010 31 Core 
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Figure 6.6 Period of record for core gauges 

 

6.3 Development of a multisite conditional dependen ce model for the 

gauged network 

6.3.1 Calculating daily maximum skew surge 

Pre-processing is required to convert sea level observations into daily maxima skew surge to 

be used with the DMF data. 

The data sets available from BODC give the observed sea level and the tidal residual (observed 

sea level minus predicted tide). The data are coded by BODC to mark improbable values, null 

values, and, interpolated values. Improbable values were removed to minimise errors. 

Interpolated values were retained due to the requirement for concurrent data (this was 

assumed to be more reliable than using the infilling technique in Section 6.3.5.1). The 

predicted tide for each time step was calculated as the observed sea level minus the residual.  

In the UK the tidal cycle is 12.25 hours. The highest water level and predicted tide height were 

found by searching for the highest value within three hours of the estimated time of high tide 

for each cycle. More sophisticated methods were tested including using the aggregate function 
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in the R package “zoo” (Zeileis and Grothendieck 2005) to extract the highest value over a 

given time window. However this method produced unreliable results, possibly due to missing 

data within the tidal cycle.  

The skew surge (see Section 5.2.1.2) for each tidal cycle was calculated by subtracting the 

highest observed water level from the predicted high tide. Due to differences in the timing of 

tides around the UK, it was not possible to use the tidal cycle data to generate a concurrent 

series across all gauges. The zoo aggregate function was used to extract the daily maximum 

skew surge, thus providing a concurrent dataset that is comparable to the DMF data used for 

the fluvial sites. Where only one of the two potential high tides of any given day is recorded 

this was taken as being the daily maximum. Using daily maximum skew surge in this way 

creates some difficulties when assigning a tide event to the generated skew surges as 

identified by Keef et al (2009a) but results in a conservative estimate of the combined water 

level. The resulting daily maximum skew surges at each gauging station are shown in Figure 6.7. 

 

Figure 6.7 Daily maximum skew surge at selected gauges 

 

6.3.2 Sensibility tests for selected data 

The suitability of the gauging stations was reviewed in Section 6.2.2. Prior to use in the 

statistical model a sensibility check was made of the observed data at each of the selected 
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sites. The full data time series was plotted and a visual assessment of the data made. No 

significant outliers were identified.  The results of the sensibility tests are provided in Appendix 

B.1.  

In addition, pairwise plots of the observed data were plotted to identify the expected model 

results. The plots for the core gauges are shown in Figure 6.8. This plot provides an initial 

indication of the importance of considering multisite dependence, as dependence structures 

are evident between fluvial and coastal gauges in North Wales (66001, 66006, LIV, LLA and 

HOL), and broad scale spatial dependences between sites in the Midlands (54001), North 

Wales (66001) and the South East (39072).  
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Figure 6.8 Pairwise plots of 

observed DMF and skew 

surge data for all core 

gauges 
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6.3.3 De-clustering 

The review of available de-clustering methods presented in Chapter 5 identified that the most 

suitable method for de-clustering meteorological data was runs de-clustering which allows for 

varying response times at different sites due to local conditions. The de-clustering of DMF and 

skew surge using runs de-clustering is discussed below. 

6.3.3.1 Fluvial 

Identifying a suitable threshold, u, and cluster interval, r, are to some extent arbitrary (Smith 

1989) and suitable limits are likely to interact with each other. In theory values could be 

identified from the point at which the parameters of the GPD and conditional dependence 

model stabilise. However because both of these models have multiple, interacting parameters 

it is difficult to accurately identify where this point is. To overcome this problem, Keef et al 

(2009a) use the empirical estimates of the �(U?vw	 > �|U? > �  to estimate suitable time 

windows for extracting peak events (See Section 5.3.3.6).  The value of ��U?vw	 > �|U? > �  

for a range of cluster intervals is shown in Figure 6.9 for the validation dataset of DMF gauges.  

Since the value of ��U?vw	 > �|U? > �  tends rapidly towards zero when runs de-clustering is 

applied, a comparison with the number of event peaks retained using the window based de-

clustering method of Keef et al (Figure 6.10) were used to maintain stability in the fit of the 

conditional dependence model. Although it is acknowledged that there is some interaction 

between u and r, u has been set at the 0.99 quantile throughout to maintain consistency with 

the conditional dependence model.

 

Figure 6.9 Identification of suitable de-clustering interval by comparing Pr(Xt+τ > u | Xt > u )  

with BFIHOST for a range of r values 
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Figure 6.10 Comparison of number of events retained by runs and moving window de-

clustering methods 

 

As shown in Figure 6.9, the probabilities of concurrent events occurring in the data series are 

very low using the runs de-clustering method, irrespective of the value of r chosen. This 

suggests that for all catchment types, once the flow drops below the threshold, it is unlikely to 

rise again within a short time frame. The method itself is therefore not sensitive to the choice 

of r, however r does have some notable effects on the number of events retained as shown in 

Figure 6.10. Values or r ≤ 2 result in more events being retained than Keef et al’s five day 

moving window method and values of r ≥ 6 result in fewer events being retained. Using a value 

of r = 1 is not recommended due to the potential event classification uncertainty from data 

errors.  

The conditional dependence model assumes that the conditioning peak is the maximum within 

the event. As discussed in Section 6.3.6.1, the event duration used in this study is 10 days (a lag 

of five days either side of the flood peak) to allow for incorporation of the full temporal 

dependence structure between different sites.  Therefore although an r value of three would 

be sufficient at individual sites, an r value of five has been used to remove the probability of 

secondary flood peaks within the five day event lag.  

Despite the difficulties in establishing a suitable value of r, de-clustering in this manner insures 

that only the peaks are retained and therefore removes the inconsistencies identified in Figure 

5.24, therefore the runs method is considered the best approach for use in this application.  
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Figure 6.9 also shows that the runs de-clustering method removes the dependence with 

BFIHOST values shown in Figure 5.22. This is because peak events in baseflow dominated 

catchments tends to be of long durations, therefore using the runs de-clustering method 

allows incorporation of varying event lengths in different catchment types.  

For practical reasons the threshold at gauge 39072 was lowered from 0.99 to 0.98. This was 

because although 39072 meets the requirement of 30 years of data and had more than 30 

events above the Q99 threshold, due to the slow response of the catchment after de-

clustering the number of extremes fell to less than 30 meaning 39072 could not be used as a 

conditioning gauge in the dependence model. The additional uncertainty from lowering the 

threshold was thought to be less than using an alternative site on the Thames further away 

from the receptors of interest, for which there is a greater than 2500km2 difference in 

catchment area (See Table 6.7).  

6.3.3.2 Coastal 

The characteristics of storm events around the UK coastline (discussed in Section 5.2.1.2) 

mean that there is unlikely to be significant temporal clustering over periods longer than a few 

days. Repeating the analysis of Section 6.3.3.1 for daily skew surge, Figure 6.11 shows that the 

value of  �(U?vw	 > �|U? > �  falls to approximately 5% for lags of more than one day at 

Immingham, Cromer and Liverpool, however it remains high for lags up to three days at 

Holyhead and Llandudno.  

Figure 6.12 shows that this dependence structure is removed when the r value is larger than 

the dependence lag. Based on this analysis an r value of three would again be suitable for de-

clustering skew surge at individual sites but has been increased to five to provide consistency 

with the fluvial de-clustering method and meet the criteria of the conditional dependence 

model. This value ensures temporal correlations at all sites are removed prior to fitting the 

GPD model and provides consistency with the fluvial model. Table 6.10 provides the number of 

events retained in the data set for different r values. There is no major jump in number of 

events retained at any value of r which suggests that the GPD fit will not be overly sensitive to 

the run time used.  
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Figure 6.11 Conditional dependence measure Pr(Xt+τ > u | Xt > u )  at costal gauges for a range 

of time lags  

 

 

Figure 6.12 Identification of a suitable coastal de-clustering interval by comparing 

Pr(Xt+τ > u | Xt > u ) at different time lags with a range of r values  
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Table 6.9 Number of retained extreme events after de-clustering skew surge data for a range 

of r values 

Site All data 
De-clustered data r = 

1 2 3 4 

IMM 181 175 167 161 157 

CRO 80 72 68 67 65 

LIV 63 56 54 51 46 

LLA 56 52 50 44 43 

HOL 124 109 98 85 80 

 

6.3.4 Fitting the GPD model 

A GPD model (see Section 5.3.1) was fitted to the maximum available record length of de-

clustered data at each gauge between 1960 and 2010 using the gpf.fit function in the R 

package ismev (Coles and Stephenson 2010). The period 1960 – 2010 was chosen to maximise 

the use of available data while maintaining a consistent climatic period across all gauges.  

The threshold was taken as the 0.99 quantile throughout except for gauge 39072 (see Section 

6.3.3.1). The model fit and threshold stability were reviewed to assess the stability of the 

model over a range of possible thresholds using the R function gpd.fitrange (also available 

from the ismev package) and found to be suitable at all gauges. Plots of the GPD fit and 

threshold stability are shown in Appendix B.2. The fitted GPD parameters are shown in Table 

6.10 with standard errors shown in brackets. 

Table 6.10 Fitted GPD parameters for selected network 

Gauge 

ref 

Threshold (u) Scale  

(σ) 

Shape  

(ε) 

30004 2.70 0.03 (0.09) 1.41 (0.18) 

66001 32.60 -0.13 (0.12) 11.22 (1.81) 

66006 26.92 0.02 (0.12) 10.93 (1.74) 

54034 3.18 0.26 (0.12) 1.43 (0.22) 

54001 297.30 0.08 (0.14) 60.93 (11.66) 

54006 10.52 0.01 (0.07) 3.83 (0.43) 

39072 214.00 -0.1 (0.17) 45.21 (10.87) 

IMM 0.62 -0.05 (0.08) 0.17 (0.02) 

CRO 0.69 -0.09 (0.11) 0.24 (0.04) 

LIV 0.68 -0.11 (0.18) 0.25 (0.06) 

LLA 0.53 -0.09 (0.19) 0.15 (0.04) 

HOL 0.51 -0.19 (0.09) 0.15 (0.02) 

 

The uncertainty in the fit of the marginal model can be identified from the confidence bounds 

which can be calculated using the R function  gpd.parameterCI from ismev or in the extRemes 

package. Confidence intervals are shown in the plots of GPD fit in Appendix B.2 and illustrate 
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wide uncertainty bounds beyond the range of the data. Example confidence intervals for a 1.3 

AEP event are tabulated in Table 6.11. The 1.3 AEP event was chosen as this is the threshold 

for providing insurance cover.  

Table 6.11 Confidence intervals for the GPD model fit at a 1.3 AEP event 

Gauge Best estimate 95% confidence interval 

Lower bound Upper bound 

54001 580.1 500.5 878.0 

39072 363.7 326.4 545.9 

IMM 1.43 1.29 1.84 

LIV 1.47 1.22 1.50 

 

6.3.5 Fitting the conditional dependence model 

The data were transformed to uniform margins using the semiparametric model given in 

Equation 5.18 and the fitted values of u, σ, and ε given in Table 6.10. 

The conditional dependence model was fitted as described in Section 5.3.3.2 for an event 

window of up to ten days. The minimisation of Function 5.28 was carried out using the inbuilt 

Nelder-Mead optimisation function in R (optim, R Development Core Team 2009) and code 

supplied by Keef to implement the optimisation constraints outlined in Section 5.3.3.2. Using 

lags of up to ten days allows for increased flexibility in the event simulation as discussed in 

Section 6.3.6, although it is acknowledged that the strength of the dependence structures is 

likely to weaken at the extremes of this range.     

The model requires concurrent data of at least 30 years and concurrent data on a minimum of 

30 extreme days for each conditioning site. Review of the periods of record shown in Figure 

6.6 identifies that the longest period of concurrent data available is from 01/01/1979 – 

31/12/2010. This period was largely determined by the limited coastal data record for North 

Wales as the gaps in coastal data at Holyhead limit the potential to infill data at Liverpool and 

Llandudno (see Section 6.3.5.1) and the record length at site 39072. The conditional 

dependence model was fitted to observations from 01/01/1979 – 31/12/2010.  

A crucial check of the suitability of the conditional dependence model is to check that Z is 

independent of X (Keef et al. 2009a). As shown in Figure 6.13 for Z’s at time lag 0, this criterion 

is satisfied for all the core sites.  
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Each conditional gauge is plotted using a different colour and plotting symbol 

 

Figure 6.13 Evidence of independence of Z and X in the conditional dependence model 

 

6.3.5.1 Dealing with missing data 

By infilling data the maximum possible use of all observed data can be made. It is shown by 

Keef (2006) that infilling the missing data improves the estimation of extreme dependence 

structures compared to simply removing it.  Concurrent data are only required for events 

where at least one gauge in the network is extreme. There are 782 days between 1979 and 

2010 when this occurs.  As illustrated in Table 6.12, the coverage of fluvial data for these 

“extreme days” is good with a maximum of 13 missing days at 39072. The coverage of coastal 

data is more sporadic, with only Immingham providing comprehensive coverage over all but 18 

extreme days.  
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Table 6.12 Number of days when core gauges have missing data 1979 - 2010 

Gauge Number of missing 

days 

Number of missing days 

when at least one gauge 

is extreme 

Percentage of missing 

days when at least one 

gauge is extreme 

30004 66 3 0.4 

66001 0 0 0.0 

66006 70 1 0.1 

54034 2 1 0.1 

54001 0 0 0.0 

54006 91 8 1.0 

39072 200 13 1.7 

IMM 312 18 2.3 

CRO 3861 230 29.4 

LIV 5410 313 40.0 

LLA 6174 405 51.8 

HOL 2280 158 20.2 

Note: the table is calculated on the day of the conditioning peak. It is assumed that the distribution of 

missing data throughout the event will be the same as on the peak day 

 

Limiting the size of the network to the areas of interest rather than applying the model across 

a UK network of gauges as per Keef et al (2009b; 2009c) restricts the impact of missing data as 

the extreme days display more temporal coherence. This has implications for how periods of 

missing data are dealt with in the data set.  Keef (2006) proposes a generic method which uses 

the conditional dependence model to infill the periods of missing data. While this is elegant, 

the computation involved in applying this infilling technique is significant and the process is 

not transparent to end users without statistical training. Therefore a number of alternative 

methods were tested including: 

• Quantile mapping which is used extensively in the Low Flows literature (World 

Meterological Organisation 2008) as a means of infilling DMF data 

• Standard regression models fitted to both the full data range or just the extremes 

• Use of additional covariates such as rainfall data, antecedent conditions and 

catchment characteristics as proposed by Ledingham (2011) 

• A simplified pair-wise version of the conditional dependence model 

 

Although quantile-quantile mapping was developed in the low flows literature, it is possible to 

modify the methodology for use with high flows. This is discussed in more detail in Chapter 7 

where the methodology is also considered as a means to interpolate flows to ungauged sites.  

For infilling missing data, the method is restrictive as it assumes a direct correlation between 

two sites and therefore cannot incorporate natural variability in the data. 

Using standard regression models was found to work well for sites with strong correlations. 

Unlike the quantile mapping method, some natural variability is retained through the residual 
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term, however where the correlation is low the residual term becomes dominant. An 

advantage of using a standard regression model over the conditional dependence model is 

that the regression model can be fitted to all data and therefore the closest gauge can be used 

as the donor site regardless of whether it experienced an extreme event during the period of 

missing data, although this may result in a poorer fit in the extremes.  

Ledingham’s (2011) rainfall and antecedent conditions methodology has potential advantages 

in extending and infilling the observed flow data due to the availability of rainfall data over a 

longer time period and denser network, however it was found to be computationally 

demanding compared to the other methods. It is restrictive as it was designed to simulate 

independent flood peaks and therefore cannot be used to infill complete hydrographs, it is 

fitted to POT data and therefore conversion to DMF is required before the infilled data can be 

used in the conditional dependence model and finally it is not possible to use this method with 

coastal data.  

The method chosen for use in this project was a simplified version of the conditional 

dependence model. During testing this was found to perform better than the standard 

regression model for sites with moderate to weak extremal association and approximately the 

same for sites with strong extremal association. A major advantage of using a version of the 

conditional dependence model is that it fits naturally with the existing model structure.   

Selection of suitable donor sites 

The first stage of the infilling missing data methodology is to select suitable donor sites that 

can be used to provide information about the missing data. Ideally for fluvial sites the donor 

site would be connected to the missing data site that is the same water flows through both 

locations and would be nearby to preserve the spatial dependence structure.  Recently the use 

of distance between catchment centroids has been promoted as a method of identify suitable 

donor sites for estimation of QMED in ungauged locations (Kjeldsen 2008). Catchment 

centroids are preferred over distance between gauging stations as they prioritise nested 

catchments and locations where the catchment headwaters are situated nearby (Keef et al. 

2009a). The core gauged network was extended to include all gauges in Table 6.8 where the 

pairwise concurrent data record was greater than 30 years long for the purposes of infilling.  

Where possibly fluvial sites were used to infill other fluvial sites and coastal sites other coastal 

sites since the characteristics of the event are assumed to be more similar at sites of the same 

type. Donor sites were ranked by inverse distance weighting. The distance between each pair 

of catchment centroids was calculated using the centroid location from the FEH CD-ROM 3 
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(CEH 2009b), and the distance between each pair of coastal sites was taken as the distance 

along the coastline between the two sites. Where no same type site experiences an extreme 

event, coastal and fluvial sites have been paired. The distance between coastal and fluvial sites 

was taken as the direct distance between the two sites.  

Infilling missing data 

The difference between this method and the one used by Keef (2006) is that the simulation of 

missing data only takes into account one other gauge rather than all available gauges. This 

removes the requirement to use a copula to fit a multivariate normal distribution function to 

the residuals. Since the underlying motivation of the infilling method proposed by Keef is 

based on a bivariate result (Keef 2006), the simplification to a bivariate case is assumed 

appropriate here. The implication of this simplification is that the true conditional distribution 

across all gauges is not taken into account. This is likely to be most significant where the 

relationship between the paired gauges is weak or the spatial distribution of the network is 

sparse.  However in most cases the amount of missing data is small and hence the contribution 

to uncertainty from the infilling method is small.  

The conditional dependence model was fitted as described in Section 5.3.3.2 using all available 

data from 1960 – 2010. The data period was extended for the purpose of infilling to make 

maximum use of all available observed data for each gauged pair and allow the model to be 

fitted for marginal gauges with 30 or less paired observations between 1979 and 2010. 

Extending the data period further than this was deemed unsuitable due to issues of potential 

non stationary in the data over extended time frames. The residuals at each time step, 	+º.,?, 

were estimated using Equation 5.29.  

For each missing date, the closest donor site (Yj) which experienced an extreme event within 

10 days of the missing date (xt) was selected and the missing data infilled conditional on the 

peak event, yj,s, where s is the date of the peak event and r is the lag from the event peak and 

a and b are the fitted model parameters at each r, such that: 

U*vË = �80.,*9 + J80.,*	9,*�½ 6.1 

where zsim is resampled from the observed data with replacement as described in Section 

5.3.3.4. The infilling methodology is illustrated in Figure 6.14. 

Figure 6.15 illustrates the fit of the infilled data compared to observed data. Some variability is 

expected between the observed and simulated events due to the random sampling of z values. 

Although the results shown in Figure 6.15 do not show a good fit between observed and 

simulated events, the simulated events are representative, if not realistic. Table 6.14 shows 
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that the use of infilled data, even using the simplistic approach used in this study, serves to 

improve the fit of the conditional dependence model compared to using observations alone.  

The complete infilled time series for the core gauges in Table 6.8 are shown in Appendix B.3.  

 

 

 

Figure 6.14 Diagram of the infilling process 
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Plots on the left show the observed peaks plotted against the equivalent simulated peaks. Plots on the 

right show the daily time series for the ten largest events at each site. Black lines are the observed data 

and grey lines are the equivalent infilled data for the same event. 

Figure 6.15 Example of infilled coastal event peaks and time series 
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6.3.6 Event simulation 

The observed data sets are extended using the five step simulation procedure in Section 

5.3.3.4. The R Package evd (Stephenson 2001) was used to simulate data from the specified 

GPD model. Event peaks were extracted from the simulated conditional data for lags of up to 

five days. The specification of the event lag is discussed in Section 6.3.6.1.  

For systems based analysis of risk it is also useful to consider events on a time series basis, for 

example extended durations of high water levels are more likely to result in defence breach 

than high water that only occurs for a limited time. The simulation methodology can be 

extended to include full time series by retaining all simulated times rather than only the event 

peak (Section 6.3.6.4.).   

In total 30000 events (including full event hydrographs and storm surge cycles) were simulated 

to provide a large event sample to support Monte Carlo sampling in the risk model as 

discussed in Sections 6.3.6.5 and 4.2.7.  

6.3.6.1 Specification of event lag 

The event lag used should be long enough to include peak probability of large events at 

different sites. Keef et al (2009b) (see Section 5.3.3.3) found that for most fluvial sites the 

probability of peak events occurring peaked for lags of up to three days. Their analysis is 

repeated in Figure 6.16 for the probability of pairs of fluvial-fluvial, fluvial-coastal, and coastal-

coastal sites used in this study for observed data exceeding the Q99 threshold.  

Coastal sites, on the same coastline, are shown to display no time lag between peak events. 

The three day lag used by Keef et al (2009b) is shown to be appropriate for most fluvial sites 

except for 39072 on the Thames which show a 20% chance of flood peaks occurring at more 

upstream sites up to five days before peak it peaks. This is due to the difference in catchment 

size between the gauges used in this study. The same effect is also evident on the Severn 

(54001). The temporal correlation between fluvial and coastal sites is very low.  

Increasing the lag time beyond five days would allow for the potential of including additional 

independent events, for example the events conditional on LIV indicate a previous extreme 

event seven days before the condition peak. Although the probabilities of peak events 

occurring at lags of more than five days remains around 20% for some sites, the peak 

probabilities all fall within five days, therefore five days has been taken as the maximum event 

lag in this study.  
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Figure 6.17 shows the same temporal dependence measure for less extreme events at the 

dependent site (here taken as the 95th quantile) which may still make a contribution to risk, 

especially over a wider area.  Figure 6.17 illustrates that although the dependence remains 

high for a longer period of time, and there is evidence of higher dependencies between fluvial 

and coastal sites, especially in North Wales, the five day lag is sufficient to incorporate these 

additional features.  

It should be noted that the lag of five days leads to an event window of ten days. This is longer 

than the insurance industry standard of seven days. In practice a large event is required to 

trigger an insurance claim window, and hence the seven days would normally include the 

largest event at the beginning and any subsequent losses on the following days. The 

probability of peak events occurring seven days after the main event peak is shown to be very 

low, therefore the five day lag includes all significant risk following the trigger event and can 

be assumed comparable to a seven day window.  
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Blue dotted lines are fluvial sites, black solid lines are coastal sites. The site which reaches a probability 

of 1 at lag 0 is the conditioning site plotted against itself. 

 

Figure 6.16 Temporal extreme dependence between gauge pairs (p=Q99) 
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Blue dotted lines are fluvial sites, black solid lines are coastal sites. The site which reaches a probability 

of 1 at lag 0 is the conditioning site plotted against itself. 

 

Figure 6.17 Temporal extreme dependence between gauge pairs (p=Q95) 

6.3.6.2 Event peak simulation 

Keef et al used the conditional dependence model to simulate flood peaks at multiple sites 

belonging to the same event (henceforth referred to as event peak simulation) by retaining the 

maximum value in Ysim.  Figure 6.18 and Figure 6.19 show the simulated event peaks compared 

to the observed data extracted from Ysim for lags of up to five days conditional for both coastal 

and fluvial gauges.  The figure demonstrates the ability of the conditional dependence model 

to represent a range of dependence characteristics in the extremes from a strong extremal 

association, for example 66001 and 66006 or IMM and CRO, through to the weak correlation 

of CRO with most fluvial gauges. The banding of simulated events at some sites, for example 

CRO and 54001 is due to the short record length restricting the number of Zs to resample from.  
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Black open circles are the observed de-clustered peaks, red filled circles are the simulated peaks, black 

dots are all observed data 

 

Figure 6.18 Comparison of simulated and observed peaks for 66001 and all core gauges 
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Black open circles are the observed de-clustered peaks, red filled circles are the simulated peaks, black 

dots are all observed data 

 

Figure 6.19 Comparison of simulated and observed peaks for CRO and all core gauges 

6.3.6.3 Rejection sampling 

Any set of simulated events should reflect the distribution of times when each gauge is 

extreme. Keef et al (2009a) found that to ensure the correct number of peak events at each 

site was maintained a form of rejection sampling was required in the simulation procedure. 

The proportion of times each conditioning gauge is the event maxima in the simulated data set 

should be equivalent to the true proportion of times each site experiences the event maxima. 

The event maximum is defined on the relative size of the event at each site compared to the 

threshold at each site on a standard scale. This can be estimated by simulating a large number 

of events conditional on each site in turn. The proportion of times that each gauge site is the 

event maxima will be representative of the true proportion of events (Keef et al. 2009a). Table 
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6.13 shows the results from a large sample using 2000 simulated events from each 

conditioning gauge.  

In addition, it is assumed that the value at the conditioning gauge is the maximum value over 

all sites (Keef et al. 2009a) therefore events are removed from the simulated sample where 

this criteria is not met. This criteria requires considerably redundancy in the simulated data set 

as for the event set of 24000 simulated using 2000 conditioning events at each site, only 28% 

of the simulated events were retained in the sample after rejection sampling.  

The final sample set is constructed such that the proportion of maxima events at each site 

(given in Table 6.13) was maintained, for example for a sample of 100, 10 events would be 

simulated conditional on 30004, nine events would be conditional on IMM and so forth.  

Table 6.13 Percentage of relative event maxima over 5 day lag at each site from a sample of 

24000 

 

6.3.6.4 Event time series simulation 

In an extension to the event peak simulation, the conditional dependence model can also be 

used to produce full event hydrographs and storm surge cycles by retaining all time lags in Ysim. 

At site Xi the flood peak is simulated from the GPD distribution at time t. The conditional time 

series is then simulated from the Heffernan and Tawn model for τ ≠ 0 condimonal on Xi, t=1. At 

sites Xj, t=+/-τ the conditional time series is simulated from Xi, t=1. A block of residuals is 

resampled for the Z values of length 2τ to maintain consistent characteristics within each event.  

Although this extension allows the model to be used to simulate time series, this should still be 

thought of as an event based simulation. The conditional dependence model is based on the 

assumption that at least one gauge in the network is extreme. The time series of flows at all 

other gauges can be simulated from this point however there is a limit at which the 

dependence between Xi, t=1 and Xj, t=+/-τ decays and can no longer be accurately simulated.  The 

method can therefore only model one peak event and cannot incorporate long term rises and 

falls in the hydrograph. In light of these concerns, time series simulation has been restricted to 

lags of up to five days in keeping with the event definition (Section 6.3.6.1).  Examples of 

simulated time series are shown in Figure 6.20 demonstrating the ability of the conditional 

dependence model to incorporate the temporal dependence in a range of different situations, 

for example a strongly dependent coastal case IMM | CRO, a weakly dependent coastal pair 

30004 IMM CRO 66001 66006 LIV LLA HOL 54034 54001 54006 39072 

9.8 8.9 7.3 3.2 11.1 11.7 10.7 11.2 8.2 2.9 6.8 8.3 
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HOL | IMM, a weakly dependent fluvial and coastal pair IMM | 66001, a slowly responding 

fluvial pair 54001 | 30004 and a fast responding fluvial pair 66006 | 66001.  

The scale at which time series simulation is possible from DMF data in the UK is limited as for 

many catchments daily data are not detailed enough to reflect the full event hydrograph 

(Robson and Reed 1999), this limitation is discussed in more detail in Chapter 7. However an 

additional advantage of simulating time series in this way is that the simulated flows on the 

anterior and posterior days can be used to estimate the hydrograph shape, which as discussed 

in Section 7.2.1 widens the choice of peak flow estimation methods available.  

a) IMM | CRO 
 

b) HOL | IMM c) IMM | 66001 
 

Black lines are a random sample 

of ten observed events. Grey 

lines are a random sample of 

ten simulated events. The event 

peak at the conditioning site 

occurs on event day zero d) 54001 | 30004 e) 66006 | 66001 
 

Figure 6.20 Example DMF and skew surge simulated time series compared to observed  

 

6.3.6.5 Sample size 

Monte Carlo sampling is used as the framework for risk analysis in this thesis. There is limited 

guidance in the literature on the recommended size of Monte Carlo sample. 

The sample size should be large enough so that the uncertainty associated with the Monte 

Carlo simulation is small, however the sample size that is needed to achieve this depends of 

the purpose of analysis. In their example demonstration of using the conditional dependence 

model for four river flow stations in Scotland, Keef et al (Keef et al. 2009c) use a Monte Carlo 

sample of 500 runs.  In Lamb et al’s (2010) outline of using the conditional dependence model 
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to assess the risk of flooding, events equivalent to a record length of 800 years are generated. 

At their stated average occurrence rate of 6.25 events per year, this is a sample of 5000 events. 

In Lamb et al’s proof of concept report for the Environment Agency Spatial Coherences of 

Flood Risk project (Lamb et al. 2009), a Monte Carlo sample of 10000 events is used to 

investigate flood fluvial risk in the NE region while the coastal example used 800 years of 

simulated record for the North Sea used to generate 122 samples of the three day sea level 

maxima. Other similar flood risk studies which have used Monte Carlo simulation include Apel 

et al (2009) who found that using a sample of 10
5
 synthetic flood events produced stable 

results up to return intervals of 10
4
 years.  

The Flood Estimation Handbook (CEH 1999) recommends a record length of five times the 

return period of interest for robust estimation of extremes. For a 0.1% AEP event this equates 

to 20000 simulated events (assuming an average occurrence rate of 4 per year). To allow for 

the rejection sampling procedure (Section 6.3.6.3), 6500 conditioning events were simulated 

conditional on each of the 12 core gauges. 30000 conditioning events were retained in the 

final sample set. This sample size is equivalent to those used previously in the model by Keef 

and Lamb et al (Lamb, Keef et al. 2009; Keef, Lamb et al. 2009a; Keef, Svensson et al. 2009b; 

Keef et al. 2009c) but is much smaller than that used by Apel et al (2009) in their risk based 

study.  

The computational demands of the inundation and breaching model are greater than the 

conditional dependence model. Therefore a large set of extreme events can be generated 

which is sampled from in the later stages of the system risk model.  

6.3.7 Contribution of simulation procedure to uncertainty 

Uncertainty in the simulated events set stems from two main sources; limitations on the 

observed data quality and length, and the assumptions embodied in the statistical model. A 

brief summary of the contribution of these two components to statistical modelling 

uncertainty is provided here. A systems based risk model of this type incorporates multiple 

sources of uncertainty throughout the system. The relative contribution to uncertainty in flood 

risk estimation from the statistical model is discussed in Section 9.4.  

6.3.7.1 Data driven uncertainties 

A trade-off is required between using only high quality long gauged data series and the 

requirement to use gauges near to the sites of interest. Using better quality data sets located 

further away from the receptors may reduce uncertainty in the statistical model but will lead 
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to increased uncertainties in the estimation of peak events at the sites of interest (see Section 

7.2).  

Short record lengths present problems for all extreme value analysis, in particular for multi-site 

analysis long concurrent records are required. Potential uncertainties from using short record 

lengths to fit the GPDs have been minimised by extending the record length to include longer 

data sets at individual gauges which are not possible to use in the concurrent data set.  

The data quality at all sites was reviewed prior to inclusion in the statistical model (See Section 

6.2.2). Most of the fluvial gauges in this study are part of the NRFA standard DMF data set 

(CEH 2009) which includes quality checked long records deemed by CEH to be suitable for use 

in flow analysis.  

Aside from record length, the biggest contributor to data driven uncertainty is the missing data. 

In order to make maximum use of all available data and hence reduce uncertainties from short 

record lengths, missing data in this study has been infilled using the methodology outlined in 

Section 6.3.5.1. The missing data methodology produced realist values for data gaps but as 

shown in Figure 6.15 is not able to accurately predict observed events. For fluvial sites the 

proportion of missing events is low (see Table 6.12) and therefore the contribution to 

uncertainty from infilling is low compared to the additional benefits from increasing the 

available concurrent record length. For coastal events however the amount of missing data is 

up to 50% at LIV and LLA. The model was fitted with and without infilled data and the root 

mean squared errors (RMSE) between the 1001 observed event peaks and equivalent 

simulated events peaks calculated (Table 6.14). As illustrated in Figure 6.21 there is no 

noticeable difference in the simulated events using infilled and non-infilled data other than 

that the infilled data enables the generation of a larger number of events due to the increase 

data enabling the model to be fitted to more gauge pairs. Whilst some variability is expected 

due to the random sampling of z values, the RMSE (Table 6.14) showed that the model fit is 

the same or improved by increasing the concurrent record length through infilling.   
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Blue circles show simulated events from infilled data.  

Black diamonds show simulated events from observed data only 

 

Figure 6.21 Comparison of simulated event peaks using infilled and non-infilled data 

 

Table 6.14 RMSE of peak events simulated from conditional dependence model using infilled 

and observed data 

 30004 IMM CRO 66001 66006 LIV 

Observed data only 3.90 4.00 3.92 3.97 4.29 4.53 

Including infilled data 2.34 4.00 1.85 3.97 2.33 4.53 
 

 LLA HOL 54034 54001 54006 39072 

Observed data only 4.71 4.34 4.12 3.86 4.18 3.20 

Including infilled data 2.15 4.30 2.33 3.86 2.00 3.17 

 

6.3.7.2 Modelling assumptions 

A statistical model is one of many possible representations of reality. Here the conditional 

dependence model is assumed to provide a robust representation of the dependence between 

sites during extreme events and the GPD model a suitable representation of the marginal 

characteristic at each gauge.  

The GPD model is shown to have a good fit to the observed data within the observation 

domain and is known to be a suitable model for the representation of environmental extremes 

(as discussed in Section 5.3). Table 6.10 provides a quantification of the standard error from 
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the GPD parameter estimation. The plots in Appendix B.2 indicate that there are wide 

uncertainty bands when using the fitted distribution for large return periods. This is standard 

for all extreme models due to a lack of data in the extremes.  

The identification of thresholds, de-clustering run time and event duration, add a subjective 

element to the statistical model. In this case the suitability of the threshold was checked for 

each site and found to provide a stable estimate of the GPD parameters (See plots in Appendix 

A.6.3) and the run time was carefully selected to represent the physical characteristics of the 

observed events (See Section 6.3.3).   

The use of the conditional dependence model to represent fluvial and coastal extremes is well 

documented in the literature and can therefore be assumed to be a suitable model for use in 

this study. In Figure 6.18 to Figure 6.20 it is shown that the conditional dependence model is 

able to represent the full range of dependence characteristics across the sites of interest. Table 

6.14 shows the RMSE of peak events simulated conditional on all 1001 independent extreme 

events in the observed data series at the core gauges. Some variability is expected between 

the observations and the simulated values at each site due to the random sampling of the 

residual term however in general the dependence model is found to be a suitable model 

choice. The use of the model in previous high profile studies into dependences in extreme 

events in the UK also adds credibility to its use here.  

6.4 Spatial and temporal dependences in simulated e xtreme events 

The use of the conditional dependence model to simulate a large number of extreme events 

allows for better analysis of the dependence structure between sites by increasing the record 

length and allowing consideration of a wide range of events and extension to events more 

extreme than those available in the observed time series. The final section of this chapter 

reviews the spatial and temporal dependence structures seen in the simulated event set.  

All gauged pairs displayed positive extremal association (with 0<a<1 or b>0), supporting the 

assumption by Keef et al (2009a) that in most flood risk applications it is suitable to use a 

simplified version of the Heffernan and Tawn (2004) conditional dependence model with 

c=d=0 (see Section 5.3.3.1 for further details).  

The spatial dependence between individual gauges can be investigated by applying Equation 

5.31 to the simulated event peak data as shown in Figure 6.22 conditional on three example 

gauges, 54001 on the Severn, 66001 on the Clwyd and the tide gauge at Holyhead (which are 

shown as black triangles). These sites were selected as they demonstrate some interesting 

spatial dependence characteristics.  The threshold at the conditional site is varied to show the 
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changing dependency patterns as events get more extreme. Equivalent plots for the core 

gauges are included in Appendix B.4.   

The results for 54001 show that a strong spatial dependence is maintained for events which 

experience their largest peak at 54001, even for the most extreme events. This is due to the 

large scale nature of flood events that affect the River Severn, and, in the case of the fluvial 

gauges in North Wales, is a feature of the close spatial proximity between the catchment 

headwaters. There is also a moderate dependence between fluvial floods on the Severn and 

extreme coastal events in North Wales which suggests that flood risk on the Severn can be 

driven by large scale weather systems which may also contain a coastal component.  

In contrast 66001 is located in a smaller catchment and as such the spatial dependence 

between 66001 and other gauges in the network is low, except for the neighbouring gauge 

66006 on the River Elwy. What is interesting is that the spatial dependence between peak 

events occurring at site 66001 and the nearby coastal gauges at Holyhead, Llandudno and 

Liverpool is higher than the dependence between peak coastal events (shown here at 

Holyhead) and associated fluvial floods at 66001. This indicates that if a fluvial even occurs in 

North Wales it is more likely to occur within an event that also results in coastal flooding than 

a large coastal event which is more likely to occur independently.  

Named conditioning gauge (u) is marked with a solid black triangle 
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Named conditioning gauge (u) is marked with a solid black triangle 

 

Figure 6.22 Spatial conditional dependency maps: probability of y > u | x > Q99 

 

The second more general summary measure that can be used is the expected proportion of 

gauges in Y over a given threshold given that x > u (Equation 5.32). Plotting this data 

graphically (Figure 6.23) allows identification of areas with high spatial dependence between 

extreme events. The most extreme events are shown to be very localised, with only 54001 on 
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the Severn and 66001 in North Wales showing an expected proportion of more than 0.4 other 

gauges likely to also exceed the Q99 level. For less extreme dependent events, at the Q95 and 

Q90, more spatial dependence is evident. The coastal gauges are shown to have a lower spatial 

dependence than the fluvial gauges, although this is possibly a result of the network 

architecture. 

 

Figure 6.23 Spatial conditional dependency maps: expected proportion of gauges in 

Y > u | X > Q99 
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The results shown in Figure 6.23 are slightly skewed because there is an uneven spread of 

gauges across the study area, therefore in most cases, in locations where the density of gauges 

is higher, the spatial dependence structure will appear stronger. Since coastal gauges are 

shown in Figure 6.22 to be more correlated with other coastal gauges, having less coastal 

gauges in the network will also make the dependence between coastal gauges appear lower. 

To overcome these problems the network was split into subsets and the analysis repeated. 

For fluvial and coastal differentiation this can be achieved by separating the calculation into 

the proportion of fluvial gauges in Y and the proportion of coastal gauges in Y which are above 

the threshold for events at any given conditioning gauges as shown in Figure 6.24. This 

reaffirms the observation that the spatial dependence is strongest in North Wales where 

extreme events at both the fluvial and coastal gauges are shown to have a strong relationship 

with other coastal gauges. In general it is shown that the dependence between pairs of coastal 

gauges is stronger than pairs of fluvial gauges. This is expected due to the additional variation 

in fluvial events caused by catchment processes.  Separating the network in this way still does 

not entirely remove the artefact of the network structure as the spatial dependence on the 

East Coast is shown to be lower than in North Wales but there are three nearby gauges in 

North Wales and on the East Coast there are two gauges located further apart. This is a 

limitation of using a sparse gauges network and should be born in mind for all similar analysis 

of this type.  

  

 

Figure 6.24 Spatial conditional dependency maps: expected proportion of gauges in 

Y > Q99 | X > Q99 by gauge type 
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For the clusters the calculation is more difficult due variations in the number of gauges in each 

cluster. Therefore an alternative measure is used which calculates the number of clusters with 

gauges > u for each conditioning gauge. The results are shown in Figure 6.25 and Figure 6.26 

for dependent events above the Q95 and Q99 threshold. The plots should be interpreted as 

follows; for a conditioning extreme event at site 39072 on the Thames, three clusters are 

expected to have 50-99% of their associated gauges experience an event peak > Q95, whereas 

at the Q99 level this drops to only one cluster.  

In all cases at least one other gauge in the same cluster as the conditioning gauge experiences 

an extreme event. This shows that within the clusters there is a strong dependence structure. 

There is a significant fall in dependence between the Q95 and Q99 threshold, this is most 

evident in the bottom left plot in Figure 6.25 and Figure 6.26. Only the fluvial sites 54001, 

39072, and 66001 maintain a weak dependence across clusters at the Q99 level (as discussed 

in reference to Figure 6.22).  

For details of which clusters contribute to the expected number of clusters with gauges > u 

analysis of the probability plots shown in Figure 6.22 and Appendix 6.6 is required. For 

example  39072 is shown to have a strong dependence with sites in the Severn cluster so this is 

likely to be the cluster that experiences 50-99% of its associated gauges > Q99 threshold for a 

conditioning event at site 39072. Again this cluster based measure does not totally remove the 

influence of the network structure as the Thames cluster can only have 0% or 100% of its 

gauges experience an extreme event.   

The gauges used in this study are restricted to the risk clusters of interest. For consideration of 

more general spatial dependence characteristic of extreme fluvial events in the UK using this 

method readers are directed to Keef (2006) and Keef et al. (2009b). As summarised in Section 

5.2.2. 
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Figure 6.25 Spatial conditional dependency maps: expected number of clusters with 

gauges > Q95 | X > Q99 
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Figure 6.26 Spatial conditional dependency maps: expected number of clusters with 

gauges > Q99 | X > Q99 
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6.4.1 Summary of dependence structures in each of the risk clusters 

6.4.1.1 East Coast 

Although known to be vulnerable to extreme coastal events, the correlation between the East 

Coast cluster and other gauges is low. For Catlin this is a positive result as it suggests that they 

would be unlikely to sustain a large loss on the East Coast at the same time as losses from 

elsewhere in the country. However the dependence between Immingham and Cromer, even 

though the distance along the coastline between them is 465km, is relatively strong. This is 

indicative of the vulnerability of the whole coastline to storm surge events travelling through 

the North Sea.  

6.4.1.2 North Wales 

The gauges in North Wales demonstrated the strongest dependence structures between fluvial 

and coastal events and across large spatial scales with the other clusters. The fluvial-coastal 

dependence was shown to be strongest for extreme fluvial events which are likely to also have 

a strong coastal component. This presents a particular concern for flood risk in the area due to 

the risk of access routes along the narrow coastal plains and steep river valleys being flooded 

simultaneously.  

The close proximity between the headwaters of the River Severn and the Rivers Elwy and 

Clwyd mean the dependence between fluvial events in North Wales and the Severn is high. 

This could result in large losses distributed over a large area for Catlin if an extreme event was 

to affect these two correlated areas.  

6.4.1.3 Severn 

As discussed above, extreme events in the Severn cluster show close similarities to events 

experienced in North Wales. Events on the Severn itself are also shown to be correlated with 

events on the Thames.  

Within the Severn cluster, although the gauges are located in different catchments with 

different response characteristics, the probability of all three gauges experiencing the most 

extreme event type (u > Q99) within a five day event lag is moderate (>50% ). This is a concern 

as the many of the caravan sites in the area are located around the confluence of the three 

rivers.  

6.4.1.4 Thames 

Only one gauge was included in the Thames cluster due to the lack of suitable located reliable 

gauges (see Section 6.2.2.4). This made it difficult to identify large scale dependence structures 
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due to the influence of the network architecture meaning that spatial dependences appeared 

lower in the Thames as there were fewer nearby gauges. Evidence of dependence with the 

River Severn was seen as both rivers are large, slowly responding catchments. The temporal 

dependence for the Thames is also high with events staying high for long periods of time. This 

is a significant concern as longer duration floods are likely to cause more damage.  

6.5 Chapter conclusions 

This chapter has detailed the development of the statistical method to provide the underlying 

event simulation for the sources component of the systems model. The available data were 

reviewed in Section 6.2 and a suitable gauged network corresponding to the risk clusters 

selected. 

The conditional dependence model introduced in Section 5.3.3 was applied to the selected 

gauged data. The adaptation of the model for use in this thesis was discussed including 

modification of the de-clustering method used by Keef et al (2009a) to use runs de-clustering, 

which was found in Section 6.3.3 to be more suited for use with naturally varying 

environmental data. Consideration was also given in Section 6.3.5.1 to dealing with the 

requirement for concurrent data across all gauges in the network and a simplification of the 

infilling methodology proposed by Keef (2006) was presented which is more accessible to the 

non-statistically trained end user. In Section 6.3.6.4 the use of the dependence model to 

simulate time series of DMF and skew surge over the full duration of the extreme event was 

presented. This is an extension to previous applications which have used the conditional 

dependence model for event peaks over a given event time frame. 

The extreme event set for use in the systems risk model was developed in Sections 6.3.4 to 

6.3.6, including consideration of rejection sampling and time series simulation. These events 

will be processed further in Chapter 7 to develop a set of peak water levels for use in the 

inundation model. Consideration of potential uncertainties in the statistical model was made 

in Section 6.3.7. It is concluded that although uncertainty is inherent in any form of statistical 

model the conditional dependence model provides a robust means of simulating a variety of 

dependence conditions between fluvial and coastal sites. The greatest source of uncertainty, 

common to all statistical extreme analysis, is the lack of data, which is particularly important in 

this case as concurrent records are required across all gauges in the network. Section 6.3.7.1 

illustrated that although some stations experience considerable periods of missing data during 

the observation period, the infilling methodology proposed is able to reduce the modelling 

error compared to using observed data alone. Uncertainty could be reduced in the future by 

repeating the analysis with longer record lengths, in particular for the coastal sites.  
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Finally in Section 6.4 the spatial and temporal dependencies between the selected gauges in 

the risk clusters were reviewed highlighting many of the trends in extremes identified by 

previous studies (see Chapter 5) including the localised nature of the most extreme events. 

Findings of particular interest to this study were highlighted in Section 6.4.1 and include the 

dependence between fluvial and coastal events in North Wales, large scale spatial 

dependencies between North Wales, the Severn and the Thames regions and the relative 

independence of events on the East Coast.  

It has been shown the structure of the gauged network has a strong effect on the visible 

spatial dependence structures. This should be born in mind by anyone designing future studies 

of this type and highlights the importance of maintaining a high quality data set of extremes 

across the UK to ensure data are available at locations of interest in future studies.  
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7 Statistical and physical modelling of water level 

7.1 Extreme events at the receptors 

The processes outlined in Chapters 5 and 6 simulate daily mean flows for fluvial gauges and 

skew surge for coastal gauges. This provides a means of representing the extremeness of an 

event but it does not reflect the full physical components of the event at the receptors. 

Additional transformation and modelling steps are required to represent the event at the sites 

of interest rather than the gauging station and to incorporate the full temporal dimensions of 

the event rather than just the peak flow or skew surge. 

For fluvial models this includes interpolation between gauges to estimate the peak DMF at the 

sites of interest and converting the simulated DMF into a peak flow and hydrograph. The 

processes for doing this are discussed in Section 7.2.  For coastal sites, details of the tide and 

wave height are required to represent the total water level impacting on the flood defences. 

The variation of the tide, surge and wave components throughout the event also needs to be 

captured as well as interpolation between gauges to represent the conditions at the sites of 

interest. The simulation of the multiple components of coastal water levels is discussed in 

Section 7.3.  

Throughout this chapter the FEH physical catchment descriptors (PCDs) are used as specified in 

the FEH CD-ROM V3 (CEH 2009). A list of the PCD descriptions is provided in Table 7.1.  

 

Table 7.1 Definition of FEH Physical Catchment Descriptors 

Descriptor Definition 

AREA Catchment drainage area (km
2
) 

BFIHOST Base Flow Index derived from the HOST soil classification 

DPLBAR Mean of distances between each node on IHDTM grid and the catchment outlet 

(km), Characterises catchment size and configuration 

FARL Index of flood attenuation attributable to reservoirs and lakes (fraction) 

FPEXT Flood plain extent 

PROPWET Proportion of time when Soil Moisture Deficit was equal to, or below, 6mm 

during 1961-90 

SAAR Average annual rainfall in the standard period (1961-90) (mm) 

URBEXT2000 Extent of urban and suburban land cover in 2000 (fraction) 
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7.2 Fluvial water levels 

7.2.1 Estimating peak flow from DMF 

To use DMF for flood risk assessment it is essential to understand the relationship between 

DMF and flood peak. In all cases the flood peak will be larger than the DMF however the 

difference depends on the catchment response. For rapidly responding catchments the ratio 

between DMF and flood peak is large. This reduces as the catchment response slows down 

since the flood hydrograph makes a greater contribution to the DMF as shown in Figure 7.1.  In 

most catchments there is a strong relationship between DMF and peak flow as shown in  

Figure 7.2 for 145 gauges across the UK (see Section 7.2.1.2). Hence it is possible to model this 

relationship.  

Figure 7.1 Effect of hydrograph shape on 

POT:DMF ratio 

 

 

Figure 7.2 Relationship between DMF and 

POT for UK gauges 

 

7.2.1.1 Existing DMF to peak flow methods 

The UK is relatively unique in that there is good temporal and spatial coverage of continuous 

flow gauges. In other countries often the only readily available dataset is DMF data therefore 

research has been carried out into establishing relationships between DMF and flood peaks.  

Fill and Steiner (2003) provide a comprehensive review of the existing methods.  There are two 

main approaches to the problem, either establishing a relationship based on PCDs such as area, 

or using the shape of the hydrograph from the posterior and anterior days to estimate the 

peak flow. Several methods using both approaches are outlined below. There is no evidence to 

suggest that any of these methods have been tested in the UK.  
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Methods based on catchment characteristics 

The oldest method was developed by Fuller (1914). Working in the USA he proposed that the 

peak flow (Qmax) could be estimated from the DMF (Q) based on catchment area (A) using 

Equation 7.1. 

&½¨¾ = &(1 + 2.66�V$.=) 7.1 

 

His original sample consisted of a broad range of catchments ranging in size from 3.06 km2 to 

151,592 km2. The strength and ease of applicability of his method is evident in its take up by 

other hydrologists who have either used it in its original form or modified the coefficients for 

individual hydrological and climatic regions. A list of the variations is provided by Fill and 

Steiner (2003), no applications are documented in the UK. 

A further modification is to use additional catchment characteristics. One example is that of 

Silva and Tucci (1998), working in Brazil, who propose a regression based model where the 

ratio of DMF to peak flow (C) is based on catchment area (A), length of river (L), slope of river 

(D) and time of concentration (T); 

1 = ��©	�Í�Î3Ï 7.2 

 

Where a,b,c,d and e are the regression coefficients. Their study is of limited use in this instance 

since the paper is written in Portuguese, the data set used is not strictly a DMF data set and 

their results failed to provide evidence of a definitive relationship. However the concept of 

using a regression model based on catchment characteristics to incorporate more variability 

between catchments than area alone is a valid one and is explored further below.  

Methods based on hydrograph shape 

The second approach is based on the theory that the peak flow can be estimated using the 

ratio of maximum DMF and DMF on the posterior and anterior days, an idea originally 

pioneered by Langbein in 1944 and Linsley et al in 1949 (cit. Fill and Steiner 2003). A more 

recent application is that of Sangal (1983) who, assuming a triangular hydrograph shape from 

the posterior (Q1) and anterior (Q3) days flows around the maximum DMF (Q2), estimated peak 

flow as;  

&½¨¾ =	4&< − &: −	&=2  
7.3 

 

Sangal originally developed this method in Canada and it has since been applied in Brazil. One 

limitation of this approach is that it assumes the flood events lasts for more than 24 hours. For 
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many small catchments this is unlikely to be the case and results have shown that for 

catchments of less than 1000 km
2
 the method produces peak flows of up to 50% higher than 

observed values (Fill and Steiner 2003). 

Fill and Steiner (2003) modified Sangal’s method to incorporate more detail about the 

hydrograph shape for individual catchments using; 

&½¨¾ =	0.8&< + 	0.25(&: + &=)�  
7.4 

 

where k is a correction factor based on the hydrograph shape factor, x and Ò is the error term . 

� = 	&: +	&=2&<  
 

7.5 

 

� = 0.9123� + 0.3620 + 	Ò 7.6 

 

In their case study in Brazil this was shown to provide significant improvements to Sangal’s 

method however it is computationally more demanding as a regression analysis is required to 

establish k for each catchment.  

7.2.1.2 Development of method for use in the UK 

The three established methods were tested for UK data and compared to the observed flood 

peaks. The results are shown in Table 7.2. The data set used to test the applicability of DMF to 

flood peaks methodologies is comprised of 217 standard DMF gauges from CEH (CEH 2009) 

and POT data from the Environment Agency HiFlows-UK dataset (Environment Agency 2010a). 

The data were checked for suitability and separated into a calibration and validation set 

comprising of 145 gauges with both DMF and POT data, as detailed in Appendix C. The results 

show that all three methods perform reasonably well for UK data across the whole calibration 

data set.  

Table 7.2 Goodness of fit of published DMF to peak flow conversion methods for UK data 

Method Nash-Sutcliffe  RMSE Bias 

Fuller 0.92 0.36 -0.01 

Sangal 0.92 0.32 -0.07 

Fill & Steiner 0.86 0.39 -0.24 

 

Following initial testing of the methods, further optimisation of the coefficients was carried 

out for UK data. A detailed description of the process is provided in Appendix C. The results 



Statistical and physical modelling of water level 7 

 

181 

showed that sensible improvements could be made by optimising the parameters, for example 

the optimised Sangal coefficients place more importance on the peak DMF than the anterior 

and posterior days. This corresponds to relatively short UK river systems having a peakier flood 

response than the larger basins of Canada and Brazil where this method has previously been 

applied. There is a small improvement in the fit between observed and simulated flood peaks 

using the optimised method, except for the Fuller method which shows a decrease in the 

efficiency measures. The lower efficiency for the validation dataset is largely due to a weaker 

correlation between DMF and flood peak at the validation gauges compared to the calibration 

data set as illustrated in Appendix C.3.  

Table 7.3 Goodness of fit of optimised DMF to peak flow conversion methods for UK data 

Method Nash-Sutcliffe  RMSE Bias 

 Cal. Val. Cal. Val. Cal. Val. 

Fuller 0.93 0.89 0.56 0.00 -0.22 -0.24 

Sangal 0.92 0.90 0.32 0.45 0.10 0.09 

Fill & Steiner 

(original with UK k) 
0.89 0.86 0.34 0.48 -0.01 -0.01 

Fill & Steiner 

(optimised with no k) 
0.92 0.90 0.32 0.44 0.12 0.12 

 

The final approach tested was to develop a multiple regression model linking the ratio 

between DMF and peak flow (C) to PCDs. The regression model was built by systematically 

testing combinations of the FEH PCDs. Consideration was paid to the complexities of 

developing a hydrological regression model as discussed in the FEH vol. 3 (Robson and Reed 

1999) and the potential for cross correlations between the variables leading to model 

equifinality.  

The proposed regression model is given in Equation 7.7 and the model efficiency results in 

Table 7.4. Across the full data set the regression model performs less well than any of the 

other models tested except for the un-optimised Fill and Steiner method. However when the 

results are viewed for individual catchments the regression model is comparable the other 

methods except for three outlying catchments (Figure 7.3).   

The regression analysis identified a possible reason for the poor performance of the Fuller 

simple area method.  DPLBAR was found to be a more useful descriptor than AREA as it 

incorporates information about both the catchment area and its shape and stream network 

configuration which is important in determining the shape of the hydrograph.  
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1 = 0.00054��� − 1.6317Õd�h243 + 5.1176d���
+ 4.6215��Õ�U3 − 0.0058���Õ��	 

 

7.7 

 

Table 7.4 Goodness of fit of DMF to flood peak multiple regression model 

 Nash-Sutcliffe  RMSE Bias 

 Cal. Val. Cal. Val. Cal. Val. 

Regression model 0.89 0.86 0.38 0.58 -0.11 -0.16 

 

 

 

Blue ◊ = regression Grey 0 = Fuller, Grey X = Sangal, Grey ∆ = Fill and Steiner 
 

Figure 7.3 Goodness of fit of DMF: flood peak multiple regression model compared to other 

methods 

 

7.2.1.3 Proposed DMF to peak flow conversion method for use in the UK 

This section has presented four possible methods of transforming DMF data into flood peaks. 

Overall the optimised Sangal method (as given in Equation 7.8) produces the smallest errors 

between modelled and simulated data. This method is therefore used to transform the 

simulated DMF into flood peaks. An additional advantage of the Sangal approach is that it 

preserves the simulated temporal dependence structure from the conditional dependence 

model by estimating a peak flow dependent on the DMF at the posterior and anterior days.  

&½¨¾ =	4.2&< − 0.9&: − 	0.9&=2.3  
 

7.8 

 

The methodologies developed in this chapter use POT data as the source of peak daily flow. 

The relationship between DMF and peak daily flow for less extreme events is likely to be 

different due to the flatter shape of the daily hydrograph, however, given that flooding is 

unlikely for events that do not exceed the threshold, Equation 7.8 is assumed to hold for the 

full range of DMFs. The methods have been tested using a large scale UK dataset and therefore 

the results are applicable for any UK location. 
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7.2.2 Interpolating flow to ungauged sites 

Due to difficulties in finding long reliable gauged records to fit the conditional dependence 

model to (See Chapter 6), the simulated flows are not necessarily located at the sites of 

interest.  Therefore when using the model to simulate inflows for flood risk assessments an 

additional step is required to interpolate flows from the gauging stations to the sites of 

interest, henceforth referred to as the subject sites.  

Flow estimation at ungauged sites is an on-going research area in hydrology (Sivapalan et al. 

2003). Ideally the subject site and donor gauging station would be located nearby in nested 

catchments with the same water flowing through them. In this case flows at the subject site 

can be interpolated by using a simple rescaling method, such as by area. In some cases the 

subject site can be located on an ungauged tributary or in an adjacent catchment which makes 

the interpolation to the ungauged subject site more difficult. 

The interpolation methods presented in this chapter are based on the premise that by applying 

some form of transfer function (fn) the simulated flow at the gauging station (QA) can be used 

to estimate the corresponding flow at the subject site (QS), as in Equation 7.9.  

&Ö = '�	&× 7.9 

In most cases research has focused on estimation of particular characteristics of the flow 

regime for example QMED and flood frequency curves in the FEH, and flow duration curves in 

the low flows literature. Keef et al (2009a) use a statistically based standardisation method 

using the Gumbel distribution. The decision by Keef et al to use a statistically based 

standardisation method was partly motivated by the lack of clear evidence of a strong 

correlation between physical catchment descriptors and the spatial dependence properties of 

extreme flows (Keef et al. 2009b). Secondly, physically based methods require more data to be 

collected about the subject catchments and can be more computationally expensive, for 

example if pooling groups need to be derived. Therefore a statistically based method offers a 

more practical alternative for the large scale study undertaken by Keef et al. In comparison the 

site based approach taken in this PhD offers more scope for including detail at the sites of 

interest.  

An alternative solution identified by Keef et al (2009a), was to introduce covariates into the 

conditional dependence model to enable it to be used in completely ungauged catchments. 

This is very computationally demanding and it is difficult to define quantitative relationships 

between catchment descriptors and the parameter of the dependence model. Keef et al 

therefore reject this approach, and no further consideration of it is given in this project. 
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7.2.2.1 Existing interpolation methods 

Scale by catchment area 

The simplest method of simulating time series data is to scale by area using the standard 

format given by the World Meteorological Organisation (2008); 

&Ö = '� ��*�×�&× 
7.10 

Where As and AA are the areas of the subject and donor catchments accordingly. For simple 

area scaling the fn function is normally set to 1 although other factors could be included for 

example the ratio of average annual rainfall is sometimes used to incorporate the influence of 

differences in rainfall (World Meteorological Organisation 2008).  

Although this method is simple to apply, it is limited by its simplicity as flood flows are likely to 

be influenced by multiple interacting catchment characteristics. However for nearby 

connected sites an area scaling method offers a robust and efficient means of transferring flow 

estimates.   

Scale by QMED 

An alternative to using the flow duration curve approach is to standardise by QMED; 

&Ö	 = &Ø��Ö � &×&Ø��×� 
7.11 

QMED can be estimated at the analogue site using gauged POT or AMAX data and at the 

subject site using catchment descriptors as outlined in the FEH (Robson and Reed 1999; 

Kjeldsen et al 2008). Using QMED rather than catchment area allows for inclusion of some 

local influence through the local estimate of QMED. However QMED is a stationary measure of 

the flow response in the target catchment and does not incorporate the potential variation in 

the ratio of flood flows to QMED between the target and subject sites.  

Equipercentile method from growth curves 

Within the low flows literature the equipercentile method is often used as a robust method of 

infilling gaps in time series data (for example see Harvey et al. 2010).  Flow duration curves are 

established for the gauged analogue site using the DMF record, and for the ungauged site 

using the region of influence approach within the Low Flows software (Holmes et al. 2002). 

The time series at the ungauged location can then be simulated as shown in Figure 7.4. 
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The advantage of this method over the simple area based method is that the dependence 

characteristics of the flood event are maintained by sampling the excedance probability from 

the analogue catchment while the actual DMF includes the influence of the local catchment 

through the local flow duration curve.  

The same principles can be applied using Flood Growth Curves estimated in the Winfap-FEH 

software as described in the Flood Estimation Handbook Vol. 3 (Robson and Reed 1999). The 

use of this method is computationally demanding as the simulated DMFs must be transformed 

to peak flows prior to interpolating to the ungauged site, and secondly pooling groups need to 

be established for the subject and analogue sites (of which there could be several for each 

subject site). This is particularly onerous when the subject site is located on the same river as 

the analogue sites, in which case it may be more appropriate to use a simple area or QMED 

scaling method. Although it is acknowledged that the equipercentile growth curve 

interpolation method could be particularly useful for time series interpolation, the difficulties 

in testing the method in the absence of a concurrent series of peak flow data meant it was not 

possible to test the method sufficiently for inclusion in this project.  

 

Source: World Meterological Organisation (2008, p86) 

Figure 7.4 Illustration of the equipercentile technique to simulate time series at ungauged 

site 

 

Catchment centroids 

Keef et al’s (2009b) investigation into the importance of catchment descriptors on the spatial 

dependence of flow identified the distance between centroids as the most important factor. 

Recent work on updating the FEH procedures (Kjeldsen et al 2008) has also identified distance 
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between centroids to be a more important factor in the estimation of QMED from analogue 

stations than other catchment descriptors. The advantage of using distance between 

catchment centroids rather than between the sites is that more weight is given to nested 

catchments that adjacent ones.  

The weighted average of distance method used by Keef et al (2009a) is given in Equation 7.12. 

U =	∑ U���V:��Y:∑ ��V:��Y:  7.12 

Where di is the geographical distance between catchment centroids for site i and the site of 

interest X. And Xi is the DMF on the Gumbel scale at site i. 

Shared catchment area 

An alternative method trialled by Keef et al (2009a) was a shared catchment area method as 

shown in Equation 7.13 where the subject site flow is calculated from the upstream and 

downstream donor gauges. XUP and XDOWN are the DMFs on a Gumbel scale at the upstream 

and downstream stations respectively and AUP and ADOWN are the catchment areas.  

U = UAÙÚ� +	(UÛÜ −	UAÙÚ�) � �AÙÚ� − ��AÙÚ� −	�ÛÜ� 
7.13 

 

If there are multiple upstream gauges, AUP becomes the sum of all upstream catchment areas 

and XUP a weighted average of all upstream flows. 

UÛÜ =	� UÝ�Ý�ÛÜ
Þßà

ÝY:
 

7.14 

 

Initial testing by Keef et al (2009a) indicated that there was little difference in the performance 

of the catchment centroids and shared catchment area methods, however later application to 

the northeast of England suggested that the catchment centroids method preformed slightly 

better. In addition the catchment centroids method is preferable because it can be applied to 

any location whereas the shared catchment area method is dependent on the existence of a 

connected donor station upstream or downstream of the subject site. Only the catchment 

centroids method is considered further in this thesis.  

7.2.2.2 Selection of suitable donor and analogue gauges 

Prior to application of any of the above methods suitable donor sites need to be identified. 

Common criteria for doing this include consideration of distance between locations and 

catchment similarity (Kjeldsen et al. 2008; Keef  et al. 2009a). 
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The Flood Estimation handbook identifies suitable sites for inclusion into pooling groups based 

on catchment similarity. The PCDs used are AREA, SAAR and BFIHOST (see Table 7.1). As part of 

the update to the FEH method, Kjeldsen et al (2008) developed a new weighting method for 

selecting pooling group catchments (Equation 7.15) which removed BFIHOST, and added FARL 

and the new descriptor FPEXT. These two additional variables provide information on the 

flashiness of response based on storage in the catchment from both lakes and reservoirs and 

on the floodplain during extreme events.  

4�Ø�. =	
áâ
ââââ
âââã3.2 ä"������ −	"�����.1.28 å< + 0.5 ä"�4���� −	"�4���.0.7 å<

+0.1 �d���� − d���0.05 �< + 0.5 �d��U3� −	d��U3.0.04 �<	
 

7.15 

 

 

The distance measure, SDM, and the individual PCDs are considered as measures of catchment 

similarity. FARL and FPEXT are not included individually as they only provide information on a 

small factor of the overall catchment response. In addition, work by Ledingham (2011) 

identified that PROPWET can be a useful indicator of catchment response as it incorporates 

the significance of antecedent conditions on catchment response. Catchments with a high 

value of PROPWET are more likely to experience high flow events due to the inability of the 

soil to soak up additional rainfall.  

7.2.2.3 Testing of methods for interpolation to ungauged sites 

Potential interpolation methods were tested for use in this thesis using the dataset of 145 DMF 

gauges introduced in Section 7.2.1.2, however the selection of a suitable method was 

hampered by two problems. Firstly a continuous set of flood peak data was not practical for 

use in this study and converting to peak flows resulted in uncertainties in the dataset which 

varied from gauge to gauge. The interpolation methods were therefore only tested using the 

available DMF data rather than flood peaks. Secondly the spatial distribution of gauges in the 

sample dataset was large meaning when testing the methods using a jackknife approach, the 

distances between gauging stations were considerably larger than the distances between 

gauging station and subject site to which the method will ultimately be applied to.  

Three interpolation methods were investigated; scaling by catchment area, scaling by QMED 

and Keef et al’s catchment centroids method. As the interest is in peak flows, the data at each 

gauge was de-clustered as described in Section 6.3.3 and the peaks at the subject site used as 

a proxy to identify extreme events. It is acknowledged that when applying the method the 
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peak event will occur at the donor site, however this was the only way to identify a consistent 

set of event peaks for use across multiple donor sites. The Nash-Sutclifee coefficient, the RMSE, 

and the bias were calculated between the observed and simulated data at each gauge.  

Potential donor sites were identified by minimising the distance between centroids, AREA, 

SAAR, BFIHOST, PROPWET and SDM. To preserve the spatial dependence structure, potential 

donor sites selected from PCDs were restricted to within 100km of the subject site catchment 

centroid. For each criteria the closest, three closest and five closest gauges were identified. 

Where more than one donor site was used all sites were given equal weighting. Detailed 

results for the best method at each gauging station are given in Appendix C.7.  

Selecting donor sites by distance between catchment centroids provided the best fit in over 50% 

of cases. For donor sites selected by distance between catchment centroids, Figure 7.5 shows 

the number of gauges for which each tested interpolation method provided the best fit. The 

QMED criteria produced the best fit over the largest number of gauges. There is little change 

between the number of donor sites used however three sites provides a lower bias at more 

sites. For all donor site selection methods, interpolating by QMED also provides the best fit in 

over 50% of cases. 

 

 
Interpolation methods are listed as “search criteria_number of donor gauges_interpolation method” 

 

Figure 7.5 Number of gauges for which each tested ungauged site interpolation method 

provided the best fit with observed DMF 

 

The Nash-Sutcliffe efficiency test provides the most useful means of comparison as it is 

standardised across all gauges. In half of the gauges the best fitting interpolation method 
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produces Nash-Sutcliffe values less than one meaning that the interpolation method is worse 

than simply taking the mean value at the donor site. This is a concern as it suggests that none 

of the methods are suitable, however the dataset used to test the interpolation methods is 

sparse with the average distance between the nearest gauge pairs being 21km but ranging up 

to 74km.  In reality the gauges used in the conditional dependence model (as listed in Table 6.8) 

are located as near as possible to the sites of interest, therefore it is assumed that the 

interpolation methods will perform better than for the test dataset which is not sufficient to 

develop a methodology for interpolation to ungauged sites.  Whereas the AREA and QMED 

scaling method allows for inclusion of individual catchment properties in the estimation of 

flow at the ungauged sites the catchment centroids interpolation method uses only the 

distance between sites. This is potentially why it preforms poorly in this test case as the 

distances between gauges is large and therefore the gauges in the test dataset do not respond 

in similar way to the same event.  

Proposed interpolation to ungauged sites method 

In the absence of detailed dataset to develop a robust interpolation method for ungauged sites 

it is proposed to use the QMED scaling method. This method performed best for the test 

dataset and offers a good compromise between a simple approach and incorporating known 

characteristics of the flow response at the subject site through the use of QMED. The choice 

between number of donor sites to use is location specific. Where the model inflow point 

occurs on an ungauged tributary with multiple tributary confluence between the inflow point 

and the simulated gauging stations, up to three donor sites can be used to introduce natural 

variability into the results. Where the model inflow point is situated close to the simulated 

gauging station only one donor site will be used.  

QMED is estimated at the ungauged model inflow points from catchments descriptors and 

modified using the nearest donor gauges as recommended by Kjeldsen et al (2008). The QMED 

values for each of the model inflow points are given in Appendix C.8. 

7.2.3 Event Hydrographs 

A full hydrograph is required for hydraulic modelling. Although the conditional dependence 

model can be used to simulate event time series (See Section 6.3.6.4) the model is fitted to 

DMF data and, for most catchments in the UK, DMF is not detailed enough to represent the 

full event hydrograph (Robson and Reed 1999). 
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7.2.3.1 Single site event hydrographs 

A standard means of producing a flood hydrograph is to borrow a standard hydrograph shape 

from a rainfall-runoff methodology which creates a hydrograph from catchment descriptors 

based on time to peak (CEH 1999). The standard 1% AEP year hydrographs produced using the 

ReFH Rainfall-Runoff method (Kjeldsen 2007) at gauges 54001 and 66001 are shown in Figure 

7.6 and Figure 7.7. In particular at 66001, a small flashy catchment, the event hydrograph is 

shown to rise and fall within a 20 hour period, the details of which would not be captured in 

the daily data.  

An advantage of using a rainfall-runoff model to produce a flood event hydrograph is that the 

method can be applied at any location by extracting the PCDs from the FEH CD-ROM and does 

not require gauged data. The limitation of this approach for use in a systems based risk model 

is that it can only produce one standard hydrograph shape. In most cases flood events can 

occur from a variety of different scenarios. For floodplain inundation modelling the flood 

volume is particularly important as different event types are likely to have different volumes of 

flow.  

Figure 7.6 ReFH design hydrograph: 54001 

 

Figure 7.7 ReFH design hydrograph: 66001 

Apel et al (2004; 2006) and Vorogushyn (2009) present a method to synthesise standard 

hydrograph shapes using Wards Clustering which they then use to sample a range of realistic 

input hydrographs within a Monte Carlo framework. This method is attractive for use in a 

systems based model as it allows consideration of the full range of flood driving events, 

however when tested for use with the catchments included in this study it was found that the 

DMF data did not provide sufficient detail to capture flood events in the smaller catchments. 

Therefore the simple method of using standard hydrograph shapes from the ReFH-

Spreadsheet is used to provide input hydrographs for the hydraulic model (See Section 7.2.4). 

The hydrographs are scaled to match the peak flow estimated in Section 7.2.1. The Wards 
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Clustering method was found suitable for surge shapes and is described in more detail in 

Section 7.3.1. 

7.2.3.2 Multi-site event hydrographs 

Whilst the flood event itself may only last for several hours, the event based nature of the 

systems risk model requires consideration of the relative lags between sites to investigate the 

potential interactions around tributaries. The event time series simulation from the conditional 

dependence model allows incorporation of the relative timing of events at different tributaries.  

Simulated DMFs outside of the range of the ReFH hydrograph are scaled by the ratio between 

the simulated event peak DMF and the estimated peak flow. It is acknowledged that the ratio 

between DMF and flow at any point in time may not be the same as the ratio between DMF 

and the peak flow however this simplification is used here as it is assumed that lower flow 

events will not produce flooding. An example of the process is given in Section 7.2.5. 

The interface between the event hydrograph and the simulated DMFs shows a reduction in 

river flow immediately before and after the event. This is because the ReFH rainfall-runoff 

hydrograph assumes the river is at base flow before and after the event whereas in reality 

flows will depend on the antecedent conditions. Example simulated hydrographs for the 

Severn cluster are shown in Appendix C.8.  

7.2.4 Physical modelling of river levels 

1D hydraulic models have been used to route flow through the river sections of interest and to 

convert the simulated flood flows to water level.  Models were constructed using the hydraulic 

modelling software ISIS. Due to the combination of limited data availability for the purpose of 

this project and the requirement for fast, stable hydraulic modelling simplified model cross 

sections were generated from the available 2m LiDAR data. The available data for construction 

of the hydraulic models are listed in Table 7.5. 

Table 7.5 Available data for hydraulic river modelling 

Item Comments 

Existing hydraulic models An ISIS model of the River Severn exists but it is currently being updated 

by the Environment Agency and therefore not available for use. 

Short sections of existing river model were provided by the Environment 

Agency in North Wales however these did not fully cover the reaches of 

interest 

Cross section survey Not available – currently being re-surveyed by Environment Agency for the 

River Severn and no sections available for other areas 

Topographic data 2m LiDAR obtained from Environment Agency 

Map data Ordinance Survey 1:50,000 maps obtained from DigiMap 
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In the absence of cross section data simplified cross sections were estimated from LiDAR data 

assuming a standard trapezoidal channel shape as follows; 

1. Estimate river width - Cross sections were extracted from the LiDAR data and the left 

and right banks identified as the point with the largest change in height between 

adjacent points. This was then checked by eye when reviewing the data. 

2. Estimate bank full volume – at gauging stations this was available from the HiFlows-UK 

rating curves, at all other sections bankflow was assumed to be equivalent to QMED. 

QMED was estimated at the start and end point of each modelled reach and 

interpolated by distance for intermediary sections. 

3. Estimate channel shape – assuming a trapozodial shape with the top width set to the 

estimate river width, linear optimisation was used to establish the bed depth and 

channel width at the bed.  

 

The process is illustrated in Appendix C.8 for the River Severn model. Long section plots were 

checked to ensure the river profile was realistic with no sudden changes in bed height. In the 

simple model bridges and other structures were not included. Floodplains were modelled 

using storage cells connected to the main channel by spill sections. Further details of the 

inundation modelling are given in Section 7.4.  

7.2.5 Summary of fluvial flow simulation 

A summary of the end to end water level simulation method is shown in Figure 7.8. Due to the 

pre-processing requirements to calculate QMED at each gauging station and model inflow 

point, and to generate representative hydrographs for each model location, this methodology 

is only suitable for a relatively small number of model inflow points. This illustrates the benefit 

of using a nested model structure which enables this detailed physical basis to be embedded 

within the systems model without compromising the representation of large scale events. An 

illustration of the end to end process for fluvial modelling in the River Severn cluster is given in 

Appendix C.8.  

Given the uncertainty in interpolating to model inflow points due to the lack of suitable data to 

test the methodology, the simulated DMF are converted to peak flows at the gauging stations 

prior to interpolation. This prevents the propagation of additional uncertainties through the 

conversion method.  
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Grey boxes are calculated once for each site. Unshaded boxes are calculated for each event. 

Dotted lines have a temporal component. 

 

Figure 7.8 Summary of physically based fluvial event simulation method 

 

7.3 Coastal water levels 

The total water level during a storm is made up of three components, the surge and tide 

components which together provide the still water level, and an additional wave component. 

The combination of all three is essential for modelling the impact of storm events on defences. 

Each component is considered individually below including discussion of its temporal and 

spatial variation. Section 7.3.5.2 describes how the various components are combined to 

provide a realisation of the total water level for each simulated event.  

For ease of presentation most plots in this section refer to data on the Lincolnshire coast at 

Immingham (for tidal and surge data) and Dowsing (for wave data). Equivalent plots for other 
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gauges used in this project are provided in Appendix D.1. Where the data trends at other 

gauges are significantly different to Immingham and Dowsing they are discussed in the main 

text. 

7.3.1 Surge component 

The conditional dependence model is fitted to the skew surge at high tide and can be used to 

simulate a series of high tide skew surges (See Chapter 6).  

Since the skew surge is only defined once per tidal cycle additional data is required to 

represent the growth and decay of the surge. This could involve using the surge residuals at 

each time step; however these are known to falsely represent the magnitude of the surge at 

mid-cycle due to temporal offsetting of the tide and observed water level (See Section 5.2.1.2). 

A more representative method is to calculate the low water skew surge and interpolate 

between the high and low water level skew surge to generate the full surge shape. This is the 

approach taken by the EA Coastal Flood Boundary Conditions project (SC060065, McMillian et 

al. 2011a), however unlike McMillian et al no attempt has been made in this thesis to 

interpolate between high and low tides as an increase in data resolution is not required for the 

purpose of this study.  

McMillian et al (2011a, p126) reviewed surge profiles from around the UK and concluded that 

“skew surge profiles typically have one large surge peak lasting between 40 and 90 hours, and 

in some cases secondary peaks before and/or after the principle peak. In almost all cases and 

sites in the UK, the surge profiles also exhibit a fair amount of random, low magnitude (and 

less the 0.4mOD) noise before and after the primary peak.” The surge profiles at Immingham 

shown in Figure 7.9 and Figure 7.10 reflect this description although the largest surges at 

Immingham rarely last more than 24 hours.  There are some occasions where the low water 

skew surge at Immingham is higher than the high water skew surge. Although this will not 

increase water levels at low tide to a dangerous level, it is important to consider as it means 

that the water level may not drop immediately with the tide and could lead to longer duration 

floods.  
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Figure 7.9 Fifteen largest surges at 

Immingham: 1960 - 2010 

 

Figure 7.10 Normalised AMAX surges at 

Immingham: 1960 - 2010 

 

The EA Coastal Flood Boundaries project (McMillian et al. 2011a) is aimed at providing a clear 

and concise methodology for practitioners for considering coastal water levels. For this 

purpose they have defined one standard surge shape using the 15 highest observed surges per 

region of the coast. In this thesis there is more flexibly and a variety of curve shapes can be 

included to maintain the natural variability in the risk model.  

The approach used here is similar to the method used by Apel et al (2004; 2006) and 

Vorogushyn (2009) for fluvial hydrographs. The attraction of this method is that a series of 

different surge shapes are produced which are then sampled based on their occurrence 

probability. The method works by normalising the AMAX surge shapes (as shown in Figure 7.10) 

then using Wards algorithm (applied using code from Quick-R (2010) and the hclust 

hierarchical clustering method available from the R Stats package) to cluster the surge shapes 

based on minimising the distance between the centroids of each cluster and its member surge 

shapes. 

The cluster dendrogram produced by the algorithm is shown in Figure 7.11, the coloured boxes 

represent the groups the surge shapes are assigned to (each colour illustrates a different total 

number of groups) and the numbers represent the AMAX event reference number. The 

number of groups required was tested for surge shapes at Immingham.   

Figure 7.12 shows the average surge shapes produced by the method for different numbers of 

groups. Three distinct shapes can be identified;   
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1. A lagged skew surge event where the following low tide skew surge is higher than the 

high tide surge 

2. A rapidly rising surge where the preceding high tide has a very low skew surge 

3. A symmetrical surge shape with slightly increased high tide skew surge before and 

after the peak high tide skew surge  

 

Therefore at least three groups are needed to fully represent the different surge shapes. Using 

more than three groups results in slight variations of the above three significant shapes and 

offers limited additional benefit. Three groups were also found to be adequate at the other 

tide gauges of interest (Cromer, Liverpool Bay, Llandudno and Holyhead) as illustrated in 

Appendix D.1. The probability of each surge shape is calculated based on the number of 

occurrences in the data set. For the three groups shown in Figure 7.12d the probabilities are 

given in Table 7.6, along with the surge shapes and associated probabilities for all gauges of 

interest.  

There is some spatial variability evident in the surge shapes. Compared to Immingham, gauges 

in North Wales experience some surges with much longer durations where the normalised 

high tide skew surge remains above 0.2 up to 36 hours before and after the surge peak. There 

are also a few occasions at Liverpool, and to a lesser extent Llandudno, where a double peaked 

surge occurs. This could be due to the local bathymetry affecting the storm surge in the 

enclosed estuary around Liverpool however more detailed analysis would be required to 

support this explanation.  

Comparison of the single averaged surge shape at Cromer from Wards algorithm, with the 

single averaged surge shape provided in McMillian et al (2011a) in Figure 7.13, shows close 

similarities in terms of the duration of the surge event and shape of the surge recession. These 

similarities give credibility to both methods. 
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Figure 7.11 Immingham surge shape cluster dendrogram using Ward’s clusters 

 

 

a) 6 cluster b) 5 clusters 

 

c) 4 clusters 

d) 3 clusters e) 2 clusters 

 

f) 1 cluster 

 

Figure 7.12 Averaged surge shapes produced using Ward’s clusters with different numbers of 

cluster groups at Immingham 
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Table 7.6 Three representative surge shapes calculated used Ward’s clusters for core coastal 

sites and their occurrence probabilities  

Site Shape 1  Shape 2  Shape 3  

Im
m

in
g

h
a

m
 

Occurrence probability = 0.21 

 

Occurrence probability = 0.54 

 

Occurrence probability = 0.25 

 

C
ro

m
e

r 

Occurrence probability = 0.27 

 

Occurrence probability = 0.42 

 

Occurrence probability = 0.31 

 

H
o

ly
h

e
a

d
 

Occurrence probability = 0.38 

 

Occurrence probability = 0.25 

 

Occurrence probability = 0.37 

 

Ll
a

n
d

u
d

n
o

 

Occurrence probability = 0.33 

 

Occurrence probability = 0.17 

 

Occurrence probability = 0.50 
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Site Shape 1  Shape 2  Shape 3  

Li
v

e
rp

o
o

l 

Occurrence probability = 0.10 

 

Occurrence probability = 0.35 

 

Occurrence probability = 0.55 

 

 

 

a) EA Time integrated surge shape 
 

 
 

Source: McMillian et al (2011a, p129) 

Grey lines are the 15 sampled surge events 

Red line is the averaged surge 

 

b) Wards algorithm averaged surge shape 

 
Black solid line is the single averaged curve shape 

Blue dashed line is the most probably of the three 

averaged surge shapes in Table 7.6 

 

Figure 7.13 Comparison of time-integrated duration surge shape with Wards algorithm surge 

shape at Cromer 

 

7.3.1.1 Simulation of surge shape 

Generating a sample surge shape for the full event duration requires four steps: 

1. Simulate a peak event high water skew surge from the conditional dependence model. 

2. Simulate skew surges at the previous and following high waters to maintain large scale 

dependencies and temporal dependencies for lags of up to 36 hours from the 

conditional dependence model. 
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3. Sample a surge shape from Table 7.6 and rescale it to fit the sampled peak event high 

water skew surge from step one. 

4. Modify the surge shape to incorporate the simulated high water skew surges from step 

two. 

 

Although step four will cause some deformation of the surge shape this is unlikely to be 

significant as the skew surges +/- 12 hours from the peak are relatively small and already 

incorporate a notable amount of noise (see Figure 7.10). This method therefore provides an 

acceptable compromise to maintain the larger scale dependence structures in the conditional 

dependence model while describing the surge shape between high tides.  

Other options considered for this step were to use the conditional dependence model to 

simulate a series of high water skew surges and linearly interpolate between them at low 

water however since the surge is usually quite small by the previous or next high water level 

this will under estimate total water level over the full cycle and will not represent the slow 

decaying events identified in Figure 7.12. Alternatively, the conditional dependence model 

could have been used to simulate a series of high water skew surges then match these to the 

most representative surge shape from Table 7.6 to simulate the full surge profile at low water 

or to fit the model to both high and low water skew surge. The computational demands of this 

approach would be high.   

7.3.2 Tide component 

Unlike the surge component, the tide is deterministic and can be predicted well in advance. To 

incorporate the full nodal cycle (see Section 5.2.1.2), a sample period of 18.6 years of tide data 

is used for each gauge (extending back from the most recent record). For each event a tide 

curve is sampled and the tide level extracted for a lag of 36 hours before and after the peak at 

each gauging station. This means that every possible tidal cycle is given equal probability in the 

sample set. This data needs to be concurrent so the same tide day can be sampled at each site 

to maintain the spatial consistency. Where short gaps in the tidal record exist these can be 

infilled using linear interpolation from the observed values.  

The advantage of using skew surge rather that the tidal residual is that skew surge is 

independent of the tide as shown in Figure 7.14. This means that a tide event can be sampled 

independently of the simulated skew surge.  
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Figure 7.14 Evidence of independence of skew surge and tide height at Immingham 

 

No consideration of sea level rise is made in this project. It is acknowledged that sea level rise 

in the UK has been around 1.5mm per year over the twentieth century (Pugh 2004), and will 

continue to rise in the future.  Tides sampled from 18 years ago could therefore under predict 

the current total water level by up to 30mm, this is unlikely to be significant given the other 

uncertainties in this model but could be modified in the future if required or increased to 

incorporate possible climate change scenarios. 

7.3.3 Wave component 

The final component of water level is the waves. Waves are normally defined by their height 

(H), period (T) and direction (α). The wave height usually refers to the significant wave height 

and period calculated from the average of the highest third of waves in a given wave record 

(Sorensen 2006).  

In similar previous studies the wave component has been hindcast from wind data (for 

example Hawkes et al. 2002; McMillian et al. 2011b). This is because wave data are not as 

easily accessible as wind data and are often not available in useable locations or have a limited 

historical record. In this project wave data recorded from waveriders is used directly. Unlike 

hindcasting models, this data is freely available and provided a means of accessing the variable 

of interest directly hence minimising additional modelling uncertainties. The limited record 

length of observed data creates some issues when modelling extremes as discussed in Section 

7.3.3.1. The waveriders that are used in this project are Dowsing and Liverpool Bay (see 
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Section 6.2). As the data record at these sites increases in the future this method will provide a 

robust means of representing the dependence between extreme waves and water level.  

Due to the effect of shallow water process on waves, it is standard practice (Hawkes et al. 

2002) to model the relationship between water level and wave height in deep water. The wave 

data are then transformed to the shoreline using the transformation methods discussed in 

Section 7.3.5.  

The wave component is complex and depends on both the meteorological storm event and the 

tide. Wave data at Dowsing are only available from October 2003 therefore the following 

analysis is based on concurrent sea level and wave data from 2003 to 2010. As shown in Figure 

7.15, for some peak surge events there is a clear rise in wave heights either at the same time 

as the peak surge or slightly after, however for others there is no notable deviation from the 

mean throughout the event. Sections 7.3.3.1 to 7.3.3.3 discuss how to deal with this variability.  
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Peak surge occurs at mid point of x axis. The blue solid line is the mean and the red dashed line in the Q95 threshold.  

Figure 7.15 Fifteed highest surge events with associated wave component at Dowsing 

 



Statistical and physical modelling of water level 7 

 

204 

7.3.3.1 Wave height  

Previous work has been carried out on the relationship between waves and water levels at 

Dowsing by Hawkes et al (2002). They found that there was a weak relationship between 

water level and wave height (Figure 7.16). They also observed that there is a time lag between 

the occurrences of peak surges and peak wave heights on the East Coast although they do not 

make explicit what this time lag is. The EA project (McMillian et al. 2011b) includes an 

alternative estimation procedure for wave heights but this is limited to the independent return 

periods and is not a full joint probability model.  

The data set used by Hawkes et al (2002) consisted of approximately 10 years of data, from 

recorded still water levels and wave data from a wave hindcast model from observed wind 

data, and 10 years of “synthetic” data simulated from the “observed” data. Hawkes et al (2002) 

assume that since peak surges and wave conditions last for less than half a day, observations 

at each high water can be considered as independent records.  

The maximum wave height recorder by the waverider at Dowsing is 6m whereas the hindcast 

data used by Hawkes et al (2002) shows values of up to 10m. This could be due to the hindcast 

point being located in shallower water than the waverider buoy at Dowsing, a function of the 

hindcasting calculations, comparing peak wave height with significant wave height, or a data 

recording error. For the purpose of this application it is assumed here that the observed data 

at the Dowsing waverider is correct.  

The joint return periods in Figure 7.17 were estimated by calculating the probability of the sea 

state exceeding a given still water level and wave height. For a large enough set of sampling 

points, this data can be plotted by joining the points with equal joint exceedance probabilities. 

The wave heights at each exceedance level are lower than Hawkes et al (2002) estimate. This is 

due to the observed wave heights being lower than the hindcast data.  The analysis was 

repeated using wave data from various different time lags to identify the time lag between the 

occurrences of peak surges and peak wave heights however no clear differences were visible. 

Further analysis was therefore carried out, using the methodology presented by Keef et al 

(2009a; 2009b; 2009c) for investigating the temporal dependencies in river flows (see Section 

5.3.3.3) to identify for a given extreme water level, X, for example the 90th quantile, what is the 

probability that wave height (Y) at lag r is also above a given level. 

Using this method there is some indication in Figure 7.16 that the wave height may be higher 

in the 48 hours surrounding an extreme water level event however this relationship is largely 

masked by the impact of the tidal cycle. Repeating the analysis using skew surge rather than 
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combined water level to identify extremes Figure 7.19 shows that there is a temporal 

dependence between wave height and skew surge with the maximum wave heights most likely 

to occur 10 hours after the extreme skew surge event (just before the following high tide). One 

reasons for the clearer trend is that an extreme high water level may be caused by a high 

spring tide with only a moderate meteorological surge component therefore it is less likely 

that high waves will accompany all extreme water level events than extreme skew surge 

events.  Although plots have been produced for water levels > 0.99 threshold, there are very 

few occurrences of extreme wave heights for these events therefore these results should be 

treated with caution.   

 

Source: Hawkes et al (2002) 

  

Figure 7.16 Joint probability of water level 

and wave height at Dowsing as calculated by 

Hawkes et al (2002) 

 

Figure 7.17 Joint observed probabilities of 

wave height and water level at Dowsing 
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a) Water level >Q90  b) Water level >Q95                   c) Water level >Q99 

Purple = wave height > Q75, blue = wave height > Q90, green = wave height > Q95,  

red = wave height > Q99  
 

Figure 7.18 Temporal dependency of wave height with water level at Dowsing 

 

 

a) Skew surge >Q90  b) skew surge >Q95                   c) skew surge >Q99 

Purple = wave height > Q75, blue = wave height > Q90, green = wave height > Q95,  

red = wave height > Q99 
 

Figure 7.19 Temporal dependency of wave height with skew surge at Dowsing 

 

The clearer temporal trend in Figure 7.19 compared to Figure 7.18 suggests that it may be 

beneficial to use skew surge as the conditioning variable rather than total still water level 

when simulating wave heights. This is possible when taking an event representation of the 

conditions, rather than concurrent conditions, since the tidal effects are implicitly included in 

the identification of maximum wave height over the full event tidal cycle. Although the link 

between surge and waves is acknowledged by Hawkes et al (2002) they do not use it when 

modelling wave height and comment that it is often masked by the relationship between wave 

height and water level.  
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Since extreme events in this thesis are defined by skew surge, which is independent of the tide, 

it is beneficial to use skew surge as the wave height predictor as this maintains the 

meteorological dependence between events without masking by the deterministic tidal 

component. An additional benefit of using skew surge as the predictor is that there is a direct 

link between the wave component and the dependence model for skew surge and fluvial 

water levels before the inclusion of the deterministic tidal component. The total water level is 

used in the onshore transformation method (Section 7.3.5) which ensures the tidal component 

is taken into account for the inshore waves which are more significantly depth limited.  

Repeating the joint probability analysis for skew surge and wave height at Dowsing (Figure 

7.20), and Liverpool (Figure 7.21) shows a stronger relationship than between water level and 

wave height. This is particularly evident at Liverpool. To incorporate the lag between peak 

surge and peak wave height identified in Figure 7.19, Figure 7.20 is based on the maximum 

wave height within -12 hours and +24 hours of the peak skew surge. The probability of 

extreme wave heights (>Q90) occurring after this period is less than 0.2. Due to the potential 

double counting of wave heights using this event definition, the skew surge data was de-

clustered using the time based method explained in Section 6.3.3 with an r value of two, 

meaning the two tidal cycles before and after a peak skew surge event were removed from the 

analysis and therefore each maximum wave height from an event can only be assigned to one 

skew surge value. No threshold was specified to allow for consideration of the skew surge and 

wave height relationship across all possible event magnitudes. 

Figure 7.20 Joint probability of skew surge 

and wave height at Downsing 

 

Figure 7.21 Joint probability of skew surge 

and wave height at Liverpool 

 

Given the variability shown in Figure 7.15 for simplicity it is assumed that deep water wave 

heights remain constant over the full duration of the storm event. Developing a small number 
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of wave height profiles (similar to the surge shape profiles) is unlikely to adequately reflect the 

variable wave climate and is therefore not appropriate unless further details of the storm type 

are used for example the wind component to identify wind driven waves and swell. As the 

highest wave heights generally occur after the peak skew surge (Figure 7.18) the proposed 

method may overestimate the water level at the peak giving a conservative estimate of risk.  

By processing the waverider data to include one value per high tide skew surge, the maximum 

wave height within -12 and +24 hours of the skew surge peak, it is possible to add wave height 

as an additional component to the conditional dependence model. As the relationship 

between skew surge and wave height is relatively weak, and the dominant cause of coastal 

flooding is the surge component (see Section 5.2.1.2), the model is fitted pairwise with skew 

surge as the conditioning variable.  Keef et al (2009a) recommend a minimum of 20 years of 

concurrent data for fitting the conditional dependence model. There is only a maximum of 

eight years of waverider data so some relaxation of the conditions for fitting the dependence 

model is required. Details of the model fit are provided in Appendix D.2. An example of the 

data simulated from the model is shown in Figure 7.22, this shows a reasonable fit between 

the observed and simulated wave heights for extreme skew surges. The conditional 

dependence model was chosen in preference to other pairwise extreme models to provide 

consistency across the modelling framework.  

 

Black circles are observations, red dots are 

simulated values, blue lines are the wave height  

and skew surge thresholds 

 

Figure 7.22 Simulated wave heights using pairwise relationship with skew surge at Dowsing 

 

7.3.3.2 Wave period  

Hawkes et al (2002) also investigated the relationship between wave height and mean wave 

period at high water (Figure 7.23), finding a strong, approximately linear relationship. 

Repeating these plots with the seven years of observed waverider data shows a similar 

relationship between wave height and wave period for the maximum wave heights observed 
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from each period (Figure 7.24) but there is more scatter within each period and lower 

observed wave heights as previously discussed. 

 

Source: Hawkes et al (2002)  

Figure 7.23 Relationship between wave 

height and wave period at Dowsing from 

Hawkes et al (2002) 

Figure 7.24 Relationship between wave 

height and wave period at Dowsing from 

observed data  

 

Since the relationship between wave height and wave period is approximately linear (Figure 

7.23 and Figure 7.24), wave period, which is required for the inshore transformation method, 

can be sampled dependent on the wave height as given in Equation 7.16, where m is the slope 

of the linear model and c is the intercept including some random variation sampled from a 

normal distribution of the residuals.  

3½ = h$ + 	 7.16 
 

7.3.3.3 Wave direction  

Wave direction is also required for the inshore transformation method. The wave direction is 

closely related to the wave height, for example at Dowsing the largest waves only occur from 

the north or northwest. Therefore the wave direction is sampled based on the conditional 

probability of wave direction given wave height, the dominant components of which are given 

in Table 7.7 and Table 7.8. For computational reasons the conditional probabilities are 

calculated for each 30° band.  
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Figure 7.25 Wave rose showing wave height and 

direction at Dowsing 
 

Figure 7.26 Wave rose showing wave 

height and direction at Liverpool Bay 
 

 

Table 7.7 Conditional probability of wave 

direction at Dowsing 
 

 Table 7.8 Conditional probability of wave 

direction at Liverpool Bay 

 

Wave height 

(m) 

Probability of wave direction 

300-330 330-360 0-30 

0.0 – 0.5 0.02 0.22 0.21 

0.5 – 1.0 0.02 0.23 0.18 

1.0 – 1.5 0.02 0.25 0.15 

1.5 – 2.0 0.02 0.27 0.13 

2.0 – 2.5 0.02 0.35 0.12 

2.5 – 3.0 0.02 0.42 0.13 

3.0 - 3.5 0.02 0.53 0.15 

3.5 – 4.0 0.01 0.69 0.15 

4.0 - 4.5 0.01 0.78 0.11 

4.5 – 5.0 0 0.81 0.11 

5.0 - 5.5 0 0.93 0.02 

5.5 – 6.0 0 0.86 0.13 

6.0 - 6.5 0 1 0.0 

 

 

Wave 

height (m) 

Probability of wave direction 

270-300 300-330 330-360 

0.0 – 0.5 0.28 0.15 0.08 

0.5 – 1.0 0.31 0.11 0.10 

1.0 – 1.5 0.45 0.13 0.11 

1.5 – 2.0 0.57 0.15 0.07 

2.0 – 2.5 0.64 0.15 0.05 

2.5 – 3.0 0.75 0.13 0.03 

3.0 - 3.5 0.78 0.16 0.02 

3.5 – 4.0 0.80 0.17 0.00 

4.0 - 4.5 0.81 0.16 0.00 

4.5 – 5.0 0.97 0.03 0.00 

5.0 - 5.5 1.00 0.00 0.00 

 

7.3.4 Simulation of total water level 

The peak total water level at an individual site requires simulation of; 

1. A high tide skew surge from the conditional dependence model  

2. A maximum wave height from the conditional dependence model 

3. A deterministic high tide from the historic tidal record. 

 

These three components are added together to give the peak total water level. Since skew 

surge is defined once per tidal cycle there is no need to take account of the relative timing of 

peak surge and the tidal cycle.   
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The total water level at an individual site for a full event requires the above plus;  

4. A skew surge shape sampled from the average profiles at the site  

5. Extraction of a time series of historic tide record.  

 

The wave height is assumed to remain constant throughout the event. The length of an event 

is based on the duration of the surge event. The profiles in Table 7.6 have a total duration of 

72 hours. Beyond the 72 hour surge shapes, the surge is assumed to be zero. To ensure the full 

event is considered and to fit with the temporal resolution of the fluvial data, the total event 

duration is taken to be 24 hours.  

The total water level at all sites throughout the full event is simulated using the conditional 

dependence model to ensure the correct spatial and temporal dependencies between sites are 

maintained. The model provides an event peak value for skew surge and wave height. The tide 

component is sampled by extracting the same historic tide event from the observed data at 

each site. It is unlikely that the shape of the surge profile will change significantly as it travels 

down the coastline, therefore similar surge shapes are sampled at nearby sites by grouping the 

surge profiles as shown in Table 7.6. The surge profile group selected is based on the 

probability of each surge shape defined at the conditioning gauge. The surge shape is modified 

to ensure that the spatial and temporal dependencies between high tide skew surge at 

multiple sites are maintained throughout the event. It should be noted that there will be a lag 

between the occurrence of the peak water level at each site due to the timing of the tidal 

cycles and travel time of the surge event between sites. A summary of each stage of the 

process is given in Table 7.9. A graphical outline of the process, including the onshore wave 

transformation, is given at the end of this section in Figure 7.29. 

Table 7.9 Summary of offshore coastal water level simulation 

Component Depends on: Method Output Contributes to: 

Peak skew 

surge 

Independent - 

can be modelled 

concurrently 

with fluvial event 

if required 

Simulated concurrently 

at all gauges in the 

network using 

conditional 

dependence model 

 

Vector of high 

tide skew surge 

at each gauge 

• Wave 

height 

 

Event skew 

surges 

Peak skew surge Conditional 

dependence model 

used in temporal form 

to simulate skew surge 

for pre/proceeding tidal 

cycles 

 

Matrix of high 

tide skew surges 

for each time lag 

at each gauge 

• Surge 

shape 
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Component Depends on: Method Output Contributes to: 

Surge shape 

Peak skew surge 

Event skew 

surges 

 

Event surge shape 

sampled from averaged 

shapes at each gauge 

and scaled to fit 

simulated skew surges 

at each time lag 

 

Matrix of high 

and low tide 

skew surge for 

each time lag at 

each gauge 

• Still water 

level 

Maximum 

wave height 

High tide skew 

surge 

Simulated 

independently for each 

tide and wave gauge 

pair using pairwise 

conditional 

dependence model 

 

Vector of 

maximum wave 

height at each 

wave gauge 

• Wave 

period 

• Wave 

direction 

• Inshore 

wave 

height 

Tide 

component 

Independent Resampled (with 

replacement) from 18.6 

years of observed data. 
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7.3.5 Onshore wave transformation  

The wave data used in this PhD are recorded around 20km off shore in water depths of up to 

25m. The data needs to be transformed to reflect the wave conditions at the coastline. The 

overtopping calculations in Section 7.3.6 require the following information at the toe of the 

defence; still water level, wave height (Hs), wave steepness (sm), wave period (T) and deep 

water depth (d). This section discusses how these variables are determined.  

As waves travel inshore they are affected by three processes; refraction, diffraction and 

reflection. These processes result in changes to the wave height (H), wave length (L), wave 

velocity and wave angle (α). The wave period (T) does not change. Refraction is the 

transformation of wave characteristics due to changes in water depth. Diffraction is changes 

due to other factors such as obstacles (Kamphuis 2000) which cause variation in crest height 
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resulting in a flow of energy along the wave crest (Sorensen 2006). Reflection occurs when a 

wave rebounds off a barrier in the direction it came. In many cases the effect of diffraction and 

reflection is minor compared to refraction and can be omitted (Sorensen 2006).  Only 

refraction is considered further here. 

The calculation package, CRESS v10 (Netherlands Ministry of Public Works, IHE-Delft et al. 

2010) is used to calculation the onshore transformation of waves. Details of the calculation 

steps performed by the software are provided in Appendix D.3.  

7.3.5.1 Application of wave transformation calculations 

The first stage of the simplified inshore propagation method used in this PhD is to identify a 

perpendicular transect from the coastline to the waverider and analyse the local bathymetry. If 

the bed depths are smooth and gradually varying then no consideration is needed of the local 

bathymetry in the wave transformation methods. For the Lincolnshire coastline this is broadly 

the case except for the Silver Pit channel illustrated in Figure 7.27. Since this is a natural 

feature, and has been largely ignored in previous studies no consideration of this deep water 

channel is made in the following calculations. For North Wales the coastal bathymetry (Figure 

7.28) shows a smooth transition for deep to shallow water. 

Figure 7.27 Lincolnshire coastal bathymetry 

 

Figure 7.28 North Wales coastal bathymetry 
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A range of inshore wave heights were calculated from a range of wave conditions to create a 

look up table of results. Surface plots of the sampled wave conditions are shown in Appendix 

D.3. These results were then sampled from based on the wave conditions simulated as per 

Sections 7.3.3.1 to 7.3.3.3. Linear interpolation between results was used to provide greater 

variability in conditions.   

7.3.5.2 Summary of water level and wave height calculation 

A summary of the main components of total inshore water level is shown in Figure 7.29. For 

each conditional peak high tide skew surge a time varying inshore total water level is 

generated by adding the skew surge, tide and wave components.   

 
Square boxes are simulated independently. Solid outlines have a temporal component. Dotted outlines 

are defined once per event 

 

Figure 7.29 Summary of coastal simulation method 

 

7.3.6 Overtopping of defences  

Water may overtop a defence during a coastal flood event from several sources; wind driven 

spray, splash, and run up which is also known as green water overtopping (Die Küste 2007). It 

is usually only the green water overtopping that contributes a significant amount to the 

overtopping rate. British guidelines (Besley 1999) recommend the use of Owen’s equation 

(1980) to calculate the mean overtopping rate for sloping structures. There are a variety of 

other methods available (see Die Küste 2007) but Owen’s method is used here for its simplicity. 

The contribution of overtopping to defence failure is discussed in Chapter 7.  
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A limitation of the available overtopping methods is that they were generally designed for 

offshore breakwaters and sea walls where it is assumed that the water on the seaward side of 

the defence is relatively deep. Therefore to allow for use of these simplified versions of the 

overtopping methods, during a flood event it is assumed that the still water level reaches the 

base of the defence. This condition means no consideration needs to be taken of the beach 

conditions at the base of the defence. It is acknowledged that a major cause of defence failure 

is undercutting or erosion of the defence foundations, to include this failure mechanism in the 

future more detailed analysis of the wave conditions and defence structure would be required.  

7.3.6.1 Wave runup 

Once a wave breaks its remaining energy causes water to runup the sloping face of a structure 

or beach (Sorensen 2006). The maximum runup (Ru) is defined relative to the still water depth 

at the toe of the structure as shown in Figure 7.30. If the runup level is high enough water will 

overtop the defence. Runup is calculated relative to the wave steepness, wave angle and slope 

roughness.   

 

Source: Sorensen (2006, p44) 

 

Figure 7.30 Graphical definition of maximum wave runup  

7.3.6.2 Owen’s equation for sloping structures 

Overtopping occurs when the run up level exceeds the defence freeboard, R, the height 

between the crest and still water level. Owen (1980) considers this through the dimensionless 

freeboard,  �½∗  (Equation 7.17) which includes the relative freeboard (R/Hs) where Hs is the 

wave height in front of the defence slope, and sm the wave steepness.  

�½∗ = 	 �h* 	j
�½2æm$.ç

 
7.17 

 

 

Using the dimensionless freeboard allows estimation of the mean overtopping discharge, &D, as 

given in Equation 7.18, where a and b are empirical coefficients given in Table 7.10 depending 
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on defence slope, and r is a reduction coefficient for surface roughness, examples of which are 

given in  

Table 7.11. The r coefficient allows Owen’s equation to be extended from the smooth slopes it 

was designed for to rough and armoured slopes (Allsop et al. 2005). Further coefficients for a 

and b for bermed slopes are given in Burchart (1993), and in the Eurotop Manual (Die Küste 

2007) which also includes further surface type roughness values. As limited data are known for 

the flood defences in this project, all defences are assumed to have no berms, wave walls or 

other design enhancements. This results in a worst case scenario for overtopping volumes. It 

should be noted that the mean overtopping discharge is unlikely to occur in reality as some 

waves will produce large amounts of overtopping while others may not overtop the defence 

crest at all. The mean overtopping discharge is assumed to occur over the full duration of the 

storm.  

&D = Ih*3½	 ∙ �
�� �−J�½∗� � 
7.18 

 

 

Table 7.10 Example a and b coefficients for Owen's equation 

Slope a b 

1:1 0.008 20 

1:1.5 0.010 20 

1:2 0.013 22 

1:3 0.016 32 

1:4 0.019 47 

 

Table 7.11 Example r coefficients for Owen's equation 

Surface type r 

Smooth impermeable (including smooth concrete and asphalt) 1.0 

One layer of stone rubble on impermeable base 0.8 

Gravel, gabion mattress 0.7 

Rock rick-rap with thickness greater than 2Dn50 0.5-0.6 

 

7.3.7 Summary of assumptions 

Linking statistical and physically based models of water levels requires a number of 

simplifications to be made. Physically based models are usually applied at small scales and with 

detailed input data. Using input data generated from statically models or over large scales 

restricts the detail available to input into the physically based model. The assumptions made 

during the coastal modelling process have been discussed in Sections 7.3.1 to 7.3.6. A 

summary of the assumptions is provided in Table 7.12.  
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Table 7.12 Summary of coastal modelling assumptions  

Component Summary of assumption Justification 

Surge Skew surge is independent of the tide 

and can be sampled separately 

See Figure 7.14 

Surge The surge shape can be represented 

by the high and low tide skew surge 

No finer detail is required in this instance 

Surge Three surge shapes adequately 

reflects the variability of the surge 

shapes at each site 

Using more surge shapes offers no significant 

improvement in accuracy (Section 7.3.1) 

 

Surge Surges last for less than 24 hours Beyond 12 hours before or after peak skew 

surge is low and noisy (Figure 7.10) 

Wave A single waverider gauge can provide 

data for a long stretch of coastline 

No alternative data is available of a sufficient 

record length 

Wave Wave height is consistent throughout 

the event 

 

To adequately model the variability of wave 

height would require additional meteorological 

data so no further refinement is thought 

justifiable with the existing data 

Wave The maximum wave height occurs 

within 24 hours of the peak skew 

surge 

The probability of extreme waves occurring 

outside this period is less than 25% (Figure 

7.18 and Figure 7.19) 

Tide All tide cycles are equally likely to 

occur and the observed data record 

contains the full range of tidal 

conditions 

The nodal tidal cycle lasts 18.6 years therefore 

18.6 years of record should reflect the full 

range 

Still Water 

level 

The peak skew surge occurs at the 

same time as high tide at the 

conditioning site. There may be a lag 

at other sites. 

The timing of skew surge is relatively 

unimportant as it has no effect on the peak 

water level 

Wave height Bottom contours can be assumed to 

be smooth and gradually varying 

Silver Pit is the possible exception to this 

however to simplify onshore transformation 

this is ignored.  

Wave height There is a linear relationship between 

wave height and wave period 

See Figure 7.24 

Wave height Skew surge can be used as a predictor 

for wave height 

Stronger relationship identified between skew 

surge and wave height than still water level 

and wave height (Figure 7.20 and Figure 7.21) 

   

Total water 

level 

The full multisite event lasts less than 

24 hours 

Peak wave heights most likely to occur 10 

hours after the peak skew surge (Figure 7.19). 

Surge profiles are low with considerable noise 

12 hours before and after the peak (Figure 

7.10) 

Overtopping Water levels during events are 

assumed to be above the defence toe 

therefore no consideration of beach 

conditions on defence foundations is 

needed 

During extreme events that lead to 

overtopping this condition is likely to be met 
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7.4 Floodplain inundation modelling 

Routing of flow across the floodplain was based on established inundation models. For fluvial 

sites the ISIS software was used as described in Section 7.4.1 and for coastal sites a 2D shallow 

water flow model was used (Liang 2010). This section outlines the setup of each of these 

models.  

The modular structure of the methodology means that any type of inundation model can be 

used within the modelling framework. Here two methods are tested with varying degrees of 

detail illustrating the ability to model in more detail where required or data are available.  

The coastal model includes flood defences which may overtop or breach as described in 

Chapter 7.  

7.4.1 1D inland inundation model 

Inland floodplain inundation was modelled using a 1D hydraulic model constructed using the 

ISIS software (See Section 7.2.4) with storage cells to represent the floodplain. Inundated area 

and flood depths were calculated using standard GIS processing in ArcMap v10 to; 

1. Create a water level raster using triangular interpolation of the peak water level at 

modelled cross sections 

2. Subtract the ground elevation from the LiDAR data from the water level raster to 

create a depth raster 

3. Delete any areas of the depth raster with values less than zero and remove any areas 

not connected to the watercourse to produce a flood outline for the event. 

7.4.2 2D coastal inundation model 

For flooding in coastal areas a 2D shallow water flow model (Liang 2010) developed at 

Newcastle University was used. The model solves the full 2D shallow water equations using a 

finite volume Godunov-type numerical scheme. The model is particularly suited to an 

application of this type as it is able to calculate different types of flood wave from slow-varying 

inundations to extreme and violent floods and therefore copes well with defence breach 

scenarios as detailed in Chapter 8.  For full details of the calculations readers are directed to 

Liang (2010), this section will outline how the model has been set up for use in this application. 

Details of the application of the inundation model are given in Chapter 8.  

7.4.2.1 Data 

The available data for construction of the hydraulic models are listed in Table 7.13. The output 

is the water level and velocity at each grid cell in the model domain. 
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Table 7.13 Available data for coastal inundation modelling 

Item Comments 

Topographic data 2m LiDAR supplied by the Environment Agency 

Defence locations GIS polyline files identifying defence sections and locations supplied by the 

Environment Agency  

Map data OS 1:50,000 obtained from DigiMap 

Any other data sources Environment Agency flood outlines used to inform model domain 

7.4.2.2 Model set up 

The inundation model used requires input data as listed in Table 7.14. The model domain was 

specified with reference to the location of the flood defence system, the caravan sites of 

interest and the extent of the Environment Agency extreme flood outline. The influence of cell 

size on model runtime was tested (See Appendix D.4) and a 10m cell size was adopted.  

The DEM is specified on a 2m grid from the Environment Agency LiDAR data. The DEM was 

aggregated to a 10m grid using the median value for each cell. The coastal boundary of the 

DEM was set at the defence locations, these cells were given a value of 1 in the mask file. The 

DEM was modified so that the raster cells relating to each defence were assigned the mean 

defence height for each defence section.  

Where defence breaches occur (See Chapter 8) each individual breach location was assigned a 

reference value and an inflow_x file. The inflow_x file requires specification of the flow 

direction, in all cases it was assumed that the flow direction through the breach was 

perpendicular to the coastline.  

Table 7.14 2D Coastal inundation model input files 

File name Description 

dem.txt ASCII file of digital elevation model 

mask.txt Mask file with values 0 for normal grid cells, 1 for boundary cells, 2 for cells outside of 

the domain and -1 for breached cells 

u.txt, v.txt, h.txt Initial water depth and velocity for each cell in the domain  

Manning.txt Roughness value for each cell in the domain 

Inflow_x.dat Inflow hydrographs at breach. X may take any integer from 1 to 9999 depending on 

the number of breaches in the scenario 

set_up.ste Summary file of scenario conditions including specification of time step, numerical 

calculation scheme, boundary types, number of breaches and point sources (e.g. river 

inflow) and output details 
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7.5 Water level and floodplain inundation in the sy stem model 

Chapter 7 has illustrated the process of converting the statistically simulated extreme DMF and 

skew surge values to physically representative events at the receptors.  

For fluvial flows a methodology was presented to convert between DMF data and peak flows. 

Although this is well documented in other countries there has traditionally been little 

requirement for this in in the UK due to the availability of peak flow data, however it is not 

practical to use concurrent peak flow data in a conditional dependence model of this type due 

to the data volumes. The proposed method provides a means of using advanced statistical 

methods for correctly specifying extreme events over large spatial or temporal scales while 

maintaining a physical basis for considering the impacts on the receptors.  

For coastal events an integrated methodology has been derived which considers all aspects of 

a coastal flood event including surge, tide and wave height. A novel approach to modelling 

wave height conditional on skew surge has been illustrated as well as the first application of 

the conditional dependence model to wave height data. 

It is accepted that many of the methodologies used in this chapter are simplified versions and 

more detailed methods are available. In the case of an integrated systems risk model such as 

this it is not appropriate to use more complicated methods as the additional data and 

computation involved preclude their use. The systems model outlined in Chapter 4 is modular, 

and as illustrated in Section 7.4 it is possible to use different methodologies within the systems 

model to represent different levels of available data or specific detail required in different 

areas.  
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8 Spatial and temporal flood defence reliability 

8.1 Importance of flood defences to flood risk 

A flood defence is a manmade or natural structure which provides protection for people, 

property and land from flooding during extreme events. Flood defences play an important role 

in flood risk management in the UK. The Environment Agency maintains 24,000 miles of 

defences in England and Wales (Environment Agency 2012) which range from hard sea walls to 

softer defences such as salt marshes. There are also numerous private defences. The provision 

of insurance cover in many flood risk areas is only possible due to the protection from flood 

defences (Association of British Insurers 2008).  

Despite their importance, the degree to which the potential failure of flood defences is 

considered in flood risk studies varies considerably.  Largely because the complexities involved 

in modelling flood defence failure are much greater than for other aspects of flood risk analysis. 

It is often difficult to combine into existing analysis frameworks, for example flood risk maps 

are often produced on a return period scale, however the simplest means of considering 

deference failure is scenario based, making it difficult to combine the results. Although 

accessible, a scenario based approach to defence reliability is also limited in that it does not 

fully address the various spatial and temporal dependencies embodied in flood defence 

reliability. Several research groups have proposed methods of overcoming these difficulties, 

most notably the RASP project in the UK which recommends different methodologies based on 

the detail required and data available (Hall et al. 2003; Dawson et al. 2005; Gouldby et al. 

2008), and researchers at Postdam university working on large river systems in mainland 

Europe (Apel et al. 2006; Apel et al. 2009; Vorogushyn et al. 2010). These, and other available 

methodologies, are reviewed in Section 8.3.  

At this point it is useful to define what is meant by defence failure. There is some ambiguity in 

the literature regarding this as some authors consider a defence to be failed if it has 

overtopped (Hall et al. 2003; Apel et al. 2006) while others consider failure to imply structural 

failure of the defence through breach, collapse, piping or other failure mode. This PhD takes 

the position that overtopping of the defence is not in itself a failure as the defence is still 

standing and hence the amount of water flowing into the floodplain is comparatively low. In 

most cases however overtopping increases the probability of failure due to the additional 

erosion forces acting on the defence structure. Overtopping is therefore treated separately 

however it is directly linked to the probability of failure. The probability of breaching alone is 

not sufficient to describe defence failure and analysis must also consider the physical 

development of breaches. The consideration of breaching is argued by Muir-Wood and 
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Bateman (2005) to be the most critical source of uncertainty for risk quantification and 

mitigation for storm surge flooding. 

The first part of this chapter discusses the three main types of flood defences considered in 

this thesis, walls, embankments and sand dunes. The construction and potential failure 

mechanisms for each defence type are considered along with a review of the factors known to 

influence defence failure. Section 8.3 moves on to review existing methodologies for modelling 

flood defence failure. In keeping with the theme of spatial and temporal dependencies in flood 

risk which is central to this thesis, Section 8.4 considers the spatial variation in flood defence 

crest height and proposes a sampling methodology to incorporate this variability into a flood 

risk model. Section 8.5 outlines the simulation of flood defence reliability used in this thesis 

including initiation of breach points and breach growth. There are no flood defences in the 

vicinity of the caravan sites located on inland rivers, therefore the consideration of flood 

defence reliability has focused on coastal defences.  

8.2 Flood defence types and failure models 

Flood defences take a variety of different forms and serve different purposes. As such there 

are a number of different modes of failure. A flood defence is a unique structure in that most 

of the time it is subject to very little pressure however when required it must be able to 

withstand considerable external forces. An extensive list of failure models for different types of 

defence is given in FLOODsite Report T04-06-01 (Allsop et al. 2007). The summary provided 

below considers the most likely forms of failure of each of the defence types considered in this 

thesis; walls, embankments and dunes.  

8.2.1 Failure modes 

Overtopping of flood walls can lead to failure as water cascading over the wall can destabilise 

the foundations leading to collapse. Seepage occurs when small quantities of water travel 

underneath the defence. In extreme cases piping develops whereby the flow of water under 

the defence causes soil on the landward side to become buoyant, creating a void near the 

defence foundations. This can lead to rotation or sliding of the defence wall structure which 

can in turn lead to structural collapse (Rickard 2009). These common failure modes are 

illustrated in Figure 8.1. The height of vertical walls, particularly those in historic urban areas, 

may have been incrementally increased over time. This presents particular difficulties when 

assessing the reliability of the defence as different sections may perform differently and weak 

points may exist along the joins between different sections. An additional complication with 

vertical walls is that there are often discontinuities in the wall to allow for access. These are 
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usually filled with gates or demountable defences during flood events however this relies on 

the resources being in place to perform the necessary installation when required.  

Embankments also suffer from overtopping and structural failure which manifests as breaching, 

this is most likely to occur in a concentrated section rather than along the full length of the 

defence. As identified in Section 8.4 low spots occur frequently along defence crests and 

therefore it is reasonable to assume that overtopping is likely to initiate in these locations 

leaving the defence susceptible to failure. Seepage is a particular problem for embankments 

and can occur through the embankment as well as under it. This is most likely to occur at weak 

points along the defence length for example at animal burrows or drainage culverts (Allsop et 

al. 2007; Rickard 2009). 

The failure of sand dunes occurs when erosion of the seaward face due to wave attack 

weakens the dune profile and leads to breaching (Allsop  et al. 2007) as shown in Figure 8.2. 

 

Figure 8.1 Failure modes for flood defence walls and embankments 

 

 

  

a) Overtopping leading to failure b) Structural collapse or breaching 

 
 

c) Rotation d) Sliding 

  

e) Seepage f) Piping 
Source: Rickard (2009) 
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Source: Safecoast (2012) 

Figure 8.2 Failure mode for dunes 

8.2.2 Breaching process 

There are two key factors to understanding breaching, firstly the defence and loading 

conditions required to initiate a breach and secondly how that breach develops over time.  

Figure 8.3 shows a schematic diagram adapted from Morris et al (2008) of the various stages in 

the breaching process. The time it takes for this process to complete varies from seconds to 

years based on the defence type and loading conditions. In tidal scenarios it may take several 

tidal cycles to complete. A simplification made in many existing models of flood defence 

breaching is to assume that breaches instantaneously grow to their maximum size. In some 

cases however, the breaching process may not complete, for example if there is not enough 

water to complete breach formation (Morris et al. 2008) or due to human intervention 

resulting in repair of the breach before it is fully formed.  
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Adapted from Morris et al (2008) 

 

Figure 8.3 Key features of the breaching process over time 

 

8.2.3 Factors known to affect failure 

Defence failure is not easy to predict and, even within defences of the same type, spatial 

variations in the defence structure and local conditions can result in different failure responses.  

8.2.3.1 Defence structure 

Extensive laboratory and field testing work as part of the EU FLOODsite project (FLOODsite 

2009a) by Morris et al (2007; 2008; 2009a; 2009b) has identified a number of factors affecting 

the erodeability of flood defences. Their research forms the basis of the discussion in this 

section.  

Firstly the type of material the defence is constructed from determines the erosion process; 

large blocky materials for example as used in the contraction of Rip Rap erodes due to the 

Breach 

initiation 

Peak discharge 
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breakdown of interlocking mechanisms between the blocks, cohesive material, such as clay, is 

affected by head cut erosion, and non-cohesive material such as sand is eroded by continuous 

surface erosion.  Both cohesive and non-cohesive materials were found to lead to breaches 

with straight sides due to the influence of pore water providing some cohesion even within 

non cohesive materials.  This is a significant deviation from exiting methodologies which often 

assume a trapezoidal or v shaped breach.  Morris et al (2008) also found the erodability of 

different materials was influenced by the material texture, compaction moisture content, 

compaction energy and soil strength with complex interactions occurring between these 

different factors.  

The defence structure should also be considered, for example embankments may be built with 

a sand core overlaid by a cohesive outer material, or defences may have been raised over time 

may consist of different materials in different layers. These composite defences do not react in 

the same way as their uniform counterparts and can exhibit very fast growth rates up to 

several metres per minute (Muir-Wood and Bateman 2005).  

Defence construction is rarely uniform along the whole section. Variation occurs due to 

changing soil conditions, foundation type, animal burrowing, poor drainage and varying 

construction materials and methods during the defence’s lifetime. As well as within section 

variation, the flooding in New Orleans following Hurricane Katrina highlighted the transition 

point between structures as a common cause of failure (Morris et al. 2009b). 

8.2.3.2 Event and local conditions  

Even assuming that all defence structures are constructed equally, they are not subject to 

identical conditions during a flood event. While developing RMS’s CAT model, Muir-Wood and 

Bateman (2005) identified the hydraulic gradient across the breach as critical in determining 

the breach size and depth. Where rapid ponding occurs behind the breach hydraulic gradients 

are reduced leading to less erosion, however for wide flat floodplains where flood water 

quickly travels away from the breach location larger breaches are expected. In the same way 

they found neighbouring breaches are in competition with each other. Since water from the 

initial breach reduces the hydraulic gradient across the defence erosion rates for subsequent 

breaches will be lower, therefore, all things being equal, the first breach will be the largest.  

Traditionally research has focussed on developing universal breach models however Morris et 

al (2009b) highlight that fluvial, tidal and reservoir breaching processes are different and 

therefore should be modelled individually. To date there is no suggestion in the literature 

about what form these separate models should take.  
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As well as the local scale geometry of the defences system, micro scale variations can also be 

critical in determining failure. The presence of vegetation is a good example of this. One of the 

major breaches during the 1953 storm surge was attributed to exposed roots from a bush 

growing on the embankment (Institution of Civil Engineers 1953; Muir-Wood and Bateman 

2005). Predicting the effect of vegetation is difficult as vegetation results in complex 

interactions for example the vegetation both protects the surface of the defence but also 

provides preferential flow route for water into the defence core. 

8.3 Methods of modelling of flood defence failure 

Morris et al (2009) identify three methods of modelling flood defence breaches; non physically 

based empirical models, semi-physically based models and physically based models. Non 

physically based models were found to be the most commonly used as they are simple and fast, 

however there is little consideration of the breach development process and high levels of 

uncertainty surrounding the model parameters. Increasingly commercially available hydraulic 

modelling packages now include a semi-physically based breach model however the user still 

has to supply the breach growth rate and final breach width. Fully physically based models, 

such as HR-BREACH (FLOODsite 2012) are mainly produced in research settings (Morris et al. 

2009a). The disadvantage of these models are long run times and the requirement for 

considerable preliminarily data about the defence structure which requires field surveys. 

However Morris et al (2008) argue that even when used with design parameters, physically 

based models are likely to produce better results than empirical models. This is a particular 

problem for risk based frameworks as the model run times and preliminarily data 

requirements effectively exclude their use in risk based frameworks. Therefore a compromise 

needs to be found between model run times and the usefulness of the results. This requires 

developments in both the field of breach modelling, to produce efficient breach models that 

can be used in a risk based framework, and within risk based defences modelling to 

incorporate breach development, as most existing models only consider a snap shot in time. At 

present risk based models use a simplified approach to modelling defence failure by using 

fragility curves. This is discussed further in Section 8.3.1. One of the major problems 

preventing the development of defence reliability models both in risk based and physically 

based frameworks is the lack of data available to calibrate models with (Morris et al. 2008). 

Modelling flood defence breaches is of international significance and work is ongoing around 

the world. Care should be taken when ‘borrowing’ methodologies and software from different 

countries due to the location specific processes for example Buijis et al (2003) found that 

Dutch methods (used in the PC RING software) were not easy to apply in UK due to difference 
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in data type and availability. The scale of applicability is also important. Due to the lack of 

available case study data, models developed in the lab have been shown to be 

unrepresentative with different conditions in the field, and field tests are in turn based on 

small embankments and it is unknown if the methods will transfer to large embankments in a 

real breach event (Morris et al. 2008). 

8.3.1 Risk based modelling of defence failure 

Incorporating defence failure models into a risk based framework requires consideration of the 

factors known to cause and influence breaching (see Sections 8.2.1 to 8.2.3) and modification 

of available detailed failure models to allow for fast run times and limited data. Although risk 

based approaches are becoming more commonplace, the consideration of flood defence 

failure is often not truly risk based due to the practice of using scenarios based failure analysis 

for which the probability of each scenario cannot be fully determined (Apel et al. 2006; 

Vorogushyn 2009). This section reviews how defence failure has been included in three 

different modelling frameworks, RASP, work from the Postdam research group and CAT 

models. An overview of the general modelling framework used by these approaches was 

provided in Section 2.4, this section reviews how defence failure is incorporated into each 

approach through the use of fragility curves. 

8.3.1.1 Fragility curves 

Most risk based methods of representing flood defence failure use the concept of fragility 

curves. Fragility curves, according to Simms et al (2009, p621), "quantify the relationship 

between the loading of an asset and the conditional probability of failure of the asset given 

that loading." An example fragility curve was shown in Figure 2.4. The curves are usually 

established by probability reliability analysis.  

The concept of fragility curves was first used in the UK as part of the RASP project (Hall et al. 

2005; Gouldby et al. 2008) which developed curves based on one failure mode, breaching 

following overtopping. Since then fragility curves have been extended to consider more failure 

modes (Dawson et al. 2005; FLOODsite 2009a) and more dimensions (Apel et al. 2009). The 

generalised fragility curves used in RASP are the only nationally available consistent dataset on 

defence fragility in the UK (Simms et al. 2009). 

The benefits of fragility curves are that they allow failure to be considered with limited access 

to local data. However this does mean that they provide a simplified representation of 

conditions which can lead to uncertainties in the results.  Following the 2007 floods Simms et 

al (2009) reviewed the suitability of the established fragility curves in the UK.  During the event 
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1000km of defence were tested by the floods, of this 525km overtopped and 4 embankments 

breached (a total length of 50m). This was a very low proportion of breaching compared to 

what would have been predicted using the established curves and illustrated that grassed 

embankments are able to withstand more overtopping than previously expected. Of the four 

breaches that occurred, three of them initiated when the water level was significantly below 

the crest level. This was found to be caused by local irregularities such as foxholes and 

vegetation rather than general poor defence quality which the established fragility curves 

were not able to consider. Based on this event Simms et al (2009, p626) conclude that 

"uncertainty about the presence of internal irregularities is probably a significant factor driving 

the small probabilities of failure in the fragility curves in the part where water levels are below 

crest level.” In light of this they suggest that uncertainty in fragility curves could be reduced by 

local and historic insight and careful engineering investigation. In some instances this may be 

justifiable for example in the TE2100 project where the high levels of risk and uniqueness of 

the defence structures considered require careful consideration and the RELIABLE tool 

(FLOODsite 2009b) developed as part of this project enables this to be achieved. The general 

the aim of the RASP project however was to provide a methodology that could be used over 

large scales with varying levels of data availability. Therefore rather than suggesting more 

detailed local data are required, there is also a need to modify the existing methodologies to 

incorporate the increased probability of failure due to local irregularities in defence structures. 

This is discussed further in Section 8.4. 

8.3.1.2 RASP 

The RASP method (Hall et al. 2003; Dawson et al. 2005; Gouldby et al. 2008) was previously 

outlined in Section 2.4.2. The original paper only covered breaching following overtopping 

however later work considered sliding and piping failure models. The key assumptions are 

repeated here (Hall et al. 2003): 

1. Loading of all defences in the system is fully dependent, meaning all defences are 

subjected to the same load at the same time.  

2. The strength of each defence section is assessed independently therefore although the 

load is the same, the probability of failure is unique for each defence section. 

3. The resistance within each defence section is fully dependent meaning the whole section 

responds in the same way.  

 

A central part of the RASP research was to establish a generic database of 600 fragility curves 

for specified defence types based on based on defence type, crest width, front, crest and rear 
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protection, construction, and defence condition. This database enables risk based 

consideration of defence failure in projects where detailed data on defence condition is not 

available. A criticism of the high level RASP methodology is that it does not take account on 

underlying geology which can affect seepage processes (Gouldby et al. 2009). For a high level 

study this type of detail is often not available, however the discussion in Section 8.2 highlights 

that there is a need for a high level methodology that is able to incorporate this spatial 

variability. The spatially varying crest height methodology developed in Section 8.4 could 

provide the foundations for this.  

8.3.1.3 Inundation Hazard Assessment Model  

Researchers at the University of Postdam have been working on a risk based modelling 

strategy for fluvial flood risk referred to as the Inundation Hazard Assessment Model (IHAM). 

There are various papers covering parallel developments and applications of the IHAM (Apel et 

al. 2004; Apel et al. 2006; Apel et al. 2009; Vorogushyn 2009; Vorogushyn et al. 2009; 

Vorogushyn et al. 2010). Much of the research was motivated from the observation that there 

has been a lack of comprehensive review of influence of dike failure for hazard and risk 

assessment (Vorogushyn 2009) both in terms of the consideration of the breaching process 

itself and the potential uncertainties in existing methods which are often overlooked. Like 

other established risk models, the IHAM has three modules representing a 1D hydrodynamic 

model of river routing, a probabilistic model of dike breach and a 2D inundation model. 

Dynamic coupling between modules and a Monte Carlo framework is used to address 

uncertainty (Vorogushyn et al. 2010). Only the failure module is discussed in this section.  

To date the failure modes considered include overtopping, piping and slope micro-instability. 

Although multiple failure mechanisms are covered, no consideration is made of the potential 

interactions between them (Vorogushyn 2009). There are two main differences between the 

IHAM methodology and RASP, firstly the fragility curves are extended to fragility surfaces that 

also consider the duration as well as high water level, and secondly, the restriction of identical 

loading is removed to allow consideration of sequential defence failure. The dynamic 

consideration of the influence of upstream breaches on downstream water levels was found to 

show significant retention of floodwater behind upstream breaches therefore changing the 

shape of the flood peak (Apel et al. 2009). This is particularly significant on the large river 

systems of the Elbe and Rhine which the methodology has been applied to. The author is not 

aware of any attempts to repeat this analysis on UK rivers where the floodplain storage 

volumes may be significantly lower. It was however not possible to test the methodology as 
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part of this PhD due to the selected fluvial sites not being protected by flood defences (see 

chapter 3).  

Some of the restrictions of the RASP methodology remain, for example defence sections are 

artificially split into lengths of less than 500m (Vorogushyn et al. 2010) with defence properties 

assumed homogeneous over this length, and breaches are assumed to grow to their maximum 

size within one hour. Fragility functions were generated for each defence type with the 

geotechnical properties of each defence section assumed to be random variables, In the 

absence of available data this offers a means of incorporating varying defence properties.  

8.3.1.4 CAT models 

Cat models provide a good example of the concept of fragility curves being applied in a large 

scale model with limited available data. As identified in Chapter 2, details of Cat models are 

restricted however a useful overview of the methodology used is available from AIR (Qu 2009) 

for fluvial defences and in two papers by Muir-Wood et al  (Muir-Wood and Bateman 2005; 

Muir-Wood et al. 2005) covering the consideration of coastal defences by RMS.  

AIR include four defence types in their fluvial model; embankments, flood walls, storage areas 

and point structures. Data are  inputted from the EA NFCDD database on defence 

characteristics and from detailed topographic maps on the physical properties such a crest 

height and attenuation area. Defences which are evident in the digital terrain model are 

included physically in the AIR Inland Flood Model as they can be included in the cross section 

geometry of modelled reaches. The failure of defences is modelled probabilistically in a 

standard way using fragility curves.  Fragility curves are established for every stream link based 

on type and condition of the defence. 

RMS also employ fragility curves as the central component of their defence reliability model 

using data from the 1996 EA Sea Defence Survey and calibrating against observations from the 

1953 storm surge. Breaching occurs in the model due to overtopping and infiltration. The 

conceptual model states that all things being equal the probability of a breach in one or more 

places along a sea defence breaching a surge tide increases as: 

• The length of defence increases 

• The duration of high water increases 

• The level of water increases 

• The strength of the defence decreases 
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Similar simplifications were made to the RASP method including restricting the defence length, 

in this instance to 2km. Rather than constructing fragility curves for all construction types, 

defences were classified into four groups: 

• Level 1 - purpose built reinforced concrete defences with strong foundations and 

foreshore protection. 

• Level 2 - armoured defences but without full foreshore protection. 

• Level 3 - unreinforced, purpose-built embankments. 

• Level 4 - natural defences, such as sand dunes 

Fragility curves were established based on reliability theory considering defence length and 

event duration. Since in reality the water raises slowly, peaks and then decays, the duration 

used was an integrated value representing the equivalent time at maximum water level. 

8.3.2 Breach sizes and growth rate  

As discussed in Section 8.2, once a breach has initiated the growth rate and maximum 

dimensions can vary due to the defence properties and event conditions. Incorporating this 

variability in failure models is difficult and leads to uncertainties, largely because of the limited 

observed events and, as observed by Muir-Wood and Bateman (2005), when breaching does 

occur it is ephemeral with repairs beginning within hours. For this reason there are limited 

data to validate methodologies. However observation from the Safe Coast project (2008) 

suggest that the uncertainties involved in estimating breach growth are small compared to the 

uncertainty in establishing the number of breaches in any given defence section. 

There have been various proposed methods for dealing with breach growth. In most cases the 

breach growth rate is assumed to be negligible and to complete within one time step (for 

example see Vorogushyn et al. 2010). The variability between approaches is in the assumed 

breach dimensions. A table of breach sizes showing both observed and assumed values used in 

previous studies is provided in Appendix E.2. 

The simplest means of estimating breach width is to use historic data or hypothetical scenarios 

to establish a standard breach width for each defence section. This is the approach taken in 

the Conwy Tidal Flood Risk Assessment (CTFRA, HR Wallingford 2002) however as identified by 

Vorogushyn et al (2010) it is problematic for risk based analysis as the probability of each 

scenario is not known. An extension to the simplistic approach is to include a range of plausible 

breach dimensions for each section based on the erodibility of the defence material and 

sample from within this as part of a risk based framework. This is the approach taken by the 

IHAM project team (see Vorogushyn 2009 for details).  The RASP method (Hall et al. 2003) 

takes an alternative approach and estimates the breach width (bB) as a function of the event 
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magnitude (x) and the defence length (sd) (Equation 8.1), rather than considering the defence 

material. Vorogushyn (2009) suggest that this approach may be problematic as the event 

magnitude may not always be known in a dynamic world. Although it offers potential 

advantages when the defence material and construction is not fully known, Hahn et al (2000, 

cite Vorogushyn 2009) identified that breach growth rates can vary up to 60 fold depending on 

dike material.  

Jè = 0.05�4Î , Jè ≤ 4Î  8.1 

 

Once a breach has initiated and its dimensions established the standard practice used in both 

research applications (for example see Hall et al. 2003; Vorogushyn 2009) and Cat models 

(Muir-Wood and Bateman 2005) is to use the broad crested weir equation (Equations 8.2 and 

8.3) to calculate flow through the breach.  

x = 	éIℎ 8.2 

 

& = x	 × ℎ	 × ê��/ℎ 8.3 

Where v is the velocity of the water in m/s, g is the acceleration due to gravity, h is the height 

of the water above the base of the breach and w is the breach width. Q is the flux of water 

passing through the breach in m3/s. 

8.3.3 Proposed methodology for flood defence failure 

It is beyond the scope of this project to develop a detailed flood defence failure methodology. 

Instead attention is paid to the most significant limitations of existing models which is deemed 

to be the lack of consideration of spatial variation in the defence properties. In keeping with 

the spatial-temporal approach introduced in the analysis of extreme water levels, a spatial 

analysis of dike breaching is employed. In doing so, the proposed methodology avoids the 

arbitrary sub-division of dikes into discrete sections that has been adopted in previous 

approaches (e.g. Hall et al. 2003; Gouldby et al. 2008 Apel et al. 2006; 2009), which has been 

imposed in an attempt to deal with the so-called ‘length effect’. These previous methods were 

based on the assumption that for any given dike section the whole section would respond to 

loading in the same way. For long dike sections this assumption is untenable as dependence in 

dike response to loading decays with distance.  In the proposed methodology the assumption 

of fully dependent resistance is lifted, therefore there is no requirement to restrict defence 

section length.  

Considering a system with g dike sections, m = 1,…, g. The event in which section m fails is 

written as Dm, whereas the event in which it does not fail is written �½DDDD. In recognition of the 
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fact that the most common failure mechanism is breaching caused by overtopping (Nagy and 

Tóth 2005; FLOODsite 2009a) only this failure method is considered here. It is acknowledged 

that other failure methods are possible and may in some cases be more significant. The 

methodology could be extended to include other mechanisms in the future.  

The most critical variable in determining overtopping is the crest height. Analysis of surveyed 

crest height information and that contained in the EA NFCDD, which is used extensively in 

flood risk studies by the Environment Agency, research groups and Cat modellers (see Section 

8.3.1), showed large variation between the record mean section crest height and surveyed 

crest height (as detailed in Section 8.4.1).  As such the spatially varying crest height (c) of each 

defence section m, separated into sections based on defence type (tm), is assumed to be 

spatially variable around the recorded mean crest height ( 	½DDDD	). Realisations are sampled every 

50m at sampling points k. 

c½,Ý = '(		½DDDD, /½) 8.4 

 

Realisations of the spatially varying crest height are made within the risk based framework for 

each event scenario as detailed in Section 8.4.2. Overtopping (OT) is calculated at each 

sampling point using the water levels and wave heights as described in Chapter 7 such that;  

OT½,Ý = '8c½,Ý, �
��	�ê", �
��	ê�x
	ℎ
�Iℎ/, �
'
�	
	�"��
9 8.5 

 

Failure is estimated using a standard fragility curve approach (Function 8.6), this is common to 

all risk based applications discussed in Section 8.3.1.1 and reflects the accepted method for 

risk based studies.   

�('��")½,Ý = '8OT½,Ý	, /½	9 8.6 

 

Breach size is sampled using a scenario approach from a range of expert opinions as described 

in Section 8.5.2.3. This provides physically plausible breach widths but could be improved with 

more detailed knowledge of the local area. Multiple failure points are allowed within each 

defence section, where the distance between the failure points is less than the breach width 

the smaller breach merges into the large breach based on the assumption that the first breach 

is likely to be the largest and grow the fastest. 

A summary of the process is given in Figure 8.4. Section 8.6 illustrates an end to end example 

of the consideration of flood defence reliability.   
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Figure 8.4 Summary of consideration of defence reliability 

 

8.3.3.1 Summary of assumptions 

It is recognised that the estimation of breach dimensions and flow into the floodplain are 

simplifications of a complex process. The methods proposed for use in this thesis represent the 

standard current practice and are suitable given the acknowledgment that the uncertainty in 

estimating breach dimensions is small in comparison to the uncertainty in establishing if 

breaching will occur (Safe Coast 2008). The key assumptions embodied in the process are that: 

• Defence crests vary along their crest relative to the mean section elevation 

• Defence material, construction and other properties (except crest height) are identical 

within each defence section 

• Conditions at the foot of the defence are insignificant during flood events 

• Overtopping alone will not cause damage to caravans unless breaching occurs 

• Breaching caused by overtopping is the most critical failure mechanism 

• The probability of failure can be represented by the peak overtopping rate and the 

defence type 

• If breaches occur, initiation begins when the total water level is greater than 90% of 

the crest height 

• If multiple breaches occur within one section, breaches will merge if the distance 

between the two breach locations is less than the widest breach width  



Spatial and temporal flood defence reliability 8 

 

236 

• Breaches grow to their full size within one time step 

8.4 Development of methodology for variable flood d efence crest height 

Flood defences in the UK have been developed in a piecemeal fashion (Muir-Wood and 

Bateman 2005) and are in varying states of repair. Similarly it is unlikely that their crest heights 

have been maintained to design standards, for example an earth embankment may have 

eroded in certain areas or been compressed by people walking along it. To some extent 

fragility curves can take account of these processes by incorporating probabilities of failure at 

water levels below the crest height. However in practice the probability of a defence 

overtopping is heavily dependent on the crest height which may vary along the length of the 

defence. The degree of variation is influenced by the defence type, its condition and the 

maintenance regime.  The availability of defence crest height data varies across the UK, this 

data is mainly held by the Environment Agency and usually comprises of a mean crest height 

for each defence section.  

In light of these difficulties a methodology was developed as part of this thesis to allow for 

plausible spatial variation in long section crest heights in the absence of detailed survey data. It 

was originally proposed to use an autocorrelation process to simulate the spatially variable 

crest level but as discussed in Section 8.4.1 this was shown to be inappropriate. Instead a 

Markov chain process is used whereby at each simulation point there is a strong probability of 

the simulated crest height being the same as the previous crest height and a lower probability 

that it will move to a new state. The properties of the Markov chain process were identified by 

review of flood defence survey data obtained from the Environment Agency for flood defences 

in Lincolnshire. 

8.4.1 Review of surveyed crest height 

Survey data for 59km of coastal flood defence between Cleethorpes on the Humber Estuary to 

Gibraltar Point at the edge of the Wash, were obtained from the Environment Agency as well 

as a GIS file of the defence locations. The survey data were separated into sections as detailed 

in Table 8.1. For each flood defence section data were available in printed summary sheets 

containing; 

• The section location 

• The defence type  

• A typical survey cross section 

• Physical parameters including the crest height, toe elevation, crest width and section 

length  
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• A long section plot showing the survey crest height, the crest height taken from DEM 

data and the mean crest height. 

 

An example of the data available is shown in Appendix E.1. The survey resolution for the crest 

height is not known.  

Survey data of this quality is not readily available in the UK, for most flood defences it is usually 

only possible to obtain the mean long section crest height. The survey data were therefore 

compared to the mean crest height to identify the potential uncertainty in using mean crest 

height to model flood defences rather than varying crest height along the defence section. The 

mean crest heights in the dataset were derived from various sources including as identified in 

Table 8.2.  

Table 8.1 Summary of Environment Agency flood defences survey data by defence type for 

the Lincolnshire coast 

Defence type Number 

of 

sections 

Total length 

(m) 
Average 

crest 

height (m) 

Minimum 

section 

length (m) 

Maximum 

section 

length (m) 

Median 

section 

length (m) 
Walls 25 14545 7.02 96 1640 424 
Embankments 29 19614 6.31 82 2208 495 
Dunes 54 24831 7.62 58 1351 427 

 

Table 8.2 Source of long section mean crest height by defence type for the Lincolnshire coast 

Defence type 

Number of section sources: 

Typical 

SDS 

section 

SDS 

sections 

mean 

DTM long 

section 

mean 

DTM 

cross 

sections 

mean 

EA expert 

knowledge 

Spot 

heights 

mean 

Walls 17 1 7 0 0 0 

Embankments 12 1 0 10 5 1 

Dunes 20 9 14 5 0 6 

Combination 49 11 21 15 5 7 

SDS - Sea Defence Survey 

 

A visual assessment of the variation between the mean crest height and the survey data was 

made using the classification schemes in Table 8.3 and Table 8.4. An assessment of the 

magnitude and direction of variation was also made based on visual interpretation of the long 

section profiles. The defence sections were separated into three groups for walls, 

embankments and dunes. The walls group consisted of vertical walls, wave return walls and 

stepped concrete aprons. As listed in Table 8.1 there were 25, 29 and 54 sections of each type.  
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Table 8.3 Classification of fit of long section mean crest height compared to survey data 

Fit of long 

section mean to 

survey 

Description Example 

Very poor 

Significant differences for most of defence 

length and / or including major low points that 

could lead to flooding 
 

Poor 
Moderate differences for >50% of defence 

length 
 

Reasonable 
Average is a reasonable representation of crest 

height except for some small areas  

Good Close match for >50% of defence length 
 

Very good 
Close to perfect match for most of defence 

length  

  

Table 8.4 Classification of type of variation between long section mean crest height and 

survey data 

Type of 

misalignment 
Description Example 

Consistent 

Consistent crest height along long section (for 

DTM data this is also applied to consistent small 

variations) 

F 

 

Variable Varying defence crest along long section 

 

Block Large block sections with consistent differences 
 

Low points 
Main problem is low points not picked up by 

average crest height 
 

High points 
Main problem is high points not picked up by 

average crest height  
 

 

8.4.1.1 Observations on fit of long section mean to survey data 

A summary of the assessment results are shown in Figure 8.5 to Figure 8.8. The dunes survey 

showed most sections have notable variation in crest heights along the section length. This is 

poorly represented by the mean crest height with more dune sections classified as very poor 

than other defence types. In most cases the mean height was higher that the survey height, 

therefore flood risk could be underestimated if using the mean crest heights. Surprisingly the 

walls were poorly represented by the long section means. This was largely due to block 

variations in the crest height where part of the wall was higher or lower than the mean height. 

The long section means for the walls also tended to be lower therefore using the mean values 

would produce a conservative estimate of risk. 
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For all defence types the qualitative review of the degree of variation identified in most cases 

the difference between the long section mean and the surveyed data was between 0.1m and 

0.5m. This is a maximum error of 8% in crest height which present a significant uncertainty for 

flood risk modelling. 

Only the dunes obviously show a variable variation between long section mean elevation and 

survey elevation that could be characterised by an autocorrelation process. In most cases a 

block variation pattern was seen with part of the defence consistently above or below the 

mean height. The embankment surveys show consistent crest heights along the defence 

therefore in more cases the mean long section crest height provides a reasonable 

representation of the actual defence height. 

A cross check was also made against defence length and construction type. There appeared to 

be no difference in degree of variation different section lengths or materials. 

 

Figure 8.5 Fit of long section mean crest height to surveyed crest elevation  
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Figure 8.6 Type of variation between long section mean crest height and surveyed crest 

elevation  

 

 

 

Figure 8.7 Direction of variation between long section mean crest height and surveyed crest 

elevation 
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Figure 8.8 Magnitude of variation between long section mean crest height and surveyed 

crest elevation  

 

8.4.1.2 Observations on data quality with reference to data source 

Theoretically different data sources may provide a more accurate representation of crest 

height however as shown in Table 8.2, for some data sources there are less than 10 sections, 

therefore it is difficult to draw conclusions from the limited data. General observations suggest 

that crest heights taken from typical SDS survey sections provide the best representation of 

surveyed crest height while crest heights taken from the DTM long section are often very poor 

however this can be improved by taking the mean of DTM cross sections rather than using the 

long section directly. 
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Figure 8.9 Representativeness of long section mean crest height compared to surveyed crest 

elevation from different data sources 

 

8.4.1.3 Observations on data quality of DTM long sections 

The above analysis was repeated comparing the survey data to the long section crest heights 

as taken from the DTM. Cat models (see Section 8.3.1.4) use the DTM data to provide crest 

heights therefore this could be a useful indication of the suitability of their defence crest 

representation. The difficulty with this approach is that in most cases the DTM data shows 

considerable variability which is not present in the survey data. However without knowing the 

resolution of the survey it is difficult to know which is correct.  

The same plots as for the long section mean are shown below. The DTM data very rarely 

provides a good or very good representation of the crest. Most often it is rated as poor. The 

type of variation is variable. The DTM data usually shows frequent small variations of +/- 0.5m 

although sometimes much larger variations are seen. The direction of variation changes and 

magnitude may be several metres above or below the surveyed crest. In cases where the 

defence crest height changes along its length the DTM data may provide a better 

representation of the surveyed crest as than the long section mean as it picks up the trends in 

crest height and low points, even if the exact value is inaccurate. For dunes the DTM data over 

estimates the crest height. For walls and embankments there is a small trend towards under 

estimation. A possible reason for this is the difficulty in picking up wall and embankment 

features with a relatively small horizontal resolution in the DTM.  
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Figure 8.10 Fit of long section mean crest height to DTM crest height 

 

Figure 8.11 Type of variation between long section mean crest height and DTM crest height 
 

 

 

Figure 8.12 Direction of variation between long section mean crest height and DTM crest 

height 
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Figure 8.13 Magnitude of variation between long section mean crest height and DTM crest 

height 

 

8.4.2 Simulation of plausible variation in long section crest height 

Based on the data properties observed from the East Coast flood defence data it is possible to 

simulate a realisation of the plausible variation in crest height for any given defence type and 

mean long section crest height.  

For each known defence type, a misalignment type is sampled based on the observed 

occurrences for each defence type. Then for each simulation a realisation of the crest height is 

generated based on a Markov chain process, whereby at each simulation point (taken as every 

20m) there is a strong probability of the simulated crest height being the same as the previous 

crest height and a lower probability that it will move to a new state. The probabilities are 

based on the distribution properties of the observed data and are different for each 

misalignment type.  The advantage of using a Markov chain process is that the same process 

structure can be used with all the misalignment types and the probabilities varied accordingly. 

As well as the continuous variation, realisations of low and high points in the defence crest are 

superimposed onto the simulated crest height. The stages of this process are outlined in Figure 

8.14 and detailed below. 
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Figure 8.14 Plausible variation in long section crest height simulation 

 

8.4.2.1 Misalignment  

Type 

For each defence type, wall, embankment or dune, the probability of the variation being 

constant, variable or block has been identified (Table 8.5). Given the defence type, a 

misalignment type is sampled using a random number generator based on these probabilities. 

Table 8.5 Probability of type of variation between long section mean crest height and survey 

data as calculated from the Lincolnshire defence survey data by defence type 

Defence type Misalignment type 

Consistent Variable Block 

Wall 33 22 44 

Embankment 44 28 28 

Dune 23 46 31 

 

Degree of variation 

The amount that the crest height varies along its length is largely based on the variation type, 

however there are different degrees of variation observed within each class. The degree of 

variation can be characterised using two variables, the blockiness and the probability of 

variation.  

The blockiness refers to the minimum number of simulation points between each change in 

crest height.  This is sampled from a uniform distribution with the minimum and maximum 

range set based on comparison with the observed data. The sampling resolution is set at 20m 
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as it is unlikely that the defence survey was taken at a finer resolution that this so there are no 

data to support changes at smaller spatial scales.  

The probability of variation refers to the probability that there will be no change in crest height 

at any sampling point from the previous sampling point. For consistent misalignment this value 

is set at 100%. For the variable and block misalignment the value is sampled from a normal 

distribution with the mean and standard deviation estimated by comparison to the observed 

data as detailed in Table 8.6.  

Table 8.6 Distribution parameters characterising the degree of crest height variation  

Variation variable Misalignment type 

Consistent Variable Block 

Blockiness (no. simulation points) NA u(4,10) u(10,30) 

Probability (%) 100 N(70,4) N(90,2) 

 

Presence of low or high points 

The presence of low or high points within the crest length occurs with all types of 

misalignments types. Therefore a point simulator is applied with all misalignment types.  The 

point variation is superimposed on top of any previous variation due to misalignment. 

The probability of point variation in crest level is specified based on the observed data for each 

defence type (Table 8.7). The presence of a high or low point is sampled from a random 

number generator based on these probabilities. 

Table 8.7 Probability of low or height points within the defence section crest  

Defence type Probability of point variation 

Wall 28 

Embankment 10 

Dune 9 

 

If a point variation occurs the width and depth (as a proportion of the total crest height) of the 

variation are simulated using a normal distribution with mean and standard deviation specified 

from the observed data (Table 8.8).  Due to the limited number of observed low and high 

points, the observed data are lumped together with no differentiation made for defence type.  

Next it is specified whether the point variation is a low point or high point in the crest 

elevation. Again the probability of as low point occurring is based on the observed data for 

each crest height. However since all of the observed point changes in the dunes were low 
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points, a small probability (5%) of a high point has been introduced since it is not completely 

unlikely that a high point will occur.  

Table 8.8 Distribution parameters characterising the shape of high or low points within the 

defence section crest 

Defence type Width (m) Depth (proportion of crest 

height) 

Probability low point 

Wall 

N(33,24) N(0.2,0.2) 

15 

Embankment 75 

Dune 95 

 

Finally the location of the low or high point is specified randomly along the length of the 

defence crest, assuming that there is only one possible low or high point in the defence section. 

Given that the probabilities of a low or high point occurring are low, this is a valid assumption 

to make. If several point variations occurred in one defence section this would be classified as 

varying crest height rather than point variation. It should also be noted that the simulation 

method for point variations will sometimes produce shallow points which may not be 

significant when superimposed onto the existing simulated varying crest height. 

8.4.2.2 Magnitude of variation 

Initial variation 

The degree to which the defence crest height varies from the mean long section value is given 

by: 

,¾ = ,½ + ԑ´,½ 8.7 

where z is the crest elevation, x is the sampling point, zm is the mean long section elevation 

and ԑ is the simulated proportional error term from a normal distribution as specified in Table 

8.9 for each defence type. A normal distribution is shown to be suitable for this purpose 

(Figure 8.15). The slightly blocky nature of the data plots in Figure 8.15 is due to the visual 

interpretation of error resulting in “round” error values such as 0.5m or 1m being recorded 

more often.  

Table 8.9 Distribution parameters characterising the magnitude of variation from the long 

section mean crest height  

Defence type Magnitude of variation 

(proportion of crest height) 

Wall N(0.04,0.10) 

Embankment N(0.00,0.09) 

Dune N(-0.05,0.11) 
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Figure 8.15 Fit of normal distribution for variation magnitude compared to observed 

proportional error between long section mean crest height and surveyed crest elevation  

 

There is a physical limit to the amount of variation in crest height. Any major discrepancies are 

likely to be noticed during defence inspections and infilled as appropriate. For this reason a 

winsorising process was applied to the simulated variation magnitude with the limits set at a 

maximum variation of 25% of the mean long section height. This corresponds to the largest 

observed variation for dunes and walls.  

Variation at each change point 

The above procedure is repeated at each point where a change in crest height is simulated. In 

each case the crest height changes relative to the mean long section crest height rather than 

the previous value.  
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8.4.2.3 Example simulations 

 

 

Defence Type Misalignment Blockiness Probability High/low points Mean variation 
Dune Block 15 90 No -0.3m 

 

 

Defence Type Misalignment Blockiness Probability High/low points Mean variation 
Dune Variable 3 74 Yes 0.68m 

 

 

Defence Type Misalignment Blockiness Probability High/low points Mean variation 
Embankment Variable 3 70 5 0.38m 

 

 

Defence Type Misalignment Blockiness Probability High/low points Mean variation 
Wall Constant NA 100 Yes -0.76m 

 

Figure 8.16 Example simulations of plausible variations in crests heights for different 

defence types 
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8.4.2.4 Consistency 

In most cases the separation of defences into sections is largely artificial and it is unlikely that 

there would be a large change in variation of the actual crest height and mean long section 

height between adjacent defence sections. To account for this the degree of variation at the 

end of one section is used as the initial variation for the next section.    

Although no separate validation dataset was available, to check the suitability of the 

methodology 1000 simulations of the 59km of Lincolnshire crest height were made (the first 

500 of which are shown in Figure 8.17). The simulated mean and standard deviation for each 

defence type are given in Table 8.10 which show a reasonable fit to the observed values given 

in Table 8.9 with only the mean variation of simulated dune and embankment crests showing a 

difference of 5% compared to the observed data.  

 

Figure 8.17 500 plausible simulations of varying crest height for the Lincolnshire coast 

compared to the long section mean 

 

Table 8.10 Distribution parameters of 1000 plausible simulations of magnitude of crest 

height variation compared to the long section mean  

Defence type Simulated variation (proportion of 

crest height) 

Wall Mean: 0.04    Std Dev: 0.09  

Embankment Mean: -0.05    Std Dev: 0.09  

Dune Mean: -0.00    Std Dev: 0.08  

 

Visually the difference between the observed and simulated crest heights in Figure 8.17 

appears large, however this is representative of the observed data, three examples of which 
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are shown in Figure 8.18 and illustrate the importance of taking account of this discrepancy in 

flood risk studies.   

 

a) Wall 

 
 

b) Embankment 

 
 

c) Dunes 

 
Data source: Environment Agency 

 

Figure 8.18 Example observed variation in crest height from the Environment Agency survey 

data for different defence types 

 

The methodology presented in this section provides a means of incorporating plausible 

variation in crest height for coastal flood defences. It is particularly useful where only limited 

crest height data are available, the data quality is known to be poor for example if taken from 

LiDAR data, or the data is of a large spatial resolution. A limitation of the proposed 
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methodology is that it cannot represent gentle sloping changes to crest height although this 

could be included if required by including an additional parameter characterising the number 

of steps (distance) between subsequent crest heights.  

8.5 Simulation of flood defence reliability state 

8.5.1 Available data 

The consideration of flood defence reliability is dependent on the data sources available. For 

the case study areas used in this PhD the following data was available:  

East Coast:  

Detailed information on defence type, location, crest height and typical cross section 

was provided by the Environment Agency.  Although detailed long section crest 

heights were available (see Section 8.4) they were not used directly in the flood 

defence reliability model due to the requirements to develop a generically applicable 

methodology. 

North Wales:  

NFCDD data for North Wales was provided by the Environment Agency. Previous work 

by Richard Dawson at Newcastle University as part of the Conwy Tidal Flood Risk 

Assessment (CTFRA, HR Wallingford 2002) was used as a data source. Data were 

available on defence type, location, crest height and typical cross section, including 

photographs of typical sections. In addition the CTFRA identified the most likely failure 

mechanism for each defence section.  

8.5.2 Probabilistic consideration of breaching 

To demonstrate the methodology only breaching following overtopping is considered in the 

case study applications in this thesis. It is however acknowledged that other failure methods 

are possible and may in some cases be more significant. The fragility curves used were 

specified as part of the CTFRA. Using established curves provides stability between this 

method and previous studies.  

8.5.2.1 Overtopping 

The calculation of overtopping takes place at every sampling point (every 20m) using Owen's 

equation (Section 7.3.6.2) and requires the simulated crest height at each point and the water 

level which comprises of: 
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• The simulated offshore wave height transformed to onshore 

• The simulated skew surge 

• The simulated tide curve 

8.5.2.2 Failure probabilities 

For embankments and revetments the failure probability is specified from the overtopping 

rate which is used as a proxy to damage caused to the rear of the structure (Table 8.11). The 

maximum overtopping rate is calculated using the highest water level (combined still water 

level and wave height). It is acknowledged that the probability of breaching increases with the 

duration of high water however this is not considered in this application. For dunes, failure is 

assumed to occur when wave runup lowers the dune crest and eventually leads to breaching. 

The failure rates from runup over dunes are given in Table 8.12. 

Table 8.11 Defence failure probabilities from overtopping  

Embankment  Revetment 

Overtopping rate 

(m3/s) 

P(fail)  Overtopping rate 

(m3/s) 

P(fail) 

Q ≤ 0.002 0  Q ≤ 0.05 0 

0.002 < Q ≤ 0.05 0.1  0.05 < Q ≤0.2 0.1 

0.05 < Q ≤ 0.5 0.2  0.2 < Q ≤2 0.2 

0.5 < Q ≤ 5 0.3  2 < Q ≤20 0.3 

Q > 5 0.3  Q > 20 0.3 

Source: CTFRA (HR Wallingford 2002) 

Table 8.12 Defence failure probabilities from wave run-up  

Dunes 

Wave runup 

(mAOD) 

P(fail) 

Ru≤ 7 0 

7 < Ru ≤ 8 0.05 

Ru > 8 0.2 

Source: CTFRA (HR Wallingford 2002) 

 

Since the fragility curve depends on water depth relative to the crest height the probability of 

failure changes along the defence length, this allows for incorporation of low points in the 

defence but also allows for potential breaches in other areas. Previous methods only allow for 

one breach point per defence section, usually assumed to occur at the lowest point. 

In a similar way to the crest height the strength of the defence is not uniform along its entire 

length. This is partly addressed through the probabilistic construction of the fragility curve and 

its associated uncertainty bounds. However to fully address this variability detailed survey 

information of the variation in defence construction would be required. At present the survey 

resolution is coarser than the known structure properties variation. Further work in this area in 
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the future could provide a useful means of incorporating the local scale weaknesses identified 

by Simms et al (2009) into generic fragility curves.  

8.5.2.3 Assigning breach size 

Breaches are generated based on the probability of failure at each of the sampling points along 

the defence crest. Breaches are assumed to initiate when the water level is above 90% of the 

crest height. Given the wide variation in observed and assumed breach dimensions (See 

Section 8.3.2 and Table A8.1) the breach sizes used in this study were based on the best 

available data set from the CTFRA. The same values were assumed to apply for the Lincolnshire 

coast.  

The CTFRA specified expected breach sizes based on expert judgement, and historic records, 

these are given in Table 8.13. However these breach sizes were based on the critical failure 

model identified for each defence section, some of which are not included in this study. In light 

of this, and as taking a risk based approach allows more variation to be considered in the 

model, the breach invert and breach width were sampled from a normal distribution with the 

mean values as specified in Table 8.13. It was not possible to specify specific values for 

different defence types as most of the defences included in the Conwy study were sea walls. 

Allowing variation in the breach dimensions also allows for indirect incorporation of the 

observation that some breaches do not grow to their maximum potential size due to a lack of 

energy in the later stages of the flood event or human intervention (See Section 8.2). 

Consideration of contribution of breach size to the resulting damage from an event is made in 

Section 9.1.4.4. 

The breach growth rate is assumed negligible. All breaches are assumed to grow to their full 

dimensions within one time step. If the breach occurs in the same defence section and the 

distance between them is less than the sampled breach width the breach points are assumed 

to belong to the same breach, with the smaller breach merging into the larger one.  

Flow through the breach is calculated on an hourly time step using the Broad Crested Weir 

equation (8.2) on an hourly timestep and input to the 2D inundation model. 

Table 8.13 CTFRA assumed breach dimensions for North Wales defence sections 

Ref. Type Length (m) Breach invert (proportion of 

crest height) 

Breach width (m) 

4A Return sea wall 1241 0.19 248 

4B Return sea wall 970 0.21 194 

4C Vertical wall with 

mound 
760 0.30 152 

4D Sloped masonry 

revetment with 
725 0.15 145 
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Ref. Type Length (m) Breach invert (proportion of 

crest height) 

Breach width (m) 

crest wall behind 

4E Vertical sea wall 300 0.28 60 

4F Sloped masonry 

revetment with 

crest wall behind 

1200 0.15 240 

4G wave return wall 330 0.00 66 

4H wave return wall 380 0.10 17 

4I wave return wall 718 0.09 144 

4J wave return wall 593 0.00 66 

4K Dunes 150 0.44 60 

4L Dunes 40 0.44 16 

4M Saltmarsh / 

Dunes 

141 
0.33 56 

4N Vertical quay wall 280 NA NA 

Mean   0.21 112.6 

Defence reference refers to the map in Figure 8.19 

Source: CTFRA (HR Wallingford 2002) 

8.6 Example application 

To demonstrate the process lined in Sections 8.4 and 8.5 the application of the methodology is 

detailed for the North Wales site. 

8.6.1 Model domain 

The modelled domain considers the coastline from Hen Wrych in the West to the Clywd 

estuary in the East and includes a number of caravan sites in Abergele and Towyn as shown in 

Figure 8.19. This corresponds to an area of 11km by 6km. 7.8km of coastal flood defence is 

included in the model. The data for these defence sections were taken from the CTFRA. The 

reference labels (4A – 4N) correspond to the references used in the CTFRA. In addition, 

defences also exist along the Clywd estuary as shown in grey in Figure 8.19. These defences 

have not been included as the crest height data are unavailable, the defences are complex to 

model as they consist of embankments behind extensive saltmarsh and, as concluded in the 

CTFRA, failure of these sections is unlikely.  
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Figure 8.19 North Wales coastal model domain showing coastal defence sections and 

caravan site locations 

 

8.6.2 Crest height 

Crest heights were simulated using the Markov chain process outlined in Section 8.4 at each 

defence simulation point. Three example simulations are shown in Figure 8.20.   
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 Black solid line is the mean crest height, coloured dotted lines are the simulated varying crest height. 

Chainage = 0 at the western end of defence 4A. 
 

Figure 8.20 Three example simulations of plausible variations in long section crest height for 

North Wales defences  
 

8.6.3 Overtopping 

Overtopping was calculated using Owen’s equation at each defence simulation point. Defence 

slopes are taken from the composite defence slope calculated in the Towyn assessment (no 

slope is provided for defence 4M however as this is a vertical sea wall, a value of 1:0.5 has 

been used to maintain consistency with the sloped methodology). Values for the coefficients, a 

and b, were identified from Table 7.10. Where the slope is beyond the range of the table, a 

and b parameters are assigned using the values provided in the CTFRA. No account is taken of 

berms. A roughness value, r, is provided in the CTFRA,  these values were crossed check 

against the pictures and descriptions of each defence section and the coefficients provided for 

use in Owen’s equation and were found to be suitable.  

8.6.4 Breach initiation 

The failure probabilities for event loading were given in Table 8.11 and Table 8.12. Defences 

4N and 4M are located within the Clywd estuary and as such are not affected by waves and not 

expected to fail (as stated in Conwy tidal risk assessment). In light of this, the wave height at 

these defences is set to 0 and a failure probability of 0.5 is specified if the still water level is 

greater than crest height, otherwise the failure probability was set to 0. An example scenario is 

shown in Figure 8.21. 
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Figure 8.21 Identification of defence breach locations for a North Wales example 

overtopping scenario using simulated water level and defence crest height 

8.6.5 Breach size 

Breach dimensions for each of the breach initiation points are sampled from the normal 

distribution of breach scenarios as discussed in Section 8.5.2.3. Since the distance between the 

breaches is less than the width of the largest breach, the breaches are assumed to merge and 

only the largest breach is included in the inundation model. 

Table 8.14 Simulated breach dimensions for a North Wales example overtopping scenario 

Breach chainage (m) Breach width (m) Breach invert (proportion of crest 

height) 

3150 30.84 0.19 

3250 213.51 0.29 

 

8.7 Using defence reliability in the system model 

The consideration of defence reliability detailed in the chapter is fully integrated with the 

systems model outlined in Chapter 4. A risk based approach is maintained throughout 

accepting that the degree of information known about defence condition is limited and 

allowing the defence state to vary for each event simulation.  The ability to include the 

spatially varying defence crest into the defence methodology reflects the importance of the 

spatial and temporal dependence between extreme events incorporated in the conditional 

dependence model. This is a useful extension of existing risk based methodologies which 

assume defence properties to be consistent within each defence section. The review of the 

spatially varying crest height of defences in Lincolnshire identified that this assumption could 

lead to large errors when calculating overtopping. A useful further extension of the method 
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would be to include spatially varying defence properties although this would require detailed 

survey data which was not available for this thesis.  

The literature review in Section 8.2 identified a number of processes which are known to affect 

the breach growth rate and final breach dimensions. Existing risk based failure methodologies 

are limited in their consideration of these mechanisms due to the complexities and data 

requirements. There is a clear need for developing a methodology that is able to incorporate 

physical driving factors such as timing of initiation and floodplain type into a risk based 

framework for defence fragility, especially given the observations by Simms et al (2009) of the 

potential limitations of the standard fragility curve approach to address local scale weaknesses.  

The approach used in this thesis is based on the standard best practice available at present and 

as such provides a robust framework for considering defence reliability whilst accepting that 

the approach makes some necessary simplifications. The contribution of defence failure to risk 

is discussed further in Chapter 9 including an assessment of the sensitivity of the results to the 

breach size. 
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9 Calculating damage, loss and risk 

9.1 Calculation of damage  

Damage during a flood event is caused by floodwater entering buildings and damaging the 

building structure, content and service infrastructure (e.g. sewerage).  Indirect costs such as 

business interruption or relocation costs are also sometimes included. A review of the current 

practice in determining the economic impact of floods is provided by Merz et al (2010).  

Within risk models, damage is usually estimated using a depth-damage curve whereby for a 

given structure type a relationship is established between damage caused for floodwaters at 

various depths. Depth damage curves are usually based on observed data, and / or expert 

judgement.  

The consideration of damage is an integral part of the risk model however it often receives less 

detailed analysis than the source and pathway components (Merz et al. 2010). Various data 

sets have been collected to investigate the depth damage relationships using both observed 

damages following major events such as the Dundee tables in the UK (Black et al. 2006), 

HOWAS 21 (Deutsches GeoForschungsZentrum GFZ 2010) in Germany, and commercial 

research by Cat modelling companies, and using synthetic “what if” analysis including the 

database behind the Multi-coloured Manual (MCM) in the UK (Penning-Rowsell et al. 2005). 

Other data sets have been collated around the world however due to the localised nature of 

building practices it is not usually sensible to transfer vulnerability data between different 

countries. It is widely acknowledged that depth-damage functions contribute a source of 

uncertainty to risk models due to the lack of understanding and wide variation in damage 

processes (Merz et al. 2004). There is some evidence to suggest that this uncertainty may be 

relatively small compared to uncertainties in the hazard calculation (Merz and Thieken 2009), 

although this is an under researched area (Merz et al. 2010) and is likely to depend on many 

site specific factors. Further details of the uncertainty contribution within this risk model are 

discussed in Section 9.4. Catlin believe the depth-damage curves are a significant contributor 

to uncertainty although this may be more due to the specification of floor level than the curves 

themselves 

Merz et al (2004) identify that one of the biggest problems is that a depth-damage relationship 

alone cannot represent the wide variation in observed flood damages as shown for residential 

properties in Figure 9.1. Therefore additional data are required on individual building type, 

value, construction and occupation. This data is unlikely to be available for individual building 

types but as demonstrated by Penning-Roswell (2005) some assumptions can be made by 
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breaking down property types into smaller homogeneous damage units such as detached, 

semi-detached, terrace, flats or bungalows. Although the scatter shown in Figure 9.1 is 

concerning and indicates a restriction on our ability to estimate damages for an individual 

property, due to the law of large numbers, the uncertainty in total flood damage is reduced as 

the number of flooded properties increases (Merz et al. 2004) .  

 

Source: Merz et al. (2004, data from HOWAS 21) Thick blank line represents nonparametric depth-

damage function. The line at 2.2m identified the point at which flood waters affected properties above 

cellar level.  

Figure 9.1 Variation in residential flood damages in Germany 

 

The simplistic depth-damage relationship could be extended to include other contributing 

factors such as salt water intrusion (Penning-Rowsell et al. 2005), varying velocity (Kreibich, et 

al. 2009) or different durations of inundation (Penning-Rowsell et al. 2005). A longer list of 

extensions is provided by Merz et al (2010). The importance of these factors depends on the 

receptors beings considered. No extensions to the basic depth-damage relationship are 

discussed here although a possible extension would be to investigate the impact of velocity as 

given the flimsy structure of caravans this could have a significant impact.         

As outlined in Chapter 4, the modular nature of the methodological framework proposed in 

this thesis means that any spatially distributed receptor can be considered by using the 

relevant depth-damage information.                                                  

9.1.1 Flood damage to caravans 

Although caravans are usually raised off the ground, site services such as electricity and water 

connected to a caravan suffer damage before water has entered the caravan itself. Static 

caravans are particularly vulnerable in floods as their light and flimsy structure makes them 
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prone to structural damage and to becoming unstable and dislodged from their bases (Hall et 

al. 2000).  Because of these features depth-damage curve for caravans tend to be abrupt since 

once water and sediment enters a caravan it is normally a write off (Hall et al. 2000; McEwen 

et al. 2000). 

Much of the existing work on depth-damage relationships has focussed on residential and 

commercial properties. The data on caravans are sparse, therefore the uncertainties around 

caravan depth damage curves are large. A study of 1272 of the 1300 static caravans flooded in 

the Avon valley during the 1998 floods carried out by McEwan et al (2000) provides perhaps 

the most comprehensive available data set for identifying key features of the relationship in 

the UK. As part of this study they visited 21 parks immediately after the flood. Their interviews 

with park owners and residents found that: 

• Seven of the parks had more than 50 static caravans destroyed 

• There were 10 cases with 67% to 100% of total stock lost 

• 682 caravans were reported as written off and replaced while 137 were repaired 

• Claims for damage ranged from £1500 to £57800 with a median value of £16095.  

• Claims for contents insurance ranged from £375 to £7500 with median value £1400 

 

This study highlights the vulnerability of caravans to flood damage with a large proportion of 

units written off in this event. Although the exact depths at each site is unknown, the River 

Avon at Evesham rose 3m above the bank according to Environment Agency gauging 

(Environment Agency 2010a) during the 1998 event and flooding extended a mile onto the 

floodplain (Saunders 1998).  

The recent floods in Mid Wales in June 2012 illustrated the damage flood water can do to 

caravan parks. The during and after photographs shown in Figure 9.2 clearly show the 

potential of floods to damage the external fittings of caravans in this case including verandas, 

gas canisters and the site infrastructure. 

Unfortunately since the flood depths for the events in Section 3.4 are unknown, it has not 

been possible to collate depth-damage data to increase the availability of caravan specific data 

as part of this PhD. Two exiting sources of caravan-specific depth-damage functions are 

outlined below. 
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a) During the event b) Damage to site 

Photo credit: Lestyn Hughes, BBC News (2012) Photo credit: Shropshire Star (2012) 

 

Figure 9.2 Photographs of damage caused by the June 2012 floods at Riverside Caravan 

Park Llandre 

9.1.1.1 Multicoloured manual caravan depth damage curves  

The MCM (Penning-Rowsell, Johnson et al. 2005) was developed as an aid to decision making 

for cost benefit analysis. It is used as the basis for most government funded risk management 

in the UK. It includes component based depth damage curves for building structure, content 

and fixtures for a variety of property types for developed from observed data and expert 

judgment. The most recent update of the MCM is from 2005, although the Environment 

Agency are currently funding a further revision (Environment Agency 2010c).  

The MCM damage curves are scenario based. The base scenario is for a river flood of less than 

12 hours duration and no prior flood warning. For non-residential properties such as caravans, 

data are provided on the average value of property components per m2 and the expected 

damage per m2. The user can change the property value based on site data if available, and is 

then expected to scale up the damage curve based on this size of the property of interest. This 
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is a sensible approach for large industrial units but appears less useful for caravans which are 

approximately the same size.  

For caravans the written description of the depth-damage curve is: 

“For fixed caravans use zero (minor damage) from ground level to undercarriage and 

then £16 000 to represent an average for total write-off cost, as at this level and above 

vans fall off their plinths, crumble and collapse and are often washed away. For many 

caravans, once a flood depth has been reached which results in the caravan floating 

(which can start around 0.60m) write-off would be expected. Regardless of duration, 

write-off is assumed to occur at a flood depth of 0.75m.” (Penning-Rowsell et al. 2005, 

p94) 

This description does not seem to relate to the quantified depth-damage curves for caravans 

shown in Figure 9.3 which only show a steep rise for moveable caravans and not static ones 

between 0.6 and 0.75m, and, even at depths of 3m, do not represent total write off. The MCM 

states that most moveable caravans are also raised by 0.5m and as they have limited fixture 

and fittings compared to static caravans, no damage is sustained below this threshold resulting 

in rapid increase in damages once the threshold is met. The difference between the text 

description of total write off and the depth-damage curves is because the MCM curves do not 

model total write off, the text description is therefore better able to represent the high 

vulnerability of caravans than the standard curve structure which is also used for more solid 

buildings. The MCM curves are derived from component based curves as shown in Figure 9.4. 

Comparing Figure 9.4 with the total damage curve in Figure 9.3 shows that the shape of the 

depth-damage curve is dominated by the structural curve which accounts for 78% of the 

caravan value. The structural damage does not exceed 30%, which is low given the MCM text 

description above and the results of the McEwan et al study (2000). The loss value of 80% and 

above at depths of 3m for movables, fixtures and services appears reasonable.  
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Figure 9.3 MCM depth-damage curves for caravans 

 

 

Figure 9.4 MCM depth-damage component curves for static caravans 

9.1.1.2 Cat model damage curves  

Damage curves are the main part of the vulnerability module of Cat models. Damage is 

quantified as a mean damage ratio, this is the ratio of loss compared to the replacement cost 

of the building (RMS 2008). Cat model damage functions are again developed from observed 

damage data collected after events. Although not explicit, it is likely that only limited data 

were used for caravan specific damage. 

As discussed in Section 3.3.2 the damage curves in Cat models are built component wise with 

different curves available for structures of different type, age, use and construction material. 
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In addition the curves are enhanced to take account of modifiers such as awnings and external 

fittings or reduced if mitigation measures are present. The Cat model damage curves are more 

complex than those used in the MCM as they include additional factors such as business 

interruption and a multiplication factor for the scale and size of the event to account for the 

increasing cost of materials and labour for rebuilding following very large events.  

It was not possible to gain access to the details of Cat model depth damage curves for caravans 

due to commercial sensitivity. 

9.1.2 Development of depth-damage curve 

Since the MCM damage curves appear unrealistic and the Cat model damage functions are 

unavailable, a new depth-damage curve for static caravans has been derived based on the 

MCM curve with some adjustment to better reflect the high vulnerability of caravans seen in 

the McEwan et al (2000) data, Catlin’s existing assumptions, and observations from past claims. 

The proposed depth-damage curve and component parts are shown in Figure 9.5 and Figure 

9.6. The curve has been developed with reference to the following factors: 

• Caravan assumed raised to 0.5m. Limited damage to the structure occurs below this 

level. Some low damages expected to services.  

• The damage per m
2
 is not necessary when Catlin only know an average value per unit. 

This is assumed to be £20,000 (see Chapter 3). This is equivalent to approximately 

20m
2
 using the MCM assumed values which seems reasonable (given some variation 

for changing component values since 2005). The proposed damage curve is given as 

expected damage based on average unit value. Since Catlin pay claims based on the 

current insured value, no account of depreciation is required.  

• Catlin assume a structure to content ratio of 90:10 (see Chapter 3).This is 

approximately equal to the MCM ratio of 93:7 (when services and fixtures are included 

as structure) No change has been made to the MCM component distribution  

• Catlin only insure new caravans (less than 5 years old) therefore it is assumed that 

modern water resilient products are used where possible therefore write off is not 

expected for very low water depths.  

• The overall vulnerability of caravan structure is assumed higher than that represented 

by the MCM curves. A rapid increase in damage is expected for depths between 0.5 

and 1m. Beyond this point the main structure of the caravan is assumed written off. 

Damage will continue to increase with depth for the moveable items and services.  
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• The shape of the damage curve for insurance purposes is less important above the 

point of significant damage.  Although there may be some salvageable items below an 

internal flood depth of 0.5m, when a large proportion of value is destroyed it is normal 

for insurance companies to assume a complete write off.  

• As no additional data are available, the shape of the damage curves for movables, 

fittings and services is retained from the MCM curves except for depths > 2.5m. At 3m 

it is assumed water is at top of caravans and all movables and fittings are written off.  

 

 

Figure 9.5 Proposed depth-damage curve for static caravans 

 

 

Figure 9.6 Proposed depth-damage component curves for static caravans 

 

Moveable equipment Fixtures  
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There are large uncertainties around the depth-damage curve due to the lack of data and the 

fact that not all caravans will respond equally to the same flood depths. The main point of 

uncertainty in the curve is the point at which serious damage starts to occur and where write 

off is expected. Here this is assumed to be between 0.5m and 1m. The importance of correctly 

specifying these points can be investigated by varying the values. In the absence of data to 

validate depth-damage curves, this approach of testing the most sensitive aspects of the curve 

is recommended as a feasible alternative (Merz et al. 2010). More details are provided in 

Section 9.1.4.3.  

Ideally this proposed curve would be underpinned by observed data however it is not intended 

for general use beyond this PhD. It will allow the relative flood damages for different events to 

be calculated and, by having a greater understanding of the curve structure, will allow easier 

variation of the curve to account for uncertainty. 

9.1.3 Calculation of loss 

It should be noted that damage is not necessarily the same as insured loss. A property may 

suffer more damage than is paid out by the insurance company due to restrictions on the 

policy, whether new for old cover is included, and the amount of excess the property owner 

has to pay. To account for this insurance companies impose a losses model onto of the damage 

functions used. In some cases this can be quite complicated and involve several layers of 

calculation covering the various layers of re-insurance cover, however in the case of the 

caravan account used here the losses model simply comprises a reduction of damage based on 

an excess of £50 per caravan as specified by Catlin. 

9.1.4 Factors affecting the calculation of damage and loss to caravans 

9.1.4.1 Distribution of units on site 

Cat models identify the location of assets at risk by postcodes. As discussed in Section 3.3.3 

due to both the large spatial scale of sites and the size of postcode units in rural areas this 

approach may lead to errors in the estimation of risk. In light of these concerns the effect of 

using point locations for all caravan units on a site compared to distributing units evenly across 

the site was considered using the caravan sites in the North Wales cluster. Units were 

distributed across the site by dividing the number of units at each site by the number of grid 

cells within the site boundary. Only whole numbers of units were allowed within each grid cell. 

Where an even distribution was not possible, units were randomly assigned to grid cells within 

the site boundary.  
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A simplified example was set up where each defence section, 4A to 4M (see Section 8.6), was 

breached in turn at the midpoint. The water level and breach dimensions were kept consistent 

for each section. The breach width was 117m, the average of all breach dimensions specified in 

the Conwy Tidal Flood Risk Assessment. The breach sill was 5m, the lowest of the Conwy Tidal 

Flood Risk Assessment. The skew surge used was the 99
th

 quantile of the simulated data whilst 

the tide height used was the 99
th

 quantile of observed data. A surge shape was randomly 

sampled from the three representative surge shapes. The resulting components are shown in 

Figure 9.7. The still water level was scaled to account for long shore variation. The max still 

water level for this event is 5.64mAOD at Towyn. Comparison with the EA coastal flood 

boundaries project  (McMillian et al. 2011a) indicates this is between a 0.33% AEP event and a 

0.2% AEP event at Llandudno although the Conwy Tidal flood risk assessment only indicates 

this is a 1% AEP event at Kimmel Bay (HR Wallingford 2002). Whilst there is some inconsistency 

between these two reports, the simulated water level provides a realistic extreme event to 

test the location assumptions. No consideration of waves was made. The breach is assumed to 

occur one hour before high tide and inflow through the breach continues for three hours.  

 

Blue dashed line is deterministic tide. Red dotted line is skew surge simulated at the bold points and 

interpolated in between. Black line is total still water level. 

Figure 9.7 Still water level components used for location assumption testing 

 

The damage and loss values sustained for each breach scenario are given in Table 9.1. Since 

the loss is a linear function of the damage, only the damage is discussed. In most cases the 

flood spreads along the lowland area behind the defence so there are not distinct flooded 
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regions for each breach scenario, however the flood depths are generally greatest close to the 

breach location. The spatial flood depths for a breach in section 4E and 4H are shown visually 

in Figure 9.8 and Figure 9.9. These two breach locations have been selected to demonstrate 

different sensitivities to caravan unit locations. For a breach at section 4H, the point location of 

caravans is located at the point of greatest flood depths. This location is at the boundary of the 

caravan site, the interior of which suffer much lower flood depths. In this case there may be 

some units on the site that are not flooded or suffer much lower flood depths than the point 

location represents. A breach at section 4E shows less disparity between point and distributed 

locations as the point locations affected are within the caravan site outlines and cover a range 

of flood depths which represent the depths experienced across the site. 

Table 9.1 Damage and loss values for a breach in each North Wales defence section showing 

the difference between assumed point and distributed location of caravan units 

Defence 

section 

Max 

depth 

(m) 

Area 

flooded 

(km
2
) 

For point locations For distributed locations 

N
o
. units 

flooded 

Damage 

(£1000) 

Loss 

(£1000) 

N
o
. units 

flooded 

Damage 

(£1000) 

Loss 

(£1000) 

4A 5.75 1.8 45 29.6 27.3 34 22.1 20.4 

4B 3.23 2.2 45 440.6 438.4 61 281.1 278.0 

4C 4.18 2.1 52 41.4 38.8 77 86.7 82.8 

4D 4.86 2.4 662 637.1 604.0 591 995.4 965.8 

4E 3.12 3.0 685 1729.0 1694.7 632 1358.8 1327.2 

4F 2.64 2.8 438 449.9 428.0 466 668.3 645.0 

4G 3.00 2.3 545 2278.8 2251.6 421 1290.2 1269.1 

4H 3.31 2.0 452 2598.8 2576.2 296 450.6 435.8 

4I 3.29 1.8 422 1309.9 1288.8 252 286.2 273.6 

4J 3.55 1.8 408 582.6 562.2 197 173.3 163.4 

4K 3.57 2.0 408 610.1 589.7 211 197.9 187.4 

4L 3.42 0.6 0 0 0 0 0 0 
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Figure 9.8 Simulated flood depths for a breach in North Wales defence section 4E 

 

 
Figure 9.9 Simulated Flood depths for a breach in North Wales defence section 4H 
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Although this is a small example case study it is evident that the results are sensitive to the 

distribution of units. For the scenarios that caused flood damage there was an average 

difference of 19% between the point and distributed unit locations, this is equivalent to an 

absolute error of 58%.  The degree of sensitivity to the location assumptions is likely to be 

affected by the scale of the flood event. As shown in Figure 9.10 the difference between the 

point and distributed locations is less for events affecting a larger area. This is because the 

point location is more likely to be within the flooded area. Therefore the results presented in 

this section could be considered as a conservative estimate of the sensitivity of damage to the 

unit location assumptions as the event used has a return period of greater than 1% AEP.  

 

Figure 9.10 Difference in damage calculated using point and distributed caravan unit 

locations compared to the total area flooded  

9.1.4.2 Unit value assumptions 

In Section 3.3.1 Catlin’s assumption of an average unit value of £20000 was discussed. Here, 

using the same example application as in Section 9.1.4.1, the sensitivity of the event damage 

and loss to the assumed unit value was investigated. The results were summed over all 

defence section breaches and the percentage difference compared to a value of £20000 was 

calculated (Table 9.2). Although the number of units at each site decreases as the unit value 

increases due to the fact that the damage curve is specified based on percentage of total value 

there is no difference in the damage sustained for point locations. The differences in damage 

for distributed locations are due to the differing location of units across the site. There is a 

small difference in losses which is most evident in the point data as it is not affected by the 

unit locations. Raising the unit value increases the losses sustained as less deductibles are 

claimed.  In general the sensitivity of the results to the unit value assumption is low compared 

to other areas of the methodology.  
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Table 9.2 Percentage variation in damage and loss values for different assumed unit values 

Unit 

value 

(£) 

For point locations  For distributed locations 

N
o
. units 

flooded 

Damage  Loss   N
o
. units 

flooded 

Damage  Loss  

5000 
299.7% 0.0% -5.9%  304.0% 0.8% -7.9% 

15 000 
33.3% 0.0% -0.7%  33.7% 4.2% 3.3% 

25 000 
0.0% 0.0% 0.0%  0.0% 0.0% 0.0% 

35 000 
-20.2% 0.0% 0.4%  -19.6% -5.2% -4.8% 

45 000 
-42.9% 0.0% 0.9%  -42.6% -0.6% 0.6% 

55 000 
-55.6% 0.0% 1.1%  -54.9% 3.6% 5.3% 

 

9.1.4.3 Sensitivity of depth-damage curves 

The depth-damage curve was modified to investigate the sensitivity of the results to the shape 

of the damage curve in three areas; the floor height of the caravan, the vulnerability of the 

caravan to damage through the steepness of the rise of the main section of the curve and the 

point of write off. Plots of the different curve shapes are shown in Figure 9.11 to Figure 9.13. 

The floor height was tested from 0m to 1m at 0.25m intervals by changing the point at which 

damage to the caravan structure rather than just the external fitments was sustained. The 

curves are a slightly different shape from the original curve (shown in grey in Figure 9.11) to 

allow a standard shape to be used to represent most damage being sustained between floor 

height and 1m above floor height. Vulnerability of the caravan to damage was tested by 

multiplying the rate of change of the main section of the curve by 0% to 50%.  The resulting 

curves are shown in Figure 9.12.  The sensitivity to the point of write off was tested by 

changing this point from the original 3m to between 1m and 3.5m and 0.5m intervals. . 

The flood depths from the  sample breach event in each North Wales defence section (See 

Section 9.1.4.1) were used in the sensitivity calculations. The point damages were summed 

across all breach events to generate a large sample to test the damage curves. Area distributed 

damage values were not considered due to potential differences in the distribution of units 

across the site between runs. Flood depth for this event set ranged from 2.64m to 5.75m 

(Table 9.1).  

As expected the damage was very sensitive to the floor level. If the caravans were situated at 

ground level rather than raised by 0.5m the damage would be over 300% greater. The 
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sensitivity is greatest for floor heights of less than 0.5m as at these depths  a caravan may be 

flooded or not flooded by a change in floor height of a few cm. The sensitivity is less as the 

floor height increases, between 0.75m and 1m there is less than 1% differnce in damage. 

Whilist this result is dependent on the flood depths sustained during an event, the levels are 

representative and the large areas affected means a range of flood depths would be sustained.  

This high sensitivity is concerning as Catlin do not know site specific details about each caravan 

unit they insure and therefore do not know the floor level. The results in Figure 9.11 indicate 

that this could result in large errors in their risk calculation as small difference in floor level 

result in large differences in damage due to the steep rate of raise of the damage curve once 

the floor level is reached. 

 

a) Sampled depth-damage curves    b) Estimated damage across all breach 

locations 

Figure 9.11 Testing of the sensitivity of simulated flood damage to floor height by 

varying the shape of the depth-damage curve 

 

Little is known about the vulnerability of caravans to flood damage therefore by changing the 

rate of rise of the main section of the damage curve it is possible to investigate the effect this 

lack of knowledge has on risk estimates. The sensitivity of the results to the rate of rise of the 

curve is less sensitive than to the floor level. A 50% change in floor level resulted in difference 

in damage of 144% for a decrease and 56% for an increase. For a change in steepness of 50% 

the change in damage is 40% for a steeper curve and 16% for a shallower curve.  Small changes 

in steepness of +/- 10% resulted in changes in damage of 4-5% and changes in steepness of +/-
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20% in differences of 8-11% in damage. Given the other uncertainties involved in risk 

estimation, if the vulnerability of caravans is assumed to be within 20% of the best estimate of 

vulnerability used in this thesis with reference to existing depth-damage curves and expert 

knowledge the proposed damage curve shape between 0.5m and 1m gives a good 

approximation of damage.  

The biggest increase in accuracy for damage estimation can therefore  be achieved by accurate 

information on floor levels however if additional data on caravan vulnerability were collected 

this would be beneficial and help to pin down the damage curve shape.  

 

a) Sampled depth-damage curves    b) Estimated damage across all breach 

locations 

Figure 9.12 Testing of the sensitivity of simulated flood damage to material 

vulnerability by varying the shape of the depth-damage curve 

 

The damage curves were modified to investigate the effect of changing the point of write off 

however the flood depths in the sample scenarios only exceeded 3m at isolated locations 

therefore changing this upper section of the curve did not significantly change the damage. 

Reducing the point of write off to 1m only resulted in a 0.15% increase in damage compared to 

a 3m write off point. There was no change above 1.5m.  Given the steepness of the curve 

between 0.5m and 1m and the high sensitivity to the flood level, the point of write off is not a 

significant feature of the damage curve.  
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a) Sampled depth-damage curves    b) Estimated damage across all breach 

locations 

Figure 9.13 Testing of the sensitivity of flood damages to the point of total write off 

by varying the shape of the depth-damage curve 

 

9.1.4.4 Specification of breach size 

Previous research has identified the sensitivity of inundation models to breach dimensions. For 

breaches in one section of defence, 4E, using the event specified in Section 9.1.4.1 the effect 

of changing breach size was investigated. The dimensions were modified from the mean of the 

distribution for breach width and by up to two standard deviations. To provide a spread of 

breach areas, scenarios were also run for a wide breach, a deep breach and a narrow and deep 

breach as shown in Table 9.3.  

Table 9.3 Range of dimensions used to investigate sensitivity of flood damage to breach size  

Breach size scenario Width 

(m) 

Invert 

(mAOD) 

Area 

(m
2
) 

Expert value 60 5.9 138 

Mean of distribution 72 6.5 121 

Plus 1 standard deviation  128 5.3 372.2 

Plus 1.5 standard deviation 114 4.73 400 

Plus 2 standard deviation 128 4.1 527 

Minus 1 standard deviation 43 7.71 21 

Minus 1.5 standard deviation 29 8.01 5 

Very wide breach 200 5.9 460 

Very deep breach 60 2.0 372 

Narrow and deep breach 40 3.0 208 
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The results shown in Figure 9.14 show a trend of increasing damage with area.  There is a 

suggestion that this trend is influenced more by the breach width than the invert although the 

invert level has a binary influence of whether significant amounts of water are able to reach 

the floodplain. More detailed investigation would be required with a larger sample size to 

quantify the impact of specifying breach dimensions on the uncertainty in damage calculations 

however the differences in damage for each breach size are large. A change in breach width 

and depth of one standard deviation compared with the mean of the distribution results in 

differences in damage of up to 100% for the same event. The smaller breach size caused no 

damage due to the high sill level and the larger breach size resulted in an increase of 91% in 

damages. The specification of breach size is therefore a critical component of the system 

model.  

   

 

Figure 9.14 Variation of damage conditional on breach size 

 

9.2 Calculation of risk 

Risk is the probability of an event multiplied by the consequences (see Section 2.2). Risk is 

estimated using a Monte Carlo sample of events as defined in Section 4.2.7. This section 

outlines the final stages of converting the damage from the multi-site events simulated 

throughout this thesis into risk.  

9.2.1 Multi-site calculation of risk using the systems model 

With reference to the outline of the system model in Figure 4.1, a multi-site calculation of risk 

from fluvial and coastal events can be made for the selected risk clusters using the following 

steps (the section reference for each step is given in brackets) 

1. Generate a large event set of dependent events across all core gauges (6.3.6), then for 

each simulated event, 

2. Convert the simulated data to physical risk driving components. 

For fluvial components this includes: 

i. Converting DMF to peak flow (7.2.1) 
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ii. Interpolating peak flow to the sites of interest (7.2.2) 

iii. Generating an event hydrograph (7.2.3) 

iv. Calculating water level using hydraulic model (7.2.4) 

For coastal components this includes: 

v. Simulating a peak wave height conditional on event skew surge (7.3.3) 

vi. Calculating the total inshore water level and wave height (7.3.5) 

3. Simulate defence crest realisation (8.4.2) 

4. Calculate potential overtopping and breaching conditional on the water level and 

defence crest (8.5) 

5. Run the relevant inundation model for each risk cluster to calculate flood depths (7.4) 

6. Calculate damage at each site (9.1.2) 

 

This process results in the damage across all selected areas of interest conditional on each 

event. The probability of each multi-site event is defined based on the simulated values at the 

core gauges (Equation 4.14).  

Computationally this requires generating a large event set from the conditional dependence 

model and running this through the systems model. The largest computational component is 

the inundation modelling which, due to the presence of flood defences, in most cases will not 

be required and the resulting flood damage will be zero. This means the computational burden 

is reduced and a large event set is achievable.  

9.3 Informing decision making 

The aim of this research was to develop a new methodology to help understand dependencies 

in risk exposure in the UK. This aim has been met through the consideration of individual 

components of the system leading to a review of the how each component should be taken 

account of in decision making for both insurance pricing and wider flood risk management. A 

summary of the main findings is provided below.  

9.3.1 Sources 

The statistical modelling of sources of fluvial and coastal risk identified that the dependencies 

in risk across large areas and different sources are weak, therefore by maintaining a good 

spatial distribution of assets insurance companies can manage their risk exposure. Exploration 

of the temporal dependence structure showed that the existing seven day window used by 

insurers will contain all dependent events however it was illustrated that in the UK the highest 
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large scale dependencies peak within three days, therefore this window may also incorporate 

other independent events.  

9.3.2 Pathways 

Consideration of the pathways illustrated the significance of flood defences to risk, particularly 

for the heavily defended coastal caravan sites. The representation of flood defences in risk 

models is poor due to lack of data and computation difficulties in incorporating details of 

defence failure into risk based approaches. The available details on defence failure in Cat 

models are simplistic however it is assumed that they are similar to those taken within 

academic models. In light of these concerns it is recommended that a precautionary approach 

is taken to risk pricing in defended areas. However defended locations may not necessarily be 

at higher risk than implied by existing models.  Simms et al (2009) identified that flood 

defences during the 2007 event performed better than would be expected compared to the 

available fragility curves.  

The link between correctly modelling the dependence between wave height and still water 

level is important as in most cases overtopping will not occur unless a high water level occurs 

with moderate to high wave heights. Similarly the use of skew surge to mitigate the need to 

consider the timing of high tide and storm surge is important as overtopping is most likely 

when the peak surge corresponds to a high tide.  

9.3.3 Receptors  

Limited data is known on the vulnerability of caravan structures to flood damage. The 

literature and exert opinion identified high vulnerability with steep depth-damage curves. The 

most important point in the depth-damage curve was found to be the floor height.  Catlin 

already partly incorporate this in the insurance criteria by only insuring units above the historic 

maximum flood depth however given that RiskLink provides the functionality to include flood 

heights it is recommended that Catlin collect this data and use it routinely to improve their risk 

estimates.  

The geocoding of unit locations was found to be significant, particularly for moderate events 

where only part of the site may flood. This is a particular issue for caravans which are located 

on large sites however it could also have implications for modelling other spatially distributed 

receptors with poor location data for example on industrial units or in large rural postcodes. 

The impact of the unit location will vary on a site by site basis and may average out across the 

whole portfolio. It is recommended that Catlin consider the effect of this particularly for high 

value sites where the point location could make a large contribution to the AAL.   
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9.3.4 Consequences and Risk 

The consequence of interest is insured loss, in particular the potential for overexposure due to 

poor risk pricing. By reviewing the individual components of the S-P-R-C model it is possible to 

identify areas where improvements in modelling capabilities could lead to a more reliable 

estimate of AAL. The final stage of the process would be an integrated multi-site end to end 

calculation of risk from combined fluvial and coastal sources. Although this would provide a 

coherent demonstration of the strength of the system model across multiple sites this has not 

been attempted in this thesis. Due to the lack of available data, necessary simplifications in the 

process, and the cascade of uncertainty through the systems model (discussed in Section 9.4) 

it was not felt that the results of this large calculation would provide an improvement on the 

understanding gained from reviewing the individual components.  

9.4 Contribution of uncertainty to the risk estimat e from the system 

model components 

The significant factor in the decision not to complete a multi-site calculation of risk as part of 

this thesis was concerns over the effect of cascading uncertainty through the system model. 

Although some stages of the process represent the best available science, others are 

compromised by a lack of data or knowledge.   

Assessing the contribution of each system component to the overall uncertainty is difficult as 

the uncertainties and critical contributing components change as events get more extreme. 

The uncertainty in simulating the source components increases with event rarity (see Section 

6.3.4) however due to the law of large numbers, the uncertainty in damage calculation reduces 

as floods become more extensive. A critical threshold for the industry is a 1.3 AEP event as this 

is the threshold at which they are obligated to provide insurance cover. An assessment of the 

system uncertainty at the 1.3 AEP event was attempted in this thesis however due to the 

dominance of the flood defences in controlling whether damage occurs this calculation was 

deemed largely irrelevant as the uncertainty at the 1.3 AEP event is approximately zero as 

coastal defences are very unlikely to breach below a 0.5 AEP event.  Once the event magnitude 

increase above the design standard of the flood defences the increase in uncertainty is 

exponential due to the difference between zero damages if defences do not breach and very 

high damages if they do. The solution to this problem is to run a very large ensemble of events 

to explore this area of the domain in more detail. Although computationally wasteful across 

much of the domain this could provide a useful tool for insurance companies in helping to 

quantify the sensitivity of their results to the interface point between zero and very large 

damages.   
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In light of these difficulties a qualitative review of the contribution to uncertainty is discussed 

in the following sections. Figure 9.15 provides a graphical representation of the contribution of 

each individual component to the overall uncertainty in risk estimation based on three criteria; 

whether the uncertainty is explicitly included in the systems risk method, whether the 

contribution to the uncertainty in the individual component is significant and whether the 

contribution to the system uncertainty is significant. The reasoning behind this assessment is 

detailed in Table 9.4. Given the acknowledged difficulties in assessing uncertainty for the 

whole system due to interactions between the components (see Section 4.4) a visual summary 

such as this provides a clear means of communicating where the most significant uncertainties 

are and how these feed into later stages of the system.  

 

Figure 9.15 Assessment of uncertainty of systems model component



Calculating damage, loss and risk 9 

 

282 

Table 9.4 Assessment of uncertainty in individual model components and contribution to overall uncertainty in system risk calculation 

System 

Component 

Source of uncertainty How is this included in 

the system model? 

What are the implications of 

the uncertainty? 

Assessment of significance Recommendation 

Fit marginal 

model to 

extremes at 

each gauge 

• Limited data 

• Suitability of 

marginal model 

• Statistical testing of 

model fit 

Model may not be a correct 

representation of the extremes 

and hence simulated extremes 

may be unrepresentative. The 

shape of the marginal 

distribution in the upper tail 

could result in too many, or not 

enough, high values.  

Although contribution to 

uncertainty is potentially high, 

limited data is acknowledged as 

a problem in all statistical 

modelling of extremes therefore 

it is accepted that the methods 

used in this thesis address this 

issue in the best available way. 

Update model as data 

record increases. 

 

Priority: Low 

Fit statistical 

dependence 

model to 

extremes 

• Limited data 

• Suitability of 

dependence model 

• Infilling methodology 

makes best use of all 

available data 

• Dependence model 

shown to be suitable by 

Keef et al 

Model may not be a correct 

representation of the 

dependence in the extremes. 

Wave data record particularly 

short however contribution of 

waves to total water level is 

small compared to tide and 

surge. 

As above  

 

Update model as data 

records increase. 

 

Priority: Low 

Simulate multi-

variate extreme 

event set 

• If the fit of the 

marginal and 

dependence 

characteristics is 

incorrect the 

simulated extreme 

event set may be 

unrepresentative. 

• Simulated event set 

shown to be a good 

match to observed 

events 

Simulated events may be 

unrepresentative of extreme 

dependence structure however 

using only observed data would 

exclude possible very extreme 

events  therefore use of 

simulated events is required and 

reduces overall uncertainty.  

As above Update model as data 

records increase. 

 

Priority: Low 
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System 

Component 

Source of uncertainty How is this included in 

the system model? 

What are the implications of 

the uncertainty? 

Assessment of significance Recommendation 

Convert 

simulated daily 

mean flow to 

peak flow 

hydrograph 

• Daily mean flow data 

is known to not well 

represent flood peak 

for UK rivers. 

• Lack of suitable 

gauged network to 

validate ungauged 

site transfer method 

• External data 

sources such as FEH 

PCDs 

• Daily mean flow to 

peak flow method 

tested using a variety 

of established methods 

and a large data set of 

UK gauges.  

• Temporal event 

simulation using the 

conditional 

dependence model was 

used to maintain large 

scale temporal 

dependence structures. 

• The selection of the 

gauged network 

ensured the closest 

suitable gauges to the 

sites of interest were 

used. Compromises 

between gauge 

location and data 

quality were well 

documented.  

Peak flow and hydrograph shape 

potentially poorly represented, 

however since the method used 

is the same at all fluvial sites this 

is unlikely to affect the large 

scale multi-site dependence 

structure and the relative 

magnitude of events will be 

preserved. 

There are embodied 

simplifications in the method 

and the uncertainty is not fully 

quantified due to lack of suitable 

validation data. 

The daily mean flow to peak 

flow method is acceptable as the 

best available approach 

established from a large data 

set. The additional uncertainty in 

converting to ungauged sites is 

likely to be comparatively small 

due to the well selected gauge 

locations.     

Further work is required on 

ungauged site transfer 

method at the local scale 

between gauged locations 

and site of interests. This 

would require local data 

sets.  

 

Priority: Low unless very 

detailed local analysis is 

required 



Calculating damage, loss and risk 9 

 

284 

System 

Component 

Source of uncertainty How is this included in 

the system model? 

What are the implications of 

the uncertainty? 

Assessment of significance Recommendation 

Simulate water 

level using 

hydraulic 

model 

• Simple hydraulic 

model constructed 

using only LiDAR 

data. 

• No available data to 

improve this 

Likely to be small compared to 

simulation of extreme event. 

Only affects fluvial sites. No 

effect on relative magnitude of 

events. 

The effect of this simplification is 

not fully quantified however the 

uncertainty is acceptable given 

the requirements for a multi-site 

model which can be applied 

using readily available data and 

larger uncertainties from 

simulation of extreme events.  

Could improve using more 

detailed hydraulic modelling 

for fluvial sites of interest if 

required.  

 

Priority: Low unless very 

detailed local analysis is 

required 

 

Convert 

simulated surge 

and wave to 

total inshore 

water level 

• Simplification of 

onshore 

transformation and 

no inclusion of beach 

processes. 

• No available data to 

improve this. 

Likely to be small compared to 

simulation of extreme event. 

Only affects coastal sites. Impact 

of beach processes will be 

limited during extreme events 

when water level above beach 

elevation. No effect on relative 

magnitude of events. 

The effect of this simplification is 

not fully quantified however the 

uncertainty is acceptable given 

the requirements for a multi-site 

model which can be applied 

using readily available data and 

larger uncertainties from 

simulation of extreme events. 

Well established methods are 

have been used.  

Could improve using more 

detailed onshore wave 

modelling for coastal sites of 

interest if required.  

 

Priority: Low unless very 

detailed local analysis is 

required 

Simulate 

spatially 

varying defence 

crest height 

• Mean crest heights 

do not reflect the 

spatial variation in 

crest height along 

defence sections 

meaning low points 

may not be included.  

• Comparison of 

surveyed crest heights 

and mean crest heights 

used to establish 

spatially varying crest 

height simulation 

method  

Flood depths were shown to be 

greatest nearest to breach 

location. Breaching most likely at 

low points in defence crest, if 

these are not modelled then risk 

will appear low. 

 

The correct representation of 

crest height is very significant as 

in most cases the damage will be 

zero if the defence does not 

breach so it is important to 

correctly incorporate low 

(potential failure) points. 

When detailed survey 

information is not available 

the spatially varying crest 

height simulation should be 

used to incorporate 

potential low points. 

 

Priority: High 
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System 

Component 

Source of uncertainty How is this included in 

the system model? 

What are the implications of 

the uncertainty? 

Assessment of significance Recommendation 

Assign fragility 

curve to 

defence type 

• Fragility curves are 

simplistic and do not 

fully represent 

failure modes or 

potentially spatially 

variable defence 

reliability. 

• Only breaching 

following 

overtopping 

considered. 

• Breach is assumed to 

grow to full width in 

one time step.  

• No available data to 

improve this. 

• Sensitivity of damage 

to breach size and 

location investigated. 

Flood depths were shown to be 

greatest nearest to breach 

location. Breaching is most likely 

at weak points along the 

defence crest, if these are not 

modelled then risk will appear 

low. 

 

 

 

 

 

 

The correct representation of 

failure probability is very 

significant as in most cases the 

damage will be zero if the 

defence does not breach so it is 

important to correctly 

incorporate weak (potential 

failure) points. This is 

particularly important for coastal 

caravan sites.  

 

 

 

There is a need to 

incorporate the available 

research into defence failure 

into system models. 

The spatially varying crest 

height methodology could 

be adapted for spatially 

varying defence reliability. 

The analysis should be 

extended to other failure 

modes where these are 

considered important to the 

sites of interest. 

 

Priority: High 

Model 

floodplain 

inundation 

• Limited data on 

floodplain elevation 

and obstructions 

affects inundation 

modelling. 

• Compromise 

required between 

detailed floodplain 

modelling and 

computational time 

for system risk 

calculation. 

• Two methods 

illustrated including 

simple 1D model for 

fluvial locations and 

more complex 2D 

model for coastal 

locations.  

The flood depth at any given 

location within floodplain could 

be incorrect which would lead to 

a false calculation of damage. 

 

 

For large events that cause high 

damages minor differences in 

floodplain inundation are 

unlikely to significantly affect the 

results, particularly in this case 

study where the exact location 

of caravan units is unknown and 

the depth-damage data is 

limited.  

Suitable inundation models 

should be chosen based on 

the level of detail required 

at specific site locations and 

the computational time 

available.  

 

Priority: Medium 
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System 

Component 

Source of uncertainty How is this included in 

the system model? 

What are the implications of 

the uncertainty? 

Assessment of significance Recommendation 

Calculate 

damage 

• Depth-damage 

curves are simplistic 

and the vulnerability 

data used for 

caravan specific 

curves is very 

limited. 

• Distribution of units 

across sites affects 

damage however 

caravan units usually 

modelled at single 

postcode point.  

• Floor height of units 

not known. 

• Sensitivity of damage 

to individual facets of 

the depth-damage 

curve was investigated. 

• Damage calculated at 

point and distributed 

unit locations. 

Over or underestimation of flood 

damages 

The lack of data on caravan 

vulnerability is a significant 

uncertainty in the system risk 

model. Due to the high 

vulnerability of caravans to 

relatively low water depths their 

location on the site is important 

and could result in the different 

between zero damage and total 

write off.  

 

 

More data is required on 

flood receptors. 

Following an event data 

should be collected on flood 

damages to caravans and 

depth-damage curves re-

assessed. 

Consideration should be 

given to the spatial 

distribution of caravan units 

across sites, particularly 

where sites are large.  

 

Priority: High 
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9.4.1 Simulation of extreme events  

The contribution to system uncertainty from the sources component of the methodology is 

generally acceptable. There is some inherent uncertainty due to the difficulty of modelling 

extremes with limited observed data however this is a feature of all extreme value models. 

Robust statistical techniques have been used to ensure good model fits for the marginal data 

at each gauge (see Section 6.3.4). The uncertainty in the conditional dependence model used 

for the multivariate simulation has been shown to be acceptable for this type of analysis by 

Keef et al (2009a; 2009b; 2009c) and the sensibility check of the results (Figure 6.13, Figure 

6.18, Figure 6.19 ) illustrate a good fit between simulated and observed data for the gauges 

used in this thesis.  

Some areas of the sources component are more uncertain than others. Most significantly the 

modelling of wave heights using the conditional dependence model which violates the best 

practice guidance set out by Keef et al due to the short record length. However the relative 

importance of this component is low compared to estimation of the tide and surge height.  The 

effect of missing data across the gauged network was shown in Table 6.14 to contribute to 

uncertainty but the simple infilling methodology outlined in Section 6.3.5.1 was shown to offer 

significant improvements to the model fit when the infilled time series was used. The 

contribution of missing data to uncertainty in the sources component will depend on the 

amount of missing data and will vary across different network structures. 

This assessment of uncertainty in the sources component may initially appear at odds with the 

acknowledged acceptance that the estimation of extreme events is severely compromised by 

the limited record lengths. While not denying this important problem, in the context of a flood 

risk system model, this component is well understood and the contribution to uncertainty well 

documented and possible to quantify through statistical techniques. Therefore although 

independently the uncertainty is high in statistical modelling of extremes, relatively this 

component is less concerning for the estimation of risk in a systems model compared to other 

areas. Unlike defence failure or floor level changes in the source events will result in a gradual 

change in risk rather than a step change.  

9.4.2 Conversion of simulated DMF to events at the receptors 

To ensure use of the best available data compromises were required in the selection of 

suitable gauges and data formats, therefore additional uncertainty stems from converting 

between the simulated extreme source events and physically useful event variables at the 

receptors  
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A major source of uncertainty at this stage in the framework is the lack of a suitable gauged 

network to validate the ungauged site methodology as the distance between gauges in the 

dataset used was much greater than between the gauges and model inflow points that the 

method is applied over. Therefore although it is assumed that the uncertainties at the 

application stage are smaller than those shown in Appendix C.7, especially for the River Severn 

example where the main river and tributaries are all gauged upstream of the points of interest, 

there are no data available to support this assumption.  

External sources of uncertainty are added to the system model through the use of external 

data sources, such as the FEH PCDs, and methods, in this case the ReFH Rainfall Runoff method.  

These are not considered in detail here but still contribute to the overall system uncertainty.  

9.4.3 Conversion of simulated skew surge to total inshore water level, wave 

height and overtopping 

Similarly to the conversion of DMF to events at the receptors, the uncertainty stemming from 

the conversion of simulated skew surge to total inshore water level is largely derived from a 

lack of data to assess the uncertainty. In the case of the costal components the uncertainty is 

less than for the fluvial components as well established methods have been used and 

therefore the uncertainties are better understood. The uncertainty could further be reduced 

by incorporating more information on the beach and defence profiles. In addition the use of 

more complex methods would enable simplifications to be removed, such as the assumption 

of deep water at the defence toe, would be beneficial however given the high uncertainty in 

defence reliability this is not considered an immediate priority.     

9.4.4 Consideration of flood defence reliability 

The available data on flood defence properties are poor. The review of data for the East Coast 

in Section 8.4 showed that the long section mean which is commonly provided in the 

Environment Agency NFCDD and used in Cat models and other inundation risk models is a poor 

representation of the actual crest height. In most cases the amount of variation is between 0.1 

and 0.5m. The proposed methodology to simulate spatially plausible varying long section crest 

heights from the mean crest height outlined in Section 8.4 offers a means of explicitly 

incorporating the uncertainty from limited data on defence properties into the risk model.  

The literature review in Section 8.3 identified that the risk based consideration of defence 

failure is limited and does not take full advantage of the recent scientific advances in 

understanding flood defence reliability. The accepted approach has been to use fragility curves 

which, due to the inclusions of small probability of failure below the defence design standard 
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allow some consideration of uncertainty to be included in the method. However Simms et al 

(2009) review of the performance of fragility curves following the 2007 flooding identified that 

the current implementation of fragility analysis across England and Wales failed to capture a 

number of key uncertainties, in particular variability along the flood defence length (see 

Section 8.3.1.1 for details). Fragility analysis is dependent on robust observations and field 

evidence, and to enable broad scale analysis, many of the fragility calculations assessed by 

Simms et al (2009) were reliant on generic assumptions. Approaches to model spatial 

variability along a flood defence length require a high sampling of data. The resolution and 

detail of such monitoring, and associated reduction in uncertainty, must be balanced against 

the cost and practicality involved in collecting this information. Other work, for example by 

Dawson and Hall (2002) has sought to incorporate uncertainty analysis explicitly within the 

fragility model. Although useful this poses interpretation challenges for decision makers. 

The review of caravan sites in Section 3.2 showed that most sites in coastal locations are 

located behind flood defences and therefore do not suffer flooding from moderate events but 

are highly vulnerable to defence failure. Changes in the defence reliability assumptions or crest 

height result in large changes in damages as sites will flood or not flood depending on whether 

flood defences fail. For this reason the limited data on flood defence properties available in 

this thesis, and the lack of credible methods of representing flood defence failure in a systems 

risk model framework, are considered to be the biggest barriers preventing a believable 

estimation of risk. The varying crest height methodology makes steps towards a potential 

framework for including spatially varying defence reliability however considerably more 

research and data collection is required to extend this proposed framework to defence 

resistance properties as well as crest height.  

9.4.5 Calculation of damage 

Sections 9.1.4.1 to 9.1.4.3 illustrated the large uncertainties in the calculation of flood 

damages. Lack of knowledge about the vulnerability of caravans to floods and lack of data on 

individual unit locations and floor heights combine to produce high uncertainties that have a 

significant impact on results.  

The impact of this lack of data can be the difference between zero damages and very high 

damage if a unit is taken out of the inundation area either by moving it to an unflooded area of 

the site or raising it above the maximum water level.  

Unlike uncertainty from flood defence reliability this is not a problem caused by lack of 

scientific understanding or modelling capabilities but rather a problem caused by limited data 

collection and therefore can be addressed by simple measurers such as promoting better data 
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collection both before and following an event and using this to validate existing depth-damage 

curves or produce more appropriate alternatives.  
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10 Conclusions 

Motivated by the growing acceptance of the importance of considering spatial and temporal 

dependencies in flood risk and by changes in the insurance climate, this thesis has illustrated 

the development of an integrated systems risk model which enables detailed site based risk 

assessment to be carried out within a national context through the use of a nested model 

structure. The research has followed a SPRC concept throughout. Fluvial and coastal sources of 

flood risk have been considered, including the impact of waves in a complex statistical model. 

The reliability of coastal flood defences has been reviewed and a methodology established to 

incorporate the potential spatial variation in crest height compared to available summary data. 

The research has been based on a case study of flood risk to static caravans, and, as such a 

review of depth-damage curves relating to caravans was carried out. The methodological 

framework is however modular and adaptable to other receptors by modifying the depth-

damage functions.  

 

This final chapter will be structured around reviewing how the thesis has addressed the 

research objectives set out in Chapter 1 and identifying recommendations for both Catlin and 

further research.  

10.1 Meeting the research aims and objectives 

10.1.1 Static caravans and flood damage 

 

"1. Review the geographical disposition of fixed caravan sites in the UK and their 

approximate financial values and investigate trends in historic flood damage to 

these sites" 

 

Due to the large proportion of UK caravans Catlin Insure, the review of Catlin's caravan 

portfolio in Chapter 3 can be thought of as representative of the distribution of caravan sites 

more generally across the UK. The review identified that one third of caravan sites were 

located within 1km of the sea, many clustered in particular popular tourist areas such as the 

Lincolnshire coast. This is problematic for insurance companies as it leads to an over exposure 

of risk in particular areas and means that the principle of spreading risk across a portfolio to 

protect against major losses being sustained from a single event is compromised. 

 

There are limited historic data available on flood damage to static caravans. This is potentially 

problematic, especially as this thesis has shown that modern static caravans are worth an 
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average of £20,000 each with the most expensive models costing over £100,000. Due to the 

lack of available data it was not possible to conduct a full review of damage from recent events 

compared to the observed flood depths. 

 

The past event data available made no connection between flood damage claims to insurance 

companies and observed flood levels. This is due to differing priorities between those 

collecting the different data types. Even the academic papers reviewing past events at caravan 

sites do not include this type of information. Ideally it should not require large scale studies, 

such as the Dundee Tables UK in the UK (Black et al. 2006) to establish this link. It is 

recommended that claim adjusters make a record of the observed water level, even if this is a 

qualitative assessment such as "half way up the door" as this would provide insurance 

companies with a means of assessing the performance of their depth-damage curves which 

are a central component of their risk estimation methods and assessed in Section 9.4 to be a 

major source of uncertainty. Although more detail is known about the vulnerability of 

residential properties, the routine collection of depth data by claims adjusters would be good 

practice for all property types. 

 

The historic review identified that Catlin did not sustain major losses during the large floods in 

2007. This is due to the way their portfolio is managed in that Catlin will only insure new 

caravans, with floatation devices, which are located above the highest recorded water level. 

These broad brush assumptions and reactive review appear to have worked well for Catlin in 

the past but with a potentially changing climate resulting in an increase in flood risk and more 

intense storms leading to a different type of flooding, this approach may not provide a robust 

long term solution for managing the portfolio.  

 

The review of caravan locations identified four clusters which were used as the detailed nested 

sites within the systems model. The sites were selected based on the number of caravans at 

risk and to provide a good coverage of spatial location and flood risk sources. These clusters 

were; the Lincolnshire coastline which was selected due to the high density of caravan sites in 

the area and the vulnerability to north sea storm surge, the North Wales coastline again 

selected for the number of sites at risk and to consider coastal issues in a different 

geographical location, the River Severn around Stourport-on-Severn which provided an 

example of the interaction between multiple tributaries, and the River Thames near Hurley 

which was selected because of  the political sensitivity of flood risk in the Thames and to 

provide an example of the spatial dependencies between large scale river systems. 
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Transparent caravan specific depth-damage curves were established which utilised the 

understanding of historic damages from Catlin with data from external sources. The curves 

were modified to investigate the sensitivity of the risk estimate to the curve shape.  The most 

critical point in the depth-damage curves was found to be the floor height.  

10.1.2 Statistical modelling of multivariate spatial extremes 

 

"2. Establish a multivariate spatial extreme value statistical model for river flow, 

surge and waves at selected sites"  

 

The Heffernan and Tawn (2004) conditional dependence model was used to provide a robust 

statistical basis for the systems model. The conditional dependence model has previously been 

used to model spatial dependencies in flood risk in the UK by Keef et al (Keef 2006; Lamb et al. 

2009; Keef et al. 2009a; Keef et al. 2009b; Keef et al. 2009c; Lamb et al. 2010) and has been 

shown to correctly represent the spatial and temporal dependencies between flood events. 

The use of Heffernan and Tawn’s conditional dependence model in this thesis illustrates an 

example of a complex statistical model being used by a non-professional statistician. This is an 

important application as to date the model has mainly been used only by colleagues of 

Heffernan and Tawn or professional statisticians. This is a difficulty many research models face 

and illustrating that they can be used by specialists without a statistical background shows the 

potential for more wide scale uptake of this kind of models, resulting in an improvement in the 

representation of extreme events in a broad range of applications.  

 

The conditional dependence model was fitted to extreme river flows using DMF data at six 

core flow gauges and sea states using skew surges at six core tide gauges. Rather than use a UK 

wide gauged network as per previous statistical models of UK extremes, a novel nested model 

structure was used with more gauges located close to the sites of interest whilst still 

representing the large scale spatial dependence of events on a national scale. In addition to 

the previous application by Keef et al, the model was also fitted to extreme wave heights using 

a pairwise dependence structure between skew surge and wave heights. The limited record 

length at wave gauges meant that only a pairwise version of the model could be used to 

represent the relationship between skew surge and wave height. Skew surge was shown to be 

a more suitable variable than the traditionally used still water level to model the relationship 

between surge events and waves as it is not overshadowed by the effect of the tide.  

 

The results from the conditional dependence model show that all gauged pairs display positive 
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extremal dependence. The most extreme events at all sites are shown to be very localised, 

however the large catchments of the Severn and Thames display some dependence structure 

across large areas. Coastal events are shown to display weaker larger scale dependences than 

fluvial events, particularly across different coastlines. The dependence between gauges on the 

same coastline however is strong even across relatively large distances. The temporal 

dependence between coastal and fluvial events is generally weaker than between events of 

the same type, although fluvial events in North Wales and the River Severn can occur at the 

same time as large coastal events in North Wales. The converse however is not true as coastal 

events in North Wales do not necessarily result in fluvial extremes.  

 

For the purposes of insurance pricing it was shown that the current seven day insurance 

window incorporates all dependent extreme weather events from both fluvial and coastal 

sources across large areas of the UK. The peak dependence was found to fall within three days, 

therefore the seven day window could potentially include additional independent localised 

events.  

10.1.3 Linking a robust statistical model to a physically based model 

 

“3. Develop a process-based method to connect these source terms with variables 

(e.g. flood depth) from which damage can be computed” 

 

Aside from the difficulties in understanding and applying statistical models such as the 

conditional dependence model used in this thesis, linking statistical and physically based 

models is difficult due to differing data requirements and scales of analysis. This thesis has 

investigated a range of methods to integrate existing hydrological and hydraulic 

methodologies with the systems model.  

 

The conditional dependence model required concurrent time series for a large network of 

gauges. Previous applications had used DMF data to fulfil this requirement however DMF is of 

limited use to assess flood depths. To overcome this problem, methodologies for transforming 

DMF to peak flow data were tested and a UK specific equation based on the work of Sangal 

(1983) was established which estimates peak flow using the concept of a triangular 

hydrograph. This method was particularly attractive for this application as it incorporates the 

temporal dependencies in DMF from the conditional dependence model. 

 

Data are only available at gauging stations not at sites of interest therefore interpolation was 
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required between gauges and sites of interest. Unfortunately the gauging station network 

available was not dense enough to validate the ungauged site interpolation method. Instead a 

methodology was selected based on accepted practice in the field. At each ungauged location, 

donor sites were selected based on the distance between catchment centroids and the 

modelled flow scaled by the difference in QMED between donor and ungauged sites.  

 

One of the strengths of the proposed methodology is its modular nature. This was illustrated 

through the inclusion of two different types of inundation model. For fluvial sites a simplified 

1D hydraulic routing model was used which required minimum data to set up as it was based 

entirely on LiDAR data with channel cross sections assumed to contain the QMED flow.  Flood 

depths were established by routing the modelled water level across the floodplain using 

simple GIS processing techniques. In contrast the coastal floodplain inundation model 

illustrates how a complex 2D flood routing model can be nested within the system model 

structure and used to expand the modelling capabilities. The more detailed 2D coastal routing 

model was required in this case to represent the rapid inundation for flood defence breaches.   

10.1.4 Consideration of spatial variability in flood defence systems 

 

“4. Consider the representation of flood defences and potential failure mechanisms 

in flood risk models and incorporate this into a systems based risk model” 

 

The representation of flood defences is a critical component in flood risk models. This thesis 

has reviewed the existing modelling of defence reliability and has established that it is not fully 

risk based. Many existing models use scenario based failure models due to lack of data and the 

high computational requirements of modelling multiple failure scenarios.  

 

A key theme throughout this thesis has been the representation of spatial and temporal 

dependencies in flood risk. Established methods of considering flood defence failure were 

shown in the literature to not fully account for this, for example by assuming simultaneous 

loading of all defences in a defence system and not fully considering the breach growth 

process which is linked to defence properties, duration of high water and the sequencing of 

breaches.  

 

This thesis addressed the issue of the spatial variability in defence properties through analysis 

of the variation in crest height compared to the mean crest height which is commonly 

available in datasets such as the Environment Agency NFCDD which forms the basis of many 
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Cat Models flood defence modules. A review of the surveyed crest height data for the East 

Coast identified that the mean defence height is a poor representation of the actual crest 

height. A methodology was established to represent this variability within the risk model by 

simulating physically realistic defence crest heights using a Markov Chain process. The 

incorporation of spatially varying defence properties allows the artificial restriction on defence 

section length which is used in previous risk based failure models to be lifted. 

 

A similar variability is expected to occur within the defence strength properties due to differing 

construction practices and materials along a defence section and variation in maintenance. 

Detailed geophysical data were not available to test these assumptions. A useful extension of 

the spatial variability in crest height method would be to establish similar models for the 

variability in defence properties and use these to construct a spatially varying reliability curve 

for flood defences in the future. Further work is also required on the dependencies in breach 

growth which are not considered fully in this thesis.   

10.1.5 Contribute to integrated and informed decision making 

 

“5. Review the importance of each component in the systems risk model and discuss 

how the improved knowledge about each component and the links between them 

can help improve insurance pricing decisions and wider flood risk management” 

 

This thesis has shown how information can be cascaded from a high level methodology to a 

detailed site based assessment through the nested model structure.  The nested structure is 

useful as it enables large scale and local dependencies to be modelled. Care must be taken in 

the design of the nested structure as the results from the conditional dependence model were 

shown to be influenced by the differences in network density between fluvial and coastal 

gauges.  

 

For Catlin the results from the conditional dependence model are promising. Although they 

highlight the known vulnerability along the East Coast with long stretches of coastline affected 

by the same event, the dependence between different coastlines and between fluvial and 

coastal events is weak, especially on the East Coast. Therefore by ensuring that they continue 

to insure sites spread across the whole UK, Catlin will be able to spread their exposure risk and 

protect themselves from large losses from the same event.  
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The discussion in Section 9.4 highlighted that the greatest source of uncertainty in the system 

stems from limited data for all components. In particular this affects the ability to adequately 

model defence failure and calculate flood damages for caravans. In light of these concerns it 

was concluded that the cascade of uncertainty through the system model would significantly 

affect the usefulness of a final calculation of risk.  In spite of this limitation, the process 

understanding gained from this research are beneficial and highlight where further research is 

required to improve flood risk modelling and can be used to justify risk based decision making.  

 

The most critical area is concluded to be the representation of flood defence reliability both in 

terms of data available to adequately model flood defences and in the available risk based 

failure models. Existing methods were shown to be not fully risk based and to perform poorly 

when tested in real events. The review of crest height data also identified significant 

simplifications in the representation of spatial variability within the flood defence system 

which, given the importance of small scale weaknesses in controlling defence failure, is a 

significant limitation.  

 

Regardless of the potentially large uncertainties in flood risk modelling it has been shown 

throughout this thesis that the most effective way to improve across all components is by 

increasing data availability. Insurance companies are in a prime position to be able to instigate 

this by improving their own data collecting protocols both before and after flood events. Even 

very simple measures such as recording a flood depth alongside the insurance claim would 

help validate depth-damage curves and reduce uncertainty in flood risk estimation.  This is 

especially important for caravans where the steep depth-damage curves result in large jumps 

between zero damages and high damages for small changes in water level.  

 

An end to end assessment of uncertainty in Cat models, even at the qualitative level given in 

Section 9.4, would be beneficial to insurance companies and would help end users identify 

where the greatest uncertainties lie and what this means for their individual portfolios. In this 

case the geographical review of caravans identified large concentrations of sites located 

behind flood defences hence the large uncertainties from defence reliability analysis are 

particularly concerning when pricing this portfolio and Catlin’s current approach of adding a 

risk load of  30-40% to insurance premiums (Equation 1.1) is justifiable. Further assessment of 

the uncertainties in RMS’ defence reliability modelling is required to better assess exactly what 

this percentage should be. 
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10.1.6 Development of a coherent modelling framework that meets essential 

modelling criteria 

Although not specified as a research objective, the literature review in Chapter 2 resulted in 

the identification of five key criteria for models used to inform risk based decision making. 

Reviewing the systems based methodology developed as part of this thesis shows that the 

proposed method meets all of these criteria. It is transparent as it clearly states the modelling 

assumptions, it also explicitly considers the effect of the input data on the results and in some 

cases develops unique methodologies to deal with limited data availability for example the 

consideration of plausible variation in long section defence crest heights compared to the 

observed defence crest mean. The modular nature of the systems methodology was 

demonstrated through the use of two different inundation models providing differing levels of 

detail as required in different situations. The adaptability of the dependence model was also 

illustrated though the modification of the method to incorporate wave data with a comparably 

short record length. This adaptability ensures that the methodology is flexible and can be 

adapted to different applications as required for example by changing the depth-damage 

curves to look at alternative receptors. The nested model structure ensures that the 

methodology is efficient as detailed calculations can be made at a site level, for example in the 

consideration of how the distribution of units on a site affects the damage calculation, whilst 

maintaining an overview of the large scale dependencies in risk for example between sites on 

different coastlines.  

The simplicity of a fully integrated systems risk model is hard to establish due to the 

interconnections between different components. This thesis has demonstrated a transparent 

model where each component is explicitly considered allowing the end user to identify how 

the modelling assumptions at each stage affect the output. The thesis has been structured in 

such a way as to lead the end user through the SPRC model and show how each stage of the 

methodology feeds into the next. The discussion in Section 9.4 identified the potential 

uncertainties as each stage of the process and how these feed into the subsequent calculations.  

10.2 Recommendations 

Two sets of recommendations are made in light of this research. Firstly for Catlin to improve 

their management of the caravan portfolio it is recommended that; 

1. A broad spatial distribution of caravan sites is maintained across the UK. The current 

apparent over exposure on the East Coast is mitigated by the weak dependence 

between extreme events on the coastline and fluvial and coastal events elsewhere in 

the country. 
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2. Better pre and post event data collection procedures are put in place to develop a 

database of caravan unit locations, floor heights and explicitly to link flood depth with 

insurance claims. 

3. Depth-damage curves are reviewed following an event using the improved database 

4. In the short term Catlin should continue to add a risk load to their insurance pricing 

calculations for defended sites to account for the potential vulnerability to defence 

failure and limited modelling capabilities in this area. 

5. In the long term Catlin should request more detailed information from Cat modelling 

companies on uncertainty in Cat models and consider funding, or contributing to, 

further research, particularly on flood defence reliability modelling. 

 

Secondly for broader improvements in systems based risk modelling it is recommended that 

research is undertaken to: 

6. Improve the availability of data on flood defence including crest height and 

construction.  

7. Address the problem of limited data and knowledge on crest height and defence 

reliability properties by using the plausible crest height variation methodology 

presented in Chapter 8 in flood risk studies. Development of a similar methodology for 

variation in defence properties would also be beneficial to take account of potential 

weak points along the defence section length. 

8. Consider how the recent improvements in the understanding of flood defence failure 

mechanisms can be included in systems risk models. Advances in computational ability 

mean more complex methods could be used in a risk based framework however 

questions still need to be answered about the suitable scale of application and the 

availability of detailed data to support increased complexity.  

9. Review how uncertainty in systems risk models is assessed and develop means of 

communicating the impact of this to decision makers. Including making explicit 

assessments of component uncertainty and how this contributes to the and overall 

system uncertainty as discussed in Section 9.4.  

10.3 Concluding comments 

This thesis has illustrated the development of a full systems based model that is achievable at 

a national scale by focusing on particular areas of interest using a novel nested framework. The 

cross cutting analysis has drawn together state of the art methods to explicitly consider each 

risk component. Each component has been analysed in detail, an approach that is rare in 

similar studies with most emphasis often being placed on the researcher’s main area of 
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expertise.  

 

A core strength of the research has been the development of a transparent and flexible 

systems risk framework that incorporates the critical spatial and temporal dependencies in 

flood risk at a range of scales through a conditional dependence model.  Although the 

Heffernan and Tawn (2004) model has been used previously for similar flood risk dependency 

analysis by Keef et al, several unique approaches were developed in this thesis including fitting 

the model to wave height and skew surge and using the model within the nested framework.  

 

A key focus of this thesis was to demonstrate the use of a robust statistical model of extremes 

to provide a solid foundation for process based understanding and decision making. To 

facilitate this discussion of the challenges of stepping between the two fields is discussed 

throughout.  These challenges can be split into three areas; data availability at required 

locations, data quality, and communication of assumptions and results. Making the best use of 

available data and state of the art methods whilst being explicit about the sources of 

uncertainty is essential for well informed decision making.  This thesis has been explicit about 

the assumptions at each stage in the process and how these contribute to the overall 

uncertainty to provide a rare assessment of the relative importance of each component and to 

make clear recommendations of where further research would have the greatest impact to 

reduce overall uncertainty.  

 

One of the biggest challenges for the future is to improve modelling capability and data 

availability so that systems based models such as this can be used with a consistent, and 

practical, level of uncertainty. The move towards increasing openness between Cat modellers, 

academia and end users offers a promising potential to develop useable systems risk models 

with realistic uncertainty bounds.  
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