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Abstract 
. 

. 

. 

Resistive switching random access memory devices have attracted 

considerable attention due to exhibiting fast programming, non-destructive 

readout, low power-consumption, high-density integration, and low 

fabrication-cost. Resistive switching has been observed in a wide range of 

materials but the underpinning mechanisms still have not been understood 

completely.  

This thesis presents a study of the leakage current and resistive switching 

mechanisms of SrTiO3 metal-insulator-metal devices fabricated using 

atomic layer deposition and pulse laser deposition techniques. First, the 

conduction mechanisms in SrTiO3 are investigated. The leakage current 

characteristics are highly sensitive to the polarity and magnitude of applied 

voltage bias, punctuated by sharp increases at high field. The characteristics 

are also asymmetric with bias and the negative to positive current crossover 

point always occurs at a negative voltage bias. A model comprising 

thermionic field emission and tunnelling phenomena is proposed to explain 
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the dependence of leakage current upon the device parameters 

quantitatively.  

SrTiO3 also demonstrates bipolar switching behaviour where the 

current-density versus voltage (J-V) characteristics show asymmetry at all 

temperatures examined, with resistive switching behaviour observed at 

elevated temperatures. The asymmetry is explained by the relative lack of 

electron traps at one electrode, which is determined from the symmetric J-V 

curve obtained at room temperature due to the redistribution of the dominant 

electrical defects in the film. Evidence is presented for a model of resistive 

switching that originates from defect diffusion (possibly oxygen vacancies) 

at high temperatures. 

Finally, a peculiar resistive switching behaviour was observed in pulse 

laser deposited SrTiO3.  This switching depends on both the amplitude and 

polarity of the applied voltage, and cannot be described as either bipolar or 

unipolar resistive switching. This behaviour is termed antipolar due to the 

opposite polarity of the set voltage relative to the previous reset voltage.  

The proposed model based on electron injection by tunnelling at interfaces 

and a Poole-Frenkel mechanism through the bulk is extended to explain the 

antipolar resistive switching behaviour.  This model is quantified by use of a 

simple mathematical equation to simulate the experimental results. 
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Chapter 1 
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. 

Introduction 
 

‘All of physics is either impossible or trivial. It is impossible until you 

understand it, and then it becomes trivial’ 

                                   Ernest Rutherford 

. 

In modern silicon-based technology, the dimensions of metal-oxide-semiconductor 

field effect transistors (MOSFETs) have been rapidly scaled down due to the 

increased demand for faster circuit speed, higher packing density, and lower power 

dissipation. The density of transistors on chips has doubled about every 18-24 

months, as predicted by Moore’s Law in 1965 [1]. In order to keep up with the 

required continuing performance enhancements through the scaling of the 

dimensions of devices [2, 3], the thickness of silicon dioxide must be also reduced. 

However, in the mid-1990s, the thickness of silicon dioxide reached its critical level 

of < 2 nm [4], where a high leakage of current occurs due to quantum mechanical 

tunnelling. It was proposed that this physical limitation could be solved by using 

metal oxides with high dielectric constants (high-k), which would allow the scaling 

of the MOSFET with a much larger dielectric thickness [5], but smaller effective 

oxide thickness (EOT). 
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However, although larger dielectric thicknesses solved the physical quantum 

tunnelling limitation, there was still a high leakage of current due to the poor quality 

of the metal oxide used [6, 7]. The leakage of current through metal oxides was then 

actively investigated and different models were proposed to explain it [8]. These 

models helped in understanding the impact of different parameters such as film 

thickness, electrode materials and annealing temperature on the leakage current. 

Fabrication methods were substantially improved [9, 10] and finally, in 2007, the 

first 45 nm commercial microprocessor using a high-k dielectric was fabricated by 

Intel.  

While metal oxides were most actively pursued for gate stack applications from 

1995 to 2006, a resistive switching phenomenon was frequently observed. This 

caused renewed interest in and funding for research into metal oxides. The resistive 

switching phenomenon occurs in materials which switch between two stable 

resistivity states upon the application of different voltages [11].  

The resistive switching phenomenon can be exploited in non-volatile memory 

devices, which are called resistive switching random access memories         

(RRAMs) [12]. The basic component of RRAM is a metal/insulator/metal (MIM) 

structure, where the insulator is typically made of metal oxide materials. The current-

density–voltage (J–V) characteristics of devices exhibit pronounced hysteresis 

behaviour due to the change in resistance of metal oxides caused by sweeping the 
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voltage. In order to improve the reliability of RRAM, the underpinning conduction 

mechanisms of the leakage current through MIM devices must be elucidated.  

In this thesis, the conduction mechanisms of SrTiO3, which is one of the 

promising materials for high-k and RRAM applications are investigated. The leakage 

of current through the SrTiO3 had been investigated and at low voltages the J–V 

characteristics showed very low leakage which increased abruptly when the voltage 

was increased. By investigating previous models, it has been realised that the abrupt 

transition in J–V characteristics can be modelled using the tunnelling equations 

where the relationship between the current-density and voltage is given by:  

𝐽 ~ exp  −
1

𝑉
                                                    1.1  

However the leakage current increases with temperature, which could not be 

explained by the tunnelling equations alone, as they are independent of temperature. 

This counterintuitive observation suggests that the leakage current is simultaneously 

controlled by both thermionic and tunnelling emission. A model was developed 

based on the combination of thermionic and tunnelling equations which could be 

used to precisely model the observed J–V characteristics of SrTiO3. 

An observation of bipolar resistive switching behaviour led to the consideration of 

SrTiO3 as having potential for RRAM applications. The bipolar behaviour of the J–V 

characteristics was elucidated using the previous model which developed to explain 

the conduction mechanism of SrTiO3.  
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The leakage of current through SrTiO3 fabricated by the pulsed laser deposition 

technique was also investigated. The J–V characteristics showed resistive switching 

behaviour, which was first thought to be unipolar behaviour. Further analysis of the 

hysteresis curves proved that the resistive switching of SrTiO3 cannot be grouped as 

the either unipolar or bipolar. A third category was therefore introduced called 

antipolar resistive switching which can be explained by the conduction mechanisms 

proposed previously.  

This thesis aims to elucidate the underpinning mechanisms of leakage current and 

the bipolar and antipolar behaviour of SrTiO3. Chapter 2 discusses metal oxide 

materials. The background of the study is explained and the concept of resistive 

switching presented, along with an overall view of the materials which demonstrate 

resistive switching behaviour. The main conduction mechanisms in resistive 

switching are also explained.  

In chapter 3 leakage current mechanisms are reviewed. The physical concepts and 

conduction equations are described, and a conventional method of leakage current 

modelling is presented.   

Chapter 4 is devoted to the modelling of leakage current in SrTiO3. The J–V 

characteristics of SrTiO3 are presented. The conduction equation is derived and 

explained in detail.  
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Chapter 5 deals with the bipolar behaviour of SrTiO3, firstly giving an 

introduction to previous models. The bipolar J–V characteristics of SrTiO3 are 

presented and an experiment conducted to examine the model explained.  

The antipolar behaviour of SrTiO3 is introduced in chapter 6. The J–V hysteresis 

curves of SrTiO3 are compared with bipolar and unipolar behaviour. A simple 

mathematical model is proposed based on the concepts introduced in the model 

proposed in chapter 4. Finally the summary of the study is presented in chapter 7. 
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Chapter 2 
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. 

Resistive Switching Memory 
 

‘Without memory, there is no culture. Without memory, there would be 

no civilization, no society, no future.’ 

Elie Wiesel 

. 

2.1     Introduction 

Semiconductor memory plays a crucial role in today’s electronic devices. Many of 

them, and in particular mobile devices, require high-speed, high-density and 

low-power memory for faster and longer performance. Figure 2.1(a) shows the 

classification of semiconductor memory into read write memory (RWM), 

non-volatile RWM (NVRWM) and read only memory (ROM). RWM can be divided 

into two groups:  random access memory (RAM) and non-random access memory. 

The former include dynamic RAM (DRAM) or static RAM (SRAM), and examples 

of the latter is shift register. In NVRWM the information stores even when the power 

supply is disconnected such as FLASH and erasable programmable ROM 

(EPROM) [13]. An example of ROM is one-time programmable ROM (OTPROM) 

where data stored cannot be modified [14]. 
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Figure 2.1: (a) Classification of semiconductor memory. (b) Capacity of memory 

fabs by segments (SEMI World Fab Database Reports, Sept. 2011). 

DRAM and Flash memory devices constitute the biggest share of the 

semiconductor memory market (Figure 2.1(b)). SRAM is also widely used in 

microprocessors as fast access memory. An SRAM cell is constructed using six 

MOSFETs, as shown in Figure 2.2(a). The four MOSFETs in the middle (M1 to M4)  

 
Figure 2.2: Characteristics of semiconductor memory [15]. 
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form two cross-coupled inverters with two stable states, representing the digits ‘0’ 

and ‘1’. The state of one cell is immediately available on the bit line (BL) when the 

word line (WL) is raised (reading). The state of the cell can be changed by setting the 

BL  and BL  lines to the desired value and then raising WL (writing). SRAM is a very 

fast type of memory, where the state of one cell can be detected in less than 0.3 ns 

(Table 2.1). However, SRAM has lower density compared to DRAM and Flash, 

using 6 transistors for one cell. It is also volatile, and requires constant power (Vdd) 

to maintain the state of each cell.  

In DRAM, a cell comprises one transistor and one capacitor as shown in      

Figure 2.2(b). The transistor serves as a switch which provides access to the state of 

the capacitor. A charged or uncharged capacitor represents the digits ‘1’ and ‘0’ 

respectively. In order to read the state of a cell, the WL is raised to switch the 

transistor to the ‘On’ state. Then, if the current flows on the BL, the state of the cell 

is ‘1’ whereas it is ‘0’ when there is no current. A cell is written by raising the WL 

for an appropriate time to charge or drain the capacitor through the BL.  

Table 2.1: Comparison of SRAM, DRAM, Flash and RRAM [16]. 

 

 SRAM DRAM Flash RRAM 

Cell 6T 1T1C 1T 1T1R or 1D1T 

Time of writing to ‘1’  ~0.3ns <10ns ~1ms ~5ns 

Time of erasing to ‘0’  ~0.3ns <10ns 10-0.1ms ~5ns 

Endurance (cycles) >10
16

 >10
16

 >10
5
 >10

10
 

Non-volatility No No Yes Yes 
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DRAM is slower than SRAM (see Table 2.1), but it has simpler structure, leading 

to greater memory density and lower fabrication costs. Therefore, DRAM is used as 

the main type of memory in electronic devices where high memory capacity is 

required, while SRAM is only used as the cache in microprocessors where rapid 

access time is more important. DRAM is also volatile, and due to the leakage of 

current through the capacitor each cell must be refreshed frequently. 

Flash is a non-volatile type of memory which can be used for persistent storage. A 

typical Flash cell is a floating-gate MOSFET that can be erased electrically     

(Figure 2.2(c)). The cell represents the states ‘1’ and ‘0’ when the floating-gate is 

charged and uncharged respectively. Due to the low speed and endurance of Flash 

relative to DRAM, it cannot be used as the main memory in electronic devices. In 

addition, Flash has less endurance where the number of write and erase cycles in 

Flash is about 10
5
, whereas in DRAM it is 10

16
 [16].  

Although, in electronic devices DRAM and Flash have gained the biggest shares 

of the semiconductor memory market, their scaling is likely to cause serious 

limitations in the future. In DRAM the charge on the capacitor must stay constant 

during scaling, so for high density memory the third dimension is used. This makes 

the fabrication process complicated which leads to higher fabrication cost. Also, by 

scaling the capacitor below 30 nm there is a high leakage of current [15]. In the case 

of Flash, a significant barrier is the requirement to have non-volatile retention, which 

makes scaling beyond 20 nm challenging [15]. As scaling limitations in mature 
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memory technologies become serious, new types of memory device have been 

investigated in the search for a universal memory with the speed of SRAMs and 

DRAM and the non-volatile properties of Flash as well as smaller size. 

Several non-volatile memory technologies have been introduced, such as 

magnetic RAM [17], spin transfer torque RAM [18], phase change RAM [19], 

carbon nanotube RAM [20], probe memory [21], single electron memory [22] and      

RRAM [12].  

Among these types of non-volatile memory, RRAM has been considered as one of 

the most promising due to its excellent scalability. The simple cell structure of 

RRAM makes the fabrication process uncomplicated, which could lead to lower 

manufacturing costs. In addition, its write/erase time is much faster than that of 

conventional non-volatile memory such as in Flash. Table 2.1 compares the 

specifications of RRAM to other memory devices. This chapter presents an overview 

of the characteristics of RRAM with a focus on the underpinning resistive switching 

mechanisms. 
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2.2     Resistive switching RAMs 

A simple RRAM cell is constructed using a MIM structure, where the insulator can 

switch between two stable resistivity states. The high resistance state represents the 

digit ‘0’ and the low resistance state represents the digit ‘1’. Figure 2.3 shows typical 

RRAM cells which can be arranged in a matrix. The rows and columns of the matrix 

form WLs and BLs. The state of one cell can switch between high and low resistance 

by the application of appropriate programming voltage on the WL. The voltage that 

switches the device to low resistance is called Vset, and that which switches the 

device to high resistance is termed Vreset. In order to read the cell, a small voltage is 

applied to WL and the current through the BL is detected. Depending on the high or 

low magnitude of the current, the state of the cell can be detected as ‘1’ or ‘0’  

 

 

Figure 2.3: The crossbar architecture of RRAM [23] and typical RRAM cell. 
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respectively. The amplitude of Vset and Vreset depend upon the properties of the 

material used. However, the resistive switching behaviour of materials can be 

categorized into two main groups which are determined based upon the polarity and 

amplitude of Vset and Vreset.  

The first type of resistive switching behaviour is bipolar, where switching depends 

upon the polarity of the voltage applied. In this case, the amplitude of Vset is almost 

equal to Vreset but with the opposite polarity. Figure 2.4(a) shows an example of 

bipolar behaviour where a cell can be set to low resistance if 𝑉 > Vset or reset to high 

resistance if 𝑉 < −Vreset. 

The second type of resistive switching is termed unipolar, where switching 

depends only on the amplitude of the voltage, and not the polarity applied.        

Figure 2.4(b) shows a schematic diagram of unipolar resistive switching, where the 

resistance of the material can be reset to the high by applying  𝑉set >  𝑉 > 𝑉reset. The 

low resistance state is then achieved via the application of  𝑉 > 𝑉set.  

 

Figure 2.4: (a) Bipolar and (b) unipolar behaviour of resistive switching. 
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Bipolar and unipolar resistive switching have been observed in a wide range of 

materials when they have been sandwiched between two electrodes (Appendix A). 

Table 2.2 shows the elements whose oxides have demonstrated resistive switching. 

Binary oxides, including NiO, ZnO, CuxO, MoOx, HfO2, TiO2, ZrO2, SnO2, VO2, 

Al2O3 and Ta2O5, have been reported to show both bipolar and unipolar resistive 

switching, while perovskite metal oxides such as BiFeO3, SrZrO3, SrTiO3, BaSrTiO3, 

and PrCaMnO3 have demonstrated more bipolar behaviour. Recently, bipolar 

behaviour has been also identified in SiOx, GeO2 and graphene oxides [24-28].  

 

 

Table 2.2: Elements that have been used as electrodes (blue), and those whose 

oxides have demonstrated bipolar (red) and unipolar (yellow) resistive switching 

behaviour. 
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2.3     History 

Resistive switching was first reported in aluminium oxide by Hickmott in 1962, who 

termed it negative resistance [29].  Figure 2.5(a) illustrates the I–V characteristics of 

the MIM structure of Al/Al2O3/Al [29] where by increasing the voltage, the current 

decreases resulting in negative resistance. Nowadays, this behaviour is known as the 

phenomenon of resistance switching where the I−V characteristics can be interpreted 

as the resistive switching of aluminium oxide from low to high values by increasing 

the voltage. Later, similar resistive switching behaviour was observed in NiO [30]. 

Contemporary research on resistive switching was initiated in 2000, when it was 

suggested that the reproducible switching effect in SrTiO3:Cr could be practicably 

developed in the next generation of memory devices [31].  

 

            

Figure 2.5: (a) Negative resistance in Al/Al2O3/Al [29]; (b) the memristor as the 

fourth missing circuit element [32]. 

.
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In an completely separate topic, in 1971, Chua predicted the existence of a new 

circuit element called the memristor (a term constructed from ‘memory’ and 

‘resistor’) [33]. The four fundamental circuit variables are current (i), voltage (v), 

charge (q) and flux (φ). Figure 2.5(b) shows the six possible relationships in which 

these four variables can be paired. Current is a time derivative of charge and voltage 

is a time derivative of flux. The remaining four relations result in the resistor (R), 

capacitor (C), inductance (L) and memristor (M). The first three of these are the 

basic two-terminal circuit elements and Chua predicted the memristor as a fourth 

circuit element that mathematically connects flux to charge: 

𝑑𝜑 = 𝑀𝑑𝑞.                                                       (2.1) 

Although a relevant physical device had yet to be specified, Chua described the 

future potential applications of the memristor [33]. In 2008, a physical memristor 

device was proposed by a group at Hewlett-Packard [32] based on the bipolar 

resistive switching phenomenon, which led to further renewed interest in resistive 

switching. During the past five years, the resistive switching phenomenon has not 

only been extensively investigated for RRAM applications, but it is also considered 

as having potential in the development of logic devices [34] and for neuromorphic to 

mimic biological connections in the brain [35].  
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2.4     Resistive switching mechanisms 

The resistive switching properties of materials originate from a large variety of 

physical and chemical phenomena. However, the mechanisms underpinning resistive 

switching are still not fully understood. Hence, macroscopic descriptions of resistive 

switching have been used more often than microscopic modelling, since the latter 

requires more physical detail and large computational resources.  

This section presents details of the electro-chemical, valence-change and 

thermo-chemical mechanisms which are frequently used in the literature to 

macroscopically explain the resistive switching phenomenon (Figure 2.6). The 

electro-chemical and valence-change mechanisms are involved in the bipolar 

behaviour seen in resistive switching while the thermo-chemical process concerns 

unipolar behaviour.  

 

 

Figure 2.6: Proposed resistive switching mechanisms [36]. 
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2.4.1     Electro-chemical mechanism 

In this mechanism, resistive switching is caused by the electrochemical deposition 

and dissolution of metal cations through the insulator [37]. In this case, the insulator 

is sandwiched between two electrodes, one of which is an electrochemically active 

metal such as Cu, Ag or Ni while the other electrode might be Pt, Au, Ir or W [36]. 

The initial state of the cell is high resistance where no metal is present in the 

insulator (Figure 2.7(a)). When, a sufficiently positive voltage is applied to the active 

electrode, the dissolution of the active metal occurs (Figure 2.7(b))  

M → Mz+ + ze−                                                    (2.2) 

where M is the active metal and M
z+

 refers to the metal cations in the insulator. The  

 

Figure 2.7: (a) Initial state of insulator; (b) growth of conductive filament; (c) 

formation of conductive filament; (d) rupture of conductive filament. 
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migration of the M
z+

 through the insulator leads to the formation of a metallic 

filament which sets the cell to the low resistance state (Figure 2.7(c)). The cell 

maintains the low resistance state until a sufficient negative voltage is applied, and 

then the electrochemical dissolution of the metal filaments occurs: 

Mz+ + ze− → M                                                   (2.3) 

This leads to the rupture of the filament, which resets the cell to the high resistance 

state (Figure 2.7(d)). This formation and rupture of the metallic filament changes the 

resistance of the insulator resulting in bipolar resistive switching behaviour.  

2.4.2     Valence-change mechanism 

In the valence change mechanism, resistive switching occurs by the migration of 

anions. In most metal oxides, such as Ta2O5 [38] and TiO2 [39], the anions are 

oxygen ions and their migration might also be described in terms of the motion of the 

corresponding oxygen vacancies. The migration of oxygen vacancies near one 

electrode can change the nature of the interface from blocking to Ohmic contact, 

resulting in resistive switching behaviour.  

Figure 2.8(a) shows the cell structure which is constructed from electrodes with 

high work function such as Pt with two different layers of material in the middle: a 

layer of stoichiometric oxide such as Ta2O5 or TiO2; and a layer of oxide with 

missing (represented as ‘x’) oxygen atoms like TiO2-x or Ta2O5-x [38, 39]. An oxide 

with a high concentration of oxygen vacancies might be regarded as an n-type     
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Figure 2.8: Cell structure in the valence-change mechanism when the cell is in (a) 

the high resistance state and (b) low resistance state. 

semiconductor [40], where an Ohmic contact is formed at the interface between the 

oxide and the metal. The other interface between the metal and the perfect oxide is a 

Schottky-contact which is also known as the active interface. Therefore, the cell can 

be modelled as a diode in series with a resistor. This suggests that the I–V 

characteristics can be described by the behaviour of the contacts rather than the bulk 

of the oxide. 

By the application of an appropriate voltage, the active electrode can be switched 

from Schottky to Ohmic contact by driving the oxygen vacancies into the perfect 

oxides (Figure 2.8(b)). This increases the concentration of n-carriers near the active 

interface, which results in narrowing the width of the Schottky barrier. Hence, the 
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state of the cell can be modelled as two resistors in series. As a result, depending on 

the concentration of oxygen vacancies near the active electrode, the cell can be in the 

low or high resistance state respectively. 

Figure 2.9 represents an example of the bipolar resistive switching of a cell. When 

the cell is in the high resistance state, the active interface is in Schottky mode. The 

application of low voltage at a different polarity would be equivalent to the forward 

and reverse bias of a diode, which results in low current through the structure. Upon 

the application of Vset, the oxygen vacancies move into the perfect oxide, and this 

switches the active interface to Ohmic contact. The cell remains at low resistance 

until a −Vreset transforms the interface to Schottky-contact by removing the oxygen 

vacancies from the perfect oxide. 

 

Figure 2.9: Resistive switching behaviour in the valence-change mechanism. 
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2.4.3     Thermo-chemical mechanism 

The thermo-chemical mechanism is primarily based on thermal effects that result in 

the unipolar behaviour [41]. Resistive switching can then be divided into three steps: 

electroforming, setting and resetting. Electroforming refers to the initial formation of 

a conductive filament in the pristine oxide (Figure 2.10(a)). This occurs by 

increasing the voltage to higher values until the current suddenly increases. During 

electroforming, large numbers of filaments grow through the oxide due to the 

electro-migration of oxygen ions (Figure 2.10(b)). Once a conductive bridge 

connects the top electrode to the bottom electrode (Figure 2.10(c)), a high current 

flows through the oxide, which must be limited by current compliance to avoid the 

permanent breakdown of the device.  

The formation process is a prerequisite for the generation of conductive filaments, 

and then the resistive switching occurs due to the rupture and rejuvenation of  

 

Figure 2.10: Formation process by increasing the voltage to higher values until the 

current suddenly increases which is limited by current compliance (CC). 
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Figure 2.11: Resistive switching behaviour in the thermo-chemical mechanism. 

filaments with application of voltage. Figure 2.11(a) shows the initial state of the cell 

after the formation process. By sweeping the voltage from zero, the high leakage of 

current through the conductive filaments leads to the local generation of heat.  This 

heat energy results in the thermal dissolution of the conductive filament, which 

would reset the device to a high resistance state at Vreset (Figure 2.11(b)). Now, due 

to the high resistance of the insulator, the bias voltage would be across the structure 

which generates a high electric field inside the insulator. By increasing the voltage, 

the conductive filaments are rejuvenated by the alignment of oxygen vacancies at 

Vset which are driven by electric field (Figure 2.11(c)). 
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2.5     Strontium titanate  

Strontium titanate (SrTiO3) is considered to be an ultra high-k dielectric [42, 43] 

suitable for application in DRAM [44]. Figure 2.12 illustrates the atomic structure of 

SrTiO3 which has the general formula of ABO3. It consists of Sr
2+

 ions on the corners 

with a Ti
2+

 ion in the centre surrounded by an oxygen octahedron. A high dielectric 

constant is caused by the displacement of Ti from the centre of the oxygen 

octahedron which induces a strong electric dipole when it is exposed to an external 

electric field. In contrast with other perovskite materials such as PbTiO3 or BaTiO3, 

the ferroelectric properties of SrTiO3 are suppressed by quantum fluctuations at room 

temperature and they can only be observed at cryogenic temperatures [45, 46]. For 

RRAM application, SrTiO3 doped with different transition materials has been 

reported to show bipolar resistive switching behaviour such as SrTiO3:Fe [47, 48], 

SrTiO3:Cr [49] and SrTiO3:La [50]. Recently, unipolar resistive switching behaviour 

has also been reported in SrTiO3 [51]. 

 

Figure 2.12: Perovskite structure of SrTiO3. 
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2.6     Fabrication  

Various thin film deposition techniques are used to grow a high quality of thin film 

high-k dielectric, namely thermal evaporation [52], atomic layer deposition [53], 

metal organic chemical vapour deposition [54], pulsed laser deposition [55], 

sputtering [56] and molecular beam-epitaxy [57]. In the following section, atomic 

layer deposition and pulsed laser deposition are explained as the deposition 

techniques used in this thesis. More detail of fabrication will be presented in the 

appropriate chapters. 

2.6.1     Atomic layer deposition 

Atomic layer deposition (ALD) is the preferred growth method used to deposit ultra 

thin metal-oxide layers, giving excellent control of thickness and reproducibility in 

film composition [53]. In ALD, the thin film grows due to the surface exchange 

reaction between the precursor and adsorbed molecules of the reactant. The 

deposition stops when the surface becomes saturated with the precursors. Hence, the 

growth rate is independent of precursor dose and can be expressed as the growth per 

cycle, where each cycle can be defined as having four steps.  

The first step involves the introduction of the first precursor to the surface            

(Figure 2.13(a)). After the formation of a layer, the surface becomes saturated by the 

precursors. In the next step, residual precursor is evacuated from the chamber, 

typically by using an inert gas (Figure 2.13(b)). In the next step, the surface is 

exposed to the second precursor (Figure 2.13(c)). Then, after the formation the next 
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layer, an inert gas is again used to remove unreacted species from the surface  

(Figure 2.13(d)). The reaction cycles are repeated until a film of the desired thickness 

has been obtained (Figure 2.13(e)).  

In this study, Sr and Ti precursors are used to grow SrTiO3 [58]. The maximum 

reactor temperature during the deposition was limited to 250°C due to the thermal 

decomposition of the precursors at higher temperatures. As a result, post-deposition 

annealing was carried out to achieve thin crystalline films. 

 

 

Figure 2.13: Schematic illustration of the deposition cycle in ALD growth: (a) 

exposure to the first precursor, (b) purge of residual precursors from the reaction 

chamber, (c) exposure to the second precursor, and (d) evacuation of the reaction 

chamber; (e) deposited thin films with the desired thickness.  
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2.6.2     Pulsed laser deposition 

Pulsed laser deposition (PLD) is a technique for the deposition of thin films [55], 

where intense laser pulses of short duration are used to evaporate material from the 

target. Figure 2.14 shows a simple PLD scheme where the laser beam is generated 

outside the chamber and directed towards the target by passing it through the 

focussing lens. The laser beam illuminates the target, which rotates to ensure the 

uniform coverage of the target surface. The high energy of photons which are 

generated by laser pulses breaks the chemical bonds of the target and releases 

particles into the vacuum chamber. Eventually, the ablated particles are deposited on 

the substrate, forming a thin film. PLD can be used for a wide variety of coating 

materials. However, problems of a small deposition area and a lack of uniformity of 

deposited films over the substrate makes the technique unsuitable for industrial 

applications. 

 

Figure 2.14: Scheme of pulse laser deposition. 
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2.7     Characterisation 

2.7.1     X-ray diffraction 

X-ray diffraction (XRD) is a technique used to determine the crystal structure of a 

sample.  Figure 2.15(a) shows the principle of the XRD technique where a beam of 

x-ray with wavelength 𝜆 is radiated onto the sample surface at an angle of 𝜃. When 

the photons reach the crystal planes, elastic scattering occurs between the photons 

and atoms. Then, the detector records the scattered intensity of an x-ray beam from 

the sample. Constructive interference occurs at a particular value of 𝜃, which can be 

determined by Bragg’s law: 

𝑛𝜆 = 2𝑑 sin𝜃                                                  (2.5) 

where n is an integer and d is the distance between the crystal planes. Therefore, the 

crystal structure can be determined by interpreting the XRD peaks at different values 

of 𝜃. In this thesis, XRD technique is used to confirm the crystal structure of SrTiO3. 

Figure 2.15(b) shows an example of XRD results of SrTiO3 which will be explained 

in the appropriate chapter.  

 
Figure 2.15: The interference of the photons from the crystal planes. 
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2.7.2     X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a quantitative spectroscopic technique 

used to investigate elemental composition at the surface of a sample. Figure 2.16 

shows the basic mechanism of XPS where a beam of x-rays irradiates at a particular 

wavelength. The photons excite the electronic states of atoms from 1 to 10 nm below 

the surface of the sample. The electrons ejected pass through the electrostatic fields 

within a hemispherical analyser which only allows electrons of a given energy to 

arrive at the detector. Finally, the intensity of a specified energy is recorded by a 

detector, and the electron binding energy of the emitted electrons can be calculated 

by:  

𝐸binding = 𝐸photon − (𝐸kinetic + 𝜑)                            (2.4) 

where Ebinding is the binding energy of electron, Ephoton is the energy of x-ray photons, 

Ekinetic is the energy of emitted electrons as measured by the detector and 𝜑 is the 

work function of the spectrometer. 

 
Figure 2.16: Illustration of an XPS instrument. 
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2.7.3     J-V characterisation 

The electrical measurements were performed using an Agilent 4155C semiconductor 

parameter analyzer in combination with a cascade probe station. The most significant 

measurements in this thesis are J–V characterisations, which were performed by 

sweeping the voltage on the top electrodes while the bottom electrode was grounded 

(Figure 2.17). The samples were designed in such a way as to have access to both the 

top and bottom electrodes. In order to check the endurance of resistive switching 

devices, it was necessary to apply the voltage sweep several times. Due to the lack of 

multiple sweeping options in the Agilent 4155C, a Labview program was developed 

to sweep the voltage for the desired number of times.   

 

Figure 2.17: (a) Picture of probe station; (b) top and bottom electrodes; (c) J-V 

characteristics of MIM structure; (d) sweeping the voltage on top electrode. 
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2.7.4     Conductive atomic force microscopy 

In this study conductive atomic force microscopy (C-AFM) was performed using the 

Park Systems XE-150 in order to obtain a microscopic view of the leakage of current 

through the sample. The C-AFM consists of a cantilever with a conductive tip, and in 

this study the CDT-NCHR tip was employed. The topographical image is obtained 

by scanning the surface of the sample where small forces between the tip and the 

surface lead to deflection of the cantilever. This deflection is detected in terms of the 

deflection of the laser beam from the top of the cantilever to the photodetector 

(Figure 2.18). Simultaneously, a constant voltage is applied between the tip and the 

bottom electrode and the current flowing through the insulator is detected using an 

external amplifier. Therefore, the current image is obtained as a well as the 

topography image, which can help in better understanding the microscopic behaviour 

of the leakage of current through the insulator.   

 
Figure 2.18: Illustration of the C-AFM apparatus. 
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2.8     Conclusions 

RRAM has the advantage of high speed of DRAM, the non-volatile property of Flash 

memory, and the potential for high density integration, all of which make it one of 

the most promising candidates for future memory devices. RRAM is based on the 

resistive switching phenomenon which has been observed in a wide range of 

transition metal and perovskite oxides. Resistive switching can be divided into 

bipolar and unipolar behaviour. In the former resistive switching depends on the 

polarity of the voltage applied, while in the later it depends only on the amplitude of 

the applied voltage.  

A wide variety of models have been proposed to explain resistive switching. This 

chapter has covered three main types of resistive switching mechanisms, namely 

electro-chemical, valence-change and thermo-chemical mechanisms. In the 

electro-chemical mechanism, resistive switching occurs due to the deposition and 

dissolution of metal cations in the insulator.  In the valence-change mechanism, 

switching the active interface between Ohmic and Schottky contact produces 

resistive switching characteristic. Finally, the thermo-chemical mechanism is caused 

by the rupture and rejuvenation of conductive filaments.  
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Chapter 3 
. 

. 

Conduction Mechanisms 
. 

    ‘If you can’t explain it simply, you don’t understand it well enough.’ 

 Albert Einstein 

.  

3.1     Introduction 

The principle of conduction mechanism was first introduced by Ohm in 1827, who 

stated that the current through a conductor is proportional to the potential difference 

across it: 

𝐼 =
1

𝑅
𝑉                                                            (3.1) 

where R is the resistance of the conductor. Ohm’s equation can be applied to a wide 

range of materials where I–V characteristics show linear behaviour. With the 

development of quantum mechanics, further conduction mechanisms were 

introduced to describe the nonlinear I–V characteristics of semiconducting and 

insulating materials. Most conduction mechanisms originate from two fundamental 

theories of thermionic emission and quantum tunnelling. Based upon these two 
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theories, the conduction mechanisms in MIM structures might be categorised into 

two main groups: interface-controlled mechanisms like the Schottky and Fowler-

Nordheim processes, and bulk-controlled mechanisms such as Poole-Frenkel and 

trap-assisted-tunnelling (Table 3.1).  

In the case of interface mechanisms, the bulk is assumed to be highly conductive 

relative to the interface and the leakage current is only limited by the interface. For 

bulk mechanisms, the interface does not limit the injection of carriers into the bulk 

and in this case only the bulk controls leakage current. The Schottky and Poole-

Frenkel mechanisms are based on the theory of thermionic emission while Fowler-

Nordheim and trap-assisted-tunnelling equations are based on quantum mechanical 

tunnelling.   

This chapter describes the conduction mechanisms summarised in Table 3.1. It 

begins by presenting the two fundamental theories of thermionic emission and 

quantum tunnelling, which are necessary to understand the conduction equations. 

The four main mechanisms (Table 3.1) are then explained in detail. Finally, 

conventional methods of modelling the I–V characteristics are presented. 

Table 3.1: The main conduction mechanisms of MIM structures. 
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3.2     Thermionic emission theory 

Thermionic emission refers to the phenomena in which electrons can escape from the 

bulk of materials into a vacuum by surmounting the potential energy barrier of V0 by 

gaining the energy due to heating. Thermionic emission was first modelled by 

Richardson, who realised that the current from the hot cathode depends exponentially 

on temperature [59]. The current density is given by: 

𝐽 = 𝐴𝑇2exp  −
𝑉0

𝑘𝑇
                                             (3.2) 

where 𝐴 is the Richardson’s constant, 𝑘 is the Boltzmann’s constant, and 𝑇 is the 

absolute temperature. For metals, the Fermi level and conduction band are laid on 

each. The minimum energy required for electrons to escape from the Fermi level to 

the vacuum is: 

𝑉0 = 𝑒𝜑m                                                       (3.3) 

where e is the electron charge and 𝜑m  is the work function of metal. The exponential 

term in Equation 3.2 is also known as the Boltzmann factor, which states the relative 

probability of an event to occur which requires energy ∆𝐸 in a system at temperature 

T. As a result, the principle of thermionic emission can be extended to any system in 

which electrical conduction is caused by the thermal emission of electrons over the 

potential barrier of 𝑉0 by gaining the energy ∆𝐸. 
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3.3     Quantum tunnelling theory 

Quantum tunnelling is described as the ability of an electron to penetrate through a 

potential barrier. A simple equation for quantum tunnelling can be derived by 

assuming a rectangular potential barrier. By solving the electron wave functions in 

three different regions (Figure 3.1) and then using appropriate boundary conditions, 

the probability that an electron can penetrate through the potential barrier of 𝑉0 is 

given by: 

𝑃 ≈  exp −2𝑑 
8𝜋𝑚 𝑉0 

ℎ
                                  (3.4) 

where 𝑑 is the potential barrier width, 𝑚 is the effective mass of the electron and ℎ is 

Planck’s constant. The exponential decay of the electron wave function through the 

barrier shows that tunnelling probability is reduced exponentially by increasing the 

barrier width 𝑑. 

 

Figure 3.1: Electron penetration through a rectangular potential barrier. 
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3.4     Interface conduction mechanisms 

3.4.1     Schottky emission 

When a metal makes contact with a semiconductor, a potential barrier is formed at 

the metal/semiconductor interface (Figure 3.2). This potential barrier controls the 

leakage of charge at the interface when it is not limited by the bulk. In this case the 

bulk is highly conductive due to the high concentration of carriers due to n-type or 

p-type doping of the semiconductor.  

Figure 3.2(a) shows the band structure of a metal and n-type semiconductor. The 

amount of energy that an electron requires to escape from the bottom of the 

semiconductor’s conduction band into the vacuum is called the electron affinity (𝜒). 

When the metal and semiconductor are in contact with each other, the Fermi levels 

on both sides will line up to establish thermal equilibrium between the metal and the 

semiconductor. A potential barrier is formed at the interface which is equal to the 

difference between the work function and the electron affinity: 

𝜑B = 𝜑m − 𝜒                                                    (3.5) 

This potential barrier is termed the Schottky barrier, which controls the leakage of 

current at the interface (Figure 3.2(b)). The leakage of current occurs due to the 

emission of electrons from the Fermi level of the metal to the conduction band of the 

semiconductor at temperature T. 



 

 

37 
 

 

CHAPTER 3 CONDUCTION MECHANISMS 

 

Figure 3.2: Formation of Schottky barrier when a metal is in contact with an insulator. 

The conduction mechanism can be modelled using 𝜑B  as the potential barrier in 

the thermionic emission equation (Equation 3.2). However, the effect of electric field 

must be also included in Equation 3.1, since this can modify the height of the 

Schottky barrier, and therefore thermionic emission is dependent on both temperature 

and the electric field applied.  

In order to calculate the effect of the electric field on 𝜑B , a simple Schottky 

barrier is illustrated in Figure 3.3. When an electron is at distance 𝑥 from the metal, 

an attractive electrostatic image-force will pull the electron back towards the metal 

due to the positive charges induced on the metal surface which create the normal 

barrier (Figure 3.3). This image-force can be modelled in terms of the equivalent 

force that a single positive charge will induce at distance −𝑥 from the interface. This 

positive charge is termed the image-charge, where the attractive force between it and 

the electron is given by:  

𝐹 =
−𝑒2

4𝜋𝜀0𝜀𝑟(2𝑥)2
                                                       (3.6) 
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From Equation 3.6, the normal barrier, which is the potential energy of an electron 

located at distance 𝑥 from the metal, can be derived by: 

𝐸 𝑥 =  𝐹𝑑𝑥 =
−𝑒2

16𝜋𝜀0𝜀𝑟𝑥

𝑥

∞

                                          (3.7) 

When an external electric field is applied, the total potential energy as a function of 

distance PE(x) will give the effective barrier:  

𝑃𝐸 𝑥 = −
𝑒2

16𝜋𝜀0𝜀𝑟𝑥
− 𝑒𝐸 𝑥                                         (3.8)  

where 𝐸  is the electric field across the junction. Now, the maximum potential barrier 

is located at 𝑥m . By solving the equation 𝑑(𝑃𝐸)/𝑑𝑥 = 0, 𝑥m  is calculated to be 

𝑥m =  
𝑒

16𝜋𝜀0𝜀𝑟𝐸 
                                                  (3.9) 

 

Figure 3.3: Effect of external electric field on the Schottky barrier of a metal and 

semiconductor interface. 
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By substituting 𝑥m  in Equation 3.8 and calculating the potential barrier at 𝑥m , the 

lowering of the Schottky barrier can be derived: 

∆𝜑 =  
𝑒𝐸 

4𝜋𝜀0𝜀𝑟
                                                   (3.10) 

As a result, by including the effect of the electric field on the Schottky barrier (∆𝜑) 

in the thermionic emission Equation 3.2, the Schottky equation can be derived: 

𝐽Sch = 𝐴𝑇2exp  −𝑒 𝜑B −  
𝑒𝐸 

4𝜋𝜀0𝜀𝑟
 /𝑘𝑇                        (3.11) 

where A is a constant.  
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3.4.2     Fowler-Nordheim tunnelling 

A strong electric field can not only reduce the height of the Schottky barrier, but may 

also change the shape of potential barrier. Figure 3.4(a) illustrates a simple potential 

step where a uniform external electric field is applied. The potential step barrier will 

be reshaped to become triangular in a strong electric field (Figure 3.4(b)). Electrons 

can then tunnel from the metal through the potential barrier directly into the 

conduction band of the insulator. This mechanism is modelled by the Fowler-

Nordheim equation: 

𝐽FN = 𝐵𝐸 2exp −
8𝜋 2𝑚𝑒𝜑3/2

3ℎ𝐸 
                               (3.12) 

where B is a constant, 𝐸  is the electric field, 𝑚 is the electron effective mass, 𝜑 is the 

potential barrier equal to the height of the Schottky barrier, and ℎ  is Planck’s 

constant.  

 

 

Figure 3.4: (a) Step potential and (b) the effect of strong electric field on the step 

potential barrier which might result in carriers tunnelling through the barrier.  
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3.5     Bulk conduction mechanisms 

3.5.1     Poole-Frenkel emission 

The existence of defects in an insulator can create localised states which serve as 

traps for electrons. Random thermal fluctuations will then provide enough energy for 

electrons to escape from trap states to the conduction band. The electrons can 

subsequently move freely through the conduction band until relaxing into another 

localised state. The process of the trapping and detrapping of electrons can generate a 

leakage current through the insulator which is termed the Poole-Frenkel mechanism.  

The thermal excitation of electrons from trap states to the conduction band can be 

explained by the thermionic emission of electrons over the barrier 𝜑T  which is the 

location of the trap level below the conduction band minimum. The application of an 

external electric field reduces the potential barrier, leading to high rates of trapping 

and detrapping of electrons through the bulk. As a result, the Poole-Frenkel 

mechanism can be modelled in terms of the thermionic emission of electrons from 

trap states into the conduction band by surmounting the potential barrier of 𝜑T , 

where an external electric field will reduce this potential barrier by ∆𝜑: 

𝐽 = 𝐶𝐸 exp  −𝑒
 𝜑T − ∆𝜑 

𝑘𝑇
                                       (3.13) 

where C is a constant. The process to find ∆𝜑, the effect of the electric field on 𝜑T , is 

illustrated in Figure 3.5. When an electron is trapped, the localised state is assumed 
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to be neutral and, from the movement of an electron over the distance 𝑥 from the trap 

state, an attractive electrostatic force will pull the electron back towards the trap state 

due to the positive charge states of empty traps. This force is equivalent to the force 

between a positive and negative charge, and is given by: 

𝐹 =
−𝑒2

4𝜋𝜀0𝜀𝑟𝑥2
                                                     (3.14) 

Therefore, the potential energy of an electron located at distance 𝑥 from the trap state 

can be calculated as:  

𝐸(𝑥) =  𝐹𝑑𝑥 = −
𝑒2

4𝜋𝜀0𝜀𝑟𝑥

𝑥

∞

                                       (3.15) 

 

Figure 3.5: The effect of external electric field on the potential barrier between the 

trap state and the conduction band. 
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This is illustrated in Figure 3.5 as the normal barrier. The total potential barriers 

𝑃𝐸 𝑥  in the presence of an electric field 𝐸  is given by:  

𝑃𝐸 𝑥 = −
𝑒2

4𝜋𝜀0𝜀𝑟𝑥
− 𝑒𝐸 𝑥                                             (3.16) 

This is the effective barrier, and in order to calculate the maximum potential barrier it 

is required to solve the equation 𝑑(𝑃𝐸)/𝑑𝑥 = 0, which gives the value of 𝑥𝑚 : 

𝑥m =  
𝑒

4𝜋𝜀0𝜀𝑟𝐸 
                                                    (3.17) 

By substituting the value of 𝑥m  in Equation. 3.16, the maximum potential barrier is 

calculated, which shows that the barrier is lowered by: 

∆𝜑 =  
𝑒𝐸 

𝜋𝜀0𝜀𝑟
                                                     (3.18) 

By including the effect of the electric field on the potential barrier of 𝜑𝑇  in 

Equation 3.13, the Poole-Frenkel equation is derived as: 

𝐽PF = C𝐸 exp  −𝑒  𝜑T −  
𝑒𝐸 

𝜋𝜀0𝜀𝑟
 /𝑘𝑇                                (3.19) 
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3.5.2     Trap-assisted-tunnelling  

As in the case of tunnelling through the Schottky barrier, a strong electric field can 

modify the potential barrier of traps in the Poole-Frenkel mechanism. Figure 3.6(a) 

shows trap states below the conduction band. In a weaker electric field the 

thermionic emission of electrons over the potential barrier results in the 

Poole-Frenkel mechanism, as explained in the previous section (Figure 3.6(b)). 

However, increasing the electric field will cause a narrowing of the potential barrier. 

Now, the electrons can tunnel through the potential barrier to the conduction band 

(Figure 3.6(c)). In this case, the potential barrier has a similar shape to that of the 

Schottky barrier in a strong electric field. Therefore, trap-assisted-tunnelling can be 

written as follows [60]: 

𝐽TAT = 𝐷exp  −
8𝜋 2𝑚𝑒𝜑3/2

3ℎ𝐸 
                                         (3.20) 

where D is a constant and m is the effective mass of the electron. 

 

Figure 3.6: (a) Trapped electrons in trap states below the conduction band; (b) 

electron escaping from the trap state to the conduction band in a weak electric 

field (Poole-Frenkel); (c) electron tunnelling from trap state to the conduction 

band in a strong electric field (trap-assisted-tunnelling). 
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3.6     Leakage current modelling  

In conventional techniques used to model the leakage current, the MIM structure is 

divided into three main regions as depicted in Figure 3.7(a): top interface, bulk and 

bottom interface. Depending on the I-V characteristics involved, either one of the 

interfaces or the bulk can limit the leakage of current. When one of the interfaces 

controls the leakage of current, the bulk is assumed to be highly conductive due to 

the high concentration of defects or doping. The effect of the opposite interface is 

then assumed to be negligible, possibly due to the lowering of the Schottky barrier 

height or the existence of an Ohmic contact between the metal and insulator          

(Figure 3.7(b)). In this case either of the Schottky or Fowler-Nordheim mechanisms 

is responsible for controlling the leakage current. When the bulk controls the leakage 

of current, both interfaces are assumed to be highly conductive compared to the bulk 

(Figure 3.7(c)). Hence, bulk mechanisms are used to model the leakage current. 

 

Figure 3.7: (a) Modelling the MIM device by three regions where the leakage 

current can be attributed to either (b) interface or (c) bulk. 
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3.6.1     Thermionic emission vs. tunnelling 

Before a mechanism can be attributed to the interface or the bulk, the thermionic 

emission or tunnelling behaviour involved in the leakage current must be specified. 

The tunnelling current is represented by an abrupt increase in the leakage current at 

high electric field while in thermionic emission the leakage current increases 

gradually when the voltage is increased from zero (Figure 3.8(a)). 

Thermionic emission and tunnelling can be better distinguished from each other 

by drawing two plots of ln 𝐽  vs.  𝐸  and ln 𝐽  vs. 1/𝐸 . In thermionic emission 

mechanisms, the relationship between current-density and the electric field can be 

written as:  

ln 𝐽 ~  𝐸                                                    (3.21) 

For tunnelling mechanisms the following equation governs the relationship between 

the current-density and the electric field:  

ln 𝐽 ~ − 1/𝐸                                                    (3.22) 

As a result, if the J−E characteristics shows linear behaviour in the ln 𝐽  −  𝐸  plot, 

then the dominant mechanism is thermionic emission (Figure 3.8(b)). Alternatively, 

if J−E characteristics shows linearity in the ln 𝐽  − 1/𝐸  plot, the dominant 

mechanism is tunnelling (Figure 3.8(c)). 
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Figure 3.8: (a) J-E characteristics of thermionic emission (blue) and tunnelling 

mechanism (red); (b) ln(J) vs √E where the thermionic emission curve shows 

linearity; (c) ln(J) vs 1/E where the tunnelling curve is linear.  

When the dominant mechanism is thermionic emission, the height of the potential 

barrier can be determined by measuring the leakage current at different temperatures 

(Figure 3.9(a)). By increasing temperature, more electrons gain enough energy to 

surmount the potential barrier, which results in an increase of the leakage current in 

constant electric field. This is shown in Figure 3.9(a), where the J–E characteristics 

shift to higher values as temperature increases. The height of the potential barrier (φ) 

can be calculated from the slope of ln(J ) vs 1/kT (Arrhenius plot) at a fixed electric 

field as depicted in Figure 3.9(b).  
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Figure 3.9: (a) Increasing the leakage current by temperature; (b) Arrhenius plot 

of leakage current in different electric fields. 

3.6.2     Schottky vs. Poole-Frenkel  

When the leakage exhibits thermionic emission behaviour, it might follow Schottky 

emission at the metal/insulator interface or Poole-Frenkel due to the presence of bulk 

traps. In order to determine which mechanism is operating, it is necessary to measure 

the refractive index of the insulator by e.g. ellipsometry [61, 62]. Then, the optical 

dielectric constant of the insulator can be calculated as: 

𝜀r = 𝑛2                                                     (3.23) 

where n is the refractive index. The optical dielectric constant can also be calculated 

by fitting the experimental results to either the Schottky (Equation 3.11) or Poole-

Frenkel (Equation 3.19). However, the value of 𝜀r  obtained from Equation 3.23 only 

matches one of the values calculated from Equations 3.11 and 3.19. Therefore, 

thermionic mechanism would be as a result of either Schottky or Poole-Frenkel 

emission. The difference between the values of 𝜀r  calculated from Equations 3.11 

and 3.19 arises from the levels of Coulomb potential that the electrons face upon 

application of electric field [63]. In Poole-Frenkel, the potential barrier reduction is 
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larger than in Schottky emission by a factor of 2, since the lowering of the barrier is 

twice as large due to the immobility of the positive charge   (Figure 3.10). 

 

Figure 3.10: The potential that electrons are face in: (a) Schottky; (b) Poole-Frenkel. 

3.6.3     Fowler-Nordheim vs. trap-assisted-tunnelling  

Tunnelling occurs due to the effect of a strong electric field on the narrowing of the 

potential barrier which results in electrons tunnelling thorough it. In order to find the 

appropriate tunnelling mechanism, it is necessary to specify the nature of the 

potential barrier, which could be either a Schottky potential barrier at the interface 

(𝜑B) or potential well in the bulk (𝜑T). The potential barrier can be specified by 

considering the leakage of current in a weak electric field where the potential barrier 

shape is less distorted. In this case, the leakage current is dominated by the 

thermionic emission of energetic electrons over the potential barrier. Hence, as 

explained in the previous section, thermionic emission can be attributed to either 

Schottky or Poole-Frenkel mechanisms. 

If the height of Schottky barrier controls the leakage current at a weak electric 

field, the abrupt increase in the leakage current in strong electric field is due to the 
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narrowing of the width of the Schottky barrier, which can be modelled by 

Fowler-Nordheim. In contrast, if the Poole-Frenkel mechanisms controls the leakage 

current through the bulk, trap-assisted-tunnelling would be responsible for high 

leakage current in strong electric field. By substituting the calculated values of 𝜀r  and 

potential barrier height in the tunnelling equations, the effective mass of the electron 

can be calculated by fitting the characteristics of  the leakage current. 

3.7     Conclusions 

Thermionic emission and tunnelling mechanisms have been considered in this 

chapter. The Schottky and Poole-Frenkel mechanisms are based on the thermionic 

emission of electrons over the potential barriers while the Fowler-Nordheim and 

trap-assisted-tunnelling mechanisms are used to model the tunnelling of electrons 

through the potential barriers at strong electric fields.  

In conventional leakage current modelling, the MIM structure is divided into the 

interface and the bulk, where the leakage current is dominated by either interface or 

bulk mechanisms. In most metal oxides, thermionic emission mechanisms have been 

used to describe the temperate dependency of J−E characteristics, while tunnelling 

mechanisms are used to explain the abrupt increase in the leakage current at high 

electric fields. 



51 
 

. 

. 

. 

. 

. 

Chapter 4 
. 

. 

Leakage Current Behaviour of 

SrTiO3 
. 

‘If I have seen further than others, it is by standing upon the shoulders of 

giants.’ 

                         Isaac Newton 

 

4.1     Introduction 

Transition metal oxide junctions have attracted considerable attention due to their 

potential for applications such as DRAM [64], and RRAM [65-68]. For such 

applications, an important factor to be addressed is the leakage current that affects 

the reliability of the devices. Leakage current through transition metal oxides has 

been the subject of extensive discussion, and different models have been proposed to 

explain it [69-73]. Thermionic field emission equations (i.e. Schottky or 

Poole-Frenkel) are frequently used to explain temperature dependent characteristics 

of leakage current, which is mainly attributed to oxygen vacancies [66, 70, 73-75]. 

The conduction mechanism of the oxygen vacancies was also found to vary 

according to the difference in the thermionic field emission types (either Schottky or 

Poole-Frenkel). 
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In the case of Poole-Frenkel emission (Equation 4.1), the oxygen vacancies are 

regarded as traps inside the bulk [70, 73]. Leakage current originates from the 

thermionic field emission of electrons between oxygen vacancies (Figure 4.1(a)) and 

can be expressed by Poole-Frenkel equation  

𝐽PF = 𝐶𝐸 exp  −𝑒 𝜑BPF −  
𝑒𝐸 

𝜋𝜀0𝜀r
 /𝑘𝑇                          (4.1) 

where 𝐸  is the electric field strength, C is a constant, e is the electron charge, k is  

Boltzmann’s constant, T is the temperature, 𝜑BPF  is the location of the trap level 

below the conduction band minimum, 𝜀0  is the vacuum permittivity and 𝜀𝑟  is the 

dielectric constant.  

 

Figure 4.1: Scheme of thermionic field emission of electrons (a) between the oxygen 

vacancies in bulk that can be modelled by Poole-Frenkel emission equation, and (b) 

over the effective Schottky barrier that can be modelled by the Schottky emission 

equation. 
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For Schottky emission (Figure 4.1(b)), the bulk is regarded as an n-type or p-type 

semiconductor depending on the defect chemistry [66, 74-76]. The leakage current is 

then due to thermionic field emission of electrons over the effective Schottky barrier 

( 𝜑BSch ) and the leakage current can be modelled by the Schottky equation 

(Equation 3.11). An electric field can drive diffusion of charged defects such as 

oxygen vacancies, changing their concentration profiles at the interface, resulting in a 

field dependent variation of 𝜑BSch , and, subsequently, an asymmetry in the leakage 

current. 

Both equations can explain the existence of temperature-dependent leakage 

characteristics, but the underlying conduction processes are related to the dielectric 

in fundamentally different ways: Poole-Frenkel is limited by conduction mechanisms 

in the bulk region without any limit on the carrier injection, whereas Schottky 

emission is limited by injection at the interface, with bulk conduction being relatively 

high, mediated by defects such as oxygen vacancies. In order to reduce the leakage 

current, it is important to determine which of these mechanisms dominates. For 

instance, if it is Schottky emission, the interface controls the leakage current so that 

using different electrode materials might improve the leakage current [77, 78]. In 

contrast, if Poole-Frenkel is the dominant mechanism, then dielectric quality controls 

the leakage current, and bulk treatments such as oxygen annealing might be deployed 

to reduce the leakage current [79].  

However, there are several discrepancies with the existing models in respect of 

the impact of dielectric film quality or interface on leakage current. The 
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Poole-Frenkel model proposed previously [70, 71, 73, 80-82] suggests that bulk 

controls the leakage current while the Schottky emission model [39, 83-87] indicates 

interface as a dominant factor.  

Moreover, restriction to just the interface mechanism or just the bulk mechanism 

can lead to inaccurate modelling of leakage current, for example in the calculation of 

the dielectric constant from the thermionic field emission equations obtained from 

the leakage current in the positive voltage region [73, 79, 85, 88]. From 

Poole-Frenkel and Schottky equations, the dielectric constant is defined by the slope 

of the leakage current curves on a logarithmic scale.  Under normal circumstances  𝜀r  

is greater than unity [89], but dielectric constants obtained from the slope can be 

smaller than unity [90]. 

In this chapter, the results of a study into leakage current mechanisms in SrTiO3 

MIM structures are presented. A model including both interface and bulk effects 

upon the leakage current is proposed. The model demonstrates an improved 

agreement with experimental current density, both as a function of voltage and 

temperature compared to previous published models [79, 80, 83, 85, 87]. The model 

also indicates the existence of fixed positive charges at the bottom electrode leading 

to the characteristic asymmetry observed in the J–V characteristics.  
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4.2     Experiment 

A 100 nm thick Pt film was deposited on a Ti/SiO2/Si substrate to act as the bottom 

electrode in the MIM structure. The 10 nm Ti flash-layer provides adhesion between 

the Pt and the SiO2 layer. On top of the Pt electrode was deposited a 50 nm layer of 

SrTiO3 via ALD at a reactor temperature of 250 °C. After deposition, the sample was 

annealed at 500 and 600 °C for 120 s in N2. After each annealing, the crystal 

structure of the film was characterised by x-ray diffraction (Figure 4.2), which 

showed strong SrTiO3 (110) peaks after annealing at 600 °C, consistent with the 

expected perovskite structure. Following the anneal, circular Pt electrodes with a 

thickness of 100 nm and diameter of 150 μm were deposited to form MIM structures 

used in electrical characterisation. The leakage current characteristics were measured 

across a temperature range of 300–380 K.  

 

Figure 4.2: The XRD results of SrTiO3 before and after 600 °C annealing. 
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4.3     Electrical results 

Figure 4.3 shows the J-V characteristics of a SrTiO3 MIM structure. For positive 

voltages, there are two distinct regions of behaviour: low voltage (V < +0.5 V) where 

the leakage current is less than 10
−8

 A/cm
2
 and high voltage (V > +1.3 V) where the 

leakage current increases with increasing temperature. Each J–V characteristic 

exhibits an abrupt transition between the two regions at a voltage which decreases 

with temperature (+0.5 < V < +1.3 V). At high negative voltage bias (V < −1 V), the 

measured current shows a temperature dependence similar to that observed for 

positive biases. However, the leakage current for negative voltages is lower than the 

corresponding positive voltages, leading to an asymmetry in leakage current curves. 

 

Figure 4.3: J–E characteristics of Pt/SrTiO3/Pt structure for both negative and 

positive voltage biases over temperature range 300 K to 380 K. 
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4.4     Modelling the leakage current 

The temperature dependence of the leakage current at V > +0.5 V is suggestive of a 

thermionic field emission, indicating a current dominated by either Poole-Frenkel 

emission, Equation 4.1, or Schottky emission Equation 3.11. The temperature 

independence of low leakage current for (V < +0.5 V) may imply a current blocked at 

the metal/insulator interface and there is only small leakage current due to the Ohmic 

behaviour.  

Based upon these observations, a likely model might be that the current is 

dominated by a bulk conduction mechanism where at low voltage, the interface 

blocks injection of electrons to the bulk. Indeed, at high voltage the leakage current 

is modelled very accurately by Equation 4.1, where the electrons move through the 

bulk by hopping between localised states such as might arise from oxygen vacancies 

inside the insulator (Figure 4.1(a)). 

At low voltage (V < +0.5 V) the leakage current is dominated by the interface 

where the injection of electrons into the bulk is blocked. In the range 

+0.5 < V < +1.3 V, injection most likely occurs by tunnelling of electrons from the 

electrode to the defect states near the interface, which may be modelled by the 

trap-assisted-tunnelling current [91] 

𝐽TAT = 𝐴 exp −
8𝜋 2𝑒𝑚𝜑BTAT

3

2

3ℎ𝐸 
                            4.2  
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Figure 4.4: Schematic of leakage current mechanisms through SrTiO3. 

where 𝐴 is a prefactor. In this model 𝜑BTAT  is the difference of 𝜑BSch   and 𝜑BPF , as 

the electrons tunnel from the electrode to the defect states near the interface     

(Figure 4.4).  

Based on this model, electrons are injected into deep states near the interface by 

tunnelling and subsequently move through the bulk by thermal emission between 

traps throughout the dielectric film. At low voltage, the electric field is not high 

enough for injection and the Poole-Frenkel mechanism is suppressed by the interface 

where the Ohmic behaviour leads to the small leakage current at V < +0.5 V. By 

increasing the voltage, the potential across the dielectric is sufficient to result in 

injection of electrons to the states near the interface, causing an abrupt increase in the 

leakage current, as shown in Figure 4.3. At this point, the thermionic field emission 

of electrons between the oxygen vacancies limits the leakage current and the 

dominant mechanism is Poole-Frenkel. 
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In order to determine values for the physical parameters in the Poole-Frenkel and 

trap-assisted-tunnelling equations, the experimental data is plotted in two ways. 

Figure 4.5 illustrates ln(J / E) against E
1/2 

at a positive bias over temperature range 

300 K to 380 K. The plots show a linear relation for voltage biases above +1.3 V, 

indicating Poole-Frenkel as the dominant mechanism for V > +1.3 V. The dielectric 

constant (𝜀r) has been calculated 5.7 from the slope of lines in Figure 4.5 which is 

consistent with  Equation 3.23 using the refractive index of 1.95 measured by an 

ellipsometer [83]. Also, the trap ionisation energy (𝜑BPF ) can be calculated from the 

slope of ln(J / E) vs 1/T at a fixed voltage. Below +1.3 V, the leakage current cannot 

be explained by the Poole-Frenkel mechanism since the plots show a nonlinear 

behaviour. 

 

Figure 4.5: Extracting the parameters of Poole-Frenkel equations in the 

temperature range of 300–380 K from ln(J) vs 1/E (Poole-Frenkel plot). 
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In the case of trap-assisted-tunnelling, plotting ln(J) against 1/E also yields a 

straight-line fit, but over the complementary range of V < +1.3 V, as shown in  

Figure 4.6. This might indicate that over the range +.0.5 < V < +1.3 V 

trap-assisted-tunnelling limits the leakage current while by increasing the voltage 

(V > +1.3 V) Poole-Frenkel is the dominate mechanism. However, the latter plot 

shows an increase in current density with increasing temperature, inconsistent with 

Equation 4.2, where trap-assisted-tunnelling is temperature independent. Clearly, this 

experimentally observed temperature dependence shows that at low field the 

mechanism cannot be purely due to tunnelling of carriers through an interface barrier 

and thermionic emission might be involved in the conduction mechanism. 

 

Figure 4.6: Extracting the parameters of trap-assisted-tunnelling equations in the 

temperature range of 300–380 K from ln(J) vs 1/E (trap-assisted-tunnelling plot). 
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The temperature dependence can be introduced in Equation 4.2 by modifying the 

prefactor A, which defines the magnitude of tunnelling current at high electric field. 

As the first step, the experimental characteristics were fitted to Equation 4.2 for the 

data obtained at 380 K. From the gradient (Figure 4.6), 𝜑BTAT  is calculated to be 

0.18 eV, using m = 0.05me with me being the free electron rest-mass [83]. 

The new prefactor, A, was then obtained for the remaining temperatures using this 

value of  𝜑BTAT . The resulting temperature dependence of A is plotted in Figure 4.7, 

which has an Arrhenius form.  The pre-factor, A(T), can therefore be expressed as 

𝐴 = 𝐴0exp  −
𝑒

𝑘𝑇
𝜑B                                         4.3  

where 𝐴0 is a constant and from the gradient of the line, the activation energy, 𝜑B , is 

calculated to be 0.82 eV. Combining Equations 4.2 and 4.3 provides the 

current-density for V < +1.3 V 

 

Figure 4.7: The calculated values of A as a function of 1/kT. 
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𝐽 = 𝐴0exp  −
𝑒

𝑘𝑇
𝜑B exp −

8𝜋 2𝑒𝑚s𝜑BTAT
3/2

3ℎ𝐸
                  4.4  

Equation 4.4 fits the observations very well. Noting the similarity between the form 

of the pre-factor and the Poole-Frenkel emission formula, suggests the leakage 

current can be represented by the product of the two mechanisms, Poole-Frenkel and 

trap-assisted-tunnelling:  

𝐽 ~ 𝑃PF × 𝑃TAT                                                   4.5  

where 𝑃PF is the probability that an electron will pass through the bulk by thermal 

excitation via trap bound-states and the conduction band of the insulator and 𝑃TAT is 

electron injection probability at the interface. To understand the physical meaning of 

Equation 4.5 further, the parameters of the Poole-Frenkel equation need to be 

explored in more detail, taking into account the proximity of the electron traps to the 

interface. Equation 4.1 includes of a constant, C, and an exponential term. When 

deep electron traps lie near the interface, the injection of electrons tunnelling through 

the interface barrier into the nearest trap is highly probable and nearly independent of 

V. Therefore, the leakage current will be limited by the hopping conduction between 

the deep states. These deep traps might arise from oxygen vacancies [48, 76, 88, 92-

95]. In this case, C in Equation 4.1 represents the current density at low voltage, 

arising from the hopping of electrons that have enough energy to overcome the 

potential barriers between the defects. By increasing the bias, and hence lowering the 

effective barrier height for hopping, more electrons can contribute to the leakage 
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current, which thus increases. This bias effect corresponds with the exponential term 

in Equation 4.1. However, the picture becomes modified when the defects in the 

SrTiO3 are located further from the interface. Where this is the case, a significantly 

higher voltage is required to inject the electrons into the vacancies by tunnelling, as 

the barrier width is effectively much bigger. The injection rate will then begin to 

become significant at a higher V compared to where the traps are in close proximity 

to the interface, (+0.5 < V < +1.3 V). This can be observed in the experimental 

characteristics (Figure 4.3) where there is an abrupt transition between low and high 

leakage current. This would correspond to a voltage dependence of C in 

Equation 4.1. The effect is illustrated in Figure 4.8. This shows the calculated 

injection current from tunnelling as a function of applied voltage V using 

Equation 4.2, with 𝜑BTAT  taken to be the value of 0.18 eV extracted from the fit to 

data in Figure 4.6.  

 

Figure 4.8: The relationship between the electric field and tunnelling current which 

shows how the injection of electrons to the vacancies is changed by electric field. 
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By increasing the voltage from +0.25 to +1.3 V, the tunnelling current increases 

by more than four orders of magnitude. Above +1.3 V, the current increases much 

less dramatically, and by less than an order of magnitude up to +2 V. As a result, in 

Equation 4.4, the trap-assisted-tunnelling term defines the variation of C with voltage 

and the Poole-Frenkel term explains the temperature dependence of the thermionic 

field emission of electrons. Equation 4.4 remains valid for V > +1.3 V where the 

trap-assisted-tunnelling is saturated. Combining the Poole-Frenkel and trap-assisted-

tunnelling equations, a more general expression for the leakage current-density is 

obtained as follows 

𝐽 = 𝐵𝐸exp −
8𝜋 2𝑒𝑚s𝜑BTAT

3/2

3ℎ𝐸
 exp  −𝑒 𝜑BPF −  

𝑒𝐸

𝜋𝜀0𝜀𝑟
 /𝑘𝑇        (4.6) 

where B is a constant. In terms of the global agreement with the J–V characteristics, 

Equation 4.6 is a substantial improvement over models proposed previously          

[79, 80, 83, 85, 87]. Figure 4.9 shows the results of modelling based on Equation 4.6 

including both the positive and negative voltage ranges. The values of the physical 

parameters calculated are listed in Table 4.1. Both these parameters and the J–V 

traces show a marked polarity asymmetry. It should be noted that the calculated 𝜑BPF  

in Table 4.1 is different for positive and negative voltage. This originates from 

variation of injection current at different voltage polarities which will be explained in 

more detail in chapter 5. The expected value of the high frequency dielectric constant 

of SrTiO3 is 5.8 [89] which is consistent with our calculated value of 𝜺r. 
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Table 4.1: Calculated parameters used in Equation 4.6. 

 𝝋𝐁𝐏𝐅 (eV) 𝝋𝐓𝐀𝐓 (eV) 𝜺𝐫 

V > 0 0.90 0.13 7.0 

V < 0 0.55 0.11 6.9 

 

 

Figure 4.9: (a) Results of experimental matching based on Equation 4.6 at negative 

and positive voltage. (b) Negative voltage bias at top electrode and low injection of 

electrons to the bottom electrode due to high distance of oxygen vacancies from 

bottom electrode. (c) Positive voltage bias at top electrode and high injection of 

electrons to vacancies due to small distance between oxygen vacancies and bottom 

electrode. 
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4.5     C-AFM 

Finally, the conduction through the oxide films has been examined, using C-AFM to 

resolve the uniformity of the leakage across the film. A typical C-AFM image is 

shown in Figure 4.10. There are clearly discrete points through which the leakage 

current passes most efficiently, which might arise from conductive filaments         

[68, 96, 97] through the dielectric. The filamentary conduction mechanism of SrTiO3 

is consistent with our assumption that the leakage current originates from the aligned 

oxygen vacancies from top to bottom electrode (Figure 4.11(a)). In order to also 

confirm the filamentary origin of J–V characteristics in Figure 4.3, we have 

investigated the I–V characteristic of each point.  

 

 

Figure 4.10: (a) The current image of SrTiO3 surface, showing filamentary 

conduction through the film. (b) The topography image. 
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Single-point I–V measurement have been carried out by setting the location of 

AFM tip over a leaky and non-leaky points. Figure 4.11(b) shows the rectifying 

behaviour of a leaky point, with a comparatively small negative bias leakage current 

compared to the positive bias case. This is entirely consistent with J–V results that 

show a lower value of leakage current at negative bias. Non-leaky points show very 

low leakage current which cannot be detected by C-AFM. Therefore, it can be 

concluded that the main path of leakage current is through more conductive channels 

distributed across the dielectric film. At low voltage, there is a low injection of 

electrons to the oxygen vacancies near the bottom electrode (green paths in  Figure 

4.11(a)). By increasing the voltage, the high electron injection occurs at the bottom 

electrode where the thermionic emission of electrons between the oxygen vacancies 

limits the leakage current (purple paths in Figure 4.11(a)). 

 

Figure 4.11: (a) Schematic path of leakage current through the aligned oxygen 

vacancies. (b) I–V characteristic of a single-point by sweeping the voltage on top of 

leaky and non-leaky points. 
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4.6     Positive charge trapped at the interface 

It is important that the source of the asymmetry in J–V characteristics is identified.  

In the devices used in this study, it has been proposed that the difference between the 

characteristics with forward and reverse bias is produced by the existence of fixed 

positive charges at the bottom SrTiO3/Pt interface. They give rise to an internal 

electric field at the interface which combines with the applied field. Figure 4.12 

shows the J–V data for 300 K, which exhibits a minimum in the leakage current at a 

negative bias. At low negative bias, where the internal electric field is greater than 

the applied electric field, the current is in the direction opposite to that which would 

be generated by the applied field alone, as observed.  

 

Figure 4.12: Different direction of current where the minimum of leakage current 

lie at negative voltage. 
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In the proposed model to explain the asymmetry (Figure 4.9), the fixed positive 

charges at the bottom electrode repel mobile electron donors, such as positively 

charged oxygen vacancies, increasing the distance between them and the electrode. 

Consequently, as outlined above, there will be a wider barrier to injection, and a 

concomitantly larger bias required to saturate the tunnelling injection of carriers into 

the oxide film. This is reflected in the J–V characteristics where at low voltage the 

injection current due to tunnelling is very low. This can also be viewed in terms of 

the combination of fixed and mobile positively charged defect centres. By increasing 

the positive voltage bias at the top electrode, positively charged mobile defects are 

pushed towards the bottom electrode. The positive bias tends to offset the repulsion 

from the fixed positive charges at the lower electrode, so the positively charged 

mobile defects are effective in producing a tunnelling current. In contrast, when a 

negative bias is applied, the mobile defects are directed away from the bottom 

electrode as the internal and external electric fields add to enhance the field driven 

diffusion. This results in an increase in the distance between the oxygen vacancies 

and the bottom electrode. Hence the electron tunnelling occurs at higher voltage. 

However due to the greater distances, the injection of electrons at negative voltage is 

always lower than for positive voltage. For the case of the top electrode, it differs 

from bottom electrode due to the different modes in which the two interfaces are 

synthesised.  As a result, there is no fixed positive charge at the interface and as it is 

exposed to the atmosphere, oxygen vacancies can be created near this interface. 

Hence, the top electrode does not limit the injection of electrons to the deep traps. 
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4.7     Conclusions 

The temperature dependence of the J–V characteristics of Pt/SrTiO3/Pt structures 

were investigated from 300 to 380 K. It was found that the leakage current originates 

from the injection of electrons to deep traps, possibly oxygen vacancies near the 

interface, followed by thermionic field emission of electrons between the oxygen 

vacancies. In order to have an accurate model to explain the leakage current, it is 

necessary to consider the impact of both the interface and bulk. Therefore, a model 

has been proposed that combines both Poole-Frenkel and trap-assisted-tunnelling 

mechanisms in one equation that is able to model the experimental data 

quantitatively over the whole range of both positive and negative applied bias.  

It is proposed that the asymmetry in the leakage current with respect to the bias 

direction is due to the varying distance of mobile electron traps, such as oxygen 

vacancies, from bottom electrode caused by the presence of a layer of fixed positive 

charge. This results in a variation in the injection rates of electrons at the two 

interfaces for a given bias.  

In addition, C-AFM measurements strongly indicate a highly non-uniform 

conduction across the dielectric, demonstrating that the leakage current is 

predominantly through discrete channels, each of which exhibit asymmetric I–V 

characteristics consistent with the device J–V results. 
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Chapter 5 
 

 

Bipolar Behaviour of 

SrTiO3 
 

‘No amount of experimentation can ever prove me right; a single 

experiment can prove me wrong.’ 

Albert Einstein 

 

5.1     Introduction 

Resistive switching phenomena in metal oxide MIM structures have attracted 

significant attention for nonvolatile memory devices [36, 38], with the underpinning 

mechanisms thought to depend upon the material [11]. However, there are two main 

mechanisms in the literature, namely valance-change and thermo-chemical. The first 

concerns variation of the Schottky barrier height due to a change in the oxygen 

vacancy concentration at the metal/oxide interface that can be controlled electrically 

[98, 99], while the second involves electrically conducting filaments formed by 

diffusion of cations in or out of the metal oxide [37]. Although these models can 

explain many features of bipolar resistive switching in metal oxides, the relationship 

between the observed leakage current asymmetry and resistive switching of oxides 
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has not been clearly elucidated. This is partly caused by the asymmetry in leakage 

current being confused with the resistive switching behaviour of oxides [84, 85].  

In chapter 4, a model has been proposed based on Poole-Frenkel as the main 

conduction mechanism through the bulk where the electron injection at the bottom 

electrode were affected by the formation of oxygen vacancies away from the 

interface. In this chapter, the resistive switching behaviour of SrTiO3 is investigated 

in ALD and PLD deposited SrTiO3 samples. 

In section 5.2, the J–V characteristics of SrTiO3 are presented using the same ALD 

deposited sample as for chapter 4. The voltage was swept in positive and negative 

directions, which demonstrates asymmetric J–V characteristics and bipolar resistive 

switching behaviour. In order to explain the underpinning mechanism of resistive 

switching, the previous model presented in chapter 4 is extended by considering the 

role of oxygen vacancies at the bottom electrode in more detail. 

In section 5.3, the J–V characteristics of PLD deposited SrTiO3 sample are 

presented. The resistive switching behaviour was observed at room temperature with 

a hysteresis curve that occurs only for positive voltages. The resistive switching is 

explained by the same mechanism used for section 5.2. The existence of positive 

charge trapped at the interface is a key assumption to explain occurrence of the 

hysteresis curve at the positive voltage. It is also suggested carbon contamination at 

the interface might be the origin of fixed positive charge trapped at the bottom 

electrode. 
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5.2     ALD SrTiO3 

5.2.1     Electrical results 

The sample structure has been explained in section 4.2. Figure 5.1 shows J–V 

characteristics of the leakage current at temperatures between 280 K and 400 K. The 

voltage is swept at a constant rate from zero bias to +4 V, then to −4 V before 

returning to zero bias. An asymmetry in the leakage current was observed at all 

temperatures examined. The leakage current asymmetry increases with temperature. 

This can be seen by comparing the J–V curves at 280 K and 400 K. In addition, the 

leakage current curves exhibit a pronounced hysteresis between the forward and 

reverse sweep under both positive and negative directions of the bias variation, 

which increases with temperature.   

 

Figure 5.1: J–V characteristics for the SrTiO3 MIM structures from 280 to 400 K. 
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5.2.2     Modelling the bipolar behaviour 

In chapter 4, it has been proposed that the leakage current is through a pathway of 

oxygen vacancies from top to bottom electrode. The leakage current occurs by 

electron injection from one electrode to oxygen vacancies near the metal/oxide 

interface by tunnelling. This is followed by hopping conduction between oxygen 

vacancies by thermionic emission before tunnelling from oxygen vacancies into the 

other electrode (Figure 5.2). Due to the existence of positive charge trapped at the 

bottom electrode interface, the positively charged oxygen vacancies are 

electrostatically repelled, and in equilibrium they are located far from the bottom 

electrode. In this case, the tunnelling current limits the injection of electrons into the 

bulk, being highly sensitive to the proximity of oxygen vacancies to the bottom 

electrode.  

In the proposed model, there is no fixed positive charge at the top electrode. This 

leads to the possibility of asymmetric electrical characteristics with respect to bias 

direction. The absence of the positive fixed charge at the top electrode allows oxygen 

vacancies to lie close to that interface, so that injection does not limit the leakage 

current there. 

 

Figure 5.2: Illustrations of conduction mechanism under different voltage polarities. 
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In order to describe the processes underpinning resistive switching, the 

displacement and migration of oxygen vacancies at the bottom electrode are 

investigated. Displacement is defined as the reversible movement of oxygen 

vacancies under electrical bias, where upon removal of the applied voltage the 

oxygen vacancies return to their initial locations. Migration occurs when the 

field-driven movement of the vacancies is not reversible upon removal of the bias. At 

low temperature (Figure 5.3) (< 320 K), the oxygen vacancies cannot easily 

surmount the diffusion barriers. Application of a positive voltage bias displaces 

oxygen vacancies towards the bottom electrode, which enhances electron injection 

and increases the leakage current. A negative voltage displaces oxygen vacancies 

away from the bottom electrode, which suppresses electron injection. The 

displacement of oxygen vacancies at low temperatures leads to a small leakage 

current asymmetry; at 280 K the leakage current at −4 and +4 V differ by 1.4 orders 

of magnitude (Figure 5.1). 

 

Figure 5.3: A model for the displacement of oxygen vacancies near the bottom 

electrode interface under an applied voltage at low temperature. 
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By increasing the temperature (Figure 5.4), there is more thermal energy, which 

increases the rate of migration. When the voltage increases from zero to positive 

values, the oxygen vacancies migrate towards the bottom electrode leading to a 

higher electron injection relative to low temperatures. At 400 K, by decreasing the 

voltage from +.4 V to +.0.5 V, the external electric force on oxygen vacancies 

reduces. Thus, the positive charge trapped at the bottom electrode interface repels the 

oxygen vacancies, leading to a reduction in leakage current by four orders of 

magnitude (Figure 5.1). However, while approaching zero bias there remains a 

remnant of the oxygen vacancy population close to the bottom electrode. When the 

voltage is swept to negative bias, this remnant is removed, so that upon return to low 

positive voltage from the negative bias the leakage current is significantly lower than 

when the remnant is present.  

 

Figure 5.4: A model for the migration of oxygen vacancies near the bottom 

electrode interface under an applied voltage at high temperature relative to the 

onset of migration of oxygen vacancies. 
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This effect is indicated by the vertical arrow at +.0.2 V in Figure 5.1 where there is 

a hysteresis of around two decades of current. As a result, when the applied voltage 

is swept from negative to positive, the leakage current does not follow the same path 

as it does when the voltage is swept from positive to negative, thus demonstrating 

hysteresis. 

In order to examine this model, an experiment was carried out increasing the 

temperature from 300 K to 400 K and then back to 300 K with the DC voltage fixed 

at +.4 V.  The leakage current-density as a function of the changing temperature is 

shown in Figure 5.5. Initially it increases sharply in the range from 300 K to 400 K 

(from point a to b). Upon the subsequent reduction of the temperature under bias, the 

leakage current-density decreases (from point b to c), but does return to its initial 

value: there is nearly two orders of magnitude difference in the initial and final 

current densities at 300 K.  

 

Figure 5.5: The leakage-current density at +4 V during the temperature variation 

from 300 K→400 K→300 K. 



 

 

78 
 

 

BIPOLAR BEHAVIOUR OF SrTiO3 

 

CHAPTER 5 

Figure 5.6 shows the initial and final leakage-current curves at 300 K, as well as 

the J–V curve at 400 K. The variation is interpreted as follows. Increasing the 

temperature under the fixed DC voltage of +.4 V causes oxygen vacancies to migrate 

nearer to the bottom electrode interface. In the phase where the temperature is 

reduced to 300 K, the oxygen vacancies maintain their location closer to the bottom 

electrode interface due to the applied bias (Figure 5.7). As a result, the final injection 

current is greater than at the beginning. By comparing the final 300 K and 400 K J–V 

characteristics, it can be seen that at higher voltages the thermionic emission starts to 

dominate, causing divergence of the two J–V curves (Figure 5.6).  

 

Figure 5.6: The leakage current at 300 K before and after the annealing cycle, and 

at the peak temperature of 400 K.  Inset are illustrations of the model involving 

oxygen vacancies in relation to the bottom electrode. 
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Sweeping the voltage to negative values displaces the oxygen vacancies away 

from the bottom electrode interface. However at 300 K, subsequent to the thermal 

excursion to 400 K, the oxygen vacancies do not have sufficient energy to surmount 

the diffusion barriers. Therefore, migration does not take place and the electron 

injection is similar to that seen in the positive voltage sweep. Figure 5.6 shows that 

the leakage current at 300 K after the thermal cycle is almost symmetric, with only 

small differences between the positive and negative bias sides, probably due to 

oxygen vacancies displacement. It should be noted that under the negative voltage 

subsequent to the thermal cycle, the leakage current at 300 K is greater than at 

400 K.  This is interpreted as arising from the migration of vacancies at 400 K away 

from the bottom electrode, which reduces injection, but at 300 K after a thermal 

cycle under positive bias the vacancies are fixed at the bottom electrode interface, 

enhancing the injection (Figure 5.7).  

 

Figure 5.7: Oxygen vacancies locations in relation to the bottom electrode before 

and after annealing cycle. 
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5.2.3     Trap states of oxygen vacancies 

In the conventional Poole-Frenkel equation (Equation 3.13) the injection at the 

interface is assumed to be high, with only thermionic emission of electrons between 

oxygen vacancies limiting the leakage current. In chapter 4, it has been demonstrated 

that the leakage current is affected by injection of electrons at the bottom electrode. 

The value of C in Equation 4.1 changes with voltage which was modeled by a 

trap-assisted-tunnelling equation (Equation 3.20). In trap-assisted-tunnelling, the 

locations of traps are assumed to be fixed and the applied voltage increases the 

leakage current by modifying the shape of the potential barrier. 

In the previous section, it has been suggested that the leakage current is influenced 

by migration of oxygen vacancies relative to the bottom electrode. The applied 

voltage alters the tunnelling barrier height at the interfaces, by affecting the distance 

between the oxygen vacancies and the bottom electrode. As a consequence, the 

equation 4.6 is not accurate for high temperatures where there is migration of oxygen 

vacancies and the conduction mechanism must be presented as  

𝐽 ≈ 𝐶 𝑇, 𝑉 exp −
𝑒𝜑T

𝑘𝑇
                                           (4.1) 

where 𝜑T  is the trap state of an oxygen vacancy below the conduction band and the 

parameter C depends upon both temperature and voltage. By increasing the 

temperature, the exponential term increases. However, at high temperature, the 

parameter C also changes by application of a voltage. In this case, the value of 𝜑T  

cannot be described by using an Arrhenius plot as the value of C is also dependent  
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Figure 5.8: (a) The Arrhenius plot for figure 5.1 at voltage −4 and +4 V. (b) The 

activation energy plot. 

upon temperature. This can be better understood by plotting the Arrhenius plot of   

J–V characteristics (Figure 5.8(a)). Although, the Arrhenius plot shows an almost 

linear behaviour for the leakage current at −4 V, the behaviour is nonlinear at +4 V.   

Figure 5.8(b) shows the variation of activation energy with temperature which is 

calculated from the Arrhenius plot. At low temperature, there is only a small 

displacement of oxygen vacancies towards the bottom electrode leading to the 

constant injection of electrons into the bulk. Therefore, C is a constant and Arrhenius 

plot shows a linear behaviour. However, by increasing the temperature, migration of 

oxygen vacancies towards the bottom electrode at positive voltage will increase 

electron injection at the interface. Therefore, not only the exponential term increases 

with temperature, but also the value of C increases. This can give rise to non-linear 

behaviour in an Arrhenius plot due to the variation of the prefactor C with 

temperature. 
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When the temperature decreases from 400 K to 300 K by keeping a DC voltage of 

+4 V on the top electrode, the oxygen vacancies maintain their location closer to the 

bottom electrode interface. At room temperature, the repulsive force of fixed positive 

charge trapped at the bottom electrode repels the oxygen vacancies away from the 

interface. However, the oxygen vacancies do not have enough thermal energy to 

surmount the diffusion barriers. As a result, by removing the DC voltage, the oxygen 

vacancies maintain their locations close to the bottom electrode similar to the case 

when a voltage of +4 V is applied at 400 K. In both cases, the oxygen vacancies are 

close to the bottom electrode and due to high electron injection at the interface, 

thermionic emission of electrons through the bulk controls the leakage current. The 

prefactor C(T,V) is maximum and almost equal for both C(300,+4) and C(400,+4). 

Hence, the value of 𝜑T  can be extracted from values of the leakage current at 400 K 

and 300 K (after thermal excursion). At these two points only the exponential term 

varies with the temperature. Therefore, from the slope of the green line created from 

leakage current values at 300 K and 400 K (Figure 5.8(a)) the activation energy is 

calculated to be −0.52 eV. 

This also explains the difference between the calculated values of 𝜑BPF  at 

negative and positive voltage biases in Table 4.1. At positive voltage, the migration 

of oxygen vacancies close to the interface leads to higher electron injection. 

Therefore, the value of 𝜑BPF  at positive voltages is calculated to be greater than 𝜑BPF  

at negative voltages. 
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5.2.4     Activation energy of oxygen vacancies 

The J–V characteristics of the sample that had received a thermal cycle under a fixed 

+4 V bias were investigated at temperatures between 300 K and 380 K. Figure 5.9 

shows the impact upon the leakage current-density characteristics. The leakage 

current under positive bias increases with temperature in a fashion similar to the 

normal operation shown in Figure 5.1.  However, the leakage current decreases over 

the −4 < V < 0.5 V range, an effect also observed by Shang et al [84]. This effect is 

explained by the same mechanism as proposed for the temperature dependence 

shown in Figure 5.6. By increasing the temperature, the oxygen vacancies can 

migrate away from the bottom electrode under negative bias, allowing them to move 

to their equilibrium locations. This reduces the injection of carriers, and therefore the 

leakage current.  

 

Figure 5.9: Effect of temperature on the leakage current density after annealing 

the MIM device at 400 K under a positive dc bias of +4 V. 
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In order to estimate the activation energy for the migration of oxygen vacancies, 

the experiment was repeated by increasing temperature from 300 K to 400 K and 

then back to 300 K with the DC voltage fixed at +.4 V.  After driving the oxygen 

vacancies near to the bottom electrode, the temperature was increased under a fixed 

−4 V bias. Figure 5.10 shows the variation in leakage current with temperature in this 

case. By increasing the temperature, the leakage current increases by enhancing the 

thermionic emission of electrons between the oxygen vacancies. However, above 

340 K, oxygen vacancies begin to migrate away from the bottom electrode, leading 

to a reduction in the injection-current, which in turn reduces the leakage current. The 

onset of migration at around 340 K is followed by an abrupt decrease in the leakage 

current after 385 K, which is proposed to be due to a rapid migration of the majority 

of the population of oxygen vacancies.  

              

Figure 5.10: The leakage current variation by increasing temperature when the 

voltage of −4 V is applied on top electrode. 
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After the migration of oxygen vacancies, the injection current reduces to a 

constant value. Therefore, by increasing the temperature, the thermionic emission 

dominates current, due to a fixed value of injection current at the bottom electrode, 

which increases the leakage current. A rough estimate of the activation energy can be 

made by Urbach’s approximation [100] 

𝐸T = 23𝑘𝑇                                                      5.2  

where ET is the activation energy of oxygen vacancies. Using this equation, the 

activation energy lies between 0.67 eV (T= 340 K)  and 0.76 eV (T=385 K). It should 

be noted that the calculated oxygen vacancies migration energy is 0.757 eV [101], 

consistent with our observation of rapid migration at 385 K.   
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5.3     PLD SrTiO3 

In section 5.2, the bipolar behaviour of an ALD grown SrTiO3 sample was presented. 

The J–V characteristics showed asymmetry at all temperature examined, with 

resistive switching behaviour observed at elevated temperature. The asymmetry is 

explained by the relative lack of traps at one electrode, which is determined from 

symmetric J–V curve obtained at room temperature (Figure 5.6) due to the 

redistribution of the dominant electrical oxygen vacancies in the film. 

In this section, the J–V characteristics of thin film SrTiO3 grown by PLD are 

presented which show resistive switching behaviour at room temperature with a 

hysteresis curve under positive voltages. This behaviour cannot be categorised as 

bipolar behaviour as the resistive switching between high and low resistance only 

exists under positive voltage. The hysteresis of J–V characteristics cannot be 

explained by the previous models [36] where the formation and rupture of filaments 

occurs by changing the voltage polarity. We show that our model can not only 

explain the asymmetry and bipolar behaviour of the ALD SrTiO3 sample, but it can 

also elucidate the hysteresis behaviour under positive voltages of SrTiO3 grown by 

PLD. Furthermore, this behaviour supports the model of fixed positive charges 

trapped at the bottom electrode interface. 
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5.3.1     Experiment 

A 100 nm thick Pt film was deposited on a Ti/SiO2/Si substrate to act as the bottom 

electrode of the MIM structure. The 13 nm thick SrTiO3 thin film was deposited on 

the Pt by PLD at a substrate temperature of 700 °C (Figure 5.11). The substrate was 

secured by silver paste onto the stainless-steel resistive heater. The target to substrate 

distance was set to 50 mm. The SrTiO3 film was grown by laser ablation using a 

laser wave length of 248 nm and a stoichiometric SrTiO3 target with a diameter of 

20 mm. The substrate temperature during deposition was controlled using a 

thermocouple embedded in the heater. The sample thickness was measured using a 

Dektak 150 contact profiler. The circular Pt top electrodes of thickness 100 nm were 

deposited by electron beam evaporation, and patterned by a lift-off process. For 

electrical characterisation, the voltage was varied on the top electrode while the 

bottom electrode was grounded. 

 

Figure 5.11: The sample sturture of 13 nm PLD SrTiO3. 
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5.3.2     Electrical results 

Figure 5.12 shows the J–V characteristic of the sample at room temperature. The 

voltage is swept from −1 to +1 V, followed by a reverse sweep from +1 to −1 V. 

There is a low leakage current when the voltage is swept from negative to positive 

values (Figure 5.12 (a, b)). However, as the voltage approaches +1 V, an abrupt 

increase in leakage current occurs (Figure 5.12 (c)). When decreasing the voltage, the 

leakage current stays at the high values (Figure 5.12 (d)) until a dramatic decrease 

occurs at a voltage around +0.2 V (Figure 5.12 (e)). By sweeping the voltage from 0 

to −1 V, the leakage current is almost similar to the leakage current when the voltage 

was swept from −1 to 0 V (Figure 5.12 (f)). Therefore, the leakage current curve 

exhibits a pronounced hysteresis between the forward and backward sweeping under 

the positive voltage where the switching between low and high leakage current is on 

the order of 10
6
. 

 

Figure 5.12: J–V characteristics for the 13 nm SrTiO3 MIM structure at 300 K. 
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Figure 5.13 represents 50 switching loops, illustrating the repeatability of the J–V 

characteristic presented in Figure 5.12. The current compliance of 1 µA has been set 

to prevent the device from suffering permanent breakdown. 

The resistance state of the device switches from a high resistance state to a low 

resistance state at ~0.7 V. By sweeping the voltage to zero, the resistance of the 

device will switch back to ‘high’ at ~0.2 V. The device maintains the high resistance 

state when the voltage is swept at negative values. The J–V characteristics 

demonstrate a good repeatability which can be realised by comparing the first loop 

(red curve) and fiftieth loop (black curve). 

 

Figure 5.13: J–V charactersitics of SrTiO3 for 50 consecutive sweeping loops. 
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5.3.3     Modelling 

The leakage current of the ALD SrTiO3 sample in section 5.2 was modelled based on 

electron injection from one electrode to the bulk, followed by thermionic emission 

between the oxygen vacancies before injection from the bulk to the opposite 

electrode. The presence of interfacial defects where the dielectric layer is nucleated, 

leads to the lack of oxygen vacancies at the bottom electrode, which limits the 

electron injection. The relative lack of oxygen vacancies at the bottom electrode 

originates from the positive charge trapped at the Pt/SrTiO3 interface, repelling 

mobile oxygen vacancies.  In this case, the tunnelling current at the bottom electrode 

controls the injection of electrons to the bulk, it being highly sensitive to the distance 

of oxygen vacancies from the bottom electrode. 

The leakage current of the PLD sample in this section 5.3 demonstrates a similar 

behaviour, where the leakage current increases at positive voltage. However, the 

hysteresis loops only appear for positive voltages. In addition, the hysteresis loop in 

the ALD sample was only observed at 400 K while the PLD sample shows the 

hysteresis loop even at room temperature. This might indicate a lower diffusion 

barrier for oxygen vacancies in PLD SrTiO3 which results in migration of oxygen 

vacancies upon application of a voltage bias at room temperature. 

Figure 5.14 illustrates a model where an oxygen vacancy is located near the 

bottom electrode. The fixed positive charge trapped at the interface repels the oxygen 

vacancies away from the bottom electrode. A positive voltage on the top electrode 
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drives the oxygen vacancies close to the bottom electrode by cancelling the electric 

field due to the positive trapped charges. However, the diffusion barrier, Ed1, 

prevents migration of oxygen vacancies upon application of a voltage bias       

(Figure 5.14(a)). In this case, application of a positive voltage may only result in a 

displacement of oxygen vacancies towards the bottom electrode. When the applied 

voltage is enough to overcome both the repulsive force of positive trapped charge 

and the diffusion barrier Ed1, the migration of oxygen vacancies can occur. The 

threshold voltage of 0.7 V must surmount two things: the repulsive force of fixed 

positive charge trapped at the interface and the diffusion barrier of Ed1. Therefore, the 

threshold voltage compromises 𝑉+  and 𝑉d1 which result in displacement and 

migration of oxygen vacancies close to the bottom electrode respectively. 

𝑉+ + 𝑉d1 = 0.7                                                      5.3 

                        

Figure 5.14: A model for the migration of oxygen vacancy near the bottom 

electrode interface when the voltage is swept from zero to positive values. 
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When migration occurs (Figure 5.14(b)), the applied voltage drives the oxygen 

vacancies close to the interface, leading to high electron injection into the bulk, 

which results in an abrupt transition from low to high leakage current values at 

~0.7 V. When the voltage is swept back to zero, the repulsive force of the positive 

trapped charges repels the oxygen vacancies away from the bottom electrode    

(Figure 5.15(a)). However, the diffusion barrier of Ed2 prevents the migration of 

oxygen vacancies back to their initial locations. When the voltage is reduced to 

0.2 V, the repulsive force due to the fixed positive charges is enough to overcome 

both the applied voltage bias and the diffusion barrier of Ed2 

0.2 + 𝑉d2 = 𝑉+                                                       5.4 

 

Figure 5.15: Migration of oxygen vacancy away from the bottom electrode 

interface when the voltage is swept from positive values to zero. 
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Therefore, the oxygen vacancies migrate to the equilibrium locations and the 

distance between the oxygen vacancies and the bottom electrode increases which 

results in a low electron injection (Figure 5.15(b)).  

In Figure 5.14 and Figure 5.15 it has been assumed that 𝐸d1 > 𝐸d2. In the next 

section, carbon contamination is suggested as the origin of positive charge trapped at 

the interface where it might modify the diffusion barriers of oxygen vacancies in a 

way that 𝐸d1 > 𝐸d2 . As a result, in equilibrium the oxygen vacancies are located 

away from the bottom electrode which is a critical assumption in our model.  
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5.3.4     Carbon as a positive charge trapped 

The existence of positive trapped charges at the bottom electrode is a key assumption 

in the proposed model (Chapter 4) which explains the minimum leakage current shift 

to the negative voltage, asymmetry in leakage current and the hysteresis behaviour of 

leakage current under positive voltage sweeping. In order to reveal the structure or 

composition of the positive charge trapped at SrTiO3/Pt interface, the XPS has been 

performed. Figure 5.16 shows the XPS depth profile obtained from 5 s etch cycle 

through the SrTiO3 until approaching the Pt bottom electrode. The dashed line 

approximately indicates the SrTiO3/Pt interface where the Pt concentration starts to 

increase. 

 

Figure 5.16: XPS depth profile result through the SrTiO3 and Pt bottom electrode. 
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The XPS results show the existence of carbon contamination at the SrTiO3/Pt 

interface which might be introduced from the crucible during the electron-beam 

deposition of Pt [62]. The XPS results might suggest a role for carbon as a fixed 

positive charge trapped at the interface.  

  In the absence of carbon at the interface, the oxygen vacancies lie close to the 

interface which results in a high electron injection at both the top and bottom 

electrodes (Figure 5.17(a)). Presence of carbon at the interface modifies the diffusion 

barrier of oxygen vacancies and repels them away from the bottom electrode which 

results in a gap with no oxygen vacancies at the interface (Figure 5.17(b)). As a 

result, the leakage current is dominated by electron injection at this interface. 

 

Figure 5.17: (a) Absence and (b) presence of carbon contamination at the bottom 

electrode interface. 
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It is worth noting that in both ALD and PLD samples, the injection current does 

not change during the negative voltage sweep and it only increases when a positive 

voltage is applied. For the ALD sample, this can be seen in Figure 5.8(b) where the 

activation energy at −4 V is almost constant while it increases at +4 V nonlinearly. 

For the PLD sample, when the sweeping voltage is negative, the values of leakage 

current are similar in magnitude to the low leakage current values at positive voltage 

(Figure 5.12). This might imply that the migration of oxygen vacancies away from 

the bottom electrode is negligible under negative bias voltage and the low 

concentration of oxygen vacancies does not increase (blue area in Figure 5.17(b)). 

When a positive voltage is applied, the low concentration of oxygen vacancies area 

decreases which results in a high electron injection current to the bulk.  

Alternatively, upon application of voltage, there must be a smaller migration of 

oxygen vacancies through the bulk (yellow area in Figure 5.17(b)). The bulk is 

highly conductive relative to the interface and conductivity of the bulk does not 

change significantly by application of voltage. This suggests that in the absence of 

carbon at the interface (Figure 5.17(a)) there would be a high leakage current through 

the MIM structure. The distribution of oxygen vacancies does not change through the 

bulk by application of a voltage bias due to the high diffusion barrier of oxygen 

vacancies. The carbon contamination at the interface modifies the diffusion barrier of 

oxygen vacancies in the vicinity of carbon as illustrated in Figure 5.18. 
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Figure 5.18: Illustration of oxygen vacancies migration only at the bottom electrode. 

Therefore, the oxygen vacancies are formed far from the bottom electrode, 

generating an area with a low concentration of oxygen vacancies which is depicted 

by blue colour in Figure 5.17(b). Now, the oxygen vacancies can migrate close to the 

interface due to the low diffusion barriers. In this case, the switching from high to 

low resistance states occurs by driving the oxygen vacancies close to the interface by 

the application of positive voltage. When a negative voltage is applied the oxygen 

vacancies migrate away from the bottom electrode to their equilibrium position, 

causing a reduction in electron injection. The migrations can happen even at low 

positive bias where the repulsive force of positive charge, trapped at the interface, is 

sufficient to repel the oxygen vacancies. As a result, the switching occurs by 

migration of oxygen vacancies only in a few layers of SrTiO3 in the vicinity of 

carbon contamination at the bottom electrode (Figure 5.18). By increasing the 

voltage in the negative direction, no further migration of oxygen vacancy occurs 

away from the bottom electrode due to the high diffusion barrier, Ed, depicted in  

Figure 5.18. 
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5.3.5     C-AFM 

In section 4.5 the filamentary conduction paths of the ALD sample have been found 

to originate from the aligned oxygen vacancies from top to bottom electrode. In order 

to examine the filamentary conduction mechanism of the PLD sample, C-AFM has 

been carried out on the sample. Figure 5.19(a) shows a typical current image which 

has been obtained by scanning the SrTiO3 surface when a positive voltage of 10 V 

was applied between cantilever’s tip and the Pt bottom electrode. There are clearly 

discrete leaky points which indicate the similar filamentary mechanism of leakage 

current as has been observed for the ALD sample. 

 

 

 

 

Figure 5.19: (a) The current image of PLD SrTiO3 surface, showing the leakage 

current through the discrete points. (b) The topography image. 
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In order to confirm that the resistive switching (Figure 5.12) originates from these 

conductive spots, single-point I–V measurements have been carried out. The AFM tip 

was located over a leaky and non-leaky points. The sweeping voltage was between 

−10 V and +10 V in both directions across the AFM tip and the Pt bottom electrode. 

Figure 5.20 shows the resistive switching behaviour of a conductive spot, where the 

switching occurs only under the positive voltage. This is entirely consistent with 

macroscopic J–V characteristics (Figure 5.12) that show a hysteresis curves at the 

positive bias. The non-leaky point shows low leakage of current where there is no 

resistive switching. Therefore, the switching electrical resistance of individual 

filaments in SrTiO3 are the main origin of resistive switching. The filaments are 

constructed from aligned oxygen vacancies where the migration of oxygen vacancies 

at the end of the filaments switch the resistance of the MIM structure between high 

and low resistance states.   

 

Figure 5.20: The electrical resistance of individual leaky and non-leaky points by 

sweeping the voltage from −10 V and +10 V. 
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5.4     Conclusions 

The resistive switching in SrTiO3 MIM devices was investigated. By constructing a 

simple model based upon the movement of electrically active point defects, it is 

possible to account for all the key features observed. A critical condition is that the 

leakage current is sensitive to the distance of oxygen vacancies from the bottom 

electrode due to the positive charge trapped at the interface. The asymmetry of 

leakage current originates from the displacement of oxygen vacancies relative to the 

bottom electrode, depending upon the temperature and applied bias. At high 

temperatures, oxygen vacancies’ migration towards the bottom electrode leads to the 

resistive switching behaviour observed in leakage current, with oxygen vacancies 

driven to the bottom electrode resulting in a symmetric J–V curve at room 

temperature. 

The resistive switching has also been observed in a PLD SrTiO3 sample. At high 

voltage bias, the oxygen vacancies are driven close to the interface. However, by 

reducing the voltage, the repulsive force between the oxygen vacancies and the fixed 

positive charge trapped at the interface causes the migration of oxygen vacancies to 

equilibrium locations away from the bottom electrode. The fixed positive charge 

trapped might originate from the existence of carbon at the bottom electrode 

interface which modifies the diffusion barrier of oxygen vacancies in the vicinity of 

the electrode interface. The resistive switching occurs by the migration of oxygen 

vacancies only in just a few layers of SrTiO3 at the bottom electrode interface. 
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Chapter 6 
. 

. 

Antipolar Behaviour of 

SrTiO3 
 

‘In science the credit goes to the man who convinces the world, not to the 

man to whom the idea first occurred.’ 

                      Sir Francis Darwin 

. 

6.1     Introduction 

In the pursuit of emerging non-volatile memory devices, metal oxides have shown 

significant promise [36, 102, 103]. Ideal memory characteristics should display low 

power-consumption, fast programming, non-destructive readout, high-density 

integration, and low fabrication-cost. RRAM devices have attracted considerable 

attention due to exhibiting most of these features [11, 24, 104]. A RRAM cell is 

constructed using MIM structure, where the insulator is typically constituted from 

metal oxide dielectrics. The resistivity of metal oxides can be electrically switched 

between a low resistance state and high resistance state, where the current-voltage  

(I–V) characteristics exhibit a pronounced hysteresis. 
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Several models have been proposed to explain the underpinning mechanisms of 

hysteresis in I–V characteristics in metal oxides. The models cover a wide range of 

chemical and physical mechanisms, but it has proven difficult to find a simple 

unified model. However, the hysteresis in I–V characteristics can be broadly grouped 

into two main categories: bipolar and unipolar resistive switching. 

As explained in chapter 2, in bipolar resistive switching, the switching depends 

upon the polarity of the applied voltage (V). A cell can be set to the low resistance 

state by V > +Vset or reset to the high resistance state by V < −Vreset (Figure 6.1(a)).  

In contrast, during unipolar resistive switching, the switching depends only on the 

amplitude of the applied voltage, and not the polarity. Figure 6.1(b) shows a 

schematic for unipolar resistive switching, where the oxide resistance can be reset to 

the high resistance state by applying Vreste < |V| < Vset. The low resistance state is then 

achieved via application of |V| > Vset. Several binary oxides (Appendix 1) have been 

reported to show unipolar and/or bipolar resistive switching. Bipolar resistive 

switching behaviour has been also observed in perovskite structure metal          

oxides [105]. 

In this chapter, resistive switching in Pt/SrTiO3/Pt MIM structures is reported with 

switching characteristics that cannot readily be categorised as either bipolar or 

unipolar resistive switching. The I–V characteristics show that the resistive switching 

depends on both the polarity and amplitude of the applied voltage (Figure 6.1(c)).  

The SrTiO3 resistance can be reset to the high resistance state by application of a 

high voltage with either polarity. A voltage of the opposite polarity to that used to 
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generate the high resistance state sets the low resistance state. Thus, if a high positive 

voltage has reset the device, the polarity of the set voltage must be negative. 

 

Figure 6.1: Schematic representations of the ideal I–V and R–V hysteresis 

behaviour of (a) bipolar resistive switching (b) unipolar resistive switching, and (c) 

antipolar resistive switching. 
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Similarly, if the reset voltage was negative, the polarity of set voltage must be 

positive.  This behaviour is called antipolar resistive switching due to the opposite 

polarity of the set voltage with respect to previous reset voltage.  

The differences between the operation of bipolar, unipolar, and antipolar resistive 

switching devices are summarised in Table 6.1. The contrast between the set and 

reset voltage magnitudes and polarities shows that the antipolar behaviour of the 

SrTiO3 devices characterised in this study do not follow either the bipolar or unipolar 

behaviour of oxides. In this chapter, the conduction mechanism proposed in 

chapter 4 is used to explain the antipolar resistive switching behaviour of SrTiO3. 

This conduction mechanism is based on electron injection from the electrode to trap 

states near the interface by tunnelling, followed by hopping conduction between 

traps via thermionic emission, supported by a simple mathematical frame work that 

quantitatively supports the conduction model.  

Table 6.1: Characteristics of bipolar, unipolar and antipolar resistive switching in 

terms of the conditions required to set the devices to the low resistance state, and 

reset to the high resistance state. 

 Reset voltage Set voltage VsetVreset 

Bipolar V < −Vreset V > +Vset Vset ~ Vreset 

Unipolar Vset < |V| < Vreset |V| > Vset Vset > Vreset 

Antipolar |V| > Vreset 

 

If V > +Vreset : −Vreset < V < −Vset 

 

If V < −Vreset : Vset < V < Vreset 

Vset < Vreset 
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6.2     Experiment 

A 100 nm thick Pt film was deposited on a Ti/SiO2/Si substrate to act as the bottom 

electrode in the MIM structure (Figure 6.2). A 25 nm thick SrTiO3 thin film was 

deposited on the Pt by PLD at a substrate temperature of 700 °C. The Pt/Ti/SiO2/Si 

substrate was secured by silver paste onto the stainless-steel resistive heater with a 

target to substrate distance of 50 mm. The SrTiO3 film was grown by laser ablation 

(Neocera PLD system with a Lambda Physik KrF laser,  = 248 nm) using a 20 mm 

diameter stoichiometric SrTiO3 target in an oxygen pressure of 300 mTorr. The 

substrate temperature during deposition was controlled using a thermocouple 

embedded in the heater. The energy density of the laser spot (1.5×8 mm
2
) was 

1.2 J/cm
2
, while the laser pulse repetition rate was 8 Hz. Once the ablation was over, 

the sample was cooled down at a rate of 10 C/min in an oxygen rich environment 

(700 Torr). The sample thickness was measured using a Dektak 150 contact profiler. 

The Pt top electrodes (100 nm) were deposited by electron beam evaporation, and 

patterned by a lift-off process for electrical characterisation. 

 

Figure 6.2: The sample sturture of 25 nm PLD SrTiO3. 
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6.3     Electrical results 

Figure 6.3 represents 100 switching loops, illustrating the repeatability of the 

resistive switching behaviour. The voltage was swept from −3 to +3 V (green arrows) 

followed by reverse sweeping from +3 to −3 V (purple arrows). There is a clear 

resistive switching around two decades of current that is indicated by the vertical 

arrow at ±0.5 V. The J–V characteristics demonstrate a good endurance which can be 

realised by comparing the 1
st
 loop (red curve) with the 100

th
 loop (black curve). The 

cycling between the low and high resistance state can be characterised by switching 

in the following fashion. 

 

Figure 6.3: J-V characteristics of SrTiO3 for 100 consecutive sweeping loops 

between –3 and +3 V.  
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By increasing the positive bias from zero, the SrTiO3 resistive state changes from 

high resistance state to low resistance state with V > +.0.2 V, as shown in           

Figure 6.4. As the bias is further increased, the SrTiO3 switches to the high resistance 

state at ~1 V.  Subsequently, during reduction of the bias to zero the device remains 

in the high resistance state.   

From zero bias, the sweeping of the voltage in the opposite direction results in 

switching to the low resistance state at V < −.0.2 V. In accord with the magnitude of 

the reset voltage in positive bias, the device is switched to the high resistance state 

around −1 V, and the device remains in the high resistance state until a ‘set’ voltage 

of  > +.0.2 V is applied. 

 

Figure 6.4: The I–V characteristcs in the antipolar resistive switching behaviour of 

the Pt/SrTiO3/Pt MIM structure. 
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In order to further rule out bipolar and unipolar resistive switching, the device has 

been cycled 25 times in three different bias ranges (Figure 6.5). The voltage cycling 

in the high resistance state only with a positive polarity between 0 < V < 2.5 V (red 

curves) shows no hysteresis. Since the resistive state of the structure does not change 

with the magnitude of the bias, the resistive switching behaviour is not unipolar. 

Similar behaviour is observed sweeping the voltage with negative polarity (green 

curves). The SrTiO3 shows the same resistance for either polarity of voltage which is 

in contrast with bipolar resistive switching where the resistive state of the structure is 

switched by changing the polarity of the voltage, and as a result bipolar resistive 

switching is also ruled out.  

 

Figure 6.5: Current-density–voltage characteristics for 25 cycles under different 

conditions: positive bias (red curves), negative bias (green curves) and  −1 < V <+1 V 

(blue curves).  
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By cycling the voltage over the range −1 < V < +1 V (blue curves) the SrTiO3 is in 

the low resistance state because the device is never exposed to the reset threshold 

voltage, and although there is some hysteresis, it is much less significant than that 

seen in the large voltage range (Figure 6.3). 

After each set of experiments depicted in Figure 6.5, the resistive state of SrTiO3 

has been checked by cycling the voltage in the range of −0.2 < V < +0.2 V 25 times, 

with the resulting characteristics shown in Figure 6.6. Sweeping the voltage between 

zero and high positive or negative voltage (|V| > 1 V) resets the SrTiO3 into the high 

resistance state. By sweeping the voltage between −1 and +1 V, the SrTiO3 is 

maintained in the low resistance state. 

 

Figure 6.6: Confirmation of the resistive state in each case from Figure 6.5 via 

variation of the bias in the −0.2 < V < +0.2 V  range, as described in the text.   
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6.4     Modelling the antipolar resistive switching 

As presented in chapter 3, the conduction through metal oxides can be modelled 

using the Poole-Frenkel equation. The electrical current originates from electron 

transport via the conduction band by trapping and detrapping of carriers at localized 

states, expressed by 

𝐽PF = 𝐶𝐸 exp  −𝑒 𝜑T −  
𝑒𝐸 

𝜋𝜀
 /𝑘𝑇                               (6.1) 

where 𝐶 is a constant, 𝐸  is the electric field strength, 𝜑T  is the location of the trap 

below the conduction band minimum and 𝜀 is the permittivity of the material. 

Application of Equation 6.1 assumes that the interface is ideal, so that there is 

efficient injection of electrons from the electrode into the dielectric film. 

In several metal oxides, it has been observed that at low electric field there is a 

small current that increases abruptly to high values by increasing the voltage. The 

abrupt transition between low and high leakage-current may indicate that the 

injection of electrons into the bulk is suppressed at low voltages. Hence, the impact 

of the interface on injection of electrons must be combined with the Poole-Frenkel 

equation to account for this phenomenon. This has been modelled in chapter 4 where 

it has been proposed that the conduction mechanisms in SrTiO3 originate from the 

injection of electrons into the bulk by tunnelling to trap states near the interface, 
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followed by thermal activation of electrons between the traps inside the dielectric 

film.  The equation for conduction may be summarised by 

𝑃 = 𝑃injection × 𝑃excitation                                         (6.2) 

where 𝑃 is the probability of an electron will pass through the oxide, which is equal 

to the product of electron injection probability at the interface (𝑃injection) and the 

probability that an electron will pass through the bulk by thermal excitation via trap 

bound-states and the conduction band of the insulator (𝑃excitation). At low voltage, 𝑃 

is limited by 𝑃injection due to low electron injection at the interface. At high voltages, 

𝑃excitation  limits the total current where there is sufficient tunnelling injection of 

electrons into the dielectric. 𝑃excitation  is given by the Poole-Frenkel equation 

(Equation 6.1), where the exponential term shows the probability of electron thermal 

activation from the trap states into the conduction band. The thermal excitation of 

electrons can be increased by lowering the potential barriers between traps, where the 

term  𝑒𝐸 𝜋𝜀  in Equation 6.1 describes the effect of an electric field upon the 

barriers.  𝑃injection has been modelled in chapter 4 by trap-assisted-tunnelling, where 

the location of traps relative to the interface have been assumed to be fixed. The 

electric field increases electron injection by lowering and/or narrowing the barrier 

between the traps and the interface. 

By using Equation 6.2, the current characteristics in SrTiO3 can be accurately 

modelled (Figure 4.9). However, in order to model the antipolar resistive switching 

behaviour of SrTiO3, an additional mechanism must be added into Equation 6.2.  
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First, in a MIM structure, upon application of negative voltage on the top electrode a 

leakage current occurs by electron injection from the top electrode to the bulk and 

from the bulk to the bottom electrode (Figure 6.7(a)). When a positive voltage is 

applied, the injection of electrons would be in the reverse direction from the bottom 

electrode to the bulk and then to the top electrode (Figure 6.7(b)). As a result, both 

interfaces must be included independently, and Equation 6.2 is modified to 

𝑃 = 𝑃BE × 𝑃excitation × 𝑃TE                                     (6.3) 

where 𝑃BE  and 𝑃T𝐸  are the probabilities of electron injection at the bottom and top 

electrodes, respectively. 

           

Figure 6.7: The electron injection (a) from an electrode to the bulk and (b) from 

the bulk to the opposite electrode at different voltage polarities.   
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Secondly, in resistive switching metal oxides, it is currently understood that there 

is migration of traps during the application of a bias, changing the spatial distribution 

of the electron traps.  In SrTiO3 the traps probably arise from oxygen vacancies, 

which act as deep double donors [62, 93]. By changing the polarity of the voltage, 

the oxygen vacancies migrate nearer to the top or bottom electrode (Figure 6.7).  

Consequently, the distance between oxygen vacancies and the electrodes can be 

changed electrically. If this is the case, the electric field alters the tunnelling barrier 

width at the interfaces, by affecting the distance between traps and the electrodes.  

Thus, the conventional tunnelling equation needs modification, since they are based 

upon fixed location of traps [106, 107]. 

To incorporate the mechanisms involving the charge carriers and mobile deep 

traps, we have constructed a simple, one-dimensional model, depicted in Figure 6.8, 

which can be divided into two parts. The first part relates to the carrier injection at 

both interfaces, and the second part relates to the movement of oxygen vacancies 

driven by the electric field inside the dielectric film. 

 

Figure 6.8: A simple model with square barriers between the oxygen vacancies and 

interfaces.   
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For tunnelling injection, the simplified approach is to assume a square potential of 

fixed height, 𝑉0, and width defined by the distance from the interface to the closest 

deep trap, denoted 𝑑BE  and 𝑑TE  corresponding to the bottom and top electrodes, 

respectively.  The resulting tunnelling probability is given by 

𝑃T(𝑑) = 16  
𝐸

𝑉0
  1 −

𝐸

𝑉0
 exp(−2𝐾𝑑)                             (6.4) 

where 𝐸 is the electron energy, 𝑉0 is the potential barrier height, 𝑑 is barrier width, 

and 

𝐾 =  
2𝑚 𝑉0 − 𝐸 

ℏ2
                                              (6.5) 

where 𝑚 is the electron effective mass. As a result of the presence of the two, in 

general non-equivalent junctions, the total 𝑃injection is 

𝑃injection = 𝑃T 𝑑BE  × 𝑃T 𝑑TE                                   (6.6) 

The barrier widths, 𝑑BE  and 𝑑TE , are modelled by allowing a fixed number of 

point charges to respond to the applied electric field. Based upon the probable 

oxidation states of oxygen vacancies, three +2𝑒 point charges [108] were allowed to 

move between the electrodes without any barrier (Figure 6.8). In addition, to confine 

the movement of charges between electrodes, two fixed small charges of +2𝑒/100 

were placed at the interfaces. The total distance between the electrodes was taken to 

be 25 nm, equal to that of the experimental sample thickness.   
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6.5     Charge movement calculation 

In order to find the values of dBE and dTE at different voltage biases, a numerical 

method is required to calculate the charge movement upon application of a potential 

difference. Figure 6.9 illustrates three mobile point charges of q2, q3 and q4 (yellow 

circles) which are confined between two fixed point charges of q1 and q5 (blue 

circles). The equilibrium location of q2, q3 and q4 under an external force of Fext, can 

be calculated by solving the following four equations in four unknowns of dBE, d1, d2 

and dTE, 

𝑞3𝒒𝟐

(𝑑1)2
+

𝑞4𝒒𝟐

(𝑑1 + 𝑑2)2
+

𝑞5𝒒𝟐

(𝑑1 + 𝑑2 + 𝑑TE )2
=

𝑞1𝒒𝟐

(𝑑BE )2
+ 𝐹ext                (6.7) 

𝑞4𝒒𝟑

(𝑑2)2
+  

𝑞5𝒒𝟑

(𝑑2 + 𝑑TE )2
=

𝑞2𝒒𝟑

(𝑑1)2
+

𝑞1𝒒𝟑

(𝑑BE + 𝑑1)2
+ 𝐹ext                   (6.8) 

𝑞5𝒒𝟒

(𝑑TE )2
=  

𝑞3𝒒𝟒

(𝑑2)2
+

𝑞2𝒒𝟒

(𝑑1 + 𝑑2)2
+

𝑞1𝒒𝟒

(𝑑BE + 𝑑1 + 𝑑2)2
+ 𝐹ext                (6.9) 

𝑑BE + 𝑑1 + 𝑑2 + 𝑑TE = 25                                          (6.10) 

 

 

Figure 6.9: Two fixed point charges of q1 and q5 which confine three mobile charges 

of q2, q3 and q4. 

Equation 6.7 Equation 6.8 Equation 6.9 
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However, Equations 6.7, 6.8 and 6.9 are non-linear which means they cannot be 

solved with the conventional methods that are used for simultaneous linear 

equations. In order to numerically solve these four equations, three variables of RF2, 

RF3 and RF4 are introduced which are the resultant forces on q2, q3 and q4 

respectively 

𝑅𝐹2 =
𝑞3𝑞2

(𝑑1)2
+

𝑞4𝑞2

(𝑑1 + 𝑑2)2
+

𝑞5𝑞2

(𝑑1 + 𝑑2 + 𝑑TE )2
−

𝑞1𝑞2

(𝑑BE )2
− 𝐹ext         (6.11) 

𝑅𝐹3 =
𝑞4𝑞3

(𝑑2)2
+  

𝑞5𝑞3

(𝑑2 + 𝑑TE )2
−

𝑞2𝑞3

(𝑑1)2
−

𝑞1𝑞3

(𝑑BE + 𝑑1)2
− 𝐹ext        (6.12) 

𝑅𝐹4 =
𝑞5𝑞4

(𝑑TE )2
− 

𝑞3𝑞4

(𝑑2)2
−

𝑞2𝑞4

(𝑑1 + 𝑑2)2
−

𝑞1𝑞4

(𝑑BE + 𝑑1 + 𝑑2)2
− 𝐹ext        (6.13) 

Firstly, it is assumed that only q2 is a mobile charge which can move between q1 and 

q3 by variation of dBE (Figure 6.10(a)). By reducing dBE to zero, q2 approaches q1 

which results to increase the magnitude of the resultant force (RF2) to infinity. RF2 

would also increase by the movement of q2 close to q3. The minimum of RF2 occurs 

between q1 and q3 which can be calculated by taking the derivative of RF2 as follows: 

𝑑(𝑅𝐹2)

𝑑(𝑑BE )
= 0                                                  (6.14) 

From Equation 6.14, dBE is calculated which is the equilibrium location of q2 when 

the other point charges are assumed to be fixed. After calculation of dBE, q3 is 

assumed to be the only mobile charge (Figure 6.10(b)) and d1 can be calculated in a 

similar way to dBE  by finding the minimum of RF3 
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𝑑(𝑅𝐹3)

𝑑(𝑑1)
= 0                                                  (6.15) 

By using a similar method the equilibrium location of q4 can be also calculated when 

the rest of the charges are fixed (Figure 6.10(c)). After finding the approximate 

values for dBE, d1 and d2, this procedure is repeated which results in new values of 

dBE, d1 and d2. By repeating this procedure the difference between the new and 

previous values of dBE, d1 and d2 approach to zero. As a result, the number of 

iterations can be limited by setting a condition that the maximum displacement of q2, 

q3 and q4 from the previous step being smaller than desired accuracy. 

 

Figure 6.10: The optimum location of mobile point charge of (a) q2, (b) q3, and (c) 

q4 where the resultant force on the point charge is minimum. 
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6.6     Antipolar modelling results 

Based upon the simulation results, values of 𝑑BE  and 𝑑TE , were obtained, along with 

the nominal distances between the point charges, 𝑑1 and 𝑑2, by varying the potential 

difference and calculating the equilibrium locations of positive charges (Figure 6.11).  

As would be expected, a positive voltage applied to the top electrode (bottom 

electrode is grounded) results in the oxygen vacancies migrating towards the bottom 

electrode so that 𝑑BE  decreases and 𝑑TE  increases. For a negative voltage polarity, 

the oxygen vacancies are attracted to the top electrode, and 𝑑BE  increases while 𝑑TE  

decreases. Using the geometries obtained using this model, the current density can be 

expressed as 

𝐽 = 𝑃T 𝑑BE  × 𝑃T 𝑑TE × 𝐽PF                                   (6.16) 

           

Figure 6.11: Schematic of the location of the deep traps within the oxide film under 

different voltage biases.   
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Figure 6.12 depicts the variation of injection current where the applied field 

results in changing 𝑑BE  and 𝑑TE . The maximum value for 𝑃injection occurs at zero bias 

where 𝑑BE  and 𝑑TE  are equal. By increasing the magnitude of voltage, 𝐽PF  increases 

while 𝑃injection decreases resulting in maxima in current at ±1 V. 

In the above analysis the point charges are free to move in response to the electric 

field, but in real materials, in addition to the long-range electrostatic force between 

oxygen vacancies, there are also diffusion barriers. Over short time-scales the 

existence of diffusion barriers may inhibit the redistribution of the defects, and 

equilibration may not have sufficient time take place. As a result, the oxygen 

vacancies can be driven near to one electrode by increasing the bias, but they do not 

necessarily redistribute uniformly through the film upon removal of the bias.   

 

Figure 6.12: The varition of injection current due the movement of oxygen vacancies. 
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To include the kinetics of migration in a fashion consistent with our observations 

(Figure 6.4), two threshold values of bias are included. The oxygen vacancy 

migration towards the opposite electrode occurs when a voltage with opposite 

polarity is applied with an amplitude of +.0.2 V, which is equal to the ‘set’ voltage. In 

addition, increasing the voltage moves the oxygen vacancies towards the bottom or 

top electrodes up to ±2.2 V (Figure 6.13). Above this voltage the oxygen vacancies 

do not move nearer to the interface and 𝑃injection does not change.   

 

Figure 6.13: Specification of the injection probability, Pinjection, as a function of the 

bias magnitude and polarity. 
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Figure 6.14 shows the simulation results by using the values of Figure 6.13 for 

𝑃injection  assuming 𝜑T  = 0.6 eV and 𝑉0 = 1 eV [109]. Figure 6.15 illustrates the 

movement of oxygen vacancies through the bulk at different voltage biases. A 

voltage of −3 V drives the oxygen vacancies close to the top electrode which results 

in a low concentration of oxygen vacancies at the bottom electrode (point 1). As a 

result, for −.3 < V < +.0.2 V (point 1 to 2) there is a low leakage current due to the 

low electron injection at the bottom electrode. By increasing the voltage for positive 

polarity (V > +.0.2 V) the oxygen vacancies migrate towards the bottom electrode, 

leading to a high electron injection at both top and bottom electrode interfaces which 

results in a high leakage current (low resistance state, point 2 to 3). 

 

Figure 6.14: The simulation results based on the calculated values of Pinjection. 
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However, further increasing the voltage in the positive direction drives the oxygen 

vacancies away from the top electrode interface. In this case, although there is a high 

electron injection at the bottom electron, the low concentration of oxygen vacancies 

at the top electrode will reduce the electron injection (point 3 to 4). The device 

remains in a high resistance state until a negative voltage of V < −.0.2 V changes the 

resistance to the low state by driving the oxygen vacancies close the top electrode 

(point 5 to 6). As a result, application of a high voltage drives the oxygen vacancies 

away from one electrode, resulting in the high resistance state as a consequence of 

the low electron injection at this electrode. The low resistance state can be achieved 

by redistributing the oxygen vacancies through the bulk by reversing the low voltage 

polarity.  

 

Figure 6.15: Scheme movement of oxygen vacancies through the SrTiO3 at 

different voltage bias by including the threshold values. 
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6.7     Schottky and Poole-Frenkel behaviour 

The antipolar behaviour presented in this chapter has been modelled based upon a 

Poole-Frenkel conduction mechanism. However, it should be noted that resistive 

switching might be due to a Schottky mechanism. Yang et al recently showed that 

the oxygen vacancies in BiFeO3 can accumulate near one electrode by application of 

different voltage polarities [40]. Sweeping the voltage produced a hysteretic I–V 

characteristic caused by changes in the distribution of oxygen vacancies through the 

film.  

In order to discriminate between Schottky and Poole-Frenkel mechanisms, both 

hysteresis switching behaviours are illustrated in Figure 6.16. For Schottky devices 

(Figure 6.16(a)), when a high negative voltage is applied to one electrode, the 

oxygen vacancies respond electrostatically and move towards this electrode, 

increasing the n-type carriers near the interface [40]. This would result in an increase 

in electrons tunnelling into the conduction band due to narrowing of the potential 

barrier at the Schottky contact. Driving the oxygen vacancies near one electrode also 

reduces the n-type carriers at the opposite electrode, which in turn yields a wider 

Schottky barrier at this electrode. Then, the negatively biased electrode is a more 

Ohmic-like contact while the grounded electrode is a Schottky contact              

(Figure 6.16(a)). 

 Therefore, upon application of a small, positive voltage, there would be low 

electron injection from the grounded electrode into the film due to the Schottky  
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Figure 6.16: The resistive switching behaviour of metal oxides when oxygen 

vacancies act as the (a) mobile donors and (b) mobile traps. 
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contact, resulting in a low leakage current. By increasing the voltage in the positive 

direction, the oxygen vacancies move towards the grounded electrode and transform 

the contact from Schottky to Ohmic-like which increases the leakage current up to 

the point that the injection at the biased electrode becomes the limiting factor. 

Therefore, in Schottky devices, the oxygen vacancies act as the mobile donors [40], 

where the leakage current through the film is dominated by movement of electrons 

through the conduction band and not via hopping between defect states.  

In contrast, in the case of Poole-Frenkel conduction (Figure 6.16(b)), the oxygen 

vacancies act as the traps where the leakage current occurs by electrons tunnelling 

from one electrode to the trap states near the interface, followed by trap and 

detrapping between the trap states through the bulk by thermionic emission, and 

tunnelling from the trap states to the opposite electrode.  

As a result, in Schottky devices a high voltage bias increases the leakage current 

by increasing the injection of electrons from electrode to the bulk, but it reduces the 

leakage current in Poole-Frenkel devices by reducing the injection of electrons from 

the bulk to the electrode. Hence, although Schottky devices have similar hysteresis 

switching curves to Poole-Frenkel devices, the sense of operation with bias is 

reversed, allowing the mechanisms to be distinguished. 
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6.8     Origin of the antipolar resistive switching 

A remaining question exists regarding the origin of antipolar resistive switching in 

SrTiO3. In metal oxides, formation of oxygen vacancies at the interface is highly 

likely during the fabrication process, which could result in a high rate of carrier 

injection into the dielectric. Nevertheless, in several metal oxides, the I–V 

characteristics indicate that the injection is suppressed at the interface. This might 

imply a mechanism that reduces the concentration of oxygen vacancies at the 

interface. Understanding this mechanism plays a key role in antipolar resistive 

switching where a lack of oxygen vacancies at the interface is required to limit 

𝑃injection and make it sensitive to the movement of oxygen vacancies relative to both 

interfaces.  

In order to explain the underpinning mechanism of antipolar resistive switching, 

effect of carbon at the interface is considered. Carbon contamination at the SrTiO3/Pt 

interface has been observed in XPS depth profile (section 5.3.4) where there was 

resistive switching under positive voltage. The existence of carbon contamination has 

been also reported in HfO2 at both top and bottom electrode interfaces [62]. 

The role of contamination by carbon in terms of the device leakage current can be 

understood by examination of Equation 6.2.  Here the leakage current is initiated by 

the injection of carriers into oxygen vacancies geometrically near the interface by 

tunnelling through an interface barrier. A high rate of carrier injection may occur if 

oxygen vacancies lie near to the interface. The carbon contamination at the interface 
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might modify the diffusion barriers of oxygen vacancies near the electrodes where 

the migration of oxygen vacancies can occur near the top and bottom interfaces (red 

arrows in Figure 6.17(a)). Depending on the location of oxygen vacancies relative to 

the electrodes, the injection rate can change between high and low values. Therefore, 

the MIM structure can be divided into three areas: bulk with a high concentration of 

oxygen vacancies (yellow area in Figure 6.17(b)), and two resistive interfaces where 

the conduction can increase by migration of oxygen vacancies close to the electrodes 

(blue area in Figure 6.17(b)). Based upon this assumption, the high and low 

resistance states of the MIM structure originate from resistive switching at the top 

and bottom electrode interfaces (Figure 6.17(a)). 

 

 

Figure 6.17: (a) Migration of oxygen vacancies near the top and bottom electrode 

interfaces. (b) Low concentration of oxygen vacancies near the electrodes which 

might be originated from the carbon contamination at the interfaces. 
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The migration of oxygen vacancies only in the vicinity of the top and bottom 

electrode interfaces could also account for the low set voltage of ±.0.2 V relative to 

high reset voltage of ±1 V. In order to explain it, the three regions of MIM structure 

(Figure 6.17(b)) are modelled as follows. The top and bottom electrodes are 

modelled by two memristors, MTE and MBE (Figure 6.18). Their resistance can switch 

between two values of high and low resistance states. When the oxygen vacancies 

are located near the electrode, the resistance of that interface is low, and it is high 

when the oxygen vacancies are located away from the electrode. The difference 

between high and low resistance states is greater than two decades which can be 

realised from the high and low leakage current values at 0.5 V (Figure 6.18(e)). RBulk 

represents bulk resistance which is almost constant and independent of voltage bias. 

The total resistance of the MIM structure can be presented by 

𝑅T = 𝑀BE + 𝑅Bulk + 𝑀TE                                                      (6.17) 

In order to explain the resistive switching behaviour illustrated in Figure 6.19(e), 

it is assumed that MBE is in a high resistance state (MBE(high)) while MTE is in a low 

resistance state (MTE(low)). When a voltage bias is applied (Figure 6.19(a)), the  

 

Figure 6.18: Modelling the MIM structure by two memristors of MBE and MTE 

(representing two interfaces) and RBulk which represents bulk resistance. 
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voltage would drop across the MBE (high) as its resistance is much greater than 

RBulk + MTE(low). By increasing the voltage above +0.2 V, the resistance of MBE is 

changed to ‘low’ by migration of oxygen vacancies close to the bottom electrode 

(Figure 6.19(b)). Now the voltage bias is divided between the three elements of MBE 

(low), RBulk and MTE (low) where the voltage across MTE is smaller than +0.2 V 

which is not sufficient to switch MTE to the high resistance state. MTE remains in the 

low resistance state until the voltage increases more than +1 V. Then, the potential 

difference across the top electrode interface is enough to repel the oxygen vacancies 

from the top electrode, resulting in a switch of MTE to the high resistance state 

(Figure 6.19(c)). When the switching occurs, most of the voltage would be dropped 

across MTE (high) due to its high resistance relative to MBE (low) + RBulk. Therefore, 

as the voltage decreases to less than −0.2 V, the potential difference across the MTE is 

sufficient to repel the oxygen vacancies near the top electrode and switch the MTE 

back to the low resistance state (Figure 6.19(d)). 

This kind of resistive switching cannot be explained by the assumption of 

continuous migration of oxygen vacancies through the bulk. In continuous migration 

of oxygen vacancies from one electrode to the opposite electrode, when the 

migration is initiated by increasing the magnitude of voltage |V| > 0.2, the migration 

will continue until it is prevented by accumulation of oxygen vacancies at the 

opposite electrode. As a result, the device does not maintain its low resistance state at 

0.2 < |V| < 1.  
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Figure 6.19: (a-d) Schematic of different states of MIM structure which depend on 

the resistance states of top and bottom electrodes. (e) The antipolar resistive 

switching of MIM structure originating from migration of oxygen vacancies in 

vicinity of the top and bottom electrode interfaces. 
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6.9     Three-state RRAM 

The peculiar antipolar resistive switching behaviour might give rise to some novel 

applications in electronic devices. From the RRAM application view point, antipolar 

resistive switching exhibits three stable states. In conventional bipolar and unipolar 

resistive switching RRAM, data can be stored by applying different voltages to the 

MIM structure which result in reversible switching between low resistance state 

(representing digital ‘1’) and high resistance state (representing digital ‘0’). In 

antipolar resistive switching, when both interfaces are in their low resistance state, 

there is a high leakage current through the bulk which can be defined as digital ‘1’       

(Figure 6.20(a)). However, the high resistance state includes two distinct states that 

originate from the polarity of  the ‘reset’ voltage.  

A positive ‘reset’ voltage drives the oxygen vacancies away from the top 

electrode which reduce the leakage current by decreasing the injection current at this 

interface (Figure 6.20(b)). By contrast, a negative ‘reset’ voltage drives oxygen 

vacancies away from the bottom electrode which results in the same low resistance 

state, but by reducing the injection of electrons at bottom interface (Figure 6.20(c)).  

These two different high resistance states can be distinguished from each other by 

application of a ‘set’ voltage which can be either positive or negative. For instance, if 

the device has been reset to its high resistance state by a positive voltage, then 

application of a positive ‘set’ voltage does not switch the device to low resistance 

state. And if the device has been reset to its high resistance state by negative voltage, 
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then application of a positive ‘set’ voltage switches the device to the low resistance 

state. In other words, the device memorises the polarity of ‘reset’ voltage and 

antipolar resistive switching can be used as a device with three states of: (i) a low 

resistance; (ii) a positive high resistance (when V > +Vreset has been used to ‘reset’ 

the device) and (iii) a negative high resistance state (when V < −Vreset has been used 

to ‘reset’ the device). 

It should be noted that in a three-state antipolar RRAM, detecting the state of the 

device is destructive to either the positive or negative high resistance state, which 

depends on the polarity of ‘set’ voltage. If a positive ‘set’ voltage is used to detect 

the device state, then the negative high resistance state must again be constructed 

after detection. And, for the negative ‘set’ voltage, the detection of positive high 

resistance state would be destructive. 

 

Figure 6.20: Three stable states of RRAM: (a) low resistance state, (b) positive high 

resistance state, and (c) negative high resistance state. 
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6.10     Conclusions 

The resistive switching of SrTiO3 presented in this chapter depends on both the 

amplitude and polarity of the applied voltage, and cannot be described as either 

bipolar or unipolar resistive switching. This behaviour has been termed antipolar 

resistive switching due to the opposite polarity of the ‘set’ voltage relative to the 

previous ‘reset’ voltage. In order to explain the antipolar behaviour, the conduction 

mechanism proposed in chapter 4 has been extended by considering the effect of 

both interfaces on the injection of electrons.  

The conduction mechanism has been quantified by use of a simple mathematical 

equation where the barriers between the oxygen vacancies near the interfaces were 

assumed to be rectangular. The widths of barriers were changed by movement of 

oxygen vacancies upon application of a potential difference. The results of 

simulations have demonstrated an agreement with J–V characteristics observed 

experimentally, which show the sensitivity of leakage current to the location of 

oxygen vacancies relative to the electrodes. 

In order to explain the magnitude of ‘set’ and ‘reset’ voltage, it has been 

hypothesised that switching only occurs by migration of oxygen vacancies in the 

vicinity of the top and bottom interfaces. This might have originated from the 

existence of carbon contamination at the interfaces which modifies the diffusion 

barrier of oxygen vacancies, leading to their migration only near the electrodes. 
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Chapter 7 
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. 

Summary 
 

‘Science is a way to teach how something gets to be known; what is not 

known; to what extent things are known; how to handle doubt and 

uncertainty; what the rules of evidence are; how to think about things so 

that judgments can be made; how to distinguish truth from fraud and 

from show’ 

                                  Richard Feynman 

. 

In this study, the conduction mechanisms of SrTiO3 MIM structures have been 

investigated to elucidate underpinning mechanisms of the leakage current and the 

resistive switching behaviour observed in J-V characteristics. In chapter 4, modelling 

of the leakage current was carried out by mathematically match the experimental 

data by the conventional conduction equations presented in Chapter 3. The abrupt 

transition from low to high leakage current shown in Figure 4.3 can be described by 

tunnelling mechanisms (Figure 7.1(a)). However, this transition showed temperature 

dependence, which is physically inconsistent with the tunnelling equation. This 

counterintuitive behaviour of the leakage current reveals that it is controlled by both 

the interface and the bulk, and it is necessary to consider the impact of both in one  
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Figure 7.1: Summary of the study on leakage current and resistive switching 

mechanisms of SrTiO3. 
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equation to precisely model leakage current (Figure 7.1(b)). A model has been 

proposed that combines both Poole-Frenkel and trap-assisted-tunnelling mechanisms 

in one equation. Equation 4.6 is capable of modelling the experimental data 

accurately. Based upon this model, the leakage current originates from the injection 

of electrons into the oxygen vacancies near the interface, followed by the thermionic 

field emission of electrons between the oxygen vacancies.  

In addition, the hypothesis of trapped positive charge has been proposed to 

explain the observation of negative current (Figure 7.1(c)). The positive charge gives 

rise to an internal electric field at the interface, which combines with the applied 

field. At low negative bias, the internal electric field is greater than the applied 

electric field. As a result, the current is in the direction opposite to that which would 

be generated by the applied field alone.   

 In chapter 5, the displacement and migration of oxygen vacancies were included 

in the proposed conduction mechanism (Figure 7.1(d)) to explain both the 

asymmetry and the bipolar behaviour of the leakage current. The positively charged 

oxygen vacancies are electrostatically repelled by fixed positive charges at the 

interface. At equilibrium the oxygen vacancies are located far away from the bottom 

electrode, which limits the injection of electrons into the bulk by tunnelling. 

Therefore, the leakage current is highly sensitive to the proximity of oxygen 

vacancies to the bottom electrode. The application of voltage results in variation in 

the injection rates of electrons at the interface by changing the distance between the 
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oxygen vacancies and the electrode. At low temperatures, the oxygen vacancies 

cannot easily surmount diffusion barriers. The application of voltage only displaces 

the oxygen vacancies with respect to the bottom electrode, which leads to 

asymmetric J–V characteristics. At high temperatures, however, a voltage bias causes 

the migration of oxygen vacancies near or away from the bottom electrode. This 

results in greater asymmetry as well as the bipolar resistive switching behaviour of 

J–V characteristics (Figure 5.1).  

The existence of a fixed positive charge at the bottom electrode interface become 

more evident in an experiment in which temperature was increased from 300 K to 

400 K and then back to 300 K with the DC voltage fixed at +4 V (Figure 7.1(e)). 

After this experiment, the oxygen vacancies were located near to the interface, which 

resulted in symmetrical J–V characteristic at room temperature (Figure 7.1(f)). By 

increasing the temperature, the leakage current under negative bias decreased due to 

the migration of oxygen vacancies away from the electrode (Figure 7.1(g)).  

Resistive switching has been also observed in a PLD SrTiO3 MIM structure 

(Figure 7.1(h)). Here the resistive switching between high and low resistance only 

exists under positive voltage. The existence of fixed positive charge at the interface 

and the migration of oxygen vacancies in the vicinity of the interface are two key 

assumptions that make it possible to explain the hysteresis curve under positive 

voltage. With high voltage bias, the oxygen vacancies are driven close to the 

interface. However, by reducing the voltage, the repulsive force between the oxygen 
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vacancies and the fixed positive charge trapped at the interface causes the migration 

of oxygen vacancies away from the electrode. Variation in the distance between the 

oxygen vacancies and the electrode affects the injection rates of electrons at the 

interface, which then results in a dramatic change in the leakage current.  

Finally, in chapter 6 resistive switching behaviour was observed in SrTiO3, where 

switching depends on both the amplitude and polarity of the applied voltage as 

shown in Figure 6.3. This is termed antipolar behaviour, a concept introduced as a 

third category of resistive switching as opposed to bipolar and unipolar switching    

(Figure 7.1(j)). In order to explain antipolar behaviour, the conduction mechanism 

proposed in chapter 4 has been used to consider the effect of the interfaces on the 

leakage current (Figure 7.1(i)). The migration of oxygen vacancies in the vicinity of 

both interfaces affect the injection of electrons from an electrode to the bulk and 

from the bulk to the opposite electrode, which results in antipolar resistive switching 

behaviour. The conduction mechanism has been quantified by use of a simple 

mathematical equation (Figure 7.1(k)). The results of simulations have demonstrated 

an agreement with J–V characteristics observed experimentally. In addition, it has 

shown that a similar hysteresis curve is produced with the switching is in a reverse 

direction when the electron injection from electrode to the bulk is controlled by Schottky 

emission (Figure 7.1(l)). 
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Resistive switching  

periodic table 
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. 
Table A.1: Elements that have been used as electrodes (blue), and those whose 

oxides have demonstrated bipolar (red) and unipolar (yellow) resistive switching 

behaviour. 

 

. 

.

 

.

 

.

 

.

 
.

 
.

 

.

 
.

 

.

 
.

 

.

 

.

 

.

 

.

 
.

 
.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 
.

 
. 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 



 

 

140 
 

 

Appendix A 

Table A.2: Bipolar and unipolar resistive switching behaviour in different oxides. 
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6 C DLC PLD Pt/Ti Pt   [24] 2012 

  GO Spin coating Al ITO   [26] 2010 

  a-C Ion beam Cu Pt   [25] 2010 

11 Na SmCaMnO3 PLD Ti LSMO   [110] 2006 

12 Mg MgO Sputtering Pt Pt   [111] 2012 

13 Al AlOx ALD Pt TiN   [112] 2011 

14 Si SiOx Sputtering ITO Cr/Au   [27] 2012 

20 Ca PrCaMnO3 Sputtering Au/Ta Pt   [113] 2012 

  PrCaMnO3 Sputtering GST/Ti Pt/TiN   [114] 2011 

  PrCaMnO3 PLD Au/Ti SRO   [115] 2009 

  PrCaMnO3 Sputtering Pt Pt   [116] 2009 

  PrCaMnO3 PLD Ag Pt/Ti   [117] 2008 

22 Ti TiO2 PLD Pt Pt/Ti   [118] 2011 

  TiOx Sputtering Pt Pt   [119] 2009 

  TiO2 Single crystals Pt Pt   [120] 2008 

  TiO2 ALD Pt Pt   [38] 2008 

  TiO2 Sputtering Pt Pt/Ti   [121] 2007 

  TiO2 ALD Pt Pt   [122] 2010 

  TiO2 ALD Pt Pt   [123] 2011 

  TiO2 ALD Pt Pt   [66] 2010 

  TiO2 E-beam Pt Pt/Ti   [124] 2008 

  TiO2 ALD Pt Pt   [97] 2007 

  TiO2 ALD Pt Pt   [125] 2007 

  TiO2 ALD Pt, Al Ru   [65] 2005 

23 V VO Sputtering Al ITO   [126] 2012 

24 Cr Cr2O3 Sputtering Pt TiN   [127] 2010 

25 Mn DyMn2O5 Sputtering Pt TiN   [128] 2011 

26 Fe SiO2/FeOx Sputtering Fe TiN   [129] 2010 

27 Co CoOx Sputtering Pt Pt   [130] 2010 

28 Ni NiO Sputtering Ni Ni/TiN   [131] 2010 

  NiO Sputtering Pt, Ti Pt   [132] 2012 

.

 

. 

.
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Appendix A 

  NiO ALD Pt W   [133] 2011 

  NiO:Ti Sputtering Pt Pt   [134] 2010 

  NiO Sputtering Pt Pt/Ti   [135] 2010 

  NiO Thermal Pt Pt   [96] 2008 

  NiOx Sputtering Pt Pt   [136] 2007 

  NiO Sputtering Pt Pt/Ti   [137] 2005 

29 Cu CuOx Thermal Mo Pt/Ti   [138] 2007 

30 Zn ZnO Sputtering Cr
 

Al, Zn
 

  [98] 2011 

  ZnO Sputtering Au Steel   [139] 2009 

  ZnO Sputtering Pt Pt   [140] 2012 

31 Ga GaOx PLD Pt ITO   [141] 2010 

32 Ge GeO2 PVD Ni TaN   [28] 2012 

38 Sr SrTiO3:Fe PLD Pt STO:Nb   [48] 2012 

  SrTiO3:Nb Single crystals Au Au   [142] 2012 

  SrTiO3:Nb Single crystals Pt In   [85] 2011 

  SrTiO3 PLD Au Pt/Ti   [143] 2010 

  SrTiO3:Nb Single crystals Pt Al   [144] 2010 

  SrTiO3:Nb Single crystals Pt Pt   [145] 2010 

  SrTiO3:Nb Single crystals Pt Au/Ti   [146] 2009 

  SrTiO3:La Ceramics Pd Pd   [50] 2008 

  SrTiO3:Nb Single crystals RuOx Pt   [147] 2008 

  BaSrTiO3:Mn PLD W SrRuO3   [148] 2008 

  SrTiO3:Nb Single crystals Pt Pt   [74] 2007 

  SrRuO3 PLD Au STO:Nb   [86] 2007 

  BaSrTiO3 PLD Pt SrRuO3   [149] 2006 

  SrZrO3:Cr PLD Au SrRuO3   [31] 2000 

  BaSrTiO3:Mn PLD Pt Pt/Ti   [150] 2010 

  SrZrO3:V Sputtering Al Pt/Ti   [151] 2007 

  SrTiO3 PLD Pt Pt/Ti   [51] 2011 

39 Y Y2O3 Sputtering Al Al   [152] 2011 

40 Zr ZrO2 Sputtering Pt/Ti Pt/Ti   [153] 2012 

41 Nb NbOx PLD Pt Pt   [154] 2011 

  NbOx PLD Pt Pt   [155] 2010 

42 Mo MoOx/GdOx Sputtering Pt Pt/Ti   [156] 2009 

  MoOx:Cu Sputtering Pt Cu   [157] 2007 

49 In In2O3 Thermal Al ITO   [158] 2011 

50 Sn SnO2 PLD Pt Pt   [159] 2009 

51 Sb Sb2O5 Sputtering Pt Pt   [160] 2012 

56 Ba BaSrTiO3:Mn PLD W SrRuO3   [148] 2008 

  BaSrTiO3 PLD Pt SrRuO3   [149] 2006 

  BaSrTiO3:Mn PLD Pt Pt/Ti   [150] 2010 
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Appendix A 

57 La LaAlO3 PLD YBCO STO:Nb   [161] 2011 

58 Ce CeO Sputtering Ru TaN   [162] 2012 

59 Pr PrO Sputtering Ru TaN   [162] 2012 

  PrCaMnO3 Sputtering Au/Ta Pt   [113] 2012 

  PrCaMnO3 Sputtering GST/Ti Pt/TiN   [114] 2011 

  PrCaMnO3 PLD Au/Ti SRO   [115] 2009 

  PrCaMnO3 Sputtering Pt Pt   [116] 2009 

  PrCaMnO3 PLD Ag Pt/Ti   [117] 2008 

60 Nd Nd2O3 Sputtering Ru TaN   [163] 2011 

62 Sm SmO Sputtering Ru TaN   [162] 2012 

63 Eu EuO Sputtering Ru TaN   [162] 2012 

64 Gd MoOx/GdOx Sputtering Pt Pt/Ti   [156] 2009 

66 Dy DyMn2O5 Sputtering Pt TiN   [128] 2011 

  Dy2O3 Sputtering Ru TaN   [163] 2011 

68 Er Er2O3 Sputtering Ru TaN   [163] 2011 

71 Lu Lu2O3 PLD Pt Pt   [164] 2010 

72 Hf HfO2 ALD Pt/Ti Pt/Ti   [165] 2012 

  HfO2 Sputtering TiN Pt/Ti   [166] 2012 

  HfO2 ALD TiN/Ti TiN   [167] 2010 

  HfO2 PLD Cr/Au Pt/Ti   [168] 2008 

  HfO2 MOCVD Au Pt/Ti   [169] 2008 

  HfO2 ALD TiN Ni   [170] 2012 

  HfO2 ALD TiN TiN   [171] 2012 

  HfO2 ALD Au Pt   [172] 2011 

  HfO2 AVD Au TiN   [173] 2010 

  HfO2 ALD Pt TiN   [174] 2010 

  HfO2 Sputtering Pt Pt/Ti   [175] 2008 

  HfOx ALD Ru TiN   [176] 2008 

73 Ta Ta2O5 PVD Pt Pt   [177] 2012 

  TaOx Sputtering Pd Pd   [178] 2012 

  Ta2O5 Sputtering Pt Pt   [179] 2011 

  Ta2O5 Sputtering Pt Pt   [39] 2010 

74 W WOx Thermal Pt W   [180] 2011 

83 Bi BiFeO3:Nb PLD Pt Pt/Ti   [181] 2012 
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