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Abstract 

The atypical antipsychotic clozapine is a widely prescribed and effective treatment for 

the positive and negative symptoms of schizophrenia, but reports of side effects are 

common. In one study EEG abnormalities were observed in 53% of patients treated 

with clozapine, and the absence or presence of EEG abnormalities correlated with the 

plasma clozapine concentration. 

Here, epileptiform activity was present in conventional EEG recordings from a 32 year 

old male patient with psychiatric illness taking clozapine for 3 weeks. Brief (ca.100ms), 

transient epileptiform spikes occurred at a frequency of approximately 2 per h and 

originated primarily in parietal cortex. One month after withdrawal of clozapine, 

epileptiform spikes were no longer present. 

An in vitro model was developed using the equivalent region of association cortex, 

namely 2⁰ somatosensory cortex, in normal rat brain slices to probe such activity with 

increased spatial and temporal resolution, and to investigate mechanisms underlying its 

generation. Wide band in vitro recordings revealed that clozapine (10-20µM) induced 

regular, frequent very fast oscillations (VFO, > 70Hz) in this region. These VFO 

comprised short transient high frequency discharges and were maximal in patches along 

layer V. The atypical antipsychotic olanzapine, but not the classical antipsychotic 

haloperidol, also induced prominent VFO in this region.  

Sharp electrode intracellular recordings revealed that there was almost no correlation 

between the somatic activity of layer V regular spiking (RS) pyramidal cells and field 

VFO, but layer V intrinsically bursting (IB) cells did correlate to some extent with the 

local field. Interestingly, IB cell spikelets were also weakly correlated with field VFO 

suggesting a role for axonal hyperexcitability in this cell type in the mechanism. 

Clozapine-induced VFO persisted following blockade of AMPA, NMDA, and GABAA 

chemical synaptic receptors, and the gap junction blockers carbenoxolone and quinine 

also failed to significantly attenuate the power of this activity. Although octanol 

abolished clozapine-induced VFO, it was not clear that this effect resulted from 

blockade of gap junctions as this drug also blocks spikes. 

In addition to VFO events, clozapine (10-20µM) also induced occasional, spontaneous 

transient paroxysmal discharges, similar to the EEG phenomena, in 33% (11/33 slices) 

of slices in vitro. Sharp electrode intracellular recordings revealed that clozapine-

induced full paroxysmal discharges were associated with spikes, EPSPs and IPSPs in 

layer V RS and IB cells, suggesting that these events were mediated via chemical 

synaptic transmission in both of these cell types. Multi-electrode array recordings of 

local field potentials and units suggested that clozapine-induced paroxysmal events 

started superficially in association cortex, moved deeper and then propagated 

horizontally along these deep layers. 

The onset of clozapine-induced VFO was accompanied by a significant elevation in 

parvalbumin immunoreactivity, particularly in layer II-IV, where there was a greater 

than twofold increase in the signal, and this may be relevant to the therapeutic action of 

the drug. 
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This thesis demonstrates an in vitro model of transient epileptiform discharges 

associated with adverse reaction to the atypical antipsychotic clozapine. By way of 

introduction, brain rhythms and their physiological function in the healthy condition are 

first considered, before schizophrenia pathology, how this may relate to mechanisms 

associated with dysfunctional brain rhythms, and comorbidity of schizophrenia with 

epilepsy. Next, antipsychotics, drugs used to treat schizophrenia, and the particular 

effectiveness of clozapine and possible mechanisms underlying its actions are 

considered. Finally, pathological EEG abnormalities associated with antipsychotics, and 

possible mechanisms underlying such epileptiform activity, are introduced. 

1.1 Brain rhythms and cognitive function 

The concept of recording electrical activity in the brain has a long history (e.g. Swartz 

and Goldensohn, 1998).  Electroencephalography (EEG) is a non-invasive tool for 

detecting synchronous activity in the brain by means of recording electrical activity 

from the scalp. Hans Berger (1873-1941) was one of the first scientists to use this 

technique to record brain rhythms from humans, discovering the ‘Berger rhythm’ (now 

termed alpha activity). It is now known that rhythmic brain activity occurs continuously 

in particular frequency bands according to behavioural state and has been observed in 

cerebral cortex, subcortical structures and cerebellar cortex. Rhythmic EEG activity can 

be categorised according to its frequency, delta (0-3Hz), theta (4-7Hz), alpha (8-12Hz), 

beta (13-30Hz), gamma (30-80Hz) and very fast oscillations (VFO, > 70-80Hz). 

The concept of the importance of brain rhythms, or neural oscillations, in facilitating 

brain function in sensory physiology has arisen in part with the finding that in the 

vertebrate olfactory system neural activity occurs in synchronised oscillations (Adrian, 

1950;Gray and Skinner, 1988;Di Prisco and Freeman, 1985). Further evidence 

demonstrated that oscillatory activity occurs in sensory cortex when awake animals 

direct their attention to stimuli (Lopes da Silva et al., 1970;Rougeul et al., 1979;Bouyer 

et al., 1981;Bouyer et al., 1987;Freeman and van Dijk, 1987). 

It is now thought that neural oscillations allow precise temporal correlations to be made 

between neural responses in different brain regions. Beta and gamma oscillations are 

important in the precise synchronisation of local cortical networks (Gray and Singer, 

1989;Womelsdorf et al., 2007),  while lower frequency oscillations may have a greater 

role in longer range synchronisation (von Stein, 2000).  
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There is considerable evidence linking oscillations to particular cognitive process 

including working memory, attention and consciousness. For example, gamma 

oscillations have a role in perception (Gray et al., 1989), synaptic plasticity (Wespatat et 

al., 2004), short-term memory (Tallon-Baudry and Bertrand, 1999), attention (Fries et 

al., 2001) and perhaps even consciousness itself (Melloni et al., 2007); beta oscillations 

are important in sensory gating (Hong et al., 2008), are also involved in some aspects of 

attention (Gross et al., 2004), and appear to play a critical role in fine motor control 

(Kilner et al., 2000). Some rhythms may be particularly associated with pathological 

conditions, such as VFO seen in patients with epilepsy. However, even in this case the 

rhythm also has a physiological role: VFO is implicated in memory consolidation and 

sensory perception (see section 1.5). This does not stop clinicians and researchers using 

EEG signatures to help to understand pathological states. Of particular relevance to this 

thesis are the changes in ‘normal’ EEG rhythms such as the gamma rhythm seen in 

schizophrenia. This is introduced below. 

1.2 Schizophrenia 

Schizophrenia is a disorder in which impairments occur in many of the cognitive 

processes associated with oscillations (Park and Holzman, 1992;Uhlhaas and 

Silverstein, 2005). Such impairments lead to problems in social and occupational 

capability in individuals with schizophrenia. Symptoms of schizophrenia can be 

classified as positive, negative or cognitive. Positive symptoms include hallucinations, 

delusions, abnormal psychomotor activity, and thought disorder. Negative symptoms 

describe problems such as social withdrawal, reduced motivation, an impaired ability to 

recognise and express emotion, and reduced speech. Cognitive symptoms relate to 

impairments in processes such as selective attention, working memory, episodic 

memory, understanding of language and executive control. In particular, research effort 

in schizophrenia has been directed at working memory (Barch and Smith, 2008), which 

is critically dependent on dorsolateral prefrontal cortex (DLPFC) circuitry in humans 

(Miller and Cohen, 2001). Activity in this brain region is impaired during working 

memory tasks in schizophrenic patients (Van Snellenberg et al., 2006;Deserno et al., 

2012).  

Deficits in working memory occur in schizophrenic patients regardless of medication 

status, and are present in early stages of the disorder (Barch and Smith, 2008) including 

prodromally in childhood and adolescence, years before schizophrenia is first diagnosed 

(Lesh et al., 2011;Davidson et al., 1999;Cosway et al., 2000). Cognitive deficits are also 
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independent of psychosis (Keefe and Fenton, 2007), represent the best indicator for the 

long-term outcome of patients (Green, 1996), and occur to a lesser extent in unaffected 

relatives of those with schizophrenia (Egan et al., 2001). As such, cognitive deficits are 

considered a critical, core aspect of the dysfunction in this illness. 

1.2.1 Pathology of schizophrenia 

1.2.1.1 GABAergic deficits in schizophrenia  

As mentioned above, healthy cognitive function may be related to the generation of 

neural oscillations including synchronised gamma activity (Gray et al., 1989) across 

networks distributed throughout cortex. In schizophrenia cognitive deficits are linked to 

reduced power and synchrony of these gamma oscillations which provides clues as to 

underlying primary pathology (Bichot et al., 2005;Gonzalez-Burgos et al., 

2010;Uhlhaas and Singer, 2010). Inhibitory GABAergic interneurons have a critical 

role in the mechanisms underlying normal gamma oscillations by producing rhythmic 

inhibitory post synaptic potentials (IPSPs) in pyramidal neurons (Traub et al., 

2004;Fries et al., 2007). In particular fast spiking interneurons which contain the 

calcium-binding protein parvalbumin may be especially important in generating gamma 

rhythms (Klausberger and Somogyi, 2008;Cardin et al., 2009), and their activity has 

been shown to have a causal role in generating gamma rhythms in mice in vivo (Sohal et 

al., 2009). 

A consistent finding in post-mortem studies has been that GAD67, one of the main 

enzymes that synthesise GABA, is reduced in the DLPFC of patients with schizophrenia 

(Bird et al., 1978;Hanada et al., 1987), and this occurs selectively in layers III-V 

(Akbarian et al., 1995), where gamma rhythms are most prominent (Glykos et al., 

2012). 

Expression of the GABA membrane transporter GAT1 is also reduced suggesting that, 

in addition to synthesis, re-uptake of GABA is also impaired in schizophrenia (Volk et 

al., 2001). Given the critical role of GABAergic interneurons in the mechanisms 

underlying gamma oscillations (Traub et al., 2004;Fries et al., 2007), one possibility, 

considered in more detail below, is that cognitive impairments in schizophrenia arise 

from reduced gamma synchrony resulting from impaired GABA-mediated inhibition. 

For example, reduced GAT1 could alter rhythmicity of oscillations in schizophrenia. 

MEG data show auditory clicks at 40Hz elicit a gamma response in normal individuals, 
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but both beta and a lower amplitude gamma in patients with schizophrenia. A network 

simulation of the auditory cortex showed that increasing the decay time of IPSPs, such 

as might occur with reduced GAT function, produced a similar profile of neural 

oscillations (Vierling-Claassen et al., 2008). 

Parvalbumin-containing interneurons may also be particularly affected in schizophrenia 

(Beasley and Reynolds, 1997;Danos et al., 1998;Hashimoto et al., 2003). More recent 

work to that mentioned above showed that expression of parvalbumin mRNA was 

significantly reduced in layers III and IV, but not in layers II, V or VI of the DLPFC 

(Hashimoto et al., 2003). Interestingly, it was the expression level of parvalbumin 

mRNA per neuron rather than number of neurons with detectable parvalbumin mRNA, 

that was affected. The parvalbumin mRNA expression level per neuron also correlated 

with reductions in the density of neurons positive for GAD67 mRNA. Thus GAD67 

mRNA expression is preferentially reduced in parvalbumin-immunopositive 

interneurons (Hashimoto et al., 2003). Dual label in situ hybridisation studies confirmed 

that in schizophrenic tissue approximately half of the neurons positive for parvalbumin 

mRNA did not have detectable GAD67 mRNA. Therefore it seems that parvalbumin-

containing interneurons in particular may be functionally impaired in schizophrenia. 

Furthermore, expression of the GABAA receptor alpha1 subunit is particularly low in 

pyramidal cells that receive inhibitory inputs from parvalbumin interneurons (Glausier 

and Lewis, 2011). Thus reduced inhibitory drive from parvalbumin cells could be a key 

aspect of the pathophysiology of schizophrenia and this may have bearing on the 

effectiveness of antipsychotic drugs like clozapine (see below and results chapter 7). 

Data from animal models of schizophrenia provide a further evidence for a link between 

altered parvalbumin expression and deficits in gamma. Administration of 

methylazoxymethanol acetate reduced expression of parvalbumin in interneurons 

throughout the medial prefrontal cortex and ventral subiculum in rats and resulted in 

impaired gamma responses (Lodge et al., 2009).  Furthemore, LPA1-deficient mice, 

which show psychomotor-gating deficits and neurochemical changes similar to those in 

schizophrenia, also demonstrate reduced gamma oscillations, and decreased 

parvalbumin immunopositive intereuron numbers in layer II of medial entorhinal cortex 

(Cunningham et al., 2006). 

However the mechanisms by which parvalbumin cells may become dysfunctional in 

schizophrenia are not yet clear. Possibilities include reductions in released GABA, 
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lower numbers of postsynaptic GABAA receptors, alterations in the excitatory drive on 

to parvalbumin neurons, or loss of neurons or inhibitory inputs. A complicating factor is 

that lowered parvalbumin in schizophrenia may be a compensatory change secondary to 

deficits in GAD67 and reduced GABA. In fact, so many seemingly contrary changes in 

GABA system function are seen in schizophrenia that it is hard to understand 

mechanistically what is ‘cause’ and what is ‘compensation’ at all. This has led to other 

theories linking pathology to modifications in glutamate receptor-mediated excitation. 

1.2.1.2 NMDA receptor hypofunction in schizophrenia  

In the glutamate hypothesis of schizophrenia it is proposed that NMDA receptor 

hypofunction may be important in mediating aspects of schizophrenia, especially 

cognitive impairment (Carlsson and Carlsson, 1990;Javitt and Zukin, 1991;Jentsch et 

al., 1997a;Jentsch et al., 1997b;Olney and Farber, 1995). Phencyclidine (PCP), which is 

a non-competitive NMDA receptor antagonist, can induce a psychotomimetic state that 

arguably represents a good pharmacological model of schizophrenia. PCP injections can 

induce schizophrenia-like symptoms such as hallucinations, delusions, and cognitive 

deficits in normal humans (Cosgrove and Newell, 1991;Javitt and Zukin, 1991). 

Furthermore, in schizophrenic individuals PCP and the non-competitive NMDA 

receptor antagonist ketamine aggravate pre-existing symptoms (Pearlson, 1981;Javitt 

and Zukin, 1991;Krystal et al., 1994;Malhotra et al., 1996).  

However, one caveat is that neither drug is selective for NMDA receptors. Both 

ketamine and PCP have a high affinity for dopamine D2 and serotonin 5-HT2 receptors, 

and act as partial agonists at the D2 receptor (Kapur and Seeman, 2002). Ketamine may 

also inhibit monoamine transporters (Nishimura et al., 1998;Nishimura and Sato, 1999), 

and has a high affinity for µ, к and δ opioid receptors (Hirota et al., 1999). Furthermore, 

PCP is a σ receptor ligand (e.g. Quirion et al., 1981;Zukin, 1982). 

Nevertheless, despite their limited selectivity, various noncompetitive NMDA receptor 

antagonists can also increase locomotor activity and stereotyped behaviour (Schmidt, 

1994;Sturgeon et al., 1982) and induce cognitive deficits and impairments in learning 

and memory in mice, rats, and monkeys (Danysz et al., 1988;Alessandri et al., 

1989;Boyce et al., 1991;Verma and Moghaddam, 1996;Jentsch et al., 1997a;Jentsch et 

al., 1997b). These findings have led to the idea that hypofunction of NMDA receptor-

mediated transmission may be important in the pathophysiology of schizophrenia. 
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In line with this, exposure to NMDA receptor antagonists is used in animals commonly 

as a model of possible NMDA receptor hypofunction in schizophrenia (Mouri et al., 

2007). However, as NMDA receptors are expressed in various neurons throughout the 

brain it is unclear which neuronal cell types would be important in pharmacological 

models of NMDA receptor hypofunction, and thus more recent work has investigated 

the effect of targeted genetic knockout of NMDA receptors in interneurons (see below; 

Belforte et al., 2010;Carlen et al., 2012). 

It has been proposed that NMDA receptor hypofunction may be primary, either directly 

or indirectly, to changes in parvalbumin neurons in schizophrenia (Coyle, 2006;Lisman 

et al., 2008;Lewis and Gonzalez-Burgos, 2006). Parvalbumin interneurons receive 

excitatory inputs via NMDA receptors, especially those containing the NR2A/NR2B 

subtype associated with changes in glutamatergic drive (Kinney et al., 2006).  NMDA 

antagonists that induce psychosis in healthy participants also alter inhibitory synaptic 

transmission (Krystal et al., 1994). Furthermore, acute ketamine reduces IPSPs in 

mouse prefrontal cortex (Zhang et al., 2008) and decreases gamma power and IPSP 

amplitude in superficial layers of mouse medial entorhinal cortex (Cunningham et al., 

2006). 

Interestingly, the effect of NMDA receptor antagonism may be region-specific such that 

it can result in increases in gamma in certain regions (Roopun et al., 2008). This may be 

due, in part, to the amount of NMDA drive interneurons in specific brain regions 

receive. For example, in most brain regions there is a limited extent of NMDA receptor 

input into interneurons in the adult. However, in entorhinal cortex such NMDA receptor 

inputs remain substantial in adulthood (Jones and Buhl, 1993). The entorhinal cortex is 

implicated in schizophrenia as structural magnetic resonance imaging data suggest that 

the entorhinal cortex may be smaller in individuals with schizophrenia and related 

disorders (e.g. Prasad et al., 2004), and diffusion tensor imaging data suggest that 

entorhinal connectivity may also be disrupted (Kalus et al., 2005). 

As interactions between brain rhythms in distributed regions of cortex may be essential 

for healthy cognition (Fries, 2005), region-by-region alterations in rhythm generation 

may result in a functional disconnection as occurs in schizophrenic patients (Cole et al., 

2011). 

Given that NMDA receptor antagonists may produce pyramidal cell disinhibition 

(Homayoun and Moghaddam, 2007), one possibility is that this arises mainly from 
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NMDA receptor hypofunction and the resulting loss of excitatory drive at synapses onto 

parvalbumin interneurons. In line with the proposal that NMDA receptor hypofunction 

is primary to alterations in parvalbumin neurons, NMDA receptor antagonists can 

induce lowered parvalbumin and GAD67 in parvalbumin neurons similar to that found 

in post-mortem schizophrenic tissue (Cochran et al., 2002;Kinney et al., 2006;Behrens 

et al., 2007b). On the other hand, in a recent study sub-chronic exposure to PCP or 

ketamine in adult mice and rats failed to change parvalbumin expression in medial 

prefrontal cortex or hippocampus (Benneyworth et al., 2011). 

In relation to the question of which neuronal cell types are important in the proposed 

NMDA receptor hypofunction in schizophrenia, genetically modified mice were 

developed with selective knockout of the essential NR1 subunit of NMDA receptors in 

a mixed population of corticolimbic GABAergic interneurons in early postnatal 

development (Belforte et al., 2010). These mice developed a variety of behaviours 

resembling human schizophrenia, including novelty-induced hyperlocomotion, mating 

and nest-building deficits, behaviours associated with anxiety and anhedonia, and 

impaired social memory and spatial working memory (Belforte et al., 2010). 

More selective knockout of NMDA receptors specifically in PV interneurons in 

adolescent mice did not result in such a wide range of behavioural phenotypes, but did 

result in selective deficits in habituation, working memory and associative learning 

(Carlen et al., 2012). Importantly, knockout of NMDA receptors in PV neurons also 

resulted in disrupted regulation of gamma oscillations in vivo (Carlen et al., 2012). 

Many of the above changes associated with cortical function in schizophrenia also may 

play a role in some epilepsies. In particular a failure to recruit interneurons into local 

circuit responses – causing disinhibition – is a known feature of kindling models of 

epilepsy (Sloviter, 1987). Reduced inhibition in general has been thought to represent a 

primary cause of epileptiform activity for decades (Schwartzkroin and Prince, 

1977;Schwartzkroin and Prince, 1978;Schwartzkroin and Prince, 1980). It is therefore 

not surprising that clinically there is a great deal of overlap and interdependence 

between these two illnesses. 
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1.3 Comorbidity of epilepsy with schizophrenia 

The general idea of links between schizophrenia and epilepsy can be traced back to 

work by L.M. Meduna in the 1930s who described an antagonism between seizures and 

psychosis following his observation that the frequency of seizures reduced in certain 

epileptic patients after they developed psychotic symptoms similar to those in 

schizophrenia. Indeed this idea was important in the theoretical rationale for the original 

use of electro-convulsive therapy as a treatment for schizophrenia. Since then, the 

hypothesis of an antagonism between seizures and psychosis has been returned to (e.g. 

Wolf and Trimble, 1985;Stevens, 1995).  

More recent work has investigated the issue of the comorbidity of schizophrenia with 

epilepsy. Trimble (1996) has reviewed issues relating to comorbidity and highlighted 

the relationship between a number of anticonvulsant drugs, their clinical effectiveness, 

and the emergence of severe psychiatric symptoms including psychoses presenting very 

much like the positive symptoms associated with early schizophrenia. The term ‘forced 

normalisation’ is used to suggest that the balance between excitation and inhibition in 

the brains of epilepsy patients, in compensation for underlying pathology, serves to 

push the system to a point where seizures are more likely. If the seizures are treated then 

this compensatory imbalance is disrupted and ‘alternative psychosis’ is manifest. This 

thesis deals with an example of the converse of this situation: One where excitatory and 

inhibitory balance in the brain is homeostatically adjusted to compensate for an overt 

psychosis. The working hypothesis is that treatment of that psychosis generates 

epileptiform hyperexcitability de novo, or in patients, may uncover the compensatory 

hyperexcitability that was keeping the pyschosis at bay in the first place. 

If the above imbalances and compensatory changes in excitation and inhibition are 

taking place in the brains of patients with epilepsy and/or schizophrenia, can a further 

understanding of the primary pathologies at work lead to a more mechanistic 

understanding of either disorder?  

Various studies have highlighted a link between schizophrenia and temporal lobe 

epilepsy (TLE). There is considerable evidence for a higher prevalence of 

schizophrenia-like psychosis in patients with TLE compared to non-epileptic 

individuals (Bredkjaer et al., 1998;Sachdev, 1998;Schwartz and Marsh, 2000;Gaitatzis 

et al., 2004).  A study with a large cohort of patients found an incidence of 

schizophrenia or schizophrenia-like psychosis three times greater in subjects with 
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epilepsy compared to non-epileptic individuals. The risk of such psychosis increased 

with the number of admissions to hospital for epilepsy, and interestingly,  common 

genetic or environmental causes were suggested by the finding that a family history of 

epilepsy was a significant risk factor for such psychosis (Qin et al., 2005). Misdiagnosis 

of epilepsy as schizophrenia can occur (e.g. Prueter et al., 2002), and antiepileptic drugs 

can reduce psychotic symptoms in some cases (Hosak and Libiger, 2002). Both 

disorders are linked with an onset in late adolescence, deficits in cognition and memory, 

and hallucinations (Slater and Moran, 1969;Taylor, 2003).  

Thus, dysfunctional activity in temporo-limbic areas may be a common feature of 

schizophrenia and TLE, and, more specifically, it is possible that both of these disorders 

reflect dysfunctional synchronous activity in local networks in temporal lobe structures. 

The idea that epilepsy involves irregular and excessive synchronous activity within 

neuronal networks has been prevalent for some time. Extreme hypersynchrony can lead 

to a pathologically oscillating network which is no longer capable of meaningful 

information processing. For example, heightened gamma activity can occur in the EEG 

of epileptic patients (Hirai et al., 1999;Willoughby et al., 2003), and has even been 

suggested to be a prerequisite for the the development of seizures (Willoughby et al., 

2003). Conversely, the cognitive and affective derangements that occur in schizophrenia 

have been suggested to arise from deficits in the integration or synchronisation of 

activity in distributed neuronal networks. The disorder is increasingly being seen as the 

manifestation of abnormal neuronal synchrony in cortical networks. In particular, as 

mentioned above, various studies show deficits in gamma rhythmogenesis in cortical 

networks in schizophrenic patients (e.g. Spencer et al., 2003;Spencer et al., 

2004;Symond et al., 2005). 

Thus, both disorders may entail dysfunction in the neuronal circuits that generate 

gamma activity. Although the underlying mechanism of gamma generation is 

complicated (see Whittington et al., 2011), it is clear that interactions within populations 

of GABAergic inhibitory interneurons are an essential component driving and 

controlling synchrony via a coherent output to principal neurones (e.g. see Traub et al., 

1996;Gloveli et al., 2005;Cunningham et al., 2003). Dysfunction of GABAergic 

inhibition has been associated with both epilepsy and schizophrenia for some time 

(Keverne, 1999;Cossart et al., 2005). The latter is introduced in detail in 1.2.1.1 above 

but here the introduction looks for parallels in epilepsy syndromes and models. 
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In light of the role of interneurons in rhythmogenesis, it is unlikely that epileptogenesis 

results from a straightforward loss of the dampening effect of synaptic inhibition. In 

epilepsy, some GABAergic interneurons are affected but others appear less susceptible 

to the pathology. The effects of selective loss of sub-populations of hippocampal 

interneurons has been reviewed elsewhere (Magloczky and Freund, 2005).  Studies 

suggesting that TLE results in selective degeneration of principal neurones in cortical 

layer III suggest that GABAergic interneurons may be spared (Eid et al., 

1999;Kobayashi et al., 2003), especially those that contain parvalbumin (Du et al., 

1993;Du et al., 1995;Eid et al., 1999).  However, although Van Vliet et al. (2004) 

showed preservation of parvalbumin-immunopositive neurones in layer III in a rat 

model of TLE, this study also found that these interneurones were reduced in layer II, V 

and VI,  and there was a reduction in calretinin-immunoreactive neurones across all 

layers.  

Chandelier cells are powerful inhibitory interneurons that also contain parvalbumin. A 

loss of chandelier cells may have important consequences for cortical circuits and has 

been suggested to be a mechanism underling TLE (DeFelipe, 1999). Markers for their 

synaptic specialisations onto principal cells form one of the most robust post-mortem 

markers of pathology in patients with schizophrenias (see below). These neurons are 

also likely to be important in generating synchrony in principal cell populations. 

Chandelier cells are also immunoreactive for the cell adhesion molecule PSA-NCAM 

(Arellano et al., 2002), a marker for plastic changes. PSA-NCAM is increased in TLE 

patients (Mikkonen et al., 1998), so it is possible that an expansion of inhibitory 

connections from chandelier cells and other interneurons could increase synchrony and 

underlie epileptogenesis. In line with this, widespread synchronous gamma oscillations 

can give rise to epileptiform burst discharges in hippocampus (Traub et al., 2005b).  

The full physiological and biochemical implications of chronic epileptic conditions on 

synaptic inhibition is not clear. Some in vitro studies that made use of intracellular 

recordings suggested that, following a monosynaptic IPSP protocol, interneurons in 

epileptic rat brain slices were still capable of inducing IPSPs similar to those elicited in 

control tissue (Bear et al., 1996;Fountain et al., 1998). However, more studies are 

needed to further investigate the effect of epileptic conditions on interneurons and 

inhibitory synaptic transmission. 

In general, evidence in post mortem tissue from schizophrenia patients points to 

multiple pre- and postsynaptic abnormalities in interneurons which weakens their 
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inhibitory control over pyramidal cells – a situation which would be expected to bias 

brain networks towards hyperexcitability and perhaps seizures. Antipsychotic therapy is 

currently thought to address this imbalance of excitation and inhibition (Lewis et al., 

2012). However, if this were the case then the comorbidity issues addressed above 

would not constitute a clinical problem and incidences of de novo expression of seizure-

like events with antipsychotic therapy would not occur. 

However, imbalance between synaptic excitation and inhibition is not the only potential 

candidate mechanisms for epilepsy and schizophrenia. Patterns of local network 

activity, manifest as frequencies over ca. 80 Hz (very fast oscillations, VFO) have long 

been associated with epilepsy. They were first reported in patients with frontal or 

temporal lobe epilepsies over 20 years ago (Allen et al., 1992;Fisher et al., 1992). They 

are seen in infants and adults and associated with the onset of a very wide range of 

seizure subtypes (Worrell et al., 2004;Khosravani et al., 2009). In fact they have been 

proposed as the single most effective biomarker for epileptogenic tissue in human 

brains (Jacobs et al., 2012). They can also be manifest in small sections of human tissue 

maintained in vitro (Roopun et al., 2010) and can be readily generated in a number of 

rodent in vitro models of seizures (e.g. Cunningham et al., 2012).  

Interestingly, the animal model studies have been able to show that epileptiform VFO 

survives blockade of most types of inhibitory and excitatory chemical synaptic activity, 

suggesting a non-synaptic origin. Traub (2001) proposed a mechanism for such rhythms 

that involved direct communication between principal cell axons via gap junctions. A 

great deal of such direct connections exist in the cortex of immature brains where they 

are thought to guide local circuit formation (Yu et al., 2012), perhaps explaining the 

preponderance of VFO in seizures in infants described above. However, while the level 

of gap junctional connectivity between neurons reduces with age they can be seen in 

adult rodent brains (Dhillon and Jones, 2000;Mercer et al., 2006;Wang et al., 

2010;Hamzei-Sichani et al., 2007;Hamzei-Sichani et al., 2012). In addition, neocortical 

epileptic foci are often associated with the presence of neuronal progenitor cells or even 

newly formed neurons (Liu et al., 2008). These neurons in turn express large quantities 

of gap junctions and may serve as hubs in aberrant local networks leading to seizure. 

Evidence for high frequency oscillations associated with schizophrenia is more sparse. 

Sensory evoked potential studies have shown an increase in the amplitude and latency 

of VFO in patients, with a negative correlation between VFO power and thought 

disorder and delusions (Norra et al., 2004). The ketamine model of both positive and 
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negative symptoms of schizophrenia is associated with increased VFO in rodent nucleus 

accumbens (Hunt et al., 2006).   

VFO also manifest as a critical component of persistent gamma rhythms (e.g. 

Cunningham et al., 2004). In models of these rhythms, known to be disrupted in 

schizophrenia and related animal models, the excitatory drive to the local network is 

achieved via ectopic action potential generation in axons. Percolation of this activity 

through neighbouring, gap junctionally connected axons provides a brief burst of VFO 

which is ideally situated to drive local circuit interneurons (Whittington and Traub, 

2003). In neocortex, excitation of axons can, paradoxically, occur through activity of 

axo-axonic (chandelier) interneurons (Howard et al., 2005). It is thought the location of 

the inhibitory synapses in cartridges along the proximal axon of principal cells causes 

direct depolarisation of the axon (Szabadics et al., 2006). As chandelier cells are 

GABAergic, chloride extrusion mechanisms and expression of the potassium chloride 

cotransporter 2 (KCC2) are important in determining the polarity of the postsynaptic 

response. Thus the low density of KCC2 in the axonal initial segment (Szabadics et al., 

2006) is thought to result in a higher concentration of intracellular Cl
-
 and a 

depolarising response to GABA at these sites on the axon. Thus the decrease in 

chandelier cell functional markers in schizophrenia and epilepsy (above) may serve to 

decrease axonal excitability and thus reduce persistent gamma rhythm generation and 

overall neocortical network excitability. This thesis will reconsider a possible role for 

axonal excitability in antipsychotic-induced seizure-like activity in later results chapters. 

1.4 Antipsychotics 

1.4.1 Therapeutic effectiveness of clozapine 

Chloropromazine was the first drug used to treat schizophrenia in the 1950s and 

introduced the idea of antipsychotics that target the dopamine D2 receptor (e.g. Creese 

et al., 1976). More potent typical antipsychotics became available in the years that 

followed as medicinal chemists developed drugs with improved affinity for the D2 

receptor. However, these drugs were associated with the debilitating extrapyramidal 

side effects of parkinsonian syndromes and tardive dyskinesia as a result of the 

blockade of dopaminergic transmission in the basal ganglia. In addition, these drugs 

were associated with only limited improvements in psychosocial and cognitive function 

(Green, 1996). 
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By the early 1970s some of the advantages in the use of the antipsychotic clozapine, 

which was termed ‘atypical’ as it did not cause movement disorder to same extent as 

previous antipsychotics, were becoming clear. Clozapine has a reduced tendency to 

cause extrapyramidal side effects and an unparalleled effectiveness in treating 

schizophrenia (Kane et al., 1988). Specifically, clozapine may be superior to other 

typical and atypical antipsychotics in terms of the treatment of negative symptoms, 

refractory positive symptoms and even certain cognitive deficits (Davis, 2006;Kane et 

al., 1988;Keefe et al., 1999;Kumari et al., 1999;Lee et al., 1999;Wahlbeck et al., 2000). 

Clozapine is also particularly effective among antipsychotics in preventing suicide and 

helping clinical compliance (Conley and Kelly, 2001;McEvoy et al., 2006;McGurk, 

1999;Meltzer et al., 2003;Spivak et al., 2003).  

On the other hand, clozapine is associated with salient side effects such as 

agranulocytosis, weight gain and diabetes, and, interestingly, EEG abnormalities and 

seizures (e.g.Kumlien and Lundberg, 2009;Juul et al., 1985;Toth and Frankenburg, 

1994), and for this reason tends only to be prescribed in cases when other antipsychotics 

have been insufficiently effective. In relation to seizures, clozapine may sometimes, but 

not always (Antony et al., 2008), be contraindicated in epilepsy. EEG abnormalities and 

seizures associated with clozapine are considered in more detail below (section 1.4.3). 

1.4.2 Mechanisms underlying the action of clozapine 

In addition to antagonising dopamine D2 receptors, clozapine has a complex receptor 

binding profile and acts on multiple targets (Roth et al., 2004). For example, clozapine 

has a high affinity for 5-HT2A, 5-HT2C, 5-HT6, 5-HT7 serotonin receptors, dopamine D4 

receptors, muscarinic M1, M2, M3, M4, and M5 receptors, and adrenergic α1- and α2- 

receptors (Roth et al., 2004). Clozapine also acts on NMDA and GABAA receptors (see 

section 1.4.2.1 and 1.4.2.2 below). In view of the glutamate and dopamine hypotheses 

of schizophrenia and the convergence of susceptibility genes around these 

neurotransmitter systems, one possibility is that clozapine may exert its complex action 

on multiple targets to normalise both glutamatergic and dopaminergic 

neurotransmission (Roth et al., 2004). Focal excitation or excitation-induced 

depolarization inactivation of DA neurons (Chiodo and Bunney, 1983;Hand et al., 

1987), may also have a role in the antipsychotic effect of clozapine and other 

antipsychotics. 
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In attempting to identify the important targets in the therapeutic effect of clozapine, it 

was noted that the atypical antipsychotic risperidone blocks the effects of lysergic acid 

diethylamide (LSD) via its action on 5-HT2A receptors (Colpaert, 2003). Following 

systematic analysis of the pharmacology of various typical and atypical antipsychotics, 

it was suggested that the key pharmacological action of atypical antipsychotics was the 

higher affinity for 5-HT2A receptors versus that for D2 receptors (Meltzer et al., 

1989;Altar et al., 1986). With this idea in mind pharmaceutical companies attempted to 

develop new drugs with the same effectiveness of clozapine but without its side effects. 

Various atypical antipsychotics, such as olanzapine and quetiapine, which met this 5-

HT2A/ D2 criteria, were then introduced. While such drugs provide further useful 

treatment options, so far none have proved more effective than clozapine in treating 

schizophrenia (Leucht et al., 2003;Tuunainen et al., 2002). 

In developing novel atypical antipsychotics, further attempts have been made to identify 

compounds that mimic clozapine’s actions on dopamine and serotonin receptor 

subtypes. However, such attempts have had limited success, possibly because more 

multi-target approaches are necessary. For example, the D4 antagonist L-745,870 

(Bristow et al., 1997), and the 5-HT2A/D4 antagonist fananserin (Truffinet et al., 1999), 

were not effective in treating schizophrenia. Similarly, the 5-HT2A selective antagonist 

M100907 (de Paulis, 2001) was not as effective as haloperidol, the comparator, in 

treating symptoms of schizophrenia. 

As well as ameliorating positive and negative symptoms of schizophrenia, atypical 

antipyschotics may also have a small beneficial effect on cognition (Meltzer and 

McGurk, 1999). One possible explanation for the cognitive-enhancing properties of 

atypical antipsychotics relate to their action on 5-HT2A (Williams et al., 2002), 5-HT6 

(Woolley et al., 2001) receptors, or boosted dopamine transmission in the prefrontal 

cortex (Castner et al., 2000). 

In addition to its actions on metabotropic receptors, clozapine may modulate inhibitory 

and excitatory synaptic transmission.  
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1.4.2.1 Effects of clozapine on inhibitory synaptic transmission 

In cultured neurons in the ventral tegmental area (VTA), clozapine suppressed 

GABAergic inhibitory synaptic transmission (Michel and Trudeau, 2000). Inhibitory 

post-synaptic currents (IPSCs) evoked in isolated GABAergic neurons were depressed 

by clozapine in a concentration-dependent manner. Likewise, GABA-induced currents 

were depressed by clozapine in a concentration-dependent manner to a comparable 

extent. Furthermore, clozapine reduced the amplitude of miniature IPSCs in a similar 

manner to SR-95531, a specific GABAA receptor antagonist (Michel and Trudeau, 

2000). Similarly, in cultured hippocampal neurons, clozapine reduced inhibitory 

synaptic transmission (Ohno-Shosaku et al., 2011). 

Interestingly, a different study failed to find such a clear effect of clozapine on 

inhibitory transmission (Gemperle et al., 2003). In rat prefrontal cortex slices IPSPs 

were measured in layer V pyramidal cells following stimulation of layer II. There was a 

trend whereby clozapine concentration-dependently reduced IPSPs but this failed to 

reach statistical significance (Gemperle et al., 2003). Interestingly, at higher 

concentrations of clozapine (100-300µM) some cells fired epileptiform discharges in 

this study. 

It is possible therefore that the clozapine-sensitivity of GABAergic synapses is higher in 

the VTA (Michel and Trudeau, 2000) and hippocampus (Ohno-Shosaku et al., 2011) 

compared to that in prefrontal cortex (Gemperle et al., 2003). The interaction of 

clozapine with GABAA receptors may depend on their subunit composition (Korpi et 

al., 1995;Squires and Saederup, 1998). Alternatively, the difference may be due to the 

use of brain slice preparations rather than cultured neurons. 

1.4.2.2 Effects of clozapine on excitatory synaptic transmission 

The effects of clozapine on excitatory synaptic transmission have also been investigated 

in a number of studies. Microdialysis experiments in vivo in freely moving rats 

demonstrated that clozapine, but not haloperidol, increased extracellular glutamate in 

the medial prefrontal cortex (Daly and Moghaddam, 1993;Yamamoto et al., 1994). In 

cultured hippocampal neurons clozapine depressed glutamatergic neurotransmission 

(Ohno-Shosaku et al., 2011). Furthemore, clozapine inhibited glutamate release in nerve 

terminals isolated from rat prefrontal cortex (Yang and Wang, 2005). In the CA1 region 

of rat hippocampal slices 50µM clozapine induced a transient depression followed by a 

small potentiation of extracellular field potentials (Baskys et al., 1993). However, in one 
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study 10-300µM clozapine had no significant effect on EPSPs in slices of rat prefrontal 

cortex (Gemperle et al., 2003).  

In contrast, in a different study 50-100nM clozapine enhanced NMDA-evoked 

responses and the NMDA receptor contribution to EPSPs/EPSCs elicited by electrical 

stimulation in rat medial prefrontal cortex (Arvanov et al., 1997). It is possible that the 

concentration of clozapine used by Arvanov et al. (50-100nM) was lower than the 

therapeutic concentration of clozapine in cerebrospinal fluid (see section 4.4.4). 

Interestingly, in this study, clozapine did not potentiate pharmacologically isolated 

NMDA receptor-mediated EPSCs, and the potentiating effect of clozapine on NMDA 

receptor-mediated neurotransmission was eliminated by the AMPA antagonist CNQX 

(Arvanov et al., 1997). For this reason, it was thought that the effect of clozapine did 

not result from its direct interaction with NMDA receptors on pyramidal neurons. 

Indeed it was possible that the action of clozapine on NMDA responses was secondary 

to its binding to other receptors. For example, it could be speculated that antagonism of 

dopamine and serotonin receptors by clozapine could remove the inhibitory influence of 

serotonin and dopamine and thus increase glutamate release (Kornhuber and Kornhuber, 

1986;Maura et al., 1989;Maura et al., 1988a;Maura et al., 1988b;Peris et al., 1988).  

Chronic clozapine treatment reduced MK-801 binding in the medial prefrontal cortex 

(Tarazi et al., 1996;McCoy and Richfield, 1996;Giardino et al., 1997) and reduced 

expression of the NMDA NR-2C subunit in frontal cortex (Riva et al., 1997). This 

reduction in expression of NMDA receptors may be a compensatory response to the 

enhancement of NMDA receptor-mediated transmission by clozapine (Arvanov et al., 

1997).  

There is also interest in the possibility that clozapine may boost NMDA receptor-

mediated transmission via the glycine modulatory site.  Interestingly, glycine, D-serine 

and sarcosine, when combined with antipsychotics such as risperidone or olanzapine, 

have significant beneficial effects on negative symptoms (Javitt, 2006;Tsai and Lin, 

2010). In contrast, such compounds are ineffective when combined with clozapine 

(Evins et al., 2000;Tsai et al., 1999;Goff et al., 1996;Tsai and Lin, 2010), possibly 

because clozapine may already increase synaptic glycine levels. 

In another study, the role of clozapine in modulating glycine transport was investigated 

(Javitt et al., 2005). Selective inhibitors were used to investigate processes involved in 

glycine transport in synaptosomes. In addition to glycine type 1 transporters, glycine 

transport was also mediated by System A transporters in these preparations, and, 
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interestingly, System A transporters were inhibited by clozapine (Javitt et al., 2005). 

Inhibition of glycine transporters would raise synaptic glycine, resulting in upregulated 

NMDA receptor-mediated transmission, provided that glycine binding sites were 

previously unsaturated. Thus clozapine may mediate enhanced NMDA receptor-

mediated transmission via inhibition of System A-type glycine transporters (Javitt et al., 

2005).  

Interestingly, clozapine did facilitate long-term potentiation in the layer II-V pathway in 

rat prefrontal cortex slices (Gemperle et al., 2003). In line with a role in the induction of 

synaptic plasticity, clozapine also potentiated NMDA receptor-mediated currents in 

most pyramidal cells in this region (Gemperle et al., 2003).  

In considering the mechanisms through which clozapine may enhance NMDA receptor-

mediated currents – and contrary to ideas proposed from the studies mentioned above  

various binding studies have suggested that clozapine has a direct effect on the NMDA 

receptor complex (Lidsky et al., 1993;Lidsky et al., 1997;Banerjee et al., 1995;McCoy 

and Richfield, 1996;Shim et al., 1999). These effects in vitro, in intact brain tissue may 

have been masked by larger effects on pre- or post-synaptic modulation of monoamine 

signalling. This may explain the discrepancies between results in this research area.  

Interestingly, paired-pulse experiments in cultured hippocampal neurons suggested that 

clozapine may also modulate synaptic transmission presynaptically, possibly via 

inhibition of voltage-gated Ca
2+

 and Na
+
 channels (Ohno-Shosaku et al., 2011). 

An incidental and unexpected finding related to the extent to which clozapine 

accumulated in slices in vitro (Gemperle et al., 2003). Following in vitro experiments 

the concentration of clozapine in slices was determined after 2h perfusion using high-

pressure liquid chromatography and mass-spectrometric detection (Gemperle et al., 

2003). Unexpectedly, there was an 18-fold accumulation of clozapine in the slice 

compared to the perfusing medium, a level of accumulation similar to that which has 

been reported in vivo in rodents where the concentration of clozapine in brain is 16-24 

times greater than that in plasma (Baldessarini et al., 1993;Weigmann et al., 1999). 
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1.4.2.3 Efficacy of clozapine in NMDA hypofunction models of psychosis 

In addition to electrophysiological studies examining the effect of clozapine on 

excitatory synaptic transmission in vitro, there is evidence that clozapine may potentiate 

NMDA receptor signalling in NMDA hypofunction models of psychosis. Indeed it is 

possible that clozapine’s actions on NMDA receptors may be important in the 

mechanisms that distinguish it from other atypical and typical antipsychotics.  

Cognitive impairments, an important aspect of schizophrenia, occur in regular PCP 

abusers (Cosgrove and Newell, 1991). Furthermore, cognitive deficits as assessed in the 

delayed activation T-maze and object retrieval with a detour task also occur in animals 

under repeated exposure to PCP (Jentsch et al., 1997a;Jentsch et al., 1997b). 

Interestingly, such cognitive impairments induced by PCP could be mitigated by 

clozapine (Jentsch et al., 1997a). 

Clozapine, and the selective 5-HT2A  receptor antagonist M100907 (Kehne et al., 1996), 

but not haloperidol or the D2 receptor antagonist raclopride, prevent acute PCP-induced 

blockade of NMDA responses in pyramidal neurons in slices from rat medial prefrontal 

cortex (Wang and Liang, 1998). Furthermore, in rats repeated PCP injections induced a 

hypersensitive response to NMDA in medial prefrontal cortex neurons, and treatment 

with clozapine, but not haloperidol, prevented this hyperactivity of NMDA receptors 

(Arvanov and Wang, 1999).  

Clozapine, but not haloperidol, also reduces psychosis induced by the NMDA receptor 

antagonist ketamine  (Lahti et al., 1995;Malhotra et al., 1997). Similarly, in monkeys 

clozapine improves cognitive deficits associated with subchronic PCP administration. 

Using ensemble recording in freely moving rats, NMDA receptor antagonism disrupted 

the rate and pattern of neuronal activity in prefrontal cortex to give a state of cortical 

hyperactivity (Jackson et al., 2004).  The increased firing rate in most neurons 

correlated with behavioural impairments (Jackson et al., 2004).  

Similar in vivo ensemble unit recording in awake rats was used to investigate the effect 

of clozapine and haloperidol on spontaneous neuronal activity in the normal baseline 

state, and in the disrupted state following challenge with the NMDA receptor antagonist 

MK801 (Homayoun and Moghaddam, 2007). Clozapine, but not haloperidol, had a 

state-dependent effect on the spontaneous firing rate of prefrontal cortex cells which 

depended on their baseline activity. That is, clozapine increased the firing rate of 
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neurons with low baseline activity and reduced the firing rate of neurons with high 

baseline activity. Clozapine also reversed the disruptive cortical hyperactivity resulting 

from NMDA receptor antagonism, and this reversal was correlated with reduced 

behavioural impairments (Homayoun and Moghaddam, 2007). This is similar to the 

effect in other studies whereby clozapine reduced behavioural impairments associated 

with NMDA receptor antagonists in humans (Duncan et al., 1998;Malhotra et al., 1997) 

and animals (Bakshi et al., 1994).  

In line with the possible importance of inhibition of system A-type glycine transporters 

in clozapine’s enhancement of NMDA receptor-mediated transmission (see section 

1.4.2.2 above), positive modulation of the glycine modulatory site on NMDA receptors, 

either directly with D-serine or by blocking glycine transporter-1, had a similar effect to 

that of clozapine but not haloperidol in rescuing MK-801 induced impairments in social 

recognition (Shimazaki et al., 2010).  

1.4.3 Pathological EEG abnormalities associated with antipsychotics 

In line with the idea that treatments for psychosis can raise excitability (1.4.2.2 above), 

it is now well established that those antipsychotic drugs most effective in treating 

psychosis have the potential to induce paroxysmal EEG changes and seizures. Indeed, 

clozapine, a particularly effective antipsychotic (Kane et al., 1988), was associated with 

the highest risk of generalised EEG abnormality compared to other antipsychotics 

(Centorrino et al., 2002). In terms of modern atypical drugs, after clozapine the risk of 

EEG abnormality is greatest with olanzapine and risperidone (Centorrino et al., 2002).   

In one study EEG abnormalities were observed in 53% of patients treated with 

clozapine, and the absence or presence of EEG abnormalities correlated with the plasma 

clozapine concentration (Haring et al., 1994). While other studies reported an incidence 

of clozapine-associated EEG alterations between 16% (Naber et al., 1989)  and 75% 

(Koukkou et al., 1979), Haring et al. (1994) was considered a good predictor of the true 

extent of clozapine-associated EEG alterations because of the absence of potentially 

confounding psychotropic or anticholinergic co-medications, the prospective design, 

and analysis of the effect of the drug on the premedication baseline EEG. Controversies 

over the dose-dependence of clozapine-related EEG abnormalities are probably 

explained by the variability in the clozapine plasma concentration for a given dose 

(Haring et al., 1990).  
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Clozapine-related abnormal EEG activity included slowing of activity related to 

sleepiness, abnormal theta, abnormal delta, and importantly, intermittent sharp 

transients, spike discharges, and spike-wave paroxysms (e.g. Malow et al., 1994;Welch 

et al., 1994;Haring et al., 1994;Freudenreich et al., 1997;Centorrino et al., 2002). Theta 

and delta abnormalities included generalised or frontal symmetrical theta slowing, delta 

slowing, and asymmetrical focal theta or delta (e.g. Haring et al., 1994;Centorrino et al., 

2002). Qualitative identification of EEG abnormalities would be typically be made by 

qualified individuals, e.g. an experienced electroencephalographer (Haring et al., 1994) 

or board-certified neurologists (Centorrino et al., 2002). 

In addition to the above EEG abnormalities and seizure-like transient events, clozapine 

has also been reported to generate more overt epileptiform events. The incidence of full-

seizures following clozapine treatment is likely dose dependent and may be 1.3-2.8% 

(Devinsky et al., 1991;Pacia and Devinsky, 1994). It has been estimated that after 3.8 

years of clozapine treatment the cumulative risk of seizures rises to 10% (Devinsky et 

al., 1991). The more frequent paroxysmal activity associated with clozapine versus 

haloperidol (Koukkou et al., 1979) may explain the higher incidence of seizures in 

patients treated with clozapine compared to those treated with typical neuroleptics 

(Lindstrom, 1988;Naber et al., 1989;Haller and Binder, 1990). 

Similar to the findings in human studies, in rats intraperitoneal clozapine induced 

paroxysmal slow waves and spike activity in amygdala, hippocampus and cortex in vivo 

(Denney and Stevens, 1995). This clozapine treatment also produced dose-dependent 

myoclonic jerks when rats were partially restrained.  

Olanzapine is a thienobenzodiazepine derivative with structural and pharmacological 

similarity to clozapine, and, like clozapine, it has a concentration-dependent association 

with EEG abnormalities (Amann et al., 2003;Degner et al., 2011). The risk of EEG 

abnormalities associated with olanzapine is fairly similar across studies; for example 

35% (Amann et al., 2003), 38.5% (Centorrino et al., 2002), or 40.9% (Degner et al., 

2011) of patients treated with olanzapine were affected. Olanzapine may also induce 

myoclonus (Camacho et al., 2005;Deshauer et al., 2000), even when only prescribed at a 

low dose, albeit chronically (Block Rosen et al., 2012). Reports of seizures associated 

with olanzapine, although present in the literature (e.g. Wyderski et al., 1999;Woolley 

and Smith, 2001;Bonelli, 2003), are not as common as those associated with clozapine 

(Komossa et al., 2010).  
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1.5 Possible mechanisms underlying clozapine-induced epileptiform events 

Possible mechanisms underlying clozapine-induced epileptiform activity include VFO, 

which are associated with epilepsy (see section 1.3 and 1.5.1.3) and occur during 

transient epileptiform activity in humans (e.g. Jacobs et al., 2008), GABAA receptor-

mediated transmission, which may be suppressed by clozapine (see section 1.4.2.1),  

and NMDA receptor-mediated transmission which may also be modulated by clozapine 

(see section 1.4.2.2).  

1.5.1 Very fast oscillations (VFO) 

VFO, which can also be termed ‘ripples’ due to their fast and transient nature, may be 

relevant to clozapine’s action of raising excitability in brain tissue (chapter 4). It is 

becoming increasingly apparent that they form a fundamental component of human 

cortical epileptiform events (Roopun et al., 2010), particularly those manifest as 

spontaneous, transient discharges. An understanding of VFO may provide insights into 

the electrophysiology underlying both healthy physiological processes and pathological 

activity such as seizures. To date little is known about how VFO may be generated at 

the level of neurons and networks, how they may be pharmacologically manipulated, 

and what their role is in normal and pathological brain function. Here literature 

describing physiological and pathological roles for VFO and mechanisms underlying 

each are considered. 

1.5.1.1 Physiological role of VFO 

Sharp waves, large negative field excitatory postsynaptic potentials (EPSPs) lasting tens 

of milliseconds, were first observed in EEG recordings from rat hippocampus in vivo. 

They were observed during slow-wave (non-dreaming) sleep, eating, drinking and 

awake immobility (Buzsaki, 1986). Sharp waves were not observed during locomotion, 

which results in theta and gamma frequency oscillations. It was later observed that low-

amplitude VFO, or ripples, were superimposed on the sharp waves (Buzsaki et al., 

1992). 

Further to the finding that sharp wave/ripples occurred in slow-wave sleep (Buzsaki et 

al., 1992), Wilson and McNaughton (1994) performed a study which suggests a possible 

physiological role for ripples in memory consolidation. Simultaneous multi-array 

recordings were taken from multiple rat hippocampal place cells during spatial 

behavioural tasks. The recordings were also taken during slow-wave sleep both before 
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and after the behavioural tasks. Correlations of activity occurred in which cells which 

fired together when the animal was present in a specific location were selectively more 

likely to fire together in sleep following than in sleep preceding the tasks. Oscillation 

recordings from multiple unit recording sites in the hippocampus confirmed that 

intermittent sharp wave/ripple activity occurred during sleep. The correlations were 

greater when ripples were present compared to the periods in between when ripples 

were absent (Wilson and McNaughton, 1994). Interestingly, sharp/wave ripples are 

initiated in CA3, and the output layers of entorhinal cortex show neuronal behaviour 

that correlates with sharp waves in CA1 (Chrobak and Buzsaki, 1994). As such the 

induced correlations during sharp waves (Wilson and McNaughton, 1994) may result 

from adaptations in the hippocampus which are then transmitted to the output layers of 

entorhinal cortex. The sharp waves in hippocampus and entorhinal cortex have a strong 

depolarising effect on postsynaptic targets in neocortex that may serve to transfer 

memory information from hippocampus to neocortex. 

This demonstration, of replay of information obtained during active behaviour in sleep, 

is consistent with theories of memory consolidation. It would fit into a scheme in which 

there is an important role for synaptic plasticity in the hippocampus in the preliminary 

storage of event memories (e.g.Bliss and Collingridge, 1993). Encoded neural activation 

patterns associated with previous active behaviour are then reactivated during slow-

wave sleep in a memory consolidation process in which information stored in the 

hippocampus is transferred to neocortex. 

In addition to its role in memory consolidation in hippocampus, there is also evidence 

that VFO has a role in sensory perception when generated in neocortex. A brisk induced 

twitch of the whiskers of an anaethetised rat evokes a response in sensory neocortex 

upon which VFO are superimposed (Barth, 2003). The VFO are generated in cortex, 

triggered by inputs from the thalamus (Staba et al., 2003), and organised in cortex 

spatially according to intracortical pathways (Barth, 2003;Staba et al., 2005). 

Interestingly, multiunit somatosensory neural responses in layer IV have a  1:1 

correspondence to mechanical whisker stimulations at rates up to 320Hz (Ewert et al., 

2008), suggesting a role for VFO in encoding in this case.  

VFO components are present in somatosensory evoked responses in piglets (Ikeda et al., 

2002) and humans (Curio, 2000;Curio et al., 1994). In piglets, it has been proposed that 

the response may be initiated by thalamocortical axonal terminals (Ikeda et al., 

2002;Ikeda et al., 2005) and cortical somata and dendrites (Okada et al., 2005). 
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Auditory stimuli, particularly when it is unexpected, can also evoke VFO in the anterior 

temporal cortex of awake human patients (Edwards et al., 2005). 

1.5.1.2 Mechanisms underlying physiological VFO 

VFO occur in telencephalic structures, such as hippocampus, entorhinal cortex and 

neocortex. Spontaneous VFO can occur in physiological conditions in vivo, for example 

superimposed on physiological sharp waves in hippocampus and deep entorhinal cortex 

(Buzsaki et al., 1992;Chrobak and Buzsaki, 1996;Ylinen et al., 1995b). VFO can also be 

superimposed on responses in the cortex evoked by sensory stimulation of a 

somatosensory (Jones and Barth, 1999;Jones et al., 2000;Baker et al., 2003;Curio et al., 

1994;Okada et al., 2005) or auditory modality (Lakatos et al., 2005).  

VFO can also be superimposed on spontaneous or evoked sharp waves in vitro (Maier 

et al., 2002;Maier et al., 2003;Nimmrich et al., 2005). Interestingly, these authors 

showed that sharp wave /ripples could be readily observed in mouse hippocampal slices 

in vitro (Maier et al., 2002;Maier et al., 2003;Nimmrich et al., 2005). During these 

sharp-wave ripples in vitro, unlike suggestions from in vivo work, many pyramidal cells 

are hyperpolarized (Maier et al., 2002;Behrens et al., 2007a). Unlike in mouse slices, 

sharp wave/ripples do not normally occur in unstimulated rat hippocampal slices in 

vitro, in which the sharp wave component is absent (Draguhn et al., 1998). It is not 

known why this discrepancy occurs, but it has been suggested that more circuitry may 

be preserved in mouse slices (Insausti, 1993) or that the mouse slice preparation is more 

excitable. 

VFO can be superimposed on neuronal population responses. For example, in vivo, 

VFO of approximately 200Hz are superimposed on physiological sharp waves in the 

hippocampus (Buzsaki et al., 1992;Ylinen et al., 1995a;Klausberger et al., 2003). In 

investigating the cellular mechanisms and function of such oscillations, it is important 

to consider the relationship between the slower responses, which may result from 

synchronized synaptic currents, and the superimposed VFO which appear to be far too 

fast to be supported by conventional chemical synaptic processes. 

In vitro approaches are useful in investigating mechanisms underlying oscillatory 

activity. Following the discovery of sharp wave/ripples in vivo (Buzsaki et al., 1992), 

spontaneous VFO were later observed without sharp waves in a seminal study in 

hippocampal slices in vitro (Draguhn et al., 1998). The VFO were confined to the 

pyramidal cell layer, and there were local patches of differing levels of VFO activity at 
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different longitudinal positions along the pyramidal cell layer (Draguhn et al., 1998). 

Coherent VFO activity was confined to 120µm regions in vitro (Draguhn et al., 1998), 

notably smaller than the region of coherence in vivo, ~5mm (Chrobak and Buzsaki, 

1996). 

The VFO persisted following blockade of GABAA receptors, AMPA receptors and 

NMDA receptors together. Furthermore, these VFO persisted when nominally calcium-

free artificial cerebrospinal fluid was used to block calcium-dependent synaptic 

transmission. Thus, these VFO did not require conventional chemical synaptic 

neurotransmission at the synapse. Interestingly, in addition to blocking synaptic 

transmission, low Ca
2+

 medium enhances VFO (Draguhn et al., 1998). Three different 

gap-junction blockers, carbenoxolone, octanol and halothane, each reversibly 

suppressed these VFO, suggesting that electrotonic coupling at gap junctions is 

necessary for the generation of these VFO. 

These VFO occurred more often when neuronal excitability was increased by increasing 

K
+
, application of carbachol, application of 4-aminopyridine, or exclusion of calcium 

from artificial cerebrospinal fluid (Draguhn et al., 1998). NH4Cl, increases intracellular 

alkalinisation (Thomas, 1984), which elevates gap junction coupling (Spray et al., 

1981). Interestingly, application of NH4Cl increased the frequency and duration of these 

VFO (Draguhn et al., 1998). 

Overall these data provided strong evidence that spontaneous VFO in the hippocampus 

in vitro results from electrotonic coupling at gap junctions (Draguhn et al., 1998). 

Network modelling predicts that such coupling would occur between pyramidal cell 

axonal branches (Traub et al., 2012). 

However, although some studies supported the importance of gap junctions in the 

mechanisms underlying VFO in telencephalic structures, other studies suggested 

alternative mechanisms. When ripples were discovered it was observed that 

interneurons could discharge at the frequency of the (field) ripple, whereas pyramidal 

cell somata did not (Buzsaki et al., 1992).  

Further observations were then made about the firing of identified interneurons. A 

histologically verified basket cell discharged at the frequency of ripples (Ylinen et al., 

1995a). Basket cells and bistratified cells discharged in phase with ripples, axoaxonic 

interneurons fired immediately prior to and at the onset of a ripple, but then were silent, 

and cholecystokinin basket cells and cholecystokinin dendrite-targeting cells only 
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discharged infrequently (Klausberger et al., 2003;Klausberger et al., 2004;Klausberger 

et al., 2005). Furthermore, phasic IPSPs, which occurred at the frequency of ripples, 

were observed in pyramidal cells (Ylinen et al., 1995a). Experimental alterations of the 

membrane potential and intracellular Cl
-
 were in line with the synaptic potentials being 

mediated by GABAA receptors (Ylinen et al., 1995a).  

Taken together, the data above have led to the suggestion that networks of fast-spiking 

interneurons generate ripple oscillations, but other evidence suggests that alternative 

explanations should be considered. Firstly, VFO persist following blockage of GABAA 

receptors in vitro and in vivo (Maier et al., 2003;Jones and Barth, 2002). Indeed, VFO 

persist following complete blockage of chemical synaptic transmission, and in these 

conditions principal spikelets occur at the frequency of VFO (Draguhn et al., 1998). 

VFO induced by ejection of a concentrated K
+
 solution in the dentate gyrus also occurs 

in Ca
2+

-free artificial cerebrospinal fluid (Towers et al., 2002).  

Secondly, the activity of the somata of pyramidal cells cannot be generalised to the 

activity of the whole of the pyramidal cell. Thus although there is only infrequent firing 

of the somata of pyramidal cells, this does not exclude the possibility that pyramidal cell 

axons are involved in the generation of ripples. Indeed, there is evidence of antidromic 

spikes during VFO (Draguhn et al., 1998;Papatheodoropoulos, 2008). Furthermore, the 

fact that VFO may be manifest as recurring population spikes suggests co-ordinated 

activity of pyramidal cells rather than interneurons. In support of this, intracellular 

recordings from a pyramidal cell show activity that corresponded to the field ripples 

(Draguhn et al., 1998). There were two types of depolarisation in the pyramidal cell that 

corresponded to the population spikes: action potentials that were inflected or had an 

initial shoulder or notch associated with being antidromic, or spikelets. 

Thirdly, intracellular recordings from a putative pyramidal cell show no evidence of 

phasic IPSPs in sharp wave/ripples induced by application of KCl in mouse 

hippocampal slices when GABAA receptors are blocked (Nimmrich et al., 2005). 

Consistent with previous findings (Draguhn et al., 1998), ripples persist following 

additional blockade of ionotropic glutamate receptors, but do not occur in the presence 

of the gap junction blocker octanol (Nimmrich et al., 2005). 

Fourthly, VFO superimposed on rat somatosensory cortex potentials evoked by whisker 

stimulation persist and actually occur more following topical application of the GABAA 

receptor antagonist bicuculline (Jones and Barth, 2002).  
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Interestingly, data which have led to the idea that interneurons generate ripples (Buzsaki 

et al., 1992;Ylinen et al., 1995a;Klausberger et al., 2003;Klausberger et al., 2004), can 

be re-interpreted in a model whereby pyramidal cell axons generate VFO (Traub and 

Bibbig, 2000). The transient nature of the oscillation can be explained in that axons and 

cells must reach a sufficient level of depolarisation for the ripple to occur (Traub and 

Bibbig, 2000).  

Cerebellar VFO in vitro are also dependent on gap junctions as they are associated with 

spikelets, are suppressed by gap junction blockers, and survive in conditions in which 

synaptic transmission is blocked by use of low Ca
2+

 artificial cerebrospinal fluid. 

Overall, different mechanisms underlying VFO may be possible according to, for 

example, the brain region, the experimental conditions and co-existence of other 

oscillatory activity. 

1.5.1.3 Pathological role of VFO in seizures and epilepsy 

VFO can also occur in connection with epileptogenesis in vivo. VFO can occur 

immediately prior to an interictal burst or seizure, and/or superimposed on bursts within 

a seizure (Akiyama et al., 2005;Akiyama et al., 2006;Asano et al., 2005;Fisher et al., 

1992;Grenier et al., 2003;Jirsch et al., 2006;Kobayashi et al., 2004;Traub et al., 

2005a;Urrestarazu et al., 2006;Worrell et al., 2004). For example, in anaesthetised cats 

in which seizures occurred spontaneously or were electrically induced, VFO were 

prominent during seizure onset, and it was thought that although VFO occur in the 

normal healthy network state, they could have a role in starting seizures when their 

amplitude reaches a particular threshold (Grenier et al., 2003).  

Furthermore, VFO can occur without seizures or bursts in epileptogenic brain, often at 

frequencies greater than 250 or 300Hz, termed ‘fast ripples’. Fast ripples can be 

confined to volumes of approximately 1mm
3
 of tissue, and may be important in seizure 

pathology (Bragin et al., 1995;Bragin et al., 1999a;Bragin et al., 1999b;Bragin et al., 

2002b;Bragin et al., 2002a;Bragin et al., 2003;Bragin et al., 2005;Staba et al., 

2002;Staba et al., 2004). 

For example, Staba et al. (2002) performed a study which supports the idea that fast 

ripples may be pathological events associated with seizure genesis. In patients with 

mesial temporal lobe epilepsy, quantitative analysis of EEG recordings in the 

hippocampus and entorhinal cortex during non-rapid eye movement sleep showed two 
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distinct groups of events corresponding to fast ripples and slow VFO. The ratio of the 

occurrence of fast ripples to slow VFO was significantly greater in brain regions 

ipsilateral to seizure onset compared to that in brain regions contralateral to seizure 

onset. This ratio was also higher in ipsilateral regions which had hippocampal atrophy 

compared to regions contralateral to seizure commencement and hippocampal atrophy.  

Furthermore, during sleep and wakefulness in patients with medial temporal lobe 

epilepsy, the occurrence of slow VFO in epileptogenic and nonepileptogenic temporal 

lobe was comparable, but fast VFO were significantly associated with epileptogenic 

regions (Staba et al., 2004). In support of this idea, surgical removal of brain regions 

associated with seizure-related fast ripples in children with pharmaco-resistant 

neocortical epilepsy appeared to prevent further seizures (Ochi et al., 2007). 

Similar results have been obtained in focal epileptic patients using implanted EEG 

macroelectrodes rather than microelectrodes (Jirsch et al., 2006). Fast ripples were 

observed when focal seizures started in the mesial temporal lobe (Jirsch et al., 2006). 

However, there was also evidence that slow VFO levels were elevated compared to the 

background level in seizures in ¾ mesial temporal patients (Jirsch et al., 2006). 

Microelectrode recordings from patients with mesial temporal lobe epilepsy, suggest 

that the cellular networks involved in the generation of fast ripples may be more 

localised than those involved in slow VFO (Bragin et al., 2002b). 

In patients with intractable focal epilepsy, VFOs occurred more frequently and for a 

longer duration inside the seizure onset zone compared to outside it, and the rate of 

VFOs represented a more accurate method of identifying the seizure onset zone than the 

rate of spikes (Jacobs et al., 2008). Interestingly, fast ripples may be a good marker of 

the generation of focal epileptic activity as a result of their restricted electrical field 

compared to spikes or sharp waves (Rodin, 2005).  

Correspondingly, VFO can occur in connection with epileptogenesis in vitro, as it does 

in vivo. VFO can occur immediately prior to an interictal burst or seizure (Pais et al., 

2003;Khosravani et al., 2005), superimposed on epileptiform bursts (Schwartzkroin and 

Prince, 1977;Wong and Traub, 1983), or in between bursts (Traub et al., 2005a). 

Application of kainate together with antagonists of GABAA and GABAB receptors in 

the rat auditory cortex in vitro, results in epileptiform bursts which contain VFO (Traub 

et al., 2005a). Electrical coupling between axons is important in determining 

epileptogenic activity in this case (Traub et al., 2005a). 
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While the mechanism of generation of physiological sharp wave/ripples has yet to be 

definitively established, the mechanism of VFO generation in epileptic tissue is perhaps 

even less clear. Indeed it still remains unclear whether the structure of VFO associated 

with interictal discharges is the same as that of physiological sharp waves. In terms of 

the mechanism, in vivo recordings in the human hippocampus demonstrate an 

association between field VFO and interneuron activity (Le Van et al., 2008). However, 

the gap junction blocker halothane suppresses VFO that occur with seizures (Grenier et 

al., 2003). Furthermore, similar to physiological VFO, in vitro data combined with 

modelling suggest that principal cell axons coupled by gap junctions have the major role 

in generating epileptiform bursts (Traub et al., 2005b).  

In experiments in which kainate had been administered intrahippocampally to induce 

seizures in rats, inhibition appeared to be retained in vitro in regions of slices generating 

fast ripples,  but antagonism of GABAA receptors increased the size of the region 

generating fast ripples (Bragin et al., 2002a).  

Various studies using both in vivo and in vitro models of epilepsy demonstrate that 

carbenoxolone and other gap junction blocking agents suppress seizure discharges 

(Gareri et al., 2004;Gigout et al., 2006;He et al., 2009;Jahromi et al., 2002;Kohling et 

al., 2001;Nilsen et al., 2006;Perez-Velazquez et al., 1994;Ross et al., 2000;Szente et al., 

2002). In the in vivo studies, drug application was either through local application to the 

brain, intraventricular or systemic routes. Seizure discharges induced by 4-

aminopyridine are also lower in connexin36 knockout mice compared to littermate 

controls (Maier et al., 2002). However, the mechanism by which this occurs is unclear 

as the involvement of excessive GABA release in seizures induced by 4-aminopyridine 

raises the possibility that interneuron activity is affected in the knockout phenotype. In 

general, blockade of gap junctions only partially rather than fully suppressed 

epileptiform activity, but the effect of halothane on spontaneous seizures in the cat in 

vivo was close to complete abolition (Grenier et al., 2001;Grenier et al., 2003). 

In contrast, in a model of epilepsy where the extracellular concentration of K
+
 is 

modulated, blockade of ionotropic glutamate receptors abolished fast ripples in rat 

hippocampal slices (Dzhala and Staley, 2004). In this model it was thought that 

synchronous bursts in pyramidal cells and similar intrinsic firing patterns among local 

neurons were required for fast ripples, and that this synchronous activity depended on 

glutamatergic synaptic transmission. With regard to the high extracellular K
+
 used in 

this study (Dzhala and Staley, 2004), there is good evidence for a link between 
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disrupted regulation of extracellular K
+ 

and epileptogenesis in human epilepsies and 

animal models (e.g. Frohlich et al., 2008). 

Data from a lithium-pilocarpine animal model of epilepsy suggest another possible 

mechanism still, that ripples may reflect a pathological desynchronisation of normal 

ripple activity in the CA3 region of the hippocampus (Foffani et al., 2007). In this 

model lithium-pilocarpine is administered to rats to induce status epilepticus. A 

perfusion medium which increases excitability induced sharp wave/ripples in CA3 

slices from normal rats; fast ripples were also induced in CA3 slices from epileptic rats. 

Fast ripples were associated with unreliable cell firing resulting from synaptically 

driven fluctuations in membrane potential. Reducing the fluctuations in membrane 

potential rescued spike-timing reliability and restored normal ripples in epileptic 

hippocampus. Conversely, modulation of the delayed rectifier potassium current to 

reduce spike timing reliability in normal hippocampus resulted in desynchronisation of 

ripples. Thus it was concluded that impairments in spike-timing reliability are important 

in the mechanism underlying fast ripples in this model. 

As mentioned above, a recent study, using human epileptic tissue rather than animal 

models, cast light on the mechanism of VFO generation in epilepsy (Roopun et al., 

2010). In vitro, spontaneous VFO associated with interictal discharges occur in human 

tissue which had been surgically removed from epileptic neocortex. Interestingly, 

intracellular recordings reveal VFO in compound EPSPs in fast spiking interneurons 

with a delayed phase compared to the field VFO. Furthermore, there was a weak 

recruitment of somatic pyramidal cell and interneuron spiking, and VFO power was not 

related to either synaptic excitation or inhibition of principal cells. VFO persist 

following blockade of GABAA receptors but is suppressed by the gap junction blocker 

carbenoxolone. Overall, the observations of Roopun et al. (2010) support the idea that 

VFO in epileptic cortex is generated by activity in the pyramidal cell axonal plexus 

rather than by interneurons.  

1.5.2 The role of GABAA receptors in seizure-like activity 

In light of the suppression of GABAA receptor-mediated inhibition by clozapine 

(Michel and Trudeau, 2000;Ohno-Shosaku et al., 2011), and clozapine’s ability to cause 

epileptiform activity, it is interesting to consider the role of GABAA receptors in 

seizure-like activity. 



31 

Early studies showed that blocking GABAA receptor-mediated inhibition induces 

epileptiform activity in animals in vitro (Schwartzkroin and Prince, 1978;Schwartzkroin 

and Prince, 1980) and in vivo (Matsumoto and Marsan, 1964;Prince, 1968;Dichter and 

Spencer, 1969;Ayala et al., 1973). The feline generalised penicillin epilepsy model, in 

which penicillin, a weak GABAA antagonist, induces generalised spike-wave 

discharges, became well-established in epilepsy research (e.g. Avoli and Gloor, 

1982b;Avoli and Gloor, 1982a). 

Indeed, application of various GABAA receptor antagonists, including bicuculline, 

picrotoxin or penicillin to isolated hippocampal or neocortical brain slice preparations in 

vitro has been a widely used approach in epilepsy research. Such approaches 

demonstrated that GABAA receptor function is important in limiting neuronal network 

synchrony and controlling transmission in polysynaptic pathways (Miles and Wong, 

1983;Miles and Wong, 1987). 

Complex roles for GABAergic neurotransmission in epilepsy are emerging with the 

proposal that GABAergic neurotransmission may contribute to epileptiform synchrony 

(Avoli et al., 1993;Avoli et al., 1996a;Avoli et al., 1996b;Avoli et al., 1996c;de Curtis 

and Gnatkovsky, 2009). Another example of the complex relationship between GABAA 

receptors and epilepsy is demonstrated by the finding that inhibition may actually be 

strengthened in the dentate gyrus in the kindling model of temporal lobe epilepsy (Otis 

et al., 1994).  

Nonetheless, a role for the partial inhibition of GABAA receptors continues to be 

highlighted in the generation of epileptiform activity. While full blockade of GABAA 

receptors in vitro induces interictal activity but not prolonged ictal discharges, partial 

reduction of GABAergic inhibition can generate full seizure-like activity. For example, 

partial disinhibition conferred by transient arterial application of the GABAA receptor 

antagonist bicuculline to the guinea pig isolated brain preparation induces seizures in 

the entorhinal-hippocampal region (Gnatkovsky et al., 2008). In line with this, a partial 

reduction in fast GABAA receptor-mediated inhibition has been suggested to trigger 

seizures in computer models of temporal lobe seizures (Wendling et al., 2002;Labyt et 

al., 2006). 

In isolated preparations, GABAA receptor antagonism in most cases induces short-

lasting interictal spikes or prolonged afterdischarges similar to those seen after high 

frequency stimulation. Seizure-like events themselves typically require a brain 
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preparation including interconnected regions, such as the hippocampal-parahippocampal 

slice preparation (Walther et al., 1986;Jones and Lambert, 1990a;Jones and Lambert, 

1990b;Dreier and Heinemann, 1991).  

Recent work has highlighted the importance of chloride homeostasis in GABA 

signalling in temporal lobe epilepsy (e.g. Cohen et al., 2002;Huberfeld et al., 

2007;Miles et al., 2012). The level of chloride in neurons controls post-synaptic GABA 

signalling (Farrant and Kaila, 2007) and therefore altered chloride homeostasis can 

change the strength and sign of GABAergic responses.   

In slices from patients with temporal lobe epilepsy, the subiculum generated 

spontaneous interictal discharges (Cohen et al., 2002;Huberfeld et al., 2007). 

Interestingly, the reversal potentials for isolated GABA-mediated synaptic events were 

depolarised in some subicular pyramidal cells suggesting that Cl
-
 homeostasis was 

altered.  

Further evidence of altered Cl
-
 homeostasis in brain tissue from patients with temporal 

lobe epilepsy arises from in situ hybridisation and immunohistochemistry studies. 

Expression of the Na-K-2Cl cotransporter NKCCl (Delpire et al., 1994), which typically 

transports Cl
-
 into cells, seems to be increased in epileptic tissue, whereas expression of 

the K-Cl cotransporter KCC2 (Payne et al., 1996), which transports Cl
-
 out of cells, 

appears to be reduced (Huberfeld et al., 2007;Munoz et al., 2007;Palma et al., 2006). 

Interestingly, KCC2 expression appears to be selectively disrupted in those cells that 

discharged during interictal events (Huberfeld et al., 2007). Other work using slice and 

animal models of focal epilepsies has confirmed that altered Cl
-
 homeostasis may play a 

role in the generation of epileptiform activity via a reduction in the strength of 

GABAergic hyperpolarisation, or sometimes even via depolarising GABAergic 

responses (Khalilov et al., 2003;Jin et al., 2005;Pathak et al., 2007). 

1.5.3 The role of NMDA receptors in seizure-like activity 

As clozapine may agonise NMDA receptors (section 1.4.2.2), and it is conceivable that 

this is relevant to its ability to cause seizures, here the role of NMDA receptors in 

seizure-like activity is considered. 

The use of Mg
2+

 free medium induces epileptiform activity in rat hippocampus and 

entorhinal cortex, which is dependent on activity of NMDA receptors (Walther et al., 

1986;Mody et al., 1987;Jones and Lambert, 1990b). Similarly, low extracellular Mg
2+
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also induces NMDA receptor-dependent ictal activity in slices from epileptic human 

neocortex (Avoli et al., 1991). 

In another model, it has been reported that the K
+
 channel blocker 4-aminopyridine 

(4AP) can induce epileptiform activity in rat entorhinal cortex, and the ictal discharges 

but not interictal discharges or slow field potentials were abolished by antagonism of 

NMDA receptors (Avoli et al., 1996a). Incidentally, the ability of NMDA receptor 

antagonists to abolish ictal activity in hippocampal-entorhinal cortical slices has only 

been reported in slices from adult animals. Thus NMDA receptor-mediated mechanisms 

in deep entorhinal cortex may be important in ictal discharges in the adult limbic 

system.  

Further evidence of a role for NMDA receptors in epileptiform activity is that NMDA 

antagonists act as anticonvulsants in various in vivo models of epileptiform discharges. 

For example, in amygdala-kindled rats, which can be used to model seizures, NMDA 

receptor antagonists have anticonvulsant effects (Loscher and Honack, 1991). 

Furthermore, the NMDA receptor antagonist D-CPP-ene [3-(2-carboxy-piperazine-4-

yl)-1-propenyl-1-phosphonic acid] increases the threshold for electroshock-induced 

seizures in mice (Zarnowski et al., 1994). 

In line with a role for NMDA receptors in seizures, seizure-related neuronal damage 

may arise in part from NMDA receptor-mediated influx of Ca
2+

 into neurons (Meldrum 

and Garthwaite, 1990). 

1.6 Aims and objectives 

This introduction has considered neural oscillations, the pathology of schizophrenia and 

how it may relate to dysfunctional oscillatory activity, possible mechanisms underlying 

this dysfunction, and comorbidity and parallels between schizophrenia and epilepsy. 

Literature relating to the antipsychotic clozapine, its effectiveness, its mechanism of 

action and its potential to induce pathological epileptiform activity and seizures has also 

been reviewed. Finally, possible mechanisms such as VFO, and altered excitatory and 

inhibitory synaptic transmission were proposed which may be relevant to such increased 

neuronal excitability. 

From this background the aims of this thesis are as follows: 

 To present new data from patients presenting with epileptiform activity and 

seizure-like side-effects associated with clozapine therapy for serious psychiatric 
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illness in Newcastle in order to demonstrate the type of transient epileptiform 

activity the thesis attempts to model in vitro. 

 To establish whether clozapine could generate similar epileptiform activity in 

normal brain tissue rather than the clinical situation in which clozapine is 

administered to patients already showing abnormal brain activity associated with 

psychiatric illness – i.e. is the epileptiform activity seen with clozapine a direct 

effect of the drug or a consequence of compensation for this abnormal activity 

(forced normalisation). 

 To map the distribution and spatial extent of such activity in terms of its laminar 

distribution in the cortical column and its longitudinal distribution throughout 

the regions of interest to attempt to focus-in on the cell types and local circuits 

involved for further study. 

 From above, to investigate the pharmacological properties of such activity in 

relation to synaptic and non-synaptic mechanisms. 

 To investigate the activity of specific types of neurons in relation to such activity 

and to attempt to determine its cellular basis. 

 Given the reduced expression of parvalbumin in post-mortem samples from 

individuals with schizophrenia, to investigate the effect of clozapine treatment 

and associated excitability on parvalbumin immunoreactivity in normal brain 

tissue in an attempt to relate the hyperexcitability induced by clozapine to the 

drug’s antipsychotic efficacy. 
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2.1 Animal provision 

In vitro brain slice preparations were obtained from young adult male Wistar rats aged 

between 28 and 70 days and weighing approximately 150-250g. Animals were supplied 

by Charles River and housed in a pathogen-free environment in the University of 

Newcastle Comparative Biology Centre. Animals were exposed to a 12 hour light/dark 

cycle and were able to eat and drink freely. 

2.2 Anaesthesia and animal procedures 

Surgical procedures undertaken in this thesis were carried out under appropriate 

personal and project licenses, and conformed to regulations set out in the UK Animals 

(Scientific Procedures) Act, 1986. 

Rats were lightly anaesthetised in a 5 litre bell jar using the volatile anaesthetic 

isofluorane (Abbott Laboratories Ltd., Kent, UK) at a dose sufficient to prevent the 

righting reflex. Rats were then given an intramuscular injection of ketamine (dose 

~100mg/kg; Pfizer Ltd., Kent, UK) and xylazine (dose ~10mg/kg; Millpledge 

Pharmaceuticals, Retford, UK) in the gluteal region of the hind leg for deep anaesthesia 

and muscle relaxation. The absence of the tail-pinch, pedal withdrawal and corneal 

reflexes were used to establish deep anaesthesia. Once deep anaesthesia was 

established, the abdominal cavity was opened and the rib cage excised to provide access 

to the heart. After the insertion of a catheter into the left ventricle of the heart, an 

incision was made into the right atrium for intracardial perfusion with 60mls ice-cold, 

oxygenated (carbogen gas, 95% O2, 5% CO2) sucrose-containing artificial cerebrospinal 

fluid (sACSF) at a rate of approximately 0.8ml/s. The purpose of the intracardial 

perfusion was to preserve neurons, especially GABA-ergic interneurons, in a maximal 

level of healthiness (Aghajanian and Rasmussen, 1989;Kuenzi et al., 2000). The 

inclusion of sucrose instead of NaCl in sACSF has been proposed to preserve the 

vitality of neurons by the prevention of the neurotoxic entry of chloride into cells which 

would result in cell swelling and lysis (Aghajanian and Rasmussen, 1989).  

2.3 Preparation of brain slices 

An incision was made along the midline of the head and neck to expose the skull and 

rostral spinal column, and the spinal cord was severed. To access the brain, the skull 

was dissected rostrally along the sagittal suture from the exposed severed spinal 

column, and skull and dura mater were peeled away. The brain was then excised and 
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gently transferred to ice-cold oxygenated sACSF. Following coronal trimming of the 

brain to remove the cerebellum, the dorsal surface of the brain was glued promptly to 

the chuck of the Leica VT1000 vibratome (Leica Microsystems, Nussloch GmbH, 

Germany). The chuck was then fastened to the cutting chamber of the vibratome, and 

the cutting chamber was filled with ice-cold oxygenated sACSF.  

Horizontal cortical sections were sliced in the vibratome at a thickness of 450µm, which 

is sufficiently thick to permit a viable intact neuronal microcircuit capable of producing 

oscillations, but also sufficiently thin to allow adequate oxygenation of the slice. 

Immediately after each slice was taken, it was gently transferred with a fine paint brush 

to fresh ice-cold oxygenated sACSF. Brain regions were identified with reference to 

maps of horizontal sections in a rat brain atlas (Paxinos and Watson, 1998). In the atlas, 

brain regions are defined with regard to Bregma, an anatomical landmark point at the 

intersection between the sagittal and coronal suture. In terms of dorsovental position in 

the rat brain, sections containing 2º somatosensory cortex were those between 4.1 and 

6.1mm ventral from Bregma (Bregma -4.10 to -6.10mm; Paxinos and Watson, 1998); 

and sections containing the CA2 region of the hippocampus were taken from levels 

between 4.1 and 6.82mm ventral from Bregma (Bregma -4.10 to -6.82mm; Paxinos and 

Watson, 1998). Slices were trimmed down with a scalpel to produce sections containing 

2º somatosensory cortex and sometimes adjoining regions, or, in the CA2 experiments, 

sections containing hippocampus and surrounding cortex. 

2.4 Slice maintenance 

Dissected sections were placed on lens cleaning tissue in a holding chamber containing 

oxygenated ACSF, and left to equilibrate for approximately 1 hour at room temperature. 

3-4 slices were then transferred to an interface recording chamber, and remaining slices 

were left in the holding chamber for use in later experiments. In the recording chamber, 

slices were maintained on three layers of lens cleaning tissue at the interface between 

oxygenated ACSF and humidified carbogen gas (95% O2, 5% CO2). A peristaltic pump 

(Gilson S.A.S., Villera Le Bel, France) was used to circulate the ACSF through the 

chamber at a flow rate of approximately 1ml/min for continual perfusion of slices. Once 

the slices were in the recording chamber, the temperature of circulating ACSF was 

raised to approximately 34ºC using a flow heater (Grant Instruments Ltd., Cambridge, 

UK). Slices were left to equilibrate to this near-physiological temperature for 30 

minutes prior to control recordings and application of the oscillogenic agent or drug. 
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2.5 Drugs and solutions 

sACSF used in the preparation of slices consisted of: 252mM sucrose, 3mM KCl, 

1.25mM NaH2PO4, 2mM MgSO4, 2mM CaCl2, 24mM NaHCO3, and 10mM glucose. 

Normal ACSF, in which slices were maintained subsequently, lacked sucrose but 

instead contained 126mM NaCl and lowered concentrations of both MgSO4 and CaCl2. 

Thus normal ACSF consisted of: 126mM NaCl, 3mM KCl, 1.25mM NaH2PO4, 1mM 

MgSO4, 1.2mM CaCl2, 24mM NaHCO3, and 10mM glucose. The concentration of Mg
2+

 

(1mM) and Ca
2+

 (1.2mM) in normal ACSF, although lower than that traditionally used 

for cortical slice preparations (2mM Mg
2+

, 2mM Ca
2+

), was chosen to more closely 

mimic the ionic composition of cerebrospinal fluid in situ (Sanchez-Vives and 

McCormick, 2000;Yamaguchi, 1986;Zhang et al., 1990). 

Drugs were stored in dry solid form in conditions which met advice from the supplier. 

To prepare stock solutions, drugs were dissolved in distilled water, or, if insoluble in 

water, in the solvent DMSO. In those cases where drugs were dissolved in DMSO, the 

final concentration of DMSO in ACSF perfused slices was ≤ 0.2% v/v, except in the 

maximal concentration (50µM) of the concentration response experiment for 

haloperidol and olanzapine, in which case it was 0.5% v/v. Drug stock solutions were 

refrigerated (4ºC) or stored in frozen aliquots (-20ºC) according to advice from the 

supplier. The appropriate volume of drug stock solution was transferred into the bath to 

achieve the correct final drug concentration in ACSF perfused slices.  

 

Suppliers of drugs and chemicals 

Drug/chemical Supplier 

  

Calcium chloride VWR 

Carbenoxolone Sigma-Aldrich 

Clozapine Tocris 

Disodium hydrogen phosphate Sigma-Aldrich 

DMSO Sigma-Aldrich 

D-AP5 Tocris 

d-tubocurarine Sigma-Aldrich 

Gabazine Tocris 
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Glucose VWR 

Haloperidol Sigma-Aldrich 

Magnesium sulphate Sigma-Aldrich 

NBQX Tocris 

Nicotine Sigma-Aldrich 

Octanol Sigma-Aldrich 

Olanzapine Bosche Scientific 

Potassium acetate Sigma-Aldrich 

Quinine Sigma-Aldrich 

Sodium bicarbonate VWR 

Sodium chloride VWR 

Sodium dihydrogen phosphate VWR 

Sucrose Fisher Scientific 

 

2.6 Recording techniques 

2.6.1 Extracellular recording 

Micropipettes used for recording extracellular field potentials were pulled from thin 

walled borosilicate glass capillary tubes with filaments (1.2mm OD x 0.94mm ID; 

Harvard Apparatus Ltd, Kent, UK) using a P-97 Flaming/Brown type horizontal 

micropipette puller (Sutter Instruments Co., Novata, CA, USA) to give a resistance in 

the range of  approximately 2-5MΩ. Extracellular micropipettes were filled with the 

standard ACSF used in experiments.  

After slices had been left to equilibrate to 34ºC in the recording chamber, extracellular 

electrodes were positioned in layer V of 2º somatosensory cortex. Accurate placement 

of electrodes was achieved by visualising the slice under a microscope, and Narishige 

manipulators permitted fine control of electrode positions. Control recordings were 

taken prior to application of the oscillogenic agent to determine whether subsequent 

oscillations were a direct result of the oscillogenic agent or related to spontaneous 

activity. In most experiments clozapine was chosen as the oscillogenic agent, but in 

certain experiments haloperidol, olanzapine, gabazine (see section 4.3.8) or d-

tubocurarine (see section 4.3.9) were appropriate alternatives. Oscillogenic agents were 

introduced into the bath and reached slices via circulating ACSF. After application of 

the oscillogenic agent, slices were typically left for 1 hour before probing for activity by 
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adjusting electrode positions to find patches of VFO. Optimal VFO usually took 1-2.5 

hours, but occasionally up to 4 hours, to develop. Following discovery of an optimal 

patch of VFO, oscillatory activity could be studied in various ways.  Laminar and 

longitudinal profiles, pharmacological experiments, intracellular recordings, and multi-

array recordings of units and local field potentials (LFPs) were possible. In 

pharmacological experiments, electrodes remained stationary for the remainder of the 

experiment after their optimal position was established. Pharmacological agents were 

bath applied and recordings used to assess their effect were taken typically after the 

agent had been applied for 1 hour. In experiments where the pharmacological agent had 

an effect on oscillatory activity, washout experiments were sometimes performed. In 

these experiments, the bath of circulating ACSF was replaced with a bath of comparable 

ACSF minus the pharmacological agent in question, and activity was left to recover. 

2.6.2 Multichannel array recording 

In multi-electrode array experiments, once oscillatory activity had developed its 

presence was first verified with the standard extracellular glass microelectrode before 

use of the electrode array. Silicon electrode grids (Utah arrays purchased from 

Cyberkinetics Inc., USA) were used for multi-electrode recordings of LFPs and units. 

The grids were square, 10x10 electrode arrays, with a distance of 0.4mm between 

electrode tips, and electrode shank length of 1.2mm. The impedances of the different 

electrodes varied from 230-370kΩ. Electrode arrays were epoxy cemented onto a 

Teflon headstage holder (Molecular Devices) and mounted onto a 3D patch manipulator 

(Scientifica, UK). To ensure that electrode tips were oriented in the same plane as the 

slice, the electrode grid was aligned from top to bottom and left to right with the upper 

surface of the recording chamber. The electrode grid was then positioned over the 

oscillating region of 2º somatosensory cortex and lowered gently onto the surface of the 

slice such that tissue penetration was less than 50µm. 

2.6.3 Intracellular sharp electrode recording 

Sharp micropipettes for intracellular recordings were pulled from standard wall 

borosilicate glass capillary tubes with filaments (1.2mm OD x 0.69 ID; Harvard 

Apparatus Ltd, Kent, UK) using the same puller to give a resistance in the range of 80-

150MΩ. Sharp micropipettes were filled with 2M potassium acetate. 

Sharp electrode intracellular recordings with a resting membrane potential less than -

50mV and action potential amplitude greater than 50mV were deemed usable. 
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Electrophysiological characterisation of neurons was achieved using a 0.3nA 

depolarising step with a duration of 300ms, as described previously (McCormick et al., 

1985). EPSPs were revealed by injection of negative DC current until the membrane 

potential of the cell was hyperpolarised to -70mV to mask concurrent IPSPs, and 

conversely, IPSPs themselves were revealed, when successful, by injection of tonic, 

positive current until the membrane potential of the cell was depolarised away from the 

chloride reversal potential to -30mV. 

2.7 Data acquisition 

2.7.1 Glass microelectrode recording 

Signals were initially amplified by pre-amplifiers in the headstages (npi electronic 

GmbH, Germany). Extracellular signals were recorded in current-clamp mode, with 

band-pass filtering between 0.001-1kHz, and given extra amplification using an npi 

EXT 10-2F amplifier (npi electronic GmbH, Germany). Intracellular signals were 

recorded in DC mode, with low-pass filtering at 2kHz using an npi BRAMP-01R bridge 

amplifier (npi electronic GmbH, Germany). Humbugs (Quest Scientific Instruments 

Inc., North Vancouver, Canada) eradicated 50Hz mains noise from the raw signals. An 

Instrutech ITC-16 A/D converter (Instrutech Corp., NY, USA) was used to digitize 

signals at 10kHz. Recordings were visualised on-line using Axograph X 1.3.1 software 

(Axon instruments) for Mac OS X, and data were stored on an Apple iMac computer 

(Apple Computer Inc.) for off-line analysis in MATLAB software (The MathWorks 

Inc.). 

2.7.2 Multi-electrode array recording 

Utah electrode arrays were connected to a 128 channel Cerebus digitiser/amplifier via 

analogue pre-amplifiers. Central (Blackrock Microsystems Inc. USA) was used for 

online collection of data from the electrode array, which was digitized at 30kHz and 

subsequently exported to Neuroexplorer (Nex Technologies, Littleton, USA). Time 

series data from each channel was band-pass filtered between 0.1-500Hz, downsampled 

to 2kHz, and saved continuously. Furthermore, timestamps for units, and the digitised 

template for every detected spike were also saved for post-hoc analysis. Spikes were 

detected on-line during data collection, with manually specified parameters using both 

threshold crossing and 2-window template matching. Such manual spike sorting is 

illustrated in Fig. 2.1. Amplitude thresholds were set at a level below any stereotyped 
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noise. Unit time stamps and time series for LFPs were exported to MATLAB (The 

MathWorks Inc.) for analysis off-line. 

2.8 Data analysis 

In terms of software, MATLAB 7.10 (The MathWorks Inc., Natick, MA, USA) was 

used for post-hoc data analysis, SigmaPlot 11.0 (Systat Software Inc., Chicago, Illinois, 

USA) was used for statistical tests, and figures were collated in Microsoft Powerpoint 

(Microsoft Corp., Redmond, USA). 

2.8.1 Analysis of oscillatory activity 

The main parameters used to quantify extracellular recordings of VFO in LFPs were the 

modal frequency of VFO, the amplitude of the modal VFO, and the area power in the 

VFO band (70-1000Hz). Power spectra, which are a means of quantifying the various 

frequency components of oscillatory activity, were used to examine these properties. 

The standard method of calculating power spectra for gamma frequency oscillations, 

whereby a fast Fourier transform (FFT) algorithm is computed on the entire trace, was 

not applicable because of the non-stationary nature of the VFO signal. Instead, power 

spectra were calculated by performing FFT analysis on segments of traces where VFO 

were present. The MATLAB ‘pwelch’ function (Welch, 1967) was used for FFT 

analysis in a script provided by J.D. Simonotto (Roopun et al., 2010b), and VFO were 

detected using an amplitude threshold. 

The FFT algorithm extracts the sinusoidal waveform components which make up the 

oscillation, and then computes the power of each of these waveforms. Data were then 

plotted as the sum of the voltage squared at a specific frequency, for a frequency range 

of 60-1000Hz. The modal frequency of VFO and the amplitude of the modal VFO 

corresponded to the X and Y value of the peak in the power spectra respectively. VFO 

band area power was quantified by summing the power values in the power spectra 

from 70-1000Hz. Pooled power spectra, which are plots of the average power spectra 

from individual experiments, were used to present data. In most cases, analysis was 

performed on three concatenated 60s traces, or a single 180-300s trace. 

In typical experiments the amplitude threshold below which VFO troughs were detected 

was manually specified. Alternative amplitude threshold criteria were used in the 

haloperidol and olanzapine concentration response experiments for a standardised 

comparison. In these experiments, the control trace, which was taken before drugs were 
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applied, was used to calculate the amplitude threshold for all subsequent traces in the 

dose response. This threshold was calculated as the mean Y value minus 5 standard 

deviations of the Y value in the control trace. 

Additional parameters were also measured to further characterise VFO. These were the 

burst frequency, the inter-burst interval (Fig. 2.2), the number of spikes per burst, the 

inter-spike interval within bursts (Fig. 2.2), the peak-to-peak spike amplitude (Fig. 2.2), 

and the proportion of time during the trace that VFO were present. ‘Bursts’ were 

defined as VFO which met amplitude threshold criteria, comprised more than two 

troughs and lasted longer than 25ms. Bursts were deemed to end when there was a 

period equal to or greater than 30ms in which there were no troughs below the 

amplitude threshold. A new burst would then be deemed to start after any subsequent 

troughs which met the burst criteria above. The burst concept was relevant in the 

following parameters: burst frequency, inter-burst interval, number of spikes per burst, 

and inter-spike interval within bursts.  

Another method of analysing oscillatory activity is the sliding-window fast Fourier 

transform algorithm (known as a ‘spectrogram’ in MATLAB). The spectrogram 

represents instantaneous power spectra of short epochs of activity, and is useful for 

showing how oscillatory activity changes over time. Oscillatory power is illustrated in a 

colour array, with time and frequency on the X- and Y-axis respectively. In this thesis, 

4s epochs of activity were used for spectrograms, and for the sliding window data were 

sampled every 50ms with an overlap of 45ms.  

Cross-correlation analysis can be used to compare the degree of synchrony between 

signals from different positions in cortex, with a sinusoidal plot in the resulting graph 

indicating synchronised signals. In this thesis, cross-correlation analysis was performed 

in Axograph software to quantify the intra-burst synchrony and phase-lag between ~30-

100ms bursts sampled from two electrodes positioned between 100 and 900µm apart 

along layer V of 2º somatosensory cortex. The synchrony value corresponded to the 

point on the Y-axis where it is intersected by the central peak, and the phase lag value 

corresponded to the X value of the first side peak. To quantify synchrony at a lower 

temporal resolution, the number of burst events which appeared coincident or 

synchronous in 60s traces were also counted by eye. 
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Cross-correlation analysis in Axograph was also used to relate intracellular recordings 

of spikes, EPSPs and IPSPs to concurrent field activity. The inter-spike interval in 

bursts of intrinsically bursting cells was analysed in MATLAB. 

2.8.2 Statistical analysis 

For VFO analysis, LFP data were band-pass filtered (60-1000Hz) in MATLAB using 

zero-phase distortion finite impulse response filters (i.e. the ‘filtfilt’ function in 

MATLAB), prior to statistical analysis. Statistical tests were performed using 

SigmaPlot 11.0 (Systat Software Inc., Chicago, Illinois, USA). It was firstly established 

whether data were normally distributed (Kolmogorov-Smirnov test) and had equal 

variance (parametric data), or not (non-parametric data). In the case of matched data 

from two samples, for example, data relating to an oscillation before and after a 

pharmacological manipulation, paired t-tests were used for the comparison when data 

were parametric, or, for non-parametric data, the Wilcoxon signed ranks test was used. 

For unmatched parametric data from two samples an unpaired t-test was used when data 

were parametric, or, for non-parametric data, the Mann-Whitney rank sum test was 

used. For data from three or more samples, for example, a concentration response 

experiment, a one-way analysis of variance (ANOVA) test was used when data were 

parametric; or, for non-parametric data, a Friedman one-way ANOVA on ranks test was 

used when data were matched, or, for unmatched data, a Kruskal-Wallis one-way 

ANOVA on ranks test was used. 

For data where the effect of two or more independent variables was investigated, for 

example, the concentration response for different antipsychotics, a two-way ANOVA 

test was used when data were parametric, or for non-parametric data, a Friedman two-

way ANOVA on ranks test was used. Following ANOVA tests, the all pairwise multiple 

comparison procedures test (Dunn’s method) was used for post-hoc comparisons. 

Parametric data were expressed as mean ± standard error of the mean (SEM), and for 

these data error bars on graphs symbolised the SEM. Non-parametric data were 

expressed in terms of the median value and corresponding interquartile range (Q1   

Q3), and for these data error bars on graphs symbolised the interquartile range. Results 

were considered significant, indicating that the difference between the groups was 

greater than would be expected by chance, when P < 0.05. 
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2.9 Immunohistochemistry 

Immunohistochemistry was performed to visualise parvalbumin-immunoreactive 

interneurons in 2º somatosensory cortex. Following any necessary extracellular 

recordings, the glass electrode was gently raised, then the slice was removed from the 

recording chamber and gently covered on both sides with pieces of nitrocellulose filter 

discs (Sartorius AG, 37075 Goettingen, Germany), which prevented the slice from 

deforming in the fixative. The resulting nitrocellulose sandwich was fixed in chilled 4% 

paraformaldehyde (PFA) dissolved in 0.1M phosphate buffer (PB). Following storage at 

4ºC in the fixative for > 48 hours, the slice was transferred to 0.1M PB, with a drop of 

0.05% Na-azide to prevent bacterial contamination, and refridgerated (4ºC) until batch 

processing. Slices were then glued to the chuck of a Leica VT1000 vibratome (Leica 

Microsystems, Nussloch GmbH, Germany) and re-sectioned at a thickness of 40µm in 

ice-cold 0.1M PB.  

Following re-sectioning, sections were washed three times in 0.1M PB over 20 minutes, 

prior to immersion in 1% H2O2 (Sigma-Aldrich) for 10 minutes to diminish the 

endogenous peroxidase activity. Sections were then rinsed three times over 15 minutes 

in 0.3% Triton PBS (made up by dissolving Triton X-100, from Sigma-Aldrich, in 0.1M 

PB). Sections were then gently agitated for two hours in blocking solution containing 

3% normal horse serum (Vector Laboratories Inc., Burlingame, CA 94010, USA) 

dissolved in 0.3% Triton PB. Sections were then incubated overnight at 4ºC in the 1º 

antibody Swant, 235 (Swant, Bellinzona, Switzerland, a monoclonal anti-parvalbumin 

antibody produced in mice), which was dissolved in the blocking solution at a 

concentration of 1:5000. 

Following overnight incubation, sections were rinsed three times in 0.1M PB over 30 

minutes.  Sections were then incubated for two hours in biotinylated anti-mouse 

antibody raised in horse, dissolved in 0.1M PB at a concentration of 1:200. The 2º 

antibody was included in the Vectastain ABC kit (Vector Laboratories Inc., 

Burlingame, CA 94010, USA). Sections were then washed three times in 0.1M PB over 

30 minutes, prior to gentle agitation for 2 hours with HRP-streptavidin, dissolved in 

0.1M PB at a concentration of 1:200. The HRP-streptavidin solution was made up by 

adding two drop of solution A and two drops of solution B, each from the Vectastain 

ABC kit, to 5mls 0.1M PB. Sections were then washed three times in 0.1M PB over 30 

minutes. The peroxidise reaction was revealed by submersing sections in a solution 

containing 3,3’-diaminobenzidine tetrahydrochloride (DAB) and H2O2, which was 
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made up by dissolving single DAB and H2O2 tablets (SigmafastTM-3,3’-

diaminobenzidine tetrahydrochloride, Sigma-Aldrich) in 5ml distilled water, in the dark, 

as per supplier advice. Sections were left in the DAB solution for 4-15 minutes, until 

successful staining, visible under the microscope as brown insoluble precipitates, 

occurred. Following successful staining, the reaction was stopped by rinsing sections 

twice in 0.1M PB over 20 minutes. Sections were then mounted onto gelatin-coated 

glass microscope slides (Waldemar Knittel, D-38114 Braunschweig, Germany) and left 

to dry overnight.  

Following drying, sections were dehydrated by immersing slides in increasing 

concentrations of ethanol (70%, 95%, and two times in 100% solutions) for 10 minutes 

at each concentration. Subsequently, sections were immersed for 10 minutes in 

succession in the nontoxic histological clearing agents histoclear I and histoclear II, 

solvents of the histomount™ mounting medium (Thermo Scientific), prior to mounting 

coverslips onto slides using histomount™. The mounting medium was then left to 

polymerise for 24 hours, after which sections were ready for inspection under the light 

microscope. Cells in the 40µm sections of 2º somatosensory cortex were deemed 

parvalbumin-immunopositive when strong brown labelling was present, and those cells 

were manually counted using a handheld click-counter (ENM, UK) in microscopic view 

fields at a magnification of X10. Photos were taken using an AxioCam HRc digital 

camera (Carl Zeiss MicroImaging GmbH, Göttingen, Germany) connected to an 

Olympus BX 60 upright microscope (Olympus Microscopy, Essex, UK), and controlled 

via AxioVision 3.1 software (Carl Zeiss MicroImaging GmbH, Göttingen, Germany) on 

a Windows PC.  
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Chapter 3 

Transient seizure-like events in a psychiatric patient treated with 

clozapine 
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3.1 Introduction 

Aims 

 To present new data from a patient presenting with seizure-like side-effects to 

clozapine therapy for serious psychiatric illness in Newcastle. 

 To briefly discuss the consequences of these findings for shaping the in vitro 

rodent model to be used in subsequent results chapters. 

3.1.1 Clozapine, paroxysmal events and seizures 

As mentioned previously, many antipsychotic drugs have the potential to induce 

paroxysmal EEG changes and seizures. Indeed, clozapine, a particularly effective 

antipsychotic (Kane et al., 1988), was associated with the highest risk of EEG 

abnormality compared to other antipsychotics (Centorrino et al., 2002).  

In one study EEG abnormalities were observed in 53% of patients treated with 

clozapine, and the absence or presence of EEG abnormalities correlated with the plasma 

clozapine concentration (Haring et al., 1994). Although reports of the incidence of 

clozapine-associated EEG alterations vary from 16% (Naber et al., 1989)  to 75% 

(Koukkou et al., 1979), Haring et al. (1994) was considered a good predictor of the true 

extent of clozapine-associated EEG alterations because of the absence of potentially 

confounding psychotropic or anticholinergic co-medications, the prospective design, 

and analysis of the effect of the drug on the premedication baseline EEG. Clozapine-

related abnormal EEG activity included slowing of activity, abnormal theta, abnormal 

delta, and importantly, intermittent sharp transients, spike discharges, and spike-wave 

paroxysms (e.g. Malow et al., 1994;Welch et al., 1994;Haring et al., 1994;Freudenreich 

et al., 1997;Centorrino et al., 2002). It is these events which will be introduced in this 

chapter and modelled in vitro in subsequent chapters. 

Beyond the EEG abnormalities described above, clozapine can also generate full 

seizures. The incidence of full-seizures following clozapine treatment is likely dose 

dependent and may be 1.3-2.8% (Devinsky et al., 1991;Pacia and Devinsky, 1994). 

However, the risk of seizures has been estimated to rise to 10% after 3.8 years of 

treatment with clozapine (Devinsky et al., 1991).  The incidence of paroxysmal activity 

and seizures in patients treated with clozapine is higher than that associated with typical 

neuroleptics. 
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Here EEG recordings were taken from a psychiatric patient treated with clozapine to 

investigate EEG abnormalities and which regions of cortex were important in 

generating such abnormalities. Seizure activity in this patient was also monitored and 

related to EEG activity.   

3.2 Methods 

All data was made available, anonymised, by Dr. Ian Schofield from the 

Neurophysiology Department of The Royal Victoria Infirmary. Basic 20-channel scalp 

EEG recordings were taken from a 32 year old male patient with psychiatric illness 

taking clozapine for 3 weeks. The patient complained of confusion and frequent (>20 

per day) myoclonic jerks involving the upper limbs. The initial study was also 

performed with videotelemetry to allow co-registry of any EEG abnormalities with 

these myoclonic jerks. Following recording, clozapine was withdrawn from therapy and 

the patient returned for additional EEG monitoring 1 month later. The patient reported 

cessation of myoclonic jerks and a general improvement in confusional state 48h after 

withdrawal of the drug. EEG was performed on a Neuvo system sampling at 256 Hz 

with data output bandpassed from 0.5 – 70 Hz before analysis. Data was exported as 

.EDF (European Data Format) and read into Matlab using the Biosig suite of 

programmes (Institute of Science and Technology, Austria). Basic 2D current source 

density analysis was performed on these EEG recordings to localise abnormal event 

onset and propagation: The ‘double banana’ montage was used to extract voltage 

differentials between each channel except Fpz. The 1
st
 order differential of the voltage 

difference pairs was plotted to estimate dipole size and location. 

3.3 Results – Transient seizure-like events in a psychiatric patient treated with 

clozapine 

Altered EEG activity was manifest as transient epileptiform spikes occurring at ca. 2 per 

hour. Events were associated with intense mental activity, predominantly emerging 

during runs of beta (15-25 Hz) activity (Fig. 3.1B). Basic analysis of the EEG record 

revealed synchronised events on the majority of channels. The ‘by eye’ largest events 

were seen in the C3-P3 electrode pair (with overt phase reversal of the signal), with 

width 120 ± 30 ms and amplitude 110 ± 20 V (n=5 events)). After clozapine treatment 

was stopped no transient epileptiform spikes were seen in the 2h of data analysed, even 

during overt runs of beta activity (Fig. 3.1C). 
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Estimates of the origin of the clozapine-associated events revealed two distinct types of 

activity pattern. In 3/5 events analysis of the montage data showed an origin in the left, 

posterior temporoparietal region (Fig. 3.2A) which propagated across the midline to the 

contralateral region. No projection to more anterior brain regions was observed. 2/5 

events were associated with brief, upper-limb myoclonic jerks. In this case estimates of 

origin showed slightly more anterior and midline-oriented origin in the centroparietal 

region, again with a bias to the left side. These events were slightly more brief than the 

temporoparietal origin events and had a more overt oscillatory tail at ca. 10 Hz. 

Following the pattern of activity in the EEG montage, these events propagated 

bilaterally to the motor strip and were observed on electrode pairs including Fp1 and 

Fp2 (Fig. 3.2B). Invasion and activation of motor areas was very transient in both cases 

(30 – 80 ms) but immediately preceded the involuntary motor movements originally 

complained about by the patient. 
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3.4 Discussion 

In line with the well established presence of EEG abnormalities in psychiatric patients 

treated with clozapine, in this thesis it was found that transient epileptiform events were 

present in the EEG of a patient treated with clozapine. These events equate to sharp 

activity and spike-wave paroxysms associated with clozapine treatment described in the 

literature. Furthermore, in this thesis, basic 2D current source density suggested that the 

transient epileptiform activity originated primarily in parietal cortex. The 

temporoparietal region, particularly the posterior part of this area, is associated with 

speech perception (Fiez et al., 1996), though interestingly the patient did not complain 

of any abnormality with regard to this cognitive domain. This area of the brain is 

involved in higher order sensory processing, and the left side (the origin of the 

epileptiform events here) is usually dominant. It is a multimodal area, receiving visual, 

auditory and somatosensory information. It is also involved in controlling hand and arm 

movements, which could explain the type of mycolonic jerk the patient suffered 

(Fogassi and Luppino, 2005).  

The parietal cortex has been implicated in schizophrenia in various studies. Deficits in 

the connectivity and activation patterns of this brain region accompany default mode 

network abnormalities and reduced sensorimotor gating (Alonso-Solis et al., 

2012;Hammer et al., 2013). Interestingly, reduced connectivity of the parietal cortex is 

also associated with schizophrenia-like psychoses relating to an underlying epilepsy 

(Canuet et al., 2011, see also below). It has also been implicated in the predominance of 

auditory (particularly voice-related) hallucinations in florid schizophrenia (Vercammen 

et al., 2010). Again, the left temporoparietal region appeared critical in fMRI studies, 

and transcranial magnetic stimulation of this area has been shown to be effective in 

treating some auditory hallucinations in patients with schizophrenia (Hoffman et al., 

2003). 

The parietal cortex is often seen to be activated in many epilepsies. However, seizures 

of parietal cortical origin are very rare and hard to treat. They are accompanied by a 

broad and disparate series of symptoms involving hypermotor activity periods, auditory 

hallucinations (see above), somatosensory auras, aphasia and often enuresis (Salanova, 

2012). When seizures are localised to parietal cortex they are often accompanied by 

overt very fast oscillations (VFO or HFO, Akiyama et al., 2011). The preponderance of 

beta rhythms and VFO in this area has been shown to relate to the local circuit 

connectivity and intrinsic neuronal properties of, in particular, layer V (Roopun et al., 
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2006). Roopun et al. showed that bursting behaviour in layer V intrinsically bursting 

neuron axons could be coupled in a network by non-chemical synaptic (gap junctional), 

direct axon-to-axon connections. The resulting network was very inert to conventional 

chemical neurotransmission and could readily generate VFO and precipitate seizure-like 

events.  

The finding that clozapine treatment was associated with transient epileptiform events 

in the one patient studied here is consistent with reports in the literature of clozapine-

related seizures (e.g. Juul et al., 1985). However, EEG recordings only yield some of 

the total information about brain rhythms and their pathology. It was therefore decided 

to use an in vitro approach to characterise the effect of clozapine on brain rhythms in 

more detail – using rodent slices of parietal (2º somatosensory) cortex as the substrate to 

examine the effects of clozapine in generating paroxysmal events and its possible 

relevance to the antipsychotic effects of this drug. 
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Chapter 4 

Results – Clozapine-induced very fast oscillations in vitro 
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4.1 Introduction 

Given the association of clozapine with epileptiform activity and seizures described in 

the previous chapter, and the limitation of scalp electrode EEG recordings in that they 

only yield some of the total information about brain rhythms, it was decided to use an in 

vitro approach to characterise the effect of clozapine on brain rhythms in more detail.  

In particular, the in vitro approach allows greater spatial resolution for studying locally 

cortically generated rhythms and can also be used to obtain laminar information 

regarding such rhythms.  In addition, in vitro recordings permit greater temporal 

resolution in that rhythms in the very fast band (70-1000Hz) can be studied. It is not 

possible to perform scalp electrode EEG recordings of very fast oscillations (VFO), 

which are typically highly localised and thus their signal is diminished through spatial 

averaging. In addition, it would be impossible to distinguish this signal from the 

contaminating effect of motor unit discharges. Furthermore, in vitro approaches are 

useful in studying mechanisms underlying brain rhythms as brain slices can be perfused 

with pharmacological agents, and intracellular recordings can readily be made from 

individual neurons. 

Following the finding in the previous chapter that transient epileptiform events in the 

EEG of patients treated with clozapine originated primarily in parietal cortex, the 

equivalent region of association cortex was used in rat neocortical slices, namely 2⁰ 

somatosensory cortex. The CA2 region of the hippocampus is also briefly considered as 

clozapine also induced oscillatory activity in this region. 

This chapter considers VFO induced by clozapine in vitro, and the ability of this drug to 

generate full paroxysmal events themselves in vitro is considered in the following 

chapter. 
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Aims 

Following on from the above, the aims of this chapter are as follows: 

 To establish whether clozapine can generate VFO in slices of rat 2⁰ 

somatosensory cortex and to characterize any such activity. 

 To briefly examine whether clozapine can also generate VFO in rat hippocampal 

slices and to compare such activity to that in 2⁰ somatosensory cortex. 

 To investigate whether the atypical antipsychotic olanzapine and the classical 

antipsychotic haloperidol also induce VFO in 2⁰ somatosensory cortex. 

 To map the distribution and spatial extent of clozapine-induced VFO in 2⁰ 

somatosensory cortex in terms of its laminar distribution in the cortical column 

and its longitudinal distribution throughout the regions of interest to attempt to 

focus-in on the cell types and local circuits involved for further study. 

 To investigate the activity of specific types of neurons in relation to clozapine-

induced VFO and to attempt to determine its cellular basis. 

 To mimic oscillatory activity induced by clozapine using pharmacological 

agents to investigate the mechanisms underlying clozapine-induced VFO. 

 To consider the possible relevance of clozapine-induced VFO to the therapeutic 

efficacy of clozapine. 

4.1.1 Summary of the role of and possible mechanisms underlying VFO 

As mentioned previously, VFO have a physiological role in memory consolidation and 

sensory perception, but also a pathological role in seizures. In relation to seizures, VFO 

can be present immediately before interictal bursts or full electrographic seizures, and/or 

superimposed on them, and they can also occur independently from full seizures or 

bursts in epileptogenic brain where they are considered a biomarker for epilepsy-related 

cortical pathology (Jacobs et al., 2010). Possible mechanisms underlying VFO in the 

literature include electrotonic coupling via gap junctions, activity of interneurons, and 

pathological local desynchronization of normal cortical activity. 

4.1.2 Involvement of layer V in VFO 

Given the laminar distribution of clozapine-induced VFO described below, it is relevant 

to consider the involvement of layer V in VFO. Roopun et al. (2006) describe a beta2 

rhythm in layer V of neocortex that was insensitive to blockade of glutamatergic 

synaptic transmission, but sensitive to reductions in gap junction conductance. The 
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rhythm was prominent in layer V intrinsically bursting (IB) pyramidal cells, which fired 

bursts, spikelets and single action potentials. Similar to VFO, this activity, together with 

full spikes apparently generated from spikelets, was thought to be associated with 

antidromic activity, and the network activity was shown to result from electrotonic 

coupling of axons at gap junctions and not via chemical synaptic connectivity.  

Similarly, VFO, thought to be gap junction dependent, were present in layer V of rat 

neocortex following pressure ejection of alkaline solution aimed at modelling glial cell 

dysfunction in epileptic foci (Cunningham et al., 2012). 

Interestingly, high concentrations of clozapine (100-300µM) elicited epileptiform 

discharges in some layer V pyramidal cells in slices of rat prefrontal cortex (Gemperle 

et al., 2003). It is possible that such discharges could be relevant to clozapine-induced 

VFO in 2⁰ somatosensory cortex described in this chapter. 

4.1.3 Pyramidal cell types in layer V of 2⁰ somatosensory cortex 

Various types of excitatory and inhibitory neuron are present in layer V of neocortex. IB 

pyramidal cells, which fire bursts of spikes when depolarised, are prominent in layer V 

(Connors, 1984). Regular spiking (RS) pyramidal cells, which fire accommodating 

trains of single spikes when depolarised, also occur in this layer in an approximately 

40:60% ratio respectively. RS cells tend to receive a generic sequence of EPSPs and 

IPSPs, whereas it can be challenging to experimentally detect IPSPs in IB cells 

(Chagnac-Amitai et al., 1990). 

In addition to electrophysiological characteristics, there are also morphological 

differences between these two types of cell. RS cells have slim apical dendrites and 

axons which tend to terminate in layer II/III, but IB cells have thick apical dendrites, 

with prominent distal branching (tufts) that can reach layer I (Kasper et al., 1994).  

Layer V IB cells can make connections with and thus receive inputs from or make 

outputs to cells in any other layer of the cortical column. Consistent with this, layer V 

may have a role in mediating outputs from the cortical column to other regions of brain 

(Armstrong-James et al., 1992). 
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4.1.4 Comparison of haloperidol, olanzapine and clozapine in relation to EEG 

abnormalities 

In addition to examining the effect of clozapine on brain rhythms in vitro, the 

corresponding effect of the classical antipsychotic haloperidol, and that of the atypical 

antipsychotic olanzapine are also considered in this chapter. Therefore the similarities 

and differences between these antipsychotics are considered in relation to their 

pharmacological properties, their clinical effectiveness, and their capacity to induce 

EEG abnormalities, myoclonus and seizures. 

Besides their classical action of dopamine D2 receptor antagonism, antipsychotics act on 

many other targets and have complex receptor binding profiles (e.g. Roth et al., 2004). 

One of the key pharmacological features of atypical antipsychotics is thought to be the 

higher affinity for 5-HT2A receptors compared to D2 receptors (Meltzer et al., 

1989;Altar et al., 1986). However, other pharmacological properties may be important 

in distinguishing atypical from classical antipsychotics. For example, agonism of 

NMDA receptors may be a common feature of atypical antipsychotics (Jardemark et al., 

2001). 

Olanzapine is a thienobenzodiazepine derivative with structural and pharmacological 

similarity to clozapine. Olanzapine compares favourably with the classical antipsychotic 

haloperidol in the treatment of schizophrenia in terms of managing psychosis, 

improving negative symptoms and showing a lower propensity to cause movement 

disorders (Fulton and Goa, 1997). Compared to clozapine, olanzapine has a less severe 

side effect profile, and unlike clozapine, agranulocytosis has not been attributed to 

olanzapine (Fulton and Goa, 1997).  

Similar to clozapine, there is a concentration-dependent association between olanzapine 

and EEG abnormalities (Amann et al., 2003;Degner et al., 2011). Indeed, the risk of 

EEG abnormalites associated with clozapine and olanzapine is notably high compared 

to that with other antipsychotics (Centorrino et al., 2002). The risk of EEG 

abnormalities associated with olanzapine is fairly similar across studies; for example 

35% (Amann et al., 2003), 38.5% (Centorrino et al., 2002), or 40.9% (Degner et al., 

2011) of patients treated with olanzapine were affected, and this is higher than the risk 

associated with haloperidol, though general EEG abnormalities were seen with similar 

incidences between classical and atypical agents (Amann et al., 2003). Similarly, 
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paroxysmal activity is more frequently associated with clozapine compared to 

haloperidol (Koukkou et al., 1979). 

As mentioned previously, clozapine may induce generalised tonic seizures, and 

myoclonus (Malow et al., 1994;Alldredge, 1999), for which the risk may be dose-

dependent (Stevens et al., 1996;Bak et al., 1995). The incidence of seizures associated 

with clozapine is 1.3-2.8% (Devinsky et al., 1991;Pacia and Devinsky, 1994), which 

may rise to a cumulative risk of 10% after 3.8 years of treatment (Devinsky et al., 

1991), and this is higher than that associated with classical antipsychotics (Lindstrom, 

1988;Naber et al., 1989;Haller and Binder, 1990). 

Olanzapine may also induce myoclonus (Camacho et al., 2005;Deshauer et al., 2000), 

even when only prescribed at a low dose, albeit chronically (Block Rosen et al., 2012). 

Reports of seizures associated with olanzapine, although present in the literature (e.g. 

Wyderski et al., 1999;Woolley and Smith, 2001;Bonelli, 2003), are not as common as 

those associated with clozapine (Komossa et al., 2010). However, there has been a 

report of a fatal status epilepticus associated with olanzapine (Wyderski et al., 1999). 

Further reports of seizures in patients treated with olanzapine include cases where the 

confounding influence of other proconvulsant drugs could not be excluded (Lee et al., 

1999a;Deshauer et al., 2000;Hedges and Jeppson, 2002). 

4.1.5 Effect of clozapine on GABAA receptor-mediated inhibition 

Clozapine reverses the inhibitory effect of GABA on 35S-TBPS (t-

butylbicyclophosphorothionate) binding (Squires and Saederup, 1991). As mentioned 

previously, clozapine may suppress GABAA receptor-mediated inhibition in the ventral 

tegmental area (Michel and Trudeau, 2000) and hippocampus (Ohno-Shosaku et al., 

2011). However, the effect of clozapine on inhibitory transmission was less clear in 

prefrontal cortex (Gemperle et al., 2003). 

Other lines of evidence support the idea that reduced GABAergic inhibition may be 

relevant to the therapeutic effect of clozapine. Persistent reductions in GABAergic 

inhibition may be involved in a range of treatments of psychosis (Squires and Saederup, 

1991). For example, metrazol, which is a non-competitive GABA antagonist 

(Simmonds, 1980; Squires et al., 1984), is effective in the treatment of schizophrenia. In 

line with a possible role for GABAA receptors in schizophrenia, a group of genes 

associated with psychoses may encode overactive GABAA receptors (Squires and 
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Saederup, 1991). Together, this evidence suggests that investigation of the possible role 

of inhibition of GABAA receptors in relation to clozapine-induced VFO is warranted. 

4.1.6 Effect of clozapine on neuronal nicotinic receptors 

Similar to GABAA receptors, the effect of inhibition of neuronal nicotinic receptors may 

be relevant to clozapine-induced VFO. Clozapine non-competitively inhibits the 

function of mammalian neuronal α4β2 and α7 neuronal nicotinic receptors in human 

SH-EP1 cells, frog oocytes, rat brain synaptosomes and hippocampal slices (Singhal et 

al., 2007;Grinevich et al., 2009). However, clozapine does not appear to interact directly 

with the α4β2 or α7 orthosteric binding sites, as it did not displace high affinity ligands 

for these sites (Grinevich et al., 2009), and thus the precise mechanism through which 

the inhibition is mediated is unclear. The influence of clozapine’s inhibition of neuronal 

nicotinic receptors on cognition is complex and likely depends on the subunit 

composition of the receptor and the brain region in question (Pocivavsek et al., 

2006;Levin et al., 2009). 

4.2 Methods 

4.2.1 Slice preparation and maintenance 

Experiments in this and the following chapters made use of rat brain slice preparations 

in vitro. Hippocampal and 2⁰ somatosensory cortical slices were 450µm thick, and were 

cut in the horizontal plane from adult male Wistar rats (150-250g). Slices were prepared 

according to chapter 2.1-2.3 and the maintenance of slices is described in chapter 2.4. 

Extracellular recording techniques are described in chapter 2.6. Data acquisition, data 

analysis and statistical techniques are described in chapter 2.7-2.8. VFO events were 

induced by either clozapine, olanzapine, gabazine or d-tubocurarine according to the 

experiment. The area power in the VFO band (70-1000Hz) was the primary measure 

used to quantify extracellular recordings of VFO in LFPs.  

4.2.2 Intracellular recording methods 

Prior to any intracellular recordings regions of cortex generating optimal VFO were 

identified using an extracellular field electrode. The field electrode remained in the slice 

next to the intracellular electrode for the duration of the experiment to compare the 

intracellular activity of individual cells to the LFP. Sharp borosilicate glass 

microelectrodes filled with potassium acetate (2M, 80 – 150 M) were used to impale 

cells for intracellular recordings in accordance with the details in section 2.6.3. 
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Electrophysiological characterisation of neurons was achieved using a 0.3nA 

depolarising step with a duration of 300ms, as described previously (McCormick et al., 

1985). EPSPs were revealed by injection of tonic, negative DC current until the 

membrane potential of the cell was hyperpolarised to -70mV to mask concurrent IPSPs, 

and conversely, IPSPs themselves were revealed, when successful, by injection of tonic, 

positive current until the membrane potential of the cell was depolarised away from the 

chloride reversal potential to -30mV.  

4.2.3 Multi-electrode array recording techniques 

Following confirmation of the presence of VFO in the slice using an extracellular field 

electrode, multichannel recordings were performed using Utah electrode grids as 

described in chapter 2.7.2. Data were collected using Central software (Blackrock 

Microsystems inc. USA) as described in section 2.7.2 and subsequently exported to 

Matlab software for offline analysis. 

For the colour map of the spatial distribution of activity, data were exported to 

MATLAB, where they were mapped with reference to electrode positions in the Utah 

grid provided by the supplier, interpolated and illustrated in a two dimensional ‘surf’ 

plot with a ‘jet’ colour map. 

4.3 Results 

4.3.1 Clozapine induced VFO in the CA2 region of rat hippocampus in vitro 

Consistent with previous data (F.E.N. LeBeau and M.A. Whittington, unpublished 

observations), bath application of the antipsychotic clozapine (10µM) induced VFO in 

the CA2 region of the hippocampus in vitro (Fig. 4.1; n = 5 slices). Field traces revealed 

short, high amplitude transient high frequency discharges with variable inter-bust 

intervals interspersed with a near continuous presence of high frequency activity. In 

control conditions prior to application of clozapine, VFO were not present.  

The mean VFO band (70-1000Hz) area power of clozapine-induced VFO in CA2 was 

2.07 ± 0.75 10
-11

V
2
 (Fig. 4.2A). Analysis of the frequency components of VFO revealed 

a blur of frequencies from ~70 to ~400Hz (Fig. 4.1B) with the mean peak at 156 ± 9Hz 

(Fig. 4.2A). The pattern of intervals between consecutive spikes during the more overt 

bursts of field VFO appeared to be relatively stable, with a possible small reduction, 

corresponding to an increase in the instantaneous frequency, at the start of bursts (Fig. 

4.2B). The pattern of amplitudes of population spikes during bursts of field VFO 
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appeared to be relatively stable, with a possible small increase at the start of bursts (Fig. 

4.2C). Further quantitative measures of clozapine-induced VFO in CA2 are shown in 

Table 4.1.  

In the hippocampus, VFO were localised to the CA2 pyramidal cell region. Movement 

of the recording electrode to record from different laminar positions suggested that VFO 

appeared to be confined to the pyramidal cell layer. Longitudinal movement of the 

recording electrode along CA3, through the CA2 pyramidal cell layer, and into CA1 

suggested patches of increased or decreased activity consistent with localised activity 

within CA2.  

4.3.2 Clozapine induced VFO in layer V of rat 2º somatosensory cortex in vitro 

Clozapine (10-20µM) also induced VFO in layer V of rat 2º somatosensory cortex in 

vitro (Fig. 4.3). Similar to those in CA2, field VFO in 2⁰ somatosensory cortex were 

present as short transient high frequency discharges with variable inter-bust intervals. 

Though in this neocortical region high-amplitude bursts were more overt compared to 

between burst activity. 

The median VFO band area power of clozapine-induced VFO in somatosensory cortex 

was 2.63 (1.04 → 6.52) 10
-11

V
2
 (Fig. 4.4A; n = 40 slices). Analysis of the frequency 

components of VFO revealed a blur of frequencies from ~70 to ~900Hz (Fig. 4.3B) 

with the median peak at 195 (175 → 244) Hz (Fig. 4.4A). The pattern of intervals 

between consecutive population spikes during bursts of field VFO appeared to be 

relatively stable (Fig. 4.4B). Interestingly, the pattern of amplitudes of population spikes 

during bursts of field VFO in somatosensory cortex (Fig. 4.4C) appeared to be different 

from those in CA2 (Fig. 4.2C). In somatosensory cortex, the mean spike amplitude 

decreased from the first to the fourth spike in the burst, before gradually increasing and 

stabilising. Further quantitative measures of clozapine-induced VFO in somatosensory 

cortex are shown in Table 4.2.  

The basic properties of clozapine-induced VFO in 2⁰ somatosensory cortex were 

compared with those of clozapine-induced VFO in CA2 (Fig. 4.5, cortical n = 40 slices, 

CA2 n = 5 slices). Interestingly, the median peak frequency of VFO in 2⁰ 

somatosensory cortex was significantly greater than that of VFO in CA2 (median 

cortical peak frequency 195 (175 → 244) Hz, CA2 156 (137 → 176) Hz, p < 0.05, 

Mann-Whitney rank sum test, Fig. 4.5C).  The higher frequency nature of VFO in 2⁰ 
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somatosensory cortex compared to VFO in CA2 is evident in the pooled power spectra 

(Fig. 4.4A versus Fig. 4.2A), example spectrograms (Fig. 4.3B versus Fig. 4.1B), and 

intervals between spikes in bursts of field VFO (Fig. 4.4B versus Fig. 4.2B). 

However, in quantifying VFO in 2⁰ somatosensory cortex versus that in CA2, there was 

no significant difference in the median VFO band area power (median cortical VFO 

band area power 2.63 (1.04 → 6.52) 10
-11

V
2
, CA2 1.67 (0.55 → 3.59) 10

-11
V

2
, p > 0.05, 

Mann-Whitney rank sum test, Fig. 4.5A), median VFO band peak power (median 

cortical VFO band peak power 1.46 (0.50 → 3.73) 10
-12

V
2
, CA2 0.80 (0.37 → 2.65) 10

-

12
V

2
, p > 0.05, Mann-Whitney rank sum test, Fig. 4.5B, median burst frequency 

(median cortical burst frequency 3.26 (1.81 → 4.18) Hz, CA2 1.61 (1.24 → 3.39) Hz, p 

> 0.05, Mann-Whitney rank sum test, Fig. 4.5D), median inter-burst interval (median 

cortical inter-burst interval 0.37 (0.33 → 0.63) s, CA2 0.68 (0.39 → 0.91) s, p > 0.05, 

Mann-Whitney rank sum test, Fig. 4.5E), median number of spikes per burst (median 

cortical number of spikes per burst 6.46 (5.38 → 9.12), CA2 4.73 (4.41 → 7.62), p > 

0.05, Mann-Whitney rank sum test, Fig. 4.5F), median spike amplitude (median cortical 

spike amplitude 113 (70 → 159), CA2 97 (62 → 117) µV, p > 0.05, Mann-Whitney 

rank sum test, Fig. 4.5G), median proportion of time during the trace that VFO were 

present (median cortical proportion of time VFO present 17.8 (8.2 → 29.7) %, CA2 8.7 

(5.9→ 30.1) %, p > 0.05, Mann-Whitney rank sum test, Fig. 4.5H), or median line 

length (median cortical line length 24.4 (18.9 → 38.3) mV/s, CA2 27.2 (12.6 → 32.1) 

mV/s, p > 0.05, Mann-Whitney rank sum test, Fig. 4.5I). The variability of clozapine-

induced VFO in 2⁰ somatosensory cortex is notable. 

In this thesis it was decided to focus on VFO in 2⁰ somatosensory cortex as they were 

more reliably reproducible than those in CA2 and consisted of more visually discrete 

events to aid analysis. Following the discovery of clozapine-induced VFO in 

somatosensory cortex, it was necessary to choose the appropriate clozapine 

concentration to use in experiments.  Initially, attempts were made to induce VFO with 

clozapine at a concentration of 10µM, but it was later found that 20µM clozapine was 

associated with a higher incidence of VFO (data not shown).  The mean VFO band area 

power of oscillatory activity associated with 5 (n = 7), 10 (n = 11), and 20µM clozapine 

(n = 36) was 1.79 ± 0.46, 2.24 ± 0.91 and 6.85 ± 1.72 10
-11

V
2 

respectively (Fig. 4.6). 

Thus, although there was only a small difference between VFO associated with 5 and 

10µM clozapine, there was a clear concentration-dependent relationship between 

clozapine and VFO at the 10 and 20µM concentrations. As 20µM clozapine was 
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sufficient to induce prominent VFO routinely, it was decided not to investigate higher 

concentrations, which would be in danger of falling outside the therapeutically relevant 

concentration range in cerebrospinal fluid (see discussion section 4.4.4), and this 

concentration was used in subsequent experiments. 

Low levels of spontaneous VFO were sometimes present in layer V of 2⁰ 

somatosensory cortex. The mean VFO band area power of such activity was 0.52 ± 0.36 

10
-11

V
2 

(n = 5). A further control was performed in which DMSO, the solvent in which 

antipsychotics were dissolved, was bath applied to slices for 4h. Under these conditions 

there was a small increase in spontaneous VFO (mean VFO band area power 0.96 ± 

0.28 10
-11

V
2
, n = 5) but the magnitude of such activity remained substantially below (ca. 

7-fold less) that associated with 20µM clozapine. 

4.3.3 Concentration response for olanzapine and haloperidol on VFO in layer V of 

rat 2º somatosensory cortex in vitro 

Given that clozapine induced VFO in cortex in vitro, it was interesting to ask whether 

other antipsychotics would also induce similar oscillatory activity. Specifically, it was 

investigated whether the atypical antipsychotic olanzapine, or the classical antipsychotic 

haloperidol, would induce oscillatory activity in layer V of 2º somatosensory cortex. A 

concentration response experiment was performed for both of these antipsychotics (Fig. 

4.7). As it was unclear which of clozapine’s multiple targets were important in 

mediating VFO, a wide range of concentrations was chosen to allow for different 

affinities of olanzapine or haloperidol at any shared neurotransmitter receptors. 

Electrodes were positioned in layer V of 2º somatosensory cortex, and the following 

concentrations of antipsychotic were bath applied sequentially at 30 minute intervals: 

200nM, 500nM, 2µM, 5µM, 10µM, 20µM and 50µM.  

VFO were typically first observed when antipsychotics were applied at low micromolar 

concentrations. By the 10M concentration point, marginal VFO were evident in 5/6 

slices exposed to olanzapine, and in 6/9 slices exposed to haloperidol.  At this 

concentration, the mean VFO band area power was 1.89 ± 1.0 10
-11

V
2
 in the olanzapine 

experiment, but only 1.35 ± 0.50 10
-11

V
2
 in the haloperidol experiment. By the 50µM 

concentration, prominent VFO were present in the olanzapine experiment, where the 

mean VFO band area power was 4.03 ± 2.61 10
-11

V
2
, whereas the effect of haloperidol 

remained relatively small at this concentration (mean VFO band area power 2.23 ± 0.92 
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10
-11

V
2
). Thus, similar to clozapine, olanzapine had a clear effect in inducing salient 

VFO, whereas haloperidol was also associated with some VFO, but only to a lesser 

extent.  

4.3.4 Persistence of clozapine-induced VFO in layer V of rat 2º somatosensory 

cortex 

Following application of clozapine, a delay to allow oscillatory activity to develop, and 

probing for an optimal patch of VFO in layer V of 2º somatosensory cortex, electrodes 

were left in the same position and recordings were taken at 15 minute intervals for 3 

hours. Clozapine-induced VFO were persistent for 3 hours (n = 5 slices, Fig. 4.8) and 

did not diminish for a further hour (n = 4 slices, data not shown). There was a temporary 

dip in the mean area power of VFO at the 1.5 hour time point, but the overall pattern in 

the 3 hour time period was one of relatively stability (Fig. 4.8C). There was a small 

upward trend in the mean peak frequency of VFO for the first 1.5 hours prior to its 

stabilisation for the remainder of the experiment (Fig. 4.8D). 

4.3.5 Spatiotemporal properties of clozapine-induced VFO in 2º somatosensory 

cortex 

4.3.5.1 Patches of VFO were maximal in layer V 

Glass microelectrode laminar profiles suggested that patches of clozapine-induced VFO 

occurred maximally tightly confined to layer Va. Utah multi-electrode array recordings 

are useful in investigating the spatial distribution of oscillatory activity as they allow for 

simultaneous acquisition of extracellular data from 96 channels over a 3.6*3.6mm grid. 

The VFO band area power in each of the Utah array electrodes was illustrated in a 

colour map which was then superimposed over an image of 2º somatosensory cortex 

from a rat brain atlas (Fig. 4.9, Paxinos and Watson, 1998). Utah array recordings 

confirmed the presence of small patches of clozapine-induced VFO, typically maximal 

in layer V (Fig. 4.9), but VFO could sometimes also be present in other deep and 

superficial layers throughout the slice. 

4.3.5.2 Distribution of VFO along layer V of 2º somatosensory cortex 

To further examine the spatiotemporal properties of clozapine-induced VFO, the 

synchrony between VFO rhythms along layer V neocortex was investigated. Following 

discovery of an optimal patch of clozapine-induced VFO with one glass microelectrode, 

a second glass microelectrode was moved distances between 100 and 900µm from the 
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reference electrode in a longitudinal direction along layer V of 2º somatosensory cortex. 

Synchrony within bursts was measured at each 200µm step by performing cross-

correlation analysis on the first burst event in a 60s trace. The point in the cross-

correlogram where the central peak crossed the Y axis was used as a measure of the 

synchrony between the two rhythms. The synchrony of the two rhythms decreased 

linearly as the distance between the recording electrodes increased (n = 10 slices, Fig. 

4.10, 4.11). The synchronous activity of the rhythms for distances up to ~500µm, where 

there is still a clear central peak in the cross-correlogram, supports the idea that 

clozapine-induced VFO result from network activity rather than activity of only a few 

cells underneath the electrode. However, the synchrony of clozapine-induced VFO 

broke down over distances greater than ~500µm, consistent with the observation of the 

spatial patchiness of the rhythm. 

To quantify synchrony at a lower temporal resolution, the number of VFO burst events 

which appeared synchronous (Fig. 4.12A) or coincident (Fig. 4.12B) in 60s traces were 

also counted by eye (n = 5 slices). The same pattern of synchronous activity to ~500µm 

was seen at the level of bursts. 

In contrast, there was no clear trend in the pattern of phase lag, which corresponds to the 

X value of the central peak in the cross-correlogram, within bursts over the distances 

investigated. The mean intra-event phase lag started at 6.04 ± 1.37ms at a distance of 

100µm, fell to 4.44 ± 0.66ms at 500µm, and then rose again to 7.16 ± 2.06ms at 900µm 

(n = 5 slices, Fig. 4.12C). 

4.3.6 Intracellular activity of neurons during clozapine-induced VFO 

To investigate the activity of neurons during VFO, sharp electrode intracellular 

recordings were taken from cell soma in cells nearby to the field potential in layer V of 

2º somatosensory cortex. Intracellular recordings were taken from 35 RS cells, 7 IB 

cells, and 1 fast rhythmic bursting (FRB) pyramidal cell.  

Much of the activity of RS and IB cells appeared to be sparse, but occasional RS and IB 

cells fired more frequently. Activity of cells appeared to be heterogeneous within cell 

types in the sense that there did not appear to be a distinctive firing pattern reliably 

associated with either RS or IB cells, and spike-bursts were present in an RS cell. 

Intracellular activity in RS and IB cells was only relatively infrequently coincident with 

field VFO. Cross-correlation analysis was used to relate spike, EPSP and IPSP activity, 
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where present in individual cells to field VFO where any such activity coincided. There 

was almost no correlation between the somatic activity of layer V RS cells and field 

VFO (Fig. 4.13). Furthermore, there were no examples of intracellular activity in either 

cell type precisely phase-locked to field VFO. Somatic depolarisations with rapid 

kinetics, known as partial spikes or spikelets, were present in one RS cell, and putative 

antidromic spikes were present in 3 RS cells (Fig. 4.14). There was a high degree of 

variability in the amplitude of putative spikelets in the RS cell. 

Interestingly, IB cell bursts (Fig. 4.15), and in particular, IB cell spikelets (Fig. 4.16) 

were weakly correlated with field VFO. There was considerable variability in the 

amplitude of the IB cell spikelets. In rare cases, IB cell bursts appeared to arise from 

spikelets (Fig. 4.16C), raising the possibility, but by no means unequivocally 

establishing, that such bursts may be antidromic.  

There was also a possible relationship between the activity of an FRB cell and field 

VFO, whereby one FRB cell spike was in phase with field VFO (Fig. 4. 17). 

4.3.7 Comparison of field VFO with IB cell bursts 

If clozapine-induced VFO were to result from activity of only a small number of cells, it 

might possibly be conceived that clozapine-induced VFO might reflect synchronous 

activity of a small subpopulation of IB cells. To investigate this, the pattern of intervals 

between population spikes in bursts of field VFO was compared with those in 

concurrent recordings of bursts of spikes in IB cells (Fig. 4.18).  There was a clear 

upward trend in the interval between consecutive spikes during IB cell bursts. The mean 

inter-spike interval in IB cell bursts rose from 3.7 ± 0.0ms between the first and second 

spike in the burst, to 7.3 ± 1.4ms between the seventh and eighth spike in the burst (n = 

220 bursts in 3 cells). However, in contrast the interval between consecutive population 

spikes during bursts of field VFO was relatively stable. The mean interval between the 

first and second population spike in bursts of field VFO was 7.4 ± 0.2ms, which was a 

similar figure to that between the seventh and eighth spike in bursts, 7.5 ± 0.3ms  (n = 

887 bursts in 3 slices). This difference suggests that clozapine-induced VFO does not 

merely reflect synchronous activity of a small number of IB cell extracellular units.  
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4.3.8 Disinhibition may have a role in clozapine-induced VFO 

As clozapine may suppress GABAA receptor-mediated inhibition (Michel and Trudeau, 

2000;Ohno-Shosaku et al., 2011), the GABAA receptor antagonist gabazine (250nM) 

was bath applied to slices alone to investigate whether partial disinhibition (ca. 10% 

reduction in chloride conductance through GABAA receptor ionophores (Yu and Ho, 

1990)) may be important in the induction of VFO by clozapine. Gabazine induced short 

transient high frequency discharges of VFO in layer V of 2º somatosensory cortex (Fig. 

4.19). This supports the idea that disinhibition may have a role in the mechanism 

underlying clozapine-induced VFO. The median VFO band area power of gabazine-

induced VFO was 2.30 (1.13 → 30.90) 10
-11

V
2
 with a mean peak frequency of 226 ± 13 

Hz (n = 11 slices). Further quantitative measures of gabazine-induced VFO are detailed 

in Fig. 4.20 and Table 4.3. 

4.3.9 Inhibition of neuronal nicotinic receptors may have a role in clozapine-

induced VFO 

As clozapine may inhibit neuronal nicotinic receptors (Grinevich et al., 2009), slices 

were exposed to the broad-spectrum nicotinic receptor antagonist d-tubocurarine (d-TC; 

10µM) to investigate the possible importance of this action in VFO. d-TC also induced 

VFO in layer V of 2º somatosensory cortex (Fig. 4.21). This supports the idea that 

inhibition of neuronal nicotinic receptors may have a role in the mechanism underlying 

clozapine-induced VFO. The median VFO band area power of d-TC-induced VFO was 

2.43 (0.93 → 10.20) 10
-11

V
2
 with a median peak frequency of 205 (195 → 234) Hz (n = 

12 slices). Further quantitative measures of d-TC-induced VFO are shown in Fig. 4.22 

and Table 4.4.  

There was a pattern in both gabazine-induced VFO and d-TC-induced VFO whereby the 

mean population spike amplitude in field VFO decreased for the first approximately 15 

spikes in the burst, before gradually stabilising and increasing (Fig. 4.20C, Fig. 4.22C). 

  



72 

 

 



73 

 



74 

 

  



75 

 



76 

 

  



77 

 



78 

 

  



79 

 

 



80 

 

  



81 

 

  



82 

 

  



83 

 



84 

 

  



85 

 



86 

 



87 

 



88 

 

  



89 

 



90 

 

  



91 

 

  



92 

 

  



93 

 

  



94 

 

  



95 

 



96 

 

  



97 

 

  



98 

4.4 Discussion 

Currently, clozapine-related abnormal EEG activity is known to include slowing of 

activity, abnormal theta, abnormal delta, intermittent sharp transients, spike discharges 

and spike-wave paroxysms (e.g. Malow et al., 1994;Welch et al., 1994;Haring et al., 

1994;Denney and Stevens, 1995;Freudenreich et al., 1997;Centorrino et al., 2002). The 

presence of clozapine-induced VFO in wide band recordings in vitro in this thesis 

furthers the understanding of the effect of clozapine on brain rhythms. Such high 

frequency activity would not be revealed in scalp EEG recordings in the clinic in the 

previous chapter as a result of the filter settings (0.5 – 70 Hz), which are typical for 

clinical EEG. Furthermore, it would not possible to perform scalp electrode EEG 

recordings of such VFO as it would be impossible to distinguish them from the 

contaminating effect of motor unit discharges. 

Further to the clinical EEG finding in the previous chapter that transient clozapine-

related epileptiform activity originated primarily in parietal cortex, the presence of VFO 

in the isolated microcircuitry of the in vitro slice preparation in the functionally 

equivalent region of brain in the rat, 2º somatosensory cortex, is in line with the 

particular sensitivity of this region of cortex in the generation of clozapine-related 

hyperexcitability. This may be at least partially due to the prominence of gap-

junctionally connected IB cells in layer V of this region. This particular local circuit has 

been shown to generate high frequency bursts previously (see introduction to this 

chapter), a property not shared by adjacent primary sensory areas (see Roopun et al., 

2010a). Indeed, intracellular studies here showed the closest correlations between IB 

cell intracellular activity and the field VFO.  

Furthermore, the presence of clozapine-induced VFO, generated de novo in normal 

brain tissue, in this chapter supports the idea that clozapine-related hyperexcitability is a 

direct effect of the drug rather than a consequence of compensation for abnormal 

activity in patients with psychiatric illness.  

Clozapine-induced VFO may represent an early biomarker of clozapine-related 

hyperexcitability, possibly present before more severe epileptiform activity. As such, it 

is possible that technological developments which would permit detection of such high 

frequency clozapine-related activity non-invasively in the clinic (e.g. with MEG rather 

than EEG recordings) may be useful in the early identification of individuals at risk of 

more severe clozapine-related EEG abnormalities. 
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The apparent concentration-dependence of clozapine-induced VFO in this thesis is 

consistent with the finding that plasma clozapine concentrations are correlated with 

EEG abnormalities in a clinical study (Haring et al., 1994). 

The spatial extent of coherent clozapine-induced VFO activity in this thesis was 

restricted to ~500µm, which is greater than the spatial extent of coherent VFO 

associated with spontaneous VFO in the hippocampus in vitro (Draguhn et al., 1998), 

but smaller than the region of coherence in vivo, ~5mm (Chrobak and Buzsaki, 1996). 

The spatial confinement of VFO to relatively small patches in this thesis is consistent 

with the finding that pathological VFO can be restricted to volumes of approximately 

1mm
3
 of tissue in an animal model of epilepsy (Bragin et al., 2002a). 

4.4.1 Effectiveness of haloperidol and olanzapine in inducing VFO 

The finding that, similar to clozapine, olanzapine induced prominent VFO, is in line 

with EEG alterations associated with olanzapine in the literature (Centorrino et al., 

2002;Amann et al., 2003;Degner et al., 2011). Furthermore, this, together with the low 

extent to which haloperidol induced VFO, is consistent with the relative risk of EEG 

abnormalities associated with these drugs in the clinic (Centorrino et al., 2002). 

Receptor targets that clozapine shares with olanzapine but not haloperidol may thus be 

important in mediating the induction of VFO by these antipsychotics. For example, 

clozapine, but not haloperidol, may enhance NMDA receptor-mediated transmission 

(Arvanov et al., 1997;Arvanov and Wang, 1999). Similarly, olanzapine may also 

facilitate NMDA receptor-mediated transmission (Jardemark et al., 2001). Clozapine 

may suppress GABAA  receptor-mediated activity (Michel and Trudeau, 2000), but there 

is no evidence that haloperidol shares this property. In contrast, both clozapine and 

haloperidol have been reported to inhibit nicotinic neuronal receptors (Grinevich et al., 

2009). 

The relative absence of VFO associated with haloperidol compared to clozapine is also 

consistent with the lower incidence of paroxysmal activity associated with haloperidol 

versus clozapine (Koukkou et al., 1979), and the lower incidence of seizures associated 

with classical antipsychotics versus that of clozapine (Lindstrom, 1988;Naber et al., 

1989;Haller and Binder, 1990). 
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4.4.2 Mechanisms underlying clozapine-induced VFO 

Given the general finding of weak correlations between intracellular activity and field 

VFO, and the very low extent of intracellular activity precisely phase-locked to field 

VFO, the presence of relatively strong correlations between IB cell spikelets and field 

VFO suggests the involvement of axonal hyperexcitability in this cell type in the 

mechanism underlying clozapine-induced VFO. 

The presence of spikelets in neuronal subtypes which contribute to the generation of the 

rhythm may also be a characteristic feature of gap-junction-mediated VFO (Draguhn et 

al., 1998;Schmitz et al., 2001). An action potential in a pre-junctional neuron can 

generate a response which is either above or below the threshold required to generate an 

action potential in the post-junctional neuron, depending on the effectiveness of the 

coupling at the gap junction. It is thought that spikelets might occur following 

subthreshold potential changes in postjunctional neurons. Thus, in addition to 

implicating axonal hyperexcitability in the mechanism, the presence of IB cell spikelets 

raises the possibility that activity is spread through the axonal plexus via electrotonic 

coupling at gap junctions. This possibility will be further considered in relation to the 

pharmacology of clozapine-induced oscillatory activity in chapter 6. 

It is also possible that pathological desynchronisation of activity, similar to that 

involved in the CA3 region of the hippocampus in a lithium-pilocarpine animal model 

of epilepsy (Foffani et al., 2007), may also have a role in the mechanism underlying 

clozapine-induced VFO. The general finding of weak correlations between intracellular 

activity and field VFO, and the very low extent of intracellular activity precisely phase-

locked to field VFO appears consistent with such a mechanism. However, in this thesis 

the substrate for VFO generation was a normal, quiescent slice. Thus there was no 

existing activity to ‘desynchronise’ in this reduced preparation. Thus the ability to 

generate VFO de novo, strongly suggests that local desynchronisation of on-going 

activity may not play a role in this aspect of clozapine’s effects. 

A role for disinhibition in the mechanism underlying clozapine-induced VFO is 

supported by the finding that the GABAA receptor antagonist gabazine induced VFO in 

layer V of 2º somatosensory cortex. The finding that d-TC also induced VFO raises the 

possibility that inhibition of neuronal nicotinic receptors may also be important in 

clozapine-induced VFO. As d-TC inhibits GABA function (Lebeda et al., 1982), it is 

possible that the induction of VFO by d-TC in this thesis may also be mediated via 
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GABAA receptors. Furthermore, the correlation between the emergence of fast ripples 

and the extent of neuronal loss in epileptic rats (Foffani et al., 2007) raises the 

possibility that the neurotoxic effect of d-TC (Dasheiff, 1985) may be relevant to its 

mechanism of action. As stated in the introduction to this section, clozapine has effects 

on both these receptor systems, whereas there is no evidence for haloperidol, at least 

acutely, affecting GABAergic systems directly. 

The higher frequency nature of clozapine-induced VFO in 2º somatosensory cortex 

compared to that in CA2 raises the possibility that the mechanisms underlying cortical 

VFO may be different from those in CA2. There is no evidence for IB cells in this 

hippocampal region, but gap junctions between neurons are prominent (Mercer et al., 

2007). 

4.4.3 Possible physiological role of clozapine-induced VFO 

In addition to their involvement in epileptic seizures (e.g. Fisher et al., 1992), VFO are 

associated in vivo with memory consolidation (Wilson and McNaughton, 1994) and 

sensory perception (Jones and Barth, 1999;Ikeda et al., 2002;Curio, 2000;Curio et al., 

1994;Edwards et al., 2005). Thus, in addition to aiding the understanding of the 

mechanisms by which EEG abnormalities and seizures occur as a side effect of 

clozapine, it seems possible to speculate that to a certain extent the excitability 

associated with clozapine-induced VFO might also be relevant to the mechanisms by 

which clozapine exerts its therapeutic effect. Given the well-established and widespread 

memory deficits that occur in schizophrenia (e.g.Heinrichs and Zakzanis, 1998), and the 

proposed role of ripples in memory consolidation (Wilson and McNaughton, 1994), a 

further speculation is that clozapine might exert its therapeutic effect in part by reducing 

cognitive deficits via enhanced VFO.  

4.4.4 Therapeutic concentration of clozapine in cerebrospinal fluid 

In general, in rats and humans, at therapeutic doses, concentrations of antipsychotics in 

brain are often substantially higher than corresponding plasma concentrations (Cohen et 

al., 1992;Tsuneizumi et al., 1992;Baldessarini et al., 1993;Squires and Saederup, 

1997;Weigmann et al., 1999;Kornhuber et al., 1999). This presumably occurs as a result 

of high penetration of the blood-brain barrier, lipophilicity, and high affinity for cerebral 

compartments such as lipids and membranes. 
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The clozapine concentration used in this thesis (10-20µM) was similar to that in other 

studies (Michel and Trudeau, 2000;Gemperle et al., 2003;Ohno-Shosaku et al., 2011). 

However, the possibility cannot be excluded that this clozapine concentration may be 

slightly higher than the therapeutic concentration in cerebrospinal fluid. The 

concentration of 20µM clozapine was necessary to regularly reproduce VFO on a day-

to-day basis. Michel and Trudeau (2000) estimate that the therapeutic brain 

concentration of clozapine may reach 8-27µM. Clozapine concentrations used in this 

thesis (10-20µM) were within this range. The estimate is based on: (a) therapeutic 

plasma clozapine concentrations of 200-450ng/ml (Olesen, 1998); and (b) the 

observation that in rodents the concentration of clozapine (as measured with 

sophisticated chromatography techniques) accumulates in brain to a level 16-24 times 

greater than that in plasma (Baldessarini et al., 1993;Weigmann et al., 1999). However, 

they note that the cerebrospinal fluid clozapine concentration may be lower than that in 

the brain as a whole. A further complicating factor is that clozapine may also 

accumulate in slice preparations in vitro (Gemperle et al., 2003). 

4.4.5 Future work 

Given the possible role of interneurons in the mechanism underlying hippocampal VFO 

in vivo (Buzsaki et al., 1992;Ylinen et al., 1995a;Klausberger et al., 2003;Klausberger et 

al., 2004;Klausberger et al., 2005) it would be interesting to examine the role of 

interneurons in clozapine-induced VFO in cortex in vitro. 

Furthermore, combining biocytin fills with intracellular electrophysiology would be 

useful in morphological characterisation of cells and investigation of dye-coupling. In 

addition to examining the extent of gap-junctional coupling, dye-coupling experiments 

may be helpful in determining the neuronal compartment(s) in which any coupling 

occurs. 

Given the possible differences between cell types and microcircuitry in rat compared to 

human cortex, it would be interesting to investigate mechanisms underlying clozapine-

induced VFO in human tissue in vitro.  

Injection of rats with clozapine may represent a more realistic model of the oral 

administration of clozapine in the clinic compared to the acute application of clozapine 

to slices used in experiments in this thesis. 
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In light of the possible role of disinhibition in the mechanism underlying clozapine-

induced VFO in this thesis, it is interesting that clozapine may suppress GABAA 

receptor-mediated inhibition in the ventral tegmental area (Michel and Trudeau, 2000) 

and hippocampus (Ohno-Shosaku et al., 2011). To determine whether or not clozapine 

attenuates IPSPs in 2⁰ somatosensory cortex under experimental conditions used in this 

thesis, stimulation experiments could be performed to compare control intracellular 

IPSPs with those following application of clozapine. 

4.4.6 Summary 

In summary, in vitro clozapine induced patches of VFO in CA2, and, importantly, in 2⁰ 

somatosensory cortex, where they were of a higher frequency and maximal in layer V. 

Axonal hyperexcitability, possibly spread through the axonal plexus, may underlie 

cortical clozapine-induced VFO, and a role for inhibition of GABAA receptors and/or 

inhibition of neuronal nicotinic receptors may also be implicated in the mechanism. The 

atypical antipsychotic olanzapine, but not the classical antipsychotic haloperidol, also 

induced prominent VFO. The different dynamics of inter-spike intervals in bursts of IB 

cells compared to those in bursts of field VFO suggests that clozapine-induced VFO 

does not result merely from synchronous bursts of a few IB cells. 

Following characterisation of clozapine-induced VFO in vitro in this chapter, to further 

investigate clozapine-related epileptiform activity the next step was to investigate 

clozapine-induced paroxysmal discharges in vitro. 
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Chapter 5 

Results – Clozapine-induced paroxysmal discharges in vitro 
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5.1 Introduction 

Following the demonstration and basic characterisation of transient seizure-like events 

in a psychiatric patient treated with clozapine in chapter 3, and the characterisation of 

clozapine-induced VFO in rat brain slices of 2⁰ somatosensory in vitro in chapter 4, this 

chapter considers clozapine-induced full paroxysmal events themselves in this region of 

cortex in vitro. 

Aims 

The aims of this chapter are as follows: 

 To establish whether clozapine can generate full paroxysmal events, resembling 

those seen in patient EEG data, in slices of rat 2⁰ somatosensory cortex. 

 To map the distribution and spatial extent of clozapine-induced paroxysmal 

events in 2⁰ somatosensory cortex in terms of their laminar distribution in the 

cortical column and longitudinal distribution throughout the regions of interest 

to attempt to focus-in on the cell types and local circuits involved for further 

study.  

 Similarly, to examine the spatiotemporal progression of paroxysmal events in 

terms of LFPs, spike rates, spike synchrony, and spike-spike correlations, and to 

examine spike-field correlations. 

 To investigate the activity of specific types of neurons in relation to clozapine-

induced paroxysmal discharges and to attempt to determine their cellular basis.  

 To compare paroxysmal events induced by gabazine with those induced by 

clozapine to investigate the possible role of partial disinhibition in relation to 

clozapine-induced paroxysmal events. 

5.1.1 Clozapine-induced paroxysmal events in vitro 

Clozapine-related abnormal EEG activity is known to include slowing of background 

activity, abnormal theta, abnormal delta, intermittent sharp transients and spike-wave 

paroxysms (Malow et al., 1994;Welch et al., 1994;Haring et al., 1994;Denney and 

Stevens, 1995;Freudenreich et al., 1997). Possible mechanisms underlying clozapine-

induced epileptiform activity include VFO (chapter 4), NMDA receptor agonism (see 

section 1.4.2.2-1.4.2.3), and suppression of GABAA receptors (see below and section 

1.4.2.1). Here, it was decided to investigate clozapine-induced paroxysmal events in rat 

brain slices to take advantage of the benefits of the in vitro approach in relation to the 
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study of cellular and molecular mechanisms (described in section 4.1). The pyramidal 

neuronal cell types investigated in layer V of 2⁰ somatosensory cortex in this chapter 

are introduced in section 4.1.3. 

5.1.2 Partial inhibition of GABAA receptors and epileptiform activity 

In light of the suppression of GABAA receptor-mediated inhibition by clozapine 

(Michel and Trudeau, 2000;Ohno-Shosaku et al., 2011), and the finding in this thesis 

that, similar to clozapine, the GABAA receptor antagonist gabazine induced VFO in 

layer V of 2º somatosensory cortex (section 4.3.8), investigation of the possible role of 

GABAA receptor inhibition in relation to clozapine-induced paroxysmal events is 

warranted. 

The relevance of GABA to seizures was initially recognised when children fed with a 

formula which contained insufficient vitamin B6 (pyridoxine) developed seizures 

(Molony and Parmelee, 1954;Coursin, 1954). As the coenzyme for glutamic acid 

decarboxylase (GAD), the enzyme responsible for the synthesis of GABA, pyridoxine is 

required for normal GABAergic neurotransmission. 

Further evidence of the importance of GABA in seizures was provided when it was 

discovered that GABA could prevent seizures, and, conversely, drugs which hampered 

GABA neurotransmission could trigger convulsions (Hawkins and Sarett, 1957;Benassi 

and Bertolotti, 1962). Furthermore, more recently, genetic studies have identified 

mutations in GABAA receptors in individuals with childhood absence and febrile 

seizures (Wallace et al., 2001;Kananura et al., 2002). 

Early studies showed that blocking GABAA receptor-mediated inhibition induces 

epileptiform activity in animals in vitro (Schwartzkroin and Prince, 1978;Schwartzkroin 

and Prince, 1980) and in vivo (Matsumoto and Marsan, 1964;Prince, 1968;Dichter and 

Spencer, 1969;Ayala et al., 1973). The feline generalised penicillin epilepsy model, in 

which penicillin, a weak GABAA antagonist, induces generalised spike-wave 

discharges, became well-established in epilepsy research (e.g. Avoli and Gloor, 

1982b;Avoli and Gloor, 1982a). 

Indeed, application of various GABAA receptor antagonists, including bicuculline, 

picrotoxin or penicillin to isolated hippocampal or neocortical brain slice preparations in 

vitro has been a widely used approach in epilepsy research. Such approaches 

demonstrated that GABAA receptor function is important in limiting neuronal network 
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synchrony and controlling transmission in polysynaptic pathways (Miles and Wong, 

1983;Miles and Wong, 1987). 

In line with the idea that failure of GABAA receptor-mediated inhibition was a 

requirement for generation of epileptiform discharges, reductions in the number of 

GABAergic symmetric synapses onto pyramidal cells were observed in monkeys with 

cortical focal epilepsy (Ribak et al., 1982). 

However, the classical view that deficient GABA receptor signalling is a necessary 

requirement for the occurrence of seizures has been questioned by findings that 

GABAergic inhibitory mechanisms can be preserved in animal models of epilepsy 

(Davenport et al., 1990;Esclapez et al., 1997;Prince and Jacobs, 1998;Cossart et al., 

2001;Cossart et al., 2005) and in epileptic human tissue (Isokawa-Akesson et al., 

1989;Babb et al., 1989;Avoli and Olivier, 1989). Certain subtypes of interneurons are 

preserved in animal models of epilepsy and human epileptic tissue (Babb et al., 

1989;Davenport et al., 1990;Esclapez et al., 1997) whereas other subtypes may be 

reduced in limbic structures (de Guzman et al., 2006;de Guzman et al., 2008). 

Indeed, more complex roles for GABAergic neurotransmission in epilepsy are emerging 

with the proposal that GABAergic neurotransmission may contribute to epileptiform 

synchrony (Avoli et al., 1993;Avoli et al., 1996a;Avoli et al., 1996b;Avoli et al., 

1996c;de Curtis and Gnatkovsky, 2009). Another example of the complex relationship 

between GABAA receptors and epilepsy is demonstrated by the finding that inhibition 

may actually be strengthened in the dentate gyrus in the kindling model of temporal 

lobe epilepsy (Otis et al., 1994).  

Nonetheless, a role for the partial inhibition of GABAA receptors continues to be 

highlighted in the generation of epileptiform activity. While full blockade of GABAA 

receptors in vitro induces interictal activity but not prolonged ictal discharges, partial 

reduction of GABAergic inhibition can generate full seizure-like activity. For example, 

partial disinhibition conferred by transient arterial application of the GABAA receptor 

antagonist bicuculline to the guinea pig isolated brain preparation induces seizures in 

the entorhinal-hippocampal region (Gnatkovsky et al., 2008). In line with this, a partial 

reduction in fast GABAA receptor-mediated inhibition has been suggested to trigger 

seizures in computer models of temporal lobe seizures (Wendling et al., 2002;Labyt et 

al., 2006). 
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In isolated preparations, GABAA receptor antagonism in most cases induces short-

lasting interictal spikes or prolonged afterdischarges similar to those seen after high 

frequency stimulation. Robust and frequent seizure-like events themselves typically 

require a brain preparation including interconnected regions, such as the hippocampal-

parahippocampal slice preparation (Walther et al., 1986;Jones and Lambert, 

1990a;Jones and Lambert, 1990b;Dreier and Heinemann, 1991).  

Prolonged epileptiform discharges can also be induced by other experimental 

manipulations that alter GABAA inhibition, such as application of the K
+
 channel 

blocker 4-aminopyridine (4AP), increased concentrations of K
+
, use of Mg

2+
 free 

artificial cerebrospinal fluid, or high frequency electrical stimulation (Jefferys, 

1990;Avoli et al., 1990;Avoli et al., 2002;de Curtis and Gnatkovsky, 2009;Fujiwara-

Tsukamoto et al., 2004;Fujiwara-Tsukamoto et al., 2006;Fujiwara-Tsukamoto et al., 

2007). 

In terms of laminar effect, it is interesting that during interictal-like discharges induced 

in rat entorhinal cortex by blockade of GABAA receptors, activity in layer IV/V 

preceded that in layer II (Jones and Lambert, 1990a). Furthermore, following 

application of 4AP and glutamatergic antagonists to entorhinal cortex, the largest 

increases in extracellular K
+
 occur in deep layers (Avoli et al., 1996a), where ictal 

activity may be initiated (Jones and Lambert, 1990a;Avoli et al., 1996a). Similarly, 

there was a reduction of inhibition in layer V of entorhinal cortex in brain slices from 

rats treated with pilocarpine (de Guzman et al., 2008). 

5.2 Methods 

5.2.1 Slice preparation and maintenance 

Experiments in this chapter made use of rat brain slice preparations in vitro. Slices were 

450µm thick sections of 2⁰ somatosensory cortex cut in the horizontal plane from adult 

male Wistar rats (150-250g). Slices were prepared according to section 2.1-2.3 and the 

maintenance of slices is described in section 2.4. Extracellular recording techniques are 

described in section 2.6.1, and data acquisition is described in section 2.7-2.8. 

Paroxysmal events were induced by either clozapine or gabazine according to the 

experiment.  
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5.2.2 Intracellular recording methods 

Prior to any intracellular recordings, regions of cortex generating paroxysmal events 

were identified using an extracellular field electrode. The field electrode remained in the 

slice next to the intracellular electrode for the duration of the experiment to compare the 

intracellular activity of individual cells to the LFP. Sharp borosilicate glass 

microelectrodes filled with potassium acetate (2M, 80 – 150 M) were used to impale 

cells for intracellular recordings in accordance with the details in section 2.6.3. 

Electrophysiological characterisation of neurons was achieved using a 0.3nA 

depolarising step with a duration of 300ms, as described previously (McCormick et al., 

1985). EPSPs were revealed by injection of tonic, negative DC current until the 

membrane potential of the cell was hyperpolarised to -70mV to mask concurrent IPSPs, 

and conversely, IPSPs themselves were revealed, when successful, by injection of tonic, 

positive current until the membrane potential of the cell was depolarised away from the 

chloride reversal potential to -30mV.  

5.2.3 Multi-electrode array recording techniques 

Following confirmation of the presence of paroxysmal events in the slice using an 

extracellular field electrode, multichannel recordings were performed using Utah 

electrode grids as described in section 2.7.2. Data were collected using Central software 

(Blackrock Microsystems inc. USA) as described in section 2.7.2 and subsequently 

exported to Matlab software for offline analysis. 

5.2.4 Data analysis 

Paroxysmal discharges were quantified in terms of their amplitude, frequency and 

width. In general these discharges were defined as distinct from VFO as they had large-

amplitude, lower frequency components. For the multi-electrode array data, spike 

synchrony (time distance to the nearest spike between pairs of units), spike-spike 

correlations, and spike-field correlations were quantified in Neuroexplorer and exported 

to MATLAB for thresholding and spatial mapping with reference to electrode positions 

in the Utah grid provided by the supplier.  

For spike-spike correlations, cross-correlations were performed between each pair of 

units and connectivity was quantified by measuring the point on the resulting cross-

correlogram where the central peak crossed the Y-axis. Similarly, for spike-field 

correlations, cross-correlations were performed between unit spike rate histograms and 
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LFPs for each unit and LFP combination, and the correlation was quantified by 

measuring the point on the resulting cross-correlogram where the central peak crossed 

the Y-axis. 

For colour maps, which were used to illustrate the progression of LFPs and spike rates, 

data were exported to MATLAB, where they were mapped with reference to electrode 

positions in the Utah grid provided by the supplier, interpolated and illustrated in two 

dimensional ‘surf’ plots with ‘jet’ colour maps. 

5.3 Results 

5.3.1 Clozapine induced transient paroxysmal discharges in layer V of rat 2º 

somatosensory cortex in vitro 

In addition to VFO, clozapine (10-20µM) sometimes (33% incidence, 11/33 slices) also 

induced spontaneous, regularly occurring, transient paroxysmal discharges in layer V of 

rat 2º somatosensory cortex in vitro, typically present as high amplitude negative-going 

events with lower frequency components than VFO alone (Fig. 5.1). The mean 

amplitude of clozapine-induced paroxysmal discharges was 193.9 ± 10.8 µV, the mean 

frequency of such events was 3.24 ± 0.88 events per minute (n = 112 events in 11 

slices), and their mean width was 401 ± 8 ms. VFO were typically present, before, 

during and after paroxysmal events in layer V (Fig. 5.1A). For comparison, the median 

amplitude of clozapine-induced VFO was 113 (70 → 159) µV and their median burst 

frequency was 3.26 (1.81 → 4.18) Hz (section 4.3.2). 

To investigate whether there was any difference in VFO occurring in traces where 

paroxysmal discharges were present compared to that occurring in traces where 

paroxysmal discharges were absent, various VFO parameters were quantified and 

compared in relation to this condition (Table 5.1). No statistically significant differences 

were found in VFO parameters in relation to the presence (n = 11 slices) or absence (n = 

22 slices) of paroxysmal discharges (p > 0.05 in each case, Mann-Whitney rank sum 

test or t-test as appropriate, Table 5.1). 

With the same filter settings as used in clinical EEG recordings (0.5 – 70 Hz, see 

chapter 3), clozapine-induced paroxysmal events in rat brain slices in vitro had a 

remarkably similar appearance to transient epileptiform spikes in EEG recordings from 

a psychiatric patient treated with clozapine (chapter 3, Fig. 5.1  vs Fig. 3.1). 
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5.3.2 Intracellular activity of neurons during clozapine-induced paroxysmal 

discharges 

To investigate the activity of neurons during clozapine-induced paroxysmal events, 

sharp electrode intracellular recordings were taken from cell somata in cells nearby to 

the field potential in layer V of 2º somatosensory cortex. Of the 35 RS cells from which 

intracellular recordings were taken, clozapine-induced paroxysmal discharges were 

present in the corresponding field in 9 cases. These paroxysmal events were also present 

in the field corresponding to intracellular recordings for 2 putative IB cells. 

RS cells fired, sometimes in bursts of spikes, and in other cases in spike singletons, 

during these paroxysmal events, and the events were clearly associated with large, 

compound EPSPs and IPSPs in this cell type (Fig. 5.2). In many cases, RS cells were 

otherwise very quiescent and somatic activity in this cell type was often only observed 

during the paroxysmal events.  

Bursting activity occurred in a putative IB cell during clozapine-induced paroxysmal 

discharges, and similarly to RS cells, the events were associated with large, compound 

EPSPs and IPSPs in this cell type (Fig. 5.3). 

5.3.3 Spatiotemporal properties of clozapine-induced paroxysmal discharges in 2º 

somatosensory cortex 

Utah multi-electrode array recordings are useful in investigating the spatial distribution 

of oscillatory activity as they allow for simultaneous acquisition of extracellular data 

from 96 channels over a 3.64*3.64mm grid. The mean amplitude of clozapine-induced 

paroxysmal events recorded in each of the Utah array electrodes was illustrated in a 

colour map which was then superimposed over an image of 2º somatosensory cortex 

from a rat brain atlas (Fig. 5.4, Paxinos and Watson, 1998). Clozapine-induced 

paroxysmal events were more widely distributed compared to clozapine-induced VFO 

(cf. Fig. 4.9), and in this example occurred in a consistent laminar manner 

longitudinally along layers IV and V, where they were maximal, with layer VI and 

superficial layers I-III being relatively spared.  
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5.3.3.1 Spatiotemporal progression of LFPs during clozapine-induced paroxysmal 

discharges 

To further investigate the spatiotemporal properties of clozapine-induced paroxysmal 

discharges, the spatial progression of LFPs associated with these events was examined 

at 50ms intervals over a 450ms time series and illustrated in a colour map for each time 

point. Two examples of the spatial progression of LFPs from different slices are 

illustrated (Fig. 5.5 and Fig. 5.6). In one example it is revealed that the event started 

superficially, moved deeper, and then appeared to propagate longitudinally along deeper 

layers (Fig. 5.5). In the second example, activity appeared first at the edge of the array 

in deep layers, followed again by a clear longitudinal propagation of activity along deep 

layers of the slice (Fig. 5.6). 

5.3.3.2 Spatiotemporal progression of unit activity during clozapine-induced 

paroxysmal discharges 

Extracellular unit recordings confirmed the intracellular findings of bursts of spikes or 

single spikes during paroxysmal events, and that in terms of somatic spiking most cells 

were otherwise very quiescent except during such events. Fig. 5.7 clearly illustrates the 

close association between bursts of spikes in multiple (n = 82) extracellular units and a 

concurrent clozapine-induced paroxysmal discharge. The mean spike rate during 

clozapine-induced paroxysmal discharges was 5.74 ± 0.35 spikes per second (n = 232 

units in 4 discharges in 2 slices). 

To further investigate the spatiotemporal properties of clozapine-induced paroxysmal 

discharges, the spatial progression of unit activity associated with these events was 

examined in 50ms windows at 50ms intervals over a 500ms time series and illustrated 

in a colour map for each time point. Two examples of the spatial progression of unit 

spike rates from events in different slices are illustrated (Fig. 5.8 and Fig. 5.9), together 

with pooled data from 4 discharges in 2 slices (Fig. 5.10). 

The first and second examples correspond to the same discharges as those used for the 

first and second examples in the LFP progression figures (Fig. 5.5 and Fig. 5.6). 

Similarly, the time windows correspond such that time points for LFP windows are 

centred on the corresponding unit activity window. 

In the first example, unit activity started superficially, and moved deeper with a hint of 

longitudinal propagation (Fig. 5.8). The spatial progression of unit activity 
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corresponded well to that of LFPs (Fig. 5.8 vs Fig. 5.5). In the second example, there 

was a hint of a superficial origin of unit activity, and, similarly to the LFP (Fig. 5.6), a 

clear longitudinal propagation of unit activity along deeper layers (Fig. 5.9). The pooled 

data also supported a superficial origin and deep propagation of unit activity (Fig. 5.10). 

5.3.3.3 Spatiotemporal progression of unit synchrony during clozapine-induced 

paroxysmal discharges 

To further investigate the spatiotemporal properties of clozapine-induced paroxysmal 

discharges, the spatial progression of unit synchrony associated with these events was 

examined in 50ms windows at 50ms intervals over a 500ms time series and illustrated 

in a synchrony map for each time point. Here synchrony was measured in terms of the 

time distance to the nearest spike between pairs of units.  

Two examples of the spatial progression of unit synchrony from events in different 

slices are illustrated.  The first example is shown with a synchrony threshold of mean 

plus 3 standard deviations of the synchrony in the most synchronous time window 

(‘high’ threshold, Fig. 5.11) and also with a synchrony threshold of mean plus 1 

standard deviation of the synchrony in the most synchronous time window (‘low’ 

threshold, Fig. 5.12). As the unit activity was relatively sparse in the second example, 

no thresholding was used in this example (Fig. 5.13). The time windows correspond to 

those for unit activity in the previous figures. Units between which there was high 

synchrony often corresponded to those associated with high spike rates in the previous 

figures.  

The high degree of synchrony between superficial units at the start of the event in the 

first example, which is clearer in the low threshold illustration (Fig. 5.12), was 

consistent with a superficial origin of the event, and the synchrony between superficial 

and deep layers as the event continued was consistent with the propagation of the event 

from superficial to deep layers (Fig. 5.11, 5.12). 

In the second example (Fig. 5.13), there was some evidence of synchrony between 

superficial and deep layers at the start of the event, and clear evidence of longitudinal 

synchrony along deep layers as the event propagated along these layers. 
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5.3.3.4 Spatiotemporal progression of spike-spike correlations during clozapine-

induced paroxysmal discharges 

To further investigate the spatiotemporal properties of clozapine-induced paroxysmal 

discharges, the spatial progression of spike-spike correlations associated with these 

events was examined in 200ms overlapping windows at 100ms intervals over a 500ms 

time series and illustrated in a connectivity map for each time point (Fig. 5.14). Cross-

correlations were performed between each pair of units and connectivity was quantified 

by measuring the point on the resulting cross-correlogram where the central peak 

crossed the Y-axis. 

Connectivity maps for spike-spike correlations resembled to some extent those for 

synchrony in terms of time distance to the nearest spike in the corresponding example, 

especially at the start of the time series (Fig. 5.14 vs Fig. 5.12).  

The high degree of connectivity between superficial units at the start of the event was 

consistent with a superficial origin of the event, and the connectivity between 

superficial and deep layers as the event continued was consistent with the propagation 

of the event from superficial to deep layers (Fig. 5.14). In the middle of the time series 

there was a high degree of connectivity between units in superficial and deep layers 

throughout the slice. There was also some evidence of longitudinal connectivity along 

deep layers towards the end of the event, consistent with possible propagation along 

these layers in this example. 

Connectivity maps were also generated for a 1s time window to cover entire events in 

two events from two different slices (Fig. 5.15, 5.16). In the first example, connectivity 

was evident between units in superficial and deep layers throughout the slice (Fig. 

5.15).  In the second example (Fig. 5.16), which resembled the corresponding maps for 

synchrony in terms of time distance to the nearest spike (Fig. 5.13), there was some 

evidence of connectivity between superficial and deep layers, and clear evidence of 

longitudinal connectivity along deep layers. 

5.3.3.5 Spike-field correlations during clozapine-induced paroxysmal discharges 

To further investigate the spatiotemporal properties of clozapine-induced paroxysmal 

discharges, maps of spike-field correlations were generated for a 1s time window to 

cover entire events in two example events from two different slices (Fig. 5.17, 5.18). 

Cross-correlations were performed between unit spike rate histograms and LFPs for 
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each unit and LFP combination, and synchrony was quantified by measuring the point 

on the resulting cross-correlogram where the central peak crossed the Y-axis. 

In the first example (Fig. 5.17), there was some evidence of longitudinal spike-field 

correlations along superficial layers, and also of correlations between superficial units 

and deep LFPs. In the second example (Fig. 5.18), there was some evidence of 

longitudinal spike-field correlations along middle layers, and also of spike-field 

correlations between middle and superficial layers, and between middle and deep layers. 

In particular, there were correlations between units in middle layers and superficial 

LFPs, and between units in middle layers and deep LFPs (Fig. 5.18). 

5.3.4 Gabazine induced transient paroxysmal discharges in layer V of rat 2º 

somatosensory cortex in vitro 

In light of the finding in this thesis that, similar to clozapine, the GABAA receptor 

antagonist gabazine induced VFO in layer V of 2º somatosensory cortex (section 4.3.8), 

it was interesting to investigate whether gabazine would also induce transient 

paroxysmal events similar to those associated with clozapine. Gabazine (250nM) 

induced spontaneous and regular large, transient paroxysmal discharges in layer V of rat 

2º somatosensory cortex in vitro, typically present as high amplitude negative-going 

events (Fig. 5.19). However, paroxysmal events induced by gabazine were larger, and 

had a different and more regular shape, compared to those induced by clozapine. 

The mean amplitude of gabazine-induced paroxysmal discharges was 777 ± 237 µV, the 

mean frequency of such events was 1.53 ± 0.28 events per minute, and their mean width 

was 343 ± 77 ms (n = 8 slices). VFO were typically present before and during gabazine-

induced paroxysmal events in layer V (Fig. 5.19A).  

5.3.5 Spatiotemporal properties of gabazine-induced paroxysmal discharges in 2º 

somatosensory cortex 

Utah multi-electrode array recordings were used to investigate the spatial distribution of 

gabazine-induced paroxysmal discharges. The mean amplitude of events recorded in 

each of the Utah array electrodes was illustrated in a colour map which was then 

superimposed over an image of 2º somatosensory cortex from a rat brain atlas (Fig. 

5.20, Paxinos and Watson, 1998). Similar to clozapine-induced paroxysmal events, 

gabazine-induced paroxysmal events occurred in a laminar manner longitudinally along 
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layers IV and V, where they were maximal, with layer VI and superficial layers I-III 

being relatively spared.  

5.3.5.1 Spatiotemporal progression of LFPs during gabazine-induced paroxysmal 

discharges 

To further investigate the spatiotemporal properties of gabazine-induced paroxysmal 

discharges, the spatial progression of LFPs associated with these events was examined 

at 50ms intervals over a 450ms time series and illustrated in a colour map for each time 

point. The event spread horizontally along deep layers (Fig. 5.21), and more superficial 

layers were recruited around the middle of the event (~200-250ms). 

5.3.5.2 Spatiotemporal progression of unit activity during gabazine-induced 

paroxysmal discharges 

Similar to clozapine-induced discharges, extracellular unit recordings revealed bursts of 

spikes or single spikes during gabazine-induced paroxysmal events. Fig. 5.22 clearly 

illustrates the close association between bursts of spikes in multiple (n = 100) 

extracellular units and a concurrent gabazine-induced paroxysmal discharge. The mean 

spike rate during gabazine-induced paroxysmal discharges was 7.91 ± 0.69 spikes per 

second (n = 376 units in 4 discharges in 4 slices), which was greater than that during 

clozapine-induced discharges (5.74 ± 0.35 spikes per second, n = 232 units in 4 

discharges in 2 slices). Likewise, although spiking activity outside events was again 

relatively sparse, there was more such activity associated with gabazine compared to 

clozapine.  

To further investigate the spatiotemporal properties of gabazine-induced paroxysmal 

discharges, the spatial progression of unit activity associated with these events was 

examined in 50ms windows at 50ms intervals over a 500ms time series and illustrated 

in a colour map for each time point. An example of the spatial progression of unit spike 

rates is illustrated (Fig. 5.23), together with pooled data from 4 discharges in 4 slices 

(Fig. 5.24). 

Unit activity spread horizontally along deep layers (Fig. 5.23, 5.24), and more 

superficial layers were recruited around the middle of the event (~200-250ms). The 

spatial progression of unit activity corresponded well to that of LFPs (Fig. 5.23 vs Fig. 

5.21).  
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5.3.5.3 Spatiotemporal progression of unit synchrony during gabazine-induced 

paroxysmal discharges 

To further investigate the spatiotemporal properties of gabazine-induced paroxysmal 

discharges, the spatial progression of unit synchrony associated with these events was 

examined in 50ms windows at 50ms intervals over a 500ms time series and illustrated 

in a synchrony map for each time point. Here synchrony was measured in terms of the 

time distance to the nearest spike between pairs of units.  

An example of the spatial progression of unit synchrony in a gabazine-induced 

paroxysmal discharge is shown with a synchrony threshold of mean plus 3 standard 

deviations of the synchrony in the most synchronous time window (‘high’ threshold, 

Fig. 5.25), and also with a synchrony threshold of mean plus 1 standard deviation of the 

synchrony in the most synchronous time window (‘low’ threshold, Fig. 5.26).  

The high degree of synchrony between superficial units at the start of the event was 

consistent with a superficial origin, and the synchrony between superficial and deep 

layers as the event continued was consistent with the propagation of the event from 

superficial to deep layers (Fig. 5.25, 5.26). There was also clear evidence of longitudinal 

synchrony along deep layers as the event propagated along these layers. Units between 

which there was high synchrony often corresponded to those associated with high spike 

rates.  

5.3.5.4 Spike-spike correlations during gabazine-induced paroxysmal discharges 

To further investigate the spatiotemporal properties of gabazine-induced paroxysmal 

discharges, spike-spike correlations were mapped out over a 1s time window to cover 

the entire event (Fig. 5.27). Cross-correlations were performed between each pair of 

units and connectivity was quantified by measuring the point on the resulting cross-

correlogram where the central peak crossed the Y-axis. Although connectivity was 

evident between units in superficial and deep layers throughout the slice, there was 

good evidence of longitudinal connectivity along deep layers (Fig. 5.27). 

5.3.5.5 Spike-field correlations during gabazine-induced paroxysmal discharges 

To further investigate the spatiotemporal properties of gabazine-induced paroxysmal 

discharges, spike-field correlations were mapped out over a 1s time window to cover the 

entire event (Fig. 5.28). Cross-correlations were performed between unit spike rate 

histograms and LFPs for each unit and LFP combination, and synchrony was quantified 
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by measuring the point on the resulting cross-correlogram where the central peak 

crossed the Y-axis. 

There was evidence of spike-field correlations in superficial and deep layers throughout 

the slice (Fig. 5.28). In particular though, there were longitudinal spike-field 

correlations along deep layers of the slice, and correlations between superficial units 

and deeper LFPs.  
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5.4 Discussion 

Clozapine-related abnormal EEG activity is known to include slowing of activity, 

abnormal theta, abnormal delta, intermittent sharp transients, spike discharges and 

spike-wave paroxysms (e.g. Malow et al., 1994;Welch et al., 1994;Haring et al., 

1994;Denney and Stevens, 1995;Freudenreich et al., 1997;Centorrino et al., 2002). In 

addition to the VFO events described in the previous chapter, clozapine also induced 

full paroxysmal discharges in 33% of rat brain slices in vitro. Clozapine-induced 

paroxysmal discharges in normal rat brain slices in vitro had a remarkably similar 

appearance to transient epileptiform spikes in EEG recordings from a psychiatric patient 

treated with clozapine (chapter 3). 

Unlike VFO events, which were only weakly correlated with somatic intracellular 

activity, clozapine-induced paroxysmal discharges were clearly associated with spikes, 

EPSPs and IPSPs in layer V RS and IB cells. The association of compound EPSPs and 

IPSPs in layer V RS and IB cells with clozapine-induced paroxysmal events suggests 

that these events were mediated via network activity involving chemical synaptic 

transmission in both of these cell types. This is in line with the finding that paroxysmal 

events were more widely distributed spatially compared to the patches of clozapine-

induced VFO, and idea that clozapine-induced full paroxysmal events represent a level 

of network hyperexcitability greater than that associated with clozapine-induced VFO 

alone.  

Although units showed activity in superficial layers, a limitation in the approach taken 

was that intracellular recordings were not performed on cells in superficial layers. The 

deep EPSP/IPSP correlations with the field were relatively weak suggesting that activity 

may have been generated in superficial layers and projected deeper to layer V. 

The presence of clozapine-induced full paroxysmal events in 2º somatosensory cortex in 

the isolated microcircuitry of the in vitro slice preparation is further evidence for the 

particular sensitivity of this region of cortex in the generation of clozapine-related 

hyperexcitability. Furthermore, the presence of clozapine-induced paroxysmal events, 

generated de novo in normal brain tissue, further supports the idea that clozapine-related 

hyperexcitability is a direct effect of the drug rather than a consequence of 

compensation for abnormal activity in patients with psychiatric illness.  

Taken together, spatiotemporal progression data for LFPs, spike rates, spike synchrony, 

and spike-spike correlations, and spike-field correlation data, suggested that clozapine-
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induced paroxysmal events started superficially, moved deeper and then propagated 

along deep layers. It is possible that the absence of superficial activity in some examples 

may be explained in that the Utah electrode array grid may not have been positioned 

longitudinally in such as way that the relevant region of cortex was covered. In terms of 

spike-field correlations, correlations between superficial units and deeper LFPs were 

notable during paroxysmal events. 

Interestingly, corresponding data suggested that gabazine-induced paroxysmal events 

also propagated along deep layers and there was some evidence of superficial 

recruitment. Similarities to some extent in the spatiotemporal progression of events lend 

some support to the idea that disinhibition may have a role in the mechanism underlying 

clozapine-induced paroxysmal discharges. However, gabazine-induced paroxysmal 

events in layer V had a different and more regular shape compared to those induced by 

clozapine, suggesting that partial disinhibition may not be sufficient in itself to precisely 

mimic clozapine-related hyperexcitability. Furthermore, intracells showed clear, large 

compound IPSPs, suggesting that clozapine may not have had a particularly detrimental 

effect on inhibition. Indeed, unit activity associated with gabazine was far more 

pronounced compared to that associated with clozapine suggesting that inhibition may 

be relatively spared. 

The importance of deep layers in the propagation of paroxysmal discharges in this thesis 

is in line with the reduced inhibition in layer V of entorhinal cortex in brain slices from 

rats treated with pilocarpine (de Guzman et al., 2008). The longitudinal propagation of 

paroxysmal events along deep layers also further supported the idea that layer V is 

important in clozapine-related hyperexcitability. The superficial origin of paroxysmal 

discharges raises the question of the nature of any connection between the axonal 

hyperexcitability that may be related to clozapine-induced VFO in layer V and the 

superficial initiation of paroxysmal events. Furthermore, it is not known whether axonal 

spikes would show up in unit recordings. That is the VFO may be ‘hidden’ from Utah 

recordings, and this may explain why unit recording data implicate superficial layers, 

whereas deep layers appear important with respect to field and intracellular glass 

microelectrode data.  

Following characterisation of clozapine-induced paroxysmal events in vitro in this 

chapter, and the lack of a direct correlation with purely GABAA dysfunction-mediated 

paroxysms, the next step was to investigate the pharmacology of clozapine-induced 

oscillatory activity further in the search for an underlying mechanism. 
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6.1 Introduction 

Following the characterisation of clozapine-induced VFO (chapter 4) and clozapine-

induced full paroxysmal events (chapter 5) in 2⁰ somatosensory cortex, and also the 

lack of a direct correlation between clozapine-induced paroxysmal events and purely 

GABAA dysfunction-mediated paroxysms, this chapter further considers the 

pharmacology of clozapine-induced VFO and paroxysmal events in an attempt to 

identify an underlying mechanism. 

Aims 

The aims of this chapter are as follows: 

 To investigate the effect of antagonism of ionotropic glutamate receptors on 

clozapine-induced VFO and paroxysmal discharges. 

 To further investigate the effect of partial disinhibition on clozapine-induced 

VFO and paroxysmal discharges, and also, conversely, to investigate the effect 

of clozapine on VFO mediated by partial disinhibition. 

 To investigate the effect of reducing gap junction conductance on clozapine-

induced VFO and paroxysmal discharges. 

 To investigate the effect of reducing gap junction conductance on synchrony of 

clozapine-induced VFO. 

 To investigate the effect of agonism of nicotinic cholinergic receptors on 

clozapine-induced VFO, and also to investigate the effect of clozapine on VFO 

mediated by antagonism of nicotinic cholinergic receptors. 

6.1.1 Mechanisms underlying clozapine-induced epileptiform activity 

Possible mechanisms underlying clozapine-induced epileptiform activity include 

NMDA receptor agonism (see section 1.4.2.2-1.4.2.3, and below), suppression of 

GABAA receptors (section 1.4.2.1 and chapter 5), antagonism of neuronal nicotinic 

receptors (section 4.1.6 and 4.3.9), activity of fast-spiking interneurons (see section 

1.5.1.2 and below), and electrotonic coupling of neurons through gap junctions (see 

section 1.5.1.2, 1.5.1.3 and 4.3.6, and below). With the lack of a direct correlation 

between clozapine-induced paroxysmal events and purely GABAA dysfunction-

mediated paroxysms in the previous chapter, further investigation of the pharmacology 

of clozapine-induced epileptiform activity was warranted. Here, an advantage of the in 

vitro approach, the ability to readily perfuse brain slices with pharmacological agents, 
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irrespective of any deleterious effects at the whole organism level, was utilised to 

further investigate mechanisms underlying clozapine-induced VFO and paroxysmal 

discharges. 

6.1.2 Evidence of a role for fast-spiking interneurons in the generation of VFO 

When ripples were discovered it was observed that interneurons could discharge at the 

frequency of the field ripple, whereas individual pyramidal cell somata could not 

(Buzsaki et al., 1992).  

Further observations were then made about the firing of identified interneurons. A 

histologically verified basket cell discharged at the frequency of ripples (Ylinen et al., 

1995a). Basket cells and bistratified cells discharged in phase with ripples, axo-axonic 

interneurons fired immediately prior to and at the onset of a ripple, but then were silent, 

and cholecystokinin immunopositive basket cells and dendrite-targeting cells only 

discharged infrequently (Klausberger et al., 2003;Klausberger et al., 2004;Klausberger 

et al., 2005). Furthermore, phasic IPSPs, which occurred at the frequency of ripples, 

were observed in pyramidal cells (Ylinen et al., 1995a). Experimental alterations of the 

membrane potential and intracellular Cl
-
 were in line with the synaptic potentials being 

mediated by GABAA receptors (Ylinen et al., 1995a).  

More recently, in vivo recordings in the human hippocampus demonstrated an 

association between field VFO and interneuron activity (Le Van et al., 2008). 

Taken together, the data above have led to the suggestion that networks of fast-spiking 

interneurons generate ripple oscillations, but other evidence suggests that alternative 

explanations are possible. 

6.1.3 Evidence of a role for NMDA receptors in the generation of epileptiform 

activity 

As mentioned previously, clozapine may act on NMDA receptors (section 1.4.2.2). In 

this section evidence of a role for NMDA receptors in the generation of epileptiform 

activity is considered. 

The use of Mg
2+

 free medium induces epileptiform activity in rat hippocampus and 

entorhinal cortex, which is dependent on activity of NMDA receptors (Walther et al., 

1986;Mody et al., 1987;Jones and Lambert, 1990b). Similarly, low extracellular Mg
2+
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also induces NMDA receptor-dependent ictal activity in slices from epileptic human 

neocortex (Avoli et al., 1991). 

In another model, it has been reported that the K
+
 channel blocker 4-aminopyridine 

(4AP) can induce epileptiform activity in rat entorhinal cortex, and the ictal discharges 

but not interictal discharges or slow field potentials were abolished by antagonism of 

NMDA receptors (Avoli et al., 1996a). 

In a model of epilepsy where the extracellular K
+
 concentration is modulated, blockade 

of AMPA and NMDA ionotropic glutamate receptors abolishes fast ripples in rat 

hippocampal slices (Dzhala and Staley, 2004). In this model it was thought that 

synchronous bursts in pyramidal cells and similar intrinsic firing patterns among local 

neurons were required for fast ripples, and that this synchronous activity depended on 

fast glutamatergic synaptic transmission.  

6.1.4 Pharmacological evidence of a role for both NMDA receptors and gap 

junctions in the generation of epileptiform activity 

In some cases both NMDA receptors and gap junctions are implicated in the generation 

of epileptiform activity. 

In neocortical slices surgically removed from patients with focal cortical dysplasia, 

spontaneous events, comprising fast negative transients or fast transients superimposed 

on a slower negative shift, occur in vitro (Gigout et al., 2006). These events are 

reversibly abolished by either antagonism of NMDA receptors or reduced gap junction 

conductance, suggesting a role for both chemical synaptic transmission and electrotonic 

coupling of neurons through gap junctions in the mechanism.  

Furthermore, in these slices application of the K
+
 channel blocker 4-aminopyridine 

(4AP) induces ictal-like activity mediated by both NMDA receptor conductances (Avoli 

et al., 1999) and gap junctions (Gigout et al., 2006). 
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6.1.5 Pharmacological evidence of a role for gap junctions in the generation of 

VFO and epileptiform activity 

Here evidence that suggests that VFO may not be mediated through conventional 

chemical synaptic transmission, but is instead dependent solely on electrotonic coupling 

of neurons through gap junctions, is considered.  

Firstly, the idea of a role for interneurons in the generation of VFO is challenged by 

findings that VFO persist following blockage of GABAA receptors in vitro and in vivo 

(Maier et al., 2003;Jones and Barth, 2002;Roopun et al., 2010b). For example, VFO 

superimposed on rat somatosensory cortex potentials evoked by whisker stimulation 

persist and actually occur more following topical application of the GABAA receptor 

antagonist bicuculline (Jones and Barth, 2002). Furthermore, there is no evidence of 

phasic IPSPs in intracellular recordings from a putative pyramidal cell during sharp 

wave/ripples induced by application of higher than normal concentrations of KCl in 

mouse hippocampal slices when GABAA receptors are blocked (Nimmrich et al., 2005). 

Secondly, hippocampal VFO in vitro persist following blockade of GABAA, AMPA and 

NMDA receptors together (Draguhn et al., 1998;Nimmrich et al., 2005). Furthermore, 

VFO persist when nominally calcium-free artificial cerebrospinal fluid is used to block 

calcium-dependent synaptic transmission (Draguhn et al., 1998). VFO induced by 

ejection of a concentrated K
+
 solution in the dentate gyrus also occurs in Ca

2+
-free 

artificial cerebrospinal fluid (Towers et al., 2002). Thus, these VFO do not require 

conventional chemical synaptic neurotransmission at the synapse. 

Thirdly, drugs that reduce gap junction conductance can block VFO. For example, the 

gap junction blockers carbenoxolone, octanol and halothane each reversibly suppress 

spontaneous hippocampal VFO in vitro (Draguhn et al., 1998). Another example is that 

five different gap junction blockers, with diverging effects on intrinsic membrane 

conductances, each reduced cerebellar VFO in vitro (Middleton et al., 2008). 

Further evidence of a role for gap junctions in epileptiform activity is that various 

studies using both in vivo and in vitro models of epilepsy demonstrate that 

carbenoxolone and other gap junction blocking agents suppress seizure discharges 

(Gareri et al., 2004;Gigout et al., 2006;He et al., 2009;Jahromi et al., 2002;Kohling et 

al., 2001;Nilsen et al., 2006;Perez-Velazquez et al., 1994;Ross et al., 2000;Szente et al., 

2002).  
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In one example, spontanous VFO associated with interictal discharges occur in small 

sections of human tissue surgically removed from epileptic neocortex and maintained in 

vitro (Roopun et al., 2010b). Partial disinhibition markedly attenuates the slow 

component of interictal discharges but does not affect VFO. Thus, synaptic inhibition 

influences the slow envelope of the interictal discharge but is not required for the 

generation of VFO itself. In contrast, the gap junction blocker carbenoxolone reversibly 

abolishes both the slow interictal envelope and VFO. 

In a model of glial cell dysfunction in epileptic foci, pressure ejection of alkaline 

solution in layer V of rat frontal neocortex in vitro results in runs of fast oscillations, 

termed ‘glissandi’, where the frequency accelerates from ~30-40 to > 120Hz over a few 

seconds (Cunningham et al., 2012). These glissandi persist following blockade of 

AMPA, NMDA, and GABAA & B receptors, suggesting that chemical synaptic 

transmission is not required but that instead there may be a role for some form of 

nonchemical intercellular transmission- namely the interaction between gap junction-

mediated coupling and intrinsic membrane properties afforded by m-current. 

The alkanization of layer V also generates ictal events, which, in contrast, are abolished 

by the chemical synaptic blockers (Cunningham et al., 2012). 

There is further evidence of non-synaptic electrical signalling between neurons in a 

study in which mossy fibre activation evokes spikelets in pyramidal cells in the CA3 

region of the hippocampus (Vivar et al., 2012). The spikelets occur in the presence of 

glutamate, GABAA and acetylcholine M1 antagonists but are attenuated by the gap 

junction blocker carbenoxolone, suggesting that mossy fibres can communicate with 

pyramidal cells via electrical signalling. 

6.2 Methods 

Experiments in this chapter made use of rat brain slice preparations in vitro. Slices were 

450µm thick sections of 2⁰ somatosensory cortex cut in the horizontal plane from adult 

male Wistar rats (150-250g). Slices were prepared according to section 2.1-2.3 and the 

maintenance of slices is described in section 2.4. Extracellular recording techniques are 

described in section 2.6.1. Data acquisition, data analysis and statistical techniques are 

described in section 2.7-2.8.  
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VFO events were induced by either clozapine, gabazine or d-tubocurarine according to 

the experiment. The area power in the VFO band (70-1000Hz) was the primary measure 

used to quantify extracellular recordings of VFO in LFPs.  

Paroxysmal discharges were induced by clozapine and were quantified in terms of their 

amplitude and frequency. In general these discharges were defined as distinct from VFO 

as they had large-amplitude, lower frequency components. 

Pharmacological compounds were bath applied to slices for at least 1 hour to ensure 

sufficient time for any effect to take place, except in the case of octanol where VFO 

were sometimes abolished in shorter timescales. 

6.3 Results 

In a continued search for underlying mechanisms, the effect of pharmacological agents 

on clozapine-induced VFO in layer V of 2º somatosensory cortex in vitro was 

investigated. 

6.3.1 The role of fast glutamatergic synaptic transmission in clozapine-induced 

VFO 

Bath application of NBQX (20µM), which antagonises the AMPA/kainate subtypes of 

glutamate receptor, had no significant effect on the median VFO band area power of 

clozapine-induced fast activity (median control VFO band area power 8.84 (1.45 → 

35.60) 10
-11

V
2
, with NBQX 5.10 (1.64 → 42.70) 10

-11
V

2
, p > 0.05, n = 5, Wilcoxon 

signed-rank test, Fig. 6.1). NBQX also had no significant effect on the mean peak 

frequency of clozapine-induced VFO (mean control peak frequency 186 ± 21 Hz, 

NBQX 194 ± 22 Hz, p > 0.05, n = 5, paired t-test, Fig. 6.1).  

D-AP5 (50µM), which antagonises the NMDA subtype of glutamate receptor, also had 

no significant effect on the mean VFO band area power of clozapine-induced fast 

activity (mean control VFO band area power 2.03 ± 0.72 10
-10

V
2
, D-AP5 1.76 ± 0.64 

10
-10

V
2
, p > 0.05, n = 5, paired t-test, Fig. 6.2). D-AP5 also had no significant effect on 

the mean peak frequency of clozapine-induced VFO (mean control peak frequency 227 

± 30 Hz, D-AP5 214 ± 27, p > 0.05, n = 5, paired t-test, Fig. 6.2).  
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6.3.2 The role of GABAergic fast synaptic transmission in clozapine-induced VFO 

The GABAA receptor antagonist gabazine (500nM) was associated with a non-

significant increase in the mean VFO band area power of clozapine-induced fast activity 

(mean control VFO band area power 8.34 ± 3.42 10
-11

V
2
, gabazine 1.17 ± 0.48 10

-10
V

2
, 

p > 0.05, n = 5, paired t-test, Fig. 6.3). Gabazine was also associated with a non-

significant decrease in the median peak frequency of clozapine-induced VFO (median 

control peak frequency 156 (147 → 182) Hz, gabazine 120 (116 → 152) Hz, p > 0.05, n 

= 5, Wilcoxon signed-rank test, Fig. 6.3).  

To further investigate a possible role for GABAA receptors in clozapine-induced VFO, 

and in light of the finding that gabazine (250nM) induced VFO in layer V of 2º 

somatosensory cortex (section 4.3.8), it was interesting to consider the converse 

situation, namely the effect of clozapine on gabazine-induced VFO. Clozapine was 

associated with a non-significant reduction in the mean VFO band area power of 

gabazine-induced fast activity (mean control gabazine-induced VFO band area power 

1.66 ± 1.05 10
-10

V
2
, clozapine 8.80 ± 3.73 10

-11
V

2
, p > 0.05, n = 5, paired t-test, Fig. 

6.4). Clozapine was also associated with a non-significant decrease in the median peak 

frequency of gabazine-induced VFO (median control gabazine-induced peak frequency 

225 (206 → 255) Hz, clozapine 186 (147 → 211) Hz, p > 0.05, n = 5, Wilcoxon signed-

rank test, Fig. 6.4).  

6.3.3 The role of gap junctions in clozapine-induced VFO 

6.3.3.1 The effect of the gap junction blocker carbenoxolone on clozapine-induced 

VFO 

Unexpectedly, the gap junction blocker carbenoxolone (200µM) had no significant 

effect on the mean VFO band area power of clozapine-induced fast activity (mean 

control VFO band area power 1.42 ± 0.58 10
-10

V
2
, carbenoxolone 1.62 ± 0.87 10

-10
V

2
, p 

> 0.05, n = 5, paired t-test, Fig. 6.5).  Higher concentrations of carbenoxolone (400µM, 

n = 4; 800µM, n = 3) also failed to abolish clozapine-induced VFO (data not shown). 

Carbenoxolone (200µM) had no significant effect on the mean peak frequency of 

clozapine-induced VFO (mean control peak frequency 202 ± 15 Hz, carbenoxolone 194 

± 12 Hz, p > 0.05, n = 5, paired t-test, Fig. 6.5). 

The effect of carbenoxolone (100µM) on synchrony between clozapine-induced VFO 

rhythms along layer V of 2º somatosensory cortex was also investigated (Fig. 6.6). 
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Following discovery of an optimal patch of clozapine-induced VFO with one glass 

microelectrode, a second glass microelectrode was moved distances between 100 and 

900µm from the reference electrode in a longitudinal direction along layer V of 2º 

somatosensory cortex. Synchrony within bursts was measured at each 200µm step by 

performing cross-correlation analysis on the first burst event in a 60s trace. The point in 

the cross-correlogram where the central peak crossed the Y axis was used as a measure 

of the synchrony between the two rhythms. Following application of carbenoxolone 

(100µM), synchrony measurements were repeated and it was found that synchrony was 

slightly reduced at each 200µm interval from 100µm to 900µm along layer V. However, 

the change did not reach significance in the present study (p > 0.05, n = 5, Two-way 

ANOVA, Fig. 6.6). 

6.3.3.2 The effect of blockade of the gap junction protein connexin36 on clozapine-

induced VFO 

Quinine (100µM), which blocks the gap junction protein connexin36, had no significant 

effect on the median VFO band area power of clozapine-induced fast activity (median 

control VFO band area power 8.39 (3.94 → 48.00) 10
-11

V
2
, quinine 7.84 (5.34 → 

54.40) 10
-11

V
2
, p > 0.05, n = 6, Wilcoxon signed-rank test, Fig. 6.7). 

Interestingly, quinine appeared to be associated with a small (2.9 %) but significant 

reduction in the median peak frequency of clozapine-induced VFO (median control 

peak frequency 172 (171 → 249) Hz, quinine 167 (166 → 171) Hz, p > 0.05, n = 6, 

Wilcoxon signed-rank test, Fig. 6.7). The reduction in peak frequency associated with 

quinine occurred in each experiment (n = 6). 

6.3.3.3 The gap junction blocker octanol reversibly abolished clozapine-induced 

VFO 

The gap junction blocker octanol (1mM) significantly attenuated clozapine-induced 

VFO (median control VFO band area power 9.17 (6.58 → 16.80) 10
-11

V
2
, octanol 1.7 

(1.08 → 3.29) 10
-11

V
2
, p < 0.05, n = 7, Wilcoxon signed-rank test, Fig. 6.8).  In those 

experiments where 1mM octanol incompletely reduced VFO, 2mM octanol was 

sufficient to reach near-total abolition. Following washout of octanol, VFO recovered (n 

= 4). 
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Octanol (1mM) had no significant effect on the median peak frequency of clozapine-

induced VFO (median control peak frequency 232 (172 → 267) Hz, octanol 234 (184 

→ 256) Hz, p > 0.05, n = 7, Wilcoxon signed-rank test, Fig. 6.8). 

6.3.4 The role of nicotinic receptors in clozapine-induced VFO 

In light of the inhibition of neuronal nicotinic receptors by clozapine (Grinevich et al., 

2009), and the finding in this thesis that, similar to clozapine, the broad-spectrum 

nicotinic receptor antagonist d-tubocurarine (d-TC) induced VFO in layer V of 2º 

somatosensory cortex (section 4.3.9), it was interesting to investigate the effect of the 

agonist nicotine on clozapine-induced VFO. Three concentrations of nicotine were 

used: 10nM, 5µM and 10µM. 

Nicotine (10nM) had no significant effect on the mean VFO band area power of 

clozapine-induced fast activity (mean control VFO band area power 7.15 ± 2.45 10
-

11
V

2
, nicotine (10nM) 5.38 ± 1.95 10

-11
V

2
, p > 0.05, n = 5, paired t-test, Fig. 6.9). 

Nicotine (10nM) also had no significant effect on the mean peak frequency of 

clozapine-induced VFO (mean control peak frequency 216 ± 30 Hz, nicotine (10nM) 

216 ± 34 Hz, p > 0.05, n = 5, paired t-test, Fig. 6.9).  

Similarly, nicotine (5µM) had no significant effect on the mean VFO band area power 

of clozapine-induced fast activity (mean control VFO band area power 7.28 ± 1.69 10
-

11
V

2
, nicotine (5µM) 7.90 ± 2.01 10

-11
V

2
, p > 0.05, n = 5, paired t-test, Fig. 6.10). 

Nicotine (5µM) also had no significant effect on the mean peak frequency of clozapine-

induced VFO (mean control peak frequency 212 ± 22 Hz, nicotine (5µM) 220 ± 17 Hz, 

p > 0.05, n = 5, paired t-test, Fig. 6.10).  

Likewise, nicotine (10µM) had no significant effect on the mean VFO band area power 

of clozapine-induced fast activity (mean control VFO band area power 7.28 ± 1.69 10
-

11
V

2
, nicotine (10µM) 7.51 ± 1.97 10

-11
V

2
, p > 0.05, n = 5, paired t-test, Fig. 6.11). 

Nicotine (10µM) also had no significant effect on the mean peak frequency of 

clozapine-induced VFO (mean control peak frequency 212 ± 22 Hz, nicotine (10µM) 

214 ± 16 Hz, p > 0.05, n = 5, paired t-test, Fig. 6.11).  

To further investigate a possible role for nicotinic receptors in clozapine-induced VFO, 

and in light of the finding that d-tubocurarine (10µM) induced VFO in layer V of 2º 

somatosensory cortex (section 4.3.9), it was interesting to consider the effect of 

clozapine on d-tubocurarine-induced VFO. Clozapine (20µM) had no significant effect 
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on the mean VFO band area power of d-tubocurarine-induced fast activity (mean 

control d-tubocurarine-induced VFO band area power 1.82 ± 0.90 10
-10

V
2
, clozapine 

1.55 ± 0.79 10
-10

V
2
, p > 0.05, n = 5, paired t-test, Fig. 6.12). Clozapine also had no 

significant effect on the mean peak frequency of d-tubocurarine-induced VFO (mean 

control d-tubocurarine-induced peak frequency 192 ± 5 Hz, clozaine 175 ± 11 Hz, p > 

0.05, n = 5, paired t-test, Fig. 6.12). 

A summary of the pharmacology of clozapine-induced VFO is shown in Fig. 6.13. 

6.3.5 The pharmacology of clozapine-induced paroxysmal discharges 

Following investigation of the pharmacology of clozapine-induced VFO in layer V of 2º 

somatosensory cortex in vitro, the effect of pharmacological inhibitors on paroxysmal 

discharges, when present in the traces, was also analysed in an attempt to further 

elucidate mechanisms. 

6.3.5.1 The role of fast glutamatergic synaptic transmission in clozapine-induced 

paroxysmal discharges 

Clozapine-induced paroxysmal discharges were present in 2/5 slices in the data set for 

the AMPA/kainate glutamate receptor antagonist NBQX. Bath application of NBQX 

(20µM) appeared to reduce both the frequency (mean control events per minute 1.63 ± 

0.97, NBQX 0.97 ± 0.63, n = 2, Fig. 6.14A) and amplitude (mean control event 

amplitude 324 ± 105 µV, NBQX 234 ± 92.5 µV, n = 2, Fig. 6.14B, C) of paroxysmal 

events. 

Clozapine-induced paroxysmal discharges were not present in the first place in any 

slices in the data set for the NMDA receptor antagonist D-AP5, so analysis of the effect 

of antagonism of this receptor was not possible. 

6.3.5.2 The role of GABAergic fast synaptic transmission in clozapine-induced 

paroxysmal discharges 

Clozapine-induced paroxysmal discharges were present in 4/5 slices in the data set for 

the GABAA receptor antagonist gabazine. Gabazine (500nM) was associated with a 

non-significant increase in both the frequency (mean control events per minute 2.75 ± 

0.60, gabazine 6.67 ± 1.99, p > 0.05, n = 4, paired t-test, Fig. 6.15A) and amplitude 

(mean control event amplitude 189 ± 34 µV, gabazine 995 ± 435 µV, p > 0.05, n = 4, 

paired t-test, Fig. 6.15B, C) of paroxysmal events. Following application of gabazine, 
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there was an interaction between VFO and paroxysmal discharges in 2/4 (50%) slices 

whereby VFO were prominent at the start of the event and then temporarily suspended 

for ~4s during and after the event (Fig. 6.16). 

6.3.5.3 The role of gap junctions in clozapine-induced paroxysmal discharges 

Clozapine-induced paroxysmal discharges were present in: 2/6 slices in the data set for 

quinine, which blocks the gap junction protein connexin36; 3/5 slices in the data set for 

the gap junction blocker octanol; but none of the slices in the data set for the gap 

junction blocker carbenoxolone. 

Quinine (100nM) had no apparent effect on the mean frequency of paroxysmal events 

(mean control events per minute 2.50 ± 1.50, quinine 2.50 ± 0.83, n = 2, Fig. 6.17A). 

Quinine also had no apparent effect on the mean amplitude of paroxysmal events (mean 

control event amplitude 263 ± 4 µV, quinine 245 ± 97 µV, n = 2, Fig. 6.17B, C). 

Octanol (1mM) had no significant effect on the mean frequency of paroxysmal events 

(mean control events per minute 3.00 ± 0.51, octanol 3.44 ± 0.29, p > 0.05, n = 3, paired 

t-test, Fig. 6.18A). Octanol was, however, associated with a non-significant reduction in 

the amplitude of paroxysmal events (mean control event amplitude 152 ± 23 µV, 

octanol 68 ± 36 µV, p > 0.05, n = 3, paired t-test, Fig. 6.18B, C). 

A summary of the pharmacology of clozapine-induced paroxysmal discharges is shown 

in Fig. 6.19. 
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6.4 Discussion 

6.4.1 Pharmacology of clozapine-induced VFO 

Possible mechanisms underlying clozapine-induced VFO included fast glutamatergic 

synaptic transmission, activity of fast-spiking interneurons, suppression of GABAA 

receptors, antagonism of neuronal nicotinic receptors, and electrotonic coupling of 

neurons through gap junctions. 

The finding that neither blockade of NMDA nor AMPA receptors had any significant 

effect to reduce VFO suggests that clozapine-induced VFO is not mediated via fast 

glutamatergic synaptic transmission. 

Similarly, the lack of an attenuating effect of gabazine on clozapine-induced VFO 

excludes a role for GABAA receptor-mediated fast inhibition in the mechanism. Thus, 

clozapine-induced VFO does not appear to arise from the synaptic activity of 

GABAergic interneurons. 

In chapter 4, the finding of IB cell spikelets, which were correlated to some extent with 

field VFO, suggested the involvement of axonal hyperexcitability in this cell type, with 

a possible role for the spread of activity through the axonal plexus via electrotonic 

coupling at gap junctions. In the present chapter, various gap junction blockers were 

used to investigate a possible role for electrotonic coupling via gap junctions in the 

mechanism.  

Interestingly, however, neither carbenoxolone nor quinine had any significant effect to 

reduce the power of clozapine-induced VFO. However, quinine did significantly reduce 

the frequency of clozapine-induced VFO (see below). 

The failure of quinine to significantly reduce the power of clozapine-induced VFO does 

not exclude a role for electrotonic coupling via gap junctions between pyramidal cells in 

the mechanism because the connexin36-containing gap junctions which quinine blocks 

are primarily found in gap junctions between interneurons (Hormuzdi et al., 

2001;Fukuda et al., 2006;Belluardo et al., 2000;Deans et al., 2001). However, at least 

some of the gap junctions revealed by freeze fracture of mossy fiber axo-axonic gap 

junctions were imunopositive for cx36 protein (Hamzei-Sichani et al., 2007). 

However, failure of carbenoxolone to significantly reduce either the power or synchrony 

of clozapine-induced VFO is inconsistent with previous findings in which electrotonic 
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coupling via gap junctions was implicated in the mechanism underlying VFO (Draguhn 

et al., 1998;Maier et al., 2003;Jones and Barth, 2002;Nimmrich et al., 2005;Roopun et 

al., 2010b).  

Although the gap junction blocker octanol reversibly abolished clozapine-induced VFO, 

octanol also potently inhibits voltage-operated Na
+

 channels (Hirche, 1985;Horishita 

and Harris, 2008) and may consequently block action potentials. Indeed, the failure of 

both carbenoxolone and quinine to significantly reduce clozapine-induced VFO 

incidence, together with the potent action of octanol on fast sodium conductances 

suggests that octanol may exert its effect directly on axonal excitability rather than axo-

axonic communication. Thus, together these data suggest that clozapine-induced VFO 

may engender a limited extent of activity spread via gap junctions, and that instead 

these VFO may arise solely from axonal hyperexcitability. In other words, the fast 

activity seen was manifest as a collection of multi-unit discharges from local layer V 

neurons only transiently synchronised by chance. 

The possible increase in clozapine-induced VFO associated with gabazine would be 

consistent with some role for partial disinhibition in clozapine-induced VFO. In the 

converse experiment, the reduction in gabazine-induced VFO that occurred in some 

cases after application of clozapine may have resulted from the slices reaching a level of 

excitability whereby VFO were no longer supported (i.e. slices became ‘overcooked’ 

after application of both of these drugs). Alternatively, GABA release has been 

suggested to be directly excitatory onto pyramidal cell axons (Traub et al., 2003). Thus 

a reduction in GABAA receptor function with both gabazine and clozapine may have 

removed some of the drive to axons possibly underlying the VFO seen. 

The small reduction in the peak frequency of clozapine-induced VFO associated with 

quinine raises the possibility that electrotonic coupling via gap junctions between 

interneurons has a small modulatory influence on clozapine-induced VFO. 

Alternatively, the effect may be due to a non-specific effect of quinine on intrinsic 

membrane conductances. Moreover, in view of the slight nature of the effect (2.9% 

reduction in median), and the relatively small number of experiments (n = 6), the result 

may have been a false positive. This subtle effect way also have been due to the non-

gap junction-specific effects of quinine on TREK-1 potassium channels partially 

responsible for control of extracellular potassium ion concentration via astrocytes (Zhou 

et al., 2009). 
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The lack of effect of nicotine on clozapine-induced VFO together with the absence of an 

effect of clozapine on d-tubocurarine-induced VFO suggests that clozapine-induced 

VFO may not be mediated via antagonism of nicotinic receptors, and that d-

tubocurarine-induced VFO may arise from a different mechanism. 

6.4.2 Pharmacology of clozapine-induced paroxysmal discharges 

The low n number for paroxysmal discharges in pharmacology experiments meant that 

the statistical analysis was almost certainly underpowered to detect significant changes. 

Nonetheless, in contrast to clozapine-induced VFO, the possible reduction in the 

amplitude of clozapine-induced paroxysmal events associated with the AMPA receptor 

antagonist NBQX is in line with the involvement of fast glutamatergic synaptic 

transmission in the mechanism underlying these events. 

Although gabazine was associated with a non-significant increase in the amplitude of 

paroxysmal events, evidence considered in the previous chapter suggests partial 

disinhibition may not be sufficient in itself to precisely mimic clozapine-induced 

paroxysmal discharges. 

As mentioned previously, the potent action of octanol on fast sodium conductances 

means that it cannot be concluded that the possible reduction in amplitude of clozapine-

induced paroxysmal events was specific to the drug’s effect on gap junctions. 

6.4.3 Selectivity of gap junction blockers, and VFO synchrony 

Gap junction blockers have limited selectivity and may have secondary effects on, for 

example, intrinsic membrane conductances. One example of a non-specific effect is that 

carbenoxolone may antagonise NMDA receptors (Chepkova et al., 2008), though no 

effects were seen for NMDA antagonism alone here. Furthermore, as previously 

mentioned, octanol potently inhibits voltage-operated Na
+

 channels (Hirche, 

1985;Horishita and Harris, 2008) and consequently blocks action potentials. To 

investigate the relative effect of octanol on spikes versus gap junctions under the present 

experimental conditions, it would be interesting to apply this drug to slices during an 

intracellular recording from a cell with spikelets, and compare its effect on spikes versus 

spikelets. 

The possibility cannot be excluded that there is a role for electrotonic coupling through 

gap junction proteins not targeted by either carbenoxolone or quinine in the mechanism 

underlying clozapine-induced VFO (e.g. Kollo et al., 2006). 
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As mentioned previously, carbenoxolone (100µM) failed significantly to reduce the 

synchrony of clozapine-induced VFO. However, the possibility that VFO synchrony 

may have significantly reduced with a higher concentration of this agent could not be 

excluded. Although 100µM carbenoxolone was sufficient to abolish spontaneous VFO 

in rat hippocampal slices (Draguhn et al., 1998), 100-200µM was necessary in slices of 

human epileptic tissue (Roopun et al., 2010b), and even higher concentrations of this 

agent have been used (e.g. Gigout et al., 2006). 

6.4.4 Concluding remarks 

In chapter 4, the finding of IB cell spikelets, which were correlated to some extent with 

field VFO, suggested the involvement of axonal hyperexcitability in this cell type, with 

a possible role for the spread of activity through the axonal plexus via electrotonic 

coupling at gap junctions. In the present chapter no chemical synaptic blockers or gap 

junction conductance-reducing drugs had any significant effect to reduce VFO 

incidence or power – with the exception of octanol. However, this drug also potently 

blocks fast sodium conductances so may exert its effect directly on axonal excitability 

rather than axo-axonic communication, and thus clozapine-induced VFO may arise 

solely from axonal hyperexcitability in uncoupled local populations of bursting neurons. 
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Results – Effect of clozapine on parvalbumin immunoreactivity 
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7.1 Introduction 

In view of parvalbumin (PV) deficits in post-mortem cortical samples from 

schizophrenic patients (e.g. Hashimoto et al., 2003), it was interesting to investigate the 

effect of the antipsychotic clozapine on PV immunoreactivity in ‘normal’ rat brain 

slices in an attempt to relate clozapine-induced hyperexcitability (see previous chapters) 

to the drug’s antipsychotic efficacy. Examination of the laminar distribution of 

clozapine’s effect on PV interneurons may provide clues with regard to the circuits 

involved in the mechanism underlying clozapine’s therapeutic efficacy. 

Aim 

Therefore the aim of this chapter is to investigate the effect of clozapine on the number 

of PV-immunopositive interneurons in 2º somatosensory cortex, and to elucidate the 

laminar distribution of any such effect. 

7.1.1 GABAergic deficits in schizophrenia 

A consistent finding in post-mortem studies has been that GAD67, one of the main 

enzymes that synthesise GABA, is reduced in the dorsolateral prefrontal cortex of 

patients with schizophrenia (Bird et al., 1978;Hanada et al., 1987), and this occurs 

selectively in layers III-V (Akbarian et al., 1995), where gamma rhythms are most 

prominent (Glykos et al., 2012). 

Expression of the GABA membrane transporter GAT1 is also reduced suggesting that, 

in addition to synthesis, re-uptake of GABA is also impaired in schizophrenia (Volk et 

al., 2001). Given the critical role of GABAergic interneurons in the mechanisms 

underlying gamma oscillations (Traub et al., 2004;Fries et al., 2007), it is possible that 

cognitive impairments in schizophrenia arise from reduced gamma synchrony resulting 

from impaired GABA-mediated inhibition. 

7.1.2 Parvalbumin deficits in schizophrenia 

Expression of the calcium-binding proteins parvalbumin (PV), calretinin or calbindin, 

can be used as markers to identify particular morphological and functional subclasses of 

GABAergic interneurons (Conde et al., 1994;Gabbott and Bacon, 1996;Kawaguchi and 

Kubota, 1997). Among inhibitory GABAergic interneurons, PV-positive fast spiking 

interneurons may be especially important in generating synchronous outputs to co-

ordinate gamma rhythms (Gloveli et al., 2005;Mann et al., 2005;Klausberger and 
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Somogyi, 2008;Cardin et al., 2009), and their activity has been shown to have a causal 

role in generating gamma rhythms in mice in vivo (Sohal et al., 2009). PV cells include 

wide arbour neurons that target cell soma, and chandelier neurons that target axon initial 

segments (Williams et al., 1992;Lund and Lewis, 1993). PV buffers transient elevations 

in cytosolic Ca
2+

 (Chard et al., 1993), and so it may influence a range of neuronal 

properties including excitation and synaptic transmission (Pauls et al., 1996). 

PV interneurons appear to have an important role in schizophrenia pathology (Beasley 

and Reynolds, 1997;Danos et al., 1998;Hashimoto et al., 2003). For example, 

expression of PV mRNA is reduced in layers III and IV, but not in layers II, V or VI of 

the dorsolateral prefrontal cortex in post-mortem samples from schizophrenic subjects 

(Hashimoto et al., 2003). Interestingly, the expression level of PV mRNA per neuron 

rather than number of neurons with detectable PV mRNA was affected. The PV mRNA 

expression level per neuron also correlated with reductions in the density of neurons 

positive for GAD67 mRNA. Thus GAD67 mRNA expression is preferentially reduced 

in PV-immunopositive interneurons (Hashimoto et al., 2003). Dual label in situ 

hybridisation studies confirmed that in schizophrenic tissue approximately half of the 

neurons positive for PV mRNA did not have detectable GAD67 mRNA. Therefore it 

seems that PV interneurons in particular may be functionally impaired in schizophrenia. 

PV protein, and PV-immunoreactive axon terminals, are also reduced in prefrontal 

cortical schizophrenic tissue, again in layer III and IV (Beasley and Reynolds, 

1997;Lewis et al., 2001). Furthermore, PV protein is reduced in thalamocortical 

projection neurons (Danos et al., 1998), and in all hippocampal subfields (Zhang and 

Reynolds, 2002;Knable et al., 2004) in post-mortem schizophrenic brain. 

Chandelier cells are a subclass of PV interneuron which provide strong inhibitory input 

to pyramidal cell axons via arrays of inhibitory synapses (cartridges) and these 

cartridges are reduced in post-mortem schizophrenic brain (Woo et al., 1998). 

Interestingly, in schizophrenia expression of the GABAA receptor alpha1 subunit is 

particularly low in pyramidal cells that receive inhibitory inputs from PV interneurons 

(Glausier and Lewis, 2011). Thus reduced inhibitory drive from PV cells could be a key 

aspect of the pathophysiology of schizophrenia and this may have a bearing on the 

effectiveness of antipsychotic drugs like clozapine. 
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Consistent with a role in pathological dysfunction in schizophrenia, ultrastructural 

analysis with electron microscopy revealed that PV neurons are directly innervated by 

dopaminergic neurons (Sesack et al., 1998). 

Incidentally, in humans the locus of the PV gene has been narrowed down to 

chromosome 22q12-q13.1 (Ritzler et al., 1992), close to the marker D22S278, and this 

region has been associated with schizophrenia susceptibility (Riley and McGuffin, 

2000). However, there may also be environmental influences on PV expression as there 

is evidence for activity-dependent modulation of the expression of PV and GAD67 

(Hendry and Jones, 1988;Benson et al., 1994;Carder et al., 1996;Nie and Wong-Riley, 

1996). 

7.1.3 Mechanisms underlying parvalbumin deficits in schizophrenia 

The mechanisms by which PV cells may become dysfunctional in schizophrenia are not 

yet clear. Possibilities include reductions in released GABA, lower numbers of 

postsynaptic GABAA receptors, alterations in the excitatory drive on to PV neurons, or 

loss of neurons or inhibitory inputs. A complicating factor is that lowered PV in 

schizophrenia may be a compensatory change secondary to deficits in GAD67 and 

reduced GABA. In fact, so many seemingly contrary changes in GABA system function 

are seen in schizophrenia that it is hard to understand mechanistically what is ‘cause’ 

and what is ‘compensation’ at all. This has led to other theories linking pathology to 

modifications in glutamate receptor-mediated excitation. 

Indeed, glutamatergic hypofunction and the resulting disruption in GABAergic 

neurotransmission may be critical to the dysfunction in schizophrenia (Lewis, 

2000;Olney et al., 1989;Tamminga, 1998). In line with this idea, there is evidence of 

pronounced excitatory input from axon collaterals of local pyramidal cells to layer III 

PV neurons in monkey prefrontal cortex (Melchitzky et al., 2001;Melchitzky and 

Lewis, 2003). 

Furthermore, it has been proposed that NMDA receptor hypofunction may be primary, 

either directly or indirectly, to changes in PV neurons in schizophrenia (Coyle, 

2006;Lisman et al., 2008;Lewis and Gonzalez-Burgos, 2006). PV interneurons receive 

excitatory inputs via NMDA receptors, especially those containing the NR2A/NR2B 

subtype associated with changes in glutamatergic drive (Kinney et al., 2006). 

Interestingly, in most brain regions there is a limited extent of NMDA receptor input 

into interneurons in the adult. However, in entorhinal cortex, an area implicated in 
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specific schizophrenia-related pathologies, such NMDA receptor inputs remain 

substantial in adulthood (Jones and Buhl, 1993).  

7.1.4 Parvalbumin deficits in animal models of schizophrenia 

PV deficits are also present in animal models of schizophrenia. Administration of 

methylazoxymethanol acetate reduced PV expression in interneurons throughout the 

medial prefrontal cortex and ventral subiculum in rats (Lodge et al., 2009).  Similarly, 

LPA1-deficient mice, which show psychomotor-gating deficits and neurochemical 

changes similar to those in schizophrenia, are associated with a reduction in PV-

immunopositive interneuron numbers in layer II of medial entorhinal cortex 

(Cunningham et al., 2006) – an observation which maps neatly onto deficits in the 

ability of this layer to generate gamma rhythms . 

In line with the proposal that NMDA receptor hypofunction is primary to alterations in 

PV neurons, NMDA receptor antagonists can induce lowered PV and GAD67 in PV 

neurons similar to that found in post-mortem schizophrenic tissue (Cochran et al., 

2002;Kinney et al., 2006;Behrens et al., 2007b;Amitai et al., 2012). For example, the 

chronic PCP treatment model of psychosis reduces expression of PV mRNA in rat brain 

(Cochran et al., 2002;Cochran et al., 2003). Interestingly, co-administration of 

clozapine, but not haloperidol, reversed the PCP-induced reductions in PV expression in 

prefrontal cortex (Cochran et al., 2003;Amitai et al., 2012), and it was suggested that 

recovery of PV expression may be a marker of atypical antipsychotics. (Both 

antipsychotics reversed PCP-induced reductions in PV expression in the reticular 

nucleus of the thalamus (Cochran et al., 2003).) 

However, although there is a preliminary suggestion in the literature that chronic 

clozapine administration alone may increase PV expression in rat prefrontal cortex 

(Scruggs and Deutch, 1999), a different study found no such effect on baseline PV 

immunoreactivity in either rat hippocampus or frontal cortex (Cahir et al., 2005). 

Here, the effect of acute application of clozapine on PV immunoreactivity in slices of 2⁰ 

somatosensory cortex from untreated, normal rats was investigated in vitro and 

correlated with VFO production. 
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7.2 Methods  

Experiments in this chapter made use of rat brain slice preparations in vitro. Slices were 

450µm thick sections of 2⁰ somatosensory cortex cut in the horizontal plane from adult 

male Wistar rats (150-250g). Slices were prepared according to section 2.1-2.3, and the 

maintenance of slices is described in section 2.4.  

PV immunoreactivity was visualised, and quantified in terms of the number of PV-

immunopositive cells in microscopic view fields at a magnification of X10, as described 

in section 2.9. I was aided with the histology in this chapter by A. Simon. The Kruskal-

Wallis one way analysis of variance (ANOVA) on ranks test was used for statistical 

analysis, with the all pairwise multiple comparison procedures test (Dunn’s method) for 

post-hoc comparisons. 

7.3 Results – Effect of clozapine on parvalbumin immunoreactivity 

Before quantification of PV immunoreactivity, 2º somatosensory cortical slices were 

fixed at three time points: firstly, before application of clozapine (control); secondly, 

upon first observation of VFO (< 3 hours after application of clozapine); and, thirdly, 

after VFO had been present for 7 hours. N numbers were as follows: control, n = 50 

view fields in 30 sections (40µm thick) re-sectioned from 4 slices (400µm thick); first 

VFO occurrence, n = 41 view fields in 23 sections (40µm) from 4 slices (400µm); 7h 

into VFO, n = 56 view fields in 31 sections (40µm) from 4 slices (400µm). 

Compared to control, the onset of clozapine-induced VFO in the slice was accompanied 

by a massive, significant elevation (110% increase in median, p < 0.05) in PV 

immunoreactivity in superficial layers II/III, and, 7 hours later, PV immunoreactivity in 

these layers remained significantly greater than the control level (median control 

number of PV-immunopositive cells per view field 42 (22 → 62), 1
st
 VFO 88 (61 → 

112), 7h into VFO 91 (54 → 127), Fig. 7.1). 

Similarly, in layer IV, VFO onset was associated with a huge, significant increase 

(168% increase in median, p < 0.05) in PV immunoreactivity. 7 hours later, PV 

immunoreactivity decreased somewhat in this layer (41% reduction in median, p > 0.05) 

but still remained significantly greater than the control level (median control number of 

PV-immunopositive cells per view field 31 (18 → 53), 1
st
 VFO 83 (60 → 97), 7h into 

VFO 59 (37 → 99), Fig. 7.1). 
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In deep layers V/VI, VFO onset was also associated with a significant elevation (50% 

increase in median, p < 0.05) in PV immunoreactivity. 7 hours later, there was a small 

reduction in PV immunoreactivity in these layers (15% reduction in median, p > 0.05) 

but it remained significantly greater than the control level (median control number of 

PV-immunopositive cells per view field 40 (23 → 55), 1
st
 VFO 60 (44 → 69), 7h into 

VFO 51 (35 → 69), Fig. 7.1). 

Thus, in terms of laminar effect, the initial increase in PV immunoreactivity was greater 

in the more superficial laminar groups, layer II/III (110% increase in median) and layer 

IV (168% increase in median), compared to deeper layers V/VI (50% increase in 

median). In each laminar group, there was no significant difference in PV 

immunoreactivity associated with the first occurrence of VFO compared to that 7 hours 

later (p > 0.05).  

Overall, when the laminar groups were pooled to give the total for the slice, VFO onset 

was associated with a large, significant increase (95% increase in median, p < 0.05) in 

PV immunoreactivity, and, 7 hours later, the total PV immunoreactivity remained 

significantly greater than the control level (median control number of PV-

immunopositive cells per view field 117 (84 → 163), 1
st
 VFO 228 (189 → 277), 7h into 

VFO 216 (120 → 293)). 
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7.4 Discussion 

PV levels are robustly reduced in post-mortem cortical samples from schizophrenic 

patients (Beasley and Reynolds, 1997;Danos et al., 1998;Hashimoto et al., 2003). In this 

thesis, the onset of clozapine-induced VFO was accompanied by a significant elevation 

in PV immunoreactivity, particularly in layer II-IV, where there was a greater than 

twofold increase in the signal. It is not clear why clozapine preferentially elevated the 

PV signal in more superficial layers. 

The relatively short timescale of PV upregulation (ca. 3h) suggests that the increase in 

PV immunoreactivity reflects an increase in PV expression from a level below to a level 

above the threshold where staining was sufficiently strong to be detected, rather than a 

change in the phenotype of cells. 

It is interesting that the cortical laminae where PV expression is reduced in post-mortem 

cortical samples from schizophrenic patients, namely layers III and IV (Beasley and 

Reynolds, 1997;Hashimoto et al., 2003), were among those most affected by the 

increase in PV immunoreactivity in 2º somatosensory cortex associated with clozapine 

in this thesis. Furthermore, in LPA1-deficient mice, which model aspects of 

schizophrenia, the reduction in PV immunopositive interneuron numbers in medial 

entorhinal cortex is specific to layer II (Cunningham et al., 2006), and clozapine also 

markedly increased PV immunoreactivity in this layer of 2º somatosensory cortex in 

this thesis. 

The finding that clozapine dramatically increased PV immunoreactivity in layer II-IV in 

this chapter, together with the finding in chapter 4 of clozapine-induced 

hyperexcitability in layer V, suggests that clozapine may act to counter PV loss via 

enhanced excitatory inputs onto superficial interneurons (Watts and Thomson, 2005) 

from hyperexcitability in layer V. It is also interesting that the pronounced elevation of 

PV in superficial layers in this chapter corresponds to the superficial origin of 

clozapine-induced paroxysmal events in chapter 5. 

Given that increased PV expression was already present when VFO were first observed, 

it would appear that altered PV levels are not caused by VFO but instead result from an 

upstream mechanism. 

The finding in this thesis that acute clozapine elevated PV expression in 2º 

somatosensory cortex in vitro is consistent with reports that co-administration of 
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clozapine reversed PCP-treatment-induced reductions in PV expression in prefrontal 

cortex (Cochran et al., 2003;Amitai et al., 2012). The finding is also consistent with a 

preliminary suggestion in a conference abstract that chronic clozapine administration 

alone may increase PV expression in rat prefrontal cortex (Scruggs and Deutch, 1999). 

However, the finding is not in agreement with a study in which chronic administration 

of clozapine had no effect on baseline PV immunoreactivity in either rat hippocampus 

or frontal cortex (Cahir et al., 2005). Possible reasons for the discrepancy could relate to 

the method of clozapine delivery (acute application to slices in vitro vs intraperitoneal 

injections in vivo) or the different brain regions in question. 

7.4.1 Future work 

In light of the potential modulation of neuronal excitability and synaptic transmission 

by PV, it would be interesting to relate intracellular recordings from PV-

immunopositive interneurons to changes in PV immunoreactivity. 

A green fluorescent protein tag could be used to trace the increase in expression of PV 

over time. 

To elucidate whether upregulation of PV expression may be a marker of atypicality, it 

would be interesting to compare the effect of clozapine on PV immunoreactivity with 

that of other antipsychotics, such as the atypical antipsychotic olanzapine, and the 

classical antipsychotic haloperidol. 

To confirm the results, it would be interesting to investigate the effect of clozapine on 

the neuronal marker NeuN in the present experimental conditions to control for any 

effect on neuron numbers generally. Similarly, investigation of the effect of clozapine 

on GAD67, an enzyme that synthesises GABA and a marker for GABAergic inhibitory 

interneurons, would control for any effects on GABAergic interneurons in general. 

Indeed, given the reduction in GAD67 in cortical samples from schizophrenic patients 

(Bird et al., 1978;Hanada et al., 1987;Akbarian et al., 1995) this would be an interesting 

experiment in itself. It would also be interesting to investigate the effect of clozapine on 

GABA and calretinin immunoreactivity. Another control would be to ensure that no 

signal is present upon omission of the primary antibody or each individual step in the 

immunohistochemistry protocol. Finally, bearing in mind the labile nature of PV, it 

would be prudent to perform a time-matched control in the absence of clozapine to 

investigate any changes in PV expression over time. 
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7.4.2 Concluding remarks 

The finding that clozapine increased PV immunoreactivity raises the possibility that 

clozapine may act to boost GABAergic inhibition in a mechanism involving restoration 

of PV expression. That is, clozapine may act to counter the reduced inhibitory drive 

from PV interneurons in schizophrenia (Glausier and Lewis, 2011), possibly via 

potentiated NMDA receptor-mediated transmission (see section 1.4.2.2-1.4.2.3), and 

this may be relevant to its therapeutic effect. 
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8.1 Summary 

The work in this thesis shows an effective in vitro animal model of hyperexcitability in 

cortical tissue associated with the atypical antipsychotic clozapine. Occasional, 

spontaneous paroxysmal events were seen in association cortex that, when filtered 

correspondingly to EEG recordings, looked remarkably similar to the clinical 

presentation. The in vitro model data suggested that these synaptic events arose 

transiently from a background of near-continuous VFO – a situation reported for 

epileptic human tissue maintained in vitro (Roopun et al., 2010b). The mechanism 

underlying these effects of clozapine was complex: evidence for the involvement of 

chemical synaptic and gap junctional communication routes was almost completely 

lacking, but activity in layer V IB neurons correlated well with the local field 

discharges; both GABAA receptor blockade and nicotinic acetylcholine receptor 

blockade failed to completely reproduce the clozapine-related hyperexcitability; 

parvalbumin levels in cortex were significantly elevated in line with the occurrence and 

maintenance of clozapine-induced VFO. This final chapter will re-consider these 

findings in the more general context of clozapine’s effectiveness as an antipsychotic and 

the relationship between excitation and inhibition as relevant to schizophrenia.  

8.2 Relation to the clinical presentation 

Clozapine-related EEG changes are known to include general slowing of background 

activity, abnormal theta, abnormal delta, intermittent sharp transients and spike-wave 

paroxysms – the latter modelled in this thesis (Malow et al., 1994;Welch et al., 

1994;Haring et al., 1994;Denney and Stevens, 1995;Freudenreich et al., 1997). With the 

little data available from clinical collaborators in Newcastle it was clear that, at least in 

the instances illustrated, the paroxysmal events originated in temporal and parietal 

regions – hence the choice of analogous brain regions in the in vitro model. However, 

interestingly not all detected events in parietal areas projected to motor regions. This 

suggests that, as presentation of adverse hyperexcitability with clozapine is usually 

precipitated by myoclonic jerks, and parietal seizures rarely manifest with motor 

sequelae, the incidence of clozapine-induce paroxysms may be higher in the medicated 

population than thought. 

When taken together, in vitro spatiotemporal progression data for LFPs, spike rates, 

spike synchrony, and spike-spike correlations, and spike-field correlation data, 

suggested that clozapine-induced paroxysmal events started superficially in association 
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cortex, moved deeper and then propagated horizontally along these deep layers. 

Interestingly, corresponding data suggested that gabazine-induced paroxysmal events 

also propagated along deep layers and there was some evidence of superficial 

recruitment. Similarities to some extent in the spatiotemporal progression of events lend 

some support to the idea that disinhibition may have a role in the mechanism underlying 

clozapine-induced paroxysmal discharges. However, gabazine-induced paroxysmal 

events in layer V had a different and more regular shape compared to those induced by 

clozapine, suggesting that partial disinhibition may not be sufficient in itself to precisely 

mimic clozapine-related hyperexcitability. 

8.3 What can we learn from the induction of VFO with clozapine? 

The presence of clozapine-induced VFO in wide band recordings in vitro in this thesis 

represented a novel discovery in terms of the effect of clozapine on brain rhythms. Such 

high frequency activity would not be revealed in scalp EEG recordings in the clinic as a 

result of the filter settings (0.5 – 70 Hz), which are typical for clinical EEG and prevent 

contamination of the signal from higher frequency motor unit discharges. 

Further to the clinical EEG finding that transient clozapine-related epileptiform activity 

originated primarily in parietal cortex, the presence of VFO in the isolated 

microcircuitry of the in vitro slice preparation in the functionally equivalent region of 

brain in the rat, 2º somatosensory cortex, is in line with the particular sensitivity of this 

region of cortex in the generation of clozapine-related hyperexcitability. This may be at 

least partially due to the prominence of gap-junctionally connected IB cells in layer V of 

this region. This particular local circuit has been shown to generate high frequency 

bursts previously, a property not shared by adjacent primary sensory areas (see Roopun 

et al., 2010a). Indeed, intracellular studies here showed the closest correlations between 

IB cell intracellular activity and the field VFO. However, a role for gap junctions is 

questionable given the results from attempts to pharmacologically block VFO in this 

thesis. IB cells can burst alone, as a consequence of their intrinsic axonal properties (e.g. 

Kramer et al., 2008) so it may be that the VFO seen in the field may represent local 

bursts from functionally unconnected IB neurons – in other words the extracellular VFO 

potentials may be generated transiently, by partially synchronous multiunit activity. 

This would also count against the ability of extracranial EEG to detect them as the 

spatial averaging inherent in such large (1 cm diameter), distally located electrodes may 

reduce the local VFO field to below background noise levels. 
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Nevertheless, in line with the idea that VFO may be a biomarker for epilepsy-related 

cortical pathology (Jacobs et al., 2010), clozapine-induced VFO may represent an early 

biomarker of clozapine-related hyperexcitability, possibly present before more severe 

epileptiform activity. Both clozapine and olanzapine induced prominent VFO, but there 

was only a low extent of VFO associated with haloperidol, consistent with the relative 

risk of EEG abnormalities associated with these drugs in the clinic (Centorrino et al., 

2002). In addition, the presence of relatively strong correlations between IB cell 

spikelets and field VFO suggested the involvement of axonal hyperexcitability in this 

cell type in the atypical antipsychotic-specific mechanism. 

The presence of spikelets in neuronal subtypes which contribute to the generation of the 

rhythm may also be a characteristic feature of gap-junction-mediated VFO (Draguhn et 

al., 1998;Schmitz et al., 2001). An action potential in a pre-junctional neuron can 

generate a response which is either above or below the threshold required to generate an 

action potential in the post-junctional neuron, depending on the effectiveness of the 

coupling at the gap junction. It is thought that spikelets might occur following 

subthreshold potential changes in postjunctional neurons. However, as mentioned 

above, no chemical synaptic blockers or gap junction conductance-reducing drugs had 

any significant effect to reduce VFO incidence or power – with the exception of 

octanol. But this drug also potently blocks fast sodium conductances so may exert its 

effect directly on axonal excitability rather than axo-axonic communication. Spikelets 

are still manifest as partially back-propagated ectopic action potentials even in the 

presence of gap junction blockers (Roopun et al., 2006), though their incidence is much 

reduced. 

From the data gathered as part of this thesis it is still not clear how the VFO and the, at 

least casually related, paroxysmal discharges arise. IB cell bursting is dependent on 

many intrinsic conductances including m-current as well as synaptic inhibition at the 

axon intial segment and perisomatically. There is no information directly relevant to 

effects of clozapine on m-current but data here, and in the literature does suggest some 

effect on the inhibitory system. 
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8.4 Consequences of raised PV levels 

PV levels are robustly reduced in post-mortem cortical samples from schizophrenic 

patients (Beasley and Reynolds, 1997;Danos et al., 1998;Hashimoto et al., 2003). It has 

been suggested that this may constitute the primary pathology in schizophrenia (see 

Introduction). However, PV levels are notoriously labile and are affected by GABA 

levels and the magnitude and pattern of excitatory input to interneurons – less excitation 

reduced PV levels. There are clues as to why this may occur in studies showing what 

PV does functionally at GABAergic terminals: PV is a highly effective sequestering 

agent for intracellular free calcium. The presence of PV sharply curtails any transient 

rise in baseline cytosolic calcium from levels above ca. 70 nM. Thus, it has a dramatic 

effect on excitation/exocytosis coupling, effectively temporally limiting the release of 

GABA through vesicular fusion on invasion of an action potential at an inhibitory 

neuronal presynaptic terminal. It has therefore been suggested that reduced PV 

expression in brain tissue from patients with schizophrenia may be a compensatory 

mechanism to increase GABAergic inhibition in the light of reduced excitation of 

interneurons (Javitt, 2010). 

Experimentally reducing PV levels by producing knock-out mice with an absence of the 

PV gene showed the consequences of this ‘compensatory’ mechanism functionally. 

Absence of PV was associated with larger, longer stimulated postsynaptic inhibitory 

events and an elevation in persistent gamma rhythms (Vreugdenhil et al., 2003). 

Interestingly gamma rhythms are reduced in EEG recordings from patients with 

schizophrenia, again suggesting a partial compensatory mechanism for this modification 

in the inhibitory system. 

In this thesis, the onset of clozapine-induced VFO was accompanied by a significant 

elevation in PV immunoreactivity, particularly in layer II-IV, which include the cortical 

laminae where PV expression is reduced in post-mortem cortical samples from 

schizophrenic patients, namely layers III and IV (Beasley and Reynolds, 

1997;Hashimoto et al., 2003). 

The finding that clozapine dramatically increased PV immunoreactivity in layer II-IV, 

together with the finding of clozapine-induced hyperexcitability in layer V, suggests 

that clozapine may act primarily to counter schizophrenia-associated PV loss. However, 

this raises two issues: firstly, if the reduction in PV is to be considered compensatory in 

schizophrenia then countering this reduction with elevation of PV levels with clozapine 
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ought to, logically, make the symptoms worse. But the converse is true. This suggests 

that the reduction in PV expression may indeed be a primary pathology in patients with 

schizophrenia. 

Secondly, the profile of elevated PV expression appeared in layers superficial to the 

hyperexcitability seen in the model. These layers mapped nicely to the layers where the 

most overt reduction in PV expression was seen in schizophrenia. As far as the onset of 

the paroxysmal discharges was concerned (superficial layers first) this raised the 

suggestion that this facet of clozapine-induced hyperexcitability may be, in part, related 

to partial disinhibition secondary to reduced GABA release caused by over-

sequestration of presynaptic terminal calcium levels. However, as mentioned above, PV 

expression is highly labile to excitatory inputs and axonal bursting in layer V IB 

neurons was seen. Layer V excitatory neurons provide inputs onto superficial 

interneurons (Watts and Thomson, 2005). Thus the hyperexcitability in layer V may 

boost excitation of superficial interneurons and underlie the elevated PV levels seen in 

these layers. That is, clozapine may act to counter the reduced inhibitory drive from 

superficisal PV interneurons in schizophrenia (Glausier and Lewis, 2011), possibly via 

potentiated NMDA receptor-mediated transmission, and this may be relevant to its 

therapeutic effect. 

8.5 Are we any closer to an underlying mechanism? 

None of the above arguments addresses the question of where the layer V 

hyperexcitability comes from in the first place. PV changes in this layer were modest so 

unlikely to be directly relevant. Neither can we infer that increased excitation of layer V 

neurons was via enhanced inputs from superficial layer pyramidal cells (dishinhibited 

through reduced GABA release caused by the PV changes). While this latter suggestion 

fits with the timing of the PV elevation and VFO genesis (the PV levels already high 

when VFO is first seen), very little in the way of synaptic excitation (as EPSPs) was 

seen accompanying the VFO in layer V. One possibility is that PV-immunopositive 

interneurons in superficial layers provide some direct inhibition to layer V pyramidal 

cells via interlaminar axon collaterals. This is not recognised as a major interlaminar 

pathway from the work of Thomson and colleagues (Watts and Thomson, 2005). 

However, layer V neurons receive synaptic inhibition precisely timed to superficial 

layer gamma rhythms (Ainsworth et al., 2011), and a number of more recent exceptions 

to the proposal for interlaminar communication by Thompson have been discovered 

(e.g. Lefort et al., 2009). 
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While the data in this thesis shows a clear correlation between PV levels and 

hyperexcitability in association cortex, it has proved difficult to separate cause from 

effect. It may be that arguments such as those above attempting to relate the phenomena 

to basic excitatory and inhibitory synaptic physiology are flawed. As mentioned in the 

introduction, the pharmacological profile of atypical antipsychotics is remarkably 

diverse. To fully understand the processes modelled in this thesis from a mechanistic 

perspective future work would require a systematic investigation of the effects of each 

of the receptor systems targeted by clozapine.  
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