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ABSTRACT 

 

Single channel source separation (SCSS) principally is one of the challenging fields 

in signal processing and has various significant applications. Unlike conventional 

SCSS methods which were based on linear instantaneous model, this research sets out 

to investigate the separation of single channel in two types of mixture which is 

nonlinear instantaneous mixture and linear convolutive mixture.  For the nonlinear 

SCSS in instantaneous mixture, this research proposes a novel solution based on a 

two-stage process that consists of a Gaussianization transform which efficiently 

compensates for the nonlinear distortion follow by a maximum likelihood estimator to 

perform source separation. For linear SCSS in convolutive mixture, this research 

proposes new methods based on nonnegative matrix factorization which decomposes a 

mixture into two-dimensional convolution factor matrices that represent the spectral 

basis and temporal code. The proposed factorization considers the convolutive mixing 

in the decomposition by introducing frequency constrained parameters in the model. 

The method aims to separate the mixture into its constituent spectral-temporal source 

components while alleviating the effect of convolutive mixing.  In addition, family of 

Itakura-Saito divergence has been developed as a cost function which brings the 

beneficial property of scale-invariant. Two new statistical techniques are proposed, 

namely,   Expectation-Maximisation (EM) based algorithm framework which 

maximizes the log-likelihood of a mixed signals, and the maximum a posteriori 

approach which maximises the joint probability of a mixed signal using multiplicative 

update rules. To further improve this research work, a novel method that incorporates 

adaptive sparseness into the solution has been proposed to resolve the ambiguity and 

hence, improve the algorithm performance. The theoretical foundation of the proposed 

solutions has been rigorously developed and discussed in details. Results have 

concretely shown the effectiveness of all the proposed algorithms presented in this 

thesis in separating the mixed signals in single channel and have outperformed others 

available methods. 

.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Source Separation  

 

Source separation (SS) has received wide attention and has been a topic of 

investigation for over two decades. SS problem refers to the statistical technique of 

separating a mixture of underlying source signals. Cocktail party problem (CPP) [1-2] 

is the classic example of SS problem to address the phenomenon associated with 

human auditory system that when a number of people are talking simultaneously with 

the present of background interferences and noise like in cocktail party, humans have 

the ability to focus their listening attention on a single speaker. During the last decade, 

many researchers and scientists have attempted to tackle this problem and remarkable 

developments have been achieved in the area of SS [3-12].  It has become one of the 

promising and exciting topics with solid theoretical foundations and potential 

applications in the fields of signal processing, neural computation and advanced 

statistics. SS has been successfully applied in various fields, such as speech 

enhancement, biomedical image processing, image processing, remote sensing, 

communication systems, exploration seismology, geophysics, econometrics, data 

mining and neural networks. Despite  all these applications, so far there are no 

machines produced that can perform SS in the manner of human listening.   It remains 

an open problem and demands further research investigation. 
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Figure 1.1: A simplified scenario of the source separation problem with three audio 

sources and three microphones 

 

1.1.1 Source separation problem formulation 

 

A general SS problem can be illustrated as in Figure 1.1 which is mathematically 

defined according to the conventional linear model as follows: A set of observations 

T

1 2( ) ( ) ( ) ( )
oNt y t y t y t   y which are random processes is generated as a mixture of 

underlying source signals 
T

1 1( ) ( ) ( ) ( )
sNt x t x t x t   x according to:  

11 12 11 1

2 21 22 2 2

1 2

( ) ( )

( ) ( )
( ) ( )

( ) ( )

s

s

o so o o s

N

N

N NN N N N

a a ay t x t

y t a a a x t
t t

y t x ta a a

    
    
          
    
        

y Ax                (1.1) 
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where A is the unknown mixing matrix of dimension o sN N  and t is the time or 

sample index. The technique of SS aims to estimate both the original sources 

T

1 1( ) ( ) ( ) ( )
sNt x t x t x t   x  and the mixing matrix A using only the observations

T

1 2( ) ( ) ( ) ( )
oNt y t y t y t   y . It is noted that (1.1) represents a simplified model 

which may not be true representation of the real environment. In order to represent a 

realistic model, issues such as propagation delay of signals, nonlinear distortions, and 

noise should be taken into account and evaluated. Hence the need for further research 

has led to various branches of research in SS. 

 

1.1.2 Classification of source separation 

 

A literature review of current reports shows that there exist three main 

classifications of SS. These include: Linear and Nonlinear SS; Instantaneous and 

Convolutive SS; Overdetermined and Underdetermined SS. 

 

1.1.2.1 Linear and Nonlinear SS 

 

Linear algorithms were a popular choice and dominate the SS research field 

because of its simplicity in analysis and its explicit separability. As defined in (1.1), 

linear SS assumes that the mixture is represented by a linear combination of source 

signals [3], [13]. Nevertheless, nonlinearity occurs in practical problems which leads 

to the issue of model mismatch [14-18] and this consequently led to the emergence of 
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models based on nonlinear SS. This model represent more accurate model of a 

realistic environment by taking nonlinear distorted signals into consideration. 

A general nonlinear SS model can be expressed as: 

 ( ) ( )t ty f x                                                          (1.2) 

where ( )ty  and ( )tx are defined in (1.1) and  f .  is the nonlinear mixing process. The 

nonlinear SS problem is more complicated than the linear SS problem because the 

principle of linear superposition of the source signals is violated. Under general 

nonlinear condition statistical independence is not sufficiently strong to recover the 

sources without any distortions and there always exist infinite solutions in nonlinear 

SS problems if the nonlinear mixing function  f .  is not constrained [19]. Therefore, 

some form of constraints need to be imposed and nonlinear mixing models with 

constraints are generally preferred over a general model. An example of a constrained 

nonlinear model is the post-nonlinear model [20-22] which can be expressed as  

1

( ) ( )
sN

i i ij j

j

y t f a x t


 
  

 
                                                     (1.3) 

where  if .   is  a nonlinear distortion function and 
1

( )
sN

ij j

j

a x t


   is a linear mixing 

process. 

 

1.1.2.2 Instantaneous and Convolutive SS 

 

The convolutive mixture occurs when observed signals consist of combinations of 

multiple time-delayed versions of the original source signals and/or mixed signals 

themselves.  Without the presents of time delays results in the instantaneous mixture 
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of observed signals which is expressed in (1.1). In linear convolutive mixture models, 

each element of the mixing matrix A in (1.1) becomes a filter instead of a scalar, 

which results in the observation signals represented by a linear combination of a set of 

time-delayed source signals, expressed as  

 

 
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y A x     (1.4) 

 

where ( )A is the finite-impulse response (FIR) of some causal filters and  L-1  is the 

length of the filter. From (1.4), it can be seen that the simplest conventional linear 

instantaneous SS model can actually be considered as a special case of linear 

convolutive SS when ( ),   0 1L   A  is reduced to A. 

 

1.1.2.3 Overdetermined and Undetermined SS 

 

Overdetermined SS  refers to the separation problem when the number of 

observed signals are more than the number of independent sources  o sN N . On the 

other hand, when the number of observed signals is smaller than the number of 

independent sources  o sN N , this becomes underdetermined SS. Overdetermined 

problem can be easily solved by reducing to determined SS as in (1.1). As for the 

underdetermined BSS [23-25], the separation quality in terms of interference 

suppression and signal distortion is still not as good as with determined SS. This is 
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particularly true if wideband signals such as speech signals are involved. The 

difficulty is that in contrast to determined SS the solution of underdetermined BSS 

goes beyond system identification. Even if the mixing system is fully identified, 

additional effort is required to separate the mixtures. The problem is even more 

challenging if only one channel is available where we need to imposed constraints 

such as sparsity and non-negativity on the observed signal in order to perform 

separation. 

 

1.1.3 Applications of SS 

 

Source separation research has attracted a substantial amount of attention in both 

the academic field as well as the industry area due to the diverse promising and 

exciting applications.  Tremendous developments have been achieved in the 

application of SS, particularly in audio processing, wireless communication, medical 

signal processing, geophysical exploration and image enhancement/ recognition [26-

41]. In audio processing, SS problem refers to cocktail party problem where the voice 

or sound is extracted from the recorded mixture of several microphones. Similar 

example of SS problem in the field of radio communication where it involve the 

observations which correspond to the outputs of several antenna elements in response 

to several transmitters which represents the original signals. In the analysis of medical 

signals, Electroenchephalogram (EEG), Magnetoencephalogram (MEG) and 

Electrocardiogram (ECG) [5, 13, 26, 28] data represents the observations and SS is 

used as a signal processing tool to assist noninvasive medical diagnosis. For example 

in chemometrices application such as in [13], SS has been applied to determine the 
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spectra and concentration profiles of chemical components in an unresolved mixture. 

SS has also been applied to the data analysis in other areas such as finance, 

seismology and telecommunications. It has even been conjectured that SS will have a 

role in the analysis of the cosmic microwave background [42], potentially helping to 

elucidate the very origins of the universe. Further evidence of the SS applications can 

be found in [29-41].  

 

1.1.4 Single channel source separation 

 

This thesis focuses on the special case of underdetermined source separation (SS) 

problem when only one observation is available called single channel source 

separation (SCSS). For many practical applications such as audio scenarios, generally 

only one channel recording is available in the hardware and in such cases 

conventional source separation techniques are not appropriate. This is the most 

exciting case seen from hearing instrument industry point of view such that the 

specific applications [43] are described as follow: 

1. It is often desirable to process a single instrument in a recording. For example, in 

a single microphone recording of vocals and acoustic guitar, we might want to 

adjust the volume of the guitar or shift the pitch of the vocals. Thus, if the 

individual instruments can be distinguished in a mixture, they can be processed 

individually. 

2. Speech recognition in the presence of noise, particularly heavy non-stationary 

noise, is a challenging problem. Speech recognition performance could improve if 
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the speech can be distinguished from the noise and perform recognition on the 

portion of the mixture that corresponds to speech. 

3.  It has been observed that people with the perceptive hearing loss suffer from 

insufficient speech intelligibility. It is difficult for them to pick up the target 

speech, in particular, when there exist some interfering sounds nearby. However, 

amplification of the signal is not sufficient to increase the intelligibility of the 

target speech as all  signals (both target and interference) are amplified. For this 

application scenario, SCSS is highly desirable to produce a clean target speech to 

these hearing impaired people. 

4.  Musicians often spend large amounts of time trying to listen to a song and learn 

the part of a specific instrument by ear. This task becomes more difficult when 

the given piece of music has numerous instruments (which if often the case). If 

the instrument of interest can be extracted, it could simplify the task of the 

musician. In practice, this is common problem for guitar players that try to learn 

their parts from recordings of bands. 

5. Automatic music transcription of polyphonic music is a challenging problem. If 

each of the instruments in the mixture can be modeled, they can be transcript 

individually. 

6. A number of music information retrieval (MIR) tasks involve extracting 

information from individual sources. For example, guitar and piano parts could be 

good indicators of the key of the song. However, the percussion part will rarely 

have any useful information for this task. Although, the sound mixture can be 

directly used for many of these tasks, extracting the information from the right 

source could improve the performance. 
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Other field such as neuroscience (spike sorting) [44, 45] seeks to elucidate 

concerns the mechanisms used by dedicated parts of brains that  perform specific tasks 

can also be performed by using a single channel. This leads to the SCSS research area 

where the problem can be treated as one observed signal mixed with several unknown 

sources as shown in Figure 1.2. Important inspiration can be taken from the human 

auditory system, which possesses a powerful ability to segregate and separate 

incoming sounds. 

 

 

Figure 1.2: Single channel source separation problem where a single mixture of 

multiple sources is separated into their components. 

 

For linear instantaneous mixing in time domain, the single channel mixture, y of 

the sources, x can be model as 

 
1

( ) ( )
J

j

j

y t x t


                                                             (1.5) 

where 1,...,j J  denotes number of sources and the goal is to estimate the sources 

( )jx t when only the observation signal y(t) is available. SCSS is an underdetermined 

problem and for some cases its solution requires additional information about the 
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sources. For example, it is evident that in the case of linear instantaneous with two 

sources 1 x x  and 2  x y x  is a solution for any x , and it is necessary to use 

additional information about the sources to constrain the problem. 

In the time-frequency domain (TF), the mixture (1.5) can be expressed as, 

, , ,

1

J

f n j f n

j

y x


                                                       (1.6) 

where 
,f ny and , ,j f nx  denote TF components which can be obtained by applying short 

time Fourier transform (STFT). Here,

 

the time slots are given by 1,2,...,n N

 

while 

frequencies are given by 1,2,...,f F . Note that in (1.6), each component is a function 

of n and f variables and as such, the power spectrogram is defined as the squared 

magnitude of (1.6): 

2

, , , , , , ,

1 1 1

2 Re
sN K J

f n j f n k f n j f n

j k j

y x x x

  

                                        (1.7) 

 

Assuming the windowed disjoint orthogonality (WDO) of the sources i.e.

, , , , 0j f n k f nx x   for all  f and n with j k , (1.7) can be written as 

2 2

, , ,

1

J

f n j f n

j

y x



                                                     

(1.8) 

Thus a matrix representation for (1.8) is given as follows: 

.2 .2

1

J

j
j

Y X                                                         (1.9) 

where 
1,2,...,

2.2

,
1,2,...,

f F

f n
n N

y




 
  

Y and 
1,2,...,

2.2

, ,
1,2,...,

f F

j f nj
n N

x




 
  

X  are two-dimensional matrices 

(row and column vectors represent the time and slots and frequencies or frequency 

bins respectively) which denotes the power TF representation of (1.6). The superscript 
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“.” is element-wise operation. A common choice of calculating the TF is by using 

STFT but there is also alternative option for computing TF by employing a scale 

which has a high resolution at lower frequencies and a low resolution at higher 

frequencies, e.g., constant-Q transform, gammatone filterbank, or a mel scale.   

 

1.2 Objectives of Thesis 

 

The aims of this thesis are to investigate SCSS methods in terms of its 

fundamental theory, assumptions, applications and limitations as well as further 

develop new frameworks of single channel source separation (SCSS). In addition, 

three novel algorithms, one tailored specifically for SCSS of post-nonlinear 

instantaneous mixture and another two algorithms for linear convolutive mixture have 

been proposed. Rigorous mathematical derivations and simulations are carried out to 

validate the effectiveness of the proposed algorithms. The objectives of this thesis are 

listed as follows: 

i.) To present a unified perspective of the widely used existing SCSS methods. The 

theoretical aspects of SCSS are presented to provide sufficient background 

knowledge relevant to the thesis. 

ii.) To find useful signal analysis algorithms that have desirable properties unique to 

SCSS problem and how these properties can be advantaged to relax the 

constraints posed by the problem. 

iii.) To develop a new SCSS algorithm for post-nonlinear instantaneous mixture 

which addresses the following: 

 Non-stationary and temporal correlation of the source signals. 
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 Formulation of an iterative learning process to update model parameters and 

estimate source signals. 

 Estimation of nonlinear distortions by Gaussianization technique. 

 Delivery of effectiveness performance by the separation algorithm in 

various mixture conditions.  

iv.) To develop novel methods for SCSS in linear convolutive mixture which 

addresses the following: 

 Non-stationary, spectral coherence and temporal correlation of the audio 

signals. 

 Formulation of an iterative learning process to update model parameters and 

estimate source signals. 

 Delivery of enhanced accuracy and evidence in the form of comparisons to 

existing counterpart algorithms based on synthesized and real audio signals. 

 

1.3 Thesis Outline 

 

This research is carried out with the focus predominantly on single channel in 

post-nonlinear instantaneous mixtures and linear convolutive mixture. Three novel 

generative methods for SCSS will be proposed in this thesis. Real time testing will be 

conducted and the results should give superior performance over other existing 

approaches. 

In Chapter 2, an overview of recent SCSS methods is given, which is a major 

class of SCSS methods. The start of this chapter is by introducing SCSS general 

frameworks. Main current SCSS methods namely model-based SCSS, independent 
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subspace analysis (ISA), Empirical mode decompositions (EMD), computational 

auditory scene analysis (CASA) and nonnegative matrix factorization (NMF) have 

been reviewed in this chapter. 

In Chapter 3, a new SCSS method is developed to separate source in post-

nonlinear instantaneous mixture. The proposed model is a linear mixture of the 

independent sources followed by an element-wise post-nonlinear distortion function. 

In addition, the chapter develops a novel solution that efficiently compensates for the 

nonlinear distortion and performs source separation. The proposed solution is a two-

stage process that consists of a Gaussianization transform and a maximum likelihood 

estimator for the sources. Simulations have been carried out to verify the theory and 

evaluate the performance of the proposed algorithm. 

In Chapter 4, a new SCSS method is proposed for linear convolutive mixture. 

Novel matrix factorization algorithms are proposed to decompose an information-

bearing matrix (TF representation of mixture) into two-dimensional convolution of 

factor matrices that represent the spectral basis and temporal code of the sources. In 

the proposed methods, frequency constraint is imposed onto the model in order to 

compensate for the distortion caused by the convolutive mixing. In addition, a family 

of Itakura-Saito (IS) divergence has been derived for estimation of the sources. Two 

new algorithms have been proposed where the first algorithm method based on 

expectation maximisation (EM) algorithm framework which maximising the log-

likelihood of a mixed signals. As for the second algorithm, it is based on the 

maximum a posteriori (MAP) approach which maximises the joint probability of the 

mixing channel, spectral basis and temporal codes conditioned on the mixed signal 

using multiplicative update rules. Simulation of feature extraction and audio source 
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separation application have been carried out to investigate the effectiveness of the 

proposed method 

In Chapter 5, a new SCSS method is developed to separate a linear audio 

convolutive mixture where the proposed method was developed to take into account 

the reverberation environment in real audio application. The proposed method further 

improved the frequency constraint two-dimensional nonnegative matrix factorization 

by imposing sparsity constraint to solve the ambiguity problem in matrix 

decomposition. An adaptive sparseness approach is derived to compute the sparsity 

parameter for optimising the matrix factorization. Several comparisons and simulation 

are carried out to investigate the accomplishment of the proposed method. 

This thesis is concluded in Chapter 6. This chapter presents the closing remarks as 

well as future possibilities for research.  

 

1.4 Thesis Contributions 

 

The SCSS problem has been continually discussed and many approaches have 

been proposed by researchers. However, these approaches assumed that the mixture is 

linear instantaneous mixture and therefore are limited by restrictive assumptions 

which are against realistic situations.   The contribution of this thesis is to generate 

novel solutions for SCSS in two types of mixtures which are post-nonlinear 

instantaneous mixture and linear convolutive mixture. Hence, the proposed methods 

overcome the limitations associated with the conventional approaches. This thesis 

presents three novel methods with a significant improvement in performance in terms 

of both accuracy and versatility. The following outlines the contribution of this thesis: 
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i.) A unified view for the existing SCSS methods based on linear mixing model. 

ii.) A new framework for SCSS of post-nonlinear instantaneous mixture using two-

stage approach has been derived based on underdetermined independent 

component analysis (ICA) approach. The proposed model is a linear mixture of 

the independent sources followed by an element-wise post-nonlinear distortion 

function using Gaussianization transform.  The proposed Gaussianization 

transform offers a simple yet an effective solution in linearising the nonlinearity.  

In separation stage, the proposed algorithm used basis adapted by ICA learning 

rules and best characteristic features are incorporated to find a sparse solutions. 

iii.) A novel frequency constrained two-dimensional nonnegative matrix 

factorization (FCNMF2D) for SCSS in convolutive mixture is proposed with the 

following features. 

 Most of the SCSS approaches have been proposed assume that the original 

sources is instantaneously mixed, which is not realistic in a real application. 

In audio application for example, the sound or speech signals received by 

microphone/receiver are exposed to the reverberations in a room which will 

degrade quality and characteristics of sound. Therefore, the assumption that 

the mixture is instantaneous adopted by the existing SCSS approaches is 

violated. Our research in this thesis is to remedy these drawbacks and the 

formulation of a SCSS model that accounts for convolutive mixing is 

proposed. 

 The proposed model allows over-complete representation by allowing many 

spectral and temporal shifts which are not inherent in the nonnegative 

matrix factorization (NMF). 
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 A family of Itakura-Saito (IS) divergence has been developed to extract the 

spectral basis and temporal code. The proposed factorization is scale 

invariant whereby the lower energy components in the TF representation 

can be treated with equal importance as the higher energy components. 

Within the context of SCSS, this property enables the spectral-temporal 

features of the sources that are characterised by a large dynamic range to be 

estimated with higher accuracy. This is to be compared with the 

conventional matrix factorization based on Least Square (LS) distance and 

Kullback-Leibler (KL) divergence where both methods favor the high 

energy components but neglect the low energy components. 

 Two new algorithms introduced using Quasi Expectation-Maximisation 

(Quasi-EM) and multiplicative update (MU) method. These algorithms will 

respectively be termed as Quasi-EM FCNMF2D and MU FCNMF2D. The 

Quasi-EM FCNMF2D algorithm provides reliability in the solution where it 

avoids zeros in the factors which avoid the solution to be trapped at local 

minima. On the other hand, the MU FCNMF2D algorithm does not a priori 

exclude the zero coefficients in the factors. Since zero coefficients are 

invariant under MU FCNMF2D, if the MU FCNMF2D algorithm attains a 

fixed point solution with zero entries, then it cannot be determined since the 

limit point is a stationary point.  

iv.) A novel framework to solve SCSS for convolutive mixture based on FCNMF2D 

with sparsity awareness is proposed. The proposed method extends the MU 

FCNMF2D algorithm by imposing the sparseness constraints in the model. 

Imposing sparseness is necessary to give unique and realistic representations of 
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the non-stationary signals such as an audio signal. Unlike the conventional 

sparsity constraint solutions in two-dimensional sparse NMF (SNMF2D) where 

the sparsity parameter is set manually, the proposed model imposes sparseness 

on temporal code H element-wise so that each individual code has its own 

distribution. Therefore, the sparsity parameter can be individually optimised for 

each code which will overcome the problem of under-sparse or over-sparse 

factorization.  In addition, each sparsity parameter in the proposed model is 

learnt and adapted as part of the matrix factorization. 
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CHAPTER 2 

LITERATURE OF SINGLE CHANNEL SOURCE SEPARATION 

 

For the last decade, many approaches have been developed in solving SCSS 

problem and given the nature of its problem which is inherently underdetermined; its 

solution relies on making appropriate assumptions concerning the sources and can be 

categorised either as supervised or unsupervised. These SCSS methods whether they 

are supervised or unsupervised, have been proved to produce clear defined 

separability and provide practical applications for data processing especially for linear 

instantaneous case. In this chapter, existing learning approaches for SCSS are 

reviewed as well as the relationships among these approaches will be discussed. 

 

 

 

Figure 2.1: Schematic diagram of a general SCSS system 
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A schematic diagram of a general SCSS system is illustrated in Figure 2.1. This 

shows general tasks in development of SCSS algorithm. Note that for unsupervised 

SCSS methods, the training phase block is excluded from the workflow. The input to 

the source separation system is the mixed signal, y(t).  For supervised SCSS 

approaches, training data are needed for some or all of the source signals. Firstly, the 

mixture is transformed into an appropriate signal representation using e.g. short-time 

Fourier transform (STFT) or wavelet transform, in which the signal separation is 

performed. Signal representations can be chosen in order to highlight main 

characteristics in the signal that helps discriminate between sources. The 

transformations such as STFT and wavelet transforms are useful to produce sparse 

data in the transformed domain, and this can lead to effective separation algorithms. 

Then, the source models are either constructed directly based on knowledge of the 

signal sources, or by learning from training data. These models are used to capture 

properties of the sources and mixing process to effectively allow the sources to be 

separated, and have a convenient parametric form to allow efficient separation. In the 

separation stage, the models and data are combined to yield estimates of the sources, 

either directly or through a signal reconstruction step. As for unsupervised SCSS 

approaches, since the separation are done without relying on training information, the 

training phase block are not needed in the separation process. 

After the signals are separated in the representation domain, separated signals 

must be reconstructed in the original signal domain. This can be attained using a 

filtering technique where the separated source is used to construct a filter that is 

applied to the signal mixture. This filter can be a time varying Wiener filter, binary or 

soft masking in a transform domain, etc. It is important to choose an appropriate 
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signal representation such that adequate signal reconstruction is achievable. Five main 

approaches in SCSS will be discussed in this chapter namely model-based SCSS, 

independent subspace analysis (ISA), empirical mode decomposition (EMD), 

computational auditory scene analysis (CASA) and nonnegative matrix factorization 

(NMF). 

 

2.1 Model-based SCSS 

Model-based SCSS techniques are similar to model-based single channel speech 

enhancement (SE) techniques [46]–[50]. In this case, SCSS can be considered as an 

SE problem in which both the target and interference with similar probabilistic 

characteristics which are non-stationary sources must be estimated. This is a 

supervised method and generally, the following procedures are commonly applied in 

model-based SCSS techniques. First, the training phase will generate the patterns of 

the sources. From the obtained patterns, combinations pattern that model the 

observation signal are chosen. Finally, the selected patterns are either directly used to 

estimate the sources [51]–[53] or used to build filters which when imposed on the 

observation signal result in an estimate of the sources [54]–[56]. 

Further work on model-based SCSS method has been proposed in [57] where it 

exploits the hidden Markov models (HMM) or other algorithms such as e.g. 

nonnegative matrix factorization, sparse code, etc. to generate codebook of audio 

signals. The HMM based methods are widely used and the heart of these frequency 

model based SCSS methods is the approximation of the posterior  , ,,...,j n J n np x x y  by 

Gaussian distribution [54, 58]. The posterior distribution can be expressed as: 
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y  are the power 

spectrum vectors. The priori information for the sources in probability density 

functions (pdf) is assumed as Gaussian mixture models (GMM) is defined as: 
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where , jj ku is the mean vector, , jj kΣ is the diagonal covariance matrix with 

  2

, ,diag
j jj k j k fΣ , , 0

jj k  is the weight (satisfying , 1
j

j

j k

k

   ), jQ denotes 

number of components in the model of sources xj , „det‟ denotes determine and „T‟ is 

matrix transpose. In frequency model based SCSS method, , jj ku and , jj kΣ of each 

source are trained before separation process. 

In [55], Wiener filter is used to derive an estimation of the sources, given the 

mixture in the GMM setting. The estimation can be expressed as weighted Wiener 

filters where the weights are adaptive. Considered case of two sources, weighting 

probabilities is expressed as  
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The parameter  2

, jj k  is estimated in a training phase in which excerpts of each 

source are provided. By using Expectation-Maximisation (EM) algorithm parameter 
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In the case of GMM, the prior weights of the Gaussian densities are kept constant. 

Hidden Markov Models (HMM) with mixture of Gaussian conditional densities, of 

order L, can be seen as a generalisation of GMM, in which the prior weights at time 

slot n depend on the active HMM state, which corresponds to the component index 

( )jq   at previous times 1,....,n n L     . The HMM density for the source xj is 

given by, 
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In [54], the factorial hidden Markov model (FHMM) was employed to separate 

the mixture.  FHMM consists of two or more underlying Markov chains (the hidden 

states) which evolve independently. In this approach, a HMM/GMM is learned for 

each source on isolated training data, and to separate sources the most likely joint state 

sequence is separated.  Element-wise max observation model is applied for efficient 

inference of a models with a large number of states. To estimate the separated sources, 

author in [54] proposes a re-filtering technique based on a binary mask.  

For FHMM, good separation requires detailed source models that might employ 

thousands of full spectral states e.g. in [54], GMM with 8000 states were required to 

accurately represent one person‟s speech for a source separation task. The large state 

space required because it attempts to capture every possible instance of the signal. 

However, these model based SCSS techniques are computationally intensive not only 

for training the prior parameters but also for presenting many difficult challenges 

during both the learning and separation stages. 

 

2.2 Independent Subspace Analysis 

Another method in SCSS is based on independent subspace analysis (ISA) 

techniques [59-61] which motivate from independent component analysis (ICA) but 

relaxes the constraint that requires at least as many mixture observation signals as 

sources. ISA was originally proposed by [59] for images processing application and 

then was extending for SCSS by author in [61] for audio source separation 

application. The proposed approach in [61] extends an ISA method by extracting the 

statistically independent subspaces from the projection of a one-dimensional signal 
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onto a manifold. In addition, the approach also introduces the use of dynamics 

components to represent non-stationary signals where sources are tracked by 

similarity of dynamic components over small time steps.  

In subspace analysis methods, firstly, the instantaneous mixture is transformed to 

the time-frequency domain using the short-time Fourier transform (STFT). Then, the 

time-frequency space of the mixed signal is decomposed as the sum of independent 

source subspaces. Given the poser spectrogram of mixture TF representation
.2

Y , 

each time frame of the mixture power spectrogram is expressed as a weighted sum of 

P independent basis vectors, ISA

z : 

,

1

P
ISA ISA

n nw 


y z                                                              (2.7) 

where   1,..., P   denotes the index of basis vectors, P is the number of basis 

vectors, 
ny  is the STFT transformed observed signal vector, and n is the time slot 

index. Each basis vector is weighted by a time-varying scalar ,

ISA

nw .  The appropriate 

number of basis vectors ρ is found by singular value decomposition and applying a 

threshold on the decreasing sorted eigenvalues. Thus each source is spanned by a 

subset of such basis vectors that define a subspace which is a matrix with basis vectors 

in columns 
1, ,

,..., i

ISA ISA ISA

i i P i
 
 

Z z z . In ISA methods, the weight coefficients are obtained 

by projection of the input ny  onto each basis component in the subspace. Assume 

orthonormal components, namely: 

 ISA ISA

i i n
T T

w Z y                                                        (2.8) 
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This is the projection of ny on to the subspace spanned by the basis vectors 
ISA

iZ . By 

successively projecting onto each of the I sets of basis vectors, thus the ny is 

decomposed to sums of independent subspaces as: 

1

I
ISA ISA

n i i

i


T

y Z w                                                      (2.9) 

To extend the method to all time frames of power spectrogram can be estimated as 

.2 ISA ISA

i ii


T

X Z W  where 
, ,,...,ISA ISA ISA

i i n i N
   W w w . Finally, use inverse STFT to 

reconstruct 
.2

i
X  back to time domain source. As for approach in [3], the independent 

feature vectors are assigned to sources based on a similarity measure. The similarity is 

represented in an ixigram, which measures the mutual similarity of components in an 

audio segment as independent cross-entropy matrix. The pair-wise similarity measure 

is approximated by the symmetric Kullback-Leibler distance, resulting in a symmetric 

distance matrix. Grouping is performed by a clustering procedure using the 

dissimilarities in the distance matrix. The source signals can be reconstructed using 

the weights and the source dependent basis vectors. 

Nevertheless, these ISA techniques employ the STFT to construct the TF plane 

which leads to remarkable amount of cross-spectral terms due to the harmonic 

assumption and the window overlapping between successive time frames. This 

drawback implies that it is difficult to represent the mixture as the sum of individual 

sources subspaces. The separation efficiency [57] is greatly affected by the cross-

spectral energy introduced by STFT. In addition, this approach is only appropriate 

when the underlying sources have disjoint spectral support which guarantees that the 

ICA bases will be linearly independent. If the sources have overlapping support in 
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frequency, as is generally the case for mixtures of speech signals, then the separation 

algorithm must utilize strong prior information to obtain high quality separations. 

Another limitation of subspace analysis based SCSS techniques is that this process 

works well on extracting drums from a mixture because they tend to account for most 

of the variance in musical signals. However, because of the way in which model 

represents the data, it is limited to stationary pitch sound such as drums.  

 

2.3 Empirical Mode Decomposition 

The empirical mode decomposition (EMD) has recently gained reputation as a 

method for analysing nonlinear and non-stationary time series data. By combining 

other data analysis tools, EMD can be employed to separate the audio sources from a 

single mixture. Molla and Hirose [62] proposed a subspace decomposition based 

SCSS method using EMD and Hilbert spectrum (HS). The EMD decompose the 

mixture into sum of band-limited functions termed as intrinsic mode functions (IMFs), 

namely:  

1

( ) ( ) ( )
M

EMD

m M

m

y t c t r t


                                                 (2.10) 

where ( )mc t is the m
th 

 IMF, M is the total number of IMFs, and ( )EMD

Mr t  is the final 

residue. Constructing the Hilbert spectrum for both mixed and IMFs, this gives 

1,2,...,

, 1,2,...,s

f F
H H

f n t N
y




   Y and 

1,2,...,

, , 1,2,...,

f F
H H

m m f n n N
c




   C . By computing the spectral projection 

vectors between the mixture and individual IMF components, this is defined as: 
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2

,

( )
( )

( ) ( )

H

mH

m H H

y m c

f
f

f f




 
                                               (2.11) 

where ( )H

m f  is the cross spectrum of y(t) and ( )mc t , 
,

1

( )
N

H H

y f n

n

f Y


  and 

, , ,

1

( )
N

H H

m c m f n

n

f c


 . Thus we can arrange the spectral projection vectors as individual 

column of a matrix 
1 ,...,H H H

M
   D θ θ  and then derive spectral independent bases 

from H
D by applying principal component analysis (PCA) and ICA. Once these sets 

of spectral independent bases are obtained, the KL divergence k-means clustering is 

used to group the bases into (number of sources) subsets. Finally, synthesis time 

domain estimated sources ( )jx t . 

The performance of the above EMD based SCSS method rely very heavily on the 

derived basis vectors which are only stationary over time. Therefore, good separation 

results can be obtained only if basis vectors are statistically independent over time. 

For some source (e.g. male and female speeches), the features can be very similar and 

hence, it becomes difficult to obtain the independent basis vectors by PCA or ICA. 

 

2.4 Computational Auditory Scene Analysis 

Another method for SCSS that has been widely studied is based on a 

computational model of the human auditory scene and its processing in the brain.  The 

goal in computational auditory scene analysis (CASA) [63-69] is to incorporate as 

much information as the human auditory system is using and replicate the process by 
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exploiting signal processing approaches (e.g. notes in music recordings) and grouping 

them into auditory streams using psycho-acoustical cues. In CASA methods, after an 

appropriate transform such as the short-time Fourier transform (STFT) or cochleagram 

TF representation, low level perceptual cues are used to segment a time-frequency 

representation of a mixture into regions consistent with being generated by a single 

source. The grouping cues [70] can be summarised as follow: 

 Common onset and offset – sound component with the same onset time and to 

a lesser extent, the same offset time, tend to be grouped into same unit by 

auditory system. Since unrelated sounds seldom start or stop at exactly the 

same time, the auditory system assumes that components showing a “common 

fate” are likely to have origin in a common single source. To find the starting 

of musical events (e.g. notes, chords and etc.), the spectral flux can be used as 

the onset detection function defined as, 

             
/2

2 2

0

( ) , 1,
HN

w

k

SF n H X n k X n k


                      (2.12) 

where  ,X n k represents the k
th

 frequency bin of the n
th

 frame of power 

magnitude in dB of the STFT, 
2

w

x x
H


  is the half-wave rectifier function 

and NH is the Hamming window size. A peak at time at w

s

nH
t

f
  is selected as 

an onset if it satisfies the following conditions: 

( ) ( )    :

( )

( )
1

n w

k n mw

SF n SF k k n w k n w

SF k

SF n thres
mw w



 

     

 
 

                          (2.13) 
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where w is the size of the window used to find a local maximum, m is the 

multiplier so that the mean is computed over the larger range before the peak 

and thres is threshold relative to the local mean that the peak must reach in 

order to adequately prominent to be selected as an onset. 

 Amplitude and frequency similarity - Amplitude and frequency features of the 

sound components are the most basic similarities explored by the auditory 

system. Accordingly, the edge weight connecting two peaks k

lp  and k n

mp   will 

depend on their amplitude and frequency proximities. Amplitude and 

frequency similarities, Sa and Sf respectively, are defined as follows, 

 

 

, exp

, exp

k k n
k k n l m

a l m

a

k k n
k k n l m

f l m

f

a a
S p p

f f
S p p











  
   

  

  
    

   

                              (2.14) 

where the Euclidean distances are modelled as two Gaussian functions. The 

amplitudes are measured in dB while the frequencies are measured in Barks. 

 Harmonicity – A wide variety of sounds produced by humans are harmonic. 

When a body vibrates with a periodic movement, its vibrations create an 

acoustic pattern whose frequency components are multiples of a common 

fundamental i.e. harmonics of a fundamental frequency. Interestingly, the 

auditory system tends to group a set of harmonically related acoustic 

components into single event. In [68], harmonicity principle is modelled using 

smoothed harmonic map, ( , )h i j  which provides harmonic similarity between 

spectral lines i and j where ( , ) 1h i j   if  or 
i j

j i
. Since the spectrograms are 

noisy, the smoothing process is performed. The smoothed harmonic similarity 



                                                                                                                                                 CHAPTER 2 

30 

 

between spectral lines i i  and j j due to harmonic similarity is given by

   ( , ) ( , ) , ; , ;sh i j h i j N i pi i N j pj j     where   , ;N s  is the Gaussian 

function with parameters   ,  and p is a constant. The map is normalised so 

that ( , ) 1
j

sh i j  . Then, the similarity between lines i and j at time t is 

defined as  

( , ) ( , ) ( , )tS i j X t i sh i j                                      (2.15) 

where ( , )X t i denotes the magnitude spectrum at time t and spectral line i. 

 Common modulation – If a sound source exhibits amplitude or frequency 

modulation, it is expected that all of its components show similar modulation 

manifestations.  

 Spatial proximity – one of the best generalisations that can be made about 

independent sound sources is that they normally occupy distinct positions in 

space. As a consequence, sound source location could provide the strongest 

cue in the construction of an ecological representation of the surrounding 

sound environment. 

For more detailed review of CASA grouping cues, please refer to [70]. Time-

frequency cells with consistent cues are then grouped together using a masking 

technique which then be used for separation. More progressive machine learning 

approaches have also been proposed for segmentation such as in [71] where segments 

sources using spectral clustering of perceptual grouping cues.  However, these 

perceptual cues are only applicable to harmonic signals such as voiced speech and 

thus are limited in terms of the types of signals they can separate. In addition, most of 

CASA methods cannot efficiently segregate instruments playing in the same pitch 
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range into different streams. In current approaches, because of the difficulty in 

grouping process, in order to ease the task, one of the essential signals is assumed 

fully voice. Furthermore, CASA approaches suffer the problems where separability in 

speech separation is rather limited for unvoiced speech and the formant structure is 

not explicitly used as a feature [72].  

 

2.5 Nonnegative Matrix Factorization 

One of the popular techniques in SCSS that recently attract much attention is 

nonnegative matrix factorization (NMF) [73-80]. NMF is a factorization technique for 

decomposing data with nonnegative constraint on the component. In many fields, real 

components contains nonnegative element such as the microarray data, amplitude 

spectra, pixel intensities and the natural images [81, 82]. For example, for signal 

cryptosystem, in order to get an accurate result in decryption, the plaintext sources 

need to be nonnegative before encryption [83]. Therefore, in the analysis of mixtures 

of such data, non-negativity of the individual components is a reasonable constraint. 

NMF gives a more part based decomposition [84] and the decomposition is unique 

under certain conditions [85], making it unnecessary to impose the constraints in the 

form of orthogonality and independence which have led to a significant interest in 

NMF. Because of its simplicity and applicability, NMF has been successfully applied 

in the fields of signal/image processing such as for application of audio source 

separation [86] [87], automatic music transcription [88] and pattern recognition [89]. 

In image processing or pattern recognition, the images/objects is expressing as a linear 

combination of basis objects which used to extract features. While in source 
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separation problem, the magnitude or power spectrogram of a sources signal is taken 

as a data matrix,  

 

2.5.1 Conventional NMF 

The key point in this NMF technique is to model the power of mixture as a 

product of two nonnegative matrices in time- frequency (TF) domain using e.g. Short-

time Fourier transform (STFT). In conventional NMF, for analysis on the single input 

recordings, (1.8) yielding a TF representation which can be decomposed as: 

.2
Y WH                                                     (2.16) 

where 
.2 F N

Y

 

is the power TF representation of mixture y(t) which is the product 

of two nonnegative matrices, 
F K

W

 

and 
K N

H and F and N represent the 

frequency bins and time slots in matrix Y, respectively. K is usually chosen such that 

FK KN FN  , hence reducing the data dimension. If K is chosen to be K=N, no 

benefit is achieved in terms of representation. Thus the idea is to determine K<N so 

the data matrix W can be compressed and reduced to its integral components such as 

W is a matrix containing only a set of spectral basis vectors, and H is an encoding 

matrix which describes the amplitude of each basis vector at each time point. NMF is 

used to estimate the spectral bases and temporal code of the sources signal. In the 

combination of the basis, NMF does not allow negative elements in either the signal 

basis or the signal coefficients/dictionary. Thus, it represents the signals only by 

additions of weighted signal basis, such that no cancellations can occur. This agrees 

with the intuitive idea of building the whole as the sum of its parts. 
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Commonly use cost functions introduced in [84] for NMF are the Least Square 

(LS) distance and generalised Kullback-Leibler (KL) divergence which are expressed 

as: 

 
2.2 22.2

, ,

,

2

.2 22 2.2 ,

, , ,2
,

,

1ˆ ˆLeast Square :          
2

ˆ ˆKullback-Leibler :   log
ˆ

LS f n f n

f n

f n

KL f n f n f n

f n
f n

C

C

 
  

 

 
           

 





Y Y Y Y

Y
Y Y Y Y Y

Y

      (2.17) 

where 
.2

ˆ Y WH  . In (2.17), LSC  is equivalent to the maximum likelihood 

estimation of W and H in additive independent and identically distributed (i.i.d.) 

Gaussian noise and
 KLC  is equivalent to assuming a Poisson noise model for the data. 

In [84], the authors minimise the chosen cost function by initializing the entries of W 

and H with random positive values, and then by using multiplicative update rules, W 

and H are updated iteratively. Each update decreases the value of the cost function 

until the algorithm converges. The update rule of W and H for LS divergence is given 

by: 

.2 .2T T

T T
   and     

Y H W Y
W W H H

WHH W WH
                             (2.18) 

where „  ‟ denote the element-wise multiplication and „ NMF

NMF

A

B
‟ denotes the element-

wise division of matrices NMFA  and NMFB . The multiplicative update rule for KL 

divergence is given by: 

  
   .2 .2T T

T T

. / . /
   and     

Y WH H Y WH W
W W H H

1H 1W
                  (2.19) 
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where „1‟ is an all-one F by N matrix and „./‟ denote the element-wise division. 

The extensions of NMF have also been proposed by using other families of 

parameterised cost functions, such as the Beta divergence [90] and Cziszar‟s 

divergences [91] for the separation of audio signals. After factorization, the recovered 

j
th

 source in TF representation can be estimated as 
.2

j jj
X W H  where jW

 
represent 

the spectral basis of j
th

 source in TF representation and jH represents the code for 

each spectral basis element. Regardless of the cost function being used, in order to 

achieve audio source separation, some methods are required to group the basis 

functions by source or instrument. As discussed in [92] practically if the sources 

overlap in the TF domain, it is difficult to obtain the correct clustering.  

 

2.5.2 Convolutive NMF  

 

Normally, the temporal relationship between multiple observations over nearby 

intervals of time is discovered using a convolutive generative model. Motivated by 

this, author in [93] extends the conventional model in (2.16) by introducing the 

convolutive NMF model (also known as nonnegative matrix deconvolution (NMFD)) 

where each object has a sequence of successive spectral and corresponding activation 

pattern across time such that  

max
.2

0

 








Y W H                                                              (2.20) 
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where max   is the length of each spectrum sequence and


W represent the th slice of 

spectral basis W The arrow sign in 


H denotes the right shift operator which moves 

each element in the matrix by   column to the right, with zero filling on the right i.e. 

1 21 2 3 0 1 2 0 0 1
,   ,  

4 5 6 0 4 5 0 0 4

      
       
     

Β Β Β  

Now 
.2

Ŷ  of cost function in (2.17) for the convolutive generative function is 

expressed as 
max.2

0

ˆ
 









Y W H . The new cost function can be viewed as a set of max  

conventional NMF operations that are summed to produce the final result. 

Consequently, as opposed to updating W and H as in conventional NMF, max 1    

matrices require an update 
max0 ,...,  and W W H . Using the multiplicative update rules, 

the resultants update for W and H of LS distance is expressed as  

T
.2 .2

T
.2

.2

T

T

   and   

ˆ ˆ




 









  

Y H W Y
W W H H

Y H W Y

                              (2.21) 

As for the multiplicative update rule of KL divergence is given by: 

 
.2.2T

.2.2

T

T

T

ˆ. /ˆ. /

   and   





 









 

 
 
 
  

Y Y W
Y Y H

W W H H

1W1 H

                  (2.22) 

 

For each  , H and each 


W  are update at every iteration. That way, the factors can be 

optimise in parallel and account for their interplay.  
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2.5.3 Two-dimensional nonnegative matrix factorization 

 

The recently developed two-dimensional NMF factorization (NMF2D) model 

[94] extends the NMF model to be two-dimensional convolution of W and H. This 

model is the extension of NMFD model of (2.20). The factorization is based on a 

model that represents temporal structure and pitch change. In audio source separation 

for example, the model represents each instruments by a single time-frequency profile 

convolved in both time and frequency by a time-pitch weight matrix. This model 

radically reduces the number components need to model various instruments and 

effectively solves the SCSS problem. NMF2D model can be formulated as 

max max
.2

0 0

   
 

 

 

 

Y W H                                                    (2.23) 

The matrix 
W

 
represents the th slice spectral basis and 

H  represents the th  slice 

of temporal code for each spectral basis element.
 
The superscript upper arrow sign in

 






W denotes downward shift operator which moves each element in the matrix by 
 

row down. By the same token, the arrow sign in





H denotes the right shift operator 

which moves each element in the matrix by   column to the right. This can be 

interpreted as follows, i.e: 

1 2
1 2 3 0 0 0 0 0 1

1 2 3 ,   1 2 3 ,  0 0 1

1 2 3 1 2 3 0 0 1

 
     
     

  
     
          

Β Β Β  

The 3D-representation for W and H are shown in Figure 2.2. W has been sliced in 

frontal (i.e. -sliceth ) and vertical (i.e. -slicethj )  directions. It is true that W can also 

have horizontal slice representation but this has not been shown since we don‟t need it 
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for NMF2D model. As for H, it has been sliced in frontal (i.e. -sliceth ) and horizontal 

directions (i.e. -slicethj )  .  

  

 

 

Figure 2.2: 3D-representation for W and H 
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We replace 
max max.2

0 0

ˆ
   

 

 

 

 

Y W H  in cost function of (2.17) for NMF2D model, the 

multiplicative update rules for LS distance of W and H can be expressed as  

TT
.2 .2

TT
.2.2

   and   

ˆˆ

 
 

   

 


 

 

  
Y H W Y

W W H H

W YY H

                             (2.24) 

For KL divergence, the multiplicative update rule is given by: 

T T
.2 .2.2 .2

T T

ˆ ˆ. / . /

   and   

   
 

   

 
 

   

 
 

   
   
   
    

Y Y H Y Y W

W W H H

1H 1W

               (2.25) 

It is important to note that the NMF2D model has certain ambiguities between the 

factors 


W  and 
H . For example in audio source separation, there exists an adverse 

shift of the time-pitch signature if a time-frequency signature of an instrument is 

shifted in time or frequency (if disregard edge effect). In order to improve the shift 

ambiguity, it can be useful to shift 


W  and 
H  during the recursive computation e.g. 

such that the geometric mean value of the row coefficients in 


W  and the column 

coefficients of 
H  are centered. 

 

 

2.6 Summary 

In this chapter, a general framework and the main approaches in SCSS have been 

reviewed. Since it is a necessary to use additional information about the sources to 

constrain the problem in SCSS, all approaches discussed here can be considered as 

forms of constrained optimisation such as mutual statistical independence, and non-
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negativity. In source separation, it have been stated that if the number of observations 

decreases then the similarity of the underlying sources increases. Hence more 

constrained must be apply in the separation methods. This is a great challenge for the 

extreme case in separating single channel mixtures of multiple sources. Method like 

model-based SCSS which is the supervised SCSS methods is more reliable and 

accurate since they rely on access to source-specific training data to learn constraints 

in the form of source model. In addition, these methods can be used for all types of 

mixture if the prior knowledge or training data of the source models are provided. 

However, in most real applications, only observation signal is available in such case 

the supervised SCSS methods cannot separate it efficiently because of the lack of the 

prior knowledge of source models it is necessary to use additional information about 

the sources to constrain the problem. Hence, SCSS approaches of like ISA, EMD, 

CASA and NMF have been proposed to resolve this problem. Since no training data 

are needed, these methods have the advantage of being less computationally intensive. 

So far, the SCSS methods discussed in this chapter basically are based on 

conventional linear instantaneous mixture model. These methods dominate the current 

literature due to their simplicity and are computationally inexpensive. However, this 

assumption is often violated and may not be an accurate representation of the actual 

observed mixture. This problem have leads the research direction in focusing on the 

issue of how to develop the SCSS methods for all types of mixtures environment with 

high accuracy separation performance. As for unsupervised SCSS method, the issue 

on how to learn source model and automatic detect the number of sources when only a 

mixture is available need to be resolve. In this thesis, three novel SCSS methods will 

be developed where the first one is for the case of post-nonlinear instantaneous 
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mixture using a supervised SCSS method and the other two methods is an 

unsupervised method for solving the case of linear convolutive mixture. The design of 

each method will be described in the next three chapters. 
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CHAPTER 3 

NONLINEAR SINGLE CHANNEL SOURCE SEPARATION IN 

INSTANTANEOUS MIXTURE 

 

The SCSS methods explain in Chapter 2 by far were based on linear 

instantaneous model. Linear model is known for its simplicity and ease of 

implementation. These methods show very good performance in separating the signal 

for linear mixture. However, in practical applications such as in speech recognition, 

music transcription or telecommunications, the transmitted signals are often received 

by nonlinear receiver such as carbon-button microphones [95-97] or antennas [98-

100]. Hence, in the real environments, the mixed signals are more likely to be 

nonlinear or subject to some kind of nonlinear distortions due to sensor sensitivity. 

Therefore, the assumption that the mixture is linear adopted by the existing SCSS 

approaches is violated and may not characterise the actual observed signals accurately. 

The need of an accurate representation of the distorted signals has resulted in the 

emergence of SCSS for nonlinear mixture model. So far, no method in SCSS has been 

proposed to solve the nonlinear problem. 

In this chapter, a new model of nonlinear single channel source separation is 

proposed. The proposed model is a linear mixture of the independent sources followed 

by an element-wise post-nonlinear distortion function. In addition, the research 

develops a novel solution that efficiently compensates for the nonlinear distortion and 

performs source separation. The proposed solution is a two-stage process that consists 
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of a Gaussianization transform and a maximum likelihood estimator for the sources. 

The chapter also discusses the theory behind the proposed solution. Simulations have 

been carried out to verify the theory and evaluate the performance of the proposed 

algorithm. Results obtained have shown the effectiveness of the algorithm even in 

presence of the strong nonlinearity. 

The organisation of the chapter is as follow. Section 3.1 describes the 

underdetermined and the post-nonlinear single channel model. Section 3.2 explains 

the proposed solution for two stage process. Discussion of the Gaussianization 

transform performances in compensates the nonlinearity and experimental results are 

analysed in Section 3.3. Finally, Section 3.4 summarises the work in this chapter. 

 

3.1 Background 

3.1.1 Nonlinear single channel instantaneous mixture model 

For linear mixture of SCSS [101, 102], suppose that the observed time domain 

signal ( )y t
 
is mixed with J independent sources 

1 1 2 2 3( ) ( ) ( ) ... ( )Jy t a x t a x t a x t                                         (3.1) 

where ( )jx t  is the t
th  

sampled value of j
th

 source signal, ja  is the mixing gain of 

sources. The goal is to recover ( )jx t  given only single input y(t).  
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In this chapter, we propose the nonlinear single channel mixture that is modelled 

by the post-nonlinear (PNL) mixing model as described in the following: 

 1 1 2 2( ) ( ) ( ) ... ( )J Jv t f a x t a x t a x t                                   (3.2) 

where f(.) is an invertible nonlinear function.  The basis functions and coefficients 

learned by independent component analysis (ICA) constitute an efficient 

representation of the given time-ordered sequences of a sound source by estimating 

the maximum likelihood densities. For each source signal, a K-sample vector 

T
( ) ( ) ( 1) ( 1)j j j jt x t x t x t J     x  can be expressed as a linear combination of 

basis functions such that 

1

( ) ( ) ( )
K

ICA ICA

j jk jk j j

k

t m s t t


 x M s                                  (3.3) 

where K is the number of basis functions, 
ICA

jkm is the k
th

 basis function of j
th

 source, 

and ( )jks t   is the coefficient. The transform between ( )j tx  with coefficient vector, 

( )j ts  is assumed to be reversible with 

( ) ( )ICA

j j jt ts W x                                             (3.4) 

where ICA

jW  is the inverse of the basis matrix,  
1

ICA ICA

j j



W M . Then, the  ICA 

algorithm can be exploited for capturing the source coefficient density. Generalised 

exponential density model [103] is expressed as 
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 

1

, , exp
1

2

aa
qqa

a

a

q s u
p s q u

q








 
  

     
 

                                   

(3.5) 

where  .  denotes the gamma function. The coefficients are determined by 

parameters mean u, exponent qa and variance  
2

E s u   
 

 where E[.] denotes 

the expectation. By using maximum log likelihood estimator, gradient ascent 

adaptation of coefficient density is obtained such that 

 
 log , ,

( )
ap s q u

s
s







                                     
(3.6) 

In our proposed method, for simplicity, mean and variance are zero and unit, 

respectively. 

The PNL model represents the important subclass of the general nonlinear model 

which is simpler and widely applicable.  PNL structure is popular due to its ability to 

model some systems reasonably well such as those that involve the use of nonlinear 

sensors [104]. The PNL model that will be used is shown in Figure 3.1 where two 

independent sources are mixed together and then are distorted by a nonlinear function.   

 

Figure 3.1: Post-nonlinear mixing model for SCSS 
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3.2  Proposed Separation Method 

In this research work, the sources are estimated in a two-stage approach as shown 

in Figure 3.2. In the first stage, the nonlinearity of the observation ( )tv  is equalised 

using the nonlinear transform, 1ˆ( ) ( )g v f v  with the linearised signal is given by 

 ( ) ( )z t g v t . This is followed by the second stage where the linear separation 

algorithm based on maximum likelihood (ML) [101] will be used to obtain an 

estimated sources of 1̂( )x t
 
and 2

ˆ ( )x t . 

Nonlinear 

transform

Linear 

Separation 

)(ˆ1 tx

)(ˆ2 tx

1
st
 stage 2

nd
 stage

)(tv

1ˆ  fg

)(tz

 

Figure 3.2: Proposed two-stage nonlinear SCSS 

 

3.2.1 Nonlinearity compensation 

In order for the signals in nonlinearly distorted mixture to be accurately separated, 

the nonlinearity of the mixture must be compensated. To this end, we propose a 

linearisation technique known as the Gaussianization transform. The main impetus of 

using the proposed technique comes from the following principle: Firstly, we observe 

that the sources from the observation are statistically independent and non-Gaussian. 
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According to the central limit theorem, when the sources are mixed the resulting 

mixture tends toward a Gaussian distribution. However, the post-nonlinearity f(.) 

distorts the amplitude distribution of the linear mixture and subsequently transform it 

to a non-Gaussian distribution. Thus, the non-Gaussian behaviour of the observation 

v(t) to some extents is directly attributed to the nonlinearity f(.) in the mixture. As 

such, the nonlinearity can be compensated by finding a suitable transformation such 

that the output returns to a Gaussian distribution. Therefore, it is clear that by using 

this principle, the estimation problem can be readily split into two tasks where the first 

task is to compensate for the nonlinear distortion and the second task is to seek 

separation from the compensated signals where separation can be assumed to be linear 

[105-107]. In this chapter, we constrained the number of sources to be two for 

illustration purpose only. In reality, the number of sources will be considerably more 

than two and in such case, our proposed method will work even more efficiently.  

Although the nonlinearity f(.) is unknown, it is possible to determine the inverse 

function gj(.) by finding a suitable transformation which convert the component vj(t) to 

the Gaussian random variable. The goal is to find gj(.) such that 

   2~ 0,        for   1,...,j j jg x N j J                                     (3.7) 

where 
2 1j  due to the usual scaling indeterminacies. 

Consider Fv(v) which denote the cumulative density function (cdf) as 

                                   




v

vv dttvpvF )()(                                                      (3.8) 
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with pv(v) denote probability density function (pdf) of v,
21

( ) exp
22

v

v
p v



 
  

 
. 

Assuming cdf of z, Fz(z) is continuos and strictly increasing so that the inverse 

mapping exist, then Fz(z)  can  be express as, 

 
1

( ) ( )

( ) ( )

( ) ( )

z v

z v

z v

F z F v

F g v F v

g v F F v







                                                   (3.9) 

Since the desired distribution of z(t) is Gaussian, and the cdf of Gaussian is expressed 

2

2
1

( )
2

z t

z v dt






    as, the expression of 1

zF  can be replaced by the inverse of 

Gaussian cdf, 
1)(  z . Hence, the nonlinear mapping g(.) can be expressed as 

1

vg F                                                     (3.10) 

If the mixed signal, y(t) are closely  Gaussian distribution, then the Gaussianized 

signal should  estimate the signal perfectly with ).()( tytz    

 

3.2.2 Source Estimation: Maximum Likelihood 

After recovery of the nonlinearity, the linear SCSS approach based on maximum 

likelihood (ML) [101] was used to solve the single channel source separation problem. 

The main idea approach for SCSS is based on assuming that the audio source signal 

can be represented by a set of ICA basis functions which can be learned by training. 

These bases are then used to discriminate between sources using an assumption of 

source independence and in the probability model. The basis functions imply inherent 
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types of non-Gaussian signals. Thus the separation algorithm use hybrid of maximum 

likelihood (ML) and maximum a posteriori (MAP) estimators to recover the 

independent components 

Considered two sources signal 1( )x t  and
2 ( )x t , according to ICA, the sources are 

said to be statistically independent if only the probability density function (pdf), 

     
1 2 1 2

1 2 1 2( ), ( ) ( ) ( )
ˆ ˆ( ) ( ), ( ) ( ) ( )

x t x t x t x t
p y t x t x t p x t p x t                      (3.11) 

where number of samples, t=1,…,T . The sources vectors are passed through the fixed 

basis filter ICA

jW   to generate set of basis coefficients, 

   

   

1

1 1

(1), (2),..., ( ) ( )

                                           s ( ) det

T
ICA ICA

j j j j j j

t

T K
ICA

jk j

t k

p x x x T p t

p t



 









W x W

W

                      (3.12) 

 

The likelihood function, ICAL  can be expressed as,  

   

       

    

1 1 2 2

1

1 1 2 2

1 1 1

1 2

1 1

log x ( ) x ( )

      log ( ) det ( ) det

      log ( ) log ( )

T
ICA ICA ICA

t

T K K
ICA ICA

k k

t k k

T K

k k

t k

L p t p t

p s t p s t

p s t p s t



  

 



 
  

 

 



  



W W

W W

 

         (3.13)  

Gradient ascent method was exploited to find an optimised value of )(1 tx . 
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   

 
 

   
 

 

1 2

1 11 1 1

1 1 2 2 2

1 1 1 2 11 2

log ( ) log ( )

( ) ( ) ( )

log ( ) ( ) log ( ) ( ) ( )
          

( ) ( ) ( )( ) ( )

ICA T K
k k

t k

T K
k k k k

t k k k

p s t p s tL

x t x t x t

p s t p s t p s t s t x t

x t x t x tp s t s t

 

 

  
  

    

     
  

     





     (3.14) 

For case with the two source, the observe mixture is stated 1 1 2 2( ) ( ) ( )y t a x t a x t  , 

then  At every time t every source signal can be expressed by the counterpart,  

2 2
1

1

( ) ( )
( )

y t a x t
x t

a


  and 1 1

2

2

( ) ( )
( )

y t a x t
x t

a


 . Thus, it will result in the differential 

of  2 1

1 2

t

t

x a

x a


 


. Equation (3.14) then become,  

     1
1 1 2 2

1 11 2( ) n n

n

ICA K K
ICA ICA

k n kn k n kn

n k

aL
s t w s t w

x t a
 

 

 
  

  
                      (3.15) 

where 1n nt t n   , ],1[ Tt  and [1, ]n nn N  . Scalar 
n

ICA

jknw  is the nn th 
of ICA

jkw

which is the component of adjustment in change from k
th

 filter output to source j.  For

 log ( )
( )

( )

jk

jk

p s t
s

s t






 , it can be obtained from (3.6).  Similar formulation are applied 

to the second source, 

 

    2
1 1 2 2

1 12 1

( ) ( )
( ) n n

n

ICA K K
ICA ICA

k n kn k n kn

n k

aL
s t w s t w

x t a
 

 

 
   

  
                       (3.16) 

Then, the update process of the sources can be written as 

   new old
( ) ( )

( )

ICA

j j

j

L
x t x t

x t



 


                       

                      (3.17) 
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where   is a learning gain. 

Next step is to estimate the scaling factors, ja  by finding the maximum the 

posteriori (MAP) values. From (3.13), L
ICA

 is differentiated with respect to 1a as 

follow:  

                    

   

   

   

 

1 2

1 11 1 1

1 2 2
1 2

1 1 1 2 1

1 2
1 2

1 1 1 2

1

log ( ) log ( )

( ) ( )
        = ( ) ( ) .

( ) ( )
        = ( ) ( )

       ( )

ICA T K
k k

t k

T K
k k

k k

t k

T K
k k

k k

t k

k

p s t p s tL

a a a

s t s t a
s t s t

a a a

s t s t
s t s t

a a

s
s t

 

 



 

 

 

  
  

    

   
 

   

  
 

  

 







 1 2
2

1 1 1 2

( ) ( )
( )

T K
k k

k

t k

t s t
s t

a a


 

 
 

 


                 (3.18) 

where the partial derivative of ( )jks t  with respect to ja  given by 

( ) ( )1
( ).

jk jk

j jk

j j j j

s t s t
a s t

a a a a

  
       

. The update scaling factor of 1a   can be written 

as, 

 
   new old

1 1 .

1

ICA

a a

L
a h a

a


 
  

 
                                                (3.19) 

we force the sum of the factors to be constant, such that 1 2 1a a  . The value of 2a  is 

completely dependent on the value of 1a .  Thus we can substitute.  And for the of the

2a ,  

   new new

2 11a a                                                    (3.20) 
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where a is a learning gain and ah is a limiting function. Table 3.1 shows the summary 

of the proposed algorithm. 

Table 3.1: Algorithm of two-stage nonlinear SCSS 

First stage 

Observation: 1 1 2 2( ) ( ) ( )y t a x t a x t   

Set the initial value of 1a and 2a  where 
2

1

1 and 0j j

j

a a


   

For t=1:T, 

1. Introduce the post-nonlinearity distortion, f(.).,  ( ) ( )v t f y t  

2 .Find cdf, vF  and inverse cdf of Gaussian distribution, 1   

3. Estimate the nonlinearity mapping, 1

vg F  to find z(t) 

Second stage 

Input: z(t) 

For t=1:T , k=1:K and  j=1,2 

1. Compute ( ) ( )ICA

j j jt ts W x and 
 log ( )

( )
( )

jk

jk

p s t
s

s t






  

2. Update the sources signal,    new old
( ) ( )

( )

ICA

j j

j

L
x t x t

x t



 


 

3. Update the scaling factors, 
   new old

1 1 .

1

ICA

a a

L
a h a

a


 
  

 
 and    new new

2 11a a    

4. Repeat steps 1 to 3 until convergence 
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3.3  Results and Analysis 

3.3.1 Experiment setup  

The proposed separation was tested on recorded audio signals. All recordings and 

processings were conducted using a PC with Intel Core 2 Duo CPU 5250 @ 1.5GHz 

and 2GB RAM. For mixture generation, three type of mixtures were used i.e. mixture 

of piano andflute; mixture of piano andmale speech; mixture of male and female 

speech. All mixtures are sampled at 16 kHz sampling rate. The objective was to 

separate the sources  in the nonlinear mixture. The values of signal gain 1a and 2a both 

were fixed at 0.5. The number of iterations needed for the algorithm to converge was 

200. Independent component analysis (ICA) algorithm (e.g. FastICA) [106] was used 

to obtain the basis filter  
1

ICA ICA

j j



W M  and source coefficient density was modelled 

using generalised Gaussian parameter. The basis functions obtained in this simulation 

was based on [102] which used best characteristic features that being extracted from 

cross-correlation matrix. Cross correlation was used to identify the characteristically 

most similar features inherent in the audio signals. 

 

3.3.2 Quality evaluation 

In order to get a good representation of errors which may occur in SCSS, several 

measures are proposed in [109], each investigating a certain property of the error, e.g.  

interference energy or distortion. The estimated sources is divided as follows 

target interf noise artif
ˆ( ) ( ) ( ) ( ) ( )x t x t e t e t e t                                     (3.21) 
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where target ( )x t  is the target source, and interf ( )e t , noise ( )e t and artif ( )e t are the interference 

i.e unwanted sources, noise and artifact errors, respectively. The decomposition of the 

estimated source signal was based on orthogonal projections. It was done up to a 

constant scaling factor.  A procedure to calculate the pure source specific energy 

contained in the separated source signal is described in [109,110].  Performance 

criteria in decibels are introduced as follow: 

1. Source-to-distortion ratio (SDR) – the SDR measures the ratio of the target 

energy to all unwanted distortions contained in the signal 

2

target

1
10

2

interf noise artif

1

( )

SDR 10log

( ) ( ) ( )

T

t

T

t

x t

e t e t e t







 




                        (3.22) 

2. Source-to-interference ratio (SIR) – the SIR measures the ratio between the target 

source component to all other source components in the mixture. In other words, 

the residual energy of one source given all others is computed as 

2

target

1
10

2

interf

1

( )

SIR 10log

( )

T

t

T

t

x t

e t









                                          (3.23) 

3. Source-to-artifact ratio (SAR) – the SAR  estimates the amount of distortions, 

defined as 

2

target interf noise

1
10

2

artif

1

( ) ( ) ( )

SAR 10log

( )

T

t

T

t

x t e t e t

e t





 





                     (3.24) 
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SDR is a global measure that as it accounts for both SIR and SAR. The goal is to 

maximise SIR (as this measure the actual separation) while trying to keep SAR as 

high as possible (in order to prevent the introduction of artifacts). 

 

3.3.3 Evaluation of proposed algorithm 

 

In this experiment, the proposed method is evaluated by comparing the 

performance of linear algorithm (without linearising the nonlinearity stage) and 

proposed PNL algorithm in nonlinear instantaneous mixture. We will also show the 

importance of nonlinearity compensation in reducing the distortion in the separated 

sources. 

 

3.3.3.1 Gaussianization transform 

The motivation behind the Gaussianization transform is that the linearly mixed 

signals before nonlinear transformation are approximately Gaussian distributed due to 

the Central Limit Theorem. Here, the performance of Gaussianization to compensate 

the nonlinearity is evaluated. In Figure 3, the histogram of the signal is plotted along 

with a Gaussian model where its parameters are calculated from the data. The larger 

the deviation between the histogram and the Gaussian model signifies larger deviation 

from Gaussianity. Firstly, two non-Gaussian distribution sources (e.g. piano sound and 

flute sound) as shown in Figure 3.3(a) and 3.3(b) respectively are linearly mixed. 

Theoretically it tends to be more Gaussian distributed as shown in Figure 3.3(c). The 

post-nonlinear distortion is applied to the mixed signal using the following 

nonlinearity of ( ) 0.3 tanh(3 )f y y y   which is the bounded nonlinear function. This 
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distortion causes the Gaussian distribution of the mixed signal to deviate from 

Gaussianity as in Figure 3.3(d). Without using any knowledge of the nonlinearity, the 

Gaussianization transform inverts the nonlinearly distorted signal and restores the 

distribution to the Gaussian pdf. The histogram of Gaussianized signal in Figure 3.3(e) 

proves the performance of the transformation. The line shown in the Figure 3.3 was a 

histogram of a Gaussian model fit using the mean and variance of a signal. In Figure 

3.4, relationship between the signals of y(t), v(t) and z(t) are shown using a scatter 

plot. A linear relationship between the Gaussianized signal and mixed signal, y(t) can 

be seen  clearly in Figure 3.4(c). From both Figure 3.3 and 3.4, it indicates that the 

nonlinear distortion has been successfully been linearised using Gaussianization 

transform. 

 

  

Figure 3.3:  Histogram of (a) piano sound (b) flute sound (c) linearly mixed signal (d) 

nonlinearly distorted signal and (e) Gaussianized signal 
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(A) 

 
 

(B) 

 
 

(C) 

 

 

Figure 3.4: Scatter plot of (A) nonlinear functions f(.), (B) Inverse function g(.) in 

relation to f(.), (C) Gaussianized mixture. 
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3.3.3.2  Source separation result 

Figure 3.5 shows the separation result using proposed algorithm. It can be seen 

that the proposed algorithm shows the capability to separate the single mixture and 

recover the piano and flute sound very well in nonlinear mixture. Comparing with the 

separation result of the linear algorithm in Figure 3.6, without the Gaussianization, the 

results are affected by the nonlinearity distortion which has resulted in poorer 

separation. Table 3.2 shows the comparison performance in SDR, SIR and SAR. Note 

that this is an average result of source 1 and source 2 of the mixture. In the overall, the 

proposed algorithm shows a very good separation results in a nonlinear environment 

with the good SDR, SIR and SAR values compared with the linear algorithm for all 

types of mixture. By using our proposed algorithm, average SDR improvement of 

2.2dB, 0.9dB and 2.5dB have been achieved for piano-flute, piano-male and male-

female mixture, respectively comparing with linear algorithm. In the proposed 

algorithm, the Gaussianization transform used to compensate the nonlinearity was 

proved to be effective and useful in producing improved performance in nonlinear 

mixture. 

In separating the single mixture, the SCSS using ML algorithm achieved a good 

performance because the proposed algorithm using basis adapted by ICA learning 

rules [108] i.e. FastICA. This prior information from the basis and their corresponding 

pdfs are the key to obtaining a faithful MAP based inference algorithm. As in this 

experiment, the basis obtained using the best characteristic features which is already 

proved to be better in separation if the less number of bases used [102]. One of the 

most useful properties is that resulting in decompositions which are often intuitive and 
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easy to interpret because they are sparse. For single channel using ML approach, the 

coefficients of the basis functions have the higher degree of sparseness.   

 

 

Figure 3.5: Separation results of nonlinear mixture using PNL algorithm 
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Figure 3.6: Separation results of nonlinear mixture using linear algorithm.  

  

TABLE 3.2:  Performance comparison of proposed method with linear algorithm in 

nonlinear mixture 

Mixture Algorithm SDR SIR SAR 

Piano-Flute Linear 11.0 10.5 19.5 

Proposed method 13.2 14.5 23.2 

Piano-Male Linear 9.5 9.9 16.5 

Proposed method 10.4 13.1 17.4 

Male-Female Linear 9.6 10.2 19.0 

Proposed method 12.1 12.4 21.6 
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3.3.3.3  Experiment using nonlinear handset model 

As mentioned in [95-97], low quality microphones such as those made from carbon 

materials are subject to nonlinear distortions especially when the input audio is of 

large amplitude. Applications that involve the use of carbon microphone include 

mobile handsets and speaker telephones. Consequently, if these microphones are used 

then the nonlinearity introduced by these microphones cannot be ignored and must be 

taken into account in the mixing model. In this section, we intend to model the 

nonlinearity conducted in the study of [95-97] corresponding to carbon-button handset 

mapper. The nonlinearity is define as a piecewise function with variable boundary 

points, given by 

3

                      

( ) ( ) ( )      

                      

f for y y

f y y j y j for y y y

f for y y

 

 

 




   
 

                               (3.25) 

where the output saturation levels, f+ and f- correspond to the input levels y+ and y- 

respectively. From Table 3.3, the results obtained show the same pattern as in Table 

3.2 with the performance of PNL algorithm is always shows better performance 

compared with the linear algorithm. For all type of mixtures, an average of SDR 

improvement recorded at 1.8dB for the proposed method compare with the linear 

algorithm. Again, it proves that for nonlinearly distorted signal, by compensating the 

nonlinearity using Gaussianization, the separation in single channel can yield a good 

performance.  
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 TABLE 3.3:  Performance comparison using polynomial carbon-button 

nonlinearity 

Mixture Algorithm SDR SIR SAR 

Piano-Flute Linear 10.6 11.2 18.0 

Proposed method 12.0 13.3 22.4 

Piano-Male Linear 8.5 8.9 15.5 

Proposed method 9.0 9.5 16.1 

Male-Female Linear 8.9 9.2 16.9 

Proposed method 10.5 13.7 18.0 

 

3.4  Summary 

In this chapter, a new statistical model for the separation of SCSS in post-nonlinear 

instantaneous has been proposed. The post-nonlinear mixture model is popular not 

only due to its simplicity in analysis, but also widely applicable. In the proposed 

techniques, it combines the Gaussianization transform and the time-domain maximum 

likelihood separation algorithm. In the proposed method, Gaussianization transform 

inverts the nonlinearly distorted signal and restores the distribution to the Gaussian 

pdf so that the mixture can be efficiently separated by the linear separation algorithm.  

The ML approach has been developed to estimate the model parameters and source 

signal is estimated by MAP approach. The best characteristic features have been used 

to generate basis function efficiently. From the experiments, the proposed method 

shows significant performance with high SDR value in nonlinear mixture compare 

with the one of linear algorithm. Besides that, Gaussianization transform has 

performed very well in recovering the loss of signal information due to the 

nonlinearity.  
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CHAPTER 4 

LINEAR SINGLE CHANNEL SOURCE SEPARATION IN 

CONVOLUTIVE MIXTURE USING QUASI-EM AND 

MULTIPLICATIVE UPDATE FREQUENCY CONSTRAINED 

NONNEGATIVE MATRIX FACTORIZATION  

 

Conventional SCSS approaches inherently assume that the original sources have 

been mixed instantaneously, which in some real applications is not realistic. In 

addition, they do not exploit the redundancy of channel in an optimal way. For 

example in audio application, the sound or speech signals received by 

microphone/receiver are exposed to the reverberations in a room which will degrade 

the quality and characteristics of sound. Therefore, the assumption that the mixture is 

instantaneous adopted by the existing SCSS approaches is violated. The aim of this 

chapter is to remedy these drawbacks and to formulate a SCSS model that accounts 

for convolutive mixing is proposed. Our work is based on NMF technique which 

yields a decomposition that may benefit many tasks not only for BSS but to other 

applications such as in pattern recognition [111], cryptography [112], data mining 

[113] and binary test data [114]. Several methods have been proposed for SCSS in 

convolutive mixture problems such as in [115] and [116]. In [115], the convolutive 

mixture is divided into finite number of subbands using parallel bank of finite impulse 
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response (FIR) filter before applying empirical mode decomposition (EMD) to 

produce intrinsic mode function (IMF) in each subband. For this method, the good 

separation results only can be obtained if basis vectors are statistically independent in 

each subband. Especially, if the features of the sources are similar, it is difficult to 

obtain the independent basis vector so that the separation performance will be 

degraded. In [116], the autocorrelation is used to estimates the delay coefficient in 

each reflected path and then an artificial stereo mixture is generated from the single 

channel mixture before applying azimuth discrimination and synthesis (ADRess) 

algorithm for separation. The difficulty associated with measuring the delay 

coefficient increased if the time delayed coefficient increased. This is somehow  the 

limitation of the method because the performances of the algorithm rely too heavily 

on delay estimation coefficient. In NMF-based technique, the authors in [117] have 

proposed an algorithm for convolutive mixture BSS but the model is focusing on 

multichannel source separation. In addition, this method requires a posterior binding 

step so as to group the basis functions according to the sources. Furthermore, the 

numbers of component per source must be selected a priori which may otherwise 

results in significant degradation in the separation performance. Depending on the 

type of source signal, the higher the variability of the signal the more components are 

needed. 

In this chapter, a novel development of two-dimensional NMF (NMF2D) using 

Itakura-Saito (IS) divergence for single channel convolutive mixture is proposed. Two 

algorithms are proposed using Quasi Expectation-Maximisation (Quasi-EM) and 

multiplicative update (MU) method. The proposed solutions are an unsupervised 

method which separates sources from single convolutive channel without using the 
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training data from the original sources. The first algorithm method based on EM 

algorithm framework which maximises the log-likelihood of a mixed signals. As for 

the second algorithm, it is based on the maximum a posteriori (MAP) approach which 

maximises the joint probability of the mixing channel, spectral basis and temporal 

codes conditioned on the mixed signal using MU rules. NMF2D model extends the 

NMF model to be a two-dimensional convolution of W and H. The factorization is 

based on a model that represents temporal structure and pitch change which occur 

when an instrument plays different notes. In audio source separation, the model 

represents each instrument compactly by a single time-frequency convolved in both 

time and frequency by a time-pitch weight matrix. This model dramatically decreases 

the number of components needed to model various instruments and effectively solves 

the SCSS problem. 

In the proposed method, frequency constrained is imposed onto the model in 

order to compensate for the distortion caused by the convolutive mixing and this 

model is term as frequency constrained NMF2D (FCNMF2D). The Itakura-Saito (IS) 

divergence in the proposed algorithms will allows a more precise representation of the 

factorization where low-energy components cost as much as the high-energy 

components. This is to be compared with the Kullback-Leibler (KL) and Least Square 

(LS) divergence whose estimation of low-energy components is often discounted in 

support of the high-energy components. 

The chapter is organised as follows: In Section 4.1, single channel convolutive 

mixture model in the time-frequency (TF) domain is introduced. In Section 4.2 

derivation of two new algorithms of frequency constrained two dimensional sparse 

NMF is detailed. The results of experimental tests and analysis in feature extraction 
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and source separation are presented in Section 4.3. Finally, Section 4.4 concludes the 

chapter. 

 

4.1 Background 

4.1.1 Single channel convolutive mixture model 

For instantaneous audio mixing in the time domain, the single channel mixture, y 

of the sources, x can be model as 

 
1

( ) ( ) ( )
J

j j

j

y t a x t e t


                                                     (4.1) 

where ja  is the mixing filters with  t=1,2,...,T and j=1,2,..,J denotes the time index 

and the number of sources respectively and ( )e t is an additive noise. From (4.1), the 

convolutive mixing model for single channel is described in the following,
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1 0
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y t a x t e t
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 

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(4.2) 

where ( )ja  is the finite-impulse response (FIR) of some causal filters. The time 

domain convolutive mixture in (4.2) are then projected to time-frequency domain 

using short-time Fourier transform (STFT) function such that 

, , , , , ,

1

J

f n j f n j f n f n

j

y a x e


                                               (4.3) 
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where 
,f ny  and 

, ,j f nx are the time-frequency components of the corresponding time 

signals, , ,j f na denotes the value of complex-valued discrete Fourier transform of filter

( )ja  , f=1,2,...,F and n=1,2,...,N denotes the frequency bin and time frame index 

respectively. For all ρ, filter length L  needs to be shorter than the length of the 

window used in STFT in order to avoid the similarity effect from the convolution. 

Assuming the mixing channel is time-invariant, 
, , ,j f n j fa a  and (4.3) can be written 

as 

                              , , , , ,

1

J

f n j f j f n f n

j

y a x e


                                                  (4.4) 

Then the power spectrogram is defined as the squared magnitude of (4.4) which can 

be expressed as  

,
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                   (4.5) 

Assuming the windowed disjoint orthogonality (WDO) of the sources and the noise 

i.e. , , , , 0j f n k f nx x  and 
,, , 0

f nj f nx e  for all  f and n with j k , (4.5) can be written as 
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(4.6) 

In the matrix form, model (4.6) can rewritten such that 
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where  2.2

,f n
fn

yY ,  .2 2

, ,j j f n
jfn

xX  ,  22

,f n
fn

e

E  and  .2 .2

diagj jA a

with  .2 2

,j j f
f

aa . The superscript “.” is element-wise operation and “diag” is an 

operator that converts a vector to a diagonal matrix. In single channel blind source 

separation for convolutive mixture, given the power spectrogram of observed mixture, 

.2
Y , we are interested in estimating the sources image

im

jX  and the mixing matrix 
jA

. The source image is defined as
im

j j jX A X . Estimating the original sources directly 

from a single channel convolutive mixture is an ill-posed problem since it requires the 

inversion of multiple mixing channels from the observed signal y(t) alone. 

Subsequently, any estimator obtained in this way will not be statistical consistent and 

is prone to high levels of discontinuities and artifacts in the estimated sources. In 

many audio and music processing, filtering the original sources is desirable for 

enhancing the perceptible quality of signal and in creating an immersive experience 

[118-120]. In many cases, it suffices to separate the mixture into its constituent parts 

characterised by the source images (i.e. decomposing the mixture signal into the 

independent source images) than estimating the original source signals. In addition, 

the signal-to-distortion ratio (SDR) performance of the estimated source image is 

better than using the estimated source signal since the algorithm preserves the 

integrity of signal in the source image more than that of the estimated source signals.  
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4.1.2 Itakura-Saito divergence properties 

Itakura-Saito (IS) divergence was obtained by Itakura and Saito [121] from the 

maximum likelihood (ML) estimation of short-time speech spectra under 

autoregressive modeling. The expression of the IS divergence is given by 

  log 1IS

a a
d a b

b b
                                                         (4.8) 

IS divergence is a limit case of the β-divergence [90] which is defined as:  
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                  (4.9) 

In the context of NMF as well, was separately constructed so as to interpolate between 

the KL divergence (β = 1) and the Euclidean distance (β = 2).  The following property 

holds for any value of β, 

    D a b D a b

                                             (4.10) 

This implies that the IS divergence is scale-invariant i.e.    IS ISD a b D a b    and 

is the only one of the β-divergence family to possess this property. Scale invariance 

means that same relative weight is given to small and large coefficients of  
.2

Y  in the 

sense that a bad fit of the factorization for a low-power coefficient 
.2

Y  will cost as 

much as a bad fit for a higher-power coefficient
.2

Y . In contrast, factorizations 

obtained with β > 0 (such as with the Euclidean distance or the KL divergence) will 

rely more heavily on the largest coefficients, and less precision is to be expected in the 

estimation of the low-power components. The scale invariance of the IS divergence is 
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relevant to decomposition of audio spectra, which typically exhibit exponential power 

decrease along the frequency and also usually comprise low-power transient 

components such as note attacks, together with higher-power components such as 

tonal parts of sustained. 

 

 

4.2 Proposed Separation Method 

In this section, two new algorithms will be developed, namely the Quasi-EM 

FCNMF2D and the MU FCNMF2D. The former algorithm optimises the parameters of 

the signal model using the Expectation-Maximisation approach whereas the latter is 

directly based on the multiplicative update rule using gradient descent. To facilitate the 

derivation of these algorithms, let first consider the signal model in terms of the power 

TF representation.  

 

4.2.1 Sources Model 

Since we are dealing with single channel recording in convolutive mixing, a 

natural time-frequency domain will be to use the log-frequency spectrogram generated 

using the constant-Q transform [122]. The log-frequency spectrogram is more suitable 

compared with classic spectrogram where signals are decomposed to components of 

linearly spaced frequencies. It is desirable especially for audio application since it 

provides resolution that is geometrically related to the frequency. By using the 

constant-Q transform, the twelve-tone equal tempered scale divides each octave into 

twelve half notes where the frequency ratio between each successive half note is 



                                                                                                                                                 CHAPTER 4 

70 

 

equal. The frequency of the note which is dΘ half note above can be written as

/24

fund.2
d

df f 


  where fundf is the fundamental frequency of the note. By imposing the 

logarithmic scale, this gives 
fundlog log log 2

24
d

d
f f



 
 
which shows that in log-

frequency spectrogram, the musical octave notes are linearly space or constant.  

A new model based on (4.7) is proposed as our mixture model where the case of 

noise free environment is considered with all elements is non-negative. For the 

proposed model, the (log-frequency) power spectrogram of each j
th

 source image 

.2
im
jX is defined as a product of nonnegative matrices of source signal model with 

frequency constrained as follows: 

    

max max.2

1 0 0

J
im

j j jj

j
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

 

 
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X U HW

                                       (4.11) 

where  .2

diagj jU a  is the frequency constrained of the NMF2D model introduced 

to resolve the distortion due to the convolutive mixing matrix. j


W  is the j

th
 column of 


W which represents the spectral basis of the j

th
 source and j


H  is the j

th
 row of 

H

which represents the temporal code for each spectral basis element.
 

 , 1,...,  and =1,..,f jw f F j J  W
 

represents the th slice of basis W and 

 ,  =1,..,  and =1,...,  j nh j J n N H represent th  slice of temporal code H. In (4.11), 

the superscript upper arrow sign in
 j






W denotes downward shift operator which moves 

each element in the matrix by 
 
row down. Concurrently, the arrow sign in j






H denotes 
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the right shift operator which moves each element in the matrix by    column to the 

right. The terms max  and max  are the maximum number of  shifts and  shifts 

respectively. In the following, two novel algorithms are proposed to estimate the 

parameter of jU , j






W and j






H from the mixture.  

The task of source separation is to estimate the source image spectrograms as well 

as the mixing system, U . However, if the solution for the convolutive mixture by 

using just the NMF2D method [94] without any constraint on the channel, this will 

introduce error distortion in the obtained solution. To prove this, let us consider the 

NMF2D as follow and rewrite the expression in terms of the mixing channel: 
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where 

1

j jj
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 

U WW  and j
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U  refers to sliding all the elements in jU  one step 

along the diagonal direction while the initial resulting empty diagonal component is 

inserted with 1. Note that j






W  and j j

 


 

U W  give the same set of spectral bases. Let us 

now compare (4.11) with (4.12) and it is immediately apparent that j j

  

U U  if and 

only if j U I  in which case this correspond to an instantaneous or anechoic mixture. 

However, in convolutive mixture j U I  and hence j j

  

U U in which case the 

solutions in (4.11) and (4.12) become different. This discrepancy will lead to 
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distortion in the decomposition of convolutive mixture. From above, it can be argued 

that on the one hand, j






W  in the NMF2D allows an efficient representation of the 

source spectral contents which are the desirable attributes in SCSS. On the other hand, 

because the mixing channels are no longer frequency-flat (i.e.
j U I ), j






W  will 

inadvertently introduce distortion due to the frequency shifting of the spectral basis 

(i.e. the  -shift). To remedy this, it is imperative that the frequency distribution of the 

spectral basis be constrained through the diagonal matrix jU as in (4.11) to avoid the 

distortion generated when j






W shifts downwards.  

From the model in (4.11) two new algorithms are proposed, namely, one based on 

Quasi-EM framework and the other using multiplicative update rule which will be 

explained in the next sub-section. 

 

4.2.2 Formulation of Quasi-EM FCNMF2D  

 Following generative model is considered which is defined as: 

,

1

K

n k n

k

y c   , 1, ,n N    
, ,1, , ,, ,k n k n k F nc c   

T

c        (4.13) 

where 
1F

n

y C , 
1

,

F

k n

c C  and  ,cN u   denotes the proper complex Gaussian 

distribution and the components 1, , , ,n K Nc c  are both mutually and individually 

independent. The Expectation-Maximisation (EM) framework is developed for the ML 

estimation of  , , θ U W H . Due to the additive structure of the generative model 
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(4.13), the parameters describing each component 
,1 ,, ,k k k N

   C c c  can be updated 

separately. We now consider a partition of the parameter space 
1

K

kk
θ θ  as 

 , ,k k k k
 θ u w h  where k


w  is the k

th
 column of 


W  and k


h  is the k

th
 row of 

H . The 

EM algorithm works by formulating the conditional expectation of the negative log 

likelihood of 
kC  as 

     | | , log |
k

ML
k k k k k kQ p p d  Cθ θ C Y θ C θ C   (4.14) 

where θ  always contains the most recent parameter values of  , , 
U W H . 

 

4.2.2.1 Expressions of the E- and M-step  

One iteration of the EM algorithm includes computing the E-step and maximising 

the M-step  |ML

k kQ θ θ  for 1, ,k K . The minus hidden-data log likelihood is 

defined as: 

  , , , , ,

1 1 ,

2

, ,

, , ,

1 1 , , , ,

,

log | log 0,

log

N F

k k c k f n k f f k k n

n f

N Fc k f n

k f f k k n

n f k f f k k n

p N c u w h

c
u w h

u w h

 
 

 

 
   

   
 

 

 

 

   

 
    

 
 

 
   

 

 

 


C θ

   

              (4.15) 

where „
c

 ‟ in the second line denotes equality up to constant terms. Then, by virtue of 

(4.13), the hidden-data posterior also has a Gaussian form as 
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   , , , , , ,

1 1

| ,
N F

post post
k c k f n k f n k f n

n f

p N c  
 

C Y θ  where , ,
post
k f n  and , ,

post
k f n  are the posterior 

mean and variance of , ,k f nc  given as: 

                           

, , ,

,

, , ,

, , ,

, ,

k f f k k n

post
k f n f n

l f f l l n

l

u w h

y
u w h

 
 

 

 
 

 



 

 






 

 

, , ,

,

, , , , ,

, ,, , ,

, ,

k f f k k n

post
k f n l f f l l n

l kl f f l l n

l

u w h

u w h
u w h

 
 

   
  

  
 



 

 

 







   (4.16) 

Thus, the E-step merely includes computing the posterior power kV  of component kC , 

defined as 
2

, , , , , , ,[ ] post post
k f n k f n k f n k f nv    V . The M-step can be treated as one-

component NMF problem: 

 

2

, , , ,

, , ,

1 1 , , , ,

,

2

, , , , , , ,

1 1 ,

| log

| |

post post
N F

k f n k f nML

k k k f f k k n

n f k f f k k n

N F
post post

IS k f n k f n k f f k k n

n f

Q u w h
u w h

d u w h

 

   
   

 

 

 
 

 

 

 

 

   

 

 

 

 
   

 

 
   

 

 


 

θ θ

             (4.17) 

where ( | )ISd    is the IS divergence and is formally defined as 

 ( | ) ( ) log 1ISd a b a b a b   . The IS divergence has the property of scale invariant 

i.e. ( | ) ( | )IS ISd a b d a b    for any  . This implies that any low energy components 

),( ba will bear the same relative importance as the high energy ones ( , )a b  . This is 

particularly important to situations where
.2

Y  is characterised by large dynamic range 

such as the audio short-term spectra. 



                                                                                                                                                 CHAPTER 4 

75 

 

4.2.2.2 Estimation of the spectral basis and temporal code 

 

The spectral basis and temporal code can be obtained from (4.17). The derivative 

of a given element of , , , , ,

,

k f n k f f k k ng u w h 
 

 
   with respect to ,k fu , ,f kw

 and ,k nh
 is 

given by: 

, , ,

, , ,

' , ' ',

,', ' ', '

, , ,

, , ,

', ,

, ,

, , ,

, , ,

, ' ,

   where  '

k f f k k n

k f n

f k k n

k f k f

k f f k k n

k f n f f
k f k n

f k f k

k f f k k n

k f n

k n k n

u w h
g

w h
u u

u w h
g

u h f f
w w

u w h
g

h h

 
 

   
 

 

 
 

 
 

 
 

 

 



 

 

 


  

   

 

 
  




 
 




   
 




 
 







'

', ,   where  'n n
k f f ku w n n 

   

      (4.18) 

The derivatives of (4.17) corresponding to ,k fu , ,f kw
 and ,k nh

  is then obtained as: 

 
  , ,

, ,

,', ' ', ' , ,

, ,

' , ' ', ' , ' ',2
, ,, , , ,

, , , ,

'2
, ,

|
log

1
                       =

                       =

ML
k f nk k

k f n

f nk f k f k f n

k f n

f k k n f k k n

n k f n k f n

k f n k f n

f

k f n

vQ
g

u u g

v
w h w h

g g

g v
w

g

   
   

   
   



 
 

 




 
 
 
 



  

θ θ

, ' ',

,

k k n

n

h 
 

 
 

 

 
  , ,

, ,

, , ,, ,

, ,

', , ', ,2
, , , , ,

, , , ,

', ' ,2
, , ,

|
log

1

ML
k f nk k

k f n

f n k f nf k f k

k f nf f f f
k f k n k f k n

f n k f n k f n

k f n k f n

k f k n

n k f n

vQ
g

gw w

v
u h u h

g g

g v
u h

g

 

 

  
 

 

 
   

  
    

  

  



 
 

 


 

 
  

 
 







θ θ
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 
  , ,

, ,

, , ,, ' , '

, ,' '
', , ', ,2

, , , , ,

, , ' , , '

', ,2
, , , '

|
log

1

ML
k f nk k

k f n

f n k f nk n k n

k f nn n n n
k f f k k f f k

f n k f n k f n

k f n k f n

k f f k

f k f n

vQ
g

gh h

v
u w u w

g g

g v
u w

g

 

 

  


 

 
 

 
    

 

 



 
 

 


 

 
  

 
 







θ θ

              (4.19)

 

Unlike the conventional EM algorithm, it is not possible to directly set

  ,| 0ML

k k f kQ w 

 
 θ θ  ,   , '| 0ML

k k k nQ h


 θ θ  and   , '| 0ML

k k k fQ u 
 θ θ because 

of the nonlinear coupling between ,k fu , ,f kw
 and ,k nh  via , ,k f nv . Thus, closed form 

expressions for estimating ,k fu , ,f kw
 and ,k nh  cannot be accomplished. To overcome 

this problem, the following update rules are used and unify it as part of the M-step. 

For each of individual component, standard gradient descent method is applied with 

 

 

|

|

ML

k k

k k ML

k k

Q

Q





     
    

θ θ
θ θ

θ θ
   (4.20) 

where      | | |ML ML ML

k k k k k kQ Q Q
 

            θ θ θ θ θ θ . For each ,k fu , ,f kw
 and 

,k nh  variables, we have: 

   

   

2

, , , , ' , ' ',

,

1

, , ' , ' ',

,

|

|

ML

k k k f n k f n f k k n

n

ML

k k k f n f k k n

n

Q g v w h

Q g w h

 

   
 

 

  
 



    



  

    

   

 

 

U

U

θ θ

θ θ

                  (4.21) 

and 



                                                                                                                                                 CHAPTER 4 

77 

 

   

   

2

', ' , , , , ,

,

1

', ' , , ,

,

|

|

ML

k k k f k f n k f n k n

n

ML

k k k f k f n k n

n

Q u g v h

Q u g h



   




  




      



    

    

   





W

W

θ θ

θ θ

                 (4.22) 

and 

   

   
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', , , , '

,

|

|
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k k k f f k k f n k f n

f
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f

Q u w g v

Q u w g


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



 




   



  

    

   





H

H

θ θ

θ θ

                            (4.23) 

Inserting (4.21) into (4.20) leads to 

2

, , , , ' , ' ',

,

', ' ', ' 1

, , ' , ' ',

,

k f n k f n f k k n

n

k f k f

k f n f k k n

n

g v w h

u u
g w h
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 
 

 

 
 



 



 

 
 

  
 
 

 

 
                                     (4.24) 

Similarly, the updates for ,f kd
 give 

2

', ' , , , , ,

,' '

', ' ', ' 1

', ' , , ,

,

k f k f n k f n k n

n

f k f k

k f k f n k n

n

u g v h

w w
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

   
 



  




      



    

 
 

  
 
 




                                  (4.25) 

and as for ,k nh
, the update is given by 

2

', , , , ' , , '

,' '

', ' ', ' 1

', , , , '

,

k f f k k f n k f n

f

k n k n

k f f k k f n

f

u w g v
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u w g



  
 



 




   



  

 
 

  
 
 




                                   (4.26) 

 

It can be verified that the above update rules have an advantage of ensuring the 

non-negativity constraints of ,k fu , ,f kw
 and ,k nh  are always maintained during every 
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iteration. Defining , , , , ,

,

[ ]k f n k f n f k k np w h 

 
 

  P , the update rules for (4.24), (4.25) 

and (4.26) can be written in matrix notation as 

  
  

. 2

1

. 1

1

k k k Ν

k k

k k Ν









 



 
 
  
 

G V P 1
u u

G P 1
                                          (4.27) 

 

where vector 1Ν1  is a N-vector of ones. For k


w  update, it is written as 

T

T

. 2

. 1

diag( )

diag( )

k k k k

k k

k k k
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


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 





  


 



   
         

  
  
  





u G V h

w w

u G h

                                        (4.28) 

And similarly for k


h  

T . 2

T . 1

diag( )

diag( )

k kk k

k k

kk k

  


 

 




  

 



                  
   
       





u w G V

h h

u w G

                                   (4.29) 

Table 4.1 presents the main steps of the proposed method for Quasi-EM FCNMF2D 

where 610   is the threshold for ascertaining the convergence. 
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Table 4.1: Quasi-EM FCNMF2D algorithm 

Input: 
.2

Y                         

Output: U ,


W  and 


H . 

Initialise U ,


W  and 


H with nonnegative random values.  

Compute initialise cost value cost(1) using (4.15) 

for iter=1:no. of iterations 

     for k=1:K 

          E-step 

          -Compute 
2

, , , , , ,
post post

k f n k f n k f nv    using  (4.16) 

          M-step 

          - Update ku using (4.27) for all   and   

          - Update 
k


w  using (4.28) for all   and   and normalise 

k


d   

          - Update 
k


h  using (4.29) for all   and   and normalise 

k


h   

     end 

   Compute cost value using (4.15) 

end 

stopping criterion: 
( 1) ( )

( )

cost iter cost iter

cost iter


 
  

 

4.2.3 Formulation of Multiplicative Update FCNMF2D  

We consider the following generative model defined as: 

max max
.2

1 0 0

J

j j j

j

  
 

 

 

  

 
  
 
 
Y U W H E     (4.30) 
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where E  is a scalar of multiplicative independent and identically-distributed (i.i.d.) 

Gamma noise with unit mean i.e. , ,( ) ( | , )f n f np   E E  where ,( | , )f n  E  

denotes the Gamma probability density function (pdf) defined as: 

   
1

, , , ,( | , ) exp , 0
( )

f n f n f n f n




   



  


E E E E . Next, we define  1 2 IU U U U

max1 2    W W W W  and max1 2    H H H H . Under the independent and 

identically distributed (i.i.d.) noise assumption, the term  .2
log | , ,p Y U W H  

becomes 

 

max max
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1 1
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1 0 0.2
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where „
c

 ‟ in the second line denotes equality up to constant terms. Thus, the cost 

function is  .2
log | , ,ISC p  Y U W H . The derivatives of (4.31) corresponding to 

U ,


W  and 


H are described as follows: 

For ,j fu , the derivatives is given by 
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where , , , ,f n j f f j j n

j

z u w h 

 
 

  . As for ,f jw
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, the derivative  of the 

component are given by 
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Similarly,  
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(4.34) 

For each of individual component, standard gradient descent method is applied with 
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where u , w , and h are the positive learning rate. Based on [84], the positive 

learning rate can be set to the followings: 
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(4.36) 
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Using (4.35) and (4.36), the multiplicative update (MU) rules are obtained where 

for 
,j fu , the update is given by 
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(4.37)  

Similarly, the MU rules for ,f jw
 gives 
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and as for ,j nh
, the update is given by 
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(4.39)  

In the matrix notation, the update rules for (4.37), (4.38) and (4.39) can be written as 
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                                                (4.40) 

where , ,

,

j f j j n

 
 

 

 

Ρ W H and vector 1Ν1  is a N-vector of ones. For W update, it is 

written as 
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And similarly for H, 
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Table 4.2 presents the main steps of the proposed method for MU FCNMF2D . 

Table 4.2: MU FCNMF2D algorithm 

Input: 
.2

Y                              

Output: U ,


W  and 


H  

Initialise U ,


W  and 


H with nonnegative random values.  

Compute initialise cost value cost(1) using (4.31) 

for iter=1:no. of iterations 

Compute 
, , ,

, ,

f n f j j n

j

p w h 

 
 

   and 
, , , ,

, ,

f n j f f j j n

j

z u w h 

 
 

   

   -Update ju using (4.40). 

   -Update j


W  using (4.41) for all   and  and normalise j


W  

   -Update j


H using (4.42) for all   and  and normalise j


H  

  Compute cost value using (4.31). 

end 

stopping criterion: 
( 1) ( )

( )

cost iter cost iter

cost iter


 
  
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For Quasi-EM FCNMF2D algorithm, it avoids zeros in the factors where 


W  and 


H  cannot take entries equal to zero. If ,f kw

 or ,k nh
 is zero, it will give infinite value 

to the cost function. On the other hand, this is not feature shared by the MU 

FCNMF2D algorithm, which does not priori exclude zero coefficients in 


W  and 


H  

(except for 0Z  which lead to a division by zero). Since zero coefficients are 

invariant under MU FCNMF2D. If the MU FCNMF2D algorithm attains a fixed point 

solution with zero entries, then it cannot be determined since the limit point is a 

stationary point [87, 123]. Consequently, the resulting factorizations rendered by these 

algorithms are not equivalent. This is the drawback of MU update, once a parameter is 

exactly zero, it remains zero. For this reason, the Quasi-EM FCNMF2D algorithm can 

be considered more reliable for updating 


W  and 


H .  

 

4.3 Results and Analysis 

The proposed algorithms were tested on two applications which were feature 

extraction and source separation of audio signals. For feature extraction, the objective 

was to extract the basis and code from the convolutive mixed data using a toy data. 

The toy data mixture was generated using round and cross patterns which overlap in 

TF domain. It was artificially generated using MATLAB. As for source separation, 

the proposed algorithm were tested for real application where the objective was to 

separate an audio mixture in convolutive mixture. All experiments and analysis were 

performed using a PC with Intel core i3 M380 @ 2.53GHz and 3GB RAM.  
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4.3.1 Feature extraction of toy data 

 

In this sub-section, the proposed algorithms will be tested to evaluate their ability 

in extracting the basis and code from a simulated mixed data.  The simulated data 

were generated to have high degree of pattern overlap which occupied area of low 

frequency, middle frequency and high frequency in the log-frequency spectrogram. 

Figure 4.1 shows the true factors of basis in vertical panels and code in horizontal 

panels of the simulated mixed patterns. The basis W consists of three circles and three 

crosses features. These features were convolved with the code H given at the top 

panels of the figure to yield the mixture of both patterns. Then, hamming window was 

applied to the mixture to produce a convolutive mixture of the data matrix Y. For this 

experiment the convolutive factors were selected such that  0, ,16   and 

 0, ,16  . In this experiment, we will compare the performance between Quasi-

EM FCNMF2D and MU FCNMF2D and investigate the effects of frequency 

constrained, U for both algorithms. To observe effect of U, we will evaluate the 

proposed algorithm where U is constant by simply setting j U I  while the adaptation 

of W and H  still follows the proposed methodology. 
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Figure 4.1: True factor of basis and code of the simulated convolutive mixed data 

 

 

Figure 4.2: The estimated results using Quasi-EM FCNMF2D 
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Figure 4.3: The estimated results using MU FCNMF2D 

 

Figure 4.4: The estimated results using Quasi-EM NMF2D (U=I) 
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Figure 4.5: The estimated results using MU NMF2D (U=I) 

Figure 4.2 and 4.3 show the matrix factorization results for both Quasi-EM 

FCNMF2D and MU FCNMF2D, respectively.  It can be seen from the figures that the 

factorization using Quasi-EM FCNMF2D show better extraction and reconstruction 

performance compare with MU FCNMF2D. Every code was assign almost correctly 

to each basis feature and the estimation of convolutive mixing parameter has shown a 

good outcomes. As for MU FCNMF2D, the poorer performance indicates that the MU 

FCNMF2D could be trapped in local minima which will result incorrect extraction of 

codes and thereby causing the crosses and circles features missing from the figure. 

Figure 4.4 and 4.5 show the matrix factorization when U=I for both Quasi-EM and 

MU of proposed algorithms. It clearly shows that the feature extraction for both case 

cannot fully recovered the basis features and the codes accordingly. This is due to the 

assumption that U has the uniform value which is not true for convolutive mixture. 
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4.3.2 Blind source separation 

 

In this sub-section, the proposed method is tested on audio signals. To generate 

mixed signal, polyphonic music containing piano and trumpet was analysed. The 

mixture was approximately 5s long and sampled at 16kHz. In this experiment, STFT 

using 2048-point Hamming window with 50% overlap was used and this gave 175 

frequency bins in the log-frequency spectrogram within the range of 50Hz to 8kHz 

with 24 bins per octave. This corresponded to twice the resolution of the equal source 

signal scale.  

We generated synthetic convolutive mixture of the sources using the Room 

Simulation (Roomsim) toolbox [124]. In this experiment, Roomsim simulates an 

omnidirectional microphone in a room of dimension 4.45m x 3.00m x 3.00m. The 

receiver, source 1 and source 2 are located 1.2m from the floor. The distance between 

the sources and the microphone is 2m with source 1 and source 2 located 1m between 

each other. The Roomsim toolbox integrates frequency dependent absorption at the 

reflective surfaces and in the airspace of the room to model the reverberation at a 

receiver. After considering the appropriate setting of surface absorption for each 

surface that model the actual room, the impulse response for source 1 and source 2 in 

our system is created as shown in Figure 4.6. The reverberation time (RT60) for the 

1000Hz band was calculated to be 0.35s.  
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Figure 4.6: Impulse response of: (A) channel 1 and (B) channel 2 

For audio separation, after conducting the Monte-Carlo experiments over 100 

independent realizations of the mixture, the parameters of the convolutive factors of   

and   shifts are set to be max 8   and max 32   . This is the best attainable parameter 

setting to represent the temporal code and spectral basis in the factorization for most of 

music signals since audio signal have higher variability and require higher number of 

 -shift and  -shift to capture the temporal dependency of the frequency pattern in 

audio signal. Figure 4.7 shows the original TF domains of the source images of piano 

and trumpet as well as its convolutive mixture. The piano and trumpet play a different 

short melodic with a different distinct note. We can see that both piano and trumpet 

overlap in time while the piano notes are scattered and interspersed between 

frequencies with the trumpet notes. To evaluate the proposed algorithm, the 

performance will be measured using the signal-to-distortion ratio (SDR), source-to-

artifacts ratio (SAR) and source-to-interference ratio (SIR) which measures an overall 
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sound quality of the source separation.  The MATLAB implementation of these 

measurements can be found in [109, 110]. 

 

(A) 

 

 (B) 

 

(C) 

 

Figure 4.7: Log-frequency spectrogram of (A) piano, (B) trumpet and (C) convolutive 

mixed signal. 

 

4.3.2.1 Sources estimation 

In this experiment, from convolutive mixture 
.2

Y , we seek the two estimated 

sources images which are 
max max.2

1 1 1 1

0 0

ˆ img
  
 

 

 

 

X U W H  and 
max max.2

2 2 2 2

0 0

ˆ img
  
 

 

 

 

X U W H  . 
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Then, by using binary masking technique [125] and defining the masking matrix as 

 , , 1,...,   1,...,j j f nm f F and j J  M  where 

             

2 2

, , , ,
, ,

ˆ ˆ1,

0,        

im im

j f n k f n
j f n

if x x
m

Otherwise

 
 


                                         (4.43) 

the time domain estimated signal ˆ
jx  is obtained by resynthesizing 

iM with the 

mixture 
.2

Y  i.e.  .2
ˆ resynthesizej j x M Y  . Here, „resynthesize‟ signifies the 

inverse mapping of log-frequency axis to the original frequency axis and then 

followed by inverse STFT back to the time domain.  

 

4.3.2.2 Comparison between Quasi-EM FCNMF2D and MU FCNMF2D 

In this sub-section, we compare the performance of source separation between 

both proposed algorithms of Quasi-EM FCNMF2D and MU FCNMF2D. Figure 4.8 

shows the separation result in log-frequency spectrogram for both proposed 

algorithms. Compared with original image sources in Figure 4.7, it is visually clear 

that separation of MU FCNMF2D in Figure 4.8(A) and 4.8(B) led to poor result since 

the factorization still contains the mixed signal (indicated by the box marked area). 

This is because in MU FCNMF2D algorithm, the stationary point cannot be 

determined properly where it not promised to be local minimum. As for the Quasi-EM 

FCNMF2D, it has yielded the better performance with the source images almost fully 

recovered. This is due to the property of Quasi-EM algorithm which guaranteed the 

convergence to the local minimum. 
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(A) 

 

(B) 

 

(C) 

 

(D)

 

Figure 4.8: Separated sound in log-frequency spectrogram (A)-(B) piano and trumpet 

sound using MU FCNMF2D (C)-(D) piano and trumpet sound using Quasi-EM 

FCNMF2D. 

 

From Table 4.3, in general both proposed algorithms deliver decent results with 

the performance of SDR, SIR and SAR that can be considered good. Over 10 dB of 

SDR measurement have been recorded for both proposed methods. However, 

performance of Quasi-EM FCNMF2D algorithm is superior compare to MU 

FCNMF2D with the average SDR improvement of 3.7dB per source. In percentage, 

this translates to an average improvement of 31%. Again, this indicates that MU 
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FCNMF2D was trapped in local minimum which affect the performance of the 

separation. 

Table 4.3: Separation results for FCNMF2D methods 

 

Algorithms 

Separated piano Separated trumpet 

SDR SIR SAR SDR SIR SAR 

MU FCNMF2D 13.4 20.3 14.5 10.2 13.1 14.2 

Quasi-EM FCNMF2D 16.2 22.7 17.4 14.8 22.3 15.6 

 

 

4.3.2.3 Effect of frequency mixing, U 

 

In this sub-section, the impact of frequency mixing, U in both proposed 

algorithms is demonstrated. To observe this, we will evaluate the proposed algorithm 

where U is constant by simply setting j U I  while the adaptation of W and H  still 

follows the proposed methodologies. Figure 9 shows the separation result of the same 

convolutive mixture from previous experiment.  Comparing with original sources in 

Figure 4.7, by discounting the frequency variation in the channels in both algorithms, 

the plots are clear to show that errors have accumulated in both separated sounds 

(highlighted by the marked box) where some components have been attributed 

incorrectly. This is due to the assumption that U has the uniform value for all 

frequency which is not true for convolutive mixture. Consequently, this has led to 

misrepresentation of spectral basis and temporal in the separation. Comparing the 

separated signal in the plot of Figure 4.9 with the plots of FCNMF2D in Figure 
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4.8(A)-(D), it is undoubtedly show the vital of constraining U in order to reduce the 

errors as well as to obtain the accurate result in separation. 

(A) 

 

(B) 

 

(C) 

 

(D)

 

Figure 4.9: Separated sound in log-frequency spectrogram for the case of without 

updating U (A)-(B) piano and trumpet sound using MU NMF2D (C)-(D) piano and 

trumpet sound using Quasi-EM NMF2D. 

 

Table 4.4 shows the separation performance of proposed method if we set U=I. 

Comparing Table 4.3 with Table 4.4, through updating the frequency mixing 

parameter, the SDR performance of the algorithm has improved by 2.9 dB for 

separated piano and 5 dB for separated trumpet for Quasi-EM FCNMF2D which 
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translates to an average of 17% per source. For the MU FCNMF2D, an improvement 

of 1.2 dB for separated piano and 0.7dB for separated trumpet which indicate 10% 

improvement per source.  This improvement indicates that for convolutive mixture, it 

is crucial for frequency distribution of the spectral basis be constrained through U to 

avoid the distortion in the decomposition.  

Table 4.4: Separation results of proposed method with U=I 

 

Algorithms 

Separated piano Separated trumpet 

SDR SIR SAR SDR SIR SAR 

MU NMF2D 12.2 21.5 12.9 9.3 12.0 12.8 

Quasi-EM NMF2D 13.3 22.1 14.4 9.8 12.1 14.3 

  

 

4.3.2.4 Separabilty analysis 

 

In the binary masking technique [125], one generates the TF mask corresponding 

to each source and applies the created mask to the mixture to obtain the estimated 

source TF representation. In this sub-section, we measure a separability based on the 

performance of TF masks generated using knowledge of the source and interference 

TF of mixture. In particular, when the sources do not overlap in the TF domain, an 

optimum mask , ,

opt

j f nm  exists which allows one to extract the j
th

 original source from 

the mixture as: 

, , , , ,

opt

j f n j f n f nx m y
                                                   

(4.44) 
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In order to measure the separability for a given mask, we use two performance criteria: 

(i) Preserved signal ratio (PSR) which determines how well the mask preserves the 

source of interest, and (ii) Signal-to-interference ratio (SIR) which indicates how well 

the mask suppresses the interfering. Both of criteria are introduced as follow: 

Given any TF mask , ,j f nm  such that , ,0 1j f nm   for all f and n, PSR is defined 

as: 

2

, , , ,ˆ

2

, ,

ˆ

ˆ

j

j

j f n j f nx Fro
m

j f n Fro

m x
PSR

x


                                              

(4.45) 

where 
Fro

  is the Frobenius norm. Note that 
ˆ

1j

j

x

mPSR   with 
ˆ

1j

j

x

mPSR  only if 

supp supp optm m where „supp‟ denotes support. Now we define the interfering 

sources as 
1,

( ) ( )
K

j j

k k j

r t x t
 

  . Then, SIR of the mask, , ,j f nm  is define as 

 

2

, , , ,ˆ

2

, , , ,

ˆ

ˆ

j

j

j f n j f nx Fro
m

j f n j f n Fro

m x
SIR

m r
                                             (4.46) 

where , ,ĵ f nr is the TF representations of ˆ ( )jr t  . Combining the PSR and SIR into one 

measure the approximate separabality, we define the normalised difference between 

the signal energy maintained in masking as a measure of separability as: 

2 2

, , , , , , , ,,

2 2

, , , ,

j j

j

j f n j f n j f n j f ny x r Fro Fro
m

j f n j f nFro Fro

m x m r
S

x x


                             (4.47)  

We also define the separability of the mixture with respect to all the J sources as: 
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,,...,

,...,

1

1
j jJ

J j

J
y x ry x x

m m m

j

S S
J





                                             (4.48) 

 It can be shown that (4.47) can be expressed as 
,j j j j j

j j j j

y x r x x x

m m m mS PSR PSR SIR


  . 

Eqn. (4.47) also equivalent to measuring the success of extracting the j
th

 source , ,j f nx  

from the mixture ,f ny  given the TF mask , ,j f nm . Similarly, (4.46) measures the 

success of extracting all the N sources simultaneously from the mixture. When 

,
1j j

j

y x r

mS


  (i.e. 1j

j

x

mPSR   and j

j

x

mSIR   ), this indicates that the mixture ( )y t  is 

separable with respect to the j
th

 source ( )jx t . In other words, , ,j f nx  does not overlap 

with , ,j f nr  and the TF mask , ,j f nm  has perfectly separated the j
th

 source , ,j f nx  from the 

mixture ,f ny . This corresponds to 
, , , ,

opt

j f n j f nm m  in (4.44). Hence, this is the maximum 

attainable 
,j j

j

y x r

mS


 value. For other cases of j

j

x

mPSR  and j

j

x

mSIR , we have 
,

1j j

j

y x r

mS


 . 

Using this concept, we can extend the analysis for the case of separating J sources. A 

mixture ( )y t  is fully separable to all the J sources if and only if 1

1

,...,

,..., 1J

J

y x x

m mS


  in 

(4.47). For the case 1

1

,...,

,..., 1J

J

y x x

m mS


 , this implies that some of the sources overlap with 

each other in the TF domain and therefore, they cannot be fully separated. Thus, 

1

1

,...,

,...,
J

J

y x x

m mS
  provides the quantitative performance measure for evaluating how 

separable is the mixture in the TF domain. 

To obtain an objective evaluation, we have also included the separation results 

using ideal binary mask (IBM) [125]. Note that since the IBM is derived directly from 

the source signals, its separation performance represents the ideal case. Table 4.5 

shows the averaged separability performance of piano and trumpet mixture using IBM 
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and proposed algorithms. Following the listening performing test proposed in [66], we 

conclude that 
,

0.85j j

j

y x r

mS


  leads to acceptable separation performance. Therefore, 

proposed algorithms in Table 4.5 satisfy this condition.  While this is true, without 

updating U for convolutive mixture, MU NMF2D gives only a mediocre level of 

separability with averaged 
,

0.89j j

j

y x r

mS


 . Compare with constraining the frequency 

mixing, the separability performance can be seen increase with 
,

0.92j j

j

y x r

mS



 
for MU 

FCNMF2D which indicates 3% improvement from MU NMF2D. As for Quasi-EM 

FCNMF2D, the averaged 
,

0.98j j

j

y x r

mS


  has been achieved which indicate the 

improvement of 7% from Quasi-EM NMF2D which has
,

0.91j j

j

y x r

mS


 . This shows the 

effectiveness of U in algorithm for convolutive mixture to obtain the accurate result. 

We can observe as well that Quasi-EM FCNMF2D is perform superior performance 

compared to MU FCNMF2D algorithm for all measurement of PSR, SIR and 1 2

1 2

,

,

y x x

m mS 
. 

Again, this indicates that Quasi-EM is computationally efficient with only small 

amount of sources overlap with each other. In addition, the convergence of the Quasi-

EM to stationary point can be achieved. Comparing Quasi-EM FCNMF2D with the 

ideal case of IBM, we can say that the performance of Quasi-EM algorithm is almost 

imitating the performance of IBM. 
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Table 4.5: Separability performance 

 

 

 

 

 

 

 

4.4 Summary 

  

 In this chapter, novel solutions have been presented to separate a mixture in 

convolutive single channel recording. Two inference techniques have been proposed: 

a variant of EM algorithm which maximises the joint log-likelihood called Quasi-EM 

FCNMF2D, and MU rules for the maximisation of individual log-likelihood called 

MU FCNMF2D. It has also been shown that significant performance improvement has 

been achieved by updating the frequency mixing parameter for convolutive mixture. 

Decomposition on feature extraction and blind audio source separation has proven to 

be exceptional especially for Quasi-EM FCNMF2D algorithm. There are at least three 

major advantages of proposed method: Firstly, the proposed algorithms contemplate 

the convolutive mixing model which implies more accurate representation of the 

actual environment. Secondly, the methods are computationally efficient where it 

avoids strong constrains of separating sources without prior knowledge of the original 

Method PSR SIR 1 2

1 2

,

,

y x x

m mS 
 

IBM 0.996 220.7 0.992 

Quasi-EM FCNMF2D 0.991 151.8 0.976 

MU FCNMF2D 0.959 87.4 0.924 

Quasi-EM NMF2D 0.932 85.7 0.913 

MU NMF2D 0.924 66.5 0.887 
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sources. Finally, the IS divergence holds the desirable property of scale invariant that 

enables low energy components in the log spectrogram bear the same relative 

importance as the high energy ones. 
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CHAPTER 5 

LINEAR SINGLE CHANNEL SOURCE SEPARATION IN 

CONVOLUTIVE MIXTURE USING FREQUENCY 

CONSTRAINED SPARSE NONNEGATIVE MATRIX 

FACTORIZATION  

 

Previous SCSS method proposed in Chapter 4 which is based on frequency 

constrained two dimensional nonnegative matrix factorization (FCNMF2D) model has 

certain ambiguities between the spectral basis, W and temporal code, H. For example, 

if the data do not extent the positive octant adequately, a rotation of W and opposite 

rotation of  H can yield same result. In addition, the structure in W can to some extend 

being place into the signature of the same factor in H and vice versa [126, 127]. 

Hence, it is necessary to impose sparseness to give unique and realistic representations 

of the non-stationary audio signals.  To extend previous FCNMF2D model, a novel 

two-dimensional frequency constrained sparse nonnegative matrix factorization (FC-

SNMF2D) is proposed in this chapter. The method aims to separate the mixture into 

its constituent spectral-temporal source components while alleviating the effect of 

convolutive mixing. In addition, we incorporate adaptive sparseness into the solution 

which bypasses the need of manual selection of the sparseness parameter in 

conventional matrix factorization methods. Sparseness on H is imposed element-wise 
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so that each individual code has its own distribution. Consequently, the sparsity 

parameter can be individually optimised for each code.  This overcomes the problem 

of under-sparse and over-sparse factorization. Experimental tests on audio signals 

have been carried out to verify the proposed FC-SNMF2D model and to evaluate its 

performance in single channel source separation. We have investigated synthetic 

convolutive mixture, live-recorded mixture and professional music recording. Results 

have concretely shown the effectiveness of the proposed framework in separating the 

signals in reverberant environment. 

The chapter is organised as follows:  Section 5.1 introduces the background of 

SNMF2D model. The derivation of proposed separation technique of frequency 

constrained two dimensional sparse NMF is explained in Section 5.2. In Section 5.3, 

the results of both experimental and live-recording signals as well as the analysis are 

presented. Section 5.4 concludes the chapter. 

 

 

5.1 Background 

5.1.1 Two-dimensional sparse nonnegative matrix factorization 

Sparse representation is a representation of data where most coefficients are zero. 

It is proving to be a particularly interesting and powerful tool especially for analysis 

and processing of audio signals. If each signal to be separated has a sparse 

representation, then there is a good chance that there will be little overlap between the 

small sets of coefficients used to represent the different source signals. Therefore by 

selecting the coefficients used by each source signal, we can restore each of the 
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original signals with most of the interference from the unwanted signals removed. The 

use of sparse representation is strongly related to the principle of parsimony, i.e. 

among all possible accounts the simplest is considered the best. To avoid over fitting 

Parsimony can be considered a reasonable guiding principle if no formal prior 

information is given. Hence, NMF2D model [94] can be extended to SNMF2D model 

[126, 127] where two basic cost functions have been imposed with sparse penalty such 

that: 

         
2

22.2

, ,

,

Least Square :          

1

2
LS f n f n

f n

C f  Y P Y P H
                                         (5.1) 

   

2

22 2.2 ,

, , ,2
,

,

Kullback-Leibler :   

 log
f n

KL f n f n f n

f n
f n

C f
 
    
 
 


Y

Y P Y Y P H
P

              (5.2) 

for 1,...,f F , 1,...,n N where 
,




 



P HW  and  
2

, , ,

,

f j f j f j

f

  



 W W W  and  

 f H can be any function with positive derivative such as  0L norm    given 

by  

1

.

, ,

j n

j n

f







 
   

 
H H H . This will resolve the ambiguity between the factors by 

imposing sparseness on 
H  and forcing the structure onto 

W . Nevertheless, the 

disadvantage of SNMF2D is cause by its deficiencies of a generalised criterion for 

controlling the sparsity of H. In SNMF2D, the sparsity parameter is set manually. 

When SNMF2D imposes uniform sparsity on all temporal codes, this is equivalent to 

enforcing each temporal code to be identical to a fixed distribution according to the 

selected sparsity parameter. In addition, by assigning the fixed distribution onto each 
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individual code, this is equivalent to constraining all codes to be stationary. However, 

audio signals are non-stationary in the TF domain and have different temporal 

structure and sparsity. Hence, they cannot be realistically enforced by a fixed 

distribution. These characteristics are even more pronounced between different types 

of audio signals. In addition, since SNMF2D introduces many temporal shifts, this 

will result in more temporal codes to deviate from fixed distribution. Therefore, within 

the context of SCSS, when SNMF2D imposes uniform sparsity on all the temporal 

codes, this will inevitably result in under-sparse or over-sparse factorization which 

will subsequently lead to ambiguity in separating audio mixtures. Thus, the above 

suggests that the present form sparseness constraint is still technically lacking and is 

not readily suited for SCSS especially mixtures involving more types of audio signals.  

  

5.2 Proposed Separation Method 

In this section, a new algorithm based on frequency constrained sparse two-

dimensional nonnegative matrix factorization (FC-SNMF2D) model with adaptive 

sparseness and channel estimation is proposed for separating single channel 

convolutive mixture. Unlike [126, 127], in this chapter, Itakura-Saito (IS) divergence 

will be developed as a cost function as it holds the desirable property of scale 

invariant where the same relative weight is considered equally for both small and 

large coefficients of the mixture. This is rather important especially since the 

decomposition of the mixture involves  music or/and speech spectra which contains 

more low power components mix together with the higher power component such as 

tonal parts of sustained note.  
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5.2.1 Frequency constrained SNMF2D  

We proposed a new model based on (4.7) as our mixture model and the noise free 

environment are considered. The (log-frequency) power spectrogram of each j
th

 source 

image
 

.2
im

jX is product of two nonnegative matrices of source signal model with 

frequency constrained which is defined as 
max max.2

0 0

im

j j jj

   


 

 

 

X U HW .  

  In the proposed model, the factorization of 
j


W , 

j


H and jU   suffer from the 

ambiguities between each component during the decomposition process. To overcome 

this problem, the proposed method incorporated adaptive sparsity constraints on the 

temporal code H, to reassure the ambiguity by forcing the structure onto W and 

Experimental results show that our proposed adaptive sparseness constraint will obtain 

better separation performance and the details of approach will be explained in the next 

sub-section. 

 

5.2.2 Cost function with adaptive sparseness 

In this sub-section, the cost function of IS divergence for the proposed FC-

SNMF2D is formulated. In addition, the impact of adaptive sparseness in the proposed 

factorization will be analysed. First of all, we may define  1 2  ... JU U U U , 

max0 1  ... 
   W W W W , max0 1  ... 

   H H H H  and max0 1  ... 
   Λ Λ Λ Λ  .Λ is 

defined as the sparseness parameters which will be imposed onto H. To facilitate the 
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decomposition of 
max max.2

0 0

im

j j jj

   


 

 

 

X U HW , the following generative model is 

considered:  

.2

j j j

j

 
 

 

 


  

    
  

Y U W H E                                        (5.3) 

where “  ” denotes element-wise product and E is a matrix multiplicative independent 

and identically-distributed (i.i.d.) Gamma noise with mean unity. Next, the prior 

distribution  , ,p U W H
 
is choosing over the factors , ,U W H . By using Bayes‟ 

theorem, the posterior can be expressed as follow: 

 
       

 

.2

.2

.2

, ,
, , ,

p p p p
p

p


Y U W H U W H Λ
U W H Y Λ

Y
                    

(5.4)  

Since denominator is a constant while U , W and H are presumed jointly independent, 

then the log-posterior can be written as: 

     
.2 .2

log , , , log , , log , ,p p p const  U W H Y Λ Y U W H U W H Λ       (5.5) 

where „const’ denotes constant. It can be shown that the IS divergence is equivalent to 

negative log-likelihood estimation in multiplicative independent and identically-

distributed (i.i.d.) Gamma noise with unity mean. Defining the gamma probability 

density function (pdf) as    
1

, , , ,( | , ) exp , 0
( )

f n f n f n f n




   



  


E E E E , the 

negative log-likelihood for the first term of the right hand side of (5.5) can be 

expressed as 
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where “ =
c

” denotes e quality up to a positive scale and constant. The ratio   is the 

mean of the Gamma distribution in which when it is equal to unit length, the minus 

log-likelihood in (5.6) is equal to 
.2.2 .2

, , ,
ˆ

IS IS j f f j j n

j

D D
 
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 
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up to a positive scale and constant and   log 1IS

a a
D a b

b b
    is the IS divergence. 

The term  log , ,p U W H Λ comprises of the prior distribution of U , W and H, 

respectively. The prior over U and W are flat where each column is assumed to be 

factor-wise normalised to unit length. The prior over H is assumed to be exponentially 

distributed with decay parameters of ,j n

 for each element in H and it can be 

expressed as: 
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The minus log-likelihood for prior on H is derived such as: 

   
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                       (5.8) 

By inserting (5.8) into IS divergence derived in (5.6), the proposed cost function to be 

optimised can be formulated as 
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(5.9) 

where 
,j n

 is the sparsity weight factor and the term , ,( ) j n j n

j n

f h 



H  forms the 

L1-norm regularization which is used to resolve the ambiguity by forcing all structure 

in H  onto W. Therefore, the sparseness of the solution in (5.9) is highly dependent on 

the regularization parameter 
,j n

 . 

For conventional sparseness constraint [126-129], the sparsity parameter ,j n

  is a 

fixed constant such that 
,j n

   for all j, n and  .  In addition, the value of λ is set 

manually and the temporal code is imposed with uniform sparsity. This will lead to 

fixed distribution on each temporal code which made them stationary. In practice, 

many audio signals are non-stationary and to impose stationary assumption is just 

unrealistic. Furthermore, more temporal codes will deviate from the fixed distribution 
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since uniform sparsity tends to introduce many temporal shifts. In such circumstances, 

the obtained factorization will invariably suffer from either over-sparse or under-

sparse which consequently lead to ambiguity in the separation process. The proposed 

algorithm overcome above problem by introducing adaptive sparseness where in each 

individual element in H, the values of ,j n

  is varied across time. With this technique, 

it represents the realistic solutions and resolves the ambiguity more efficiently.  

 

5.2.3 Estimation of convolutive mixing, spectral basis and temporal code 

Rewriting the proposed cost function (5.9) in terms of the parameters of the FC-

SNMF2D as 

2 2
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where , , , ,f n j f f j j n

j
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with factor-wise normalised 
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and 2

, , ,/ ( )j f j f j f

f

u u u  . The derivatives of individual 

component for FC-SNMF2D corresponding to ,j fu , ,f jw  and ,j nh  are described as 

follows:  

For ,j fu , the derivatives is given by 
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                   (5.11) 
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As for ,f jw
 and ,j nh

, the derivative  of the component are given by 

2
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(5.12) 

Similarly,  
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(5.13) 

For each of individual component, standard gradient descent method is applied with 
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    (5.14) 

where u , w , and h are the positive learning rate. Based on [84], the positive 

learning rate can be set to the followings: 
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(5.15) 

Using (5.14) and (5.15), the multiplicative update (MU) rules are obtained where 

for ,j fu , the update is given by 
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(5.16)  

Similarly, the MU rules for ,f jw
 and ,j nh

respectively gives 
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(5.17) 

and as for ,j nh
, the update is given by 
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(5.18) 

For the sparsity term, the update is obtained by solving 
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Therefore, the solution for 
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' ',j n

 is given by 
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To accommodate for adaptive tracking of 
'

' ',j n

 , we may modify (5.20) to 
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                                           (5.21) 

where itern  denotes iteration number,  is a constant and   is the threshold to prevent 

division by zero. If 0  , then (5.21) reduces to (5.20). If 1  , this then 

corresponds to constant sparsity. Thus,  0,1   and it is found that 0.9   yields 

the best performance. The multiplicative updating rules for (5.16), (5.17), (5.18) and 

(5.21) can be written in matrix notation as 
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where 
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(5.23) 
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And similarly for H, 
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(5.24) 

As for sparsity parameter,Λ  update is expressed as 
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j j
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
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
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
Λ Λ

H
                                         (5.25) 

where the division operation is element-wise. Note that α parameter is selected after 

conducting the Monte-Carlo experiment over 100 independent realisations of each 

mixture. Table 5.1 presents the main steps of the proposed algorithm for blind 

separation in convolutive mixture. The stopping criterion is given by   

 ( 1) ( ) / ( )IS iter IS iter IS iterC n C n C n     where 610   is the threshold for 

ascertaining the convergence. 
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Table 5.1: Proposed FC-SNMF2D algorithm 

1. Initialise U, W and H with nonnegative random values. 
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11. Repeat from steps 2 till 10 until convergence is achieved where rate of cost 

change is  below a prescribed threshold,    
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5.2.4 Reconstruction of the separated source images 

 

For the proposed method, the estimated sources images are defined as

2

, , , , ,
ˆim

j f n j f f j j n

j

x u w h 

 
 

  . By using wiener mask e.g.

2 2

, , , , , ,
ˆ ˆim im

j f n j f n j f n

j

m x x  , the estimated sources images is computed through 

2 2

, , , , ,
ˆim

j f n j f n f nx m y                                                 (5.26) 

Then, the time domain estimated signal ˆ ( )jx t is obtained by doing the inverse 

mapping of log-frequency axis to the original frequency axis and then followed by 

inverse STFT.  

 

5.3  Results and Analysis 

5.3.1 Experiment set-up 

The proposed method was tested on recorded audio signals. The objective was to 

separate the single channel mixture in convolutive mixture. Several experiments have 

been conducted under different conditions to investigate the algorithm performance. 

All computations and analysis are performed using a PC with Intel core i3 M380 @ 

2.53GHz and 3GB RAM. The experiments consist of two audio sources namely piano 

and trumpet sound.  The mixture is approximately 5s long and sampled at 16kHz.  In 

this experiment, STFT using 2048-point Hamming window with 50% overlap was 

used and the frequency axis of the obtained spectrogram was logarithmically scaled 
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and grouped into 175 frequency bins in the range of 50Hz to 8kHz (given 16kHzsf  ) 

with 24 bins per octave and the bandwidth follows the constant-Q rule [122]. 

Synthetic convolutive mixture of the sources is produced using the Room Simulation 

(Roomsim) toolbox [124]. We used the same setting as in section 4.3.2 in previous 

chapter for the Roomsim simulation where we simulate omnidirectional microphone 

in a room of dimension 4.45m x 3.00m x 3.00m. The distance between the sources 

and the microphone is 2m and are located 1.2m from the floor. Please refer Figure 4.6 

for the plot of impulse response for source 1 and source 2. The reverberation time 

(RT60) was calculated to be 0.35s for the 1000Hz band. 

For audio separation, after conducting the Monte-Carlo experiments over 100 

independent realisations of the mixture, the parameters of the convolutive factors 

selected such that  0,...,7   and  0,...,31  . This is the best reasonable 

parameter setting to represent the temporal code and spectral basis in the factorization 

for most of music signals since audio signal have higher variability and require higher 

number of  shift and  shift to capture the temporal dependency of the frequency 

pattern in audio signal. For performance evaluation, the signal-to-distortion ratio 

(SDR), source-to-artifacts ratio (SAR) and source-to-interference ratio (SIR) will be 

used to measures an overall sound quality of the source separation. The MATLAB 

implementation of these measures can be found in [109, 110]. Figure 5.1 shows the 

time and TF domains of the source images of piano and trumpet as well as its 

convolutive mixture. The piano and trumpet play a different short melodic with many 

different distinct note. This is a challenging task for single channel separation since 
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both piano and trumpet overlap in time while the piano notes are scattered and 

interspersed between frequencies with the trumpet notes. 

(A)

 

 (B)

 

(C)

 

(D)

 

(E) 

 

(F)

 

  

Figure 5.1: Time-domain representation and log-frequency spectrogram of piano (top 

panels), trumpet (middle panels) and mixed signals (bottom panels). 
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5.3.2 Evaluation of proposed algorithm 

In this experiment, the proposed method is evaluated by comparing the 

performance under different sparsity regularity. We will also show the importance of 

adaptive behaviour of the sparsity parameter in reducing the ambiguity in the 

separated sources. The following three cases will be investigated: 

Case (i): No sparseness, , 0j n

   for all , ,j n  . 

Case (ii): Fixed and constant sparseness, , 0.5j n

   for all , ,j n     

Case (iii): Adaptive sparseness according to (5.25). 

For each case, the same initial values of U, W and H are used which were obtained 

randomly.  

5.3.2.1 Estimated spectral bases and temporal codes 

Figure 5.2 shows the matrix factorization results in term of spectral bases j


W and 

temporal codes j


H  for case (i), (ii) and (iii), respectively. In Figure 5.2(A) reveals 

that the resulting factorizations is under-sparse since no sparsity is imposed. This is 

clearly shown by the spreading of the estimated temporal codes. Figure 5.2(B) reveals 

the over-sparse factorization where majority of the temporal codes have been 

discarded. In both cases, poor separation of the mixture has been resulted since the 

estimation of j


W and j


H  are not optimal as evidenced by the spreading and 

discarding of important information in the temporal codes. On the other hand, Figure 

5.2(C) shows the obtained factorization is optimally-sparse by using the proposed 
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adaptive sparsity parameter.  Each temporal code was assigned with a sparsity 

parameter which is individually and adaptively tuned to produce the optimal results. 

 

5.3.2.2 Source separation results 

In this sub-section, the source separation performance of the convolutive mixture 

of piano and trumpet sound for each case will be shown. Figures 5.3 and 5.4 show the 

separation results in the log-frequency spectrogram and the time domain for case (i) to 

(iii), respectively. Compared with the original image sources in Figure 5.1, it is 

visually clear that the separation without the sparsity constraint has led to poor result 

since the factorization still contains the mixed signal (indicated by the box marked 

area) as in panels (A) and (B) for case (i). The estimation of parameters j


W and j


H  is 

slightly coarse which has led to the ambiguity in the estimation of the source images. 

For case (ii), the result of factorization with constant
,j n

  is shown in panel (C) and 

(D). There is still some small amount of mixed signal in the separated signals. This is 

due to the fact that the sparsity is only imposed uniformly on all the codes and they 

are not optimal. This situation raises a big issue which led the sparse factorization 

being either too sparse or not sparse enough for 
H . As for case (iii) which is shown 

in panels (E) and (F), the proposed method has yielded the best performance with the 

source images almost fully recovered. In the proposed method, good separation result 

has been achieved because the sparsity on temporal code j


H

 
is imposed element-wise 

and is adaptively tuned so that each individual code in j


H have an optimal sparse 

value. 
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(A) 

 

 

(B) 

 

 

(C) 

 
 

Figure 5.2: Estimated j


W and j


H for  (A) case (i), (B) case (ii), and (C) case (iii).  
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 (A)

 

(B)

 

(C)

 

(D)

 

(E)

 

(F)

 

Figure 5.3: Separated signal in spectrogram. (A)-(B): piano and trumpet sound for 

case (i). (C)-(D): piano and trumpet sound for case (ii). (E)-(F): piano and trumpet 

sound for case (iii). 
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(A)

 

(B)

 

(C)

 

(D)

 

(E)

 

(F)

 

Figure 5.4: Separated signal in time domain (A)-(B): piano and trumpet sound for case 

(i). (C)-(D): piano and trumpet sound for case (ii). (E)-(F): piano and trumpet sound 

for case (iii). 
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Table 5.2: Performance comparison between different sparsity methods (dB) 

 

Sparsity weight 

Separated Piano Separated trumpet 

SDR SIR SAR SDR SIR SAR 

No sparsity 4.9 6.7 10.5 5.9 9.4 9.0 

(Best) Constant sparsity 8.7 10.4 13.7 9.2 11.5 13.4 

Adaptive sparsity 10.5 12.3 15.3 12.4 15.8 15.2 

 

Table 5.2 shows the performance results in term of SDR, SIR and SAR. These 

results are averaged after conducting the Monte-Carlo experiment over 50 

independent realisations of each mixture. The result shows that the proposed method 

with adaptive sparseness has yielded the best performance amongst all with SDR of 

10.5 dB for the separated piano and 12.4 dB for the separated trumpet. This represents 

a 2.5dB per source improvement over the case of uniform constant sparsity. On the 

separate hand, when no sparsity is imposed onto the codes, the SDR result deteriorates 

as much as 6dB per source compared with the proposed adaptive sparsity method. 

From this result, it can be inferred that the sparsity constraints have significant effects 

on the separation performance. In addition, the results are ready to suggest that the 

performance of source separation had been undermined when the uniform constant 

sparsity scheme is used. On the contrary, improved performance can be obtained by 

allowing the sparsity parameters to be individually adapted for each element code.  
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Since Case (ii) represents the uniform constant sparsity, a question thus arises as 

to what is the best attainable sparsity value for ,j n

  that gives the best separation 

performance. We investigate this by manually varying ,j n

  over a range from 0 to 0.5 

with every increment of 0.05. The obtained result has been plotted in Figure 5.5. As 

we increase the sparsity parameter in the algorithm, the performance also increases 

and it reaches a peak value when , 0.2j n

   where the maximum average SDR value of 

9 dB is obtained for each source. However, the SDR gradually decreases as ,j n

  

continues to increase until , 0.4j n

  where the SDR is only 2dB. As soon as the 

sparsity parameter is further increased, the separation performance worsens due to the 

„over-sparse‟ factorization where the spectral basis occurs too infrequently in the 

spectrogram. As a result, it cannot recover the source image due to the lack of 

information from the basis. In addition, it is practically difficult to select the 

appropriate value of sparsity parameter for matrix factorization to resolve the 

ambiguity. Thus, this points out the importance of imposing adaptive sparsity in each 

element code in order to obtain the optimal performance.   

 

Figure 5.5: Separation result of the sparsity parameter with different constant value for

,j n

 . 
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5.3.2.3 Adaptive behavior of sparsity parameter 

 

In this sub-section, experiment is carried out to demonstrate the adaptive behavior 

of the sparsity parameters. Several sparsity parameters have been selected to illustrate 

its adaptive behavior. Figure 5.6 shows the trajectory of four adaptive sparsity 

parameters
0

1,1
 

, 
0

1,6
 

,
0

1,11
 

 and 
0

1,30
 

 corresponding to their respective element codes. 

All sparsity parameters are initialized as , 0.01d l
   for all , ,d l  . From Figure 5.6, it 

can be seen that even though the sparsity parameters started at the same initial 

condition, it is noted that the value of sparsity parameters are changing in order to 

adapt with the dynamics of the temporal code j


H . This shows that each element code 

has its own sparseness. In addition, it is worth pointing out that in the case of piano 

and trumpet mixture the average SDR result rises up to 11.5dB, when ,d l

  is adaptive 

(please refer to Table 5.2). This represents a 2.5dB per source improvement over the 

case of uniform constant sparsity. In percentage, this translates to an average 

improvement of 28% against the uniform constant sparsity. This is evident based on 

source separation performance as indicated in Table 5.2. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 5.6: Trajectory of the sparsity parameters: (A) 
0

1,1
 

, (B) 
0

1,6
 

, (C)
0

1,11
 

 and (D)

0
1,30
 

 . 

 

5.3.2.4 Impact of convolutive mixing, U 

 

In this sub-section, the impact of frequency mixing, U in proposed method is 

demonstrated. To observe this, we will evaluate the proposed algorithm where U is 

constant by simply set j U I   but the adaptation of  j


W , j


H  and j


Λ still follows 

the proposed methodology. Figure 5.7 shows the separation result of the same 

convolutive mixture from previous experiment.  By discounting the frequency 



                                                                                                                                                 CHAPTER 5 

129 

 

variation in the channels in the algorithm, the plots are clear to show that errors have 

accumulated in both separated sounds (highlighted by the red marked box) where 

some components have been attributed incorrectly. This is due to the assumption that 

U has the uniform value for all frequency which is not true for convolutive mixture. 

Consequently, this has led to misrepresentation of spectral basis and temporal in the 

separation. Comparing the separated signal in the plot of Figure 5.7(A)-(B) with the 

plot of proposed FC-SNMF2D in Figure 5.7(C)-(D), it is undoubtedly show the vital 

of constraining U in order to obtain the accurate result in separation.   

(A)

 

(B)

 

(C)

 

(D) 

 

Figure 5.7: Separated piano and trumpet sound, respectively in TF domain using (A)-

(B) Fixed j U I  (C)-(D) Proposed FC-SNMF2D 
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In Table 5.3, through updating the frequency mixing parameter the SDR 

performance of the algorithm has improved by 2.4 dB for separated piano and 3.5 dB 

for separated trumpet. This improvement indicates that for convolutive mixture, it is 

crucial for frequency distribution of the spectral basis be constrained through U to 

avoid the distortion in the decomposition.  These results are averaged after conducting 

the Monte-Carlo experiment over 50 independent realisations of each mixture. 

 

Table 5.3: Impact of U on separation performance 

Method 

Separated piano Separated trumpet 

SDR SIR SAR SDR SIR SAR 

Proposed Algorithm with j U I  8.1 9.6 13.7 8.9 11.1 13.2 

Proposed Algorithm FC-SNMF2D 10.5 12.3 15.3 12.4 15.8 15.2 

 

5.3.2.5 Convergence behaviour 

 

In this sub-section, the convergence behaviour of the cost function in the 

proposed method is demonstrated. In this experiment, the algorithm was run for 1000 

iterations from ten different random initialisations. Figure 5.8 shows the evolution of 

the cost function along the 1000 iterations. It can be seen that the cost function values 

decrease steadily and converged after 500 iterations. As for computational loads, the 

MATLAB implementation of the proposed algorithm takes about 4 minutes per 1000 

iterations for this particular experiment. 
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Figure 5.8: Evolution in log-log scale of the cost functions along the 1000 iterations of 

all 10 runs of the proposed algorithm. 

  

5.3.3 Comparison between different cost function 

 

In this sub-section, experiments using different cost functions are conducted to 

evaluate the efficiency of the proposed algorithm. Here we consider the Least Square 

(LS) and Kullback-Leibler (KL) divergence based on [126] and [127]. After 

conducting the Monte Carlo experiment over 50 independent realisations of each 

mixture, averaged separation results of FC-SNMF2D based on LS, KL and IS cost 

function is shown in Table 5.4. From Table 5.4, IS divergence outperforms those of 

LS distance and KL divergence with an average SDR of 3.4dB and 2.2dB, 

respectively. This is supported by the circumstance that the IS divergence embraces a 

desirable property of scale invariant which enables a more accurate representation of 

the factorization where lower power components cost as much as the higher power 

components. On the contrary, the Kullback-Leibler (KL) divergence and Least Square 
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(LS) distance whose estimation of lower power components is often ignored in favour 

of the higher power components. This leads to mixing ambiguities especially for 

lower power components in which case when they are incorporated together leads to 

major loss of spectral-temporal information of the sources.  

 

Table 5.4: Performance comparison between different cost functions 

Algorithms Separated piano Separated trumpet 

SDR SIR SAR SDR SIR SAR 

LS FC-SNMF2D 8.0 8.9 9.3 8.1 9.2 9.5 

KL FC-SNMF2D 9.1 11.4 13.3 9.4 11.7 13.9 

IS FC-SNMF2D 10.5 12.3 15.3 12.4 15.8 15.2 

 

 

5.3.4 Comparison with NMF-based method in convolutive mixture 

 

In this experiment, comparison of the proposed method with the recent NMF-

based method is carried out. The NMF method uses multiple components by grouping 

the individual spectral basis to estimate the image sources. We will compare the 

proposed method with the algorithm proposed in [117] and NMF with Temporal 

Continuity and Sparseness Criteria [43] (NMF-TCS). The optimisation is based on 

multiplicative update rule and convergence is set such that the rate of cost change is 

below 610  . In this NMF-based grouping method, choosing the number of 

components per source is crucial since different type of sources required different 
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number of component in order to perform optimally. Currently, there is no reliable 

NMF method for automatic estimation of the number of components and normally, 

this has to set manually. In order to obtain the baseline comparison of each method, all 

NMF algorithms are tested by factorizing the mixture signal into 2,4,...,10J 

components. Since more than two components are used and the tested methods are 

blind, there is no information to tell which component belongs to which source. Thus, 

we utilize the clustering method proposed in [43] where the original sources are used 

as reference to create component clusters for each source. After conducting a Monte-

Carlo experiment of 100 independent trials, the number of components per source for 

both source 1 and source 2 that produces reliable separation has been determined to be 

8. As for NMF-TCS, the temporal continuity α is chosen as [0,1,10,100,1000], 

sparseness weight β is chosen as [0,1,10,100,1000]. The best separation result is 

retained for comparison. 

In Table 5.5, the proposed method shows a superior performance and 

outperformed the NMF [117] and NMF-TCS [43] methods by an average of 6.1 dB 

and 3.8 dB, respectively for both sources. This is because the spectral basis obtained 

by the NMF-based grouping method is still not adequate to capture the temporal 

dependency of the continuous frequency patterns within the signal. This has led to the 

ambiguity in each separated sources and contributed to poorer performance. Whereas 

in our proposed algorithm, the temporal information is considered by take into 

account the relative position of each spectrum using two dimensional factors of   and 

 . In addition, the adaptive sparseness imposed in the proposed algorithm reduced the 

component ambiguity which will result in significant high SDR performance. Note 
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that these results are averaged after conducting the Monte Carlo experiment over 50 

independent realisations of each mixture. 

 

Table 5.5: Performance comparison between different methods  

Method Separated piano Separated trumpet 

SDR SIR SAR SDR SIR SAR 

NMF [117] 5.8 11.2 6.5 5.0 7.7 9.2 

NMF-TCS 7.9 9.1 9.0 7.4 8.3 8.5 

FC-SNMF2D 10.5 12.3 15.3 12.4 15.8 15.2 

 

  

5.3.5 Experiment using a live recorded sound 

 

In this section, a live-recording of audio signals mixture is used as the mixture 

dataset. The setting employed for the live-recorded mixture corresponds very closely to 

the synthetic convolutive mixture by Roomsim as mention in section experiment set 

up. The instruments are played simultaneously through loudspeakers in a room and 

recorded using a passive microphone. The live-recorded mixture is sampled at 16 kHz. 

Figures 5.9 and 5.10 show the separation results in the time domain for piano-trumpet 

mixture and trumpet-drum mixture, respectively. From Figure 5.9, it can be seen that 

both separated piano and trumpet resemble the original signals. The continuous pattern 

of trumpet sound has been well separated with little mixed signal contaminating the 
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separated discrete piano sound. Similarly in Figure 5.10, our proposed method has also 

successfully separated the trumpet and drum sound. It can be visually seen that even 

though there is some slight portion of information discarded in both recovered trumpet 

and drum, the separated signals still preserve a good resemblance to the original 

signals.  

 

(A)

 

(B)

 

(C) 

 

(D)

 

(E)

 

 

Figure 5.9: Separation result in time domain. (A)-(B): Original piano and trumpet. (C): 

Live recorded mixture of piano and trumpet sound. (D)-(E): Separated piano and 

trumpet. 
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(A)

 

(B)

 

(C) 

 

(D)

 

(E)

 

Figure 5.10: Separation result in time domain. (A)-(B): Original trumpet and drum. 

(C): Live recorded mixture of trumpet and drum sound. (D)-(E): Separated trumpet 

and drum. 

 

Table 5.6 gives the SDR results for the live-recorded audio mixture between 

piano, trumpet, drum and flute. Our proposed method yields a very good separation 

performance especially for piano-trumpet mixture with an average SDR of 6.2 dB for 

both sources. On the other hand, for piano-drum mixture the achieved average SDR is 

3 dB for both sources. The reason is because both piano and drum occupy the lower 

part of the log-frequency spectrogram and the possibility of signal overlapping each 

other is very high which has affected the separation of the sources. This pattern also 

happens for trumpet-flute mixture where both trumpet and flute occupy the upper part 

of log-frequency spectrogram. An average SDR of 4.6 dB has been achieved. On the 

overall, the obtained results is be considered good as external factors such as noise 
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from the environment  e.g. background noise and street noise and possibly also the 

nonlinearity of the microphone were present during the live recording of the audio 

mixtures. It should be noted the SDR results are lower than the synthetic convolutive 

mixture using Roomsim because we are comparing with the source signals instead of 

source images. 

Table 5.6: Source separation performances for various types of live-recorded audio 

mixture in terms of SDR (dB) 

Mixture Separated source 1 Separated source 2  

Piano and trumpet 
Piano Trumpet 

5.0 7.4 

Piano and flute 
Piano Flute 

4.7 6.3 

Piano and drum 
Piano Drum 

3.2 2.9 

Trumpet and flute 
Trumpet Flute 

4.6 4.5 

Trumpet and drum 
Trumpet Drum 

5.5 4.9 

Flute and drum 
Flute Drum 

6.0 4.1 

  

 

5.3.6 Experiment on professionally produced music recordings 

 

In this experiment, the proposed method is tested on two professionally produced 

music recordings of well-known songs namely “Make you feel my love” by Adele, 

and “You raise me up” by Kenny G. The music consists of two excerpts of length 
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approximately 20s on mono channel and resampled to 16 kHz. The “Make you feel 

my love” song consist of female vocal and piano sound while “You raise me up” is an 

instrumental music consist of saxophone and piano sound. The factors of   and 

shifts are set to have max 8  and max 32  . Since the original source spatial images 

are not available for this experiment, the separation performance is assessed 

perceptually and informally by analysing the log-frequency spectrogram of the 

estimated source images and listening to the separated sound. This task was a tough 

task since the instruments play many different notes in the recording. In addition, the 

blind separation of the vocal is considered very challenging since it usually consists of 

both low and high frequency which will easily overlap with the instrument sound in 

the mixture.  Figure 5.11 shows the separation results in term of log-frequency 

spectrogram for song “Make you feel my love”.  It can be clearly seen that the female 

vocal and the piano sound have been well separated. This is evidenced from Figure 

5.11(B) where it shows the three sentences of lyrics of the female vocal singing with 

vibration and at high pitch occupying the upper part of the log-frequency spectrogram 

while in Figure 5.11(C), it clearly shows the sequence of piano notes which is 

characterised by the discrete nature of sound. As for Figure 5.12, it can be clearly 

visible that the saxophone and piano sound has been well separated. The high pitch of 

continuous saxophone sound is shown in the Figure 5.12(B) while the notes of the 

piano are evidently present in Figure 5.12(C). In the overall, our proposed method has 

successfully separated the professionally produced music recordings and gives a 

perceptually pleasant listening experience.  
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Figure 5.11: Separation result in spectrogram for song “Make you feel my love” by 

Adele. (A) music recording (B) estimated female vocal (C) estimated piano sound. 

 

Figure 5.12: Separation result in spectrogram for song “You raised me up” by Kenny 

G. (A) music recording (B) estimated saxophone sound (C) estimated piano sound. 
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5.4 Summary 

 

A novel solution to separate convolutively mixed sources in a single channel 

recording has been presented. The proposed FC-SNMF2D is developed under the 

probabilistic framework which enables adaptive sparseness to be incorporated in the 

solution. The adaptive sparseness has resulted in the desired degree of sparsity for the 

decomposition. It has also been shown that significant performance improvement has 

been achieved compared with the conventional methods of fixed sparsity. Experiment 

using live-recorded mixtures containing music sounds in real environment has been 

conducted to further substantiate the separation capability of the proposed method. In 

addition, our method has proven to be exceptional in blind separation of 

professionally produced music recording. There are at least three significant 

advantages of proposed method: Firstly, the proposed method considers the 

convolutive mixing model which signifies more accurate representation of the real 

environment. Secondly, the sparsity term is adaptively regulated to find the 

anticipated decomposition. Finally, the method is computationally efficient. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

 

This chapter will summarise the single channel source separation (SCSS) methods 

and lists the contributions of this thesis. Nevertheless, there still remain open 

questions to be addressed in the future. Thus, we raise possible research directions 

towards achieving more efficient SCSS methods. The work in this thesis has fulfilled. 

  

6.1   Summary and Contributions 

 

In this thesis, the aims and objectives of the research work set out in Chapter 1 

have been fulfilled. In Chapter 2, a literature review of SCSS methods in linear 

instantaneous mixture was presented. A SCSS general framework and task is 

explained and SCSS methods that aim to estimate the original sources accurately 

through various approaches were organised and summarised into unifying context.  

However, the practicality of current linear methods is undermined by the linear 

assumption adopted at the theoretical level which therefore limits the applications in 

reality. Hence, this requires the development of reliable solutions for SCSS that 

considered the problem such as nonlinearity and signal reverberation of the observed 

signals. This thesis also has summarised other unresolved challenges and problems in 
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current SCSS method in Chapter 2 which motivate this thesis to develop new 

strategies in providing effective and accurate solutions of SCSS problems. 

In Chapter 3, a new two stage approach has been presented for solving SCSS 

problem in post-nonlinear instantaneous mixture. The post-nonlinear mixture model is 

popular not only due to its simplicity in analysis, but also widely applicable. The 

proposed technique combines the Gaussianization transform and the time-domain 

maximum likelihood separation algorithm. Using the Gaussianization transform, the 

nonlinearly distorted observed mixture was inverted so that the mixture can be 

efficiently be separated by the linear separation algorithm. From the carried out 

experiments, Gaussianization transform  performed very well in recovering the loss of 

signal information due to the nonlinearity. In addition, the proposed method yields 

significant performance in post-nonlinear mixture compared with the linear algorithm. 

 In Chapter 4, a new framework of FCNMF2D has been presented for solving 

SCSS problem in convolutive mixture. The proposed model contemplates the 

convolutive mixing model which implies more accurate representation of the actual 

environment. Two inference techniques have been proposed: variant of EM algorithm 

which maximises the joint log-likelihood called Quasi-EM FCNMF2D and MU rules 

for the maximisation of individual log-likelihood called MU FCNMF2D. These 

proposed methods are  unsupervised  which required no training data. In addition, IS 

divergence used as a cost function holds the desirable property of scale invariant that 

enables low energy components in the log spectrogram bear the same relative 

importance as the high energy ones. Experimental results show that significant 

performance improvement has been achieved by updating the frequency mixing 

parameter for convolutive mixture. In addition, separation performance on feature 
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extraction and blind audio source separation has proven to be exceptional especially 

for Quasi-EM FCNMF2D algorithm.  

 In Chapter 5, a novel framework of FC-SNMF2D has been presented to separate 

convolutively mixed sources in a single channel recording.  The impetus behind this is 

that there are still ambiguities between the factors in the FCNMF2D solution. Hence, 

it is necessary to impose sparseness to give unique representations which will improve 

the separation performance. The proposed FC-SNMF2D is developed under the 

probabilistic framework which enables adaptive sparseness to be incorporated in the 

solution. The regularization term is adaptively tuned to yield desired degree of 

sparsity thus enabling the spectral basis and temporal codes of non-stationary audio 

signals to be separated more efficiently. From the experiments, it has been shown that 

significant performance improvement has been achieved compared with the 

conventional methods of fixed sparsity. In addition, simulations of live-recorded 

mixtures and professionally produced music recording have been carried out to verify 

the effectiveness of the proposed algorithm and result shows an exceptional separation 

performance has been obtained. Table 6.1 summarise the proposed method in this 

thesis. 

 

 

 

 

 

 

 



                                                                                                                                    CHAPTER 6 

144 

 

Table 6.1: Summary of proposed SCSS methods 

Case Method Category Signal 

representation 

Update 

method 

Post-nonlinear 

instantaneous 

Two stage approach of 

Gausianization and ML 

SCSS approach. 

Supervised 

SCSS 

Time domain ML and 

MAP 

Linear 

convolutive 

Quasi-EM FCNMF2D Unsupervised 

SCSS 

TF domain 

(Log-frequency 

spectrogram) 

Quasi-

EM 

MU FCNMF2D MU 

MU FC-SNMF2D MU 

 

 

6.2 Future works 

6.2.1 Development of nonlinear SCSS in convolutive mixture 

In the future work, a new SCSS solution is needed for the recovery of convolutive 

mixed and post-nonlinear distorted source to the practical level. So far, there is no 

method proposed to solve this post-nonlinear convolutive SCSS problem. Taking 

noise into consideration, the observation of post-nonlinear convolutive mixing model 

can be expressed as: 

 
1

1 0

( ) ( ) ( ) ( )
J L

j j

j

y t f a x t e t


 


 

                                          (6.1) 

where ( )ja  is the finite-impulse response (FIR) of some causal filters and ( )e t is some 

additive noise. f(.) is an invertible nonlinear function. Thus, the power TF 

representation of matrix representation is given by  .2 .2.2 2

1

J

j j

j





 Y f A X E . The 

aim of the developed SCSS method is to compensate the nonlinear distortion, f, 

convolutive mixing model, jA  and the sources 
.2

jX . 



                                                                                                                                    CHAPTER 6 

145 

 

6.2.2 Development of EM based FC-SNMF2D 

 

In Quasi-EM FCNMF2D, the convergence of to a stationary point of 

'

,

IS k k k kd  

 

 
  
 

V u w h   is granted by property of Quasi-EM. Nevertheless, it can 

converge only to a point in the interior domain of the parameter space which leads 

Quasi-EM algorithm prohibits zeros in the factors i.e. 


W  and 
H  cannot take entries 

equal to zero. In particular, in order to minimise the cost function, if either ,f jw
 or 

,j nh
 is zero then the resulting cost function becomes infinite. On the contrary, this is 

not feature shared by MU FCNMF2D algorithm, which does not a priori exclude zeros 

coefficients in 


W  and 
H (except for , 0f n Z  which would lead to a division by 

zero). Beacause zero coefficients are invariant under multiplicative updates, if the MU 

FCNMF2D algorithm attains a fixed point solution with zero entries, then it cannot be 

determined if the limit point is a stationary point. On the other hand, if the limit point 

does not take zero entries (i.e. belongs to the interior of the parameter space) then it is 

a stationary point, which may or may not be a local minimum. Thus, the Quasi-EM 

FCNMF2D is more reliable compare to MU FCNMF2D. In addition, it is necessary to 

impose an adaptive sparseness in the matrix factorization to resolve the ambiguities 

between factors. This has been verified in Chapter 5. Thus, the development of Quasi-

EM FC-SNMF2D is essential to increase the accuracy of separation performance. 

Consider the generative model in (4.30), the EM algorithm works by formulating the 

conditional expectation of the negative log likelihood of kC  as: 
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 
       

 

, ,
, , ,

k k k k k k k k

k k k k k

k

p p p p
p

p

    

   
C u w h u w h λ

u w h C λ
C

          (6.2) 

where the denominator is a constant and it is assumed k


w  and k


h  are jointly 

independent so that EM algorithm can be presented as: 
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(6.3) 

where “ =
c

” denotes e quality up to a positive scale and constant. The prior distribution 

over ku and k


w  are flat where each column is assumed to be factor-wise normalised 

to unit length.  The prior over k


h  is assumed to be exponentially distributed with 

decay parameters of ,j n

 for each element in k


h . With this assumption, ku , k


w and k


h

can be optimised by following the approach presented in Chapter 5. 



                                                                                                                                             REFERENCES 

147 

 

 

REFERENCES 

 

[1] E.C. Cherry, “ Some experiments on the recognition of speech, with one and 

with two ears”, The Journal of the Acoustical Society of America, vol. 25, pp. 

975–979, 1953.  

[2] A. Bronkhorst, “The cocktail party phenomenon: A review of research on 

speech intelligibility in multiple talker condition.” Acoustica, vol. 86, pp. 117–

128, 2000. 

[3] A. Cichocki and S.I.Amari, Adaptive Blind Signal and Image Processing 

Processing – Learning Algorithm and Applications, John Wiley and Sons, 

2003 

[4] S. Amari, A. Hyvarinen, S. Lee, T. W. Lee and S. A. David, “ Blind Signal 

Separation and Independent Component Analysis,” Neurocomputing, vol. 49, 

pp. 1-5, 2002 

[5] R. Vigario, V. Joursmaki, M. Hamalainen, R. Hari, and E. Oja, “Independent 

Component Analysis for identification of artifacts in magnetoencephalographic 

recordings,” in Advances in Neural Information Processing Systems, vol. 10, 

pp. 229-235, 1998. 

[6] A. Hyvarinen, “Survey on Independent Component Analysis,” Neural 

Computing Surveys, vol. 1, pp. 94-128, 1999. 

[7] J. F. Cardoso, “Source separation using higher order moments”, in 

Proceedings ICASSP, pp. 2109-2112, Glasgow, 1989.  



                                                                                                                                             REFERENCES 

148 

 

[8] J. F. Cardoso, “Blind signal separation: Statistical principles”, Proceedings of 

IEEE, vol.86, pp. 2009-2025, 1998. 

[9] E. Oja, J. Karhunen, L. Wang and R. Vigario, “Principal and independent 

components in neural networks,” in Proc. VII Italian Workshop on Neural 

Networks WIRN, Italy, 1995. 

[10] C. Jutten and A. Taleb, “Source separation: from dusk till dawn,” in Proc. 2
nd

 

Int. Workshop on Independent Component Analysis and Blind Source 

Separation (ICA2000), Helsinki, Finland, pp. 12-26, 2000. 

[11] M. Girolami, Advances in Independent Component Analysis, Springer-Verlag, 

2000. 

[12] S. Roberts and R. Everson, Independent Component Analysis: Principles and 

Practice, Cambridge Univ. Press, 2001. 

[13] S. I. Amari and A. Cichocki, "Adaptive blind signal processing - Neural 

network approaches," Proceedings of the IEEE, vol. 86, pp. 2026-2048, 1998. 

[14] C. Jutten and J. Karhunen, “Advances in Blind Source Separation (BSS) and 

Independent Component Analysis (ICA) for nonlinear mixtures”, International 

Journal of Neural Systems, vol. 14, no. 5, pp. 267-292, 2004. 

[15] S. Harmeling, A. ziehe, B. Blankertz, and K. R. Muller, “ Nonlinear Blind 

Source Separation using Kernel Feature Spaces,” in Proc. of Int. Conf. on 

Independent Component Analysis and Signal Separation (ICA2001), San 

Diego, USA, pp. 102-107, 2001. 

[16] T. W. Lee, B. Koehler and R. Orglmeister, “Blind Source Separation of 

Nonlinear Mixing Models,” Neural Networks for Signal Processing VII. IEEE 

Press, pp. 406-415, 1997. 



                                                                                                                                             REFERENCES 

149 

 

[17] C. Jutten, M. Babaie-Zadeh, and S. Hosseinin, “Three easy ways for separating 

nonlinear mixtures,” Signal Processing, vol. 84 no. 2, pp. 217-229, 2009. 

[18] M. Solazzi, R. Parisi and A. Uncini, “ Blind source separation in nonlinear 

mixtures by adaptive spline neural networks,” in Proc. Int. Conf. on 

Independent Component Analysis and Signal Separation (ICA2001), San 

Diego, USA, pp. 254-259, 2001. 

[19] A. Hyvarinen, and P. Pajunen, “Nonlinear independent component analysis: 

Existence and uniqueness results,” IEEE Trans. on Neural networks, vol. 12 

no. 3, pp. 429-439, 1999. 

[20] A. Taleb and C. Jutten, “Source separation in post-nonlinear mixtures,” IEEE 

Trans. on Signal Processing, vol. 47, no. 10, pp. 2807-2820, 1999. 

[21] A. Taleb and C. Jutten, “Batch algorithm for source separation in post-

nonlinear mixtures,” in Proc. of First Int. Workshop on Independent 

Component Analysis and Signal Separation (ICA’99), pp.155-160, Aussois, 

France, 1999. 

[22] H. H. Yang, S. I. Amari and A. Cichocki, “Information-theoretic approach to 

blind separation of sources in nonlionear mixture,” Signal Processing, vol. 64, 

no. 3, pp. 291-300, 1998. 

[23] A. Blin, S. Araki, and S. Makino, “Underdetermined blind separation of 

convolutive mixtures of speech using time-frequency mask and mixing matrix 

estimation,” IEICE Trans. Fundamentals, vol. E88-A, no. 7, pp. 1693–1700, 

2005. 



                                                                                                                                             REFERENCES 

150 

 

[24] C. Fevotte and S. J. Godsill, “A Bayesian approach for blind separation of 

sparse sources,” Technical Report, Cambridge University, Engineering Dept., 

January 2005. 

[25] S. Winter, H. Sawada, and S. Makino, “On real and complex valued L1-norm 

minimization for overcomplete blind source separation,” in 2005 IEEE 

Workshop on Applications of Signal Processing to Audio and Acoustics 

(WASPAA), New Paltz, NY, USA, 2005, pp. 86–89. 

[26] V. D. Calhoun, T. Adali, L. K. Hansen, J. Larsen and J. J. pekar, “ICA of 

functional MRI data: An overview,” in 4
th

 Int. Symposium on Independent 

Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, 

April 2003. 

[27] F. Acernese, A. Ciaramella, S. De Martino, R. De Rosa, M. Falanga and R. 

Tagliaferri, “Neural networks for blind source separation of Stromboli 

explosion quakes”,  IEEE Transactions on Neural Networks, vol. 14, pp. 167-

175, 2003. 

[28] M. Burghoff and P. Van Leeuwen, “Separation of fetal and maternal 

magnetocardiographic signals in twin pregnancy using independent component 

analysis (ICA)”, in Biomag 2004, pp. 311-312, Boston, USA, Aug. 2004. 

[29] N. Correa, T. Adali and V. D. Calhoun, “Performance of blind source 

separation algorithms for fMRI analysis using a group ICA method”, Magnetic 

Resonance Imaging, vol. 25, no. 5, pp. 684-694, June 2007.  

[30] J. V. Stone, J. Porrill, N. R. Porter and I. D. Wilkinson, “Spatio-temporal 

independent component analysis of event-related fMRI fata using skewed 



                                                                                                                                             REFERENCES 

151 

 

probability density functions”, Neuroimage, vol. 15, no. 2, pp. 407-421, Feb. 

2002. 

[31] J. Koikkalainen and J. Lotjonen, “ Image segmentation with the combination 

of the PCA-and ICA-based modes of shape variation”, in IEEE International 

Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 149-152, Apr. 

2004. 

[32] C. Beckmann and S. Smith, “ Probability independent component analysis for 

functional magnetic resonance imaging”, IEEE Transactions on Medical 

Imaging, vol. 23, pp. 137-152, 2004. 

[33] A. D. Back and A. s. Weigend, “A first application of independent component 

analysis to extracting structure from stock returns”, International Journal of 

Neural Systems, vol. 8, no. 4, pp. 474-484, 1997. 

[34] A. Hyvarinen, P. O. Hoyer and M. Inki, “Topographic independent component 

analysis”, Neural Computation, vol. 13, pp. 1527-1558, 2001. 

[35] C. Liu and H. Wechsler, “Independent component analysis of gabor features 

for face recognition”, IEEE Trans. on Neural Networks, vol. 14, pp. 919-928, 

2003. 

[36] U. Madhow, “Blind adaptive interference suppression for direct-sequence 

CDMA”, Proceedings of the IEEE, vol. 86, no. 10, pp. 2049-2069, 1998. 

[37] R. Cristescu, T. Ristaniemi, J. Joutsensalo and J. Karhunen, “Delay estimation 

in CDMA communications using a Fast ICA algorithm”, In Proc. Int. 

Workshop on Independent Component Analysis and Blind Signal Separation 

(ICA2000), pp. 105-110, Helsinki, Finland, 2000. 



                                                                                                                                             REFERENCES 

152 

 

[38] C. L. Isbell and P. Viola, “Restructuring sparse high-dimensional data for 

effective retrieval,”  Advances in Neural Information processing Systems, vol. 

11, The MIT Press, 1999. 

[39] W. L. Woo and S. S. Dlay, “Neural network approach to blind separation 

mono-nonlinearly mixed sources,” IEEE Trans. On Circuits and System-1, vol. 

52, no. 6, pp. 1236-1247, 2005. 

[40] W. L. Woo and L. C. Khor, “Blind restoration of nonlinearly mixed signals 

using multilayer polynomial neural network”, IEE Proc. on Vision, Image and 

Signal Processing, vol. 151, no. 1, pp. 51-61, 2004. 

[41] N. Mitianoudis and M.E. Davies, “Audio source separation of convolutive 

mixtures”, IEEE Trans. on Speech and Audio Processing, vol. 11, no. 5, pp. 

489-497, 2003. 

[42] J.-F. Cardoso, J. Delabrouille, and G. Patanchon, “Independent component 

analysis of the cosmic microwave background,” in Fourth International 

Symposium on Independent Component Analysis and Blind Signal Separation, 

pp. 1111–1116, Nara, Japan, Apr. 2003. 

[43] T. Virtanen, “Monaural sound source separation by nonnegative matrix 

factorization with temporal continuity and sparseness criteria,” IEEE Trans on. 

Audio, Speech and Language Processing, vol. 15, no. 3, pp. 1066-1074, 2007. 

[44] R. Quain Quiroga, L. Reddy, G. Kreiman, C. Koch and I. Fried, “Invariant 

visual representation by single-neurons in the human brain”, Nature, vol. 435, 

pp.1102-1107, 2005. 



                                                                                                                                             REFERENCES 

153 

 

[45] R. Quain Quiroga, Z. Nadasdy and Y. Ben-Shaul, “Unsupervised spike sorting 

with wavelets and superparamagnetic clustering”, Neural Computation, vol. 

16, pp. 1661-1687, 2004. 

[46] Y. Ephraim, “Statistical model based speech enhancement systems,” IEEE 

Proc., vol. 80, no. 10, pp. 1526–1555, Oct. 1992. 

[47] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook driven short-term 

predictor parameter estimation for speech enhancement,” IEEE Trans. on 

Speech and Audio Processing, vol. 14, no. 1, pp. 163–176, Jan. 2006. 

[48] H. Sameti, H. Sheikzadeh, D. Li, and R. L. Brennan, “HMM-based strategies 

for enhancement of speech signals embedded in nonstationary noise,” IEEE 

Trans. on Speech and Audio Processing, vol. 6, no. 5, pp. 445–455, Sep. 1998. 

[49] D. Burshtein and S. Gannot, “Speech enhancement using a mixture maximum 

model,” IEEE Trans. on Speech and Audio Processing, vol. 10, no. 6, pp. 341–

351,  2002. 

[50] R. Martin, “Speech enhancement based on minimum square error estimation 

and supergaussian priors,” IEEE Trans. on Speech and Audio Processing, vol. 

13, no. 5, pp. 845–856, 2005. 

[51] A. M. Reddy and B. Raj, “A minimum mean squared error estimator for single 

channel speaker separation,” in Interspeech’04, Oct. 2004, pp. 2445–2448. 

[52] T. Kristjansson, H. Attias, and J. Hershey, “Single microphone source 

separation using high resolution signal reconstruction,” in Proc. ICASSP’04, 

May 2004, pp. 817–820. 

[53]  M. H. Radfar, R. M. Dansereau, and A. Sayadiyan, “A joint probabilistic- 

deterministic approach using source-filter modelling of speech signals for 



                                                                                                                                             REFERENCES 

154 

 

single channel speech separation,” in Proc. IEEE MSLP’06, Maynooth, U.K., 

Sep. 2006, pp. 47–52. 

[54] S. Roweis, “One microphone source separation,” in Proc. Neural Inf. Process. 

Syst., 2000, pp. 793–799. 

[55] L. Benaroya and F. Bimbot, “Wiener based source separation with 

HMM/GMM using a single sensor,” in International Conference on 

Independent Component Analysis and Blind Signal Separation, Apr 2003. 

[56]  M. J. Reyes-Gomez, D. Ellis, and N. Jojic, “Multiband audio modelling for 

single channel acoustic source separation,” in Proc. ICASSP’04, May 2004, 

vol. 5, pp. 641–644. 

[57] M. H. Radfa and R. M. Dansereau, “Single-channel speech separation using 

soft mask filtering”, IEEE Trans. on Audio, Speech and Language Processing, 

vol. 15, no.6, pp. 2299-2310, 2007. 

[58] A. Ozerov, P. Philippe, F. Bimbot and R. Gribonval, “Adaptation of Bayesian 

models for single channel source separation and its application to voice/music 

separation in popular songs”, IEEE Trans. on Audio, Speech and Language 

Processing, special issue on Blind Signal Processing for Speech and Audio 

Applications,, vol. 15, no. 5, pp. 1564-1578, July 2007. 

[59] A. Hyvarinen and P. Hoyer, “Emergence of phase and shift invariant features 

by decomposition of natural images into independent feature subspaces”, 

Neural Computation, vol. 12, no. 7, pp. 1705-1720, 2000. 

[60] E. Vincent and X. Rodet, “Music transcription with ISA and HMM”, in Proc. 

of the 5
th

 International Symposium on Independent Component Analysis and 

Blind Signal Separation, Granada, Spain, 2004. 



                                                                                                                                             REFERENCES 

155 

 

[61]  M. A. Casey, “Separation of mixed audio sources by independent subspace 

analysis,”   Merl - A Mitsubishi Electric Research Laboratory, Massachusetts, 

USA, Tech. Rep. TR-2001-31, Sep. 2001. 

[62] Md. K. I. Molla and K. Hirose, “Single-Mixture Audio Source separation by 

subspace decomposition of Hilbert spectrum”, IEEE Trans. on Audio, Speech 

and Language Processing, vol. 15, no. 3, pp. 893-900, March 2003. 

[63] P. Li, Y. Guan, B. Xu, and W. Liu, “Monaural speech separation based on 

computational auditory scene analysis and objective quality assessment of 

speech”, IEEE Trans. on Audio, Speech and Language Processing, vol. 14, no. 

6, pp. 2014-2023, Nov. 2006. 

[64] G. Hu and D.L. Wang, “Monaural speech segregation based on pitch tracking 

and amplitude modulation”, IEEE. Trans. on Neural Networks, vol. 15, no. 5, 

pp. 1135-1150, Sept. 2004. 

[65] M.S. Pedersen, D.L. Wang, J. Larsen and U. Kjems, “Two-microphone 

separation of speech mixtures”, IEEE. Trans. on Neural Networks, vol. 19, no. 

3, pp. 475-492, 2008. 

[66] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-

frequency masking”, IEEE. Trans. on Signal Processing, vol. 52, no. 7, pp. 

1830-1847, Jul. 2004. 

[67] R. Weiss and D. Ellis, “Monaural speech separation using source-adapted 

models”, in Proc. IEEE Workshop on Apps. of Sig. Processing to Acous. and 

Audio WASPAA-07, pp. 114-117, Mohonk NY, October 2007. 

[68] S.H. Srinivasan and M. S. Kankanhalli, “Harmonicity and dynamics based 

audio separation”, in Proc. IEEE International Conference on Acoustics, 

http://www.ee.columbia.edu/~dpwe/pubs/WeissE07-spkrs.pdf
http://www.ee.columbia.edu/~dpwe/pubs/WeissE07-spkrs.pdf


                                                                                                                                             REFERENCES 

156 

 

Speech, and Signal Processing (ICASSP), vol. 5, pp. 640-643, Hong Kong, 

China, 2003. 

[69] Li. Y, J. Woodruff and D.L. Wang, “Monaural musical sound separation based 

on pitch and common amplitude modulation”, IEEE Trans. on Audio, Speech 

and Language Processing, vol. 17, pp. 1361-1371, 2009. 

[70] M. Cooke and D. P. W. Ellis, “The auditory organization of speech and other 

sources in listeners and computational models”, Speech Communication, vol. 

35(3-4), pp. 141 – 177, 2001. 

[71] F. R. Bach and M. I. Jordan, “Blind one-microphone speech separation: A 

spectral learning approach”, Advances in Neural Information Processing 

Systems, 2004. 

[72] S. Haykin and Z. Chen, “The cocktail party problem,” Neural Computation, 

vol. 17, no. 9, pp. 1875–1902, 2005 

[73] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor 

model with optimal utilization of error estimates of data values”, 

Environmetrics, vol. 5, no. 2, pp. 111-126, 1994. 

[74] N. Berin, R. Badeau and E. Vincent, “Enforcing harmonicity and smoothness 

in Bayesian non-negative matrix factorization applied to polyphonic music 

transcription”, IEEE Trans. on Audio, Speech and Language Processing, vol. 

18, no. 3, pp. 5480-5493, 2010. 

[75]  E. Vincent, N. Bertin and R. Badeau, “Adaptive harmonic spectral 

decomposition for multiple pitch estimation”, IEEE Trans. on Audio, Speech 

and Language Processing, vol. 18, no. 3, pp. 528-537, 2010. 



                                                                                                                                             REFERENCES 

157 

 

[76] P. Smaragdis and J.C.Brown, “Non-negative matrix factorization for 

polyphonic music transcription,” in Proc. IEEE Workshop on Applications of 

Signal Processing to Audio and Acoustics (WASPAA), 2003, pp. 177–180. 

[77] Y.C. Cho and S. Choi, “Nonnegative features of spectro-temporal sounds for 

classification”, Pattern Recognition Letters, vol. 26, pp. 1327-1336, 2005. 

[78] M.D. Plumbley, “Algorithms for non-negative independent component 

analysis”, IEEE Trans. on Neural Networks, vol. 14, no. 3, pp. 534-543, May 

2003. 

[79] R. Zdunek and A. Cichocki, “Nonnegative matrix factorization with 

constrained second-order optimization”, Signal Processing, vol. 87, no. 8, pp. 

1904-1916, Aug. 2007. 

[80] P. Sajda, S. Du, T. Brown, R. Stoyanova, D. Shungu, X. Mao and L. Parra, 

“Nonnegative matrix factorization for rapid recovery of constituent spectra in 

magnetic resonance chemical shift imaging of the brain”,  IEEE Trans. on 

Medical Imaging, vol. 23, no. 12, pp. 1453-1465, 2004. 

[81] Y. Li, A. Ngom, "A new Kernel non-negative matrix factorization and its 

application in microarray data analysis," in Proc. of IEEE Symposium 

on  Computational Intelligence in Bioinformatics and Computational Biology 

(CIBCB),  pp. 371-378, 9-12 May 2012. 

[82] H. Kim and H. P. Denning, “Sparse non-negative matrix factorizations via 

alternating non-negativity-constrained least squares for microarray data 

analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495–1502, May 2007. 



                                                                                                                                             REFERENCES 

158 

 

[83] S. Xie, Z. Yang, and Y. Fu, “Nonnegative matrix factorization applied to 

nonlinear speech and image cryptosystems,” IEEE Trans. on Circuits and 

Systems I, vol. 55, no. 8, pp. 2356-2367, Sep 2008. 

[84] D. Lee and H. Seung, “Learning the parts of objects by nonnegative matrix 

factorisation,” Nature, vol. 401, no. 6755, pp. 788–791, 1999. 

[85] D. Donoho and V. Stodden, “When does non-negative matrix factorisation 

give a correct decomposition into parts?” in Proc of NIPS, 2003, pp. 1141–

1148 

[86] P. Smaragdis, “ Discovering auditory objects through non-negativity 

constraints.” in Proceedings of ISCA Tutorial and Research Workshop on 

Statistical and Perceptual Audio Processing, Jeju, Korea, 2004. 

[87] C. Fevotte, N. Bertin and J.L. Durrie, “Nonnegative matrix factorization with 

the Itakura-Saito divergence. With application to music analysis,” Neural 

Computation, vol. 21, no. 3, pp. 793-830, Mar. 2009.  

[88] R. Zdunek, and A. Cichocki, “Nonnegative matrix factorization with 

constrained second-order optimization” Signal Processing, vol. 87, no. 8, pp. 

1904-1916, August 2007. 

[89] I. Biciu, N. Nikolaidis, and I. Pitas, “Nonnegative matrix factorization in 

polynomial feature space”, IEEE Trans. on Neural Network, vol. 19, pp. 1090-

1100, 2007. 

[90] R. Kompass, “A generalized divergence measure for nonnegative matrix 

factorization”, Neural Computation, vol. 19, no. 3, pp. 780-791, March 2007. 

[91] A. Cichocki, R. Zdunek, and S.I. Amari, “Csiszar’s divergences for non-

negative matrix factorization: family of new algorithms,” in Proc. Intl. Conf. on 



                                                                                                                                             REFERENCES 

159 

 

Independent Component Analysis and Blind Signal Separation (ICABSS’06), 

Charleston, USA, March 2006, vol. 3889, pp. 32–39. 

[92] D. FitzGerald, “Automatic drum transcription and source separation,” Ph.D. 

thesis, Dublin Institute of Technology, Dublin, Ireland, 2004. 

[93] P. Smaragdis, “ Non-negative matrix factor deconvolution; extraction of 

multiple sound sources from monophonic inputs”, in Fifth International 

Conference on Independent Component Analysis, LNCS 3195, pages 494–499, 

Granada, Spain, Sept. 22–24 2004. Springer-Verlag. 

[94] M. N. Schmidt and M. Morup, “Nonnegative matrix factor 2-D deconvolution 

for blind single channel source separation”, in Proc. 6
th

 International Conf. on 

Independent Component Analysis and Signal Separation (ICA ’06), 

Charleston, USA, March 2006, pp. 700-707. 

[95] T.F. Quatieri, D.A. Reynolds and G.C. O’Leary, “Estimation of handset 

nonlinearity with application to speaker recognition,” IEEE Trans. on Speech 

and Audio Processing, vol. 8, no. 5, pp. 567-584, Sept. 2000. 

[96] D.A. Reynolds, M.A. Zissman, T.F. Quatieri, G.C. O’Leary and B.A. Carlson, 

“The effects of telephone transmission degradation speaker recognition 

performance,” in Proc. Int. Conf. Acoustics, Speech and Signal Processing, 

Munich, Germany, Apr. 1997. 

[97] T.F. Quatieri, D.A. Reynolds and G.C. O’Leary, “Estimation of handset 

nonlinearity with application to speaker recognition,” in Proc. Int. Conf. 

Acoustics, Speech, and Signal Processing, vol. 2, pp. 745-748, Seattle, USA, 

May 1998. 



                                                                                                                                             REFERENCES 

160 

 

[98] B.K. Meadows, T.H. Heath, J.D. Neff, E.A. Brown, D.W. Fogliatti, M. 

Gabbay, V. In, P. Hasler, S.P. Deweerth and W.L. Ditto, “Nonlinear antenna 

technology,” Proc. of IEEE, vol. 90, no. 5, pp. 882-897, May 2002. 

[99] R.J. Ram and R. Sporer et al., “Chaos in microwave antenna arrays,” in 1996 

IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA: IEEE, 1996. 

[100]   J.J. Lynch and R.A. York, “A mode locked array of coupled phase locked 

loops,” IEEE Microwave Guided Wave Letter, vol. 5, pp. 213-215, July 1995. 

[101]  G.J. Jang and T.W. Lee, “A maximum likelihood approach to single channel 

source separation,” Journal of Machine Learning Research, vol. 4, pp. 1365-

1392, 2003. 

[102] B. Gao, W.L. Woo, and S.S. Dlay, “Single Channel Blind Source Separation 

using best characteristic basis,” in 3rd International Conference of ICTTA, 

2008. 

[103] G. Hu and D.L. Wang, “Monaural speech segregation based on pitch tracking 

and amplitude modulation,” IEEE Trans. on Neural Network, vol. 15, no. 5, 

pp. 1135-1150, Sept. 2004. 

[104] A. Taleb and C. Jutten, “Source separation in post-nonlinear mixtures,” IEEE 

Trans. on Signal Processing, vol. 47, no. 10, pp. 2807-2820, 1999. 

[105] A. Ziehe, M. Kawanabe, S. Harmeling and R. M. Kalus, “Blind separation of 

post-nonlinear mixtures using linearizing transformations and temporal 

decorrelation.”  Journal of Machine Learning Research, no. 4, pp. 1319-1338, 

2003. 

[106] S.Chen, and R.A.Gopinath, "Gaussianization", in Proc. of NIPS, Denver, USA, 

2000. 



                                                                                                                                             REFERENCES 

161 

 

[107] J. Sole-Casals, C. Jutten and D.T. Pham, “Fast approximation of nonlinearities 

for improving inversion algorithms of PNL mixtures and Wiener systems”, 

IEEE Trans. on Signal processing, no. 85, pp. 1780-1786, 2005. 

[108] A. Hyvärinen.”Fast and Robust Fixed-Point Algorithms for Independent 

Component Analysis”, IEEE Transactions on Neural Networks, no.10 vol.3, 

pp. 626-634, 1999 

[109] C. Fevotte, R. Gribonval and E. Vincent, “BSS EVAL Toolbox User Guide”, 

IRISA Technical Report 1706, Rennes, France, April 2005. 

http://www.irisa.fr/metiss/bsseval. 

[110] “Signal Separation Evaluation Campaign (SiSEC 2008),” 2008. [Online]. 

Available: http://sisec.wiki.irisa.fr 

[111] P. Sajda, S. Du, T. Brown, R. Stoyanova, D. Shungu, X. Mao, and L. Parra, 

“Non-negative matrix factorization for rapid recovery of constituent spectra in 

magnetic resonance chemical shift imaging of the brain,” IEEE Trans. on 

Medical Imaging, vol. 23, no. 12, pp. 1453–1465, 2004. 

[112] S. Xie, Z. Yang, and Y. Fu, “Nonnegative matrix factorization applied to 

nonlinear speech and image cryptosystems,” IEEE Trans. on Circuits and 

Systems I, vol. 55, no. 8, pp. 2356-2367, Sep 2008. 

[113] R. Zdunek, and A. Cichocki, “Nonnegative matrix factorization with 

constrained second-order optimization” Signal Processing, vol. 87, no. 8, pp. 

1904-1916, August 2007. 

[114] R. Schachtner, G. Poeppel, and E. W. Lang, “A Nonnegative Blind Source 

Separation Model for Binary Test Data”,  IEEE Trans. on Circuits and Systems 

I, vol. 57, no. 7, pp. 1439-1448, Jul. 2010. 

http://www.irisa.fr/metiss/bsseval
http://sisec.wiki.irisa.fr/


                                                                                                                                             REFERENCES 

162 

 

[115] J. Taghia and J. Taghia, “One-channel audio source separation of convolutive 

mixture,” Advances in Computer and Information Sciences and Engineering, 

pp. 202-206, 2008. 

[116] L. Mark, D. Barry, D. Dorran and E. Coyle, “Single Channel Sound Source 

Separation combining Delay Estimation and the ADRess algorithm,” in IET  

Proc. of Signal and Systems Conference, Ireland, pp. 288-292, 2008. 

[117] A. Ozerov and C. Févotte,” Multichannel Nonnegative Matrix Factorization in 

Convolutive Mixtures for Audio Source Separation,” IEEE Transactions on 

Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 550-563, March 

2010. 

[118] C. Kyriakakis, “Fundamental and technological limitations of immersive audio 

systems,” Proceedings of the IEEE , vol.86, no.5, pp.941-951,  1998. 

[119] A.Mouchtaris, P. Reveliotis, C. Kyriakakis, “Inverse filter design for 

immersive audio rendering over loudspeakers,” IEEE Transactions on 

Multimedia , vol.2, no.2, pp.77-87, Jun 2000. 

[120] Y. Huang, J. Chen and J. Benesty , “Immersive audio schemes,” IEEE Signal 

Processing Magazine, , vol.28, no.1, pp.20-32, Jan. 2011 

[121] F. Itakura and S. Saito, “Analysis synthesis telephony based on the maximum 

likelihood method”, in Proc. 6
th

 Int. Congress on Acoustics, Tokyo, Japan, 

Aug. 1968. 

[122] Judith C. Brown, “Calculation of a constant Q spectral transform”, The 

Journal of the Acoustical Society of America, vol. 89, no. 1, pp. 425-434, 1991. 



                                                                                                                                             REFERENCES 

163 

 

[123] C. J. Lin, “On the convergence of multiplicative update algorithms for 

nonnegative matrix factorization,”  IEEE Transactions on Neural Networks , 

vol.18, no.6, pp.1589-1596, Nov. 2007 

[124] D. Campbell, Roomsim Toolbox. http://media.paisley.ac.uk/~campbell 

[125] D. L. Wang, “On ideal binary mask as the computational goal of auditory 

scene analysis,” Speech Separation by Humans and Machines, pp.181-197, 

2005. 

[126] M. Morup and M. N. Schmidt, “Sparse nonnegative matrix factor 2-D 

deconvolution,” Techical Report, Technical University of Denmark, 

Copenhagen, Denmark, 2006. 

[127] M. N. Schmidt and M. Morup, “Sparse non-negative matrix factor 2-d 

deconvolution for automatic transcription of polyphonic music,” Technical 

Report, Technical University of Denmark, 2006. 

[128] J. Eggert and E. Korner,” Sparse coding and NMF,”  in IEEE Proc. of 

International Joint Conf. on Neural Networks, vol. 4, pp. 2529-2533, July 

2004. 

[129] P.O. Hoyer,” Non-negative matrix factorization with sparseness constraints,” 

Journal of Machine Learning Research, vol. 5, pp. 1457-1469, 2004. 

 

 

 

 


	01_muka depan tesis_v2.pdf
	02_Abtract, list of contents, etc_v2.pdf
	03_CHAPTER 1_Introduction_v2.pdf
	04_CHAPTER 2_SCSS literature_v2.pdf
	05_CHAPTER 3_Nonlinear SCSS_v2.pdf
	06_CHAPTER 4_Quasi FCNMF2D_v2.pdf
	07_CHAPTER 5_FCSNMF2D_v2.pdf
	08_CHAPTER 6_Conclusion_v2.pdf
	09_REFERENCES_v2.pdf




                                                                                            STATISTICAL SINGLE CHANNEL SOURCE SEPARATION 


i 
 


ABSTRACT 


 


Single channel source separation (SCSS) principally is one of the challenging fields 


in signal processing and has various significant applications. Unlike conventional 


SCSS methods which were based on linear instantaneous model, this research sets out 


to investigate the separation of single channel in two types of mixture which is 


nonlinear instantaneous mixture and linear convolutive mixture.  For the nonlinear 


SCSS in instantaneous mixture, this research proposes a novel solution based on a 


two-stage process that consists of a Gaussianization transform which efficiently 


compensates for the nonlinear distortion follow by a maximum likelihood estimator to 


perform source separation. For linear SCSS in convolutive mixture, this research 


proposes new methods based on nonnegative matrix factorization which decomposes a 


mixture into two-dimensional convolution factor matrices that represent the spectral 


basis and temporal code. The proposed factorization considers the convolutive mixing 


in the decomposition by introducing frequency constrained parameters in the model. 


The method aims to separate the mixture into its constituent spectral-temporal source 


components while alleviating the effect of convolutive mixing.  In addition, family of 


Itakura-Saito divergence has been developed as a cost function which brings the 


beneficial property of scale-invariant. Two new statistical techniques are proposed, 


namely,   Expectation-Maximisation (EM) based algorithm framework which 


maximizes the log-likelihood of a mixed signals, and the maximum a posteriori 


approach which maximises the joint probability of a mixed signal using multiplicative 


update rules. To further improve this research work, a novel method that incorporates 


adaptive sparseness into the solution has been proposed to resolve the ambiguity and 


hence, improve the algorithm performance. The theoretical foundation of the proposed 


solutions has been rigorously developed and discussed in details. Results have 


concretely shown the effectiveness of all the proposed algorithms presented in this 


thesis in separating the mixed signals in single channel and have outperformed others 


available methods. 


.  
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