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Chapter 1 

Introduction 
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1.2.1 Structure 3 
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The introduction of fault tolerance into real-time systems presents particular challenges because of the 

price of redundancy and the added complexity of verification and validation on these redundant structures. 

This thesis brings structural and formal design techniques to bear on this problem. 

Verification of fault tolerance properties in such systems has only received limited attention. in particular 

the design methodologies are in their infancy. We propose a transformational design methodology, spe­

cific to a real-time systems architecture. We then reason about the compositional addition of fault tolerant 

components and templates of the derived designs. This requires that we show the existing axiomatic se­

mantics for our chosen architecture sound with respect to a more constructive semantic model. The issues 

of presenting an operational model for a real-time architecture are discussed and a model is proposed. The 

extension of the existing semantics, to allow for faulty behaviour, is shown to preserve the existing semantic 

properties and the application of our methodology shown to be usable by a sizeable study. 

The contribution of this thesis is to define a transformational design methodology in which components can 

be extracted from a design and replaced by another component preserving functionality while providing 

fault tolerance. This approach requires the precise modelling of the faults we consider. the transformational 

method and verification of the transformed design with respect to faults. 



CHAPTERl. INTRODUCTION 

1.1 Motivation 

Despite the wide spread awareness of the importance of fault tolerance and dependability, many industrial­

strength, real-time systems have stopped short of exploiting even well-known fault tolerance techniques. 

Missile systems fall into this category of systems in so far as the UK defence industries are concerned. The 

primary reason for this situation is the consequence of the constraints that are normally placed on missile 

systems. These constraints are two-fold. 

First comes the space constraint which discourages the deployment of redundant processors or power sup­

ply; any extra space is likely to be used up by processors with software that can provide highly sophisticated 

functions. Non-redundant power supply also mitigates against processor replication since a chain can only 

be as strong as its weakest link. Secondly, there is the timeliness constraint. Missile systems are basically 

control systems. This means that there are hard deadlines within which the targets have to be identified and 

their co-ordinates correctly estimated based on the radar data. 

Despite these constraints, efforts are being made to incorporate fault tolerance in missile systems due 

mainly to the growing importance placed on the UK Ministry of Defence regulations [Min99, Min97, 

Min96] on ordnance safety and reliability. Decreasing size and cost of hardware components and the 

increasing power and speed of such devices also motivate such efforts. The work reported here is a part of 

the on-going work being carried out to make the legacy missile systems of MBDA UK more fault tolerant 

without violating the timeliness constraints. 

The work is simultaneously motivated towards future system design, where it is feared people may shy 

away from applying fault tolerant strategies to real-time systems because of the perceived complexity and 

the lack of a sound engineering basis to help master the complexity. This work aims to provide such a sound 

engineering basis for fault tolerance strategies in a particular class of Real-Time Networks, and explore its 

utility. 

1.2 Contribution 

In this section we first describe the ultimate aim of our research and work backwards from this to determine 

the subgoals that must be achieved. We thereby introduce the main threads of the work in the thesis and 

identify the specific contributions in each thread. 

1.2.1 Structure 

Our goal is to provide a framework supporting (i) the transformation of existing real-time system designs 

to introduce tolerance of specified faults and (ii) the argument that the transformed design satisfies its 

original specification, extended with the specified faults. In order to achieve this goal, we must provide 

(i) a transformation design methodology based upon some design notation; (ii) a design notation that is 

capable of specifying fault tolerant techniques; (iii) a sound semantic model to reason upon and (iv) a 

specification of the faults we wish to tolerate. 

The specific real-time system architecture that is used in this study is that of RealTIme Networks (RTNs). 

A real-time network is a system of concurrent processes that can only communicate via defined, explicit 

2 



CHAPTER 1. INTRODUCflON 

paths. RTNs are described using the Real Time Network Specification Language (RTN-SL). a formal speci­

fication and design language covering the behaviour of RTNs in both the value and time domains. RTN-SL 

has been designed to be integrated into the MASCOT-3 design notation [loMJ87] which is used within 

MBDA. The RTN-SL is compatible with the process interaction protocols developed by MBDA [Sim03] 

and subsumes the Activity Description Language (ADL) [pAHoo], the formal specification language de­

veloped for describing the behaviour of the individual activities in RTNs. RTN-SL has a formal definition 

of syntax given in VDM-SL [LHP+96] and a formal axiomatic semantics given by means of a semantic 

function il taking RTN-SL designs to sets of axioms expressed in Real-time logic (RTL). This allows us 

to verify designs against specifications expressed in RTL. In order to support our goal of fault-tolerant 

design in RTN-SL, we need to extend the languages syntax and semantics with features to facilitate the 

specification of fault-tolerant techniques. 

Given that there exists a specification language for RTNs for which it is possible to reason that some design 

satisfies some specification, we must consider the implications of adding the ability to describe faulty 

behaviours to the design methodology. Suppose we have a RTN-SL design D that purportedly satisfies 

some specification spec. We write this as 

Dsat spec 

We identify potential faulty behaviours and wish to define a transformation from D to a fault tolerant 

version Drr that satisfies some weaker specification specf that allows for the behaviours of faults. We wish 

to show 

Drr sat speCJ 

In order to achieve this we require: 

• A means of describing the transformation D to Drr. The work required to achieve this is described 

further in Section 1.2.2 

• A means of specifying the faulty behaviours to be tolerated in specf. This is described further in 

Section 1.2.3 

• A means of showing the correctness of the design transformation with respect to the extended spec­

ification specf' for which we require a sound semantic basis for RTN-SL taking account of faulty 

components. The work required to achieve this described further in Section 1.2.4. We term this 

semantic basis ilf . 

Figure 1.1 illustrates this aim and its immediate subgoals. Each of the leaf nodes are described further 

below and outline either the technologies we utilize or the contributions of work we make. 

An underlying principle of our work will be the use of formal methods. This is intende to bring significant 

benefits to the work. First, it will strengthen the argument that there is a sound basis to the engineering 

approach advocated. Second, and more importantly, it will support rigorous, repeatable analysis. Formali­

sation will help to reduce ambiguity and provide a basis from which to present and discuss our work. The 

requirement for a formal argument is called for in the MoD Standard, 00-55 [Min97] which has informed 

the development of many of the systems to which we hope our work will be applicable. The standard 

requires of a formal method: 

3 



CHAPTERl. INTRODUCT10N 

D-+ DFT soundn, spec, 

Figure 1.1: First level overview 

A software specification and production method, based on mathematics, that comprises: 

a collection of mathematical notations addressing the specification, design and development 

processes of software production; a well-founded logical inference system in which formal 

verification proofs and proofs of other properties can be formulated; and a methodological 

framework within which software may be developedfrom the specification in aformally veri­

table manner. [Min97] 

Each of the three subgoals identified so far has a strand of work reported in the thesis. In the following 

sections, we describe the work to be done in each strand. 

1.2.2 Design Transformation 

Numerous design methods exist that enable the stepwise development of real-time systems [8SS94, U92]. 

MASCOT-3, which uses RTN-SL as its specification language, is one such. At a network level, one can 

first identify the concurrent components and the communication paths between them. Furthermore, the 

nature of the communication can be identified, and this specifies the nature of the asynchrony or synchrony 

between components. From a RTN-SL specification, the designer is free to choose a design or implemen­

tation structure. Common design patterns are known [80r98] and are left to a designer to apply correctly 

and at will in any scenario. No methodology exists either for modifying existing designs to apply well 

known solutions to common issues, such as jitter control in a real-time system, or in applying fault tolerant 

solutions. We therefore require a methodological solution to allow for a transformational method to apply 

pre-defined design templates, for both common design patterns and fault tolerance strategies. 

1.2.2.1 Suitability of Graph Grammars as transformational method 

We propose to use graph grammars to define design templates, particularly of fault tolerance strategies, to 

support the transformation of RTN-SL designs to more tolerant designs for a specified fault hypothesis. 

A RTN-SL design would be represented by a graph whose nodes represent the components of the RTN 

and whose links represent the control or data flows between components. The transformations defined by 

production rules in the graph grammar remove a node, or group of nodes, from a host design and replaces 

it with a new arrangement. The existing connections from the host design to the removed components are 

replaced with new ones, as specified by the production rule. Each production rule may have an associated 

context restriction, limiting its application to only those situations to which the transformation is deemed 

appropriate. 

4 



CHAPTER 1. INTRODUCTION 

The goal of our work in this strand is to use graph grammars to define a compositional methodology which 

restrains the effect on the design to those components, or sub-systems, being transformed and should assist 

in the verification of the transformed design. 

1.2.3 Faults in RTNs 

Modelling and reasoning about faults has not yet been considered in the development of RTN-SL. There are 

three principal reasons for this. First, the past experience of real-time system designers within the UK De­

fence Industry emphasises correctness by construction over fault tolerance. The past trend to use bespoke 

components further supports this. However trends towards the use of off-the-shelf (arS) components is 

tending to change this, and the need to tolerate component failures that may be outside a designers control 

must now be considered. As a result, faults have rerely been considered and are therefore an unknown 

entity. We have noted approaches in other real-time systems, notably those of a time-triggered architec­

ture (ITA) [SHS+97], but the RTN-SL approach to modelling events has not to date considered erroneous 

events. RTN-SL is still in its infancy and does not yet have a mature design methodology. Considering 

faults is yet another extension, which is expected to necessitate changes to the RTN-SL language semantics. 

The goal of our work in this strand is to provide a way of specifying faulty behaviours which can be 

combined with specifications of normal behaviours so that the combination can be shown to be satisfied by 

some more tolerant design. 

1.2.4 Soundness 

Central to our thesis is a solid semantic framework. Although there already exists an axiomatic semantic for 

RTNs, .Q [Pay02], it remains to be shown sound. We first extend the axiomatic semantics to accommodate 

the language extensions necessary to permit the design of fault-tolerance mechanisms and attempt to show 

that this extension to the existing axiomatic semantics is a conservative one which preserves the properties 

of the original terms. We then show soundness of the axiomatic semantics, using an operational semantic 

model. 

1.2.4.1 Axiomatic Semantics 

The axiomatic semantics gives the meaning of a model (specification or design) by giving the properties 

that characterise the meaning. For example, the axiomatic semantics for RTNs states that, if a read occurs 

on an IDA, then a write must have occurred to the same IDA previously. It is known that the main out­

standing work on the RTN-SL axiomatic semantics is to prove it sound with respect a more constructive 

semantics. This would contribute to the confidence in the consistency of the axioms, and help convince the 

wider community of the soundness of the RTN-SL approach, and its suitability for use on safety-critical 

and mission-critical systems. However, it has been unclear how to define an operational or denotational 

semantics for RTNs [Pay02]. 

5 



CHAPTER 1. INTRODUCTION 

gragra RTN-S'-i 

i 
RTN-SL SOS 

Figure 1-2: Overiew of each goal 

1.2.4.2 Operational 

An operational semantics is a set of rules which provide a more constructive framework, specifying how 

the state of an actual or hypothetical computer changes while executing a program_ We choose a specific 

form of operational semantics called structural operational semantics (SOS) [Pl081, Plo03] because of its 

intuitive appeal and flexibility, and because SOS has found considerable application in the study of the 

semantics of concurrent processes_ A SOS characterises the meaning of a program by defining a labelled 

transition system, whose transitions are between program or system states. We later show the additional 

axioms to the RTN-SL language are new transitions. 

Our goals for this strand of work are first to specify an operational semantic model for RTNs and then 

to derive proof tactics in which to show an axiomatic semantics is sound with respect to the operational 

semantics. 

1.2.5 Summary 

From the overall aims of this thesis and the sub-goals identified above, it should be clear that several 

contributions will be made to complete the thesis. Each of these contributions are separated into individual 

threads of work and brought together to achieve our aim: to reason that a transformed design does still 

satisfy the original specification given some set of fault definitions. 

Figure 1.2 illustrates the underlying technologies used for each thread or work, or further sub-goals that 

must, in turn, be achieved. 

1.3 Thesis Argument 

We assert that classical fault tolerance strategies can be incorporated into RTNs using a transformational 

approach in such a way that the the transformations preserve the required functionality and provide toler­

ance to a specified set of faults_ The aim is to provide a semantic framework to support reasoning about 

these transformations_ 

Practitioners use a range of design methodologies to model critical real-time systems. For many appli­

cations, these methods must have a well-defined syntax and semantics_ Practitioners must also have the 
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ability to conduct safety assessments over these models, such as fault tree and failure mode analyses. Most 

of the above have tool support, however do not have a framework to relate the results of one into the other. 

for example, identifying a critical fault then suggesting a design pattern to tolerate it. 

We argue that transformations, expressed over a graph grammar syntax, do integrate hypothetical fault 

analysis and design techniques. Further, providing a semantic framework allows to reason about such 

emergent properties, such as fault tolerance. Such transformations are constrained to respect the well­

formed ness of designs and their design language principles. 

We also argue that extending the existing semantics to make faults explicit, does not violate existing prop­
erties of a design. 

To substantiate our argument, we do the following: 

• Specify first the abstract definition of faults, then the definition of each plausible fault with respect 

to each RTN components; 

• Develop a (context-sensitive) graph grammar to facilitate the transformations we propose; 

• Construct an operational semantics for RTNs and argue that the existing axiomatic semantics is sound 

with respect to the operational model, therefore validating the assertion all results shown previously 

are valid; 

• Demonstrate the methodology of transforming an existing RTN-SL design to a more fault tolerant 

one given a set of hypothetical faults using material supplied by practitioners, showing the formal 

arguments for the fault tolerance are sound. 

1.4 Thesis Structure 

The thesis is structured into four parts: Premilinaries, Semantic Descriptions, Towards Tolerance and Eval­

uation. These four parts fit with the described overview and reflect the approach taken in this thesis. Part 

II explores the existing semantic descriptions for RTNs. faults and fault tolerance. whilst Part III illustrates 

through a case study how design transformations can be achieved using a graph grammar. Part IV evaluates 

the work and asses whether we have achieved our overal goal. 

Part I includes Chapter Two, where we provide an overview of the existing literature definitions of faults 

and fault tolerance. For the readers orientations, we outline the RTN-SL specification language for RTNs: 

its features and graphical syntax. A hypothetical safety analysis technique is reviewed, for examining the 

effects of each fault class at each components interface, a process which forms the 'fault hypothesis' for 

a design. Chapter Three briefly introduces a graph grammar approach to design transformations, then 

outlines a 24-rule grammar for RTNs. This grammar satisfies two requirements: First, all well-formed 

RTNs are reachable from the grammar's initial graph, secondly, classical fault tolerant strategies can be 

applied to existing or on-going designs in a compositional manner. 

Part II contains Chapters Four and Five which define the semantic framework required to support the 

rigorous arguments presented as our case study in Chapter Eight. Chapter Four specifies the definition 

of faults we consider plausible for RTNs, then propose an extension to the existing axiomatic semantics 
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for RTNs. Chapter Five proposes the first attempt at giving RTNs an operational semantics which is the 

used in Chapter Six to argue the existing, then the extended, axiomatic semantics sound with respect the 

operational model. 

The fault tolerant templates we propose are documented in Chapter Seven, which begins Part III, and their 

applicability demonstrated in Chapter Eight, which features a case study that illustrates the applicability 

of our methodology by applying the fault tolerant templates from Chapter Seven to tolerate a subset of the 

faults identified in Chapter Four. 

We conclude the thesis in Part IV withChapter Nine which presents conclusions drawn from the thesis 

and the extent to which work in the previous chapters supports our thesis argument. A number of areas for 

possible future work are also highlighted. 

Appendix A presents the complete PVS specification of our case study example, both the PVS model and 

the theorems and their proofs which demonstrate the transformed design is tolerant to the faults consid­

ered. Appendix B presents the complete soundness argument for the axiomatic semantics with respect the 

operational model. 

Appendix C is a complete presentation of the SOS rules for RTN-SL, accompanied by their embedding 

in a VDM-SL model to syntax and type check each rule and an investigation into the implementation 

issues of the concurrent, non-deterministic operational semantics. Appendix D concludes with the entire 

presentation of the RTN-SL graph grammar. 

8 



Part I 

Preliminaries 



Chapter 2 

Background - Faults, Fault Tolerance 

and Fault Treatment 

Contents 

2.1 Faults 

2.1.1 System Structure 

2.1.2 Specification and Design 

2.1.3 Fault Classification 

2.2 Fault Hypothesis . 

2.3 Fault-Tolerance . 

2.3.1 Principles of Fault Tolerance . 

2.3.2 Formalisms of Fault Tolerance 

2.4 Real-Time Networks. 

2.4.1 RTN-SL .... 

2.4.2 Verification of Real· Time Networks 

2.5 Methodology.... ......... . 

2.5.1 The SHARD Analysis Method . 

2.5.2 Design Transformations 

2.6 Conclusions........... 

. . . . . . . . I .. 

14 

17 

22 

...... 2(' 

27 

27 

30 

32 

33 

37 

38 

38 

44 

..5 

In this chapter, we outline the existing work on faults, fault tolerance and fault-treatment which is applicable 

to real-time systems and to a design transformation methodology. Section 2.1 details and classifies the 

fault specifications we consider. Section 2.3 describes classical principles of fault tolerance with which to 

correct a system exhibiting faults. Existing approaches are surveyed in Section 2.3.2 where we examine 

how faults, and more importantly fault tolerance, is formalised. We look at how one rea~ons that first, a 

fault tolerant system design is functionally equivalent to its non-fault tolerant counterpart, and secondly, 

that it has the fault tolerant characteristics (or behaviour) it claims. Section 2.4 looks at our target design 

method, Real-Time Networks, for which we begin the first investigations of faults of the design method. 
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Section 2.2 suggests a hypothetical design analysis technique to draw a fault hypothesis from a system 

design. The results of this analysis can then either prompt a re-design or suggest the use of some standard 

fault tolerance strategies, presented as design templates, which can be applied as transformations to the 

analysed design. A methodology for such transformations is suggested in Section 2.5.2 

We conclude this chapter by highlighting the scope and motivation for the work described in subsequent 

chapters. 

2.1 Faults 

This section does not deal with faults in RTNs per se but is aimed at giving informal but precise definitions 

of faults in computing systems. It is a summary of the work undertaken within the "Reliable and Fault 

Tolerant Computing" scientific and technical community [ES85, Cri85, LA90, Lap92) which strives to 

propose clear and widely acceptable definitions for basic fault tolerance concepts. 

2.1.1 System Structure 

The advantage of developing a simple system model is to provide a basic framework with respect to which 

various aspects of structure, design and fault tolerance can be examined. More importantly, this examina­

tion can be independent of whether hardware or software systems, or sub-components of either, are being 

considered. We proceed by describing our simple system model. 

First, the notion of a system should be given a more precise meaning - a system is an identifiable mechanism 

which maintains a pattern of behaviour at an interface between the mechanism and its environment. An 

interface exists at the system boundary at which interaction between two systems occurs. A system is 

said to interact with its environment and responds to stimuli at the interface between the system and the 

environment. It is not the system which constrains the interaction but the interface [dHOI). Consider, for 

example, a division system with inputs x and y and an output z. Whilst a system description may be 

x E Rl\y E R\ {O} => z =x/y 

which asserts that "if the environment provides proper inputs, then the system produces the desired result", 

an interface description may be 

x E Rl\y E R\ {O} I\z=x/y 

which asserts that "the environment provides proper inputs and the system produces the desired result". 

Requiring the interface, between an environment or system and components, to be constant provides for 

a compositional design methodology. From this, we can reason about each component in a black-box 

approach to derive system properties which allows that a component may be replaced by alternative ones 

which provide the same service at their common interfaces. Such a requirement is a common assumption 

of many object-oriented design approaches. 

The environment of a system is considered as yet another system which provides input to and receives 

output from the first system; thus the system can provide a service in response to requests from the envi­

ronment. The external behaviour of a system can be described in terms of a finite set of states, the external 
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states of the system. At discrete instants of time the system makes a transition from one external state to 

another, and thus moves through a sequence of external states which generate externally observable events. 

Thus, a system maintains behaviour at the interface between the system and its environment 

Systems implement their service (which exhibits the behaviour required by the specification) by using 

the services of other systems and components. A system, u depends on a system/component, r if the 

correctness of u's behaviour depends on the correctness of r's behaviour. If a system depends on lower­

level systems/components to correctly provide its service, then a failure of a certain type at a lower level 

of abstraction can result in a failure of a different type at the higher level of abstraction [Cri9l J. A failure 

behaviour can be classified only with respect to a certain specification, at a certain level of abstraction 
[Cri94). 

Imposing structure is the basis for controlling complexity and hence is the basis of methodologies for 

designing and constructing both hardware and software systems. 

System Model 

We have so far characterised systems in terms of their interactions with their environment. but we must 

address the issue of what a system is by stipulating the way in which systems are built up from their 

constituent parts: 

• A system is defined to consist of a set of components which interact under the control of a design 

[LA90). 

A component of a system is yet another system 1. Thus, a system contains a set of component sub-systems. 

which cooperate so that their composed activity generates the external behaviour desired of the system. 

The external behaviour of a system is therefore the manifestation of internal activity within the system. 

The internal state of a system is defined to be the ordered set of the external states of its components; the 

external state of a system is viewed simply as an abstraction of its internal states. 

In general. the design must ensure that each component receives as input an appropriate subset of the 

outputs of all the other components. Furthermore. the design is responsible for channelling system input to 

their components, and also for generating the system output as an abstraction of the component outputs. 

As an example, the alternating bit protocol [BSW69), extended with timers. is a simple way to achieve 

communication over a medium that may lose messages. Consider the duplex communication medium of 

Figure 2.1, where A and M are media with potential faults2• We now consider, in tum, each concept set out 

before and discuss in terms of our example. 

The system, Sys in Figure 2.1 is indicated by the outer rectangular box which has as its interface commu­

nication ports in and out for input from and output to its environment respectively. The components of 

Sys are S, R, A and M collectively which each interact to provide the system's service. Sys is itself the 

environment to these sub-components. 

IGiving recursive definitions is not for recursion's sake. Rather, the aim is to emphasise relativity with respect to the adopted 
viewpoint. 

2We will discuss afault hypothesis later. 
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Sys 
A 

in out 

M 

Figure 2.1: Duplex communication medium 

2.1.2 Specification and Design 

We first describe the notion of a system's specification and design and the relation between the two which 

then permits us to express the notion of erroneous transitions and states with a system and the specification 

thereof. 

System Specification 

Specification, according to [Bra03], is: 

... the invention and definition of a behaviour of a solution system such that it will produce 

the required effects in the problem domain. 

The definitions of faults and failures must be given with respect to a specification of acceptable behaviour 

for a system. Given the fundamental role played by specifications, it is appropriate to describe the desirable 

properties of a specification. We focus on timeliness and expected values, typical properties used in the 

literature [ES85], which are appropriate to specifying component faults (c.f. Section 2.1.3). A specification 

for a system should be consistent, complete and authoritative, and can be applied as an effective test in all 

cases to determine the correctness of an implementation. The need for consistency in a specification is 

obvious. Further, a specification should be complete so that the behaviour of the system is defined for all 

possible inputs. 

A specification of acceptable behaviour provides a standard against which the behaviour of the system can 

be judged: 

• A failure of a system occurs when the behaviour of the system deviates from that required by its 

specification [LA90]. 

Clearly it is necessary to be able to stipulate what constitutes a deviation from specifications; it is only 

possible when the specification is complete and correct. The specification of a black box component is 

restricted to the externally visible events. Therefore, any deviation from a specification must be described 

using externally visible events. 

13 



CHAPTER 2. BACKGROUND - FAULTS, FAULT TOLERANCE AND FAULT TREATMENT 

System Design 

A design, according to [Bra03], is: 

the decomposition of a system into its actual structural components for the purpose of 
constructing it. 

The design should be an informative system description, faithful to the specification, but avoiding irrel­

evant implementation detail. It should serve as a basis for discussions between the client, designer and 

implementor, and support objective analysis. Although identifying the structural components in a design. 

further implementation detail may be unavoidable given input from the customer. However. making such 

decisions in the design may lead to designfai/ures which introduce, at an early stage, a fault in the design. 

which may lead to a failure, which is not detected until unit or system testing. 

Casual Analysis of system failure 

Having defined a system in terms of its external and internal behaviour, we will adopt the work of Lee 

and Anderson [LA90] in analysing and naming the causes of system failures. Recall that when the system 

specification is authoritative, it need not be challenged and therefore the examination of the causes of 

system failures need only concern the internal operations of the system, i.e. the composition of the internal 

components. From our example (shown in Figure 2.1) the system Sys is made up of four components S. 

R, A, and M which interact under the control of design D. Let the external state transition of Sys from 

EI to E2 constitute correct behaviour and be caused by the internal state transitions through the states 

Sl ,S2,.·. ,S;_I ,s;, ... ,Sn' 

Suppose that the system fails by changing its external state from EI to E2 instead of E2. Two concepts are 

needed to discuss the causes of this failure: first, an event has occurred within the system which should 

not have occurred; secondly, the occurrence of that event gave rise to a condition or state which should not 

have arisen. Ifthe system had moved through the states Sl, S2, . .. ,S;_I, S;, . .. ,Sn, the failure would not have 

happened. Therefore, at some stage, the internal state transition must have diverged from that sequence. 

Let us say that the transition from S;_I proceeded to I; instead of going to S;. Thus, the transition from Si-I 

to I; is the first step towards system failure, and will be called an erroneous transition. Let the transition 

from EI to E2 be caused by the internal state transition Sl ,S2,··· ,S;-1 ,1;, ... ,s,,; the states 1;, ... ,s" which 

are generated after the occurrence of the erroneous transition are termed as erroneous states. 

Erroneous Transitions and States 

In the above scenario within Sys, the (erroneous) transition from S;_I to I; was considered to have caused 

the system failure. However, it need not be the case that such a divergence from the intended sequence 

always results in a system failure. Consider, for example, that the transition from Si-I to I; refers to flipping 

of a bit in communication channel, A from zero to one. (Occurrence of this event is clearly a failure of the 

communication component within Sys.) Sys will not fail, so long as the affected transmission (which is in 

an erroneous state) is not used during any computation, or if the bit is flipped back. or if the transmission is 
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Figure 2.2: Erroneous Transitions and Erroneous States 

repeated subsequently. Accounting for the possibility that a failure may not follow an erroneous transition. 

[LA90] carefully define erroneous transitions and states in the following manner: 

Two essential concepts are required in detailing the causes of failure; an event which should not have 

occurred and a state which should not have been reached. These are termed erroneous transitions and 

erroneous states respectively: 

• An erroneous transition of a system is an internal state transition to which a subsequent failure 

could be attributed. SpecificalIy, there must exist a possible sequence of interaction which would. in 

the absence of corrective action from the system, lead to a system failure attributable to the erroneous 

transition. 

• An erroneous state of a system is an internal state which could lead to a failure by a sequence of 

valid transitions. SpecificalIy, there must exist a possible sequence of interactions which would, in 

the presence of erroneous transitions, lead from the erroneous state to a system failure [LA90). 

The role of these definitions is illustrated in Figure 2.2, where arrows represent possible transitions between 

internal states in a system. All transitions are assumed correct with the exception of T,. T, is an erroneous 

transition which potentially leads to a failure, in which case T2 is representative of some corrective action 

which returns the system to a valid state. This illustration fits with the definitions given above, in that, not 

all faults ultimately lead to failure. 

The descriptions above are intended to reflect the situation where, after a system failure, the history of a 

system is used to identify the cause of the failure. We later appeal to these definitions whilst defining our 

fault semantics. 

Having identified an erroneous transition as the cause of a (possible) failure, we will continue to examine 

the causes of an erroneous transition. To simplify the analysis, we define the erroneous part of an erroneous 

system state as an error. 

Errors and Faults 

It is common practice to use the terms error or fault for a specific defect within a system: 

• an error is part of an erroneous state which constitutes a difference from a valid state 

IS 
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An error in a component or the design of a system will be referred to as a fault in the system: 

• A component fault in a system is the result of a failure in the internal state of a component . 

• A design fault in a system is a mis-representation in the design3. 

Following the terminology developed in [LA90], we will say that a component fails when its behaviour 

deviates from that specified. The term fault will be used to refer to the cause of the failure. 

Let us continue the scenario from above, where the system Sys has failed due to the erroneous transition 

from Sj_1 to I; (instead of Sj). Let the valid state Sj be {es,eR,eA,eM} where es, eR, eA and eM are the external 

states of components S, R, A, and M respectively; if the erroneous I; is {es, eR, ~,eM}' then e~ is the error in 

1;. That is, the external state of component A makes the system be in error. There are two cases: either A did 

not fail or failed during the erroneous transition. If A did not fail then no component failed within the failed 

system. In that case, the blame for the system failure must go to the system design whose role is to ensure 

that all internal state transitions are valid when aU components' behaviour conforms to their respective 

specifications. An example of a design failure is an application program invoking unspecified operations 

on objects or permitted operations with incorrect parameters; in case of hardware subsystems, a design 

failure could be a missing or wrong connection which prevents proper interaction between components. 

Considered as a system which has failed, the design of Sys must contain an error, i.e., D must be in 

an erroneous state. (Recall that a system failure cannot be caused by anything other than an erroneous 

transition occurred within the system.) 

Let us suppose that A failed during the erroneous transition within Sys. The analysis we have carried out so 

far regarding the failure of Sys can be applied (recursively) by considering A as a system in its own right. 

Let us denote by ea the error within A which caused A to fail. If A is made up of components a I. a2 and a3 

which interact under the design da• then the error ea is caused by the failures of one or more components 

of A and/or the failure of da. Let us say that only al in A has failed. The cause of ai's failure can be traced 

to error(s) within ai, caused by failures of ai's components and/or design. Thus, the ultimate cause of the 

failure of Sys can be pursued as far as considered worthwhile, or until atomic components are reached. 

ComponentlDesign Failures 

The distinction between a component and a design fault is apparent when they are exemplified. Failures of 

any system are due to a design fault or are the results of a component failure. The failure of a component is 

in tum attributed either to a design fault with the component or to a failure of a sub-component. Eventual1y. 

at some level, the original system failure will be attributed to a design fault, unless a failure of a component 

which is considered to be atomic4 is held responsible. 

However, should aU components meet their specifications then the problem must lie in the design of the 

system. A specification of behaviour for the design of a system is that is should ensure all internal state 

3Designs (in RTN-SL) are considered to be the architecture of the system. In other words, designs identify the component.'o 
or elements of the system and their inter-relationship. Designs do not have slates per se. Design faults are defects m the system 
architecture such that it is impossible to write software with that architecture which does not contain defects that result In errors and 
failures (e.g. too much ~r not enough- concurrency or non-determinism; or not a connection path. etc.). . 

4The implication that any further internal structure cannot be discerned. or is not of interest, and therefore, can be Ignored. 
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Figure 2.3: Specification and Implementation Model 
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transitions of the system are valid in the absence of any component failures. If there is an erroneous 

transition and no component has failed then the design of the system must have failed. Since the stale of a 

design does not usually change, then such faults are considered pennanent 

2.1.3 Fault Classification 

Conceding no implementation can be perfect, we illustrate in Figure 2.3 the regions which are acceptable 

behaviours with respect to a specification. Infonnally, the response of a component for a given input 

sequence will said to be correct if the output value is not only as expected, but also produced on time. 

Figure 2.3 is more fonnally stated in Definition 2.1 where we define the correct (or acceptable) behaviour 

of a component from which we can then define faults 

Definition 2.1 (Correct Behaviour) Let a component receive an input at time ti and as a result pro­

duce an output value Vj at time tj. For that input, the response Vj at time tj is correct iff: 

1. Vj = Wj, where Wj is the expected value consistent with the specification at time tj, and 

2. tj = Ii + td + !::::,.t, where td is the minimum delay time of the component and !::::"t is the unpredictable 

delay time such that 0 ~ !::::"t ~ tmax and tmax is the maximum unpredictable delay time of the 

component. 

The values td and t'7Illl are constants for a given component. First, we note that the implementation's 

response of a component is not assumed to be instantaneous for a given input but experiences a finite 

minimum amount of delay which is specified by td. Second, it is usual to indicate a time interval during 

which a response is expected, i.e. ti -> tj. 

Definition 2.1 gave the specification of a correctly operating component with respect to our model. We have 

allowed for acceptable response delay in an implementation of a component and illustrated the relationship 

between a specification and implementation in Figure 2.3. Figure 2.3 shows more than the expected timings 

of input and output of a component. The predicates pre and post specify the validity of a value. V at a 

specified time, T. An acceptable implementation is also shown, which illustrates the acceptable response 

times. This figure illustrates the distinction between a specification and implementation. 
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Figure 2.4: Omission Fault Observable Intervals 

Faults are the primary causes of system failures. We present a fault and failure classification for components 

using 'timeliness' and 'expected values' as the two distinguishable properties of a component's response. 

A reliable computing system should be capable of providing guaranteed services in the presence of a finite 

number of component failures. In order to be able to provide any kind of guarantee of services. the system 

designer must specify what kind of, and how many, component failures the system is intended to tolerate. 

Abstract Fault Definitions 

Ezhilchelvan and Shrivastava [ES85] classified faults with respect to their (failure) consequences. A fault 

that results in system output not being produced at all is termed an omission fault. If a correct output is 

produced but at the wrong time this is said to be a timing fault. If an incorrect output is produced at the 

proper time, the fault is said to be a value fault. 

Definition 2.2 Omission Fault: A fault that causes a component not to respond to a nonempty input 

sequence will be termed an omission fault: 

1. Vj = null. tj = t; + td + 6t and 

2. Vj = Wj. tj = 00 

Figure 2.4 shows that an omission fault must occur at an absolute final time. Ideally this value would 

be 00 but in a computing environment this is not possible and we must choose a suitable value. Giving a 

suitable value for 00 is made easier by defining a window of observation. That is, each fault classification 

is observable with respect to a correct specification for a fixed, or well defined, period as shown in Figure 

2.5. For example, consider an omission fault. One can accept that the ith occurrence of an event is missing. 

presumed lost, once the i + 1 occurrence appears. 

Definition 2.3 Timing Fault: A fault that causes a component to produce the expected value for a 

given non empty input sequence either too early or too late will be termed a timingfault: 

1. Vj = Wj and 

2. either tj < t; or tj > t; + td + tmax 
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Figure 2.5: Observable fault intervals 

Definition 2.4 Commission Fault: When a component produces a value that is not expected, then a 

commissionfault has occurred. 

1. vji'wjandtj=ti+td+6tor 

2. Vj = Wj and tj i' ti + td + 6t or 

3. Vj i' Wj and tj i' ti + td + 6t 

Definition 2.5 Value Fault: When a component that produces an omput at an anticipated time which 

does not satisfy the specification, then a value fault has occured. 

1. Vj i' Wj and tj = ti + td + 6t 

Referring to Figure 2.5, the time markings, ti, td, tmax and 00 are used from the definitions given previously, 

where 1j = ti + td + 6t, 0 ::; 6t ::; tmax and ti + td + tmax ::; tk ::; 00 where tk is a discernible value. We later 

suggest values of tk specific to our architecture. 

2.2 Fault Hypothesis 

The precise definition of any assumptions of the types of faults, the rate at which a component fails and 

how they fail, are an essential step in the design of a fault tolerant system. Yet. at the earliest stages of 

design of new software, nothing is known about its failure modes. nor their effect on a system's behaviour. 

However. it is at this stage that cost effective measures to deal with such failure modes is important. The 

assumed type of nature of faults indicates the type of redundancy that must be implemented within the 

system. 

The term fault hypothesis is standard in the literature [Cri85]. yet the term is mis-leading. Rather. we 

intuitively mean error hypothesis or even a failure hypothesis. Consider as an example a radar sub­

system. We expect as an output a periodic sample which is a snapshot view of some airspace. Then 

considering the detrimental outputs possible. such as no output, an output which is later than the known 
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Figure 2.6: Weakening the specification 

period or an incorrect output, are they faults, errors or failures of the radar sub-system? 1be inconsistency 

between the definition of faults, errors and failures (c.f. Section 2.1.3) and the term fault. error or failure 

hypothesis is due to the perception, in this case, of the radar sub-system - is it an atomic component or a 

system of some description? In reality, we are interested in the failure modes of the radar (sub-)system. not 

the faults as cause too, but the observation of a detrimental output. 

We therefore require a hypothetical process which challenges each design component to outline the poten­

tial failure modes of a design. In the absence of accurate and concrete statistical evidence. we are forced 

into this hypothetical process, which is an investigation of 'what if' questions of each component of a de­

sign. On finding a negative response, we then challenge the design for the effects of the fault to determine 

whether the failure mode is critical. If the outcome is negative -that the fault is critical- then we must 

incorporate the fault definition into our specification. Shown in Figure 2.6 is the relation between an orig­

inal (non-faulty) specification and the incorporation of several fault definitions, or fault hypotheses (FH). 

to define the (weaker) specification specF. The relation spec EB FHn indicates the disjunction of the be­

haviours specified in the original specification or those in a fault-hypothesis are observable for the design. 

It is therefore the requirement to consider these behaviours against any safety properties the design must 

uphold and guarantee the satisfaction of these properties given (only) the possibility of faulty behaviour 

specified by each FHn. 

The complete definition of a components fault hypothesis entails an assertion on errors occurring in all 

domains (time and value). 

2.3 FauIt-Tolerance 

The aim of fault tolerance is to prevent a system from failing and the discussions in the previous section 

indicate that meeting this aim requires the use of techniques to detect and correct errors before a failure 

could occur. The fault tolerance techniques used within a system are inevitably linked to. and influenced by. 

the design and architecture of that system. This means that there cannot possibly exist a general technique 

for implementing fault tolerance. This section presents the general principles identified by [LA90] which 

underly all known fault tolerant systems, and then examines certain ways by which these principles are 

implemented in practice. 

2.3.1 Principles of Fault Tolerance 

Given the distinction betweenfallits and errors above, and the relationship: 
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fault --> error --> failure 

then when there is a fault in the system, this fault can lead to errors in the state of a system. which -may­

subsequently lead to a system failure. The aim therefore of fault tolerance is to prevent this causal relation 

of errors and faults, and we therefore require techniques for detecting and treating errors and faults. 

Redundancy 

All design techniques that provide fault tolerant strategies are based upon redundancy. Redundancy in­

volves duplicate components to perform the same, or similar task within a system. Often redundant com­

ponents can be grouped together as a sub-system which satisfies the specification of a (original) single 

component. The arrangement of such components is determined by the redundancy strategy and detailed 

in a system design. Often these additional components are infrequently executed, with only a primary com­

ponent satisfying the specification, hence the term redundant. The additional components are necessary, 

and intended for, the sporadic or unusual data input. 

Redundancy strategies can be categorised as either static or dynamic. A static redundant strategy would 

arrange the components such that any faults or errors from a component are masked from the environment 

of the system. However, a dynamic strategy would provide detection mechanisms for which redundancy 

elsewhere would achieve the fault tolerance. 

Example replication strategy 

A standard example of the use of static redundancy is Passive State Replication (PSR). Typical applications 

of this strategy are to provide tolerance against timing and omission faults. To tolerate a fault of -say­

component E in Figure 2.7(a), E is replaced by three passively replicated components illustrated in Figure 

2.7(b) which satisfy the same specification as that which E did. By passive, the intention is that each 

component is executed in turn until an acceptance test is successful. If the acceptance test for Erp\ fails, 

then E rp2 is executed. E rp3 cannot fail its acceptance test. 

Given the specification of the component(s) we are transforming, we know that condition ct must hold on 

entry to E and that condition C2 must be satisfied on the exit from E. Therefore, we must assume condition 

ct is true in the transformed design and we must guarantee, in addition to our real-time requirements, that 

condition C2 also holds on exit. Incidentally, C2 becomes the acceptance test and therefore the exit condition 

from each replica. With regards thefailure test we must ensure that all the exit conditions form a tautology 

when specifying the fault hypothesis as the failure test 

The semantics of RTN-SL (presented in full in Section 2.4) state the exit condition of E is more than just 

condition C2. Additionally, the timing specification of E, the best case execution time (BCEn and the lIIorst 

case execution time (WCET) should be respected. We therefore illustrate these semantics and a possible 

fault hypothesis in our example, that the fault hypothesis states a late fault. That is. an exit condition to 

E rp\ and E rp2 states "Erp\ transitions to Erp2" and "Erp2 transitions to Erp3" should a late fault be observed 

at E rp\ and E rp2 respectively. Then. C2 and FH should form a tautology. 
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(a) (b) 

Figure 2.7: Passive State Replication 

We later consider another replication strategy, called Triple Modular Redundancy (TMR) [WLG +78), how­

ever the focus of this thesis is not to formalise a number of fault tolerant strategies, but to provide for the 

design methodology which makes applying such strategies possible for real-time systems. 

2.3.2 Formalisms of Fault Tolerance 

In the literature on the formalisation of fault tolerance, the earlier works [U96, Cri94, AK98b) do not ex­

plicitly model the occurrence of faults. Rather, much of the earlier work concentrated on process a1gebra~. 

particularly CCS [Pra84], and proved that the behaviour of a fault tolerant system is equivalent to that of 

the corresponding fault free system. In [Pra84], it was assumed a failure is detected by an acceptance test 

either by a faulty process itself or by a communicant. Further, that should a process detect itself to be faulty, 

then it should stop silently, until it is remade. Fail-stop processes were first formally defined by Schlichting 

& Schneider [SS83], who also considered the problem of implementing them. They therefore just assumed 

that failures, defined as derivations from the specified "normal" behaviour, are detected by some means at 

some points after they occur. This was sufficient for showing a fault tolerant design observationally equiv­

alent to the original design, but does not allow one to determine and derive a fault strategy for a non-fault 

tolerant design should the fault tolerant design not yet exist. 

Schepers and Hooman [SH94] use trace-based equivalences for proving fault tolerance. Faults are not 

treated as special actions; only the effects of faults on the externally visible input and output behaviours of 

the system are rnodelled. In [Nor92], Nordahl applies CSP and trace theory to develop a fault tolerant sys­

tem design. The system is a collection of processes. A fault tolerant technique is realised by a combinator 

operator which can be one of the CSP operators, a composition of these operators, or defined in terms of 

triples. 

Lamport and Merz [LM94] use a calculus for fault tolerance analysis based on the temporal logic of actions 
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(TLA) [Lam94]. In this work it is shown how the TLA can be applied to specify and verify fault tolerance 

algorithms. A specification is a mathematical formula and theorems asserted in the specification are proved 

using the method of structured proofs. This allows one to hierarchically structure proofs. where simple 

proofs can be discharged mechanically through the TLP verification system [Eng95]. Liu and Joseph 

[LJ96, LJ99] similarly use TLA to reason formally about the properties of an action system. The work 

presents a transformational framework in which it is assumed that the physical faults of a system are 

modelled as being caused by a set F of fault operations which perform state transformations in the same 

way as the ordinary program operators. 

The availability of automatic tools for verification also makes a framework usable in an industrial context. 

For example, the successful approach in the European Project GUARDS (Generic Upgradeable Architec­

ture for Real Time Dependable Systems) [PABD+99] to validate two basic fault tolerance mechanisms: the 

inter-channel consistency network mechanism [BFG99] and the fault treatment mechanism [PABD+99J il­

lustrated how large scale problems can be tackled 

Kulkarni et al [KRS99] argue that the decomposition of a fault tolerant program into its components is 

beneficial in its mechanical verification, and that such a decomposition admits reuse of the proofs for other 

fault tolerant programs as well as the variations of the given fault tolerant program. 

A common way of showing a fault tolerant design equivalent in the presence of faults to a non-fault toler­

ant design is to show observational equivalence. Observational equivalence, first introduced in [Mi180J. is 

based on the idea that the behaviour of the system is determined by the way it interacts with the environ­

ment: two systems are equivalent whenever no observation can distinguish them. 

Conclusions 

Explicitly mode\ling the behaviour of faults is essential if we wish to reason about faults in a real-time 

context. However, we feel that the effects are more crucial than the cause, and choose to model the obser­

vational effects offaults on design components. Only concerning ourselves with the observational effects. 

we allow for internal state transitions of components which are erroneous, but do not lead to failure. not 

to interfere with our modelling. Rather, by recording the observation of a fault as a/aldt event in a trace 

model, we provide for a history of a RTN, over which we can reason about faults, and more crucially. 

fault tolerance. Our intention to introduce new operations, or actions, into RTNs that generate fault events 

which are distinct to the existing event model suggests a reactive approach to fault tolerance: given the 

observation of a fault event then action a fault tolerant operation. Therefore. those faults we do not con­

sider are still undetected and may lead to non-deterministic behaviour. Finally. we can show a fault tolerant 

RTN observationally equivalent to its non-fault tolerant counterpart should the non-fault tolerant trace be 

a subset of the fault tolerant design, excluding the fault events. 

2.4 Real-Time Networks 

In Chapter 1, we alluded to scale and complexity as common characteristics of real-time systems. A proven 

method for dealing with any complex system is to partition it into smaller independently operating subsys­

tems which only interact with one another and with the system environment through explicitly defined 
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communication connections. For real-time systems, one approach is the Real-Time Network (RTN) ar­

chitecture which does partition concurrent processing components and enforces communication for data 

exchanges and synchronisation through shared data via explicit connections. 

MASCOT (Modular Approach to Software, Construction, Operation and Test) is a design methodology 

based on the real-time network concept [Sim86]. It comprises a design language and graphical notation. 

together with a process for design derivation based on structural decomposition. This involves identification 

of computational components of a system (its subsystems and processes) and the interactions between these 

components (i.e. data-flow paths), together with protocols that characterise these interactions. MASCOT-3 

has been advocated for the design of large concurrent or distributed, real-time embedded software systems 

and has been used extensively throughout the defence industry [Woo%]. 

DORIS [Sim94], the Data-Oriented Requirements Implementation Scheme is a variant of MASCOT-3 de­

veloped by MBDA. The main difference is that DORIS distinguishes three levels of design abstraction. 

such that application network designs and execution network designs are specified in addition to the func­

tional design. The former define the logical architecture of a system, whilst the latter extend the application 

network to include all additional components required to support distribution across a particular processor 

network. This enables flexible re-mapping of a design to the hardware platform as the hardware platform 

evolves [PAHoo]. DORIS also supports a wider-range of synchronous and asynchronous communication 

protocols appropriate to both shared-memory and message passing implementations (SimOJ). 

In this thesis, we focus on support for transforming designs represented using RTN-SL, a specification and 

design language (intended for integration into MASCOT-3 and DORIS) being developed by MBDA for 

defining the behaviour of real-time networks [Pay02]. The following sub-section provides an overview of 

the RTN-SL and its graphical notation in particular. 

2.4.1 RTN-SL 

RTN-SL is used to define flat Real-Time Networks, including the real-time and functional behaviour of their 

activities. A flat RTN comprises a set of activities (single-threaded processes) which are connected into a 

network by ports that interface with communication paths. Between each activity is an intercommunication 

data area (IDA) which defines the interaction protocol used on that path. Activities may not be directly 

connected together, but must communicate via an IDA [Pay02]. 

The RTN-SL has both a graphical and textual representation where the latter is a precise specification of the 

functionality of the graphical form. The concrete textual syntax of the RTN-SL is influenced by a number 

of languages, particularly by Ada [Bar%], VDM-SL [LHP+96, FL98] and the PVS logic [OSRSC99a). 

The concrete textual syntax is not introduced here and the reader is referred to [Pay02] for a full reference. 

RTN-SL supports five standard protocols5, namely pool, channel, signal, stimulus and dataless channel; the 

three basic protocols are the pool (similar to a shared variable), channel (a bounded buffer) and signal (a 

one-place over-writing buffer). These impose different synchronisation constraints on the reader and writer 

of the protocol depending on whether they allow data to be destroyed when it is read or written (see Table 

5Several variants of these standard protocols where added to the language in [Pay02]. such as Flash Data. Prod and Overwriting 
Buffer, however the fault tolerant strategies suggested in this thesis only use the standard protocols and the reader IS referred agam 10 

[pay02) for a full reference. 
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Non-uestructtve Read uestructtve l<ead 
Read data not consumed Read data consumed 
(Never held up) (Held up when no data) 

Destructive Write + + Old data overwritten 
(Never held up) 

Pool Signal 

Non-Destructive Write ~ + Old data not overwritten 
(Held up when no space) Constant Channel 

Table 2.1: The Basic Protocols 

2.1 for a summary). The two other RTN-SL protocols, namely stimulus and dataless channel, are variants 

of signal and channel respectively; they differ in that both allow communication of void (null) data. 

Abstract data types (ADTs) may be defined to support definition of a flat Real-Time Network. These 

are necessary when a data type must be visible in more than one activity and/or IDA where one activity 

communicates data to another which is not a built-in type [Pay02]. 

Additionally, the RTN-SL includes a sub-language known as Activity Description Language (ADL) for 

defining the behaviour of activities. In tum, the ADL includes a timed state-machine notation sub-language 

termed the Activity State-Machine (ASM) which is used to define the structure and timing constraints of 

an activity'S algorithm. 

ASM distinguishes between static and dynamic states; static states model synchronisation points of an 

algorithm. For example, when an activity is in a static state, it maybe attempting to communicate using a 

synchronous protocol. Transitions from a static state are labelled either with the event indicating that the 

communication may continue or finish, or with the lower and upper bounds of a time delay [Pay02]. 

Dynamic states model an activity'S computation, each one encapsulating some non-reactive functional­

ity. They have a best-case execution time (BCET) bound, a worst-case execution time (WCET) bound 

and worst-case response time (WCRT) bound; an optional worst-case response time on read may also be 

recorded. An activity is normally required to exit a state within these times. Transitions from a dynamic 

state are labelled with conditions over the local activity's state which are evaluated when a dynamic state 

terminates [Pay02]. A composite dynamic state comprises several dynamic states whose operations may 

execute non-deterministically. 

Usually, the RTN-SL graphical syntax, which builds upon the graphical syntax of MASCOT [Sim86], is 

commonly used when discussing RTN-SL specifications. Activities are represented as circles; IDAs by 

the appropriate symbol from Table 2.1 (which is enclosed within a rectangle where the IDA is defined and 

hence named); ADTs by diamonds; communication paths by solid arcs with arrows indicating the direction 

of data-flow; and ADT imports by dotted lines with arrows pointing towards the unit that imports the ADT. 
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Input Port Optional WCRT Output Port 
Name on Read Name 

Dynamic State Name 

BCET Lower 
WCET WCRT 

Bound Upper Bound 

Figure 2.8: Dynamic State 

P1 P5 P3 P2 

State1 State2 State3 

BCET Lower 
WCET 

WCRT 
Bound Upper Bound 

Figure 2.9: Composite Dynamic State 

Ports are represented by solid circles on the perimeter of activities and the state machine drawn within the 

activity circle. 

Static ASM states are represented by an ellipse and dynamic states as a rectangle. Where an input or output 

is associated with a dynamic state, then the appropriate port name is shown in the top left hand and right 

hand corners of the rectangle respectively. Labels in the bottom left and right hand corners indicate BCET. 

WCET and WCRT; the optional WCRT on read is shown in a box next to the input port name. The dynamic 

state graphical syntax is summarised in Figure 2.8. 

Composite dynamic states are depicted by partitioning a dynamic state using dotted lines. Each constituent 

state may have its own input and output port, although one set of time bounds applies to the whole state. 

An example composite comprising three dynamic sub-states is shown in Figure 2.9. 

Transitions between states are depicted by directed arcs pointing from the source to the target state. Con­

ditions events and time-outs are shown as textual labels adjacent to the appropriate transition. The initial 

state is shown by being the target of a transition with no source. 

Figure 2.10 illustrates the main constituents of an RTN-SL specification as described above. Activity A2 

includes three static states, A (the initial state), C and E, together with two dynamic states, Band D. When 

the activity is in state A and a void data value is present in the stimulus connected to port 2 (P2), then event 
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Figure 2.10: An Example Graphical RTN-SL Network 
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D 

Figure 2.11: Existing Semantic Framework 

Sp2 occurs and the activity moves to state B which reads from the pool on port 3 (P3). The computation 

(not given here) associated with state B is executed and takes between Ll and U3 time units; conditions 

CI and C2 are then evaluated. A transition with a true condition is taken and either state Cor D is entered. 

Assuming state C, the activity is de-scheduled for between t) and t2 time units whereupon state D is entered. 

The algorithm associated with state D (again not given) is executed between its time bounds (as state B) and 

a value written to the channel linked to port 4 (p4). The activity waits in state E until the W p4 event occurs 

whereupon it returns to the initial state (A). Activity A I executes concurrently with A2, communicating 

with it via IDA idal. ADT adtl is used in the definition of AI, A2 and idal; ADT adt2 is used in the 

definition of adt3, which in tum is used in the definition of A2. 

2.4.2 Verification of Real-Time Networks 

Given a real-time specification language which provides a formal framework for top-down design of real­

time systems, one requires tool support for the ensuing verification effort. To obtain mechanised support for 

our chosen formal framework, the semantics of RTNs are represented as a shallow embedding [OSRSC99a] 

in the PVS logic, which is a typed higher-order classical logic and supported by the PVS (Prototype Veri­

fication System) [OSRSC99b] verification system. 

The principal tool which defines this embedding is NetSpec [PayOld]. NetSpec first syntax and type checks 

an RTN-SL specification (D) file that conforms to the notations static semantics, NetSpec then -with the 

correct switch- instantiates the axiom schema of Q, the RTN-SL semantic function, to produce a set of 

axioms which encode the behaviour of the specification (Figure 2.11). 

The generated PVS theory from NetSpec naturally type checks with respect to the PVS type-theory. How­

ever, the theory section of an RTN-SL specification isfree hand and may generate errors in PVS. Once we 

have the theorems we wish to prove, for example timeliness or safety properties, we begin to reason with 

our axiomatic semantics within the PVS system. Some automation of trivial goals are completed by PVS, 

but the bulk of the effort is driven by the designer. We later appeal to our transformational approach as 

aiding the designer in this effort. 

Earlier experiences with this proof approach were successful. In [PAHOO], a small example -principally 

the ASM- proved two theorems of liveliness and safety. The fact that both theorems were proved from the 

theory obtained by applying Q provides some validation of the adequacy of the semantics and approach. 

Their experience supported the need to plan formal proofs before embarking on using a prover, and that 

formal proofs need to be reconverted to rigorous proofs for presentation and comprehension. Also, that the 

identification of suitable lemmas improves the modularity and clarity of proof, which gives hope that we 

can benefit our transformational methodology again towards this proof style. 

Other methods and approaches have been similarly advocated in the literature. Hooman [Hoo97] proposes 
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a compositional verification method, again utilising the PVS system, which enables the design to be a 

framework of specification and programming constructs mixed freely, to formalise intermediate design 

stages during the top-down design process. Liu and Joseph [U97] extend their work on formalisation of 

fault tolerance with TLA 6 to consider refinement steps in an real-time design, as a way of verifying the 

timing properties inherent in real-time systems. Their work considers the balance of a low or high level 

abstraction which is feasible to verify, yet recorded accurately, the timing properties. 

2.5 Methodology 

2.5.1 The SHARD Analysis Method 

We describe a method which draws on techniques from the chemical industries Hazard and Operability 

(HAZOP) analysis [CIS77], combined with work on software failure classification to provide a structural 

approach to identifying the failure modes of software [MP94]. The Hazard and Operability (HAZOP) 

analysis system of imaginative anticipation of hazards provides precisely the type of structured analysis 

which can feed in to the development of a new system. A HAZOP study attempts to identify previously 

unconsidered failure modes by suggesting hypothetical faults for review. The software specific method was 

christened Software Hazard Analysis and Resolution in Design (SHARD) [MNPF95]. to avoid confusion 

with traditional HAZOP and is based on the MASCOT design notation. In the SHARD approach. as each 

part of the system design is produced, an analysis is produced based on the principles of HAZOPs. This 

analysis must either be shown to justify the design proposal, or impose a number of emergent requirements 

which must be satisfied later in the design development. 

The decision to use SHARD as the basis for our work favours the use of design notations which employ 

a structural model of the system of the system which partitions the system into independent processes and 

defines the interfaces between them. The fault transformations possible within a passive IDA are much 

more restricted than those possible within an activity, providing good fault containment properties and an 

effective basis for analysis. The method we adopt, may not itself be sufficient for a complete safety analysis 

argument, but does provide the initial analysis to those parts of the system where faults may prove critical. 

Illustrated in Figure 2.12 is the relationship between the original specification, design and the derived 

fault tolerant design which addresses the fault definition found critical by a SHARD analysis. Figure 2.6 

highlighted the intermediate steps to reach the faulty specification from the original. it is therefore the 

responsibility of a SHARD analysis to define clearly which component behaviours may lead to a critical 

fault so they can be removed, or tolerated in a transformed design. The iterative process continues until all 

critical faults have been addressed, which cumulates to our fault tolerant design, D 17· 

2.5.1.1 Method 

The basic unit for analysis of a software design is a single RTN specification representing a system or 

subsystem. This system or subsystem consists of components -activities and IDAs- connected by data 

flow paths. Separate tables are produced for each RTN component. The process begins with a top-level 

(context) RTN diagram of the system. The major steps of the method are outlined below: 

6mentioned in Section 2.5.2. 
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Figure 2.12: A SHARD invoked design process 

• Each component and data flow are uniquely named; 

• The design is reviewed to ensure it correctly models the intended system; 

• A table of guide words is constructed; 

• For each data flow in the system, each guide word is considered, with the evaluation recorded in a 

tabular format; 

• The potential causes of each identified fault are determined; 

• The effects of each hypothetical fault are considered and recorded; 

• The set of hypothetical faults is reduced to a set of meaningful faults and the justification recorded. 

2.5.1.2 Guide Words 

A considerable amount of research has been carried out into the classification of software failures [BS90, 

ES85], for which the categorisations are based on a component, analogous to our model of information 

flow to and from components. 

The correctness of a component is specified in terms of two parameters: the value associated with it, and 

the time at which this value is presented. The value domain is divided into four categories: correctly valued, 

subtle incorrect, coarse incorrect & omission. The time domain is similarly divided into four categories: 

correctly timed, early, late & infinitely late7• The summary of the possible combinations of time & value 

faults is show in Table 2.2. 

Considered previously from [ES85] was a commission fault, which expressly includes events such as com­

pletely unexpected output, which is specifically considered in our analysis. 

7The distinction between an omission in the value domain and infinitely late is assumed to be made by a perfecl observer 
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Value 

I Time 
Correctly 

Subtle Incorrect I Coarse Incorrect I Omission Valued 

Undetectable 
Detection on 

Correctly Timed Correct Service 
failure 

value syntax or DetectionatT_ 
semantics 

Detection on 

Early Detection on time Detection on time 
value syntax or 

Detection at T_ 
semantics and/or 

time 
Detection on 

Late Detection on time Detection on time 
value syntax or 

Detection at T_ 
semantics and/or 

time 
Infinitely late Detection at T_ Detection at T_ Detection at T_ DetectionatT_ 

Table 2.2: Fault classes and detectability 

We therefore consider that a complete set of suitable failure classes which represents the guide words used 

for the SHARD analysis: 

Service: Omission 

Commission 

Timing: Early 

Late 

Value: Coarse Incorrect 

Subtle Incorrect 

These failure classes are then considered in the context of an RTN design, to mature the formal definitions 

of each. The failure categorisations and their context-sensitive meaning is shown in Table 2.3. 

As noted in [MNPF95], the original intention of the guide words in Table 2.3 was to find the minimum 

set which we could be reasonably confident would prompt consideration of the plausible failure modes 

of software. Though McDermind et al suggest from their experience with their study, had the "raw" 

words (i.e. omission, commission, early, late, ... ) been used, there would (probably) have been fewer 

difficulties with interpretation [MNPF95]. We therefore use the guide words interchangeabilly, choosing 

the most appropriate word to aid comprehension in a given context. For example, "unwanted updates" are 

appropriate when considering data components, however it is hard to derive a meaningful intuition of it for 

an Activity, whereas a "crash" guide word is more appropriate. 

Table 2.4 shows a fragment of the analysis output of the design shown in Table 2.10. The column heading 

M? records whether a hypothetical failure mode has been identified as meaningful. 
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Failure Categorisation 

I 
Service Provision Timing I Value 

Component Omission Commission Early I Late Subtle I Coarse 

Pool No Update Unwanted Update N/A Old Data Incorrect N/A 
Signal No Data Extra Data Early Late Incorrect Inconsistent 

Channel No Data Extra Data Early Late Incorrect in Range Out of Range 
Dynamic State No Update Unwanted Update Early Exit Late Exit Incorrect in Range Out of Range 

Static State N/A N/A Early Exit Late Exit N/A N/A 
Activity Crash N/A Early Late N/A N/A 

Table 2.3: Table of guide words applicable to RTNs 
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Drawing Ref 
Drawing Name 

FlowID 
Protocol 

Data Type 
Additional Information 

Top Level 
p3 
Pool 
adtl 

Guide Word Deviation Causes 
Old Data Old pool data Period of p2 

read by state B 

No Update state B fails to Period of p2 
readp3 

Late Exit state 8 exits Late read @ p2 
later than 113 

'--------

Detection Co-effectors Effects M? 
A I failed to up- Stagnant data NO 
date ida I used in computa-

tion & Repetition 
of data written to 
p4 

None Stagnant data No 
used in computa-
tion 

None Late entry to state Yes 
D 

--- - - -

Table 2.4: A fragment of an SHARD analysis of the example network in 2.10. 

Justification / Design Proposals 
Justification: By design to use a 
Pool 

Justification: By design to use a 
Pool 

MAction: aka state 8 tolerant to a I 
timing fault 
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2.5.2 Design Transformations 

The idea of design transformations for fault tolerance is not new. Other approaches have been proposed 

to study fault tolerance for systems applying error detection and recovery. In particular, using program 

transformations, Liu and Joseph [U92] show that proof of fault tolerance is not different from the proof 

of any other functional property. Effort has also concentrated on automating the addition of fault tolerant 

solutions to an intolerant design [KAOO). 

The motivations for a transformational method are three-fold. The first motivation comes from the fact 

that the designer may have a fault-intolerant program and it is known to be correct in the absence of faults. 

The second motivation is that the use of such automated transformation will obviate the need for manually 

constructing the proof of correctness of the transformed fault tolerant program as the transformed program 

will be correct by construction. This is especially useful when designing concurrent and fault tolerant 

programs as it is well-understood that manually constructing proofs of correctness for such programs is 

especially hard. 

The third motivation stems from previous work by Arora and Kulkarni [AK98a, AK98b] that shows that a 

fault tolerant program can be expressed as a composition of a fault-intolerant program and a set of 'fault 

tolerance components'. Such fault tolerant components are described in some template format (preferably 

one akin to RTNs [80r98]) which details where and when a template is suitable and hopefully proof of 

correctness to show tolerance against a class of faults. 

Arora and Kulkarni [AK98a] propose a method where components are added to a design in a stepwise 

fashion. Each step adds a component to the design which tolerates one fault class, until the design is tolerant 

to the full set offault-classes. Components are either detectors or correctors [AK98b]. Intuitively. a detector 

detects whether some predicate is satisfied by the system state; and a corrector detects whether some 

predicate is satisfied by the system state and also corrects the system state in order to satisfy that predicate 

whenever the predicate is not satisfied. Decomposition of a fault tolerant program permits the verification 

of a given property by focusing on the component that is responsible for satisfying it. For example. if 

we need to show that a program eventually recovers to a state from where it satisfies its specification, we 

should focus on its corrector components. Similarly, if we are interested in showing the absence of faults. 

then we must focus on the detector components. 

Other approaches have proposed redundancy management within software modules, namely fault tolerant 

real-time structures (FERTs) [8SS94]. The approach deals with the use of software implemented fault 

tolerance in those real-time systems where a designer wishes more run-time Hexibility than that afforded 

with static redundancy. The method introduces a three-level framework which manages the functionality 

through to the scheduling of the components. Although this approach in not applicable for our problem, it 

does support the idea of composing a system with a fault tolerance component in a dynamic, transforma­

tional approach. 

2.6 Conclusions 

From this survey of existing work in the literature on "Faults, fault tolerance & fault treatment" we have 

found the scope and motivation to propose a design transformation methodology for RTNs to provide for 
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classic fault tolerant techniques. 

It has been noted that faults have not been considered explicitly in RTNs, although much development has 

been made for other real-time design methodologies, we feel the RTN approach is capable of sustaining 

a study of this nature. The obvious benefits are expected to be gained by extending a relatively new. yet 

increasingly accepted, design methodology as our foundation. Working within the RTN-SL methodology. 

rather than proposing a bespoke one, allows the clear specification of faults with respect to an RTN. Further, 

having existing examples allows for the presentation of transforming a design, rather than contriving new 

ones and facilitates the evaluation of the transformation against existing practices. RTNs also provide clear 

and discernible characteristics with which to specify fault definitions, as to a tightly structured graphical 

syntax. 

In addition to the control and structuring offered by a transformational design method, we require structur­

ing support for the proof task. Specifically, the form of the transformation -the arrangements of components 

being removed- should suggest the properties which are presented. For example, consider a component 

is removed which reads a value, computes some result and writes that result to an actuator within a time 

bound. Should we consider a value fault, then the new arrangement of components should still read and 

write a result within the time bounds, in addition to computing an agreed value. We therefore would 

consider this timeliness guarantee to be suggested by the transformational methodology. 

Finally, we have identified a structured approach to challenging designs to derive the faults feasible. and 

more importantly, the critical effect upon the overall success of the system at a component level. This then 

defines our fault hypothesis. In addition, it suggests which components should be replaced and isolates the 

reasoning in a compositional fashion. 
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[n this chapter, we outline a method for making (fault tolerant) design transformations to RTN-SL de­

signs which provides constraints on which transformations are feasible through specifying a context. The 

proposal to define the abstract syntax of design notations using graph grammars is not new [Pay95J. [n 

[Pay95 j, Paynter proposed a node-labelling controlled embedding (NCE) graph grammar to give semantics 

to an arbitrary MASCOT design. We extend that approach here. by using a context-sensitive grammar 

Before we present the transformations, we first outline the idea of a graph grammar. 

3.1 Introduction 

There are many graph grammar proposals in the literature, e.g. those of [AKTY99)[Roz87]. We have 

chosen an NCE context-sensitil'e graph grammar (NCE-CSG) [AKTY99j which is suitable to specify the 

abstract syntax for RTN-SL. We require a context-sensitive grammar to extend the previous work ([Pay95)) 

to pemlit the specification of fault-tolerant design templates and to restrict their application. That is. the 
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~'G~"~ 
91 92 .. 93 94 95 

A, X" Y 

(ii) C {
(a, XI,p, Y, Yl, in) ,(c, XI, a, a, Yl,in). -

= (c, Xl,a,a, Y2,in) ,(d, X2,p, Y. Y2,oUI). 

Figure 3.1: Production rule, p 

type of templates we seek to present should not be instantiated into any part of a design. rather only an 

identified sub-system which is hypothesised to exhibit the faults we wish to tolerate. 

We first present some basic terminology and production rules of an NCE-CSG. 

Definition 3.1 (Graph) Let E be an alphabet of node labels and let r be an alphabet of edge labels. A 

graph over E and r is a 3-tuple D = (V, E, A). where: 

• V is afinite nonempty set of nodes. 

• E ~ {(v,y, w) I v, wE V, vi- w, y E r} is a set of edges. 

• A: V -t E is a node labelling function 

The components of a graph H are denoted by VH , EH and A. respectively [AKTY99]. 

Definition 3.2 (Suhgraph) Given two graphs. Hand G. we say H is a sllbgraph of G (or H is in­

duced of G) ijVH ~ VG andVn E VH, 3n' E VG ·abs_edge(EH,n) = abs_edge(EG,n') where abs_edge: 

edge_set x node -t edge_set gives the set of edges whose source or target is the node in graph. 

Definition 3.3 (A Directed Edge Neighbourhood-Controlled Embedding (edNCE) Grammar) The 

edNCE graph grammar [AKTY99] is a 6-tuple G = (En,E"rn,r"Z,p). where En and E, are sets of 

non-terminal and terminal node labels respectively, r nand r, are sets of non-terminal and terminal 

edge labels respectively. Z is the initial graph and P is a set of production niles for transforming Z A 

nile pEP has the form (A, X) : : == (B, Y), C where A. B. X and Yare graphs, X is a subgraph of A. 

Y a subgraph of B, and C is the embedding relation for p. It defines how X can be replaced by Y in the 

context of A and B, as specified by C. 

Figures 3.1, 3.2 & 3.3 show an example of applying a production rule p, depicted in Figure 3.1, and 
<-

transforming the Host graph H (Figure 3.2) into the Result graph H (Figure 3.3). 

The production rule of Figure 3.1 has two components: the parent/daughter graphs and the embedding 

relation. The parent graph in this instance has an additional context graph (A) component which restricts 

when a production is applicable. The embedding relation C states that where there exists in H an edge that 
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Figure 3.2: Host graph. H 

Figure 3.3: Result Graph. Ii 

is between nodes a and xl. xl EX. and labelled /3. there should exist in Ii an edge that is between a and 

yl, yl E Y. and labelled y, the field IN indicates the edge under consideration must be an incoming one 

incident on xl. 

We observe from Figure 3.2 that there exists an arrangement of nodes equal to the mother graph (X) of 

our production rule. Additionally. the graph has the required context. We can therefore remove the mother 

graph from the host graph and replace with the daughter graph. The resulting graph is shown in Figure 3.3. 

The graphs X and Y in a production rule of the form p = ((A,X):: == ((B, Y),e)) are often termed the 

mother and the daughter graphs respectively; the context graphs A or B may be omitted in which case A is X 

and B is Y. For p to be applied over a host graph H, A must be a subgraph of H. When all nodes and edges of 

X are removed from H. the remaining graph is referred as the rest graph. In certain scenarios, a production 

of the form p = ((A,X) :: == Y, C) is not sufficient to describe a context sensitive embedding. For example, 

the neighbourhood of a production may have surplus nodes that satisfy the embedding relation which are 

not required. we therefore specify an embedding context graph, B. A production rule p = (A,X) :: == 
(B, Y), e, where K = A-X = B-Y specifies how additionally the daughter graph is embedded in the context 

K in a production - a specification not given in C. An example illustrating this embedding is shown in 

Section 7.1. 
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02 

Figure 3.4: The RTN-SL Initial Graph 

3.2 The Grammar for RTN-SL 

Based on the semantics of the edNCE graph grammars. we have developed a 24-rule graph grammar 

which allows us to represent an RTN design in terms of a more abstract syntax. These rules can be used. in 

appropriate permutations. to represent any well-formed RTN design. All design representations are derived 

from the Initial Graph which is shown in Figure 3.4. 

The 24-rule RTN grammar is a 6-tuple G = (En,Et,rn,rt,Z,P). where: 

• En = {<AjDA >,<ACT >,< IDA >,<SM >,< STATE>,<D_ST>} and 

• Et = {< ida >, < d_st >, < s_st >, < port>} 

are sets of non-terminal and terminal node labels respectively; 

is the set of non-terminal and terminal edge labels l . Z is the Initial Graph shown in Figure 3.4. and P the 

set of production rules. Note that more than one node can have the same label drawn from the finite set and 

nodes are uniquely identified by integer tokens "01" or "02" as in Figure 3.4. The 24-rule of our grammar 

are grouped into 'families' based on the context in which they can be applied. The reader is referred to 

Appendix ?? for a complete presentation of the grammar. 

3.2.1 RTN Production Rules 

We now give a flavour of the full 24-rule of our grammar presented in graphical form. The reader is 

referred to [OE02] for the full presentation of the graph grammar and the abstract syntax and embedding in 

VDM-SL2. We group similar rules into 'families' dependent on their mother graphs. Then. for each rule. 

we describe the production rules daughter graphs. The embedding relations applicable for each rule in a 

'family'. are not presented here and the reader is again referred to [OE02] for a complete description. 

I Due to the nature of our grammar -where each edge label is unique to the arc- we take artistic license with read. write and 
boolean labels respectively. 

2The abstract syntax of our grammar is embedding in VDM-SL to allow for an exploration of automating the process of applying 
graph grammar productions and begin to specify the requirements for a tool set 
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(a) (b) (e) 

Figure 3.5: The A_IDA family based production rules and embedding relations 

The first family of (three) rules shown in Figure 3.5 specifies how the non-terminal node labelled A_IDA 

can be transformed into networks. An AjDA always consumes data supplied by activities and produces an 

output for an IDA. The first rule (a) shows how a new A_IDA can be instantiated into a network. The second 

rule (b) specifies the basic decomposition of an AjDA into a pair of ACT and IDA nodes to represent an 

activity (ACn writing to an IDA. The third rule (c) indicates how data from a new data source can be 

instantiated into an existing area of a network. 

The next group of production rules, shown in Figure 3.6, are the first context-sensitive production rules 

to appear. These are intended to (a) direct the input from one specific inwardly direct port to a single 

state. States may only read from one port, therefore any existing inwardly directed data flows to node 01 

are directed to node 03 in the production (specified in the embedding relations). Rules (b) and (c) direct 

output to a specific port and similarly specific input & output to a state respectively. Details to note are the 

repetition of the context graph on both sides of the production. The context graph K. where K = X -A = Y-8 

specify how the mother (X) and therefore daughter (Y) graphs must be connected to the rest graph before 

and after the production respectively. However, the embedding relation c = (E, vx.r,r, Vr, {IN,OUT}) 

must not specify nodes in Vx as nodes in K (VK rt. Vx), which respects the context-sensitive embedding. 

Should there exist a node in VK in the embedding relation then the desired finite detail is lost and the rules 

are not context-sensitive. 

3.3 Design Transformations using Graph Grammars 

Although the 24-rule grammar introduced previously is sufficiently rich to derive all permissible designs. 

our focus is on transforming existing designs rather than deriving new ones. However. the 24-rule grammar 

does serve to illustrate that the grammar on which the fault tolerant transformations are based is sound. 

We wish to transform designs by applying templates -described in the graph grammar syntax- which repre­

sent classical fault tolerance strategies. By encoding each strategy as graph grammar production rules we 

harness the transformation aspect of graph grammars. Both the presentation of mother and daughter graphs 

and -more importantly- the embedding relation enable 'faulty' components to be removed from a design 

and replaced with an arrangement of components that tolerates the fault and preserves the interfaces. By 

'preserve', it is meant that each connection from the host graph that existed previously. is replaced by a 
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01 
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Figure 3.6: Context Sensitive SM productions and embedding relations 
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~-.---J ; I ft_dy_st L:= 

Figure 3.7: Passive state template 

connection from the rest graph to daughter graph. Embedding relations inherently give us the control to 

describe this aspect of the transformation. 

Our chosen transformational design technology is graph grammars for three principal reasons: (i) it is 

possible to represent a well-formed RTN design in an equivalent graph grammar design; (ii) production 

rules inherent in graph grammars allow one graph to be embedded into another (host) graph in a specified 

manner; and (iii) certain properties (e.g., flatness) desired of an RTN design can be verified effectively 

in the equivalent graph grammar representation. For instance, Paynter used a graph grammar to verify 

properties desired from a low-level design specification [Pay95]. 

Context Sensitive 

Suppose a context-sensitive grammar had not been used. Then, for example, the presentation of the essence 

of a production, such as shown in Figure 3.7 would be complicated with repeating the context of the parent 

graph again with the daughter graph, which also then extends the neighbourhood of the transformation fur­

ther complicating the embedding relation. This undue complexity is removed by using a context sensitive 

grammar. 

Given the previous exposition of design transformations using graph grammars, we now describe one 

example of the fault tolerant templates, our ultimate goa\. The template shown in Figure 3.7 is termed 

passive state replication in which one faulty dynamic state (fcd)'_st) is replaced with a series of three 

sirnil;n3 states. The context of this variation4 of the rule is that the parent graph must write an output to 

some port. The embedding relation specifies that each incoming state-machine transition to 01 is replaced 

by a state-machine transition to 02 and that each outward transition from 0 I is replaced by one from each 

replica. The embedding relation also creates the links that specify each replica writes to the output port. 

3They may still exhibit the assumed fault 
40ther possibilities are read or write only & reads and writes. 
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-1,---" _s_ystem-----.l+-

Figure 3.8: Abstract System Specification 

Advantages 

By providing a transformational design method as we propose, we have established a mechanism which 

constrains the transformations. By choosing to use a graph grammar we retain the graphical structure 

inherent to RTNs, but gain a transformation mechanism for which we can describe our templates in suitable 

abstract form. Having chosen to use a context sensitive graph grammar, we have already argued how the 

transformations are more concise and benefits us by restricting the disruption on the surrounding network. 

3.4 An Example derivation using the graph grammar 

We now introduce a RTN-SL design fragment for a small example which illustrates how an RTN-SL spec­

ified real-time system can be transformed and reasoned about with respect to faults and failures. This 

running example will first serve to make concrete our understanding of the definitions of system and spec­

ification, then the specification of faults with respect an RTN. We then propose a simple transfomlation 

which will serve as our continuing example in subsequent chapters. 

3.4.1 Scenario 

We consider a target tracking sub-system as our example. Typical constraints on such a system are that it 

should produce updated vector information of the target to port, p4 within some time of a new image data 

arriving at port, pI, and that it should not produce a vector update if there has not been a new image. 

3.4.2 Specification 

From this scenario, we can extract two end-to-end specification properties. One is a timeliness and the 

other a safety property. One typically needs to specify both kinds of properties for real-time systems. 

Work has been done on showing how many of the common real-time system requirements can be formally 

expressed in the RTL logic [JMS88]. The timeliness and safety properties for this system are no exception. 

The timeliness property the system should exhibit can be formalised as: 

Theorem 3.1 (Liveliness) Vi: Occ,tl : Time· 0(Rp l,i,td => 3t2: Time· 0(Wp4,i. t~);\(2 ::; tl +X 

This state that every input at pI should give rise to an output within X time units at p4, where X is the 

system deadline. 

A safety property the system should exhibit can be formalised as: 
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A: Identify Target B: ~ Target Vec:lDr 

Figure 3.9: A Target Tracker 

This states that every output (i.e. each occurrence) should be in response to an earlier input. 

3.4.3 Design 

The network in Figure 3.9 consists of two activities linked by a channel, and is a typical design fragment 

which might be found in many real-time tracking systems. The example is motivated due to [pAHOO). 

The arrival of fresh target images from some input sensors triggers activity A, which performs some image 

processing to determine the coordinates of the target. These coordinates are then passed to B via the 

channel, and B calculates how the target is moving, and outputs this vector to the rest of the system. 

Space does not permit a full RTN-SL specification for the system to be given. Instead. the graphical 

specification (a subset of the textual specification) shows the arrangement of activities, IDAs, ports and 

state-machine representation of the functional behaviour of each activity in Figure 3.9. Where required. 

the textual specification is given to highlight functional behaviour which must be preserved. or highlight 

the specifics of the components we intend to transform. 

3.4.3.1 RTN-SL Design Fragment 

The textual fragment that follows supplements the graphical specification of Figure 3.9 to illustrate the 

tight coupling between the graphical form and textual specification. This aspect. though very useful at the 

production level. makes it tedious to pursue our objective of design transformations in a larger scale. 

LOCAL STATE 

Prev_Target_Pos TI; 

END LOCAL STATE; 

op assess_Threat (image Image.Processed_Image) 

assess: Threat.Threat_Assessment; 
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EXT READ ... 

EXT WRITE 

PRE true; 

Figure 3.10: Host Graph, G H 

POST exists (tr: Threat.Threat_Assessment): assess tr; 
end op; 

static stateD 

transition goes stateE on Rp3; 

end state; 

dynamic stateE 

op asses_threat reads from p3 writes to p4; 

[_1_1_]; 

transition goes to stateD on true; 

end state; 

Graph Grammar representation of GH 

Figure 3.10 illustrates the graph grammar presentation of the design of Figure 3.9. 

3.4.4 Faults 

In the absence of a SHARD [MP98] investigation on the eventual design, we hypothesise the faults plausi­

ble in our example which could have a detrimental affect. Drawing from the system requirements, and to 

make this example interesting, we consider a timing fault within the system, specifically a late write fault 

at portp4. 

Fault Hypothesis 

A fault that causes a component to produce the expected value for a given nonempty input sequence too 

late will be termed a late timing fault, which in RTL can be defined as: 
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LATE_FAULT: Event x Occ x Interval--> B 

LATE_FAULT(e,i,l) ~ 

3t' :TIme't';::: I.u/\ 0(e, i,t') 

The basic RTL formula states that an event, e occurs for some occurence, i at some time, t. Th LATE_FAULT 

formula states that an event (e) occurs for the of the interval (I). This auxiliary function (and the fault axiom 

stated below) are discussed further in Section 4.2 when the Real-TIme Logic (RTL) is introduced. The aim 

of the auxiliary function is to state the characteristics of the specific fault (Similar functions are defined 

for Early, Omit and Commit faults) so that the fault axioms can clearly identify the observable interval an 

event should occur within. 

Specific to our example a late write at port p4, in RTL, is specified to identify the time the read event 

occured (for the same occurence) and that the write event occurs later than some deadline (X). 

LateWrite(p4, i, t) !?:. 
3t': TIme· t' ~ t /\ 0(Rpl ,i, t') /\ 

LATE_FAULT(Wp4,i, [t',t' + X]) 

In turn, this fault hypothesis would be considered for each design component, to establish where the fault 

in a componenrS leads to a fault in the system. 

Note, extending the specification to include our fault hypothesis leads to a contradiction against the safety 

and timeliness properties. This contradiction can be seen by looking at the timeliness property and the 

fault hypothesis. The timeliness property states that the output must be produced within some deadline 

(X), whereas the fault hypothesis states that the output event will not occur until after this deadline. This 

contradiction must be addressed by the fault tolerant template. 

3.4.5 The chosen Template 

The RTN-SL graph grammar design fragment shown in Figure 3.12 illustrates the arrangement of design 

components proposed to tolerate the fault identified above. This passive state replication (PSR) design 

template requires three diverse functions6 which can calculate a target vector. 

Design Context 

The environment of a template in a host graph is crucially important. The interactions between an envi­

ronment and template may be either flows of data or control algorithms. The existing links which define 

the environment not only specify what new links should be established during the embedding, but also the 

context on which our context-sensitive grammar relies. From Figure 3.12, we can see the context (shown 

in Figure 3.11) specified for this example is that a dynamic state must read an input and write an output: 

only in this context is the template applicable. 

Considering the template in Figure 3.12 more closely, the environment we consider from the host graph 

(Figure 3.10) on the IN direction is the arc D --> E and similarly E --> p4 on the OUT direction. When 

evaluating the embedding relation it is these arcs that stipulate those required during the embedding phase. 

Si.e. that a late exit from a dynamic state (that writes to p4) leads to a late write 
6The existence, and design of such functions is assumed. 
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Figure 3.11: Production Rule Context 

(.,OI,c.,02,c.,in). 
(.,OI,c.,02,c',oUl), (.,OI,c.,03,ca.oUl), ( •. 01. c'. 04.(" •. 0lIl) 

Figure 3.12: Graph Grammar Syntax of PSR Template 

Specific to this context and fault tolerant pattern is the issue of a blocking protocol at port p3. The char­

acteristics of a blocking protocol are that a reader is held up and the data is consumed by the reader (c.r. 

Section 2.4). Therefore the template must be specific in dealing with this issue and highlights why a context 

sensitive grammar is required. Should rp 1 fail, the data acquired by rp 1 reading p3 would be destroyed and 

not available for rp2 or rp3. The solution is discussed with the production rule applicable. 

Production Rule 

The rule, shown in Figure 3.12, states that, should the first dynamic state (with an associated operation) fail 

to produce a result within some given interval (Worst Case Response Time (WCRT», afailllre transition is 

taken to the second replica, which similarly has an upper bound to produce a result. Should this replica fail, 

a further failure transition is followed to a third and final state. The embedding relation, c of Figure 3.12 

additionally specifies the successful transitions from each replica: if a replica produces the result within 

interval WCRT, a transition to the successor should occur. The fault tolerant property of this configuration 

is timing (and crash) tolerance. 

Note, the mother of this production rule could be decorated with a context graph, one which includes the 

parent graph and specifies the context in which it can be replaced, however in this example no context 

graph is required. 

RTN-SL 

Supporting specification not contained in the graph grammar presentation of this template is given below. 
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static stateD 

transition goes to stateE'_rpl on Rp3; 

end state; 

dynamic stateE'_rpl 

op _ peeps from p3 writes to p4; 

[E'_rpl_l,_,E'_rpl_u); 

transition goes to stateD on true; 

late_fault =) transition goes to stateE_rp2; 

end state; 

dynamic stateE'_rp2 

op _ peeps from p3 writes to p4; 

[E'_rp2_l,_,E'_rp2_u); 

transition goes to stateD on true; 

late_fault =) transition goes to stateE_rp3; 

end state; 

dynamic stateE'_rp3 

op _ reads from p3 writes to p4; 

[E'_rp3_l,_,E'_rp3_u); 

transition goes to stateD on true; 

end state; 

Considering an issue raised previously - that the data acquired by rpJ reading p3 would be destroyed and 

not available for rp2 or rp3 - we specify in the supplemental RTN-SL how the template (in the context of a 

read-blocking protocol) overcomes this issue. The specification is now that rpJ & rp2 speculatively read 

from p3 which means p3 doesn't have to be stored in the local state, L. The third replica, rp3 still though 

performs a read as it must succeed. 

3.4.6 Transformation 

The design transformation is carried out in the following manner. Figure 3.12 showed a dynamic state 

(D_ST) can be replaced by a specific arrangement of three replicas. Figure 3.\0 showed the host graph 

which represents the RTN-SL design. Removing the parent graph from the host graph gives the rest graph 

to which we add the daughter graph. The transformation is completed by establishing the arc's specified in 

the embedding relation between the rest graph and the daughter graph. 

The result graph nett' obtained after applying the template is given in Figure 3.13. 
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E' 

Figure 3.13: Result graph netl· 

3.5 Evaluation 

We have described a methodological way to transform an abstract representation of RTNs using graph 

grammars by providing templates of classical fault tolerant strategies. The method is sufficiently enabled. 

for example. to deal with the complexities of replication where the interface must be preserved so as to 

localise the environment disruption and ensure the method is compositional. 

An initial investigation into defining the semantics of graph transformations. specifically those which 

should transform a design to a more fault tolerant one. is discussed in [OE02]. 

The original specification and design given above and the considered fault hypothesis are related as de­

scribed in Figure 2.12. We can now begin to understand what is required to complete this example. and 

ultimately this thesis. to conclude i) the transformation proposed tolerates the anticipated fault. and ii) the 

transformed design maintains the functional properties that satisfied the original design. Building up a 

methodological framework from Figure 2.12. by first adding the relation shown in Figure 2.11 leads to 

a three-dimensional framework. The missing. or remaining. vertices to this framework are the semantic 

elements of our work which allows for formal verification of our designs. 

It is evident we now require a semantic framework that relates each aspect of our design methodology. 

as now illustrated in Figure 3.14. To complete our methodology framework we are required to: define 

-as axioms- the semantics of each fault we wish to tolerate; show the existing axiomatic semantics sound 

with respect a more constructive model; and preserve the existing behaviours of RTNs under the explicit 

assumption that no faults occur. We therefore propose to define an operational semantic model for RTN-SL. 

Each aspect of our framework is discussed. and the relationships that exist: 

• spec:: We refer to the specification (spec) as end-to-end properties we wish to hold of our design. 

Section 3.4.2 gives two such examples. 

• FHI :: Is an abstract specification of some fault behaviour. Section 3.4.4 gives an example of a late 

write fault of our abstract system specification. 

• spec EEl FHI :: This notation is illustrative to the combination. or addition. of some fault hypothesis 

(FH) in unison to a specification. In our example we allow for alternative behaviours. either the 
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spec 'Z':.-'r!'-, .:."~.~ F=.H;.-.-. - .. -.---> [speeD 

!fL4RD, . ~;;C;"_2 ____ ~ __ .~_-.-+ r[spec--F-"n 

SHARD;, " I Q[DD 

~ 
DFT ------>Q[DFTB 

Figure 3.14: Required Semantic Framework 

write event at p4 is timely (0( weJl4, i, t» or is late (Late Write ( weJl4, i,l», so spec of! FH I can be 

considered as: 0( weJl4, i, t) V Late Write ( weJl4, i, I). speCF is simply indicative of a specification 

and each FH we consider, rather than writing spec EEl FH I EEl ... EEl FHn . 

• D,DFT:: A design, D is an RTN-SL representation of a solution proposed to satisfy a specification. 

DFT is indicative to the design which tolerates all faults we consider and satisfies speCF. Section 

3.4.3 details an example design and Section 3.4.5 shows an extract from the fault tolerant design we 

propose satisfies speCF. 

What is therefore missing is a formal framework to show the design, DFT does satisfy speCF. In the next 

Part, we define more formally the specification of faults and the axiomatic semantics (ill) they generate. 

Finally, [spec] and [specF] are terms which express the semantic implication of our end-to-end specifi­

cation in the semantic model. Although spec and FHx are written as RTL predicates, [spec] and [specF] 

may appeal to other semantic properties, such as internal events, when reasoned about. 
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In this Chapter, we address the issue of giving a semantics of faults. which is the core of this thesis. We: first 

introduce the Real Time Logic (RTL) for which the existing RTN-SL semantics are axiomatically 'pccified. 

Using RTL, we give an axiomatic semantics for the faults we consider in RTNs. We then introduce ami 

describe the RTN-SL language extension and semantics we propose for descrihing failures. 

4.1 Real Time Logic 

Real-Time Logic (RTL) was developed for specifying and reasoning about real-time behaviours of computer­

based systems. It was originally described in [JM86], since then RTL has been used for the definition of 

several graphical notations, specifically those for real-time systems which include Statechart., [Arm98]. 

ADL [PAHoo] and in defining the semantics of a family of communication protocols [Sim03]. RTL is used 

also to describe the axiomatic semantics of RTN-SL [Pay02]. 

4.1.1 RTL Event Model 

The RTL event model is only informally defined in the literature [J1\-186] which uses a trace based model. 

That is. RTL reflects an early approach to reasoning about time-dependent systems. RTL makes no mention 
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of states or transitions, either in the language or in its model. Although an RTL interpretation can be 

regarded as a sequence of event sets, it is not necessary to do so, and this is different from most other 

techniques of modelling computer systems, which rely on transition systems. In the transition system 

approach, the behaviour of the system is represented by a sequence of states, which are intended to represent 

the system configurations. Two consequences of this distinction are important and discussed below. 

First, in RTL time passes between sets of occurrences of occurring events, and the actual sets of events 

are instantaneous, while in transition systems, time passes in states, and transitions between them are 

instantaneous. Second, transition systems are generally defined by their transition, so that if two actions of 

the modelled system occur concurrently, a transition must be explicitly included to reflect that concurrent 

action, while such concurrency is implicit in RTL. 

The last difference has two further results. Any computation of a transition system induces a total order 

on event occurrences, even those that occur at the same time. The fact that interleaving guarantees the 

existence of other computations where the ordering is different does not change this for any particular 

computation. Also, if two actions begin and end at the same time, transition system must introducefalLt­

states in which one action has completed and the other has not. 

In order to reason formally about a specification, three things are required: afonnallangllage in which 

assertions can be formulated; an interpretation of the meaning of the expressions and statements of the 

formal language; and a set of axioms and inference mles describing inferences which are valid for the 

given interpretation [BFL +94] 

4.1.2 Syntax 

We first give the formal language syntax for RTL, in which the formula's of RTL are made up of the 

following symbols: 

• The truth symbols trlle and false 

• A set of time variable symbols A 

• A set of occurrence variable symbols B 

• A set of constant symbols C including the natural numerals, N 

• A set of event constant symbols D 

• The function symbol + 

• The predicate symbols <, S;, >, ~, = 

• The occurrence relation symbol e 

• The logical connectives /\, V, ...." => 

• Existential and universal quantifier symbols 3, V 
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Time tenns are RTL expressions built up over the constant symbols C and A which I, + 12 is also a time 
tenn. 

Occurrence tenns are RTL expressions built up over the constant symbols C and B which i + j is also an 
occurrence tenn 

The propositions of RTL are constructed according to the following rules: 

• The truth symbols true andfalse are propositions 

• If t, and t2 are time tenns and p is a predicate symbol, then t, pt2 is a proposition 

• If i andj are occurrence tenns and p is a predicate symbol, then ipj is a proposition 

• If i is an occurrence tenn, t is a time tenn and e is an event constant, then e(e, i, t) is a proposition. 

Theformulas of RTL are constructed from the propositions, logical connectives and quantifiers according 

to the following grammar: 

Key: 

{x} 

(alb) 

a b 

x is optional 

a or b 

a followed by b 

end of a grammar rule 

"ABC" 

separator between non-terminals and its definition 

The terminal word 'ABC' 

A (concrete) syntax for RTL fonnulas 

fonnula 

Bfonnula 
Efonnula 

predicate_application 
logical_op 

NumericExp 
comparator 

variable_list 
expression_list 

th-exp 
BNumericExp 

literal 
var_name 

type_name 
expression 

evenCname 
arith op 

"(" fonnula ")" I "...," fonnula I Bfonnula I Efonnula I 
predicate_application I name I "true" I "false"; 
fonnula logical_op fonnula I NumbericExp comparator NumericExp; 
(" 3" I "\I") variable_list"·" fonnula; 
name "(" expression_list ")" I th-exp; 
"V" I "/\" I "~" 1"<*"; 
"(" NumericExp ")" I "_" NumericExp I BNumericExp I name ) literal; 
"<") "~" I ">" I "~" I "=" I ";i:"; 
var_name ":" type_name { " ," variable_list}; 
expression { " ," expression_list}; 
ne" "(" evenCname"," NumericExp"," NumericExp ")"; 
NumericExp arith_op NumericExp; 
number I number" ." number; 
name; 
name; 
fonnula I NumericExp; 
name; 
"+" I "-" I "*"; 

Example 4.1 (Example RTL Formulas) Two typical RTLformlllas that are examples of the concrete 

syntax are: 

\It, : Time, i: Occ· e(e" i, I,) ~ 3t2: Time· t2 > t, /\ e(e2. i, t2) 
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spec 

currect 

~ 
inot seenj 

~ 
I omission I 

observable 

- r-__ ~r-__ ~ ____________________________ ~tin .. 
o t; ti + td ~ td + tmcu tk 00 

Figure 4.1: Repeat of Figure 2.5: Observable fault intervals 

'<It) : TIme, i: Occ· 0(e,i + I, tJ) => 3t2: TIme· t2 < tl/\ 0(e,i,t2) 

The first expresses two events (el and e2) are causally linked, the second formula states that a sl/bse­

quent occurrence of an event must occur strictly later than its predecessor. 

4.2 Faults in Real-Time Networks 

From our informal description on fault specifications in Section 2.1.3, we now seek a more formal pre­

sentation. Using RTL, we first formalise four key definitions as auxiliary functions, then for each RTN 

component we consider the faults that can be specified on it and which will be considered in this thesis. 

This set of fault definitions form our fault hypotheses for RTNs. The auxiliary functions for LATE, EARLY, 

OMIT and COMMIT faults which are used in the RTN definition of faults are given below. The intervals 

highlighted in Figure 4.1 (which is a repeat of Figure 2.5) illustrated the bounds between which a fault is 

observable. These functions simply define whether an event is observable, or not, given the type of fault. 

The bounds to each interval are dependent on the fault type, Table 4.1 enumerates each bound with respect 

to the time markings in Figure 4.1. 

An interval, I is a pair of TIme values, namely the lower (I) and upper (u) time bounds. 

Interval I : TIme 

u: TIme 

inv mk-interval(l, ll) !::.I ~ u 

LATE: Event x Occ x Interval-+ IS 

LATE(e,i,l) !::. 
3t': TIme· t' ~ I.ll/\ 0(e, i,t') 

EARLY: Event x Occ x Interval-+ IS 

EARLY(e,i,l) !::. 
3t': TIme· t' ~ 1.1/\ 0(e, i,t') 

ss 
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OMIT: Event x Occ x Interval--> 18 

OMIT(e,i,l} ~ 

~I: Time ·1.1:::; I:::; I.u/\ 9(e,i,l} 

COMMIT: Event x Occ x Interval--> 18 

COMMIT(e,i,l} ~ 

31: TIme·l.l:::; 1 :::; I.u /\ 9(e,i,l} 

I Fault Type I 
LATE 

EARLY 
COMMIT 

OMIT 

Interval 

ti + td --> ti + td + tfTl/ll 
ti + td --> ti + td + tfTl/ll 

0-+ ti 
ti+td -+ 00 

Table 4.1: Bounds to Fault intervals 

Note, a LATE & EARLY fault occurs after or before some interval respectively, whereas COMMIT & 

OMIT faults are within some interval. It should be noted, that the value tk shown in Figure 4.1 is not 

realised in these definitions. However, the dynamic semantics for RTNs do distinguish between late & 

omit faults and such a value is retrieved from the semantics, as is stated for each omission fault definition 

that follows. 

4.2.1 Fault Hypotheses 

Following on from the abstract definition of faults given previously, we now seek to apply those definitions 

to a specific real-time architecture, namely that of Real-Time Networks (RTNs). Identified in the definitions 

are bounds to the time intervals in which each fault is observable. Fortunately, such time bounds are implicit 

in the semantics of RTNs. For each fault identified in Table 4.2, we provide a suitable RTL proposition 

which specifies the dynamic behaviour over the component identified. The collection of these predicates 

form our fault hypotheses (FH) for RTNs. 

Consider a RTN-SL component: a dynamic state. Graphically this is described in Figure 4.2, which spec­

ifies that once the state has been entered, it should be left within ul time units. Afault hypothesis may be 

that the write action to the output port (PX) is delayed. The subsequent/ault definition may be: 

LateWrite(we""pX,i,t} ~ 

31: Time· 1 + III < t /\ 9(V\,i,l} /\ 

LATE(we""pX,i, [I +11,1 + ul]) 

This states that a late write fault is observed at time, t which is defined with respect the time (I) when state 

A was entered and its specified time bounds i.e. the write event (which triggers the exit transition) should 

not occur before II time units (I + II) nor later than ul time units (I +ul). The auxiliary function of LATE 

distinguishes the fault from that of an omission stating the event does occur, despite being late. 

If all the components of a RTN are to be considered faulty, the design transformation to a tolerant RTN 

would be intractable. Rather, we propose that only a sub-part of an RTN be considered faulty (identified 
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c1 

px 

we-pX 

Figure 4.2: A Dynamic State 

by some suitable safety assessment approach, e.g. SHARD) at a time. This requires that the extended 

semantics of ill should specify which component is perceived as being potentially faulty. This requirement 

is critical and influences the RTN-SL language extension, semantics and approach to defining our fault 

hypothesis accordingly. 

Definition 4.1 A component is defined to be a distinguishable semantic object which has discernible 

dynamic behaviour. Particularly, a RTN component is one of -determined by the semantics- a static or 

dynamic state, Activity, Port or an IDA. A fault component is defined to be a component which exhibits 

extraordinary behaviour (as defined below) which is at conflict with the expected behaviour. 

For each fault classification, described in Chapter 2, we consider it plausibility on each RTN component. 

A complete presentation of every permutation between each fault classification (i.e. late, early, value, 

etc) and all RTN events (i.e. state entry, read, read vale, etc) would generate over 100 fault definitions. 

Many of these definitions would overlap, for example, a late exit state fault would incur a late entry fault 

at a successor state. Instead, we identify in Table 4.2 those faults which are most meaningful and do 

not overlap. Those celIs in Table 4.2 which are blank indicate a meaningful fault does not exist for the 

permutation, the shaded celIs indicate a fault definition is feasible, though overlaps another. 
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LateDyExit 

Table 4.2: Faults considered 

The fault classifications distinguished in Table 4.2 are taken from the SHARD analysis method and those 

guide words derived in Section 4.2. 

The form of the fault hypothesis definitions given below follows closely from that used to define the se­

mantics of RTN-SL [Pay02]. Each FH has the form: every syntactic entity in the state-machine. which 

satisfies certain static connection properties. will exhibit some specified dynamic behaviour. However. we 

do not intend to consider all consituent components of a RTN to be faully. Instead. we only consider those 

components to be faulty which are found by the SHARD analysis. 

As an aid to presentation, the quantification over the syntactic entities of the RTN-SL specification is left 

implicit, and the static syntactic guards are presented in square brackets at the start of each schema. To 

support our specifications below, we require several auxiliary functions which determine the event name 

associated with components under certain actions, such as read and write actions at ports and entry and exit 

actions of states, as illustrated below: 

rds : Port -> Event 

wds : Port -> Event 

1 : State -> Event 

As stated previously, the bounds ti, tj, td, 6t and t1TllLt from Figure 4.1 are realised within the RTN archi­

tecture either by time bounds on events, deadlines on components or the occurrence of other events. e.g. 

Omission: 00 could be defined as re-entering the state for the i + 1 occurrence. These bounds can be deter-
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mined in the context of RTN components and are defined and discussed in the following RTL definitions 

of faults. For each definition, a brief commentary will describe the expected dynamic behaviour which 

determines each fault in isolation. 

4.2.1.1 State Machine Component Faults 

The constituent components of state machine are its (static and dynamic) state which we consider as atomic. 

Therefore, all the behaviours of an RTN can be defined as state-machine actions: 

LateRead :: Dynamic State, Late Read Fault - Given a dynamic state performs a read for the ith 

occurrence, then a late read fault occurs should the read not start immediately upon entering the associated 

dynamic state. 

LATE specifies an event occurs after the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower Ts A read cannot start before entering the associated (non-faulty) state. 

upper s.wert If a state is supposed to read and hasn't before the state's WCRT 

deadline, then the read is late 

[is_DynamieState(s),s.in""p f= nil, inHolding (s.in""p)] 

LateRead(s.in""p, i, t) ~ 

3 1',1" : TIme· I' < t 50. 1" /\ 0(lf, i, 1') /\ ....,0(!s', i, 1") /\ 
LATE(rds(s.in""p),i, [1',1' +s.wertJ) 

Note, this definition weakens the existing semantics defined by n, which states that a read must occur at 

the same time as entering the (dynamic) state. By the laws of RTL, t is bound to occur later than 1.11 given 

the definition of LATE. 

LateWrite :: Dynamic State, Late Write Fault - Similarly, should a dynamic state be specified to 

perform a write, then a late write fault occurs should the write commence later than the exit transition from 

the associated dynamic state: 

LATE specifies an event occurs after the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower If + beet A write cannot commence before the best case deadline. 

upper If + weet A write must occur before the worst case deadline. 

[is_DynamieState(s) , Non Holding (S.Ollt....P ), ...., is_Speculative (s. Ollt....p )] 

LateWrite(s.out....P,i,t) ~ 

3 1',1" : TIme· I' < t 50. 1" /\ 0(lf, i,t') /\...., 0(!s', i, 1") /\ 
LATE(wds(s.out....P) , i, [t' +s.beet,t' +s.weetJ) 
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OmitRead:: Dynamic State, Read Omission Fault - Eventually a late readfault becomes an omission 

fault. However, unlike the definitions in Section 2.1.3, we can enumerate co to a more precise, discernible 

value: 

OMIT specifies that an event does not occur within the interval, therefore the bounds here are: 

Interval Bound Justification 

lower f5 = I A read cannot start before entering the associated state. 

upper I' I' is specified as either the time at which s is exited 1 , or the time at 

which the (holding) port is next read from (which may potentially 

be another state in the activity). 

[is_DynamieState(s), InHolding (s.in"'p )] 

OmitRead(s.in...p, i, t) ~ 

31,1' : Time· I < t $. I' /\ 0(ls", i, I) /\ 

(0(~, i+ 1, I') V 0(rds(s.in"'p), i+ 1,1') /\ 

OMIT(rd(s.in"'p), i, [I, I']) 

Omit Write :: Dynamic State, Write Omission Fault - Similarly to read omit fault, the specification 

here makes a precise value for 00 which is the upper bound of a write omit fault: 

OMIT specifies that an event does not occur within the interval, therefore the bounds here are: 

Interval Bound Justification 

lower j.\' = I A write cannot commence before leaving its associated state, earlier 

would be a early write fault. 

upper I' A write must occur before the port is next written to (otherwise an 

omission faults occurs) or before the dynamic state is next entered 

[is_DynamieState(s), OutHolding(s.out...p)] 

OmitWrite(s.out...p, i, t) ~ 

31,1': Time· I < t$. I' /\0(~,i,I)/\ 
(0(ls",i+ 1,1') V0(wds(s.out...p),i+ 1,1')/\ 

OMIT(we(s.out...p) , i, [1,1']) 

EarlyRead :: Dynamic State, Early Read Fault - Should an dynamic state perform a read action before 

the associated dynamic state is entered, then a early readfault has occurred: 

EARLY specifies an event occurs before the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower is A read should occur when entering a (non-faulty) state 

upper f5 + beet A read must occur before the earliest exit can occur and therefore 

respect its time bounds 

[is_DynamieState(s),s.in...P"I nil] 

EarlyRead(s.in...p, i, t) ~ 

31: Time· t < I /\0(ls", i, I) /\ 

EARLY(rds(s.in...p), i, [I,t' + beet]) 
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EarlyWrite :: Dynamic State, Early Write Fault - An early write fault occun; should the write occur 

before the best ca'>e execution time (BeEn delay: 

EARLY specifies an event occurs before the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower lv + beet A write should not start before entering the associate state and the 

upper 

minimum time delay has elapsed 

lv + weet A write should occur upon leaving a state and therefore within its 

time bounds 

[is_DynamieState(s),s.out-p =J nil] 

EarlyWrite(s.out-P, i, t) !:=. 
31': Time· 1'::; tI\0(~,i,1')1\ 

EARLY(we(s.out-P) , i, [1' + beet, l' + weet]) 

Write Value:: Dynamic State, Write Value Fault - A write value fault occurs if the value written at the 

time of leave the associated state does not satisfy the post-condition: 

[is_DynamieState(s) ] 

WriteValue(s.out-p, i, t) !:=. 
31': Time· l' ::; tI\0(~, i, 1') 1\0(1I", i, t) 1\ 

pre_(s.in-p(1') , ~ (1')) 1\ 

-,posUs.in-p(1') , ~ (1'), v(t),s.out-p(t)) 

Note, the timing of ~ is the same as timing of the fault, which excludes timing (and therefore omission) 

from the definition. 

ReadValue :: Dynamic State, Read Value Fault - A read value fault occurs if the value read at the time 

of entering the associated state does not satisfy the pre/post-condition: 

[is_DynamieState(s) ] 

ReadValue(s.in-p, i, t) !:=. 
31' : Time· t < l' 1\0(~, i,t) 1\0(1I", i, 1') 1\ 

pre_(s.in-p(t) , ~ (t)) 1\ 

-,posUs.in-p(t) , ~ (t), v(1'),s.out-p(t')) 

Crash :: Dynamic State, Crash Fault - A erash fault occurs of a state, s should there have occurred an 

event (ls) entering the state and no occurrence of leaving the state (~) during the interval from entering s 

to t.: 

OMIT specifies that an event does not occur within the interval, therefore the bounds here are: 

Interval Bound Justification 

lower 1S+beet Once a (non-faulty) state is entered, it may exit any time after the 

upper 

minimum delay. 
A crash fault is a special case of omit, in that the omission is 

bounded to 00, or in our case the time at which we observe the fault, 

t. 
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[is_DynamicState(s) , .is_TenninateState(s)] 

Crash(s,i,t) ~ 

31: TIme· 1 < t 1\ 0(fy, i, I) 1\ 

OMIT(!s, i, [I +s.beet,t])I\OMIT(fy, i+ I, [I +s.beet, t]) 

It is interesting to note that I.u = t. If a erash fault is observable at t, then it has been observable since t' 
(see Figure 4.1). Whereas a erash fault (a special case of an omit fault) is bounded to 00 in Section 2.1.3. 

no assertion to I.u can be made greater than t. 

LateDyExit :: Dynamic State, Late Exit Fault - Upon entering a state. the state must be exited before 

the deadline, otherwise a late exit fault has occurred: 

LATE specifies an event occurs after the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower ls + beet A state cannot be exited until at least after the minimum time delay 

after entering the state 

upper ls + weet A state must exit within its deadlines 

[is_DynamieState(s) ] 

LateDyExit(s,i,t) ~ 

31: TIme· 1:$ tI\0(fy, i, I) 1\ 

LATE(!s, i, [I +s.beet, 1 +s.weet]) 

EarlyDyExit:: Dynamic State, Early Exit Fault - A early exit fault occurs should a state exit before 

the minimum time delay has elapsed: 

EARLY specifies an event occurs before the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower ls + beet A state cannot be exited until at least after the minimum time delay 

after entering the state 

upper ls + weet A state must exit within its deadlines 

[is_DynamieState(s)] 

EarlyDyExit(s,i,t) ~ 

31: TIme· 1 :$ t 1\0(ls, i, I) 1\ 

EARLY(!s, i, [I +s.beet, 1 +s.weet]) 

EarlyStTImeExit :: Static State, Early (Timing) Exit Fault - Should a static state exit before the speci­

fied time, then a early exit fault is said to have occurred: 

EARLY specifies an event occurs before the correct interval, therefore the bounds here are:EARLY 

Interval Bound Justification 

lower ls + I A static state should not be exited before the lower bound, I speci­

fied. 

upper Ts + II A static state should not exit later than the upper bound. u specified. 
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[is_StatieState(s), tr E TransitionsOut(s, ts), is_TImingBounds(tr.label) , tr.labeLr: = (I, II)] 
EarlyStTImeExit(s, i, t) ~ 

31': Time· I' < tl\f)(~, i,t') 1\ 

EARLY(!s',i, [I' +1,1' +u]) 

EarlyStEvExil' :: Static State, Early (Event) Exit Fault - Should a static state exit before the specified 

exit event, then a early exit fault is said to have occurred. 

EARLY specifies an event occurs before the correct interval, therefore the bounds here are:EARLY 

Interval Bound Justification 

lower ~ = I' A static state should not exit before it is entered 

upper 1" A static state should not exit before the event label occurs. 

[is_StatieState(s) , tr E TransitionsOIlt(s, ts), is_EventBounds( tdabel) , tr.label.x = e] 

EarlyStEvExit(s, i, t) ~ 

3j: Oee, 1',1" : Time· I' < t < 1" I\f)(~, i, 1') 1\ f)(e,j, 1") 1\ 

EARLY(!s', i, [I' ,1"]) 

LateStTImeExit :: Static State, Late (Timing) Exit Fault - Should a static state exit later than the 

specified time, then a late exit fault is said to have occurred. 

LATE specifies an event occurs after the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower is + I A static state should not be exited before the lower bound, I speci­

fied. 

upper is + u A static state should not exit later than the upper bound, u specified. 

[is_StatieState(s) , tr E TransitionsOut(s, ts), is_TImingBounds(tr.label) , tdabel.x = (I, II)] 
LateStTImeExit(s,i,t) ~ 

31': TIme·l'+u < tl\f)(~,i,I')1\ 
LATE(!s',i, [I' +l,t' +u]) 

LateStEvExil' :: Static State, Late (Event) Exit Fault - Should a static state exit later than the specified 

exit event, then a late exit fault is said to have occurred. 

LATE specifies an event occurs after the correct interval, therefore the bounds here are: 

Interval Bound Justification 

lower is = I' A static state should not exit before it is entered 

upper 1" A static state should not exit before the event label occurs. 

[is_Static State ( s), tr E TransitionsOut( s, ts), is_EventBounds( tdabel) , tr.label.x = e] 

LateStEvExit(s,i,t) ~ 

3j: Oee, 1', 1": Time· I' < 1" < t I\f)(~, i,t!) !\f)(e,j,I") 1\ 

LATE(!s', i, [I' ,1"]) 
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4.2.1.2 Activity Component Faults 

An activity is simply a collection of its states, transitions and ports. The fault axioms for activities define a 

failure at the acitivty level to behaviours of the activity's component parts. We give as an example of this 

approach a single definition below which is intentionally loose such that no constraint is made that state. s 

reads from some port. 

LateActRead :: Activity, Late Read Fault­

[is_Activity( act) 1 
LateActRead(act,i,t) ~ 

3s E act.SM.states ·latcrd(s.in-p, i, t) 

4.2.1.3 IDA Component Faults 

Again, our approach to specifying faults for IDAs is to regard each components as a black box and specify 

its fault definition in terms of our state-machine faults. However, this restricts the expressiveness towards 

an IDAs dynamic behaviour, such that no reference can be made to the internal value of an IDA. That 

is, only the externally visible events and their value can be used to express the fault hypothesis of these 

components. With regards both sides of an IDA, that is the reader and writer our approach is similar to that 

of Activities & state-machines, in that the causal behaviour is specified. Similarly, we specify the behaviour 

of IDAs by relating the occurrence of faults at the IDA interfaces (ports) to the caused occurrence of faults 

at either the opposite interface at the IDA or the related Activity fault. Our decision to explicitly link 

the cause of an IDA fault to the (faulty) dynamic behaviour of an activity (and therefore a state-machine 

state) is derived from the link axioms of RTN-SL which state the coupling of activity and IDA events. It is 

therefore seen to be consistent with our current approach to reasoning when one must trace events through 

an RTN. It could be argued that we do not specify fault IDA axioms. just their link counterparts. However. 

because we do not consider the internal behaviours of IDAs. we are restricted to linking the behaviours of 

activities by means of events. Although, the approach developed in this thesis could be applied to the full 

reasoning of IDA faults, we do not wish to use arrangements of them at an RTN level. 

Axiom AxjDA]fClate :: IDA - As an example, we illustrate the coupling by defining a late read fault 

of an IDA: 

LateRead(ida.oltt, i, t) ~ 

(OlttHolding(ida.out) => 31: Time· 1 < t /\ 0(late_we(ida.in) , i, I)) 

V 

(NotOlltHolding(ida.ollt) => 31: Time· I> t /\ 0(vallleJd(ida.ollt), i, t)) 

4.3 Extensions to the RTN-SL language 

The current version ofRTN-SL, version 3.1 and its semantics are presented in [Pay02]. There, the concrete 

and abstract syntaxes are presented along with the static and dynamic semantics, the latter as RTL axioms. 
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The dynamic semantics are presented as a function, Q which generates the R11.. axioms from a RTN-SL 

specification which specify the behaviours of the constituent components. The set of axioms constitute 

a PVS theory, which is motivated by the intention to reason about RTN-SL specifications using the PVS 

theorem prover. In this section we propose the additions and modifications to this language to support the 

specification offaults in RTN-SL. We refer to the extended (dynamic) semantics as the function, Qf. 

4.3.1 Language Extensions 

Investigations and experience from the initial stages of our research lead to the requirement of several 

new RTN-SL language extensions. This section presents the concrete grammar, abstract syntax, static and 

dynamic semantics necessary to include our requirements into the RTN-SL language. Where appropriate, 

we highlight our modifications to the dynamic semantics presented in Q, for each extension outlined. The 

axiomatic schemata of Q, is present as 13 axioms referred by their number (Ax 1 , ... , Ax 13). We present all 

the extensions to Q together in Section 4.3.2 and not with each language extension, though we refer the 

reader to the appropriate axiom modifications generated by each extension. We therefore continue to use 

the same names as references in these modifications. 

4.3.1.1 Multiple Static State Exit Transitions 

The motivation to limit the number of exit transitions from a static state to one was simplicity. then we 

propose to lift this restriction. Our motivation is to permit fault transitions from static state, as identified 

in Table 4.2. It is only the static semantics that need be modified, though with a slight influence on the 

dynamic semantics that necessitates the conjunction of exit guards on each transition. 

4.3.1.2 Fault Transitions 

Experience in attempts to write RTN specifications has highlighted the importance of state transitions as the 

predominant RTN component for specifying fault actions. Afautt action is just another kind of operation 

in an RTN that are performed at random time intervals on a RTN by a network's adverse environment. This 

allows one to describe fault actions by definitions similar to those used to describe the semantics of ordinary 

operations. It is therefore preferred that the semantics of faults should be mapped to transitions. An 

example of the suggested concrete syntax is given below (Specification 4.1). Transitions labelled without a 

fault hypothesis, FH assume no faults can occur, this approach is similar the approach taken for speculative 

read and writes. 

The required extensions to the specification of RTN-SL are outlined below. 

Concrete Grammar 

fault_transition "LATE_FAULT" I "EARLY_FAULT" 

"OMISSION_FAULT"; 
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Specification 4.1 Example RTN-SL Fault Transition Concrete Syntax 

dynamic state_A 
op foo; 
timing [bcet, wcrt, wcetl 
transition goes to state_B on true; 
late_fault => transition goes to state_C'; 
value_fault => transition goes to state_D'; 

end state; 

transition_guard "WRITE" "FAILURE" "=>" I "WRITE" "SUCCESS" "=>" I 

fault_transition "=>" ; 

dynamic_transition_def : (transition_guard) "TRANSITION" "GOES" "TO" 

name "ON" expression 

dynamic_state 

Abstract Syntax 

"DYNAMIC" 

name 

local_op_defs 

(timing_def) 

dynamic_transition_defs 

"END" "STATE" ; 

Transition TYPE ( tr [# Guard: Transition_Guard, %-- optional? 

Source State, 

Target State, 

Label : Label_Type #1 I 

" . " , 

inv_Transition(Guard(tr), Source(tr), Target(tr), Label(tr)) ) 

4.3.1.3 Speculative Reads 

It was realised that the existing read and write access methods were too strict to adequately specify fault 

tolerant strategies. The methods forced complicated algorithms for reading and recording values to an 

activities local states which are then subsequently used withing calculations. It was preferred to diversify 

these methods and complement them with speculative read and write methods. This meant a reader could 

peep read a value from a blocking protocol which meant the read wasn't destructive nor blocking. Similarly, 

a speculative write meant a writer couldn't be help up. Although the implementation of speculative reads 
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are completed in RTN-SL v3.1, the documentation in [Pay02] lacks the fuller explanation and definitions 
given below. 

Specification 4.2 Example RTN-SL spec/peep concrete syntax 
ports 

pI : (channel, integer, in, speculative); 
p2 : (channel, integer, out, speculative); 

end ports 

dynamic state_A 
op foo peeps from pI writes to p2; 
timing [bcet, wcrt, wcet] 
transition goes to state_B on true; 
read_failure => transition goes to state_C' on true; 
write_success => transition goes to state_B on true; 
write_failure => transition goes to state_C' on true 

end state; 

Given transition guards are optional, their absence assumes the default behaviour of success. Specifically 

to speculative reads this means a read or write action succeeds, for example, the first and third transition 

specification in Specification 4.2 are identical. If they had each specified alternative target states, then one 

of the transition would be chosen non-deterministically. 

The required extensions to the specification of RTN-SL are outlined below. 

Abstract Syntax & Static Semantics 

access_type : TYPE = {normal, speculative} 

read_type : TYPE {read, peep} 

inv_Port(ident : Id_Name, 

Port 

type : access_type, 

direction : Direction_Kind, 

protocol : Protocol_kind, 

the_dataType : A_type_reference) : bool = 
(type = speculative IFF (InHolding (protocol) OR OutHolding(protocol)) AND 

NOT Stimming(protocol)) 

Type { port [# ident : Id_Name, 

type : access_type, 

direction : Direction_Kind, 

protocol : Protocol_kind, 

the_dataType : A_type_reference #] I 

inv_Port(ident(port), type(port), direction(port), 
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protocol (port) , the_dataType(port» 

DestructiveRead (p : Port) : bool 

type(p) speculative 

Speculative (p : Port) : bool 

type(p) = normal 

inv_IDA_Spec(Ida_id : Id_Name, 

type : access_type, 

withed_adt : optional_type [Id_Name) , 

Kind : Protocol_Kind, 

Datatype_ref : A_type_reference, 

Buffersize : optional_type[nat): bool 

(Kind = Poll IFF absent?(Buffersize» AND 

(Kind Dataless_Channel OR Kind = Stimulus) IFF 

(basic_type? (Datatype_ref) AND type_name(Datatype_ref)=NULL_TYPE» AND 

(type speculative IFF (InHolding (Kind) OR OutHolding(Kind» AND 

{ ida 

NOT Stimming(Kind» 

[# Ida_id : Id_Name, 

type : access_type, 

withed_adt : optional_type [Id_Name), 

Kind : Protocol_Kind, 

Datatype_ref : A_type_reference, 

Buffersize : optional_type [nat) #) 

inv_IDA_Spec(Ida_id(ida) , withed_adt(ida) , Kind(ida), 

Datetype_ref(ida) , Buffersize(ida»} 

inv_Operation_localisation( op : Operation, 

in-p : operational_type [Port) , 

in_mode : read_type 

in_wcrt : optional_type [TimeJ, 

out-p : optional_type [Port) ) : bool = 

(absent? (in-p) AND absent?(input-parameter(op» AND absent?(in_wcrt» OR 

(present? (in-p) AND direction(x(in-p» = in_dir AND 

present?(input-parameter(op» AND NOT Stimming(x(in-p») AND 

((absent?(out-p) AND absent?(output_result(op») OR 

(present? (out-p) AND direction(x(out-p» = out_dir AND 

present?(output_result(op») AND 

(present? (in_wcrt) IMPLIES present?(in-p») AND 

(in_mode = peep IFF speculative(in-p» AND 

(in_mode = peep IFF DestructiveRead(type(in-p» 
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Operation_Localisation TYPE [lOp : Operation, 

Input_Port: operational_type[Portl, 

Input_Read-Hode : read_type 

Input_WCRT : optional_type[Timel, 

Output_Port : optional_type [Port I II 
inv_Operation_Localisation(Op(l_op), Input_Port (l_op), Input_Read_Mode(l_op), 

Input_WCRT(l_op), Output_Port(l_op» 

at_least_one_read_on_blocking_port( in-ps : finite_set[Port], 

ss : finite_set [State] ) : bool 

FORALL (p : (x : in-ps I blocking?(x)} ) 

( EXISTS(s : (x : State I member (x, ss) AND dynamic_state?(s)} 

( EXISTS (op_l : ops (s» : 

(Input_Port (op_l) = p IMPLIES Input_Read_mode(op_l) read) 

a_id : Id_Name, 

adts : finite_set[Id_Name], 

ts : finite_set[A-Type_Declaration], 

in-ps, out-ps : finite_set[Port], 

aux_defs : finite_sequence[Auxiliary_Definition], 

Is : finite_set[Variable], 

ops : finite_set[Operation], 

sm SM_Spec): bool = 

FORALL (vI, v2 : {x : Variable I member (x, Is) }): 

(var_id(vl) = var_id(v2) IMPLIES vI = v2) AND 

FORALL (s : (x : State I member (x, States(sm» I): 

Only_valid-ports_accessed_by_states(s,union(in-ps,out-ps» AND 

FORALL (t : (x : Transition I member(x,Transitions(sm» }): 

Ports_on_events_are_valid(t,union(in-ps,out-ps» AND 

at_least_one_read_on_blocking-port(in-ps, States(SM_Spec» 

4.3.2 Extended (Axiomatic) Semantics (ilf) 

This section details the extended axiomatic semantics to .Q given in [Pay02] which considers the behaviour 

of faults. This extension describes the semantic function, .Qf· 

As was the approach in defining.Q (in [Pay02]), we again present the schema definitions for .Qf· This ap­

proach specifies the complete behaviours of a fault RTN component. The remaining issue is to distinguish 

when we apply each function: .Q- nonnative semantic function, or .Qf - the fault semantic function. Instead 
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of introducing new components into the language, such as a late reading dynamic state or a l'aille read IDA 

fault components, we instead rely on the implementation -or application- of n and n f to be selective. We 

indicate in the specification which components we expect to be faulty by specifying speculative protocols 

or fault transitions on them. It is this observation that determines if the component is defined by nor n
l 

As an aid to the reader and for clarity to show the extensions from n to n f we present nf in the same 

structure as [Pay02]. That is, n f can be seen as a collection of functions: 

• nSM! for converting the activity state-machine into PVS, 

• noP! for converting RTN-SL operations and functions into PVS. 

Note, nIDA is also a function that composes nf, but are unchanged from n. 

4.3.2.1 State-Machines, nSM! 

The function, nSM is presented by means of a series of axiom schemata which, for each syntactic entity 

in the state-machine (states, transitions, etc.), specifies the exhibited dynamic behaviour. n SM is enriched 

to be nSM! to yield an extended axiom schemata which specify the behaviour of state-machines given the 

definition of faults in Section 4.2.1.1. 

For brevity in the axiom schema below, those existing auxiliary functions and unchanged axioms are omit­

ted and the reader is referred to [Pay02] for those definitions. As an visual aid to the reader, we shade 

the new formulas and predicates we propose adding to the semantics. To make the dynamic behaviour 

more visible in the following presentation, the quantification over the syntactic entities of the RTN-SL 

specification is left implicit. 

Start-up Axiom 

It is assumed that no faults can occur before time index 0, therefore the start-up axiom is assumed to hold 

in n SMf as in nSM. 

State Exit Axioms 

Ax 2 - Static State Exit 

Ax 2 [is_StaticState(s) , TransitionsOllt(s,ts) =f O,s, E Successors(s, states, ts)] 

Vi:Occ,t:Time·0(ls"i,t) ~ 

«SE(s, states, ts) As =f initial A 0(ls" i, t)) V 

(SE(s,states,ts)AS= initiaIA0(ls"i+ I,t)) V 

(ME(s,states, ts) As =f initial /\ 3j: Occ·j ~ i /\ 0(ls"j,t)) V 

(ME(s,states, ts) As = initial A 3j: Occ·j ~ i + I /\ 0(ls,,j,t)) V 

(3rOc~-.e(late~exit(s),j,t) 've(early~~t(s),j,t))) 
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We state that for each occurrence of entering a static state (s) we should leave it as was specified before (i.e. 

timely) or that a late exit or early exit fault occurs. The number of occurrences of the fault is not the same 

as that of entering the state, as such, faults can be observed numerous times during an interval, though we 

only need specify one such fault need occur. 

It is worth noting the structure ofAx2 above (which is repeated throughout this presentation) that faults are 

seen as alternative behaviours in QI to that that was allowed in Q. We therefore add the fault behaviours 

to each axiom schemata as disjunctions. This is consistent with our observation that in Q DO faults (or the 

absence thereof) is assumed, so one should have specified in Q the explicit absence of faults. 

Ax 3 - Dynamic State Exit 

The form of the existing axiom -as stated previously- is complicated by the relationship between occur­

rences numbers of two connected states. Furthermore, it is argued that implicit to Q SM is the absence of 

faults and therefore QSMJ should explicitly state this fact to ensure the consistency of the axioms. 
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Ax 3 [is_dynamicState(s)] 

Vi:Occ,t:TIme· 

(0(,J.s,i,t) A 3tr: ts· tr E Enabled(s, ts, t) Ahfaull~(tr.gnl). :;. 
~~=~W~ .. 

(s=s,A0(lv"i+ l,t» V 

(s =I s, A SX(s, states, ts) A SE(s" states, ts) As, =1= initial A 9(lv" i. t» V 

(s =I s, ASX(s,states,ts) A SE(s, , states, ts) As, = initial A 9(lv"i + 1. t)) V 

(s =I s, A SX(s,states, ts) A ME(s"slales, IS) As, =1= ~itial A 

3j:Occ·j? iA0(lv"j,I» V 

(s =I s, A SX(s, states, ts) A ME(s,,slales, IS) As, = initial A 

3j: Occ·j? i + 1 A 0(lv"j, I» V 

(s =I s, A MX(s,slales, IS) ASE(s"slales,ts) As, =1= inilial A 

3j:Occ-j ~ iA0(lv"j,t» V 

(s =I s, A MX(s, stales, IS) A SE(s"slales, IS) As, = in ilia I A 

3j: Occ·j ~ i + 1 A0(lv"j, I» V 

(s =I s, A MX(s,states, ts) AME(s"slates,ts) As, =1= initial A 

3j:Occ·0(lv"j,t» V 

(s =I s, A MX(s, states, IS) A ME(s"slates, ts) As, = initial A 

3j: Occ· 0(lv"j, t» 

) v ... __ .. 
(3j: Occ, Ir: ts· Ir E Enabled(s, ts, t) Afault-Kllard?(tr.gTd) => 

C· ... 
~~=~W~ _ 

«tr.grd = CRASH => 0(crashJaultj,t» V 

(tr.grd = LATE_READ => 0(lale_rd(s.in....P)j,t» V 

(tr.grd = OMIT_READ => 0(omiUd(s.in....P)j,t» V 

(tr.grd = OMIT_WRITE => 0(omiCwe(s.out....P),j,t» V 

(tr.grd = WRITE_VALUE => 0(we_value(s.out....P)j,t» V 

(tr.grd = READ_VALUE => 0(rd_value(s.~p),j,t» V 

(tr.grd = LATEj£XIT => 0(late3xit(s)j,t» V 

(tr.grd = EARLY_EXIT => 0(early_exit(s)j,t» V 

(tr.grd = LATE_WRITE => 0(latcwe(s.out....P)j,t»)A 

(s =I s, A SX(s,states, ts) A SE(s"states, ts) As, =I initial Ae(~"i,t» V 

(s =I s,ASX(s,srates,ts) A SE(s" states, ts) As, = initiaIA9(~"i+ 1,1» V 

(s =f s, A SX(s,states, ts) AME(s"states,ts) As, =I initial A 

3j:Occ·j? iA0(~"j,l» V 

(s =I s, A SX(s, states, ts) AME(s"slates,ls) As, = ~itial A 

3j: Occ-j? i+ 1 A0(~hj,t» V 

(s =I s, AMX(s,states,ts) ASE(s"slates,ts) As, =I initialA 

3j: Occ) ~ i A 0(~"j, t» V 

(s =I s, A MX(s,states, ts) A SE(s"states, IS) As, = initial A 

3j: Occ)::; i + 1 A0(~,j,t» V 

(s =I s, A MX(s,states, ts) AME(s"stales,ls) As, =I initial A 

3j:Occ·0(~"j,l» V 

(s =I s, AMX(s,stales,ls) A ME(s"states, ts) As, = initial A 

3j: Occ· 0(~"j,l))) 
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As before, the fault behaviours are added as a disjunction to the non-faulty behaviour pre\iously defined in 

Q. However, this presentation is complicated with the intricacies between the source and target states of a 

transition (tr), such that the expected behaviour is determined by the type of state a transitions source and 

target is. However, it is obvious to see that for each fault considered, a relevant event must be observable 

to allow the transition (guard) to be satisfied. 

State Entry Axioms It is perceived that faults are handled when exiting states, such that the only modi­

fication to Ax 4 & Ax 5 would be the conjunction that no faults have occurred, which is implicit to QSM. 

State Progress Axioms QSM states "Dynamic states are always exited within their time bOllnds" as the 

implicit assumption no timing faults can occur, yet given the definition of faults in Section .t.:!.!.l we 

propose the following modifications: 

Ax 6 [is_dynamicState(s)] 

Vi:Occ,t:TIme·0(js,i,t) =} 

(3tl : TIme· (t+s.timing.WCRT ~ 11 ~ t+s.timing.BCET A0(j.s,i,tl)). 
':1'--0, , '~<",,: • .i_ ' .'"' 00:.'; • ~ . ~ .,.. '. 

3j: Occ'- (0(crash(s),j,t\) V-i.··· 

0(Late3xit(s),j,ll) V 

0(early_exil(S),j,tt}) A 

II> 1 

Ax 7 holds per se as faults are made events in QSMr 

Ax 8 is modified similarly to Ax 6 by weakening the behaviour to allow for the occurrence of faults: 

Ax 8 [is_staticSlate(s) , is_TImeBollnds(tr.label),tr.label.x = (I, Il)] 

Vi:Occ,t:TIme·0(i s,i,t) =} 

(3tl : TIme· (t+ I ~ tl ~ t+ Il A 0(.l.I', i,tt}Y V 

~Oc;: (;;(:rl;~~~),j7~) V 

0(laICexil(S),j, 11» A 

11> 1 

The modification to Ax 6 & Ax 8 simply allow the possibility a fault has occurred, rather than specify the 

behaviour exhibited. The fault behaviours themselves are defined in other axioms. These modifications are 

required to ensure the PVS model is consistent. 

State Stability Axioms Given the approach that faults are characterised on exit from states, then the 

stability axioms (namely Ax 9 & Ax 10) are largely unaffected in QSMJ' other than to weaken the assertion 

to include the possibility of faults occurring. 
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Ax 9 [is_DynamicSlale(s)] 

Vi:Occ,/:TIme·0(.J$,i,/) => 
(3/1 : TIme· (/-s.timing.,~<::~!. $ 11 $ I-s.timing ,BeET /\ e( ts. i. t. )) v 

3}: Occ· (0(early_exlt(s),j,tl) v 
0(late_exlt(s),j,tl)) 1\ 

tl > t 

Ax 10 [is_StaticState(s),#Successor(s, states, ts) # 0, is_TImeBounds(tr.label),tr.label.x = (I,ll)] 
Vi:Occ,t:TIme·0(J,s,i,t) => 

(3/1 : TIme· (t-u $ 11 $ 1-//\ 0(ts, i,l.)) V 

3j: Occ· (0(~;;i;~;;t(S)j,tl) ~ 
0(late_exlt(s),j,tl» 1\ 

tl > t 

Ax 11 & Ax 12 as defined in QSM. 

4.3.2.2 Operations, QoP! 

Ax 13 asserts the post condition of an operation must hold for the input and output parameter read and 

written respectively. 

Ax 13 [is_DynamicState(s)] 

Vi: Occ, tl, t2 : TIme· 0(ts, i,11) /\ 0(.J$, i, t2) => 
(posu(p_in(tl), "v (I.), V(t2),P_OW(t2)) /\ QFramt) ,/\ 

~j: Occ·0(latcrd(s.in..p),j,tl) /\ 

0(rd_value(s.in..p),j, 11) 1\ 

0(late_we(s.olll..p) ,j, 12) 1\ 

0{ we,.:,.value(s.oll(p ),/,/2) 
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We set up a fonnal framework to describe transition system specifications in the ~tyle of Plotkin known as 

Structural Operational Semantics (SOS) [PI081]. The framework is used to present a conscnativity format 

in operational semantics, which states sufficient criteria to ensure that the extension of a transition sy,tcm 

specification with new transition rules does not affect the semantics of the original tenm. 

Before presenting the Plotkin-style rules for RTNs, we first introduce some syntactic sugar which is later 

required to show the SOS rules for faults are a conservative extension of the non-fault transition sy~tcm. In 

Section 5.2 we present the SOS rules which define the semantics of activities in an RTN and the faults fea­

sible. Section 5.3 first introduces the theory of a conservative extension and states that our fault semantics 

are such an extension. Section C.5 discusses the issue of concurrency and non-determinism in transition 

systems. This relates to expressing the "meta-level" specification over the SOS rules, which specifies how 

each rule fires in parallel with otherrules and which rule should fire next. We conclude with an inve<,tigation 

into implementing the SOS rules and discuss the implications with regards non-determinism. 
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5.1 Basics 

5.1.1 Labelled Transition Systems 

What follows is a description of the model of labelled transition systems (LTS) as described in [AFV99], 

which are used in tum to express the operational semantics of RTNs. We later establish a notion of a 

"meta-level" which is a specification of the LTS with regards our RTN semantic rules. 

A LTS consists of binary relations between states, labelled with an action as a predicate between its states. 

Intuitively, s ~ s' expresses that state s can transition to state s' through the execution of action a. 

Definition 5.1 (Labelled Transition System) A labelled transition system (LTS) is a triple {Proc .Act, { ~ I 
a E Act}), where: 

• Proc is a set of states, ranged over by s.s'; 

• Act is a set of actions, ranged over by a. b; 

• ~~ Proc x Proc for every a E Act. As us/tal, we use the more suggestive notation s ~ s' in lieu 

of(s,s') E~. and write s.!!.. ifs ~ s' for no state s'; 

Binary relations s ~ s' in a LTS are called transitions. 

Definition 5.2 (Trace Semantics) Given a LTS {Proc.Act. { ~I a E Act}), a sequence 

<;=al •...• anEAct· 

for n E N is said to be a trace of state so if there exist states Sl •...• Sn such that so ~ Sl !2. ... ~ Sn 
~ (abbr. by So --+ sn). 

We later embrace Definition 5.2 in our choice of trace model for RTNs, which essentially is an ordered 

sequence of Event sets. 

5.1.1.1 Term Algebras 

This section reviews some basic notions of term algebras that will be needed later in the chapter. 

Definition 5.3 (Signature) A signature E is a set of jUnction symbols together with an arity mapping 

that assigns a natural number arif) to each function symbol f. Afimction symbol of arity zero is called 

a constant, while function symbols of arity one and two are called unary and binary, respectively. 

Definition 5.4 (Term) The set'U' of (open) terms over a signature E denoted 'U'(E), ranged over by t is 

the least set such that: 

• each x E Var is a term; 

• f(tl •...• tarlj)) is a term, iff is afimction symbol in E and tl.··· ,tarlj) are terms. 

T(E) denotes the set of closed terms over E, i.e., terms that do not contain variables. 
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5.1.1.2 Transition System Specifications 

Definition 5.5 (Transition Rule) Let E be a signature. and let t and t' range over If(E). A transition 

rule p is of the form ~. with H a set of premises of the form t ~ t' or tP and a conclusion a of the form 

t ~ 1 or tP. The left-hand side of the conclusion is the source of p. and if the conclusion is of the form 

t ~ I. then is its right-hand side is the target of p. A transition rule is closed if it does not contain any 

variables. 

Definition 5.6 (Transition System Specification) A transition system specification (TSS) is a set of 

transition rules. 

Definition 5.7 (Proof) Let Ta be a TSS. A proof of a closed transition nile ~ from Ta is a well-formed. 

upwardly branching derivation tree whose nodes are labelled by transitions. where the root is labelled 

by ex. and if K is the set of labels of the nodes directly abOl'e a node with label ~. then 

1. either K = {} and ~ E H. 

2. or j is a closed substitution of a transition rule in Ta. 

If a proof of ~ from Ta exists. then ~ is provable from Ta. notation Ta f-- ~. 

5.1.2 Plotkin-style Transition Rules 

Structural operational semantics (SOS) [Pl081. Plo03] provides a framework for giving an operational se­

mantics of programming and specification languages. In particular. because of its intuitive appeal and 

flexibility. SOS has found considerable application in the study of semantics of concurrent processes 

[Mil80, ABV94]. The SOS rules of a language generates a labelled transition system. whose states are 

the closed terms over an algebraic signature, and whose transitions are supplied with labels. The transi­

tions between states are obtained inductively from a transition system specification (TSS). which consists 

of transition rules of the form prets.es . A typical example of a transition rule is 
cone USIOns 

stipulating that if x ~ x holds for closed terms x and x, then so does x II y ~ x II y for any closed term 

y. Each rule is then a label on transitions in the LTS theoretical framework. An important point about 

SOS is that it is structural. not. structured. The idea is that. in denotational semantics one follows an idea 

of compositionality, where the meaning of a compound phrase is given as a function of the meaning of its 

parts. In the case of operational semantics the behaviour of the program is. roughly speaking, the collection 

of transitions it can make [Plo03]. 

5.2 An Operational Model for RTNs 

We wish to give a structural operational semantics for RTN-SL. which consists of the possible transitions. 

or actions. a RTN can make. A SOS framework is one which plots out each transition in a RTN semantic 
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model. The values between these transitions are referred to as configurations [Win93]. to differentiate them 

from the dynamic state of an RTN. which is formed from values of variables within an RTN -such as local 

variables in activities and internal variables in IDAs- and the (semantic) model states. Given a (static) RTN 

specification, then considering its dynamic behaviour is to consider the transitions from configuration to 

configuration. A configuration is a triple (RTN: RTN-Types, 0'\ : E, It\ : IT). where 

RTN-Types = ld ~ (Activity I IDA I Connection) 

E = ld ~ dyTypes 

IT = Event-set" 

The RTN-Types element represents the abstract syntax of a static RTN-SL specification, E the dynamic 

values of those components in an RTN which have dynamic values (for example local variables and current 

state registers) and TI is the history -or trace- of an RTN to date. The trace. ltJ is a sequenced set of 

(observable external) events, indexed by time. The abstract syntax and static semantics for the rules that 

follow, may be found in Appendix C.I. The VDM-SL model used to facilitate syntax and type checking 

the SOS rules and provide a degree of animation is discussed later in Section C.5.1. 

The operational semantics of RTNs begins with the idea that the dynamic behaviour of an RTN is the 

sequence of 'RTN Actions' and the semantics thereof the actions. Several actions are permissible in an 

RTN. These are: 

• read and write actions of IDAs and the subsequent actions wi thing activities; 

• state-machine transitions from source states to targets. 

Each of these actions are expressed atomically by disjoint SOS rules. An action will generate an event such 

as is for entering a state s. or rp -p I for reading a port p 1. An action may also modify the dynamic values 

within an activity or IDA. e.g. by reading from or writing to an IDA. Considering the idea that RTN actions 

will transform the state. we consider the function: 

.!....; :Action x E --t E 

However. this recursive function style approach -although intuitive- does not handle non-determinism and 

concurrency. The evaluation relation 

(rtn, 0', It) --t ~ 

specifies the evaluation of an RTN in rather large steps; given the static specification and initial values then 

yield a final trace directly. This choice of large step semantics makes the issue of parallelism and non­

determinism opaque and hides the non-deterministic choices deep within the rules. Rather. a small step 

semantic is preferred which makes it possible to give rules for evaluation which capture the single steps. 

We therefore (formally) define an evaluation relation between pairs of configurations. We therefore could 

define a relation as: 

.!....; : ((RTN-Types x E x TI) x (E x TI)) 

Although this.!....; relation captures the semantics of the set of actions occurring. it does not provide for the 

ramification of this powerset. From a configuration. many concurrent actions can, and should, fire - yet the 

set of states should be ramified to yield the next configuration. 
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t 

Figure 5.1: Possible derivation tree from some starting configuration, (01, ltl) 

82 81 83 
• -------+~ • -------~ • ~ • 

(a1, 7r1) (ai, e8) (aq, e8 U e8' ) (a2, 7r1 f\,. [es U es' U es"D 

t 

Figure 5.2: Possible sequencing of actions 

Figure 5.2 illustrates the divergence of configurations from a starting configuration when two or more 

actions can fire. This possible derivation tree shows the generation of new configurations having executed 

each action, whereas we require to ramify these resulting values for each step. It can be see from Figure 

5.1 that a transition from a configuration to another is autonomous to a step in time. Therefore, if -say­

action SI is evaluated from a starting configuration (01,1t.). then actions S2 and S3 may not still be valid 

in (~,~). if only that time was advanced! Considering the implications on ramifying o~, ct; and cr't 
is technically challenging as it is unknown which variables of <ri have been modified. Ramifying ~ is 

straightforward. it is simply the union of the events at each time instance. The observation that ramifying 

each resulting Xi is straightforward suggests the event-set generated by each action are disjoint, which is 

as expected given actions are non-interfering and atomic. It is therefore feasible for each action to fire from 

the resulting state (<ri) of another action within the same time instance, as illustrated in Figure 5.2. We 

then take the union of each event set and record within the trace at t + 1. 

The transition semantics are therefore expressed in a two-tier approach. The first is dedicated to expressing 

the non-deterministic, concurrent semantics of a single transition, which equates to one time unit (in our 

discrete time model). The second tier expresses the small-step semantics of an RTN action. Given RTNs 

are truly concurrent, then so too are its actions. An action should only fire in a given configuration if 

the premise(s) of its associated SOS rule hold true. Given that actions can fire concurrently, the events 

generated in one action cannot interfere with another firing from the same configuration. 
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Conclusively, we propose to specify the operational semantics for RTN-SL by two relations: 

~ : ((RTN-Types x E x n) x (E x n» 
~ : ((RTN-Types x E x n) x (E x Event-set» 

The evaluation relation ~ of a small (atomic) step is one which generates a new state (I:) and an event 

set (Event-set) - the observable events generated in the transition. The first tier is expressed by two SOS 

rules that specify the ~ relation. The two rules specify a single step of an RTN, such that each concurrent 

component in an RTN take a small step from a configuration. Once no further rules in ~ can fire from a 

configuration, the time base -the indices of 1t\- is advanced. Consecutive 'tick' events are permined, which 

would mean the first rule is evaluated in successive configurations. 

The second ~ rule specifies that each rule in ~ that can fire does so, such that the resulting state (0;) is 

carried forward for the recursive premise. The event set (es') produced from the ~ action are collected. 

Note, events occurring at time, t cannot affect the semantics of other actions firing at t. Until there are no 

further small step actions that can fire from an intermediate configuration, we collect each event set (es) 

generated in a handbag which is committed to the trace (1tt 0- res, {} j) in the Tick ~ rule which records 

these events in our trace and increments the time base by one, as was illustrated in Figure 5.2. 

(rtn,o\,1td j.. 
~~~--~~~--~~----~----~ 
~ (rtn,ot, 1t t0-[es]) ~ (o\,1t\0-[es,{}]) 

Described in these rules are three key points: 

1. "(rtn, 0\, 1tt 0- res]) ~ ... " :: The form of the source of both rules explicitly separates the trace 

-or history- of an RTN into the events upto t-l and those events occurring at t. This is to enforce 

atomicity and model currency such that A II B == A; B Or B;A 

2. " ... ~ (at, 1tt 0- res, { }])" :: The form of the target of the first rule is such that those events occur­

ring at t are committed to the trace of an RTN and time is advanced 

3. The observation that these rules describe a greedy semantics. Each rule that can fire in a configuration 

must do so before time is advanced. The benefit of this is that maximal progress is made in each time­

step. This design decision is consistent with the STATECHART semantics [HN96] which specify a 

maximal subset of non-conflicting transitions are always executed which is termed the "greediness 

property" of the semantics. 

5.2.1 RTN-SL SOS Rules 

We first give a transition system specification (To), for the ~ relation, for the semantics of RTN-SL. Later 

we give the TSS for the extended RTN-SL language which supports the specification of faults. 
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5.2.1.1 A TSS Specification for RTNs, To 

The set of rules that follow fonn the transition system specification for To. These rules are grouped (indi­

cated by number suffixes) when a rule describes a similar dynamic behaviour to another rule. In such cases 

a generic description is given for the group with individual comment to highlight the distinction. 

We present the RTN-SL abstract syntax on which the SOS rules are written, to aid the reader. This approach 

is not dissimilar to other presentation of language semantics [Jon03, Jon04]. The abstract syntax is given 

in the VDM-SL notation [LHP+96, FL98], and each SOS rule written as a VDM-SL function in Appendix 

C to syntax and type check the rules. Additionally, the implementation issues of the operational seman­

tics with regards concurrency and non-detenninism is investigated and reported with regards animation in 

Appendix point 3 above. 

types 

1.0 Id = token; 

2.0 Var= token; 

3.0 Expr = token; 

4.0 Event = token; 

5.0 Fault = LATE_EXIT; 

6.0 Bounds: : beet: N 

.1 bcrt:N 

.2 wcet:N; 

7.0 Port::id:ld 

.1 dir: IN lOUT; 

8.0 7imeBound:: lower: N 

.1 upper:N; 

9.0 Label = TimeBound I Event I Expr I Fault; 

10.0 Static-State:: id: Id; 

The first group of rules describes the reactive behaviour of dynamic states - should a state read. write, both 

or neither? The necessary abstract syntax is shown below: 
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11.0 Operation: : id: Id 

.1 read-vars: Var-set 

.2 written-vars: Var-set 

.3 input-parameter: [/d] 

.4 output-result: [/d] 

.5 preC: Expr 

.6 postC: Expr; 

12.0 Dynamic-State:: id: Id 

.1 ops: Operation-set 

.2 bounds: Bounds; 

13.0 State = Static-State I Dynamic-State; 

14.0 Transition: : src : Id 

.1 trg:ld 

.2 I: Label; 

The premises of Rule 1.1 identify that there exists an activity (ol(a) = mk_act(cs, Is, INDS) in the RTN 

dynamic state (a E dom (1) which satisfies three conditions: i) the current state, cs has operations remaining 

(line 3), ii) that the operation (and therefore state) reads from a port but does not write a result (line 6), and 

iii) lines 6-10 state that the pre-condition holds for the read value, and the post-condition is true in the new 

local state, Is'. Given these premises hold true in a configuration (RTN, 01, 1t1), then the conclusion is that 

the resulting state of this transition has the updated dynamic state (removing the evaluated operation 0 I t {cs 

-+ 1101 (cs).ops}) and the event (rd(in...]J» recorded. 

Rule 1.1: A dynamic state that only reads: 

a E domol 
01 (a) = mk_act(cs, Is, INDS) 

01 (cs).ops '" [] 
s E RTN(a).sm.ss 
mk_Operation(id,rd, we,in...]J,out...]J,pre,post) E elemss.opst\hdOI (cs).ops = id 
in...]J '" nil,Ollt...]J = nil 

(in...]J,RTN,ot}.!!!.. v 
Is' = 1st {in...]J f-4 v} 
(pre, Is) ~ true 
(post, Is') ~ true 

I dySt-op-rd I (RTN,OI, 1t1) ~ (01 t{cs f-4 1101 (cs).ops,a f-4 mk_act(cs, Is', INDS)}, {rd(in...]J)}) 

Similarly with Rules 1.2, 1.3 and 1.4, the premises are that the written values preserves the post-condition 

in Rule 1.2 and Rule 1.3 and that Rule 1.4 neither reads nor writes but the post-condition holds on the 

computation of the local state, Is. 
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Rule 1.2: A dynamic state that reads and writes: 

a E domat 

at (a) = mk_act(cs, Is, INDS) 

at (cs).ops 1= [) 
s E RTN(a).sm.ss 

mk_Operation(id,rd, we, in-p, out-p,pre,post) E elemss.ops /\ hdat (cs).ops = id 
in-p 1= nil,out-p 1= nil 

(in-p,RTN,at}.!!!.. v 
Is' = 1st {in-p 1-+ v} 
(pre, Is) .!-. true 
(out-p, v', Is') ~ ls" 
(post, Is") .!-. true I dySt-op-rdwe I s 
(RTN, at, ret) -+ (at t{cs 1-+ t1at (cs).ops,a 1-+ mk_act(cs, Is", INDS)}, {nl(in-p). lI't'(OIlt-P)}) 

Rule 1.3: A dynamic state that only writes: 

a E domat 

at (a) = mk_act(cs, Is, INDS) 

at (cs).ops 1= [] 
s E RTN(a).sm.ss 
mk_Operation(id,rd, we,in-p,ollt-p,pre,post) E elemss.ops /\hdat (cs).ops = id 
in-p = nil,Ollt-p 1= nil 

(out-p, v', Is) ~ Is' 
(post, Is') .!-. true I dySt-op-we I s 
(RTN,at, ret) -+ (at t {cs 1-+ tlat (cs).ops,a 1-+ mk_act(cs,Is', INDS)}, {lI'e(ollt-p)}) 

Given the SOS rule that an operation specified upon a dynamic state neither reads nor writes, we note the 

local state (Is) is unchanged by the transition. Since post conditions are expressions not statements, they 

can have no side effect on the local state and can only specify an expression on the state. 

Rule 1.4: A dynamic state that neither reads nor writes: 

a E domat 

at(a) = mk_act(cs,Is,INDS) 
at (cs).ops 1= [] 
s E RTN(a).sm.ss 
mk_Operation(id, rd, we, in-p,ollt-p,pre,post) E elemss.ops /\ hdat (cs).ops = id 
in-p = nil,out-p = nil 

(pre, Is) .!-. true 
(post, Is) .!-. true 

~ (RTN,a\,ret) ~ (at t{cs ...... tla\(cs).ops},{}) 

The second group of rules define the behaviour of activities should the initial state be static or dynamic. 

For a static state, the activity's status is simply set to the wait transition (WAIT _ TR) status which stipulates 

the activity is waiting for a valid exit transition, for example, a read event to occur at a blocking (input) 

port which is the guard of an exit transition. Alternatively -for a dynamic state- the activity is set to the 

in-dynamic-state (iNDS) status and the operations specified upon it in the static specification (RTN) are 
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added to the dynamic environment (Line 5) for evaluation. For both cases, the state entry eyent is recorded 

(linitial). 

15.0 SM: : ss: State-set 

.1 ts: Transition-set 

.2 initial: Id; 

16.0 Activity: : input-ports: Port-set 

.1 

.2 

.3 

.4 

output-ports: Port-set 

local-state: Id ~ Var 

ops: Operation-set 

sm:SM; 

Rule 2.1: Initialise an activity into a static state: 

a E dorn<J1 

<JI (a) = mlcactC,_, INIT) 

~ uact = mk act(RTN(a).sm.initiai,RTN(a).locai-state, WAIT TR) 
~ s . (RTN, <JI, 1t1) ---+ (<JI t{ a f-+ uact} , { lRTN(a).sm.imtiai}) 

Rule 2.2: Initialise an activity into a dynamic state: 

a E dorn<J1 

<JI (a) = mk_act(cs, is, INIT) 

uact = mk_act(RTN(a).sm.initial,RTN(a).locai-state, INDS) 

mk_DynamicState(id,ops,_) E RTN(a).sm.ss /\id = cs 
trgs - mk dySt([op I op E ops]) 

I dySt-init I (RTN,<JI, 1tJ) -:.. (<JI t{ a f-+ uact,RTN(a).sm.initiaif-+ trgs}, 
{ lRTN(a).sm.initiai}) 

Rule 3.1 specifically defines that a dynamic state (Line 2) with no remaining operations left to evaluate 

(Line 3) should set the activity status to WAIT _ TR (Line 4). 

Rule 3.1: All operations on a dynamic state evaluated: 

a E dorn<J1 

<JI (a) = mk_act(cs, is, INDS) 

<JI (cs).ops = {} 
uact=mk act(cs,ls,WAIT TR) 

Rule 4.1 defines when an activity is terminated which detects the end of a network's computation (all 

activities are TERM). 
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Rule 4.1: Tenninate an activity: 

a E domOI 

is_(ol (a),aet) 
r.=l ~tr E RTN(a).sm.ts·lr.sre = 01 (a).es 
~( s RTN,OI, xd -> (01 t{a I--> mk_ael(ol (a).es,ol (a).is, TERM)}, {}) 

Rules 5.1 & 5.2 both depend on whether the target state of a transition is a dynamic or static state. Should 

the target state be dynamic, then the operations specified on the dynamic state should be added to the 

dynamic environment for evaluation, as was the case in Rule 2.2. 

Rule 5.1: Transition to dynamic state: 

a E domOI 

01 (a) = mk_ael(es,ls, WAIT_TR) 

tr E RTN(a).sm.ts 

(tr,ol,xl) ~ true 
mk_Dynamie _Stale(id,. mk_Bounds( beel, bert, weel)) E RTN (a) .sm .ss /\ id = es 
3tl E indsxl ·l::sE;XI(I.)1\I1 +beel~ lenxi < II +weet 

~t2 E indsXI ·t2 ~ tl" lcs Ei+1 7t1{t2) 
ins{ol(tr.trg)) = INDS 

uael = mk_aet(tr.trg,ls,INDS) 

~ trgs= mk dySt([op I op E s.ops·s E RTN(a).sm.ss/\s.id= tr.trg]) 
tr-dySt ( s { RTN,OI, x.) -> (01 t a I--> /wet,tr.trg f-> trgs}, { jJr.src, ltr.trg}) 

Similarly, should the target state be static, the activity should be set to wait for a valid transition from this 

target state. 

Rule 5.2: Transition to static state: 

a E domol 
0\ (a) = mk_aet(es,ls, WAIT_TR) 

tr E RTN(a).sm.ts 

(tr,o\,x.) ~ true 
mk_DynamicState (id, , mk_Bounds(beet, bert, weet)) E RTN{a).sm.ss /\id = cs 
3 t\ E inds 7t1 'l::s E; XI (t.)" ~ t2 E inds 7t1 . t2 ~ tl/\ l::s E;+ I 7t\ (t2) /\ 

t\ + beet ~ len XI < tl + weet 
ins(o\ (tr.trg)) = INSS 

uaet = mk aet(tr.trg, Is, WAIT TR) 

~ (RTN,OI,XI) 2.. (0"\ t {a I--> /wet},{ jJr.src, ltr.trg}) 

Rules 6.1, 6.2 & 6.3 define a new relation (tr, 0"1, x.) .!!.. lE which evaluates whether or not a transition 

(tr) is valid from a configuration (Ir, 0"1, 7t1)' This relation has a similar role to evaluating an arithmetic 

operation in a programming language semantics. 

Rule 6.1 evaluates a transition which is bound by lower & upper time bounds. Line 2 stipulates that from 

entering the state at tl then it is still possible to leave with the bounds, whereas Line 3 stipulates that the 

state exit event has not occurred before the lower bound nor later than the upper bound. 
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Rule 6.1: A time-triggered transition: 

is_(tr.l, TzmeBound) 

3tl E indsxI . tsrc Ei XI (tt) I\l.lower::; lenxl-tl ::; I. upper 
~ ~t2 E indsxI' ltrg Ei XI (t2) 1\ l.upper < lenxl-t2 < 1.lower 

tt-tr ( k .. ( Ir m _transltlon src,trg,l),al,xt) -+ true 

Rule 6.2 evaluates that a transition labelled with an event is valid in a given (tr,a\,x.). That is. that the 

labelled event has occurred since entering the state. 

Rule 6.2: An event-triggered transition: 

is_(tr.l, Event) 

~ 3tl, t2 E indsxI . tsrc Ei XI (tl) I\tr.l E XI (t2) 1\t2 > tl 
ev-tr (k .. ( I) Ir m _transItIOn src,trg, ,a\,x.) -+ true 

Rule 6.3 evaluates an expression, which labels a transition in al. 

Rule 6.3: An expression-triggered transition: 

is_(l,Expression) 

(I, al) ..:..... true 
~. Ir (mk_transltion(src, trg,l),al, x.) -+ true 

Additional SOS rule for the operational semantics for IDA components are given in Appendix C, these 

rules also define To but are not presented here to aid presentation. 

5.2.1.2 Fault Transition System Specification for RTNs, TI 

We have a transition system specification, To which defines the operational semantics for non-faulty RTNs. 

We now present the operational semantics for the fault actions we consider for RTNs, which form the tran­

sition system specification, TI. To preserve the existing semantics we wish to add the operational semantics 

of faults in a conservative approach, such as to define the new RTN actions as additional behaviours. We 

define a new fault relation as: 

L :((RTN-Types x r. x II) x (r. x Event-set)) 

This relation defines the fault actions of an RTN, which are for example taking a late read transition I upon 

a late read fault, or taking a late exit transition when observing a late exit fault. However, given the trace 

semantics for RTNs are specified by the ~ relation (which in tum is specified as the small-steps under the 

~ relation) we must define new ~ SOS rules to add the fault action to the operational semantics. This is 

achieved by specifying, as premises, the hypothesis a fault action occurs from some faulty configuration. 

A typical rule structure would be: 

fault configuration hypotheses 

I I fault action: (RTN,al,xt) L (a2,es) 
. fault-rule. s 

(RTN,al,xt) -+ (a2,es) 

I Remember state-machine transitions are the primary specification mechanism for defining faults and fault action behaviour. 
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The fault configuration hypotheses will observe a fault configuration such that some component is in an 

(anticipated) erroneous state. Given this observation, the fault action hypothesis specifies some fault action 

occurs which generates a new state (<J2) and an event set (es). The proviso that each new SOS rule under 

the.!.... relation has a premise of the new -fresh-relation L ensures our conservative extension result (c.f. 

Section 5.3). Further, is is not possible to observe a fault unless a fault action exists to deal with the fault 

as no rule in .!.... will be fireable. Therefore the set of L rules define the fault behaviours that exist in the 

operational model. 

Rule 7.1 describes the late exit behaviour from a dynamic state. This rule has two noticeable characteristics: 

Lines 1-4 observe the fault occurrence, whilst Line 6 specifies what fault action to take. This rule is not 

of a fault tolerant nature, but specifies the action desired when a fault is observed - otherwise our fault 

semantics would be totally non-deterministic! 

Rule 7.1: Dynamic State, late exit fault: 

a E dom<J1 

<JI (a) = mk_act(cs, ls, INDS) 

mk_Dynamic_State(id,_, mk_Bollnds(beet, bcrt, weet)) E RTN(a).sm.ss Aid = cs 
:3 tl E inds 1t1 ·l:'s E 1t(tJ) /\tl + beet ~ tl + weet < len 1t1 A 

~t2 E inds 1t1· .¥:s E 1t(t2) /\t2 > tl 
uaet = mk_act(es, ls,mkJault(LATE_EXIT)) 

(RTN,OI t {a f-+ uact},1t1 f\.[{late exitJault}]) L (02,es) 

I dy-late-exit-fault I (RTAT ) S ( ) 
. . llY, <JI, 1t1 --+ <J2, es 

Rule 7.2: Static State, late time exit fault: 

a E domol 

<JI (a) = mk_aet(cs,ls, WAIT_TR) 
:3t E RTN(a).sm.ts· mk_Transition(src,trg,mk_1imeBollnd(l, II)) A srr: = es 

:3tl E inds1t·lcs Ei 1t(tl) /\t) +l ~ tl +11 < len 1t A 

~t2 E inds 1t. Jcs Ei 1t(t2) /\(2 > tl 
uact = mk_act(cs,ls,mkJault(LATE_EXIT)) 

(RTN,o) t{a f-+ lIact},1t1 f\.[{late exitJalllt}]) L (02,es) 
I st-late-time-exit-fault I (RTN,<JI, 1tI).!.... (<J2,es) 

Rule 7.1 fires on the occurrence of a late exit fault and specifies that there should exist a fault-labelled 

transition in the static specification, RTN for which that transition is made. Rules 7.1 and ?? combine to 

form the semantics of a late exit fault of a state-machine state. 

Rule 8.1 describes the late read behaviour for a dynamic state. Lines 1-5 specify a late read fault has 

occurred if the read event has not occurred before the best case execution time (BCEl) time bound. Line 

6 hypotheses that a fault action will be taken to generate a new state (02) and an event set (es). This 

intermediate configuration is also the result of the rule. 
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Rule 8.1: Dynamic State, late read rault: 

a E dorn<r\ 

<r \ (a) = mk_aet( es, ls, INDS) 

mk_DynamicState( id, ops, mk_Bounds( beet, ben, weet)) E RTN (a ).sm.ss II id = es 
mk_OperationL._,_, in-p,out-p,_,_) E ops II in-p # nil 
3t\ E inds1t\ . ts E 1t(t\) 1It\ + beet < len1t\ II 

~t2 E inds1t\·rds(in-p) E1t(t2)1It2 >t\ 
uaet = mk_aet(es,ls,mkJault(LATE_READ)) 

I I (RTN,<r\t{al-+uaet},1t\f"\.[{late readJault}])L(<r2,es) 
dy-late-read-fauIt (RT.'N ) S ( ) 

,<r\,1t\ --+ Cf2,es 

Rule 9.1 states that there should exist a transition, label1ed for a late read. which is taken given a late read 
fault is observed. 

Rule 9.1: Fault Transition: 

a E dOrnCf\ 

Cf \ (a) = mk_aet( es, Is, mkJault(f) ) 

I fault-transition I f"\. J 
L...-__ ---' (RTN,Cf\, 1t\ res]) --+ (Cf\ t{a 1-+ mk_aet(trg, ls,insf(trg))},esU if, ~s, ltrg}) 

3t E RTN(a).sm.ts ·mk Transition (src,trg,I) IIsre - cs 111-f 

The remaining rules that form T\ are presented in Appendix C. as the differences in each rule follow closely 

to the fault definitions given in Chapter 4. The important observation with respect T\ is that the new rules 

under the ~ relation are specified with afresh relation which guarantee the conservativity result we discuss 

in the next section. 

5.3 An Operational Conservative Extension 

Given the two transitional system specifications. To and T\ we consider their combination. The rules of 

TSS T\ are an extension to the RTN-SL operational semantics so we consider the extended TSS. denoted 

To EEl T\. as the operation extension of TSS To. A property we require to be true. is that the TSS To EEl T( is 

a conservative operational extension to TSS To. Often one wants to add new operators and rules to a given 

transition system specification (TSS). An (operational) conservative extension requires that an original 

TSS and its extension prove exactly the same closed transition rules that have only negative premises and 

an original closed term as their source [AFV99]. In this thesis. the new operators are the fault actions 

considered for an RTN. 

Our idea is to build on the theoretical TIS layer of our SOS semantics for RTNs and then use the results 

from Aceto et al [AFV99] to show our additional RTN-SL language features. T\ a conservative extension 

to To. This result is necessary to show the properties proved of an RTN before the consideration of faults 

are true in our extended TSS under the assumption that no faults occur. From this. we can then set about 

showing the fault tolerant mechanism we propose do indeed tolerate the faults considered. 

88 



CHAPTER 5. STRUCfURAL OPERATIONAL SEMANTICS 

5.3.1 Definitions 

We begin by defining the notion of source-dependency of variables [FV98] which is an important ingredi­

ent of a rule format to ensure that an extension of a TSS is operationally conservative. In order to conclude 

that an extended TSS is operationally conservative over the original TSS, we need to know that the vari­

ables in the original transition rules are source-dependent. In the literature this requirement is sometimes 

overlooked. 

Definition 5.8 (Source-dependency) The source-dependent variables in a transition nile p are defined 

inductively as follows: 

• all variables in the source of p are source-dependent; 

• ift ~ t' is a premise ofp and all variables in t are source-dependent, then all variables in t' are 

source-dependent. 

A transition rule is source-dependent if all its variables are. 

Source-dependency is a more liberal formulation of the syntactic criterion "pure and well-formed" for 

formal variables in formal rules. From [FV98] it states: 

• that rules have either 'formal' or 'actual' variables 

• formal variables are found from FV(t*) 

Definition 5.9 (Formal Variables) FV(a) denotes the set offormal variables that occur in the formal 

term t* 

Definition 5.10 (Sum of TSSs) Let To and T\ be TSSs whose signatures 1:0 and E\ agree on the arily 

of the function symbols in their intersection. We write To EB T\ for the union of1:o and E\. 

The sum of To and T(, notation To EB T\, is the TSS over signatures 1:0 EB E\ containing the niles in To 

andT\. 

We now state the main theorem and show for an example that its semantics are first source-dependent and 

then that the fault semantics are a conservative extension to To· 

Theorem 5.1 (Cons.Extn) Let To and T\ be TSSs over signature 1:0 and E\ respectively. Under the 

following conditions, To EB T\ is an operational conservative extension of To· 

1. Each p E To is source-dependent. 

2. For each p E T(, 

• either the source of p is fresh, 

• or p has a premise of the form t ~ t' or tP, where: 

- t E If(1:o); 
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- all variables in t occur in the source of p; 

- 1', a or P isfresh. 

For example, consider the transition rule for tick. 

Example 5.1 We consider the 'Term' -rule which was introduced in Section 5.1.2, which sets the statlls 

of an activity to TERM should it be in a state with no successors. This prevents faIse faults being 

observed, such as a late or crashfault. 

a E domcrl 

is_(crl (a),act) 

r::=l ~tr E RTN(a).sm.ts· tr.src = crl (a).cs 
~ s (RTN, crl, Ttl) -> (crl t{a 1-+ mk_act(crl (a).cs,crl (a).Is, TERM)}, (}) 

Since the source of 'tick' is (RTN,r.,TI) and (RTN,r.,TI) contains only formal variables, it follows 

(RTN,r.,TI) is source-dependent (defn 3.16( 1) I FV98j). Since the term-rule has hypotheses 

~tr E RTN(a).sm.ts· tr.src = crl (a).cs 

and 

a E domcrl 

where 

FV(~tr E RTN(a).sm.ts· tr.src = crt (a).cs) = {RTN,crl ,Ttl} 

and 

it follows that each premise is source-dependent (defn 3.16(3) I FV98 J) 

Similarly, each rule in To (in Section 5.1.2) follows the same rule format and structure and has been found 

to be source-dependent, verified by the LETOS tool, described later in Section 5.3.3 

5.3.2 Faults are a conservative extension 

Given the TSS To is source-dependent and TI (as defined previously), we examine whether To if) T\ is a 

conservative extension of To. 

Corollary 5.1 Given To and T\ as specified previousl): To EI1 T\ is a conservative extension of To. 

PROOF We are required to show that each rule is source-dependent and each new rule in T\ has a 

premise which isfresh. 

Each rule in To and T\ is source-dependent by inspection, and has been verified by the LETOS tool. 

For each rule in TI which has conclusion of the .l... relation, it has a premise defined by the fresh relation 

L. That is to say, to make the transition specified for.l... in T\ new behaviours not specified in To must 

have occurred. Therefore, the rules in T\ prove to be a conservative extension. 

• 
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5.3.3 Animating SOS rules with LETOS 

The methodology of LETOS is to provide a lightweight tool that offers the most important facilities - type 

checking, IM}3Xscripting, animation and a derivation tree - at a minimal cost. 

Hartel addresses the crucial issue of non-determinism in a convenient/compatible way to our own. Hartel 

[Har97] states: 

An SOS yields a derivation sequence, whereas a natural semantics delivers a derivation 

tree. To put the two on a level playing field, it is convenient to add another rule to the SOS 

specifications. This new relation ~ given below computes the transitive closure of the rela-
3 tion ~ , and selects the final state: 

((S,state) -+ state) 
3 

I-<SI,S> ~ <S;,s' > o 1-< S;,s' > J. s" 
J. 1-< SI,S > ~ s" 

One further benefit of the LETOS tool is the feature to check for source dependency of a rules premise. the 

base condition for the conservative extension result we use found true of our semantics. 

One key feature of LETOS is the ability for a Miranda program (generated by LETOS) not only to caIcu late 

the final state, but also the entire derivation tree, given an initial state. This derivation tree forms a proof in 

a natural deduction style, for which LETOS will render (in fe.T}3X). 
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This chapter first gives an introduction to the theory of inductively defined relations, of which presentations 

of operational semantics are examples. This principle of induction. specifically mle induction, is used to 

define the action based set of behaviours for a RTN. An inductive definition consists of introduction rules 

which define the least closed set of values, or configurations, that satisfy the relations. It specialises to 

proof rules for reasoning about the operational semantics of RTNs. 

We first identify the objectives for formal ising a soundness argument which are highlighted through an 

example. The example demonstrates the necessity of a formal proof and serves to highlight the structure 

we pursue. We then outline a method to formalise our approach in IsabellelHOL [NPW02]. 

6.1 Objectives 

Regarding semantics, there are three important questions we must face: 
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I. How can we say our semantics are sound? 

2. How can we guarantee our semantics are complete? 

3. How can we say there will not be any redundant axioms among all our rules? 

These questions are usually addressed in terms of the concepts of soundness and completeness. 

Soundness: An axiomatic semantics is called sound if it is consistent with an operational (or denotational) 

model that has already been formulated 

Completeness: The completeness of an axiomatic semantics is to check if the axioms are sufficient to 

specify all the behaviours of a model the axioms define. There may also be too many axioms in a 

system. Redundant axioms may add new features to our language, but these features actually do not 

exist in our language originally. Therefore we want to detect and avoid these redundant axioms in 

our system. 

First, and foremost, a semantic model should be sound, so that validation of system designs can proceed 

with confidence in the results. We wish to undertake our formal reasoning in Chapter 8 using the extended 

axiomatic semantics and therefore require first to show the axioms sound. 

6.2 Approach 

We suggest an approach based around the derived principle of definitions in HaL - the inductive definition 

of relations [CM92, Nip98]. The key element is a derived rule which allows a relation. in our case the 

transition rules, be defined by giving a set of introduction rules for generating its elements. Structural 

induction is often inadequate to prove properties of operational semantics. often it is useful to do induction 

on derivations. A derivation takes the form of a tree, which includes derivations to the premises of a rule 

instance. Rule instances are got from rules by substituting actual terms or values for meta-variables (or 

formal variables) in them. 

Our operational semantics define a trace model for RTNs, with which we now require to show the axioms 

sound. The form of a trace is got from the SOS rules, such that properties of a derivation -or trace- can be 

inductively reasoned about. The properties we wish to prove are the interpretations of the RTN axioms in 

the trace model, not just for a trace but, for all traces reachable which are specified by the SOS rules. 

6.2.1 An Example 

Because the transition system from the structured operational semantics (SOS) is given by rules. we have 

an elementary, but very useful, proof technique for proving properties of the operational semantics of 

RTNs. The simple proof of the equivalence of the axiomatic semantics with its operational unfolding 

exhibits an important technique: in order to prove consistency it is helpful to consider the various possible 

forms of derivations [Win93]. This approach is illustrated in Section 6.2.3, but the idea is used again and 
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true 

Figure 6.1: Example fragment of an RTN-SL Design 

again, though never in such detail. Later we shall show how ntle induction, in principle. can fonnalise the 

technique used here. 

Consider now, as an example, the exit transition from a dynamic state. Figure 6.1 shows the arrangement 

of a dynamic state, B which has an exit transition labelled true that transitions to static state C. The design 

also stipulates that the exit transition must occur not earlier than 11 time units after entering state B nor later 

than U 1 time units. 

We wish to show the axioms (given below) generated from this fragment via .Q are sound with respect to 

our operational model using our elementary proof technique. This requires we show the existence of a 

derivation for which the axioms hold, such that the relationship of events specified in an axiom does exist 

in an operational sense. Section 6.2.1.1 illustrates the axiomatic semantics which describe this example. 

while Section 6.2.1.2 shows the operational counterparts. 

6.2.1.1 Axiomatic Specification 

The axiomatic model, from [PAHoo], of our example is described by the following axiomatic specifica­

tions: 

Alax3: Vi,j: Occ,t: Time· (0(lB, i, t) 1\ c'P(true,j, t)) ~ 0(lC, i, t) 

AlaxSb: Vi:Occ,t:TIme·0(lC,i,t) ~ 0(lB,i,t) 

Alax6: Vi,j:Occ,t: TIme·0(lB,i,t) ~ 3tl: TIme·t+ll :S tl :S t+uI1\8(jB,i,td 

6.2.1.2 Operational Model 

The operational model defined over the relation (rtnl ,crl, xd ~ (cr2.X2) (which was described in Section 

5.2) is the transition from a configuration containing the static specification of our system (rtn I)' the current 

state -or dynamic- properties (crd and the history of events, a trace (xd. To use our elementary proof 

technique upon our example, we must define (partially) the starting configuration: 
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( 

{al ~ m.CActivity({p1 },{P2},-,{opl}, ) 

( ) 
_ mk_SM({B,C},{mk]ransition(B,c'tnte)},-»}. 

rtn, 01, 1t1 -
{PI ~ vl,p2 ~ v2,B ~ mk_dySt([oplj)}, 

[{ lB}] 

The relation ~ specifies the evaluation of all possible actions from some configuration to generate the next. 

where ~ specifies the evaluation of a single action. We therefore wish to find a sequence. or derivation. 

of actions (i.e. ~steps) to show our axioms can be true. We leave it until later to show soundness, which 

requires there does not exist a derivation showing our axiom false, by considering all derivations specified 

under the ~ relation. The rules which are of interest in showing axiom AJax6 true, and transform this 

starting configuration, are shown below: 

a E domOI 

ol(a) =mk_ael(es,ls,INDS) 

01 (es).ops = {} 
uaet = mk_aet(es,ls, WAIT_TR) 

fdySil s 
~ (RTN,OI ,1t.) --> (01 t{a ...... uaet}, {}) 

a E domOI 

01 (a) = mk_aet(es,ls, WAIT _TR) 

tr E RTN(a).sm.ts 

) 
Ir 

(tr, 01, 1t1 --> true 
mk_Dynamie_State(id"mk_Bounds(beet,bert, weet» E RTN(a).sm.ss/\ id = es 

:3 tl E inds 1t1 . t"s Ej 1t1 (tl) 1\11 +beel $ len 1t1 < II + weet 

~ t2 E inds 1t1 . t2 ~ tl/\ Tcs Ej+1 1t1 (12) 

ins( 01 (Ir.lrg» = INDS 

nael = mk_aet(tr.trg,ls, INDS) 

Irgs = mk dySI([op I op E s.ops· s E RTN(a).sm.ss /\s.id = tr.trg]) 

~ (RTN,OI ,1t.) ~ (01 t{a ...... IUlet,tr.trg ...... trgs}, { .lfr.src, ltr.trg}) 

~ )'r (mk_lransilion(src, Irg,I),OI, 1t1 --> true 

is_(l, Expression) 

(1,01) ~ true 

6.2.2 Correctness Specification 

We are interested in axiomatic specifications, specified in RTL, which often take the following forms: 

Vi: Oee, tl : Time· 8(el ,i,l.) => :3j: Oee, 12: Time· 8(e2,j,12) /\ P{t\, (2) 

and 

Vi: Oee, t: Time· 8(e\, i, I) /\ 4>(c,i, t) => 8(e2, i,l) 

Given the defined relations ~ & ~ (described in Section 5.2), we seek to represent the equivalent ax­

iomatic specification over our operational semantics. We have discussed in Section C.5.1 the evaluation of 
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this relation and the set of pennutations it generates. We therefore require an interpretation of relating a 

typical axiomatic specification onto our SOS model on which to define our propositions. 

We have seen, in Section 4.1, the definition of the RTL event model and the syntax of its fonnulas. We now 

define a semantic function, 9r£ that defines the value of RTL fonnulas (fRTL) in terms of our SOS (trace) 

semantics. The semantic function, 9r£ performs case analysis on the components of the concrete syntax 

and defines the meaning of RTL fonnulas thus: 

9r£ : fRTL -+ fsos -+ B 

An auxiliary function which makes the semantics more presentable is Ei which states that an event is 

occurring for the ith time in a trace: 

e Ei 1t(t)~ card {t E inds1t· e E 1t(t)} = i 

The Semantic Function 9r£ 

9r£ [PI II P2Ea,It /:;. 9r£ [PI Ea.1t II 9r£ [P2Ea,1t 

9r£ [PI V P2Ea,It /:;. 9r£ [PIEa,1t V 9r£ [P2Ea.x 

9r£ [PI => P2Ea,It /:;. 9r£ [PIEa,1t => 9r£ [P2Ea,x 

9r£ [, PEa,1t /:;. ,9r£ [PEa,1t 

9r£ [3 i: Occ, t: TIme· P(i, t) Ea,lt /:;. 3i': Occ,t' E inds1t·M[PDa,lt(i',t') 

9r£ [Vi: Occ, t: TIme· P]a,1t /:;. Vi':Occ,t' E inds1t·9r£[PDa,lt(i',t') 

9r£ [8(e,i,t)]a,1t /:;. if t E inds 1t then e Ei 1t( t) else false 

This is intended to capture the interpretation of RTL formulas in our operational model. One careful 

consideration was with respect the 9r£ [,PEa,1t definition. We wished it be ,9r£ [PDa,x which drove out a 

careful construction of the guard of 9r£ [8(e, i,t)Da,lt. 

Consider as an example a typical RTL theorem: 

Q =.Vi: Occ,tl: TIme·8(el,i,t') => 3j:Occ,t2 :TIme·t2:::; tl + II II 8(e2,j,t2) 

then 

9r£ [QDa,1t /:;. 

/:;. 

9r£ [Vi: Occ, tl : TIme· 8( el, i, tl) => 3j: Occ, t2 : TIme· t2 :::; tl + u II 8(e2,j, t2)Da,lt 

Vi: Occ,tl E inds1t· 9r£[8(el,i,t') => 3j:Occ,t2: TIme·t2:::; tl +uIl8(e2,j,t2)Da,x 

/:;. Vi: Occ,tl E inds1t· 9r£[8(el,i,t.)]a,1t => 9r£ [3j:Occ,t2 :TIme·t2:::; tl +1l1l8(e2,j,t2)Da,l! 

/:;. 

/:;. 

/:;. 

Vi: Occ, tl E inds 1t . if tl E inds 1t then el Ei 1t( t.) else false => 3 t2 E inds 1t. M[t2 :::; tl + II t\ 8( e2,j, t2) Da,x 

Vi: Occ, tl E inds 1t. e E; 1t(t) => 3 t2 E inds 1t. t2 :::; tl + II t\ if t2 E inds 1t then e2 Ej 1t(t2) else false 

Vtl Einds1t'el E;1t(t.) => 3 t2Einds1t·t2:::;tl+ulle2 Ej1t(t2) 

which we believe is a correct translation to the conjecture in the SOS model as 9r£ [fRTLDa.lt E $: 

Vtl E inds 1t. el E; 1t(t.) => 3t2 E inds 1t. t2 :::; tl + II II e2 Ej 1t(t2) 

96 



CHAPTER 6. A SOUNDNESS ARGUMENT FOR THE AXIOMATIC SEMANTICS 

6.2.3 An informal argument 

Consider the problem of evaluating I the tr-dySt rule in some configuration (rtn,OI, XI). This amounts to 

finding a derivation which concludes to the source of the tr-dySt rule therefore satisfying its premises. 

The search for a derivation is best achieved in a upwards fashion: Start by finding a rule with a conclusion 

matching the premise of the tr-dySt rule; if this is an axiom the derivation is complete; otherwise try to 

build derivations up from the premises until successful. In general, more than one rule has a source that 

matches a given configuration. To guarantee finding a derivation tree, all paths must be considered. All 

possible derivations with conclusions of the correct form should be constructed in parallel. 

We now show one possible derivation of the operational semantics which shows the axiom (A 1ax6) sound 

with respect to the operational model. 

Proposition 6.1 From our previous example, let 

be sound with respect the configuration (rtn, 01, xI). 

PROOF We want to show 

Alax6 f::; M[[\fi:Occ,tl:TIme·0(lB,i,tI) =? 3t2:TIme·tl+II:::;12:::;tl+III/\0(lB,i,12)Da.Jt 

f::; Vtl E inds 1t. iB Ej X(tl) =? 3t2 E inds X· tl + iJ :::; t2 :::; tl + 111/\ lB Ej X(t2) 

is sound and consistent with the configuration (rtn,OI, 1tI) and all derivations there from, i.e. (rtn, 01, xd ~ 

(02, X2). 

To assert our conjecture for all x, we are required to show the conjecture holds for all possible forma­

tions of x. That is, to show for each step of the construction of x, our conjecture is true. In our work, 

the next value ofx is defined by the ~ relation, such that (rtn,ol,xI) ~ (02,X2). Subsequently, for 

each new X2 by~, we show its formation with respect~. We are therefore required to show that the 

proposition is true first for the (rtn, 01, XI) configuration -our induction hypothesis- and for the induc­

tion step, We argue first that there exists a derivation from the configuration (rtn, 01, xd to some X2 

which shows Al ax6 true. Each possible value of 1t2 is specified as a transition (i.e. the next step) under 

~ where 1t2 is the concatenation2 of XI and es for which Al ax6 remains true. 

Suppose Alax6 is true for the transition (rtn,OI, 1tI) ~ (02, X2) for traces XI, X2, then there must exist 

a derivation of (rtn, 01, 1t1) ~ (02, 1t2)' Inspecting the SOS rules for a possible sequence of transition 

steps, we find that the final rule of the derivation must be the tr-stSt rule: 

I We stated earlier, this informal discussion considers the sequence of actions under the 2.. relation, and not the complete evaluation 

of a time instance. as specified by ~. 
21n the derivation sequence, the ~ transitions aren't shown. Rather, between each 2.. transition there would exist the evalualion 

of the ~ relation (c.f. Section 5.2) to ramify the small-step transitions. 
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(Ir, crl, 1t1) .!!... true 

311 E inds1tI'18Ei1tI{tI)/\~12 E inds1tI'12 ~II/\ 18Ei+l 1t1(12)/\ 

II + beet :S len 1t1 < II + weel 

In this case, we consider the derivation follows from the dySI rule and has the form 3: 

a E dom crl = mk_ael(B, Is, INDS) 

crl (B).ops = [J 

(Ir,crl,1tI).!!... true 

3 II E inds 1t1 ·18 E; 1t1 (II) /\ ~ 12 E inds 1t1 . 12 ~ '1/\ 18 Ei+ I 1t\ (t2) /\ 

'I +11 :S len1t1 < II +,,1 

We can continue the derivation to see we previously must have evaluated the operation specified, which 

includes a read action, we therefore add first the dySI-op-rd rule which must follow the Ir-dySI rule 

which states we entered state B in the first place: 

3 Double horizontal lines indicate the conclusion of rules within the derivation. as well as the final conclusion concluding our 
axiom is sound. 
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a E dornO"\ 

uact = mk_act{B, Is, INDS) 

trgs = mk_dySt{[op I op E s.ops·s E RTN{a).sm.ss /\s.ill = B]) 

(rtn\ ,0"\, 1t\) ~ {O"\ t{a 1-+ uact,B 1-+ trgs}, { Jlr.src, tB}) 

(pI,O"I) ~ v 

Is' = 1st {PI 1-+ v} 

(post, Is') ~ true 

(nn\ ,0"\, 1tI) ~ {O"\ t{B 1-+ !I 0"\ (B).ops,a 1-+ mk act{B,Is', INDS)}, {"(pi}) 

a E dornO"\ = mk_act(B,ls, INDS) 

0"( (cs).ops = [] 

(nn\,O"\,1tI) ~ (O"( t{al-+mk act(B,ls,WAIT TR)},O) 

a E dornO"( = mk_act{B,ls, WAIT_TR) 

(tr, 0"(, 1tI) :.:.. true 

3t( E inds 1t( ·18 Ei 1t( (td /\ ~ t2 E inds 1t\ . t2 2:: t(/\ 18 Ei+ 11t( (t2) /\ 

t( +11:::; len1t( < t( +ul 

Noting the premise that all operations specified on B are completed must indicate we have entered B 

(fB) previously and specified the operations to execute on it. Therefore we continue the derivation to 

find in some previous trace we entered B (lB) noting the tr-stSt rules conclusion matches our upper-most 

premise to see: 

Thus 

AIax6 ~ Vt\ E inds1t· lB Ei 1t(tI) =} 3t2 E inds1t·t( +/1:::; t2 :::; tl +UI/\.JB Ei 1t{t2) 

• 
Although we have shown the existence of a derivation that suggests our axiom sound, it does not do so 

conclusively. Rather, we must consider all possible derivation trees and therefore the exclusion that another 

derivation path showing the axiom inconsistent with the operational semantic. We therefore require a more 

formal argument, which appeals to this approach but is formally sound. 

6.3 Trace Induction 

We have elaborated previously (c.f. Section 5.2) that the ~ relation specifies a small step in an RTN. for 

which many such steps can fire from some configuration. The history -or trace- of an RTN is got from the 

~ relation which specifies the transition from configuration to configuration which ramifies each small 

step to yield a new configuration. Therefore. the trace is inductively defined. such that: 
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tl : (rtn,cro, []) ~ (crl, res]) 

t2 : (rtn, crl, res]) ~ (cr2, res] r+ [es']) 

t3: (rtn, cr2, res] r+ [es']) ~ (cr3, res, es'] r+ [es'1) 

which suggest we can inductively reason that our axiomatic semantics for RTNs are sound over the length 
of a trace, 1t. 

6.3.1 Model Space 

Recall from Chapter 5, the model space of our operational semantics is that of a trace structure: specifically 

those RTN traces which are reachable by the SOS rules. The formal presentation below is derived from 

standard sequence (or list) and set induction principles. We discuss these rules, their proofs and the model 

space we consider for giving a rigorous argument to the soundness of the axiomatic semantics with respect 

to our SOS rules. 

As a reminder, the data types we are interested in are as follows. IT is the type of traces, where each trace 

is a sequence of sets of events, each set representing the events taking place at a time. 

Event = Token 

ES = Event·set 

IT = ES* 

Rather than reason in this model space, which requires repetition of work to argue the traces are valid RTN 

traces, we prefer to develop a model theory for RTN traces in their own rights. The traces which are valid 

for a given RTN form a subtype of IT. We will therefore need inference rules that support reasoning over 

this SUbtype. 

A particularly useful strategy when considering a theory describing some subtype of a type which as an 

associated induction rule is to develop a specialisation of the induction rule for that subtype. In general, 

formulating this rule amounts to putting additional constraints on the induction step (in the form of extra 

premises in the sequent hypothesis which represents it in the rule) to ensure that it steps from one value 

of the subtype to the next. Also it is necessary to modify the typing information throughout the rule, and 

possibly the base case as well if the base case for the main type is not a member of the subtype. For RTN 

traces, it is easy to see that the induction base case cannot be the empty sequence as this is not a member 

of the subtype. Rather, these non-empty traces require the property is valid for the singleton sequence (our 

special case for RTN initialisation). Additionally, it is foreseeable that the induction step can be restricted 

to step only between RTN traces if an additional constraint is imposed to the effect that the current history is 

reachable from the history of the last time instance. The restricted data types and their auxiliary definitions 

are given below. 

Event = Token 

ES = Event·set 

s-step( rtn : RTN, cr: E, 1t : TIrln , hb : ES) r: ES 

post if (rtn, cr, 1t) -J.. then r = hb 

else :lei: E· (rtn, cr, 1t) ~ (ei,es) 1\ 

r = s-step(rtn, ei, 1t,hbUes) 
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The s-step function implicitly builds an handbag (hb) of events that occur for a single step. From some 

configuration, s-step recursively builds the handbag of events until no further single-steps can fire from 

the previously generated intermediate configuration (rtn, cr', x). Note, for each recursive small-step the 

transition rule ~ is fired from x which enforces out atomicity model. 

init-rtn(rtn: RTN) a: E 

is not yet specified 

TInn = ES+ 

inv xl'"\. [s] ~ if x = [] then 3a: E· (rtn, init-rtn(rtn) , []) ~ (a, [s]) 

else 3a\, a2 : E· s = s-step(rtn, a\, x, { }) " 

(rtn, a\, x) ~ (a2, xl'"\. [s]) 

The TIrm type invariant above states that each the current trace was reached from a previous RTN trace by 

some collection of small-steps. This allows one to reason inductively over the subtype. 

Our decision not to specify an individual invariant on ES is due to the close dependency between ES and 

fInn. Instead, we give only an invariant on fInn (which is an RTN trace with which we wish to show 

the axioms sound) and an auxiliary function, s-step to restrict the event-sets we concatenate to a RTN 

trace. Binding the invariant to a data type was a design decision made in VOM in the 1980's, and which 

separates it from Z [Hay93, W096]. Previously the invariant was an auxiliary function separate from the 

type definition. However, the tight binding between the data type definition and its invariant allows the 

introduction of the invariant predicate into a proof at the necessary stage. Specifically with our model 

theory, the invariant on TInn states the step between values is defined by the ~ relation, which in tum 

states that each small step is defined by the ~ relation, allowing a proof to only be concerned by valid 

traces. This allows each proof to extract the properties we wish to show are sound. 

6.3.2 Induction Rules 

The traces which are valid for a given RTN form a subtype of TI. We will therefore need inference rules 

that support reasoning over this subtype. We first consider the induction rule for non-empty sequences: 

s:A+ 

a:A \- P([a]) 

I . I a:A,s':A+,P(s')\-P(s'I'"\.[a]) 
A+-mdn P(s) 

Considering now a restricted type of A + we specify 

B=A+ 

invb~/(b) 

we derive our induction rule to be: 

b:A+ 

a:A \-I([a]) ~ P([a]) 

~a:A,s':A+,1(s') ~ P(s')\-/(s'I'"\.[a]) ~ P(s'I'"\.[a]) 
B-indn 

/(b) ~ P(b) 
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or using inv-b : A + -+ lR 

b:A+ 

a: A I- inv-B([a]) ~ P([a]) 

~ a :Z,s' :A+ ,inv-B(s') ~ P(s') I- inv-B(s'r\. [a]) ~ P(s'r\.[a]) 
~----.:.--~-:........:.--~~-~~---!::~-.:....--=-~--':~ 

inv-B(b) ~ P(b 

We now apply the same derivation to our data types and derive a rule for non-empty sequence of event sets: 

1t:ES+ 

es: ES I- inv-TInn([es]) ~ P([es]) 

I . I es: ES, 1t' : ES+ , inv-TInn (1t') ~ P( 1t') I- inv-TInn (Jt' r\. res]) ~ P( Jt' r\. res]) 
. n"n-mdl _ inv-TInn(1t) ~ P(1t) 

and prove it trivially 

PROOF (TIrln-IND 1) 

from 1t:ES+ 

es:ESl-inv-TIrln([es]) ~ P([es]) 
es:Es,1t':ES+,inv-TIrtn (1t') ~ P(Jt') l-inv-TInn(1t'r\.[es]) ~ P(Jt'r\.[es]) 

from es:ES 

infer inv-TIrtn(es) ~ P([es]) 

2 fromes:ES,1t':ES+,inv-TI rtn (1t') ~ P(Jt') 

infer inv-TIrtn (1t' r\. res]) ~ P(1t'r\. res]) 

infer inv-TIrtn (1t) => P(1t) 

sequent{h2.I.h I) 

sequent{h3.2.h 1.2.h2.2.h3) 

A + -ind(l.2) 

• 
The first rule below is our induction rule over the restricted type: RTN Traces. TInn} and the second is the 

induction rule over event sets that arise at each point in the trace. 

s: ES, inv-TIrtn([s]) I-s P([s]); 

es:ES, 1t':TIrtn , P(1t'), inv-TIrtn(1t'r\.[es]) 1-ll',tS P(Jt'r\.[es]) 
I nrtn-indn I P(1t) 

1t: TInn; 

s:ES,P(1t),s= {} I- P(1t r\.[{}]) 

es: ES, s': ES, P(1t r\. [s']), inv-TInn(1tr\. [s']), s' nes = {} I-es P(1tr\. [s' Ues)]) 

~ P(1t r\.[s]) 

The proof below makes use of the previous inference rules for trace induction: 
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PROOF (TInn-INDN) 

from 7t: TIrln; 

s:ES, inv-TInn([s]) r-s P([s]); 
es:ES, 7t':TInn, P(7t'), inv-TInn(7t'r\.[es])r-It',es P(7t'r\.[es]) 

TI:ES+ 

2 fromx:ES 

2.1 from inv-TInn([x]) 

infer P([x]) 

infer inv-TInn([x]) => P([x]) 

3 fromx:ES,7tx :Es+,inv-TInn (7tx ) => P(7tx ) 

3.1 from inv-TInn(7tx r\. [x]) 

3.1.1 inv-TInn(7tx) 

3.1.2 7tx : TInn 

3.1.3 P(7tx) 

infer P(7tx r\. [x]) 

infer inv-TInn(7tx r\. [x]) 
4 inv-TInn(7t) => P(7t) 

5 inv-TInn(7t) 

infer P(7t) 

PROOF (ES-INDN) 

from 7t : TI rln ; 

hl,TInn 

sequent h2(2.h 1,2.h 1,2.I.h I) 

=>-1(2.1) 

Lemma I 

TInn ,3.h2,3.1.1 

=>-E(3.h3,3.1.1) 

sequent h3(3.hl,3.1.2,3.1.3,3.1.1) 

=>-1(3.1) 

TInn-indn( 1,2,3) 

hl,TInn 

=>-E(5.4) 

• 

s:ES,P(7t),s= {} r- P(7tr\.[{}]) 
es: ES, s': ES, P(7tr\. [s']), inv-TInn(7tr\. [s']), s' nes = {} r-es P(7tr\. [s' U es)])7t: TInn 

from s:ES,P(7t),s = {} 
infer P( 7t r\. [{ }]) sequent h2( I.h I,h 1,I.h3) 

2 from7tx ,es:ES,s':ES,s'nes= {},inv-TInn (7tx) => P(7tx) 

2.1 from inv-TInn(7tx r\. [S' Ues]) 

2.1.1 inv-TInn (7tx r\. [S']) 
2.1.2 7tx r\. [s'] : TInn 

2.1.3 P( 7tx r\. [s']) 

infer P(7tx r\. [s' U es]) 
infer inv-TIrtn (7tx r\. [s' Ues]) => P(7tx r\. [s' U es]) 

infer P(7t r\. [s]) 

The following lemmas where made use of: 

Lemma2(2.I.h I) 

TInn 

=>-E(2.h5) 

sequent h3(2.h2,2.h3,2.1.3,2.1.I,2.h4) 
=>-1(2.1 ) 

set-indn(l,2) 

• 
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1t:ES+ 

es:ES 

I Lemma! I inv-nr1n (1t r+[esj) 
inv-nnn (1t) 

1t:ES+ 

s:ES,es:ES 

snes= {} 

I I inv-n nn (1t r+[sUesj) 
. Lemma2. r+ 

inv-nnn (1t [s]) 

6.4 RTN Soundness argument 

Given the axiomatic schema for RTNs, we wish to show each axiom sound with respect to our SOS model. 

However, given the comprehensive presentation of the schema in Chapter 4, we show here only specific 

examples of this schema sound, specifically those generated by our running example. However, the exam­

ple specification does explore the more challenging side of the semantics. Therefore, for each axiom Ax I 

through Ax13 we propose its interpretation in terms of our SOS model (described in Section 6.2.2) and 

argue its soundness. 

Each axiom is phrased as a conjecture over 1t: nnn which are the results of each axiom under the semantic 

(interpretation) function M [], such that P{1t) must hold. We therefore must show, for each axiom it holds 

for all1t, i.e. V1t: nnn' P(1t). This implicit quantification is left assumed. Not every proof is shown in the 

body of the thesis, and the reader is referred instead to Appendix B for the complete rigorous proofs, and 

for the proofs of useful lemmas that we identify and use in the following arguments. 

6.4.1 Ax6 

We now show Ax6 sound with respect to our SOS model. We repeat the RTL definition ofAx6 from Section 

6.2.1.1 above: 

Alax6: Vi,j: Occ,t: Time·8(jB,i,t) => 3t\ : Time· t+/1 :S t\ :S t+UI 118{.I8,i,ll) 

We define -to aid presentation- the axiomatic specification as P{1t) which is the interpretation ofAx6 using 

the M [] semantic function: 

P(1t)~Vtl E inds1t·ls" E; 1t(tt)/\len1t?: tl +u => 3t2 E inds1t· .j$E;1t{t2) Al2:S tl +U 

Our approach is first to induct over the length of 1t, and for each step we can take from some configuration 

(nn, cr\, 1t1) we show the derived trace (1t2) satisfies our property P(1t2) by trace induction. 

Intuition for Ax6-Soundness :: Proof 6 

The form of P(1t) suggests a structure for a proof. Given that a state entry entry event Os) should cause 

a state event (.j$) within some time of the first, we are required to show that for the case ls" is recorded in 

104 



CHAPTER 6. A SOUNDNESS ARGUMENT FOR THE AXIOMATIC SEMANTICS 

X, some j,s event occurs also. The interesting case is when the deadline (len x n. lsI = II + II) is reached 

for this event. At this deadline (len x n. lsI = II + u), we must show that either the event (~) has occurred 

previously or does so in the final step. This is shown by Proof 7. 

PROOF (Ax6-s0UNDESS) 

fromrtn:RTN; 0:1:; x:llnn; II,U:NI; II Eindsx 

from es:ES, inv-llnn([esl) 

1.1 len res] = I 

1.2 len res] < II + U h4 

1.3 ls Ei [es)(ll) 1\ len res] ~ II + U => 312: Time· J.s Ei [esJ(12) 1\12::; II +u vac-=>-I(1.2) 

infer P([esl) folding 

2 from XI : llrtn; s: ES;P(xI); inv-ll(x\ n. [sl) 

2.1 lenxI n.[s] < II +U V lenxI n.[s] > II +uV lenxI n.[s] = II +11 V-I 

2.2 from len XI n. [s] < II + U 

infer P(XI n. [sl) =>-I-right-vac(2.2.h 1) 

2.3 from len XI n. lsI > II + II 

2.3.1 from J.s E s 

2.3.1.1 12 > len XI n. lsI 

2.3.1.2 12> II +u 

infer -'P(XI n. [sl) 

infer P(XI n. [sl) 

2.4 (rtn,ol,xI) ~ (02,XI n.[sl) 

2.5 from P(XI);(rtn,ol,X') ~ (02,XI n.[sJ); 

lenxI n. lsI = II + It; rs Ei XI (I.) 
infer P(XI n. [sl) 

infer P(XI n. [sl) 

infer "Ix : llrm . P( X) 

Intuition for Lemma3 :: Proof 7 

11,It:N; rtn:RTN; 01,02:1:; x:llrtn ; 

P(X); s:ES; (rtn,ol,X) ~ (02,Xn.[sl); 

3 II E inds x· rs Ei X(I.) 1\ len X n. lsI - II + It 

I Lemma31 n. [ ]) P(x s 

-, -=>- I(h5,2.3. 1.2) 

contradiction(2.3,2.3.1) 

unfolding(2.h3 ) 

Lemma3(2.5) 

V-E(2.1,2.2.2.3.2.5) 

llnn-indn( 1.2) 

• 

From the knowns, we must show that the exit state event Os) has either already occurred in XI (i.e. by 

hypothesis), or happens in the next RTN-step. We therefore show, by induction over the next steps that if 

the exit state events has not occurred, then it does so. Given more than one smalI-step can occur in each 

RTN-step, we prove this by induction on s. 

Given that some small-sleps have already been taken, recorded in s. then we show in the induction step that 

again. ~ has either occurred in s or does so in some .2..-step - namely the Ir-slSI step. 
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PROOF (LEMMA3) 

from tl,U: N; rtn: RTN; 0"1,0"2: L; 1t: TIrtn ; 

P(1t); s:ES; (rtn,O"I,1t) ~ (0"2, 1t f""\-[S]); 

3tl Einds1t· ts"E;1t(tl)Alen1tf""\-[s]=tl+U 

O:ES 
2 3tl E inds1t· ts" E; 1t(tI) 
3 3tl Einds1tf""\-[O]'ls"E;1tf""\-[O](tl) 

4 from3tl Einds1tf""\-[O]' lSE;1tf""\-[O](tdAlen1tf""\-[O]=t\+1I 

4.1 3IzEinds1t· J,s-E;1t(Iz) 

4.2 len1tf""\-[O] = succ(len1t) 

4.3 len1t < len1tf""\-[O] 

4.4 Iz ::; tl + II 
4.5 31z E inds1tf""\-[O]' j$E;1tf""\-[O](Iz) 

infer 31z E inds 1tf""\- [0]' j$ E; 1tf""\- [O](Iz) A Iz ::; tl + II 
5 3tl E inds1tf""\- [0]' ls E; 1tf""\- [O](tI) 1\ len1tf""\- [0]2 t.+ U 

=> 31z E inds1tf""\-[O]' J,s-E;1tf""\-[O](Iz)A1'2 ::;tl +11 

7 "itl E inds 1t f""\- [0]' ls E; 1t f""\- [0]( tI) A len 1t f""\- [0] 2 tl + II 
=> 3IzEinds1tf""\-[O]' J,s-E;1tf""\-[O](Iz)I\Iz<t'+lI 

S P(1tf""\- [0]) 
9 from es:ES; s' :ES; P(1tf""\-[s']);inv-TIrtn (1tf""\-[s']); s'nes = 0 

3tl E inds1tf""\-[s']· lSE;1tf""\-[s'](tl)Alen1tf""\-[s'] =tl +11 

9.1 (rtn,O"I,1tI) ~ (cr',es) 

9.2 j$ E es V J,qt es 

9.3 from j$ E es 
9.3.1 3tl E inds 1t1 . ls E; 1t1 (td 

9.3.2 ~ Iz E inds 1t1 . j$ E; 1t1 (Iz) A Iz 2 tl 
9.3.3 3 tl E inds 1t\ f""\- Is' u eS]·len 1t1 f""\- Is' u es] ::; tl + II 

let 1'1 = len 1t1 f""\- Is' U es] 

9.3.4 1'1::; tl +11 
9.3.5 j$ E; 1t1 f""\- Is' U es] (len 1t1 f""\- Is' U es]) 

9.3.6 31'1 E inds 1t1 f""\- Is' U es]· j$ E; 1tds' U es](t'1) 
infer 31'1 E inds 1t1 f""\- Is' U es]· J,s- E; 1t1 Is' U es] (1'1) A 1'1 ::; t\ + II 

9.4 from j$ ¢ es 

9.4.1 j$ E s' 
infer 3~ E inds1t1 f""\- Is' Ues]· J,s- E; 1tds' U es](~) 1\ 1'1::; tl + II 

infer 31'1 E inds 1t\ f""\- Is' U es]· j$ Ei 1tds' U es](t'1) A ~ ::; t\ + II 
10 3 tl E inds 1t f""\- [s']. ls E; 1t f""\- [S'](tl) A len 1t f""\- Is'] = tl + II => 

11 P(1tI f""\-[s'ues]) 

infer P(1t1 f""\- Is]) 

31'1 E inds 1t\ f""\- Is' U es]· j$ E; 1tds' U es](1'D 1\ 1'1 ::; tl + II 

ES-fonn 

3 -1\-E-right(hS) 

preserve(1,h4,h7.2) 

fi nd- j.s-(h 7 ,hS, \) 

len-f""\-( {},h4) 

n<succ(n)(4.2) 

rewriting(4.3,hS) 

preserve( l,h4,h7A.I) 

1\-1(4.5,4.4) 

=>-1(4.h 1.4) 

'1-1(5) 

folding(7) 

unfolding(9.h4) 

E-V-¢ 

3 -1\-E-right(hS) 

otherwise P(1t\) holds 

3-I\-E-left(hS) 

rewriting(9.3.3) 

rtn-step(9.1,9.3.h 1) 

3-1(1';,9.3.5) 

1\-1(9.3.6,9.3.4) 

hypothesis 

as 9.3 

v-E(9.2,9.3,9.4) 

=>-1(9.h6,9) 

folding( 1 0) 

ES-indn(S,11 ) 

• 
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The following lemmas have been used. 

It is obvious to see the length of a sequence, concatenated with a singleton sequence is the succent of the 

length of the sequence: 

~ a:A,s:A* 
~I-. -----::::-----.:-----

- lensf+ [a] = succ(lens) 

Assuming RTN steps only ever add events to a trace -which they do- then the occurrence of an event at 

time, to must occur for the same occurrence at to in the extended sequence. 

t,t',i:NI; rtn:RTN; 01,02:r.; 1t:TInn; e:Event; s:ES; 

(rtn,OI,1t) ~ (02, 1t f+[S]) 

3t E inds1t·e E; 1t(t) 
1 preserve-'" 1-1 ---------=-----=----.:,,;..-------
. . 31' E inds 1t f+ Is], e E; 1t f+ [s](t') 

The find- J,v lemma asserts that if the length of the next RTN step requires an event should occur to meet its 

deadline, then it must occur in this step. A RTN step is only complete only when all small-step rules that 

can fire, have done so. Further, the SOS rules state that a state exit event must occur before its deadline. 

Therefore, having shown our semantics sound, we conclude by contradiction this lemma is true. 

rtn:RTN; 0(,02:r.; 1t:TInn; t(,u,i:N(; 

(rtn,o(,1t) ~ (02,1tf+[S]); 

~ 3t( Einds1t· ~E;1t(tJ)/\len1tf+[s]=t(+u; J.s~s 
~ 3izinds1t· J.s E; 1t(iz) 

The rtn-step lemma asserts that if an event occurs in the current step, then it can be found at the end of this 

trace. This value, len 1t f+ [s] marks the next time increment from which the event will be visible. 

rtn: RTN; 0,0': r.; 1t: TIrtn ; e: Event; es: ES; 

(rtn,o,1t) ~ (o',es);e E es 
~---~-e~E~1t-f+~~-]~(le-n-1t-f+~[-s]-)----

Should there exist a time at which an event occurred, then it can be said there existed a previous configu­

ration from which a small-step rule generated the event. This holds true by the definition of the trace data 

type invariant. 

Ilemma41 , . S -I' ) 30',0' .r.. (rtn,o',1t(I, ... ,t)) --+ (u ,es /\e E es 

i,t:N(; 1t:TIrtn ; 

3t E inds1t· e E; 1t(t) 

Similarly, should the final associated operations to a dynamic state have been evaluated, then there exists a 

configuration change recording this state. 

rtn : RTN; 0,0' : r.; 1t: TInn; 

(rtn, 0, 1t) ~ (o',es) /\o'(a).status = INDS; 

letcs- o'(a).cs; o'(cs) # [] 
1 evai-ops 1 30": r.. (rtn, 0', 1t f+ [s U es]) ~ (0", 1t f+ [s U es, {}]) /\ 0" (cs) = [] 

PROOF (FIND- J,v) As an example, the proof ofjind- J.s is shown below: 
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from rtn:RTN; 0"1,0"2:E; 1t:nnn ; tl,u,i:NI; 

3tl Einds1t· tyEi1t(t!)t\len1t"'[O]=tl+U 

1 3tl E inds1t· ty Ei 1t(t!) 

2 3cr. ,cr'{: E,es: ES· (rtn,cr., 1t(I, ... , t()) 2.. (cr'{ ,es)t\ ty E es 

3 from cr. ,cr'{: E,es: ES; (rtn, cr., 1t(I, ... ,tl)) 2.. (cr'{,es)t\ ty E es 

3.1 (rtn,cr.,1t(I, ... ,t!)) 2.. (cr'{,es) 

let 1t' = 1t(I, ... , t!) 

3.3 (rtn,cr.,1t') 2.. (cr'{,es) 

3.4 ls E es 

3.5 2.. :tr-dySt 

3.6 cr'{(a).status = INOS 

3.7 cr'{(s) = [ ... ] 
infer (rtn,O"; ,1t') 2.. (cr'{, es) t\ cr'{ (a ).status = INOS 

4 (rtn,O";,1t') 2.. (O"~,es) t\O"'{(a).status = INOS 

6 3cr'{' : E, s' : ES· (rtn, cr'{, 1t' '" [s' U es]) ~ (cr'{', 1t' '" [s' U es, { }]) t\ 

cr'{'(s) = [] 
7 from O"~' : E, s' : E; 

7.1 

7.2 

7.3 

8 

(rtn, cr'{, 1t' '" [s' U es]) ~ (cr'{', 1t' '" [s' U es, 0]) t\ cr'{' (s) = [] 

cr'{'(a).status = INOS 

s = cr'{'( a) .es 

O"'{'(es) = [] 

lel1t" = 1t' '" [s' U es, { }] 

3-I\-E-right(h?) 

lemma2(h?) 

I\-E-right(3.h2) 

rewriting (3.1 ) 

I\-E-left{3.h2) 

which-rule(3.3.3A) 

conc-tr-dySI( 3.3.3.5) 

conc-tr-dySt(3.3.3.5) 

t\-1(3.3.3.6) 

3-E(2.3) 

eval-ops( 4) 

is-prem-dySt 

enter s (h5). not \eft yet 

is-prem-dySt 

conc-dySt(7.1.7.3) 

3-E(6.7) 

9 

infer (rtn, cr'{', 1t") 2.. (cr'{' t {a ...... mk_aetC,_, WAIT _TR)}, {}) 

(rtn, cr'{', 1t") 2.. (cr'{' t{a ...... mk_aetC,_, WAIT _ TR)}, { }) 

(rtn,cr'{' t {a ...... mk_aetC,_, WAIT _ TR)}, 1t" '" [s" U {}]) ~ (0"2, 1t" '" [s" U {}, {}]) RTN-Tick 

let 1t''' = 1t" '" [s" U {}, {}] 
10 3tr E RTN(a).sm.ts· (tr,0"2,1t''').!!.. true 

11 len 1t''' < tl + weet 

12 (rtn, 0"2, 1t''') 2.. (<iz,{ Js,ltr.trg}) 

must at least be one tr valid by wf-rtn 

13 (rtn,<iz,1t''''''[s'''U{ Js, 1tr.trg}]) ~ (cr';,1t'''''' [s'''u{ .].s, ltr.trg}.{}]) 

prem-tr-stSt 

conc-tr-stSl 

RTN-Tick 

let 1t2 = 1t''' '" [s" U { .].s, ltr.trg}, 0] 
let t2 = len 1t2 

14 Js Ei 1t2(t2) 

infer 3t2 E inds1t· Js Ei 1t(t2) 
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CHAPTER 6. A SOUNDNESS ARGUMENT FOR THE AXIOMATIC SEMANTICS 

6.5 Review 

The soundness proofs we have presented in this chapter are based upon existing techniques for operational 

semantics. We have presented a model space which our SOS semantics define and the axiomatic semantics 

should be sound with respect to. The level of rigour of the soundness proofs is sufficient to provide a 

convincing argument that the axiomatic semantics are sound. However, it is obvious to state that a formal 

proof would extend the evidence as would a mechanised proof in an automated proof assistant. such as 

Isabelle/HOL. 

The first attempt to formalise this style of approach was described in [CM92], which described a suite of 

HOL tools for the definition of a set of functions which took as an argument a list of formation rules and 

automatically proves the defining properties of the relation inductively defined by them. More precisely, 

this derived HOL inference rule builds a term that denotes the smallest relation closed under those rules. 

Nipkow [Nip98] formalised the opening loo-pages of [Win93] from which our approach in Section 6.2.3 

is based upon. This formalisation was undertaken using the IsabelleIHOL proof assistant. 

The structure and formal model underpinning our proofs is influenced by the work of [CM92, Nip98, 

Win93] such that we inductively define over the derivations our operational semantics. 

Once the reader is convinced by the validity of our induction arguments of the RTN semantics, then the 

proofs for each axiom follow quite easily. By providing such induction principles we have allowed for 

concentration at the primary task: to give a concise and constructive operational semantics for RTNs. This 

allows for clear presentation of the concurrent and interleaving model, and the fine detail of each RTN 

Action separately, to avoid undue confusion or mistake. 
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Chapter 7 

Showing enhancements via graph 

grammars 
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In this Chapter, we detail several design templates of classical fault tolerant strategies appropriate for 

RTNs and RTN-SL designs. Each template design is given as a RTN-SL design fragment and a graph 

grammar representation which provides for a mechanism to instantiate each template into a design. For 

each template we give an infomlal description and then specify the fault assumptions, or fallit hypothesis, 

made for each template. We attempt to follow [801"98] as closely as possible which has found acceptance 

in the UK Defence industry for designs of RTNs to provide a standard template structure which is familiar 

to designers and engineers. Additionally, we give RTL theorems and proofs of the fault tolerant propertie, 

of each template under the givcn fault hypothesis. It is hoped these can then be used in the verification 
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Events Fau lts Dynamic States Static States Activity 
1s earl y 

late 
value 

omit 
commit 

Js early Early DyEx il EariySITimeEx ir & 
EarlySIEvEx il 

late LaleDyEx il LaleSITimeEx ir & 
LaleSrEI'Ex ir 

value 

omit 

commit 
rds early Ea rlyRead 

late LareRead LareAclRead 

value ReadValli e 

omit OmilRead 

commit 

wds earl y Early Wrile 

late Late Wrile 

va lue WrireVa llle 

omit Omil Wrire 

commit 

progress Crash Crash 

Table 7 . 1: Faults prev iously considered in Chapter 2 

of des igns, such that these theorems tate the given functi onality of the component the template replace. 

when considerin g the fau lt-hypothesis. 

We repeat Table 4.2 from Chapter 2 which illustrated the fa ult cia es we consider for RT s. The repeated 

table in Table 7. 1 illustrates the coverage of the proposed templates for the fault con idered. 

Some templ ates seem very compli cated for little reward . Thi s is part ly due to the design n Lation and the 

RTN architecture, which - for example- makes exp licit each communicati on path. For some templates. 

the graph grammar presentati on i straightforward , however the specificati on and semantics are more in ­

tricate, altern ative ly, those graph grammar presentati ons which seem overl y compli ca ted do have a more 

strai ghtforward and si mpl istic semantic description. 

In Chapter 3, we proposed to use graph grammars as our transform ati onal methodology which replaces 

a component in a design wi th another - template of- component(s) that achieves some degree of fa ult 

tolerance. Given thi s template has been the runnin g example throughout the earlier chapters -e pecially 

Chapter 3- we conclude th at example in Secti ons 7.1.2.7. 1.3 & 7.1.4 \ hich details the fa ult-hypothesi 

RTL fornl ulas and proofs of, the fault tolerant properties thi s templ ate provide. 
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7.1 Passive State Replication Template 

7.1.1 Description 

The first template we consider is termed passive state replication (PSR). Though this template seems 

straightforward (given that activities in RTNs are sequential) it represents the extent of replication pos­

sible at the activity level. However, this template provides for several fault tolerant masking solutions 

to a broad array of faults. This replication strategy offers timing and omission tolerance internally to an 

activity. This is achieved by using the extended RTN-SL language to specify fault transitions in a state­

machine specification. For passive state replication and a fault hypothesis of timing and omission faults, we 

specify transitions for late, early and omission events either for ports (read/write/stirn) or state-transitions 

(entry/exit) actions. This template, in its current -intentional- generic format can tolerate: 

• Late reads at port, pA; 

• Omission faults at port, pA 

We clarify the range of faults the PSR template tolerates with respect to the context a transformation is 

proposed for. For the example shown in Figure 7.1, the dynamic state we propose to transform reads an 

input and writes a result. It is a requirement that the transformation -at is neighbourhood- maintains this 

context and is therefore interface preserving. 

7.1.2 Transformation 

Graph Grammar Representation 

Four permutations can exist for the passive state replication template. We elect to describe the case that 

the existing component reads and writes an input/output respectively. The other cases are that a component 

only reads an input; only writes an output; or does neither. The case we have chosen covers three of the 

four cases so is ideal to describe concisely the detail. 

Given the original component reads and writes the template must similarly do so. Again, permutations of 

the permutations could be laboured here, given the various choices (Pool, Signal, Channel or Constant) of 

each data port. However, we elect to describe the case that the input port is a channel and the output be a 

pool to highlight the issues the protocols raise. 

The characteristics of an incoming channel and an outward pool are that the reader may be held up whereas 

the writer has no such restriction. In addition to the protocol blocking a reader, a read action would also 

consume the data which is an important consideration for the PSR template. These characteristics motivate 

two design choices for the template: 

• Replica's rpJ & rp2 must speculatively read, replica rp3 -as originally did- reads normally); 

• Only one replica will succeed in writing to the port as only one replica can succeed 
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C={ 
(sm,OI ,c*,1pI,c*, IN) 

(SI_SI,OI ,c*,1p1 ,c*, IN) 

(dYsl,OI,c*,1p1 ,c*, IN) 

(sm,OI ,C*, {1pI,1p2,1p3},c*,OUT) 
(scsl,OI,c*, {1pI, 1p2, 1p3},c*, OUT) 

(dy_SI,OI ,C*, {1p1 ,1p2,1p3},c*, OUT) 

Figure 7.1: Template #1 - Passive state replication 

The embedding relation (c) in Figure 7.1 specifies how the neighbourhood of the parent in the host graph 

is re-linked to the daughter in the rest graph. Here, we have used some notational freehand to say that, on 

the incoming arcs, each node connected to 01 in the parent graph should be connected to rp 1 with the same 

label. The context graph B (the second graph in Figure 7.1) specifies how the daughter graph is connected 

to the context graph A of the mother (the first graph in Figure7.l ). 

Fault Hypothesis 

Given the specification for a late write fault related to the input at pA, the initial fault may have been either 

the input (at pA) or the computation within the dynamic state to generate the output to pB. However, as no 

mention is made in the fault hypothesis of any fault at pA, we must therefore examine that a dynamic state, 

given a timely input, fails to produce its output timely. 

A fault that causes a component to produce the expected value for a given nonempty input sequence too 

late will be termed a late timing fault, which in RTL can be defined as: 

LATE_FAULT: Event x Occ x IntervaL -+ B 

LATEJAULT(e, i,l) !=. 
3t': Time·t' 2:: 1.11 1\ 8(e,i,t') 

The basic RTL formula states that an event, e occurs for some occurence, i at some time, t. Th LATE_FAULT 

formula states that an event (e) occurs for the of the interval (I). This auxiliary function (and the fault axiom 

stated below) are discussed further in Section 4.2 when the Real-Time Logic (RTL) is introduced. The aim 

of the auxiliary function is to state the characteristics of the specific fault (Similar functions are defined 

for Early, Omit and Commit faults) so that the fault axioms can clearly identify the observable interval an 

event should occur within. 

I The default read action normnlly is a destructive read which may be held-up. 
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Specific to our example a late write at port p4, in RTL, is specified to identify the time the read event 

occured (for the same occurence) and that the write event occurs later than some deadline (X). 

LateWrite(p4, i, t) ~ 

3t': TIme· I :::; t /\ e(Rp\,i,l) /\ 

LATE]AULT(Wp4,i, [I,t' + X]) 

An alternative definition may have been to relate the write event to another event. Such causal relationships 

are supported by the RTN-SL semantics, where -for example- the link axioms state: 

'v't:TIme·(3i:Occ·e(Wp4,i,t)) # 3j:occ·e(JnU,j,t) 

This casual relationship is used later for our reasoning. We therefore consider late exit faults in our reason­

ing. 

RTN-SL Design Fragment 

The RTN-SL specification of the template is shown below. We highlight the specification details with 

regards the incoming port (PA) and the fault transitions between replica's. 

The transformation necessitates we read speculatively from pA at replica's rpl and rp2 to guarantee the 

same value is available for the subsequent replicas should one fail. This necessitates the protocol at pA 

be changed from a normal one to a speculative one on the readers side. This does not however break the 

interface requirement that the interface remain constant as we only propose changing the readers side. We 

are however required to show the blocking and destructive behaviour is retained by the transformation. 

Should replica's rp I or rp2 succeed, then we must destructively read from pA before the next occurrence 

of entering rp I. Given pA is speculative, no wait state (static state) is required and we know we can read 

from pA if rp 1 has succeeded (and no omission fault at pA has occurred), we therefore perform ajlllsh type 

operation to pA where we (destructively) read a value and simply perform no computation. 

The essence of the PSR template are its fault transitions specifications. The template states that should a 

late write fault be observed at rpl then the RTN should transition to rp2, similarly that rp2 should transition 

to rp3. However, the assumption at most two of the replica's will fail prohibits rp3 from failing, therefore 

only a successful transition exists from rp3. Given the fault must occur within the dynamic state, we specify 

the fault transition as an exit transition. However, should a fault not occur then condition c2 must hold and 

therefore a timely write is made to pB. We note that only one write can occur to p8 for each occurrence 

that we enter rp 1. 
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--Q\ 

adt dtl is 
type A is token; 
type B is token; 

end adt; 

activity temp! is 
with dtl i 

ports 

Thesis-temp1.rtnsl 

pA : (Channel, dtl.A, in, SPECULATIVE); 
pB : (Pool, dt1.S, out); 

end ports; 

auxiliary definitions 
constant I_rpl : Time; 
constant 1_rp2 : Time; 
constant 1_rp3 : Time; 
constant weet_rpl : Time; 
constant wcet_rp2 : Time; 
constant wcetJp3 : Time; 
constant u_rpl : Time; 
constant u_rp2 : Time; 
constant u_rp3 : Time; 

end auxiliary definitions; 

operations 
op foo (input mise. A) ; 

pre true; 
post true; 

end 0Pi 

op fooJpl <input_rpl misc.A) output_rpl mise.S; 
pre true; 
post true; 

end op; 

op foo_rp2 Cinput_rp2 misc.A) output_rp2 mise.S; 
pre true; 
poat true; 

end op; 

op foo_rp3 (input_rp3 mise .A) output_rp3 mise. B; 
pre true; 
post true; 

end op; 
end Opel' at ions; 

~;t dtf~:J 

dynami~ Ipl 
np too_I'pl peep:] from pA WI'itE"3 to pSi 
t i~,ing [1_I'pl, wcet_I'pl, u_rplJ; 
rl -> tldn3iti()n goes to rp2; 
tr~nuition goes to flush on c2; 

"i1d stolt e; 

dY:1d:Ti,' tp2 
op t{hl_t pI peeps from pA writes to pB; 
t 1m i rhJ [1_I p~, w"t-~t_I-P,~, u_rp2) ; 
Fl.· tld:1sitio:1 goes to rp2; 
tI.lfwition goes t" flush 0:1 c2; 

... nd state; 

dyrl,l:;',i,' q' \ 
('p flll' lpl [t:-',ld~l tt0:1', pA 10.'1 ite~, to pB, 
ti,.i:lq Il_lpl,wcet_lp3,u_rp3]; 
t[.l:\:iitio:I q083 to flunll on ~2; 

I-'",j stolt Pi 

01\':1,"" iI' ! 1\1:,11 
'Ji' t "(l reads t I ();- pAl 
ti;i:\ll [l,w,'~t,\I1; 

'l",:\~1it 1,):1 '11)1-':': t{' rpi on tIUt:'; 

end state; 

initial rpl; 
end states; 

end activity; 

rtn templ is 
end rtn; 

theory 

Theorem : THEOREM 

Thesls-temp1.rtnsl 

FORALL (input: dtl.a, output: dtl.b): 

end; 

pre_foo(input) AND post_foo(input,outputl IMPLIES 
(pre_foo_rpl(input) AND post_foo_rpl(input,output) AND 
pre_foo_rp2 (input) AND post_foo_rp2 (input, output) AND 
pre_foo_rp3(input) AND post_foo_rp3(input,output)) 

g 
> 

~ 
;-I 

t'Il 

== 
~ 
Z 
~ 

~ 
== 
~ 

i 
~ 
~ 

~ 
== 

i 
~ 
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7.1.3 Design 

This section concludes the fonnal reasoning of the running example which began in Chapter 3. We have 

seen above the transfonnation proposed and its specification to tolerate the fault hypothesis identified. 

Below we give the modified semantics (instantiated from nf) from that given in [PAHoo]. We have retained 

the same naming convention (except that our activities are named A and B instead of A 1 and A2 respectively) 

to illustrate the changes. 

The example introduced in Chapter 3 was the faulty behaviour of a single dynamic state that was hypothe­

sised to potentially write late. We then illustrated how the passive state replication template can be applied 

to the host design to tolerate this behaviour. The template design essentially replaced a single dynamic 

state with an arrangement of three replica's. The template allows for -at most- two faults which define the 

state-machine transitions within the template, and therefore activity. The generated semantics differ from 

the original at the interface between the components, for example, the state-machine transition target states 

are now the replicas. Within the template, the transitions are dependant on the replicas' behaviour. 

The modified theory for activity B is now: 

B2_D: Vi: Occ, t: Time· 8(.\D, i, t) => 
8 (TE'_rp I, i, t) 

B3_E' _rpl: Vi,k: Occ,t: Time· 8(lf'Jpl,i,t) => 
((LATE_FAULT(lf'Jpl,i, [t-rpl_u,t-rpU]) /\ 

3j:Occ·8(TE'JP2j,t)) V 

(, FAULT /\ <I>(true,k, t) /\ 8(jD, i + I, t))) 

B3_E'_rp2: Vi,k: Occ,t: Time·8(lf'Jp2,i,t) => 
((LATE_FAULT(lf' Jp2, i, [t-rp2_u, t-rp2_1]) /\ 

3j: Occ· 8(TE' JP3j,t)) V 

(,FAULT /\ <I>(true,k, t) /\ 3j: Occ· 8(lD + I ,j, t))) 

B3_E'_rp3: Vi,k: Occ,t: Time· 8(lf'Jp3,i,t) => 
,FAULT /\ <I>(true,k, t) /\ 3j: Occ· 8(lD + I,j,t) 

B4_D: Vi,j: Occ, t: Time· 8(lD, i, t) => 
(i=OV 

((i> 1/\(8(lf'_rpl,j,t) V 

8(lf'Jp2,j,t) V 

8(lf' JP3,j, t)) 

)) 

B5_D: Vi: Occ,t: Time· 8(jE'Jpl ,i,t) => 
8(.\D,i,t) 

B6_E' _rpl: Vi: Occ, t: Time· 8(jE'_rp 1, i, t) => 
((31': Time· t+ 12 ~ I' ~ t+ u2/\ 8 (If'Jp1 , i, 1')) V 

(LATE_FAULT(lf'Jpl,i, [t+rpU,t+rp1uj/\ 

31" : Time· 1" > t + rp Ut/\ 8( JE'_rp 1, i, 1"))) 
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B6_E'_rp2: Vi: Occ,t: TIme·0(fE'_rp2,i,t) =? 

((31: Time· t+12 ~ I ~ t+u2/\0(jE'_rp2,i,I)) V 

LATE_FAULT(jE'_rp2, i, [t + rp2_1, t + rp2_u]/\ 

31': Time· I' > t + rp2_u /\ 0(JE' _rp2,;,I'))) 

B6_E' _rp3: Vi: Occ,t: Time· 0(fE'_rp3,i,t) =? 

(31: Time· 1+ 12 ~ I ~ t+u2/\0(JE' _rp3,i,l) 

B9_E'_rpl: Vi: Occ,t: Time· 0(jE'_rpl ,i,t) =? 

((31: Time· t+ rpl_1 ~ I ~ t+ rpl_u /\ 0(fE'_rpl,;,I)) V 

LATEJAULT(jE'_rpl ,i, [t-rpl_u, t-rpl_~)) 

B9_E'_rp2: Vi: Occ,t: Time· 0(jE'Jp2,i,t) =? 

((31: Time· t+ rp2_1 ~ I ~ t + rp2_lt /\ 0(lE'_rp2, i, I)) V 

LATEJAULT(jE' Jp2, i, [t-rp2_u, t-rp2_~)) 

B9_E'_rp3: Vi: Occ,t: Time· 0(jE'Jp3,i,t) =? 

(31: TIme·t+rp3_1 ~ I ~ t+rp3_lt/\0{lE'_rp3,i,l) 

7.1.4 Rigorous Proof 

The original presentation of our example in [PAHoo] gave two proofs to show the end-to-end specifications 

are satisfied by the design. We now investigate proving the same theorems to show the transformed -more 

fault tolerant- design satisfies the specification under the assumed fault hypothesis and assumption that 

at most only two components can fail. We proceed to suggest a modification to the proofs that retain the 

original structure, which is desired of our transformational design methodology. 

The two theorems we wish to prove are Theorem 3.1 and Theorem 3.2. Theorem 3.1 crucially depended 

on a lemma that activity B steps: given an input to p3 an output is produced to p4 within the specified time 

bounds. This is specified in Lemma 7.1. The original proof of this lemma showed that entering state E on 

the Rp3 event meant leaving the state timely. We are therefore required to show an equivalent lemma holds 

for the template specification which is specified in Lemma 7.2. 

Lemma 7.2 (Temp2Steps) Vi: Occ,tl : TIme· 0(fE',i,tI} =} 3t2: TIme· 0(lD,i + 1,(2) I\tl + X ~ 12 

Note, Lemma 7.2 asserts entering state D (lD) for the next occurrence rather than leaving state E( lE), but 

it is clear from the semantics these are equivalent. 

PROOF Informally, Lemma 7.2 can be seen to hold by realising that an output must have occurred if 

Activity B enters state D for the next occurrence, which in tum can only occur if E' is entered because of an 

attempt to read data from the channel. As state D is entered for the next occurrence then at most only two 

faults could have occurred; if only one fault had occurred, then the exit from rpl would have transitioned 

to rp2 which must have succeeded and transitioned, in tum, to state D; if two faults had occurred then 

rp2 would have transitioned similarly to rp3 then in tum to state D; if no faults occurred then rpJ would 

transition similarly to state D again. 
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from Activity B Theory 

I from i: Occ,t2: Time, 9(jD, i, t2} 

1.1 9(jE'_rpl,i,t2} 

2 

2.2 

3 

4 

4.1 

4.2 

4.3 

4.4 

5 

6 

6.1 

6.2 

7 

8 

from LATE_FAULT(jE'_rpl,i, [t2 + E'_rpU, 12 + E _rpl_u]) 

9 (jE'_rp I , i,t3} At3 > t2 + E'_rpl_u 

9(jE'JP2,j,13} 

from LATEJAULT(jE'_rp2,j, [13 + E' _rp2_1, 13 + E'_rp2_1]) 

9 (jE'_rp2,j, 14} 1\ 14> 13 + E'_rp2_u 

9(TE'JP3,k,14} 

9(jE'Jp3,k, 15} At4 + E'_rp3_u ~ 15 ~ (4 + E'_rp3_1 

9(TD,i+ 1,t5) 

infer LATE_FAULT(jE'_rp2,j, [13 + E'_rp2_1,13 + E'Jp2_"]) => 

315: Time· 9(TD,i+ 1,15} At4+ E'Jp3_" ~ 15 ~ 14 + E'_rp3_1 

from -,LATE_FAULT(jE'_rp2,j, [13 + E'_rp2_1,t3 + E'_rp2_II]) 

9(jE'JP2,j,16} 1\13 + E'_rp2_u ~ 16 ~ 13 +E'_rp2_1 

9(TD, i + I, 16} 

infer -,LATE_FAULT(jE'JP2,j, [13 + E'Jp2_1,13 + E'_rp2_"]) => 

316: Time· 9(TD,i + 1,16} At3 + E'Jp2_u ~ (6 ~ 13 + E'_rp2_1 

9(jD,i+ 1,f7}At7 ~ 16 ~ 15 

to infer LATEJAULT(lE'_rpl, i, [12 + E'_1,12 + E'_u]) => 
317 : Time· 9( jD, i + I, 16} 1\ 17 ~ 16 ~ 15 

II 

11.1 

I\,2 

from -,LATE_FAULT(lE'_rpl,i, [12 + E'_rpU,12 + E'_rpl_"]) 

9 (jE'JP I , i,lg} At2 + E'Jpl_u ~ 19 ~ 12 +E'_rpU 

9(lD, i + I, 19} 

12 

13 

infer -,LATE_FAULT(lE'JPI,i, [12 + E'_rpl_I,12 + E'Jpl_"]) => 
31g: Time· 9(TD,i + 1,1g} At2 + E'Jpl_" ~ 19 ~ 12 + E'_rpl_l 

9(jD,i + I ,19} At9 ~ 17 ~ 19 

14 infer 9(lE',i,12} => 319 :TIme·9(TD,i+ 1,19} At2 + MAX ~ 19 

infer Vi: Occ, 12: Time· 9(lE', i, 12} => 
319: Time· 9(TD,i + 1,19} 1\12 + MAX ~ 19 

B2_0(1) 

AI 

B6_E' _rp I (l.l) 

B3_E'_rpl(2.2) 

AI 

B6_E' _rp2(3,4) 

B3_E'_rp2(4.1.4) 

B6_E'_rp3(4.2Al 

B3_E'_rp3(4.3,4) 

3 -intro(4.4) 

B6_E' _rp2(3,6) 

B3_E'_rp2(6.I,6) 

3-intto(6.2) 

V-E(5,7) 

3-intto(8) 

B6_E'_rpl(l.l,1 \) 

B3_E'_rpl(1.2,11) 

3-intto(l\.2) 

V-E(IO,12) 

3-into(I4) 

'i-intto(l4) 

• 

The essence of the proof was in establishing the conjecture that from leaving state D for the i1h occurrence, 

there exists a time later that we enter state D for the i + 11h occurrence. We proved this conjecture in the 

presence of faults, which therefore necessitated we consider the disjunction that a fault does, or does not, 

occur at each replica (though the assumption is the third replica cannot fail). 
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c={ (ida,Ol,rd*,ml,rd*,<in». 
(ida,Ol, we*, vi, we*, < OUI >)} 

Figure 7.2: Template #2 - Triple Modular Redundancy 

7.2 Triple Modular Redundant Template 

The second template we consider for RTNs is termed Triple Modular Redundancy (TMR). This strategy 

employs three concurrent replicas to each calcu late an output given identical inputs. Each replica is passed 

the input to the parent node from a multicaster which it then processes. Each replica then writes its result to 

a voter which tests for consensus of the outputs. At least two outputs must agree. This template therefore 

provides for value, timing and omission (or crash) tolerance. Permutation of this template are discussed in 

Section 7.2.4. 

7.2.1 Transformation 

Figure 7.2 illustrates the graph grammar presentation which shows, in the context of one input path and 

one output path, the fcact (i.e. the activity to replicate) is replaced by an arrangement of the three replicas 

and the mentioned multicaster and voter. It is the multicaster and voter that read, and write to, the original 

input and output paths, respectively. This presumes the interface requirement, that no affect resonates to 

the surrounding network. Interestingly, the nature of the input and output protocols effects the design of 

the multi caster and voter components2• 

Although a context (graph) for the parent graph is specified for this template, no context (graph) is required 

for the daughter graph. Simply, the embedding relation (c) states that the IDA which theft_act node reads 

from is read by the multicaster (mI) node, similarly the IDA theft_act write to is written to by the voter 

(vI) node. 

2 It is feasible that graph grammar transfonnations can allow for the pennutations of protocols by describing transfonnation, for 
multicaster and voter components in the various contexts of input and output paths. These transfonnations however are not described 
here. 
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Thesis-temp2.rtnsl 
adt dtl is 

type Tl is token; 
e!1d adtj 

activity ml is 
with dtl; 

ports 
pA : (Channel, dtl. TI, in); 
pS' : (Channel, dtl.TI , out, SPECULATIVE); 
pS' I : (Channel, dtl. TI, out, SPECULATIVE); 
pS' I' : (Channel, dtl. TI, out, SPECULATIVE); 

end ports} 

local state 
msg : dt1.Tl; 

end local state; 

operations 
op multicast_data () processed dtl.T1; 
ext read mag; 

pre true; 
post processed - msg-; 

end 0Pi 

op read_data (raw dtl.Tl)} 
ext write magi 
pre true; 
post mag - raw; 

end op; 

end operations; 

~;tdteG 

static stateA 
transition goes to stateS on read pAi 

end state; 

dynamic states 
op read_data reads from pAl 
timing (0,0,0]; 
transition goes to stateC' on true; 

end :Jtatei 

dynarr.ic stateC' 
np multicd!3t_d...tta writes to 
ti~.ioq {0,0,01; 
write failut~ -> tlan3ition goes 
write success -> transition goes 

.... 1d state; 

dynamic stateC" 
op multicast_data writ~:3 to 
timing (O,O,O); 
w(it.~ failull-' transition goes 
wlit~ success -> transition goes 

t:ond !ltate; 

dyn,l.~.ic 3t.1tf'Jr'" 
np multirast_d.lta WI ites to 
ti~ing [0,0,0]; 

pB' ; 

to stateC" on true; 
to stateC" on trup.; 

pS" ; 

to stateC'" on true; 
to stateC' r, on true; 

pB'" ; 

wIlte Llil\1l1-' tld:l:..<ltil':1 qoe~:; to ~;L\teA on tlue; 
Wtit~ success -~ tld:lsit 10:1 goes to stAteA on true; 

end Dt ,\tf'; 

~ I "'I<i l::~~,;:~:~; nLltpAI 

":111 ,\,'t iVlt y; 

.\ "f l". tty vi ia 
.... I t ~ \ I t 1 , 

Thesis-temp2.rtnsl 

ports 
pl (Pool, dtl. Tl, inl 
p2 {Pool, dtl. Tl, inl 
p3 (Pool, dtl. Tl, in) 
p4 {Pool, dtl. Tl, out 

end ports; 

local state 
msg-pl : dtl. Tl; 
mS9-p2 : dtl.T1i 
msg-p3 : dtl. Tl; 
consensus : bool; 

end local state; 

operations 
op vote () processed: dtl. TI; 
ext read mS9.....,pl, msg.....,p2; 
pre true; 
post (ms9.....,plams9.....,p2 implies processed - mS9-pl- and consensus-true) or 

(msg.....,pl-msg-p3 implies processed - mS9.....,p1- and consensus-true) or 
(ms9.....,p2-msg.....,p3 implies processed - mS9.....,p2- and consensus-true); 

end op; 

op read_data (raw: dtl.TI); 
ext write mS9.....,pl; 
pre true; 
post mS9.....,pl - raw; 

end op; 

end operations; 

states 
dynamic stateA 

op read_data reads from pl; 
op read_data reads from p2; 
op read_data reads frorr. p3; 
timing [O,O,OJ; 
transition goes to stateV on true; 

end state; 

dynamic stateV 
op vote writes to p4; 
timing (0,0,0]; 
transition goes to stateA on consensus - true; 
transition goes to stateT on CO:lSo:o:lSUS - false; 

end state; 

static stateT 
end state; 

initial stateA; 
end states; 

end activity; 

acti'Jit~' rpl is 
with dt1; 

put t:J 
pl : (Channel. dtl.Tl, in); 
p2 : (Pool, dtl.Tl, .)ut)1 

end ports; 

operations 
op too (l :lpUt 

pre tru~; 
post tru~; 

end OPI 
end operat ions; 

states 

·tt 1. Tl' .J'JtI_ut dtl.Tl; 
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Thesis-temp2.rtnsl 
static stateA 

transition goes to stateS on read pI; 
end state; 

dynamic stateS 
op foo reads from pI writes to p2; 
timing (0,0,0); 
transition goes to stateA on true; 

end state; 

initial stateAi 
end states; 

end activity i 

activity rp2 is 
with dtl; 

ports 
pI : (Channel, dtl. T1, in); 
p2 : (Pool, dtl. T1, Qut); 

end ports; 

operations 
op faa (input 

pre true; 
post true; 

end 0Pi 

dtl.Tl) output dtl.Tl; 

end operations; 

states 
static stateA 

transition goes to stateB on read pI; 
end state; 

dynamic stateS 
op faa reads from pI writes to p2; 
timing [O,O,OJ; 
transition goes to stateA on true; 

end state; 

initial stateAi 
end states; 

f,!nd ;)ctivity; 

activity rp3 io 
with dtl; 

POt t ~l 

pI : (Channel, dtl.Tl, in); 
p2 : (Pool, dtl.Tl, out)1 

e:ld pOt-t~1; 

')P,~t ,it ion:3 
op too (l:Jpllt 

pr .... t 1 ue; 
post t ruf'; 

e:1d op; 

tit 1 . TI) output dt I. TI; 

end npPl ,\t 10:1:.'1; 

!It,,tp~ 

!,t,)t l" :It,lt+-'A 
tl~:l~ltll):1 goes to stateS on I.-ad pl; 

p:1d c;t.lt ... ; 

dy:',l;-l~' sta.teB 
l)l' fl),) 1f'~Hj~l ttl":- 1-'1 WI itl":3 to p..'; 
t i'~ i!'lq (0, ('I, n 1 ; 
tL\'\:litil':1 q,)t>:; to ,,;,[,'It ... A ,"!'l tlu • .-·; 

.. :\,1 ::t "lei 

initial stateA; 
end states; 

end activity; 

ida ml_ida is 
Kind SPECULATIVE Channel; 
Datatype dtl.Tl; 

end ida; 

ida m2_ida is 
Kind SPECULATIVE Channel; 
Datatype dtl. Tl; 

end ida; 

ida m3_ida is 
Kind SPECULATIVE Channel; 
Datatype dtl.Tl; 

end ida; 

ida vI_ida is 
Kind Pool; 
Datatype dtl. Tl; 

end ida; 

ida v2_ida is 
Kind Pool; 
Datatype dt 1. TI; 

end ida; 

ida v3_ida is 
Kind Pool; 
Datatype dt 1. TI; 

end ida; 

rtn tempI is 
ml.pS' writes to ml_ida; 
ml.pS/ writes to m2_ida; 
ml.pB" I writes to m3_ida; 
rpl.pl reads frorr, ""I_ida; 
rpl.p2 writes to vI_ida; 
rp2.pl reads from m2_ida: 
rp2.p2 writes to v2_ida; 
rp3,pI reads fro~ m3_ida; 
rp3.p2 writes to v3_ida; 
vI.pl reads {rorr. VI_ida; 
vl.p2 reads fro:- v2_ida; 
vl,p3 r~ads from v3_ida; 

end rt:li 

theory 

end; 

Thesis-temp2.rtnsl 
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CHAPTER 7. SHOWING ENHANCEMENTS VIA GRAPH GRAMMARS 

Fault Hypothesis 

Again, from the RTL definition of faults for RTNs in Section 4.2, we can define a value and crash fault 

(specified in RTL) as: 

WriteValue(p,i,t)~ 

31: TIme· 1< t /\ 8(~,i,l) /\ 8(J,s, i,t) /\ 

pre_(s.in-p(I) , 'v (I)) /\ 

--,posc(s.in-p(I), 'v(I), v(t),s.out-p(t)) 

The second fault hypothesis we consider for the template is a crash fault, but as stated in Section 4.2.1.2 we 

map activity faults to their state-machine counterparts. Therefore, the abstract definition of a crash activity 

fault is: 

Crash(s, i, t)~ 

3 I: TIme· 8(ls', i, I) /\ 

OMIT(J,s,i, [I + s.bcet, t)) /\ 

OMIT(ls, i + I, [I + s.bcet, t)) 

which in tum is specified as: 

[is_Activity(act) J 

CrashAct(act, i, t)~ 

3s E act.SM.states· Crash(s,i,t) 

We consider both these definitions as our fault hypotheses when reasoning about this template. 

Axiomatic Semantics 

The axiomatic semantics that define this template are generated by the NetSpec tool for the specification 

given above. Examples of the semantics generated for a TMR template can be found in Chapter 8 when 

this template is used in the case study. 

7.2.3 Rigorous Proof 

The theorems we wish to show of this template, which will be used when reasoning about the fault tolerant 

properties of this template are that which state the liveliness of the template and the behaviour of the voter 

component. 

Lemma 7.3 (TMR-Liveliness) Vi: Occ,tl : TIme· 8(RpA,i,tl) =} 

3t2 : TIme· t2 ~ tl +u/\8(Wp4,i,t2) 

Lemma 7.4 (TMR-Value) Vi:Occ,t: TIme·8(rd-pA ,i,t) =} 

31: TIme· I > t/\8(we-p4,i,l) 

Informally, Lemma 7.4 states that an output should be produced, for each value read by the multicaster 

component, by the voter. For a value to be written as output from the voter, it must agree with at least one 

other value produced by a replica as specified in the specification. We therefore define this vallie domain 

fault in terms of observable events. 
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PROOF (PROOF OF LEMMA 7.4) 

from Assumptions, ActivityTheorems, LinkandChannelAxioms 

1 from i: Occ,tl: Time,0(rdJJA,i,tl) 

1.1 o (we_m1 ,pB',t6); o (we_m1 ,pB",t7 ); o (we_m 1 ,pBIII
, t8) 

1.2 0(weJPl.p2, i,t3) 

1.3 0(weJP2.p2,i,t4) 

1.4 0( weJP3.p2, i, t5) 

1.5 0(rd_v l.p1 ,i, t3) 1\ 0(rd_vl.p2, i,(4) 1\ 0(rd_vl.p3, i, t5) 

1.5 0(weJJ4,i,t2)At2 > tl 
infer 3t2: Time· t2 > tl 1\ 0(weJJ4, i,t2) 

2 0(rdJJA,i,tJ) => 3t2:Time·t2>tI1\0(weJJ4,i,t2) 

infer Vi: Occ, tl : Time· o (rdJJA , i,tJ) => 3t2: Time· t2 > tl 1\ 0(weJJ4, i, t2) 

7.2.4 Permutations 

3-1(1.5) 

=?-1(1 ) 

V-1(2) 

• 

In this section we have illustrated only one pennutation of the TMR strategy. Several characteristics define 

a pennutation, notably the protocol characteristics (blocking or destructive read and writes) at the input and 

output ports. 

The pennutations are detennined by the communication paths (IDAs) and their associated protocols of the 

incoming and outward IDAs as specified in the context graph. For example, if an activity reads from a 

channel protocol (as in the template above) then the three active replicas must all receive the same value 

(at the same time) to concurrently execute the replicated design to -hopefully- produce agreeable results. 

However, a channel protocol states a reader is 

• blocked should no data be available to the read; and 

• any read operation is destructive. 

Therefore, each replica could not read from the same IDA (should it be possible 3
) and be guaranteed the 

same result (we do not wish that the writer to the IDA must write its value three times as this then extends 

the templates neighbourhood - a requirement we state should not occur of our transfonnational method). 

Therefore, we must use additional components, such as mlliticaster (and later voters) to read from IDAs 

and communicate to each replica the value read (similarly, a voter reads each result and writes the agreed 

result to the original IDA). Furthennore, the design of a multicaster and voter is dictated by the protocol. 

The effect to the design of multicasters and voters is complicated, as mentioned, by the protocols. There­

fore, when a multicaster reads from a channel, it must first record this value to its local state then write 

the value to each replica. The protocol we associate with this intennediate IDA -between multi caster and 

3 RTN-SL version 3.1 prohibits multiple readers and writes at IDAs 
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replica- must be the same as the multicaster reads from to preserve the stimulate behaviour to fire each 

replica in sync. 

Fortunately, our approach in using graph grammars to describe and -more importantly- control the trans­

formation, we can specify each permutation of the multicaster and voter components and the context they 

are applicable in. Furthermore, we can then specify the TMR template with non-terminal voter and multi­

caster nodes. 
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ft act 

01 
read ACT write 

02 

Figure 7.3: Template #3 - A Watchdog Timer 

7.3 Watchdog Timer Template 

The watchdog timer template is a simple arrangement of a single activity which has a loop back data 

connection to itself via an explicit IDA path. The template provides for (late) timing & omi"illTl fault 

tolerance only. The functionality (described in detail within its RTN-SL specification) of this template i\ to 

mask the timing & omission faults to a crash fault. but a critical application to write an output given some 

input, then the watchdog template, provides for a 'default" output within a deadline. 

Graph Grammar Representation 

Figure 7.3 illustrates the graph grammar presentation of the watchdog template, including the embedding 

relation, c. 

126 



-!j 

adt dtl is 
type A is token; 
type B is token; 

end adt; 

activity temp3 is 
with dtl; 

ports 

Thesls-temp3.rtnsl 

pA (Stimulus, dtl.A, Qut); 
pB (Stimulus, dtl.A, in) i 
pI (Channel, dtl. B, in); 
p2 (Channel, dt1.B, out); 

end ports; 

auxiliary definitions 
constant 1 ; Time; 
constant weet : Time; 
constant u : Time; 

end auxiliary definitions; 

operations 
op watchdog Bet dtl.A; 

pre true; 
post true; 

end 0Pi 

op foo (input dtl.BI; 
pre true; 
post true; 

end 0Pi 
end operations; 

states 
static stateA 

transition goes to wI on [Il,u!]; 
transition goes to stateS on read pI; 

end state; 

dynamic wI 
op watchdog writes to pAi 
timing [l,wcet,u]; 
transition goes to wait on true; 

end state, 

~tatic wait 
trdnnLtlon goes to stateS on read pI; 
t~dnoition goes to stateC on stim pS; 

end stilte; 

dynar.li \' :jtat~B 

op f no re.id~l from pl; 
ti~d;)q Il,wcet,u); 
tl~:):llti,)n goes to stateA on false; 
tl,I~\~litio~\ goes t,) stateC on true; 

end :lta.tp; 

dynd~ ic stateC 
op Cl itlcal WI itea to p2; 
timi:HJ II.w,~pt,uJ; 

t[,\:I:1iti!l:1 qne~~ to tel'm on true; 
... :\(j :It,ltt'; 

~\t at i " t"'l:"' 
t"nd (it "t 1->; 

init i.11 :Jt.\t ... A; 
""1.1 3t .lt~!ll 

.. 1.\ .I,·t 1 '.' It y; 

[t n tt..,·-!,.I 1!1 

end rtn; 

theory 

Theorem : THEORE~ 
FORALL (i:Occ, tl:Time): 

(th(rd...pl,i,tll AND 

Thesls-temp3.rtnsl 

(EXISTS (j:Occ): LateWrite{p2,j,tl) OR OmitWrite{p2,j,tl») IMPLIES 
EXISTS (t2:Timel: th(we"p2, i.t21 AND t2 <- tl + X 

end; 
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Fault Hypothesis 

The faults to which this template is tolerant, as defined in Section 4.2 are: 

and 

RTL 

LateWrite(p2, i, I)fc 

"3 (, (' : Time· ( ~ t ~ (' /\ 8 (15. i,t') /\ 

8(].5, i, t") /\ 

LATE (Wd5(P2) , i, [t' + 5.bcet. t' + s.wcet]) 

OmitWrite(p2, i, t)"3 t', t" : Time· ( ~ t ~ t" /\ 8(].5, i, t') /\ 

8(ls',i+ I,t") V 8(wds(s.Ollt"'p), i+ I.t')/\ 

OMIT( we(p2), i, [t', t"]) 

The emergent property we assert for this template are: 

Vi: Occ, t\ : Time· 8 (rd"'p I, i, t\) /\ (LateWrite(p2, i, t) V Omit\\'rire(p2, i, t)) => 
"3 (. 12: TIme)t2 ~ t\ + X /\ 8(we...p2, i, l;c) 

That is, despite the normal RTN-SL deadlines, we assert a l\'e"'p2 will occur within some critical deadlim:, 

7.4 Template Variations 

We briefly introduced several more design templates which are applicable to RTN-SL designs. These 

templates are instantiated in the case study, so their description, specification and reasoning to not presented 

here in such detail as the templates above for space considerations. 

7.4.1 Temporal Redundant IDA 

The redundancy strategy termed Temporal Redundant IDA employs true concurrent data communication 

paths which are controlIed by the mlliticaster and voter-like activity components. The difference between 

this strategy and TMR is that a value written is guaranteed to be read by its destined target rather than a 

correct output from a given input. 

The tolerance characteristics of this template are: value (masking), omission & timing. Each value that 

is written to the intendedft_ida is guaranteed to be delivered to its recipient in a timely manner only if it 

agrees with the second value. Unlike for TMR, we can't vote on the correct value, so if they don't agree, 

no value is written which masks the value fault. 

Graph Grammar Representation 

The graph grammar presentation illustrated in Figure 7.4 shows the context-sensitive production rule that 

transform a single ft_ida to an arrangement of parallel IDA's with multicaster and voter type componenh. 
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ft ida .. 

01 

Figure 7.4: Template #4 - Temporal Redundant IDA 

Additionally, a feedback IDA is shown which signals (like the watchdog template) whether both values 

received agreed. 

Fault Hypothesis 

The specific faults, as specified in Section 4.2, for this template are: 

RTL 

WriteVa[lIe(s.oll(pB,i,t) ~ 

31: Time· I ~ t/\8(ls",i,I)/\8(~,i,t)/\ 

pre_(s.inyB(I) , v(I))/\ 

-,posUs.inyB(I), v (I), v(t), s.olltyB(t)) 

OmitWrite(s.olltyB, i, t) ~ 

3 I, I' : Time· I < t ~ I' /\ 8(~, i. I) /\ 

(8(ls", i + I ,t") V 8(wds(s.olltyB), i+ I, til) /\ 
OMIT( we(s.olltyB),i. [1,1']) 

LateWrite(lI"eyB,i,t) ~ 

31: Time· I + III < t /\ 8(Ts. i. I) /\ 

LATE(weyB,i, [I +11,1 +111]) 

The specific property we propose this template offers is described in RTL as: 

Yi:Occ.tl : Time· 8(lI"eyl,i,tl) => 
3 t~ : Time· t2 ~ tl + X /\ 8(rdy2, i, t2) 

7.4.2 Fail-Signal (Activity) 

The added functionality of this transformation is to mask certain failures to one expected lype such lhal 

they may be corrected or tolerated by a further transformation or component. This template extends those 
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Figure 7.5: Template #5 - Fail Signal 

presented previously, by using a feedback mechanism to detect the failures. The tolerance behaviour is to 

fail-silent whenever a fault is detached. This behaviour is desirable when spurious output of non-timely 

data is harmful to a system overall performance. Whereas the watchdog timer template wrote a default 

output, this template should terminate silently. 

Graph Grammar Representation 

The transformation proposed is illustrated in Figure 7.5. It is obvious to see the feedback mechanism 

signals to the tolerant activity if an output was successfully received. Given the absence of this signal then 

the activity should terminate, hence failing silently. 

Fault Hypothesis 

The specification which defines this behaviour is that defined as a crash fault, defined in Section 2.1.3 as: 

Crash(act, i, t) ~ 

31': Time· l' < tA0(1s",i,1') A 

OMIT(~, i, [1' +s.bcet,t]) I\OMIT(1s",i+ I, [1' +s.bcet,tj) 

7.4.3 Fail Stop (Activity) 

A further variation to discuss is inspired by [SS83] who introduced fail-stop processes. The benefits for ex­

tending the TMR template to include fail-stop activities allows the overall tolerance of the TMR templates 

to accommodate a wider degree of faults. For example, if each activity were itself tolerant to timing faults. 

then the TMR template also to tolerant to value faults, then the overall tolerance is greater. 
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The aim of this Chapter is to illustrate each theoretical point presented earlier with a real-life system design. 

one which is common to the British Defence industry. 

We first outline the motivation and reasons for choosing this case study which describes a software de­

sign fragment of a hypothetical Beyond Visual Range Air-to-Air Missile (BVRAAM) launch system. We 

summarise the SHARD analysis for the initial abstract design and draw our fault-hypotheses (FH I from 

the studies findings. We then show each stage of our design methodology to transform the initial design 
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Mode Name Mode Number 
PUC I 
Pre-Launch 2 
Abandon 3 
Ready-to-Launch 4 
Launch 5 
Flight 6 
Acquisition 7 
Terminal 8 
Abort 9 

Table 8.1: Mode Encoding 

to one more tolerant to the faults identified and show justification of our claims that i) a graph grammar is 

a suitable design technique, ii) a transformation is localised (i.e. faults are a conservative extension) and 

finally iii) that this structured approach lends itself to structured formal verification. 

8.1 Identification 

The case study we have chosen describes aspects of a Beyond Visual Range Air-to-Air Missile (BVRAAM) 

in sufficient detail to enable our investigations. Although this study does not report on a specific product 

development, it is hoped that any design engineering techniques which are applicable to the case study 

presented here will also be applicable to real products. 

The benefit of choosing this example has been its use previously to develop safety & design engineering 

techniques [PayOlc, PayOlb, PayOla] in a collaborative study. This study raised a number of interest· 

ing challenges [PayOla] for anyone wishing to apply formal techniques to the specification, validation or 

verification of RTS. 

8.2 Design overview 

The design is based around a number of modes the system can operate within. Dependant on the modes are 

he behaviours and reaction a system can generate. The possible modes and the transitions between them 

are specified in Table 8.2, where the modes are numbered as defined in Table 8.1. 

8.2.1 Abstract Design description 

This section contains an informal description of each of the activities identified in Figure 8.1, the reader is 

referred to [PayOlc] for a fuller description. This level of detail is a common starting point for real-time 

systems. 

Mode Controller, MCa The Mode Controller activity loops, reading "events" from the Mode Events, ME; 

channel to determine the next system mode to enter, given the current mode and the event read. The 
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Figure 8.1: A BVRAAM Launcher Design 

Event \ Current Mode 1 2 3 4 5 6 7 8 9 
BIT ok 2 - - - - - - - -

BIT fails 3 - - - - - - - -
Cross-Check Fails - 3 - - - - - - -

Cross-Check ok - 4 - - - - - - -

Umbilical cut - - - 5 - - - - -

Clear (a timeout) - - - - 6 - - - -

Acquired - - - - - 7 - - -
Arrived - - - - - - 8 - -

Fuzing Timeout - - - - - - - 9 -

Table 8.2: PreviouslNext Mode Table 
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deterministic choice of which mode transition to taken is shown in Table 8.2. The new mode is 

written back into the M; pool. The activity then begins the loops again. As the activity reads from 

the ME; channel, if there are no new events to process the activity is held until an event occurs. which 
is processed as specified in Table 8.2. 

Inertial Navigation, INa The Inertial Navigation, INa activity loops, attempting to read the periodically 

generated Body Motion, BM; data from the missile IMU, IMUss subsystem. The INa activity is 

responsible for generating the integrity mode events, written to ME;. Should no check fail. then the 

INa activity writes the body motion data of the launch vehicle to the separation autopilot, and via a 

pool to the transfer alignment activity. Effectively. this activity loops at the frequency of the [MUll 

subsystem, determined by the IMU clock, elkl. 

Seperation Autopilot, SAa The Separation Autopilot. SAa activity loops. reading the Missile State. MSlj 

data from the initial navigation activity INa. The current mode then determines whether initialisation 

or launch sequence data is calculated for the Actuators. Ass subsystem. Otherwise the activity loops 

until such functionality is required. 

Transfer Alignment, TAa The Transfer Alignment. TAa activity loops. comparing the data from the Air­

craft INS Data, AID; signal and the Missile State. MS; pool to ensure the IMU is operating within 

some defined tolerance which raises either a "Cross-Check" pass or fail accordingly. 

Read Aircraft Messages, RAMa The Read Aircraft Messages. RAMa activity loops. writing incoming tar­

get position, missile initial position and aircraft INA data to the Target Position. TP; pool. Initial 

Position, IP; pool and Aircraft INS Data. AID. signal respectively. until the Umbilical CIIt event is 

detected, which is raised to the ME; channel. 

Write Aircraft Messages, WAMa The Write Aircraft Messages, WAMa activity loops, reading the stirn 

event from clock, elk3. It reads the Missile Identity. MI; and Missile Status Summary, MSSj pools 

and writes this information to the AO; pool. 

Interlock Handler, IHa The Interlock Handler. IHa activity loops. waiting for a tick from clock. elk4. It 

then checks the current mode. and if it is "Abandon". it sets the firing interlock in an attempt to 

prevent the launch. 

Status Reporting, SRa The Status Reporting. SRa activity loops. reading status reports from the Status 

Report. SRi signa\. It writes a compiled report to the MSS; pool. 

Manage BIT, MBa The Manage BIT. MBa activity loops. awaiting BIT commands from BIT Command. 

BC; signal. The activity then performs a series of built-in-tests and reports the success or failure to 

SR;andME;. 

Timeout Generator, TGa The Timeout Generator, TGa activity loops. waiting for timeout requests from 

the MCa. Upon being reactivated. the activity sends the timeout (clear) events to ME;. 
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Figure 8.2: Host Graph 

8.3 The Initial (Host) Design 

The initial MASCOT design taken from [PayOlc] illustrated in Figure 8.1 serves as the basis for our case 

study. This design specifies only the network layer: identifying those activities (described previously) 

and communication paths between activities necessary. Some design decisions have already been made, 

choosing the protocols of each IDA specifies the synchronisation between the activity components. 

In the next section we identify the graph grammar representation of the initial design which is termed our 

host graph. From this, we illustrate the 24-rule grammar adequate to derive the application layer for the 

RTN. That is, to refine the abstract activity description into state-machines which read and write to the 

identified communication paths. We then present the RTN-SL specification of the transformed host graph, 

which specifies the RTN behaviour without faults being considered. 
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Be. 

Figure 8.3: Neighbourhood of RAMa 

8.3.1 Transformations 

The (host) graph depicted in Figure 8.2 is the graph grammar abstract representation of the initial design 

from Figure 8.1. Below we show as examples, the derivations of activity (ACn nodes to their state-machine 

representation. 

8.3.1.1 Refining the Read Aircraft Messages, (RAMa) Activity 

We present in Figures 8.3-8.9 a derivation from the ACT node in Figure 8.2 which represented RAMa. We 

follow a series of transformation steps to refine the activity first to a state-machine (SM) which implements 

the desired behaviour, as specified in the activity descriptions in Section 8.2.1. 

The neighbourhood of the node labelled RAMa is shown in Figure 8.3. Incident to the node being trans­

formed are six IDA components which form the neighbourhood of the node. The connections from the 

existing neighbourhood nodes determine the new connection as specified by the embedding relations of 

each production rule. 

The transformation from Figure 8.3 to Figure 8.4 is by way of several steps. Nodes Ali and TPi are both 

transformed by production rule 1 net-p2( I ).The other transformation net-p3( I );net-p4( J) to node RAMa 

indicates rule net-p3( J) is first applied, then net-P4( J) to its result below. This transforms the ACf node 

to the most abstract state-machine representation. Note, each communication link which was established 

to the ACT node remains connected to the SM node. 

The applied transformation from Figure 8.4 to Figure 8.5 depicts the non context-sensitive state-machine 

production rule, net-p5( 3). Here, the incoming data communication from node Alopt to re-establish to both 

node Sl and RAMsM indicating the port may be read by more than one dynamic state (later we shall see the 

context sensitive counterpart where a incoming connection is enforced to connect to only one node). 

The transformation from Figure 8.5 through to Figure 8.8 further refines the state-machine specification. 

However, the final transformation illustrated from Figure 8.8 to Figure 8.9 shows an example of a context-

I The bracketed number indicates the sub rule of a family of production rules. 
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Be; 

Figure 8.4: RAMa - pI 

sensitive production rule being applied. The transformation net""p6(b) applied to node SM. in Figure 8.8 

transforms a state-machine with multiple port (and IDA) connections to a single state node which now 

only has one connection, that to an associated port. Existing state-machine transitions are restored by the 

embedding relation. 

The remaining transformation are not shown here in such detail, the reader is referred to the RTN-SL 

specification for the complete specification of the RAM a activity. 

8.3.1.2 Refining the Transfer Alignment, (TAa) Activity 

Similarly, we present below a derivation from the ACT node in Figure 8.2 which represented the activity 

node for TAa. 

The series of transformations from the abstract ACT node, TAa to its (flat) state-machine definition is 

detailed in Figures 8.10 through Figure 8.14. Similarly to the transformation of RAMo, we gradually refine 

the state-machine specification to a collection of states which read from, and write to, specific ports and 

IDAs. The transformation between Figures 8.12-8.13 illustrates another example of a context sensitive 

production rule, as does the transformation between Figures 8.13-8.14. 
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Figure 8.5: RAMa - p2 

B AM, 

Figure 8.6: RAMa - p3 
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Figure 8.7: RAMa - p4 
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Figure 8.8: RAMa - p5 
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Figure 8.9: RAMu - p6 

Figure 8.10: Neighbourhood of TAa 
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~ 
L::JSR, 

Figure 8.11: TAu - pI 

Figure 8.12: TAa - p2 
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Figure 8.13: TAu - p3 

ort 
MS2", 

ME, 

Figure 8.14: TAu - p4 
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Failure Categorisation 
Service Provision Value 

Component Omission Commission I Timing I 
Early I Late Subtle Coarse 

Pool No Update Unwanted Update N/A Old Data Incorrect N/A 
Signal No Data Extra Data Early Late Incorrect Inconsistent 

Channel No Data Extra Data Early Late Incorrect in Range Out of Range 
Dynamic State No Update Unwanted Update Early Exit Late Exit Incorrect in Range Out of Range 

Static State N/A N/A Early Exit Late Exit N/A N/A 
Activity Crash N/A Early Late N/A 

Table 8.3: Table of guide words applicable to RTNs 

8.3.2 RTN -SL Specification 

The design specification that is found in Appendix A.I is a complete RTN-SL specification of the initial 

design introduced previously. It defines in greater detail each activities behaviour and its communication 

paths between sub-systems and other activities. The IDA specifications define the communication protocol 

and their synchronous behaviour. 

Only those components we foresee to be of interest to our methodology are fully specified. the remaining 

components are simplified so the RTN-SL design is well-formed; this simplification is normally a triv­

ial post-condition on operations. However. the complete RTN-SL specification is of sufficient detail to 

generate the event model required for the formal reasoning. 

8.4 A SHARD Analysis 

We now report the findings from a SHARD analysis of our initial design. as advocated in Section 2.5.1. 

We first repeat the guide words applicable for such an example. followed by selected presentation of the 

analysis. We aim to show the obvious benefit of such an analysis and draw our fault hypothesis (FH) from 

which we apply our technique. 

8.4.1 Guide Words 

The guide words in Table 8.3 (repeated from Table 2.3) are the least set which we are confident should 

prompt consideration of the plausible failure modes for RTNs. 

8.4.2 Analysis Results 

N/A 

Consider the design of Figure 8.1 and the permutations of guide words (from Table 8.3) to each dataflow 

component of our design. then it is obvious a full SHARD analysis is not appropriate here. We are not 

advocating a new safety analysis technique. rather one which given scope for possible failures. addresses 

each in a systematic approach to make the design more tolerant. However. given the SHARD analysis is 
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a valuable tool, we therefore undertake such an analysis into key areas of the design where the abstract 

descriptions hint at possible failure modes to tease out the specific faults and their failure modes. 

We present here only a fragment of the tabular result set which are most appropriate. Each table that follows 

has the following format: 

• A name & reference for the drawing/design being analysed; 

• the data flow Id, protocol & type; 

• Any additional information deemed necessary; 

• For each guide word in Table 8.3, we 

- identify any deviation from the specification the guide word prompts, 

- its possible causes and detection mechanisms 

- any co-effectors 

- the observed effects 

_ whether the fault is meaningful, which determines whether we address the fault in our technique 

_ the SHARD justification for not considering it meaningful or the desired action necessary for 

any tolerance technique. 
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Host-Design (c.f. Figure 8.1) 
Top Level Design 
AIMi 
Signal 
Image.Raw _Image 

Drawing Ref 
Drawing Name 

FlowID 
Protocol 

Data Type 
Additional Information This is the input feed from the Aircraft sub-system. In-coming messages from the aircraft will be propagated along different 

paths depending on their type. 

Guide Word Deviation Possible Causes Detection / Pro- Co-effectors Effects M? Justification / Design Proposals 
tection 

Late No new image Late read @ pI3 Undetectable Delayed updated N Justification: By design. RAMa is 
sent to RAMa to rest of system designed to wait for the signal from 

AIMi 
Value. coarse Impossible data Communication CRC ensures Lost Communica- N Justification: Due to feedback 

fromAH corrupted corrupted tion loops, Ass will attempt to rescnd 
messages fail 
silent 

-- -

Table 8.4: SHARD analysis of flow AIMi of the BVRAAM Launch system top level design 
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Host-Design (c.f. Figure 8.1) 
Top Level Design 
MS2j 
Pool 
Missile_State.lMU _Data 

Drawing Ref 
Drawing Name 

FlowID 
Protocol 

Data Type 
Additional Information This is the information calculated from the INa activity which calculates the body motion of the aircraft which is sent to the 

TAa activity via MS2j. 

Guide Word Deviation Possible Causes Detection / Pro- Co-effectors Effects M? Justification / Design Proposals 
tection 

Value, subtle Comparison Byzantine fault Comparison Failure @ Non- Y Action: Make fault tolerant 
with p20 fails @ p20 or p21; check fails RAMa or INa deterministic 

Transmission state 
error; com-
munication 
error 

No Update No IMU Data Communication Comparison Old data used in Y Action: Make fault tolerant 
sent to TAa failure; INa check fails comparison check 

failure 
- --

Table 8.5: SHARD analysis of flow MS2j of the BVRAAM Launch system top level design 
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Drawing Ref 
Drawing Name 

FlowID 
Protocol 

Data Type 
Additional Information 

Guide Word Deviation 

Host-Design (c.f. Figure 8.1) 
Top Level Design 
MSl j 

Signal 
Missile_State.status 
This is the information calculated from the INa activity which calculates the body motion of the aircraft which is sent to the 
SAa activity via MSI j. 

Possible Causes Detection / Pro- Co-effectors Effects M? Justification / Design Proposals 
tection 

Value, Incorrect status Byzantine Fault SAa & TAa Inconsistent inter- Y Action: Make fault tolerant 
Coarse sent nal state of sys-

tem 
Omission No signal sent INa fails to Latency N Justification: By design 

write signal 
Late, write Delay to INa Latency Y Action: Make fault tolerant 

Table 8.6: SHARD analysis of flow MSlj of the BVRAAM Launch system top level design 

Host-Design (c.f. Figure 8.1) 
Top Level Design 
BMj 
Signal 
Image.Processed_Image 

Drawing Ref 
Drawing Name 

Flow ID 
Protocol 

Data Type 
Additional Information This is the body motion data of the aircraft sent periodically from the aircraft. A" sub-system. 

Guide Word Deviation Possible Causes Detection / Pro- Co-effectors Effects M? 
tection 

Extra Data Unexpected ar- Period of elk I Missed Data Y 
rival 

Value, subtle Repeated datn Stuck at Value Comparisons SA" & TAa Events raised Y 
with local state from unconsid-

ered modes 

Justification / Design Proposals 

Action: Reconfigure elk I 

Action: Make fault tolerant 

- ---

Tnble 8.7: SHARD nnnlysis of flow MB; of the BVRAAM Launch system top level design 
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8.5 Fault Hypotheses for the BVRAAM Launcher Design 

We now interpret the SHARD analysis to form our own fault hypothesis, FH. We have identified five 

meaningful faults which we consider should be addressed in response to the SHARD analysis to continue 

to study the initial safety analysis given the admissions offaults. These faults are listed below: 

FHl: The alignment between the missile INS data and that of the launch aircraft may exceed some toler­

ance value; and 

FH2: The actuator commands may not satisfy the specified post-condition; and 

FH3: The "Abandon" command may not be actioned within the specified deadline; and 

FH4: The ordering of events read by the Mea from the MEj IDA may not be processed in the actual order 

they were sent; and finally 

FH5: The SAa activity may generate actuator commands late, i.e. beyond the specified deadline. 

We will refer in future to these fault hypotheses as FHl, FH2, ... , FH5. 

8.5.1 RTL Specifications of FH; 

For each FHj identified, we now give RTL specifications which are the actual specifications from Section 

4.2.1 and the initial design. Theses specifications will be used in the formal reasoning of the eventual 

transformed design 

FHl 

The "Transfer Alignment" (TAa) activity receives a vector (Missile_State.pos) from the missile IMU and 

a second vector (Image. Vector) from the aircraft, both of the same type (Image. Vector). A vector: (x,y,z) 

which gives the objects position in a 3-D space. Given the timing of receipt, the two positions may not 

agree for two principal reasons: 1) the vectors were 'valued' at different times (the aircraft and missile 

IMU will certainly work at different periods) or 2) the missile position on the aircraft 'offsets' the position. 

In both cases, a degree of tolerance between the values is acceptable, as long as the difference remains 

constant, or doesn't drift. The function which calculates the comparison is Missile_State.compare: 

function compare (IMU, AC, offset : Image.Vector) 

return res : bool; 

pre true; 

post align (IMU, offset) AC; 
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faulCthml: 

3i: Occ,t\ ,t2: TIme· 0('JTA_C,i,tt} 1\0(.ITA_C,i,t2) 

=} ..., post_TA_Check_Missile_Alignment(TA_incomingJns(t\ », TA_input(t\»( TA_MS( t2» 

FHl permits the post-condition of Missile_State.compare not to hold at some time, t2, which in turn con­

tradicts the exit transition from TA_C. We therefore must tolerate this fault, such that a transient fault 

-possibly due to the period of inputs- does not affect the system behaviour. 

FH2 and FH5 

The "Separation Autopilot" (SAo) activity must produce updated actuator commands to p I 0 from the input 

at p9 in both a timely and value tolerant fashion. On receiving updated missile IMU data on p9, the SAo 

activity calculates updated actuator commands whilst in flight to prevent spinning. 

The SAo activity receives input from the Inertial Navigation system mode, from the Mode (M j ) IDA. Given 

the system mode may be "Launch", the actuator commands received from the Inertial Navigation activity 

-to prevent the launch craft being hit- are calculated to be the launch commands for the actuators. This 

sequence of events must be timely, else the inertial commands become dated, such as the launch vehicle 

changing course. 

Value: 3i: Occ,t\ ,t2: TIme· 0(rd"p9,i,tl) 

=} o (we"p 10, it2) 1\ ...,posCSA_launch(SA_MS(tt),SA_CM(tt»(SA_launch_cmd(t2}} 1\t2 :'5 tl + 1/ 

faulClhm5: 

Time: 3i: Occ,t\, t2: TIme· 0(rd"p9,i,tl) 

=> 0(we..p1O,i,t2)l\poscSA_launch(SA_MS(tt),SA_CM(tt})(SA_lallnch_cmd(t2»1\t2 ~ tl +11 

FH3 

The "Interlock Handler" (lHa) activity must activate the firing lock upon receiving the "Abandon" com­

mand. The abandon mode would be received via the Mode (Mj) IDA, read at portp3. Given the implications 

of this request not being performed, it is necessary to guarantee the firing lock is activated timely upon its 

request. 

fauIUhm3: 
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FH4 

The nature of this fault hypothesis prohibits an RTL specification as FHI. FHc,FH3&FH5 have provided. 

Instead, the SHARD investigation has highlighted a necessary behavioural characteristic. The design/allit 

to this hypothesis is that a multi-writer channel has been decided upon that can prevent crucial messages 

being read promptly. For example, non-critical messages may be before a "Abandon" command -for 

example, the "Launch" command- in this FIFO data structure. 

8.5.2 RTL Safety Theorems for FH; 

Given the specification of the faults admissible to our design, we must now state the ,afety theorems we 

must prove to hold for the transfonned design. 

Vi:Occ,tl : Time· 0(rd...)J21,i.ld =} 0(we...)J23.i.ll) 

safety_thm2: 

Vi: Occ, 11,12: Time· o (rd...)J9 , i. II) /\ 0( we...)J I 0, i, (2) =} posUp9(tl ).p I O(tl)) 

safety-thm3: 

safety _ thmS: 

Vi: Occ, II : Time· 0(we...)J5. i,ll) =} 312: Time· 12 ~ tl + X /I 01 we...)J23 , i,lt} 

8.6 The Transformed Design 

8.6.1 Transformations 

We now present the graph grammar transfonnations to the host graph which tolerate each fault hypothesis. 

8.6.1.1 Addressing FHI 

The transfonnation illustrated in Figure 8.15 shows the PSR template applied to provide tolerance to FH I· 

From Figure 8.I-L we have applied the PSR template described in Chapter 7. to node dS3· The resulting 

transfomlation now provides for a degree of tolerance to the output produced to p23. 
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Figure 8.15: TAa - pFT 1 

152 



CHAPTER 8. CASE STUDY - "A BVRAAM LAUNCH SYSTEM" 

8.6.1.2 Addressing FH2 and FH5 

Given the same transfonnation tolerates both the faults defined by FH2 and FH5, we will present the 

transfonnations as one. We propose to apply Template #2 from Chapter 7 to node SAa in our host design. 

Although the precise context to SAa is not that shown in Figure 7.2, it does follow the structure discussed 

in Section 7.2.4. The precise characteristics of the design of SAa allow for the transfonnation are that there 

exists only one output, therefore only one output needs exist from the transfonnation. 

Consider the other inputs to SAa would necessitate further multicaster components to rely the inputs to 

each replica. Given no faults are considered for these communication links, and the SHARD analysis did 

not indicate any potential faults from those components, we abstract the transfonnation to iIIustrate the 

transfonnation and reasoning for the given fault hypothesis. 

8.6.1.3 Addressing FH3 

We are required to guarantee the firing lock is in place in a timely manner. Therefore. allowing for the 

possibility of delayed inputs at p3, we propose to apply a watchdog timer strategy which guarantees to 

write a default output if no input s received at p3 for some lengthly period. 

8.6.1.4 Addressing FH4 

The fourth fault hypothesis found by the SHARD analysis identified that critical message to the multi­

writer/reader at IDA ME; could be blocked (or held-up) by non-critical messages given the FIFO behaviour 

characteristics of a channel. It is therefore proposed to replace -or transfonn- this IDA component to that 

of an activity and in addition, replace the critical data path with the transfonnation presented as Template 

#4 in Chapter 7. 

FH4 is therefore addressed in two stages: i) the ME; IDA is replaced by a simple activity which reads from 

each producer to ME;; ii) the communication path between this new activity is transfonned as iIIUSlTated in 

Template #4. 

8.7 Axiomatic Semantics generated by ilf 

We iIIustrate in Appendix A.2 the modified semantics generated by the aforementioned transfonnations. 

The axioms in Appendix A.2 which are then used in the rigorous proofs that follow to show the safety 

theorems listed above, which are shown to be correct under the assumption no faults occur remain true 

under the modified semantics. 

8.8 Validation 

PROOF (SAFETY _THM I) We first prove the safety theorem holds under the assumption no faults can 

occur. 
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from Assumptions ,ActivityTheorems, LinkAxioms, NO Faults 

from i: OCC,tl : Time, 0(rd--p21 ,i, tl) 

1.1 0(lTA_C,j,tJ) 

1.2 0(lTA_C,j, t3) J\t3 > tl 
1.3 posCTA_checkmissi/e_a/ignmentO 

1.4 0(lTA_D,j,t3) 

1.5 

1.6 0(we--p23 ,i,t4)J\t4>t3 

infer 3 t2 : Time· t2 > tl A 0( we--p23 , i, t2) 

2 0(rd--p21,i,tJ)::} 3t2: Time·t2 > t) A0(we--p23 ,i,t2) 

infer'v'i:Occ,t) : Time· 0(rd--p21,i,tl) ::} 3t2 : Time· t2 > tl A0(we--p23,i,t2) 

TA_rds_p21_ax( l.h3) 

TA_ax_17(l.l) 

TA_ax_31 (1.1.1.2) 

TA_ax_5( 1.2) 

TA_ax_18(1.4) 

TA_we_p28_ax(1.5) 

3-1( 1.6) 

=?-I( 1) 

'v'-1(2) 

• 

PROOF (FT _SAFETY _ THM 1) We then prove the safety theorem holds in the presence of the hypothesised 

faults. 
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from Assumptions, ActivityTheorems, LinkAxioms, FH 1 

from i: Occ,tl : Time,9(JTA_B, i,tl),FHI 

1.1 9(lTA_IP 1, i, tI) 

1.3 9(rds--p21,i,tI) <=> 3j:Occ·9(lTA_'P1,j,tl) V 

1.3 

1.4 

1.5 

9(rds--p21 ,i, tI} 

9 (JTA_'P 1 , i,t3) 

9(lTA_'P2,j,tl) V 

9(lTAJP3,j,tl) 

.post]A3heckO V posCTA3heckO 

1.6 from .poscTA3heckO 

1.6.1 9(lTAJP2,j,t3) 

1.6.2 9(rds--p21,k,t3) <=> 3j:Occ·9(lTA_'PI,j,t3) V 

1.6.3 

1.6.4 

1.6.5 

1.6.6 

9(rds--p21 ,k,t3) 

9(lTA_IP2,j,t3) V 

9(lTAJP3,j, t3) 

9(JTA_IP2,k,t4) At4 > t3 

.post_TA_checkO V post_TA3heckO 

from .poscTA_checkO 

same structure as above for rp3 

infer 9(we--p23,i,ts) Ats > t4 

1.6.7 from poscTA_checkO 

I.7 

1.8 

same structure as above for rp3 

infer 9(we--p23,i,ts) Ats > t4 

infer 9{ we--p23, i, t2) At2 > tl 
from posCTA_checkO 

as above 

infer 9{ we--p23, i,t2) At2 > tl 

infer 3 t2 : Time· t2 > tl A 9{ we--p23, i, t2) 

2 9(JTA_B,i,tI} AFHI => 3t2: Time·t2 > tl A9(we--p23 ,i,t2) 

TA_ax_ 4_rp I (l.h3) 

TA_rds_p21_ax( 1.1) 

<=> -E 

TA_ax_17_rpl(l.I) 

TA_ax_31_rp I (1.1.1.4) 

TA_ax_5_rpl 

TA_rds_p21_ax 

<=> -right-E( 1.6.1) 

TA_ax_17 _rp2( 1.6.1) 

TA_ax_31_rp2(1.6.1.1.6.4) 

V-E(1.6.5.1.6.6.1.6.7) 

infer Vi: Occ,tl : Time· 9(JTA_B,i,tI} A FHI => 3t2: Time· t2 > tl A9(we--p23,i,t2) 

V-E(I.5.1.6.1.7) 

3-1( I.h 1.l.h2.l.h3) 

=>-1(1) 

'1-1(2) 

• 

PROOF (SAFETY_THM2) We first prove the safety theorem holds under the assumption no faults can 

occur. 
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from Assumplions, ActivityTheorems, LinkAxioms, NOFAULTS 

from i: Occ, II ,12 : Time,0(rd..]J9,i,tI),0(we-plO,i,12) 

1.1 0(,JSA_A,i,ll) 

1.2 0(jSA_Check_MS,i,ll) 

1.3 0(,JSA_Check_MS,i,t2)/\t2 > II 
1.4 00SA_Check_Mode, i, (2) 

1.5 0(,JSA_Check_Mode, i, (3) /\ 13 > 12 

1.6 0(,JSA_Check_Mode,i,13)::} SA_CM(13 #launch/\0(lSA_A,j+ 1,13) V 

SA_CM(13 = INIT /\0(lSAjnil_acl,j,13) V 

SA_CM(13) launch /\ 00 

SA_Calc/raj, i,13) 

1.7 from SA_CM(13 # launch/\0(jSA_A,j+ 1,13) 

1.7.1 SA_CM(13) # launch 

infer posUaunch(p9(1J),p 10(13» 

1.8 from SA_CM(13 = INIT /\ 0(lSAjnicacI,j, 13) 

1.8.1 SA_CM(13 = INIT 

infer posUaunch(p9(1J),plO(13» 

1.9 from SA_CM(13) = launch /\ 0(jSA_Calc,raj, i,13) 

1.9.1 0(TSA_calClraj,j,13) 

1.9.2 0(,JSA_calc_lraj,j, (4) /\t4 > 13 

1.9.3 0(jSA_launch,j,14) 

1.9.4 0(,JSA_launch,j, (5) /\t5 > 14 

infer posUaunch(p9(11),pIO(13» 

SA_aJU9(l.h3.1.h4) 

SA_ax_2( 1.1) 

SA_ax_I4( 1.2) 

SA_ax_3( 1.3) 

SA_ax_I5( 1.4) 

SA_ax_ 4( 1.5) 

A-E-right 

contradiction 

/\-E-righl 

contradiction 

A-E-Ieft 

SA_ax_15( 1.9.1) 

SA_ax_5( 1.9.2) 

SA_ax_18( 1.9.3) 

SA_ax_30(I.9.3.I.9.4) 

infer posUaunch(p9(1J),plO(12» v-E( 1.6.1.7.1.8.1.9) 

2 SA_CM(12) = launch /\ 0(rd"'p9, i, II) /\ 0(we-plO, i,(2) ::} posUaunch(p9(ld,p 10(12» =?-I 

infer Vi: Occ, II ,12: Time· SA_CM(12) = launch /\ 0(rd"'p9,i,ll) /\ 0(we"'plO, i,(2) ::} W-I 

posUaunch(p9(11 ),p I 0(12» 

• 

PROOF (FT _SAFETY _ THM2) We then prove the safety theorem holds in the presence of the hypothesised 

faults. 
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from Assumptions, ActivityTheorems, LinkAxioms, FH2 

1.1 

1.2 

1.3 

2 

from i: Occ,t"t2: TIme,0(rd-pX,i,tl ),0(we-pY, i,(2),FH2 

0(vl_we-pY,i,t2) {:} 3j:Occ·0(lvl_stateV,j,t2) 

3j: Occ· 0(lvl_stateV,j,t2) 

313: TIme· 0(lvl_stateV,j,t3) 

infer posC(PX(tt},PY(t2)) 

0(rd-pX, i, tt} /\ 0(we-pY, i, t2) /\ FH2 

vl_aJU(1.h3,1.h4) 

{:} -right-E(I.l,1.h3,1.h4) 

v l_ax_2( 1.2) 

v l_ax_3( 1.2.1.3) 

~I(l) 

'1-1(2) 

• 

PROOF (SAFETY_THM3) We first prove the safety theorem holds under the assumption no faults can 

occur. 

from Assumptions, ActivityTheorems, LinkAxioms, NO FA U LTS 

from 

l.l 

1.2 

1.3 

0(11H_Abandon_Check,j,tl) 

o (JIH_Abandon_Check,j, (2) /\ II + II S 12 

currencmode =F Abandon /\ 0(lIH_A,k,12) V 

currencmode = Abandon /\ 0(lIH _lockJiring, k, (2) 
1.4 from currencmode =F Abandon /\ 0( 1I H _A, k, (2) 

1.4.1 cllrrenCmode =F Abandon 

infer 0( weJJ4, i, (2) 

1.5 from current_mode = Abandon /\ 0( 1I H _lockJiring, k, (2) 

1.5.1 0(lIH_lockJiring,k,12) 

1.5.2 0(JlH_lockJiring,k, (3) 1\t31\t2 

1.5.3 0(we-p4,i,13) {:} 0(JlH_lockJiring,k,13) 

infer 0(weJJ4, i, (2) 

1.6 0(we-p4,i,12) 

infer 312: TIme· II +X ~ 12/\ 0(weJJ4,i,12) 

2 Thela(rd-p3,i,ll) => 3'2:TIme"I+X~12/\0(we-p4,i,12) 
infer Vi: Occ, tl : TIme· 0(rd-p3, i, tl) => 312: TIme· tl + X ~ '2/\ 0(weJJ4, i,t2) 

IH_rds_p3 _ax ( I.h3) 

IH_ax_9( 1.1 ) 

/\-E-right( 1.4.h I) 

contradiction 

/\-E-Ieft 

IH_ax9( 1.5.1) 

IH_we_p4_ax 

{:} -E-right(1.5.3.1.5.2) 

v-E( 1.3,1.4.1.5) 

3-1(1.l.hl.1.6) 

=>-1(1) 

'1-1(2) 

• 

PROOF (FT _SAFETY _ THM3) We then prove the safety theorem holds in the presence of the hypothesised 

faults. 

157 



CHAPTER 8. CASE STUDY - "A BVRAAM LAUNCH SYSTEM" 

from Assumptions,ActivityTheorems, LinkAxioms, FH3 

trom i: Occ,ll: TIme, 0(rd-p3,i,II), FHI 

1.1 0(stim3Ik4, i, (2) A 0(llH_A, i,(2) V 

II +1 $ t2 $ II +uA0(llH_A,i,12) 
1.2 trom 0(stim_clk4, i, (2) A 0(llH_A, i, (2) 

as before 

infer 0(weJJ4,i,t2) Atl +X $ 12 

1.3 from II +1 $ t2 $ II +uA0(llH_A,i,t2) 

1.3.1 0(tIH_walchdog,j,12) 

1.3.2 0(llH_watchdog,j,13) At3 > (2) 

1.3.3 0(we-pB,j,t3) 

1.3.4 0(tIH_wait,j,t3) 

1.3.5 0(stim_clk4,k, t4) A 0(llH_wait,j,t4) V 

0(stim-pB,k,t4) A0(llH_wait,j,t4) 
1.3.6 from 0(stim3Ik4,k,t4) A 0(llH_wait,j,t4) 

as before 

infer 0( weJJ4, i, t2) A tl + X $ t2 

1.3.7 from 0(stim-pB,k,t4) A 0(llH_wait,j, t4) 

as before 

infer 0( weJJ4, i, t2) A II + X $ t2 

1.3.8 0(we-p4,i,t2) Atl +X $ t2 

infer 0(we-p4,i,t2) Atl +X $ t2 

1.4 0(we-p4,i,t2) At\ +X $ t2 

infer 3 t2 : TIme· tl + X $ t2 A 0( weJJ4, i, t2) 

IH_ax_2'(I.3.hl) 

IH_ax_18( 1.3.1) 

link axiom 

IH_ax_19( 1.3.2) 

IH_ax_20 

V-E(1.3.5,1.3.6,1.3.7) 

2 0(rd-p3,i,tl}AFHI ~ 3t2:TIme'I\+X$t2A0(weJJ4,i,t2) 

infer'v'i: Occ,tl : TIme· 0(rd-p3,i,tI) AFHI ~ 3t2: TIme· tl +X $ t2 A0(weJJ4,i,t2) 

v-E( 1.1, 1.2,1.3) 

3-1(1.4) 

*1(1) 

'v'-1(2) 

• 

PROOF (SAFETY _THM5) We first prove the safety theorem holds under the assumption no faults can 

occur. 
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from Assumptions, ActivityTheorems, LinkAxioms, NOFAULTS 

1 from i: Occ, tl : Time, 9(rd...[J5, i, tt} 

1.1 9(VN_A,j, tt} 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

9 (.\write_spec, k, t3 ) 

9(we...[J6,k,t3) {:} 9(.\write_spec,k,13) 

9(we...[J6,k,t3) 

9(rd...[J9,k,t4) 

9(jSA_A,m, (4) 

9(jSA_A,m,t4) 

1.8 9(jSA_Check_MS,n, (4) 

1.9 9(jSA_Check_MS,n,15) 

1.10 9(jSA_Check_Mode,n, (5) 

1.11 9(we...[J1O,n,t6)M6>15 

infer 312: Time· t2 :::; II + X 1\ 9(we...[J1O,i, (2) 

2 9(rd...[J5,i,ll) => 312: Time· 12 :::; II +X 1\9(we...[J1O,i,12) 

infer Vi: Occ,tl : Time· 9(rd...[J5, i, II) => 312: Time· 12 :::; II + X 1\ 9 (we...[J 10, i, (2) 

8.9 Evaluation 

INav_we_p6_ax 

{:} -E-right( 1.3.1.2) 

link axiom 

SA_rs_p9 _ax( 1.5) 

3-1(\.11) 

=>-1(1 ) 

'1-1(2) 

• 

The case study has illustrated that the transformational methodology in earlier chapters is applicable for 

transforming real-time systems designs, specifically the design method advocated in this thesis: RealTime 

Networks (RTNs). The fault-tolerant templates described in Chapter 7 have been instantiated in the RTN­

SL design to tolerate those faults found by the SHARD analysis. The encapsulated reasoning aided the 

formal verification task. 

Although each template described in Chapter 7 was found to be applicable in the case study, the fine 

detail required to define each graph grammar transformation made the templates seem over complicated. 

However, it is accepted that the explicit nature of the RTN-SL specification contributed to this and must 

therefore be accommodated. 

A further criticism is that the formal verification effort is time consuming and should be ideal for mechan­

ical assistance. Given the pre-defined reasoning provided for each template, these conjectures should be 

readily available with an automated prover for an engineers tool-kit. 
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This chapter summarises the thesis. highlights its contribution and suggC\t\ some directions for further 

work. 

9.1 Summary 

The work reported in this thesis has demonstrated that it is possible to introduce fault tolerance into Real 

Time Networks in a sound. formally-based manner. In particular. the transformational method"logy which 

has been demonstrated allows practitioners to hypothesise component faults and use well kno\~ n strategies 

to provide fault tolerance. Furthermore. these transformations suggest the formal structure with which to 

reason about emergent fault tolerant properties. 

The argument underpinning the thesis was outlined in Chapter I: 
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We argue that transfonnations, expressed over a graph grammar syntax, do integrate hypo­

thetical fault analysis and design techniques. Further, providing a semantic framework allows 

to reason about such emergent properties, such as fault tolerance. Such transfonnations are 

constrained to respect the well-fonnedness of designs and their design language principles. 

We also argue that extending the existing semantics to make faults explicit, does not violate 

existing properties of a design. 

This thesis has defined and demonstrated an approach to providing a transfonnational design methodology 

for RTNs. The RTN architecture makes explicit the distinct components and their interactions with other 

components through well-defined interfaces within an RTN. This enabled the clear specification of faults 

to be investigated for each component and provide for fault containment at the component level. Building 

upon an existing architecture allowed for the focus to be the consideration of faults. Not just the specifi­

cation of a fault, but the effect this causes on the existing semantics and highlights the changes necessary. 

This made clear the assumed absence of faults in the existing semantics. 

The operational semantics specified for RTNs allowed for the understanding of an RTN in a constructive 

way. It enabled the step-wise construction of a semantic model which pennitted investigations of concur­

rency and non-detenninism. The eventual, two-tier, model separated out the behaviours of RTN actions 

and time. This allowed for the LTS specification-like presentation of the semantics and expressed neatly 

the behaviours of this concurrent architecture. This was justified by showing the soundness of the existing 

axiomatic semantics. 

The semantic framework for faults and RTNs are shown to be useful in a transfonnational design method­

ology expressed in graph grammars. The graph grammar specification of fault tolerant transfonnations 

based on the abstract syntax of RTN-SL -itself expressed in a graph grammar- allows for the controlled 

application of fault tolerance. 

The contribution of this thesis lies in four areas: 

• A semantic framework to define, tolerate and reason about faults in RTNs, which includes a classifi­

cation of faults; 

• A transformational method for applying well-known fault tolerance strategies to RTN-SL designs; 

• An operational model for RTN-SL; 

• A soundness argument for the existing axiomatic semantics of RTN-SL with respect to our opera­

tional model. 

9.2 Evaluation of RTN-SL for specifying faults 

The applicability of the RTN-SL specification language to support an investigation of faults and support 

specification of classical fault tolerant strategies is discussed in this subsection. We first consider the RTN­

SL language extensions proposed, then the extended axiomatic semantics of the new language features. 

162 



CHAPTER 9. CONCLUSIONS & FURTHER WORK 

9.2.1 RTN-SL Language Extensions 

Supporting fault tolerance in real-time networks has necessitated extensions to the RTN specification lan­

guage. Without these extensions the definitions of faults in RTNs would not have been possible. The 

original language semantics stated only normative behaviours could occur without allowing for the pos_ 

sibility of faults. The extensions we have proposed state explicitly the behaviours we have incorporated. 

Allowing for faulty behaviours has exposed the assumption that only non-faulty behaviours were con­

sidered, regardless of the implementation found. Using Off-the-Shelf (OTS) components may mean this 

perfect implementation is not possible, and the system design not satisfiable. The implications of such an 

assumption are that it may lead to poverty in some design languages where a set of behaviours feasible are 

not considered in the design. 

We have presented a thorough examination of speculative read and write access methods to IDAs which 

were introduced into version 3.1 of the RTN-SL language, but not fully defined. This examination incor­

porated our intention to model faults -internal to activities- a~ state-machine transitions. That is. transition 

guards specify the conditions in which state-machine transitions can be taken when non-normal behaviour 

occurs. Specifically, either incomplete read and write accesses at IDAs or faults specify fallit transitions 

should be taken, rather than those transitions specified for normal behaviours. or state values. having oc­

curred or being true. By distinguishing fault transitions as reactive measures to faults. we allow ourselves to 

specify tolerant, containment or corrective actions that should not occur in the absence of faulty behaviours. 

9.2.2 Fault Semantics, ilf 

The extended axiomatic semantics that specifies the behaviour of faults in RTNs has been specified that 

subsume the existing semantics. The existing semantics specified nothing of faults. and crucially. nothing 

about the omission of faults. It was found that each fault behaviour considered is seen as an alternative 

behaviour, which is reflected in the structure of the specified extended semantics. Where no faults are 

considered or feasible, we state this to keep the semantics consistent and sound and provide for a formal 

framework with which to reason about an RTN. 

9.3 RTN Operational Semantics 

Though an existing axiomatic semantics existed for RTN-SL version 3.1, it was "unclear how to define an 

operational [or denotational] semantic for RTNs" [Pay02]. This meant the axiomatic semantics remained 

to be shown sound. 

9.3.1 SOS & LTS 

Our choice to specify an operational semantic for RTNs in a Plotkin SOS style was made for three reasons: 

• The set of SOS rules for RTNs form a labelled transition system (LTS) for which we specified a 

trace semantic model. The trace model allows for conjectures -namely the axiom interpretation- to 
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be proven inductively over the length of a trace. Although the axiomatic semantics assert the causal 

behaviours, such as the requirement a leave state event (~) will follow a state entry event (ls) timely. 

the associated trace-based inductive assertion must be valid for all traces. That is. should a trace 

not have reached the length for which the event should have occurred in. then the conjecture would 

be false. Instead, we only allow for causal assertions if sufficient time has elapsed, i.e. the trace is 

sufficiently long to include the event. We then reason inductively over the length of the trace to show 

the soundness of the axiomatic assertions. 

• The intuitive appeal of SOS rules allowed for the close examination of each aspect of an RTN (com­

ponent) in isolation. Each rule specified a single behaviour of an RTN (e.g. read access or state­

machine transitions) by stating the condition in which the rule is valid, or fireable. and the conclu­

sions state the effect on the RTN state and the events raised. The suitability of the SOS approach is 

further vindicated by the ease and effectiveness of adding new rules for the fault specifications . 

• The LTS approach allowed for the "meta-level", which defines how, and when, each rule can fire to 

be defined and specify the model of concurrency and non-determinism in RTNs cleanly. 

9.3.2 Conservative Extension 

It has been shown that additional language features proposed do not conflict with the existing semantics 

through the result that the extended TIS is a conservative extension to the existing semantics. This result 

was argued with the understanding that faults are alternative behaviours and. given the hypothesis that no 

faults occur, then existing axioms in the existing semantics remain true. The conservativity result supports 

our approach to defining the semantics in an incremental way and justifies our decision to use an SOS style 

approach. 

9.3.3 Soundness 

The claim that something has been proven should eliminate doubt. Unfortunately, informal arguments can­

not create such certainty. Our ambition to show the axiomatic semantics sound with respect the operational 

model therefore requires an argument, or proof, which convinces the reader of its correctness. Two options 

exist: i) A Rigorous Proof which borrows the ideas of carefully structured and line-by-Iine justifications 

from a formal proof, but omits obvious hypotheses, uses abbreviations or appeals to general theories for 

justifications rather than to specific rules of inference; ii) A Mechanised Proof is one which each step and 

inference rule is encoded in the logical framework of a prover and each step is justified by appealing to a 

formally stated rule of inference. 

We elected to present rigorous proofs as evidence the axiomatic semantics are sound, and are confident 

these proofs can be made formal or verified (as described below) by a proof tool. The benefits of this 

approach enable the proofs to be readable, such that a reader can follow and understand the intuition, rather 

than having to accept the correctness of the tool- if the tool is incorrect, or the encoding of our semantics 

and validation conjectures misrepresented, then the verification by the tool is worthless. 

Showing the axiomatic semantics sound with respect our operational model has reiterated the correctness 

which has previously been inferred from the axioms being usable in a formal proof. However, our attempts 



CHAPTER 9. CONCLUSIONS & FURTHER WORK 

to show the soundness provides a firm rigorous argument irrespective of past experience and examples and 

allows for the examination of our argument, rather than searching for a counter example. However. as 

outlined in Section 6.5, a formalised proof of our soundness arguments, possibly using IsabelleIHOL or 

PVS, would support our claims of soundness. 

Having argued the axiomatic semantics are sound, we can now proceed with verification of RTN-SL de­

signs as described previously using the PVS Theorem Prover. 

9.4 Suitability of graph grammars and application of methodology 

We have proposed a transformational design methodology, using a context-sensitive graph grammar. which 

permits the removal of a faulty design component from its host design and its replacement by an arrange­

ment of non-ideal components which provide for a tolerance to some hypothetical fault. We examine the 

suitability of using a graph grammar and the application of this methodology (using the case-study) below. 

9.4.1 Transformational methodology 

Providing for graph grammar productions as our transformational method, we allow for a step-wise ap­

proach. That is, a design is transformed to the next by applying one (or more) productions that replace 

one (or more) components with an arrangement of design components. This allows a designer to explore, 

for a given context, each valid production to decide the best trade-off between the cost of a fault tolerance 

strategy and the improved reliability sought. 

Although the design templates we propose have been successfully applied to a realistic design. it is antic­

ipated the flat graph grammar will not be sufficient for more complex templates. Rather than the graph 

grammar not being expressive enough to specify such templates, it is thought the designs produced will 

be intractable for cohesion with the existing design and the designs will not suggest a structure for the 

validation which is beneficial. 

9.4.2 Case Study Evaluation 

To test the applicability of our design methodology and suitability of representing a RTN in a graph gram­

mar syntax, we undertook a sizeable case-study. The results of this study are summarised below: 

• The graph grammar syntax was suitable for representing the graphical syntax of RTN-SL, but not the 

supporting concrete syntax; 

• The necessity of a context-sensitive grammar allowed for the derivation of standard RTN designs; 

• It was realised, as hoped, that the formal reasoning was structured as the productions were presented, 

often properties prescribed of a templates were used as lemma's when reasoning at the activity and 

network level; 

• Although the structure of each template provided insight into the proof effort, the repetition was 

tiresome and it is expected the repetitive steps are appropriate for automation. 
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• Acquiring the graph grammar representation of a RTN-SL design should be automated. 

Overall, the case study has justified our decisions to use RTN-SL, graph grammars and the PVS theorem 

prover to show the applicability of this methodology. 

9.5 Further Work 

Hierarchical Graph Grammars: Our attempts to represent a structural RTN in a flat graph grammar 

has caused the loss of the RTN structure. Instead of an activities state-machine being seen as internal to 

an activity at the RTN level, our grammar shows the flattened RTN, with all components visible. This 

makes the RTN level transformations more tiresome -yet possible- whereas it is considered a hierarchical 

grammar would retain the RTN structure and make the RTN level transformations more tractable. 

Modal Logic: Our choice to use RTL to model faults was primarily decided to give compatibility with 

the RTN-SL semantics, which are specified in RTL. Another consideration may be to use a modal logic, 

as it seems attractive to consider operators such as eventually. Given our observation that faults are visible 

for distinct intervals, then these operators would seem appropriate, for example, to specify a late fault is to 

say a value is eventually produced after some specific time, otherwise it would be an omission fault. 

Paynter, in [Pay03], has begun to develop a new modal logic called Causal Real lime Logic (CRTL) 

which adapts the existing RTL logic to be capable of specifying and reasoning about causality in real-time 

networks (RTNs). The approach to model the history of an RTN is similar to our concept of a trace. 

lsabelleIHOL: To mechanically verify our soundness proofs, as suggested in Section 6.5, would add 

further conviction to our argument. Although the rigorous arguments we have give are believed to be 

true, it would be an interesting exercise to take the next obvious step and use a theorem prover, such as 

Isabelle/HOL, to verify our conjectures. It would also be worth considering undertaking this task using the 

PVS theorem prover, which may then lead to an integration with the existing axiomatic semantics. 

Using such a mechanised approach may also provide the opportunity to show the axioms complete, but 

such an approach is not known to-date. 

Further fault tolerant templates: Those templates proposed in this thesis are purposefully simple and 

only of well-known strategies to allow for the development of the methodology. It would now be interesting 

to examine other, more novel, strategies to test the bounds of the methodology. Devising new strategies 

specific to RTNs would be feasible given the structure of our approach to document and test new ideas. 

TheoremlProof Generator: As reported elsewhere [OE02], an integrated environment which interacts 

with the RTN-SL tool support, NetSpec and provides some graph grammar support for generating graph 

grammar representations of a design to allow a designer to apply our fault tolerant templates would provide 

the foundation for a larger objective: a theorem and proof generator. Given the structured approach of 

our methodology and our experience with the case-study, applying a transformation to a RTN design. it 
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should be possible to i) generate the theorems (or lemmas) that show a template is functionally equivalent 

to the existing components, and ii) discharge these lemmas with pre-defined tactics. Providing this type of 

environment would allow for the seamless introduction of our, and other, design templates. 

9.6 Epilogue 

Our initial objective was to investigate the addition of fault tolerance into Real-lime Networks. This 

necessitated the study and definition of faults in a real-time system architecture and the survey of existing 

fault tolerant strategies applicable to RTS. 

The methodologies developed have found the fault definitions, strategies and design methods applicable 

to designing fault tolerant RTNs. We have extended the semantic framework for RTNs and used it to first 

show the axiomatic semantics sound, then to use the axiomatic semantics to verify the transformed design 

are tolerant to the faults considered. 
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Appendix A 

Case Study Specifications 

We present here the complete RTN-SL specification of the case ,tudy design. The ,uh,c4ucllt subsection 

details the modified axiomatic semantics generated by the transfonnations described in Chapter 8. 



Thesls-caseStudyHostDesign.rtnsl 

Begin ADT Descriptions 

adt Image is 
type Raw_Image is token; 
type INS_Data is token; 
type Processed_Image is token; 
type Vector is (x,y,z); 

function Image_Processing(ri : Raw_Image) return pi : Processed_Image; 
pre true; 
post true; -- The functionality of this function is not given. 

end adti 

adt BIT_Test is 
with Image; 

type BIT~ssessment is (pass, fail); 

function Assessment Cri: Image . Raw_Image) return ass : BIT_Assessment; 
pre true; 
post true; -- The functionality of this function is not given. 

end adti 

adt Threat is 
type Threat.-Assessment is (high, medium, low); 

end adtj 

adt Pos is 
type coords is token; 

funct ion '::'alc-pos (r i : Image. Raw_Image) return ps 
pre true; 
post true; 

end adt; 

ddt INS_Data is 
wit h Im.lg8; 

t ypf':' pOfJ in Image. Vector I 
typf':' m:.:;q is token; 

i':!:1ri aot; 

adt Xi:I:;i 1.,.. State is 
with I:"d(JI-'; 

t ypl-~ po:.! i:3 I r:',dge. Vector; 
t yp'~ :;t.ltU:J ie. (model, modp2); 
'Y[l'-' !MU_Datd i ~~ token; 

F!lN(,TION: corr.p'H t-' (1 

DE~;C : 

coords; 

tunc 1 i,l:l ,~nrrl-'.\If-' (pi: Imaqe.Pto('to'!.:secL.lrrdqpj ll":!tUl:l res: bool; 
1'1 p 1111"; 
I",:;t tlU"'; -- Tlw fllr\ctit':1ality \l! this tu;a'~ti";a is not ql\,p:l, 

t·;ad .,dot i 

.tdt :·~,,,1 ... is 
t '/1'. :\ll:-"'Iwl is ;a,lt i 

~'"I' I .t· It I 

.I.H f;.'I)"11:1 is 
fy,'" status ls t,'kt>;aj 

*",01 "it; 

Thesis-caseStudyHostDesign.rtnsl 
adt Actuators is 

type cmd is token; 
type pas is token; 

end adt; 

adt Firing is 
type lock is token; 

end adt; 

adt Clock is 
type tick is token; 

end adt; 

Begin Activity Descriptions 

-- MC Specification 

-- The "Mode Controller" (MC) activity loops ... 

activity Me is 
with Clock, Mode; 

ports 
pO : (Stimulus, NULL, out); 
pI : (Channel, Mode. number, in); 
p2 : (Pool, Mode. number, outl; 

end ports; 

auxiliary definitions 
constant 1 : Time; 
constant wcet : Tin-,e; 
constant u : Time; 

end auxiliary definitions; 

local state 
current~ode Mode.:lu~ber; 

end local state; 

operations 
op check_mode (newJt\ode : Mode.numbec); 
ext write currentJ,ode; 
pte true; 
post true; 

t-:uJ OPI 

op 8et_ti~eout () :Jt..it t 
pIe tlue; 
P')~lt truel 

r..~:llj OPI 

NULL, 

lJP t.li:J~_,""u.jlll () ev : Mode.nu~..berl 
.,.xt [".'1\.1 ..:u'rent-,~ode; 

PlO- tt'ue; 
f".J·.t true; 

"Old ')'~; 
end !Po-L1tl'<1~li 

:it.Jtt:"111 
stat ic XC_A 

t[..t:l:.lltiU:l golts to ~C_Ch.ck-,~ode on [.!"- j pil 
end state; 

dj'."\,):-lC ~~C_Che,=k_~od~ 

~ 
~ I~ 

~ 

~ 
~ 
~ 

Z ~ 
I 

00 (") 

t""f > 
~ ~ 

til 

~ 

~ .... 
~ 

til 
." 
~ 

9 
(") 

~ 
0 
Z 
til 
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op checkJnode reads from pI; 
timing (l,weet,uJ; 
transition goes to Me_Set_Timeout on currentJTIode = "TIMEOUT"; 
transition goes to MC.-Raise-.Mode on currentJnode /= current_mode-; 

end state; 

dynamic Me_Set_Timeout 
op set_timeout writes to pOi 
timing [l,wcet,u) i 
transition goes to MC-A on true; 

end state; 

dynamic MC.-Raise-Mode 
op raiseJnode writes to p2i 
timing (l,wcet,ul; 
transition goes to MC-A on true; 

end state: 

initial MC--.Ai 
end states; 

end activity; 

IH Specification 

The -Interlock Handler n (IH) activity loops ... 
-------------

activity IH is 
with Mode, Firing; 

ports 
p3 
p4 
pclk4 : 

end ports; 

(Pool, Mode.number, in); 
(Pool, Firing.lock, out); 
(Stimulus, Clock.tick, in); 

auxiliary definitions 
constant 1 : Time; 
constant wcet : Time; 
constant u : Time; 

end auxiliary definitions; 

local :Jtdte 
CUllent_n',od", Mode.numbel; 

Prld l{)('.1l :3tate; 

npf:'r-at io~:; 
np dba~don_~'ht:ock (new_:-,ode : Mode. :1u:-bel ) ; 
~xt writ~ rurlent_mode; 

pIe lUle; 
pO~It. l'lllll:'~t_:i,odl-' - new_mode; 

I~nd op; 

op lock_tillnq (1 lock: flli:1g.1ock; 
~Xt 1 edd <'\ll reilt._:-:,.odei 

ptf:' true; 
pd:,f t tUei 

.~n(i <)Pi 
... nd opetat i<)!lS; 

:It.,tt·:; 

stl\)U 1.-1 bf> ., STI~ !lot I p,\d 

:It .If ic IH A 
t t.I:\:dt i,l" Qoes to IH-Abando!1_Check on to:".'ld pclk4; 

,4'1.1 :It.\t .. ; 
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dy~amic IH_Abandon_Check 
op abandon_check reads from p3; 
timing [l,wcet,u); 
transition goes to IH_A on false; --i.e. NOT abandon 
transition goes to IH-Lock_Firing on true; --i.e. abandon 

end state; 

dynamic IH_Lock_Firing 
op lock_firing writes to p4; 
timing [l,wcet,u]; 
transition goes to IH_A on true; 

end state; 

initial IH_Ai 
end states; 

end activity; 

IN Specification 

The "Inertial Navigation" (IN) activity loops ••. 
------------------------------------------------

activity INav is 
with Image; 

ports 
pS (Signal, Image.Processed_Image, in); 
p6 (Signal, Missile_State.status, out); 
p7 (Channel, Mode.number, out); 
pe (Pool, Missile_State.pos, out); 

end ports; 

auxiliary definitions 
constant 1 : Time; 
constant wcet : Time; 
constant u : Time; 

end auxiliary definitions; 

local state 
bodYJnotion : Ir.'!.age. Processed_Image; 

end local state; 

operations 
op integrity_rr.ode (new.-bm Imaqe.Processed_Irr.age)} 
ext write body-,"r.otion; 

pre true; 
post true; 

end op; 

op W[ltl':'_~~Pt"'I..ltl')" ,) seperation_cMd Mlssile_State.6t.atuBI 
ext 1 ~..ld b01ji'_:""ot in:1; 

prt:' tLue; 
poat true; 

end op; 

op wrlt~_dlig:1~e:1t " ,tllCjJn Misaile_Statt:t.po9; 
ext lf1.l(j bndY_:-'JtlO:li 

pt e true, 
FHJ!.it true, 

e-:ld op, 

up t.:s 1 ~fo _ ~(J'1'! () ev : Mode. :lu~.ber I 
~)(t l~.I,j h'jrJ,/_~r)tlO~i 

pre true, 
post true; 

end OPI 

~ 
'=' 
~ 
~ 

~ 
til 

~ 
til 
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end operations; 

states 
static INJ\ 

transition goes to IN_IntegritY.-Mode on read pSi 
end state; 

dynamic IN_Integrity_Mode 
op integrity~ode reads from pSi 
timing (1, weet, uJ; 
transition goes to IN..,.A on false; --1. e. fail 
transition goes to IN_Wrlte_Seperation on true; --i.e. pass 

end state; 

dynamic IN_Wrlte_Seperation 
op write_seperation writes to p6; 
timing [l,wcet,ul; 
transition goes to IN_Write-A1ignment on true; 

end state; 

dynamic IN_Write~lignment 
op write_alignment writes to pS; 
timing [l,wcet,uli 
transition goes to IN~aise~ode on true; 

end state; 

dynamic IN_Raise-Mode 
op raiseJnode writes to p7; 
timing (l,wcet,u)i 
transition goes to IN_we-p7 on true; 

end state; 

static IN_we-p7 
transition goes to IN.-A on write p7; 

end state; 

initial IN.-Ai 
end states; 

end activity; 

-- SA Specification 

-- The "Seperation Autopilot" (SA) activity loops ..• 

activity SA is 
with Image, Actuators, Missile_State, Mode; 

potts 
p<) (Signal, Missile~StatF!. status, in); 
plO (Signal, Actuators.emd, out); 
p11 (Pool, Mode.number, in); 
p12 (Pool, I~aqe.Proeessed_Image, in); 

':'1)(1 par 51 

.luxili.uy dt.>tinitin~13 
,'nll:1t ,l:lr 1 : Ti:-t"'1 
{'onstant weer : Ti!"',I'": 
I',)n~ta:\t u : Time: 

t'lf\d .1IlXili,uy definitionsl 

l0L'al st.lot ,. 
MS : Ml:1:'11t-'_StJ.t~'.:lt,HU~l; 

eM : Mnd .... :lll..-bpi : 
tl4j : 1f'"J.qt=o.f'n){'t'!3:.l~d_I:'!',lqt·i 

":101 1~1l'.11 :It J,tf"; 

'1"'1 .It i'):l~ 
')P dlPI'k ~s (CUllf3'!lt_ms Mlssl..le_~t4te.:Jt.)tuSI; 

ext write MS: 
pre true; 
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post MS - eurrent_ms; 
end op; 

op check_mode (current_mode Mode.number); 
ext write CM; 
pre true: 
post CM - current_mode; 

end op; 

op init_aet () lnlt_cmct : Actuators.cmd; 
ext read MS, CM: 
pre true; 
post eM "" 4 implies init_cmd _ "lnit a; 

end op: 

op cheek_tra) (current_traj Image. ProcessecLlmage) ; 
ext write traj; 
pre true; 
post tra) - current_traj; 

end op; 

op launch () launctLcmd Actuators.emd; 
ext read MS, eM; 
pre true; 
post true; 

end op; 
end operations; 

states 
static Sl;..A 

transition goes to SA-Check_MS on read p91 
end state; 

dynamic SA-Check-MS 
op check~S reads from p9; 
timing (1,wcet,u1: 
transition goes to SJ\......Check~ode on true; 

end state; 

dynamic SiLCheck-Mode 
op cheek~ode reads from pll; 
timing (1,weet,u1; 
transition goes to SA.....A on CM /- "LAUNCH"; 
transition goes to S"-.Init.-A,ct on CM - "INIT"; 
transition goes to SA....,.Calc_Traj on CM - "LAUNCH", 

end state; 

dynamic SA-Calc_Traj 
op check_tcaj reads from p12i 
timing (l,wcet,ul, 
transition goes to SA-Launch on true; 

end state; 

dy~.}:-"i" SA_I:'lit_Act 
\)P l'lit_.}ct \101( itf~!J t.'") plO, 
t i:-l[lq' [1, w,_'t-t, u]; 
t[d,~I:.Jitlu:1 goes to S"-,, on true, 

end :It,H .. ; 

dY~.1:"l(, SA_L<\unch 
op l,}U~l,'h writes to piO; 
ti:"'i:lq (l,wCH,u]; 
tl,)~l,jitll}tl gl)~!J to") SA....A on tllj"; 

~:1,1 !Jt.H~; 

in1tial S~, 
t=:ld states; 

e:-.d .!t.C'tl':iti'i 

I 
~ 
n 
~ 
~ 
c:Il 

~ 
~ 
Q 
:l 
(j 

~ .... o z 
c:Il 



-~ 

Thesis-caseStudyHostDesign.rtnsl 

RAM Specification 

Dese: 
1--
activity RAM is 

with Image, Pos, BIT_Test, INS_Data, Mode; 

ports 
p13 (Signal, Image.Raw_Irnage, in); 
p14 (Pool, Pos.coords, Qut)i 
pIS (Channel, Mode.number, out)i 
p1G (Pool, Image.Precessed_Image, out)i 
p17 (Signal, INS_Data.pos, out); 
pI8 (Pool, Pos.coords, out); 
pI9 (Signal, BIT_Test .BITJ\ssessment, out) i 

end port 

auxiliary definitions 
constant 1 : Time; 
constant weet : Time; 
constant u : Time; 

end auxiliary definitions; 

local state 
input: Image.Raw_Imagei 

end local state; 

operations 
op Read_Image (raw: Image.Raw_Image)j 
ext write input; 

pre true; 
post input - raw; 

end op; 

op Process_Image (I processed: Image .Processed_Image; 
ext read input; 

pre true; 
post pt oceS3ed - Image. Image_Processing (input) ; 

end 0Pi 

op Raise_Event () evid Mode. number; 
ext read input; 

pre true, 
post evid - <); 

end OPI 

op BIT () vetdict : BIT_Test . BIT_Assessment; 
t-'xt If->.ld input, 

pt e t LIlA; 

po:Jt vt:'rdict - BIT_Test. Assessment (input); 
.·:H1 0Pi 

np Rt ... cotd_i~put () output: Image.Processed_Image; 
ext [I-:'d,j input; 

pre true; 
post (lutput - Image. Image_processing (input'; 

,,:Id 0Pi 

op Wt ite_Position t) position: Pos.coords; 
ext read input; 
pte t nJfl; 
P()!,t pO!Jiti():1 - PU~l.\~3.1c_p("!1(inputll 

t-''ld I)Pi 

IIp WI it~·_INS_[l.\t.\ t) INS_:,",!.'Iq INS_Data.pos; 
M)lit I p.\d input j 

pi f-t t 1 UP: 

post truel 
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end op; 

end operations; 

states 
static RA..~ 

transition goes to ~B on read pl3; 
end state; 

dynamic RruLB 
op Rea~Image reads from pl3; 
timing [1, wcet, uJ; 
transition goes to umb_cut on input - lIumb_cut"; 
transition goes to BIT_cmd on input - lBIT_cmd"; 
transition goes to write_input on input /- (1I umb_cut" OR ftBIT_cmd"); 

end state; 

dynamic umb_cut 
op Raise_Event writes to pIS; 
timing [1, wcet, uJ; 
transition goes to umb_cut_we on true; 

end state; 

static umb_cut_we 
transition goes to RAM...A on write pIS; 

end state; 

dynamic BIT_crnd 
op BIT writes to pl9; 
timing [1, wcet, uJ; 
transition goes to RAM-,A on true; 

end state; 

dynamic write_input 
op WriteYosition writes to p14; 
op Process_Image writes to p16; 
op write_INS_Data writes to pl?; 
op Write_Position writes to pIe; 
timing (1, wcet, uJ; 
transition goes to ~~ on true; 

end state; 

initial RA.MJ; 
end states; 

end activity; 

-- TA Specification 

-- The "Tra!lster Align:nent- (TA, activity loops •.. 

3.cti·lity TA Is 
with I:-..lqf:>, INS_Data, Mi8sile_:.t3.t~. Reports, 

ports 
p20 (Signal. IN:.i_[I..lt.:t.p')!l. in', 
p21 (Pool, :·~i~:Jl1.~_St..it".p,)!,. in', 
p22 (Channel, :~(lil~ . .'1u:-1H-"r. out" 
p23 (Signal, k ... !JLJtt:J.:JL'lttIJ.3, out)1 
p24 (Pool. ItI:",-[1.1LI.~:j[J, out' I 

end pl)rt 

.J,uxlll.u'l' detinitions 
·():)!Jt."~lt 1 : Tif!'.el 
constant w -.. t : T1:"'''i 
constant u : Ti:-~; 

end auxiliary .jf~t i:-.lt ll}~L!l; 

l()'~dl state 
1 :1put : U;S_:J,lt .. l. ~!1g'; 
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MS : Missile_State.status; 

end local state; 

operations 
op Read_Image (inp : INS_Data.pos); 
ext write inputi 

pre true; 
post input - iop; 

end op; 

op Check~issile-Alignment (incoming~s 
ext write rns; 

pre true; 
post MS - incoming~s; 

end op; 

op Generate~eport () rp 
ext read MS; 

pre true; 
post true; 

end op; 

Reports.status; 

op Raise-Event () ev Mode.number; 
ext read MSj 
pre true; 
post true; 

end oP: 

op Wr He_INS () output 
ext read input; 

pre true; 
post true; 

end op; 
end operations; 

states 
static T1\....11 

INS_Data.msgi 

transition goes to T~B on read p20i 
end state; 

dynamic TA_B 
op Read_Image reads from p20; 
timing [l,wcet,uli 
transition goes to TA.-C on true; 

~nd state; 

dynamic TII_C 

Missile_State.pos)i 

OJ-> Chl"(:k_~'H3Sil~_Alignment reads from p21; 
ti:"1inq [l,wcet,u]; 
tr-dnsition gOEl::; to TA--D on true; 

end !itdt~; 

(1yna~ic TA_D 
op Genel,ltEl_RepIH t writ..,-:) to p23; 
timinq [l,wc~t,ul; 

tcan~~ition goe:3 to TA--E on tl'ue; 
t-lnd state; 

dyn.l:-i,' TA--E 
op R~i:)p_Evpnt writp3 tn p22; 
ti~i:HJ [l,we.-t,ull 
t ld.~l!.dt ion q()PS tn T"-.F on true; 

... :\(1 !.t,lt ... : 

:;t .,t ic TA __ f 
tlL"\'I:dt 1.','"'\ ql)t.'!; t" T~l' (':1 WI itt:' p~~; 

"':-Id :1I.lt ,.; 

di':hl:rL- 111._,; 
"1' Wllf.· __ IW, WI itf"~~ t" p":4; 
t l'- I :111 [1, w,' ... t, \11; 
tl,I'\·.ltio~ ~I""!l t,) TA-A on tllU'; 

end state; 

initial T~A; 
end states; 

end activity; 

-- ME Specification 

Thesis-caseStudyHostDeslgn.rtnsl 

-- The nManage BIT- (ME) activity loops .•• 

activity MB is 
with Mode; 

ports 
p25 (Signal, BIT_Test. BIT_Assessment, in); 
p26 (Channel, Mode.number, out); 
p27 (Signal, Reports. status, out); 

end por 5; 

auxiliary definitions 
constant 1 : Time; 
constant wcet : Time; 
constant u : Time; 
constant to : Time; 
constant tl : Time; 

end auxiliary definitions; 

local state 
missile_state BIT_Test. BIT_Assessment; 

end local state; 

operations 
op tests (BITJTlsg : BIT_Test, 81T-Assessment) m Mode. number 1 
ext write missile_state; 

pre true; 
post true; 

end op; 

op write_report () rep: Reports,status; 
ext read missile_state; 

pre true; 
post true; 

end op; 
end operations; 

states 
static ~B_A 

transition goes to do_tO::'::It:i on read p251 
t:':1d ~>t at t"; 

dy:l.l:"'ic do_tests 
l)P teste reads trol'l" p25 writes to p261 
tl:"'l~\g 1~.IoI,:et.uJ; 
tl.l:)sitl()~l qf)t:'S t!) !o'.B_C on trlJ~; 

end state; 

:Jt _tt i,~ :,:b_C 
tl,ltlSU: i'l:1 goea t,! writeJeports O:l WI it" p2fil 

e:Hj state: 

dy~,'-l': "llt"_I~PO(t:l 
<)~' W[lt"" __ lf'!P<)lt write" tu p27; 
tl:1nq Il,wc8t,ull 
tC3~5lti0:1 908a to MB.-A on true; 

end 3tdte, 

1~it 1a1 !!II_A; 
end states; 
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end activity; 

TG Specification 

The -Timeout Generator" eTG) activity loops .•• 
----------------------------------------------

activity TG is 
with Mode, Clock; 

ports 
p34 : (Stimulus, NULL, in) i 
p35 : (Channel, Mode.number, out); 

end ports; 

auxiliary definitions 
constant 1 : Time; 
constant weet : Time; 
constant u : Time; 
constant to : Time; 
constant t 1 : Time; 

end auxiliary definitions; 

operations 
op write_timeout () m Mode. number; 

pre true; 
post m _ "Timeout n; 

end op; 
end operations; 

otates 
--STIM not READ! 

static TG_A 
transition goes to TG_B on read p34i 

end state; 

static TG_B 
transition goes to TG_C on (tol,to2]; 

end state; 

dynamic TG_C 
op write_timeout writes to p35j 
timing [1,wcet,ul; 
transition goes to TG_D on true; 

end state; 

static TG_D 
transition goes to TG->' on w[' ite p35; 

end state; 

init 1a1 n,_A; 
end states; 

end activity; 

1--
IMU_SS Speci f i CLlt i 0;) 

Desc: Tilt'> "Iapltial MeasuI~:"""':lt U:lit" UXU) Sub-syste:-- loops. 

,ld 1 v it y IMll_SS is 
with lliol(]I_', Clork; 

P,ll t ~l 

pl'lkl 
polO 

... "d p,n tSI 

(Sti:-ulllS, C'l,h'k.tick, in); 
(Siq~hll. I:-"'aqt".PI\.)o.:'essed_I:-dqe. out); 
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auxiliary definitions 

constant 1 : Time; 
constant wcet : Time; 
constant u : Time; 

end auxiliary definitions; 

operations 
op write_data () output 

pre true; 
post true; 

end op; 
end operations; 

--STIM not READ! 

states 
static lMU_A 

Image. Processe~Image; 

transition goes to IMU_B on read pclkl; 
end state; 

dynamic IMU_B 
op write_data writes to p40; 
timing [l,wcet,u}; 
transition goes to IMU_A on true; 

end state; 

initial I~U_A; 
end states; 

end activity; 

AC_SS Specification 

Dese: The nActuator" Sub-system loops ... 

activity AC_SS is 
with Image; 

ports 
p36 : (Signal, 

end ports; 

operations 
op write_data 

pre true; 
post true; 

end op; 
end operations; 

states 
dynamic AC,J. 

--------------

Image.Raw_Image, out); 

() output Image. Raw_Image; 

op write_data writes to p36; 
tin'oing {1,wcet,u}; 
transition goes to ACj\ on truel 

end state; 

initial AC--", 
en,j Std.t~5; 

end .l,:t il/lty: 

A..-S5 Specification 

Desc: The -All' [ott' - sub-system loops •.. 

activity ,,"-55 1s 
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with Actuators; 

ports 
p38 : (Signal, Actuators.cmd, in); 

end ports; 

local state 
xyz : Actuators .pos; 

end local state; 

operations 
op read_data (in_cmd Actuators.cmd)i 
ext write XYZ; 
pre true; 
post true; 

end op; 
end operations; 

states 
static A....A 

transition goes to ~ on read p38; 
end state; 

dynamic ~B 
op read_data reads from p38; 
timing (l,wcet,u); 
transition goes to ~ on true; 

end state; 

initial A~; 
end states; 

end activity; 

-- Begin IDA Descriptions 

1 --

ida AIM is 
Kind Signal; 
Datatype Image.Raw_Imagej 

e~d ida; 

ida ME is 
Kind Channel; 
Datatype Mode,number; 

end ida; 

ida AM is 
Kind Pool; 
Oatdtype Image.Processed_Image: 

end ida; 

io1.1 AID i:3 
Ki:vi Sig~.ll; 
Dat..ltype INS_Oata.pos; 

.··:\d id,l; 

ido.l Be i:o; 
lUnd Siq:l.ll; 
Datat YP'" B1 T _ T ... ~t . BIT_Asses9n".ent; 

f-'~d ida; 

id,l :-:SI is 
Ki~d Siq~~\I; 

tlo.lt ,lot YP'" :-:i ~!l i 1", _~1 t .lot ~. st.!otus 1 
end 1<'1.\; 

id., XS2 is 
I\1:1(t Poolj 
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Datatype Missile_state.pos; 

end ida; 

ida AD is 
Kind Signal; 
Datatype Actuators.crnd; 

end ida; 

ida TS is 
Kind Stimulus; 
Datatype NULL; 

end ida; 

-- Begin RTN Descr iptios 

1---
rtn netl is 

MC.pl reads from ME; 
AC_SS.p36 writes to AIM; 
RAM.p13 reads from AIM: 
RAM.pIS writes to ME; 
RAM.p16 writes to k~: 
RAM.pI? writes to AID; 
RA..~.pI9 writes to BC; 
MB.p2S reads from BC; 

MB.p26 writes to ME; 
SA.pI2 reads from AM; 
SA.p9 reads from MSI; 
SA.pIO writes to AD; 
TA.p20 reads from AID; 
TA.p2I reads from MS2; 

TA.p22 writes to ME; 
~SS.p38 reads from AD; 
MC.pO writes to TS: 
TG.p34 reads from TS; 
INav.p6 writes to MSI; 
INav.p8 writes to MS2; 

end rtn; 

1--
-- Begin Theory Oescr iptions 

1--

theory 
miat : TitT'.e 
deadline : Time 

AsSurr.ptionl : AXIO~ 
FORALL !1: Occ, tl. t2: Th'.e): 

th(al_Id~_pl, i, tl) AND thl.l1_I,j!l-p1, i·d, t~) IMPLIES 
t2 >- t1 + -ldt 

Assumption2 : AXIOM 
miat > deadl! ne 

A:J:Ju:-pt lO:I:~ AXIOM 
,j",.}d11ne > al_ul + ..t.":' _u.' 

Ttu:o [ 0:':" 1 : THEOP-EM 
rORALL (1: Occ. t 1: Time): 

thlal_rds-pl, i. t1) IY.PLIES 
EXISTS (t2: Tl:~): t.h(d2_w~...JJ~. i, t2) AlW 

t2 . - t1 + (j~.,rjll:)~ 

Theore~.2 THEORE.."! 

> 
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end; 

1-
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FORALL (i: Oce, tl: Time): 

th(a2_we-p4, i, tI) I~PLIES 
EXISTS It2: Ti!'!'.e): th(al_rds--p1, i, tZ) AND t2 < tl 

END 

1-
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A.2 Modified Axiomatic Semantics 

Those axioms modified for the TAo activity are: 

TA_ax_31_rpl: AXIOM 

Vi: Occ,t},t2: Time· 0(1TAJpl,i,t) /l.0lTA_'Pl,i,t2 ~ 

--,posCTA_check_missile_alignment(TA_incoming-,ns( tl ), TA_inPIII(tl» (TA_MS(lz» V 

posCTA_check_missile_alignment( TA_incoming_ms(t), TA_input(t) )(TA_MS(12» 

TA_ax_31_rp2 : AXIOM 

Vi: Occ,t),t2: Time· 0(1TAJP2,i,tJ) /I. o lTA_'P2, i,t2 ~ 

--,post_TA_check_missilcalignment(TA_incoming_ms(t) ), TA_inpm(tl) )(TA_MS{tz» V 

poscTA3heck_missile_a/ignment(TA_incoming_ms(t) ), TA_inpllt(tl» (TA_MS( t2» 

TA_ax_3 Lrp3 : AXIOM 

Vi: Occ,t) ,t2: Time· 0(1TA_'P3, i,t) /I. 0lTAJP3,i,t2 ~ 

--,poscTA_check_missile_alignment(TA_incoming_ms(t), TA_inpII1(tl »(TA_MS(tz» V 

poscTA_check_missile _alignment(TA_incoming_ms(tl), TA_inpllt( tl» (TA_MS(t2» 

TA_rds_p2Lax: AXIOM 

Vi: Occ, t: Time· 0(rds""p21, i,t) ¢:> 

3j: Occ· 0(TTA_'P1,j,t) V 0(TTAJP2,j,t) V 0(TTAJP3,j,t) 

TA_ax_17Jpl : AXIOM 

Vi:Occ,t) : Time· 0(1TA_'P1,i,tt} ~ 

3t2: Time· t) + TA_l ::; t2 ::; tl + TA_1I /I. 

0(lTAJpl, i,t2) 

TA_ax_17_rp2: AXIOM 

Vi:Occ,tl :Tlme·0(1TA_'P2,i,tl) ~ 

3t2 : Time· tl + TA_l ::; t2 ::; tl + TA_" /I. 

0(lTAJP2, i, t2) 

TA_ax_17_rp3: AXIOM 

Vi:Occ,t) :Tlme·0(1TAJP3,i,t) ~ 

3t2 : Time· tl + TA_l ::; t2 ::; tl + TA_II /I. 

0(lTAJP3, i, t2) 

TA_ax_5_rpl : AXIOM 

Vi:Occ,tl :Tlme·0(lTA_'P1,i,tJ) ~ 

(true/l.0(1TA_D,i,tJ) V 

(3j: Occ· valueFaultL,j,tJ) /I. 0(1TA_'P2,j,tl» 

TA_ax_5_rp2: AXIOM 

Vi:Occ,tl : Time· 0(lTAJP2,i,tl) ~ 

(true/l.0(1TA_D,i,tt}) V 

(3j: Occ· vallleFallltLj, tl) /I. 0(1TA_'P3.j. tJ) 

185 
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TA_ax_5_rp3: AXIOM 

Vi: Occ,tl : TIme· 0(.lTA_rp3,i,td =? 

(true /\ 0(lTA_D, i,tl» 

TA_ax_4_rpl : AXIOM 

Vi:Occ,tl :TIme·0(.lTA_B,i,tl) =? 

true /\ 0(lTAJpl,i, tl) 

Those axioms modified for the SAa activity are: 

vl_ax_l : AXIOM 

Vtl :TIme·3i:Occ·0(vl_we....PY,i,td ¢} 

3j: Occ· 0(lvl_stateV,j,td 

vCax_2: AXIOM 

Vi: Occ, tl : TIme· 0(lvl_stateV, i, td =? 

3t2: TIme· t2 + 1:S tl :S t2 + It/\ 0(Tv I_state V, i, t2) 

vl_ax_3: AXIOM 

Vi: Occ, tl, t2: TIme· 0(jvl_stateV, i, tl) /\ 0(lvl_stateV, i, t2) =? 

post_vote(tl, t2) 

IH_ax_ll' : AXIOM 

Vi: Occ, tl : TIme· 0(TIH_A,i,t2) 

3j: Occ,t2: TIme· 0(stim_clk4,j,t2) /\ 0(JlH_A,i,t2) V 

tl + 1:S t2 :S tl + It/\ 0(JlA_A, i,t2) 

IH_ax_14' : AXIOM 

Vi:Occ,tl : TIme· 0(JlH_A,i,tI} =? 

3j: Occ,t2: TIme· 0(stimJlk4,j,tl) V 

tl-It:S t2:S tl-I/\001H_A,i,t2) 

IH_ax_2' : AXIOM 

Vi:Occ,tl :TIme·0(JlH_A,i,td =? 

3j,k: Occ· 0(jlH_abandon_check,j,tl) 1\ 0(stimJlk4,k,tl) V 

0(jlH_watchdog,j, td /\ 0(stim_clk4,k, tI} 

IH_ax_18: AXIOM 

Vi: Occ, tl : TIme· 0(jlH_watchdog, i, tI} =? 

3t2: TIme· tl + 1:S t2 :S tl + It/\ 0(JlH_watchdog, i, t2) 

IH_ax_19: AXIOM 

Vi: Occ,tl : TIme· 0(JlH_watchdog,i,tI} =? 0(TIH_wait,i,tI} 

IH_ax_20: AXIOM 

Vi:Occ,tl : TIme· 0(jlH_wait,i,tI} =? 

3j: Occ,t2: TIme· 0(stimJlk4,j,t2) /\ 0(JlH_wait, i,(2) V 

0(stim""pB,j, t2) 1\ 0(JlH_wait, i,t2) 
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IH_ax_21 : AXIOM 

Vi: Dcc, 11 : TIme . 0( VH _wail, i, 11) => 
3j,k: DCC,12: TIme· 0(1JH_abandon_check,j,t2)1\0(stim_clk4,Ie.tz) V 

0(1JH_lockJiring,j, (2) 1\ o (stim.J)B , Ie, (2) 
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Appendix B 

Axiomatic Soundness Proofs and 

Lemmas 

B.1 Soundness Conjectures 

The axiom schema's which define .Q are partitioned into the following families: Start-up; State Exit; State 

Entry; Progress and Stability axioms, following the state-machine axiomatisation in [Pay02J. 

Paynter also stated: 

The complexity of this schema derives from the fact that it defines the relationship bt'llIl'en 

the number of times the source state has been exited, and the number of times the target has 

been entered. This depends upon the number of transitions into the target state, and the fact 

that the guard and static semantics together ensllre that the source state will hare a single ('xiI 

transition. This information is static, and may be exploited when instantiating the schema for 

each pair of states which satisfy the guard to determine which clause of the schema applies. 

Exploiting this information when instantiating the schema is helpflll; tril'ial proofs abow the 

relationship between target and sOllrce indexes need not be repeated for each separate state­

machine specification. 

We therefore only select the interesting examples from this schema and show the resulting conje(;(un:, 

sound. Where possible, we cover the array of possibilities in different conjectures, instead of repeating the 

same justification for each proof. 

Note, the conditions in the square brackets at the top of the conjectures, are its guards. These are a~sumed 

known in the first step of each proof. Several auxiliary functions are used to aid presentation and are taken 

from the existing axiomatic semantic definitions. 

The following four functions define syntactic properties of state-machine,. and are used in the guards to 

the conjectures below. 

TransitionsOllt : State x Transition-set -> Transition-set 

TransitionsOw(s, ts) ~ {t I t E ts· t.src = s} 
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Transitionsln : State x Transition-set -> Transition-set 

Transitionsln(s, ts) ~ {t 1 t E ts· t.trg = s} 

Sucessors : State x State-set x Transition-set -+ State-set 

Sucessors(s, state, ts) ~ {s' Estates 13t E ts· t.src = s 1\ t.trg = s'} 

Predecessors : State x State-set x Transition-set -> State-set 

Predecessors(s, state, ts) ~ {s' Estates 13t E ts· t.src = s' 1\ Urg = s} 

The following four functions characterise whether a state has a single (SE) or multiple 1.\1 E) entry transi­

tions, and single (SX) or multiple (MX) exit transitions: 

SE, ME, SX, MX : State x State-set x Transition-set -> lE 

SE(s, state, ts) ~ #Predecessors(s, states, ts) = I 
ME(s, state,ts) ~ #Predecessors(s, states, ts) > 1 

SX(s,state,ts) ~#Sucessors(s,states,ts) = 1 

MX(s,state,ts) ~#Sucessors(s,states,ts) > 1 

B.1.1 Ax2:: Static State Exit 

[is_staticstate(s), s, E enabled(s,ts,tr), SE(s,states,ts)] 

P(1t) ~ Vtl E inds 1t. ].I- Ej 1t(td =} is, Ei 1t(tl) 

B.1.2 Ax3:: Dynamic State Exit 

[s = dynamic, s, E enabled(s,ts,tr), ME(s)] 

P(1t) ~ Vtl E inds1t].l- Ej 1t(tl) =} is, Ej 1t(tl) 

B.1.3 Ax4:: (Initial) State Entry 

[s = initial, MX(s,states,ts) , ME(s,states,ts), i> 1, Ss E Predecessors(s,states.ts)] 

P(1t) ~ Vtl E inds1t· is Ej 1t(tl) =} 3t2 E inds1t· ].I-s Ej 1t(12) 

B.1.4 Ax5:: State Entry 

[s # initial, sp E Predecessor(s, ts)] 

P(1t) ~ Vtl E inds1t· is Ej 1t(tl) =} ].I-p Ej 1t(tJ) 

B.1.S Ax6:: (Dynamic) State Progress 

[s = dynamic] 

P(1t) ~ Vt\ E inds 1t. is Ej 1t(t\) 1\ len 1t ~ t\ + II =} 312 E inds 1t. ].I- Ej 1t(1cIM2 -:; t\ + II 
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B.1.6 Ax7:: (Static) State Progress, Event Transition 

[s = static, label = event] 

P(1t) ~ Vtl E inds 1t -e E; 1t(tl) => Js E; 1t(tl) 

B.1.7 AxS:: (Static) State Progress, Timed Transition 

[s = static, label = timed] 

P(1t) ~ Vtl E inds 1t - Ts E; 1t(tl) A len 1t ~ tl + /I => 
:J t2 E inds 1t - Js E; 1t(t2) Alz :S tl + /I 

B.I.S Ax9:: (Dynamic) State Stability 

[s = dynamic] 

P(1t)~Vtl Einds1t- .].I'E;1t(tJ) => :Jtz Einds1t- TSE;n(lc)A 

tl-wcrt :S t2 :S tl-bcet 

B.1.9 AxlO:: (Static) State Stability, Event Transition 

[s = static, label = event] 

P(1t)~Vtl Einds1t-.].I'E;1t(tJ) => :Jt2Eindsn- TSE;n(t2)A 

tl -/I :S tz :S tl -I 

B.1.10 Axll:: (Static) State Stability, Timed Transition 

[s = static, label = timed] 

P(1t) ~ Vtl E inds1t- .].I' E; 1t(tJ) => e E n(ld 

B.I.11 Ax12:: Stop States 

[s = static] 

P(n) ~ Vtl E inds 1t - term E n(len 1t) => ....,.].1' E; n(tl) 

B.2 Top Level Soundness Proofs 

B.2.1 Ax2 

As Ax3 
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B.2.2 Ax3 

PROOF (Ax3) 

from rtn: RTN; 0': l:; 1t: finn; 

inds 1t : N-set 

2 from t: NJ; t E inds res]; If E [es](t) 

2.1 -, .Is E [es](t) 

infer t E inds res] .Is Ej [es](t) => ls's Ei [es](t) 

3 Vt E inds res]· .Is Ei [es](t) => ls's Ej [es](t) 

4 P([esJ) 
5 from P(:It'); s: ES; inv-firtn(:It'r+ [sJ) 

5.1 from~ Einds:lt'sconc[s]; .lsEi:lt'r+[S]{~) 
infer ls's Ej 1t,r+ [s] (~ ) 

infer ~ E inds1t'sconc[s]· .Is Ei:lt' r+ [s](~) => ls's Ej:lt' r+ [s](~) 
6 V~ E inds:lt'sconc[s]· .Is Ei:lt' r+ [s](~) => ls's Ej:lt' r+ [s](~) 
7 P(1t'r+[sJ) 

infer V1t : firm' P( 1t) 

I non-zero I 
is E 1t(t) 

-, .Is E 1t(t) 

I exit-enter-succ I 

t:N J ; O':l:; 1t:finn; 

(mk_tr(s, ss), 0', 1t( 1, ... , t)) .!!-. true; 

.Is E 1t(t) 

iss E 1t(t) 

B.2.3 Ax4 

inds-fonn(h3 ) 

non-zero(2.h3) 

=>-1-righl-vac(2.1) 

'v'-I-sel( 1.2) 

folding(3) 

exil-enler-succ(5.I.h I) 

=>-1(5.l.h 1,5.1) 

'v'-I-sel(l.5) 

folding(6) 

nnn-indn(4.7) 

• 
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PROOF (Ax4) 

from rtn: RTN; cr: E; x: llnn; S = initial =* i> 1 

inds X : N'-set 

2 fromt:N'l; tEinds[es]; tvE;[es](t) 

2.1 i = 1 

infer .lsp Ej [es](t) 
3 t E inds res]· is E; [es](t) =*.lsp Ej [es](t) 
4 Vt E inds res]· .Is E; [es](t) =* ls"s Ej [es](t) 

5 P([es]) 
6 from P(1t'); s: ES; inv-llnn(1t' n. [s]); l' E inds1t' n. [s] 

6.1 from is E; 1t' n. [s](l) 
infer .Iss E; 1t' n. [s](t') 

infer tv E; 1t' n. [s](t') =* ls"s Ei 1t' n. [s](t') 
7 '<It' E inds 1t'sconc[s]· is E; 1t' n. [s](t') =* ls"s E; 1t' n. [s](t' 

8 P(1t' n. [s]) 

infer Vx: llrtn· P(x) 

B.2.4 AxS 

PROOF (Ax5) 

from rtn: RTN; cr: E; x: llnn; s # initial =* i> 1 

1 inds x : N'-set 

2 from t: N 1; t E inds [es]; is E; [es](t) 

2.1 i = 1 

infer .lsp E; [es](t) 
3 t E inds res]· is E; [es](t) =* ls"p E; [es](t) 

4 Vt E inds res]· .Is E; [es](t) =* ls"s Ej [es](t) 

5 P([es]) 
6 from P(1t'); s: ES; inv-llnn(1t' n. [s]); l' E inds1t' n. [s] 

6.1 from is E i 1t' n. [s]( 1') 
infer ls"s E; 1t' n. [s](t') 

infer ls" E; 1t' n. [s](t') =*.lss E; 1t' n. [s](t') 
7 '<It' E inds 1t'sconc[s]· is E; 1t' n. [s] (1') =* ls"s E; 1t' n. [s](t' 

8 P(1t' n. [s]) 

infer Vx : llrtn . P( x) 

inds-fonn(h3) 

occ-once(2.h2) 

contradiction(M,2.1) 

=>-1(2.h2,2) 

V'-I-set( I ,3) 

folding(4) 

enter-exit-pred(6.I.h I) 

=>-1(6.l.h 1.6.1) 

V'-I-set( 1 ,6) 

folding(7) 

llnn-indn(5,8) 

• 

inds-fonn(h3) 

occ-once(2.h2) 

contradiction(M,2.1) 

=>-I(2.h2,2) 

V'-I-set( 1 ,3) 

folding(4) 

enter-exit-pred(6.I.h 1) 

=>-1(6.l.h 1,6.1) 

V'-I-set(1,6) 

folding(7) 

llnn-indn(5,8) 

• 
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I occ-once I 

t,i:H1; s:ES; e:Event; 

t E inds [sJ· e Ei [s](t) 

i= 1 

I enter-exit-pred I 

t:N"l; cr:L; 1t:Ilnn ; 

(mk_tr(sp, s), cr, 1t(I, ... , t)) l!.. true; 

tr E 1t(t) 

j.l-p E 1t(t) 

B.2.5 Ax6 

done in main body of thesis 

B.2.6 Ax8 

as Ax6 

B.2.7 Ax9 
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PROOF (AX9) 

from rtn : RTN; 0': E; 1t: TIrln 

inds 1t: N ,-set inds-fonn(h3) 
2 res] :TIrln ?-fonn 
3 from t, E inds res]; .Is E; [es](t!) 

3.1 31" E inds res]· ls E;[es](1") At" < tl exit-=>-enter() 

3.2 ..., .Is E; [es](t!) 

infer 3 t2 E inds res]· ls E; res] (t2) A tl-wert :$ t2 :$ t,-beet contradictionO 

4 tl E inds res]· .Is E; [es](t!) => 3t2 E inds res]· ls E; [es](t2) At,-wert:$ t2 :$ t)-beet =>-1(3.hl,3.h2,3) 

5 Vt, E inds res]· .Is E; [es](tl) => 3t2 E inds res]· ls E; [es](t2) At,-wert:$ t2:$ t)-beet 'v'-I-set(l,4) 

6 P([es]) folding(5) 

7 from P(1t'); s: ES; inv-TIrln (1t' '" Is]); 

~ E inds1t'''' [s]; J.y E; 1t''''[s](~) 
7.1 3 t" E inds 1t' '" Is], ts E; 1t' '" [s](1") A 1" < ~ exit-=>-enter(7.h4,7.h5) 

7.2 from ti E inds1t'" [s]; ls E; 1t''''[s](ti) Ati < ~ 
7.2.1 ~ -wert :$ ti :$ ~ -beet prem-??? 

A-I(7.2.h2,7.2.1) 

7.3 

infer ts E; 1t' '" [s] (ti) A ~ -wert :$ ti :$ ~ -beet 

ts E; 1t' '" [s](ti) A ~ -wert :$ ti :$ ~ -beet 3-E(7.1,7.2.hl.7.2.h2.7.2) 

infer 3 ti E inds 1t' '" Is], ls E; 1t' '" [s](ti) A ~ -wert :$ ti :$ ~ -beet 

8 ~ Einds1t''''[s]· .lsE;1t''''[s](~) => 3ti Einds1t"'[s]. lsE;1t"'[s](ti)A 

~ -wert :$ ti :$ ~ -beet 
9 V~ Einds1t''''[s]·.lsE;1t''''[S](~) => 3tiEinds7t"'[s]'lsE;7t"'[s](ti)A 

10 P(1t' '" Is]) 
infer V7t : TI rln • P( 1t) 

t, i: N); 7t: TIrln ; 

. I t E inds 7t. J.y E; 7t(t) 

B.2.8 AxlO 

asAx9 

B.3 Additional Lemmas 

~ a:A,s:A* 
len-

len s'" [a] = sllee(len s) 

~ -wert :$ ti :$ ~ -beet 

3-1-set(7.3) 

=>-1(7.h4. 7 .h5. 7) 

'v'-I-set(7.h4.8) 

folding(9) 

TIrln-indn(6,1O) 

• 

194 



APPENDIX B. AXIOMATIC SOUNDNESS PROOFS AND LEMMAS 

PROOF (LEN-~) 

from a:A,s:A* 

infer lens~ [aJ = succ(lens) 

PROOF (=-V-{ }-I) 

from a:N; b:N; a = b 

O:N 

2 a+O= a 

3 a+O= b 

4 3k:N·a+k=b 

infer a 2': b 

s:A-set 

I =-v-{}-I I s = 0 V s;6 0 

PROOF (=-v-O-I) 

from s : A -set 

1 {} :A-set 

2 ~(s= 0) 
infer s = {} V s ;6 {} 

a:N,b:N,a - b 
L..--v_-=.2:--," a 2': b 

• 

O-fonn 

+-defn-O-right(h I) 

=-subs-right(b )(h l,h3,2) 

3-1(1,3) 

folding(4) 

• 

{}-form 

0-=- I(h 1.1) 

unfolding(2) 

• 
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Appendix C 

VDM Tool support for SOS definitions 

In this Appendix, we present the full VDM-SL model which defines the abstract syntax on which our SOS 

rules are specified. In an attempt to syntax and type check these rules we specify each SOS rule as an 

implicit VDM-SL functions [ABV94j and examine the implementation consideration, that a concurrent. 

non-deterministic model pose. 

C.I Abstract Syntax 

types 

17.0 Id = token; 

18.0 Var = token; 

19.0 Expr = token; 

20.0 Event = token; 

21.0 Fault = LATE _EXIT; 

22.0 Bounds: : beet: N 

.1 bert:N 

.2 weet:N; 

23.0 Port::id:1d 

.1 dir: IN lOUT: 

24.0 Time Bound :: IOlrer: N 

.1 upper:N; 
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25.0 Label = TzmeBound I Event I Expr I Fault; 

26.0 Static-State: : id : Jd; 

27.0 Operation:: id: Id 

.1 read-vars: Var-set 

.2 written-vars: Var-set 

.3 input-parameter: [Id] 

.4 output-result: [Id] 

.5 preC:Expr 

.6 postC: Expr; 

28.0 Dynamic-State: : id: Id 

.I ops: Operation-set 

.2 bounds: Bounds; 

29.0 State = Static-State I Dynamic-State; 

30.0 Transition:: src: Id 

.1 trg:Id 

.2 I: Label; 

31.0 SM : : ss : State-set 

.I ts: Transition-set 

.2 initial: Id; 

32.0 Activity: : input-ports: Port-set 

.I output-ports: Port-set 

.2 local-state: Id .!!!... Var 

.3 ops: Operation-set 

.4 sm:SM; 

33.0 IDA ::id: Id 

.I size: N 

.2 protocol: POOL I CHAN I SIGNAL; 

34.0 Connection: : act-id: Id 

.I port-id:Id 

.2 ida-id:Id 

.3 dir: IN lOUT; 

35.0 rtn-spec = token; 
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36.0 RTN: : acts: Activity-set 

.1 idas: IDA-set 

.2 net: rtn-spec; 

C.2 Context Conditions 

C.2.t Auxiliary Objects 

We need an object to record the static information about the given real time network: 

37.0 RTN-Types = Id ~ (Actirit\· I IDA I Connection); 

C.3 (Normative) Semantics 

What follows are two presentations of (hopefully) the same semantics. In our attempt to define an SOS 

semantics in the Plotkin Style, we give side-by-side to each rule a YD~l function which (in the lea't) ') nt;lx 

& type checks our rules. 

C.3.1 Semantic Objects 

Dynamic information I about RTN components are stored in: 

38.0 = Id ~ (port I ida I act I dySt); 

and the history of a RTN 

39.0 = (Event-set)'; 

The (dynamic) RTN components we consider are: 

40.0 port = Var; 

41.0 ida::ls:Var'; 

42.0 act: : cs: Id 

.1 Is:ld~Var 

, staWs: INIT I WAlT _RO I WAIT_WE I WAIT _ TR IINSS IINOS I TERM I FAULT; 

4.1.0 dySt: : ops: Id' 

Note, the dom r. C dom RTN-Types in that for all components with dynamic properties (port, IDAs, Activi­

ties & Dynamic States) in RTN-Types their dynamic properties are in L It is envisaged some initialisation 

rulce would define this. 

I Static information can be obtained from RTN-T\'pes 

'It is not clear currently \\ hat this would look like 
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C.3.2 Auxiliary Functions 

insfO detennines whether an id of an Activity. A component is a state. 

functions 

44.0 insf:Activity x Id -+ INSS IINOS 

.1 ins! (A, id) Q 

.2 let s E A.sm.ss be st 

.3 s.id = id in 

.4 if isjs,Dynamic-State) 

.5 then INOS 

.6 else INSS; 

The following three auxiliary functions are required to convert a set of Operation to a sequence of Operation 

ids ... 

45.0 getOplds: Operation-set -+ Id' 

.1 getOplds(opset) Q 

.2 let ops = set2seq[Operation] (opset) in 

.3 [ops(i).id liE inds ops]; 

46.0 set2seq[@elem]: (@elem-set) -+ (@elem') 

.1 set2seq(s) Q 

.2 seqBuilder[@elem] (s, 0); 

47.0 seqBuilder[@elem]: (@elem-set) x (@elem*) -+ (@elem') 

.1 seqBuilder(s,sq) Q 

.2 its = {} 

.3 then sq 

.4 else let x E sin 

.5 seqBuilder[@elem](s\ {x}, [xJf''\. sq); 

C.3.3 Semantic Rules 

The types of the required relations are 

~ : ((RTN-Types x E x TI) x (E x TI)) 

Other semantic (transition) relations defined are: 

.!!!. : ((RTN-Types x E x TI) x (E x TI)) 
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~ :((RTN-Types x 1: x n) x (1: x n)) 

~ : ((Port x 1:) x Val) 

~ : ((Expr x 1:) x JR) 

The relations above wiII form the function signatures for the VDM functions. for example: 

48.0 ..!..... : RTN -Types x 1: x n x 1: x n --+ JR 

C.3.3.1 Auxiliary Semantic Functions 

49.0 expr: Expr x Id.!!!... Var --+ JR 

.1 expr(e,ls) ~ 

.2 is not yet specified; 
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C.3.3.2 Operations 

The meaning of a single operation is defined with four rules, depending on whether the operation reads, 

writes, does both or neither: 

Reads, not Write 

Plotkin Rule: 

a E doma\ 

a\ (a) = mk_act(cs, ls, INDS) 

a\ (cs).ops i= [J 
s E RTN(a).sm.ss 

mk_Operation(id,rd, we, in"'p, Ollt...p, pre, post) E elemss.ops /\ hdal (cs).ops = id 

in"'p i= nil,out...p = nil 

(in"'p, RTN, ad!!!.. v 

Is' = Is t{ in"'p f-+ v} 

(pre, Is) ~ true 

(post, Is') ~ true 
I dySt-op-rd I (RTN,a\, ret) ~ (a\ t{cs f-+ tlal (cs).ops,a f-+ mk_act{cs,ls', INDS)}, {rd{in...pH) 

YDM Function: 

50.0 dySt-op-rd(RTN:RTN-Types,:,:,:,:) r:Ja 

.1 pre let a E dom be st is) (a) , act) in 

.2 let mk-act (cs, Is, INDS) = (a) in 

.3 let mk-Operation (id, read, we, in-p,ollt-p,preC,postC) E RTN {a).ops be sl 

.4 (cs).ops i= 0/\ 

.5 hd (cs).ops = id /\ 

.6 in-p i= nil /\ 

.7 out-p = nil in 

.8 let inp E RTN (a). input-ports be st 

.9 inp.id = in-p in 

.10 let Is' = (a).lst{inp.idf-+ rdport(inp,)} in 

.11 e.xpr(preC,ls) /\ e.xpr(postC, Is') 
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.12 post let a E dom be 51 

.13 ((a).cs).ops # 0 in 

.14 leI op E RTN(a).opSbe 51 

.15 hd ((a).cs).ops = op.id /\ 

.16 op.input-parameter # nil in 

.17 leI inp E RTN (a).input-ports be 51 

.18 inp.id = op.input-parameterin 

.19 leI Is' :Id ~ Varbe st 

.20 Is' = (a ).Is t{inp.id 1-+ rdport (inp,)) /\ 

.21 expr(op.preC, (a).ls) /\ 

.22 expr(op.postC,Is') in 

.23 leI mk-act(cs,ls,INDS) = (a) in 

.24 = t{cs 1-+ II (cs).ops,a 1-+ mk-act(cs,ls', INDS)} /\ 

.25 = r+[{mk-Ioken(nrd(in""p)n)}]; 
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Reads and Writes 

Plotkin Rule: 

a E domo, 

0\ (a) = mCact(cs,IS,INDS) 

0\ (cs).ops:l [] 

s E RTN(a).sm.ss 

mk_Operation(id,rd, we, in..jJ, out..jJ,pre,post) E elem5s.ops /\ hdo, (cs).ops = id 

in..jJ:I nil,out..jJ:I nil 

(in-p,RTN,ot}!!!.. v 

Is' = Is t {in-p l-+ v} 

(pre,ls) ~ true 

(out-p, v',Is') ~ Is" 

(post, Is") ~ true 
I dySt-op-rdwe I (RTN, 0" 1t,) ~ (0, t {cs l-+ tl 0, (cs).ops, a 1--+ mk_act(cs, Is", INDS)}, {rd(in..jJ) , we (01lt..jJ )} ) 

51.0 dySt-op-rdwe(RTN:RTN-Types,:,:,:,:) r:lR 

.J pre let a E dom be 5t i5_( (a), act) in 

.2 let mk-act (cs, ls, INDS) = (a) in 

.3 let mk-Operation (id, read, we, in-p, out-p,preC,postC) E RTN (a).ops be 51 

.4 (cs).ops:l 0/\ 

.5 hd (cs).ops = id /\ 

.6 in-p :I nil /\ 

.7 out-p :I nil in 

.8 let inp E RTN (a) .input-ports be 5t 

.9 inp.id = in-p in 

.10 letts' = (a).ls t {inp.id l-+ rdport(inp,)} in 

.11 expr(preC,ls)/\ 

.12 let outpERTN(a).outpllt-portsbe5t 

.13 outp.id = out-p in 

.14 let Is" : Id.!!!.. Var in 

.15 3v: Var' 

.16 Is" = (a).1s t Is' t{ outp.id l-+ weport(olltp, v,)} /\ 

.17 expr(postC,Is") 
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.18 post let a E cIom be st 

.19 «a).cs).opsfDin 

.20 let op E RTN(a).opsbe st 

.21 hd «a).cs).ops = op.id /\ 

.22 op.input-parameter f nil /\ 

.23 op.output-result f nil in 

.24 let inpERTN(a).input-ponsbest 

.25 inp.id = op.input-parameterin 

.26 let Is': Jd ~ Var be st 

.27 Is' = (a).lst{inp.id f-+ rdpon{inp,)} /\ 

.28 expr(op.preC, (a).ls) in 

.29 let outp E RTN (a).output-ponsbe st 

.30 outp.id = op.output-result in 

.31 let Is": Jd ~ Var be st 

.32 3v: Var· 

.33 Is" = (a).ls t Is' t{ olltp.id f-+ wepon(outp, v,)} /\ 

.34 expr(op.postC,Is") in 

.35 let mk-act(cs,ls,INDS) = (a) in 

.36 = t{cs f-+ tl (cs).ops,a f-+ mk-act (cs, Is", INDS)} /\ 

.37 = 0[{mk-token (n rd(in-p) n),mk-token ("we(ollt-P) ")}] ; 
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No Read, but Write 

Plotkin Rule: 

a E domCJt 

CJt (a) = mk_act(cs,ls, INDS) 

CJt (cs).ops =1= [] 

s E RTN(a).sm.ss 

mk_Operation(id,rd, we,in...]J,oucp,pre,post) E etemss.opsi\hdCJI (cs).ops = id 

in...]J = nil, out...]J =1= nil 

(out...]J, v',ls) ~ Is' 

(post,ls') ~ true 
I dySt-op-we I (RTN,CJt, 1[t) ~ (CJt t{ cs ~ IICJI (cs).ops,a 0--. mk_act(cs,Is', INDS)}, {we(ollt...]J)}) 

52.0 dySt-op-we(RTN: RTN-Types,:,:,:,:) r: lR 

.1 pre leI a E dom be sl isj (a),act) in 

.2 lelmk-act(cs,ls,INDS) = (a) in 

.3 let mk-Operation(id,read, we,in-p,ollt-p,preC,postC) E RTN (a).ops be sl 

.4 (cs).ops =1= 0 i\ 

.5 hd (cs).ops = id i\ 

.6 in-p = nil 1\ 

.7 Ollt-p =1= nil in 

.8 leI outp E RTN (a) .outpllt-pOrtS be sl 

.9 outp.id = out-p in 

.10 lells' : Id .!!!... Var in 

.II 3v: Var· 

.12 ls'= (a).lst{outp.id~weport(outp,v,Hi\ 

.13 expr(postC,Is') 

.14 post leI a E dom be sl 

.15 «a).cs).ops =1= 0 in 

.16 let op E RTN (a) .ops be sl 

.17 hd «a).cs).ops = op.id 1\ 

.18 op.input-parameter = nil 1\ 

.19 op.output-result =1= nil in 

.20 let outp E RTN (a) .output-ports be st 

.21 outp.id = op.output-result in 

.22 let Is': Id .!!!... Var be st 

.23 3v: Var· 

.24 Is' = (a).lst{outp.id ~ weport(outp, \'.)} 1\ 

.25 expr(op.postC,Is') in 

.26 letmk-act(cs,ls,INDS) = (a) in 

.27 = t{cs ~ II (cs).ops,a ~ mk-act(cs,ls', INDS)} 1\ 

.28 = n.[{mk-token(nwe(out...]J)nH]; 
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Neither Reads, nor Write 

Plotkin Rule: 

a E domol 

ol(a) = mk_act(cs, Is, INDS) 

01 (cs).ops =J [] 
s E RTN(a).sm.ss 

mk_Operation(id,rd, we,in""p,out""p,pre,post) E elemss.opsAhdOI (cs).ops = id 

in""p = nil,out....p = nil 

(pre, Is) .!...,. true 

(post, Is) .!...,. true 
~ s (RTN,OI,1tt) ---> (01 t{ CS I---> UOI (cs).ops}, {}) 

53.0 dySt-op(RTN:RTN-Types,:,:,:,:) r:lR 

.1 pre let a E dom be st is) (a),act) in 

.2 letmk-act(cs,ls,INDS) = (a) in 

.3 let mk-Operation (id, read, we, in-p,out-p,preC,postC) E RTN (a).ops in 

.4 (cs).ops =J [] A 

.5 hd (cs).ops = id A 

.6 in-p = nil A 

.7 out-p = nil 

.8 post let a E dom be st 

.9 «a).cs).ops =J [] in 

.10 let opERTN(a).opsbest 

.11 hd «a).cs).ops = op.id A 

.12 op.input-parameter = nil A 

.13 op.output-result = nil in 

.14 let mk-act (cs, Is, INDS) = (a) in 

.15 = t{cs I---> U (cs).ops, a I---> mk-act (cs, Is, INDS)} A 

.16 = f\.[{}] ; 

C.3.3.3 States 

Initial States 

Associated operations and events of states are evaluated once a state is entered, therefore the semantics for 

the initial state are simply to enter the state. 
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Static State 

Plotkin Rule: 

a Edemcr, 
crt (a) = mk_actL_,INIT) 

~ uact= mk_act(RTN(a).sm.initial,RTN(a).local-state, WAIT_TR) 
~ s (RTN,cr" 'Tt,) --+ (cr, t{a I-> uact}, { lRTN(a).sm.initial}) 

VDM Function: 

54.0 InitSSt(RTN: RTN-Types,:,:, :,:) r:1B 

.1 pre let a E dom in 

.2 isj (a), act) /\ 

.3 (a).status = INIT 

.4 post let a E dom be st 

.5 is_( (a), act) /\ 

.6 (a).status = [NIT in 

.7 let uact = mk-act(RTN (a).sm.initial, 

.8 RTN(a).local-state, 

.9 WAIT_TR) in 

.\0 = t{a I-> uact} /\ 

.11 = ""[mk-token(nup_RTN(a).sm.initial n
)] ; 
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Dynamic State 

Plotkin Rule: 

a E OOmcrl 

crl (a) = mk_act(cs,ls, INIT) 

uact = mk_act(RTN(a).sm.initial,RTN{a).local-state, INDS) 

mk_DynamicState(id,ops,J E RTN(a).sm.ss/\id = cs 

trgs mk dySt([op I op E ops)) I dySt-init I s 
(RTN,crl,1tI) ---- (crl t{af->uact,RTN(a).sm.initiah-+trgs}, 

{ rRTN(a).sm.initial}) 

VOM Function: 

55.0 InitDySt(RTN:RTN-Types,:,:,:,:) r:B 

.1 pre let a E OOm in 

.2 id(a),act)/\ 

.3 (a).status = INIT 

.4 post let a E dom be st 

.5 id (a), act) /\ 

.6 (a).staws = INIT in 

.7 let uact = mk-act(RTN (a).sm.initial, 

.8 RTN (a).local-state, 

.9 INDS) in 

.10 = t{a f-> uact} /\ 

.II = (""\.[mk_token(nup_RTN{a).sm.initial")]; 

Static States 

Static states are effectively wait states, therefore the semantics simply evaluate an exit transition. 
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Dynamic States 

A dynamic state may optionally read an input value, and/or write a result to an associated port as specified 

in the abstract syntax. This behaviour is dealt with at the operation level, rather here we define the dynamic 

behaviour as such: 

Plotkin Rule: 

a E domcrt 

crt (a) = mk_aet(es,ls, INDS) 

crt (es).ops = {} 
uaet = mk_aet(es,ls, WAIT_TR) 

[§J s (RTN,crl, 1t1) --+ (crl t{a 1-+ uaet}, {}) 

YDM Function: 

56.0 DynSt(RTN:RTN-Types,:,:,:,:) r:lE 

.1 pre let a E dom in 

.2 isj (a), act) /\ 

.3 ((a).es).ops = [] 

.4 post let a E dom be st 

.5 is_((a),aet)/\ 

.6 ((a).es).ops = [] in 

.7 let = t{a 1-+ mk-aet( (a).es, (a).ls, WAIT_TR)} in 

.8 let mk-Dynamie-State (id, ops, mk-Bounds(beet, bert, weet)) E RTN (a ).sm.ss be st 

.9 id= (a).esin 

.10 strans (RTN " " ) /\ 

.11 :3 t I , t2 E inds . 

.12 tl + beet::; t2/\ 

.13 t2::; tl + weet /\ 

.14 mk-token("up_es")E (tl)/\ 

.15 mk-token ("dwn_es") E (t2) ; 

209 



APPENDIX C. VDM TOOL SUPPORT FOR SOS DEFINITIONS 

Terminate State 

Plotkin Rule: 

a E dorn<1\ 

is_( <1\ (a), act) 

~tr E RTN(a).sm.ts· tr.src = <1\ (a).cs 
~ s (RTN,<1\, 'It\) -+ (<1\ t{a 1-+ mk_act(<1\ (a).cs,<1\ (a).Is, TERM)}, {}) 

VDM Function: 

57.0 Term(RTN:RTN-Types,:,:,:,:) r:B 

.I pre let a E dorn be st isj (a), act) in 

.2 -dtrERTN(a).sm.ts·tr.src= (a).cs 

.3 post let a E dorn be st 

.4 is_((a),act)/\ 

.5 (...,3tr E RTN(a).sm.ts·tr.src = (a).cs) in 

.6 letrnk-act(cs,ls,INDS) = (a) in 

.7 =t{al-+rnk-act(cs,ls,TERM)}/\ 

.8 = "'[{}] ; 
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C.3.3.4 Transitions 

A YDM 'header' function for the distinction below is: 

58.0 tr-trans(RTN:RTN-Types,:,:,:,:) r:lIi 

.1 poststr-trans(RTN",,) V dtr-trans(RTN",,) ; 

Depending on whether the target state is static, or dynamic: 

For Dynamic 

Plotkin Rule: 

a E domcrl 

crl (a) = mk_act(cs,Is, WAIT_TR) 

tr E RTN(a).sm.ts 

(tr, crl, 1t1) ~ true 

mk_Dynamic _State (id" mk_Bounds( bcet, bcrt, wcet)) E RTN (a) .sm.ss /\ id = CS 

3tl E inds 1t1 . ~s Ei 1t1 (t.) /'Itl +bcet:::; len 1t1 < tl + wcet 

~t2 E inds1t1 . t2 ~ tl/\ lcs EHI 1t1 (t2) 
ins( crl (tr.trg)) = INDS 

uact = mk_act(tr.trg,Is,INDS) 

~ 
trgs = mk_dySt([op I op E s.ops·s E RTN(a).sm.ss/\s.id = tr.trg]) 

tr-dySt s } 
(RTN,cr\, 1t.) --> (cr\ t{a f-+ uact,tr.trg I-Hrgs}, { jtr.src, ltr.trg ) 

YDM Function: 

59.0 dtr-trans(RTN:RTN-Types,:,:,:,:) r:lIi 

.I pre let a E dom in 

.2 let mk-act(cs,Is, WAIT_TR) = (a) in 

.3 insf(RTN(a),cs) = INDS/\ 

.4 3tr E RTN (a).sm.ts· str(tr,,) 

.5 post let a E dom be st 

.6 mk-act( (a).cs, (a).Is, WAIT_TR) = (a) /\ 

.7 insf(RTN (a), (a).cs) = INDS in 

.8 let trERTN(a).sm.tsbest str(tr,,) in 

.9 let uact = mk-act(tr.trg, (a).Is, INDS) in 

.10 let s E RTN (a).sm.ss be st s.id = tr.trg in 

.II let trgs = mk-dySt(getOplds(s.ops)) in 

.12 = t{a f-+ uact,tr.trg f-+ trgs} /\ 

.13 = "'[{ mk-token (ndwn_tr.src"),mk-token (nup_tr.trg"))] ; 

For Static 

Plotkin Rule: 
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aEdomO'I 

0'1 (a) = mk_aet(es,/s. WAIT _ TR) 

tr E RTN(a).sm.ts 

(tr, 0'1, 1td .!!.., true 

mk_Dynamie_State(id,. mk_Bollnds(beet. ben. IICer)) E RTN(a).sm.ss Aid = cs 

:Jtl E inds 1t1 'rs Ej 1tdtd /\ ~t2 E inds 1t1 ·t2?' tl /\ h Ei+1 :til (2) /\ 

tl + beet:S len1t1 < tl + weet 
ins(O'I (tr.trg» = INSS 

/tact = mk_aet(tr.trg, Is, WAIT _ TR) 
~ s (RTN, 0'1, 1td --> (0'1 t{ a 1--+ lIaet}, { Jtr.sre. ltr.trg} ) 

YOM Function: 

60.0 str-trans(RTN: RTN-Types,:,:,:,:) r: B 

.1 pre let a E dam in 

.2 let mk-aet(cs,Is, WAIT_TR)= (a) in 

.3 insJ(RTN(a),es)=INSS/\ 

.4 :J tr E RTN (a) .sm.ts· str (tr,,) 

.5 post let a E dam be st 

.6 mk-aet((a).es,(a).ls,WAIT_TR)= (a)/\ 

.7 insJ(RTN(a), (a).es) = INSS in 

.8 let trERTN(a).sm.tsbest str(tr,,) in 

.9 let /tact = mk-aet(tr.trg, (a).ls, WAIT_TR) in 

.10 = t{ a 1--+ lIact} /\ 

.11 = (\,[{mk-token ("dwn_tr.src"),mk-token ("lIp_tr.trg")}] ; 

Three rules totally define the semantics of a transition for the rule: 

..!.... :((Transition x 1: x D) x B) 

YOM 'header' function for this relation is: 

61.0 str (tr: Transition,:,:) r: B 

.1 post tt-tr (tr, , ) V el'-tr (tr,,) V expr-tr (tr.,) ; 

Time Triggered Transition 

Plotkin Rule: 

is_(tr.l. TimeBOllnd) 
:J tl E inds 1t1' lsre Ej 1t1 (tl) /\ 1.lower :S len 1t1-tl :S I.llpper 

~ t2 E inds 1t1' Jtrg Ej 1t1 (t2) /\ I.llpper < len 1t\-t2 :S 1.lower 

§] (mk_transition(src. lrg.l). O'\.1td .!!.., true 

YOM Function: 
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62.0 n-tr(tr: Transition,:,:) r: 18 

.J pre is_(tr.l, 1imeBound) /\ 

.2 (3tl E inds . 

. 3 mk-token("up_tr.srcn ) E (tl)/\ 

.4 tr.l.lower ~ (len) - tl /\ 

.5 (len) - tl ~ tr.l.upper) /\ 

.6 (...,312 E inds . 

. 7 mk-token("dwn_tr.trg n ) E (t2)/\ 

.8 tr.l.lower ~ (len) - 12 /\ 

.9 (len) - 12 ~ tr.l.upper) 

.10 post true ; 

Event Triggered Transition 

Plotkin Rule: 

is_(tr.l, Event) 

3 t\, t2 E inds 1t\. lsrc Ej 1t\ (td /\ tr.1 E 1t( (t2) /\t2 ~ t( 
~ ) Ir (mk_transition(src,trg,/),cr(,1t( ~ true 

YDM Function: 

63.0 ev-tr (tr: Transition, :, :) r: 18 

.J pre isjtr.I,Event) /\ 

.2 3tl,t2 E inds . 

.3 mk-token (nup_tr.src") E (tl) /\ 

.4 tr.1 E (t2) /\ 

.5 t2 ~ tl 

.6 post true ; 

Expression Triggered Transition 

Plotkin Rule: 

~ Ir (mk_transition(src,trg,/),cr\,1td ~ true 

is_(l, Expression) 

(I, cr() ~ true 

YDM Function: 

64.0 expr-tr (tr: Transition, :, :) r: 18 

.\ pre isjtr.I,Expr) /\ 

.2 expr(tr.l,) 

.3 post true ; 
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C.3.3.5 Ports 

In light of defining the operation semantic rules, it is clear that we must address the semantics of ports. 

Ports are the interface between Activities and IDAs. An IDA has two ports. 

We must give the semantics here for an activity reading & writing to a port in terms of the local variables 

used with an operation definition and the value of the port. Later, we must ensure (consistency condition?) 

that the time and values written and read are consistent with those with the IDA. 

Plotkin Rule: 

dir= IN 

::Ii E domo·o(i) = id 
~ ro . (mk]ort(id, dir) , 0) --+ 0(/) 

YDM Function: 

65.0 rdport(p: Port,:) r: Var 

.1 pre p.dir = IN A 

.2 3iEdom·i=p.id 

.3 post let i E dom be st i = p.id A 

.4 p.dir = IN in 

.5 r = (i) ; 

Plotkin Rule: 

o(p).dir = OUT 
~ (p ) we t{P } ,v,o --+0 ...... v 

YDM Function: 

66.0 weport (p: Port, v: Var, :) : 

.1 pre p.dir= OUT 

.2 post = t{p.id ...... v} ; 
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C.3.3.6 IDAs 

Pool 

Read 

Plotkin Rule: 

a,c,i E domO"\ 

0"\ (i) =mk_ida(vals) 

RTN(i).protocol = POOL 

0"\ (a) = mk_act(cs,ls, WAIT_RO) 

s E RTN(a).sm.ss 

mk_op(id, rd, we, in-p,out'p,pre,post) E s.ops 1\ hdO"(cs).ops = id 

in-p i- nil 

RTN(c) = mk_Conn(a, in-p, i, IN) 

uact = mk_act(cs,ls,ins!(RTN(a),cs) 
~ s (RTN, 0"\, 1t\) --+ (0"\ t {p 1-+ 0"\ (i),a 1-+ IWCt} , {rd(in"'p)}) 

YDM Function: 

67.0 rd-Pool(RTN:RTN-Types,:,:,:,:) r:Ja 

.1 pre let i E dam be st is-ida ( (i)) 1\ 

.2 RTN (i).protocol = POOL in 

.3 leta E dam in 

.4 let mk-act(cs, Is, WAIT_RO) = (a) in 

.5 let s E RTN (a).sm.ss be st s.id = cs in 

.6 let op E s.ops be st op.input-parameter i- nil in 

.7 let c Edam RTN in 

.8 RTN (c) = mk-Connection (a,op.inpllt-parameter, i, IN) 

.9 post let i E dam be st is-ida ((i)) 1\ 

.10 RTN (i).protocol = POOL in 

.11 let a E dam in 

.12 let mk-act(cs,ls, WAIT_RO) = (a) in 

.13 let sERTN(a).sm.sSbest s.id=csin 

.14 let op E s.ops be st hd (cs).ops = op.id 1\ 

.15 op.input-parameter i- nil in 

.16 let c Edam RTN be st RTN (c) = mk-Connection (a,op.inpllt-parameter,i.IN) in 

.17 let uact = mk-act (cs, Is, ins! (RTN (a),cs)) in 

.18 = t{op.inpm-parameterl-+ (i),a 1-+ IWCt} 1\ 

.19 = ("\.[{mk-taken(nnCinput-parameter")}] ; 

Write 

Plotkin Rule: 
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a,c,i E dom<J1 

<JI (i) = mkjDA{vals) 

RTN{i).protocol = POOL 

<J1{a) = mk_ACT{cs,ls, WAIT_WE) 

s E RTN{a).sm.ss 

mk_op{id,rd, we,in..]J,out..]J,pre,post) E s.ops "hd<J1 (cs).ops = id 

out..]J=I nil 

RTN{c) = mk_Conn{a,RTN{cs).out..]J,i,OUT) 

uact- mk ACT{cs,ls,ins{RTN{cs)) 
I we-Pool I , 

VDM Function: 

68.0 we-Pool {RTN : RTN-Types,:,:,:,:) r:$ 

.1 pre let i E dom be st is-ida ({i) ) " 

.2 RTN (i).protocol = POOL in 

.3 let a E dom in 

.4 let mk-act{cs,ls, WAIT_WE) = (a) in 

.5 let s E RTN (a).sm.ss be st s.id = cs in 

.6 let op E s.ops be st op.output-result =I nil in 

.7 let c E dom RTN in 

.8 RTN (c) = mk-Connection (a, op.output-result, i, OUT) 

.9 post let i E dom be st is-ida ({i)) " 

.10 RTN (i) .protocol = POOL in 

.11 leta E dom in 

.12 let mk-act{cs, Is, WAIT_WE) = (a) in 

.13 let sERTN{a).sm.ssbest s.id=csin 

.14 let op E s.ops be st op.output-result =I nil in 

.15 let c E dom RTN be st RTN (c) = mk-Connection (a,op.output-reslllt, i, OUT) in 

.16 let /lact = mk-act{cs,ls, ins! {RTN (a),cs)) in 

.17 = t{op.output-result >-> (i),a>-> uact} " 

.18 = f+[{ mk-token (nwe_outputJesultn)} 1 ; 
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Channel 

Read 

Plotkin Rule: 

a,e,i E domOI 

01 (i) = mkjDA(vals) 

RTN(i) = mkjDA (id, size, CHANNEL) 

lenvals> 0 

01 (a) = mk...ACI'(es,ls, WAIT_RD) 

s E RTN(a).sm.ss 

mk_op(id, rd, we, in-p,out-p,pre,post) E s.ops 1\ hdol (es).ops = id 

in-p =f nil 

RTN(e) = mk_Conn(a, RTN(es).in-p, i, IN) 

I I uaet-mk ACI'(es,ls,INDS) 

VDM Function: 

69.0 rd-Chan(RTN:RTN-Types,:,:,:,:) r:B 

.1 pre let i E dam be st 

.2 is-ida ( (i) ) 1\ 

.3 len (i).Is > 01\ 

.4 RTN (i).protocol = CHAN in 

.5 let a E dam in 

.6 let mk-act(cs,ls, WAIT _RD) = (a) in 

.7 let s E RTN (a).sm.ss be st s.id = cs in 

.8 let op E s.ops be st op.input-parameter=f nil in 

.9 let c Edam RTN in 

.10 RTN (c) = mk-Connection (a, op.input-parameter, i, IN) 

.11 post let i E dam be st is-ida ( (i)) 1\ 

.12 RTN (i).protocol = CHAN in 

.13 let a E dam in 

.14 let mk-act(cs,ls, WAIT_RD) = (a) in 

.15 let s E RTN (a).sm.ss be st s.id = cs in 

.16 let op E s.ops be st op.input-parameter =f nil in 

.17 let e Edam RTN be st RTN (e) = mk-Conneetion (a,op.inpllt-parameter, i, IN) in 

.18 let uact = mk-act(cs, Is, ins! (RTN (a),es)) in 

.19 = t{i 1--+ tl (i).Is,op.input-parameterl--+ hd (i).Is,a 1--+ uact} 1\ 

.20 = r+[{mk-taken (nrd_inpllt-parameter")}] ; 

Write 

Plotkin Rule: 
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a,c,i E dom<J1 

<JI (i) = mkjDA(vals) 

RTN(i) = mkjDA(id,size, CHANNEL) 

size < len vals 

<J1(a) = mk_ACT(cs,ls, WAIT_WE) 

s E RTN(a).sm.ss 

mk_op(id,rd, we,in-p,out-p,pre,post) E s.ops I\hd<J1 (cs).ops = id 

out-p i- nil 

RTN(c) = mk_Conn(a,RTN(cs).out-p,i,OUT) 

I I uact - mk ACT(cs,ls,INDS) 

Note, the implicit blocking caused by size < len vals. 

VDM Function: 

70.0 we-Chan(RTN:RTN-Types,:,:,:,:) r:lR 

.I pre let i E dom be st 

.2 is-ida ( (i)) 1\ 

.3 RTN (i).size < len (i).ls 1\ 

.4 RTN (i).protocol = CHAN in 

.5 leta E dom in 

.6 let mk-act(cs, ls, WAIT_WE) = (a) in 

.7 let s E RTN (a).sm.ss be st s.id = cs in 

.8 let op E s.ops be st 0p.Olltput-reslllt i- nil in 

.9 let c E dom RTN in 

.10 RTN(c) = mk-Connection(a,op.output-result,i,OUT) 

.II post let i E dom be st is-ida ((i)) 1\ 

.12 RTN(i).protocol = CHAN in 

.13 let a E dom in 

.14 let mk-act(cs,ls, WAIT_WE) = (a) in 

.15 let s E RTN (a).sm.ss be st s.id = cs in 

.16 let op E s.ops be st 0p.Olltpllt-reslllt i- nil in 

.17 let c E dom RTN be st RTN (c) = mk-Connection (a,op.Olltpllt-reslllt,i,OUT) in 

.18 let /lact = mk-act(cs,ls, ins! (RTN (a),cs)) in 

.19 = t{i I-> (i}.lsr\. [(op.output-reslIlt)],a I-> /lact} 1\ 

.20 = r\.[{mk-token("we_outpllcres/llt")}] ; 

218 



APPENDIX C. VDM TOOL SUPPORT FOR SOS DEFINITIONS 

C.4 Fault Semantics 

What follows in this section are the Plotkin-style SOS rules for faults considered of RTNs. We first define 

the fault transition rule which defines the fault actions at the state-machine level. 

Plotkin Rule: 

a E domCJI 

CJ\ (a) = mk_act(cs,ls,mkJault(f)) 
3t E RTN(a).sm.ts ·mk Transition(src,trg,l) Asrc - cs A I-! 

I fault-transition I (0, f (RTN,CJ\, 'Tt\ res]) -+ (CJ\ t{a 1-+ mk_act(trg, Is, in.if(trg»},esU if, Jcs. Ttrg}) 

VDM Function: 

71.0 FaultTr(RTN:RTN-Types,:,:,:,(O,[es]:) r:J8 

.I pre let a E dom in 

.2 letmk-act(cs,ls,FAULT) = (a) in 

.3 3tr E RTN (a).sm.ts· tr.src = cs A isjtr.l, Fault) 

.4 post let a E dom be st 

.5 mk-act( (a).cs, (a).ls,FAULT) = (a) in 

.6 let trERTN(a).sm.tsbest tr.src= (a).cs A isjtr.l, Fault) in 

.7 let uact = mk-act(tr.trg, (a).ls, in.if (RTN (a),tr.trg)) in 

.8 = t{a 1-+ uact} A 

.9 (0, res] = (O,[esU {mk-token ("!ault"),mk-token ("cs"), mk-token ("up_tr.trg"n] ; 
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C.4.1 Late Exit Fault 

Depending on the current state (dynamic/static), cs of an activity, the semantics for a late ail/ault are as 

follows. 

C.4.1.1 Static State 

Given the exit transition from a static state is TIme Bounded, then the rule is as follows: 

Plotkin Rule: 

a E domcrl 

crl (a) = mk_act(cs,ls, WAIT _TR) 

3t E RTN(a).sm.ts· mk_Transition(src, trg,mk_TImeBollnd(l,u) /\src = cs 

3 tl E inds'lt ·rcs Ej 'It(tl) Atl + I ::; tl + II < len It /\ 

~t2 E inds'lt· ~s Ej It(t2) At2 > tl 
/Illct = mk_act(cs,ls,mkJalllt(LATE_EXIT» 

I st-late-time-exit fault I ( ) s ( ) 
RTN,crl,'lt1 ---+ cr2,es 

(RTN,crl t{a I--> /lact} , 'It I ('\. [{late exitJalllt}]) L (cr2,es) 

VDM Function: 

72.0 stLateTImeExitFalllt(RTN :RTN-Types,:,:,:,:) r:lR 

.1 pre let aEdom best (a).status=WAIT_TRin 

.2 let Ir E RTN (a).sm.ls be st Ir.src = (a).cs /\ isjlr.l, TImeBollnd) in 

.3 3tl E inds . 

.4 mk-token("up3s") E (tl)/\ 

.5 11 + tr.l.lower::; II + 1r.l.llpper /\ 

.6 11 + tr.l.upper < len /\ 

.7 (-,3t2Einds . mk-token ("dwn3s") E (12)/\ 

.8 t2 > 11) 

.9 post let a E dom be st (a).status = WAIT_TR in 

.\0 let tr E RTN (a).sm.ts be st Ir.src = (a).cs /\ is_(Ir.l, TImeBOllnd) in 

.11 let tl E inds be st 

.12 mk-token("llp_cs") E (II) /\ 

.13 11 + tr.l.lower ::; t I + Ir.l.llpper /\ 

.14 11 + Ir.l.llpper < len /\ 

.15 (-,312 Einds .mk-token("dwn_cs")E (t2)/\ 

.16 12>ll)in 

.17 let Ilact = mk-act( (a).cs, (a).ls, FAULT) in 

.18 = t{ a I--> ltaCt} /\ 

.19 = ('\.[{mk-token("late_exitJa/llt"»]; 
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Given the exit transition from a static state is Event Bounded, then the rule is as follows: 

Plotkin Rule: 

a E domol 

01 (a) = mk_act(cs,ls, WAIT_TR) 

3t E RTN(a).sm.ts· mk_Transition(sn:, trg, mk_Event(e)) 1\Sn: = cs 

3tl'~ E inds1£·tl < ~/\ tcs Ei1£(td/\e E 1£(~)/\ 

~t2 E inds1£· lcs Ei 1£(t2)!\t2 ~ ~ 
uact = mk_act(cs,ls,mkJault(LATE_EXIT)) 

I st-Iate-event-exit-fault I ( S) 
RTN,OI,1£I) -+ (02,es 

(RTN,OI t{a I---> uact},1£1 '" [{late exitJault}]) L (02,es) 

VOM Function: 

73.0 stLateEventExitFault(RTN: RTN-Types,:,:, :,:) r: lR 

.1 pre let a E dom be st (a).status = WAIT_TR in 

.2 let tr E RTN (a).sm.ts be st tr.sn: = (a).cs /\ isjtr.l,Event) in 

.3 3tl,12 E inds . 

.4 tl < t2/\mk-token("llp_cs") E (tl)/\ 

.5 tr.l E (12) /\ 

.6 (-,3t3Einds ·mk-token(ndwn_cs")E (t3)/\ 

.7 t3 > t2) 

.8 postlet a E dom best (a).status= WAIT_TR in 

.9 let tr E RTN (a).sm.ts be st tr.sn: = (a).cs /\ is_(tr.l, Event) in 

.\0 let tl E inds in 

. \I let t2 E inds be st 

.12 tl < t2/\mk-token("llp_cs") E (tl) /\ 

.\3 tr.l E (t2) /\ 

.14 (-,3t3Einds .mk-token("dwn_cs")E (t3)/\ 

.15 t3 > t2) in 

.16 let uact = mk-act( (a).cs, (a).Is, FAULT) in 

.17 = t{a I---> uact} /\ 

.18 = "'[{mk-token("late_exitJallltn)}]; 

221 



APPENDIX C. VDM TOOL SUPPORT FOR SOS DEFINmONS 

C.4.1.2 Dynamic State 

Plotkin Rule: 

a E domal 

al (a) = mk_act(es, Is, INOS} 

mk_DynamicState(id,_,mk_Bounds(beet, bert, weet)) E RTN(a}.sm.ss Aid = es 

3tl E inds1t1 . ts E 1t(tJ) All +beet~ tl +weet< len1t1 A 

~t2 E inds1tI·!;S E 1t(t2} Al2 > tl 
uaet = mk_aet( es, Is, mkJault( LATE_EXIT}) 

I . I (RTN,al t{a J--+ uaet}, 1t1 f+[{late exitJault}]) L (a2. es) 

YDM Function: 

74.0 dyLateExitFault(RTN: RTN-Types,:,:,:,:} r: B 

.I pre let a E dom be st (a}.status = INOS in 

.2 let mk-Dynamie-State(id,ops, mk-Bounds (beet, bert, weet)) E RTN (a).sm.ss be st 

.3 id = (a}.es in 

.4 3tl E inds . 

.5 mk-token("uPJs") E (tl}A 

.6 tl+beet~tl+weetA 

.7 tl + weet < len A 

.8 (-dt2 E inds . mk-token ("dwn_es") E (t2) A 

.9 t2>tl) 

.10 post let a E dom be st (a).status = IN OS in 

.11 let mk-Dynamie-State (id, ops, mk-Bounds(beet, bert, weet)) E RTN (a }.sm.ss be 5t 

.12 id= (a).esin 

.13 let tl E inds be st 

.14 mk-token("uPJsn) E (tl}A 

.15 tl + beet ~ tl + weet A 

.16 tl + weet < len in 

.17 let t2 E inds be st mk-token("dwn_esn) ft (t2) A 

.18 t2>tlin 

.19 let uaet = mk·aet( (a}.es, (a).ls, FAULT) in 

.20 = t{ a J--+ ltaet} A 

.21 = f+[{mk-token(nlate_exitJault n)}]; 
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C.4.2 Early Exit Fault 

Depending on the current state (dynamic/static), cs of an activity, the semantics for a early exil jallil are as 

follows. 

C.4.2.1 Static State 

Given the exit transition from a static state is TIme Bounded, then the rule is as follows: 

Plotkin Rule: 

a E domol 

01 (a) = mk_act(cs,ls, WAIT_TR) 

3t E RTN(a).sm.ls . mk_Transilion(sn:, Irg, mk_nmeBound(l, 1/)) Asn: = cs 

3 tl E inds 1t. rcs Ei 1t( II) !\ len 1t < II + I ::; tl + II !\ 
312 E inds1t· .Jcs Ei 1t(t2)!\t2 > tl 

uact = mk_acI(cs, Is, mkJalllt(EARLY _EXIT)) 

(RTN,OI t{a ....... lIact} , 1t1 f\. [{ early exilJallll} J) L (02, es) I st-early-time-exit-fault I ( ) s ( ) 
. . RTN,OI,1t1 -+ 02,es 

YOM Function: 

75.0 stEarlyTImeExitFalllt(RTN: RTN-Types,:,:,:,:) r: lR 

.1 pre let a E dom be st (a).status = WAIT_TR in 

.2 let tr E RTN (a).sm.ts be st Ir.sn: = (a).cs!\ is_(Ir.l, TImeBound) in 

.3 3tl E inds . 

.4 mk-token (nup_cs n ) E (II)!\ 

.5 len < t I + tr.l.lower!\ 

.6 II + tr.l.lower < tl + tr.l.upper A 

.7 (3t2 E inds . mk-token ("dwnJs") E (t2) A 

.8 t2> tl) 

.9 post let a E dom be st (a) .statlls = WAIT _ TR in 

.10 let tr E RTN (a).sm.ts be st tr.src = (a).cs!\ isjtr.l, nmeBollnd) in 

.11 let tl E inds be st 

.12 mk-token("up_cs") E (tl)A 

.\3 len <tl+lr.l.lowerA 

.14 tl + tr.l.lower < tl + tr.l.llpper!\ 

.15 (3t2 E inds . mk-token ("dwnJs") E (t2)!\ 

.16 t2 > tl) in 

.17 let uact = mk-act( (a).cs, (a).ls, FAULT) in 

.18 = t{a ....... IIllCt}!\ 

.19 = f\.[{ mk-token ("early_exitJalllt")}] ; 
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Given the exit transition from a static state is Event Bounded, then the rule is as follows: 

Plotkin Rule: 

a E domo) 

01 (a) = mk_act(cs,ls, WAIT_TR) 

3t E RTN(a).sm.ts·mk_Transition(sre,trg,mk_Event(e)) l\Sre = cs 

3t),~ E inds 1t. t) < ~ /\ Tcs Ei 1t(tI) /\e E 1t(~) /\ 

3t2 E inds1t· Jcs Ei 1t(t2) /\12 < ~ 
uact = mk_act(cs, Is, mkJault(EARLY _EXIT)) 

.--____ ---, (RTN,OI t{a f-+ uaCI},1t1 f'.[{early_exiIJaull}]) L (02,es) 
I st-early-event-exit-fault I ( s ( ) 
. . RTN,o),1tI) --> 02,es 

YOM Function: 

76.0 stEarlyEventExitFault(RTN: RTN-Types,:,:,:,:) r:]a 

.1 pre let aEdom best (a).statlls=WAIT_TRin 

.2 let trERTN(a).sm.tsbest tr.sre= (a).cs/\isjlr.I,Event) in 

.3 3tl,t2 E inds . 

.4 tl < t2/\mk-token("up_cs") E (11)/\ 

.5 tr.l E (t2) /\ 

.6 (3t3 E inds . mk-token ("dwn_cs") E (t3)/\ 

.7 13 < (2) 

.8 postlet aEdom best (a).status=WAIT_TRin 

.9 let tr E RTN (a).sm.ts be st tr.sre = (a).cs /\ isjlr.I,Evenl) in 

.10 let tl E inds in 

.11 let t2 E inds be st 

.12 tl < t2/\ mk-token ("up_cs") E (tl)/\ 

.13 tr.1 E (t2) /\ 

.14 (3t3 E inds . mk-token ("dwn_cs") E (t3) /\ 

.15 t3 < (2) in 

.16 let uact = mk-acI( (a).cs, (a).ls, FAULT) in 

.17 = t{a f-+ uact} /\ 

.18 = f'.[{mk-token("early_exitJaull")}j; 
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C.4.2.2 Dynamic State 

Plotkin Rule: 

a E domO"I 

0"1 (a) = mk_aet(es, is, INDS) 

mk_Dynamic_State(id,_,mk_Bounds(beet,bert, weet)) E RTN(a).sm.ss A id = es 

3tl E inds1t1 . ~s E 1t(t.) Atl + beet < len1t1 ::; tl +weetA 

3t2 E inds1t1 . t"s E 1t(t2) At2 < len1t1 

uaet = mk_aet(es, is,mkJault(EARLY _EXIT)) 

I . I (RTN,O"I t{a 1-+ uaet},1t/" [{early exitJalllt}]) L (0"2,es) 

VDM Function: 

77.0 dyEarlyExitFault(RTN:RTN-Types,:,:,:,:) r:lR 

.1 pre let a E dom be st (a).status = INDS in 

.2 let mk-Dynamie-State(id,ops, mk-Bounds (beet, bert, weet)) E RTN (a).sm.ss be st 

.3 id = (a}.es in 

.4 3tl E inds . 

. 5 mk-token("up_es") E (tl)A 

.6 tl +beet::; tl +wcetA 

.7 tl + weet < len A 

.8 (3t2 E inds . mk-token ("dwn_es") E (t2) A 

.9 t2 < len) 

.10 post let a E dom be st (a}.status = INDS in 

.11 let mk-Dynamie-State (id,ops, mk-Bollnds (beet, bert, weet)) E RTN (a}.sm.ss be st 

.12 id= (a}.esin 

.13 let tl E inds be st 

.14 mk-token("up_es") E (tl) A 

.15 tl+beet::;tl+wcetA 

.16 tl + weet < len in 

.17 let t2 E inds be st mk-token ("dwnJs") E (t2) A 

.18 t2 < len in 

.19 let uaet = mk-aet( (a).es, (a).ls,FAULT) in 

.20 = t{a 1-+ uaet} A 

.21 = 0[{mk-token("early_exitJault")}]; 
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C.4.3 Read Faults 

Late Read: 

Plotkin Rule: 

a E dom<fl 

<fl(a) =mk_act(es,ls,INDS) 

mk_DynamicState(id,ops,mk_Bounds(beet,ben, weet)) E RTN(a).sm.ss "id = cs 

mk_OperationC,_,_,in-p,out-p,_,_) E ops" in"'p 1= nil 

3tl E inds1t1 ·l;s E 1t(tJ) Atl + beet < len1t\" 

~t2 E inds1t\·rds(in-P) E 1t(t2)At2 > t\ 
uaet = mk_aet(es,ls,mkJault(LATE_READ)) 

I (RTN,<f\ t{a f-+ uaet},1t\ n.[{late readJalllt}]) L (<f2,es) 

YOM Function: 

78.0 lateReadFault(RTN: RTN-Types,:,:,:,:) r:B 

.1 pre let a E dom be st (a).status = INDS in 

.2 let mk-Dynamie-State (id, ops, mk-Bounds (beet, ben, weet)) E RTN (a).sm.ss be st 

.3 id = (a).cs in 

.4 let mk-Operation (id,read, we, in-p, ollt-p,preC,postC) E RTN (a).ops be st 

.5 «a).es).ops i= 0" 

.6 hd «a).es).ops = id" 

.7 in-p i= nil in 

.8 3tl E inds . 

. 9 mk-token("up_cs") E (tl)/\ 

.10 tl+bcet<len/\ 

.11 (.., 3t2 E inds . mk-token (" rd(in-p)") E (t2) " 

.12 t2>tl) 
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.13 postlet a E dom be st (a).status = INDS in 

.14 let mk-Dynamic-State(id,ops,mk-Bounds(bcet,bcrt, wcet)) E RTN(a).sm.ss be st 

.15 id = (a).cs in 

.16 let mk-Operation (id, read, we, in-p, out-p,preC,postC) E RTN (a).ops be st 

.17 «a).cs).ops =I 0 /\ 

.18 hd «a).cs).ops = id /\ 

.19 in-p =# nil in 

.20 let tl E inds be st 

.21 mk-token('up_cS')E (tl)/\ 

.22 tl + bcet < len /\ 

.23 (-,312 E inds ·mk-token(·rd(in....P)·)E (12)/\ 

.24 t2> tl) in 

.25 let uact = mk-act( (a).cs, (a).ls, FAULT) in 

.26 = t{ a 1-+ uact} /\ 

.27 = "'[{mk-token("lateJeadJault")}]; 
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Early Read: 

Plotkin Rule: 

a E domcrl 

crl (a) = mk_act(es,ls, INOS) 

mk_Dynamic_State(id,ops,mk_Bounds(beet,bert, weet)) E RTN(a).sm.ss /I id = es 

mk_OperationL,_,_, in-fJ,out-fJ,_,_) E ops /I in"p '" nil 

3 tl E inds XI . ts E 1t(tl) /I 

3t2 E inds1t1 . rds(in-fJ) E 1t(t2) /lt2 < tl 
uaet = mk_act(es,ls,mkJault(EARLY _REAO)) 

I I (RTN, crl t{a 1-+ uaet}, 1t1 f>- [{earlYJeadJault})) L (cr2,es) 
. dy·early·read·fault s 

(RTN,crl,1tJ) -> (cr2,es) 

VOM Function: 

79.0 earlyReadFault(RTN:RTN-Types,:,:,:,:) r:B 

.I pre let aEdom best (a).status=INOSin 

.2 let mk·Dynamie-State (id, ops, mk·Bounds (beet, bert, weet» E RTN (a ).sm.ss be st 

.3 id= (a).esin 

.4 let mk-Operation(id,read, we,in-p,out-p,preC,postC) E RTN(a).ops be 51 

.5 «a).es).ops '" 0 /I 

.6 hd «a).es).ops=id/l 

.7 in-p '" nil in 

.8 3tl Einds ·mk-token("up_es")E (11)/\ 

.9 (3t2 E inds ·mk-Ioken("rd(in-fJ)") E (t2)/\ 

.10 t2<tI) 

.11 post let a E dom be st (a).status = IN OS in 

.12 let mk-Dynamie-State (id, ops, mk-Bounds (beet, bert, weet)) E RTN (a).sm .ss be st 

.13 id= (a).esin 

.14 let mk.Operation(id, read, we,in-p,out-p,preC,postC) E RTN (a).ops be st 

.15 «a).es).ops'" 0 /\ 

.16 hd «a).es).ops = id /\ 

.17 in-p", nil in 

.18 let 11 E inds best mk-token("uPJs") E (/1)/1 

.19 (3/2 E inds .mk-token("rd(in-fJ)") E (/2) /I 

.20 12 < tI) in 

.21 let uaet = mk-ae/( (a).es, (a).Is, FAULT) in 

.22 = t{ a 1-+ uae/} /\ 

.23 = f>-[{mk-token("earlYJeadJault")}]; 
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Value Read: 

Plotkin Rule: 

a E domO') 

0') (a) =mk_act(cs,IS,INDS) 

0'1 (cs).ops # [] 
s E RTN(a).sm.ss 

mk_Operation(id, rd, we, in-p, out-p,pre,post) E elemss.ops A helO'I (cs).ops = id 

in-p # nil,out-p = nil 

(in-p,RTN,O'I)!!!.. v 

Is' = Is t{in-P ...... v} 
(pre, Is) ..:.... false 

uact = mk_act(cs, Is', mkJault(vALUE_READ)) 

I I 
(RTN,O'I t{ a ...... uact,cs ...... 110'1 (cs).ops}, XI f\. [{ni(in-p), vallie readJall/r}j).!.... (0'2. es ) 

dy-value-read-fault J 

'--------' (RTN,O'I,1tI) -+ (0'2,es) 

VDM Function: 

80.0 va[ueReadFau!t(RTN:RTN-Types,:,:,:,:) r:1R 

.I pre let a E dom be st is) (a),act) in 

.2 let mk-act(cs,ls,INDS) = (a) in 

.3 let mk-Operation(id,read, we,in-p,out-p,preC,postC) E RTN(a).ops be st 

.4 (cs).ops # 0 A 

.5 hd (cs).ops = id A 

.6 in-p # nil A 

.7 out-p = nil in 

.8 let inp E RTN (a).input-ponsbe st 

.9 inp.id = in-p in 

.10 let Is' = (a).lst{inp.id ...... rdpon(inp,)} in 

.II ...,expr (preC, Is') 

.12 post let a E dom be st 

.13 ((a).cs).ops # 0 in 

.14 let opERTN(a).opsbest 

.15 hd ((a).cs).ops = op.id A 

.16 op.input-parameter # nil in 

.17 let inp E RTN(a).input-ponsbe st 

.18 inp.id = op.input-parameter in 

.19 let Is':ld~ Varbest 

.20 Is' = (a).lst{inp.id ...... nipon(inp,)} A 

.21 ...,expr(op.preC, (a).ls') in 

.22 let uact = mk-act(cs, Is', FAULT) in 

.23 = t{cs ...... II (cs).ops,a ...... uact} A 

.24 = f\.[{mk-token("rd(in-p)"),mk-token("vallleJeadJall[t")}]; 
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Omit Read: 

Plotkin Rule: 

a E domal 

al (a) = mk_act(cs,ls, INOS) 

mk_DynamicState(id,ops,mk_Bounds(bcet,bcrt, wcet)) E RTN(a).sm.ss 1\ id = es 

mk_OperationC,_,_,in-p,out-p,_,_) E ops 1\ in-p '" nil 

3tl,t2 E inds7tI·l:;SE;7t(tl)I\.1:"sE;7t(t2)I\ 

~t2 E inds 7t1 . rds(in-p) E 7t(Iz) 1\11 < 1'2'5 t1 

uact = mk_act(cs,ls,mkJault(OMIT_REAO)) 

I' I (RTN,att{al-+uact},7t/"[{omit readJault}])L..(a2,es) 
dy-omlt-read-fault s 

(RTN,al,7tI) -+ (a2,es) 

VOM Function: 

81.0 OmitReadFault(RTN: RTN-Types,:,:, :,:) r: lR 

.1 pre let a E dom be st (a).status = INOS in 

.2 let mk-Dynamic-State{id, ops, mk-Bounds (beet, bcrt, weet)) E RTN (a ).sm.ss be sl 

.3 id = (a).cs in 

.4 let mk-Operation (id, read, we,in-p,out-p,preC,postC) E RTN (a).ops be st 

.5 «a).cs).ops i- 01\ 
.6 hd «a).cs).ops = id 1\ 

.7 in-p i- nil in 

.8 3tl,t2Einds ·mk-token("up_cs")E (tl)/\mk-token("dwnJs")E (t2)/\ 

.9 (.3t3 E inds . 

. 10 mk-token("rd(in-p)") E (t2) 1\ 

.11 tl < t3/\ 

.12 t3 ~ t2) 

.13 post let a E dom be st (a).status = IN OS in 

.14 let mk-Dynamic-State {id,ops,mk-Bounds(beet, bcrt, weet)) E RTN (a).sm.ss be sl 

.15 id = (a).cs in 

.16 let mk-Operation (id, read, we, in-p, out-p,preC,postC) E RTN (a ).ops be st 

.17 «a).cs).opsi- 0 /\ 

.18 hd «a).cs).ops = id /\ 

.19 in-p i- nil in 

.20 let tiE inds in 

.21 let t2 E inds be st mk-token (nup_cs") E (tl) /\ mk-token ("dwn_cs") E (t2) /\ 

.22 (. 3t3 E inds . 

. 23 mk-token ("rd(in-p)") E (t2) /\ 

.24 tl < t3/\ 

.25 t3 ~ t2) in 

.26 let lIact= mk-act( (a).cs, (a).ls,FAULT) in 

.27 = t{ a 1-+ IIaCt} /\ 

.28 = f"+[ {mk-token (. omicreadJault·)} 1 ; 
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C.4.4 Write Faults 

Late Write: 

Plotkin Rule: 

a E domol 

01 (a) =mk_act(es,ls,INDS) 

mk_DynamicState(id,ops,mk_Bounds(beet,ben, weet)) E RTN(a).sm.ss 1\ id = cs 

mk_OperationL,_,_, in...]J,out...]J,_,_) E ops I\out...]J 1= nil 

3tl,t2 E inds1tl· tSE;1t(tl)I\ ~SE;1t(tl)I\ 

~Iz E inds1tl·wds(out...]J) E 1t(Iz)I\1z > t2 
uaet = mk_aet(es,ls,mkJault(LATE_WRITE)) 

I 
. I (RTN,ot t {a 1--+ uaet}, 1t1 0.- [{late_writeJault}]) L (02,es) 

. dy-Iate-wnte-fault . s 
~ ___ ---.J (RTN,OI, 1tI) --+ (02,es) 

YOM Function: 

82.0 lateWriteFault(RTN:RTN-Types,:,:,:,:) r:B 

.1 pre let a E dom be st (a).status = INDS in 

.2 let mk-Dynamie-State (id, ops, mk-Bounds (beet, ben, weet» E RTN (a) .sm .ss be 51 

.3 id = (a).es in 

.4 let mk-Operation(id,read, we,in-p,out-p,preC,postC) E RTN (a).ops be 5t 

.5 «a).es).ops1= 0 1\ 

.6 hd «a).es).ops = id 1\ 

.7 out-p 1= nil in 

.8 :3tI,t2 E ind5 . mk-token (nup_es n) E (tI)I\mk-token(ndwn3sn) E (t2) 1\ 

.9 ( -d t3 E inds . mk-token (n we( out...]J) n) E (t3) 1\ 

.10 t3 > t2) 

.11 post let aEdom best (a).status=INDSin 

.12 let mk-Dynamie-State (id, ops, mk-Bounds (beet, ben, weet» E RTN (a).sm.ss be 5t 

.13 id= (a).esin 

.14 let mk-Operation (id, read, we, in-p, out-p,preC,postC) E RTN (a).ops be 51 

.15 «a).es).ops 1= [] 1\ 

.16 hd «a).es).ops = id 1\ 

.17 out-p 1= nil in 

.18 let tl E inds in 

.19 let t2 E inds be st mk-token (nup_es n) E (tI) 1\ mk-token (ndwn_es n) E (12) 1\ 

.20 ( -.3 t3 E inds . mk-token (n we( out...]J) n) E (t3) 1\ 

.21 t3 > t2) in 

.22 let uaet = mk-aet( (a).es, (a).ls, FAULT) in 

.23 = t {a 1--+ l«let} 1\ 

.24 = 0.-[{ mk-token (nlate_writeJaultn)} 1 ; 
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Early Write: 

Plotkin Rule: 

a E domO'I 

0'1 (a) =mk_act(cs,ls,INDS) 

mkJ)ynamic_State(id,ops,mk_Bounds(bcet,bcn, wcet)) E RTN(a).sm.ss A id = es 

mk_OperationC,_,_,in""p,out....p,_,_) E ops Aout""p of; nil 

3 tl, t2 E inds XI . ts E; X(tl)A $:s E; X(t2) A 

312 E inds XI . wds(out""p) E x(12) A12 < t~ 
uact = mk_act(cs,ls,mkJault{EARLY _ WRITE)) 

I 
: I (RTN,0'1t{al-+uact},xl("\.[{early_writeJault}])L(0'2,es) 

. dy-early-wnte-fault . s L..:.._-=--__ -.J (RTN,O'I,X.) -+ (0'2,es) 

YDM Function: 

83.0 earlyWriteFault (RTN: RTN-Types, :,:,:,:) r: 1R 

.I pre let a E dom be st (a).status = INDS in 

.2 let mk-Dynamic-State(id,ops,mk-Bollnds{bcet,ben, weet» E RTN (a).sm.ss be st 

.3 id = (a).cs in 

.4 let mk-Operation (id, read, we, in-p,ollt-p,preC,postC) E RTN (a).ops be st 

.5 «a).cs).ops of; 0 A 

.6 hd «a).cs).ops = id t\ 

.7 Ollt-p of; nil in 

.8 3tl,t2Einds ·mk-token{"llp_cS")E {tl)Amk-token("dwn_cs")E (t2) A 

.9 (3t3 E inds . mk-token ("we(ollt....p)") E (t3) A 

.10 t3 < t2) 

.II post let aEdom best (a).statllS=INDSin 

.12 let mk-Dynamic-State(id,ops,mk-Bounds(bcet,bcn, weet)) E RTN (a).sm.ss be st 

.13 id= (a).csin 

.14 let mk-Operation (id,read, we,in-p,out-p,preC,postC) E RTN (a).ops be st 

.15 «a).cs).ops of; 0 A 

.16 hd «a).cs).ops = id A 

.17 Ollt-p of; nil in 

.18 let tl E inds in 

.19 let t2 E inds be st mk-token ("IlP_CS") E (tl) Amk-token ("dwn_cs") E (t2) A 

.20 (3t3 E inds . mk-token(" we (Ollt....p) ") E (t3) A 

.21 t3 < t2) in 

.22 let Ilact = mk-act( {a).cs, (a).ls, FAULT) in 

.23 = t{a 1-+ IWCt} A 

.24 = ("\.[ {mk-token (" early_writeJalllt")} 1 ; 
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Value Write: 

Plotkin Rule: 

a E domal 

al (a) = mk_act(cs, Is, INDS) 

al (cs).ops '" [] 
s E RTN(a).sm.ss 

mk_Operation(id,rd, we,in"'p,out"'p,pre,post) E elem5s.ops"hdal (cs).ops = id 

in"'p = nil,out"'p '" nil 

(out...p, v',ls) ~ IS 
(post, Is') .::.... false 

uact = mk_act(cs,Is',mkJault(VALUE_ WRITE» 

(RTN, al t{a ...... uact,cs >-+ tlal (cs).OpS},1t1 n.. [{ we(ollt...p), vallie writeJalllt}]) L (a2,es) I dy-value-write-fault I ( s) 
. RTN,al,1t.) --> (a2,es 

VDM Function: 

84.0 valueWriteFault(RTN: RTN-Types,:,:,:,:) r: B 

.I pre let a E dom be 5t isj (a), act) in 

.2 let mk-act(cs,ls, INDS) = (a) in 

.3 let mk-Operation (id, read, we, in-p, ollt-p,preC,postC) E RTN (a).ops be 51 

.4 (cs).ops'" D" 

.5 hd (cs).ops = id" 

.6 in-p '" nil " 

.7 out-p = nil in 

.8 let inp E RTN (a).input-ports be st 

.9 inp.id = in-p in 

.10 let Is' = (a).ls t{inp.id ...... rdport(inp,)} in 

.11 expr(preC,ls') " 

.12 let outp E RTN (a).output-portsbe st 

.13 outp.id = out-p in 

.14 let Is" : Id .!!!.. Var in 

.15 3v: Var· 

.16 Is" = (a).ls t Is' t{ outp.id ...... weport(outp, v,))" 

.17 -,expr(postC,Is") 
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.18 post let a E dom be st 

.19 «a).cs).ops =1= 0 in 

.20 let op E RTN (a) .ops be st 

.21 hd «a).cs).ops = op.id t\ 

.22 op.input-parameter =1= nil in 

.23 let inp E RTN(a).input-pons be st 

.24 inp.id = op.input-parameterin 

.25 let Ii: Id .!!!... Var be st 

.26 li = (a ).Is t{inp.id I-> rdpon (inp,)) t\ 

.27 expr(op.preC, (a).Ii) in 

.28 let outp E RTN (a ).output-pons be st 

.29 outp.id = op.output-result in 

.30 let Ii': Id.!!!... Var be st 

.31 3v: Var· 

.32 Ii' = (a).Lst Ii t{olltp.id ...... wepon(outp, v,)} /\ 

.33 --.expr(op.postC,ls") in 

.34 let uact = mk-act(cs,li,FAULT) in 

.35 = t{cs I-> tl (cs).ops,al->uact}/\ 

.36 = ("'\.[{mk-token (" rd{in-p) "),mk-token ("value_writeJault"))] ; 
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Omit Write: 

Plotkin Rule: 

a E doma\ 

a\ (a) = mk_act(cs,ls, INDS) 

mk_DynamiCState(id,ops,mk_Bounds(bcet,bcn, wcet» E RTN(a).sm.ss\ id = cs 

mk_Operationc,_,_, in...jJ,out...jJ,_,_) E ops /\out...jJ =I- nil 

3 t\, t2 E inds 1t\ . l;s Ei 1t(td/\ ts Ei 1t(t2) 1\ 

~t2 E inds1t\·wds(out...jJ) E 1t(t2)M\ < t2 ~ 12 

uact = mk_act( cs, Is, mkJault( 0 M IT_WRITE» 

I .. I (RTN,a\ t {a ...... uact},1t\ r.[{omicwriteJault}]) L (a2,es) 
. dy-omlt-wnte-fault . s 

(RTN, a\, 1td ---+ (a2, es) 

VDM Function: 

85.0 OmitWriteFault(RTN:RTN-Types,:,:,:,:) r:B 

.I pre let a E dom be 5t (a).status = INDS in 

.2 let mk-Dynamic-State (id, ops, mk-Bounds (bcet, bcn, wcet» E RTN (a) .sm .ss be st 

.3 id= (a).csin 

.4 let mk-Operation (id, read, we,in-p,out-p,preC,postC) E RTN (a).ops be 51 

.5 ((a).cs).ops =I- 0 /\ 

.6 hd ((a).cs).ops = id /\ 

.7 out-p =I- nil in 

.8 3tl, t2 E ind5 . mk-Ioken (nup_cs n) E (tl) /\ mk-Ioken (ndwn3s") E (t2) /\ 

.9 (...,3t3 E inds . 

. IO mk-token (n wee out...jJ)") E (t2) 1\ 

.11 tl<t3/\ 

.12 t3 ~ t2) 

.13 post let a E dom be sl (a).status = INDS in 

.14 let mk-Dynamic-State (id,ops, mk-BO/lnds (bcet,bcn, wcet» E RTN (a).sm.ss be 51 

.15 id= (a).csin 

.16 let mk-Operation (id, read, we, in-p, ollt-p,preC,postC) E RTN (a).ops be 51 

.17 ((a).cs).ops =I- 0 /\ 

.18 hd ((a).cs).ops = id /\ 

.19 out-p =I- nil in 

.20 let tIE inds in 

.21 leI t2 E ind5 be 51 mk-loken (nllp_CS n ) E (tl) /\ mk-Ioken ("dwn_cs") E (t2) /\ 

.22 (...,3t3 E inds . 

. 23 mk-token (nwe(out...jJ)n) E (t2) /\ 

.24 tl < t3/\ 

.25 t3 ~ t2) in 

.26 leI /lact = mk-act( (a).cs, (a).Is, FAULT) in 

.27 = t{a ...... uact} /\ 

.28 = r.[{mk-loken(" omiU1.·riteJaultnH] ; 
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C.4.S Crash Faults 

Plotkin Rule: 

a E domol 

01 (a) = mk_acl(cs,ls, (NOS) 

:3 II E inds x I . l;s E; x( II) /\ 

~/2 E indsXI· !:sE;X(t2)1\t2 > tl 
uacl = mk_acI(cs,ls,mkJault(CRASH)) 

I dy-crash-fauIt r (RTN,OI t {a I--> uact}, XI "- [{crashJault}]) .!... (02, es) 
'"-----' (RTN,OI,XI).2.. (02,es) 

VDM Function: 

86.0 crashFault(RTN: RTN-Types,:,:,:,:) r: B 

.1 pre let a E dom be st (a).status = (NOS in 

.2 let mk-Dynamic-State (id, ops, mk-Bollnds (bcet, bcrt, wcet)) E RTN (a) .sm .ss be sl 

.3 id = (a).cs in 

.4 :3 tl E inds . mk-token ("llp_CS") E (tl) /\ 

.5 (-dt2Einds ·mk-token("dwn_cs")E (t2)/\ 

.6 t2>tl) 

.7 post let a E dom be st (a).status = (NOS in 

.8 let mk-Dynamic-State(id,ops, mk-Bollnds(bcet, bcrt, wcet)) E RTN (a).sm.ss be 51 

.9 id = (a).cs in 

.10 let tl E inds be 51 mk-token ("up_cs") E (tl) in 

.II let t2 E inds be st mk-token ("dwn_cs") ri (t2) /\ 

.12 t2 > tl in 

.13 let uact = mk-act( (a).cs, (a).ls, FAULT) in 

.14 = t{a I--> IwCt} /\ 

.15 = "-[{ mk-token ("late3xitJalllt")}] 

C.S Implementation Considerations 

"Concurrency is present in labelled transition systems (LTSs) only as an interpretation of 

non-determinism." [Pay93] 

We require a transition system which distinguishes between the intermediate states -configurations- during 

an evaluation of an RTN. This requires a fine-grained semantics which is commonly referred to as a small 

step semantic, which requires judgements for single steps in the evaluation. Conversely, a large step 

semantics is one which evaluates a construct (in our case an RTN) and returns the final state and trace. 

The semantic rules we have derived and described previously are sufficiently fine-grained and constitute a 

small step semantic. 
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Addressing the issue of concurrency, having a static specification (rtn), the interpretation of concurrency is 

clear. Given a configuration (RTN, (JI,XI), any rules whoms premises are satisfied should fire concurrently 

and introduce concurrency into our semantics. 

C.S.l An Executable Specification (for Animation) 

The implication to implement ~ is to consider ramifying the results of the (powerset) relation...!.... Consid­

ering an implementation of...!... we explore an executable specification of"'!'" in VDM-SL. This exploration 

unveils the pitfalls of giving an executable specification [Fuc92, HJ89] of a predicate, requiring we ramify 

the resulting set of configurations. Three possible implementations are considered and contrasted and a 

final decision made. We motivate the benefits of such a model and outline its contribution to first the ver­

ification of the SOS rules, and secondly, its contribution to animating the semantics in an interpreter-like 

fashion. 

To design and specify the semantics of a programming Ispecification language involves a number of clerical 

task, such as rendering, type-checking and animation. Tools help elevate some of this burden as well as 

impose confidence in the validity of the specifications. However, the tools currently availahle [tea94, 

vDHK96] exhibit considerable variation in their sophistication. 

We begin by exploring the benefits of using the VDMToolsand draw observations from our own work 

which then motivates a switch to using existing tool support - LETOS [Har97]. Our key observation is 

supported by the work that surrounds LETOS, for which we give an introduction. The issues with regards 

animation are a running theme throughout the discussion. 

C.S.I.1 Modelling non-determinism 

Adopting the Plotkin-style rule format, the issue of concurrency and non-determinism is factored out to a 

"meta-level". It is this meta-level that is of interest here. Although the notation used separates out the issue 

of the order in which to apply the rules from that of the relation between states, the complication of writing 

a function which directly defines the set of all possible states remains [Jon03). 

Whatever the origin of the non-determinism, it is clear that 

exec: RTN x E x n -+ E x n 

does not capture the semantics intent. A move to producing a set of states, as in 

exec: RTN x E x n -+ P (E x n) 

is not convenient because of the need to ramify the combinations. The key advantage of a rule format such 

as: 

a E domol 

;S_(JI (a), act) 

~tr E RTN(a).sm.ts· (r.src = 01 (a).cs 
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is that it provides a natural way of expressing the relation 

~ :P«RTN x Ex TI) x Ex TI) 

Given this relation, we wish to specify the "meta-level" with a predicate such as: 

87.0 strans(RTN:RTN-Types,:,:,:,:) r: B 

.J post if all-term (RTN,,) 

.2 then = /\ = 

.3 else let mk- (,) = ex-strans(RTN,,) in 

.4 3:,: ·strans(RTN",,)/\ = /\ = ; 

which specifies entirely the non-determinism in our model expressed in the ~ relation. 

We are now interested in modelling this non-determinism in an explicit executable VDM-SL model, and 

the next section articulates our ideas on how to animate our semantics. 

C.S.1.2 Implementation in the VDMTools 

From the set of SOS rules as described in Section 5.2.1, we represent each rule as an explicit VDM-SL 

function. However, VDM-SL -as implemented in the VDMTools- prohibits specifying a mechanism that 

chooses the next rule to fire in a configurations (RTN, a I, xd non-deterministically. We address this issue 

and those described previously. We assume a set of function identifiers, which are the identifiers to the 

explicit specifications of our SOS rules, form a set (world) which represents the total options for making a 

transition in our semantic model. From this set, we can find the subset of enabled functions whose premises 

are true in a given configuration. From this set, enabled we can specify non-deterministically which rule 

to fire. However, the VDM-SL implementation will always choose the same element from a set. 

The remaining issue is given the set of enabled functions, should we evaluate each element i) in tum, ii) in 

parallel, or iii) recursively. We now specify an implementation of this "meta-level" as exec 10. exec20 and 

exec30 respectively and discuss the merits for each. 

Three possible implementations of the "meta-level" 

First, that the execution is based on recursion where one of the enabled functions from (ai, XI) is evaluated, 

then recurse until all activities in the network have terminated. 
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88.0 exec: RTN -Types x x ~ y 

.1 exec{RTN,,) ~ 

.2 ihall-term(RTN,,) 

.3 then letf E select (world, n, R1N,,) in 

.4 casesf: 

.5 F I -4 let mk- (,) = fl (R1N,,) in 

.6 exec (R1N,,), 

.7 F2 -4 let mk- (,) = f2 (RTN,,) in 

.8 exec! R1N" ) 

.9 end 

.10 else mk- (,); 

• This implementation returns one of the possible traces. 

Secondly, that all enabled functions in (0'1, XI) are executed in parallel and thc rc\ulting C(lnfigurati(ln~ 

ramified. This relies on the fact the rules are non-interfering 3. 

89.0 exec2: RTN-Types x x -+ x 

.1 exec2(RTN,,) ~ 

.2 if ,all-term (RTN,,) 

.3 then let enabled = select (world, {}, RTN. ,) in 

A let mk- (,) = merge-all ({ casesf: 

.5 FI-+fl(RTN.,), 

.6 F2-+f2(RTN .. ) 

.7 end I 

.8 f E enabled}) in 

.9 exec2 (RTN,,) 

.10 elsemk-(,); 

• This implementation returns the ramified set of allthc possible IracL" 

Thirdly, that all enabled functions in (aI.xI) are cxecuted recursively. in that each function i, evaluatcd on 

the result of the previous recursivc step. until all activilie'o are Ierminatcd. 

90.0 exec3: RTN-Types x x -+ x 

.1 exec3 (RTN,,) ~ 

, if ,all-tenn (RTN,,) 

.3 then let enabled = select (lI'orld. n, RTN. ,) in 

..l let mk- (. ) = recllrse (enabled, RTN. , ) in 

.5 exec3 (RTN.,) 

.6 else mk- (, ); 

'Each activity is essentially a sequential loop (with JX",ible non-delenniniqic path.,) 001) one rule for one acti\~1y .. ,II be ahle ,,, 

·fire·. therefore ~e can be sure another rule will nol interfere 
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• This implementation returns the greedy semantics, such that all the possible execution paths are 

evaluated and ramified. 

Discussion 

Each proposal proposal has its merits, but only one realises an adequate specification of the concurrency 

& non-determinism required - that is exec3(). However, exec3 is more complicated than it first appears. 

Its caIl to an auxiliary function, recurse hides the detail that each SOS rule enabled in the configuration 

(RTN, (II, xI) is executed in a fashion that the state is ramified on conclusion. The function. Tf'ClIrse relies 

on the atomicity of the SOS rules and being non-interfering. 

91.0 recurse :func-set x RTN-Types x x -> X 

.1 recurse(e,RTN,,) ~ 

.2 if e i {} 

.3 then letf E e in 

.4 let mk- (,) = casesf: 

.5 FI ->fl (RTN,,), 

.6 F2 -> f2 (RTN,,) 

.7 end in 

.8 recurse (e \ if}, RTN,,) 

.9 else mk- (,) 

The call to recllrse in exec3 is: 

recurse(enabled,RTN, (II, XI) 

from which recurse recursively caIls itself until all the enabled rules originally specified to it have been 

executed _ this is therefore a greedy semantic. The recursively call with reclIrse is: 

recurse( enabled 

setj,RTN, cr',~) 

wheref is the function last to be executed which produced the new state (cr') and trace (~). The choice of 

which function to execute is made non-deterministically4 by selecting a function identifier from enabled. 

it is then executed to produce (cr'~). 

4Thou
o
h the VDMTooiswill always choose the same element from a -et on each execution .. 
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