
SCALABLE COLLISION DETECTION FOR

DISTRIBUTED VIRTUAL ENVIRONMENTS

A THESIS

SUBMITTED TO THE SCHOOL OF COMPUTING SCIENCE

OF THE UNIVERSITY OF NEWCASTLE-UPON-TYNE

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Kier Storey

April 2007

NEWCASTLE UNIVERSITY LIBRARY

205 36738 4

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Dr. Graham Morgan (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Rynson Lau

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Dr. Paul Ezhilchelvan

Approved for the School of Computing Science:

Prof. P. A. Lee

Head of the School of Computing Science

11

ABSTRACT

SCALABLE COLLISION DETECTION FOR

DISTRIBUTED VIRTUAL ENVIRONMENTS

Kier Storey
Ph.D. in Computing Science

Supervisor: Dr. Graham Morgan

December 2006

Distributed Virtual Environments (DVEs) provide a mechanism whereby

dispersed users can interact with one-another within a shared \'irtual world.

DVEs commonly allow users to interact with one-another in ways analogous to

the real-world, e.g. mimicking Newtonian physics. A scalable DVE should

enable large numbers of users to participate simultaneously, regardless of the

geographical location and hardware configurations of individual users. In

addition, these users should perceive a mutually-consistent virtual world in

which each user perceives a consistent series of events in real-time.

Collision detection and response is a fundamental requirement of most virtual

environments and simulations. It is a computationally-expensive operation

which must be perfonned at frequent intervals in all virtual environments which

simulate the motion of solid objects. Collision detection has received large

amounts of research interest and as a result a number of efficient collision

detection algorithms have been proposed. However, these collision detection

approaches are designed to detect collisions efficiently in simulations run on a

single machine and are not capable of overcoming problems associated with

scalability and consistency, which are of paramount importance in DVEs.

111

This thesis presents a new collision detection approach, tenned distributed

collision detection, which provides high-levels of scalability, consistency and

responsiveness. This thesis presents the algorithms and theory which underpin

the distributed collision detection approach and provides experimental results

demonstrating its scalability and responsiveness.

iv

Acknowledgements

I would like to thank my wife, Fengyun Lu, for her patience, support and advice

while writing this thesis.

I would also like to thank my mother, Diana Storey, for supporting me

throughout my education.

I would finally like to thank my superVIsor, Dr. Graham \lorgan. for his

assistance throughout my Ph.D studies and his advice while writing this thesis.

\'

Table of Contents

1 Introduction ... 1

1.1 Collision Detection in DVEs -+

1.2 Thesis Contribution .. 6

2 Background 8

2.1 Virtual Environments.. 8

2.l.1 Challenges in Virtual Environments.............................. 9

2.2 Distributed Virtual Environments.................................... 10

2.2.1 Challenges in Distributed Virtual Environments................ 10

2.2.2 DVE Implementation Challenges................................. 11

2.2.2.1 Scalability.. 11

2.2.2.2 Consistency.. ... 12

2.2.2.3 Responsiveness.. 13

2.2.3 Distributed Application Architecture.......................... 14

2.2.3.1 Peer-to-Peer 14

2.2.3.2 Client-Server... 15

2.2.3.3 De-Centralised Server.. ... 17

2.2.3'-+ Server Hierarchies... 18

2.2.3.5 Summary of Distributed Application Architectures.......... 19

2.2'-+ Collision Detection.. ... 20

2.2.5 Responsiveness and Consistency of Collisions Detection for

DVEs .. 21

\"11

2.3 Collision Detection Algorithms/Approaches

2.3.1 ParallellDistributed Execution

2.3.2 Two Phase Collision Detection

2.3.2.1 Broad Phase Collision Detection

2.3.2.1.1 Bounding Volumes .. .

2.3.2.1.2 Coherence

2.3.2.1.3 Sweep and Prune

2.3.2.1.3.1 Parallelism in Sweep and Prune

2.3.2.1.4 Spatial Subdivision

2.3.2.1.4.1 Quad-trees and Oct-trees

2.3.2.1.4.1.1 Parallelism in Oct-trees

2.3.2.1.4.2 Binary Space Partitioning (BSP) Trees

2.3.2.1.4.2.1 Parallelism in BSP Trees

2.3.2.1.4.3 Spatial Hashing

2.3.2.1.4.3.1 Parallelism in Spatial Hashing

2.3.2.1.4.4 Multi -resolution Spatial Hierarchies

2.3.2.2 Broad Phase Collision Detection Summary

2.3.3 Narrow Phase Collision Detection

2.3.3.1 Review of Narrow-Phase Collision Detection Algorithms .. .

2.3.3.2 ParallellDistributed Execution of Narrow-Phase Collision

.,.,

26

26

27

29

30

32

3-+

35

37

37

41

-+1

42

43

-+-+

45

Detection Algorithms...................................... 45

2.3.3.2.1 Bounding Volume Types and Tree Depth 48

2.3.4 Summary... 48

2.3.5 Requirements of Collision Detection for DYEs 50

2.4 Chapter Contributions , 51

2.5 Thesis Purpose... 55

3 Theory ... 56

3.1 Introduction ... 56

3.2 Background Theory... 58

3.2.1 Bounding Volumes and Spatial Subdivision...................... 58

3.2.2 Broad Phase Collision Detection............................... 59

\'111

3.2.2.1 Occupying Multiple Regions.............................. 61

3.2.3 Narrow Phase Collision Detection................................. 62

3.3 Distributed Collision Detection...... 64

3.3.1 Glossary of Tenninology .. 64

3.3.2 Simplified Distributed Collision Detection Approach........... 66

3.3.3 Partial Knowledge of DYE State................................... 68

3.3.4 Object Classification.. 70

3.3.5 Distributed Collision Detection Architecture.................... . 72

3.3.6 Communication Latency...... 75

3.3.7 Consistency Groups.. 76

3.3.8 Group Leaders... 79

3.3.8.1 Message Dissemination.. 83

3.3.9 Variable Transmission Delays....................................... 86

3.3.10 Reliability... 90

3.3.11 Unsynchronised Operation 94

3.3.12 Discussion 96

4 Implementation 100

4.1 Introduction... . . . 100

4.2 Implementation Technologies....................................... 100

4.2.1 Programming Languages 101

4.2.1.1 Candidate Programming Languages............... 102

4.2.l.l.1 C++ 102

4.2.l.l.2 Java 105

4.2.l.2 Summary of Programming Languages 106

4.2.2 Platforms.. 107

4.2.2.1 PC ... 108

4.2.2.2 Games Consoles... 109

4.2.2.2.1 PlayStation 2 .. 110

4.2.2.2.2 X-box......... 112

4.2.2.2.3 Xbox 360 .. 113

4.2.2.2'-+ PlayStation 3 ... 114

1,\

4.2.3 Transfonnations .. 115

4.3 System Implementation. 119

4.3.1 The Server 120

4.3.1.1 Communication Model................................. 122

4.3.1.2 Auxiliary Components..................... 12..t.

4.3.1.3 Allocating Work to Collision Detection Nodes... 126

4.3.1.4 Fonnjng Consistency Groups... 130

4.3.1.5 Run-time Consistency Group Adjustments................. 133

4.3.1.6 Providing the Clients with State Updates... 13..t.

4.3.1.7 Summary of the Server .. 135

4.3.2 Collision Detection Nodes.. 136

4.3.2.1 Overview................................. 136

4.3.2.2 DistributionNode 136

4.3.2.3 Narrow Phase Collision Detection........................... 140

4.3.2.4 DistributedNode .. 1..t.3

4.3.2.5 Object Management... ... 145

4.3.2.6 Object Replication and Transfers..................... 1..t.8

4.3.2.7 Consistency Group Perfonnance Monitoring........... ... 149

4.3.2.8 Group Leader... 150

4.3.2.9 Collision Detection Node Joining the DyE............... 151

4.3.2.10 Collision Detection Node Threads........................ 152

4.3.2.10.1 DistributedNode Update Thread...... 154

4.3.2.10.2 Object Receiver........................... 155

4.3.2.10.3 Peer Communication Object ,. 156

4.3.2.10.4 DistributedNode Object Broker........................ 156

4.3.2.10.5 Group Member Listen Thread... 156

4.3.2.10.6 Communication Ping Thread....................... 157

4.3.2.10.7 Group Leader Thread 159

4.3.3 Reliability and Fault-Tolerance.............................. 160

4.4 Summary .. 161

5 Experimentation.. 163

x

5.1 Introduction 163

5.2 Experimental Platform .. 164

5.2.1 Probability of Collisions Occurring............ 165

5.2.2 Experimental Virtual Environment.......................... 167

5.3 Expected Results... 168

5.3.1 Expected Responsiveness..................................... 170

5.3.2 Expected Scalability... 170

5.3.3 Expected Consistency... 171

5.4 Performance Experimentation.................................. 171

5.5 Scalability Experimentation.................................... 17..J.

5.6 Maximum Consistency Group Size. 18.2

5.7 Summary.. 185

6 Conclusions and Future Work...................................... 186

6.1 Conclusions.. 186

6.2 Future Work.. 190

6.3 Summary .. '" 190

References 191

Xl

List of Figures

2.1 Peer-to-Peer Architecture........................ 15

2.2 Client-Server Architecture.................................... 16

2.3 De-Centralised Servers...... 17

2.4 Server Hierarchy.. 19

2.5 Bounding Volumes... 27

2.6 Sweep and Prune along a single axis................................... 31

2.7 Quad-tree Structure................ .. 36

2.8 Quad-tree decomposition of aVE....................................... 36

2.9 BSP Tree of a VE ... 38

2.10 BSP Tree of a VE with Adaptive Subdivision 39

2.11 Sibling Nodes in BSP Trees and Quad-trees........................ 40

3.1 An Object in 3D Space Occupying 8 regions........................ 60

3.2 Spatial Subdivision.. 61

3.3 Object Transfer and Replication..................... 69

3.4 System Architecture... 73

3.5 Consistency Groups............... 77

3.6 Consistency Groups with Group Leaders............................. 80

3.7 State Update and Collision Response Message Flow Diagram.... 81

3.8 Client/Server \'s. Consistency Group Model......................... 97

xii

4.1 Linear Interpolation v Spherical Linear Interpolation 118

4.2 Distributed Collision Detection Threads.............................. 122

4.3 Uniquely Identifying a Sub-region..................................... 127

4.4 Binary Tree vs Higher-order Tree...................................... 130

4.5 Collision Detection Node's Distribution Tree........................ 144

4.6 DistributedNode Architecture... 153

5.1 Single-Node Collision Detection Performance as Number of

Nodes is Increased... 173

5.2 Average Time Taken for Collision Detection Iteration as

Number of Collision Detection Nodes is Increased............... ... 177

5.3 Distributed Collision Detection Performance........................ 178

5.4 Group Leader vs Group Member 181

5.5 Determining the Maximum Consistency Group Size... 184

xiii

List of Tables

5.1 Average Simulation Time.. 172

5.2 Simulation Time on Average Collision Detection Nodes 175

5.3 Scale-up Factor...... 175

5.4 Simulation Time on Group Leader Node.......................... ... 178

5.5 Group Leader Overhead.. 180

5.6 Average Percentage Increase in Processing Overhead for Group

Leader 180

5.7: Maximum Consistency Group Size Experiment Results... 183

XIY

.\ \'

Chapter 1

Introduction

A Virtual Environment (VE) [Burdeau03][SinghaI99] is a world simulated in

computer software. In general, these systems are designed to allow a user to

interact with the virtual environment and the entities which inhabit it through a

set of world-specific rules. These rules often mimic the interaction rules

observed in the real world, such as Newtonian physics[PalmerHBourg] and

verbal communication, although they are limited only by the imagination of the

VE designer and the processing resources an memory available in the target

platform. Virtual Environments are a heavily-researched and exceptionally

commercially-successful family of software systems. Due to the commercial

success of VEs in the computer games market, research is ongoing to improve

both algorithmic and hardware performance of YEs on a global scale in both

industry and academia.

A Distributed Virtual Environment (DYE)[SinghaI99][\lorgan05][ZhaoOI] is a

VE which allows mUltiple dispersed participants to interact with the same \"E in

real-time. Each user can inject one or more objects into the DYE. which they

can control; in many DYEs, a user injects just a single object, termed an avatar.

An avatar is a virtual representation of the user, which they can use to interact

with the DYE, the objects and avatars which reside within it. Initial DYE

research was conducted with the goal of developing distributed military

simulation and training tools. As the cost of hardware capable of rendering

three-dimensional images in real-time was prohibitively expensive, alternative

applications for DYE technology were not extensively explored until consumer

hardware became capable of 3D rendering. DYEs currently find applications in

training and simulation, virtual classrooms, entertainment and e-commerce.

A DYE is required to ensure that each user experiences the same, or a very

similar, environment to one another and that the actions they perform in the

DYE have the same semantics and result in the same reactions being observed

by all users. In a DYE, satisfying real-time requirements while ensuring all users

maintain a consistent view of the shared state is difficult. Although the actual

behaviour of users is non-deterministic, they can only interact with the

environment in set ways meaning that the behaviour of players can be predicted

to a certain level of accuracy based on heuristics [McCoy03]. However, due to

network delays and limited bandwidth, DYEs adopting such techniques can

become inconsistent and chaotic, with many participants viewing the world in a

number of different ways. In addition to consistency requirements, it is also

desirable to develop scalable DYEs. A scalable DYE should allow large

numbers of dispersed participants to interact with one-another simultaneously.

The machines which the dispersed users participating in the DYE use may

exhibit large variations in performance and variations in network transmission

delays and available bandwidth. As a result, designers are responsible for

ensuring that their DYE enables large numbers of users to interact with a

consistent virtual world while dealing with heterogeneity in real-time.

2

The current state of the objects inhabiting a DYE is shared between machines

participating in the DYE through the use of message passing over a network.

The scalability of a DYE can be affected by a number of factors, including:

• The volume of messages required to be transmitted

• The processing overhead associated with managing the DYE

As the number of participants increases, the volume of messages transmitted

between participants may increase to reflect the additional objects inhabiting the

virtual world. The choice of communication architecture and network protocols

can significantly affect the scalability of the DYE. The communication

architecture defines which machines are responsible for transmitting state update

messages to each other throughout the lifetime of the DYE. In addition, the

choice of network protocols can affect the volume of messages each machine is

responsible for transmitting. These issues are discussed in detail in the

subsequent chapters.

As the number of participants increases, the number of objects inhabiting the

DYE will also increase. With an increased number of objects in the DVE, the

processing overhead associated with managing these objects will also increase.

These processing overheads include: Rendering; Animation; Collision

Detection; Physics; AI. This list is by no means exhaustive but offers many of

the larger processing overheads associated with most DYEs.

This thesis concentrates on collision detection [Ericcson05] [Bergen04] for

DYEs. Collision detection is required to determine which objects inhabiting a

virtual space are intersecting. It is an extremely computationally-expensive

operation which must be performed frequently in all DYEs which model the

motion of solid objects. It is frequently the second-most computationally­

expensive operation in YEs; rendering is usually the most expensive operation.

The following section will introduce a number of concepts and collision

3

detection algorithms and identifies a shortcoming in traditional collision

detection algorithms and approaches when adopted in DYEs.

1.1 Collision Detection in DVEs

Collision detection is a heavily-researched topic. It is a classic 0(112) problem for

which, through the exploitation of temporal and spatial coherence, a number of

algorithms have been developed which offer better than 0(n2) performance

[Lin98] [Storey03] [Morgan04] [Morgan05 2] [WattO!] [Bergen04]

[Ericcson05]. Most YEs exhibit both temporal and spatial coherence. The

presence of temporal coherence implies that the state of objects at a given time,

tt. will be similar to the state of objects at time t,+/. The presence of spatial

coherence implies that the configuration of the objects inhabiting the VE is such

that there exists space separating non-intersecting objects.

Traditionally collision detection algorithms have been developed, implemented

and optimised for single-processor platforms. However, recent developments in

consumer hardware have moved towards multi-core processors, for which many

of the available algorithms cannot easily be adapted to exploit. This thesis

provides an evaluation of current collision detection algorithms and their

applicability on multi-processor platforms.

Current DYEs commonly perform current collision detection between all objects

in the DYE on each machine participating in the DYE [WattO!]. This approach

can limit responsiveness and scalability by repeating collision detection and can

result in inconsistencies in object states between machines; small inconsistencies

in object states as a result of collision response can compound on each-other

reSUlting in chaotic, unpredictable object behaviour in DYEs.

4

The factors contributing to inconsistencies in object states in DYEs include

message transmission delays and limited network bandwidth. Limitations in

network bandwidth place restrictions on the volume of messages which can be

physically transmitted over the available network infrastructure. For the purpose

of DYEs, the available network bandwidth places restrictions on the size of and

frequency which state update messages can be transmitted. In order to

compensate for relatively infrequent state update messages, DYEs commonly

utilise state prediction approaches, such as dead reckoning, to extrapolate on

object's current state from its previous state using information such as previous

position, velocity, acceleration etc. These approaches avoid users noticing

objects "jumping" from one state to another. However, these approaches cannot

be guaranteed to predict an object's correct state and, as such, are required to use

convergence paths to smoothly correct deviations between an object's predicted

and actual state. This, however, can result in significant inconsistencies arising.

For example, if a collision is detected involving an object while it is travelling

on a convergence path it is probable that this collision may be detected

differently, or not at all, on one or more machines participating in the DYE.

Message transmission delays introduce delays between an object's state

changing and this change being realised on all machines participating in the

DVE. As a result of this, the state of one or more objects on each machine

participating in the DYE may be out-of-date. Any such inconsistencies in the

state of objects can result in collisions being detected and responded to in an

inconsistent manner between machines participating in the DYE. As previously

stated, these inconsistencies can compound on one-another and result in

significant differences developing between the state of objects on each machine

in a relatively short period of time.

In addition to inconsistencies, the current approach of performing collision

detection for all objects on all machines participating in a DYE results in

significant processing repetition. As the number of objects inhabiting the virtual

world increases, the processing overhead associated with collision detection for

5

the DYE on each machine increases accordingly. The processing overhead

associated with collision detection may restrict the number of, and detail of,

objects inhabiting the DVE in order to achieve an acceptable level of

responsiveness on the target machines; it may be necessary to sacrifice

scalability in order to achieve acceptable levels of responsiveness and vice­

versa.

1.2 Thesis Contribution

It is desirable for DVEs to offer high-levels of consistency, responsiveness and

scalability. Current DVE research has concentrated on promoting scalability by

employing a number of techniques, including interest management/message

filtering [Greenhalgh] [MorganO!], dead-reckoning [WattO!] and the use of

dedicated server farms [IBM07]. Consistency has been promoted in DYE

research by the use of centralised servers [WattOl], lock-step time-stepping

schemes [Sweeney99] and state roll-back and correction schemes [Sweeney99].

However, all of these approaches sacrifice one or more of the three requirements

(consistency/responsiveness/scalability) in order to improve their desired

requirement(s),e.g. an application may restrict responsiveness by imposing that

all users interact using a tum-based approach in order to improve consistency.

Currently, research into consistency in DYEs has not focussed on one of the

major sources of inconsistency, collision detection and collision response.

Current research into collision detection has focussed on providing improved

performance and accuracy in determining points of intersection between a

system of objects. However, little research has been undertaken into collision

detection for systems in which the current state of all the objects being simulated

is not known by all machines participating in the simulation. This thesis will

present a collision detection approach which provides high-levels of scalability,

consistency and responsiveness suitable for both single-user YEs and large-scale

DVEs. The approach leverages the parallel processing power offered by multi-

6

core processors and the set of machines participating in the DVE to distribute

the processing overhead associated with collision detection to provide improved

responsiveness. The approach utilises a peer/server hierarchy network

architecture which increases scalability by reducing the volume of messages

each machine participating in the DVE is required to transmit and receive. This

approach provides improved consistency by reducing the number of machines

which are responsible for collision detection for a given object, thereby reducing

the probability of conflicting responses being initiated as a result of a collision.

It is capable of adapting to variations in network transmission delays, machine

failure and network congestion to maintain high-levels of consistency,

responsiveness and scalability. Through the use of a peer/server hierarchy

network architecture, many of the processing burdens are removed from the

main server to localised servers for given territories or networks thereby

improving scalability; these local servers are termed group leaders and are

dynamically assigned from the machines participating in the DVE based on the

network transmission delays perceived between the machines participating in

theDVE.

To summarise, it is desirable for a DVE to provide high-levels of consistency to

its users. However, current research into collision detection has not yielded

approaches which address the problem of consistency in DVEs. This thesis

presents a general-purpose network architecture and collision detection approach

capable of exploiting both multi-core processors and multiple machines

participating in a DVE. The approach enables participants separated by large

geographic distances to participate in the same DVE in real-time; every user will

perceive high-levels of responsiveness and the level of consistency between

users will be adapted depending on the observed network transmission delays

and bandwidth restrictions, which are monitored and adjusted during run-time.

Experimental results will be presented to demonstrate the performance and

applicability of this approach.

7

Chapter 2

Background

2.1 Virtual Environments

A Virtual Environment (VE) [Burdeau03][SinghaI99] is a world simulated

within computer software. In general, these systems are designed to allow a user

to interact with the virtual environment and the entities which inhabit it through

a set of world-specific rules. These rules often mimic the interaction rules

observed in the real world, such as Newtonian physics and verbal

communication, although they are limited only by the imagination of the VE

designer and the processing resources and memory available in the target

platform. Due to the commercial success of YEs in the computer games market,

research is ongoing to improve both algorithmic and hardware performance of

VEs on a global scale in both industry and academia.

8

2.1.1 Challenges in Virtual Environments

There are a number of challenges associated with developing \ 'Es. In order to

attract consumers in a highly-competitive market place, the quality of the

graphics is often viewed as having paramount importance. After all, the

consumers' first impression of any new product being released onto the market

is usually formed by observing its graphics. This has resulted in an on-going

competition between developers and manufacturers to produce the most

impressive graphics engines [Epic06][Id06][Valve06] and hardware respectively

[ATI06][NVidia06]. Animation, which is closely related to rendering, is highly

important in producing an immersive virtual environment as smooth and

realistic animation can significantly improve a user's immersion. Often

receiving less research attention than the two previous challenges, Artificial

Intelligence is required to provide the illusion of intelligence in software­

controlled entities within the VE. While research into AI for YEs is increasing.

the level of research interest previously received was directly related to the Incl

of sophistication of the AI routines employed in YEs.

This thesis will concentrate on the problem of collision detection [Lin98]

[Storey03] [Morgan04] [Morgan05 2] [WattOl] [Bergen04] [Ericcson05]. which

will be discussed in detail later in this chapter. Collision detection is a

computationally-expensive operation which must be performed at frequent

intervals in all YEs which simulate the motion of solid objects. In terms of

computational expense, collision detection is usually the second most expensive

operation in a VE behind rendering the VE. Collision detection is used directly

within animation, but collision detection techniques are also used extensively in

rendering and artificial intelligence.

9

2.2 Distributed Virtual Environments

A Distributed Virtual Environment (DYE) [SinghaI99][Morgan05][ZhaoOl] is a

VE which allows multiple users to interact with the same virtual world in real­

time. Each user can inject one or more objects into the DYE, which they can

control; in many DVEs, a user injects just a single object, termed an a\atar. An

avatar is a virtual representation of the user, which they can use to interact with

the DVE, the objects and avatars which reside within it. For example, an avatar

could be a three-dimensional model of a human which a user controls within a

virtual world.

Initial DVE research was undertaken to develop real-time military training and

simulation systems [Miller95]. However, due to the wide-spread adoption of the

Internet and the affordability of consumer broadband Internet connections,

DYEs are becoming more commonly used in a wide-range of non-military

applications including:

• Entertainment

• Simulation

• Training

• E-commerce

2.2.1 Challenges in DVEs

There are a number of challenges associated with DYE development. These

challenges include those associated with YEs while introducing additional

challenges associated with the distributed nature of D\ c deployment. A DVE is

required to ensure that each user experiences the same, or a very similar.

environment and that the actions they perform in the DVE have the same

semantics and result in the same reactions being observed by all users. In a

10

DYE, satisfying real-time requirements while ensuring all users maintain a

consistent view of the shared state is difficult [WattO 1][SinghaI99]. The

behaviour of users in YEs is unpredictable. However, DYEs commonly restrict

the range of interactions which a user can have with a DYE. Therefore, using

heuristics and application-specific interaction rules, it is possible in many

circumstances to estimate a user's future interactions with a DVE based on

previous behaviour [McCoy04]. However, due to network delays and limited

bandwidth, such DVEs can become inconsistent and chaotic. with mam

participants viewing the world in a number of different ways.

It is desirable for a DVE to scale to allow large numbers of heterogeneous

machines to participate in the same DVE. This heterogeneity includes, but is not

limited to, the machine architecture and specifications, the operating system and

software being executed on the machine and the speed and type of network

connection being used.

2.2.2 DVE Implementation Challenges

There are a number of properties which it is desirable for a DVE to possess.

Among these are scalability, consistency and responsiveness. A scalable DYE is

capable of supporting large numbers of simultaneous participants. A consistent

DVE enables the users interacting in a DVE to perceive mutually-consistent

states of the objects inhabiting the DYE. A responsive DYE is able to respond to

user input sufficiently quickly that these responses are perceived to occur

instantaneousl y.

2.2.2.1 Scalability

A scalable DYE is capable of supporting large numbers of simultaneous users.

While there are a number of factors contributing to scalability. scalability in

11

DVEs is largely affected by message dissemination [Morgan03][Abrams98]

[Bharambe02][SinghaI99][WattOl]. It is necessary to exchange state update

messages between all the machines participating in a DYE to ensure a consistent

view of the DYE is perceived by all users. Message exchange must be frequent

enough that any event triggered by a user is perceived by all users sufficiently

quickly that the DVE appears to be operating in real-time. However, the more

frequently messages are exchanged, the more network bandwidth will be

consumed. Additionally, as the number of nodes and objects in the DYE

increases, the network bandwidth consumption will increase due to the increased

number of nodes transmitting state update messages. As the volume of messages

transmitted and received by a node increases, the processing overhead

associated with handling these messages will rise; this increased processing

overhead will restrict scalability and responsiveness. In addition, increased

network bandwidth consumption can contribute to network congestion and,

therefore, increased message transmission latency, which can affect

responsiveness and consistency. As mentioned previously, it is desirable for a

DYE to allow large numbers of heterogeneous nodes to participate in the same

DYE. As the speed of each node, and the network connection they use, cannot

be pre-determined, it is necessary for a DYE to be able to scale to all forms of

network connections.

2.2.2.2 Consistency

DYEs can contain a large number of participants, separated by large

geographical distances and connected via unreliable, high-latency network

connections, e.g. the Internet. As such, it is possible for each user to perceive a

different view of the current state of a DYE due to state update messages being

subject to varying message transmission delays. It is possible to ensure that any

events occurring in the DYE are perceived correctly by participants by

appointing an arbitrator, or oracle, to act as a definitive view of the current state

of the DYE. However, this can lead to a bottleneck in system performance

12

because the arbitrator may have limited processing, memory and network

resources. Additionally, participants exhibiting large message transmission

delays between themselves and the server can observe a significant delay

between the detection of an event and its manifestation on their machine;

significant delays can detrimentally affect interactivity and user immersion. This

problem is termed the consistency-throughput trade-off, because, in general,

consistency can be improved at the detriment of throughput and vice-versa

[Fischer83][SinghaI99] [WattOl]. However, currently there exists no solution

which allows high-levels of consistency and throughput in DYEs. Current DYEs

either restrict the number of users which can interact with each-other or reduce

the level of interactivity permitted to allow larger numbers of users to interact

with one-another.

2.2.2.3 Responsiveness

A responsive DYE exhibits low latency between a user issuing a command and

the response to this command being manifested. Depending on the applications

of the DYE, e.g. real-time action computer game, an unresponsive DYE can

detrimentally affect user interaction, immersion or suitability of the DYE for its

purpose. In order for high-levels of responsiveness to be achieved, the DYE

must be capable of processing user input sufficiently quickly that the user cannot

perceive a delay between issuing a command and the response being manifested.

This requires the DYE to be able to listen to user input, listen to and transmit

state update messages and display the updated DYE state to the user at a

relatively high-frequency.

The illusion of smooth motion in full-motion video can be achieved at frame

rates greater than 25FPS [WattOl][Wiki06]. The smoothness of this motion is

partly due to the effect of motion blur, a side-effect of recording continuous

motion into discrete video frames using a camera; without the presence of

motion blur, frame rates of 25FPS will not give the appearance of smooth

13

motion; this effect is most noticeable when displaying high-velocity objects.

Motion-blur is not present in computer graphics and techniques to reproduce its

effects into rendered images are computationally expensive. As such, real-time

computer graphics must be rendered at higher frame rates in order to achieve

smooth motion; a common target frame rate in DVEs and computer graphics is

60FPS. Additionally, user interaction is usually obtained once per frame drawn.

As a user can issue a command (e.g. press a button) at any time between one

frame and another, it takes on average 1.5 frames, within the range [1,2] frames

for a user command to be received and the response to the command displayed

to the user. Therefore, DVEs rendered at higher frame rates will manifest user

interaction with less latency than DVEs rendered at lower frame rates. If the

frequency of rendering is low, the delay between issuing a command and its

effect being realised may become noticeable to the user, which can compromise

user interacti vity and immersion.

2.2.3 Distributed Application Architecture

There are a number of different architectures [Tenenbaum96] which can be used

in distributed applications. Each of these structures has different performance

characteristics, including scalability and message delivery latency. Four

common architectures are introduced in the following section and evaluated in

terms of these performance characteristics.

2.2.3.1 Peer-to-Peer

Peer-to-peer message transmission involves the direct communication between

all nodes participating in a DVE. Each node must have knowledge of the

network address of every other node participating in the DYE. When a node

leaves or a new node joins, every node must be informed of this event and adjust

their message recipient data structures accordingly. State update messages are

14

sent directly between nodes, resulting in no additional transmission delay due to

messages having to be processed by an intermediate machine. However, this

architecture results in each node having to transmit and listen to incoming

messages from and transmit state update messages to the remaining n - 1 nodes

participating in the DYE. This can introduce a relatively large communication

overhead as the number of nodes in the DYE becomes large, which may limit

scalability by not only exhausting available network bandwidth but also

consuming significant processing resources, compromising the responsiveness

of the DYE.

Client

Client

Figure 2.1 Peer-to-Peer Architecture

2.2.3.2 Client-Server

The client-server structure is currently the most popular architecture for

distributed applications. It has been widely adopted for use on the Internet. The

architecture is simple; one machine acts as a server. The server waits for a client

to connect. When a client connects, the server services the client's requests.

Once the client's requests have been completed, the connection is severed. This

architecture is easy to implement, and is capable of supporting small-to-medium

size DYEs, depending on the message dissemination requirements and the

server's processing resources. In this architecture, a single machine acts as a

message dissemination server. All nodes participating in the DYE connect to

their state update messages to the server. The server then forwards these state

updates to the relevant nodes in the DYE; the recipients of these messages may

15

be affected by application-specific message dissemination criteria, e.g. one user

is wearing an invisibility cape and, therefore, its state update messages need not

be disseminated to the other users. Each client is required to maintain only one

connection with the server, and is not required to have any knowledge of the

other nodes connected to the DVE. This allows nodes to join and leave the DYE

without affecting any other nodes connected to the server. However, this

architecture introduces a single bottleneck in the system, the server itself. If the

server is not capable of forwarding the incoming stream of messages quickly

enough, a backlog of messages may build up, resulting in inconsistency in the

clients. This could be alleviated by dropping messages if they cannot be

processed within a time threshold, although this may compromise the fluidity of

the DYE due to objects changing state radically as a result of the server

dropping a number of the object's state update messages. Additionally, the

client-server architecture introduces an inherent delay in message delivery; a

message must pass from the client to the server, and then from the server to the

other clients. This imposes an additional network transmission and processing

delay, compared to if the nodes were to transmit messages to one-another

directly.

Client Client

Figure 2.2 Client-Server Architecture

16

2.2.3.3 De-centralised Server

The de-centralised server architecture is an extension of the client-server model.

In the de-centralised server model , a number of machines act as ser ers. Each

server is connected to one-another using the peer-to-peer architecture. ode

connect to a one of the servers; the choice of server can be arbitrary or ba ed on

network or geographlc properties , e.g. physicall y closest server. Each erver

processes the state update messages it receives and passes them on to the

relevant clients and other servers, which wil l subsequentl y deli er the e

messages to their clients. The clients are unaware that there are multiple er er ,

as the client-side implementation is identical to that of a c lient- erver model.

This architecture helps to alleviate the problem of a single bottleneck in the

communication subsystem. However, it introduces further transmission delays

on top of the client-server architecture, as messages must now travel through

more than one server.

Figure 2.3 De-Centralised Servers

17

2.2.3.4 Server Hierarchies

Server hierarchies offer the most scalable approach to message dissemination, at

the detriment of message transmission delays. A server hierarchy, from the

client's perspective, is a client-server model, in which a client connects to a

single server and transmits its state update messages. The server delivers these

state update messages to the nodes participating in the DYE. In the server

hierarchy architecture, the server that a client is connected to can act as a client

to another machine. This "super-server" is responsible for delivering the

messages received from each of its servers to the other servers in the DYE,

which will in tum deliver these messages to their clients. This architecture

avoids the need to maintain a peer-to-peer connection with servers, which allows

servers to become available and unavailable during the lifetime of the DYE

without each server needing to be aware of it. In addition, this architecture helps

to reduce the number of connections each server must maintain with the other

de-centralised servers in the DYE, helping to reduce the likelihood of

bottlenecks in message transmission. However, this network architecture

introduces additional message transmission and processing delays, as a message

must now pass through additional intermediate servers before it is received by

the client. The server hierarchy architecture permits an arbitrarily-deep server

hierarchy tree to be constructed, although very deep server hierarchies may

result increased message delivery latency.

18

Figure 2.4 Server Hierarchy

2.2.3.5 Summary of Distributed Application Architectures

Four distributed application architectures were introduced:

• Peer-to-Peer

• Client-Server

• De-centralised Server

• Server Hierarchies

The peer-to-peer architecture generally offers the fastest message deli very speed

at the cost of scalability; the architecture can be made scalable through the use

of hardware multicasting, but hardware multicast protocols are only available on

LANs. Client-server offers improved scalability but message delivery latency is

increased due to messages having to be processed by an intennediary. The de­

centralised server architecture provides further scalability by employing multiple

servers. This enables additional users to participate in a DYE at the cost of

increasing message transmission latency. Server hierarchies offer the highest

leve l of scalability but can result the largest message transmission delays.

19

2.2.4 Collision Detection

Collision detection [Ericcson05][Bergen04][Lin98] is a computationally­

expensive operation which is required to be performed at frequent intervals in all

YEs which simulate the motion of solid objects. It is responsible for detecting

the presence of intersections between objects, the results of which are commonly

passed into a dynamic simulation to determine collision response. Without

accurate and efficient collision detection and response, the interactivity of a YE

would be severely compromised; it is common that most, if not all, interactions

in DYEs depend on some form of collision detection, e.g. walking up stairs, pick

up a box, push something. However, collision detection and response often goes

unnoticed because users will normally only notice errors in collision detection

and response. As such, inconsistencies in collision detection and response in

DYEs are most noticeable by users and can detrimentally affect user interaction.

It is common that collision detection is performed for all objects in the DYE on

each machine participating in a DYE using the most recent object state

information received by each machine [WattOl]. The results of local collision

detection can be passed into a physics simulation to generate collision response.

However, due to limited frequency state update messages and variations in

network latency between the machines participating in the DYE, the state of the

objects on each machine participating in the DYE may differ significantly from

one-another. These deviations can result in differences in collision response,

ranging from minor to completely different responses.

Dead reckoning is a commonly-used approach to reduce message transmission

frequency by predicting the future position of objects based on their previous

state; messages are only transmitted when the node hosting the object detects a

deviation between the object's true state and its predicted state in excess of some

pre-defined threshold value. The use of predictive approaches such as this can

cause further inconsistencies in object states and therefore in collision response

20

due to objects straying from their predicted paths. While it is possible to reduce

deviations by exchanging additional messages describing the state of objects and

correcting deviations between machines, this can result in undesirable visual

anomalies as objects change state arbitrarily to correct deviations, e.g. an object

jumping from one position in the world to another. In addition, it is difficult to

correct significant deviations elegantly between the state of objects on different

machines, e.g. a deviation which result in a player being killed on one screen but

surviving on another.

In order to achieve high-levels of responsiveness, it is necessary for the DYE to

complete all of the processes required to display the next frame to the user at

high-frequencies, e.g. 60FPS [Wiki06]. As one of the major overheads, collision

detection must be computationally-efficient and must not miss collisions or

allow objects to be rendered penetrating one-another. In addition, it is desirable

for collision detection in DVEs to be able to overcome inconsistencies between

the perceived states of objects on each machine participating in the DYE to

produce a consistent virtual world.

2.2.5 Responsiveness and Consistency in Collision

Detection for DVEs

A number of collision detection

[Lin98] [WattOl] [Bergen04] [Ericcson05] ,

approaches have

which offer

been proposed

high-levels of

performance and accuracy. Current approaches are designed to perform accurate

and efficient collision detection on single-user VEs. The same approaches used

in VEs are adopted for use in DVEs. However, due to network transmission

latency, each machine participating in the DVE may detect and respond to

collisions using inconsistent object state information. Inconsistencies in collision

detection and response can significantly compromise user immersion. In

addition, as the number of objects inhabiting a DYE increases. the

21

computational overhead associated with collision detection may detrimentallv

affect responsiveness due to limited processing resources on a single machine.

The exploitation of the highly-parallel distributed processing resources made

available by DYEs may offer an opportunity to impro\'e scalability.

responsiveness and consistency.

The following sections introduce a number of existing collision detection

algorithms and evaluate their applicability in DVEs. An ideal collision detection

approach for DYEs will:

• Be easily parallelisable to take advantage of multi-core processors and

the presence of multiple distributed processing resources to offer

improved responsiveness

• Not require excessive message exchange between machines participating

in a DVE and be suitable for deployment using the sener hierarchy

network architecture to offer improved scalability

• Offer high-levels of consistency between machines participating in the

DVE

Cun'ently, a collision detection approach does not exist which fulfils these

requirements. As such, the following section examines the possibility of

modifying existing algorithms to fulfil these requirements.

2.3 Collision Detection Algorithms/Approaches

Collision detection is a highly computationally-expensive process which is

required to be performed at frequent intervals in any VE which models the

motion of solid objects. Being usually performed each frame, and often more

frequently, it is one of the major overheads in YEs and, as such, performance is

of the utmost importance. Collision detection is a term which is used with a

wide range of meanings. In its strictest sense collision detection is a

computational geometry problem which is required to determine if a number of

objects intersect to a certain level of detail. As the two operations are so

intrinsically linked, the term Collision Detection is sometimes used, slightly

inaccurately, to describe the act of detecting and responding to a collision, a

process which usually requires the presence of a dynamic physics simulation.

It is common in computer graphics for each object to be represented as a set of

polygons [Gottsman05]. This could result in a naIve collision detection approach

comparing every polygon in two objects to determine if the two objects are

intersecting. This leads to collision detection between two objects composed of

p polygons requiring l polygon-polygon comparisons. Similarly, in a virtual

world which consists of n objects, a brute force approach to collision detection

between these objects would require n2 object-object comparisons, where each

object-object comparison requires p2 polygon-polygon comparisons. As p and 11

become larger, even the fastest computers will struggle to maintain real-time

performance [Sedgewick96].

The problem of real-time collision detection has received large amounts of

research interest. A number of algorithms and approaches faster than brute force

collision detection have been presented. Many of the earlier algorithms were

targeted towards static meshes, i.e. objects which could undergo affine

transformations (translation, rotation, scaling), but whose vertices in model­

space do not change. More recently, new algorithms and extensions to previous

algorithms were developed to provide efficient collision detection for animated

objects, such as model humans with moveable limbs. These were often pre­

scripted animations, in which the animation was simply a sequence of pre­

calculated poses the object could be drawn in. Recently, further research has

been performed into collision detection for objects which can undergo arbitrary

movements, e.g. objects which can change shape as a result of external

influences. These collision detection algorithms must deal with not only

23

collisions with other objects but also self-intersection, In which an object's

polygons intersect with one-another.

In the following sections, a number of collision detection approaches and

algorithms will be introduced. Wherever possible, these algorithms will be

discussed in terms of the performance they offer and their applicability in

parallel or distributed execution. This consideration is due in part to the recent

adoption of multi-core processors in consumer pes and next generation

consoles. Additionally, a collision detection algorithm which is capable of being

executed in parallel may also provide opportunities to execute collision

detection in a distributed fashion, providing a scalable collision detection

approach. A number of the approaches discussed in this section are not suitable

for parallel execution by themselves. However, these approaches may be

suitable for parallel execution when used in conjunction with other algorithms.

2.3.1 ParalleIlDistributed Execution

Software systems utilising mUltiple threads of control [Jaja92][Ben-Ari06] can

be categorised in terms of the proportion of program which can be run in parallel

compared with the proportion of the program which must be run sequentially. It

is common that applications are separated into sections which can be run in

parallel and sections which must be run sequentially. By abstracting away a

number of lower-level issues regarding parallel execution, the parallel execution

of an application can be categorised in terms of forks and joins. A fork is a stage

in a program in which one process can be forked into multiple parallel processes

which can execute concurrently. At the end of such a parallel section, a join can

be performed which waits for all the processes to terminate before the main

thread of execution can proceed further. Each fork and join operation can be

seen to incur a cost. A fork operation has the cost of generating a number of new

processes, which requires a number of kernel-level operations to be performed

24

by the operating system. Conversely, a join operation requires the main process

to wait for the processes which are being joined upon terminate; this can be a

costly operation if the main process must wait for a large number of processes to

terminate.

In order to reduce the performance costs of executing parallel threads within an

application, it is common that synchronisation primitives are used to control the

execution of threads by:

• Placing locks on resources, e.g. function or access to a given memory

address

• Using message passing to cause processes to wait, sleep or wake-up

depending on application-definable conditions

• Control the priority of processes and yield processing resources when it

is desirable to do so

These synchronisation primitives can result in more efficient parallel

performance compared to forking new processes and terminating them

whenever a parallel section of code is completed. This performance gain is

achieved because synchronisation primitives are generally more lightweight

operations than kernel-level process-management. However, the level of

parallelism offered by an algorithm remains consistent regardless of whether

these synchronisation primitives are used as opposed to kernel-level process

management.

An important factor in determining whether it is beneficial to parallelise an

algorithm is the granularity of the parallelism. Fine-grained parallelism implies

that the amount of work that is to be executed in parallel is relatively small;

coarse-grained parallelism, conversely, implies that the proportion of work that

is to be executed in parallel is relatively large. Very fine-grained parallelism is

undesirable as the processing overhead of spawning and managing a new

25

process can outweigh the perfonnance improvements offered by performing the

processing in parallel.

2.3.2 Two Phase Collision Detection

Collision detection within a animated virtual environment is separated into two

inter-related problems. Given a virtual world with n objects each consisting of p

polygons, a brute force collision detection approach would require /1
2 object­

object comparisons, each requiring i polygon-polygon intersection tests. Rather

than perfonning i polygon-polygon intersection tests for each pair of objects, a

more efficient approach to collision detection could be to use some less

computationally expensive technique to quickly disregard a pair of objects from

further consideration. Any pairs of objects which are not culled by this process

must then undergo further consideration to determine if the objects do in fact

collide. These phases are tenned Broad Phase and Narrow Phase respectively

[Lin98] [Bergen04] [WattO 1] [Ericcson05].

2.3.2.1 Broad Phase Collision Detection

Broad Phase collision detection is a class of collision detection algorithms which

is intended to reject pairs of objects from further consideration using

computationally inexpensive techniques. If a pair of objects is found to be

colliding in broad phase collision detection, this does not definitely mean that

the pair of objects is in fact colliding; only that the objects warrant additional

inspection. There are a wide-range of broad phase collision detection algorithms

which have been developed. Most broad-phase approaches use bounding

volumes, which will be descried in the subsequent section. The most popular

broad-phase collision detection techniques are Sweep-and-prune [LinHLin98]

[Bergen04] [Ericcson04] and spatial-subdi vision approaches [WattO 1] [Bergen04]

[Ericcson04]. These two approaches to broad-phase collision detection will be

26

introduced and evaluated for their applicability In distributed/parallel

environments.

2.3.2.1.1 Bounding Volumes

A popular broad-phase collision detection technique is the use of bounding

volumes to enclose a set of polygons [WattOIHBergen04][Ericcson05HLin98].

This can provide a highly efficient culling strategy because if two objects'

bounding volumes do not intersect, then the polygons which the bounding

volumes enclose cannot possibly collide with one-another. This provides an

efficient collision detection strategy, providing performing collision detection

between bounding volumes can be performed inexpensively. To this end, a

number of shapes have been proposed as bounding volumes for collision

detection:

... ---- ...

Bounding Axis-aligned
Sphere Bounding Box

, ,
" '

~ " " " , " , " , " , , , ,

, ,

Oriented
Bounding Box

" " , ,

Discreet Orientation
Polytype (K-Dop)
In this case, K = 8

Figure 2.5 Bounding Volumes

The different bounding volumes exhibit different benefits and weaknesses. A

bounding sphere occupies the smallest memory footprint, being represented by

its centre-point and its radius. It also is relatively computationally cheap to

perform intersection tests between two spheres: if the distance between two

spheres' centre points is less than the sum of their respecti \e radii, then the

spheres overlap. Bounding spheres are rotationally independent. This means that

the object can undergo any form of rotation and translation without needing to

re-calculate the bounding sphere. Bounding spheres. unfortunately. often exhibit

27

low bounding efficiency. High bounding efficiency means it is less likely a

collision detection engine will need to unnecessarily enter the expensive,

narrow-phase collision detection stage with a pair of objects. It can be seen that

a sphere can provide high bounding efficiency for spherical objects. However,

spheres will provide extremely low bounding efficiency for long, thin objects.

Axis-Aligned Bounding Boxes (AABBs) require slightly more memory to store

than bounding spheres, being represented by two vectors containing:

• Its extremes along the coordinate axes

• Its centre and half-extents along the coordinate axes

The former representation offers faster collision detection whereas the latter

offers faster transformation, as only the half-extents must be rotated provided

rotations occur around the object's centre. An AABB offers efficient collision

detection, and often exhibits better bounding efficiency than spheres. AABBs

are not rotationally independent; they must be recomputed after an object's

rotation. Recalculation can be performed in one of three ways:

• Recalculate from scratch by clearing the AABB and adding each

transformed point to the AABB

• Update the AABB by rotating the 8 comers of the AABB and using

these to determine the extremes of the AABB.

• Rotating the extents of the AABB using the absolute rotation matrix (the

sign bit of each member of the rotation matrix is dropped)

The first option will result in the best possible bounding efficiency for an

AABB, but it is computationally expensive. The second and third options are

computationally cheap, but may result in larger bounding boxes, lowering

bounding efficiency. It is also possible to ensure an AABB is rotationally­

independent by expanding the AABB to encompass all possible rotations of the

object it encloses; this approach results in an axially-aligned bounding cube.

28

Oriented Bounding Boxes (OBBs) require additional storage space. In three

dimensions an OBB is represented by its extents along its local X-, y- and z-axes,

its position and the orientation of these axes (a 3x3 matrix); in total this requires

15 floating point numbers. OBBs are relatively expensive to perform collision

detection between, requiring 15 potential separating axes to be considered to

determine whether a pair of OBBs intersects. However, OBBs will generally

provide better bounding efficiency that AABBs or bounding spheres. They

should be pre-calculated either algorithmically or manually during object

modelling. OBBs are not rotationally independent. However, unlike AABBs, the

OBB's planes are not restricted to being axially-aligned. Therefore, the OBB's

planes can be transformed with the object they enclose. As the OBB is oriented

to be the tightest possible fit to the object, the OBB after object rotation will also

be the tightest possible fit.

Discrete Orientation Polytypes (K-DOPs) are a generalisation of AABBs. The

value of K indicates how many candidate planes are available to enclose the

object. If K is 4, then the bounding volume is an OBB (an AABB if the K planes

are axially-aligned). Essentially, a set of candidate planes is chosen to enclose

the object. The combination of these planes which provides the highest

bounding efficiency is selected as the bounding volume. The memory footprint

and computational overhead of collision detection on K-DOPs depends entirely

on how many planes constitute the bounding volume. As K increases, the

bounding efficiency and computational cost of collision detection increases. K­

DOPs can be used as a narrow phase collision detection scheme as well as broad

phase. Similar to OBBs, K-DOPs are not rotationally independent. They can,

however, be rotated in conjunction with the 3D object. As with OBBs, K-DOPs

can be pre-calculated either algorithmically or manually during object

modelling.

2.3.2.1.2 Coherence

29

The use of bounding volumes can have a great effect on the performance of a

collision detection engine, as they can substantially reduce the number of objects

which must have more detailed collision detection performed upon them.

However, a naIve approach to collision detection using bounding volumes will

still require every object's bounding volume to be compared with each-other.

Given a world containing n objects, this will require n(n -I) comparisons. As n
2

becomes large, this will become a severe performance drain. In order to alleviate

this problem a number of collision detection approaches have been proposed

which can reduce the number of bounding volume comparisons required for

broad phase collision detection. These algorithms exploit coherence in the

virtual world: spatial coherence and temporal coherence. High levels of spatial

coherence [LiOI] in the virtual world means that there exist planes or empty

space which separate objects from one-another. With this type of coherence, it is

possible to separate a set of objects into smaller groups of potentially colliding

objects. A virtual world exhibits high levels of temporal coherence [Lin98] if

there is a high level of similarity between object states from one time-step to

another. With this type of coherence, it can be said with some level of

confidence that if a pair of objects do not collide at time Tr. it is unlikely that

they will be colliding at time Tt+/, providing the change in object positions

between Tt and Tt+/ is relatively small. These two forms of coherence commonly

occur in most virtual worlds, and can be exploited to reduce the number of

comparisons required to perform collision detection. A number of collision

detection algorithms will be presented which exploit a combination of temporal

and spatial coherence. Initially, two algorithms will be introduced which utilise

the properties of two bounding volumes: Sweep and Prune [Lin] and Expanding

Spheres [Storey04].

2.3.2.1.3 Sweep and Prune

30

The Sweep and Prune algorithm [Lin][Lin98][Bergen04] operates on AABBs. It

is currently the most popular broad-phase collision detection algorithm u ed in

commercial physics simulation and computer games due to its 0 (11) a erage run­

time performance and memory usage. A property of AABBs is that a pair of

objects intersects if and only if their projections onto the coordinate axe

overlap. Sweep and Prune is a coordinate-reducing strategy, in which the

objects' extremes are sorted along the X- , y- and z-axes into three Ii ts of tart

and end-points, which are traversed in tum. The algorithm provide a best-ca e

O(n) performance, average-case O(n) and worst-case 0(112) performance. The

worst-case occurs when the objects clump along an axis . A list of currently

active objects is maintained, which is initially empty. In addition, a li st of the

number of times a pair of objects has been found to be overlapping along an a

is maintained, in which all entries are initially set to zero.

: :
. , . .

Sweep
Line

Axis : ~
~_"':""""::-'----'-__ ---'._-'-~-----' ___ ----+' Direction

Ej

Figure 2.6 Sweep and Prune along a single axis

The first axis to be swept is selected, e.g. the x-axis . The li st of AABB extremes

is traversed in order. When a start point is found, the corresponding object is

added to the active list. When an end point is found, the corresponding object is

removed from the acti ve list. At any point in the sweep, the set of objects in the

active list overlap along the given axis. Figure 2.6 shows sweep and prune along

a single coormnate axis. As can be seen, at the current stage of sweeping the

current set of objects on the active li st is {obiJ, obh, ob}J}. When an end point i

31

reached, the set of objects currently in the active list is recorded as overlapping

along the axis and the corresponding object is removed from the active list. In

Figure 2.6, the resulting set of overlapping objects should be: { {obj}, obh, obid.

{obh, obh}}· The process is repeated for all three axes. If a pair of objects

overlaps along all three axes, then the AABBs overlap. In a virtual world with 11

objects, each list will contain 211 points. As three lists must be traversed, this

gives the algorithm O(n) performance; 6n to be precise. The major workload for

this algorithm is in maintaining the three sorted lists. Sorting has a complexity of

0(n2) [Sedgewick96], with the very best sorting algorithms able to sort data in

O(nlogn) time. However, it has already been identified that YEs exhibit high­

levels of temporal coherence, as the configuration of objects only changes

slightly between time-steps. This implies that the set of object extremes sorted

along an axis at time T/ is likely to be similar or identical to the sorted extremes

at time TI+J. There exists a class of sorting algorithms, called sifting sort

algorithms, e.g. Bubble Sort, which can deliver O(n) sorting performance when

given sorted or nearly-sorted data sets; to be exact, the performance is O(n + c),

where c is the number of swaps required to sort the data. If the data is already

sorted, c = O. In this case, performance is 0(11). However, if the dataset is

random, sifting sort algorithms result in 0(n2) performance. This means that the

previously-sorted object extremes can be used as the input for a sifting sort

algorithm to give O(n) sorting in the Sweep and Prune algorithm.

2.3.2.1.3.1 Parallelism in Sweep and Prune

The Sweep and Prune algorithms offers considerable performance advantages

over brute-force collision detection. However, it offers only limited

opportunities to exploit parallelism and, due to the nature of the algorithm, can

offer only constant performance optimisation as opposed to increasing

performance by orders of magnitude. The sweep and prune algorithm can be

separated into two constituent sub-processes: sorting and sweeping.

32

The sorting process requires that three lists of object extremes be sorted. Trivial

parallelism can be exploited by sorting each individual list in parallel, whereby

three processes could be used to sort each list. The list sorting process could be

further parallelised with the use of divide-and-conquer sorting algorithms such

as QuickSort. Divide-and-conquer sorting algorithms offer O(nlogn)

performance by sub-dividing the list into sets of smaller lists and recursively

sorting these lists; each of the sub-lists can be sorted in parallel. However, this

offers very fine-grained parallelism, whereby the cost of creating a new process

or thread to sort the list may outweigh the benefits of performing the operation

in parallel. In addition, due to the presence of temporal coherence, better

performance can be achieved using sifting-sort algorithms; such sorting

algorithms can not be parallelised.

The sweeping process can only be commenced once the sorting process has been

completed; this requires a join operation to be performed waiting for the sorting

to complete before the sifting can begin. The sweeping process requires that

each of the sorted arrays be traversed, recording from each array which objects

overlap along a given coordinate axis; if a pair of objects overlaps along all three

coordinate axes, the objects' AABBs intersect. It is possible to sweep each of

the three lists in parallel. However, this incurs the additional cost of traversing

the three lists of overlapping objects along each coordinate axis to determine

which objects are intersecting. If the sweeping process is performed

sequentially, this additional step can be avoided by examining the results from

the previous coordinate axis' sweep to determine if a pair of objects overlapping

on a given coordinate axis is potentially intersecting. This additional step can

also be avoided in parallel execution at the cost of memory by utilising a matrix

counting the number of axes a pair of objects overlaps upon. Every time a pair

of objects overlaps along a coordinate axis, the corresponding value for this pair

of objects is incremented. If this value reaches 3, the objects are intersecting and

successfully pass from the broad phase to the narrow phase. This matrix must be

33

NxN, where N is the number of objects and each element must be set to 0 before

the sweeping phase is begun.

The Sweep and Prune algorithm offers the capacity to be executed in parallel

across 3 processors, but offers little capability to improve performance if more

than 3 processors are available. This is a reasonable performance optimisation

on current home computers, where it is uncommon to have large numbers of

processors. However, next-generation games consoles, such as the Sony

PlayStation III, have up to S processing cores. In addition, the sweep and prune

algorithm does not lend itself to distributed collision detection in DVEs as such

applications may host hundreds or thousands of simultaneous participants; the

exploitation of this number of distributed processors for use in collision

detection requires algorithms capable of executing in parallel across arbitrary

numbers of processors.

2.3.2.1.4 Spatial Subdivision

Spatial coherence is most easily exploited by subdividing the VE into unit cells

[WattOl]. In YEs where the objects move on the ground, this can be simplified

into a 2D grid. This can potentially provide highly-efficient broad phase

collision detection as objects need only be compared with one another if they

occupy the same subspace. The major problem with this approach is choosing an

optimal size for the cells, as it is undesirable for an object to occupy multiple

cells simultaneously. It also requires an algorithm which is capable of

determining which cells an object occupies efficiently. A number of approaches

have been proposed to solve this problem. These generally involve the use of

recursive data structures, such as Quadtrees [SametS4], Oct-trees [WattOl] and

Binary Space Partitioning (BSP) trees [FuchSO][Naylor90] [Wiley97]. An

approach will also be presented, Spatial Hashing [Ericcson05], which does not

require a recursive data structure. Each of the spatial subdivision approaches

34

will use an object's approximate bounding volume to reduce the computational

overhead.

Spatial subdivision provides a strong broad phase collision detection approach.

In order to demonstrate the efficiency of spatial subdivision, it is assumed that

narrow phase collision detection is performed in a brute force manner within

each region; this may not be the most efficient approach, but it illustrates the

strength of spatial subdivision sufficiently. Given a VE with n objects and s sub­

regions, each sub-region would contain, on average, n/s objects. A brute force

approach to collision detection in a single cell would require:

(n/s)((n/s)-1)/2 = ~(n: _!:J = n 22 -!:.. comparisons between objects. Gi ven
2 s s 2s 2s

that this must be performed s times, this gives a total cost of:

s(;:' -;s J ~ ;: -; ~ n' ~ ns .

Given that n = 100 and s = 50, this would require, on average, 50 comparisons

between objects. This is significantly less than the 4950 comparisons between

objects required if there was just a single sub-region. While spatial subdivision

explicitly exploits the presence of spatial coherence, it can also exploit temporal

coherence because objects will usually remain in the same sub-regions for more

than one time-step. As such, it is not necessary to re-insert objects into the

spatial subdivision every time-step.

2.3.2.1.4.1 Quad-trees and Oct-trees

A Quad-tree [Samet84] is a tree structure in which each non-leaf node in the tree

contains four child nodes. It is used primarily for subdividing two dimensional

VEs, although it can also be applied to three dimensions. Figure 2.7 shows the

mechanism whereby the space is subdivided into four equal-sized subspaces

along the x- and y-axes. This subdivision is applied recursively until some

termination criterion is reached, e.g. minimum cell size.

35

3

1

4

2

2

Figure 2.7 Quad-Tree Structure

3 4

Figure 2.8 shows a Quad-tree decomposition of a YE containing a sphere a rod

and a box. In this diagram, the termination criterion is that a ce ll contain on ly a

single object, or part of object. This is a reasonable approach for YEs in which

the configuration of objects does not change. This , however, is not applicab le in

YEs where the configuration of objects is not known a priori . In thi s ca e, a

different termination criterion should be used, such as minimum threshold cell

size. If such an approach is used, run-time optimisations cou ld be used to further

subdivide overcrowded cells or merge under-populated cell s into a si ngle cell .

bit t'I cb C It c r rcrcrcc

36

Figure 2.8 Quad-tree decomposition of a VE

An Oct-tree [WattOl] is the extension of a Quad-tree into three dimensions,

whereby each non-leaf node has eight child nodes. In an Oct-tree, the world is

subdivided into uniform cells along the X-, y- and z-axes recursively. An Oct­

tree, as with a quad-tree, can be used to fully subdivide the VE into regions

containing a single object. Alternatively, it can maintain a list of objects in each

leaf node. In this case, objects sharing the same cells are candidate colliding

objects.

In order to perform broad phase collision detection on a VE using an Oct-tree, it

is necessary to insert each object into the tree. It requires O(logn) comparisons

to insert a single object into the tree, where n is the number of cells the VE is

subdivided into. Given a VE consisting of p objects, this leads to a broad phase

collision detection cost of O(plogn).

2.3.2.1.4.1.1 Parallelism in Oct-trees

Oct-trees offer good parallelism opportunities. The approach allows both

insertion and narrow-phase collision detection to be performed in parallel. Oct­

trees can distribute the processing between an arbitrary number of processors.

However, the distribution of processing resources is only even if the number of

processors is a power of 8.

2.3.2.1.4.2 Binary Space Partitioning (BSP) Trees

A BSP tree is a recursive data structure suitable for exploiting spatial coherence

within a YE. It was originally proposed by Henry Fuchs [Fuchs80] as a

mechanism for depth-sorting polygons for rendering using the painter's

algorithm. This algorithm requires that objects be drawn from back-to-front with

respect to the viewpoint to ensure that the final colour of a pixel is correct. This

37

was prior to memory becoming cheap enough for depth-buffer values to be

retained; currently, depth sorting is only necessary to correcth render

transparent objects.

A BSP tree contains, at each non-leaf node, a partitioning plane, which

subdivides the scene, or part of the scene, into two subspaces. This partitioning

is recursively performed until some termination criterion is reached, such as

maximum tree depth or minimum number of objects in a subspace. Each leaf

node contains a list of all the objects which it contains.

k I 0

i j m n

d e g h

c f

p

b
cdc , •• b I J k I • •

Figure 2.9 BSP Tree of a VE

Figure 2.9 shows a BSP tree using axially-aligned partitioning planes to divide

the VE into equal-sized cells; this process is termed static subdivision. This

results in an unbalanced binary tree of the YE with maximum height 8. This

demonstrates an issue with spatial subdivision: objects are not always uniformly

distributed throughout the YE. A problem with Oct-trees and Quad-trees is that

they are likely to produce uneven trees with large numbers of empty cells. When

a BSP tree is used to represent a subdivision of space into cubic cells, it shows

no significant advantage over a direct data structure encoding of an Oct-tree.

However, a BSP tree is not required to subdivide the space into uniform cells: in

fact, the main advantage of BSP trees is that the space can be divided using an

arbitrary plane. As BSP trees prescribe the use of an arbitrary partitioning plane

38

at each level of subdivision, rather than an Oct-tree's restriction ofaxialh­

aligned partitioning planes, BSP trees can be considered a generalisation of Oct­

trees.

Cd ef bg Jk 1m no p

Figure 2.10 BSP Tree of a VE with Adaptive Subdivision

As mentioned previously, the partitioning plane used in BSP trees can be

arbitrarily oriented. As such, it is possible to use adaptive slIbdivision to

generate a balanced tree. In adaptive subdivision, a partitioning plane is selected

which subdivides the objects in the VE into two approximately equallY-SIzed

sets of objects. Figure 2.10 demonstrates a two dimensional VE in which

adaptive subdivision was used; this is the same VE as shown in Figure 2.9 using

static subdivision. These diagrams illustrate why adaptive subdivision is

advantageous: Figure 2.9's BSP tree has a maximum height of 8, whereas Figure

2.10's BSP tree has a maximum height of 4.

Adaptive subdivision requires that at each non-leaf node, a partitioning plane is

selected which divides the objects in the space into two roughly-equal groups.

This is, however, a computationally expensive process, as there are an infinite

number of partitioning planes in any space. This property rules out a brute-force

approach to select appropriate partitioning planes. However, it is still possible to

select good partitioning planes; it is just not possible, in all but the simplest

cases, to prove that these partitioning planes are optimal. An algorithmic

39

approach to perfonning adaptive subdivision is provided later when BSP trees

are re-introduced for use in narrow-phase collision detection.

As the configuration of objects within the VE is not constant, adaptive

subdivision may not be appropriate for such an environment, as a good

partitioning plane at time Tt may become a bad partitioning plane at time TI+/'

Instead, it may be more appropriate to use static subdivision, followed by update

operations to adjust the depth of the tree depending on the distribution of

objects. This is another benefit of BSP trees over Oct-trees; it is much easier to

update a BSP tree than it is to update an Oct-tree or Quad-tree.

Figure 2.11 Sibling Nodes in BSP Trees and Quad-trees

Figure 2.11 shows sibling nodes in a BSP tree and a Quad-tree. Sibling nodes

are child nodes which share the same parent node. It is quite logical that a non­

root node in a BSP tree will have one sibling; a non-root node in a Quad-tree

will have three siblings and each non-root node in an Oct-tree will have seven

siblings. In order to update the spatial subdivision of a VE, two threshold values

can be used:

• The minimum number of objects allowed in a group of sibling leaf nodes

• The maximum number of objects allowed in a leaf node.

If there are fewer than the minimum number of objects in a group of sibling

nodes, then the sibling nodes can be merged together into one node. In a BSP

tree, this requires only 2 nodes to be considered, whereas an Oct-tree requires 8

40

nodes to be considered. Similarly, if there are more than a maximum number of

objects in a single node, then that node should be subdivided. In a BSP tree, this

would result in the formation of one additional leaf node; in an Oct-tree, this

would result in the formation of seven additional leaf nodes. This implies that

BSP trees are more likely to produce fewer empty, wasted leaf nodes than an

Oct-tree, therefore providing better performance and memory utilisation.

In order to perform broad phase collision detection on a VE using a BSP tree, it

is necessary to insert each object into the tree. It requires O(lgn) comparisons to

insert a single object into the tree, where n is the number of cells the VE is

subdivided into. Given a VE consisting of p objects, this leads to a broad phase

collision detection cost of O(plgn). Following this, narrow phase collision

detection is required to determine which objects residing in the same leaf nodes

do in fact collide with one-another.

2.3.2.1.4.2.1 Parallelism in BSP Trees

BSP trees offer good opportunities for parallelism. The approach allows both

insertion and narrow-phase collision detection on each sub-region to be

performed in parallel. In addition, BSP trees allow an arbitrary number of

parallel processors to be used. However, best performance is yielded when the

number of parallel processors is a power of 2. BSP trees allow dynamic spatial

subdivision to be performed, in which sub-regions are further subdivided or

merged depending on the distribution of objects in the DVE. Arbitrary

partitioning planes may be employed in BSP trees to leverage the best

subdivision performance; this is desirable if the BSP tree's configuration is to be

pre-calculated based on the shape of the environment which the users participate

in, e.g. partitioning planes coplanar to the walls separating rooms or the ceilings

separating floors in a high-rise block.

41

2.3.2.1.4.3 Spatial Hashing

Spatial Hashing [Lefebvre06] is a non tree-based technique for spatial

subdivision. It requires uniform subdivision of the VE into unit cells; varied-size

cells could be used, but this would complicate the algorithm considerably and

may sacrifice performance. The essential notion in spatial hashing is to define a

hash function which identifies the cells each object occupies, ensuring that

potentially-colliding objects are hashed to the same cells for further

consideration. The benefit of spatial hashing lies in its 0(1) performance to

place an object in its respective cells. However, as previously mentioned, this

approach does not easily permit variable-size cells; this may affect memory

efficiency. Regardless of this minor issue, provided a computationally

inexpensive, accurate hashing function can be defined, spatial hashing will be

capable of placing n objects in their respective sub-regions in O(n) time.

Following this, narrow-phase collision detection can be performed by comparing

objects sharing the same subspace.

2.3.2.1.4.3.1 Parallelism in Spatial Hashing

Spatial hashing offers good opportunities for parallelism. While the process of

object insertion cannot be parallelised, as it is a single operation, narrow-phase

collision detection performed on the objects in each sub-region can be

parallelised. This approach allows an arbitrary number of processors to be used

evenly because each processor can be allocated an appropriate set of sub­

regions, which can be adjusted to achieve load balancing. Unfortunately, this

approach is best-suited to static subdivision. While it is theoretically possible to

dynamically resize sub-regions, this may overcomplicate the hashing function,

reducing performance. In addition, the hashing function may be complicated

further with the use of non axially-aligned partitioning planes; this may restrict

the flexibility of the subdivision approach.

42

2.3.2.1.4.4 Multi-resolution Spatial Hierarchies

Spatial subdivision encounters problems with virtual worlds in which the size of

objects are significantly different. In this situation, it is not possible to pick an

appropriate sub-region size; either the sub-region will be too large for an object,

possibly causing many unnecessary comparisons, or it will be too small for an

object, causing the object to occur in a large number of sub-regions. To

overcome this, multi-resolution spatial hierarchies have been proposed. Multi­

resolution spatial hierarchies subdivide the virtual world into a hierarchy of sub­

regions, each at different resolutions (dimensions), relative to the dimensions of

the objects they will contain. For example, given a VE with two classes of

objects, a tank and a human, the virtual world would be subdivided using two

subdivision resolutions: one appropriate for human-sized objects (in the order of

meters); one suitable for tank-sized objects (in the order of tens of meters). Each

object is classified in such a way that they are inserted into an appropriate­

resolution sub-region. This approach can be easily integrated into spatial­

hierarchy approaches, e.g. OctlBSP trees, without the need additional storage

space. However, this approach requires additional storage space if integrated

into Spatial Hashing.

2.3.2.2 Broad Phase Collision Detection Summary

Collision detection is often subdivided into two phases, termed broad phase and

narrow phase collision detection. Broad phase collision detection is required to

reject pairs of objects which cannot possibly be colliding using computationally­

inexpensive operations. These approaches are relatively inaccurate but are

conservative in that broad phase collision detection must never reject pairs of

objects which are intersecting. A number of broad phase collision detection

algorithms and approaches were presented:

• Bounding volumes

o AABB

43

o OBB

o Sphere

o K-Dop

• Sweep-and-prune

• Spatial subdivision

o Quad-trees/Oct-trees

o BSP trees

o Spatial Hashing

These algorithms were evaluated based on their perfonnance characteristics and

their ability to be parallelised. From this evaluation, it was detennined that

spatial-partitioning approaches offered the best opportunities for parallelisation

as these approaches allow for parallelisation across arbitrary numbers of

processors. Spatial partitioning subdivides the virtual world into cells. Objects

are inserted into the cells which they occupy in the VE and detailed collision

detection must only be perfonned on objects which share the same cell. There

are a number of spatial-partitioning approaches, including BSP trees, Oct­

trees/Quad-trees and spatial hashing. The cost of inserting objects into the tree

structures is O(ign), whereas the cost of inserting an object using spatial hashing

is O(1). All spatial-partitioning approaches offer good parallelisation

opportunities. However, BSP trees and spatial hashing make exploiting arbitrary

numbers of processors easier than Oct-trees/Quad-trees. Spatial hashing requires

that the virtual world be subdivided into unifonn-sized cells; the use of non

unifonn-sized cells adds additional complexity and may compromise

perfonnance. BSP trees, however, implicitly allow the use of arbitrary-sized

sub-spaces, which can be adjusted to reflect the distribution of objects in the

virtual world. Due to these properties, it is assessed that axially-aligned BSP

trees are best-suited for the distributed collision detection approach (see Fig

2.13).

44

2.3.3 Narrow Phase Collision Detection

Narrow phase collision detection is the second phase of two phase collision

detection. It takes, as its input, a pair of objects which survived broad phase

collision detection and is responsible for determining whether and how the

objects collide with one-another. Whereas broad phase collision detection IS

required to reject pairs of objects from further consideration in a

computationally-inexpensive way, narrow phase collision detection is required

to determine which, if any, components of a pair of objects collide.

2.3.3.1 Review of Narrow-Phase Collision Detection Algorithms

Narrow phase collision detection is required to detect whether a pair of objects

are intersecting to some degree of accuracy. It is also required in many

applications to provide additional information, such as points of contact,

penetration depths and contact normals. Objects in current DYEs are commonly

constructed from a set of primitive objects, e.g.:

• Lines

• Splines

• Triangles

• Rectangles

• Spheres

• Boxes

• Cylinders

• Cones

• Tetrahedra

• Sphere-swept lines

• Sphere-swept rectangles

• Patches

Narrow-phase collision detection can therefore be separated into two parts:

enumerating potentially intersecting primitives and intersection tests between a

given pair of primitives.

Given two objects constructed from nand p primitive shapes respectively. a

naIve narrow-phase intersection test would require np primitive intersection

tests. However, the number of primitives which are actually intersecting. in most

simulations, will be considerably smaller than this. Therefore, in order to

efficiently perform collision detection between objects constructed from a set of

primitives, it is necessary to efficiently reject pairs of primitives which are not

intersecting. A number of approaches have been proposed to achieve this. The

most popular of these approaches are bounding volume hierarchies [Bergen04]

[Ericcson05][Gottschalk][WattOl] and local-space BSP/Oct trees [WattOl]

[Fuchs].

Bounding volume hierarchies are a hierarchical approximation of the object

being simulated. The primitives which the objects are constructed from are

recursively subdivided into smaller sets of primitives until some termination

criteria is met, e.g. maximum tree depth or the number of primitives in a set falls

below some threshold. A bounding volume is constructed each level of the

subdivision to enclose the sub-set of primitives. Therefore, at each subsequent

level of subdivision, a bounding volume hierarchy forms a more accurate

approximation to the shape of the object it encloses. Bounding volumes can be

constructed as a pre-processing step prior to simulation and offer fast, average­

case O(logn) identification of intersecting primitives.

Local-space Binary Space Partitioning (BSP) trees recursively subdivide the

primitives an object is constructed from using arbitrarily-oriented partitioning

planes. At each level of subdivision, a partitioning plane is selected which

roughly separates the primitives into two equal sets until the termination criteria

is met. BSP trees will commonly result in more evenly-distributed trees than

46

bounding volume hierarchies, resulting in better average-case performance.

Similar to bounding volume hierarchies, BSP trees can also be constructed as a

pre-processing step and offer O(logn) average performance.

The primitives from which the objects are constructed can be tested for

intersection using a number of techniques. These techniques can be roughly

classified into two distinct types: explicit intersection tests and implicit

intersection tests.

Explicit intersection tests must be specifically implemented to detect

intersections between a given pair of object types, e.g. triangle-triangle, triangle­

rectangle, triangle-box etc. This approach offers efficient and accurate collision

detection. However, the use of such an approach in modem DYEs requires a

large amount of code to implement specific intersection tests for the wide range

of primitives which objects may be constructed from. This additional work-load

may deter developers from adopting this approach if the number of primitives

they wish to support is large.

A number of implicit intersection approaches have been proposed. The most

popular of these are the Lin-Canny closest feature tracking algorithm [Lin] and

the Gilbert-Johnson-Keerthi (GJK) distance computation algorithm [Bergen04].

Both of these algorithms operate on convex shapes and do not provide support

for concave shapes; concave shape support can be emulated by subdividing the

concave shapes into a series of convex shapes. Both of these algorithms, by

default, provide the closest features between a pair of convex shapes and the

distance; distances of zero indicate that the objects are intersecting. However,

these approaches have been adapted In the literature

[Bergen04][WattOl][Ericcson05][Lin] to provide additional information, such as

points of contact, penetration depths and contact normals.

47

2.3.3.1 ParallellDistributed Execution of Narrow-Phase Collision

Detection

A number of narrow-phase collision detection algorithms offer some

opportunities for parallel execution, e.g. bounding volume hierarchies. However,

real-time narrow-phase collision detection between a pair of objects should be

completed within a very small quantum of time, in the order of microseconds.

Therefore, this offers very fine-grained parallelism. As such, the use of mUltiple

processes/threads within narrow-phase collision detection between a pair of

objects may detrimentally affect performance. Therefore, the best performance

improvements through the use of parallel/distributed execution in collision

detection can be achieved by executing broad-phase collision detection in

parallel. The effectively executes narrow-phase collision detection in parallel

because narrow-phase collision detection between different pairs of objects may

be executed in parallel.

2.3.4 Summary

The following section will summarise the collision detection algorithms

discussed in the previous section and describe the role of collision detection in

DVEs. Following this, a discussion will be provided onto the requirements of a

collision detection algorithm suitable for DVEs.

A number of collision detection algorithms were described in the previous

sections. The notion of two-phase collision detection was introduced: broad­

phase and narrow-phase collision detection. Broad-phase collision detection is

required to cull away pairs of objects which cannot possibly be colliding in as

computationally-inexpensive way as possible. Narrow-phase collision detection

is performed on the pairs of objects which are not culled by the broad-phase; this

more accurate collision detection phase determines, to the desired level of detail,

48

whether and how a pair of objects is colliding. Broad-phase and narrow-phase

collision detection occur in separate phases and, as such, it is usual that any

combination of broad-phase and narrow-phase collision detection can be used.

The collision detection algorithms presented in the previous section were

categorised in terms of their general performance, memory requirements and

their suitability for executing in parallel. The algorithms' suitability for parallel

execution was assessed to reflect both the move towards mUlti-processing core

architectures and the availability of large numbers of distributed processors in

DYEs, which will be discussed in more detail later in this section.

From the analysis of parallelising broad phase collision detection, it was found

that spatial subdivision approaches offered the most beneficial opportunities for

parallel execution. While other algorithms such as Sweep-and-prune offered

some possibilities for parallel execution, these approaches required a number of

join operations and limited, relatively fine-grained sections which can be

executed in parallel. In addition, the level of parallel execution in these

algorithms may be limited, e.g. the sweep-and-prune algorithm can support up to

3 parallel processors to sort 3 lists, but could not use additional processors if

more than 3 were available. The spatial partitioning approach can support an

arbitrary number of parallel processors up to the number of sub-regions the

virtual world is divided into. However, binding a processor to each sub-region in

the virtual world would result in too fine-grained parallel processing. In practice,

a virtual world will usually be divided into several thousand sub-regions; it is

unlikely that there will be sufficient processors available to lead to fine-grained

parallel processing in virtual environments populated by large numbers of

objects.

The use of a parallel implementation of spatial partitioning as a broad-phase

collision detection approach implicitly leads to parallel narrow-phase collision

detection without the need for a join operation between the broad-phase and

49

narrow-phase. Spatial partitioning places objects into their respective sub­

regions of the virtual world; once the objects have been placed in a sub-region,

collision detection can be performed on each sub-region independently. With the

use of hierarchical data structures to represent the spatial subdivision, e.g. BSP

tree or Oct-tree, the act of inserting the objects into the tree can also be

parallelised.

It is possible for narrow-phase collision detection between a pair of objects to be

performed in parallel with the use of bounding volume hierarchies or BSP trees.

However, this can lead to very fine-grained parallel performance because it is

common that only a small proportion of the trees are traversed before either it is

determined that the objects do not intersect or the point of contact is found. It

should be noted that if the entire tree was required to be traversed in order to

satisfy a collision query, it is likely that brute-force collision detection would

perform better than hierarchical collision detection due to the cost of traversing

the tree in addition to the cost of performing intersection tests on all the

polygons contained in the model. In practice, best performance is yielded by

parallelising broad phase collision detection such that narrow-phase collision

detection for a given pair of objects is executed entirely on one processor; this

approach will distribute the processing overhead of performing collision

detection between the pairs of potentially-colliding objects between the

available processors.

2.3.5 Requirements of Collision Detection for DVEs

A Distributed Virtual Environment should be able to support a large number of

simultaneous participants. These distributed participants should be able to

experience a relatively consistent virtual world. While small degrees of

inconsistency are acceptable in a DYE, inconsistencies which cause significant

differences to be perceived between participants can detrimentally affect users'

50

immersion. One of the most noticeable and, therefore, significant form of

inconsistency in DVEs stems from differences in responses to collisions

between participants. This ranges from slight differences in response to

collisions being responded to by one participant's machine but being missed by

others. The levels of inconsistency become increasing worse as the number of

participants and/or the average message transmission delay rise. While

considerable research effort has been put into developing efficient collision

detection techniques, relatively little research effort has been put into developing

collision detection techniques suitable for alleviating inconsistencies in DVEs.

In addition to the inherent inconsistencies, DVEs also provide a platform

consisting of a large number of distributed processors. This can be exploited by

executing collision detection in parallel to leverage improved performance and

enable more complex DVEs inhabited by larger numbers of objects to be

simulated in real-time.

2.4 Chapter Contributions

This chapter introduced Virtual Environments (VEs) and the challenges and

considerations associated with their development. Following this, Distributed

Virtual Environments (DVEs) were introduced as an extension to VE research

which incorporates the challenges of building virtual environments with the

issues of developing a distributed system. These additional complexities include:

• Message dissemination

• Scalability

• Consistency

• Responsiveness

Message dissemination is responsible for ensuring that messages are delivered to

the appropriate recipients. This can be achieved using a number of network-

51

layer protocols and communication models, coupled with the use of application­

dependent message filtering techniques.

Scalability is a property which described how the performance of an application

is affected by an increase in work-load. In DVEs, scalability is affected by the

number of users simultaneously participating in the DVE, the number of objects

inhabiting the DVE and the volume of messages which must be transmitted; it is

likely that there is a direct relationship between the number of participants and

the number of objects in a DVE, but this relationship is not guaranteed. It is

desirable to produce a scalable platform for DVEs to enable large numbers of

users to interact simultaneously within a virtual world. A number of approaches

have been developed to improve scalability in DVEs by reducing the volume of

message transmission. However, to date little work has been done to improve

the scalability of collision detection in DVEs.

Consistency is a property of a DVE which describes how similar each user's

perceived view of the virtual world is. Consistency is affected by the frequency

of state update message transmission and the message transmission delay. The

frequency of state update messages affects how accurately the motion of a

remote object is approximated on a user's machine, whereas the message

transmission delay governs how long the delay is between an object's state

changing and this change being realised on a given user's machine. Low­

frequency state updates and high-latency message transmission delays cause

high-levels of inconsistency. Techniques have been developed to conceal the

effects of low-frequency message transmission, such as dead reckoning.

However, these techniques attempt to predict the motion of the objects and can

often result in increased inconsistency if the motion of the object cannot be

predicted correctly. It should be noted that, while low-frequency state updates

can contribute to inconsistency, increasing the frequency of state update

messages will not remove inconsistency in the presence of large message

transmission delays.

52

Responsiveness is a property of a VE which describes the delay between a

participant instigating an event and the event occurring, e.g. the delay between a

user pressing a button and the response to the button press being manifested.

This property is usually dependent on the frame rate which can be achieved on

the user's machine; higher frame-rates can be achieved by reducing the

computational overhead of simulating the DYE, e.g. improving the efficiency of

the VE engine. The responsiveness of a DYE depends not only on the

computational overhead involved in simulating the DYE but also depends on the

delay between a user instigating an event and a remote user perceiving this

event; this is affected by the message transmission delay. Responsiveness is

important to users' immersion as an unresponsive DVE can make a user feel as

though they are not in control of their avatar. Humans will usually not notice

delays less than 60ms, but delays greater than 300ms may significantly limit

interaction. To counteract this, many commercial DYEs employ interaction

techniques which conceal lacks of responsiveness. However, this usually

compromises the levels of interaction users are permitted.

Collision detection was introduced. Collision detection is a highly

computationally-expensive operation which must be performed at frequent

intervals in all VEs which model the motion of solid objects. Collision detection

is usually subdivided into two distinct phases: broad-phase and narrow-phase

collision detection. Broad-phase collision detection is responsible for efficiently

rejecting pairs of objects which are not colliding from further consideration.

Narrow-phase collision detection operates upon the pairs of objects which the

broad-phase cannot discard and is required to determine, to the desired level of

detail, if and how the pair of objects collides. A number of collision detection

approaches and algorithms were described and analysed in terms of performance

and their suitability for executing in parallel. It is the opinion of the author that

broad-phase collision detection is most suitable for parallelisation and that the

53

most suitable broad-phase collision detection algorithms for parallelisation are

spatial subdivision approaches.

While collision detection has received a large amount of research effort, the

algorithms which have been developed have been targeted towards efficient

performance in single-user VEs. Until recently, the majority of collision

detection algorithms were designed with the assumption that they would be

executed in a single processing thread; with the recent move towards multiple

processing cores in home computers and next-generation games consoles, many

of the previously popular collision detection algorithms which are not capable of

being parallelised must be replaced with algorithms capable of exploiting the

performance offered by these new platforms. In addition to providing algorithms

suitable for new platforms, research is being undertaken into exploiting

hardware Graphics Processing Units (GPUs) to perform collision detection

upon.

Current collision detection research trends do not address the problem of

consistency in collision detection in DVEs. Current DYEs usually either adopt

central-server architectures, whereby a server acts as an arbitrator to determine

how a collision should be responded to, or peer architectures, where collision

detection and response are performed by all machines participating in the DYE.

The former approach provides consistency at the cost of throughput, whereby

the central server not only imposes delays between an event being initiated and

it being realised by the other machines, but also becomes a performance

bottleneck and single point of failure. The latter allows events to occur near­

instantaneously but can result in significant deviation in how events are

perceived by users. This problem is termed the consistency-throughput trade-off

and governs performance and consistency in most distributed applications.

While DYE research has recognised this problem, little work has been

undertaken to alleviate it.

54

2.5 Thesis Purpose

A number of highly-efficient collision detection algorithms have been proposed

in the literature. However, while these algorithms can be efficiently

implemented in single-user virtual environments, they provide no consideration

for the problems and potential optimisations available within DYEs. The

purpose of this thesis is to develop an accurate general-use collision detection

algorithm which provides efficient performance in single-user YEs while also

exploiting the characteristics of DYEs to facilitate the development of highly­

complex, consistent distributed virtual worlds. The collision detection approach

will adopt the server hierarchy network architecture and provide mechanisms to

reduce the network bandwidth required to maintain the state of objects in the

DYE, thereby providing improved scalability. It will exploit spatial partitioning

to distribute the processing overheads associated with collision detection,

improving responsiveness, scalability and consistency.

55

Chapter 3

Theory

3.1 Introduction

It is desirable to be able to develop scalable, consistent and responsi\'e DYEs

[SinghaI99]. A scalable DYE will allow a large number of users and objects to

interact with one-another simultaneously. A consistent DYE will result in very

little variation in the perceived state of objects between different participants. A

responsive DYE will manifest user interactions without any perceived latency

between the user issuing a command and it being executed. It is an accepted fact

in DYEs that these three requirements can not be achieved simultaneously and

that; instead, it is necessary to sacrifice one or more of these properties to

improve the third. For example, in order to achieve high-levels of scalability, it

may be necessary to sacrifice consistency and responsiveness. In DYE research,

this property has been termed the consistency-throughput trade-off

[SinghaI99][Bosser04]. This issue has been well-investigated in the field of

distributed systems, in which a number of consistency protocols ha\e been

developed which sacrifice throughput speed in return for guaranteed consensus

[Fischer83].

56

This chapter introduces the underlying theory and basic concepts required to

distribute the processing overhead of collision detection across multiple

addressable spaces. To achieve this, the problem will be approached iteratively,

whereby a number of candidate solutions will be presented; each solution

building on previous solutions' functionality, addressing new problems to reach

a general model for distributed collision detection across heterogeneous nodes in

an asynchronous, unreliable network.

The basic principle of this approach is to subdivide the collision detection

problem domain into a set of sub-problems, each of which can be solved

independent of one-another. This approach, termed divide-and-conquer.

provides an extremely efficient mechanism for reducing the overhead of

computationally-expensive operations. The use of divide-and-conquer

algorithms is well-understood and commonly exploited in the field of collision

detection through the use of spatial subdivision and bounding volume

hierarchies [Ericcson05] [Lefebvre06] [WattO 1] [Bergen04].

The theory outlined in this chapter utilises spatial subdivision to uniquely map

sets of objects to different addressable spaces. Initially. this approach is

introduced in the domain of reliable. instantaneous communication between

addressable spaces. Following this, a number of common problems related to

distributed systems are addressed:

• Limited bandwidth in communication channels between addressable

spaces

• Unreliable communication between addressable spaces

• Variable-latency communication between addressable spaces

The problems of both machine and network failures will be addressed.

Throughout this chapter, as each iteration is introduced, the DYE model will be

analysed in terms of scalability, consistency and responsiveness. With the use of

the models presented in this chapter, it is possible to improve scalability.

57

consistency and responsiveness simultaneously, although the improvements

depend largely on the geographical location and network properties of the uSers

participating in the DYE. However, the final approach presented in this chapter

offers a model for the distribution of collision detection in DVEs such that the

scalability, consistency and responsiveness of a DYE developed using the model

will never be worse than the models used in current DYEs and in most

circumstances will be far superior.

3.2 Background Theory

3.2.1 Bounding Volumes and Spatial Subdivision

Bounding volumes were introduced in Chapter 2 and form an integral part of the

system described in this thesis. In this section, bounding volumes \\i1l be

formalised by considering a 3D world to be an infinitely fine-grained three­

dimensional grid of points, termed a lattice. Using a lattice, a three-dimensional

object can be defined by the set of points in the lattice it contains, i.e. the space

it occupies in the 3D world.

Let L be the set of points in the world. Given a pair of objects, A and B, let PA

and PB be the set of points which A and B occupy in L respectively. Therefore:

'tfPa E PA,'tfPb E PB'Pa 1:- Pb => A disjoint B

Following this, given bounding volumes BVA and BVB, which encompass objects

A and B respectively:

'tfbva E BV,p 'tf bl'b E BFB ,bv a 1:- bVb => 'tfp a E PA , 'tiPh E PB, P a 1:- Ph => A disjoint

B

Given that it is usually far less computationally expensive to perform collision

detection between two bounding volumes than it is to perform collision

detection between the objects themselves, bounding volumes offer an efficient

mechanism to determine disjointedness between a pair of objects.

Using a similar approach to that of bounding volumes, spatial subdivision can be

formalised using the lattice model, where each sub-region in the spatial

hierarchy can be defined by the set of points in L it contains. From the spatial

subdivision strategies outlined in Chapter 2, it can be seen that each sub-region

is disjoint from all nodes except from those it contains (its descendants) or those

which contain it (its ancestors). As such, if a pair of objects do not share a

common terminal sub-region, i.e. they do not share a sub-region which has no

descendants, they cannot be intersecting.

3.2.2 Broad Phase Collision Detection

Broad phase collision detection [Lin98] [WattOl] [Bergen04] [Ericcson05] was

introduced in Chapter 2 as the first stage of two phase collision detection. Broad

phase collision detection is responsible for enumerating pairs of potentially­

colliding objects in a computationally-inexpensive way. This form of collision

detection is often inaccurate and can fail to reject pairs of objects which, upon

further examination, are found not to be intersecting; it is valid for broad phase

collision detection to fail to reject pairs of objects which are not intersecting, but

it must never reject pairs of objects which are intersecting.

The distributed collision detection approach presented in this thesis subdivides

the virtual world into discrete sub-regions. Initially, the virtual space is

subdivided into fixed-size cells. Subdivision is performed recursively using

axially-aligned partitioning planes along the X-, Y-, and Z-axes, subdividing

along the largest axis at each stage of subdivision; subdivision is terminated

59

when sub-regions become smaller than some threshold value. Each sub-regjon

maintains a list of objects occupying the space enclosed by the ub-region.

Given this pre-computed set of regions , broad-phase collision detection place

each object inhabiting the DYE into the sub-regjons which its bounding ol ume

occupies. An object may cross boundaries between sub-regions but, a Fig 3.1

depicts, assurrling the sub-regions are at least as large as the object ' s bounding

volume, the number of sub-regions an object can occupy is at mo t 8. To c larif ,

a sub-region is at least as large as an object if the object 's projecti on onto each

coordinate axis is smaller than the sub-region ' s projection onto the arne

coordinate axis .

Figure 3.1 An object in 3D space occupying 8 regions

Once the objects have been placed into their sub-regions , each sub-region is

iterated through and narrow phase collision detection is performed on each pair

of objects found to occupy the same sub-region . As can be seen in Fig 3.2, the

top-left region has two objects within it (A and B) which are colliding. As these

two objects share the same region , they will not be rejected by the broad phase

and progress to narrow phase collision detection. Additionall y, objects C and D

traverse boundaries between different regions and, as such, inhabit a common

region . These objects will al so pass into the narrow phase although , upon further

60

inspection, they will be found not to be colliding. Finally, objects E and I share

the same regions and will be compared with one-another and found to be

colliding.

" ~ ~
~ ..
... '"

I~ •
• •

Figure 3.2 Spatial Subdivision

3.2.2.1 Occupying Multiple Regions

In Fig 3.2, Objects E and I's bounding volumes both traverse the same region

boundruies and, therefore, share two regions . This situation could lead to narrow

phase collision detection being performed twice on these objects; as narrow

phase collision detection can be computationally expensive, this is extremely

undesirable. Therefore, an additional piece of information is used to determine

in which region the potential collision occurs . The mid-point between the two

objects is determined and narrow phase collision detection is only performed

between objects in the region which contains the mid-point between the two

objects.

To clarify, a region is a space enclosed by an axially-aligned bounding box

(ABBB), which is denoted by its minimum and maximum extremes along the

coordinate axes, Min and Max. The mid-point between two objects can be

obtained trivially from their transformation matrices by taking the a erage of the

61

two vectors which represent the objects' respective positions in world space.

This assumes that the local/model space origin of the objects is located

somewhere in the object itself, which is standard in computer graphics; if this

was not the case, additional computation may be required. The mid-point

between the two objects is a single point in world space. It can, however,

represent a space which lies on a boundary between two regions. To overcome

this, a region, r, is the space in the range Min ~ r < Max, along each of the

coordinate axes. This provides a mechanism by which a point in world space

corresponds to exactly one region, thereby ensuring that narrow phase collision

detection between a pair of objects occurs at most once. This can be formalised

using the lattice model. Given two neighbouring sub-regions, A and B, denoted

by the set of points they enclose, P A and PH respectively:

iE PA,kE PB,i '* k

This holds providing each region, r, is the space in the range Min ~ r < Max, i.e.

every point in space is contained by at most one region of the virtual world. It

follows that any point V within the boundaries of the world must be contained

within at most one sub-region. Therefore, the centre point between two objects

can be used to ensure that collision detection between a pair of objects is

performed at most once.

3.2.3 Narrow Phase Collision Detection

Once the broad phase has been completed and all objects are placed in their

corresponding sub-regions, narrow phase collision detection is performed by

iterating through each sub-region and performing more detailed collision

detection between the objects which occupy the same region. As mentioned

previously, to avoid situations where pairs of objects appear in more than one

region, the detailed collision detection is only performed if the mid-point

between the objects occurs in the region. If the mid-point is not within the

region, then the pair of objects must occur in another region, which contains the

62

mid-point, and therefore detailed collision detection should be perfonned

elsewhere.

Given a DYE with n objects, a brute force approach to collision detection would

. n{n-l) b· t/ b· . . reqUlre 0 ~ec 0 ~ect compansons. However, if the world is subdivided
2

into r regions, it will require, on average, r(p{P
2
-1)) object/object

comparisons, where p = nlr. For example, if n_ = 100 and r = 10, brute force

collision detection would require 4950 comparisons, whereas collision detection

utilising spatial subdivision would require, on average, only 450 object/object

comparisons. This occurs when objects are randomly distributed throughout

regions in the DYE. This distribution of objects may not be a realistic

assumption as, in many DYEs, users often group together in the virtual world.

Regardless of object distribution, region-based collision detection approaches

will never require more object/object comparisons than a brute force approach.

However, collision detection utilising spatial subdivision incurs an additional

overhead: that of placing the objects into the appropriate regions in the DYE.

Techniques to do this will be discussed later in this chapter, which will include a

brute force approach, a tree based approach and a spatial hashing approach.

There is inherent temporal coherence in most virtual worlds, as animation is

performed at frequent intervals between which the objects generally do not

travel a great distance. This allows an optimisation to be perfonned on spatial

subdivision-based collision detection; region sizes can be grown and shrunk, by

dynamically adding and removing partitioning planes, based on object

population density in each sub-region of the virtual world. For example, if two

neighbouring regions contain less than a threshold number of objects, the

partitioning plane separating the two regions can be removed, thus merging the

two regions into one. Similarly, if a region contains more than a threshold

number of objects, a partitioning plane can be introduced which subdivides the

63

regIOn into two. This approach helps to optimise the broad phase collision

detection scheme by merging sparsely-populated neighbouring regions and

subdividing densely populated regions. To avoid constantly subdividing and

merging the same SUb-regions, different threshold values should be used tor the

merging and subdivision criteria, e.g. merge a pair of sub-regions if the number

of objects in two neighbouring sub-regions is less than -+ and subdi\ide if the

number of objects in a sub-region is greater than 6.

3.3 Distributed Collision Detection

The collision detection technique described previously provides efficient broad

phase collision detection. However, the performance of the algorithm can be

significantly improved with the exploitation of parallel/distributed execution, in

which collision detection for different regions may be performed in different

addressable spaces. The parallel variant of this algorithm can be used to exploit

the recent adoption of multi-processor architectures in home computers and

next-generation games consoles. This will allow increasingly complex virtual

environments, in terms of number of objects and complexity of object models

and interaction, to be simulated in real-time on current and next-generation

architectures. In addition to improved performance, a distributed implementation

of this algOlithm provides the foundations of a scalable, responsive DYE with

improved consistency. The distributed execution model will be explored in

additional detail in the following sections while the collision detection model is

refined to reflect the problems of reliability and latency.

3.3.1 Glossary of Terminology

During the remainder of this chapter, a number of terms wi II be used

extensively:

64

• WorldlVirtual WorldlEnvironment

o A virtual space/place in which a simulation occurs

o Depending on the context, world/environment can also be used

interchangeably to describe the geometry of the environment

from which the virtual world is constructed, e.g. hills, floors,

walls, ceilings etc.

• Object

o Any virtual entity which projects a physical presence into the

virtual world which can be interacted with, e.g. chair, table,

character, vehicle etc.

• Avatar

o A user-controlled object inhabiting a virtual world.

• Object state

o Information required to replicate the state of an object in a virtual

world. This may include, but is not limited to, position,

orientation, velocity, acceleration and animation state.

• Event

o Any form of interaction between objects and between objects and

the environment

• Inconsistency

o Any situation in which there is a significant discrepancy in how

users perceive an event. This ranges from relatively minor

differences, e.g. slightly different contact normal or point of

contact, to major differences, e.g. collision perceived by one user

but missed by another.

• Synchronisation

o The simulation is synchronised between collision detection nodes

if all collision detection nodes must complete their collision

detection before the simulation time can be advanced

65

3.3.2 Simplified

Approach

Distributed Collision Detection

In this simplified model of the distributed collision detection approach, the

following assumptions can be made:

• All nodes participating in the DYE have complete knowledge of all the

objects' current state

• There are no inconsistencies in object states between nodes as the result

of contradicting responses to collisions (an example of such a situation

will be provided later).

• Message delivery is reliable and instantaneous

• All machinery and software components are completely reliable

Given a DYE consisting of n objects and a world subdivided into r regions,

being hosted on d nodes, each node would be required to perform, on average,

rp(p -1) object/object comparisons, where p = !!... If n = 100, r = 10 and d =
2d r

10, this would require each node to perform, on average, 45 object/object

comparisons.

The results of the collision detection must be disseminated to all other nodes

participating in the DYE. This could be achieved in two ways:

• Transmit the collision events to all nodes (the two objects, the point of

contact, the contact normal, and velocity and acceleration information

etc.)

• Transmit the result of the collision event (the new positions of the two

objects involved in the collision).

From the discussion in Chapter 2, it was shown that the number of collisions

that occur in a virtual world is relatively small in most situations; implying that

66

either dissemination approach is valid. However, in a virtual world in which

every object is colliding with one-another, the first approach would require

n(n-l) 11'· b d co lSlon events to e reporte . However, if the latter approach is
2

adopted, and all responses to collisions are calculated before being reported,

then at most only n messages must be transmitted: one new transformation per

object. However, as it is rare for every object to be involved in a collision, it is

only necessary to transmit the new transformations of objects which were

involved in collisions.

This approach of transmitting the results of collisions, and not actual collision

events, potentially reduces the bandwidth requirements of this approach

immensely. However, it introduces an issue:

• Node n} reports a response to a collision involving objects OJ and Ok

• Node n2 reports a response to a collision involving objects OJ and OJ

The collision reported by n} may result in a different position for the object OJ

than the collision reported by n2. This could result in inconsistent states being

reached in the DYE. If collision detection was performed sequentially on a

single computer in this situation, the response to whichever collision was

detected earlier would be passed into the latter collision detection, i.e. any

response to a collision between OJ and OJ would be passed into the collision

detection between OJ and Ok. This may result in the latter collision not occurring

at all or, if the collision was still detected, some alternative response than would

be proposed by nodes n} or n2. Potential solutions to this problem will be

proposed later, once the model has been further refined.

67

3.3.3 Partial Knowledge of DVE State

The following assumptions are made In this refinement of the distributed

collision detection approach:

• All nodes participating in the DYE have complete knowledge of the

current state of the objects which they are responsible for collision

detection on

• There are no inconsistencies in object states between nodes as a result of

contradicting responses to collisions

• Message delivery is reliable and instantaneous

• All machines and software components are completely reliable

In the previous model, each node participating in the DYE was assumed to

initially have complete knowledge of all the objects' current state. However, this

is not always necessary. It is, in fact, only necessary for a node to have

knowledge of the objects within its sub-region(s). As such, the following

refinement of the collision detection model assumes that a node has absolute

knowledge of the objects within its sub-region. However, each node is not

required to have knowledge of any objects in regions other than those the node

is responsible for determining collision detection within.

It can be seen that this model produces the same collision detection results as the

previous model. However, the response to a collision may "push" an object from

its current sub-region, hosted on node nj to another region, hosted by a different

node. In this case, it is necessary for ni to inform the node responsible for the

sub-region the object has moved into that it is now responsible for collision

detection for that object. There are two ways in which this kind of event can

occur:

• The object moves partly into a new sub-region, but partly remains in its

original region (it straddles a region boundary). In this case, the object

68

•

must be replicated in two or more nodes/regions . Oi en that a region i

larger than an object, an object can exist in at most 8 regions in a 3

dimensional world.

The object moves completely into a new sub-region. It no longer

occupies its original sub-region. In this case , the object must be

transferred from the old node to the new node.

a ... ,''''''

II

Object A is now replicated between
nodes n } and n 2.

Node n} II Node nJ

Node n2 D Node n.

Object B is now
'. transferred from

node n1 to node n,.

Figure 3.3: Object Transfer and Replication

In order for replication and transfer operations to take place, a mechani sm must

be employed which will inform the respective nodes as and when they become

responsible for collision detection for a given object. This could be achieved by

utilising some entity responsible for retaining the current state of all objects in

the DYE, such as a server. This entity could act as an oracle by in fo rming each

node which objects they are responsible for performing colli sion detection upon

plior to performing each collision detection iteration. Alternatively when an

object, 0 1/, a node , 11. j, is responsible for traverses into another node s, 112' 5 , sub­

region , nj could transmjt a message illrectly to n 2 instructing the node to perform

69

collision detection on On. This requires each node to have prior knowledge of the

other nodes in the DYE. However, assuming that the distance an object can

travel between each collision detection iteration is smaller than the size of a

region, it may only be necessary for a node to retain information about the nodes

responsible for its neighbouring sub-regions. From a conceptual perspective,

either solution would be acceptable. The presence of an entity which retains an

absolute "view" of the objects' current state potentially solves the problem in

which collisions involving the same object, detected on different nodes, can

result in conflicting object states being reported by each node. The entity can act

as an arbitrator, and can decide the "true" state of the object if conflicting

current states are reported. However, the use of a single arbitrator may

compromise performance, scalability and reliability as it is a single point of

failure and may become a performance bottleneck. As such, communication

between nodes may be the most appropriate means of object transfer/replication.

However, this does not solve the conflicting object state problem, which will be

addressed in more detail later in this chapter.

3.3.4 Object Classification

Before refining the model further, it is necessary to classify the different types of

objects which can populate a DYE. The previous models presented assumed that

all objects were equivalent. However, there are in general three different types

of objects which can participate in a virtual world:

• Objects which do not move: static objects

• Objects which move only as a response to collisions (e.g. pushed by a

force): physically-controlled objects

• Objects which move autonomously within the world

70

In most DYEs, the "environment", or "world model", is a static object. This

implies that the walls, floors, pillars, hills, valleys, ceilings etc. constituting the

environment can not be moved, no matter how much force is exerted upon them;

this assumption is valid in current YEs. However, objects populating the YE

such as doors, chairs, tables, boxes etc. may move when a large enough force is

exerted upon them. The final classification of objects, those which move

autonomously in the world, can further be subdivided into two distinct classes

within traditional DYEs: objects which are controlled by external users and

objects which are controlled within the DYE software.

Objects which are controlled by external users, commonly termed avatars

[Greenhalgh][SinghaI99], allow users to interact with the objects populating the

DYE. Autonomous objects are generally controlled by artificial intelligence

algorithms within the DYE software: a mixture of pre-computed responses,

application/environment-specific rules and pseudo-random decisions, which

mayor may not be adjusted as a result of the behaviour exhibited by avatars in

the DYE [WattOl]. The behaviour of system-controlled autonomous objects

should be deterministic; it can be replicated across all nodes in the DYE, by

replicating the parameters and seed values used by the AI routine. However, the

behaviour exhibited by avatars is not deterministic, as it is the result of user

input. This distinction between avatars and other types of objects is important

when determining how the different classes of objects should be disseminated to

the nodes in the DYE.

Given these object classifications, it is possible to make the following

assumptions:

• All static objects will remain in the same regions throughout the lifetime

of the DYE

• All other non-autonomous objects will remain in the same regions unless

a force is exerted upon them which moves them to a new region

71

These assumptions imply that it is possible to position non-autonomous objects

into their respective regions and, provided they are not moved as a result of a

collision, the objects will remain in the same region indefinitely. As a result, it is

not necessary to inform a node of the position of its non-autonomous objects

between every collision detection iteration. Instead, it is possible for a node to

retain the current state of its non-autonomous objects until the object is no

longer within its region, at which point it transfers the object to the nodes which

are now responsible for it. If the object straddles a region boundary, the nodes

which are responsible for the object must ensure that the object is replicated

consistently by transmitting current state information about the object to the

nodes whose regions the object intersects. However, in order to ensure

consistency with autonomous objects, especially avatars, the technique as it has

been described so far will not suffice.

3.3.5 Distributed Collision Detection Architecture

This section introduces the core architecture of the distributed collision detection

approach and introduces the software components which must interact with one­

another to maintain a DYE. Following the description of these components, the

mechanisms by which these components communicate with one-another are

introduced. The following assumptions are made:

• All nodes have knowledge of the current state of their persistent

objects

• Message transmission is reliable and instantaneous

• All software components and machinery are completely reliable.

The architecture can be subdivided into three logical components: servers, nodes

and clients. A server is a machine at a fixed, known address which acts as a

central repository and directory service to assist nodes in joining a DYE and

communicating with one-another. The server can also act as an arbitrator if

72

disagreement over an object's state arises. A node is an entity which is

responsible for performing collision detection in a given set of sub-regions in the

DYE. A client is a process by which the user interacts with the DYE. It can

introduce one or more objects (including avatars) into the DYE, monitors user

input, translates user input into state updates and injects these state updates into

the collision detection system. A diagram of the system architecture is provided

in Fig 3.4.

Figure 3.4: System Architecture

Upon initialisation, the server creates a virtual world, containing the objects

initially populating it: static objects, physically-controlled objects and computer­

controlled objects. When a new node joins the DYE, it is assigned a sub-region

of the world. This causes the nodes currently participating in the DYE to be

reallocated a new, potentially smaller, sub-region of the DYE. For example,

when the first node joins, it is allocated a sub-region corresponding to the entire

virtual world. However, when a second node joins, each node is assigned a sub­

region corresponding with half of the virtual world. When each node is allocated

a section of the DYE, they are informed of the current state of every object

occupying that region by the server. Once this communication with the server is

completed, the nodes manage the current state of their objects and transmit

object transfers and replication messages to the other nodes in the DYE as and

when they are required.

73

The objects a node is assigned by the server are termed persistent objects

because the node manages the state of these objects until it detects that one of its

persistent objects is no longer within its assigned sub-region of the DYE. The

nodes report the responses to any collisions they detect to the server, allowing

the server to act as a central repository for object states. When a client joins a

DYE, it introduces its objects into the virtual world and periodically transmits its

objects' state update messages to the server.

The server must transmit these state updates to the relevant nodes, i.e. the nodes

whose sub-regions the objects intersect. However, these objects, termed client

objects, are not handled the same way as persistent objects. As the behaviour of

client objects cannot be predicted algorithmically, the nodes can not accurately

predict the current state of client objects between state update messages. Instead,

the server is responsible for transmitting the current state of client objects to the

relevant nodes before collision detection is performed. This allows the server to

act as a global timer for the DYE, ensuring that the nodes remain relatively

synchronised with one-another. The server can monitor when each node

completes collision detection and take additional metrics, such as the number of

collisions each node reports, to monitor and tune performance accordingly. The

server can also detect any conflicting collision responses and resolve them

accordingly by correcting the object state in the relevant nodes. The results of

collision detection/response are disseminated to the clients. This can be achieved

with minimal bandwidth overhead by using techniques such as interest

management. However, this model assumes that the server is a reliable entity,

i.e. a failure in the server will cause the DYE to terminate.

74

3.3.6 Communication Latency

The previous model adopts the classic client/server request-response model

which is widely used in distributed systems; the server and collision detection

nodes are responsible for satisfying the collision detection requests made by the

client when it transmits an object state updates. The model assumes that a group

of reliable machines are available to perform collision detection upon which

exhibit instantaneous, or negligible, message transmission delays; this

assumption is reasonably valid if a dedicated cluster of high-performance

machines is available. However, due to the associated cost, this may not be an

appropriate assumption to make.

The next refinement to the model combines the notion of clients and nodes, such

that a client and a node exist on the same physical machine; however, they are

still considered to be separate components. This implies that some collision

detection will be performed on the machines of each user participating in the

DYE. This change does not rule out the use of dedicated collision detection

nodes without users; such machines will behave in the same manner but will not

introduce avatars into the DYE

An important challenge in DYE research is to be able to support a wide range of

participants over the Internet, who may reside in different geographic regions.

With the presence of large distances between participants, it cannot be

guaranteed that the network transmission latencies between machines will be

low-latency. In this situation, the previous model may not be sufficient to

guarantee high-levels of responsiveness as message transmission may become a

bottleneck. The distributed collision detection model will be refined to sacrifice

some level of consistency in order to improve responsiveness in DYEs which

have participants exhibiting high message transmission delays.

75

3.3.7 Consistency Groups

The following distributed collision detection architecture makes the following

assumptions:

• All collision detection nodes have knowledge of the current state

of the objects within their respective sub-regions

• All machinery and software components are completely reliable

• Message transmission delays are present

• Message transmission delays between a pair of machines remain

constant

The previous model, as depicted in Fig 3.4, results in all nodes participating in

the DYE being responsible for collision detection in a unique portion of the

virtual world. However, in order to deal with network transmission delays, it is

necessary to generalise this premise. A metric is introduced, which estimates the

network transmission delay between a pair of nodes. This metric can be used to

estimate which nodes can communicate with one-another sufficiently quickly to

ensure a responsive virtual world. Although transmission delay is highly

variable, depending on a number of factors, including network load, this model

assumes that message transmission delays are relatively uniform. This will later

be refined to deal with variable message transmission delays to adapt to changes

in network behaviour in run-time.

Given a set of nodes {nJ, n2, ... , nil and a threshold value T, each node will need

to retain transmission delay information between itself and the other i-J nodes.

From this information, it is possible to construct a matrix of transmission delays.

Transmission delays observed between nodes j and k are recorded in two places

in the matrix, in indices njk and nkj respectively. This is because the transmission

delay observed from node nj to nk may be different from that observed from

node nk to nj. If both of these values are below T, then it is assumed that these

76

two nodes can communicate with one-another with a small-enough transmission

delay to be able to maintain a responsive DVE. These two nodes can therefore

be placed in a Consistency Group (Fig 3.5) together. A consistency group is a

group of nodes whose message transmission delay is sufficiently small that they

can each maintain a highly-consistent view of the same DYE. A consistency

group can contain a set of nodes if every node within the group has observed

transmission delays between themselves and every other node in the group less

than T. In addition, a node can be a member of only one consistency group .

. ----~---
il GrOUp 2 I:
:~; j Nodenf i
~ i

i~i : Nodenj : , .
: :

Figure 3.5 Consistency Groups

It is desirable to produce as large consistency groups as possible, as the more

members in the group, the less collision detection each member must perform

and the more consistent the virtual world will be. In order to produce large

consistency groups, the set of all potential consistency groups is constructed (a

power set), sorted from the largest group to the smallest. The largest group is

initially selected to form the first consistency group. This group is removed from

the power set. However, there may be a number of nodes not yet allocated to a

group. If there still exists nodes which are not part of a consistency group:

• The nodes in the newly-allocated consistency group are removed from

the remaining potential groups in the power set

77

• The power set is re-sorted so that the largest set appears first. In addition,

any empty sets are removed from the power set within the sort algorithm.

• The largest potential consistency group in the power set is selected as the

next group and removed from the power set.

• If there are still unallocated nodes, repeat the process until all nodes are

allocated.

Once this algorithm is completed, every node will be a member of a consistency

group. This algorithm creates the largest consistency groups it can. However,

this may not result in the best performance for each node in the DYE. For

example, given a DVE with 4 nodes, n], n2, n3 and n4, and a threshold time of

5ms. The observed transmission delay times were:

n1,2 = 3, n1,3 = 4, n],4 = 10

n2,] = 2, n2,3 = 1, n2,4 = 6

n3,] = 4, n3,2 = 3, n3,4 = 2

n4,I = 7, n4,2 = 4, n4,3 = 1

Given these transmission delays, the resulting consistency groups using the

described algorithm would be {{n], n2, n3}, {n4}}. However, it would be

beneficial for the performance of n4 for the consistency groups to be { {n], n2},

{n3, n4} }. In addition, due to the binary spatial subdivision approach, in a group

of 3 nodes, one node will be responsible for collision detection on half of the

world, while the other two nodes will be responsible for a quarter of the world

each. The collision detection performance will be bound by the most heavily­

loaded node, so it is beneficial to have groups whose sizes are a power of 2. This

means that the latter set of consistency groups, with two groups of size two,

would be more desirable than a group of size 3 and a group of size 1. However,

this problem is similar to the knapsack problem, an NP-Complete problem. As

such, it is not possible to determine an optimal solution in real-time as the

78

number of nodes becomes large and, therefore, a greedy algorithm to find an

approximation to the solution is used.

3.3.8 Group Leaders

The refinement to the distributed collision detection model described in the

previous section can result in potentially large numbers of consistency groups

simultaneously performing collision detection. Recall that the server acted to

provide synchronisation in the previous models, dispatching collision detection

on all the nodes and ensuring consistency in object positions. The notion of

consistency groups indicates that the server would be responsible for

synchronising a large number of groups and maintaining consistency in each

group. However, the transmission delays observed between the server and each

collision detection node can be large. This can result in the delay in receipt of

synchronisation messages from the server compromising responsiveness. The

new model prescribes that each consistency group performs collision detection

and response for all objects in the DYE. In the previous models, these results

would be reported directly to the server by each collision detection node, which

could place an additional strain on the server potentially causing a performance

bottleneck. In order to overcome these performance bottlenecks, the notion of

group leaders is introduced.

A group leader is intended to relieve some of the processing overhead from the

server. One node in each consistency group is appointed group leader. This node

essentially takes on a number of the server's responsibilities for its consistency

group. Once a group leader is appointed, all non-administrative messages pass

through the group leader before being delivered to either the server or collision

detection nodes. The server is responsible for disseminating messages between

consistency groups as there is no mechanism for nodes in different consistency

groups to communicate directly.

79

Administrative
messages and cl ient

objecl updal:s
.... - --_ ... , _.-

,

~ --------_ .. -. ---. -. ---........ -_ .. _ .. ,

-------- -- ...
: Objecl dispakh : !
I messages and 04 :

: conision responses I - - : _

---------- ~ i
:-01en-t ~bj~t-~a1~ : 1
I updB1es -., __ : --- ----- --- r-
.- Cli~ts-~d n-od~ ~ ;
1 on same machine- ~ - _ : •
----------- ; n, c,

:-Obje~t t,.;"rl;' ~d ~ 1

I replicalion - - ~ - - :- -
L _________ , :

--'-~

:1 ~.~. : J i-'::-: ... :-:-: ... ::7 ... ::7 .. ::-: ... :7: •.. ~~.--:-~:-:-2 .• ::-: .. :7: .•. :-:-: .•. .,-. .,--J

Figure 3.6 Consistency Groups with Group Leaders

The following section will describe the flow of messages between the erver,

group leaders, collision detection nodes and clients. Recall that clients are now

physically located on the same machines as the collision detection nodes.

Additionally, one of the collision detection nodes in each consistency group is

appointed group leader. However, regardless of their physical location , group

leaders , clients and collision detection nodes are regarded as logicall y separate

components . In the following message flow descriptions, messages will be

shown being transmitted between nodes , clients and collision detection nodes.

Mechanisms are in place to bypass the process of forming and deli veri ng

messages to group leaders, collision detection nodes and clients if they are

located on the same physical machine. However, to aid clarity, the e

mechanisms are overlooked in this chapter.

80

(local
\ Client

Figure 3.7 State Update and Collision Response Message Flow Diagram

The main change in the flow of messages from the previous distributed collision

detection model is in the flow of client state update and collision response

messages. In the previous models, client state updates were transmitted from the

client to the server and then disseminated from the server to the collision

detection nodes. Similarly, collision response messages were transmitted from

the collision detection nodes to the server and then forwarded to the relevant

clients. The responsibilities of the server, clients and collision detection nodes

must change to reflect the presence of group leaders.

Clients

Clients may be hosted on machines hosting collision detection nodes. If this is

the case, the client adopts the same group leader as the collision detection node

it shares a machine with. The clients are responsible for:

• Transmitting client state updates to its group leader if it has one,

otherwise transmitting state updates to the server

81

• Receiving collision response messages from its group leader if it

has one, otherwise receiving collision response messages from

the server

Collision Detection Nodes

Collision detection nodes are responsible for:

• Receiving client state updates from the group leader

• Transmitting collision response messages to the group leader

Group Leaders

The group leaders are responsible for:

• Receiving client state updates from its local clients

• Receiving client state updates from the server

• Transmitting client state updates to its group members

• Transmitting local client state updates to the server

• Receiving collision response messages from group members

• Transmitting collision response messages to local clients

• Transmitting collision response messages to server

Server

The server is responsible for:

• Receiving client state updates from clients without group leaders

• Receiving client state updates from group leaders

• Transmitting client state updates to group leaders

• Receiving collision response messages from group leaders

• Transmitting collision response messages to clients without

group leaders

82

3.3.8.1 Message Dissemination

When a group leader receives an object state update message from a client, it

forwards this update to the server, which disseminates this to the other

consistency groups and stores the current state of the object in its own internal

data structures. The group leader also updates its view of the object's state and

dispatches collision detection on its group members, passing the current state of

client objects (as viewed in its data repositories) to the relevant nodes, as the

main server did in the previous model. When a group leader receives an object

state update from the server, the same process is performed with the exception

of transmitting the state update to the server.

The group leader monitors the performance of the collision detection nodes,

recording which nodes have completed collision detection, and which nodes

have not yet completed. The group leader buffers state updates until all nodes

have completed collision detection. When a node completes collision detection,

it reports the results of collision detection and response to its group leader.

When all nodes have completed collision detection, the group leader dispatches

the next collision detection iteration, provided state updates have been received

from clients since collision detection was last dispatched. If this is not the case,

collision detection is not dispatched until the next state update is received. This

avoids the nodes repeatedly performing collision detection on the same data set.

The results of collision detection may cause client objects' current state to

change. If the group leader receives such a state update, it must first determine if

the client who owns this object is within its consistency group. If the client is

within its consistency group, the group leader transmits this state update to the

client. However, if the client is not within the consistency group, then this

response is not disseminated to the client. It is assumed that the consistency

group in which the client exists will be responsible for its update. If collision

response results in a non-client object moving, the group leader updates its view

83

of the object's state, and passes this state on to the main server. Before it passes

this state on, the group leader can perfonn some consistency checks to ensure

that there are not any discrepancies between the states reported by each of its

group members. If the group leader detects discrepancies in object states

between its group members, it can instruct its members to change the state of the

object to reflect what it views as being the object's true state; the true state of an

object can be chosen arbitrarily by the group leader, although approaches such

as taking a weighted average of object states is likely to perfonn well. When the

server receives a state update from a group leader, the server stores this new

object state and, if it finds it to differ from the state reported by the other

consistency groups, the server can detennine the true position and correct each

group. It should be noted that minor discrepancies are to be expected between

object states and that correcting an object's state should only be perfonned when

the deviation in reported states is larger than some threshold value. From a

perfonnance perspective, it is better to use a smaller threshold values for

correcting discrepancies within a consistency group than the threshold used to

correct discrepancies between consistency groups.

The notion of local and remote objects is introduced, where a local object is an

object hosted on a client in a given consistency group and a remote object is an

object hosted on a client not in a given consistency group. The state of a local

object within a consistency group is as recent as possible, in that it is highly

probable that the current state of a local object as viewed by the group leader is

current and accurate. However, this can not be guaranteed for remote objects. A

remote object's state updates must be forwarded by the server, and may have

suffered from substantial transmission delays since it was sent by a remote

client. As nodes in different consistency groups have substantial transmission

delays between them, possibly due to geographical distance (e.g. residing in

different countries), any collisions detected involving remote objects are

unlikely to be completely accurate. As such, it is not necessary, or desirable, to

disseminate infonnation about these collisions to the client which hosts this

84

object, as their objects' collisions are likely to have been detected with more

accuracy within their consistency group. However, the result of collisions with

remote objects are stored in the group leader and used for further collision

detection until a state update is received for the remote objects, which will

overwrite the current state. This mechanism ensures that within a consistency

group, the events are perceived to be as consistent as possible. Interpolation,

extrapolation and dead reckoning are used to smooth the transition from the old

state to the new state, although these approximation techniques may introduce

further inconsistencies.

Within a consistency group, the group leader acts as a central repository for the

DVE state for that group. It may differ from the state observed in other groups

but, as all members of the group have a low-latency network connection with the

group leader, the state viewed on all nodes in the group will be similar or

identical to that on the group leader.

Figure 3.6 shows a DYE in which two consistency groups of size 3 have been

formed. The diagram shows the clients and nodes being hosted on the same

machine. However, the diagram shows the group leaders as being a separate

entity to the nodes/clients to aid clarity. Although logically the group leader is a

separate entity, in fact the group leader will be hosted on one of the

nodes/clients. In addition, the communication between the node/client on which

the group leader is hosted will be implemented using inter-processlthread

communication, rather than by using any real networking.

Due to the additional responsibilities of the group leader, the group leader's

machine will be more heavily loaded than the other nodes in the group. The

workload a group leader must perform includes:

• Receiving client object updates from clients and the main server

• Forwarding client object updates from its clients to the main server

• Dispatching collision detection on its group's nodes

85

•
•
•
•

Performing collision detection and response on its subspace

Receiving results from its nodes

Detecting and correcting any inconsistencies in the results

Sending appropriate current state information to clients

This additional processing overhead could lead to the group leader becoming a

bottleneck in the system, similar to how a single server can become a bottleneck.

As such, it may be desirable to place a limit on group size. This would result in

mUltiple consistency groups when, without the limit, a single group could have

been formed. However, this will ensure that the group leaders do not become the

weak link in the system.

3.3.9 Variable Transmission Delays

The consistency group model provides potentially better consistency and

performance than the standard client/server DYE model. However, the previous

models have not addressed the problem of variations in network transmission

delay; the previous model assumed transmission delays to be consistent. As

mentioned previously, transmission delays are not constant, and can vary

considerably depending on a number of conditions, such as network congestion

and hardware failure. With the popUlarity of wireless networking, especially in

modem mobile phones and gaming devices, the use of wireless ad-hoc

networking in DYEs looks set to increase. Such networks can suffer from high­

levels of variation in network transmission delay. As such, it is necessary to

consider how this can be dealt with in the consistency group model.

In the current model, the consistency group remains constant while the

nodes/clients participate in the DYE. When a new client/node joins the DVE, the

main server will initiate the reallocation group membership. This requires each

node to determine which nodes it can form a consistency group with. The

86

consistency groups are then allocated, and all nodes, including the newly-joined

node, are placed in their respective groups. These groups will remain constant

until a new client/node attempts to join or a client/node attempts to leave the

DYE. However, this model assumes that during the time between a node being

allocated within a consistency group and the groups being reallocated, the

properties of the network latency between the nodes will remain consistent.

There are a large number of factors which contribute to network transmission

delays, such as increased network traffic, routing hardware failures, damaged or

noisy communication media. Due to the massively distributed nature of the

Internet and the large number of hosts, routers and ISPs, network transmission

delays can vary substantially. Wireless networking allows communication

between hosts using radio signals whose physical distance is within a maximum

range, e.g. 30m. In addition to the factors contributing to network delays in

tradition, wired networks, wireless networking introduces the problem of signal

interference which can cause significant variations in message transmission

delays between hosts. Due to these factors, the previously held assumption of

constant network transmission delays is not valid for wireless networking and

the Internet.

As a consistency group is required to work in a relatively synchronised way, a

node responding slowly (for whatever reason) may cause the responsiveness of

the entire consistency group to suffer. In order to overcome this, the collision

detection nodes are responsible for maintaining, during run-time, metrics

pertaining to the transmission delay perceived between themselves and the other

nodes in the DYE. These metrics can be gathered by storing the round-trip time

taken to send a message and receive its response. This time includes not only the

network transmission delay in both directions, but also any delays in processing,

reading and responding to the message. A large transmission delay may imply

not only a large network-induced delay, but may also indicate that the

node/client may be being overloaded by processing demands. Regardless of its

87

cause, a large delay will cause performance degradation In the consistency

group.

If a node detects that another node within its consistency group is beginning to

lag, it can initiate a rejection vote with the server. The server requests the

remainder of the group to decide whether the proposed evictee node is indeed

lagging. If it is determined that the node is lagging, the node is removed from

the consistency group and placed in a new consistency group of size one.

If a node in a consistency group determines that a node in another consistency

group is responding sufficiently quickly, it can initiate an inclusion vote through

the server to determine whether the node should join its consistency group. The

vote will only be processed by the server if the group the proposed node is a

member of contains fewer or the same number of members as group it is

proposed to join. The vote requires each member of the group to determine

whether the proposed new member is responding quickly enough to warrant

joining the group. If the node is determined to be responding fast enough, the

server instructs the node to leave its current consistency group and join its new

group.

There is an inherent problem which may arise if this technique is used. Group

membership may become in a state of flux, in which nodes are permanently

changing groups. In order to alleviate this, two threshold values should be used:

a rejection threshold and an inclusion threshold, where rejection threshold >

inclusion threshold. This essentially gives a range of message transmission

delays whereby the group will not request to be reallocated. In order to bring

about a membership vote, a node within a group must observe:

• A transmission delay between itself and a node in another group less

than the inclusion threshold

• A transmission delay between itself and a node in its group greater than

the rejection threshold

88

The use of additional metrics, such as the mean/mode/median transmission

delay and standard deviation, can be used to analyse the delays perceived by a

node to avoid unnecessarily adjusting group membership as the result of minor

transmission delay fluctuations. In addition, heuristics such as "three strikes and

your out" could be used, in which a node can only initiate a rejection vote if it

perceives a node responding slowly in three consecutive messages/samples. As

restructuring groups may be expensive, it may be necessary to cap the frequency

in which groups can be restructured. This could be done by restricting how

frequently a client can initiate a vote or by restricting how many votes a server

will allow within a given time frame. In addition, restrictions may have to be

placed to ensure that multiple votes involving the same node do not occur

simultaneously. A minimum time in which a node must be a member of a group

could also be defined to ensure that groups do not repeatedly "poach" nodes

from one-another. However, research into which approaches yield best results

must be performed.

If the group leader was a reliable entity, it would be valid to not perform voting

and simply piggy-back all recorded message transmission delays between a node

and the other nodes in the DYE to its group leader. However, if the group leader

becomes overloaded or fails, it will not initiate a group reallocation, resulting in

the performance of the consistency group suffering significantly. As the group

leader is a collision detection node, which is hosted on a user's machine, it

cannot be assumed to be reliable. The problem of group leader reliability could

be overcome by sending perceived delays directly to the server at frequent

intervals. However, as the number of nodes in the DYE increases, this may

cause scalability problems, resulting in the server becoming overloaded and

failing to initiate group reallocations in a timely fashion, detrimentally affecting

the performance of the consistency groups. Therefore, best overall reliability and

performance can be achieved by adopting the voting strategy outlined in this

section.

89

3.3.10 Reliability

One of the major concerns with distributed applications is reliability

[SinghaI99][Ezhilchelvan92]. Network protocols provide a range of reliability

guarantees, ranging from completely unreliable to best-effort reliable. Some

network protocols may offer complete reliability with the use of persistent

storage of undelivered messages to deal with the event of failure in the sender,

receiver or network. However, it is not possible to guarantee that a message will

be received by the desired recipient(s) within a given time-frame in the event of

hardware failure and, as such, reliable network protocols offer no guarantees for

message delivery delay, which is of paramount importance in DYEs. It is,

however, possible to state probabilistically how likely it is that the message is

received within a given time-frame. Network protocols such as User Datagram

Protocol (UDP) provide little reliability guarantees; UDP contains a CRC

(Cyclic Redundancy Check) for error detection, but does not guarantee the

delivery or ordering of packets. Transmission Control Protocol (TCP) is a best­

effort network protocol, which provides best-effort guarantees of ordering and

message delivery. This is achieved using message receipt acknowledgements

and message retransmission after timeouts. Other higher-level protocols and

services provide further reliability guarantees. For example, transactions ensure

that an event either occurs or does not on all machines it is intended to. It uses

commit algorithms and roll-backs to ensure that the event is either perceived to

have occurred or not occurred on all machines consistently. These higher level

protocols/services require the transmission of additional messages and may also

incur a substantial delay between an event occurring and consensus being

reached across all machines in the network.

Reliability can be discussed not only in terms of network protocols, but also in

terms of machines. A machine can be described as reliable if it can be

guaranteed to never fail. This, of course, is not realistic using current technology

90

as computer hardware will eventually wear out. In addition, the software

executing on the hardware is prone to containing programming errors; the more

complex the software, the greater the likelihood of undiscovered errors

remaining in the software. With these facts, it is not realistic to expect a machine

to be completely reliable. However, reliability can be improved in distributed

applications by using data replication and back-up machines. This follows the

principle that, given the likelihood of a machine failing is, for example, 1 %

(0.01), then the likelihood of 2 machines failing at the same time is 0.01 %

(0.0001). Following these probabilities, it can be seen that data replication/back­

up can render the probability of failure negligible.

The systems previously described all assumed that the server is reliable. If the

server fails, the DYE will come to an abrupt end. It may be possible to utilise a

number of servers to alleviate this problem, although this issue is outside of the

scope of this thesis. The description of the systems also assumed that the

nodes/clients were reliable. These nodes/clients are free to join and leave the

DVE as they require, although the unexpected failure of one of these machines

must be detected by the server or other nodes, which will result in its group

members being allocated a new sub-section of the world. Although it is not

completely accurate, a node can be assumed to have failed if it has not

responded to a message within a given large threshold time. This is termed a

timeout, and will result in the server reallocating the group memberships,

instructing the other nodes to cease communicating with the failed node and,

finally, the server closing its connection with the node. If a persistent state is

required to be maintained for the node's avatar, the server can store the avatar's

current state in the DYE. If the node chooses to rejoin the DYE, it would then be

able to continue from its last position, as recorded by the server. It should be

noted that this is a best-effort attempt at detecting node failure as it is impossible

to detect node failure in asynchronous networks due to the property of

unbounded network transmission delays in these networks. However, for the

purpose of DYEs, a period of extremely-large network transmission delays in

91

communicating with a given node will detrimentally effect responsiveness in its

consistency group and, as such, it is appropriate to treat this situation as if the

node has failed to avoid continually compromising responsiveness.

The reliability of network connections has so far been overlooked in this project.

Due to the responsiveness/speed DYEs are required to operate, it is not possible

to use high-level reliable messaging services while maintaining a highly­

responsive virtual world. For the purpose of this system, we assume that a best­

effort reliable network protocol, such as TCPIIP, is essentially reliable. This is

not strictly true, but it will suffice for the time being. It is now necessary to

categorise the messages a node or server will receive in terms of whether it is

critical or not.

The first class of messages are administrative messages. These are messages

exchanged between nodes and the server. These messages may contain

messages such as instructing the server to add a new object into the world,

instructing a set of nodes to connect to a new node or form a consistency group.

These messages are vital for the correct behaviour of the DYE. If a node fails to

receive a message instructing it to join a consistency group, an undesirable

situation may occur. The nodes currently in the consistency group receive new

sub-spaces to perform collision detection upon. However, there is a sub-space

which has been allocated to the new group member. If this node does not join

the group and perform collision detection on this region, then a section of the

world will exist in which objects will not conform to the DYE rules regarding

collision detection and response. Similarly, if an administrative message was

damaged during transmission, the message could instruct a node to perform a

task different from the desired task. As such, it is necessary that any

administrative messages are sent over a (best-effort) reliable network protocol.

Nodes communicate with one-another in a variety of ways. It is necessary for

nodes to determine the speed of message transmission between one-another.

92

This could be estimated using locality. For example, by examining IP addresses

to determine if the nodes are part of the same network. Other heuristics could be

used, such as users providing address details, which could be used to group

together machines in the same towns or countries. Although these techniques

could be successful, they rely on user honesty. Additionally, as IP addresses

may be obtained from an ISP, two users may share the same network simply

because they connected to the same ISP using a dial-up Internet connection. A

more accurate technique to determine network latency, as previously mentioned,

is to measure the time taken to send a message to a machine and receive its

reply. This is termed the round-trip delay. These metrics could be obtained by

either sending an empty (or nearly empty) message, or by piggy-backing timing

messages to system messages. The former may consume additional bandwidth

as it will require the transmission of many small messages, where each message

must have fixed-size packet headers appended by the network protocols. The

latter may reduce the accuracy of the timing data, as a response to a message

will only be sent when a system message is ready to be transmitted. If the former

approach was adopted, the reliability of the messages is not vital. As such, an

unreliable network protocol could be used, although this may result in message

loss or corruption.

Nodes are responsible for transmitting object transfer and replication messages.

An object transfer message is relatively important, as it indicates that a given

node is ceasing to be responsible for collision detection for a given object. The

responsibility of collision detection for this object is transferred to another node,

or nodes. If this transfer message is lost or damaged, it cannot be guaranteed that

any node has assumed responsibility for the object; the object will become an

orphan object in the DYE. As such, it is necessary for object transfer messages

to be received correctly in order for collision detection to be performed

correctly. An object replication message, however, merely indicates that the

sending node has determined that an object's state should be replicated between

itself and another node or group of nodes. If such a message was lost or

93

damaged, this may result in inconsistencies arising between nodes' views of an

object. These inconsistencies, although undesirable, would not be devastating to

the system. In addition, provided the group leader acts as an arbitrator, any

inconsistencies could be detected and corrected.

Clients are responsible for transmitting their objects' state updates to the group

leader and receiving object state updates from the group leader. If a client

object's state update message was not received correctly by the group leader, the

group leader's perception of this object would remain unchanged. As such, the

group leader may initiate collision detection using out-of-date information. This

should not cause any major issues, providing that each client object's state

update messages are received from regularly enough to ensure that their object is

perceived to move smoothly by the other clients and nodes. This is a reasonable

assumption as, even with unreliable messaging, it is probabilistically likely that

the majority of messages will be received provided the communication media is

not congested. In addition, unreliable messaging does not guarantee the order of

message receipt. As such, unreliable messaging may be desirable for state

updates as it will allow current messages to be received and processed even if

previous update messages have not yet been received. It is necessary, however,

if this type of messaging is used that each message be time-stamped or assigned

some logical ordering (perhaps using a logical clock). This will help to avoid the

situation in which out-of-order messages result in older state updates

overwriting newer data. The highest time-stamp, l, received could be stored so

that any messages received whose time-stamp is not greater th is discarded. State

update information must also be sent from the group leader to the clients to

update their view of the DYE. This information can be transmitted identically to

the state update information from the clients, as it will not disrupt the system too

much if some messages are lost provided enough messages get through.

94

3.3.11 Unsynchronised Operation

The model described in this chapter requires members of a consistency group to

operate in a synchronised manner, i.e. each collision detection iteration is

synchronised within a consistency group. However, better perfonnance can be

achieved, at the detriment of consistency, if the members of a consistency group

are allowed to operate in an unsynchronised manner. This also relieves the

group leader from the burden of synchronising the collision detection nodes for

every simulated time-step.

Unsynchronised operation requires a number of minor alterations to the model:

• Collision detection nodes store the state of client objects between

collision detection iterations and do not wait to receive state updates

from the group leader prior to perfonning collision detection

• Collision detection nodes use dead reckoning to predict object states

between collision detection iterations if a new state has not been received

• Group leaders transmit client object state updates to the required

collision detection nodes only when new states are received

This revision to the model introduces a new problem:

• A collision detection node, n1, is responsible for a client object Oc at time

to·

• The group leader receives a state update for Oc at time t1, which results in

n1 no longer being responsible for oc. Instead node n2 is responsible for

• n1 predicts the state of Oc using dead reckoning. As a result of deviation

between the predicted state and true state of oc, n1 believes it is still

responsible for oc.

95

In this situation, it is necessary for the group leader to infonn nodes which were

previously responsible for a client object that they are no longer responsible for

that object. While this adds a small overhead to the messaging requirements of

the group leader, it potentially increases the perfonnance of a DYE adopting this

model by avoiding the need to synchronise nodes in a consistency group.

3.3.12 Discussion

The traditional client/server model of message dissemination in DYEs

prescribes that state update messages are transmitted from clients to the server.

The server forwards these messages onto the other clients participating in the

DVE. High-level techniques, such as message filtering, may be employed by the

server to reduce the volume of messages which the server must transmit to its

clients.

The consistency group model of message dissemination in DYEs prescribes that

state update messages are transmitted from clients to their group leader. The

group leader, upon receiving a state update message from one of its clients,

forwards the message on to the server and to the other clients within its

consistency group. Upon receiving a state update message, the server forwards

the message onto the other consistency group leaders, which are delivered to the

remaining clients by their respective group leaders. Message filtering may be

employed on the group leaders and the server to further reduce the volume of

messages being transmitted.

From this brief description, it can be seen that for a client to receive a message

through the client/server model, the message must pass through the server,

which acts as an intennediate. For a client to receive a message through the

consistency group model, the message must pass through a group leader. If the

client receiving the message is not within the originator's consistency group, the

96

message must also pass through the server and an additional group leader before

being delivered to the recipient.

Figure 3.8 Client/Server vs. Consistency Group Model

Figure X.I depicts the difference between the consistency group model and the

client/server model. The average network latencies are shown on the diagram. In

the client/server model , the delay between a state update message being

transmitted by client B and being received by client C is X2 + X3 ms . Therefore,

the overall message transmjssion delay in the client/server model i the sum of

the delays between the respective clients and the server.

In the group leader model, the delay between a message being tran mitted by

client B and being received by client C is Xba + X ra ms. Gi ven that the perceived

message transmission delay between a client and its group leader must be

relatively small, the delivery of such a message should not suffer from a great

deal of message transmission delay, assuming the absence of network or

hardware failure. However, the delay between a message being transmitted by

client B to client E is Xba + Xl + X4 + Xed ms. In the client/server model , this delay

would be X2 + Xs ms. As a result, the delay between a message being transmitted

between clients in different consistency groups may be larger than the delays

perceived between the same clients using the client/server model. However, the

additional network transmission delay due to the message passing through the

group leaders should be small. In addjtion , this approach may reduce the olume

of messages which the server must process . This can reduce the ser er '

97

processing load, thereby reducing the delay between the server receiving a

message and it processing the message and forwarding it to its intended

recipients, thereby reducing the total message transmission delay.

The client/server model suffers from its largest message transmission delays in

the situation in which each client suffers from large network transmission delays

between themselves and the server, e.g. if the server is located geographically

far from the clients. This will result in large message transmission delays

between a pair of clients regardless of the clients' respective message

transmission delays. To clarify, clients' who would ordinarily enjoy low-latency

message transmission delays directly between each-other may suffer from large

transmission delays if the message transmission delay between themselves and

the server is high. The consistency group model may alleviate this problem by

grouping machines together which exhibit low-latency message transmission

delays; messages between these machines are routed via the group leader, which

is itself a member of the consistency group, offering lower-latency message

transmission.

Given a DYE in which all client's exhibit high message transmission delays

with the server, network transmission delays between consistency groups will be

large but network transmission delays within consistency groups will be small.

This is because the consistency group model requires message transmission

between consistency groups to pass between two group leaders. In this situation,

the increased network latency as a result of messages between consistency

groups passing through group leaders should be negligible due to the large

delays exhibited between the server and its clients.

The consistency group model suffers from its worst overall performance when

all clients participating in the DYE exhibit high network-transmission delays

among each-other. In this scenario, every client will be placed in a consistency

group containing just one client; the consistency group model results in the same

98

message dissemination as the client/server model, offering identical

performance. Therefore, the use of consistency groups and group leaders allow

collocated nodes to enjoy the available low latencies between them, promoting

improves consistency and responsiveness. However, large latencies between

non-collocated nodes, e.g. due to geographical location, will never be eased by

the use of consistency groups. Additionally, scalability limitations related to the

number of nodes that can be supported may be alleviated via the consistency

group model making use of aggregated messaging.

In the consistency group model, the collision detection nodes have partial

knowledge of the DVE; they know the current state of the objects for which they

are responsible for collision detection but are oblivious to the state of any other

objects inhabiting the DVE. The clients have partial knowledge of the DYE, as

they know the current state of their objects/avatars. However, in order to display

the appropriate images to the end-user, it is necessary for the clients to be

informed of the current state of any objects which must be displayed onscreen.

As was previously mentioned, the group leader stores the current state of all

objects as perceived within the consistency group. As such, it is the

responsibility of the group leader to ensure that all clients within its consistency

group are informed of any objects which they must render onscreen. This could

be implemented efficiently using techniques currently employed in DYEs, such

as interest management [Morgan05][Greenhalgh][WattOl][Sinha199]. However,

this is beyond the scope of this thesis.

99

Chapter 4

Implementation

4.1 Introduction

The following chapter describes the implementation details of the distributed

collision detection approach described in this thesis. This includes discussions

on the implementation technologies, algorithms and structure required to

implement the distributed collision detection approach described in Chapter 3.

Following this, implementation-specific optimisations will be discussed.

4.2 Implementation Technologies

There are a number of different implementation technologies which are

available to DYE developers, of which the developer must select the most

appropriate to meet their needs based on:

• Ease of use or integration

• Performance

• Scalability

• Memory utilisation

• Platform-independence

• Stability and Reliability

100

The implementation technologies which will be discussed in this chapter include

programming languages, system libraries and middleware solutions. Although

this list is far from extensive, it covers the major considerations which are of

concern to developers.

4.2.1 Programming Languages

There are a number of programming language paradigms available [Wiki06 2],

the most common of which are Structured and Object-Oriented programming

languages.

Structured programming languages allow developers to separate programs into a

series of functions, each of which can take arguments and return values. This

approach promotes reduced code duplication and allows large problems to be

broken up into a series of smaller, easily-understandable sequential steps. This

facilitates the development of software in groups, allowing individual functions

to be implemented and tested independent of one-another. Functions in

structured programming prescribe the use of arguments and local variables over

global variables. While not forbidden, the reduced dependence on global

variables eases bug-tracking and fixing in large software systems.

Object-oriented programming (OOP) prescribes the separation of a program into

a set of individual units, or objects. An object-oriented program is essentially a

set of classes (object-types). A class contains member variables and provides

methods and constructors by which an instance of the class can be interacted

with. Methods, similar to functions, can take parameters and can return values.

While not forbidden, OOP discourages the direct manipulation of an object's

data members and allows programmers to conceal implementation details of

class with the use of scope operators to declare member variables and methods

101

as being, for example, public, private or protected. OOP allows classes to inherit

functionality from one-another; the class inherited from is termed a super-class

and the class which inherits the functionality is termed a sub-class. This

promotes polymorphism, where a given method, inherited from a super-class,

may behave differently depending on which sub-class the object is in fact an

instance of.

In addition to programming paradigms, programming languages can be

subdivided into two different types:

• Compiled programming languages

• Interpreted programming languages

Compiled programming languages, such as C and C++, go through a

compilation process in which the high-level code produced by a programmer is

transformed into platform-specific machine instructions. Modem compilers may

utilise code-optimisation, which may result in the pipelining of commands, code

branching optimisations and code-reordering, to provide efficient performance.

However, this often sacrifices debugging facilities, meaning that the program

counter may not map to the original source code accurately. In addition to

debugging issues, programs written in a compiled language must be compiled

independently for each target platform; this may require the re-working of parts

of the program to utilise platform-specific libraries.

Interpreted languages, such as Basic, JavaScript and Python, conversely, do not

go through a compilation process but are instead interpreted by a run-time

engine. This ensures that programs in these languages are platform-independent,

as an interpreted program can be run on any platform which has the appropriate

run-time engine. This flexibility, however, comes at the detriment of

performance as interpreted languages usually perform far slower than compiled

programs. As such, interpreted languages are often used to produce smaller

102

programs or prototyping, while compiled programming languages are

commonly used for the development of large applications.

4.2.1.1 Candidate Programming Languages

Following from the descriptions of the classifications of programming

languages, it is necessary to categorise the candidate languages and analyse their

strengths and weaknesses. Although there are a large number of programming

languages available, this section will consider two object-oriented programming

languages: C++ and Java.

4.2.1.1.1 C++

C++ [C++] is the successor to the C programming language. Developed at Bell

Laboratories for the UNIX environment, C++ has become the de-facto

programming language for large-scale applications in which performance is of

paramount importance. It is a compiled programming language and, while an

executable produced from C++ source code is often not as efficient as the same

program written in C, the addition of object-oriented design makes C++ capable

of producing much more elegant solutions to complex problems. C++ is a

flexible programming language in which developers can choose to adopt a

combination of object-oriented and structured programming paradigms,

depending on their requirements.

C++ is fully supported across most platforms and supports applications being

separated up into a series of modules, or libraries. Most modem operating

systems support static and dynamically-linked libraries. However, while the

C++ language is reasonably standardised, much of its library-support is

platform-dependent. This means that not only must applications be compiled for

target platforms, but often large portions of code must be written specifically for

each target platform. Most platforms will provide libraries for networking.

103

multi-threading, synchronisation, 110 and GUI application building.

Additionally, C and C++ are the most widely-supported programming languages

for 3D graphics application development, through the use of graphics APls such

as OpenGL and Direct3D.

C and C++ are relatively low-level programming languages, whereby the

developer is required to control all memory allocation and free this memory

before the application terminates; failure to properly allocate the required

memory can result in run-time errors, whereas failure to free all memory

allocated can result in memory leaks. The developer is also required to

differentiate between allocating memory on the stack and in free memory (the

heap). This makes C++ memory management difficult for experienced and

novice programmers alike. However, this feature ensures that C++ applications

have a memory footprint roughly equivalent to the amount of memory the

application requires. Automatic garbage collection has been introduced into the

latest versions of Visual C++ .NET for the Microsoft Windows platform.

However, the utilisation of this significantly reduces code portability and, while

this mechanism utilises reference counters to remove developers' need to delete

objects, they must still distinguish between allocating in free memory (so-called

"GC" objects) and those allocated on stack memory (value objects); the use of

this technique introduces a rigid differentiation between GC and value objects,

whereby a class declared as a GC object can not be instantiated on the stack and

vice-versa. Additionally, the use of automatic garbage collection can reduce

application performance significantly and can also limit the programmer's

ability to engage in a number of low-level memory manipulation techniques, e.g.

storing offsets to memory-addresses of pre-allocated objects relative to a known

memory address; the object in this memory address would be automatically

deleted when their reference counters reached zero, regardless of any future

intention by the developer of referencing the objects again at a later time.

104

4.2.1.1.2 Java

Historically, the majority of commercial applications were written in compiled

programming languages, with the most common being C and C++. However,

Java [Sun06] has become an extremely popular programming language which is

used for large-scale software development. It is an object-oriented interpreted

language with a slight difference: the source code is compiled into platform­

neutral virtual machine instructions called byte code. This byte-code can be

efficiently mapped onto platform-specific machine instructions thereby

providing run-time performance approaching that of compiled programming

languages. Java includes built-in support for multithreading, thread

synchronisation and network communication; these features are only available

through libraries in C and C++, which can vary significantly between platforms.

Unlike C++, Java's libraries are standardised across all platform ensuring that

Java source code can be written and compiled once and executed on any

supported platform. While Java includes support for lower-level network

programming, such as TCP Sockets, it also has integrated support for higher­

level concepts such as remote procedure calls, distributed objects and message­

oriented middleware through the use of Java RMI, JiNi, J2EE and CORBA.

These high-level networking services are available through third-party libraries

in C++ but are not integrated into standard C++ SDKs.

Java provides facilities to embed applications into web pages and to produce

dynamic web pages. It also provides facilities to integrate Java code with legacy

code written in compiled languages, such as C++, called Java Native Invocation

(JNI). Unlike lower-level programming languages, such as C++, Java utilises

automatic garbage collection to delete objects from memory without

programmer intervention. Additionally, Java does not require the programmer to

distinguish between allocating memory in free memory or on the stack. Java is

an evolving programming language. However, rather than allowing arbitrary

additions to the language which may compromise backwards compatibility,

105

Java's evolution is tightly regulated to ensure that all Java Run-time Engines

(JREs) can correctly execute programs written to their current or previous

specifications. However, Java's flexibility comes at the cost of memory

consumption. Each Java thread must have its own JRE. This means that large

multithreaded applications can occupy a considerable amount of memory,

potentially reSUlting in memory page thrashing, which can sacrifice performance

considerably.

4.2.1.2 Summary of Programming Languages

There are a number of different programming language paradigms, the most

common being structured and object-oriented programming. The object-oriented

programming paradigm can be seen as the evolution of the structured

programming paradigm, providing a number of facilities which promote code­

reuse and data encapsulation. In addition to these paradigms, two different

classes of programming languages were explored: compiled and interpreted

programming languages. Compiled programming languages are transformed

into platform-specific instructions before being executed whereas interpreted

languages are translated on-the-fly by a run-time engine into machine

instructions. Compiled programs must be built for each target platform whereas

interpreted programs can be run on any platform which provides an appropriate

runtime engine.

Two candidate programming languages were introduced, C++ and Java. C++ is

a compiled, object-oriented programming language which offers good support

for graphics development and extremely efficient performance and memory

utilisation. However, it comes at the cost of much greater development

complexity. Java is an object-oriented interpreted language which utilises

platform-neutral virtual machine code which can be efficiently translated on-the­

fly to machine code. Java is, comparatively, far easier to develop for than C++

and offers comparable performance in most situations, with the exception of

106

applications which require large amounts of memory dynamically allocated in

runtime.

This chapter will describe the distributed collision detection technique in a

language-independent manner. Discussion of programming languages are

included to outline the importance of selecting an appropriate language for

application development. The distributed collision detection technique described

in this thesis has been implemented in both Java and C++; the former being the

initial prototype and experimental environment used to gather performance

metrics whereas the latter was incorporated into a games engine developed as

part of this thesis to demonstrate the application of this technique in a publicly

available DVE.

4.2.2 Platforms

It is highly desirable for DYEs and their supporting technologies to be able to

operate on a wide range of machine configurations and platforms. The

commercial arm of DVE research, computer games, are released on a number of

platforms including PCs, Apple Macintosh, Portable and Home Games

Consoles, Portable Digital Assistants (PDAs) and Mobile phones. These

platforms differ in their Operating Systems and hardware configurations. The

differences in operating systems are manifested in variations in library support,

possibly necessitating the developer to rewrite sections of code specifically for

each platform. Different operating systems may also offer different levels of

support for multi-threading, including different levels of granularity between

pre-emptive process switching if pre-emptive multitasking is available.

Differences in hardware configurations may include the processing resources

available, including the clock speed of the primary central processing unit and

any secondary processing resources, e.g. co-processors, graphics processing

units, and additional processing cores. Variations in available memory, bus

107

transfer speed, and network bandwidth may also be present. These variations,

coupled with machine-specific issues such as byte aligned memory, endian-ness

and instruction pipelining can greatly effect the applicability and performance of

collision detection algorithms.

This section will provide case studies for PC and games consoles, which will

focus on two current generation games consoles, PlayStation 2 and X-Box, and

two next-generation consoles, PlayStation 3 and X-Box 360.

4.2.2.1 PC

The PC comes in a wide range of configurations, varying in:

• Processor manufacturer, model and clock speed

• Number of processors or processing cores

• Instruction set extensions (e.g. MMX, SSIMD etc.)

• Amount of available memory and access speed

• Speedlbandwidth of bus

• Graphics Processor model and memory

• Operating system

The differences in PC architecture are largely concealed by the operating

system. As such, differences in hardware rarely result in developers needing to

change code; major code changes are only usually required to provide

interoperability between different operating systems. However, DYE developers

do have to target a certain minimum configuration, such as minimum CPU

speed, amount of memory and graphics card. As PCs are upgradeable and use

virtual memory, PC DYEs rarely need to be overly concerned with memory

utilisation. Similarly, PCs and their operating systems can efficiently allocate

and release large amounts of memory without compromising performance.

108

These factors usually allow DVE developers to allocate and release memory as

required in run-time with little impact on the DVE's responsiveness.

Modern compilers are capable of transforming high-level code into efficient

machine instructions. However, the assembly code which is generated by a

compiler is often less efficient than can be produced by a competent assembly

language programmer. As such, it is common in DYE development and,

specifically, in collision detection, that many of the more frequently executed

code segments are optimised in assembly language for each target platform.

Different operating systems exhibit different levels of granularity in their pre­

emptive multi-tasking. Windows is generally more coarsely grained than Linux,

while specialist hardware, such as games consoles, often only support

cooperative multi-tasking. This means that processes are less likely to be starved

of processing resources in Linux than Windows. In addition, the Windows OS

tends to consume more resources than Linux, causing the same application,

compiled for each platform, to require a lower-specified machine on Linux than

on Windows to run acceptably. However, due to marketing successes and its

ease of use, Microsoft Windows is the most popular PC operating system by far

despite these shortcomings.

4.2.2.2 Games Consoles

Modern games consoles, when newly-released, represent the state of the art in

affordable consumer processors and graphics. There are often a number of

sacrifices which are made to ensure that games consoles are affordable, such as

restricting memory and processing resources in an attempt to lower prices; in

fact, many games console manufacturers accept significant losses on the sale of

hardware by weighing these losses against the sales of software. Games consoles

are traditionally played through home television sets, which provide

significantly lower-resolution images than PC monitors. The resolution of

109

television sets reduces the problem of aliasing significantly, making low­

resolution 3D graphics look more attractive than they would on higher­

resolution screens; anti-aliasing techniques for higher-resolution displays are

extremely computationally expensive. Recently, high-definition TV has become

more affordable and has offered high-resolution TV content, which the next­

generation of games consoles offers built-in support for. However, high

definition TV still offers image resolutions far lower than those supported by PC

displays.

Games consoles traditionally have a 5 year lifecycle, during which the games

console's hardware is fixed; the hardware may go through evolution to make it

more cost-effective to produce, to make it smaller, more robust, consume less

electricity etc., but the actual hardware specifications will not change. As such,

nearing the end of their lifecycle, games consoles are underspecified when

compared with modem PCs, for which new hardware advances are released

continuously.

Games consoles will usually have a minimal operating system pre-loaded onto

the hardware which will allow the user to perform setup configurations and

manage saved games when a game is not inserted into the console. As this

operating system is minimal, it will not incur the overheads associated with

more substantial operating systems such as Windows or Linux. As such, games

console hardware often provides better performance than the equivalent

specification Pc. However, the lack of a sophisticated operating system means

that games developers cannot rely on the presence of advanced operating system

features such as pre-emptive multitasking, which may complicate development.

4.2.2.2.1 PlayStation 2

Sony's PlayStation 2 [Sony06] is the leading current generation games console.

It was released in 2000 and was, at the time, extremely powerful. At its core is a

110

300Mhz Custom processor developed by Sony and Toshiba termed the Emotion

Engine, 32Mb RAM, a graphics processor with 4Mb RAM and a DVD ROM.

These specifications are significantly lower than current PC hardware. At the

time of writing, current entry-level PCs contain processors with clock speeds in

excess of 30hz, 512Mb-2048Mb RAM and hardware graphics cards with 128-

512Mb RAM.

Software development for the PlayStation 2 is fraught with difficulty. It has

taken developers the life-time of the console to discover how best to harness its

power. Its architecture and development tools make software development and

debugging difficult. The PlayStation 2 has a number of co-processors, termed

Vector Units, which can be used to perform common vector operations in

parallel to increase performance substantially; these operations are equivalent to

the SIMD extensions introduced in the Pentium III processors. However, the use

of these requires data to follow strict byte-alignment rules; failure to follow

these rules will not always result in application failure but can result in

unexpected results. It is only possible to perform operations on Vector Units by

writing the section of code in assembly language; the development tool

compilers will not perform these optimisations automatically. Additionally, the

PlayStation 2 has very poor memory allocation performance, meaning that

allocating memory during the runtime of an application can significantly

compromise performance. In order to achieve acceptable performance, it is

necessary to pre-allocate blocks of memory and provide a memory manager to

assign these blocks to objects in runtime.

Due to the limited memory available on the PlayStation 2, it is necessary to

break a virtual environment up into discrete, smaller levels or stream sections of

the environment to main memory during run-time. However, streaming in real­

time can not be guaranteed to be performed correctly as disc access speed can be

slow on damaged discs and can vary significantly between consoles. This is

because as DVD/CD drives age, the lens which reads the disc can become

111

damaged and less efficient, resulting in longer disc access times. Failure to load

a section in time can result in missing textures or missing geometry. To

overcome this, it is common that sections are streamed in a series of detail

levels, whereby at least the most coarse detail levels are successfully loaded

prior to them being needed. While this usually overcomes the problem of

missing sections, it can result in noticeable detail popping if the console is late

in loading the high detail version of the environment section.

4.2.2.2.2 Xbox

The Microsoft Xbox [Microsoft06] was released as a rival for the PS2 in 2002.

While the console was significantly more powerful than the PS2, it failed to

overtake Sony's already significant market share. Although the Xbox sold well

in the USA and Europe, it failed in the Asian market, specifically in Japan. The

Xbox was essentially an entry-level PC made from off-the-shelf components,

being constructed from:

• An 733Mhz Intel Celeron Processor

• 64MbRAM

• DVDROM

• 8 GbHDD

• NVidia NV20 Graphics Processor

The Xbox adopted a Unified Memory Architecture design, where programmers

could choose how much memory to assign to holding graphics data or game

data. It utilised a current-generation NVidia GeForce graphics processor, which

was significantly more powerful than the Graphics Synthesizer in the PS2. The

Xbox also provided a high-quality networked game system called Xbox Live.

The Xbox was programmed using similar tools and libraries to Windows PCs.

This removed the need for developers to learn new tools in order to create games

112

for the Xbox, which resulted in numerous high-quality launch titles for the

console which demonstrated its processing superiority to the PS2. The Xbox' s

hardware addressed a number of issue with current games consoles. The most

significant of these was the adoption of an easily-programmable general-purpose

Intel processor instead of proprietary technology. This, coupled with support for

the DirectX SDK meant that Xbox games could be produced inexpensively;

Xbox games could be created by porting PC code and reducing memory

requirements by reducing texture resolution and geometry detail.

The Xbox provided an 8GB hard drive as standard. This allowed game

developers to use the hard disk as a temporary, higher-speed storage medium for

environment data to help data streaming. This significantly reduced the impact

of the condition of the DVD lens in the runtime performance of the game.

4.2.2.2.3 Xbox 360

The Xbox 360 [Microsoft06] console was released in 2005 and adopts three

3.2Ghz Hyperthreaded IBM PowerPC processing cores. It comes with 512Mb

Unified Memory, a DVD ROM, a next-generation A TI graphics processor and

an optional 20Gb hard drive. It utilises similar programming APls to the Xbox,

easing the porting of games from PC to console. It supports high-definition

displays and surround-sound audio. The Xbox 360 adopts less well-understood

technology than the original Xbox and therefore will require time before games

developers fully understand the intricacies of optimising applications for the

new hardware.

Unlike the original Xbox release, Microsoft has pre-empted its rivals in

releasing its next-generation hardware. Microsoft has been criticised for not

giving the Xbox as long a shelf life as the PS2 has received. This criticism has

been largely ignored by the software giant who ceased production of the original

Xbox console and future games in early 2005. Criticism has also been levied at

113

the console that, while the graphics hardware is very powerful, the CPUs in the

Xbox 360 are significantly under-powered and cause a bottleneck in

performance. While this is the case, it should be considered that many of the

games released for the console only used one of the 6 hardware threads capable

of being executed simultaneously in the Xbox 360. As games engines evolve to

exploit multiple processing cores, the performance of games on next-generation

platforms will improve.

4.2.2.2.4 PlayStation 3

The PlayStation 3 [Sony06] is expected to launch in November 2006 in Japan

and the USA and March 2007 in Europe. It adopts a single 3.2Ghz Power PC

processing core and 7 Synergistic Processing Engines (SPEs), termed the Cell

Processor; the cell processor was a joint-development between Sony, ffiM and

Toshiba. Rumour is circulating that the central processing core may be reduced

to 2.6-2.8Ghz to reduce manufacturing costs. The PS3 will fully support high­

definition TV standards and will adopt the new Blue-ray disc format, a high­

definition replacement for DVD. It will come with 256Mb RAM, a 256Mb next­

generation NVidia graphics processor and a 20-60Gb hard drive. As it has yet to

be released, these specifications are subject to change but are consistent with the

pre-release development kits being used to produce launch titles.

The PS3' s utilisation of the cell processor offers a huge amount of power (in

excess of 2 TFlops) at the cost of increased programming difficulty. The PS3's

main processor is significantly slower than its SPEs, which can be seen as being

secondary co-processors; its main processor is in fact the exact same processor

as is used in the Xbox 360. The SPEs cannot directly operate on main memory

and each contain 256Kb of cache memory. The job of the main processor,

according to Sony, is to stream jobs to these SPEs and the GPU and write results

back to main memory. However, this requires current games engine designs to

be completely re-evaluated to adopt parallel execution, something which has

114

previously not been considered. This provides developers with a significant

challenge: a current games engine will potentially run slower on a PS3 than on

an Xbox 360, despite the fact that reports suggest the PS3's cell processor may

offer performance orders of magnitude faster than the Xbox 360.

In addition to SPEs, the PS3 also adopts Vector Unit co-processors to efficiently

perform vector operations; there is one VU per SPE and these VUs still impose

the same strict byte-alignment rules as in the PS2. Finally, the PS3 includes

within its hardware the original PS2 processor. This will operate as an 110

processor and will also provide backwards compatibility with all PS2 games.

4.2.3 Transformations

Transformations are a fundamental operation in graphical virtual environments

[LengyeI03]. A point in 3D space can be rotated, translated, scaled and sheared.

These operations can be represented using a 4x4 transformation matrix. With the

development of hardware accelerated transformation and lighting OPUs,

transformations using 4x4 matrices are performed in graphics hardware.

However, these transformations are performed as part of the rendering pipeline

and the transformed vertices are local to each stage of the rendering pipeline.

Therefore, while the choice of representation of transformations is fixed in

OPUs, it is still worthwhile exploring alternative transformation representations

as part of a collision detection engine

In DYEs, it is common that only rotations and translations are used as DYEs

often mimic the real world and scaling (enlarging/shrinking) and shearing

(stretching along an arbitrary axis) operations generally do not occur in reality.

Translations can be represented using a 3D translation vector. Rotations can be

represented in a number of different ways:

• Euler angles

115

• 3x3 transformation matrix

• Quatemions

Euler angles offer the simplest representation of rotations. It stores three floating

point numbers, representing the angle of rotation around the coordinate axes,

significantly reducing the storage overhead of a transformation compared to a

4x4 matrix. However, in order to perform the transformation, this must be

converted into either a 3x3 or 4x4 transformation matrix.

3x3 matrices are the upper-left part of a 4x4 matrix, representing the rotational

component of the transformation. They requlfe significantly fewer

multiplications and additions than 4x4 matrices. A 3x3 matrix with a 30

translation vector require 9 multiplications and 6 additions to perform the

transformation; a 4x4 matrix requires 16 multiplications and 12 additions. 3x3

matrices with a translation vector therefore offer a reduced memory footprint

(12 floats as opposed to 16 floats) and require fewer operations to perform the

transformation.

Quatemions offer a different representation of a rotation. A quatemion IS

essentially a 40 complex number. It is composed of 4 parts: one real number

and three coefficients to imaginary numbers. A quatemion can be represented

as: H = a + bi + cj + dk, where a, b, c, and d are real numbers and:

i2 = l = J! = ijk = -1

ij = -ji = k

jk = -kj = i
ki = -ik = j

Quatemions hold a number of different properties, the most useful in DYEs

being that a rotation of angle e around a unit vector n can be represented by the

quatemion:

116

q = (s, v) = (cos(~ e }nSinG e))' where s is a real number and v represents a

3D vector of coefficients for the imaginary numbers i,j and k.

It can be seen that a quaternion offers a reduced memory footprint for rotations.

Coupled with a translation vector, a quaternion would require 7 floating point

numbers to represent a full transformation. However, while not fully discussed

in this section, quaternion maths requires a firm understanding of complex

numbers and is more difficult to visualise than other representations, i.e. it

results in a slight increase in development complexity. Due to floating point

rounding errors, it is possible for transformation matrices to become non­

orthogonal after a number of matrix multiplications have been performed; a non­

orthogonal matrix is a matrix whose component axes are not mutually

perpendicular to each-other. In order to overcome this, matrices must be re­

orthogonalised frequently; re-orthogonalisation is a relatively expensive

operation. Quaternions are by definition always orthogonal and, therefore, it is

not necessary to re-orthogonalise a quaternion.

In virtual environments, it is often desirable to be able to interpolate between

rotations to smoothly animate an object from one transformation to another.

Although there are an infinite number of ways to traverse from one

transformation to another, it is normal to use the shortest path from one to

another, termed the torque-minimal path. An approximation to this path can be

found using a number of techniques, the most intuitive being linear

interpolation. Given two transformation matrices, A and B, it is possible to

interpolate between these matrices to smoothly transition from A to B as below:

(l-i)A +iB, 0 ~ i ~ 1

117

Linear Interpolation Spherical Lmear
Interpolation

Figure 4.1 Linear Interpolation v Spherical Linear Interpolation

From Fig 4.1, it can be seen that linear interpolation can re ult in irregular

sampling around the circumference of a circle, which results in incon i tent

angular velocity. If this form of interpol ation was used in animation, it cou ld

sacrifice the smoothness of the animation . Quatemions offer spheri cal linear

interpolation (SLERP) , which guarantees constant angular velocity and can

provide a very accurate approximation the torque-minimal path . SLERP can be

performed as below:

sin(1- i)Q sin iQ
---- A + --- B where 0 ~ i ~ 1, A and B are the ongm and end

sinQ sinQ '

rotations respectively and n is the angle subtended by the arc , so th at co n = A

. B, the n-dimensional dot product of the unit vectors from the origin to the end .

However, spherical linear interpolation is a computationally expensive

operation, which may result in reduced performance. As such , the choi ce of

either linear interpolation or spherical linear interpolation must be made by

balancing out the computational cost against the smoothness of animation . It

should be noted that the undesirable visual effects of irregular angular velocity

can be reduced significantly by increasing the sampling frequency. For example ,

given sampling frequencies in excess of 30 samples per second , it is unlikel

that a human would be able to distinguish between both techniques . Ho >.; e er at

sampling frequencies of, say 2 samples per second it is likel y that a human

would noti ce irregular angu lar velocity.

118

There exists a transformation, termed Identity (I), which, when used to

transform a point, produces the exact same point as it was provided with; in 4\4

matrix form, this is represented as the transformation matrix:

1 000

o 1 0 0
1= o 0 1 0

000 1

Additionally, for any transformation, T, there exists a transformation, rl, such

that TxT-l = I. This is termed the inverse transformation, where performing the

transformation T followed by T- l provides the same result as no transformation

being applied whatsoever. Therefore, it can be seen that given two objects obj,

and obh with respective world transformation matrices TI and T1: Tl x T 1-
1 = I

- T2 X T l -
l transforms obh into obj/s local coordinate space. This means that it

is possible to calculate a transformation such that one object can be expressed in

terms of another object's local coordinate space, thereby removing the need to

transform both objects into world space to compare them for intersection. As

coordinate transformation is an complex operation, such an optimisation can

vastly improve the performance of a collision detection technique.

4.3 System Implementation

The design and implementation of the distributed collision detection technique

described in this thesis is relatively complex and a number of non-trivial

optimisations were performed to improve performance and reduce memory

requirements, some of which were introduced previously in this chapter.

However, to provide a more understandable description of the system

implementation, this section will describe the data members and behaviour

expected of each component which constitutes the collision detection approach,

119

rather than discussing low-level implementation details; little or no discussion

will be made of optimisations such as embedding flags into bit vectors or

encoding variables into the same data member using lowest-significant bits to

flag which data is contained. The use of these optimisations is recommended to

produce the best performance possible.

The implementation details provided in this section describe the model

described in Chapter 3, Section 3.3.11. The implementation can be logically

subdivided into three components, the Server, the Clients and the Collision

Detection Nodes. The server and collision detection node implementations rely

heavily on the use of and inter-communication between multiple threads of

execution. With the use of multiple threads of execution, it is very important to

ensure that random thread interleaving cannot result in undesirable and non­

deterministic behaviour in the application. This problem has received

considerable research interest and a number of approaches to avoid undesirable

thread interleaving have been developed. However, these techniques are outside

of the scope of this thesis and to aid clarity, descriptions of thread

synchronisation techniques and the synchronisation requirements of the

distributed collision detection approach are omitted from this chapter. The use of

thread synchronisation is critically important in a number of operations in

distributed collision detection to achieve correct behaviour.

4.3.1 The Server

The server is responsible for handling incoming requests from collision

detection nodes to join a given DYE and informing each node of the newly­

joined participant. Following this, the server must inform the new node which

objects it is responsible for in the DYE and re-allocate the existing consistency

groups in the DVE to reflect the new participant. The server must also handle

requests by existing nodes to leave the DYE and requests for membership and

120

eviction votes raised by members of each consistency group during the life-time

of the DYE. In addition to receiving requests from collision detection nodes, it is

necessary for the server to receive connection requests from clients wishing to

participate in the DYE. These clients usually have a one-to-one relationship with

collision detection nodes, but it is possible for a machine to join as a client but

not as a collision detection node and vice-versa. This provides the possibility for

low-spec machines to participate in a DYE and for collision detection to be

executed using a grid-computing model if appropriate resources are available.

The server is a separate application to the nodes, which operates in a completely

different addressable space. The Server is subdivided into a number of threads

which execute simultaneously and communicate with one-another through

shared memory. The structure of the Server can be seen in Fig 4.2. The Server

can be broken up into four threads: the main server thread, the client listen

thread, the object listen thread and the admin listen thread. The main server

thread is responsible for listening for incoming connection requests. The client

listen thread listens for state update messages from the clients, indicating that

one of the client's objects has changed its state. The object listen thread listens

for updates in object states from the collision detection nodes. A message

received by this thread indicates that a collision detection node has detected a

collision and responded to it. The admin listed thread listens for administrative

messages from the collision detection nodes; such admin messages may include:

• Requests to leave the DVE

• Requests to initiate a group inclusion or rejection vote

• Communication latency reports indicating which collision detection

nodes are possible candidates for group membership from a given node

The Admin and object communication streams are kept separate to allow

different threads to process these messages without needing to be concerned

about random interleaving between object and admin messages.

121

All of these threads are implemented using thread pools to ensure that events are

processed in an efficient manner. The choice of thread pools over one thread per

collision detection node and client is to avoid process starvation, in which the

proportion of processing resources each thread receives becomes minutely

small. To the right of the Admin Listen Thread and Object Listen Thread in Fig

4.2 is the Handshake Server. These are created on a per-collision detection node

basis and are the mechanism by which the admin and object listen threads access

the data transmitted from each individual collision detection node. Similarly, the

client update server is created on a per-client basis and is accessed directly by

the client listen thread. Both the handshake server and client update server

contain instances of an abstract Communication interface, which will be

discussed in more detail in the next section.

Server

~ u:-.u

Clio .. Lon
na. ••

~L ____ ~I _______ -+.

I Huubb I
Serwr

Upbt.

D
· ..

Figure 4.2: Distributed Collision Detection Threads

4.3.1.1 Communication Model

The communication model used in the distributed collision detection approach is

designed to be as abstract as possible. An abstract Communication interface is

122

defined through which all data communication takes place. This interface

shields the developer from the intricacies of network communication, such as

protocol selection and platform-specific issues such as proprietary system

libraries and byte-ordering. Communication objects are instantiated using a

Communication Factory. The Communication Factory provides a mechanism to

obtain standard Communication objects and Server Communication objects. The

Server Communication object is responsible for listening for incoming

connection requests and creating Communication objects to service the message

exchange requirements of each request. The Communication object provides

mechanisms to transmit primitive types to its recipients. In addition, all non­

primitive types required to be transmitted through the Communication object

must extend the Communicable interface and implement four methods:

• void encode(Communication comm)

• void decode(Communication comm)

• void encodeLightWeight(Communication comm)

• void decodeLightWeight(Communication comm)

The encode and decode methods encode and decode all member variables

belonging to the object through the communication parameter. The

encodeLightWeight and decodeLightWeight methods offer a mechanism

whereby only the minimum amount of data needed to achieve consistency is

encoded and decoded.

A number of protocols and middleware services have been integrated into the

distributed collision detection approach, including TCPIIP, UDPIIP and

CORBA. The use of flexible Communication Factories allows extensibility

whereby any protocol capable of transmitting data can be utilised transparently

within the distributed collision detection engine. The Communication interface

uses the abstraction of a packet-based data-stream, whereby in order to transmit

a message, it is necessary to:

123

• Request a handle to a message, which returns an integer identifier to a

new message object

• Submit communication primitives to the data-stream of the message

object, e.g. integers, floating point numbers, strings etc.

• Instruct the Communication object to transmit the message with a given

identifier

Once the message is transmitted, attempting to use the message handle will

result in a run-time exception; eventually the message handle will be re-used.

This mechanism offers efficient access to the communication media as it allows

numerous threads to transmit messages simultaneously. The only mechanisms

which must be completely synchronised are requesting a handle to a thread and

transmitting the data through the underlying protocol. Adding data to a message

must only be synchronised around the message itself, allowing other threads to

simultaneously access other messages. It is possible to remove the need for

synchronising adding data to a message if it can be guaranteed that a message

will only be accessed by one thread, which is the case in the current system.

4.3.1.2 Auxiliary Components

Distributed collision detection utilises a number of auxiliary components to

facilitate state replication between nodes participating in the DVE. The most

important of these are the EnvironmentProperties, Object3D and ObjectFactory

objects. The EnvironmentProperties contains all the information required to

fully describe the virtual environment. This includes members such as:

• World unique identifier: For example, identify the geometry which

describes the virtual world

• World bounds: a description of the volume of virtual space the world

occupies

124

• Participating nodes: All the collision detection nodes and clients

currently participating in the DVE

• Participating objects: All the objects currently inhabiting the DYE

• Server and Peer CommunicationFactory objects

The EnvironmentProperties type implements the Communicable interface. An

instance of EnvironmentProperties is created by the Server at DYE instantiation

and is updated when objects, collision detection nodes or clients join or leave the

DVE. The server is responsible for ensuring that all participants observe a

reasonably up-to-date EnvironmentProperties object. The

EnvironmentProperties type can be extended to include application-dependent

information which must be disseminated to all participants of the DYE. It

contains two CommunicationFactory objects: one for server communication and

one for peer communication. This enables the appropriate levels of reliability to

be employed in different communication scenarios. For example, it may be

desirable to have low-latency unreliable messaging between peer collision

detection nodes while maintaining slower, reliable (or best-effort reliable)

messaging between the collision detection nodes and the server.

The Object3D type represents an object which inhabits the DYE. It contains the

objects' geometry, collision data, textures, physics and behavioural properties.

In addition, the Object3D type can be extended by defining a sub-class of the

Object3D type which contains application-specific information.

The ObjectFactory is responsible for replicating objects across all nodes

participating in the DVE. It provides functionality to take a Communication

stream describing an object and return a reference to an instance of an Object3D

representing the object which the Communication stream described. If an

Object3D corresponding to the data contained in the Communication stream

does not already exist, the ObjectFactory creates an instance of an Object3D to

correspond with this object. Alternatively, if an Object3D corresponding with

the data is already in existence, the Object Factory returns a reference to the

125

existing object. The Object Factory also acts as a resource monitor and is

capable of re-cycling geometry information such that if two Object3Ds represent

the same type of object in the DYE, e.g. the same make and model vehicle, the

Object3Ds will reference the same geometry, texture information and some of

the same collision data. This significantly reduces the amount of memory the

DYE occupies. In order to implement this efficiently, it is necessary for the

Object Factory to be able to efficiently find Object3D instances, geometry and

texture information. In order to achieve this, a combination of hash maps and

binary search are utilised to provide extremely fast searching performance.

It is assumed that the server, clients and collision detection nodes will all utilise

compatible Object Factory instances. It is also assumed that the data describing

objects' geometry will be stored locally on the server, collision detection nodes

and clients. Streaming geometry information is not forbidden by the system

described in this thesis, but it has not been implemented in the current system

because streaming geometry data may incur significant communication costs as

next-generation platforms are capable of rendering objects constructed of large

numbers of polygons which would consume a large amount of network

bandwidth. Therefore, streaming geometry data may detrimentally affect the

responsi veness of the D VB.

4.3.1.3 Allocating Work to Collision Detection Nodes

The basic requirements of the server have already been discussed and have been

categorised into client and collision detection node issues. The main work of the

server is to ensure that the collision detection nodes perform collision detection

efficiently on consistent and up-to-date object state information. In order to

achieve this, the server is responsible for managing consistency group

membership and routing client update messages to the group leaders of the

consistency groups. While communication in normal situations occurs between

the server and each consistency group's group leader, it is necessary for the

126

server to be able to receive messages from all collision detection nodes

participating in the DVE to overcome group leader failures.

In order to efficiently utilise the collision detection nodes, each member of a

consistency group is allocated a sub-region of the DVE to perform collision

detection within. This is achieved by forming a spatial subdivision hierarchy of

the DVE and allocating a unique node in this hierarchy to each member of a

consistency group. This subdivision hierarchy is termed a distribution tree and

each node within the tree is termed a distribution node. Each consistency group

has its own distribution tree. To ease clarity, the following section does not

discuss the group leader's role in managing its group's distribution tree, which is

a shared duty between the server and the group leader.

o

3 5

2

4 6

3 4 5 6

Figure 4.3 Uniquely Identifying a Sub-region

Each vertex in the tree is given a unique identifier. The root is given the Id O. All

other vertices are given Ids based on their parent node's Id:

Left child = 2 * Parent Id + 1

Right child = 2 * Parent Id + 2

This unique vertex identification allows each sub-region of the DVE to be

identified by the server and collision detection nodes. All internal vertices store

the criteria on which the world is to be subdivided, e.g. a partitioning plane.

127

Leaves can be used to store the objects which inhabit the corresponding sub­

region of the DVE. From Fig 4.3, it can be seen that vertex 0 represents the

vertical partitioning plane separating vertices 3 and 4 from 5 and 6. Vertices 1

and 2 represent the horizontal partitioning planes separating vertex 3 from

vertex 4 and vertex 5 from vertex 6 respectively.

Each collision detection node in a consistency group is represented within the

consistency group's distribution tree by a DistributedServer object which is

placed in the distribution node corresponding to the sub-region the collision

detection node is responsible for. For example, a DistributedServer object placed

at node 0 would be responsible for collision detection on objects contained in

vertices 3, 4, 5, and 6, a DistributedServer at vertex 1 would be responsible for

collision detection on objects contained in vertices 3 and 4 and a

DistributedServer at vertex 5 would be responsible for collision detection only

on objects contained in vertex 5 (or any of its children vertices if it was

subdivided further). Each collision detection node is assigned a unique identifier

by the server when it joins the DYE, which is stored in the DistributedServer

object. The DistributedServer stores the communication information for the

collision detection node and a list of objects the collision detection node is

responsible for. These objects are categorised into two different types, persistent

objects and client objects. The state of persistent objects is maintained by the

collision detection nodes as their behaviour is controlled completely within the

DYE software. It is necessary, however, to provide the relevant collision

detection nodes with frequent state updates for the client objects which they are

responsible for collision detection upon. As such, a collision detection node is

informed of the current state of all persistent objects it is responsible for each

time its consistency group is re-allocated. Following this, the state of persistent

objects are maintained by the collision detection nodes within the consistency

group; this will be discussed in more detail later. Objects within the DYE are

referenced by two unique identifiers; the first being the index of the client who

hosts the object and the second being the object's unique identifier issued by the

128

client client. If the object is a persistent object, the client identifier is -1 and the

unique object identifier is provided by the server when the object is instantiated.

The binary tree structure lends itself towards this fonn of workload distribution.

If a higher-order tree structure was selected, such as a tree with 4 children per

vertex, the distribution of workload would be far more complex. Such a tree

structure would be capable of handling situations in which the number of

members in a consistency group is a power of 4, e.g. 1,4, 16,64 etc. However.

given a more difficult number, e.g. 5, it would be necessary to place the same

DistributedServer in more than one place in the tree. Fig 4.4 demonstrates the

difference between a binary tree and a quad-tree for use in allocating collision

detection nodes' sub-regions of a DYE. It can be seen from the diagram that a

DistributedServer will appear at most once in a binary distribution tree, whereas

a DistributedServer may appear more than once in a distribution tree with 4

child nodes per node. Fig 4.4 also shows the shortcomings of the tree

representation, in that collision detection nodes may not be responsible for equal

portions of the DYE. It can be seen from the diagram that collision detection

nodes 1, 2 and 3 are responsible for regions of the world twice as large as nodes

4 and 5. This could result in nodes 1, 2 and 3 being required to do more work

than nodes 4 and 5. However, the amount of work required to be completed by

these nodes is still a fraction of the work required to be perfonned if distribution

collision detection was not employed; in the case of Fig 4.4, nodes 1, 2 and 3

are required to perfonn collision detection for a quarter of the DYE and nodes 4

and 5 an eighth of the DYE respectively.

129

/,,,,,/

r-~>t"

(n,
1-/

/
7

8 9 10

/'
/

/'

10 II 12

I

II
/'

12 JJ

n J I

v.-~

/'

/' /

n,

J

/'

Figure 4.4 Binary Tree vs Higher-order Tree

4.3.1.4 Forming Consistency Groups

The server is responsible for organising consistency group member hip . Thi

involves re-allocating consistency groups when a new collision detection node

joins the DYE or an existing node leaves. In addition, consistency groups mu t

be modified during run-time as a result of membership votes instigated by the

collision detection nodes . As discussed in Chapter 3, it is desirable to generate

as large consistency groups as possible to provide the best possible perfonnance

and consistency in the DYE. However, if consistency groups become too large,

the group leader may become overloaded; this problem will be discussed later

when group leaders are examined in more detail.

Members of consistency groups must be able to communicate with one-another

through low-l atency network connections. When the server instantiate a

consistency group re-allocation , it requests all collision detect ion node to

130

estimate which nodes they share low-latency communication with. This can be

determined using a number of techniques, including:

• Measuring average message latency

• Analysing network addresses to select nodes co-located on the same

networks or accessing the Internet through the same network exchange

orISP

• Using high-level knowledge, such as the physical address (town/city)

which the user is registered to reside within

• User-customisable groups, e.g. groups consisting of friends or

neighbours

The system described in this chapter records the average round-trip message

delay over a given time-frame and uses this to approximate the appropriate

group memberships. This allows group membership to adapt depending on

network behaviour, e.g. network congestion. However, analysing network

performance may be inappropriate in massively mUltiplayer DYEs, where

alternative approaches may be more suitable. The use of high-level knowledge,

e.g. registered address of the user, relies on the user being honest and keeping

their address up-to-date. Similarly, user-customisable groups rely on the users

understanding that they are creating groups of nearby users; a group consisting

of members in distant countries will result in extremely poor performance.

However, a mixture of these techniques can be used, where user-customisable

groups, physical addresses or network address analysis can be used to prune the

set of collision detection nodes into smaller sets of candidate consistency

groups. This subset would allow less expensive network analysis to be

performed.

Once the server has received a list of candidate group members from each

collision detection node, it is necessary for the server to create groups of nodes

who appear in each-other's list of members. In order to achieve this, the server

creates a set of all possible groups from this data, sorted from largest group to

131

smallest group. For efficiency reasons, this set of possible groups avoids

creating subsets of groups already created to save memory. For example, given a

server hosting a DYE with 5 collision detection nodes, A. B, C, D and E that

return the candidate group members:

A = fB, C, Dj

B = fA, C, Ej

C = fA, Dj

D = fA, C, Ej

E= fDj

The set of candidate groups created would be:

ffA, C, Dj, fA, Bj,{D, Ej}

This set is then used to create the actual consistency groups. The algorithm to do

this is outlined below:

function createGroups(List candidateGroups)

List groupMernbers = getGroupMernbers();

while(!groupMernbers.isEmpty())

Sort (candidateGroups) ;

Group group = (Group)candidateGroups.removeFirst();

MakeGroup(group);

RemovelnstanceOf(group, groupMernbers);

RemovelnstanceOf(group, candidateGroups);

The above algorithm selects the largest group from the candidate groups. It then

removes the members of the new group from the list of unallocated collision

detection nodes. All instances of the members of the new group are removed

from the remaining candidate consistency groups; if this results in empty

candidate groups, then these are discarded from the list. Following this, the list

is re-sorted to ensure that the first element is the largest consistency group. If

there are remaining unallocated collision detection nodes, the process is

132

repeated. Given the previous example, this algorithm would create the

consistency groups: {{A, C, Dj, {Ej, {E}}.

4.3.1.5 Run-Time Consistency Group Adjustments

The previous re-allocation occurs when a new node joins the DVE or an old

node leaves. During the run-time of the DVE, members of a consistency group

can request for members of their group to leave the group as a result of poor

communication performance, or can request another node to join their group as a

result of fast communication perceived between themselves; nodes can only join

a consistency group at least as large as the group they are currently in. In order

to avoid nodes repeatedly requesting nodes to join and leave their group, two

threshold values are defined: the inclusion and rejection values, where inclusion

< rejection. This means that a node will only request an inclusion vote for a

node if it perceives an average transmission latency with the node less than the

inclusion threshold. Similarly, a node will only request a rejection vote if it

perceives an average transmission latency with a member of its consistency

group larger than the rejection threshold. In addition, the server can choose to

ignore requests for inclusion/rejection votes, e.g. limit the maximum number of

votes in a given time-frame.

When an inclusion vote is initiated, all members of the group must vote to

determine if the node should be included in the consistency group. Each member

can vote to include the node, reject the node or abstain from the vote if the

transmission latency they perceive makes their decision unclear. To clarify:

• If a node perceives a transmission delay less than the inclusion threshold,

it should vote for inclusion

• If a node perceives a transmission threshold greater than the rejection

threshold, it should vote for rejection

133

• If a node perceives a transmission delay between the inclusion and

rejection thresholds, it should abstain from voting

When all votes are received, if no group member rejects the node and at least

one member accepts the node, the proposed collision detection node will join the

consistency group. Similarly, when a rejection vote is initiated, each group

member (except the node which is proposed to be rejected) must decide whether

the node should be rejected from the group using a similar mechanism as the

inclusion vote:

• If a node perceives a transmission delay less than the inclusion threshold,

it should vote against the rejection

• If a node perceives a transmission threshold greater than the rejection

threshold, it should vote for the rejection

• If a node perceives a transmission delay between the inclusion and

rejection thresholds, it should abstain from voting

Once all results have been received, the decision to reject the node is based on a

weighted average of the votes. Given I inclusion votes, R rejection votes and A

abstain votes, the node will be rejected from the group if:

I + O.SA - 2R < 0

4.3.1.6 Providing the Client with State Updates

The Client is responsible for generating frequent state updates and transmitting

these to the server or group leader of its consistency group. Upon receipt of

these, it is necessary for the group leader or server to ensure that these messages

are disseminated to the other consistency groups and collision detection nodes

which must simulate these objects. When the state of client objects are changed

as a result of a collision, it is necessary for the server/group leader to inform the

client hosting this object of the event. This will be further discussed later when

group leaders are discussed in detail.

134

In a real-world DYE, it is also necessary for the server/group leader to infonn all

clients of the current state of the objects which are visible to them. This is

beyond the scope of this thesis, but it is necessary to ensure that users

experience a consistent DYE. Considerable research has been undertaken into

this problem and a number of techniques have been developed to ensure that

users receive object state updates, while reducing the volume of messages which

must be transmi tted.

4.3.1. 7 Summary of the Server

The architecture and responsibilities of the server in distributed collision

detection have been introduced. The mechanisms by which the server allocates

work to the collision detection nodes, allocates collision detection nodes to

consistency groups and communicates with the clients were discussed. While

these mechanisms are required to manage distributed collision detection, they

are relatively expensive operations. As the number of collision detection nodes

in the DVE increases, this may overload the server. As such, the notion of group

leaders, which were introduced in Chapter 3 and earlier in this chapter, will be

further examined later in this chapter as a mechanism whereby the duties of the

server are distributed among certain designated collision detection nodes. This

helps to reduce the server's processing overheads. In addition, while it is beyond

the scope of this thesis, the techniques for distributed collision detection

discussed in this chapter are not restricted to single-server architectures. The

server described in this section can be implemented using server hierarchies or

groups of peer servers to distributed the workload appropriately and increase

scalability.

135

4.3.2 Collision Detection Nodes

The collision detection nodes are responsible for detecting and responding to

collisions and ensuring that the collision events are disseminated to the relevant

clients to ensure a consistent and responsive DYE is maintained. The underlying

theory behind the collision detection nodes was introduced in Chapter 3. The

following section will discuss the structure required to implement collision

detection nodes capable of adapting to changing network properties.

4.3.2.1 Overview

The Collision detection nodes are constructed from a number of components,

some of which are common to both the collision detection nodes and the server.

Both the server and collision detection nodes share a common communication

model and utilise the DistributedServer class to store references to collision

detection nodes.

The collision detection nodes consist of two main components, the collision

detection component and the communication model component. These are kept

separate by using a class hierarchy:

• The collision detection components of the collision detection nodes are

implemented within a class called DistributionNode

• The communication model components are implemented in a class

which extends DistributionNode called DistributedNode

4.3.2.2 DistributionNode

The DistributionNode represents a node within a binary tree representing the

DYE called a distribution tree. Distribution trees are constructed on each

136

collision detection node to represent the sub-region of the DYE which they are

responsible for collision detection within and the sub-regions of the DYE other

nodes within their consistency group are responsible for. Essentially, this

structure mirrors the distribution tree stored on the server for each consistency

group. Each internal node in this tree represents a partitioning plane which

subdivides the virtual world into two sub-regions. This subdivision is performed

recursively until a number of termination criteria are reached:

• Size of the sub-region is less than some threshold value

• Depth of the tree is greater than some threshold value

• Number of leaf nodes is greater than some threshold value

These threshold values can be defined on an application-dependent basis. As this

subdivision is to be adjusted dynamically, the subdivisions are performed using

axially-aligned partitioning planes to yield fast partitioning performance.

Leaf nodes in the distribution tree contain a list of objects which occupy the

enclosed sub-region of the DYE. Each DistributionNode contains a reference to

a DistributedServer. If this reference is not null, this implies that the sub-region

represented by this node (and all of its descendent nodes) is controlled by the

collision detection node described by the DistributedServer. The local node is

responsible for collision detection in any leaf node whose descendant nodes all

contain null references to a DistributedServer.

The collision detection node is initially given a list of objects which it is

responsible for performing collision detection on by the server or group leader.

It maintains this list of objects and inserts these objects into their respective

nodes within its distribution tree. This is achieved by traversing the distribution

tree for each object and depositing the object in any leaf node which it reaches.

If tree traversal for a given object reaches a node which references a valid, non­

null DistributedServer, the object is inserted into the DistributedServer's list of

objects. This implies that the collision detection node corresponding to the

137

DistributedServer is responsible for collision detection on this object; the

corresponding collision detection node will be infonned of the state of the object

through the communication model, which will be described in the

DistributedNode class later. The descendants of a node with a non-null

DistributedServer reference are not traversed as the local node is not responsible

for collision detection on that region. If no leaf node is reached in a given

object's tree traversal, this implies that the local node is no longer responsible

for collision detection for that object, and the duties of collision detection for

that object are relinquished to other collision detection nodes in the DVE. This

mechanism ensures that if a pair of nodes are responsible for collision detection

on a given object, each node will receive state update messages for each nodes'

perceived state of the object so that any inconsistencies can be overcome.

Similarly, when a node is no longer responsible for collision detection on an

object, the state of this object is transmitted to the nodes which are required to

take over control of the object. The DistributionNode class does not manage

object ownership itself; this is the responsibility of the DistributedNode. The

DistributionNode simply provides methods to insert objects into their correct

place in the distribution tree. Pseudocode for the insertion algorithm is provided:

function insert(DistributionNode node, Object obj)

if(isLeafNode(node»

node.objs.add(obj);

return;

IIIf this node contains a server

if(node.server != null)

node.server.insert(obj);

return;

if(node.child[O] .contains(obj»

insert (node.child[O], obj);

if(node.child[l] .contains(obj»

insert (node.child[l], obj);

138

In addition, the DistributionNode contains a number of performance-enhancing

optimisations. The root node of the distribution tree contains a quick-search

reference to the DistributionNode which represents the root of the sub-region

which the local node is responsible for. In addition, the DistributionNode

contains a method by which a list of all leaf nodes below a given

DistributionNode can be retrieved; this list can be created once and stored for

quick access. This list is stored in an array, in which leaf nodes are stored in

sequential memory addresses. This provides high-levels of cache-coherence to

help improve collision detection performance.

Collision detection between objects is performed on a per-leaf node basis. This

utilises the flattened list of leaf nodes. The algorithm for this is provided below:

function collisionDetection(List leaf Nodes)

for(int a = 0; a < leaf Nodes. size; a++)

DistributionNode node = leafNodes.get(a);

for(int objl = 0; objl < node.numObjs - 1; objl++)

for(int obj2 = objl+l; obj2 < node.numObjs; obj2++)

Point p = node.objs[objl] .pos + node.objs[obj2] .pos;

p/=2.0;

if(node.contains(p))

if(node.objs[objl] .collide(node.objs[obj2]))

//Collision response

The collision detection algorithm essentially iterates through all leaf nodes. In

each leaf node, all objects are compared with one-another using a brute force

139

algorithm. However, each pair of objects is only compared with one-another if

the centre point between the two objects is inside the sub-region represented by

the leaf node. This ensures that the same pair of objects is not compared for

collision with one-another more than once. The algorithm described in this

section is simplified. For example, rather than simply returning a Boolean, the

collision detection algorithm used returns an approximation to the point of

contact or points of contact, depending on the parameters passed to the

algorithm. These points of contact can be used to determine how the collision

should be responded to accurately using a dynamic simulation.

The spatial subdivision approach initially subdivides the DYE into uniform­

sized discrete regions. However, the distribution of objects throughout the DYE

may not be uniform. To reflect this, each collision detection node's distribution

tree is dynamically updated to reflect the distribution of objects. To clarify, a

leaf node is further subdivided if the number of objects in the sub-region

corresponding to the leaf node is larger than some threshold value. Similarly, if

the number of objects in a pair of peer leaf nodes' sub-regions is fewer than

some threshold value, these two leaf nodes are merged together into a single

node. This form of adaptive spatial subdivision allows the distribution tree to

evolve to reflect the distribution of objects. However, to avoid nodes being

repeatedly merged and split, the threshold values used for merging and splitting

should be different, where Threshold(merge) < Threshold(split). The optimal

values for these thresholds are platform-dependent, as different machine

architectures may perform better with different threshold values; these values

are affected by machine-specific factors, including as CPU cache size and BUS

bandwidth.

4.3.2.3 Narrow Phase Collision Detection

The distributed collision detection system presented in this thesis allows a wide­

range of narrow phase collision detection algorithm to be employed. However,

140

the default algorithm used in this system is a BSP tree-based time-dependent

approximation collision detection algorithm. The algorithm is capable of

determining the exact points of contact to the sub-polygon level. However, it

adapts the level of detail of collision detection to reflect the amount of time

collision detection took in previous time-steps as, due to temporal coherence, the

number of collisions detected at time t are likely to be similar to the number of

collisions detected at time t+~, provided ~ is small.

The developer or user is required to provide a duration by which collision

detection is required to have completed, e.g. lOms. This value is used to tune

collision detection accuracy by reducing or increasing the depth of the tree that

can be traversed before an approximation to the point(s) of contact can be found.

The narrow phase algorithm takes the following parameters:

• A flag indicating termination of collision detection when a given number

of points of contact are found

o If the flag less than 1, this indicates all points of contact should

be found

o If the flag is greater than or equal to 1, collision detection is

terminated when this number of points of contact are found

• An integer indicating the maximum depth of traversal

o If the value is -1, the tree can be traversed to any depth

The flag indicating the maximum number of points of contact can greatly reduce

the time taken for collision detection in certain cases. For example, if two

objects are completely intersecting one-another, finding all points of contact

may be very time consuming, whereas finding just one point of contact will be

very fast. The integer stating the maximum depth of tree traversal can also affect

collision detection performance. For example, if collision detection is allowed to

progress to depth 12, up to 212 - 1 nodes could be passed through prior to

collision detection completing. Therefore, if the maximum depth is decreased by

1, the number of nodes being passed through can be halved. If the objects are

141

found not to be intersecting in the early stages of tree traversal, the tuneable

variables will have little effect on collision detection perfonnance. However, if

the objects are found to be intersecting, both of these variables can significantly

speed up intersection tests at the cost of accuracy. Restricting the number of

points of contact may result in:

• Noticeable jittering and failure of an object to reach restitution in a

dynamic simulation

• Undesirable or inaccurate response to collision

Reducing the maximum depth of tree traversal may result in:

• Undesirable or inaccurate response to collisions

• False positives being returned, where close but non-intersecting objects

are deemed to being colliding

However, these inaccuracies largely go unnoticed as humans are usually unable

to recognise unrealistic physics response. In addition, the problem of objects not

reaching restitution can largely be ameliorated by freezing objects when their

angular and linear velocity falls below some threshold value. This, in fact, must

usually be perfonned even with the most accurate collision detection and

dynamic simulation; due floating point rounding errors it is often impossible to

guarantee an object controlled by a dynamic simulation will reach complete

restitution without the use of such approaches.

The narrow phase algorithm used in the system described in this thesis adapts

both of these level-of-detail variables to provide accurate collision detection for

the objects occupying the DYE while attempting to reduce the processing time

required for collision detection below a threshold value. If it is not possible to

reduce the time below a threshold value, both variables will be fixed at their

lowest detail setting. Conversely, if the node is capable of perfonning collision

detection in time shorter than the threshold time, the detail settings will be fixed

to their largest setting. Commonly, however, the detail levels will fluctuate as a

result of the objects' behaviours within the DYE.

142

The collision detection algorithm uses just-in-time polygon and bounding

volume transfonnations to ensure that vertices are only transfonned if they are

required to be compared for intersection. In addition, the algorithm halves the

number of transfonnations required by utilising inverse transformation matrices.

The inverse transfonnation matrix for the object with the most polygonal

complexity is determined. This inverse matrix is multiplied with the other

object's world transfonnation matrix and used to transform the less complex

object's vertices into the more complex object's local space. The reSUlting

transfonnation matrix is stored and used only when bounding volumes or

primitives must be compared for intersection. The results of this transformation

are stored, along with a timestamp, to ensure that the polygon is transformed at

most once in any given intersection test.

The use on-the-fly transfonnations usually results in far fewer transformations

being perfonned than would be required if all vertices and bounding volumes

were transfonned. This is because, in most cases, either the objects do not

intersect or only demonstrate a small degree of intersection. The use of inverse

matrices further reduces the number of transfonnations that must be performed.

4.3.2.4 DistributedNode

The DistributedNode class extends the DistributionNode class to provide a

mechanism for communicating between collision detection nodes and between

collision detection nodes and the server. The DistributedNode occupies the root

position of each collision detection node's distribution tree; each descendant

node of the root node is a DistributionNode, as described previously. The

structure of the distribution tree can be seen in Fig 4.5.

143

----(~ DistributedServer corresponding to node J

~ DistributedNode

2

/

/
7 8 9 10 II 12 13 14

Figure 4.5 Collision Detection Node's Distribution Tree

Fig 4.5 shows a DistributedNode at the root of the distribution tree. All

descendent nodes are of type DistributionNode. The tree shows that the local

node is responsible for collision detection on the sub-region of the DYE

corresponding to the internal node with id 3. In addition , there are three other

collision detection nodes within the consistency group responsible for colli ion

detection on the sub-regions corresponding to nodes 4 , 5 and 6 respecti ve ly.

The DistributionNode class is essentially responsible for adaptively subdividing

the DYE into sub-regions, placing the objects in their respecti ve sub-regions and

invoking collision detection between objects sharing the same sub-regions. The

DistributedNode class is responsible for:

• Object management

• Object replication and transfers

• Consistency group performance monjtoring

• Communication with group leader and server

144

4.3.2.5 Object Management

Object classification was discussed in Chapter 3, in which three different types

of objects were defined:

• Immoveable objects

• Deterministic dynamic objects

• Avatars

Immoveable objects are objects which do not move during the life-time of the

DYE; this includes objects which constitute the fixed environment, such as

floors, walls, ceilings, staircases etc. Due to the fixed nature of these objects,

they can be treated differently from other objects in the DYE by being placed

into their respective sub-regions at initialisation and never need to be re­

positioned.

Deterministic dynamic objects are objects which move throughout the DYE in

response to collisions or through application-dependent AI routines. The

behaviour of these objects can be deterministically modelled and, as such, can

be relatively accurately replicated between collision detection nodes and

consistency groups.

Avatars, conversely, demonstrate behaviour which is non-deterministic as they

are controlled by external users. Therefore, the state of avatars cannot be

accurately modelled or replicated without the use of high-fidelity message

exchange between the collision detection nodes and the client which hosts the

avatar in question.

The DistributedNode, Group Leader and Server treat these objects differently.

Upon joining a DYE, the DistributedNode is informed of all immoveable objects

in the DYE. As these objects will not move during the course of the DYE. these

145

objects will always be completely consistent between all nodes participating in

theDVE.

Deterministic dynamic objects are assigned to collision detection nodes by the

server during consistency group reallocation. After this, the collision detection

nodes in each consistency group are responsible for managing the state of these

dynamic objects without the need for intervention from the server. The collision

detection nodes in a consistency group are required to transmit object replication

and transfer messages between one-another to ensure that the appropriate nodes

accept responsibility for collision detection during the lifetime of the DYE.

Upon response to collisions, collision detection nodes are required to transmit

the updated state of the colliding objects to their group leader; the group leader

will, in tum, handle inconsistencies in object states within its consistency group

and forward the internally-consistent state on to the server and clients. The

server will, following receipt of new object states, resolve any inconsistencies

between consistency groups and store the current state of all objects in the DYE.

Collision detection nodes will be informed of up-to-date object states by the

server during group reallocation or in the event of node failure. This mechanism

reduces the server's processing and communication requirements by allowing a

degree of inconsistency to emerge between dynamic deterministic objects

between consistency groups.

Collision detection nodes are assigned avatar objects through the use of frequent

state update messages transmitted by the group leader to its group members. The

group leader receives avatar state updates from a combination of the server and

the clients which are connected directly to it. To clarify, a client is a process

which provides a graphical user interface to the user and disseminates the

current state of the avatars it hosts. Clients may be hosted on collision detection

nodes. If a client is hosted on a collision detection node, the client transmits its

frequent state updates to its consistency group's group leader; if the client is

hosted on the consistency group leader, the state updates are performed using

146

shared memory updates on the object state. If the client is not hosted on a

collision detection node, its state updates are transmitted to the server. When a

group leader receives state updates directly from a client, the group leader

forwards these state update on to the server, which transmits the state update to

any other consistency groups in the DYE through their group leaders. Upon

receiving avatar state updates, the group leader transmits the latest avatar state to

the collision detection nodes responsible for collision detection upon it.

Additionally, the state update is transmitted to any collision detection node

previously responsible for collision detection on the object to ensure the

collision detection node acknowledges the object's new state and relinquishes

responsibility for its collision detection.

Collision detection nodes retain the state of avatar objects between frequent state

updates. The state of these objects can be updated using extrapolation

techniques, such as dead reckoning, in an application-dependent manner. When

a collision is responded to, the state of the objects involved in the collision are

transmitted back to the consistency group leader. The group leader transmits the

updated state of the avatar in the following way:

• If the avatar is hosted on a client which is directly connected to this

group leader

o Transmit the updated state to the client

• Transmit the updated state of the avatar to the server

Upon receiving an updated avatar state, the server responds accordingly:

• If the client hosting the avatar is communicating directly with the group

leader who transmitted the message

o Record the state update and disseminate it to the other group

leaders for use in subsequent collision detection

• If the client hosting the avatar is not communicating directly with any

group leader

o Record the state update and disseminate response back to client

147

• Otherwise, do not record the state update, as the client hosting the avatar

is engaged in high-fidelity communication with another group leader.

This implies that the client's group will have access to more up-to-date

state information and, as such, will provide more accurate and consistent

collision results.

The server, clients and collision detection nodes employ message buffering

techniques, where non-admin messages are transmitted at regular frequencies.

To clarify, rather than transmitting a message whenever a collision event is

detected, the collision detection node stores a list of objects which have been

involved in collisions since the last message was sent. After a given time has

passed since the transmission of the last message, the collision detection node

will transmit the states of any objects involved in collisions. This mechanism

better utilises the available bandwidth by avoiding sending bandwidth-expensive

short messages. In addition, it reduces the computational overhead associated

with message transmission. Similar techniques are employed in the server and

group leader processes.

4.3.2.6 Object Replication and Transfers

Each collision detection node is responsible for object replication and object

transfers within its consistency group. Object replication occurs when two or

more collision detection nodes are responsible for collision detection on the

same deterministic dynamic object. Object transfers occur when a deterministic

dynamic object is passes from a sub-region control1ed by a given col1ision

detection node to a sub-region controlled by another collision detection node.

Object replication and transfers are performed using similar techniques. Both

involve the direct communication between collision detection nodes, whereby a

message is transmitted from one node to another informing the recipient of the

current state of an object as perceived by the message originator. These

148

messages are transmitted whenever an object is passes through a node in a

collision detection node's distribution tree which contains a non-null

DistributedServer reference. If the object in question also occupies one or more

sub-regions which the local collision detection node is responsible for, the local

node retains a reference to the object. If the object no longer occupies any sub­

regions which the local node is responsible for, the local node relinquishes

responsibility for the object, which is transferred to the recipients of the

message.

This mechanism requires that all members of a consistency group have

sufficient knowledge of their group members to be able to transmit messages to

one-another. Given that collision detection is performed at a relatively high

frequency, as an object travels from one node's sub-region to another's, the

object will most likely be replicated for a number of collision detection

iterations before it is transferred completely. If the frequency of collision

detection could be guaranteed to be sufficiently quick that an object could not

pass completely through a sub-region, it would be possible to reduce the amount

of information about its group a collision detection node is required to know. In

this situation, a collision detection node must only know about the nodes

responsible for sub-regions neighbouring the regions it is responsible for

collision detection upon. However, the frequency of collision detection is largely

application dependent and, therefore, such conditions cannot be assumed to

hold.

4.3.2.7 Consistency Group Performance Monitoring

In order to adapt consistency group membership during run-time to reflect

system bottlenecks and network behaviour, it is necessary for the collision

detection nodes and server to continually gather performance metrics. Each

collision detection node records average message round-trip delays between

itself and the other collision detection nodes participating in the DYE. This

149

information is used to determine whether a collision detection node is capable of

communicating another node sufficiently quickly to be part of the same

consistency group. This information is used to create a list of candidate group

members when requested to do so by the server; this occurs whenever a node

joins the DVE or a membership vote is initiated.

Each collision detection node transmits a ping message at a fixed frequency and

measures the time taken to receive a response from each node. The average time

is constructed over the most recent n messages, where n is an application­

dependent variable. The average message transmission delay is analysed as

follows:

• If the pair of nodes currently share a consistency group

o If average message delay > rejection threshold or instantaneous

message delay> rejection threshold + tolerated deviation

• Instantiate rejection vote for object

• If the pair of nodes do not share a consistency group

o If average message delay < inclusion threshold

• Instantiate inclusion vote for object

Once a vote has been instantiated, the collision detection nodes must use their

most recent message transmission delays to determine whether a node should be

included or rejected from a consistency group.

4.3.2.8 Group Leader

The group leader is an additional processing thread which is initialised on a

collision detection node when it is promoted to group leader by the server. The

choice of group leader is arbitrary; the server in described in this chapter selects

the node in the consistency group with the smallest id, i.e. the consistency group

member who joined the DVE earliest.

150

The group leader thread receives messages from:

• Clients providing avatar state updates

• Collision detection nodes providing collision responses

• The server providing avatar updates

The group leader is responsible for managing avatars within its consistency

group and for collecting the results of collision detection and disseminating this

to the server and clients directly connected to it. In order to achieve this, the

group leader process is continually listening for messages from its group

members. This can help to increase the scalability of the server at the cost of the

performance of the collision detection nodes which are promoted to group

leader. The benefit of group leaders is that the group members should exhibit

low-latency network connections between themselves and their group leader.

This will ensure that update messages within a consistency group are delivered

to the appropriate clients and collision detection nodes quickly enough to

provide high-levels of interactivity and consistency to the group members. The

group leader strategy, however, can introduce additional delays in the receipt of

messages originating from outside of the consistency group. However, this

additional delay is minor and it is possible that messages may in fact be

delivered more quickly as a result of the server's reduced message transmission

requirements.

4.3.2.9 Collision Detection Node Joining the DVE

It is necessary to describe the steps required for a new collision detection node

to join a DYE. Initially, the new collision detection node transmits a connection

request to the main server of its desired DYE. The server responds by allocating

the collision detection node a unique identifier. It then informs the existing

collision detection nodes in the DYE of the presence of the new collision

151

detection node. During this time, the new collision detection node opens a

ServerComrnunication object which listens for incoming connection attempts

from the existing collision detection nodes.

Each existing collision detection node transmits initial handshake messages to

the new node and, from these and an initial ping request, predicts whether or not

the new node could be part of its consistency group. Upon receiving these initial

potential group allocations, the main server reallocates group membership.

While this reallocation is being performed, any consistency groups whose

membership is being altered are instructed to perform collision detection locally.

While they perform local collision detection, additional threads perform the

required handshaking to initiate communication between themselves, their group

members and the group leader. Once this handshaking is completed, the group

leader instructs the collision detection nodes to begin working together on

collision detection.

4.3.2.10 Collision Detection Node Threads

The collision detection nodes, much like the server, are constructed from a set of

components which are responsible for handling different classes of message

exchange and responding to these messages appropriately. These components

occupy different threads of execution and utilise shared memory to

communicate between one-another and access shared objects. As mentioned

previously, the collision detection nodes contain a distribution tree, where the

root of the tree is a DistributedNode object and the remaining nodes in the

distribution tree are DistributionNode objects. The DistributionNode objects are

responsible for performing collision detection on the objects inhabiting the

DVE. The DistributedNode inherits from the DistributionNode and provides the

functionality to perform collision detection in a distributed manner. Fig 4.6

shows the data members and threads present in the DistributedNode object.

152

I DistributedNode I
I Data Members I

EnviromrentProperties Local Dynamic Local A "atar Objects
Deterministic Objects

Server Co rnrrun ication

I Threads/Message Handlers I
Dis tributedNode Object Receiver Peer Co rnrrunicat ion
Update Thread Object

Dis tributedNode Group Merrber Listen Co rnrrunicat ion Ping
Object Broker Thread Thread

Group Leader Thread

Figure 4.6 DistributedNode Architecture

The EnvironmentProperties object contains a list of all the collision detection

nodes participating in the DYE, each referenced by a DistributedServer. It also

contains references to all objects in the DYE, through the use of an

ObjectFactory. The DistributedServer object contains the corresponding

collision detection node's communication information. The DistributedNode

contains the list of dynamic deterministic and avatar objects it is responsible for

in the DYE. The list of immoveable objects is maintained in the

EnvironmentProperties object and is pre-inserted into the distribution tree. The

server communication contains the communication information for the DYE

server; in practice, this is separated into admin and object communication

information, which may be separated by, for example, the port number

communication occurs upon.

153

4.3.2.10.1 DistributedNode Update Thread

The DistributedNode Update Thread listens for admin messages from the server.

This includes the following messages:

• Update EnvironmentProperties

• Update EnvironmentProperties Light Weight

• New Client

• New Collision Detection Node

• Group Allocation

• DYE Exit

The Update EnvironmentProperties messages are a catch-all message type

whereby the most recent EnvironmentProperties are transmitted from the server

to the collision detection node. This can be performed using both light weight

and standard mechanisms; the light weight mechanism does not encode data

which should be constant, such as world bounds, world identifiers, immoveable

and dynamic deterministic objects.

A New Client message informs the collision detection node of the inclusion of a

new client and, possibly, new avatar objects into the DVE.

A New Collision Detection Node message informs the collision detection node

of a new collision detection node joining the DVE. The receipt of this message

implies that the new collision detection node is ready and waiting for connection

attempts and ping requests; the steps required for a collision detection node to

join the DYE were outlined previously. Following connecting to the new node,

the nodes transmit potential consistency group allocations, which the server uses

to reallocate the consistency groups within the DYE.

A Group Allocation message instructs the collision detection node to join the

consistency group described in the message; this may cause the collision

154

detection node to become a group leader, cease being a group leader or connect

to a new group leader. If the node is joining a group with the same group leader

as the group it previously occupied, the node need do nothing. However, if it is

joining a group run by a different group leader, the collision detection node must

establish a Communication stream between itself and the new group leader.

A DVE Exit message instructs the node to exit from the DVE. This may be as a

result of the node requesting to quit the DVE, in which case this message

provides the node with permission to quite. Alternatively, it may be as a result of

a serverlDVE update or an irrecoverable error in the DYE which the server must

re-start the DVE to resolve. The receipt of this message causes the collision

detection node to close all Communication streams and exit the DVE.

4.3.2.10.2 Object Receiver

The Object Receiver is responsible for receiving avatar object state updates from

the server. These state updates are only transmitted to the group leader.

However, each node can potentially become the group leader, so each node

maintains an instance of an ObjectReceiver at all times. Avatar state updates

need only be received between collision detection iterations. As such, rather

than executing in a separate thread, this is performed in the main thread, where

the Communication stream is polled to determine if avatar update messages are

waiting to be received. Avatar update messages are transmitted through a

specific Object communication stream, which means that the presence of a

message can be determined by testing to see if any data is currently unread in

the stream. If an object update is received, the object update is passed to the

ObjectFactory to find an existing reference to the object and update its current

state; if no reference is found which matches the object, it is assumed that the

object update has become corrupted during transmission and is discarded as the

node should have received an admin message informing it of the presence of a

new object prior to receiving the object's state update messages.

155

4.3.2.10.3 Peer Communication Object

The Peer Communication Object transmits object replication/transfer messages

at regular intervals to the relevant collision detection nodes. The regularity of

these messages are application-configurable; transmission frequencies can be

defined in terms of time duration or number of collision detection iterations. The

messages transmitted by the Peer Communication Objects are consumed by the

corresponding collision detection node's DistributedNode Object Broker.

4.3.2.10.4 DistributedNode Object Broker

The DistributedNode Object Broker is responsible for receiving object state

updates from the other collision detection nodes within a node's consistency

group. This form of state update can be received between collision detection

iterations. As such, the process is performed in the main thread of execution.

The Communication streams which must be read from exclusively transmit

object replications/transfers between collision detection nodes. As such, the

presence of an object transfer/replication message can be determined by

checking if there is unread data in the relevant Communication streams. If an

object replication/transfer message is received, the data is passed to the

ObjectFactory, which searches for the object and updates its current state; if the

object is not recognised then the message is consumed and thrown away. If a

valid object state update is received, the object which this message refers to is

added to the list of objects which the collision detection node is responsible for.

4.3.2.10.5 Group Member Listen Thread

The Group Member Listen Thread receives messages from the group leader.

These messages include:

• Node Update Messages

156

• Object Dispatch Messages

The Node Update Message is an aggregated state update message describing the

objects which this node must know about but is not responsible for collision

detection upon. This form of message is transmitted by the group leader when a

new node joins the group leader's consistency group. This ensures that the new

node's view of dynamic deterministic objects is consistent with the groups view

of the objects; each group's view of the objects may differ.

The Object Dispatch Message contains the current state of the avatar objects the

collision detection node is responsible for. Depending on the options prescribed

for the collision detection node, this message can be used to completely

synchronise the state of the DYE between all collision detection nodes in the

consistency group. This can be achieved if each node waits for an object

dispatch message before executing the next collision detection iteration.

However, to increase the responsiveness of the DYE, an extrapolation

techniques, such as dead reckoning, can be utilised to predict the position of

avatar objects between object dispatch messages allowing the collision detection

nodes to perform collision detection upon the objects between these messages.

If a collision detection node is promoted to group leader, its group member

listen thread is disabled as it is not necessary to transmit/receive messages

to/from itself.

4.3.2.10.6 Communication Ping Thread

The Communication Ping Thread is a low-priority thread which monitors ping

performance between itself and other nodes in the DYE. Ping messages are

transmitted at low-frequencies to all other collision detection nodes in the DYE.

The frequency of ping message transmission is proportional to the average

communication delay perceived between the collision detection nodes. To

157

clarify, collision detection nodes in the same consistency group will transmit

ping messages and evaluate group membership with one-another more

frequently than they will with collision detection nodes exhibiting large message

transmission delays. Ping messages are sent at frequencies within a fixed

interval, where:

• Pings to collision detection nodes whose transmission delays are less

than some minimum threshold value are transmitted at the minimum

interval

• Pings to collision detection nodes whose transmission delays are larger

than some maximum threshold value are transmitted at the maximum

interval

• All nodes whose transmission delays are between the minimum and

maximum threshold values (threshold(min) and threshold(max)

respectively) are transmitted at a proportional frequency. Given

minimum interval Ivl(min) and maximum interval Ivl(max), the

transmission frequency can be calculated using the following formula:

. t-threshold(min)
transmission(t) = Ivl(min) + (lvl(max) - Ivl(mm»---------''----'---­

threshold(max)- threshold(min)

For example, given t = 25, threshold(min) = 10, threshold(max) = 1000,

Ivl(min) = 5, Ivl(max) = 500, transmission(t) = 12.5 seconds

This mechanism helps to reduce the bandwidth consumption and computational

expense of the ping messages. It is intended to react to changes in network

behaviour as a result of network congestion, while specifically targeting the

majority of network analysis between collision detection nodes exhibiting low­

latency network transmission.

158

4.3.2.10.7 Group Leader Thread

The Group Leader Thread is responsible for receiving the results of collision

detection from its group members. When a node is promoted to group leader, it

opens up a Communication stream through which its group members can

transmit messages directly to it. These messages include:

• Avatar Update Messages

• Collision Detection Results

Upon receiving an avatar update message, the group leader forwards the state of

this object to the main server, which will in tum forward this message to the

other consistency groups in the DYE. The group leader also uses this message to

update its view of the object's state and informs the relevant nodes of the

avatar's new state through an object dispatch message. However, to better utilise

bandwidth, the group leader can choose to buffer incoming avatar update

messages and dispatch update messages when the object's state deviates

significantly from the previous state or the extrapolated state if dead reckoning

is employed on the collision detection nodes; the use of dead reckoning can be

enabled in the EnvironmentProperties object.

Upon receiving a Collision Detection results message, the group leader forwards

the results to the main server. These results are also forwarded to the relevant

clients. The group leader updates its view of the objects in the DVE and includes

the updated avatar object states in any subsequent object dispatch messages. The

group leader does not disseminate the updated states of the dynamic

deterministic objects to the collision detection nodes as the collision detection

nodes are responsible for maintaining each-other's consistent view of these

objects through the use of object replication and object transfer messages.

159

4.3.3 Reliability and Fault Tolerance

Reliability and fault tolerance are extremely important issues in any distributed

system. They are an open and popular topic of research which have received a

great deal of interest. Reliability and fault tolerance are outside of the scope of

this thesis and, therefore, will not be discussed in great detail. While a great deal

of effort was expended to produce a reliable distributed collision detection

approach, the reliability is based on the assumption that the main server is

reliable and that admin messages transmitted between collision detection nodes,

clients and servers are reliable. To clarify, a reliable server is a server which will

not break; should the main server break, the DYE will come to an end.

Mechanisms may be in place to roll back the state of the DYE to some recorded

point prior to the server's failure, but this, again, is beyond the scope of this

thesis. In addition, a reliable message is a message which will be delivered

successfully to its intended recipient eventually. Both of these assumptions can

not be guaranteed in real-world deployment due to the presence of mechanical

failures and the unreliable nature of the Internet. However, best-effort reliability

can be provided which offers high-probabilities of reliable service but cannot

guarantee the absence of failures.

There are a number of problems which can emerge during the runtime of the

DYE. These problems can, if they are not detected and responded to, cause

undesirable loss of responsiveness or failure to detect and respond to collisions

appropriately. The main issue of concern is if a collision detection node fails or

becomes a bottleneck. In the case of collision detection node failure, its

members in its consistency group will detect an increase in ping transmission

delays. During this time, a number of seconds may have elapsed in which this

collision detection node's sub-region did not receive collision detection/response

in the consistency group. This will cause a loss of consistency. However, once

the increased ping latency has been detected, the group will initiate a vote and

160

the collision detection node will be evicted from the group and inserted into a

singleton consistency group. This will ensure that the node does not compromise

other nodes' responsiveness. If the node which failed was the group leader. a

new node will need to be promoted to group leader status. The failure of a group

leader may result in significant inconsistency and loss of responsiveness in the

consistency group. However, this will be overcome with the appointment of a

new group leader and the re-dissemination of current world state by the server to

the new group leader.

While the collision detection node is in a singleton consistency group, it is

responsible for collision detection by itself. As such, it will not detrimentally

affect the DYE if it fails to perform collision detection. The main server is

responsible for detecting failed nodes; this mayor may not be possible

depending on the network protocols used but, for example, it is possible to

detect a potentially failed node using TCPIIP by the connection timing out. If the

server detects a timed out failed node, it will remove the node and any objects it

hosts from the DYE.

All admin messages are assumed to be reliable. However, all non-admin

messages can be transmitted either best-effort reliably or unreliably. Failure to

deliver any non-admin messages will result in inconsistency until subsequent

messages are received. However, it will not cause failure. However, the level of

consistency within a consistency group will still be no worse than if collision

detection and response was executed individually on each node in the

consistency group.

4.4 Summary

This Chapter introduced the implementation issues which must be overcome in

order to implement a consistent, scalable collision detection approach for DYEs.

161

This discussion included the choice of programming languages and platform­

specific analysis of a number of current and future DYE platforms. These

discussions included aspects such as:

• Programming paradigms

• Performance

• Memory requirements

• Platform-specific libraries and support

• Presence and granularity of pre-emptive multitasking

• Platform architecture and resources

• Platform-specific rules and optimisations

Following this, the architecture and requirements of the distributed collision

detection approach described in this thesis were introduced. The problem of

distributed collision detection was subdivided into the server, clients and

collision detection nodes. Following this, the server, clients and collision

detection nodes were further subdivided into their constituent components,

which were analysed in terms of their purpose and responsibilities.

Following this, the algorithms and data structures required to implement the

collision detection approach were discussed and potential optimisations were

suggested, although the details of how these optimisations are implemented

were omitted to aid clarity.

The problems of reliability and fault tolerance were discussed briefly. The

assumptions which underpin the collision detection approach were outlined and

some potential error conditions were described including the mechanisms by

which the collision detection approach dealt with them.

162

Chapter 5

Experimentation

5.1 Introduction

This chapter describes provides experimental results to measure the performance

and scalability of the distributed collision detection approach described in this

thesis. This chapter describes the environments in which the experiments are

conducted. This includes:

• Constant DVE properties

• Variable properties

The effects of these properties on both performance and scalability are

discussed. The experimental platform is described. A brief discussion on the

expected behaviour and scalability of the experimental DYE is discussed prior

to the presentation of collected results.

163

5.2 Experimental Platform

Experimental results are collected from a non-interactive DYE. This allows the

behaviour of the objects occupying the DYE to be replicated in subsequent

experiments to obtain results from different configurations operating on a DYE

exhibiting the same events. While an interactive DYE has been developed,

results are conducted on a simulated DYE to obtain performance figures from a

DVE inhabited by large numbers of objects (in the order of thousands); an

interactive DYE with an equivalent number of participants is not currently

possible for logistical reasons.

The DYE used in the experiments described in this chapter is simplified,

whereby objects in the DYE can interact with one-another but there is no

environment model which constrains their movement. This allows objects to

move freely throughout the DYE without the need for path-finding AI to

navigate through complex environment models. The world is enclosed within a

cubic AABB which represents the maximum and minimum coordinates of the

world. This AABB is scaled proportionally to the number and size of objects in

the DYE, such that a world size can be selected to obtain a given probability of

collisions occurring.

Collision detection nodes are hosted on a cluster of 2.8GHz P4 PCs with

1024Mb RAM running Red Hat Linux 7.0. The server is hosted on a 2.40Hz

Intel Xeon server with 4096Mb RAM. However, the machines used in these

experiments are a shared resource and, as such, the performance results gathered

in these experiments may be affected by processes competing for processing

and/or memory resources. In order to minimise the impact of the effect of

competing processes, the averages of three independent sets of results will be

presented in this thesis.

164

5.2.1 Probability of Collisions Occurring

The probability of a collision occurring between two objects in the DYE is the

likelihood of the space enclosed by the objects overlapping. Given two objects,

OJ and 02, with volumes vol(oJ) and vol(02) respectively, and a total world

volume vol(world). The probability of these two objects intersecting is

proportional to the total volume of the objects with respect to the volume of the

world. For example, if vol(world) < (vol(oJ) + vol(02», the probability objects 01

and 02 intersecting is 1 because the volume of the world is sufficiently small that

there is no position/orientation of the objects which can result in them being

disjoint.

The lattice model can be used to formalise the probability of collisions occurring

within a virtual world. Recall that the lattice model was introduced in Chapter 3,

Section 3.2.1, to formalise bounding volumes to prove the assertion that if a pair

of bounding volumes does not intersect, the objects which the bounding volumes

enclosed also do not intersect. Given a virtual world represented as a lattice

composed of n points and two objects, OJ and 02, each of which occupy P points

in space designated by the sets pJ and P2. The probability of non-intersection is

the probability of their being no common point in pJ and P2, i.e. PI n P2 = O.

Given that object OJ is already placed in the YE, the probability of object 02 not

intersecting OJ is the probability of P2 not containing any element of pJ. The total

number of combinations of p points can be expressed mathematically as

n! Given that P points are already occupied, there remain
p!(n- p)!

(n - p)! combinations of points which 02 can occupy which provide
p!(n-2p)!

disjointedness. In practice, this is not entirely true as the points which an object

occupies will, in most cases, be localised within a given area rather than being

165

arbitrarily placed around the virtual world. However, this provides a general

metric as to the probability of objects intersecting, which can be expressed as

below:

n! (n- p)!

p!(n- p)! p!(n-2p)! = 1- (n- p)!2

n! n!(n-2p)!
p!(n- p)!

In order to obtain a valid probability, it is necessary to clip the result of this

formula within the range [0, 1]. For example, given n = 10 and p = 2, the

probability of two objects colliding within the world is 0.378.

With the probability of a pair of objects intersecting, it is possible to determine

the expected number of collisions in a virtual world. Recall from Chapter 2 that

the maximum number of collisions that can occur in a world composed of 0

b· . 0(0-1) 11" Th f . h h b b"l" f II"" o ~ects IS co ISlOns. ere ore, gIven t at t e pro a 1 Ity 0 a co ISIon
2

occurring, P, has been determined based on the volume of the world compared

to the volume of the objects which occupy it, the expected number of collisions

in the virtual world is P 0(0 -1) . It can be seen from the quadratic nature of the
2

function that, given a constant P, the expected number of collisions would

exhibit O(n2) growth, i.e. If the number of objects was doubled and:

• the world size remained constant, the expected number of collisions

would quadruple

• the world size was doubled, the expected number of collisions would

double

• the world size was quadrupled, the expected number of collisions would

remain constant

The experiments described in this chapter scale the world size such that as the

number of objects is doubled, the size of the world is doubled, which leads to a

166

linear increase in the average number of collisions occurring in the virtual world

as the number of objects is increased.

5.2.2 Experimental Virtual Environment

The DYE used in the experiments described in this chapter is initialised with a

fixed number of deterministic dynamic objects. As clients join the DYE, they

introduce their avatar objects into the DYE and propagate frequent state update

messages for their avatar. In addition to introducing an avatar into the DVE,

each client machine assumes the duties of a collision detection node for

distributed collision detection.

Throughout the experiments, the following variables will be modified and

performance figures will be obtained:

• The initial number of objects the DYE is created with

• The volume of the virtual world

• The number of clients and collision detection nodes participating in the

DYE

Altering the initial number of objects in the DVE allows the scalability and

responsiveness of the distributed collision detection algorithm to be analysed.

This includes the determination of the general performance of the algorithm and

the scale-up factor achieved through introducing additional processing

resources.

Modifying the volume of the virtual world with respect to the number of objects

allows the expected average number of collisions to be adjusted. This is

expressed in the experimental results in terms of the percentage of the total

volume of the virtual world which contains objects; this can be scaled by the

maximum number of collisions to determine the expected number of collisions.

167

This can be detennined by summing the volume of the objects in the virtual

world and dividing this volume by the total volume of the virtual world. For

example, given that the virtual world is defined as being a cube of dimension

10m and the world contains 100 objects, each cubes of length 1m:

• The volume of a single object is 1m3

• The volume of the virtual world is 1000m3

• The total proportional coverage of the virtual world is lOO(lm
3

) =0.1 =
IOOOm3

10%

Rather than detennining the proportional coverage of the virtual world based on

the current number of objects and size of the world, a desired proportional

coverage is provided coupled with the number of objects inhabiting the virtual

world. From this, the world size is generated using the following formula:

IT 1 numObjects*objectVolume
1'0 ume = -----"---"-----

proportionalCoverage

The above formula takes the number of objects, the volume of the objects and

the proportional coverage desired and returns the total volume of the virtual

world required. As stated previously, the experiments described in this chapter

enclose the virtual world inside an axially-aligned cube. As such, the dimensions

of each coordinate axis can be determined by taking the cube root of the volume:

Side = VVolume.

5.3 Expected Results

The goal of this thesis is to create a collision detection technique suitable for

DYEs which offers high-levels of scalability, responsiveness and consistency.

The responsiveness and scalability of the approach can be quantified by the time

168

taken for each collision detection iteration to be completed and the proportional

performance increase respectively. Consistency, however, is difficult to

quantify; it is more a qualitative property of a DYE which is perceived by a user.

To clarify:

• Recording the average duration of collision detection in the DYE across all

participating collision detection nodes demonstrates the responsiveness of

the DYE. By modifying the number of objects participating in the DVE. the

general performance trend of the collision detection approach can be

observed.

• Modifying the number of collision detection nodes participating in the DVE

demonstrates the scalability of the distributed collision detection algorithm

as the number of processing resources increases. This demonstrates the

scale-up factor associated with distributing the processing and networking

requirements of distributed collision detection.

Consistency can be loosely quantified by the number of consistency groups with

respect to the number of members in each group. The states of objects within a

consistency group are consistent with all the group's members. This can be

reasoned by the fact that collisions are detected and responded to at most once

within a consistency group. However, consistency cannot be guaranteed

between groups due to the potentially-large message transmission delays present

between consistency group members.

As previously stated, consistency is more of a qualitative property of DYEs than

a quantitative property. While it is possible to quantify the deviation in state of

objects inhabiting the DYE between all machines participating in the DVE at

any given time in the simulation, due to the impossibility of synchronising states

in an asynchronous network in real-time, this is not possible during the run-time

of the DYE and would need to be performed offline. This could be done by

either by sampling the objects' states at frequent inte,,·als. recording these

169

values and comparing the recorded values offline or by simulating a DYE and

its related message dissemination on a single machine and taking metrics of

simulated inconsistencies during run-time. The sampling option would require

large amounts of storage and extremely expensive analysis; it should be noted

that in order to chart inconsistencies, it is necessary to take readings over long

time periods to determine the "snowballing" effect of small inconsistencies over

the long-term, which may require too large amount of storage space to be

feasible. The simulation option, conversely, may offer a mechanism to quantify

consistency but it is unlikely that a simulation would accurately model the true

behaviour of the network, server, collision detection nodes and group leaders

and would, therefore, not offer a real-world representation of the consistency in

DVEs.

5.3.1 Expected Responsiveness

It is expected that the performance of the collision detection approach should

behave roughly O(nlogn) due to the adoption of spatial partitioning as the broad­

phase collision detection approach. However, the decision to increase the size of

the virtual world linearly with respect to the number of objects inhabiting the

DVE may result in near-linear collision detection performance.

5.3.2 Expected Scalability

It is expected that the performance of the collision detection approach will

improve near-linearly with respect to the number of members in the consistency

group. This performance increase should not be perceived in DYEs with

relatively small numbers of objects, in which the message transmission overhead

will skew the results, overshadowing any performance improvements in

collision detection performance. However, as the number of objects increases

170

beyond a level in which the major performance overhead in the DYE become~

performing collision detection rather than message dissemination, the scalability

should begin to tend towards linear performance improvements. It is expected.

however, that there will be a platform-specific limit on consistency group size at

which point the performance may actually degrade if additional members join a

consistency group. The value of this limit may vary depending on the number of

objects inhabiting the DYE. This limit will represent the point at which the

improvement in collision detection performance is overshadowed by the

increased message transmission overheads. This limit will be platform-specific

due to the platform-specific overhead associated with network communication,

which may be influenced by the network hardware performance and the

OS/application-specific implementation of network protocols.

5.3.3 Expected Consistency

It is expected that the overall consistency In the DYE will increase as the

average consistency group size increases. This can be reasoned due to the fact

that collision events are detected and responded to at most once within each

consistency group and, as such, a collision is responded to in only one way in

each consistency group. Given a DYE in which all participants are members of a

single consistency group, the state of all objects in the DYE is expected to be

consistent. However, results demonstrating improved consistency within DVEs

utilising distributed collision detection are not presented in this thesis due to the

reasons previously outlined.

5.4 Performance Experimentation

In order to determine the suitability of the distributed collision detection

approach, it is necessary to determine the algorithm's performance when

171

operating in its worst-case; this occurs when collision detection can only be

performed on a single collision detection node. In these experiments, the initial

number of dynamic deterministic objects is increased from 500 to 5000 in

increments of 500. Results are collected demonstrating the total time taken for a

simulation step in each DVE being performed by a consistency group with only

one member. The results from this experiment will demonstrate the overall

performance trend of the collision detection algorithm used in distributed

collision detection with respect to the number of objects inhabiting the DYE.

Num Objects
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Time
180
360
447
604
659
825
984
1128
1187
1228

Num
Collisions

9
16
23
30
45
56
62
72
78
86

Table 5.1 Average Simulation Time

172

Single Node Collision Detection

1400 r-----1I-----r-----,------r-----.---~
en
-g 1200 I---t---j---+-----±=-~'---___l
~ 1 000t----t--~---+-~~~~~~--~--___l
~ 800 t-----t-----t---~~~~--_+----~----~
~ 600t-----+---~~~~~-+-----+----~----~
.~ 400 -r--/---:;lf-"'<:::!~=-----_t_--t__--+---+--~
i= 200 -r-----. ... ".c--t-----i---+---+---I------l

o +-----~--~----~----~-----L--~
o 1000 2000 3000 4000 5000 6000

Number of Objects

Number of Collisions Detected

100 ~-----,----~------,-----,------.----~ en
c:
~ 80t------r------i------~---_4 ~~--~~~~----~

8 60t----+---r---~--~~_4---+---~
o 40 T---r--~~~~_+--~--4--~
~ ~/
~ 20t----~~~dC--r-----+-----4-----~----~

o +----+---+---~--~---+---~
o 1000 2000 3000 4000 5000 6000

Number of Objects

I

Figure 5.1 Single Node Colli sion Detection Perfonnance as umber of Object

is Increased

The results in Fig 5.1 demonstrate the near- linear perfonnance characteristics of

the spatial partitioning approach adopted in the distributed collision detection

approach presented in this thesis. In additi on, the average number of collisions

detected in the DYE as the number of objects is increased corresponds with a

previously di scussed topic: probability of colli sion . Previously it was asserted

that:

• If the sIze of the virtual world remaInS constant and the number of

objects is doubled, the number of collisions will quadruple

• If the size of the world is doubled and the number of objects i doubled,

the number of coll isions wi ll double

17

• If the size of the world is quadrupled and the number of objects IS

doubled, the number of collisions will remain constant.

It can be seen from the results that the previous assertions hold; the size of the

world is scaled proportionally to the number of objects and, as a result, the

number of collisions detected increases linearly with respect to the number of

objects.

5.5 Scalability Experimentation

The following section describes scalability experiments conducted using a DYE

utilising distributed collision detection. In order to demonstrate scalability, a

DYE is started with a fixed number of dynamic deterministic objects ranging

from 500 to 4000 in increments of 500. The number of group members within a

consistency group is increased from 1 to 8 and the resulting time for each

simulation loop is recorded. As each member collision detection node joins the

DYE, its corresponding client introduces an additional avatar into the DYE

which increases the number of objects inhabiting the DYE by one. For example,

given 500 initial objects, with one collision detection node, there would be 501

objects in the DYE; with two collision detection nodes, there would be 502

objects, etc.

The results show two series of data:

• The average simulation time for all group members

• The average simulation time for the group leader

The times recorded show the total time required for a single simulation loop,

including any message dissemination and message receipt. The average

simulation time for all group members demonstrates the average scalability of

the distributed collision detection algorithm; this average is taken over all

collision detection nodes in the consistency group, including the node which is

174

appointed group leader. The average simulation time for the group leader

demonstrates the performance overhead which is required by the group leader in

comparison to the average performance required by all the group member .

Results

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes
500 180 78 50 36 37 32 26 18
1000 360 123 98 83 71 67 50 49
1500 447 170 124 79 67 65 60 62
2000 604 264 152 149 133 112 81 77
2500 659 385 189 140 132 104 83 84
3000 825 520 230 185 155 137 104 92
3500 984 468 238 223 197 193 175 105
4000 11 28 582 392 335 301 264 157 135

Table 5.2 Simulation Time on A verage Coll ision Detection ode

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes

500 2.30769 3.6 5 4.864865 5.625 6.92308 10

1000 2.92683 3.673469 4.33735 5.070423 5.37313 7.2 7.34694

1500 2.62941 3.604839 5.65823 6.671642 6.87692 7.45 7.20968

2000 2.28788 3.973684 4.05369 4.541353 5.39286 7.45679 7.84416

2500 1.71169 3.486772 4.70714 4.992424 6.33654 7.93976 7.84524

3000 1.58654 3.586957 4.45946 5.322581 6.0219 7.93269 8.96739

3500 2.10256 4.134454 4.41256 4.994924 5.09845 5.62286 9.37143

4000 1.93814 2.877551 3.36716 3.747508 4.27273 7.18471 8.35556

Average 1 2.18634 3.617216 4.49945 5.025715 5.62469 7.21374 8 36755

Table 5.3 Scale-up Factor

From the resul ts shown in Fig 5.2, it can be seen that the as the number of

collision detection nodes increases, the total time taken for a simulation loop

decreases . This overall time taken for the simulation step is proportional to :

n.umber _ of _ objects. T his can be seen to be the case as the simulation time
number _ of _ nodes

taken for a D YE with 500 objects on one collision detection node is roughl the

same as the time taken to simulate a DYE with 1000 objects on t 0 colli ion

detection nodes . This trend follows throughout all the obtained re ult , with

175

small degrees of variance due to processes competing for resources and

variations in network load. This implies that the performance improvements

offered by this approach are roughly linear. In order to analyse the performance

improvements, the performance results recorded for a DYE with a given number

of objects running on a consistency group with one collision detection node are

used as a base for comparison. The performance improvement, or scale-up

factor, offered by a consistency group with a given number of collision detection

nodes, n, can be determined by: performance(1) .
-=---"----...;...;...., where the functIon
performance(n)

performance(k) returns the performance figure for a consistency group of size k.

Table 5.3 shows the scale-up factor recorded. From these results, it can be seen

that the performance is roughly linear as the average performance improvements

for n nodes is roughly n. There are some minor deviations in which the

performance is larger or smaller than n, most noticeably for 500 objects with 8

collision detection nodes, in which case the performance recorded is 10 times

better than the performance recorded with 1 collision detection node. These

variations are most likely caused by improved data cache coherence. This is

caused by each collision detection node being responsible for collision detection

on smaller portions of the virtual world and, therefore, fewer objects. Therefore,

it is more probable that the data corresponding to the portions of the virtual

world and objects each collision detection node is responsible for can be stored

in cache memory for fast access. This avoids the need to fetch the data from

system memory prior to performing collision detection. Conversely, as the

portion of the virtual world which a collision detection node is responsible for

becomes larger, and therefore the number of objects increases, it is less likely

that the data can be stored in cache memory and, therefore, the probability of

cache misses and the need to copy data from system memory to cache memory

increases.

176

1200
II)

"0
1000 c:

0
u

800 Q)

.!!!

~
600

.!: 400
Q)

E 200
i=

0
0

Average Simulation Step Time

2 4 6 8 10

Number of Coll ision Detection Nodes

__ 500 Objects

-- 1000 Objects

I
1500 Objects

2000 Objects

____ 2500 Objects

--- 3000 Objects

-+- 3500 Objects

- 4000 Objects

Average Number of Simulation Steps per Second

:t 60
~) C/) 50 __ 500 Objects
c: / 0

+= 40 -- 1 000 Objects
'" V "3 1 500 Objects
E 30
iii ./

..... 2000 Objects
"0 20
~ V .J. .--,..:~I-/ -

'"
____ 2500 Objects

i! 10
E ~

.......a; --- 3000 Objects
:::J 0 Z -+- 3500 Objects

0 2 4 6 8 10 - 4000 Objects

Number of Collis ion Detection Nodes

Figure 5.2 Average Time Taken for Collision Detection Iteration as umber of

Collision Detection Nodes is Increased

In Fig 5.2, as the simulation step time becomes small as a result of increasing

the number of collision detection nodes, the graph charting simulation time

ceases to be able to effectively show the perfonnance improvements offered by

the distributed colli sion detection approach . In order to ai d clarity, a graph

showing the number of simulation steps which can be performed in a second is

provided. This is a reciprocal measure of the simulation step time is used to

offer a more effective mechanism of charting fine-grained performance

v3.\iations . T his mechanism is commonly used in charti ng the performance of

commercial computer games engines ' this measurement is often termed Frallles

Per Second (FPS).

177

Num
Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes

500 180 82 92 91 82 83 86 53
1000 360 169 170 98 79 82 75 61
1500 447 208 188 87 84 97 100 68
2000 604 313 247 164 168 165 175 81
2500 659 410 385 187 189 168 163 87
3000 825 539 366 202 181 155 162 101
3500 984 471 475 257 264 258 262 143
4000 1128 620 627 374 372 380 364 178

Table 5.4 Simulation Time on Group Leader ode

500 Objects 1000 Objects j

~ I ~~I I I I ~ I
~ 4OC

~ 300 \., § 200

" c
100

~
0 ;::

0 1 2 3 4 5 6 7 e 9 0 1 2 3 • • • 1 • •
Number of CoIII.on DeI.cUon Nod .. Numbe, 01 Colilli on OetecUon NoO..

1_ Awmgo CoUialon Detoclion Node _Group LOIIdet I 1_ A1O'1lQIO CoIhJ,<Jn o.cllQnNode -~ ~
-

1500 Objects 2000 Objects

~ I N441 I I I ~ I
• 100
"l! 600

~ 500
" :: 400
~ i 300

,, 200 --.
~ 100

;:: 0
0 1 2 3 4 5 6 7 e 9 0 1 2 3 . • • 7 • •

Number of CoIII.on Delectlon Nod •• Number 01 Colll llon 0.1.010" Node .

1_ Awmgo Collision Dococlion Nodo _Group LO&dor I 1_ A\CIr'l!IIgD eou..~ OIIlocl.on NoOe - - ~ \...MdIIr I
=

2500 Objects 3000 Objects

~ I [']sMI I I kl I

~ 1000

! 800
600

""-i 40C
~ :--..... c

~
200

;:: 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 , 5 • 1 • •

Number 01 ColHlllon Det.cllon Node. Number of Com. on o.~cUon Node .

1_ Awrage CollisIOn Detection Node _ Group Leader I 1~ ."""'oeColb""'OoIOCI",""- ~a.:...o'-- I j

3500 Objects 4000 Objects

:~I ~'I~ I I IJ I
~ 1200

0 1000
"-~ 800

i 600 "-c 40C :::---.
~ 200

;:: 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 , 5 • 7 • •
Number of CoIII.on Detection Node. Number of Colll lll on o.t.c:tJon NocMs

1_ Awn!lge CollisIOn Deloclion Nodo _ Gf'OI.4l L98der I I~A_ CoIb o. .. ""'" """" ~a.:...o __ :

Figure 5.3 Distributed Collision Detection Performance

178

Fig 5.3 shows the overall petformance of the collision detection nodes in DVEs

ranging from 500 to 4000 objects. The results depicted in the graphs show the

variations in petformance between the group leader collision detection node and

the other group member collision detection nodes. It can be seen that the all

nodes in the consistency group observe petformance improvements as the size

of the consistency group increases. However, the group leader's petformance is,

in general, worse than the remaining collision detection nodes in its consistency

group. This is due to:

• The additional processing overheads associated with being group leader

• The mechanism by which group leaders are chosen and the sub-regions

of the virtual world are assigned to collision detection nodes.

While there are additional processing overheads associated with being group

leader, the latter reason is the main cause of the shape of the group leader's

petformance curve. Recall from Chapters 3 and 4 that the choice of group leader

can be arbitrary and, in the case of the system described in this thesis, the

collision detection node with the lowest id in each consistency group is selected

to be group leader; this means that the earliest node to join the DYE in each

consistency group is group leader. In addition, the algorithm which assigns sub­

regions to collision detection nodes assigns the regions in such a way that the

collision detection node with the lowest id often has more work to petform than

the other collision detection nodes. This is because the node with the lowest id is

the last node to descend the spatial subdivision tree and receive a smaller sub­

region to work on. In this case, the group leader will only be working on a sub­

region of equal size to all of its group members when the number of nodes

within a consistency group is an exact power of 2. In any other situation, the

group leader will be responsible for collision detection in a sub-region up to

twice as large as the sub-regions the other group members are responsible for

respectively. As such, the petformance overhead associated with the additional

network communication responsibilities of the group leader can only be clearly

seen when the group size is a power of 2; when the group size is a power of 2,

179

the additional overhead of being a group leader can be estimated as the group

leader simulation time subtracted from the a erage colli ion det tion

simulation time.

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes
500 0 4 42 55 45 51 50 35
1000 0 46 72 15 8 15 25 12
1500 0 38 64 8 17 32 40 6
2000 0 49 95 15 35 53 94 4
2500 0 25 196 47 57 64 80 3
3000 0 19 136 17 26 18 58 9
3500 0 3 237 34 67 65 87 38
4000 0 38 235 39 71 116 207 43

Table 5.5 Group Leader O verhead

Table 5.5 shows the perceived difference in simulation step time between the

group leader and the average time recorded across all member of the

consistency group. It can be seen that at all times , the gTOUp leader'

performance is worse than the other group members . However, when the

number of colli sion detection nodes is a power of 8, the difference between the

performance of the group leader and the other group members is, in general, at

its lowest.

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes
500 0 4.87805 45.65217 60.4396 54.87805 61 .4458 69.7674 66.0377

1000 0 27.2189 42.35294 15.3061 10.12658 18.2927 33.3333 19.6721

1500 0 18.2692 34.04255 9.1954 20.2381 32.9897 40 8.82353

2000 0 15.655 38.46154 9.14634 20.83333 32.1212 53.7143 4.93827

2500 0 6.09756 50.90909 25.1337 30.15873 38.0952 49.0798 3.44828

3000 0 3.52505 37.15847 8.41584 14.36464 11.6129 35.8025 8.91089

3500 0 0.63694 49.89474 13.2296 25.37879 25.1938 33.2061 26.5734

4000 o 6.12903 37.48006 10.4278 19.08602 30.5263 56.8681 24.1573

Average 0 10.3012 41.99395 18.9118 24.38303 31.2847 46.4714 20.3202

Table 5.6 Average Percentage Increase in Processing 0 erhead for Group

Leader

180

CI)

80
70
60

Percentage Difference in Processing Overhead between Group
Leader and Group Members

en 50

1- •. Average

-- 500 Objects

1000 Objects

1500 Objects

--- 2000 Objects

III
40 -c:

CI)
30 (,) ...

--2500 Objects

-+- 3000 Objects

CI) 20 £l.
10
0

-10 -- 3500 Objects

Number of Collision Detection Nodes 4000 Objects

Figure 5.4 Group Leader vs Group Member

Table 5.6 and Figure 5.4 show the percentage difference between the proce ing

overhead of the group leader and the other group members. Gi ven the simul ation

step time for a group leader, GL, and the average time for the group member ,

GM, the data in Table 5.6 IS generated by the following form ul a:

lOO x GL - GM . From this data, it can be seen that the average percentage
GL

increase in processing overhead for the group leader varies depending on the

number of collision detection nodes in the consistency group. The perceived

results were as follows:

• 1 collision detection node - No difference in performance

• 2 collision detection nodes - Average: 10% wi thin the range [0 .6%,

27.2%]

• 4 collision detection nodes - Average: 19% within the range [8.4%,

60.4%]

• 8 colli sion detection nodes - Average: 20% within the range [3.4~,

66%]

181

It should be noted that the largest percentage difference in performance between

group leader and group members occurred in the DYE with 500 objects. This is

possibly due to the computational overhead of handling message exchange

outweighing the performance increase offered by further distributing the

collision detection responsibilities. However, the average results recorded

indicate that the additional processing overhead associated with being group

leader is relatively small for consistency groups of up to 8 members and that the

performance and consistency improvements offered by the technique outweigh

the additional processing overheads incurred by the group leader. In addition,

the average results indicate that the approach is capable of maintaining

consistency groups with more than 8 members without any significant

deterioration in performance. This will be further explored in the next section.

5.6 Maximum Consistency Group Size

The following experiments are designed to determine if there is an optimal

consistency group size for a given DYE and what factors contribute to this size.

It is expected that there will be a threshold value for consistency group size

beyond which the collision detection performance will degrade. This will occur

when the performance increase offered by distributing the collision detection

overhead is overshadowed by the increased message dissemination required to

manage additional group members. It is expected that this threshold value will

depend on the number of objects inhabiting the DYE.

In these experiments, the number of objects inhabiting the DYE will be

increased from 1000 to 3000 in increments of 1000. At each stage the number of

collision detection nodes in a given consistency group will be incremented until

either:

• The performance of the collision detection engIne begins to noticeably

degrade

182

• The maximum number of machines allotted for the experiment is exceeded:

32

Due to the nature of the spatial partitioning approach used in distributed

collision detection, the number of collision detection nodes used in the

experiments will be doubled at each increment. As such, these experiments will

be performed with 1, 2, 4, 8, 16 and 32 collision detection nodes respectively.

This is because the binary tree used to allocate sub-spaces to the collision

detection nodes produces its most even distribution of workload when the

number of collision detection nodes in a consistency group is a power of 2.

Results

Num Objects

1000

2000

3000

1 Node

360

604

825

2 Nodes

123

264

520

4 Nodes

83

149

185

8 Nodes

49

77

92

16 Nodes

21

38

65

32 Nodes

27

26

38

Table 5.7: Maximum Consistency Group Size Experiment Results

183

1000

~ 800

c § 600
Ql (J

E ~ i=:: 400

:!i 200

o

Maximum Consistency Group Size :
Simulation Times

-
~~ . ,

o 5 10 15 20 25 30

Number of Collision Detecti on Nodes

1 __ 1000 Objects -- 2000 Objects 3000 Objects :

Maximum Consistency Group Size :
Number of Simulation Steps in One Second

III 60
_ ~ 50
o VI 40
~ c
.8 0 30
E :;
~ :; 20

E 10
iii 0

./ -I--

/'
./ ----e--

-- ,.............. -----
~
o 5 10 15 20 25 30

Number of Collision Detection Nodes

1 __ 1000 Objects -- 2000 Objects 3000 Objects 1

35

35

Figure 5.5: Determining the Maximum Consistency Group Size

From Fig 5.5, it can be seen that as the number of coll ision detection node

increases , the performance also increases. However, the results do indicate th at

there is a point at which the inclusion of additional collision detection nodes

causes a decrease in performance. This can be seen in the results for a DYE with

1000 objects, in which the average simulation step time for 16 objects is 2 1ms,

whereas the average time for 32 collision detection nodes is 27ms. Thi s

indicates that the additional message exchange required in maintaining a

consistency group of size 32 outweighs the reduction in colli sion detection each

collision detection node is responsible for.

The point at which performance begins to degrade does not appear to be

constant but, instead, it appears related to the number of objects inhabiting the

DVE. This can be seen from the results for DVEs wi th 2000 and 3000 object.

184

In which the perfonnance does not degrade between 16 and 32 collision

detection nodes. This implies that as the number of objects increases. the

optimal consistency group size should also increase. As such. it may be

necessary to determine what this optimal value is for a given DVE to enable the

server to limit the size of consistency groups appropriately to yield the best

possible perfonnance.

5.7 Summary

This chapter presented experimental results demonstrating the scalability and

perfonnance of the distributed collision detection approach described in this

thesis. The results examined the perfonnance of the collision detection approach

operating on a single machine, which offered a base for comparison. Following

this, results were presented for the same simulation being executed in

consistency groups of size ranging from 1 to 8. The results demonstrated linear

perfonnance improvements with respect to the number of collision detection

nodes. While these results show the perfonnance and scalability within a

consistency group, the results do not demonstrate the consistency or scalability

of message exchange between consistency groups, e.g. the volume of messages

being transferred between consistency groups or the deviation between the

perceived states of objects between consistency groups. The absence of these

results is mainly due to the difficulty in recording run-time metrics between

consistency groups. Such results could be approximated by simulating the

distributed collision detection approach, although this is beyond the scope of this

thesis.

185

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The previous chapters have introduced Distributed Yirtual Environments

(DYEs) and their associated problems. After offering a brief overview of the

topic of DYEs, Chapter 2 focussed its discussion on collision detection. This

was initially discussed with respect to single-user virtual environments and a

selection of collision detection approaches and algorithms were introduced and

evaluated based on the following criteria:

• Performance characteristics

• Opportunities to exploit parallelism

The discussions on the possibility of exploiting parallelism in collision detection

algorithms comes from the recent popularity of multiple processing cores in

consumer PCs and games consoles. With the adoption of multi-processor

environments, it is necessary to ensure that the algorithms adopted are able to

exploit the additional processing power made available. From the analysis. it

was found that the best opportunities for parallel execution were offered by

spatial partitioning approaches, in which the virtual world is subdi\lded into

IRfi

discrete regions; for more a more detailed explanation of this assertion, see

Chapters 2 and 3.

Following the description of collision detection algorithms, the problems of

scalability, responsiveness and consistency in DYEs were discussed with respect

to collision detection. It was determined that the current approaches used for

collision detection in DYEs lends to extreme levels of inconsistency which can

significantly compromise user-immersion. Additionally, as collision detection is

usually performed completely on all machines participating in the DYE, the

performance of the DYE will degrade as the number of users increase.

Therefore, it is necessary to develop a new approach to collision detection in

DYEs which offers higher-levels of consistency, scalability and responsiveness

in order to allow more users to interact with one-another within a DYE. The

development of such an approach has historically been overlooked due to the

consistency-throughput trade-off theory [SinghaI99][Fischer83], which states

that it is necessary to balance consistency with throughput. A completely

consistent DYE can be achieved at the cost of throughput and interactivity and

that it is possible to have DYEs whose throughput (interactivity) is at the

maximum rate allowed by the host machines and network infrastructure at the

detriment of consistency. This rule has been assumed to be rigid and, therefore,

restrict the level of interactivity, responsiveness and consistency of DYEs.

Chapter 3 introduced the notion of distributed collision detection. It took an

incremental approach in refining a collision detection approach which would

offer improved scalability, responsiveness and consistency in DYEs running

over heterogeneous networks and platforms. The discussion began by defining

the choice of algorithms and data structures which are used in the collision

detection approach; this included the choice of spatial subdivision as the broad­

phase collision detection approach. While the distributed collision detection

approach prescribes the use of a given broad phase collision detection algorithm,

the approach allows the use of any narrow-phase algorithm. Following the

IR7

definition of the basic algorithms, the remainder of the chapter incrementally

refined the collision detection approach by adding additional complexities, such

as:

•
•

Limited network bandwidth

Message transmission latency

•
•

Inconsistencies in object states between machines

Unreliable machines and communication media

Chapter 3 introduced the components from which the distributed collision

detection approach is composed:

• Server

• Collision Detection Node

• Client

The server is a central repository and directory service which is used to store the

state of a DYE and to assist users in joining a given DVE. A collision detection

node is a process hosted on a given machine which is responsible for collision

detection on a portion of the virtual world. A client is a process hosted on a

given machine through which a user interacts with the DVE. The discussion

initially developed a collision detection approach which mirrored the

client/server architecture commonly used in Internet applications. This approach

offered linear performance increases as the number of collision detection nodes

increased. However, this approach was only suitable for use on Local Area

Networks (LANs) as it was not capable of dealing with variable network

transmission delays. Therefore, the architecture of the collision detection

approach was refined into a hybrid peer/server architecture to be able to deal

with variable network transmission delays. This refinement introduced the

concept of consistency groups. A consistency group is a group of machines

which exhibit low-latency message transmission delays between one-another

and, therefore, are capable of sharing the responsibility of collision detection for

the DVE between one-another. The perceived state of the objects inhabiting the

188

DYE in each consistency group is completely consistent. However, there are no

consistency guarantees between consistency groups as each consistency group

operates completely separately of any other group. As with the client/server

collision detection approach, the performance of each consistency group

increases linearly as the number of collision detection nodes in the consistency

group increases. Each consistency group is coordinated by a single collision

detection node which is appointed group leader. The group leader acts as a

surrogate server for its consistency group members and is a point of

communication between consistency groups.

Chapter 4 described the implementation details of the distributed collision

detection approach. This chapter gave a brief evaluation of the enabling

technologies available to facilitate the development of a DYE. This discussion

included the choice of programming languages, libraries, target platforms and

any platform-specific issues of importance to DYE development. Following this,

an introduction to some of the important maths involved in the distributed

collision detection approach was provided.

Chapter 4 described the different components of the server, collision detection

nodes and clients in the distributed collision detection approach. In addition, it

described the auxiliary components which are shared between the server,

collision detection nodes and clients. This discussion included in-depth

descriptions of the messages exchanged between different components and the

mechanisms by which the responsibility for collision detection is distributed

between members of a consistency group.

Chapter 5 provided experimental results for the distributed collision detection

approach. This chapter began by describing the DYEs in which experiments

were performed. Following this, the expected results were described. The results

which were presented demonstrated that the performance of a DYE adopting the

distributed collision detection approach.

189

6.2 Future Work

The distributed collision detection approach has currently been implemented in

Java and C++. The Java version of the approach is a prototypical

implementation which was used to gather performance figures and determine the

suitability of the approach. The C++ version has been integrated into a

multi player game which is freely available for download [Storey06]. However,

this implementation is currently hard-coded into the games engine rather than

developing it as a middleware component. As such, it is possible that in the

future the distributed collision detection approach will be incorporated into a

commercial physics engine for use in computer games and physics simulations.

6.3 Summary

This thesis examined the applicability of a distributed collision detection

approach in Distributed Virtual Environments. This approach provides improved

scalability and responsiveness by sharing the processing overhead associated

with collision detection between the machines participating the DVE. It adopts a

hierarchical message dissemination approach which clusters machines which

share low message transmission delays. This not only reduces the volume of

messages which the main server must handle, but also alleviates the message

throughput restrictions imposed on a client sharing a high-latency connection

with the server. However, this approach may increase the message latency

between consistency groups. In addition to improvements in scalability and

responsiveness, the distributed collision detection approach provides improved

consistency by enforcing that collisions between a pair of objects are detected on

only one machine within a consistency group.

190

References

[Abrams98] Abrams, H., K. Watsen, et al. (1998). Three Tiered Interest

Management for Large-Scale Virtual Environments. ACM Symposium on

Virtual Reality Software and Technology, Taipei, Taiwan.

[ATI06] http://ati.amd.com/, ATI 2006, as viewed 3/1212006.

[Basch99] Basch, J., L. J. Guibas, et al. (1999). Kinetic collision detection

between two simple polygons. Tenth annual ACM-SIAM symposium on

Discrete algorithms, Baltimore, Maryland, United States, Society for

Industrial and Applied Mathematics Philadelphia, PA, USA.

[Ben-Ari06] Ben-Ari, M. Principles of Concurrent and Distributed

Programming (Second Edition). Prentice-Hall, 2006.

[Bergen04] Bergen, G. V. D. (2004). Collision Detection in Interactive 3D

Environments, Elsevier, 2004.

[Bharambe02] Bharambe, A. R., S. Rao, et al. (2002). Mercury: a

scalable publish-subscribe system for internet games. 1 st workshop on

Network and system support for games, Bruanschweig, Germany, ACM

Press New York, NY, USA.

[Bosser04] Bosser, A. Massively-Multiplayer Games: Matching Game

191

Design with Technical Details. Sixth Australasian Computing Education

Conference, ACE2004.

[Bourg] Bourg, D. M. Physics for Games Developers, O'Reilly Press

[Burdeau03] Burdea, G., Coffet, P. (2003) Virtual Reality Technology,

Second Edition, Wiley-IEEE Press, 2003.

[Carlssom93] Carlssom, C. and O. Hagsand (1993). DIVE - A platform

for multi-user VE. Computer & Graphics 17(6}.

[Chrysanthou95] Chrysanthou, Y. and M. Slater (1995). Shadow volume

BSP trees for computation of shadows in dynamic scenes. symposium

on Interactive 3D graphics, Monterey, California, United States, ACM

Press New York, NY, USA.

[Coldet] http://sourceforge.netiprojects/coldet as viewed 7/12/2006.

[C++] http://www.cplusplus.com/as viewed 9/1212006

[Epic06] http://www.unrealtechnology.com/html/technology/ue30 . shtm I,

Epic Games, 2006, as viewed 3/1212006.

[Ericcson05] Ericcson, Christopher. Real-time Collision Detection.

Morgan-Kaufman Series on Interactive 3-D technology, Morgan­

Kaufman, 2005.

[Erickson99] Erickson, J., L. J. Guibas, et al. (1999). Separation-sensitive

192

collision detection for convex objects. tenth annual ACM-SIAM

symposium on Discrete algorithms, Baltimore, Maryland, United States,

Society for Industrial and Applied Mathematics Philadelphia, PA, USA.

[Ezhilchelvan92] Ezhilchelvan, P., Shrivastava, S. K. A Distributed

Systems Architecture Supporting High Availability and Reliability. 2nd

International Working Conference on Dependable Computing for Critical

Applications, Tucson, Arizona, US, February, Springer-Verlag 1992.

[Fischer83] Fischer, M. J., The Consensus Problem in Unreliable

Distributed Systems (A Brief Survey), International Conference on

Foundations of Computational Theory, Borgholm, Sweden, August 21-

27, 1983, pp127-140, Springer-Verlag.

[Fuchs80] Fuchs, H., Z. M. Kedem, et al. (1980). On visible surface

generation by a priori tree structures. 7th annual conference on

Computer graphics and interactive techniques, Seattle, Washington,

United States, ACM Press New York, NY, USA.

[Gottschalk96] Gottschalk, S., M. C. Lin, et al. (1996). OBBTree: a

hierarchical structure for rapid interference detection. 23rd annual

conference on Computer graphics and interactive techniques, ACM

Press New York, NY, USA.

[Gottsman05] Gottsman, C. (2005). What's in a Mesh? A Survey of 3D

Mesh Represenation Schemes. International Conference on Shape

Modelling and Applications

[Greenhalgh] Greenhalgh, C. An Experimental Implementation of the

Spatial Model.

193

[He99] He, T. (1999). Fast collision detection using QuOSPO trees.

symposium on Interactive 3D graphics, Atlanta, Georgia, United States,

ACM Press New York, NY, USA.

[Heckbert94] HeckBert, P. S. and M. Garland (1994). Multiresolution

Modeling for Fast Rendering. Proceedings from Graphics Interface '94.

[Hubbard95] Hubbard, P. 1995. Collision detection for interactive

graphics applications. IEEE Transactions on Visualization and Computer

Graphics 1, 3, 218-230.

[Hubbard96] Hubbard, P. 1996. Approximating polyhedra with spheres

for time-critical collision detection. ACM Transactions on Graphics 15, 3,

179-210.

[IBM07] http://www-

03.ibm.com/industries/medialdoc/contentinews/pressrelease/359248111.

html. IBM, as viewed 5/4/2007.

[ICollide] http://www.cs.unc.edu/-geom/ICOLLIDE/index.htmlas viewed

7/1212006

[ld06] http://www.idsoftware.com/business/technology/. Id Software,

2006, as viewed 3/12/2006.

[Jaja92] Jaja, J. An Introduction to Parallel Algorithms. Addison-Wesley,

1992.

[Klein03] Klein, J. and G. Zachmann (2003). ADB-Trees: Controlling the

Error of Time-Critical Collision Detection. 8th International Fall Workshop

Vision, Modeling, and Visualization (VMV).

194

[Lawler02] Lawlor, O. S. and L. V. Kale (2002). A Voxel-Based Parallel

Collision Detection Algorithm. International Conference in

Supercomputing, New York, NY, USA, ACM Press.

[Lefebvre06] Levebre, S., Hugues, H. Perfect Spatial Hashing. Microsoft

Research Labs 2006,

http://research.microsoft.com/-hoppe/perfecthash.pdf.

[LengyeI03] Lengyel, E., Math for 3D Game Programming and Computer

Graphics. Charles River Media, 2003.

[Li98] Li, T.-Y. and J.-S. Chen (1998). Incremental 3D Collision Detection

with Hierarchical Data Structures. Symposium on Virtual Reality

Software and Technology.

[Li01] Li, X., C. Meng, et al. (2001). Detecting Collision of Polytopes

Using a Heuristic Search for Separating Vectors.

[Lin98] Lin, M. C. and S. Gottschalk (1998). Collision Detection between

geometric models: a survey. IMA Conference on Mathematics of

Surfaces.

[Lin] Lin, M. C., D. Manocha, et al. Collision Detection: Algorithms and

Applications. Algorithms for Robotics Motion and Manipulation.

[Logan] Logan, B. and G. Theodoropoulos (2000). Dynamic Interest

Management in the Distributed Simulation of Agent-Based Systems. 10th

AI, Simulation and Planning Conference.

195

[McCoy04] McCoy, A., Delaney, D., McLoone, S., Ward, T. (2004)

Towards Statistical Client Prediction - Analysis of User Behaviours in

Distributed Interactive Media. CGAIDE 2004, International Conference

on Computer Games: Artificial Intelligence, Design and Education,

Microsoft Campus, Reading, UK.

[Microsoft06] http://www.xbox.com/as viewed 9/1212006.

[Miller9S] Miller, D. C., Thorpe, J. A., SIMNET: the advent of simulator

networking, Proceedings of the IEEE

[Moller97] Moller, T. (1997). "A fast triangle-triangle intersection test."

Journal of Graphics Tools Volume 2(Issue 2): 2S-30.

[MorganOS] Morgan, G., Lu, F., Storey, K. (200S). Interest Management

Middleware for Networked Games. ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games. Washington USA, ACM

SIGGRAPH.

[MorganOS 2] Morgan, G., Storey, K. (200S). Scalable Collision Detection

for Massively Multiplayer Online Games. 19th International Conference

on Advanced Information Networking and Applications (AINA 'OS).

Taipei, Taiwan, IEEE.

[Morgan04] Morgan, G., K. Storey, et al. (2004). Expanding Spheres: A

Collision Detection Algorithm for Interest Management in Networked

Games. International Conference on Entertainment Computing,

Eindhoven, Netherlands, ACM.

196

[Morgan03] Morgan, G. and F. Lu (2003). Predictive Interest

Management: An Approach to Managing Message Dissemination for

Distributed Virtual Environments. 1 st International Workshop on

Interactive Rich Media Content Production, Lausanne, Switzerland.

[Naylor90] Naylor, B., J. Amanatides, et al. (1990). Merging BSP trees

yields polyhedral set operations. Computer graphics and interactive

techniques, Dallas, TX, USA, ACM Press New York, NY, USA.

[NVidia06] http://www.nvidia.com/page/home.html.Nvidia2006.as

viewed 3/12/2006.

[OpCode] http://www.codercorner.com/Opcode.htm as viewed 7/1212006

[Otaduy03] Otaduy, M. A. and M. C. Lin (2003). Sensation Preserving

Simplification for Haptic Rendering. ACM SIGGRAPH 2003, ACM Press

New York, NY, USA.

[Pajarola02] Pajarola, R. Overview of Ouadtree-based Terrain

Triangulation and Visualization.

[Palmer] Palmer, G. Physics for Game Programmers, Apress Publishers

[Pelenchano02] Pelechano, N., L. Bull, et al. (2002). "Fast Collision

Detection Between Cloth and a Deformable Human Body."

[POP] http://www.cs.unc.edu/-geomlSSV/ as viewed 7/1212006.

197

[Rapid] http://www.cs.unc.edu/-geom/OBB/OBBT.htmlas viewed

7/1212006.

[Redon02] Redon, S., Khaddar, A., Coquillart, S. Fast Continous

Collision Detection between Rigid Bodies

[Redon04] Redon, S., Kim, Y. J., Lin, M. C., Manocha, D. Fast Continous

Collision Detection for Articulated Bodies

[Samet84] Samet, H. (1984) The Quadtree and other Related

Hierarchical Data Structures. ACM

[Schmalsteig] Schmalsteig, D. and R. F. Tobler Real-time Bounding Box

Area Computation.

[Sedgewick96] Sedgewick, R., Flajolet, P. An Introduction to the Analysis

of Algorithms, Addison-Wesley, 1996

[SinghaI99] Singhal, S., Zyda, M., Networked Virtual Environments:

Design and Implementation, Addison-Wesley, 1999.

[Solid] http://www.win.tue.nl/-gino/solid/ as viewed 7/1212006.

[Sony06] http://www.playstation.com/as viewed 9/1212006.

[Storey04] Storey, K., F. Lu, et al. (2004). Determining Collisions

between Moving Spheres for Distributed Virtual Environments. Computer

Graphics International, Crete, Greece, IEEE.

[Storey06] http://homepages.cs.ncl.ac.uklgraham.morgan/dge l as viewed

9/1212006.

198

[Sun06] http://www.java.sun.com/as viewed 9/1212006

[Suri98] Suri, S., P. M. Hubbard, et al. (1998). Collision detection in

aspect and scale bounded polyhedra. ninth annual ACM-SIAM

symposium on Discrete algorithms, San Francisco, California, United

States, Society for Industrial and Applied Mathematics Philadelphia,

PA, USA.

[Sweeney99] http://unreal.epicgames.com/Network.htm. Epic

Megagames, as viewed 5/4/2007.

[Swift] http://www.cs.unc.edu/-geom/SWIFT++/ as viewed 711212006

[Taylor99] Taylor, S. J. E., J. Saville, et al. (1999). Developing interest

management techniques in Distributed interactive simulation using Java.

Winter simulation: Simulation---a bridge to the future, Phoenix, Arizona,

United States, ACM Press New York, NY, USA.

[Tenenbaum96] Tenenbaum, A. S., Computer Networks Third Edition,

Prentice-Hall, 1996.

[Tropp06] Tropp, 0., Ayellet, T., Shimshoni, I. (2006). A fast triangle to

triangle intersection test for collision detection. Computer Animations and

Virtual Worlds.

[Vaghi99] Vaghi, I., C. Greenhalgh, et al. (1999). Coping with

inconsistency due to network delays in collaborative virtual

environments. ACM symposium on Virtual reality software and

technology, London, United Kingdom, ACM Press New York, NY, USA.

199

[Valve06] http://developer.valvesoftware.com/wikilMain Page, Valve

Software, 2006 as viewed 3/1212006.

[VCollide] http://www.cs.unc.edu/-geomN COLLIDE! as viewed

7/1212006.

[Watt01] Watt, A. and F. Policarpo 3D Games: Real-Time Rendering and

Software Technology, Volume 1, ACM, 2001.

[Wiley97] Wiley, C., I. A. T. Campbell, et al. (1997). Multiresolution BSP

trees applied to terrain, transparency. and general objects. conference

on Graphics interface, Kelowna, British Columbia, Canada, Canadian

Information Processing Society Toronto, Ont., Canada, Canada.

[Wiki06] http://en.wikipedia.org/wiki/Frame rate, Wikepedia, as viewed

5/1212006.

[Wiki06 2] http://en.wikipedia.org/wiki/Programming language.

Wikepedia, as viewed 9/1212006.

[Zhao01] Zhao, H. and N. D. Georganas Collaborative Virtual

Environments: Managing Shared Spaces, 2001.

200

	436171_0001
	436171_0002
	436171_0003
	436171_0004
	436171_0005
	436171_0006
	436171_0007
	436171_0008
	436171_0009
	436171_0010
	436171_0011
	436171_0012
	436171_0013
	436171_0014
	436171_0015
	436171_0016
	436171_0017
	436171_0018
	436171_0019
	436171_0020
	436171_0021
	436171_0022
	436171_0023
	436171_0024
	436171_0025
	436171_0026
	436171_0027
	436171_0028
	436171_0029
	436171_0030
	436171_0031
	436171_0032
	436171_0033
	436171_0034
	436171_0035
	436171_0036
	436171_0037
	436171_0038
	436171_0039
	436171_0040
	436171_0041
	436171_0042
	436171_0043
	436171_0044
	436171_0045
	436171_0046
	436171_0047
	436171_0048
	436171_0049
	436171_0050
	436171_0051
	436171_0052
	436171_0053
	436171_0054
	436171_0055
	436171_0056
	436171_0057
	436171_0058
	436171_0059
	436171_0060
	436171_0061
	436171_0062
	436171_0063
	436171_0064
	436171_0065
	436171_0066
	436171_0067
	436171_0068
	436171_0069
	436171_0070
	436171_0071
	436171_0072
	436171_0073
	436171_0074
	436171_0075
	436171_0076
	436171_0077
	436171_0078
	436171_0079
	436171_0080
	436171_0081
	436171_0082
	436171_0083
	436171_0084
	436171_0085
	436171_0086
	436171_0087
	436171_0088
	436171_0089
	436171_0090
	436171_0091
	436171_0092
	436171_0093
	436171_0094
	436171_0095
	436171_0096
	436171_0097
	436171_0098
	436171_0099
	436171_0100
	436171_0101
	436171_0102
	436171_0103
	436171_0104
	436171_0105
	436171_0106
	436171_0107
	436171_0108
	436171_0109
	436171_0110
	436171_0111
	436171_0112
	436171_0113
	436171_0114
	436171_0115
	436171_0116
	436171_0117
	436171_0118
	436171_0119
	436171_0120
	436171_0121
	436171_0122
	436171_0123
	436171_0124
	436171_0125
	436171_0126
	436171_0127
	436171_0128
	436171_0129
	436171_0130
	436171_0131
	436171_0132
	436171_0133
	436171_0134
	436171_0135
	436171_0136
	436171_0137
	436171_0138
	436171_0139
	436171_0140
	436171_0141
	436171_0142
	436171_0143
	436171_0144
	436171_0145
	436171_0146
	436171_0147
	436171_0148
	436171_0149
	436171_0150
	436171_0151
	436171_0152
	436171_0153
	436171_0154
	436171_0155
	436171_0156
	436171_0157
	436171_0158
	436171_0159
	436171_0160
	436171_0161
	436171_0162
	436171_0163
	436171_0164
	436171_0165
	436171_0166
	436171_0167
	436171_0168
	436171_0169
	436171_0170
	436171_0171
	436171_0172
	436171_0173
	436171_0174
	436171_0175
	436171_0176
	436171_0177
	436171_0178
	436171_0179
	436171_0180
	436171_0181
	436171_0182
	436171_0183
	436171_0184
	436171_0185
	436171_0186
	436171_0187
	436171_0188
	436171_0189
	436171_0190
	436171_0191
	436171_0192
	436171_0193
	436171_0194
	436171_0195
	436171_0196
	436171_0197
	436171_0198
	436171_0199
	436171_0200
	436171_0201
	436171_0202
	436171_0203
	436171_0204
	436171_0205
	436171_0206
	436171_0207
	436171_0208
	436171_0209
	436171_0210
	436171_0211
	436171_0212
	436171_0213
	436171_0214
	436171_0215

