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ABSTRACT 

SCALABLE COLLISION DETECTION FOR 

DISTRIBUTED VIRTUAL ENVIRONMENTS 

Kier Storey 
Ph.D. in Computing Science 

Supervisor: Dr. Graham Morgan 

December 2006 

Distributed Virtual Environments (DVEs) provide a mechanism whereby 

dispersed users can interact with one-another within a shared \'irtual world. 

DVEs commonly allow users to interact with one-another in ways analogous to 

the real-world, e.g. mimicking Newtonian physics. A scalable DVE should 

enable large numbers of users to participate simultaneously, regardless of the 

geographical location and hardware configurations of individual users. In 

addition, these users should perceive a mutually-consistent virtual world in 

which each user perceives a consistent series of events in real-time. 

Collision detection and response is a fundamental requirement of most virtual 

environments and simulations. It is a computationally-expensive operation 

which must be perfonned at frequent intervals in all virtual environments which 

simulate the motion of solid objects. Collision detection has received large 

amounts of research interest and as a result a number of efficient collision 

detection algorithms have been proposed. However, these collision detection 

approaches are designed to detect collisions efficiently in simulations run on a 

single machine and are not capable of overcoming problems associated with 

scalability and consistency, which are of paramount importance in DVEs. 
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This thesis presents a new collision detection approach, tenned distributed 

collision detection, which provides high-levels of scalability, consistency and 

responsiveness. This thesis presents the algorithms and theory which underpin 

the distributed collision detection approach and provides experimental results 

demonstrating its scalability and responsiveness. 
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Chapter 1 

Introduction 

A Virtual Environment (VE) [Burdeau03][SinghaI99] is a world simulated in 

computer software. In general, these systems are designed to allow a user to 

interact with the virtual environment and the entities which inhabit it through a 

set of world-specific rules. These rules often mimic the interaction rules 

observed in the real world, such as Newtonian physics[PalmerHBourg] and 

verbal communication, although they are limited only by the imagination of the 

VE designer and the processing resources an memory available in the target 

platform. Virtual Environments are a heavily-researched and exceptionally 

commercially-successful family of software systems. Due to the commercial 

success of VEs in the computer games market, research is ongoing to improve 

both algorithmic and hardware performance of YEs on a global scale in both 

industry and academia. 

A Distributed Virtual Environment (DYE)[SinghaI99][\lorgan05][ZhaoOI] is a 

VE which allows mUltiple dispersed participants to interact with the same \"E in 

real-time. Each user can inject one or more objects into the DYE. which they 



can control; in many DYEs, a user injects just a single object, termed an avatar. 

An avatar is a virtual representation of the user, which they can use to interact 

with the DYE, the objects and avatars which reside within it. Initial DYE 

research was conducted with the goal of developing distributed military 

simulation and training tools. As the cost of hardware capable of rendering 

three-dimensional images in real-time was prohibitively expensive, alternative 

applications for DYE technology were not extensively explored until consumer 

hardware became capable of 3D rendering. DYEs currently find applications in 

training and simulation, virtual classrooms, entertainment and e-commerce. 

A DYE is required to ensure that each user experiences the same, or a very 

similar, environment to one another and that the actions they perform in the 

DYE have the same semantics and result in the same reactions being observed 

by all users. In a DYE, satisfying real-time requirements while ensuring all users 

maintain a consistent view of the shared state is difficult. Although the actual 

behaviour of users is non-deterministic, they can only interact with the 

environment in set ways meaning that the behaviour of players can be predicted 

to a certain level of accuracy based on heuristics [McCoy03]. However, due to 

network delays and limited bandwidth, DYEs adopting such techniques can 

become inconsistent and chaotic, with many participants viewing the world in a 

number of different ways. In addition to consistency requirements, it is also 

desirable to develop scalable DYEs. A scalable DYE should allow large 

numbers of dispersed participants to interact with one-another simultaneously. 

The machines which the dispersed users participating in the DYE use may 

exhibit large variations in performance and variations in network transmission 

delays and available bandwidth. As a result, designers are responsible for 

ensuring that their DYE enables large numbers of users to interact with a 

consistent virtual world while dealing with heterogeneity in real-time. 
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The current state of the objects inhabiting a DYE is shared between machines 

participating in the DYE through the use of message passing over a network. 

The scalability of a DYE can be affected by a number of factors, including: 

• The volume of messages required to be transmitted 

• The processing overhead associated with managing the DYE 

As the number of participants increases, the volume of messages transmitted 

between participants may increase to reflect the additional objects inhabiting the 

virtual world. The choice of communication architecture and network protocols 

can significantly affect the scalability of the DYE. The communication 

architecture defines which machines are responsible for transmitting state update 

messages to each other throughout the lifetime of the DYE. In addition, the 

choice of network protocols can affect the volume of messages each machine is 

responsible for transmitting. These issues are discussed in detail in the 

subsequent chapters. 

As the number of participants increases, the number of objects inhabiting the 

DYE will also increase. With an increased number of objects in the DVE, the 

processing overhead associated with managing these objects will also increase. 

These processing overheads include: Rendering; Animation; Collision 

Detection; Physics; AI. This list is by no means exhaustive but offers many of 

the larger processing overheads associated with most DYEs. 

This thesis concentrates on collision detection [Ericcson05] [Bergen04] for 

DYEs. Collision detection is required to determine which objects inhabiting a 

virtual space are intersecting. It is an extremely computationally-expensive 

operation which must be performed frequently in all DYEs which model the 

motion of solid objects. It is frequently the second-most computationally­

expensive operation in YEs; rendering is usually the most expensive operation. 

The following section will introduce a number of concepts and collision 
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detection algorithms and identifies a shortcoming in traditional collision 

detection algorithms and approaches when adopted in DYEs. 

1.1 Collision Detection in DVEs 

Collision detection is a heavily-researched topic. It is a classic 0(112) problem for 

which, through the exploitation of temporal and spatial coherence, a number of 

algorithms have been developed which offer better than 0(n2) performance 

[Lin98] [Storey03] [Morgan04] [Morgan05 2] [WattO!] [Bergen04] 

[Ericcson05]. Most YEs exhibit both temporal and spatial coherence. The 

presence of temporal coherence implies that the state of objects at a given time, 

tt. will be similar to the state of objects at time t,+/. The presence of spatial 

coherence implies that the configuration of the objects inhabiting the VE is such 

that there exists space separating non-intersecting objects. 

Traditionally collision detection algorithms have been developed, implemented 

and optimised for single-processor platforms. However, recent developments in 

consumer hardware have moved towards multi-core processors, for which many 

of the available algorithms cannot easily be adapted to exploit. This thesis 

provides an evaluation of current collision detection algorithms and their 

applicability on multi-processor platforms. 

Current DYEs commonly perform current collision detection between all objects 

in the DYE on each machine participating in the DYE [WattO!]. This approach 

can limit responsiveness and scalability by repeating collision detection and can 

result in inconsistencies in object states between machines; small inconsistencies 

in object states as a result of collision response can compound on each-other 

reSUlting in chaotic, unpredictable object behaviour in DYEs. 
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The factors contributing to inconsistencies in object states in DYEs include 

message transmission delays and limited network bandwidth. Limitations in 

network bandwidth place restrictions on the volume of messages which can be 

physically transmitted over the available network infrastructure. For the purpose 

of DYEs, the available network bandwidth places restrictions on the size of and 

frequency which state update messages can be transmitted. In order to 

compensate for relatively infrequent state update messages, DYEs commonly 

utilise state prediction approaches, such as dead reckoning, to extrapolate on 

object's current state from its previous state using information such as previous 

position, velocity, acceleration etc. These approaches avoid users noticing 

objects "jumping" from one state to another. However, these approaches cannot 

be guaranteed to predict an object's correct state and, as such, are required to use 

convergence paths to smoothly correct deviations between an object's predicted 

and actual state. This, however, can result in significant inconsistencies arising. 

For example, if a collision is detected involving an object while it is travelling 

on a convergence path it is probable that this collision may be detected 

differently, or not at all, on one or more machines participating in the DYE. 

Message transmission delays introduce delays between an object's state 

changing and this change being realised on all machines participating in the 

DVE. As a result of this, the state of one or more objects on each machine 

participating in the DYE may be out-of-date. Any such inconsistencies in the 

state of objects can result in collisions being detected and responded to in an 

inconsistent manner between machines participating in the DYE. As previously 

stated, these inconsistencies can compound on one-another and result in 

significant differences developing between the state of objects on each machine 

in a relatively short period of time. 

In addition to inconsistencies, the current approach of performing collision 

detection for all objects on all machines participating in a DYE results in 

significant processing repetition. As the number of objects inhabiting the virtual 

world increases, the processing overhead associated with collision detection for 
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the DYE on each machine increases accordingly. The processing overhead 

associated with collision detection may restrict the number of, and detail of, 

objects inhabiting the DVE in order to achieve an acceptable level of 

responsiveness on the target machines; it may be necessary to sacrifice 

scalability in order to achieve acceptable levels of responsiveness and vice­

versa. 

1.2 Thesis Contribution 

It is desirable for DVEs to offer high-levels of consistency, responsiveness and 

scalability. Current DVE research has concentrated on promoting scalability by 

employing a number of techniques, including interest management/message 

filtering [Greenhalgh] [MorganO!], dead-reckoning [WattO!] and the use of 

dedicated server farms [IBM07]. Consistency has been promoted in DYE 

research by the use of centralised servers [WattOl], lock-step time-stepping 

schemes [Sweeney99] and state roll-back and correction schemes [Sweeney99]. 

However, all of these approaches sacrifice one or more of the three requirements 

(consistency/responsiveness/scalability) in order to improve their desired 

requirement(s),e.g. an application may restrict responsiveness by imposing that 

all users interact using a tum-based approach in order to improve consistency. 

Currently, research into consistency in DYEs has not focussed on one of the 

major sources of inconsistency, collision detection and collision response. 

Current research into collision detection has focussed on providing improved 

performance and accuracy in determining points of intersection between a 

system of objects. However, little research has been undertaken into collision 

detection for systems in which the current state of all the objects being simulated 

is not known by all machines participating in the simulation. This thesis will 

present a collision detection approach which provides high-levels of scalability, 

consistency and responsiveness suitable for both single-user YEs and large-scale 

DVEs. The approach leverages the parallel processing power offered by multi-
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core processors and the set of machines participating in the DVE to distribute 

the processing overhead associated with collision detection to provide improved 

responsiveness. The approach utilises a peer/server hierarchy network 

architecture which increases scalability by reducing the volume of messages 

each machine participating in the DVE is required to transmit and receive. This 

approach provides improved consistency by reducing the number of machines 

which are responsible for collision detection for a given object, thereby reducing 

the probability of conflicting responses being initiated as a result of a collision. 

It is capable of adapting to variations in network transmission delays, machine 

failure and network congestion to maintain high-levels of consistency, 

responsiveness and scalability. Through the use of a peer/server hierarchy 

network architecture, many of the processing burdens are removed from the 

main server to localised servers for given territories or networks thereby 

improving scalability; these local servers are termed group leaders and are 

dynamically assigned from the machines participating in the DVE based on the 

network transmission delays perceived between the machines participating in 

theDVE. 

To summarise, it is desirable for a DVE to provide high-levels of consistency to 

its users. However, current research into collision detection has not yielded 

approaches which address the problem of consistency in DVEs. This thesis 

presents a general-purpose network architecture and collision detection approach 

capable of exploiting both multi-core processors and multiple machines 

participating in a DVE. The approach enables participants separated by large 

geographic distances to participate in the same DVE in real-time; every user will 

perceive high-levels of responsiveness and the level of consistency between 

users will be adapted depending on the observed network transmission delays 

and bandwidth restrictions, which are monitored and adjusted during run-time. 

Experimental results will be presented to demonstrate the performance and 

applicability of this approach. 
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Chapter 2 

Background 

2.1 Virtual Environments 

A Virtual Environment (VE) [Burdeau03][SinghaI99] is a world simulated 

within computer software. In general, these systems are designed to allow a user 

to interact with the virtual environment and the entities which inhabit it through 

a set of world-specific rules. These rules often mimic the interaction rules 

observed in the real world, such as Newtonian physics and verbal 

communication, although they are limited only by the imagination of the VE 

designer and the processing resources and memory available in the target 

platform. Due to the commercial success of YEs in the computer games market, 

research is ongoing to improve both algorithmic and hardware performance of 

VEs on a global scale in both industry and academia. 
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2.1.1 Challenges in Virtual Environments 

There are a number of challenges associated with developing \ 'Es. In order to 

attract consumers in a highly-competitive market place, the quality of the 

graphics is often viewed as having paramount importance. After all, the 

consumers' first impression of any new product being released onto the market 

is usually formed by observing its graphics. This has resulted in an on-going 

competition between developers and manufacturers to produce the most 

impressive graphics engines [Epic06][Id06][Valve06] and hardware respectively 

[ATI06][NVidia06]. Animation, which is closely related to rendering, is highly 

important in producing an immersive virtual environment as smooth and 

realistic animation can significantly improve a user's immersion. Often 

receiving less research attention than the two previous challenges, Artificial 

Intelligence is required to provide the illusion of intelligence in software­

controlled entities within the VE. While research into AI for YEs is increasing. 

the level of research interest previously received was directly related to the Incl 

of sophistication of the AI routines employed in YEs. 

This thesis will concentrate on the problem of collision detection [Lin98] 

[Storey03] [Morgan04] [Morgan05 2] [WattOl] [Bergen04] [Ericcson05]. which 

will be discussed in detail later in this chapter. Collision detection is a 

computationally-expensive operation which must be performed at frequent 

intervals in all YEs which simulate the motion of solid objects. In terms of 

computational expense, collision detection is usually the second most expensive 

operation in a VE behind rendering the VE. Collision detection is used directly 

within animation, but collision detection techniques are also used extensively in 

rendering and artificial intelligence. 
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2.2 Distributed Virtual Environments 

A Distributed Virtual Environment (DYE) [SinghaI99][Morgan05][ZhaoOl] is a 

VE which allows multiple users to interact with the same virtual world in real­

time. Each user can inject one or more objects into the DYE, which they can 

control; in many DVEs, a user injects just a single object, termed an a\atar. An 

avatar is a virtual representation of the user, which they can use to interact with 

the DVE, the objects and avatars which reside within it. For example, an avatar 

could be a three-dimensional model of a human which a user controls within a 

virtual world. 

Initial DVE research was undertaken to develop real-time military training and 

simulation systems [Miller95]. However, due to the wide-spread adoption of the 

Internet and the affordability of consumer broadband Internet connections, 

DYEs are becoming more commonly used in a wide-range of non-military 

applications including: 

• Entertainment 

• Simulation 

• Training 

• E-commerce 

2.2.1 Challenges in DVEs 

There are a number of challenges associated with DYE development. These 

challenges include those associated with YEs while introducing additional 

challenges associated with the distributed nature of D\ c deployment. A DVE is 

required to ensure that each user experiences the same, or a very similar. 

environment and that the actions they perform in the DVE have the same 

semantics and result in the same reactions being observed by all users. In a 
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DYE, satisfying real-time requirements while ensuring all users maintain a 

consistent view of the shared state is difficult [WattO 1 ][SinghaI99]. The 

behaviour of users in YEs is unpredictable. However, DYEs commonly restrict 

the range of interactions which a user can have with a DYE. Therefore, using 

heuristics and application-specific interaction rules, it is possible in many 

circumstances to estimate a user's future interactions with a DVE based on 

previous behaviour [McCoy04]. However, due to network delays and limited 

bandwidth, such DVEs can become inconsistent and chaotic. with mam 

participants viewing the world in a number of different ways. 

It is desirable for a DVE to scale to allow large numbers of heterogeneous 

machines to participate in the same DVE. This heterogeneity includes, but is not 

limited to, the machine architecture and specifications, the operating system and 

software being executed on the machine and the speed and type of network 

connection being used. 

2.2.2 DVE Implementation Challenges 

There are a number of properties which it is desirable for a DVE to possess. 

Among these are scalability, consistency and responsiveness. A scalable DYE is 

capable of supporting large numbers of simultaneous participants. A consistent 

DVE enables the users interacting in a DVE to perceive mutually-consistent 

states of the objects inhabiting the DYE. A responsive DYE is able to respond to 

user input sufficiently quickly that these responses are perceived to occur 

instantaneousl y. 

2.2.2.1 Scalability 

A scalable DYE is capable of supporting large numbers of simultaneous users. 

While there are a number of factors contributing to scalability. scalability in 
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DVEs is largely affected by message dissemination [Morgan03][Abrams98] 

[Bharambe02][SinghaI99][WattOl]. It is necessary to exchange state update 

messages between all the machines participating in a DYE to ensure a consistent 

view of the DYE is perceived by all users. Message exchange must be frequent 

enough that any event triggered by a user is perceived by all users sufficiently 

quickly that the DVE appears to be operating in real-time. However, the more 

frequently messages are exchanged, the more network bandwidth will be 

consumed. Additionally, as the number of nodes and objects in the DYE 

increases, the network bandwidth consumption will increase due to the increased 

number of nodes transmitting state update messages. As the volume of messages 

transmitted and received by a node increases, the processing overhead 

associated with handling these messages will rise; this increased processing 

overhead will restrict scalability and responsiveness. In addition, increased 

network bandwidth consumption can contribute to network congestion and, 

therefore, increased message transmission latency, which can affect 

responsiveness and consistency. As mentioned previously, it is desirable for a 

DYE to allow large numbers of heterogeneous nodes to participate in the same 

DYE. As the speed of each node, and the network connection they use, cannot 

be pre-determined, it is necessary for a DYE to be able to scale to all forms of 

network connections. 

2.2.2.2 Consistency 

DYEs can contain a large number of participants, separated by large 

geographical distances and connected via unreliable, high-latency network 

connections, e.g. the Internet. As such, it is possible for each user to perceive a 

different view of the current state of a DYE due to state update messages being 

subject to varying message transmission delays. It is possible to ensure that any 

events occurring in the DYE are perceived correctly by participants by 

appointing an arbitrator, or oracle, to act as a definitive view of the current state 

of the DYE. However, this can lead to a bottleneck in system performance 
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because the arbitrator may have limited processing, memory and network 

resources. Additionally, participants exhibiting large message transmission 

delays between themselves and the server can observe a significant delay 

between the detection of an event and its manifestation on their machine; 

significant delays can detrimentally affect interactivity and user immersion. This 

problem is termed the consistency-throughput trade-off, because, in general, 

consistency can be improved at the detriment of throughput and vice-versa 

[Fischer83][SinghaI99] [WattOl]. However, currently there exists no solution 

which allows high-levels of consistency and throughput in DYEs. Current DYEs 

either restrict the number of users which can interact with each-other or reduce 

the level of interactivity permitted to allow larger numbers of users to interact 

with one-another. 

2.2.2.3 Responsiveness 

A responsive DYE exhibits low latency between a user issuing a command and 

the response to this command being manifested. Depending on the applications 

of the DYE, e.g. real-time action computer game, an unresponsive DYE can 

detrimentally affect user interaction, immersion or suitability of the DYE for its 

purpose. In order for high-levels of responsiveness to be achieved, the DYE 

must be capable of processing user input sufficiently quickly that the user cannot 

perceive a delay between issuing a command and the response being manifested. 

This requires the DYE to be able to listen to user input, listen to and transmit 

state update messages and display the updated DYE state to the user at a 

relatively high-frequency. 

The illusion of smooth motion in full-motion video can be achieved at frame 

rates greater than 25FPS [WattOl][Wiki06]. The smoothness of this motion is 

partly due to the effect of motion blur, a side-effect of recording continuous 

motion into discrete video frames using a camera; without the presence of 

motion blur, frame rates of 25FPS will not give the appearance of smooth 
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motion; this effect is most noticeable when displaying high-velocity objects. 

Motion-blur is not present in computer graphics and techniques to reproduce its 

effects into rendered images are computationally expensive. As such, real-time 

computer graphics must be rendered at higher frame rates in order to achieve 

smooth motion; a common target frame rate in DVEs and computer graphics is 

60FPS. Additionally, user interaction is usually obtained once per frame drawn. 

As a user can issue a command (e.g. press a button) at any time between one 

frame and another, it takes on average 1.5 frames, within the range [1,2] frames 

for a user command to be received and the response to the command displayed 

to the user. Therefore, DVEs rendered at higher frame rates will manifest user 

interaction with less latency than DVEs rendered at lower frame rates. If the 

frequency of rendering is low, the delay between issuing a command and its 

effect being realised may become noticeable to the user, which can compromise 

user interacti vity and immersion. 

2.2.3 Distributed Application Architecture 

There are a number of different architectures [Tenenbaum96] which can be used 

in distributed applications. Each of these structures has different performance 

characteristics, including scalability and message delivery latency. Four 

common architectures are introduced in the following section and evaluated in 

terms of these performance characteristics. 

2.2.3.1 Peer-to-Peer 

Peer-to-peer message transmission involves the direct communication between 

all nodes participating in a DVE. Each node must have knowledge of the 

network address of every other node participating in the DYE. When a node 

leaves or a new node joins, every node must be informed of this event and adjust 

their message recipient data structures accordingly. State update messages are 
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sent directly between nodes, resulting in no additional transmission delay due to 

messages having to be processed by an intermediate machine. However, this 

architecture results in each node having to transmit and listen to incoming 

messages from and transmit state update messages to the remaining n - 1 nodes 

participating in the DYE. This can introduce a relatively large communication 

overhead as the number of nodes in the DYE becomes large, which may limit 

scalability by not only exhausting available network bandwidth but also 

consuming significant processing resources, compromising the responsiveness 

of the DYE. 

Client 

Client 

Figure 2.1 Peer-to-Peer Architecture 

2.2.3.2 Client-Server 

The client-server structure is currently the most popular architecture for 

distributed applications. It has been widely adopted for use on the Internet. The 

architecture is simple; one machine acts as a server. The server waits for a client 

to connect. When a client connects, the server services the client's requests. 

Once the client's requests have been completed, the connection is severed. This 

architecture is easy to implement, and is capable of supporting small-to-medium 

size DYEs, depending on the message dissemination requirements and the 

server's processing resources. In this architecture, a single machine acts as a 

message dissemination server. All nodes participating in the DYE connect to 

their state update messages to the server. The server then forwards these state 

updates to the relevant nodes in the DYE; the recipients of these messages may 
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be affected by application-specific message dissemination criteria, e.g. one user 

is wearing an invisibility cape and, therefore, its state update messages need not 

be disseminated to the other users. Each client is required to maintain only one 

connection with the server, and is not required to have any knowledge of the 

other nodes connected to the DVE. This allows nodes to join and leave the DYE 

without affecting any other nodes connected to the server. However, this 

architecture introduces a single bottleneck in the system, the server itself. If the 

server is not capable of forwarding the incoming stream of messages quickly 

enough, a backlog of messages may build up, resulting in inconsistency in the 

clients. This could be alleviated by dropping messages if they cannot be 

processed within a time threshold, although this may compromise the fluidity of 

the DYE due to objects changing state radically as a result of the server 

dropping a number of the object's state update messages. Additionally, the 

client-server architecture introduces an inherent delay in message delivery; a 

message must pass from the client to the server, and then from the server to the 

other clients. This imposes an additional network transmission and processing 

delay, compared to if the nodes were to transmit messages to one-another 

directly. 

Client Client 

Figure 2.2 Client-Server Architecture 
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2.2.3.3 De-centralised Server 

The de-centralised server architecture is an extension of the client-server model. 

In the de-centralised server model , a number of machines act as ser ers. Each 

server is connected to one-another using the peer-to-peer architecture. ode 

connect to a one of the servers; the choice of server can be arbitrary or ba ed on 

network or geographlc properties , e.g. physicall y closest server. Each erver 

processes the state update messages it receives and passes them on to the 

relevant clients and other servers, which wil l subsequentl y deli er the e 

messages to their clients. The clients are unaware that there are multiple er er , 

as the client-side implementation is identical to that of a c lient- erver model. 

This architecture helps to alleviate the problem of a single bottleneck in the 

communication subsystem. However, it introduces further transmission delays 

on top of the client-server architecture, as messages must now travel through 

more than one server. 

Figure 2.3 De-Centralised Servers 
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2.2.3.4 Server Hierarchies 

Server hierarchies offer the most scalable approach to message dissemination, at 

the detriment of message transmission delays. A server hierarchy, from the 

client's perspective, is a client-server model, in which a client connects to a 

single server and transmits its state update messages. The server delivers these 

state update messages to the nodes participating in the DYE. In the server 

hierarchy architecture, the server that a client is connected to can act as a client 

to another machine. This "super-server" is responsible for delivering the 

messages received from each of its servers to the other servers in the DYE, 

which will in tum deliver these messages to their clients. This architecture 

avoids the need to maintain a peer-to-peer connection with servers, which allows 

servers to become available and unavailable during the lifetime of the DYE 

without each server needing to be aware of it. In addition, this architecture helps 

to reduce the number of connections each server must maintain with the other 

de-centralised servers in the DYE, helping to reduce the likelihood of 

bottlenecks in message transmission. However, this network architecture 

introduces additional message transmission and processing delays, as a message 

must now pass through additional intermediate servers before it is received by 

the client. The server hierarchy architecture permits an arbitrarily-deep server 

hierarchy tree to be constructed, although very deep server hierarchies may 

result increased message delivery latency. 
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Figure 2.4 Server Hierarchy 

2.2.3.5 Summary of Distributed Application Architectures 

Four distributed application architectures were introduced: 

• Peer-to-Peer 

• Client-Server 

• De-centralised Server 

• Server Hierarchies 

The peer-to-peer architecture generally offers the fastest message deli very speed 

at the cost of scalability; the architecture can be made scalable through the use 

of hardware multicasting, but hardware multicast protocols are only available on 

LANs. Client-server offers improved scalability but message delivery latency is 

increased due to messages having to be processed by an intennediary. The de­

centralised server architecture provides further scalability by employing multiple 

servers. This enables additional users to participate in a DYE at the cost of 

increasing message transmission latency. Server hierarchies offer the highest 

leve l of scalability but can result the largest message transmission delays. 
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2.2.4 Collision Detection 

Collision detection [Ericcson05][Bergen04][Lin98] is a computationally­

expensive operation which is required to be performed at frequent intervals in all 

YEs which simulate the motion of solid objects. It is responsible for detecting 

the presence of intersections between objects, the results of which are commonly 

passed into a dynamic simulation to determine collision response. Without 

accurate and efficient collision detection and response, the interactivity of a YE 

would be severely compromised; it is common that most, if not all, interactions 

in DYEs depend on some form of collision detection, e.g. walking up stairs, pick 

up a box, push something. However, collision detection and response often goes 

unnoticed because users will normally only notice errors in collision detection 

and response. As such, inconsistencies in collision detection and response in 

DYEs are most noticeable by users and can detrimentally affect user interaction. 

It is common that collision detection is performed for all objects in the DYE on 

each machine participating in a DYE using the most recent object state 

information received by each machine [WattOl]. The results of local collision 

detection can be passed into a physics simulation to generate collision response. 

However, due to limited frequency state update messages and variations in 

network latency between the machines participating in the DYE, the state of the 

objects on each machine participating in the DYE may differ significantly from 

one-another. These deviations can result in differences in collision response, 

ranging from minor to completely different responses. 

Dead reckoning is a commonly-used approach to reduce message transmission 

frequency by predicting the future position of objects based on their previous 

state; messages are only transmitted when the node hosting the object detects a 

deviation between the object's true state and its predicted state in excess of some 

pre-defined threshold value. The use of predictive approaches such as this can 

cause further inconsistencies in object states and therefore in collision response 
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due to objects straying from their predicted paths. While it is possible to reduce 

deviations by exchanging additional messages describing the state of objects and 

correcting deviations between machines, this can result in undesirable visual 

anomalies as objects change state arbitrarily to correct deviations, e.g. an object 

jumping from one position in the world to another. In addition, it is difficult to 

correct significant deviations elegantly between the state of objects on different 

machines, e.g. a deviation which result in a player being killed on one screen but 

surviving on another. 

In order to achieve high-levels of responsiveness, it is necessary for the DYE to 

complete all of the processes required to display the next frame to the user at 

high-frequencies, e.g. 60FPS [Wiki06]. As one of the major overheads, collision 

detection must be computationally-efficient and must not miss collisions or 

allow objects to be rendered penetrating one-another. In addition, it is desirable 

for collision detection in DVEs to be able to overcome inconsistencies between 

the perceived states of objects on each machine participating in the DYE to 

produce a consistent virtual world. 

2.2.5 Responsiveness and Consistency in Collision 

Detection for DVEs 

A number of collision detection 

[Lin98] [WattOl] [Bergen04] [Ericcson05] , 

approaches have 

which offer 

been proposed 

high-levels of 

performance and accuracy. Current approaches are designed to perform accurate 

and efficient collision detection on single-user VEs. The same approaches used 

in VEs are adopted for use in DVEs. However, due to network transmission 

latency, each machine participating in the DVE may detect and respond to 

collisions using inconsistent object state information. Inconsistencies in collision 

detection and response can significantly compromise user immersion. In 

addition, as the number of objects inhabiting a DYE increases. the 
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computational overhead associated with collision detection may detrimentallv 

affect responsiveness due to limited processing resources on a single machine. 

The exploitation of the highly-parallel distributed processing resources made 

available by DYEs may offer an opportunity to impro\'e scalability. 

responsiveness and consistency. 

The following sections introduce a number of existing collision detection 

algorithms and evaluate their applicability in DVEs. An ideal collision detection 

approach for DYEs will: 

• Be easily parallelisable to take advantage of multi-core processors and 

the presence of multiple distributed processing resources to offer 

improved responsiveness 

• Not require excessive message exchange between machines participating 

in a DVE and be suitable for deployment using the sener hierarchy 

network architecture to offer improved scalability 

• Offer high-levels of consistency between machines participating in the 

DVE 

Cun'ently, a collision detection approach does not exist which fulfils these 

requirements. As such, the following section examines the possibility of 

modifying existing algorithms to fulfil these requirements. 

2.3 Collision Detection Algorithms/Approaches 

Collision detection is a highly computationally-expensive process which is 

required to be performed at frequent intervals in any VE which models the 

motion of solid objects. Being usually performed each frame, and often more 

frequently, it is one of the major overheads in YEs and, as such, performance is 

of the utmost importance. Collision detection is a term which is used with a 

wide range of meanings. In its strictest sense collision detection is a 



computational geometry problem which is required to determine if a number of 

objects intersect to a certain level of detail. As the two operations are so 

intrinsically linked, the term Collision Detection is sometimes used, slightly 

inaccurately, to describe the act of detecting and responding to a collision, a 

process which usually requires the presence of a dynamic physics simulation. 

It is common in computer graphics for each object to be represented as a set of 

polygons [Gottsman05]. This could result in a naIve collision detection approach 

comparing every polygon in two objects to determine if the two objects are 

intersecting. This leads to collision detection between two objects composed of 

p polygons requiring l polygon-polygon comparisons. Similarly, in a virtual 

world which consists of n objects, a brute force approach to collision detection 

between these objects would require n2 object-object comparisons, where each 

object-object comparison requires p2 polygon-polygon comparisons. As p and 11 

become larger, even the fastest computers will struggle to maintain real-time 

performance [Sedgewick96]. 

The problem of real-time collision detection has received large amounts of 

research interest. A number of algorithms and approaches faster than brute force 

collision detection have been presented. Many of the earlier algorithms were 

targeted towards static meshes, i.e. objects which could undergo affine 

transformations (translation, rotation, scaling), but whose vertices in model­

space do not change. More recently, new algorithms and extensions to previous 

algorithms were developed to provide efficient collision detection for animated 

objects, such as model humans with moveable limbs. These were often pre­

scripted animations, in which the animation was simply a sequence of pre­

calculated poses the object could be drawn in. Recently, further research has 

been performed into collision detection for objects which can undergo arbitrary 

movements, e.g. objects which can change shape as a result of external 

influences. These collision detection algorithms must deal with not only 
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collisions with other objects but also self-intersection, In which an object's 

polygons intersect with one-another. 

In the following sections, a number of collision detection approaches and 

algorithms will be introduced. Wherever possible, these algorithms will be 

discussed in terms of the performance they offer and their applicability in 

parallel or distributed execution. This consideration is due in part to the recent 

adoption of multi-core processors in consumer pes and next generation 

consoles. Additionally, a collision detection algorithm which is capable of being 

executed in parallel may also provide opportunities to execute collision 

detection in a distributed fashion, providing a scalable collision detection 

approach. A number of the approaches discussed in this section are not suitable 

for parallel execution by themselves. However, these approaches may be 

suitable for parallel execution when used in conjunction with other algorithms. 

2.3.1 ParalleIlDistributed Execution 

Software systems utilising mUltiple threads of control [Jaja92][Ben-Ari06] can 

be categorised in terms of the proportion of program which can be run in parallel 

compared with the proportion of the program which must be run sequentially. It 

is common that applications are separated into sections which can be run in 

parallel and sections which must be run sequentially. By abstracting away a 

number of lower-level issues regarding parallel execution, the parallel execution 

of an application can be categorised in terms of forks and joins. A fork is a stage 

in a program in which one process can be forked into multiple parallel processes 

which can execute concurrently. At the end of such a parallel section, a join can 

be performed which waits for all the processes to terminate before the main 

thread of execution can proceed further. Each fork and join operation can be 

seen to incur a cost. A fork operation has the cost of generating a number of new 

processes, which requires a number of kernel-level operations to be performed 
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by the operating system. Conversely, a join operation requires the main process 

to wait for the processes which are being joined upon terminate; this can be a 

costly operation if the main process must wait for a large number of processes to 

terminate. 

In order to reduce the performance costs of executing parallel threads within an 

application, it is common that synchronisation primitives are used to control the 

execution of threads by: 

• Placing locks on resources, e.g. function or access to a given memory 

address 

• Using message passing to cause processes to wait, sleep or wake-up 

depending on application-definable conditions 

• Control the priority of processes and yield processing resources when it 

is desirable to do so 

These synchronisation primitives can result in more efficient parallel 

performance compared to forking new processes and terminating them 

whenever a parallel section of code is completed. This performance gain is 

achieved because synchronisation primitives are generally more lightweight 

operations than kernel-level process-management. However, the level of 

parallelism offered by an algorithm remains consistent regardless of whether 

these synchronisation primitives are used as opposed to kernel-level process 

management. 

An important factor in determining whether it is beneficial to parallelise an 

algorithm is the granularity of the parallelism. Fine-grained parallelism implies 

that the amount of work that is to be executed in parallel is relatively small; 

coarse-grained parallelism, conversely, implies that the proportion of work that 

is to be executed in parallel is relatively large. Very fine-grained parallelism is 

undesirable as the processing overhead of spawning and managing a new 
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process can outweigh the perfonnance improvements offered by performing the 

processing in parallel. 

2.3.2 Two Phase Collision Detection 

Collision detection within a animated virtual environment is separated into two 

inter-related problems. Given a virtual world with n objects each consisting of p 

polygons, a brute force collision detection approach would require /1
2 object­

object comparisons, each requiring i polygon-polygon intersection tests. Rather 

than perfonning i polygon-polygon intersection tests for each pair of objects, a 

more efficient approach to collision detection could be to use some less 

computationally expensive technique to quickly disregard a pair of objects from 

further consideration. Any pairs of objects which are not culled by this process 

must then undergo further consideration to determine if the objects do in fact 

collide. These phases are tenned Broad Phase and Narrow Phase respectively 

[Lin98] [Bergen04] [WattO 1] [Ericcson05]. 

2.3.2.1 Broad Phase Collision Detection 

Broad Phase collision detection is a class of collision detection algorithms which 

is intended to reject pairs of objects from further consideration using 

computationally inexpensive techniques. If a pair of objects is found to be 

colliding in broad phase collision detection, this does not definitely mean that 

the pair of objects is in fact colliding; only that the objects warrant additional 

inspection. There are a wide-range of broad phase collision detection algorithms 

which have been developed. Most broad-phase approaches use bounding 

volumes, which will be descried in the subsequent section. The most popular 

broad-phase collision detection techniques are Sweep-and-prune [LinHLin98] 

[Bergen04] [Ericcson04] and spatial-subdi vision approaches [WattO 1] [Bergen04] 

[Ericcson04]. These two approaches to broad-phase collision detection will be 
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introduced and evaluated for their applicability In distributed/parallel 

environments. 

2.3.2.1.1 Bounding Volumes 

A popular broad-phase collision detection technique is the use of bounding 

volumes to enclose a set of polygons [WattOIHBergen04][Ericcson05HLin98]. 

This can provide a highly efficient culling strategy because if two objects' 

bounding volumes do not intersect, then the polygons which the bounding 

volumes enclose cannot possibly collide with one-another. This provides an 

efficient collision detection strategy, providing performing collision detection 

between bounding volumes can be performed inexpensively. To this end, a 

number of shapes have been proposed as bounding volumes for collision 

detection: 

... ---- ... 

Bounding Axis-aligned 
Sphere Bounding Box 

, , 
" ' 

~ " " " , " , " , " , , , , 

, , 

Oriented 
Bounding Box 

" " , , 

Discreet Orientation 
Polytype (K-Dop) 
In this case, K = 8 

Figure 2.5 Bounding Volumes 

The different bounding volumes exhibit different benefits and weaknesses. A 

bounding sphere occupies the smallest memory footprint, being represented by 

its centre-point and its radius. It also is relatively computationally cheap to 

perform intersection tests between two spheres: if the distance between two 

spheres' centre points is less than the sum of their respecti \e radii, then the 

spheres overlap. Bounding spheres are rotationally independent. This means that 

the object can undergo any form of rotation and translation without needing to 

re-calculate the bounding sphere. Bounding spheres. unfortunately. often exhibit 
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low bounding efficiency. High bounding efficiency means it is less likely a 

collision detection engine will need to unnecessarily enter the expensive, 

narrow-phase collision detection stage with a pair of objects. It can be seen that 

a sphere can provide high bounding efficiency for spherical objects. However, 

spheres will provide extremely low bounding efficiency for long, thin objects. 

Axis-Aligned Bounding Boxes (AABBs) require slightly more memory to store 

than bounding spheres, being represented by two vectors containing: 

• Its extremes along the coordinate axes 

• Its centre and half-extents along the coordinate axes 

The former representation offers faster collision detection whereas the latter 

offers faster transformation, as only the half-extents must be rotated provided 

rotations occur around the object's centre. An AABB offers efficient collision 

detection, and often exhibits better bounding efficiency than spheres. AABBs 

are not rotationally independent; they must be recomputed after an object's 

rotation. Recalculation can be performed in one of three ways: 

• Recalculate from scratch by clearing the AABB and adding each 

transformed point to the AABB 

• Update the AABB by rotating the 8 comers of the AABB and using 

these to determine the extremes of the AABB. 

• Rotating the extents of the AABB using the absolute rotation matrix (the 

sign bit of each member of the rotation matrix is dropped) 

The first option will result in the best possible bounding efficiency for an 

AABB, but it is computationally expensive. The second and third options are 

computationally cheap, but may result in larger bounding boxes, lowering 

bounding efficiency. It is also possible to ensure an AABB is rotationally­

independent by expanding the AABB to encompass all possible rotations of the 

object it encloses; this approach results in an axially-aligned bounding cube. 
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Oriented Bounding Boxes (OBBs) require additional storage space. In three 

dimensions an OBB is represented by its extents along its local X-, y- and z-axes, 

its position and the orientation of these axes (a 3x3 matrix); in total this requires 

15 floating point numbers. OBBs are relatively expensive to perform collision 

detection between, requiring 15 potential separating axes to be considered to 

determine whether a pair of OBBs intersects. However, OBBs will generally 

provide better bounding efficiency that AABBs or bounding spheres. They 

should be pre-calculated either algorithmically or manually during object 

modelling. OBBs are not rotationally independent. However, unlike AABBs, the 

OBB's planes are not restricted to being axially-aligned. Therefore, the OBB's 

planes can be transformed with the object they enclose. As the OBB is oriented 

to be the tightest possible fit to the object, the OBB after object rotation will also 

be the tightest possible fit. 

Discrete Orientation Polytypes (K-DOPs) are a generalisation of AABBs. The 

value of K indicates how many candidate planes are available to enclose the 

object. If K is 4, then the bounding volume is an OBB (an AABB if the K planes 

are axially-aligned). Essentially, a set of candidate planes is chosen to enclose 

the object. The combination of these planes which provides the highest 

bounding efficiency is selected as the bounding volume. The memory footprint 

and computational overhead of collision detection on K-DOPs depends entirely 

on how many planes constitute the bounding volume. As K increases, the 

bounding efficiency and computational cost of collision detection increases. K­

DOPs can be used as a narrow phase collision detection scheme as well as broad 

phase. Similar to OBBs, K-DOPs are not rotationally independent. They can, 

however, be rotated in conjunction with the 3D object. As with OBBs, K-DOPs 

can be pre-calculated either algorithmically or manually during object 

modelling. 

2.3.2.1.2 Coherence 
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The use of bounding volumes can have a great effect on the performance of a 

collision detection engine, as they can substantially reduce the number of objects 

which must have more detailed collision detection performed upon them. 

However, a naIve approach to collision detection using bounding volumes will 

still require every object's bounding volume to be compared with each-other. 

Given a world containing n objects, this will require n(n -I) comparisons. As n 
2 

becomes large, this will become a severe performance drain. In order to alleviate 

this problem a number of collision detection approaches have been proposed 

which can reduce the number of bounding volume comparisons required for 

broad phase collision detection. These algorithms exploit coherence in the 

virtual world: spatial coherence and temporal coherence. High levels of spatial 

coherence [LiOI] in the virtual world means that there exist planes or empty 

space which separate objects from one-another. With this type of coherence, it is 

possible to separate a set of objects into smaller groups of potentially colliding 

objects. A virtual world exhibits high levels of temporal coherence [Lin98] if 

there is a high level of similarity between object states from one time-step to 

another. With this type of coherence, it can be said with some level of 

confidence that if a pair of objects do not collide at time Tr. it is unlikely that 

they will be colliding at time Tt+/, providing the change in object positions 

between Tt and Tt+/ is relatively small. These two forms of coherence commonly 

occur in most virtual worlds, and can be exploited to reduce the number of 

comparisons required to perform collision detection. A number of collision 

detection algorithms will be presented which exploit a combination of temporal 

and spatial coherence. Initially, two algorithms will be introduced which utilise 

the properties of two bounding volumes: Sweep and Prune [Lin] and Expanding 

Spheres [Storey04]. 

2.3.2.1.3 Sweep and Prune 
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The Sweep and Prune algorithm [Lin][Lin98][Bergen04] operates on AABBs. It 

is currently the most popular broad-phase collision detection algorithm u ed in 

commercial physics simulation and computer games due to its 0 (11) a erage run­

time performance and memory usage. A property of AABBs is that a pair of 

objects intersects if and only if their projections onto the coordinate axe 

overlap. Sweep and Prune is a coordinate-reducing strategy, in which the 

objects' extremes are sorted along the X- , y- and z-axes into three Ii ts of tart 

and end-points, which are traversed in tum. The algorithm provide a best-ca e 

O(n) performance, average-case O(n) and worst-case 0(112) performance. The 

worst-case occurs when the objects clump along an axis . A list of currently 

active objects is maintained, which is initially empty. In addition, a li st of the 

number of times a pair of objects has been found to be overlapping along an a 

is maintained, in which all entries are initially set to zero. 

: : 
. , . . 

Sweep 
Line 

Axis : ~ 
~_"':""""::-'----'-__ ---'._-'-~-----' ___ ----+' Direction 

Ej 

Figure 2.6 Sweep and Prune along a single axis 

The first axis to be swept is selected, e.g. the x-axis . The li st of AABB extremes 

is traversed in order. When a start point is found, the corresponding object is 

added to the active list. When an end point is found, the corresponding object is 

removed from the acti ve list. At any point in the sweep, the set of objects in the 

active list overlap along the given axis. Figure 2.6 shows sweep and prune along 

a single coormnate axis. As can be seen, at the current stage of sweeping the 

current set of objects on the active li st is {obiJ, obh, ob}J}. When an end point i 
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reached, the set of objects currently in the active list is recorded as overlapping 

along the axis and the corresponding object is removed from the active list. In 

Figure 2.6, the resulting set of overlapping objects should be: { {obj}, obh, obid. 

{obh, obh}}· The process is repeated for all three axes. If a pair of objects 

overlaps along all three axes, then the AABBs overlap. In a virtual world with 11 

objects, each list will contain 211 points. As three lists must be traversed, this 

gives the algorithm O(n) performance; 6n to be precise. The major workload for 

this algorithm is in maintaining the three sorted lists. Sorting has a complexity of 

0(n2) [Sedgewick96], with the very best sorting algorithms able to sort data in 

O(nlogn) time. However, it has already been identified that YEs exhibit high­

levels of temporal coherence, as the configuration of objects only changes 

slightly between time-steps. This implies that the set of object extremes sorted 

along an axis at time T/ is likely to be similar or identical to the sorted extremes 

at time TI+J. There exists a class of sorting algorithms, called sifting sort 

algorithms, e.g. Bubble Sort, which can deliver O(n) sorting performance when 

given sorted or nearly-sorted data sets; to be exact, the performance is O(n + c), 

where c is the number of swaps required to sort the data. If the data is already 

sorted, c = O. In this case, performance is 0(11). However, if the dataset is 

random, sifting sort algorithms result in 0(n2) performance. This means that the 

previously-sorted object extremes can be used as the input for a sifting sort 

algorithm to give O(n) sorting in the Sweep and Prune algorithm. 

2.3.2.1.3.1 Parallelism in Sweep and Prune 

The Sweep and Prune algorithms offers considerable performance advantages 

over brute-force collision detection. However, it offers only limited 

opportunities to exploit parallelism and, due to the nature of the algorithm, can 

offer only constant performance optimisation as opposed to increasing 

performance by orders of magnitude. The sweep and prune algorithm can be 

separated into two constituent sub-processes: sorting and sweeping. 
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The sorting process requires that three lists of object extremes be sorted. Trivial 

parallelism can be exploited by sorting each individual list in parallel, whereby 

three processes could be used to sort each list. The list sorting process could be 

further parallelised with the use of divide-and-conquer sorting algorithms such 

as QuickSort. Divide-and-conquer sorting algorithms offer O(nlogn) 

performance by sub-dividing the list into sets of smaller lists and recursively 

sorting these lists; each of the sub-lists can be sorted in parallel. However, this 

offers very fine-grained parallelism, whereby the cost of creating a new process 

or thread to sort the list may outweigh the benefits of performing the operation 

in parallel. In addition, due to the presence of temporal coherence, better 

performance can be achieved using sifting-sort algorithms; such sorting 

algorithms can not be parallelised. 

The sweeping process can only be commenced once the sorting process has been 

completed; this requires a join operation to be performed waiting for the sorting 

to complete before the sifting can begin. The sweeping process requires that 

each of the sorted arrays be traversed, recording from each array which objects 

overlap along a given coordinate axis; if a pair of objects overlaps along all three 

coordinate axes, the objects' AABBs intersect. It is possible to sweep each of 

the three lists in parallel. However, this incurs the additional cost of traversing 

the three lists of overlapping objects along each coordinate axis to determine 

which objects are intersecting. If the sweeping process is performed 

sequentially, this additional step can be avoided by examining the results from 

the previous coordinate axis' sweep to determine if a pair of objects overlapping 

on a given coordinate axis is potentially intersecting. This additional step can 

also be avoided in parallel execution at the cost of memory by utilising a matrix 

counting the number of axes a pair of objects overlaps upon. Every time a pair 

of objects overlaps along a coordinate axis, the corresponding value for this pair 

of objects is incremented. If this value reaches 3, the objects are intersecting and 

successfully pass from the broad phase to the narrow phase. This matrix must be 

33 



NxN, where N is the number of objects and each element must be set to 0 before 

the sweeping phase is begun. 

The Sweep and Prune algorithm offers the capacity to be executed in parallel 

across 3 processors, but offers little capability to improve performance if more 

than 3 processors are available. This is a reasonable performance optimisation 

on current home computers, where it is uncommon to have large numbers of 

processors. However, next-generation games consoles, such as the Sony 

PlayStation III, have up to S processing cores. In addition, the sweep and prune 

algorithm does not lend itself to distributed collision detection in DVEs as such 

applications may host hundreds or thousands of simultaneous participants; the 

exploitation of this number of distributed processors for use in collision 

detection requires algorithms capable of executing in parallel across arbitrary 

numbers of processors. 

2.3.2.1.4 Spatial Subdivision 

Spatial coherence is most easily exploited by subdividing the VE into unit cells 

[WattOl]. In YEs where the objects move on the ground, this can be simplified 

into a 2D grid. This can potentially provide highly-efficient broad phase 

collision detection as objects need only be compared with one another if they 

occupy the same subspace. The major problem with this approach is choosing an 

optimal size for the cells, as it is undesirable for an object to occupy multiple 

cells simultaneously. It also requires an algorithm which is capable of 

determining which cells an object occupies efficiently. A number of approaches 

have been proposed to solve this problem. These generally involve the use of 

recursive data structures, such as Quadtrees [SametS4], Oct-trees [WattOl] and 

Binary Space Partitioning (BSP) trees [FuchSO][Naylor90] [Wiley97]. An 

approach will also be presented, Spatial Hashing [Ericcson05], which does not 

require a recursive data structure. Each of the spatial subdivision approaches 
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will use an object's approximate bounding volume to reduce the computational 

overhead. 

Spatial subdivision provides a strong broad phase collision detection approach. 

In order to demonstrate the efficiency of spatial subdivision, it is assumed that 

narrow phase collision detection is performed in a brute force manner within 

each region; this may not be the most efficient approach, but it illustrates the 

strength of spatial subdivision sufficiently. Given a VE with n objects and s sub­

regions, each sub-region would contain, on average, n/s objects. A brute force 

approach to collision detection in a single cell would require: 

(n/s)( (n/s )-1 )/2 = ~(n: _!:J = n 22 -!:.. comparisons between objects. Gi ven 
2 s s 2s 2s 

that this must be performed s times, this gives a total cost of: 

s( ;:' -;s J ~ ;: -; ~ n' ~ ns . 

Given that n = 100 and s = 50, this would require, on average, 50 comparisons 

between objects. This is significantly less than the 4950 comparisons between 

objects required if there was just a single sub-region. While spatial subdivision 

explicitly exploits the presence of spatial coherence, it can also exploit temporal 

coherence because objects will usually remain in the same sub-regions for more 

than one time-step. As such, it is not necessary to re-insert objects into the 

spatial subdivision every time-step. 

2.3.2.1.4.1 Quad-trees and Oct-trees 

A Quad-tree [Samet84] is a tree structure in which each non-leaf node in the tree 

contains four child nodes. It is used primarily for subdividing two dimensional 

VEs, although it can also be applied to three dimensions. Figure 2.7 shows the 

mechanism whereby the space is subdivided into four equal-sized subspaces 

along the x- and y-axes. This subdivision is applied recursively until some 

termination criterion is reached, e.g. minimum cell size. 

35 



3 

1 

4 

2 

2 

Figure 2.7 Quad-Tree Structure 
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Figure 2.8 shows a Quad-tree decomposition of a YE containing a sphere a rod 

and a box. In this diagram, the termination criterion is that a ce ll contain on ly a 

single object, or part of object. This is a reasonable approach for YEs in which 

the configuration of objects does not change. This , however, is not applicab le in 

YEs where the configuration of objects is not known a priori . In thi s ca e, a 

different termination criterion should be used, such as minimum threshold cell 

size. If such an approach is used, run-time optimisations cou ld be used to further 

subdivide overcrowded cells or merge under-populated cell s into a si ngle cell . 
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Figure 2.8 Quad-tree decomposition of a VE 

An Oct-tree [WattOl] is the extension of a Quad-tree into three dimensions, 

whereby each non-leaf node has eight child nodes. In an Oct-tree, the world is 

subdivided into uniform cells along the X-, y- and z-axes recursively. An Oct­

tree, as with a quad-tree, can be used to fully subdivide the VE into regions 

containing a single object. Alternatively, it can maintain a list of objects in each 

leaf node. In this case, objects sharing the same cells are candidate colliding 

objects. 

In order to perform broad phase collision detection on a VE using an Oct-tree, it 

is necessary to insert each object into the tree. It requires O(logn) comparisons 

to insert a single object into the tree, where n is the number of cells the VE is 

subdivided into. Given a VE consisting of p objects, this leads to a broad phase 

collision detection cost of O(plogn). 

2.3.2.1.4.1.1 Parallelism in Oct-trees 

Oct-trees offer good parallelism opportunities. The approach allows both 

insertion and narrow-phase collision detection to be performed in parallel. Oct­

trees can distribute the processing between an arbitrary number of processors. 

However, the distribution of processing resources is only even if the number of 

processors is a power of 8. 

2.3.2.1.4.2 Binary Space Partitioning (BSP) Trees 

A BSP tree is a recursive data structure suitable for exploiting spatial coherence 

within a YE. It was originally proposed by Henry Fuchs [Fuchs80] as a 

mechanism for depth-sorting polygons for rendering using the painter's 

algorithm. This algorithm requires that objects be drawn from back-to-front with 

respect to the viewpoint to ensure that the final colour of a pixel is correct. This 
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was prior to memory becoming cheap enough for depth-buffer values to be 

retained; currently, depth sorting is only necessary to correcth render 

transparent objects. 

A BSP tree contains, at each non-leaf node, a partitioning plane, which 

subdivides the scene, or part of the scene, into two subspaces. This partitioning 

is recursively performed until some termination criterion is reached, such as 

maximum tree depth or minimum number of objects in a subspace. Each leaf 

node contains a list of all the objects which it contains. 

k I 0 

i j m n 

d e g h 

c f 

p 

b 
cdc , •• b I J k I • • 

Figure 2.9 BSP Tree of a VE 

Figure 2.9 shows a BSP tree using axially-aligned partitioning planes to divide 

the VE into equal-sized cells; this process is termed static subdivision. This 

results in an unbalanced binary tree of the YE with maximum height 8. This 

demonstrates an issue with spatial subdivision: objects are not always uniformly 

distributed throughout the YE. A problem with Oct-trees and Quad-trees is that 

they are likely to produce uneven trees with large numbers of empty cells. When 

a BSP tree is used to represent a subdivision of space into cubic cells, it shows 

no significant advantage over a direct data structure encoding of an Oct-tree. 

However, a BSP tree is not required to subdivide the space into uniform cells: in 

fact, the main advantage of BSP trees is that the space can be divided using an 

arbitrary plane. As BSP trees prescribe the use of an arbitrary partitioning plane 
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at each level of subdivision, rather than an Oct-tree's restriction ofaxialh­

aligned partitioning planes, BSP trees can be considered a generalisation of Oct­

trees. 

Cd ef bg Jk 1m no p 

Figure 2.10 BSP Tree of a VE with Adaptive Subdivision 

As mentioned previously, the partitioning plane used in BSP trees can be 

arbitrarily oriented. As such, it is possible to use adaptive slIbdivision to 

generate a balanced tree. In adaptive subdivision, a partitioning plane is selected 

which subdivides the objects in the VE into two approximately equallY-SIzed 

sets of objects. Figure 2.10 demonstrates a two dimensional VE in which 

adaptive subdivision was used; this is the same VE as shown in Figure 2.9 using 

static subdivision. These diagrams illustrate why adaptive subdivision is 

advantageous: Figure 2.9's BSP tree has a maximum height of 8, whereas Figure 

2.10's BSP tree has a maximum height of 4. 

Adaptive subdivision requires that at each non-leaf node, a partitioning plane is 

selected which divides the objects in the space into two roughly-equal groups. 

This is, however, a computationally expensive process, as there are an infinite 

number of partitioning planes in any space. This property rules out a brute-force 

approach to select appropriate partitioning planes. However, it is still possible to 

select good partitioning planes; it is just not possible, in all but the simplest 

cases, to prove that these partitioning planes are optimal. An algorithmic 
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approach to perfonning adaptive subdivision is provided later when BSP trees 

are re-introduced for use in narrow-phase collision detection. 

As the configuration of objects within the VE is not constant, adaptive 

subdivision may not be appropriate for such an environment, as a good 

partitioning plane at time Tt may become a bad partitioning plane at time TI+/' 

Instead, it may be more appropriate to use static subdivision, followed by update 

operations to adjust the depth of the tree depending on the distribution of 

objects. This is another benefit of BSP trees over Oct-trees; it is much easier to 

update a BSP tree than it is to update an Oct-tree or Quad-tree. 

Figure 2.11 Sibling Nodes in BSP Trees and Quad-trees 

Figure 2.11 shows sibling nodes in a BSP tree and a Quad-tree. Sibling nodes 

are child nodes which share the same parent node. It is quite logical that a non­

root node in a BSP tree will have one sibling; a non-root node in a Quad-tree 

will have three siblings and each non-root node in an Oct-tree will have seven 

siblings. In order to update the spatial subdivision of a VE, two threshold values 

can be used: 

• The minimum number of objects allowed in a group of sibling leaf nodes 

• The maximum number of objects allowed in a leaf node. 

If there are fewer than the minimum number of objects in a group of sibling 

nodes, then the sibling nodes can be merged together into one node. In a BSP 

tree, this requires only 2 nodes to be considered, whereas an Oct-tree requires 8 
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nodes to be considered. Similarly, if there are more than a maximum number of 

objects in a single node, then that node should be subdivided. In a BSP tree, this 

would result in the formation of one additional leaf node; in an Oct-tree, this 

would result in the formation of seven additional leaf nodes. This implies that 

BSP trees are more likely to produce fewer empty, wasted leaf nodes than an 

Oct-tree, therefore providing better performance and memory utilisation. 

In order to perform broad phase collision detection on a VE using a BSP tree, it 

is necessary to insert each object into the tree. It requires O(lgn) comparisons to 

insert a single object into the tree, where n is the number of cells the VE is 

subdivided into. Given a VE consisting of p objects, this leads to a broad phase 

collision detection cost of O(plgn). Following this, narrow phase collision 

detection is required to determine which objects residing in the same leaf nodes 

do in fact collide with one-another. 

2.3.2.1.4.2.1 Parallelism in BSP Trees 

BSP trees offer good opportunities for parallelism. The approach allows both 

insertion and narrow-phase collision detection on each sub-region to be 

performed in parallel. In addition, BSP trees allow an arbitrary number of 

parallel processors to be used. However, best performance is yielded when the 

number of parallel processors is a power of 2. BSP trees allow dynamic spatial 

subdivision to be performed, in which sub-regions are further subdivided or 

merged depending on the distribution of objects in the DVE. Arbitrary 

partitioning planes may be employed in BSP trees to leverage the best 

subdivision performance; this is desirable if the BSP tree's configuration is to be 

pre-calculated based on the shape of the environment which the users participate 

in, e.g. partitioning planes coplanar to the walls separating rooms or the ceilings 

separating floors in a high-rise block. 
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2.3.2.1.4.3 Spatial Hashing 

Spatial Hashing [Lefebvre06] is a non tree-based technique for spatial 

subdivision. It requires uniform subdivision of the VE into unit cells; varied-size 

cells could be used, but this would complicate the algorithm considerably and 

may sacrifice performance. The essential notion in spatial hashing is to define a 

hash function which identifies the cells each object occupies, ensuring that 

potentially-colliding objects are hashed to the same cells for further 

consideration. The benefit of spatial hashing lies in its 0(1) performance to 

place an object in its respective cells. However, as previously mentioned, this 

approach does not easily permit variable-size cells; this may affect memory 

efficiency. Regardless of this minor issue, provided a computationally 

inexpensive, accurate hashing function can be defined, spatial hashing will be 

capable of placing n objects in their respective sub-regions in O(n) time. 

Following this, narrow-phase collision detection can be performed by comparing 

objects sharing the same subspace. 

2.3.2.1.4.3.1 Parallelism in Spatial Hashing 

Spatial hashing offers good opportunities for parallelism. While the process of 

object insertion cannot be parallelised, as it is a single operation, narrow-phase 

collision detection performed on the objects in each sub-region can be 

parallelised. This approach allows an arbitrary number of processors to be used 

evenly because each processor can be allocated an appropriate set of sub­

regions, which can be adjusted to achieve load balancing. Unfortunately, this 

approach is best-suited to static subdivision. While it is theoretically possible to 

dynamically resize sub-regions, this may overcomplicate the hashing function, 

reducing performance. In addition, the hashing function may be complicated 

further with the use of non axially-aligned partitioning planes; this may restrict 

the flexibility of the subdivision approach. 
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2.3.2.1.4.4 Multi-resolution Spatial Hierarchies 

Spatial subdivision encounters problems with virtual worlds in which the size of 

objects are significantly different. In this situation, it is not possible to pick an 

appropriate sub-region size; either the sub-region will be too large for an object, 

possibly causing many unnecessary comparisons, or it will be too small for an 

object, causing the object to occur in a large number of sub-regions. To 

overcome this, multi-resolution spatial hierarchies have been proposed. Multi­

resolution spatial hierarchies subdivide the virtual world into a hierarchy of sub­

regions, each at different resolutions (dimensions), relative to the dimensions of 

the objects they will contain. For example, given a VE with two classes of 

objects, a tank and a human, the virtual world would be subdivided using two 

subdivision resolutions: one appropriate for human-sized objects (in the order of 

meters); one suitable for tank-sized objects (in the order of tens of meters). Each 

object is classified in such a way that they are inserted into an appropriate­

resolution sub-region. This approach can be easily integrated into spatial­

hierarchy approaches, e.g. OctlBSP trees, without the need additional storage 

space. However, this approach requires additional storage space if integrated 

into Spatial Hashing. 

2.3.2.2 Broad Phase Collision Detection Summary 

Collision detection is often subdivided into two phases, termed broad phase and 

narrow phase collision detection. Broad phase collision detection is required to 

reject pairs of objects which cannot possibly be colliding using computationally­

inexpensive operations. These approaches are relatively inaccurate but are 

conservative in that broad phase collision detection must never reject pairs of 

objects which are intersecting. A number of broad phase collision detection 

algorithms and approaches were presented: 

• Bounding volumes 

o AABB 
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o OBB 

o Sphere 

o K-Dop 

• Sweep-and-prune 

• Spatial subdivision 

o Quad-trees/Oct-trees 

o BSP trees 

o Spatial Hashing 

These algorithms were evaluated based on their perfonnance characteristics and 

their ability to be parallelised. From this evaluation, it was detennined that 

spatial-partitioning approaches offered the best opportunities for parallelisation 

as these approaches allow for parallelisation across arbitrary numbers of 

processors. Spatial partitioning subdivides the virtual world into cells. Objects 

are inserted into the cells which they occupy in the VE and detailed collision 

detection must only be perfonned on objects which share the same cell. There 

are a number of spatial-partitioning approaches, including BSP trees, Oct­

trees/Quad-trees and spatial hashing. The cost of inserting objects into the tree 

structures is O(ign), whereas the cost of inserting an object using spatial hashing 

is O( 1). All spatial-partitioning approaches offer good parallelisation 

opportunities. However, BSP trees and spatial hashing make exploiting arbitrary 

numbers of processors easier than Oct-trees/Quad-trees. Spatial hashing requires 

that the virtual world be subdivided into unifonn-sized cells; the use of non 

unifonn-sized cells adds additional complexity and may compromise 

perfonnance. BSP trees, however, implicitly allow the use of arbitrary-sized 

sub-spaces, which can be adjusted to reflect the distribution of objects in the 

virtual world. Due to these properties, it is assessed that axially-aligned BSP 

trees are best-suited for the distributed collision detection approach (see Fig 

2.13). 
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2.3.3 Narrow Phase Collision Detection 

Narrow phase collision detection is the second phase of two phase collision 

detection. It takes, as its input, a pair of objects which survived broad phase 

collision detection and is responsible for determining whether and how the 

objects collide with one-another. Whereas broad phase collision detection IS 

required to reject pairs of objects from further consideration in a 

computationally-inexpensive way, narrow phase collision detection is required 

to determine which, if any, components of a pair of objects collide. 

2.3.3.1 Review of Narrow-Phase Collision Detection Algorithms 

Narrow phase collision detection is required to detect whether a pair of objects 

are intersecting to some degree of accuracy. It is also required in many 

applications to provide additional information, such as points of contact, 

penetration depths and contact normals. Objects in current DYEs are commonly 

constructed from a set of primitive objects, e.g.: 

• Lines 

• Splines 

• Triangles 

• Rectangles 

• Spheres 

• Boxes 

• Cylinders 

• Cones 

• Tetrahedra 

• Sphere-swept lines 

• Sphere-swept rectangles 

• Patches 



Narrow-phase collision detection can therefore be separated into two parts: 

enumerating potentially intersecting primitives and intersection tests between a 

given pair of primitives. 

Given two objects constructed from nand p primitive shapes respectively. a 

naIve narrow-phase intersection test would require np primitive intersection 

tests. However, the number of primitives which are actually intersecting. in most 

simulations, will be considerably smaller than this. Therefore, in order to 

efficiently perform collision detection between objects constructed from a set of 

primitives, it is necessary to efficiently reject pairs of primitives which are not 

intersecting. A number of approaches have been proposed to achieve this. The 

most popular of these approaches are bounding volume hierarchies [Bergen04] 

[Ericcson05][Gottschalk][WattOl] and local-space BSP/Oct trees [WattOl] 

[Fuchs]. 

Bounding volume hierarchies are a hierarchical approximation of the object 

being simulated. The primitives which the objects are constructed from are 

recursively subdivided into smaller sets of primitives until some termination 

criteria is met, e.g. maximum tree depth or the number of primitives in a set falls 

below some threshold. A bounding volume is constructed each level of the 

subdivision to enclose the sub-set of primitives. Therefore, at each subsequent 

level of subdivision, a bounding volume hierarchy forms a more accurate 

approximation to the shape of the object it encloses. Bounding volumes can be 

constructed as a pre-processing step prior to simulation and offer fast, average­

case O(logn) identification of intersecting primitives. 

Local-space Binary Space Partitioning (BSP) trees recursively subdivide the 

primitives an object is constructed from using arbitrarily-oriented partitioning 

planes. At each level of subdivision, a partitioning plane is selected which 

roughly separates the primitives into two equal sets until the termination criteria 

is met. BSP trees will commonly result in more evenly-distributed trees than 
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bounding volume hierarchies, resulting in better average-case performance. 

Similar to bounding volume hierarchies, BSP trees can also be constructed as a 

pre-processing step and offer O(logn) average performance. 

The primitives from which the objects are constructed can be tested for 

intersection using a number of techniques. These techniques can be roughly 

classified into two distinct types: explicit intersection tests and implicit 

intersection tests. 

Explicit intersection tests must be specifically implemented to detect 

intersections between a given pair of object types, e.g. triangle-triangle, triangle­

rectangle, triangle-box etc. This approach offers efficient and accurate collision 

detection. However, the use of such an approach in modem DYEs requires a 

large amount of code to implement specific intersection tests for the wide range 

of primitives which objects may be constructed from. This additional work-load 

may deter developers from adopting this approach if the number of primitives 

they wish to support is large. 

A number of implicit intersection approaches have been proposed. The most 

popular of these are the Lin-Canny closest feature tracking algorithm [Lin] and 

the Gilbert-Johnson-Keerthi (GJK) distance computation algorithm [Bergen04]. 

Both of these algorithms operate on convex shapes and do not provide support 

for concave shapes; concave shape support can be emulated by subdividing the 

concave shapes into a series of convex shapes. Both of these algorithms, by 

default, provide the closest features between a pair of convex shapes and the 

distance; distances of zero indicate that the objects are intersecting. However, 

these approaches have been adapted In the literature 

[Bergen04][WattOl][Ericcson05][Lin] to provide additional information, such as 

points of contact, penetration depths and contact normals. 
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2.3.3.1 ParallellDistributed Execution of Narrow-Phase Collision 

Detection 

A number of narrow-phase collision detection algorithms offer some 

opportunities for parallel execution, e.g. bounding volume hierarchies. However, 

real-time narrow-phase collision detection between a pair of objects should be 

completed within a very small quantum of time, in the order of microseconds. 

Therefore, this offers very fine-grained parallelism. As such, the use of mUltiple 

processes/threads within narrow-phase collision detection between a pair of 

objects may detrimentally affect performance. Therefore, the best performance 

improvements through the use of parallel/distributed execution in collision 

detection can be achieved by executing broad-phase collision detection in 

parallel. The effectively executes narrow-phase collision detection in parallel 

because narrow-phase collision detection between different pairs of objects may 

be executed in parallel. 

2.3.4 Summary 

The following section will summarise the collision detection algorithms 

discussed in the previous section and describe the role of collision detection in 

DVEs. Following this, a discussion will be provided onto the requirements of a 

collision detection algorithm suitable for DVEs. 

A number of collision detection algorithms were described in the previous 

sections. The notion of two-phase collision detection was introduced: broad­

phase and narrow-phase collision detection. Broad-phase collision detection is 

required to cull away pairs of objects which cannot possibly be colliding in as 

computationally-inexpensive way as possible. Narrow-phase collision detection 

is performed on the pairs of objects which are not culled by the broad-phase; this 

more accurate collision detection phase determines, to the desired level of detail, 
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whether and how a pair of objects is colliding. Broad-phase and narrow-phase 

collision detection occur in separate phases and, as such, it is usual that any 

combination of broad-phase and narrow-phase collision detection can be used. 

The collision detection algorithms presented in the previous section were 

categorised in terms of their general performance, memory requirements and 

their suitability for executing in parallel. The algorithms' suitability for parallel 

execution was assessed to reflect both the move towards mUlti-processing core 

architectures and the availability of large numbers of distributed processors in 

DYEs, which will be discussed in more detail later in this section. 

From the analysis of parallelising broad phase collision detection, it was found 

that spatial subdivision approaches offered the most beneficial opportunities for 

parallel execution. While other algorithms such as Sweep-and-prune offered 

some possibilities for parallel execution, these approaches required a number of 

join operations and limited, relatively fine-grained sections which can be 

executed in parallel. In addition, the level of parallel execution in these 

algorithms may be limited, e.g. the sweep-and-prune algorithm can support up to 

3 parallel processors to sort 3 lists, but could not use additional processors if 

more than 3 were available. The spatial partitioning approach can support an 

arbitrary number of parallel processors up to the number of sub-regions the 

virtual world is divided into. However, binding a processor to each sub-region in 

the virtual world would result in too fine-grained parallel processing. In practice, 

a virtual world will usually be divided into several thousand sub-regions; it is 

unlikely that there will be sufficient processors available to lead to fine-grained 

parallel processing in virtual environments populated by large numbers of 

objects. 

The use of a parallel implementation of spatial partitioning as a broad-phase 

collision detection approach implicitly leads to parallel narrow-phase collision 

detection without the need for a join operation between the broad-phase and 
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narrow-phase. Spatial partitioning places objects into their respective sub­

regions of the virtual world; once the objects have been placed in a sub-region, 

collision detection can be performed on each sub-region independently. With the 

use of hierarchical data structures to represent the spatial subdivision, e.g. BSP 

tree or Oct-tree, the act of inserting the objects into the tree can also be 

parallelised. 

It is possible for narrow-phase collision detection between a pair of objects to be 

performed in parallel with the use of bounding volume hierarchies or BSP trees. 

However, this can lead to very fine-grained parallel performance because it is 

common that only a small proportion of the trees are traversed before either it is 

determined that the objects do not intersect or the point of contact is found. It 

should be noted that if the entire tree was required to be traversed in order to 

satisfy a collision query, it is likely that brute-force collision detection would 

perform better than hierarchical collision detection due to the cost of traversing 

the tree in addition to the cost of performing intersection tests on all the 

polygons contained in the model. In practice, best performance is yielded by 

parallelising broad phase collision detection such that narrow-phase collision 

detection for a given pair of objects is executed entirely on one processor; this 

approach will distribute the processing overhead of performing collision 

detection between the pairs of potentially-colliding objects between the 

available processors. 

2.3.5 Requirements of Collision Detection for DVEs 

A Distributed Virtual Environment should be able to support a large number of 

simultaneous participants. These distributed participants should be able to 

experience a relatively consistent virtual world. While small degrees of 

inconsistency are acceptable in a DYE, inconsistencies which cause significant 

differences to be perceived between participants can detrimentally affect users' 
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immersion. One of the most noticeable and, therefore, significant form of 

inconsistency in DVEs stems from differences in responses to collisions 

between participants. This ranges from slight differences in response to 

collisions being responded to by one participant's machine but being missed by 

others. The levels of inconsistency become increasing worse as the number of 

participants and/or the average message transmission delay rise. While 

considerable research effort has been put into developing efficient collision 

detection techniques, relatively little research effort has been put into developing 

collision detection techniques suitable for alleviating inconsistencies in DVEs. 

In addition to the inherent inconsistencies, DVEs also provide a platform 

consisting of a large number of distributed processors. This can be exploited by 

executing collision detection in parallel to leverage improved performance and 

enable more complex DVEs inhabited by larger numbers of objects to be 

simulated in real-time. 

2.4 Chapter Contributions 

This chapter introduced Virtual Environments (VEs) and the challenges and 

considerations associated with their development. Following this, Distributed 

Virtual Environments (DVEs) were introduced as an extension to VE research 

which incorporates the challenges of building virtual environments with the 

issues of developing a distributed system. These additional complexities include: 

• Message dissemination 

• Scalability 

• Consistency 

• Responsiveness 

Message dissemination is responsible for ensuring that messages are delivered to 

the appropriate recipients. This can be achieved using a number of network-
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layer protocols and communication models, coupled with the use of application­

dependent message filtering techniques. 

Scalability is a property which described how the performance of an application 

is affected by an increase in work-load. In DVEs, scalability is affected by the 

number of users simultaneously participating in the DVE, the number of objects 

inhabiting the DVE and the volume of messages which must be transmitted; it is 

likely that there is a direct relationship between the number of participants and 

the number of objects in a DVE, but this relationship is not guaranteed. It is 

desirable to produce a scalable platform for DVEs to enable large numbers of 

users to interact simultaneously within a virtual world. A number of approaches 

have been developed to improve scalability in DVEs by reducing the volume of 

message transmission. However, to date little work has been done to improve 

the scalability of collision detection in DVEs. 

Consistency is a property of a DVE which describes how similar each user's 

perceived view of the virtual world is. Consistency is affected by the frequency 

of state update message transmission and the message transmission delay. The 

frequency of state update messages affects how accurately the motion of a 

remote object is approximated on a user's machine, whereas the message 

transmission delay governs how long the delay is between an object's state 

changing and this change being realised on a given user's machine. Low­

frequency state updates and high-latency message transmission delays cause 

high-levels of inconsistency. Techniques have been developed to conceal the 

effects of low-frequency message transmission, such as dead reckoning. 

However, these techniques attempt to predict the motion of the objects and can 

often result in increased inconsistency if the motion of the object cannot be 

predicted correctly. It should be noted that, while low-frequency state updates 

can contribute to inconsistency, increasing the frequency of state update 

messages will not remove inconsistency in the presence of large message 

transmission delays. 
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Responsiveness is a property of a VE which describes the delay between a 

participant instigating an event and the event occurring, e.g. the delay between a 

user pressing a button and the response to the button press being manifested. 

This property is usually dependent on the frame rate which can be achieved on 

the user's machine; higher frame-rates can be achieved by reducing the 

computational overhead of simulating the DYE, e.g. improving the efficiency of 

the VE engine. The responsiveness of a DYE depends not only on the 

computational overhead involved in simulating the DYE but also depends on the 

delay between a user instigating an event and a remote user perceiving this 

event; this is affected by the message transmission delay. Responsiveness is 

important to users' immersion as an unresponsive DVE can make a user feel as 

though they are not in control of their avatar. Humans will usually not notice 

delays less than 60ms, but delays greater than 300ms may significantly limit 

interaction. To counteract this, many commercial DYEs employ interaction 

techniques which conceal lacks of responsiveness. However, this usually 

compromises the levels of interaction users are permitted. 

Collision detection was introduced. Collision detection is a highly 

computationally-expensive operation which must be performed at frequent 

intervals in all VEs which model the motion of solid objects. Collision detection 

is usually subdivided into two distinct phases: broad-phase and narrow-phase 

collision detection. Broad-phase collision detection is responsible for efficiently 

rejecting pairs of objects which are not colliding from further consideration. 

Narrow-phase collision detection operates upon the pairs of objects which the 

broad-phase cannot discard and is required to determine, to the desired level of 

detail, if and how the pair of objects collides. A number of collision detection 

approaches and algorithms were described and analysed in terms of performance 

and their suitability for executing in parallel. It is the opinion of the author that 

broad-phase collision detection is most suitable for parallelisation and that the 
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most suitable broad-phase collision detection algorithms for parallelisation are 

spatial subdivision approaches. 

While collision detection has received a large amount of research effort, the 

algorithms which have been developed have been targeted towards efficient 

performance in single-user VEs. Until recently, the majority of collision 

detection algorithms were designed with the assumption that they would be 

executed in a single processing thread; with the recent move towards multiple 

processing cores in home computers and next-generation games consoles, many 

of the previously popular collision detection algorithms which are not capable of 

being parallelised must be replaced with algorithms capable of exploiting the 

performance offered by these new platforms. In addition to providing algorithms 

suitable for new platforms, research is being undertaken into exploiting 

hardware Graphics Processing Units (GPUs) to perform collision detection 

upon. 

Current collision detection research trends do not address the problem of 

consistency in collision detection in DVEs. Current DYEs usually either adopt 

central-server architectures, whereby a server acts as an arbitrator to determine 

how a collision should be responded to, or peer architectures, where collision 

detection and response are performed by all machines participating in the DYE. 

The former approach provides consistency at the cost of throughput, whereby 

the central server not only imposes delays between an event being initiated and 

it being realised by the other machines, but also becomes a performance 

bottleneck and single point of failure. The latter allows events to occur near­

instantaneously but can result in significant deviation in how events are 

perceived by users. This problem is termed the consistency-throughput trade-off 

and governs performance and consistency in most distributed applications. 

While DYE research has recognised this problem, little work has been 

undertaken to alleviate it. 
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2.5 Thesis Purpose 

A number of highly-efficient collision detection algorithms have been proposed 

in the literature. However, while these algorithms can be efficiently 

implemented in single-user virtual environments, they provide no consideration 

for the problems and potential optimisations available within DYEs. The 

purpose of this thesis is to develop an accurate general-use collision detection 

algorithm which provides efficient performance in single-user YEs while also 

exploiting the characteristics of DYEs to facilitate the development of highly­

complex, consistent distributed virtual worlds. The collision detection approach 

will adopt the server hierarchy network architecture and provide mechanisms to 

reduce the network bandwidth required to maintain the state of objects in the 

DYE, thereby providing improved scalability. It will exploit spatial partitioning 

to distribute the processing overheads associated with collision detection, 

improving responsiveness, scalability and consistency. 
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Chapter 3 

Theory 

3.1 Introduction 

It is desirable to be able to develop scalable, consistent and responsi\'e DYEs 

[SinghaI99]. A scalable DYE will allow a large number of users and objects to 

interact with one-another simultaneously. A consistent DYE will result in very 

little variation in the perceived state of objects between different participants. A 

responsive DYE will manifest user interactions without any perceived latency 

between the user issuing a command and it being executed. It is an accepted fact 

in DYEs that these three requirements can not be achieved simultaneously and 

that; instead, it is necessary to sacrifice one or more of these properties to 

improve the third. For example, in order to achieve high-levels of scalability, it 

may be necessary to sacrifice consistency and responsiveness. In DYE research, 

this property has been termed the consistency-throughput trade-off 

[SinghaI99][Bosser04]. This issue has been well-investigated in the field of 

distributed systems, in which a number of consistency protocols ha\e been 

developed which sacrifice throughput speed in return for guaranteed consensus 

[Fischer83]. 
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This chapter introduces the underlying theory and basic concepts required to 

distribute the processing overhead of collision detection across multiple 

addressable spaces. To achieve this, the problem will be approached iteratively, 

whereby a number of candidate solutions will be presented; each solution 

building on previous solutions' functionality, addressing new problems to reach 

a general model for distributed collision detection across heterogeneous nodes in 

an asynchronous, unreliable network. 

The basic principle of this approach is to subdivide the collision detection 

problem domain into a set of sub-problems, each of which can be solved 

independent of one-another. This approach, termed divide-and-conquer. 

provides an extremely efficient mechanism for reducing the overhead of 

computationally-expensive operations. The use of divide-and-conquer 

algorithms is well-understood and commonly exploited in the field of collision 

detection through the use of spatial subdivision and bounding volume 

hierarchies [Ericcson05] [Lefebvre06] [WattO 1] [Bergen04]. 

The theory outlined in this chapter utilises spatial subdivision to uniquely map 

sets of objects to different addressable spaces. Initially. this approach is 

introduced in the domain of reliable. instantaneous communication between 

addressable spaces. Following this, a number of common problems related to 

distributed systems are addressed: 

• Limited bandwidth in communication channels between addressable 

spaces 

• Unreliable communication between addressable spaces 

• Variable-latency communication between addressable spaces 

The problems of both machine and network failures will be addressed. 

Throughout this chapter, as each iteration is introduced, the DYE model will be 

analysed in terms of scalability, consistency and responsiveness. With the use of 

the models presented in this chapter, it is possible to improve scalability. 
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consistency and responsiveness simultaneously, although the improvements 

depend largely on the geographical location and network properties of the uSers 

participating in the DYE. However, the final approach presented in this chapter 

offers a model for the distribution of collision detection in DVEs such that the 

scalability, consistency and responsiveness of a DYE developed using the model 

will never be worse than the models used in current DYEs and in most 

circumstances will be far superior. 

3.2 Background Theory 

3.2.1 Bounding Volumes and Spatial Subdivision 

Bounding volumes were introduced in Chapter 2 and form an integral part of the 

system described in this thesis. In this section, bounding volumes \\i1l be 

formalised by considering a 3D world to be an infinitely fine-grained three­

dimensional grid of points, termed a lattice. Using a lattice, a three-dimensional 

object can be defined by the set of points in the lattice it contains, i.e. the space 

it occupies in the 3D world. 

Let L be the set of points in the world. Given a pair of objects, A and B, let PA 

and PB be the set of points which A and B occupy in L respectively. Therefore: 

'tfPa E PA,'tfPb E PB'Pa 1:- Pb => A disjoint B 

Following this, given bounding volumes BVA and BVB, which encompass objects 

A and B respectively: 

'tfbva E BV,p 'tf bl'b E BFB ,bv a 1:- bVb => 'tfp a E PA , 'tiPh E PB, P a 1:- Ph => A disjoint 
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Given that it is usually far less computationally expensive to perform collision 

detection between two bounding volumes than it is to perform collision 

detection between the objects themselves, bounding volumes offer an efficient 

mechanism to determine disjointedness between a pair of objects. 

Using a similar approach to that of bounding volumes, spatial subdivision can be 

formalised using the lattice model, where each sub-region in the spatial 

hierarchy can be defined by the set of points in L it contains. From the spatial 

subdivision strategies outlined in Chapter 2, it can be seen that each sub-region 

is disjoint from all nodes except from those it contains (its descendants) or those 

which contain it (its ancestors). As such, if a pair of objects do not share a 

common terminal sub-region, i.e. they do not share a sub-region which has no 

descendants, they cannot be intersecting. 

3.2.2 Broad Phase Collision Detection 

Broad phase collision detection [Lin98] [WattOl] [Bergen04] [Ericcson05] was 

introduced in Chapter 2 as the first stage of two phase collision detection. Broad 

phase collision detection is responsible for enumerating pairs of potentially­

colliding objects in a computationally-inexpensive way. This form of collision 

detection is often inaccurate and can fail to reject pairs of objects which, upon 

further examination, are found not to be intersecting; it is valid for broad phase 

collision detection to fail to reject pairs of objects which are not intersecting, but 

it must never reject pairs of objects which are intersecting. 

The distributed collision detection approach presented in this thesis subdivides 

the virtual world into discrete sub-regions. Initially, the virtual space is 

subdivided into fixed-size cells. Subdivision is performed recursively using 

axially-aligned partitioning planes along the X-, Y-, and Z-axes, subdividing 

along the largest axis at each stage of subdivision; subdivision is terminated 
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when sub-regions become smaller than some threshold value. Each sub-regjon 

maintains a list of objects occupying the space enclosed by the ub-region. 

Given this pre-computed set of regions , broad-phase collision detection place 

each object inhabiting the DYE into the sub-regjons which its bounding ol ume 

occupies. An object may cross boundaries between sub-regions but, a Fig 3.1 

depicts, assurrling the sub-regions are at least as large as the object ' s bounding 

volume, the number of sub-regions an object can occupy is at mo t 8. To c larif , 

a sub-region is at least as large as an object if the object 's projecti on onto each 

coordinate axis is smaller than the sub-region ' s projection onto the arne 

coordinate axis . 

Figure 3.1 An object in 3D space occupying 8 regions 

Once the objects have been placed into their sub-regions , each sub-region is 

iterated through and narrow phase collision detection is performed on each pair 

of objects found to occupy the same sub-region . As can be seen in Fig 3.2, the 

top-left region has two objects within it (A and B) which are colliding. As these 

two objects share the same region , they will not be rejected by the broad phase 

and progress to narrow phase collision detection. Additionall y, objects C and D 

traverse boundaries between different regions and, as such, inhabit a common 

region . These objects will al so pass into the narrow phase although , upon further 
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inspection, they will be found not to be colliding. Finally, objects E and I share 

the same regions and will be compared with one-another and found to be 

colliding. 

" ~ ~ 
~ .. 
... '" 

I~ • 
• • 

Figure 3.2 Spatial Subdivision 

3.2.2.1 Occupying Multiple Regions 

In Fig 3.2, Objects E and I's bounding volumes both traverse the same region 

boundruies and, therefore, share two regions . This situation could lead to narrow 

phase collision detection being performed twice on these objects; as narrow 

phase collision detection can be computationally expensive, this is extremely 

undesirable. Therefore, an additional piece of information is used to determine 

in which region the potential collision occurs . The mid-point between the two 

objects is determined and narrow phase collision detection is only performed 

between objects in the region which contains the mid-point between the two 

objects. 

To clarify, a region is a space enclosed by an axially-aligned bounding box 

(ABBB), which is denoted by its minimum and maximum extremes along the 

coordinate axes, Min and Max. The mid-point between two objects can be 

obtained trivially from their transformation matrices by taking the a erage of the 
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two vectors which represent the objects' respective positions in world space. 

This assumes that the local/model space origin of the objects is located 

somewhere in the object itself, which is standard in computer graphics; if this 

was not the case, additional computation may be required. The mid-point 

between the two objects is a single point in world space. It can, however, 

represent a space which lies on a boundary between two regions. To overcome 

this, a region, r, is the space in the range Min ~ r < Max, along each of the 

coordinate axes. This provides a mechanism by which a point in world space 

corresponds to exactly one region, thereby ensuring that narrow phase collision 

detection between a pair of objects occurs at most once. This can be formalised 

using the lattice model. Given two neighbouring sub-regions, A and B, denoted 

by the set of points they enclose, P A and PH respectively: 

iE PA,kE PB,i '* k 

This holds providing each region, r, is the space in the range Min ~ r < Max, i.e. 

every point in space is contained by at most one region of the virtual world. It 

follows that any point V within the boundaries of the world must be contained 

within at most one sub-region. Therefore, the centre point between two objects 

can be used to ensure that collision detection between a pair of objects is 

performed at most once. 

3.2.3 Narrow Phase Collision Detection 

Once the broad phase has been completed and all objects are placed in their 

corresponding sub-regions, narrow phase collision detection is performed by 

iterating through each sub-region and performing more detailed collision 

detection between the objects which occupy the same region. As mentioned 

previously, to avoid situations where pairs of objects appear in more than one 

region, the detailed collision detection is only performed if the mid-point 

between the objects occurs in the region. If the mid-point is not within the 

region, then the pair of objects must occur in another region, which contains the 

62 



mid-point, and therefore detailed collision detection should be perfonned 

elsewhere. 

Given a DYE with n objects, a brute force approach to collision detection would 

. n{n-l) b· t/ b· . . reqUlre 0 ~ec 0 ~ect compansons. However, if the world is subdivided 
2 

into r regions, it will require, on average, r( p{P
2 
-1)) object/object 

comparisons, where p = nlr. For example, if n_ = 100 and r = 10, brute force 

collision detection would require 4950 comparisons, whereas collision detection 

utilising spatial subdivision would require, on average, only 450 object/object 

comparisons. This occurs when objects are randomly distributed throughout 

regions in the DYE. This distribution of objects may not be a realistic 

assumption as, in many DYEs, users often group together in the virtual world. 

Regardless of object distribution, region-based collision detection approaches 

will never require more object/object comparisons than a brute force approach. 

However, collision detection utilising spatial subdivision incurs an additional 

overhead: that of placing the objects into the appropriate regions in the DYE. 

Techniques to do this will be discussed later in this chapter, which will include a 

brute force approach, a tree based approach and a spatial hashing approach. 

There is inherent temporal coherence in most virtual worlds, as animation is 

performed at frequent intervals between which the objects generally do not 

travel a great distance. This allows an optimisation to be perfonned on spatial 

subdivision-based collision detection; region sizes can be grown and shrunk, by 

dynamically adding and removing partitioning planes, based on object 

population density in each sub-region of the virtual world. For example, if two 

neighbouring regions contain less than a threshold number of objects, the 

partitioning plane separating the two regions can be removed, thus merging the 

two regions into one. Similarly, if a region contains more than a threshold 

number of objects, a partitioning plane can be introduced which subdivides the 
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regIOn into two. This approach helps to optimise the broad phase collision 

detection scheme by merging sparsely-populated neighbouring regions and 

subdividing densely populated regions. To avoid constantly subdividing and 

merging the same SUb-regions, different threshold values should be used tor the 

merging and subdivision criteria, e.g. merge a pair of sub-regions if the number 

of objects in two neighbouring sub-regions is less than -+ and subdi\ide if the 

number of objects in a sub-region is greater than 6. 

3.3 Distributed Collision Detection 

The collision detection technique described previously provides efficient broad 

phase collision detection. However, the performance of the algorithm can be 

significantly improved with the exploitation of parallel/distributed execution, in 

which collision detection for different regions may be performed in different 

addressable spaces. The parallel variant of this algorithm can be used to exploit 

the recent adoption of multi-processor architectures in home computers and 

next-generation games consoles. This will allow increasingly complex virtual 

environments, in terms of number of objects and complexity of object models 

and interaction, to be simulated in real-time on current and next-generation 

architectures. In addition to improved performance, a distributed implementation 

of this algOlithm provides the foundations of a scalable, responsive DYE with 

improved consistency. The distributed execution model will be explored in 

additional detail in the following sections while the collision detection model is 

refined to reflect the problems of reliability and latency. 

3.3.1 Glossary of Terminology 

During the remainder of this chapter, a number of terms wi II be used 

extensively: 

64 



• WorldlVirtual WorldlEnvironment 

o A virtual space/place in which a simulation occurs 

o Depending on the context, world/environment can also be used 

interchangeably to describe the geometry of the environment 

from which the virtual world is constructed, e.g. hills, floors, 

walls, ceilings etc. 

• Object 

o Any virtual entity which projects a physical presence into the 

virtual world which can be interacted with, e.g. chair, table, 

character, vehicle etc. 

• Avatar 

o A user-controlled object inhabiting a virtual world. 

• Object state 

o Information required to replicate the state of an object in a virtual 

world. This may include, but is not limited to, position, 

orientation, velocity, acceleration and animation state. 

• Event 

o Any form of interaction between objects and between objects and 

the environment 

• Inconsistency 

o Any situation in which there is a significant discrepancy in how 

users perceive an event. This ranges from relatively minor 

differences, e.g. slightly different contact normal or point of 

contact, to major differences, e.g. collision perceived by one user 

but missed by another. 

• Synchronisation 

o The simulation is synchronised between collision detection nodes 

if all collision detection nodes must complete their collision 

detection before the simulation time can be advanced 
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3.3.2 Simplified 

Approach 

Distributed Collision Detection 

In this simplified model of the distributed collision detection approach, the 

following assumptions can be made: 

• All nodes participating in the DYE have complete knowledge of all the 

objects' current state 

• There are no inconsistencies in object states between nodes as the result 

of contradicting responses to collisions (an example of such a situation 

will be provided later). 

• Message delivery is reliable and instantaneous 

• All machinery and software components are completely reliable 

Given a DYE consisting of n objects and a world subdivided into r regions, 

being hosted on d nodes, each node would be required to perform, on average, 

rp(p -1) object/object comparisons, where p = !!... If n = 100, r = 10 and d = 
2d r 

10, this would require each node to perform, on average, 45 object/object 

comparisons. 

The results of the collision detection must be disseminated to all other nodes 

participating in the DYE. This could be achieved in two ways: 

• Transmit the collision events to all nodes (the two objects, the point of 

contact, the contact normal, and velocity and acceleration information 

etc.) 

• Transmit the result of the collision event (the new positions of the two 

objects involved in the collision). 

From the discussion in Chapter 2, it was shown that the number of collisions 

that occur in a virtual world is relatively small in most situations; implying that 
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either dissemination approach is valid. However, in a virtual world in which 

every object is colliding with one-another, the first approach would require 

n(n-l) 11'· b d co lSlon events to e reporte . However, if the latter approach is 
2 

adopted, and all responses to collisions are calculated before being reported, 

then at most only n messages must be transmitted: one new transformation per 

object. However, as it is rare for every object to be involved in a collision, it is 

only necessary to transmit the new transformations of objects which were 

involved in collisions. 

This approach of transmitting the results of collisions, and not actual collision 

events, potentially reduces the bandwidth requirements of this approach 

immensely. However, it introduces an issue: 

• Node n} reports a response to a collision involving objects OJ and Ok 

• Node n2 reports a response to a collision involving objects OJ and OJ 

The collision reported by n} may result in a different position for the object OJ 

than the collision reported by n2. This could result in inconsistent states being 

reached in the DYE. If collision detection was performed sequentially on a 

single computer in this situation, the response to whichever collision was 

detected earlier would be passed into the latter collision detection, i.e. any 

response to a collision between OJ and OJ would be passed into the collision 

detection between OJ and Ok. This may result in the latter collision not occurring 

at all or, if the collision was still detected, some alternative response than would 

be proposed by nodes n} or n2. Potential solutions to this problem will be 

proposed later, once the model has been further refined. 
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3.3.3 Partial Knowledge of DVE State 

The following assumptions are made In this refinement of the distributed 

collision detection approach: 

• All nodes participating in the DYE have complete knowledge of the 

current state of the objects which they are responsible for collision 

detection on 

• There are no inconsistencies in object states between nodes as a result of 

contradicting responses to collisions 

• Message delivery is reliable and instantaneous 

• All machines and software components are completely reliable 

In the previous model, each node participating in the DYE was assumed to 

initially have complete knowledge of all the objects' current state. However, this 

is not always necessary. It is, in fact, only necessary for a node to have 

knowledge of the objects within its sub-region(s). As such, the following 

refinement of the collision detection model assumes that a node has absolute 

knowledge of the objects within its sub-region. However, each node is not 

required to have knowledge of any objects in regions other than those the node 

is responsible for determining collision detection within. 

It can be seen that this model produces the same collision detection results as the 

previous model. However, the response to a collision may "push" an object from 

its current sub-region, hosted on node nj to another region, hosted by a different 

node. In this case, it is necessary for ni to inform the node responsible for the 

sub-region the object has moved into that it is now responsible for collision 

detection for that object. There are two ways in which this kind of event can 

occur: 

• The object moves partly into a new sub-region, but partly remains in its 

original region (it straddles a region boundary). In this case, the object 
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• 

must be replicated in two or more nodes/regions . Oi en that a region i 

larger than an object, an object can exist in at most 8 regions in a 3 

dimensional world. 

The object moves completely into a new sub-region. It no longer 

occupies its original sub-region. In this case , the object must be 

transferred from the old node to the new node. 

a ... ,'''''' 

II 

Object A is now replicated between 
nodes n } and n 2. 

Node n} II Node nJ 

Node n2 D Node n. 

Object B is now 
'. transferred from 

node n1 to node n,. 

Figure 3.3: Object Transfer and Replication 

In order for replication and transfer operations to take place, a mechani sm must 

be employed which will inform the respective nodes as and when they become 

responsible for collision detection for a given object. This could be achieved by 

utilising some entity responsible for retaining the current state of all objects in 

the DYE, such as a server. This entity could act as an oracle by in fo rming each 

node which objects they are responsible for performing colli sion detection upon 

plior to performing each collision detection iteration. Alternatively when an 

object, 0 1/, a node , 11. j, is responsible for traverses into another node s, 112' 5 , sub­

region , nj could transmjt a message illrectly to n 2 instructing the node to perform 
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collision detection on On. This requires each node to have prior knowledge of the 

other nodes in the DYE. However, assuming that the distance an object can 

travel between each collision detection iteration is smaller than the size of a 

region, it may only be necessary for a node to retain information about the nodes 

responsible for its neighbouring sub-regions. From a conceptual perspective, 

either solution would be acceptable. The presence of an entity which retains an 

absolute "view" of the objects' current state potentially solves the problem in 

which collisions involving the same object, detected on different nodes, can 

result in conflicting object states being reported by each node. The entity can act 

as an arbitrator, and can decide the "true" state of the object if conflicting 

current states are reported. However, the use of a single arbitrator may 

compromise performance, scalability and reliability as it is a single point of 

failure and may become a performance bottleneck. As such, communication 

between nodes may be the most appropriate means of object transfer/replication. 

However, this does not solve the conflicting object state problem, which will be 

addressed in more detail later in this chapter. 

3.3.4 Object Classification 

Before refining the model further, it is necessary to classify the different types of 

objects which can populate a DYE. The previous models presented assumed that 

all objects were equivalent. However, there are in general three different types 

of objects which can participate in a virtual world: 

• Objects which do not move: static objects 

• Objects which move only as a response to collisions (e.g. pushed by a 

force): physically-controlled objects 

• Objects which move autonomously within the world 
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In most DYEs, the "environment", or "world model", is a static object. This 

implies that the walls, floors, pillars, hills, valleys, ceilings etc. constituting the 

environment can not be moved, no matter how much force is exerted upon them; 

this assumption is valid in current YEs. However, objects populating the YE 

such as doors, chairs, tables, boxes etc. may move when a large enough force is 

exerted upon them. The final classification of objects, those which move 

autonomously in the world, can further be subdivided into two distinct classes 

within traditional DYEs: objects which are controlled by external users and 

objects which are controlled within the DYE software. 

Objects which are controlled by external users, commonly termed avatars 

[Greenhalgh][SinghaI99], allow users to interact with the objects populating the 

DYE. Autonomous objects are generally controlled by artificial intelligence 

algorithms within the DYE software: a mixture of pre-computed responses, 

application/environment-specific rules and pseudo-random decisions, which 

mayor may not be adjusted as a result of the behaviour exhibited by avatars in 

the DYE [WattOl]. The behaviour of system-controlled autonomous objects 

should be deterministic; it can be replicated across all nodes in the DYE, by 

replicating the parameters and seed values used by the AI routine. However, the 

behaviour exhibited by avatars is not deterministic, as it is the result of user 

input. This distinction between avatars and other types of objects is important 

when determining how the different classes of objects should be disseminated to 

the nodes in the DYE. 

Given these object classifications, it is possible to make the following 

assumptions: 

• All static objects will remain in the same regions throughout the lifetime 

of the DYE 

• All other non-autonomous objects will remain in the same regions unless 

a force is exerted upon them which moves them to a new region 
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These assumptions imply that it is possible to position non-autonomous objects 

into their respective regions and, provided they are not moved as a result of a 

collision, the objects will remain in the same region indefinitely. As a result, it is 

not necessary to inform a node of the position of its non-autonomous objects 

between every collision detection iteration. Instead, it is possible for a node to 

retain the current state of its non-autonomous objects until the object is no 

longer within its region, at which point it transfers the object to the nodes which 

are now responsible for it. If the object straddles a region boundary, the nodes 

which are responsible for the object must ensure that the object is replicated 

consistently by transmitting current state information about the object to the 

nodes whose regions the object intersects. However, in order to ensure 

consistency with autonomous objects, especially avatars, the technique as it has 

been described so far will not suffice. 

3.3.5 Distributed Collision Detection Architecture 

This section introduces the core architecture of the distributed collision detection 

approach and introduces the software components which must interact with one­

another to maintain a DYE. Following the description of these components, the 

mechanisms by which these components communicate with one-another are 

introduced. The following assumptions are made: 

• All nodes have knowledge of the current state of their persistent 

objects 

• Message transmission is reliable and instantaneous 

• All software components and machinery are completely reliable. 

The architecture can be subdivided into three logical components: servers, nodes 

and clients. A server is a machine at a fixed, known address which acts as a 

central repository and directory service to assist nodes in joining a DYE and 

communicating with one-another. The server can also act as an arbitrator if 

72 



disagreement over an object's state arises. A node is an entity which is 

responsible for performing collision detection in a given set of sub-regions in the 

DYE. A client is a process by which the user interacts with the DYE. It can 

introduce one or more objects (including avatars) into the DYE, monitors user 

input, translates user input into state updates and injects these state updates into 

the collision detection system. A diagram of the system architecture is provided 

in Fig 3.4. 

Figure 3.4: System Architecture 

Upon initialisation, the server creates a virtual world, containing the objects 

initially populating it: static objects, physically-controlled objects and computer­

controlled objects. When a new node joins the DYE, it is assigned a sub-region 

of the world. This causes the nodes currently participating in the DYE to be 

reallocated a new, potentially smaller, sub-region of the DYE. For example, 

when the first node joins, it is allocated a sub-region corresponding to the entire 

virtual world. However, when a second node joins, each node is assigned a sub­

region corresponding with half of the virtual world. When each node is allocated 

a section of the DYE, they are informed of the current state of every object 

occupying that region by the server. Once this communication with the server is 

completed, the nodes manage the current state of their objects and transmit 

object transfers and replication messages to the other nodes in the DYE as and 

when they are required. 
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The objects a node is assigned by the server are termed persistent objects 

because the node manages the state of these objects until it detects that one of its 

persistent objects is no longer within its assigned sub-region of the DYE. The 

nodes report the responses to any collisions they detect to the server, allowing 

the server to act as a central repository for object states. When a client joins a 

DYE, it introduces its objects into the virtual world and periodically transmits its 

objects' state update messages to the server. 

The server must transmit these state updates to the relevant nodes, i.e. the nodes 

whose sub-regions the objects intersect. However, these objects, termed client 

objects, are not handled the same way as persistent objects. As the behaviour of 

client objects cannot be predicted algorithmically, the nodes can not accurately 

predict the current state of client objects between state update messages. Instead, 

the server is responsible for transmitting the current state of client objects to the 

relevant nodes before collision detection is performed. This allows the server to 

act as a global timer for the DYE, ensuring that the nodes remain relatively 

synchronised with one-another. The server can monitor when each node 

completes collision detection and take additional metrics, such as the number of 

collisions each node reports, to monitor and tune performance accordingly. The 

server can also detect any conflicting collision responses and resolve them 

accordingly by correcting the object state in the relevant nodes. The results of 

collision detection/response are disseminated to the clients. This can be achieved 

with minimal bandwidth overhead by using techniques such as interest 

management. However, this model assumes that the server is a reliable entity, 

i.e. a failure in the server will cause the DYE to terminate. 
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3.3.6 Communication Latency 

The previous model adopts the classic client/server request-response model 

which is widely used in distributed systems; the server and collision detection 

nodes are responsible for satisfying the collision detection requests made by the 

client when it transmits an object state updates. The model assumes that a group 

of reliable machines are available to perform collision detection upon which 

exhibit instantaneous, or negligible, message transmission delays; this 

assumption is reasonably valid if a dedicated cluster of high-performance 

machines is available. However, due to the associated cost, this may not be an 

appropriate assumption to make. 

The next refinement to the model combines the notion of clients and nodes, such 

that a client and a node exist on the same physical machine; however, they are 

still considered to be separate components. This implies that some collision 

detection will be performed on the machines of each user participating in the 

DYE. This change does not rule out the use of dedicated collision detection 

nodes without users; such machines will behave in the same manner but will not 

introduce avatars into the DYE 

An important challenge in DYE research is to be able to support a wide range of 

participants over the Internet, who may reside in different geographic regions. 

With the presence of large distances between participants, it cannot be 

guaranteed that the network transmission latencies between machines will be 

low-latency. In this situation, the previous model may not be sufficient to 

guarantee high-levels of responsiveness as message transmission may become a 

bottleneck. The distributed collision detection model will be refined to sacrifice 

some level of consistency in order to improve responsiveness in DYEs which 

have participants exhibiting high message transmission delays. 
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3.3.7 Consistency Groups 

The following distributed collision detection architecture makes the following 

assumptions: 

• All collision detection nodes have knowledge of the current state 

of the objects within their respective sub-regions 

• All machinery and software components are completely reliable 

• Message transmission delays are present 

• Message transmission delays between a pair of machines remain 

constant 

The previous model, as depicted in Fig 3.4, results in all nodes participating in 

the DYE being responsible for collision detection in a unique portion of the 

virtual world. However, in order to deal with network transmission delays, it is 

necessary to generalise this premise. A metric is introduced, which estimates the 

network transmission delay between a pair of nodes. This metric can be used to 

estimate which nodes can communicate with one-another sufficiently quickly to 

ensure a responsive virtual world. Although transmission delay is highly 

variable, depending on a number of factors, including network load, this model 

assumes that message transmission delays are relatively uniform. This will later 

be refined to deal with variable message transmission delays to adapt to changes 

in network behaviour in run-time. 

Given a set of nodes {nJ, n2, ... , nil and a threshold value T, each node will need 

to retain transmission delay information between itself and the other i-J nodes. 

From this information, it is possible to construct a matrix of transmission delays. 

Transmission delays observed between nodes j and k are recorded in two places 

in the matrix, in indices njk and nkj respectively. This is because the transmission 

delay observed from node nj to nk may be different from that observed from 

node nk to nj. If both of these values are below T, then it is assumed that these 
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two nodes can communicate with one-another with a small-enough transmission 

delay to be able to maintain a responsive DVE. These two nodes can therefore 

be placed in a Consistency Group (Fig 3.5) together. A consistency group is a 

group of nodes whose message transmission delay is sufficiently small that they 

can each maintain a highly-consistent view of the same DYE. A consistency 

group can contain a set of nodes if every node within the group has observed 

transmission delays between themselves and every other node in the group less 

than T. In addition, a node can be a member of only one consistency group . 

. ----~---
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~ i 

i~i : Nodenj : , . 
: : 

Figure 3.5 Consistency Groups 

It is desirable to produce as large consistency groups as possible, as the more 

members in the group, the less collision detection each member must perform 

and the more consistent the virtual world will be. In order to produce large 

consistency groups, the set of all potential consistency groups is constructed (a 

power set), sorted from the largest group to the smallest. The largest group is 

initially selected to form the first consistency group. This group is removed from 

the power set. However, there may be a number of nodes not yet allocated to a 

group. If there still exists nodes which are not part of a consistency group: 

• The nodes in the newly-allocated consistency group are removed from 

the remaining potential groups in the power set 
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• The power set is re-sorted so that the largest set appears first. In addition, 

any empty sets are removed from the power set within the sort algorithm. 

• The largest potential consistency group in the power set is selected as the 

next group and removed from the power set. 

• If there are still unallocated nodes, repeat the process until all nodes are 

allocated. 

Once this algorithm is completed, every node will be a member of a consistency 

group. This algorithm creates the largest consistency groups it can. However, 

this may not result in the best performance for each node in the DYE. For 

example, given a DVE with 4 nodes, n], n2, n3 and n4, and a threshold time of 

5ms. The observed transmission delay times were: 

n1,2 = 3, n1,3 = 4, n],4 = 10 

n2,] = 2, n2,3 = 1, n2,4 = 6 

n3,] = 4, n3,2 = 3, n3,4 = 2 

n4,I = 7, n4,2 = 4, n4,3 = 1 

Given these transmission delays, the resulting consistency groups using the 

described algorithm would be {{n], n2, n3}, {n4}}. However, it would be 

beneficial for the performance of n4 for the consistency groups to be { {n], n2}, 

{n3, n4} }. In addition, due to the binary spatial subdivision approach, in a group 

of 3 nodes, one node will be responsible for collision detection on half of the 

world, while the other two nodes will be responsible for a quarter of the world 

each. The collision detection performance will be bound by the most heavily­

loaded node, so it is beneficial to have groups whose sizes are a power of 2. This 

means that the latter set of consistency groups, with two groups of size two, 

would be more desirable than a group of size 3 and a group of size 1. However, 

this problem is similar to the knapsack problem, an NP-Complete problem. As 

such, it is not possible to determine an optimal solution in real-time as the 
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number of nodes becomes large and, therefore, a greedy algorithm to find an 

approximation to the solution is used. 

3.3.8 Group Leaders 

The refinement to the distributed collision detection model described in the 

previous section can result in potentially large numbers of consistency groups 

simultaneously performing collision detection. Recall that the server acted to 

provide synchronisation in the previous models, dispatching collision detection 

on all the nodes and ensuring consistency in object positions. The notion of 

consistency groups indicates that the server would be responsible for 

synchronising a large number of groups and maintaining consistency in each 

group. However, the transmission delays observed between the server and each 

collision detection node can be large. This can result in the delay in receipt of 

synchronisation messages from the server compromising responsiveness. The 

new model prescribes that each consistency group performs collision detection 

and response for all objects in the DYE. In the previous models, these results 

would be reported directly to the server by each collision detection node, which 

could place an additional strain on the server potentially causing a performance 

bottleneck. In order to overcome these performance bottlenecks, the notion of 

group leaders is introduced. 

A group leader is intended to relieve some of the processing overhead from the 

server. One node in each consistency group is appointed group leader. This node 

essentially takes on a number of the server's responsibilities for its consistency 

group. Once a group leader is appointed, all non-administrative messages pass 

through the group leader before being delivered to either the server or collision 

detection nodes. The server is responsible for disseminating messages between 

consistency groups as there is no mechanism for nodes in different consistency 

groups to communicate directly. 
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Figure 3.6 Consistency Groups with Group Leaders 

The following section will describe the flow of messages between the erver, 

group leaders, collision detection nodes and clients. Recall that clients are now 

physically located on the same machines as the collision detection nodes. 

Additionally, one of the collision detection nodes in each consistency group is 

appointed group leader. However, regardless of their physical location , group 

leaders , clients and collision detection nodes are regarded as logicall y separate 

components . In the following message flow descriptions, messages will be 

shown being transmitted between nodes , clients and collision detection nodes. 

Mechanisms are in place to bypass the process of forming and deli veri ng 

messages to group leaders, collision detection nodes and clients if they are 

located on the same physical machine. However, to aid clarity, the e 

mechanisms are overlooked in this chapter. 

80 



(local 
\ Client 

Figure 3.7 State Update and Collision Response Message Flow Diagram 

The main change in the flow of messages from the previous distributed collision 

detection model is in the flow of client state update and collision response 

messages. In the previous models, client state updates were transmitted from the 

client to the server and then disseminated from the server to the collision 

detection nodes. Similarly, collision response messages were transmitted from 

the collision detection nodes to the server and then forwarded to the relevant 

clients. The responsibilities of the server, clients and collision detection nodes 

must change to reflect the presence of group leaders. 

Clients 

Clients may be hosted on machines hosting collision detection nodes. If this is 

the case, the client adopts the same group leader as the collision detection node 

it shares a machine with. The clients are responsible for: 

• Transmitting client state updates to its group leader if it has one, 

otherwise transmitting state updates to the server 
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• Receiving collision response messages from its group leader if it 

has one, otherwise receiving collision response messages from 

the server 

Collision Detection Nodes 

Collision detection nodes are responsible for: 

• Receiving client state updates from the group leader 

• Transmitting collision response messages to the group leader 

Group Leaders 

The group leaders are responsible for: 

• Receiving client state updates from its local clients 

• Receiving client state updates from the server 

• Transmitting client state updates to its group members 

• Transmitting local client state updates to the server 

• Receiving collision response messages from group members 

• Transmitting collision response messages to local clients 

• Transmitting collision response messages to server 

Server 

The server is responsible for: 

• Receiving client state updates from clients without group leaders 

• Receiving client state updates from group leaders 

• Transmitting client state updates to group leaders 

• Receiving collision response messages from group leaders 

• Transmitting collision response messages to clients without 

group leaders 

82 



3.3.8.1 Message Dissemination 

When a group leader receives an object state update message from a client, it 

forwards this update to the server, which disseminates this to the other 

consistency groups and stores the current state of the object in its own internal 

data structures. The group leader also updates its view of the object's state and 

dispatches collision detection on its group members, passing the current state of 

client objects (as viewed in its data repositories) to the relevant nodes, as the 

main server did in the previous model. When a group leader receives an object 

state update from the server, the same process is performed with the exception 

of transmitting the state update to the server. 

The group leader monitors the performance of the collision detection nodes, 

recording which nodes have completed collision detection, and which nodes 

have not yet completed. The group leader buffers state updates until all nodes 

have completed collision detection. When a node completes collision detection, 

it reports the results of collision detection and response to its group leader. 

When all nodes have completed collision detection, the group leader dispatches 

the next collision detection iteration, provided state updates have been received 

from clients since collision detection was last dispatched. If this is not the case, 

collision detection is not dispatched until the next state update is received. This 

avoids the nodes repeatedly performing collision detection on the same data set. 

The results of collision detection may cause client objects' current state to 

change. If the group leader receives such a state update, it must first determine if 

the client who owns this object is within its consistency group. If the client is 

within its consistency group, the group leader transmits this state update to the 

client. However, if the client is not within the consistency group, then this 

response is not disseminated to the client. It is assumed that the consistency 

group in which the client exists will be responsible for its update. If collision 

response results in a non-client object moving, the group leader updates its view 
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of the object's state, and passes this state on to the main server. Before it passes 

this state on, the group leader can perfonn some consistency checks to ensure 

that there are not any discrepancies between the states reported by each of its 

group members. If the group leader detects discrepancies in object states 

between its group members, it can instruct its members to change the state of the 

object to reflect what it views as being the object's true state; the true state of an 

object can be chosen arbitrarily by the group leader, although approaches such 

as taking a weighted average of object states is likely to perfonn well. When the 

server receives a state update from a group leader, the server stores this new 

object state and, if it finds it to differ from the state reported by the other 

consistency groups, the server can detennine the true position and correct each 

group. It should be noted that minor discrepancies are to be expected between 

object states and that correcting an object's state should only be perfonned when 

the deviation in reported states is larger than some threshold value. From a 

perfonnance perspective, it is better to use a smaller threshold values for 

correcting discrepancies within a consistency group than the threshold used to 

correct discrepancies between consistency groups. 

The notion of local and remote objects is introduced, where a local object is an 

object hosted on a client in a given consistency group and a remote object is an 

object hosted on a client not in a given consistency group. The state of a local 

object within a consistency group is as recent as possible, in that it is highly 

probable that the current state of a local object as viewed by the group leader is 

current and accurate. However, this can not be guaranteed for remote objects. A 

remote object's state updates must be forwarded by the server, and may have 

suffered from substantial transmission delays since it was sent by a remote 

client. As nodes in different consistency groups have substantial transmission 

delays between them, possibly due to geographical distance (e.g. residing in 

different countries), any collisions detected involving remote objects are 

unlikely to be completely accurate. As such, it is not necessary, or desirable, to 

disseminate infonnation about these collisions to the client which hosts this 

84 



object, as their objects' collisions are likely to have been detected with more 

accuracy within their consistency group. However, the result of collisions with 

remote objects are stored in the group leader and used for further collision 

detection until a state update is received for the remote objects, which will 

overwrite the current state. This mechanism ensures that within a consistency 

group, the events are perceived to be as consistent as possible. Interpolation, 

extrapolation and dead reckoning are used to smooth the transition from the old 

state to the new state, although these approximation techniques may introduce 

further inconsistencies. 

Within a consistency group, the group leader acts as a central repository for the 

DVE state for that group. It may differ from the state observed in other groups 

but, as all members of the group have a low-latency network connection with the 

group leader, the state viewed on all nodes in the group will be similar or 

identical to that on the group leader. 

Figure 3.6 shows a DYE in which two consistency groups of size 3 have been 

formed. The diagram shows the clients and nodes being hosted on the same 

machine. However, the diagram shows the group leaders as being a separate 

entity to the nodes/clients to aid clarity. Although logically the group leader is a 

separate entity, in fact the group leader will be hosted on one of the 

nodes/clients. In addition, the communication between the node/client on which 

the group leader is hosted will be implemented using inter-processlthread 

communication, rather than by using any real networking. 

Due to the additional responsibilities of the group leader, the group leader's 

machine will be more heavily loaded than the other nodes in the group. The 

workload a group leader must perform includes: 

• Receiving client object updates from clients and the main server 

• Forwarding client object updates from its clients to the main server 

• Dispatching collision detection on its group's nodes 

85 



• 
• 
• 
• 

Performing collision detection and response on its subspace 

Receiving results from its nodes 

Detecting and correcting any inconsistencies in the results 

Sending appropriate current state information to clients 

This additional processing overhead could lead to the group leader becoming a 

bottleneck in the system, similar to how a single server can become a bottleneck. 

As such, it may be desirable to place a limit on group size. This would result in 

mUltiple consistency groups when, without the limit, a single group could have 

been formed. However, this will ensure that the group leaders do not become the 

weak link in the system. 

3.3.9 Variable Transmission Delays 

The consistency group model provides potentially better consistency and 

performance than the standard client/server DYE model. However, the previous 

models have not addressed the problem of variations in network transmission 

delay; the previous model assumed transmission delays to be consistent. As 

mentioned previously, transmission delays are not constant, and can vary 

considerably depending on a number of conditions, such as network congestion 

and hardware failure. With the popUlarity of wireless networking, especially in 

modem mobile phones and gaming devices, the use of wireless ad-hoc 

networking in DYEs looks set to increase. Such networks can suffer from high­

levels of variation in network transmission delay. As such, it is necessary to 

consider how this can be dealt with in the consistency group model. 

In the current model, the consistency group remains constant while the 

nodes/clients participate in the DYE. When a new client/node joins the DVE, the 

main server will initiate the reallocation group membership. This requires each 

node to determine which nodes it can form a consistency group with. The 
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consistency groups are then allocated, and all nodes, including the newly-joined 

node, are placed in their respective groups. These groups will remain constant 

until a new client/node attempts to join or a client/node attempts to leave the 

DYE. However, this model assumes that during the time between a node being 

allocated within a consistency group and the groups being reallocated, the 

properties of the network latency between the nodes will remain consistent. 

There are a large number of factors which contribute to network transmission 

delays, such as increased network traffic, routing hardware failures, damaged or 

noisy communication media. Due to the massively distributed nature of the 

Internet and the large number of hosts, routers and ISPs, network transmission 

delays can vary substantially. Wireless networking allows communication 

between hosts using radio signals whose physical distance is within a maximum 

range, e.g. 30m. In addition to the factors contributing to network delays in 

tradition, wired networks, wireless networking introduces the problem of signal 

interference which can cause significant variations in message transmission 

delays between hosts. Due to these factors, the previously held assumption of 

constant network transmission delays is not valid for wireless networking and 

the Internet. 

As a consistency group is required to work in a relatively synchronised way, a 

node responding slowly (for whatever reason) may cause the responsiveness of 

the entire consistency group to suffer. In order to overcome this, the collision 

detection nodes are responsible for maintaining, during run-time, metrics 

pertaining to the transmission delay perceived between themselves and the other 

nodes in the DYE. These metrics can be gathered by storing the round-trip time 

taken to send a message and receive its response. This time includes not only the 

network transmission delay in both directions, but also any delays in processing, 

reading and responding to the message. A large transmission delay may imply 

not only a large network-induced delay, but may also indicate that the 

node/client may be being overloaded by processing demands. Regardless of its 
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cause, a large delay will cause performance degradation In the consistency 

group. 

If a node detects that another node within its consistency group is beginning to 

lag, it can initiate a rejection vote with the server. The server requests the 

remainder of the group to decide whether the proposed evictee node is indeed 

lagging. If it is determined that the node is lagging, the node is removed from 

the consistency group and placed in a new consistency group of size one. 

If a node in a consistency group determines that a node in another consistency 

group is responding sufficiently quickly, it can initiate an inclusion vote through 

the server to determine whether the node should join its consistency group. The 

vote will only be processed by the server if the group the proposed node is a 

member of contains fewer or the same number of members as group it is 

proposed to join. The vote requires each member of the group to determine 

whether the proposed new member is responding quickly enough to warrant 

joining the group. If the node is determined to be responding fast enough, the 

server instructs the node to leave its current consistency group and join its new 

group. 

There is an inherent problem which may arise if this technique is used. Group 

membership may become in a state of flux, in which nodes are permanently 

changing groups. In order to alleviate this, two threshold values should be used: 

a rejection threshold and an inclusion threshold, where rejection threshold > 

inclusion threshold. This essentially gives a range of message transmission 

delays whereby the group will not request to be reallocated. In order to bring 

about a membership vote, a node within a group must observe: 

• A transmission delay between itself and a node in another group less 

than the inclusion threshold 

• A transmission delay between itself and a node in its group greater than 

the rejection threshold 
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The use of additional metrics, such as the mean/mode/median transmission 

delay and standard deviation, can be used to analyse the delays perceived by a 

node to avoid unnecessarily adjusting group membership as the result of minor 

transmission delay fluctuations. In addition, heuristics such as "three strikes and 

your out" could be used, in which a node can only initiate a rejection vote if it 

perceives a node responding slowly in three consecutive messages/samples. As 

restructuring groups may be expensive, it may be necessary to cap the frequency 

in which groups can be restructured. This could be done by restricting how 

frequently a client can initiate a vote or by restricting how many votes a server 

will allow within a given time frame. In addition, restrictions may have to be 

placed to ensure that multiple votes involving the same node do not occur 

simultaneously. A minimum time in which a node must be a member of a group 

could also be defined to ensure that groups do not repeatedly "poach" nodes 

from one-another. However, research into which approaches yield best results 

must be performed. 

If the group leader was a reliable entity, it would be valid to not perform voting 

and simply piggy-back all recorded message transmission delays between a node 

and the other nodes in the DYE to its group leader. However, if the group leader 

becomes overloaded or fails, it will not initiate a group reallocation, resulting in 

the performance of the consistency group suffering significantly. As the group 

leader is a collision detection node, which is hosted on a user's machine, it 

cannot be assumed to be reliable. The problem of group leader reliability could 

be overcome by sending perceived delays directly to the server at frequent 

intervals. However, as the number of nodes in the DYE increases, this may 

cause scalability problems, resulting in the server becoming overloaded and 

failing to initiate group reallocations in a timely fashion, detrimentally affecting 

the performance of the consistency groups. Therefore, best overall reliability and 

performance can be achieved by adopting the voting strategy outlined in this 

section. 
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3.3.10 Reliability 

One of the major concerns with distributed applications is reliability 

[SinghaI99][Ezhilchelvan92]. Network protocols provide a range of reliability 

guarantees, ranging from completely unreliable to best-effort reliable. Some 

network protocols may offer complete reliability with the use of persistent 

storage of undelivered messages to deal with the event of failure in the sender, 

receiver or network. However, it is not possible to guarantee that a message will 

be received by the desired recipient(s) within a given time-frame in the event of 

hardware failure and, as such, reliable network protocols offer no guarantees for 

message delivery delay, which is of paramount importance in DYEs. It is, 

however, possible to state probabilistically how likely it is that the message is 

received within a given time-frame. Network protocols such as User Datagram 

Protocol (UDP) provide little reliability guarantees; UDP contains a CRC 

(Cyclic Redundancy Check) for error detection, but does not guarantee the 

delivery or ordering of packets. Transmission Control Protocol (TCP) is a best­

effort network protocol, which provides best-effort guarantees of ordering and 

message delivery. This is achieved using message receipt acknowledgements 

and message retransmission after timeouts. Other higher-level protocols and 

services provide further reliability guarantees. For example, transactions ensure 

that an event either occurs or does not on all machines it is intended to. It uses 

commit algorithms and roll-backs to ensure that the event is either perceived to 

have occurred or not occurred on all machines consistently. These higher level 

protocols/services require the transmission of additional messages and may also 

incur a substantial delay between an event occurring and consensus being 

reached across all machines in the network. 

Reliability can be discussed not only in terms of network protocols, but also in 

terms of machines. A machine can be described as reliable if it can be 

guaranteed to never fail. This, of course, is not realistic using current technology 
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as computer hardware will eventually wear out. In addition, the software 

executing on the hardware is prone to containing programming errors; the more 

complex the software, the greater the likelihood of undiscovered errors 

remaining in the software. With these facts, it is not realistic to expect a machine 

to be completely reliable. However, reliability can be improved in distributed 

applications by using data replication and back-up machines. This follows the 

principle that, given the likelihood of a machine failing is, for example, 1 % 

(0.01), then the likelihood of 2 machines failing at the same time is 0.01 % 

(0.0001). Following these probabilities, it can be seen that data replication/back­

up can render the probability of failure negligible. 

The systems previously described all assumed that the server is reliable. If the 

server fails, the DYE will come to an abrupt end. It may be possible to utilise a 

number of servers to alleviate this problem, although this issue is outside of the 

scope of this thesis. The description of the systems also assumed that the 

nodes/clients were reliable. These nodes/clients are free to join and leave the 

DVE as they require, although the unexpected failure of one of these machines 

must be detected by the server or other nodes, which will result in its group 

members being allocated a new sub-section of the world. Although it is not 

completely accurate, a node can be assumed to have failed if it has not 

responded to a message within a given large threshold time. This is termed a 

timeout, and will result in the server reallocating the group memberships, 

instructing the other nodes to cease communicating with the failed node and, 

finally, the server closing its connection with the node. If a persistent state is 

required to be maintained for the node's avatar, the server can store the avatar's 

current state in the DYE. If the node chooses to rejoin the DYE, it would then be 

able to continue from its last position, as recorded by the server. It should be 

noted that this is a best-effort attempt at detecting node failure as it is impossible 

to detect node failure in asynchronous networks due to the property of 

unbounded network transmission delays in these networks. However, for the 

purpose of DYEs, a period of extremely-large network transmission delays in 
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communicating with a given node will detrimentally effect responsiveness in its 

consistency group and, as such, it is appropriate to treat this situation as if the 

node has failed to avoid continually compromising responsiveness. 

The reliability of network connections has so far been overlooked in this project. 

Due to the responsiveness/speed DYEs are required to operate, it is not possible 

to use high-level reliable messaging services while maintaining a highly­

responsive virtual world. For the purpose of this system, we assume that a best­

effort reliable network protocol, such as TCPIIP, is essentially reliable. This is 

not strictly true, but it will suffice for the time being. It is now necessary to 

categorise the messages a node or server will receive in terms of whether it is 

critical or not. 

The first class of messages are administrative messages. These are messages 

exchanged between nodes and the server. These messages may contain 

messages such as instructing the server to add a new object into the world, 

instructing a set of nodes to connect to a new node or form a consistency group. 

These messages are vital for the correct behaviour of the DYE. If a node fails to 

receive a message instructing it to join a consistency group, an undesirable 

situation may occur. The nodes currently in the consistency group receive new 

sub-spaces to perform collision detection upon. However, there is a sub-space 

which has been allocated to the new group member. If this node does not join 

the group and perform collision detection on this region, then a section of the 

world will exist in which objects will not conform to the DYE rules regarding 

collision detection and response. Similarly, if an administrative message was 

damaged during transmission, the message could instruct a node to perform a 

task different from the desired task. As such, it is necessary that any 

administrative messages are sent over a (best-effort) reliable network protocol. 

Nodes communicate with one-another in a variety of ways. It is necessary for 

nodes to determine the speed of message transmission between one-another. 

92 



This could be estimated using locality. For example, by examining IP addresses 

to determine if the nodes are part of the same network. Other heuristics could be 

used, such as users providing address details, which could be used to group 

together machines in the same towns or countries. Although these techniques 

could be successful, they rely on user honesty. Additionally, as IP addresses 

may be obtained from an ISP, two users may share the same network simply 

because they connected to the same ISP using a dial-up Internet connection. A 

more accurate technique to determine network latency, as previously mentioned, 

is to measure the time taken to send a message to a machine and receive its 

reply. This is termed the round-trip delay. These metrics could be obtained by 

either sending an empty (or nearly empty) message, or by piggy-backing timing 

messages to system messages. The former may consume additional bandwidth 

as it will require the transmission of many small messages, where each message 

must have fixed-size packet headers appended by the network protocols. The 

latter may reduce the accuracy of the timing data, as a response to a message 

will only be sent when a system message is ready to be transmitted. If the former 

approach was adopted, the reliability of the messages is not vital. As such, an 

unreliable network protocol could be used, although this may result in message 

loss or corruption. 

Nodes are responsible for transmitting object transfer and replication messages. 

An object transfer message is relatively important, as it indicates that a given 

node is ceasing to be responsible for collision detection for a given object. The 

responsibility of collision detection for this object is transferred to another node, 

or nodes. If this transfer message is lost or damaged, it cannot be guaranteed that 

any node has assumed responsibility for the object; the object will become an 

orphan object in the DYE. As such, it is necessary for object transfer messages 

to be received correctly in order for collision detection to be performed 

correctly. An object replication message, however, merely indicates that the 

sending node has determined that an object's state should be replicated between 

itself and another node or group of nodes. If such a message was lost or 
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damaged, this may result in inconsistencies arising between nodes' views of an 

object. These inconsistencies, although undesirable, would not be devastating to 

the system. In addition, provided the group leader acts as an arbitrator, any 

inconsistencies could be detected and corrected. 

Clients are responsible for transmitting their objects' state updates to the group 

leader and receiving object state updates from the group leader. If a client 

object's state update message was not received correctly by the group leader, the 

group leader's perception of this object would remain unchanged. As such, the 

group leader may initiate collision detection using out-of-date information. This 

should not cause any major issues, providing that each client object's state 

update messages are received from regularly enough to ensure that their object is 

perceived to move smoothly by the other clients and nodes. This is a reasonable 

assumption as, even with unreliable messaging, it is probabilistically likely that 

the majority of messages will be received provided the communication media is 

not congested. In addition, unreliable messaging does not guarantee the order of 

message receipt. As such, unreliable messaging may be desirable for state 

updates as it will allow current messages to be received and processed even if 

previous update messages have not yet been received. It is necessary, however, 

if this type of messaging is used that each message be time-stamped or assigned 

some logical ordering (perhaps using a logical clock). This will help to avoid the 

situation in which out-of-order messages result in older state updates 

overwriting newer data. The highest time-stamp, l, received could be stored so 

that any messages received whose time-stamp is not greater th is discarded. State 

update information must also be sent from the group leader to the clients to 

update their view of the DYE. This information can be transmitted identically to 

the state update information from the clients, as it will not disrupt the system too 

much if some messages are lost provided enough messages get through. 
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3.3.11 Unsynchronised Operation 

The model described in this chapter requires members of a consistency group to 

operate in a synchronised manner, i.e. each collision detection iteration is 

synchronised within a consistency group. However, better perfonnance can be 

achieved, at the detriment of consistency, if the members of a consistency group 

are allowed to operate in an unsynchronised manner. This also relieves the 

group leader from the burden of synchronising the collision detection nodes for 

every simulated time-step. 

Unsynchronised operation requires a number of minor alterations to the model: 

• Collision detection nodes store the state of client objects between 

collision detection iterations and do not wait to receive state updates 

from the group leader prior to perfonning collision detection 

• Collision detection nodes use dead reckoning to predict object states 

between collision detection iterations if a new state has not been received 

• Group leaders transmit client object state updates to the required 

collision detection nodes only when new states are received 

This revision to the model introduces a new problem: 

• A collision detection node, n1, is responsible for a client object Oc at time 

to· 

• The group leader receives a state update for Oc at time t1, which results in 

n1 no longer being responsible for oc. Instead node n2 is responsible for 

• n1 predicts the state of Oc using dead reckoning. As a result of deviation 

between the predicted state and true state of oc, n1 believes it is still 

responsible for oc. 
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In this situation, it is necessary for the group leader to infonn nodes which were 

previously responsible for a client object that they are no longer responsible for 

that object. While this adds a small overhead to the messaging requirements of 

the group leader, it potentially increases the perfonnance of a DYE adopting this 

model by avoiding the need to synchronise nodes in a consistency group. 

3.3.12 Discussion 

The traditional client/server model of message dissemination in DYEs 

prescribes that state update messages are transmitted from clients to the server. 

The server forwards these messages onto the other clients participating in the 

DVE. High-level techniques, such as message filtering, may be employed by the 

server to reduce the volume of messages which the server must transmit to its 

clients. 

The consistency group model of message dissemination in DYEs prescribes that 

state update messages are transmitted from clients to their group leader. The 

group leader, upon receiving a state update message from one of its clients, 

forwards the message on to the server and to the other clients within its 

consistency group. Upon receiving a state update message, the server forwards 

the message onto the other consistency group leaders, which are delivered to the 

remaining clients by their respective group leaders. Message filtering may be 

employed on the group leaders and the server to further reduce the volume of 

messages being transmitted. 

From this brief description, it can be seen that for a client to receive a message 

through the client/server model, the message must pass through the server, 

which acts as an intennediate. For a client to receive a message through the 

consistency group model, the message must pass through a group leader. If the 

client receiving the message is not within the originator's consistency group, the 
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message must also pass through the server and an additional group leader before 

being delivered to the recipient. 

Figure 3.8 Client/Server vs. Consistency Group Model 

Figure X.I depicts the difference between the consistency group model and the 

client/server model. The average network latencies are shown on the diagram. In 

the client/server model , the delay between a state update message being 

transmitted by client B and being received by client C is X2 + X3 ms . Therefore, 

the overall message transmjssion delay in the client/server model i the sum of 

the delays between the respective clients and the server. 

In the group leader model, the delay between a message being tran mitted by 

client B and being received by client C is Xba + X ra ms. Gi ven that the perceived 

message transmission delay between a client and its group leader must be 

relatively small, the delivery of such a message should not suffer from a great 

deal of message transmission delay, assuming the absence of network or 

hardware failure. However, the delay between a message being transmitted by 

client B to client E is Xba + Xl + X4 + Xed ms. In the client/server model , this delay 

would be X2 + Xs ms. As a result, the delay between a message being transmitted 

between clients in different consistency groups may be larger than the delays 

perceived between the same clients using the client/server model. However, the 

additional network transmission delay due to the message passing through the 

group leaders should be small. In addjtion , this approach may reduce the olume 

of messages which the server must process . This can reduce the ser er ' 
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processing load, thereby reducing the delay between the server receiving a 

message and it processing the message and forwarding it to its intended 

recipients, thereby reducing the total message transmission delay. 

The client/server model suffers from its largest message transmission delays in 

the situation in which each client suffers from large network transmission delays 

between themselves and the server, e.g. if the server is located geographically 

far from the clients. This will result in large message transmission delays 

between a pair of clients regardless of the clients' respective message 

transmission delays. To clarify, clients' who would ordinarily enjoy low-latency 

message transmission delays directly between each-other may suffer from large 

transmission delays if the message transmission delay between themselves and 

the server is high. The consistency group model may alleviate this problem by 

grouping machines together which exhibit low-latency message transmission 

delays; messages between these machines are routed via the group leader, which 

is itself a member of the consistency group, offering lower-latency message 

transmission. 

Given a DYE in which all client's exhibit high message transmission delays 

with the server, network transmission delays between consistency groups will be 

large but network transmission delays within consistency groups will be small. 

This is because the consistency group model requires message transmission 

between consistency groups to pass between two group leaders. In this situation, 

the increased network latency as a result of messages between consistency 

groups passing through group leaders should be negligible due to the large 

delays exhibited between the server and its clients. 

The consistency group model suffers from its worst overall performance when 

all clients participating in the DYE exhibit high network-transmission delays 

among each-other. In this scenario, every client will be placed in a consistency 

group containing just one client; the consistency group model results in the same 
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message dissemination as the client/server model, offering identical 

performance. Therefore, the use of consistency groups and group leaders allow 

collocated nodes to enjoy the available low latencies between them, promoting 

improves consistency and responsiveness. However, large latencies between 

non-collocated nodes, e.g. due to geographical location, will never be eased by 

the use of consistency groups. Additionally, scalability limitations related to the 

number of nodes that can be supported may be alleviated via the consistency 

group model making use of aggregated messaging. 

In the consistency group model, the collision detection nodes have partial 

knowledge of the DVE; they know the current state of the objects for which they 

are responsible for collision detection but are oblivious to the state of any other 

objects inhabiting the DVE. The clients have partial knowledge of the DYE, as 

they know the current state of their objects/avatars. However, in order to display 

the appropriate images to the end-user, it is necessary for the clients to be 

informed of the current state of any objects which must be displayed onscreen. 

As was previously mentioned, the group leader stores the current state of all 

objects as perceived within the consistency group. As such, it is the 

responsibility of the group leader to ensure that all clients within its consistency 

group are informed of any objects which they must render onscreen. This could 

be implemented efficiently using techniques currently employed in DYEs, such 

as interest management [Morgan05][Greenhalgh][WattOl][Sinha199]. However, 

this is beyond the scope of this thesis. 
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Chapter 4 

Implementation 

4.1 Introduction 

The following chapter describes the implementation details of the distributed 

collision detection approach described in this thesis. This includes discussions 

on the implementation technologies, algorithms and structure required to 

implement the distributed collision detection approach described in Chapter 3. 

Following this, implementation-specific optimisations will be discussed. 

4.2 Implementation Technologies 

There are a number of different implementation technologies which are 

available to DYE developers, of which the developer must select the most 

appropriate to meet their needs based on: 

• Ease of use or integration 

• Performance 

• Scalability 

• Memory utilisation 

• Platform-independence 

• Stability and Reliability 
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The implementation technologies which will be discussed in this chapter include 

programming languages, system libraries and middleware solutions. Although 

this list is far from extensive, it covers the major considerations which are of 

concern to developers. 

4.2.1 Programming Languages 

There are a number of programming language paradigms available [Wiki06 2], 

the most common of which are Structured and Object-Oriented programming 

languages. 

Structured programming languages allow developers to separate programs into a 

series of functions, each of which can take arguments and return values. This 

approach promotes reduced code duplication and allows large problems to be 

broken up into a series of smaller, easily-understandable sequential steps. This 

facilitates the development of software in groups, allowing individual functions 

to be implemented and tested independent of one-another. Functions in 

structured programming prescribe the use of arguments and local variables over 

global variables. While not forbidden, the reduced dependence on global 

variables eases bug-tracking and fixing in large software systems. 

Object-oriented programming (OOP) prescribes the separation of a program into 

a set of individual units, or objects. An object-oriented program is essentially a 

set of classes (object-types). A class contains member variables and provides 

methods and constructors by which an instance of the class can be interacted 

with. Methods, similar to functions, can take parameters and can return values. 

While not forbidden, OOP discourages the direct manipulation of an object's 

data members and allows programmers to conceal implementation details of 

class with the use of scope operators to declare member variables and methods 
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as being, for example, public, private or protected. OOP allows classes to inherit 

functionality from one-another; the class inherited from is termed a super-class 

and the class which inherits the functionality is termed a sub-class. This 

promotes polymorphism, where a given method, inherited from a super-class, 

may behave differently depending on which sub-class the object is in fact an 

instance of. 

In addition to programming paradigms, programming languages can be 

subdivided into two different types: 

• Compiled programming languages 

• Interpreted programming languages 

Compiled programming languages, such as C and C++, go through a 

compilation process in which the high-level code produced by a programmer is 

transformed into platform-specific machine instructions. Modem compilers may 

utilise code-optimisation, which may result in the pipelining of commands, code 

branching optimisations and code-reordering, to provide efficient performance. 

However, this often sacrifices debugging facilities, meaning that the program 

counter may not map to the original source code accurately. In addition to 

debugging issues, programs written in a compiled language must be compiled 

independently for each target platform; this may require the re-working of parts 

of the program to utilise platform-specific libraries. 

Interpreted languages, such as Basic, JavaScript and Python, conversely, do not 

go through a compilation process but are instead interpreted by a run-time 

engine. This ensures that programs in these languages are platform-independent, 

as an interpreted program can be run on any platform which has the appropriate 

run-time engine. This flexibility, however, comes at the detriment of 

performance as interpreted languages usually perform far slower than compiled 

programs. As such, interpreted languages are often used to produce smaller 
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programs or prototyping, while compiled programming languages are 

commonly used for the development of large applications. 

4.2.1.1 Candidate Programming Languages 

Following from the descriptions of the classifications of programming 

languages, it is necessary to categorise the candidate languages and analyse their 

strengths and weaknesses. Although there are a large number of programming 

languages available, this section will consider two object-oriented programming 

languages: C++ and Java. 

4.2.1.1.1 C++ 

C++ [C++] is the successor to the C programming language. Developed at Bell 

Laboratories for the UNIX environment, C++ has become the de-facto 

programming language for large-scale applications in which performance is of 

paramount importance. It is a compiled programming language and, while an 

executable produced from C++ source code is often not as efficient as the same 

program written in C, the addition of object-oriented design makes C++ capable 

of producing much more elegant solutions to complex problems. C++ is a 

flexible programming language in which developers can choose to adopt a 

combination of object-oriented and structured programming paradigms, 

depending on their requirements. 

C++ is fully supported across most platforms and supports applications being 

separated up into a series of modules, or libraries. Most modem operating 

systems support static and dynamically-linked libraries. However, while the 

C++ language is reasonably standardised, much of its library-support is 

platform-dependent. This means that not only must applications be compiled for 

target platforms, but often large portions of code must be written specifically for 

each target platform. Most platforms will provide libraries for networking. 
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multi-threading, synchronisation, 110 and GUI application building. 

Additionally, C and C++ are the most widely-supported programming languages 

for 3D graphics application development, through the use of graphics APls such 

as OpenGL and Direct3D. 

C and C++ are relatively low-level programming languages, whereby the 

developer is required to control all memory allocation and free this memory 

before the application terminates; failure to properly allocate the required 

memory can result in run-time errors, whereas failure to free all memory 

allocated can result in memory leaks. The developer is also required to 

differentiate between allocating memory on the stack and in free memory (the 

heap). This makes C++ memory management difficult for experienced and 

novice programmers alike. However, this feature ensures that C++ applications 

have a memory footprint roughly equivalent to the amount of memory the 

application requires. Automatic garbage collection has been introduced into the 

latest versions of Visual C++ .NET for the Microsoft Windows platform. 

However, the utilisation of this significantly reduces code portability and, while 

this mechanism utilises reference counters to remove developers' need to delete 

objects, they must still distinguish between allocating in free memory (so-called 

"GC" objects) and those allocated on stack memory (value objects); the use of 

this technique introduces a rigid differentiation between GC and value objects, 

whereby a class declared as a GC object can not be instantiated on the stack and 

vice-versa. Additionally, the use of automatic garbage collection can reduce 

application performance significantly and can also limit the programmer's 

ability to engage in a number of low-level memory manipulation techniques, e.g. 

storing offsets to memory-addresses of pre-allocated objects relative to a known 

memory address; the object in this memory address would be automatically 

deleted when their reference counters reached zero, regardless of any future 

intention by the developer of referencing the objects again at a later time. 
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4.2.1.1.2 Java 

Historically, the majority of commercial applications were written in compiled 

programming languages, with the most common being C and C++. However, 

Java [Sun06] has become an extremely popular programming language which is 

used for large-scale software development. It is an object-oriented interpreted 

language with a slight difference: the source code is compiled into platform­

neutral virtual machine instructions called byte code. This byte-code can be 

efficiently mapped onto platform-specific machine instructions thereby 

providing run-time performance approaching that of compiled programming 

languages. Java includes built-in support for multithreading, thread 

synchronisation and network communication; these features are only available 

through libraries in C and C++, which can vary significantly between platforms. 

Unlike C++, Java's libraries are standardised across all platform ensuring that 

Java source code can be written and compiled once and executed on any 

supported platform. While Java includes support for lower-level network 

programming, such as TCP Sockets, it also has integrated support for higher­

level concepts such as remote procedure calls, distributed objects and message­

oriented middleware through the use of Java RMI, JiNi, J2EE and CORBA. 

These high-level networking services are available through third-party libraries 

in C++ but are not integrated into standard C++ SDKs. 

Java provides facilities to embed applications into web pages and to produce 

dynamic web pages. It also provides facilities to integrate Java code with legacy 

code written in compiled languages, such as C++, called Java Native Invocation 

(JNI). Unlike lower-level programming languages, such as C++, Java utilises 

automatic garbage collection to delete objects from memory without 

programmer intervention. Additionally, Java does not require the programmer to 

distinguish between allocating memory in free memory or on the stack. Java is 

an evolving programming language. However, rather than allowing arbitrary 

additions to the language which may compromise backwards compatibility, 
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Java's evolution is tightly regulated to ensure that all Java Run-time Engines 

(JREs) can correctly execute programs written to their current or previous 

specifications. However, Java's flexibility comes at the cost of memory 

consumption. Each Java thread must have its own JRE. This means that large 

multithreaded applications can occupy a considerable amount of memory, 

potentially reSUlting in memory page thrashing, which can sacrifice performance 

considerably. 

4.2.1.2 Summary of Programming Languages 

There are a number of different programming language paradigms, the most 

common being structured and object-oriented programming. The object-oriented 

programming paradigm can be seen as the evolution of the structured 

programming paradigm, providing a number of facilities which promote code­

reuse and data encapsulation. In addition to these paradigms, two different 

classes of programming languages were explored: compiled and interpreted 

programming languages. Compiled programming languages are transformed 

into platform-specific instructions before being executed whereas interpreted 

languages are translated on-the-fly by a run-time engine into machine 

instructions. Compiled programs must be built for each target platform whereas 

interpreted programs can be run on any platform which provides an appropriate 

runtime engine. 

Two candidate programming languages were introduced, C++ and Java. C++ is 

a compiled, object-oriented programming language which offers good support 

for graphics development and extremely efficient performance and memory 

utilisation. However, it comes at the cost of much greater development 

complexity. Java is an object-oriented interpreted language which utilises 

platform-neutral virtual machine code which can be efficiently translated on-the­

fly to machine code. Java is, comparatively, far easier to develop for than C++ 

and offers comparable performance in most situations, with the exception of 
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applications which require large amounts of memory dynamically allocated in 

runtime. 

This chapter will describe the distributed collision detection technique in a 

language-independent manner. Discussion of programming languages are 

included to outline the importance of selecting an appropriate language for 

application development. The distributed collision detection technique described 

in this thesis has been implemented in both Java and C++; the former being the 

initial prototype and experimental environment used to gather performance 

metrics whereas the latter was incorporated into a games engine developed as 

part of this thesis to demonstrate the application of this technique in a publicly 

available DVE. 

4.2.2 Platforms 

It is highly desirable for DYEs and their supporting technologies to be able to 

operate on a wide range of machine configurations and platforms. The 

commercial arm of DVE research, computer games, are released on a number of 

platforms including PCs, Apple Macintosh, Portable and Home Games 

Consoles, Portable Digital Assistants (PDAs) and Mobile phones. These 

platforms differ in their Operating Systems and hardware configurations. The 

differences in operating systems are manifested in variations in library support, 

possibly necessitating the developer to rewrite sections of code specifically for 

each platform. Different operating systems may also offer different levels of 

support for multi-threading, including different levels of granularity between 

pre-emptive process switching if pre-emptive multitasking is available. 

Differences in hardware configurations may include the processing resources 

available, including the clock speed of the primary central processing unit and 

any secondary processing resources, e.g. co-processors, graphics processing 

units, and additional processing cores. Variations in available memory, bus 
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transfer speed, and network bandwidth may also be present. These variations, 

coupled with machine-specific issues such as byte aligned memory, endian-ness 

and instruction pipelining can greatly effect the applicability and performance of 

collision detection algorithms. 

This section will provide case studies for PC and games consoles, which will 

focus on two current generation games consoles, PlayStation 2 and X-Box, and 

two next-generation consoles, PlayStation 3 and X-Box 360. 

4.2.2.1 PC 

The PC comes in a wide range of configurations, varying in: 

• Processor manufacturer, model and clock speed 

• Number of processors or processing cores 

• Instruction set extensions (e.g. MMX, SSIMD etc.) 

• Amount of available memory and access speed 

• Speedlbandwidth of bus 

• Graphics Processor model and memory 

• Operating system 

The differences in PC architecture are largely concealed by the operating 

system. As such, differences in hardware rarely result in developers needing to 

change code; major code changes are only usually required to provide 

interoperability between different operating systems. However, DYE developers 

do have to target a certain minimum configuration, such as minimum CPU 

speed, amount of memory and graphics card. As PCs are upgradeable and use 

virtual memory, PC DYEs rarely need to be overly concerned with memory 

utilisation. Similarly, PCs and their operating systems can efficiently allocate 

and release large amounts of memory without compromising performance. 
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These factors usually allow DVE developers to allocate and release memory as 

required in run-time with little impact on the DVE's responsiveness. 

Modern compilers are capable of transforming high-level code into efficient 

machine instructions. However, the assembly code which is generated by a 

compiler is often less efficient than can be produced by a competent assembly 

language programmer. As such, it is common in DYE development and, 

specifically, in collision detection, that many of the more frequently executed 

code segments are optimised in assembly language for each target platform. 

Different operating systems exhibit different levels of granularity in their pre­

emptive multi-tasking. Windows is generally more coarsely grained than Linux, 

while specialist hardware, such as games consoles, often only support 

cooperative multi-tasking. This means that processes are less likely to be starved 

of processing resources in Linux than Windows. In addition, the Windows OS 

tends to consume more resources than Linux, causing the same application, 

compiled for each platform, to require a lower-specified machine on Linux than 

on Windows to run acceptably. However, due to marketing successes and its 

ease of use, Microsoft Windows is the most popular PC operating system by far 

despite these shortcomings. 

4.2.2.2 Games Consoles 

Modern games consoles, when newly-released, represent the state of the art in 

affordable consumer processors and graphics. There are often a number of 

sacrifices which are made to ensure that games consoles are affordable, such as 

restricting memory and processing resources in an attempt to lower prices; in 

fact, many games console manufacturers accept significant losses on the sale of 

hardware by weighing these losses against the sales of software. Games consoles 

are traditionally played through home television sets, which provide 

significantly lower-resolution images than PC monitors. The resolution of 
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television sets reduces the problem of aliasing significantly, making low­

resolution 3D graphics look more attractive than they would on higher­

resolution screens; anti-aliasing techniques for higher-resolution displays are 

extremely computationally expensive. Recently, high-definition TV has become 

more affordable and has offered high-resolution TV content, which the next­

generation of games consoles offers built-in support for. However, high 

definition TV still offers image resolutions far lower than those supported by PC 

displays. 

Games consoles traditionally have a 5 year lifecycle, during which the games 

console's hardware is fixed; the hardware may go through evolution to make it 

more cost-effective to produce, to make it smaller, more robust, consume less 

electricity etc., but the actual hardware specifications will not change. As such, 

nearing the end of their lifecycle, games consoles are underspecified when 

compared with modem PCs, for which new hardware advances are released 

continuously. 

Games consoles will usually have a minimal operating system pre-loaded onto 

the hardware which will allow the user to perform setup configurations and 

manage saved games when a game is not inserted into the console. As this 

operating system is minimal, it will not incur the overheads associated with 

more substantial operating systems such as Windows or Linux. As such, games 

console hardware often provides better performance than the equivalent 

specification Pc. However, the lack of a sophisticated operating system means 

that games developers cannot rely on the presence of advanced operating system 

features such as pre-emptive multitasking, which may complicate development. 

4.2.2.2.1 PlayStation 2 

Sony's PlayStation 2 [Sony06] is the leading current generation games console. 

It was released in 2000 and was, at the time, extremely powerful. At its core is a 
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300Mhz Custom processor developed by Sony and Toshiba termed the Emotion 

Engine, 32Mb RAM, a graphics processor with 4Mb RAM and a DVD ROM. 

These specifications are significantly lower than current PC hardware. At the 

time of writing, current entry-level PCs contain processors with clock speeds in 

excess of 30hz, 512Mb-2048Mb RAM and hardware graphics cards with 128-

512Mb RAM. 

Software development for the PlayStation 2 is fraught with difficulty. It has 

taken developers the life-time of the console to discover how best to harness its 

power. Its architecture and development tools make software development and 

debugging difficult. The PlayStation 2 has a number of co-processors, termed 

Vector Units, which can be used to perform common vector operations in 

parallel to increase performance substantially; these operations are equivalent to 

the SIMD extensions introduced in the Pentium III processors. However, the use 

of these requires data to follow strict byte-alignment rules; failure to follow 

these rules will not always result in application failure but can result in 

unexpected results. It is only possible to perform operations on Vector Units by 

writing the section of code in assembly language; the development tool 

compilers will not perform these optimisations automatically. Additionally, the 

PlayStation 2 has very poor memory allocation performance, meaning that 

allocating memory during the runtime of an application can significantly 

compromise performance. In order to achieve acceptable performance, it is 

necessary to pre-allocate blocks of memory and provide a memory manager to 

assign these blocks to objects in runtime. 

Due to the limited memory available on the PlayStation 2, it is necessary to 

break a virtual environment up into discrete, smaller levels or stream sections of 

the environment to main memory during run-time. However, streaming in real­

time can not be guaranteed to be performed correctly as disc access speed can be 

slow on damaged discs and can vary significantly between consoles. This is 

because as DVD/CD drives age, the lens which reads the disc can become 
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damaged and less efficient, resulting in longer disc access times. Failure to load 

a section in time can result in missing textures or missing geometry. To 

overcome this, it is common that sections are streamed in a series of detail 

levels, whereby at least the most coarse detail levels are successfully loaded 

prior to them being needed. While this usually overcomes the problem of 

missing sections, it can result in noticeable detail popping if the console is late 

in loading the high detail version of the environment section. 

4.2.2.2.2 Xbox 

The Microsoft Xbox [Microsoft06] was released as a rival for the PS2 in 2002. 

While the console was significantly more powerful than the PS2, it failed to 

overtake Sony's already significant market share. Although the Xbox sold well 

in the USA and Europe, it failed in the Asian market, specifically in Japan. The 

Xbox was essentially an entry-level PC made from off-the-shelf components, 

being constructed from: 

• An 733Mhz Intel Celeron Processor 

• 64MbRAM 

• DVDROM 

• 8 GbHDD 

• NVidia NV20 Graphics Processor 

The Xbox adopted a Unified Memory Architecture design, where programmers 

could choose how much memory to assign to holding graphics data or game 

data. It utilised a current-generation NVidia GeForce graphics processor, which 

was significantly more powerful than the Graphics Synthesizer in the PS2. The 

Xbox also provided a high-quality networked game system called Xbox Live. 

The Xbox was programmed using similar tools and libraries to Windows PCs. 

This removed the need for developers to learn new tools in order to create games 
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for the Xbox, which resulted in numerous high-quality launch titles for the 

console which demonstrated its processing superiority to the PS2. The Xbox' s 

hardware addressed a number of issue with current games consoles. The most 

significant of these was the adoption of an easily-programmable general-purpose 

Intel processor instead of proprietary technology. This, coupled with support for 

the DirectX SDK meant that Xbox games could be produced inexpensively; 

Xbox games could be created by porting PC code and reducing memory 

requirements by reducing texture resolution and geometry detail. 

The Xbox provided an 8GB hard drive as standard. This allowed game 

developers to use the hard disk as a temporary, higher-speed storage medium for 

environment data to help data streaming. This significantly reduced the impact 

of the condition of the DVD lens in the runtime performance of the game. 

4.2.2.2.3 Xbox 360 

The Xbox 360 [Microsoft06] console was released in 2005 and adopts three 

3.2Ghz Hyperthreaded IBM PowerPC processing cores. It comes with 512Mb 

Unified Memory, a DVD ROM, a next-generation A TI graphics processor and 

an optional 20Gb hard drive. It utilises similar programming APls to the Xbox, 

easing the porting of games from PC to console. It supports high-definition 

displays and surround-sound audio. The Xbox 360 adopts less well-understood 

technology than the original Xbox and therefore will require time before games 

developers fully understand the intricacies of optimising applications for the 

new hardware. 

Unlike the original Xbox release, Microsoft has pre-empted its rivals in 

releasing its next-generation hardware. Microsoft has been criticised for not 

giving the Xbox as long a shelf life as the PS2 has received. This criticism has 

been largely ignored by the software giant who ceased production of the original 

Xbox console and future games in early 2005. Criticism has also been levied at 
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the console that, while the graphics hardware is very powerful, the CPUs in the 

Xbox 360 are significantly under-powered and cause a bottleneck in 

performance. While this is the case, it should be considered that many of the 

games released for the console only used one of the 6 hardware threads capable 

of being executed simultaneously in the Xbox 360. As games engines evolve to 

exploit multiple processing cores, the performance of games on next-generation 

platforms will improve. 

4.2.2.2.4 PlayStation 3 

The PlayStation 3 [Sony06] is expected to launch in November 2006 in Japan 

and the USA and March 2007 in Europe. It adopts a single 3.2Ghz Power PC 

processing core and 7 Synergistic Processing Engines (SPEs), termed the Cell 

Processor; the cell processor was a joint-development between Sony, ffiM and 

Toshiba. Rumour is circulating that the central processing core may be reduced 

to 2.6-2.8Ghz to reduce manufacturing costs. The PS3 will fully support high­

definition TV standards and will adopt the new Blue-ray disc format, a high­

definition replacement for DVD. It will come with 256Mb RAM, a 256Mb next­

generation NVidia graphics processor and a 20-60Gb hard drive. As it has yet to 

be released, these specifications are subject to change but are consistent with the 

pre-release development kits being used to produce launch titles. 

The PS3' s utilisation of the cell processor offers a huge amount of power (in 

excess of 2 TFlops) at the cost of increased programming difficulty. The PS3's 

main processor is significantly slower than its SPEs, which can be seen as being 

secondary co-processors; its main processor is in fact the exact same processor 

as is used in the Xbox 360. The SPEs cannot directly operate on main memory 

and each contain 256Kb of cache memory. The job of the main processor, 

according to Sony, is to stream jobs to these SPEs and the GPU and write results 

back to main memory. However, this requires current games engine designs to 

be completely re-evaluated to adopt parallel execution, something which has 

114 



previously not been considered. This provides developers with a significant 

challenge: a current games engine will potentially run slower on a PS3 than on 

an Xbox 360, despite the fact that reports suggest the PS3's cell processor may 

offer performance orders of magnitude faster than the Xbox 360. 

In addition to SPEs, the PS3 also adopts Vector Unit co-processors to efficiently 

perform vector operations; there is one VU per SPE and these VUs still impose 

the same strict byte-alignment rules as in the PS2. Finally, the PS3 includes 

within its hardware the original PS2 processor. This will operate as an 110 

processor and will also provide backwards compatibility with all PS2 games. 

4.2.3 Transformations 

Transformations are a fundamental operation in graphical virtual environments 

[LengyeI03]. A point in 3D space can be rotated, translated, scaled and sheared. 

These operations can be represented using a 4x4 transformation matrix. With the 

development of hardware accelerated transformation and lighting OPUs, 

transformations using 4x4 matrices are performed in graphics hardware. 

However, these transformations are performed as part of the rendering pipeline 

and the transformed vertices are local to each stage of the rendering pipeline. 

Therefore, while the choice of representation of transformations is fixed in 

OPUs, it is still worthwhile exploring alternative transformation representations 

as part of a collision detection engine 

In DYEs, it is common that only rotations and translations are used as DYEs 

often mimic the real world and scaling (enlarging/shrinking) and shearing 

(stretching along an arbitrary axis) operations generally do not occur in reality. 

Translations can be represented using a 3D translation vector. Rotations can be 

represented in a number of different ways: 

• Euler angles 
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• 3x3 transformation matrix 

• Quatemions 

Euler angles offer the simplest representation of rotations. It stores three floating 

point numbers, representing the angle of rotation around the coordinate axes, 

significantly reducing the storage overhead of a transformation compared to a 

4x4 matrix. However, in order to perform the transformation, this must be 

converted into either a 3x3 or 4x4 transformation matrix. 

3x3 matrices are the upper-left part of a 4x4 matrix, representing the rotational 

component of the transformation. They requlfe significantly fewer 

multiplications and additions than 4x4 matrices. A 3x3 matrix with a 30 

translation vector require 9 multiplications and 6 additions to perform the 

transformation; a 4x4 matrix requires 16 multiplications and 12 additions. 3x3 

matrices with a translation vector therefore offer a reduced memory footprint 

(12 floats as opposed to 16 floats) and require fewer operations to perform the 

transformation. 

Quatemions offer a different representation of a rotation. A quatemion IS 

essentially a 40 complex number. It is composed of 4 parts: one real number 

and three coefficients to imaginary numbers. A quatemion can be represented 

as: H = a + bi + cj + dk, where a, b, c, and d are real numbers and: 

i2 = l = J! = ijk = -1 

ij = -ji = k 

jk = -kj = i 
ki = -ik = j 

Quatemions hold a number of different properties, the most useful in DYEs 

being that a rotation of angle e around a unit vector n can be represented by the 

quatemion: 
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q = (s, v) = ( cos( ~ e }nSinG e))' where s is a real number and v represents a 

3D vector of coefficients for the imaginary numbers i,j and k. 

It can be seen that a quaternion offers a reduced memory footprint for rotations. 

Coupled with a translation vector, a quaternion would require 7 floating point 

numbers to represent a full transformation. However, while not fully discussed 

in this section, quaternion maths requires a firm understanding of complex 

numbers and is more difficult to visualise than other representations, i.e. it 

results in a slight increase in development complexity. Due to floating point 

rounding errors, it is possible for transformation matrices to become non­

orthogonal after a number of matrix multiplications have been performed; a non­

orthogonal matrix is a matrix whose component axes are not mutually 

perpendicular to each-other. In order to overcome this, matrices must be re­

orthogonalised frequently; re-orthogonalisation is a relatively expensive 

operation. Quaternions are by definition always orthogonal and, therefore, it is 

not necessary to re-orthogonalise a quaternion. 

In virtual environments, it is often desirable to be able to interpolate between 

rotations to smoothly animate an object from one transformation to another. 

Although there are an infinite number of ways to traverse from one 

transformation to another, it is normal to use the shortest path from one to 

another, termed the torque-minimal path. An approximation to this path can be 

found using a number of techniques, the most intuitive being linear 

interpolation. Given two transformation matrices, A and B, it is possible to 

interpolate between these matrices to smoothly transition from A to B as below: 

(l-i)A +iB, 0 ~ i ~ 1 
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Linear Interpolation Spherical Lmear 
Interpolation 

Figure 4.1 Linear Interpolation v Spherical Linear Interpolation 

From Fig 4.1, it can be seen that linear interpolation can re ult in irregular 

sampling around the circumference of a circle, which results in incon i tent 

angular velocity. If this form of interpol ation was used in animation, it cou ld 

sacrifice the smoothness of the animation . Quatemions offer spheri cal linear 

interpolation (SLERP) , which guarantees constant angular velocity and can 

provide a very accurate approximation the torque-minimal path . SLERP can be 

performed as below: 

sin(1- i)Q sin iQ 
---- A + --- B where 0 ~ i ~ 1, A and B are the ongm and end 

sinQ sinQ ' 

rotations respectively and n is the angle subtended by the arc , so th at co n = A 

. B, the n-dimensional dot product of the unit vectors from the origin to the end . 

However, spherical linear interpolation is a computationally expensive 

operation, which may result in reduced performance. As such , the choi ce of 

either linear interpolation or spherical linear interpolation must be made by 

balancing out the computational cost against the smoothness of animation . It 

should be noted that the undesirable visual effects of irregular angular velocity 

can be reduced significantly by increasing the sampling frequency. For example , 

given sampling frequencies in excess of 30 samples per second , it is unlikel 

that a human would be able to distinguish between both techniques . Ho >.; e er at 

sampling frequencies of, say 2 samples per second it is likel y that a human 

would noti ce irregular angu lar velocity. 
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There exists a transformation, termed Identity (I), which, when used to 

transform a point, produces the exact same point as it was provided with; in 4\4 

matrix form, this is represented as the transformation matrix: 

1 000 

o 1 0 0 
1= o 0 1 0 

000 1 

Additionally, for any transformation, T, there exists a transformation, rl, such 

that TxT-l = I. This is termed the inverse transformation, where performing the 

transformation T followed by T- l provides the same result as no transformation 

being applied whatsoever. Therefore, it can be seen that given two objects obj, 

and obh with respective world transformation matrices TI and T1: Tl x T 1-
1 = I 

- T2 X T l -
l transforms obh into obj/s local coordinate space. This means that it 

is possible to calculate a transformation such that one object can be expressed in 

terms of another object's local coordinate space, thereby removing the need to 

transform both objects into world space to compare them for intersection. As 

coordinate transformation is an complex operation, such an optimisation can 

vastly improve the performance of a collision detection technique. 

4.3 System Implementation 

The design and implementation of the distributed collision detection technique 

described in this thesis is relatively complex and a number of non-trivial 

optimisations were performed to improve performance and reduce memory 

requirements, some of which were introduced previously in this chapter. 

However, to provide a more understandable description of the system 

implementation, this section will describe the data members and behaviour 

expected of each component which constitutes the collision detection approach, 
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rather than discussing low-level implementation details; little or no discussion 

will be made of optimisations such as embedding flags into bit vectors or 

encoding variables into the same data member using lowest-significant bits to 

flag which data is contained. The use of these optimisations is recommended to 

produce the best performance possible. 

The implementation details provided in this section describe the model 

described in Chapter 3, Section 3.3.11. The implementation can be logically 

subdivided into three components, the Server, the Clients and the Collision 

Detection Nodes. The server and collision detection node implementations rely 

heavily on the use of and inter-communication between multiple threads of 

execution. With the use of multiple threads of execution, it is very important to 

ensure that random thread interleaving cannot result in undesirable and non­

deterministic behaviour in the application. This problem has received 

considerable research interest and a number of approaches to avoid undesirable 

thread interleaving have been developed. However, these techniques are outside 

of the scope of this thesis and to aid clarity, descriptions of thread 

synchronisation techniques and the synchronisation requirements of the 

distributed collision detection approach are omitted from this chapter. The use of 

thread synchronisation is critically important in a number of operations in 

distributed collision detection to achieve correct behaviour. 

4.3.1 The Server 

The server is responsible for handling incoming requests from collision 

detection nodes to join a given DYE and informing each node of the newly­

joined participant. Following this, the server must inform the new node which 

objects it is responsible for in the DYE and re-allocate the existing consistency 

groups in the DVE to reflect the new participant. The server must also handle 

requests by existing nodes to leave the DYE and requests for membership and 
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eviction votes raised by members of each consistency group during the life-time 

of the DYE. In addition to receiving requests from collision detection nodes, it is 

necessary for the server to receive connection requests from clients wishing to 

participate in the DYE. These clients usually have a one-to-one relationship with 

collision detection nodes, but it is possible for a machine to join as a client but 

not as a collision detection node and vice-versa. This provides the possibility for 

low-spec machines to participate in a DYE and for collision detection to be 

executed using a grid-computing model if appropriate resources are available. 

The server is a separate application to the nodes, which operates in a completely 

different addressable space. The Server is subdivided into a number of threads 

which execute simultaneously and communicate with one-another through 

shared memory. The structure of the Server can be seen in Fig 4.2. The Server 

can be broken up into four threads: the main server thread, the client listen 

thread, the object listen thread and the admin listen thread. The main server 

thread is responsible for listening for incoming connection requests. The client 

listen thread listens for state update messages from the clients, indicating that 

one of the client's objects has changed its state. The object listen thread listens 

for updates in object states from the collision detection nodes. A message 

received by this thread indicates that a collision detection node has detected a 

collision and responded to it. The admin listed thread listens for administrative 

messages from the collision detection nodes; such admin messages may include: 

• Requests to leave the DVE 

• Requests to initiate a group inclusion or rejection vote 

• Communication latency reports indicating which collision detection 

nodes are possible candidates for group membership from a given node 

The Admin and object communication streams are kept separate to allow 

different threads to process these messages without needing to be concerned 

about random interleaving between object and admin messages. 
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All of these threads are implemented using thread pools to ensure that events are 

processed in an efficient manner. The choice of thread pools over one thread per 

collision detection node and client is to avoid process starvation, in which the 

proportion of processing resources each thread receives becomes minutely 

small. To the right of the Admin Listen Thread and Object Listen Thread in Fig 

4.2 is the Handshake Server. These are created on a per-collision detection node 

basis and are the mechanism by which the admin and object listen threads access 

the data transmitted from each individual collision detection node. Similarly, the 

client update server is created on a per-client basis and is accessed directly by 

the client listen thread. Both the handshake server and client update server 

contain instances of an abstract Communication interface, which will be 

discussed in more detail in the next section. 
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Figure 4.2: Distributed Collision Detection Threads 

4.3.1.1 Communication Model 

The communication model used in the distributed collision detection approach is 

designed to be as abstract as possible. An abstract Communication interface is 
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defined through which all data communication takes place. This interface 

shields the developer from the intricacies of network communication, such as 

protocol selection and platform-specific issues such as proprietary system 

libraries and byte-ordering. Communication objects are instantiated using a 

Communication Factory. The Communication Factory provides a mechanism to 

obtain standard Communication objects and Server Communication objects. The 

Server Communication object is responsible for listening for incoming 

connection requests and creating Communication objects to service the message 

exchange requirements of each request. The Communication object provides 

mechanisms to transmit primitive types to its recipients. In addition, all non­

primitive types required to be transmitted through the Communication object 

must extend the Communicable interface and implement four methods: 

• void encode(Communication comm) 

• void decode(Communication comm) 

• void encodeLightWeight(Communication comm) 

• void decodeLightWeight(Communication comm) 

The encode and decode methods encode and decode all member variables 

belonging to the object through the communication parameter. The 

encodeLightWeight and decodeLightWeight methods offer a mechanism 

whereby only the minimum amount of data needed to achieve consistency is 

encoded and decoded. 

A number of protocols and middleware services have been integrated into the 

distributed collision detection approach, including TCPIIP, UDPIIP and 

CORBA. The use of flexible Communication Factories allows extensibility 

whereby any protocol capable of transmitting data can be utilised transparently 

within the distributed collision detection engine. The Communication interface 

uses the abstraction of a packet-based data-stream, whereby in order to transmit 

a message, it is necessary to: 
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• Request a handle to a message, which returns an integer identifier to a 

new message object 

• Submit communication primitives to the data-stream of the message 

object, e.g. integers, floating point numbers, strings etc. 

• Instruct the Communication object to transmit the message with a given 

identifier 

Once the message is transmitted, attempting to use the message handle will 

result in a run-time exception; eventually the message handle will be re-used. 

This mechanism offers efficient access to the communication media as it allows 

numerous threads to transmit messages simultaneously. The only mechanisms 

which must be completely synchronised are requesting a handle to a thread and 

transmitting the data through the underlying protocol. Adding data to a message 

must only be synchronised around the message itself, allowing other threads to 

simultaneously access other messages. It is possible to remove the need for 

synchronising adding data to a message if it can be guaranteed that a message 

will only be accessed by one thread, which is the case in the current system. 

4.3.1.2 Auxiliary Components 

Distributed collision detection utilises a number of auxiliary components to 

facilitate state replication between nodes participating in the DVE. The most 

important of these are the EnvironmentProperties, Object3D and ObjectFactory 

objects. The EnvironmentProperties contains all the information required to 

fully describe the virtual environment. This includes members such as: 

• World unique identifier: For example, identify the geometry which 

describes the virtual world 

• World bounds: a description of the volume of virtual space the world 

occupies 
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• Participating nodes: All the collision detection nodes and clients 

currently participating in the DVE 

• Participating objects: All the objects currently inhabiting the DYE 

• Server and Peer CommunicationFactory objects 

The EnvironmentProperties type implements the Communicable interface. An 

instance of EnvironmentProperties is created by the Server at DYE instantiation 

and is updated when objects, collision detection nodes or clients join or leave the 

DVE. The server is responsible for ensuring that all participants observe a 

reasonably up-to-date EnvironmentProperties object. The 

EnvironmentProperties type can be extended to include application-dependent 

information which must be disseminated to all participants of the DYE. It 

contains two CommunicationFactory objects: one for server communication and 

one for peer communication. This enables the appropriate levels of reliability to 

be employed in different communication scenarios. For example, it may be 

desirable to have low-latency unreliable messaging between peer collision 

detection nodes while maintaining slower, reliable (or best-effort reliable) 

messaging between the collision detection nodes and the server. 

The Object3D type represents an object which inhabits the DYE. It contains the 

objects' geometry, collision data, textures, physics and behavioural properties. 

In addition, the Object3D type can be extended by defining a sub-class of the 

Object3D type which contains application-specific information. 

The ObjectFactory is responsible for replicating objects across all nodes 

participating in the DVE. It provides functionality to take a Communication 

stream describing an object and return a reference to an instance of an Object3D 

representing the object which the Communication stream described. If an 

Object3D corresponding to the data contained in the Communication stream 

does not already exist, the ObjectFactory creates an instance of an Object3D to 

correspond with this object. Alternatively, if an Object3D corresponding with 

the data is already in existence, the Object Factory returns a reference to the 
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existing object. The Object Factory also acts as a resource monitor and is 

capable of re-cycling geometry information such that if two Object3Ds represent 

the same type of object in the DYE, e.g. the same make and model vehicle, the 

Object3Ds will reference the same geometry, texture information and some of 

the same collision data. This significantly reduces the amount of memory the 

DYE occupies. In order to implement this efficiently, it is necessary for the 

Object Factory to be able to efficiently find Object3D instances, geometry and 

texture information. In order to achieve this, a combination of hash maps and 

binary search are utilised to provide extremely fast searching performance. 

It is assumed that the server, clients and collision detection nodes will all utilise 

compatible Object Factory instances. It is also assumed that the data describing 

objects' geometry will be stored locally on the server, collision detection nodes 

and clients. Streaming geometry information is not forbidden by the system 

described in this thesis, but it has not been implemented in the current system 

because streaming geometry data may incur significant communication costs as 

next-generation platforms are capable of rendering objects constructed of large 

numbers of polygons which would consume a large amount of network 

bandwidth. Therefore, streaming geometry data may detrimentally affect the 

responsi veness of the D VB. 

4.3.1.3 Allocating Work to Collision Detection Nodes 

The basic requirements of the server have already been discussed and have been 

categorised into client and collision detection node issues. The main work of the 

server is to ensure that the collision detection nodes perform collision detection 

efficiently on consistent and up-to-date object state information. In order to 

achieve this, the server is responsible for managing consistency group 

membership and routing client update messages to the group leaders of the 

consistency groups. While communication in normal situations occurs between 

the server and each consistency group's group leader, it is necessary for the 
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server to be able to receive messages from all collision detection nodes 

participating in the DVE to overcome group leader failures. 

In order to efficiently utilise the collision detection nodes, each member of a 

consistency group is allocated a sub-region of the DVE to perform collision 

detection within. This is achieved by forming a spatial subdivision hierarchy of 

the DVE and allocating a unique node in this hierarchy to each member of a 

consistency group. This subdivision hierarchy is termed a distribution tree and 

each node within the tree is termed a distribution node. Each consistency group 

has its own distribution tree. To ease clarity, the following section does not 

discuss the group leader's role in managing its group's distribution tree, which is 

a shared duty between the server and the group leader. 
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Figure 4.3 Uniquely Identifying a Sub-region 

Each vertex in the tree is given a unique identifier. The root is given the Id O. All 

other vertices are given Ids based on their parent node's Id: 

Left child = 2 * Parent Id + 1 

Right child = 2 * Parent Id + 2 

This unique vertex identification allows each sub-region of the DVE to be 

identified by the server and collision detection nodes. All internal vertices store 

the criteria on which the world is to be subdivided, e.g. a partitioning plane. 
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Leaves can be used to store the objects which inhabit the corresponding sub­

region of the DVE. From Fig 4.3, it can be seen that vertex 0 represents the 

vertical partitioning plane separating vertices 3 and 4 from 5 and 6. Vertices 1 

and 2 represent the horizontal partitioning planes separating vertex 3 from 

vertex 4 and vertex 5 from vertex 6 respectively. 

Each collision detection node in a consistency group is represented within the 

consistency group's distribution tree by a DistributedServer object which is 

placed in the distribution node corresponding to the sub-region the collision 

detection node is responsible for. For example, a DistributedServer object placed 

at node 0 would be responsible for collision detection on objects contained in 

vertices 3, 4, 5, and 6, a DistributedServer at vertex 1 would be responsible for 

collision detection on objects contained in vertices 3 and 4 and a 

DistributedServer at vertex 5 would be responsible for collision detection only 

on objects contained in vertex 5 (or any of its children vertices if it was 

subdivided further). Each collision detection node is assigned a unique identifier 

by the server when it joins the DYE, which is stored in the DistributedServer 

object. The DistributedServer stores the communication information for the 

collision detection node and a list of objects the collision detection node is 

responsible for. These objects are categorised into two different types, persistent 

objects and client objects. The state of persistent objects is maintained by the 

collision detection nodes as their behaviour is controlled completely within the 

DYE software. It is necessary, however, to provide the relevant collision 

detection nodes with frequent state updates for the client objects which they are 

responsible for collision detection upon. As such, a collision detection node is 

informed of the current state of all persistent objects it is responsible for each 

time its consistency group is re-allocated. Following this, the state of persistent 

objects are maintained by the collision detection nodes within the consistency 

group; this will be discussed in more detail later. Objects within the DYE are 

referenced by two unique identifiers; the first being the index of the client who 

hosts the object and the second being the object's unique identifier issued by the 
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client client. If the object is a persistent object, the client identifier is -1 and the 

unique object identifier is provided by the server when the object is instantiated. 

The binary tree structure lends itself towards this fonn of workload distribution. 

If a higher-order tree structure was selected, such as a tree with 4 children per 

vertex, the distribution of workload would be far more complex. Such a tree 

structure would be capable of handling situations in which the number of 

members in a consistency group is a power of 4, e.g. 1,4, 16,64 etc. However. 

given a more difficult number, e.g. 5, it would be necessary to place the same 

DistributedServer in more than one place in the tree. Fig 4.4 demonstrates the 

difference between a binary tree and a quad-tree for use in allocating collision 

detection nodes' sub-regions of a DYE. It can be seen from the diagram that a 

DistributedServer will appear at most once in a binary distribution tree, whereas 

a DistributedServer may appear more than once in a distribution tree with 4 

child nodes per node. Fig 4.4 also shows the shortcomings of the tree 

representation, in that collision detection nodes may not be responsible for equal 

portions of the DYE. It can be seen from the diagram that collision detection 

nodes 1, 2 and 3 are responsible for regions of the world twice as large as nodes 

4 and 5. This could result in nodes 1, 2 and 3 being required to do more work 

than nodes 4 and 5. However, the amount of work required to be completed by 

these nodes is still a fraction of the work required to be perfonned if distribution 

collision detection was not employed; in the case of Fig 4.4, nodes 1, 2 and 3 

are required to perfonn collision detection for a quarter of the DYE and nodes 4 

and 5 an eighth of the DYE respectively. 
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Figure 4.4 Binary Tree vs Higher-order Tree 

4.3.1.4 Forming Consistency Groups 

The server is responsible for organising consistency group member hip . Thi 

involves re-allocating consistency groups when a new collision detection node 

joins the DYE or an existing node leaves. In addition, consistency groups mu t 

be modified during run-time as a result of membership votes instigated by the 

collision detection nodes . As discussed in Chapter 3, it is desirable to generate 

as large consistency groups as possible to provide the best possible perfonnance 

and consistency in the DYE. However, if consistency groups become too large, 

the group leader may become overloaded; this problem will be discussed later 

when group leaders are examined in more detail. 

Members of consistency groups must be able to communicate with one-another 

through low-l atency network connections. When the server instantiate a 

consistency group re-allocation , it requests all collision detect ion node to 
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estimate which nodes they share low-latency communication with. This can be 

determined using a number of techniques, including: 

• Measuring average message latency 

• Analysing network addresses to select nodes co-located on the same 

networks or accessing the Internet through the same network exchange 

orISP 

• Using high-level knowledge, such as the physical address (town/city) 

which the user is registered to reside within 

• User-customisable groups, e.g. groups consisting of friends or 

neighbours 

The system described in this chapter records the average round-trip message 

delay over a given time-frame and uses this to approximate the appropriate 

group memberships. This allows group membership to adapt depending on 

network behaviour, e.g. network congestion. However, analysing network 

performance may be inappropriate in massively mUltiplayer DYEs, where 

alternative approaches may be more suitable. The use of high-level knowledge, 

e.g. registered address of the user, relies on the user being honest and keeping 

their address up-to-date. Similarly, user-customisable groups rely on the users 

understanding that they are creating groups of nearby users; a group consisting 

of members in distant countries will result in extremely poor performance. 

However, a mixture of these techniques can be used, where user-customisable 

groups, physical addresses or network address analysis can be used to prune the 

set of collision detection nodes into smaller sets of candidate consistency 

groups. This subset would allow less expensive network analysis to be 

performed. 

Once the server has received a list of candidate group members from each 

collision detection node, it is necessary for the server to create groups of nodes 

who appear in each-other's list of members. In order to achieve this, the server 

creates a set of all possible groups from this data, sorted from largest group to 
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smallest group. For efficiency reasons, this set of possible groups avoids 

creating subsets of groups already created to save memory. For example, given a 

server hosting a DYE with 5 collision detection nodes, A. B, C, D and E that 

return the candidate group members: 

A = fB, C, Dj 

B = fA, C, Ej 

C = fA, Dj 

D = fA, C, Ej 

E= fDj 

The set of candidate groups created would be: 

ffA, C, Dj, fA, Bj,{D, Ej} 

This set is then used to create the actual consistency groups. The algorithm to do 

this is outlined below: 

function createGroups(List candidateGroups) 

List groupMernbers = getGroupMernbers(); 

while(!groupMernbers.isEmpty()) 

Sort (candidateGroups) ; 

Group group = (Group)candidateGroups.removeFirst(); 

MakeGroup(group); 

RemovelnstanceOf(group, groupMernbers); 

RemovelnstanceOf(group, candidateGroups); 

The above algorithm selects the largest group from the candidate groups. It then 

removes the members of the new group from the list of unallocated collision 

detection nodes. All instances of the members of the new group are removed 

from the remaining candidate consistency groups; if this results in empty 

candidate groups, then these are discarded from the list. Following this, the list 

is re-sorted to ensure that the first element is the largest consistency group. If 

there are remaining unallocated collision detection nodes, the process is 
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repeated. Given the previous example, this algorithm would create the 

consistency groups: {{A, C, Dj, {Ej, {E}}. 

4.3.1.5 Run-Time Consistency Group Adjustments 

The previous re-allocation occurs when a new node joins the DVE or an old 

node leaves. During the run-time of the DVE, members of a consistency group 

can request for members of their group to leave the group as a result of poor 

communication performance, or can request another node to join their group as a 

result of fast communication perceived between themselves; nodes can only join 

a consistency group at least as large as the group they are currently in. In order 

to avoid nodes repeatedly requesting nodes to join and leave their group, two 

threshold values are defined: the inclusion and rejection values, where inclusion 

< rejection. This means that a node will only request an inclusion vote for a 

node if it perceives an average transmission latency with the node less than the 

inclusion threshold. Similarly, a node will only request a rejection vote if it 

perceives an average transmission latency with a member of its consistency 

group larger than the rejection threshold. In addition, the server can choose to 

ignore requests for inclusion/rejection votes, e.g. limit the maximum number of 

votes in a given time-frame. 

When an inclusion vote is initiated, all members of the group must vote to 

determine if the node should be included in the consistency group. Each member 

can vote to include the node, reject the node or abstain from the vote if the 

transmission latency they perceive makes their decision unclear. To clarify: 

• If a node perceives a transmission delay less than the inclusion threshold, 

it should vote for inclusion 

• If a node perceives a transmission threshold greater than the rejection 

threshold, it should vote for rejection 
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• If a node perceives a transmission delay between the inclusion and 

rejection thresholds, it should abstain from voting 

When all votes are received, if no group member rejects the node and at least 

one member accepts the node, the proposed collision detection node will join the 

consistency group. Similarly, when a rejection vote is initiated, each group 

member (except the node which is proposed to be rejected) must decide whether 

the node should be rejected from the group using a similar mechanism as the 

inclusion vote: 

• If a node perceives a transmission delay less than the inclusion threshold, 

it should vote against the rejection 

• If a node perceives a transmission threshold greater than the rejection 

threshold, it should vote for the rejection 

• If a node perceives a transmission delay between the inclusion and 

rejection thresholds, it should abstain from voting 

Once all results have been received, the decision to reject the node is based on a 

weighted average of the votes. Given I inclusion votes, R rejection votes and A 

abstain votes, the node will be rejected from the group if: 

I + O.SA - 2R < 0 

4.3.1.6 Providing the Client with State Updates 

The Client is responsible for generating frequent state updates and transmitting 

these to the server or group leader of its consistency group. Upon receipt of 

these, it is necessary for the group leader or server to ensure that these messages 

are disseminated to the other consistency groups and collision detection nodes 

which must simulate these objects. When the state of client objects are changed 

as a result of a collision, it is necessary for the server/group leader to inform the 

client hosting this object of the event. This will be further discussed later when 

group leaders are discussed in detail. 
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In a real-world DYE, it is also necessary for the server/group leader to infonn all 

clients of the current state of the objects which are visible to them. This is 

beyond the scope of this thesis, but it is necessary to ensure that users 

experience a consistent DYE. Considerable research has been undertaken into 

this problem and a number of techniques have been developed to ensure that 

users receive object state updates, while reducing the volume of messages which 

must be transmi tted. 

4.3.1. 7 Summary of the Server 

The architecture and responsibilities of the server in distributed collision 

detection have been introduced. The mechanisms by which the server allocates 

work to the collision detection nodes, allocates collision detection nodes to 

consistency groups and communicates with the clients were discussed. While 

these mechanisms are required to manage distributed collision detection, they 

are relatively expensive operations. As the number of collision detection nodes 

in the DVE increases, this may overload the server. As such, the notion of group 

leaders, which were introduced in Chapter 3 and earlier in this chapter, will be 

further examined later in this chapter as a mechanism whereby the duties of the 

server are distributed among certain designated collision detection nodes. This 

helps to reduce the server's processing overheads. In addition, while it is beyond 

the scope of this thesis, the techniques for distributed collision detection 

discussed in this chapter are not restricted to single-server architectures. The 

server described in this section can be implemented using server hierarchies or 

groups of peer servers to distributed the workload appropriately and increase 

scalability. 
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4.3.2 Collision Detection Nodes 

The collision detection nodes are responsible for detecting and responding to 

collisions and ensuring that the collision events are disseminated to the relevant 

clients to ensure a consistent and responsive DYE is maintained. The underlying 

theory behind the collision detection nodes was introduced in Chapter 3. The 

following section will discuss the structure required to implement collision 

detection nodes capable of adapting to changing network properties. 

4.3.2.1 Overview 

The Collision detection nodes are constructed from a number of components, 

some of which are common to both the collision detection nodes and the server. 

Both the server and collision detection nodes share a common communication 

model and utilise the DistributedServer class to store references to collision 

detection nodes. 

The collision detection nodes consist of two main components, the collision 

detection component and the communication model component. These are kept 

separate by using a class hierarchy: 

• The collision detection components of the collision detection nodes are 

implemented within a class called DistributionNode 

• The communication model components are implemented in a class 

which extends DistributionNode called DistributedNode 

4.3.2.2 DistributionNode 

The DistributionNode represents a node within a binary tree representing the 

DYE called a distribution tree. Distribution trees are constructed on each 
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collision detection node to represent the sub-region of the DYE which they are 

responsible for collision detection within and the sub-regions of the DYE other 

nodes within their consistency group are responsible for. Essentially, this 

structure mirrors the distribution tree stored on the server for each consistency 

group. Each internal node in this tree represents a partitioning plane which 

subdivides the virtual world into two sub-regions. This subdivision is performed 

recursively until a number of termination criteria are reached: 

• Size of the sub-region is less than some threshold value 

• Depth of the tree is greater than some threshold value 

• Number of leaf nodes is greater than some threshold value 

These threshold values can be defined on an application-dependent basis. As this 

subdivision is to be adjusted dynamically, the subdivisions are performed using 

axially-aligned partitioning planes to yield fast partitioning performance. 

Leaf nodes in the distribution tree contain a list of objects which occupy the 

enclosed sub-region of the DYE. Each DistributionNode contains a reference to 

a DistributedServer. If this reference is not null, this implies that the sub-region 

represented by this node (and all of its descendent nodes) is controlled by the 

collision detection node described by the DistributedServer. The local node is 

responsible for collision detection in any leaf node whose descendant nodes all 

contain null references to a DistributedServer. 

The collision detection node is initially given a list of objects which it is 

responsible for performing collision detection on by the server or group leader. 

It maintains this list of objects and inserts these objects into their respective 

nodes within its distribution tree. This is achieved by traversing the distribution 

tree for each object and depositing the object in any leaf node which it reaches. 

If tree traversal for a given object reaches a node which references a valid, non­

null DistributedServer, the object is inserted into the DistributedServer's list of 

objects. This implies that the collision detection node corresponding to the 
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DistributedServer is responsible for collision detection on this object; the 

corresponding collision detection node will be infonned of the state of the object 

through the communication model, which will be described in the 

DistributedNode class later. The descendants of a node with a non-null 

DistributedServer reference are not traversed as the local node is not responsible 

for collision detection on that region. If no leaf node is reached in a given 

object's tree traversal, this implies that the local node is no longer responsible 

for collision detection for that object, and the duties of collision detection for 

that object are relinquished to other collision detection nodes in the DVE. This 

mechanism ensures that if a pair of nodes are responsible for collision detection 

on a given object, each node will receive state update messages for each nodes' 

perceived state of the object so that any inconsistencies can be overcome. 

Similarly, when a node is no longer responsible for collision detection on an 

object, the state of this object is transmitted to the nodes which are required to 

take over control of the object. The DistributionNode class does not manage 

object ownership itself; this is the responsibility of the DistributedNode. The 

DistributionNode simply provides methods to insert objects into their correct 

place in the distribution tree. Pseudocode for the insertion algorithm is provided: 

function insert(DistributionNode node, Object obj) 

if(isLeafNode(node» 

node.objs.add(obj); 

return; 

IIIf this node contains a server 

if(node.server != null) 

node.server.insert(obj); 

return; 

if(node.child[O] .contains(obj» 

insert (node.child[O], obj); 

if(node.child[l] .contains(obj» 

insert (node.child[l], obj); 
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In addition, the DistributionNode contains a number of performance-enhancing 

optimisations. The root node of the distribution tree contains a quick-search 

reference to the DistributionNode which represents the root of the sub-region 

which the local node is responsible for. In addition, the DistributionNode 

contains a method by which a list of all leaf nodes below a given 

DistributionNode can be retrieved; this list can be created once and stored for 

quick access. This list is stored in an array, in which leaf nodes are stored in 

sequential memory addresses. This provides high-levels of cache-coherence to 

help improve collision detection performance. 

Collision detection between objects is performed on a per-leaf node basis. This 

utilises the flattened list of leaf nodes. The algorithm for this is provided below: 

function collisionDetection(List leaf Nodes) 

for(int a = 0; a < leaf Nodes. size; a++) 

DistributionNode node = leafNodes.get(a); 

for(int objl = 0; objl < node.numObjs - 1; objl++) 

for(int obj2 = objl+l; obj2 < node.numObjs; obj2++) 

Point p = node.objs[objl] .pos + node.objs[obj2] .pos; 

p/=2.0; 

if(node.contains(p)) 

if(node.objs[objl] .collide(node.objs[obj2])) 

//Collision response 

The collision detection algorithm essentially iterates through all leaf nodes. In 

each leaf node, all objects are compared with one-another using a brute force 
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algorithm. However, each pair of objects is only compared with one-another if 

the centre point between the two objects is inside the sub-region represented by 

the leaf node. This ensures that the same pair of objects is not compared for 

collision with one-another more than once. The algorithm described in this 

section is simplified. For example, rather than simply returning a Boolean, the 

collision detection algorithm used returns an approximation to the point of 

contact or points of contact, depending on the parameters passed to the 

algorithm. These points of contact can be used to determine how the collision 

should be responded to accurately using a dynamic simulation. 

The spatial subdivision approach initially subdivides the DYE into uniform­

sized discrete regions. However, the distribution of objects throughout the DYE 

may not be uniform. To reflect this, each collision detection node's distribution 

tree is dynamically updated to reflect the distribution of objects. To clarify, a 

leaf node is further subdivided if the number of objects in the sub-region 

corresponding to the leaf node is larger than some threshold value. Similarly, if 

the number of objects in a pair of peer leaf nodes' sub-regions is fewer than 

some threshold value, these two leaf nodes are merged together into a single 

node. This form of adaptive spatial subdivision allows the distribution tree to 

evolve to reflect the distribution of objects. However, to avoid nodes being 

repeatedly merged and split, the threshold values used for merging and splitting 

should be different, where Threshold(merge) < Threshold(split). The optimal 

values for these thresholds are platform-dependent, as different machine 

architectures may perform better with different threshold values; these values 

are affected by machine-specific factors, including as CPU cache size and BUS 

bandwidth. 

4.3.2.3 Narrow Phase Collision Detection 

The distributed collision detection system presented in this thesis allows a wide­

range of narrow phase collision detection algorithm to be employed. However, 
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the default algorithm used in this system is a BSP tree-based time-dependent 

approximation collision detection algorithm. The algorithm is capable of 

determining the exact points of contact to the sub-polygon level. However, it 

adapts the level of detail of collision detection to reflect the amount of time 

collision detection took in previous time-steps as, due to temporal coherence, the 

number of collisions detected at time t are likely to be similar to the number of 

collisions detected at time t+~, provided ~ is small. 

The developer or user is required to provide a duration by which collision 

detection is required to have completed, e.g. lOms. This value is used to tune 

collision detection accuracy by reducing or increasing the depth of the tree that 

can be traversed before an approximation to the point(s) of contact can be found. 

The narrow phase algorithm takes the following parameters: 

• A flag indicating termination of collision detection when a given number 

of points of contact are found 

o If the flag less than 1, this indicates all points of contact should 

be found 

o If the flag is greater than or equal to 1, collision detection is 

terminated when this number of points of contact are found 

• An integer indicating the maximum depth of traversal 

o If the value is -1, the tree can be traversed to any depth 

The flag indicating the maximum number of points of contact can greatly reduce 

the time taken for collision detection in certain cases. For example, if two 

objects are completely intersecting one-another, finding all points of contact 

may be very time consuming, whereas finding just one point of contact will be 

very fast. The integer stating the maximum depth of tree traversal can also affect 

collision detection performance. For example, if collision detection is allowed to 

progress to depth 12, up to 212 - 1 nodes could be passed through prior to 

collision detection completing. Therefore, if the maximum depth is decreased by 

1, the number of nodes being passed through can be halved. If the objects are 
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found not to be intersecting in the early stages of tree traversal, the tuneable 

variables will have little effect on collision detection perfonnance. However, if 

the objects are found to be intersecting, both of these variables can significantly 

speed up intersection tests at the cost of accuracy. Restricting the number of 

points of contact may result in: 

• Noticeable jittering and failure of an object to reach restitution in a 

dynamic simulation 

• Undesirable or inaccurate response to collision 

Reducing the maximum depth of tree traversal may result in: 

• Undesirable or inaccurate response to collisions 

• False positives being returned, where close but non-intersecting objects 

are deemed to being colliding 

However, these inaccuracies largely go unnoticed as humans are usually unable 

to recognise unrealistic physics response. In addition, the problem of objects not 

reaching restitution can largely be ameliorated by freezing objects when their 

angular and linear velocity falls below some threshold value. This, in fact, must 

usually be perfonned even with the most accurate collision detection and 

dynamic simulation; due floating point rounding errors it is often impossible to 

guarantee an object controlled by a dynamic simulation will reach complete 

restitution without the use of such approaches. 

The narrow phase algorithm used in the system described in this thesis adapts 

both of these level-of-detail variables to provide accurate collision detection for 

the objects occupying the DYE while attempting to reduce the processing time 

required for collision detection below a threshold value. If it is not possible to 

reduce the time below a threshold value, both variables will be fixed at their 

lowest detail setting. Conversely, if the node is capable of perfonning collision 

detection in time shorter than the threshold time, the detail settings will be fixed 

to their largest setting. Commonly, however, the detail levels will fluctuate as a 

result of the objects' behaviours within the DYE. 
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The collision detection algorithm uses just-in-time polygon and bounding 

volume transfonnations to ensure that vertices are only transfonned if they are 

required to be compared for intersection. In addition, the algorithm halves the 

number of transfonnations required by utilising inverse transformation matrices. 

The inverse transfonnation matrix for the object with the most polygonal 

complexity is determined. This inverse matrix is multiplied with the other 

object's world transfonnation matrix and used to transform the less complex 

object's vertices into the more complex object's local space. The reSUlting 

transfonnation matrix is stored and used only when bounding volumes or 

primitives must be compared for intersection. The results of this transformation 

are stored, along with a timestamp, to ensure that the polygon is transformed at 

most once in any given intersection test. 

The use on-the-fly transfonnations usually results in far fewer transformations 

being perfonned than would be required if all vertices and bounding volumes 

were transfonned. This is because, in most cases, either the objects do not 

intersect or only demonstrate a small degree of intersection. The use of inverse 

matrices further reduces the number of transfonnations that must be performed. 

4.3.2.4 DistributedNode 

The DistributedNode class extends the DistributionNode class to provide a 

mechanism for communicating between collision detection nodes and between 

collision detection nodes and the server. The DistributedNode occupies the root 

position of each collision detection node's distribution tree; each descendant 

node of the root node is a DistributionNode, as described previously. The 

structure of the distribution tree can be seen in Fig 4.5. 
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Figure 4.5 Collision Detection Node's Distribution Tree 

Fig 4.5 shows a DistributedNode at the root of the distribution tree. All 

descendent nodes are of type DistributionNode. The tree shows that the local 

node is responsible for collision detection on the sub-region of the DYE 

corresponding to the internal node with id 3. In addition , there are three other 

collision detection nodes within the consistency group responsible for colli ion 

detection on the sub-regions corresponding to nodes 4 , 5 and 6 respecti ve ly. 

The DistributionNode class is essentially responsible for adaptively subdividing 

the DYE into sub-regions, placing the objects in their respecti ve sub-regions and 

invoking collision detection between objects sharing the same sub-regions. The 

DistributedNode class is responsible for: 

• Object management 

• Object replication and transfers 

• Consistency group performance monjtoring 

• Communication with group leader and server 
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4.3.2.5 Object Management 

Object classification was discussed in Chapter 3, in which three different types 

of objects were defined: 

• Immoveable objects 

• Deterministic dynamic objects 

• Avatars 

Immoveable objects are objects which do not move during the life-time of the 

DYE; this includes objects which constitute the fixed environment, such as 

floors, walls, ceilings, staircases etc. Due to the fixed nature of these objects, 

they can be treated differently from other objects in the DYE by being placed 

into their respective sub-regions at initialisation and never need to be re­

positioned. 

Deterministic dynamic objects are objects which move throughout the DYE in 

response to collisions or through application-dependent AI routines. The 

behaviour of these objects can be deterministically modelled and, as such, can 

be relatively accurately replicated between collision detection nodes and 

consistency groups. 

Avatars, conversely, demonstrate behaviour which is non-deterministic as they 

are controlled by external users. Therefore, the state of avatars cannot be 

accurately modelled or replicated without the use of high-fidelity message 

exchange between the collision detection nodes and the client which hosts the 

avatar in question. 

The DistributedNode, Group Leader and Server treat these objects differently. 

Upon joining a DYE, the DistributedNode is informed of all immoveable objects 

in the DYE. As these objects will not move during the course of the DYE. these 
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objects will always be completely consistent between all nodes participating in 

theDVE. 

Deterministic dynamic objects are assigned to collision detection nodes by the 

server during consistency group reallocation. After this, the collision detection 

nodes in each consistency group are responsible for managing the state of these 

dynamic objects without the need for intervention from the server. The collision 

detection nodes in a consistency group are required to transmit object replication 

and transfer messages between one-another to ensure that the appropriate nodes 

accept responsibility for collision detection during the lifetime of the DYE. 

Upon response to collisions, collision detection nodes are required to transmit 

the updated state of the colliding objects to their group leader; the group leader 

will, in tum, handle inconsistencies in object states within its consistency group 

and forward the internally-consistent state on to the server and clients. The 

server will, following receipt of new object states, resolve any inconsistencies 

between consistency groups and store the current state of all objects in the DYE. 

Collision detection nodes will be informed of up-to-date object states by the 

server during group reallocation or in the event of node failure. This mechanism 

reduces the server's processing and communication requirements by allowing a 

degree of inconsistency to emerge between dynamic deterministic objects 

between consistency groups. 

Collision detection nodes are assigned avatar objects through the use of frequent 

state update messages transmitted by the group leader to its group members. The 

group leader receives avatar state updates from a combination of the server and 

the clients which are connected directly to it. To clarify, a client is a process 

which provides a graphical user interface to the user and disseminates the 

current state of the avatars it hosts. Clients may be hosted on collision detection 

nodes. If a client is hosted on a collision detection node, the client transmits its 

frequent state updates to its consistency group's group leader; if the client is 

hosted on the consistency group leader, the state updates are performed using 
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shared memory updates on the object state. If the client is not hosted on a 

collision detection node, its state updates are transmitted to the server. When a 

group leader receives state updates directly from a client, the group leader 

forwards these state update on to the server, which transmits the state update to 

any other consistency groups in the DYE through their group leaders. Upon 

receiving avatar state updates, the group leader transmits the latest avatar state to 

the collision detection nodes responsible for collision detection upon it. 

Additionally, the state update is transmitted to any collision detection node 

previously responsible for collision detection on the object to ensure the 

collision detection node acknowledges the object's new state and relinquishes 

responsibility for its collision detection. 

Collision detection nodes retain the state of avatar objects between frequent state 

updates. The state of these objects can be updated using extrapolation 

techniques, such as dead reckoning, in an application-dependent manner. When 

a collision is responded to, the state of the objects involved in the collision are 

transmitted back to the consistency group leader. The group leader transmits the 

updated state of the avatar in the following way: 

• If the avatar is hosted on a client which is directly connected to this 

group leader 

o Transmit the updated state to the client 

• Transmit the updated state of the avatar to the server 

Upon receiving an updated avatar state, the server responds accordingly: 

• If the client hosting the avatar is communicating directly with the group 

leader who transmitted the message 

o Record the state update and disseminate it to the other group 

leaders for use in subsequent collision detection 

• If the client hosting the avatar is not communicating directly with any 

group leader 

o Record the state update and disseminate response back to client 
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• Otherwise, do not record the state update, as the client hosting the avatar 

is engaged in high-fidelity communication with another group leader. 

This implies that the client's group will have access to more up-to-date 

state information and, as such, will provide more accurate and consistent 

collision results. 

The server, clients and collision detection nodes employ message buffering 

techniques, where non-admin messages are transmitted at regular frequencies. 

To clarify, rather than transmitting a message whenever a collision event is 

detected, the collision detection node stores a list of objects which have been 

involved in collisions since the last message was sent. After a given time has 

passed since the transmission of the last message, the collision detection node 

will transmit the states of any objects involved in collisions. This mechanism 

better utilises the available bandwidth by avoiding sending bandwidth-expensive 

short messages. In addition, it reduces the computational overhead associated 

with message transmission. Similar techniques are employed in the server and 

group leader processes. 

4.3.2.6 Object Replication and Transfers 

Each collision detection node is responsible for object replication and object 

transfers within its consistency group. Object replication occurs when two or 

more collision detection nodes are responsible for collision detection on the 

same deterministic dynamic object. Object transfers occur when a deterministic 

dynamic object is passes from a sub-region control1ed by a given col1ision 

detection node to a sub-region controlled by another collision detection node. 

Object replication and transfers are performed using similar techniques. Both 

involve the direct communication between collision detection nodes, whereby a 

message is transmitted from one node to another informing the recipient of the 

current state of an object as perceived by the message originator. These 
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messages are transmitted whenever an object is passes through a node in a 

collision detection node's distribution tree which contains a non-null 

DistributedServer reference. If the object in question also occupies one or more 

sub-regions which the local collision detection node is responsible for, the local 

node retains a reference to the object. If the object no longer occupies any sub­

regions which the local node is responsible for, the local node relinquishes 

responsibility for the object, which is transferred to the recipients of the 

message. 

This mechanism requires that all members of a consistency group have 

sufficient knowledge of their group members to be able to transmit messages to 

one-another. Given that collision detection is performed at a relatively high 

frequency, as an object travels from one node's sub-region to another's, the 

object will most likely be replicated for a number of collision detection 

iterations before it is transferred completely. If the frequency of collision 

detection could be guaranteed to be sufficiently quick that an object could not 

pass completely through a sub-region, it would be possible to reduce the amount 

of information about its group a collision detection node is required to know. In 

this situation, a collision detection node must only know about the nodes 

responsible for sub-regions neighbouring the regions it is responsible for 

collision detection upon. However, the frequency of collision detection is largely 

application dependent and, therefore, such conditions cannot be assumed to 

hold. 

4.3.2.7 Consistency Group Performance Monitoring 

In order to adapt consistency group membership during run-time to reflect 

system bottlenecks and network behaviour, it is necessary for the collision 

detection nodes and server to continually gather performance metrics. Each 

collision detection node records average message round-trip delays between 

itself and the other collision detection nodes participating in the DYE. This 
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information is used to determine whether a collision detection node is capable of 

communicating another node sufficiently quickly to be part of the same 

consistency group. This information is used to create a list of candidate group 

members when requested to do so by the server; this occurs whenever a node 

joins the DVE or a membership vote is initiated. 

Each collision detection node transmits a ping message at a fixed frequency and 

measures the time taken to receive a response from each node. The average time 

is constructed over the most recent n messages, where n is an application­

dependent variable. The average message transmission delay is analysed as 

follows: 

• If the pair of nodes currently share a consistency group 

o If average message delay > rejection threshold or instantaneous 

message delay> rejection threshold + tolerated deviation 

• Instantiate rejection vote for object 

• If the pair of nodes do not share a consistency group 

o If average message delay < inclusion threshold 

• Instantiate inclusion vote for object 

Once a vote has been instantiated, the collision detection nodes must use their 

most recent message transmission delays to determine whether a node should be 

included or rejected from a consistency group. 

4.3.2.8 Group Leader 

The group leader is an additional processing thread which is initialised on a 

collision detection node when it is promoted to group leader by the server. The 

choice of group leader is arbitrary; the server in described in this chapter selects 

the node in the consistency group with the smallest id, i.e. the consistency group 

member who joined the DVE earliest. 
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The group leader thread receives messages from: 

• Clients providing avatar state updates 

• Collision detection nodes providing collision responses 

• The server providing avatar updates 

The group leader is responsible for managing avatars within its consistency 

group and for collecting the results of collision detection and disseminating this 

to the server and clients directly connected to it. In order to achieve this, the 

group leader process is continually listening for messages from its group 

members. This can help to increase the scalability of the server at the cost of the 

performance of the collision detection nodes which are promoted to group 

leader. The benefit of group leaders is that the group members should exhibit 

low-latency network connections between themselves and their group leader. 

This will ensure that update messages within a consistency group are delivered 

to the appropriate clients and collision detection nodes quickly enough to 

provide high-levels of interactivity and consistency to the group members. The 

group leader strategy, however, can introduce additional delays in the receipt of 

messages originating from outside of the consistency group. However, this 

additional delay is minor and it is possible that messages may in fact be 

delivered more quickly as a result of the server's reduced message transmission 

requirements. 

4.3.2.9 Collision Detection Node Joining the DVE 

It is necessary to describe the steps required for a new collision detection node 

to join a DYE. Initially, the new collision detection node transmits a connection 

request to the main server of its desired DYE. The server responds by allocating 

the collision detection node a unique identifier. It then informs the existing 

collision detection nodes in the DYE of the presence of the new collision 

151 



detection node. During this time, the new collision detection node opens a 

ServerComrnunication object which listens for incoming connection attempts 

from the existing collision detection nodes. 

Each existing collision detection node transmits initial handshake messages to 

the new node and, from these and an initial ping request, predicts whether or not 

the new node could be part of its consistency group. Upon receiving these initial 

potential group allocations, the main server reallocates group membership. 

While this reallocation is being performed, any consistency groups whose 

membership is being altered are instructed to perform collision detection locally. 

While they perform local collision detection, additional threads perform the 

required handshaking to initiate communication between themselves, their group 

members and the group leader. Once this handshaking is completed, the group 

leader instructs the collision detection nodes to begin working together on 

collision detection. 

4.3.2.10 Collision Detection Node Threads 

The collision detection nodes, much like the server, are constructed from a set of 

components which are responsible for handling different classes of message 

exchange and responding to these messages appropriately. These components 

occupy different threads of execution and utilise shared memory to 

communicate between one-another and access shared objects. As mentioned 

previously, the collision detection nodes contain a distribution tree, where the 

root of the tree is a DistributedNode object and the remaining nodes in the 

distribution tree are DistributionNode objects. The DistributionNode objects are 

responsible for performing collision detection on the objects inhabiting the 

DVE. The DistributedNode inherits from the DistributionNode and provides the 

functionality to perform collision detection in a distributed manner. Fig 4.6 

shows the data members and threads present in the DistributedNode object. 
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Figure 4.6 DistributedNode Architecture 

The EnvironmentProperties object contains a list of all the collision detection 

nodes participating in the DYE, each referenced by a DistributedServer. It also 

contains references to all objects in the DYE, through the use of an 

ObjectFactory. The DistributedServer object contains the corresponding 

collision detection node's communication information. The DistributedNode 

contains the list of dynamic deterministic and avatar objects it is responsible for 

in the DYE. The list of immoveable objects is maintained in the 

EnvironmentProperties object and is pre-inserted into the distribution tree. The 

server communication contains the communication information for the DYE 

server; in practice, this is separated into admin and object communication 

information, which may be separated by, for example, the port number 

communication occurs upon. 
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4.3.2.10.1 DistributedNode Update Thread 

The DistributedNode Update Thread listens for admin messages from the server. 

This includes the following messages: 

• Update EnvironmentProperties 

• Update EnvironmentProperties Light Weight 

• New Client 

• New Collision Detection Node 

• Group Allocation 

• DYE Exit 

The Update EnvironmentProperties messages are a catch-all message type 

whereby the most recent EnvironmentProperties are transmitted from the server 

to the collision detection node. This can be performed using both light weight 

and standard mechanisms; the light weight mechanism does not encode data 

which should be constant, such as world bounds, world identifiers, immoveable 

and dynamic deterministic objects. 

A New Client message informs the collision detection node of the inclusion of a 

new client and, possibly, new avatar objects into the DVE. 

A New Collision Detection Node message informs the collision detection node 

of a new collision detection node joining the DVE. The receipt of this message 

implies that the new collision detection node is ready and waiting for connection 

attempts and ping requests; the steps required for a collision detection node to 

join the DYE were outlined previously. Following connecting to the new node, 

the nodes transmit potential consistency group allocations, which the server uses 

to reallocate the consistency groups within the DYE. 

A Group Allocation message instructs the collision detection node to join the 

consistency group described in the message; this may cause the collision 
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detection node to become a group leader, cease being a group leader or connect 

to a new group leader. If the node is joining a group with the same group leader 

as the group it previously occupied, the node need do nothing. However, if it is 

joining a group run by a different group leader, the collision detection node must 

establish a Communication stream between itself and the new group leader. 

A DVE Exit message instructs the node to exit from the DVE. This may be as a 

result of the node requesting to quit the DVE, in which case this message 

provides the node with permission to quite. Alternatively, it may be as a result of 

a serverlDVE update or an irrecoverable error in the DYE which the server must 

re-start the DVE to resolve. The receipt of this message causes the collision 

detection node to close all Communication streams and exit the DVE. 

4.3.2.10.2 Object Receiver 

The Object Receiver is responsible for receiving avatar object state updates from 

the server. These state updates are only transmitted to the group leader. 

However, each node can potentially become the group leader, so each node 

maintains an instance of an ObjectReceiver at all times. Avatar state updates 

need only be received between collision detection iterations. As such, rather 

than executing in a separate thread, this is performed in the main thread, where 

the Communication stream is polled to determine if avatar update messages are 

waiting to be received. Avatar update messages are transmitted through a 

specific Object communication stream, which means that the presence of a 

message can be determined by testing to see if any data is currently unread in 

the stream. If an object update is received, the object update is passed to the 

ObjectFactory to find an existing reference to the object and update its current 

state; if no reference is found which matches the object, it is assumed that the 

object update has become corrupted during transmission and is discarded as the 

node should have received an admin message informing it of the presence of a 

new object prior to receiving the object's state update messages. 
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4.3.2.10.3 Peer Communication Object 

The Peer Communication Object transmits object replication/transfer messages 

at regular intervals to the relevant collision detection nodes. The regularity of 

these messages are application-configurable; transmission frequencies can be 

defined in terms of time duration or number of collision detection iterations. The 

messages transmitted by the Peer Communication Objects are consumed by the 

corresponding collision detection node's DistributedNode Object Broker. 

4.3.2.10.4 DistributedNode Object Broker 

The DistributedNode Object Broker is responsible for receiving object state 

updates from the other collision detection nodes within a node's consistency 

group. This form of state update can be received between collision detection 

iterations. As such, the process is performed in the main thread of execution. 

The Communication streams which must be read from exclusively transmit 

object replications/transfers between collision detection nodes. As such, the 

presence of an object transfer/replication message can be determined by 

checking if there is unread data in the relevant Communication streams. If an 

object replication/transfer message is received, the data is passed to the 

ObjectFactory, which searches for the object and updates its current state; if the 

object is not recognised then the message is consumed and thrown away. If a 

valid object state update is received, the object which this message refers to is 

added to the list of objects which the collision detection node is responsible for. 

4.3.2.10.5 Group Member Listen Thread 

The Group Member Listen Thread receives messages from the group leader. 

These messages include: 

• Node Update Messages 
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• Object Dispatch Messages 

The Node Update Message is an aggregated state update message describing the 

objects which this node must know about but is not responsible for collision 

detection upon. This form of message is transmitted by the group leader when a 

new node joins the group leader's consistency group. This ensures that the new 

node's view of dynamic deterministic objects is consistent with the groups view 

of the objects; each group's view of the objects may differ. 

The Object Dispatch Message contains the current state of the avatar objects the 

collision detection node is responsible for. Depending on the options prescribed 

for the collision detection node, this message can be used to completely 

synchronise the state of the DYE between all collision detection nodes in the 

consistency group. This can be achieved if each node waits for an object 

dispatch message before executing the next collision detection iteration. 

However, to increase the responsiveness of the DYE, an extrapolation 

techniques, such as dead reckoning, can be utilised to predict the position of 

avatar objects between object dispatch messages allowing the collision detection 

nodes to perform collision detection upon the objects between these messages. 

If a collision detection node is promoted to group leader, its group member 

listen thread is disabled as it is not necessary to transmit/receive messages 

to/from itself. 

4.3.2.10.6 Communication Ping Thread 

The Communication Ping Thread is a low-priority thread which monitors ping 

performance between itself and other nodes in the DYE. Ping messages are 

transmitted at low-frequencies to all other collision detection nodes in the DYE. 

The frequency of ping message transmission is proportional to the average 

communication delay perceived between the collision detection nodes. To 
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clarify, collision detection nodes in the same consistency group will transmit 

ping messages and evaluate group membership with one-another more 

frequently than they will with collision detection nodes exhibiting large message 

transmission delays. Ping messages are sent at frequencies within a fixed 

interval, where: 

• Pings to collision detection nodes whose transmission delays are less 

than some minimum threshold value are transmitted at the minimum 

interval 

• Pings to collision detection nodes whose transmission delays are larger 

than some maximum threshold value are transmitted at the maximum 

interval 

• All nodes whose transmission delays are between the minimum and 

maximum threshold values (threshold(min) and threshold(max) 

respectively) are transmitted at a proportional frequency. Given 

minimum interval Ivl(min) and maximum interval Ivl(max), the 

transmission frequency can be calculated using the following formula: 

. t-threshold(min) 
transmission(t) = Ivl(min) + (lvl(max) - Ivl(mm»---------''----'---­

threshold(max)- threshold(min) 

For example, given t = 25, threshold(min) = 10, threshold(max) = 1000, 

Ivl(min) = 5, Ivl(max) = 500, transmission(t) = 12.5 seconds 

This mechanism helps to reduce the bandwidth consumption and computational 

expense of the ping messages. It is intended to react to changes in network 

behaviour as a result of network congestion, while specifically targeting the 

majority of network analysis between collision detection nodes exhibiting low­

latency network transmission. 
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4.3.2.10.7 Group Leader Thread 

The Group Leader Thread is responsible for receiving the results of collision 

detection from its group members. When a node is promoted to group leader, it 

opens up a Communication stream through which its group members can 

transmit messages directly to it. These messages include: 

• Avatar Update Messages 

• Collision Detection Results 

Upon receiving an avatar update message, the group leader forwards the state of 

this object to the main server, which will in tum forward this message to the 

other consistency groups in the DYE. The group leader also uses this message to 

update its view of the object's state and informs the relevant nodes of the 

avatar's new state through an object dispatch message. However, to better utilise 

bandwidth, the group leader can choose to buffer incoming avatar update 

messages and dispatch update messages when the object's state deviates 

significantly from the previous state or the extrapolated state if dead reckoning 

is employed on the collision detection nodes; the use of dead reckoning can be 

enabled in the EnvironmentProperties object. 

Upon receiving a Collision Detection results message, the group leader forwards 

the results to the main server. These results are also forwarded to the relevant 

clients. The group leader updates its view of the objects in the DVE and includes 

the updated avatar object states in any subsequent object dispatch messages. The 

group leader does not disseminate the updated states of the dynamic 

deterministic objects to the collision detection nodes as the collision detection 

nodes are responsible for maintaining each-other's consistent view of these 

objects through the use of object replication and object transfer messages. 
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4.3.3 Reliability and Fault Tolerance 

Reliability and fault tolerance are extremely important issues in any distributed 

system. They are an open and popular topic of research which have received a 

great deal of interest. Reliability and fault tolerance are outside of the scope of 

this thesis and, therefore, will not be discussed in great detail. While a great deal 

of effort was expended to produce a reliable distributed collision detection 

approach, the reliability is based on the assumption that the main server is 

reliable and that admin messages transmitted between collision detection nodes, 

clients and servers are reliable. To clarify, a reliable server is a server which will 

not break; should the main server break, the DYE will come to an end. 

Mechanisms may be in place to roll back the state of the DYE to some recorded 

point prior to the server's failure, but this, again, is beyond the scope of this 

thesis. In addition, a reliable message is a message which will be delivered 

successfully to its intended recipient eventually. Both of these assumptions can 

not be guaranteed in real-world deployment due to the presence of mechanical 

failures and the unreliable nature of the Internet. However, best-effort reliability 

can be provided which offers high-probabilities of reliable service but cannot 

guarantee the absence of failures. 

There are a number of problems which can emerge during the runtime of the 

DYE. These problems can, if they are not detected and responded to, cause 

undesirable loss of responsiveness or failure to detect and respond to collisions 

appropriately. The main issue of concern is if a collision detection node fails or 

becomes a bottleneck. In the case of collision detection node failure, its 

members in its consistency group will detect an increase in ping transmission 

delays. During this time, a number of seconds may have elapsed in which this 

collision detection node's sub-region did not receive collision detection/response 

in the consistency group. This will cause a loss of consistency. However, once 

the increased ping latency has been detected, the group will initiate a vote and 
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the collision detection node will be evicted from the group and inserted into a 

singleton consistency group. This will ensure that the node does not compromise 

other nodes' responsiveness. If the node which failed was the group leader. a 

new node will need to be promoted to group leader status. The failure of a group 

leader may result in significant inconsistency and loss of responsiveness in the 

consistency group. However, this will be overcome with the appointment of a 

new group leader and the re-dissemination of current world state by the server to 

the new group leader. 

While the collision detection node is in a singleton consistency group, it is 

responsible for collision detection by itself. As such, it will not detrimentally 

affect the DYE if it fails to perform collision detection. The main server is 

responsible for detecting failed nodes; this mayor may not be possible 

depending on the network protocols used but, for example, it is possible to 

detect a potentially failed node using TCPIIP by the connection timing out. If the 

server detects a timed out failed node, it will remove the node and any objects it 

hosts from the DYE. 

All admin messages are assumed to be reliable. However, all non-admin 

messages can be transmitted either best-effort reliably or unreliably. Failure to 

deliver any non-admin messages will result in inconsistency until subsequent 

messages are received. However, it will not cause failure. However, the level of 

consistency within a consistency group will still be no worse than if collision 

detection and response was executed individually on each node in the 

consistency group. 

4.4 Summary 

This Chapter introduced the implementation issues which must be overcome in 

order to implement a consistent, scalable collision detection approach for DYEs. 
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This discussion included the choice of programming languages and platform­

specific analysis of a number of current and future DYE platforms. These 

discussions included aspects such as: 

• Programming paradigms 

• Performance 

• Memory requirements 

• Platform-specific libraries and support 

• Presence and granularity of pre-emptive multitasking 

• Platform architecture and resources 

• Platform-specific rules and optimisations 

Following this, the architecture and requirements of the distributed collision 

detection approach described in this thesis were introduced. The problem of 

distributed collision detection was subdivided into the server, clients and 

collision detection nodes. Following this, the server, clients and collision 

detection nodes were further subdivided into their constituent components, 

which were analysed in terms of their purpose and responsibilities. 

Following this, the algorithms and data structures required to implement the 

collision detection approach were discussed and potential optimisations were 

suggested, although the details of how these optimisations are implemented 

were omitted to aid clarity. 

The problems of reliability and fault tolerance were discussed briefly. The 

assumptions which underpin the collision detection approach were outlined and 

some potential error conditions were described including the mechanisms by 

which the collision detection approach dealt with them. 
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Chapter 5 

Experimentation 

5.1 Introduction 

This chapter describes provides experimental results to measure the performance 

and scalability of the distributed collision detection approach described in this 

thesis. This chapter describes the environments in which the experiments are 

conducted. This includes: 

• Constant DVE properties 

• Variable properties 

The effects of these properties on both performance and scalability are 

discussed. The experimental platform is described. A brief discussion on the 

expected behaviour and scalability of the experimental DYE is discussed prior 

to the presentation of collected results. 
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5.2 Experimental Platform 

Experimental results are collected from a non-interactive DYE. This allows the 

behaviour of the objects occupying the DYE to be replicated in subsequent 

experiments to obtain results from different configurations operating on a DYE 

exhibiting the same events. While an interactive DYE has been developed, 

results are conducted on a simulated DYE to obtain performance figures from a 

DVE inhabited by large numbers of objects (in the order of thousands); an 

interactive DYE with an equivalent number of participants is not currently 

possible for logistical reasons. 

The DYE used in the experiments described in this chapter is simplified, 

whereby objects in the DYE can interact with one-another but there is no 

environment model which constrains their movement. This allows objects to 

move freely throughout the DYE without the need for path-finding AI to 

navigate through complex environment models. The world is enclosed within a 

cubic AABB which represents the maximum and minimum coordinates of the 

world. This AABB is scaled proportionally to the number and size of objects in 

the DYE, such that a world size can be selected to obtain a given probability of 

collisions occurring. 

Collision detection nodes are hosted on a cluster of 2.8GHz P4 PCs with 

1024Mb RAM running Red Hat Linux 7.0. The server is hosted on a 2.40Hz 

Intel Xeon server with 4096Mb RAM. However, the machines used in these 

experiments are a shared resource and, as such, the performance results gathered 

in these experiments may be affected by processes competing for processing 

and/or memory resources. In order to minimise the impact of the effect of 

competing processes, the averages of three independent sets of results will be 

presented in this thesis. 
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5.2.1 Probability of Collisions Occurring 

The probability of a collision occurring between two objects in the DYE is the 

likelihood of the space enclosed by the objects overlapping. Given two objects, 

OJ and 02, with volumes vol(oJ) and vol(02) respectively, and a total world 

volume vol(world). The probability of these two objects intersecting is 

proportional to the total volume of the objects with respect to the volume of the 

world. For example, if vol(world) < (vol(oJ) + vol(02», the probability objects 01 

and 02 intersecting is 1 because the volume of the world is sufficiently small that 

there is no position/orientation of the objects which can result in them being 

disjoint. 

The lattice model can be used to formalise the probability of collisions occurring 

within a virtual world. Recall that the lattice model was introduced in Chapter 3, 

Section 3.2.1, to formalise bounding volumes to prove the assertion that if a pair 

of bounding volumes does not intersect, the objects which the bounding volumes 

enclosed also do not intersect. Given a virtual world represented as a lattice 

composed of n points and two objects, OJ and 02, each of which occupy P points 

in space designated by the sets pJ and P2. The probability of non-intersection is 

the probability of their being no common point in pJ and P2, i.e. PI n P2 = O. 

Given that object OJ is already placed in the YE, the probability of object 02 not 

intersecting OJ is the probability of P2 not containing any element of pJ. The total 

number of combinations of p points can be expressed mathematically as 

n! Given that P points are already occupied, there remain 
p!(n- p)! 

(n - p)! combinations of points which 02 can occupy which provide 
p!(n-2p)! 

disjointedness. In practice, this is not entirely true as the points which an object 

occupies will, in most cases, be localised within a given area rather than being 
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arbitrarily placed around the virtual world. However, this provides a general 

metric as to the probability of objects intersecting, which can be expressed as 

below: 

n! (n- p)! 

p!(n- p)! p!(n-2p)! = 1- (n- p)!2 

n! n!(n-2p)! 
p!(n- p)! 

In order to obtain a valid probability, it is necessary to clip the result of this 

formula within the range [0, 1]. For example, given n = 10 and p = 2, the 

probability of two objects colliding within the world is 0.378. 

With the probability of a pair of objects intersecting, it is possible to determine 

the expected number of collisions in a virtual world. Recall from Chapter 2 that 

the maximum number of collisions that can occur in a world composed of 0 

b· . 0(0-1) 11" Th f . h h b b"l" f II"" o ~ects IS co ISlOns. ere ore, gIven t at t e pro a 1 Ity 0 a co ISIon 
2 

occurring, P, has been determined based on the volume of the world compared 

to the volume of the objects which occupy it, the expected number of collisions 

in the virtual world is P 0(0 -1) . It can be seen from the quadratic nature of the 
2 

function that, given a constant P, the expected number of collisions would 

exhibit O(n2) growth, i.e. If the number of objects was doubled and: 

• the world size remained constant, the expected number of collisions 

would quadruple 

• the world size was doubled, the expected number of collisions would 

double 

• the world size was quadrupled, the expected number of collisions would 

remain constant 

The experiments described in this chapter scale the world size such that as the 

number of objects is doubled, the size of the world is doubled, which leads to a 
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linear increase in the average number of collisions occurring in the virtual world 

as the number of objects is increased. 

5.2.2 Experimental Virtual Environment 

The DYE used in the experiments described in this chapter is initialised with a 

fixed number of deterministic dynamic objects. As clients join the DYE, they 

introduce their avatar objects into the DYE and propagate frequent state update 

messages for their avatar. In addition to introducing an avatar into the DVE, 

each client machine assumes the duties of a collision detection node for 

distributed collision detection. 

Throughout the experiments, the following variables will be modified and 

performance figures will be obtained: 

• The initial number of objects the DYE is created with 

• The volume of the virtual world 

• The number of clients and collision detection nodes participating in the 

DYE 

Altering the initial number of objects in the DVE allows the scalability and 

responsiveness of the distributed collision detection algorithm to be analysed. 

This includes the determination of the general performance of the algorithm and 

the scale-up factor achieved through introducing additional processing 

resources. 

Modifying the volume of the virtual world with respect to the number of objects 

allows the expected average number of collisions to be adjusted. This is 

expressed in the experimental results in terms of the percentage of the total 

volume of the virtual world which contains objects; this can be scaled by the 

maximum number of collisions to determine the expected number of collisions. 
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This can be detennined by summing the volume of the objects in the virtual 

world and dividing this volume by the total volume of the virtual world. For 

example, given that the virtual world is defined as being a cube of dimension 

10m and the world contains 100 objects, each cubes of length 1m: 

• The volume of a single object is 1m3 

• The volume of the virtual world is 1000m3 

• The total proportional coverage of the virtual world is lOO(lm
3

) =0.1 = 
IOOOm3 

10% 

Rather than detennining the proportional coverage of the virtual world based on 

the current number of objects and size of the world, a desired proportional 

coverage is provided coupled with the number of objects inhabiting the virtual 

world. From this, the world size is generated using the following formula: 

IT 1 numObjects*objectVolume 
1'0 ume = -----"---"-----

proportionalCoverage 

The above formula takes the number of objects, the volume of the objects and 

the proportional coverage desired and returns the total volume of the virtual 

world required. As stated previously, the experiments described in this chapter 

enclose the virtual world inside an axially-aligned cube. As such, the dimensions 

of each coordinate axis can be determined by taking the cube root of the volume: 

Side = VVolume. 

5.3 Expected Results 

The goal of this thesis is to create a collision detection technique suitable for 

DYEs which offers high-levels of scalability, responsiveness and consistency. 

The responsiveness and scalability of the approach can be quantified by the time 
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taken for each collision detection iteration to be completed and the proportional 

performance increase respectively. Consistency, however, is difficult to 

quantify; it is more a qualitative property of a DYE which is perceived by a user. 

To clarify: 

• Recording the average duration of collision detection in the DYE across all 

participating collision detection nodes demonstrates the responsiveness of 

the DYE. By modifying the number of objects participating in the DVE. the 

general performance trend of the collision detection approach can be 

observed. 

• Modifying the number of collision detection nodes participating in the DVE 

demonstrates the scalability of the distributed collision detection algorithm 

as the number of processing resources increases. This demonstrates the 

scale-up factor associated with distributing the processing and networking 

requirements of distributed collision detection. 

Consistency can be loosely quantified by the number of consistency groups with 

respect to the number of members in each group. The states of objects within a 

consistency group are consistent with all the group's members. This can be 

reasoned by the fact that collisions are detected and responded to at most once 

within a consistency group. However, consistency cannot be guaranteed 

between groups due to the potentially-large message transmission delays present 

between consistency group members. 

As previously stated, consistency is more of a qualitative property of DYEs than 

a quantitative property. While it is possible to quantify the deviation in state of 

objects inhabiting the DYE between all machines participating in the DVE at 

any given time in the simulation, due to the impossibility of synchronising states 

in an asynchronous network in real-time, this is not possible during the run-time 

of the DYE and would need to be performed offline. This could be done by 

either by sampling the objects' states at frequent inte,,·als. recording these 
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values and comparing the recorded values offline or by simulating a DYE and 

its related message dissemination on a single machine and taking metrics of 

simulated inconsistencies during run-time. The sampling option would require 

large amounts of storage and extremely expensive analysis; it should be noted 

that in order to chart inconsistencies, it is necessary to take readings over long 

time periods to determine the "snowballing" effect of small inconsistencies over 

the long-term, which may require too large amount of storage space to be 

feasible. The simulation option, conversely, may offer a mechanism to quantify 

consistency but it is unlikely that a simulation would accurately model the true 

behaviour of the network, server, collision detection nodes and group leaders 

and would, therefore, not offer a real-world representation of the consistency in 

DVEs. 

5.3.1 Expected Responsiveness 

It is expected that the performance of the collision detection approach should 

behave roughly O(nlogn) due to the adoption of spatial partitioning as the broad­

phase collision detection approach. However, the decision to increase the size of 

the virtual world linearly with respect to the number of objects inhabiting the 

DVE may result in near-linear collision detection performance. 

5.3.2 Expected Scalability 

It is expected that the performance of the collision detection approach will 

improve near-linearly with respect to the number of members in the consistency 

group. This performance increase should not be perceived in DYEs with 

relatively small numbers of objects, in which the message transmission overhead 

will skew the results, overshadowing any performance improvements in 

collision detection performance. However, as the number of objects increases 
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beyond a level in which the major performance overhead in the DYE become~ 

performing collision detection rather than message dissemination, the scalability 

should begin to tend towards linear performance improvements. It is expected. 

however, that there will be a platform-specific limit on consistency group size at 

which point the performance may actually degrade if additional members join a 

consistency group. The value of this limit may vary depending on the number of 

objects inhabiting the DYE. This limit will represent the point at which the 

improvement in collision detection performance is overshadowed by the 

increased message transmission overheads. This limit will be platform-specific 

due to the platform-specific overhead associated with network communication, 

which may be influenced by the network hardware performance and the 

OS/application-specific implementation of network protocols. 

5.3.3 Expected Consistency 

It is expected that the overall consistency In the DYE will increase as the 

average consistency group size increases. This can be reasoned due to the fact 

that collision events are detected and responded to at most once within each 

consistency group and, as such, a collision is responded to in only one way in 

each consistency group. Given a DYE in which all participants are members of a 

single consistency group, the state of all objects in the DYE is expected to be 

consistent. However, results demonstrating improved consistency within DVEs 

utilising distributed collision detection are not presented in this thesis due to the 

reasons previously outlined. 

5.4 Performance Experimentation 

In order to determine the suitability of the distributed collision detection 

approach, it is necessary to determine the algorithm's performance when 
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operating in its worst-case; this occurs when collision detection can only be 

performed on a single collision detection node. In these experiments, the initial 

number of dynamic deterministic objects is increased from 500 to 5000 in 

increments of 500. Results are collected demonstrating the total time taken for a 

simulation step in each DVE being performed by a consistency group with only 

one member. The results from this experiment will demonstrate the overall 

performance trend of the collision detection algorithm used in distributed 

collision detection with respect to the number of objects inhabiting the DYE. 

Num Objects 
500 
1000 
1500 
2000 
2500 
3000 
3500 
4000 
4500 
5000 

Time 
180 
360 
447 
604 
659 
825 
984 
1128 
1187 
1228 

Num 
Collisions 

9 
16 
23 
30 
45 
56 
62 
72 
78 
86 

Table 5.1 Average Simulation Time 
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Figure 5.1 Single Node Colli sion Detection Perfonnance as umber of Object 

is Increased 

The results in Fig 5.1 demonstrate the near- linear perfonnance characteristics of 

the spatial partitioning approach adopted in the distributed collision detection 

approach presented in this thesis. In additi on, the average number of collisions 

detected in the DYE as the number of objects is increased corresponds with a 

previously di scussed topic: probability of colli sion . Previously it was asserted 

that: 

• If the sIze of the virtual world remaInS constant and the number of 

objects is doubled, the number of collisions will quadruple 

• If the size of the world is doubled and the number of objects i doubled, 

the number of coll isions wi ll double 
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• If the size of the world is quadrupled and the number of objects IS 

doubled, the number of collisions will remain constant. 

It can be seen from the results that the previous assertions hold; the size of the 

world is scaled proportionally to the number of objects and, as a result, the 

number of collisions detected increases linearly with respect to the number of 

objects. 

5.5 Scalability Experimentation 

The following section describes scalability experiments conducted using a DYE 

utilising distributed collision detection. In order to demonstrate scalability, a 

DYE is started with a fixed number of dynamic deterministic objects ranging 

from 500 to 4000 in increments of 500. The number of group members within a 

consistency group is increased from 1 to 8 and the resulting time for each 

simulation loop is recorded. As each member collision detection node joins the 

DYE, its corresponding client introduces an additional avatar into the DYE 

which increases the number of objects inhabiting the DYE by one. For example, 

given 500 initial objects, with one collision detection node, there would be 501 

objects in the DYE; with two collision detection nodes, there would be 502 

objects, etc. 

The results show two series of data: 

• The average simulation time for all group members 

• The average simulation time for the group leader 

The times recorded show the total time required for a single simulation loop, 

including any message dissemination and message receipt. The average 

simulation time for all group members demonstrates the average scalability of 

the distributed collision detection algorithm; this average is taken over all 

collision detection nodes in the consistency group, including the node which is 
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appointed group leader. The average simulation time for the group leader 

demonstrates the performance overhead which is required by the group leader in 

comparison to the average performance required by all the group member . 

Results 

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes 
500 180 78 50 36 37 32 26 18 
1000 360 123 98 83 71 67 50 49 
1500 447 170 124 79 67 65 60 62 
2000 604 264 152 149 133 112 81 77 
2500 659 385 189 140 132 104 83 84 
3000 825 520 230 185 155 137 104 92 
3500 984 468 238 223 197 193 175 105 
4000 11 28 582 392 335 301 264 157 135 

Table 5.2 Simulation Time on A verage Coll ision Detection ode 

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes 

500 2.30769 3.6 5 4.864865 5.625 6.92308 10 

1000 2.92683 3.673469 4.33735 5.070423 5.37313 7.2 7.34694 

1500 2.62941 3.604839 5.65823 6.671642 6.87692 7.45 7.20968 

2000 2.28788 3.973684 4.05369 4.541353 5.39286 7.45679 7.84416 

2500 1.71169 3.486772 4.70714 4.992424 6.33654 7.93976 7.84524 

3000 1.58654 3.586957 4.45946 5.322581 6.0219 7.93269 8.96739 

3500 2.10256 4.134454 4.41256 4.994924 5.09845 5.62286 9.37143 

4000 1.93814 2.877551 3.36716 3.747508 4.27273 7.18471 8.35556 

Average 1 2.18634 3.617216 4.49945 5.025715 5.62469 7.21374 8 36755 

Table 5.3 Scale-up Factor 

From the resul ts shown in Fig 5.2, it can be seen that the as the number of 

collision detection nodes increases, the total time taken for a simulation loop 

decreases . This overall time taken for the simulation step is proportional to : 

n.umber _ of _ objects. T his can be seen to be the case as the simulation time 
number _ of _ nodes 

taken for a D YE with 500 objects on one collision detection node is roughl the 

same as the time taken to simulate a DYE with 1000 objects on t 0 colli ion 

detection nodes . This trend follows throughout all the obtained re ult , with 
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small degrees of variance due to processes competing for resources and 

variations in network load. This implies that the performance improvements 

offered by this approach are roughly linear. In order to analyse the performance 

improvements, the performance results recorded for a DYE with a given number 

of objects running on a consistency group with one collision detection node are 

used as a base for comparison. The performance improvement, or scale-up 

factor, offered by a consistency group with a given number of collision detection 

nodes, n, can be determined by: performance(1) . 
-=---"----...;...;...., where the functIon 
performance(n) 

performance(k) returns the performance figure for a consistency group of size k. 

Table 5.3 shows the scale-up factor recorded. From these results, it can be seen 

that the performance is roughly linear as the average performance improvements 

for n nodes is roughly n. There are some minor deviations in which the 

performance is larger or smaller than n, most noticeably for 500 objects with 8 

collision detection nodes, in which case the performance recorded is 10 times 

better than the performance recorded with 1 collision detection node. These 

variations are most likely caused by improved data cache coherence. This is 

caused by each collision detection node being responsible for collision detection 

on smaller portions of the virtual world and, therefore, fewer objects. Therefore, 

it is more probable that the data corresponding to the portions of the virtual 

world and objects each collision detection node is responsible for can be stored 

in cache memory for fast access. This avoids the need to fetch the data from 

system memory prior to performing collision detection. Conversely, as the 

portion of the virtual world which a collision detection node is responsible for 

becomes larger, and therefore the number of objects increases, it is less likely 

that the data can be stored in cache memory and, therefore, the probability of 

cache misses and the need to copy data from system memory to cache memory 

increases. 
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Figure 5.2 Average Time Taken for Collision Detection Iteration as umber of 

Collision Detection Nodes is Increased 

In Fig 5.2, as the simulation step time becomes small as a result of increasing 

the number of collision detection nodes, the graph charting simulation time 

ceases to be able to effectively show the perfonnance improvements offered by 

the distributed colli sion detection approach . In order to ai d clarity, a graph 

showing the number of simulation steps which can be performed in a second is 

provided. This is a reciprocal measure of the simulation step time is used to 

offer a more effective mechanism of charting fine-grained performance 

v3.\iations . T his mechanism is commonly used in charti ng the performance of 

commercial computer games engines ' this measurement is often termed Frallles 

Per Second (FPS). 
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Num 
Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes 

500 180 82 92 91 82 83 86 53 
1000 360 169 170 98 79 82 75 61 
1500 447 208 188 87 84 97 100 68 
2000 604 313 247 164 168 165 175 81 
2500 659 410 385 187 189 168 163 87 
3000 825 539 366 202 181 155 162 101 
3500 984 471 475 257 264 258 262 143 
4000 1128 620 627 374 372 380 364 178 

Table 5.4 Simulation Time on Group Leader ode 
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Figure 5.3 Distributed Collision Detection Performance 

178 



Fig 5.3 shows the overall petformance of the collision detection nodes in DVEs 

ranging from 500 to 4000 objects. The results depicted in the graphs show the 

variations in petformance between the group leader collision detection node and 

the other group member collision detection nodes. It can be seen that the all 

nodes in the consistency group observe petformance improvements as the size 

of the consistency group increases. However, the group leader's petformance is, 

in general, worse than the remaining collision detection nodes in its consistency 

group. This is due to: 

• The additional processing overheads associated with being group leader 

• The mechanism by which group leaders are chosen and the sub-regions 

of the virtual world are assigned to collision detection nodes. 

While there are additional processing overheads associated with being group 

leader, the latter reason is the main cause of the shape of the group leader's 

petformance curve. Recall from Chapters 3 and 4 that the choice of group leader 

can be arbitrary and, in the case of the system described in this thesis, the 

collision detection node with the lowest id in each consistency group is selected 

to be group leader; this means that the earliest node to join the DYE in each 

consistency group is group leader. In addition, the algorithm which assigns sub­

regions to collision detection nodes assigns the regions in such a way that the 

collision detection node with the lowest id often has more work to petform than 

the other collision detection nodes. This is because the node with the lowest id is 

the last node to descend the spatial subdivision tree and receive a smaller sub­

region to work on. In this case, the group leader will only be working on a sub­

region of equal size to all of its group members when the number of nodes 

within a consistency group is an exact power of 2. In any other situation, the 

group leader will be responsible for collision detection in a sub-region up to 

twice as large as the sub-regions the other group members are responsible for 

respectively. As such, the petformance overhead associated with the additional 

network communication responsibilities of the group leader can only be clearly 

seen when the group size is a power of 2; when the group size is a power of 2, 
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the additional overhead of being a group leader can be estimated as the group 

leader simulation time subtracted from the a erage colli ion det tion 

simulation time. 

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes 
500 0 4 42 55 45 51 50 35 
1000 0 46 72 15 8 15 25 12 
1500 0 38 64 8 17 32 40 6 
2000 0 49 95 15 35 53 94 4 
2500 0 25 196 47 57 64 80 3 
3000 0 19 136 17 26 18 58 9 
3500 0 3 237 34 67 65 87 38 
4000 0 38 235 39 71 116 207 43 

Table 5.5 Group Leader O verhead 

Table 5.5 shows the perceived difference in simulation step time between the 

group leader and the average time recorded across all member of the 

consistency group. It can be seen that at all times , the gTOUp leader' 

performance is worse than the other group members . However, when the 

number of colli sion detection nodes is a power of 8, the difference between the 

performance of the group leader and the other group members is, in general, at 

its lowest. 

Num Objects 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes 
500 0 4.87805 45.65217 60.4396 54.87805 61 .4458 69.7674 66.0377 

1000 0 27.2189 42.35294 15.3061 10.12658 18.2927 33.3333 19.6721 

1500 0 18.2692 34.04255 9.1954 20.2381 32.9897 40 8.82353 

2000 0 15.655 38.46154 9.14634 20.83333 32.1212 53.7143 4.93827 

2500 0 6.09756 50.90909 25.1337 30.15873 38.0952 49.0798 3.44828 

3000 0 3.52505 37.15847 8.41584 14.36464 11.6129 35.8025 8.91089 

3500 0 0.63694 49.89474 13.2296 25.37879 25.1938 33.2061 26.5734 

4000 o 6.12903 37.48006 10.4278 19.08602 30.5263 56.8681 24.1573 

Average 0 10.3012 41.99395 18.9118 24.38303 31.2847 46.4714 20.3202 

Table 5.6 Average Percentage Increase in Processing 0 erhead for Group 

Leader 
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Figure 5.4 Group Leader vs Group Member 

Table 5.6 and Figure 5.4 show the percentage difference between the proce ing 

overhead of the group leader and the other group members. Gi ven the simul ation 

step time for a group leader, GL, and the average time for the group member , 

GM, the data in Table 5.6 IS generated by the following form ul a: 

lOO x GL - GM . From this data, it can be seen that the average percentage 
GL 

increase in processing overhead for the group leader varies depending on the 

number of collision detection nodes in the consistency group. The perceived 

results were as follows: 

• 1 collision detection node - No difference in performance 

• 2 collision detection nodes - Average: 10% wi thin the range [0 .6%, 

27.2%] 

• 4 collision detection nodes - Average: 19% within the range [8.4%, 

60.4%] 

• 8 colli sion detection nodes - Average: 20% within the range [3.4~, 

66%] 
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It should be noted that the largest percentage difference in performance between 

group leader and group members occurred in the DYE with 500 objects. This is 

possibly due to the computational overhead of handling message exchange 

outweighing the performance increase offered by further distributing the 

collision detection responsibilities. However, the average results recorded 

indicate that the additional processing overhead associated with being group 

leader is relatively small for consistency groups of up to 8 members and that the 

performance and consistency improvements offered by the technique outweigh 

the additional processing overheads incurred by the group leader. In addition, 

the average results indicate that the approach is capable of maintaining 

consistency groups with more than 8 members without any significant 

deterioration in performance. This will be further explored in the next section. 

5.6 Maximum Consistency Group Size 

The following experiments are designed to determine if there is an optimal 

consistency group size for a given DYE and what factors contribute to this size. 

It is expected that there will be a threshold value for consistency group size 

beyond which the collision detection performance will degrade. This will occur 

when the performance increase offered by distributing the collision detection 

overhead is overshadowed by the increased message dissemination required to 

manage additional group members. It is expected that this threshold value will 

depend on the number of objects inhabiting the DYE. 

In these experiments, the number of objects inhabiting the DYE will be 

increased from 1000 to 3000 in increments of 1000. At each stage the number of 

collision detection nodes in a given consistency group will be incremented until 

either: 

• The performance of the collision detection engIne begins to noticeably 

degrade 
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• The maximum number of machines allotted for the experiment is exceeded: 

32 

Due to the nature of the spatial partitioning approach used in distributed 

collision detection, the number of collision detection nodes used in the 

experiments will be doubled at each increment. As such, these experiments will 

be performed with 1, 2, 4, 8, 16 and 32 collision detection nodes respectively. 

This is because the binary tree used to allocate sub-spaces to the collision 

detection nodes produces its most even distribution of workload when the 

number of collision detection nodes in a consistency group is a power of 2. 

Results 

Num Objects 

1000 

2000 

3000 

1 Node 

360 

604 

825 

2 Nodes 

123 

264 

520 

4 Nodes 

83 

149 

185 

8 Nodes 

49 

77 

92 

16 Nodes 

21 

38 

65 

32 Nodes 

27 

26 

38 

Table 5.7: Maximum Consistency Group Size Experiment Results 
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Figure 5.5: Determining the Maximum Consistency Group Size 

From Fig 5.5, it can be seen that as the number of coll ision detection node 

increases , the performance also increases. However, the results do indicate th at 

there is a point at which the inclusion of additional collision detection nodes 

causes a decrease in performance. This can be seen in the results for a DYE with 

1000 objects, in which the average simulation step time for 16 objects is 2 1ms, 

whereas the average time for 32 collision detection nodes is 27ms. Thi s 

indicates that the additional message exchange required in maintaining a 

consistency group of size 32 outweighs the reduction in colli sion detection each 

collision detection node is responsible for. 

The point at which performance begins to degrade does not appear to be 

constant but, instead, it appears related to the number of objects inhabiting the 

DVE. This can be seen from the results for DVEs wi th 2000 and 3000 object. 
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In which the perfonnance does not degrade between 16 and 32 collision 

detection nodes. This implies that as the number of objects increases. the 

optimal consistency group size should also increase. As such. it may be 

necessary to determine what this optimal value is for a given DVE to enable the 

server to limit the size of consistency groups appropriately to yield the best 

possible perfonnance. 

5.7 Summary 

This chapter presented experimental results demonstrating the scalability and 

perfonnance of the distributed collision detection approach described in this 

thesis. The results examined the perfonnance of the collision detection approach 

operating on a single machine, which offered a base for comparison. Following 

this, results were presented for the same simulation being executed in 

consistency groups of size ranging from 1 to 8. The results demonstrated linear 

perfonnance improvements with respect to the number of collision detection 

nodes. While these results show the perfonnance and scalability within a 

consistency group, the results do not demonstrate the consistency or scalability 

of message exchange between consistency groups, e.g. the volume of messages 

being transferred between consistency groups or the deviation between the 

perceived states of objects between consistency groups. The absence of these 

results is mainly due to the difficulty in recording run-time metrics between 

consistency groups. Such results could be approximated by simulating the 

distributed collision detection approach, although this is beyond the scope of this 

thesis. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

The previous chapters have introduced Distributed Yirtual Environments 

(DYEs) and their associated problems. After offering a brief overview of the 

topic of DYEs, Chapter 2 focussed its discussion on collision detection. This 

was initially discussed with respect to single-user virtual environments and a 

selection of collision detection approaches and algorithms were introduced and 

evaluated based on the following criteria: 

• Performance characteristics 

• Opportunities to exploit parallelism 

The discussions on the possibility of exploiting parallelism in collision detection 

algorithms comes from the recent popularity of multiple processing cores in 

consumer PCs and games consoles. With the adoption of multi-processor 

environments, it is necessary to ensure that the algorithms adopted are able to 

exploit the additional processing power made available. From the analysis. it 

was found that the best opportunities for parallel execution were offered by 

spatial partitioning approaches, in which the virtual world is subdi\lded into 
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discrete regions; for more a more detailed explanation of this assertion, see 

Chapters 2 and 3. 

Following the description of collision detection algorithms, the problems of 

scalability, responsiveness and consistency in DYEs were discussed with respect 

to collision detection. It was determined that the current approaches used for 

collision detection in DYEs lends to extreme levels of inconsistency which can 

significantly compromise user-immersion. Additionally, as collision detection is 

usually performed completely on all machines participating in the DYE, the 

performance of the DYE will degrade as the number of users increase. 

Therefore, it is necessary to develop a new approach to collision detection in 

DYEs which offers higher-levels of consistency, scalability and responsiveness 

in order to allow more users to interact with one-another within a DYE. The 

development of such an approach has historically been overlooked due to the 

consistency-throughput trade-off theory [SinghaI99][Fischer83], which states 

that it is necessary to balance consistency with throughput. A completely 

consistent DYE can be achieved at the cost of throughput and interactivity and 

that it is possible to have DYEs whose throughput (interactivity) is at the 

maximum rate allowed by the host machines and network infrastructure at the 

detriment of consistency. This rule has been assumed to be rigid and, therefore, 

restrict the level of interactivity, responsiveness and consistency of DYEs. 

Chapter 3 introduced the notion of distributed collision detection. It took an 

incremental approach in refining a collision detection approach which would 

offer improved scalability, responsiveness and consistency in DYEs running 

over heterogeneous networks and platforms. The discussion began by defining 

the choice of algorithms and data structures which are used in the collision 

detection approach; this included the choice of spatial subdivision as the broad­

phase collision detection approach. While the distributed collision detection 

approach prescribes the use of a given broad phase collision detection algorithm, 

the approach allows the use of any narrow-phase algorithm. Following the 
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definition of the basic algorithms, the remainder of the chapter incrementally 

refined the collision detection approach by adding additional complexities, such 

as: 

• 
• 

Limited network bandwidth 

Message transmission latency 

• 
• 

Inconsistencies in object states between machines 

Unreliable machines and communication media 

Chapter 3 introduced the components from which the distributed collision 

detection approach is composed: 

• Server 

• Collision Detection Node 

• Client 

The server is a central repository and directory service which is used to store the 

state of a DYE and to assist users in joining a given DVE. A collision detection 

node is a process hosted on a given machine which is responsible for collision 

detection on a portion of the virtual world. A client is a process hosted on a 

given machine through which a user interacts with the DVE. The discussion 

initially developed a collision detection approach which mirrored the 

client/server architecture commonly used in Internet applications. This approach 

offered linear performance increases as the number of collision detection nodes 

increased. However, this approach was only suitable for use on Local Area 

Networks (LANs) as it was not capable of dealing with variable network 

transmission delays. Therefore, the architecture of the collision detection 

approach was refined into a hybrid peer/server architecture to be able to deal 

with variable network transmission delays. This refinement introduced the 

concept of consistency groups. A consistency group is a group of machines 

which exhibit low-latency message transmission delays between one-another 

and, therefore, are capable of sharing the responsibility of collision detection for 

the DVE between one-another. The perceived state of the objects inhabiting the 
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DYE in each consistency group is completely consistent. However, there are no 

consistency guarantees between consistency groups as each consistency group 

operates completely separately of any other group. As with the client/server 

collision detection approach, the performance of each consistency group 

increases linearly as the number of collision detection nodes in the consistency 

group increases. Each consistency group is coordinated by a single collision 

detection node which is appointed group leader. The group leader acts as a 

surrogate server for its consistency group members and is a point of 

communication between consistency groups. 

Chapter 4 described the implementation details of the distributed collision 

detection approach. This chapter gave a brief evaluation of the enabling 

technologies available to facilitate the development of a DYE. This discussion 

included the choice of programming languages, libraries, target platforms and 

any platform-specific issues of importance to DYE development. Following this, 

an introduction to some of the important maths involved in the distributed 

collision detection approach was provided. 

Chapter 4 described the different components of the server, collision detection 

nodes and clients in the distributed collision detection approach. In addition, it 

described the auxiliary components which are shared between the server, 

collision detection nodes and clients. This discussion included in-depth 

descriptions of the messages exchanged between different components and the 

mechanisms by which the responsibility for collision detection is distributed 

between members of a consistency group. 

Chapter 5 provided experimental results for the distributed collision detection 

approach. This chapter began by describing the DYEs in which experiments 

were performed. Following this, the expected results were described. The results 

which were presented demonstrated that the performance of a DYE adopting the 

distributed collision detection approach. 
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6.2 Future Work 

The distributed collision detection approach has currently been implemented in 

Java and C++. The Java version of the approach is a prototypical 

implementation which was used to gather performance figures and determine the 

suitability of the approach. The C++ version has been integrated into a 

multi player game which is freely available for download [Storey06]. However, 

this implementation is currently hard-coded into the games engine rather than 

developing it as a middleware component. As such, it is possible that in the 

future the distributed collision detection approach will be incorporated into a 

commercial physics engine for use in computer games and physics simulations. 

6.3 Summary 

This thesis examined the applicability of a distributed collision detection 

approach in Distributed Virtual Environments. This approach provides improved 

scalability and responsiveness by sharing the processing overhead associated 

with collision detection between the machines participating the DVE. It adopts a 

hierarchical message dissemination approach which clusters machines which 

share low message transmission delays. This not only reduces the volume of 

messages which the main server must handle, but also alleviates the message 

throughput restrictions imposed on a client sharing a high-latency connection 

with the server. However, this approach may increase the message latency 

between consistency groups. In addition to improvements in scalability and 

responsiveness, the distributed collision detection approach provides improved 

consistency by enforcing that collisions between a pair of objects are detected on 

only one machine within a consistency group. 
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