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Abstract 

This thesis investigates, develops and implements algorithms for shape­

preserving curve and surface design that aim to reflect the shape characteristics 

of the underlying geometry by achieving a visually pleasing interpolant to a 

set of data points in one or two dimensions. All considered algorithms are 

local and useful in computer graphics applications. The thesis begins with an 

introduction to existing methods which attempt to solve the shape-preserving 

curve interpolation problem using C 1 cubic and quadratic splines. Next, a 

new generalized slope estimation method involving a parameter t, which is 

used to control the size of the estimated slope and, in turn, produces a more 

visually pleasing shape of the resulting curve, is proposed. Based on this slope 

generation formula, new automatic and interactive algorithms for constructing 

shape-preserving curves from C 1 quadratic and cubic splines are developed 

and demonstrated on a number of data sets. The results of these numerical 

experiments are also presented. Finally, a method suggested by Roulier which 

generates C 1 surfaces interpolating arbitrary sets of convex data on rectangular 

grids is considered in detail and modified to achieve more visually pleasing 

surfaces. Some numerical examples are given to demonstrate the performance 

of the method. 
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Chapter 1 

Introduction and Preliminaries 

This thesis is concerned with the process of representing a given set of data 

by a smooth curve or surface which exactly reproduces the given values and 

preserves the shape characteristics of the data. This is a problem which arises 

frequently in a wide range of applications in science, engineering and computer 

graphics. The classical interpolation methods developed by Lagrange and 

Hermite are used in data interpolation even today. Unfortunately, these 

methods often fail to reproduce important qualitative aspects of the data 

such as monotonicity and/or convexity and may not meet the expectations of 

the designer. They typically generate unexpected bumps, oscillations, wan's 

or spurious wrinkles that ruin the shape of curves or surfaces. :'Iuch work 

has been done subsequently, but surprisingly the curve and surface design 

problems have not yet been dealt with adequately. For example, before the 

advent of computers, the method used by a draftsman or engineer was to draw 

the curve manually through the data points. This was a skilled job but very 

tedious and the opinion of different people might vary as to what constituted 

the "best" curve. It is not completely understood why a draftsman's curve 

usually looks better than one generated by some automatic curve interpolation 

algorithms. The draftsman somehow senses the shape information contained 

in the data and draws curves that are correct, smooth and pleasing to the 

eye. However, with the advent of the computer and its ability to perform 

many calculations in a relatively short time, the question arises - why not 
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let the computer draw the curve? To do this, of course, we must provide 

a mathematical representation of the curve. Fortunately: there are several 

mathematical methods of representing a curve, given a set of ordinates and 

abscissas, and these have been well documented in the literature. 

Perhaps the best known method is fitting by polynomials. In spite of 

its theoretical appeal, polynomial interpolation suffers from several serious 

drawbacks; for example, any local modification to the data has a global effect 

on the interpolant. Thus, they are unsuitable for applications where the data 

may be frequently changed, or where one wishes to compute the interpolant 

as the data arrives. Polynomials seem to do all right for small numbers of 

data points, but when we go to higher degree, that is, as the number of 

interpolation points increases, so does the complexity of the interpolant and 

severe oscillations often appear. This is a major disadvantage of polynomial 

interpolation and is especially undesirable in many design problems when 

practical considerations indicate that the data has some additional properties 

such as monotonicity and/or convexity. An example illustrates the problem: 

when Lagrange polynomial interpolation is applied to a set of monotone and 

convex data given in the following Table 1.1. The results obtained are displayed 

Xi -2.0 -1.0 -0.5 -0.25 -0.1 

Yi 0.25 1.0 4.0 16.0 100.0 

Table 1.1 Monotone and convex data. 

in Figure 1.1. While this procedure can often yield quite satisfactory results, 

Figure 1.1 shows a very different behaviour from what one would normally 

expect. Clearly Lagrangian interpolation has introduced bumps and unwanted 
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inflection points in the first three subintervals that are not supported by the 

data. In most practical applications, these oscillations are unacceptable. 

100 

30 

-40 

-110 

-180 

-250 

-2.0 -1.62 -1.24 -0.86 -0.48 -0.1 

Figure 1.1 The Lagrange polynomial fit to the data given in Table 1.1. 

Several schemes have been suggested for combating the difficulties encoun­

tered with polynomial interpolation. One of the most successful approaches 

is to use piecewise polynomial interpolation which leads to the division of 

the interval into small subintervals: instead of trying to interpolate the data 

over the entire interval by one polynomial of high degree, one interpolates the 

data by a piecewise polynomial function, where the degree of the polynomial 

pieces associated with each subinterval is small and where the pieces satisfy 

certain continuity conditions. This avoids the problems associated with high 

degree polynomials and retains the inherent conceptual simplicity of polyno-
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mial interpolation. The use of piecewise polynomials for curve and surface 

interpolation was stimulated in the early 1960's by the introduction of spline 

functions. There are various possible methods of introducing the theory of 

spline functions and a considerable volume of literature has been written on 

these functions since their development by Schoenberg [60]. 

1.1 The Spline Function. 

Let (Xi, Yi), i = 1, ... , n, be a given set of data points such that Xl < X2, ... , < 

X n . Spline functions are piecewise polynomials with derivatives constrained for 

the purpose of making the resulting function smooth at the knot points Xi. 

An interpolating spline function of degree k with interpolating points Xi, i = 

1, ... , n, is a piecewise polynomial p( x) satisfying the following properties: 

1. p( x) is k - 1 times differentiable at each point Xi, i = 1, ... , n. 

2. On each subinterval [Xi, Xi+l], p(x) is a polynomial of degree not 

exceeding k. 

3. p(Xi) = Yi, i = 1, ... , n. 

In other words the property 1 ensures that the interpolating spline function 

p( x) is of class Ok-l as p( x) is continuous and has continuous derivatives for 

all orders less than or equal to k - 1. 

1.1.1 Ok Continuity for Spline Curves. 

An interpolating spline function p( x) on [Xl, xn] is called Ok continuous 

(k times continuously differentiable) at the knot Xi if the following conditions 

hold: 
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, , 
Pi(Xi) = Pi+l (Xi), i = 1, ... , n - 2 

" " Pi (Xi) = Pi+l (Xi), i = 1, ... ~ n - 2 

...................................................... 

...................................................... 

(k)( .) _ (k) ( .) Pi Xl - Pi+l Xl, i = 1, ... , n - 2 

The spline function can be represented in vanous ways: the simplest, 

and one of the most common representations, being in terms of B-splines 

as basis functions. This basis is fairly well conditioned and has many other 

nice properties which usually lead to stable and simple algorithms; see de Boor 

[7] and Schumaker [62]. Interpolation schemes using a B-spline representation 

have been developed by Cox [19] and de Boor [8]. 

A spline function is the mathematical equivalent of the draftsman's 

physical spline - a long narrow strip of wood or plastic used to fit curves 

through specified data points, for example, in shipbuilding, automotive and 

aircraft design. The splines are shaped by lead weights called ducks. By 

varying the number and positions of the lead weights, the spline is made to 

pass through the specified data such that the resulting curve appears smooth, 

or fair and pleasing to the eye. The mechanical spline has the properties of 

continuity in slope and curvature while minimizing the "strain energy" of a 

thin elastic beam subject to the interpolation constraints. Cubic splines have 

the same properties of continuity, but only approximate to the minimization 

of energy, by minimizing J y,,2 dx. The most attractive property of the cubic 

spline is that, at each point, in the range the function is represented by a cubic 

with C2 continuity at the data points, while flexibility is retained due to the 
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discontinuities in the third derivatives at the "joins" of the individual cubics. 

Some of the earlier work on the use of spline functions in curve interpolation is 

due to Ahlberg, Nilson and Walsh [1]. Gordon [38] extended these techniques 

to surface fitting and bivariate interpolation through curve networks. 

Standard cubic spline interpolation is a global method in the sense that 

estimation of the derivatives at the data points is made on the basis of all the 

data points by solving a system of linear equations. Consequently, all the data 

must be available before computation of the interpolant can begin. Also, if 

a small portion of the data is changed, the entire linear system of equations 

must be recomputed. Hence, this results in a change in the whole curve. 

Cubic splines are among the most widely used interpolants because they 

offer attractive smoothness properties and computational convenience and 

efficiency. The practical utility of cubic splines is quite evident from their 

widespread use as finite element basis functions, in collocation approximations 

to differential equations and data fitting applications. On the other hand, 

they are not without their shortcomings and have a tendency to produce more 

inflection points and overshoots than a draftsman would ordinarily include 

when drawing a curve through the data. This occurs when the interpolant 

cannot bend sharply enough at certain points and, as a consequence, breaks 

out into spurious oscillations. Figure 1.2 displays the standard cubic spline 

interpolant that interpolates to the same data used for Figure 1.1 and we 

immediately notice some erratic behaviour in the resulting curve. Although 

it is neither monotone nor convex, it oscillates much less widely than the 

Lagrange polynomial interpolant in Figure 1.1. In fact, while one might desire 

a monotone and convex interpolant in this example, the cubic spline is neither. 
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Thus, if these shape-preserving constraints are needed, one certainly must look 

beyond the standard cubic spline. 

100 

30 

-40 

-110 

-180 

-250 

-2.0 -1.62 -1.24 -0.86 -0.48 -0.1 

Figure 1.2 Standard cubic spline interpolant showing unwanted 

inflections to the data given in Table 1.1. 

1.2 Shape-Preserving Interpolation. 

Often data in an interpolation problem represents a physical quantity 

having a certain behaviour (monotone decreasing, concave etc) as a func­

tion of other quantities, but the previous examples show that polynomial 

and standard spline interpolation methods are not guaranteed to satisfy these 

shape characteristics of the data. Thus, one would like to describe an inter­

polation scheme preserving these shape properties. Such "shape-preserving 

interpolation" provides a means of avoiding the extraneous oscillations often 
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seen in standard cubic spline interpolation and similar algorithms. In addition 

to the shape-preserving requirements, it is often desirable that the method 

should be local. A local method is such that if a small portion of the data is 

changed, the effect will only be apparent in the neighbourhood of the change 

and one would then like the rest of it to remain unaffected. Here, the esti­

mation of the slope at a data point is based only on information at the point 

itself and neighbouring points. In contrast with global methods, local methods 

often produce C 1 interpolants and the discontinuity in the second derivative at 

the data points does not constitute a serious problem as they usually provide 

curves which are visually pleasing. Their simplicity makes them popular in 

computer graphics, and because they are local methods, the interpolant can 

be generated as the data points are collected. A number of local methods 

have been developed which attempt to maintain shape characteristics of the 

data, amongst which are the so called shape-preserving methods. These meth­

ods are shape-preserving in the sense that, in those intervals where the data 

is monotone increasing or decreasing, the interpolant has the same property; 

similarly, in those intervals where the data is convex or concave, the same is 

also true of the interpolant. Figure 1.3 illustrates the result of interpolating 

to the same data used for Figure 1.1 by a shape-preserving method, and the 

resulting graph is both convex and monotonic increasing as well as pleasing 

to the eye, as compared with the curves drawn in Figure 1.1 and Figure 1.2 

which are neither monotone nor convex. 

Some progress has been made in the last decade in the field of shape­

preserving interpolation and three different techniques which provide some 

control over the shape of the interpolating curve have been considered so far; 

namely, 
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a) Polynomial splines. 

b) Spline under tension. 

c) Rational splines. 

These are discussed in the following sections. 

100 :2 

30 oj 
0 0 

-40 

-110 

-180 

-250 

-2.0 -1.62 -1.24 -0.86 -0.48 -0.1 

Figure 1.3 Shape-preserving interpolant to the data given in Table 1.1. 

1.2.1 Polynomial Splines. 

The specific problem of shape-preserving interpolation using polynomial 

splines, especially quadratic and cubic, has been considered by a number of 

authors. de Boor [7] proposed a taut spline algorithm which makes use of 

C 1 piecewise cubic polynomials and preserves the convexity of the data by' 

inserting at most one additional knot between each pair of data points but does 
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not guarantee monotonicity. Fritsch and Carlson [33] describe an algorithm 

in which an initial piecewise cubic interpolant is modified by changing the 

derivative values of the interpolant (where necessary) to produce a monotone 

piecewise cubic interpolant. Costantini [16] has developed the Fritsch and 

Carlson method further to include interpolants of arbitrary degree and has 

proposed a new technique for slope estimation. Beatson and \Yolkowicz [5] 

and Van [67] describe methods which preserve the monotonicity of the data 

and provide an alternative to the Fritsch and Carlson [33] method. Here, 

derivative values are not modified; instead, when derivative values do not 

ensure monotonicity, rather than changing the slopes, extra knots are inserted 

in that subinterval. Dougherty, Edelman and Hyman [25] have introduced C1 

cubic and C2 quintic spline polynomials for shape-preserving interpolation. 

Fiorot and Tabka [28] have described shape-preserving global C2 cubic spline 

interpolants, where the existence of such an interpolant depends upon the 

existence of solutions of a system of linear inequalities representing the first 

derivative values at the data points. 

McAllister, Passow and Roulier [49] consider the problem of interpolating 

monotone and convex data. They make use of piecewise polynomial Bernstein 

representations and introduce additional knots into their schemes. Such 

a scheme for quadratic spline interpolation is described by McAllister and 

Roulier [50] and this technique is developed further by Schumaker [61]. 

1.2.2 Splines under Tension. 

The idea of an interpolating spline under tension was first introduced by 

Schweikert [63] in order to eliminate extraneous inflection points in cun-es 

fitted by cubic splines. Schweikert used uniform tension and obtained on each 
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subinterval an interpolant that was a linear combination of 1 x etz and e- tz , , , 

with t as "tension parameter". These interpolants, with a sufficiently large 

tension, do remove extraneous points of inflections, but are more expensive to 

construct and evaluate than cubic splines. His idea was further investigated 

and implemented by Cline [14] and generalized by Spath [64]. A detailed 

derivation of the generalized form based on a variational principle is given by 

Barsky [4]. These generalizations allow local choices of the tension parameter. 

A common feature of all of these notions is that of a tension parameter which 

may depend on the knot interval. As the tension parameters increase, the 

graph of the spline tends to pull closer to the shape of the polygonal segments 

connecting the data. Thus, for sufficiently high tension parameters, the spline 

will be shape-preserving. Typically, one knows from experience how to choose 

the tension parameters so that shape-preservation is achieved in two or three 

attempts. Each time a change is made in the tension parameters, the complete 

spline must be recalculated by solving a system of linear equations. 

The main advantage of the spline under tension is that sufficient tension 

yields a shape-preserving interpolant; that is, an interpolant which matches the 

monotonicity and convexity properties of the data (see Fletcher and McAllister 

[29], Kaklis and Pandelis [44], McCartin [51], Pruess [53], and Rentrop [57]). 

In this connection, Renka [56] has suggested heuristic ways of choosing a 

local tension parameter associated with each subinterval which yield shape­

preserving interpolants. In general, splines under tension are satisfactory 

for many purposes, but they have the added disadvantage that exponential 

functions must be computed for each evaluation. 
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1.2.3 Rational Splines. 

Besides polynomials, other classical functions have also been used exten­

sively for interpolation. The most popular include rational functions. Rational 

splines are also of use for producing smooth curves through the given data 

points. The computational effort involved in their calculation and their sub­

sequent use for interpolation is not significantly greater than that required for 

polynomial splines, but is significantly less than that for splines under tension. 

In recent years, several shape-preserving methods have been developed which 

make use of piecewise rational quadratic or cubic interpolants. :\ rational 

spline solution to the problem of shape-preserving interpolation is provided 

by Delbourgo and Gregory [23] and Gregory [35]. The use of a piecewise ra­

tional quadratic function for constructing a C 1 monotonic interpolant which 

interpolates monotone data has been described by Gregory and Delbourgo 

[37]. These authors [22] use a similar representation to obtain a global C2 

interpolant which requires solving a set of non-linear equations in the knot 

derivatives, derived by the imposition of the C2 continuity constraints at all 

interior knots. Rational spline approaches to achieve convexity-preserving in­

terpolants to the convex data have been proposed by Delbourgo [20, 21], and 

Ramirez and Lorente [55]. 

The ideas of shape-preserving curve interpolation can be extended to 

surfaces if the defining data points lie on grid lines. The problem of generating 

shape-preserving surfaces is very important in computer aided geometric 

design applications and it is often desirable to interpolate three-dimensional 

surface data defined by two independent variables (x and y) and one dependent 

variable. A number of techniques have been developed for surface interpolation 

including Coons and Bezier patches and tensor products of Bezier curves, cubic 

splines, and B-splines. A difficulty arises with these methods, especially the 
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spline methods: abrupt changes in the dependent variable of the data may 

induce artificial or exaggerated hills and valleys in the interpolating surface. 

Figure 1.4 illustrates the interpolating bicubic spline surface for the EOS data 

given in the following Table 1.2. This data comes from Carlson and Fritsch [12] 

and represents an equation of state (EOS) surface for aluminum with pressure 

T -2.30 -1.61 -0.92 -0.51 -0.22 0.00 
p 

-0.07 -34.54 -13.82 -10.10 -7.26 -5.66 -4.53 
0.33 -34.54 -13.82 -10.10 -7.26 -5.66 -4.13 
0.55 -34.54 -13.82 -10.10 -7.26 -4.88 -3.35 
0.69 -34.54 -13.82 -10.10 -4.82 -3.34 -2.73 
0.84 -34.54 -13.82 -2.52 -2.22 -1.98 -1.78 
0.93 -34.54 -2.68 -1.88 -1.56 -1.41 -1.28 
0.98 -3.06 -2.28 -1.63 -1.32 -1.15 -1.05 
1.02 -2.86 -1.92 -1.39 -1.10 -0.92 -0.81 
1.08 -2.37 -1.60 -1.17 -0.90 -0.72 -0.60 
1.13 -1.89 -1.30 -0.95 -0.71 -0.54 -0.41 

Table 1.2 Bivariate monotone data. 

as a function of density (p) and temperature (T). For univariate data having 

a drastic change in slope, the cubic spline typically deviates extensively from 

the desired trend between data points (see Figure 1.2). Figure 1.4 shows 

that the same phenomenon occurs with the bicubic spline interpolation. The 

interpolating bicubic spline has produced unwanted ripples or overshoots that 

are clearly unacceptable. A small number of methods have been proposed 

which eliminate these unwanted hills and valleys in an interpolating spline 

surface not indicated by the data. These methods are shape-preserving in the 

sense that if the data exhibits a given monotonicity and/or convexity along all 

grid lines parallel to the axes, then the resulting interpolant also exhibits 
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Figure 1.4 Standard bicubic spline interpolating the data given in Table 1.2. 

Figure 1.5 Shape-preserving interpolant to the data presented in Table 1.2. 
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the same monotonicity and/or convexity along lines parallel to these grid lines 

as well. Figure 1.5 shows the result of applying a shape-preserving method to 

the same data used for Figure 1.4, where all of the ripples or overshoots have 

been eliminated. The resulting surface is monotonic along the grid lines and 

visually pleasing. 

1.3 Organisation and Layout of the Thesis. 

The aim of this thesis is to investigate, develop and implement local 

algorithms for shape-preserving curve and surface design using C 1 quadratic 

and cubic interpolating splines. These algorithms are used to fit a number of 

data sets of practical significance and the results are compared to test their 

performance. The rest of the thesis is organized in the following manner. We 

conclude this chapter with some formal definitions to be used in the discussion 

to aid the understanding of subsequent chapters and a description of data 

sets for both curve and surface interpolation problems which will be used to 

illustrate the behaviour of the various algorithms to be considered. Chapter 2 is 

devoted to previous relevant research for the construction of shape-preserving 

curve interpolants using cubic splines. Here, several slope estimation methods 

which satisfy conditions of monotonicity for the cubic splines are discussed 

and compared. In Chapter 3, we study the methods of interpolating shape­

preserving curves proposed by McAllister and Roulier [50] and Schumaker [61] 

which use C 1 quadratic splines, and prove that these are identical if the slopes 

required by the Schumaker algorithm are estimated by the formula proposed 

by Butland [11]. We also, in the case of convex data, improve slopes further by 

using an iterative technique to guarantee more visually pleasing shapes for the 

resulting curves. In Chapter 4, a new generalized slope estimation method is 

introduced and a new local automatic shape-preserving interpolation algorithm 
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based on this formula is constructed using C l cubic splines. The new algorithm 

is found to compare favourably with the best of the existing methods. In 

Chapter 5, the interactive curve building algorithms are developed with specific 

application to the shape-preserving problem. These algorithms are local and 

depend upon the slope estimation techniques involving a parameter which is 

used to control the size of the estimated slope. This, in turn, yields a more 

flexible tool for curve generation in computer graphics. The main work in this 

thesis is concerned with the study of shape-preserving algorithms for curve 

design and some of the results obtained for curves are then extended to the 

problem of surface design. In Chapter 6, we review some of the existing shape­

preserving surface interpolation methods and describe some improvements. 

Finally, Chapter 7 presents the conclusions as well as some suggested future 

research. 

1.3.1 Publications. 

Parts of the work described in Chapter 3 and Chapter 6 of this thesis have 

appeared in Iqbal [41, 42]. Other parts will be submitted for publication in 

the near future. 

1.4 Some Definitions. 

The purpose of this section is to introduce some of the concepts that will 

be pertinent to this thesis. In these definitions we consider first the univariate 

case; that is, we assume that (Xi, Yi), i = 1, ... , n is a given set of data points in 

a Cartesian co-ordinate system, where the x-values are monotonic increasing, 

that is, Xl < X2, ..• , < X n . It is also convenient to define the first-order divided 

differences. 
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b' - Yi+ 1 - Yi h . 
l - hi ' i = Xi+l - xi, Z = 1, ... , n - 1. (1.1) 

and the second-order divided differences 

i = 1, ... , n - 2. (1.2) 

The sign of bi is defined as 

(1.3) 
otherwise. 

Definition 1.4.1 

The univariate data set is said to be monotone increasing if the following 

condition holds: 

bi ~ 0, i = 1, .. " n - 1 (1.4 ) 

and to be monotonic decreasing if 

bi < 0, i = 1, ... , n - 1 (1.5) 

We say that the data set is strictly monotone if there is no equality in equations 

(1.4) and (1.5). 

Definition 1.4.2 

The univariate data set is said to be convex if we have 

(1.6) 

and said to be concave if 

(1. 7) 
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We say that the data set is strictly convex/ooncave when the inequalies 

(1.6) and (1.7) are strict. Note that under these definitions, straight line 

segments are considered to be both convex and concave. 

Definition 1.4.3 

An inflection point in the interval (Xi, Xi+l) is said to be extraneous if 

b.ib.i+l > o. Perhaps most important of the several desirable properties of 

an interpolation curve is being able to control the extraneous points. Dealing 

with the problem of these inflection points is equivalent to preserving the 

convexity of the data. For example, Figure 1.2 shows the standard cubic spline 

interpolant that interpolates the data given in Table 1.1 for which all second-

order differences are positive. The interpolant does not have a positive second 

derivative everywhere and instead introduces extraneous inflection points in 

the first three subintervals, [-2.0, -1.0], [-1.0, -0.5] and [-0.5, -0.25]. 

The problem that we intend to address in the first part of this thesis is that 

of shape-preserving curve interpolation using spline interpolation. A piecewise 

interpolating function p( x) E C l [Xl, xn] is defined such that 

i = 1, ... ,n. (1.8) 

where di are the derivative values at the endpoints of the subinterval. The 

interpolating function p( x) is specified on the interval in terms of the data Yi, 

and the derivative values di at the endpoints of the subinterval. In order that 
I 

the function p( x) be monotonicity preserving on [Xi, Xi+l], the sign of p (x) 

must agree with the sign of 8i on [Xi, Xi+l]. We say that p(x) is convexity 
I 

preserving if p (x) is monotonic increasing in intervals in which the data are 
I 

convex and p (x) is monotonic decreasing in intervals in which the data are 

concave. The interpolating function p( x) is said to be shape-preserving if it is 
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both monotonicity and convexity preserving. 

We end this section by introducing some important definitions for bivariate 

data sets. Let a given set of m by n data points in three dimensions 

be represented by (Xi, Yj, Ai), where i = 1, ... , nand j = 1, ... , m. It is 

assumed that the independent variables are ordered (Xl < X2 <, .... < Xn 

and YI < Y2 <, ... , < Ym) and form a rectangular grid, but are not necessarily 

equally spaced. Now we introduce some notation and definitions as follo\\"s . 

8x' . - fi+l,i - Ai 
l,} - , 

Xi+l - Xi 
i = 1, ... , n - 1; j = 1, ... , m. (1.9) 

f: Ai+l - Aj 
uYi,j = , 

Yi+l - Yi 
i = 1, ... , n; j = 1, ... , m - 1. (1.10) 

Definition 1.4.4 

The bivariate data is said to be monotone increasing (monotone decreas-

ing) along the grid line X = Xi if 

8Yi,i ~ 0 (8Yi,j::; 0), j = 1, ... ,m-1. (1.11) 

Definition 1.4.5 

The bivariate data is said to be convex (concave) along the grid line X = Xi 

if 
(1.12) 

Similarly, we can define the terms monotone increasing/decreasing, and 

convex/ concave along the grid line Y = Yi' 

The problem we intend to address in the second part of this thesis is that 

of determining a surface which interpolates the given data and which preserves 

convexity and monotonicity along grid lines. Mathematically, the problem is 

that of finding a smooth bivariate function P(x, y) with continuous first partial 
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derivatives such that 

P(Xi, Yj) = fi,j, i = 1, ... , n; j = 1, ... , m. (1.13) 

subject to the shape-preserving constraints. The interpolant P(x, y) is called 

shape-preserving if it is both monotonicity and convexity preserving on each 

grid line. 

1.5 Definition of Test Problems. 

Several sets of test data have appeared in the literature. In this thesis, 

we consider six data sets for univariate and two data sets for bivariate 

interpolation and all of them are either monotone and/or convex. These appear 

in Tables 1.3 through 1.10 and the corresponding data plots with data points 

marked with a circle (0) for the univariate cases are presented in Figures 1.6 

through 1.11. The skeleton graphs of bivariate data sets are shown in Figure 

1.12 and Figure 1.13, where the data points are connected by straight lines 

over a rectangular grid for display purposes. It is worthwhile to point out 

that there is no essential (theoretical) difference between monotone increasing 

and monotone decreasing data or between convex and concave data. Now, we 

characterize the data sets into following catagories. 

1.5.1 Univariate Data Sets. 

1.5.1.1 Monotone Data. 

Data 1 (Table 1.3, Figure 1.6) is taken from Akima [2]. It has been used 

by several authors for comparison purposes. 

Data 2 (Table 1.4, Figure 1.7) is used in Fritsch and Carlson [33] and 

represents data from Livermore radio-chemical calculations. 
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Data 3 (Table 1..5, Figure 1.8) is the third example reported in Pruess [53]. 

It represents data from a potentiometric titration calculation. 

1.5.1.2 Monotone and Convex Data. 

Data 4 (Table 1.6, Figure 1.9) is from McAllister, Passow and Roulier [49] 

and represents the convex function -; at x = -2, -1, -0.3, -0.2. 
x 

Data 5 (Table 1.7, Figure 1.10) comes from deBoor [7] and relates to 

a property of titanium as a function of temperature. This data is locally 

monotone and convex. 

1.5.1.3 Convex Data. 

Data 6 (Table 1.8, Figure 1.11) is used in Irvine, Marin and Smith [43] 

and comes from the convex function 
1 

-------- at x = 0.0,0.1,0.4,0.7,0.8,1.0. 
(0.05 + x )(1.05 - x) 

1.5.2 Bivariate Data Sets. 

1.5.2.1 Convex Data. 

Data 7 (Table 1.9, Figure 1.12) is obtained from Roulier [58] and is from 

the equation 

f(x, y) = (x - 3)2 + (y - 4)2. 

Data 8 (Table 1.10, Figure 1.13) is also provided by Roulier [58] and is 

from the equation 
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Xi 

Yi 

Xi 

Yi 

X· 2 0.0 

Yi 10.0 

7.99 

0.0 
12.0 

, 

85l 0 

70 

0 
55 

0 

40 

25 

0 
10 0 00 00 00 

0 3 6 9 12 15 

Figure 1.6 Graphic representation of Data 1. 

2.0 3.0 5.0 6.0 8.0 9.0 11.0 12.0 14.0 
10.0 10.0 10.0 10.0 10.0 10.5 15.0 50.0 60.0 

Table 1.3 Monotone Data 1. 

1.0 o o o 
o 

0.8 

0.6 

o 
0.4 

0.2 o 

0.0 

8.0 10.4 12.8 15.2 17.6 20.0 

Figure 1.7 Graphic representation of Data 2. 

8.09 8.19 8.70 9.20 

15.0 

85.0 

10.0 

2.76429E-05 4.37498E-02 0.169183 0.469428 0.943740 
15.0 20.0 

0.998636 0.999919 0.999994 

Table 1.4 Monotone Data 2. 
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Xi 

Yi 

Xi 

Yi 

22.0 

986.01 

893.4 

800.8 

708.2 

615.6 

523.0 0 

o 
o 

o o 
o 

22.0 22.4 22.8 23.2 23.6 24.0 

Figure 1.8 Graphic representation of Data 3. 

22.5 22.6 22.7 22.8 22.9 23.0 23.1 

523.0 543.0 550.0 557.0 565.0 575.0 590.0 620.0 

23.3 23.4 23.5 24.0 

915.0 944.0 958.0 986.0 

Table 1.5 Monotone Data 3. 

25.0 0 

20.05 

15.1 

10.15 
0 

5.2 

0.25 0 0 

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 1.9 Graphic representation of Data 4. 

Xi -2.0 -1.0 -0.3 -0.2 

Yi 0.2500 1.0000 11.1111 25.0000 

Table 1.6 Monotone and convex Data 4. 
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Xi 

Yi 
Xi 

Yi 

595.0 

0.644 

915.0 
1.598 

2.169~ 
I 

1.8558 

1.5426 

1.2294 

0.9162 

0.603 00 0 o 

s 
o 

o 

o 

o 

o 0 

o 00 

595 691 787 883 979 1075 

Figure 1.10 Graphic representation of Data 5. 

635.0 695.0 795.0 855.0 875.0 885.0 895.0 
0.652 0.644 0.694 0.907 1.336 1.881 2.169 

935.0 985.0 1035.0 1075.0 

0.916 0.607 0.603 0.608 

Table 1.7 Locally monotone and convex Data 5. 

19.0476 0 0 

15.9218 

12.7961 

9.6703 

6.5446 0 

0 

3.4188 1 0 0 

I 
I I 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 1.11 Graphic representation of Data 6. 

Xi 0.0 0.1 0.4 0.7 0.8 1.0 

Yi 19.0476 7.0175 3.4188 3.8095 4.7059 19.0476 

Table 1.8 Convex Data 6. 
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Figure 1.12 Graphic representation of Data 7 at the grid points. 

X 1.000 2.000 3.000 4.000 5.000 6.000 
Y 

1.000 13.000 10.000 9.000 10.000 13.000 18.000 
2.000 8.000 5.000 4.000 5.000 8.000 13.000 

3.000 5.000 2.000 1.000 2.000 5.000 10.000 
4.000 4.000 1.000 0.000 1.000 4.000 9.000 

5.000 5.000 2.000 1.000 2.000 5.000 10.000 

6.000 8.000 5.000 4.000 5.000 8.000 13.000 

7.000 13.000 10.000 9.000 10.000 13.000 18.000 

8.000 20.000 17.000 16.000 17.000 20.000 25.000 

Table 1.9 Convex Data 7. 
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Figure 1.13 Graphic representation of Data 8 at the grid points. 

X 1.000 2.000 3.000 4.000 5.000 6.000 7.000 
Y 

1.000 7.813 10.590 12.257 12.813 12.257 10.590 7.813 
2.000 6.250 9.028 10.694 11.250 10.694 9.028 6.250 
3.000 5.313 8.090 9.757 10.313 9.757 9.090 5.313 
4.000 5.000 7.778 9.444 10.000 9.444 7.778 5.000 
5.000 5.313 8.090 9.757 10.313 9.757 9.090 5.313 
6.000 6.250 9.028 10.694 11.250 10.694 9.028 6.250 

7.000 7.813 10.590 12.257 12.813 12.257 10.590 7.813 

Table 1.10 Convex Data 8. 
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Chapter 2 

Shape-Preserving Algorithms 

U sing Cubic Splines 

In this chapter we discuss the development of many effective local methods 

which use 0 1 piecewise cubic splines to provide an additional opportunity 

to control the shape of an interpolatory curve. The detailed mathematical 

background of these methods may be found in the original articles. Here, we 

are mostly interested in the final form of the algorithm. The explicit form 

of the piecewise cubic Hermite interpolation, which is used to interpolate 

a set of data (Xi, Yi), i = 1, ... , n, is given in Section 2.1. The necessary 

and sufficient conditions for a 0 1 cubic spline to preserve monotonicity are 

described in Section 2.2. The derivative values at the interpolation points 

may not be available as part of the data and one would be required to estimate 

these values before constructing an interpolant to a set of data. These values 

are usually specified in some manner in order to satisfy the shape related 

criteria. A review of some standard formulae for calculating the derivative 

values at the interpolation points is provided in Section 2.3. Various techniques 

for constructing shape-preserving curves with a specific order of continuity 

have been developed by a number of authors using piecewise cubic Hermite 

interpolants. Methods of this type are described in Section 2.4 through Section 

2.7. Finally, conclusions and a number of experiments performed by applying 

different algorithms to several data sets are presented in Section 2.8. 
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2.1 Piecewise Cubic Hermite Interpolation. 

The spline fit by its very nature is a global scheme as it requires the 

solution of a tridiagonal system. On the other hand, osculatory or Hermite 

interpolation provides a local means of interpolation. For this reason, Hermite 

interpolation is often preferred over spline interpolation. The local nature 

of this scheme is obtained at the expense of smoothness. For example. if 

we specify the derivatives, a cubic Hermite interpolant \vhich is only C 1 

as opposed to the C 2 smoothness provided by the standard cubic splines 

is achieved. Moreover, the required derivatives are typically not available 

and must themselves be estimated. With these provisos duly noted, we now 

proceed to discuss Hermite interpolation by cubic splines. 

Let(Xi, Yi), i = 1, ... , n be the given data set. A C 1 piecewise function p(x) 

is constructed on [Xl, xn] with the following characteristics: 

i = 1, ... ,n (2.1 ) 

where for each i = 1, ... , n - 1, 

(2.2) 

is a cubic polynomial interpolant defined on the subinterval [Xi, Xi+l] and the 

d/s are the approximations to the derivatives of Y at Xi to be determined. 

The construction of p( x) is then essentially based on the calculation of 

the derivative values di , i = 1, ... , n; and the process is known as piecewise 

cubic Hermite interpolation and the p(x) in (2.2) is called the cubic Hermite 

interpolant in the subinterval [Xi, Xi+l]. We observe that p(x) is determined 
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on each subinterval by four parameters. Two of these parameters are given 

by the interpolation constraint. The other two are specified in terms of the 

derivatives at the interpolation points. 

In general, the slopes di are unknown and our problem can be seen 

as one of finding a formula to estimate these slopes so that the resulting 

approximation preserves the shape characteristics inherent in the data. l\Iany 

slope calculation techniques are now available, amongst the earliest used is 

the Akima [2] method. In this method, the slope of the curve is determined 

locally at each given data point by a geometrical condition using coordinates 

of five data points. The data point in question is taken as a centre point with 

two neighbouring data points on each side. The slope at Xi is calculated as 

follows: 

IOi+l - oiloi-l + IOi-2 - Oi-lloi 
IOi+l - oil + IOi-2 - Oi-ll 

otherwise. 

and 

(2.3) 

The slope di is the weighted average of the secant slopes Oi-l and Oi about Xi. 

When interpolation is made near the end points of the curve, two extra points 

are generated using an extrapolation technique. Akima does this by fitting 

a quadratic through the three end points (either Xl,X2,X3 or X n -2,Xn -l,Xn ) 

and reading off two extra points. These extra points can then be regarded as 

an extension of the data set for the purposes of applying the slope formula, 

enabling every slope to be calculated in the same way. 

It is worthwhile to point out that the Akima [2] method usually does not 

preserve any shape characteristics present in the data such as monotonicity 
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and/or convexity, as it is not designed for such purposes. In order that the 

interpolants (2.2) should maintain shape-preserving properties the derivative 

values, di, must satisfy certain conditions. These conditions can be written 

in terms of restrictions on the derivative values di and di+l at the end points 

of the subinterval [Xi, Xi+l] as a function of 8i's. Thus, the problem is to 

determine a local method for finding the derivative values di which causes the 

conditions always to be satisfied. The conditions appropriate to particular 

methods are described below. 

2.2 Fritsch and Carlson Method. 

Several attempts have been made at finding an efficient and automatic 

method for constructing shape-preserving interpolants using quadratic splines. 

In the case of cubic splines, the major breakthrough was in the publication of 

the paper by Fritsch and Carlson [33]. In this paper, they consider monotone 

data and have shown necessary and sufficient conditions for a Hermite cubic 

interpolant to maintain monotonicity. In the case 8i = 0, the requirement 

that p( x) be mono tonicity preserving implies di = di+l = 0, and p( x) = Yi 
d· 

in [Xi, Xi+l]. For 8i #- 0, their conditions are defined in terms of Cti = 8; and 

di+l d h d·· b d t . ed Th d·t· C f3i = -- where i are t e envatIves to e e ermm. ese con 1 IOns lor 
8i 

monotone data sets can be summarized as follows: 

Theorem 2.2.1. 

If sign(di) = sign(di+d = sign(8i), then p(x) is monotone on [Xi, xi+d if 

and only if either 

(i) Cti + f3i - 2 ::; 0 or 

(ii) Cti + f3i - 2 > 0 and 

either 
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(ii.i) 

(ii.ii) 

(ii.iii) 

Fritsch and Carlson proved this theorem by considering the extremum of 
I 

P (x). Conditions on ai,{3i were derived so as to ensure that this extremum is 

forced outside of the interval [Xi, Xi+l], or by considering necessary bounds if 

it does fall in the interval. The conditions ai and {3i must satisfy in order to 

guarantee monotonicity are depicted in Figure 2.1, by the area shaded with 

dots. The region in which the conditions are satisfied is denoted by S and is 

in fact the finite region of the first quadrant of the a{3-plane bounded by the 

ellipse a~ + (31 + ai{3i - 6ai - 6{3i + 9 = O. In order that the interpolant p( x) 

4.0 

3.5 

3.0 .... 

2.5 .... 

{3i 2.0 ~~:.;..;.: :;..;.; .. .;..;..;..;....: .;..;..;.:.;..;... .. ;..;..;. •.• -. -.; .-•• -.-:-.-:-:-:1 

1.5 .... 

1.0 .... 

0.5 

..... 
................... ......................... 

. .............. . ................... 
..... 

... ... . ................... 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 2.1 Monotonicity region S for cubic splines. 
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be monotone on [Xi, Xi+l], the derivative values di and di~l must be chosen 

so that (CXi' (3i) fall within region S. If (CXi' (3i) (j S, then di and di+ 1 are 

modified to satisfy appropriate conditions such that all (CXi,{3i) E S. Fritsch 

and Carlson suggest working with different subregions of S and amongst them, 

the following is an easier condition to satisfy: 

(2.4) 

The authors initially estimate the slopes di using a 3-point difference formula 

i.e., for i = 2, ... , n - 1, 

{ 

hi8i~1 + hi~18i, 
di = h1- 1 + hl 

0, 

(2.5) 
otherwise. 

The derivatives at the end points Xl and Xn are estimated usmg a non-

centered 3-point difference formula. With these values of di, CXi and {3i are 

calculated for each segment and tested to check that they lie within the 

allowable monotonicity region S. If not, then the di are modified such that all 

(CXi,{3i) E S. Their process of modification requires two passes over the data 

and is essentially a non-local approach. The modification step is complicated 

and is dependent on the direction in which the data is scanned. 

The success of the Fritsch-Carlson method has inspired a series of papers, 

all of which have abandoned the old one-pass techniques for the two-pass 

approach. Eisenstat, Jackson and Lewis [27] have subsequently analyzed 

some of these algorithms, which they term "fit and modify", and show that 

the Fritsch-Carlson method is only third-order accurate to an underlying C3 

monotone function. They also produce a fourth-order algorithm of their own. 
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2.3 Slope Estimation Methods. 

In this section, several methods for estimating the deri\'atiYe values di at 

the interpolation points are presented which directly satisfy condition (2, -!). 

All the methods are local and calculate the derivative at a point using a mean 

of first-order divided differences about the point in question. In the following, 

Oi and hi are defined as in (1.1), and i = 2, ... , n - 1. 

2.3.1 Butland Method. 

This is the method introduced by Butland [11]. The formula IS the 

Harmonic mean between Oi-l and Oi: 

(2.6) 

otherwise, 

This formula restricts the d/s to points of (ai, f3i) in Figure 2.1 within a square 

[0,2] X [0,2] and may not produce a visually pleasing curve because it fails to 

consider the relative spacing of the data points as noted in Fritsch and Butland 

[32]. 

2.3.2 Brodlie Method. 

This procedure developed by Brodlie [9] is a modification of (2.6) and 

calculates the derivatives by taking account of the relative spacing of the data 

points: 

{ 

_ _ ---:01_' -_10_i -,---_ 'f c. c, ° 
, 1 Ut-lUt > 

di = )..Oi + (1 - )..)Oi-l 
0, otherwise. 

(2.7) 

where).. = ~(1 + hi ). Note that).. = ~ gives the Butland formula (2.6). 
3 hi-l + hi 2 
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2.3.3 Fritsch and Butland Method. 

This is the method proposed by Fritsch and Butland [32]. The formula is 

a weighted Harmonic mean as follows: 

0, 

3hi-lhi 

hi + 2hi-l ' 
3hi-lhi 

hi-l + 2hi' 

(2.8) 

Both formulae given in (2.7) and (2.8) fulfill condition (2.4). For this choice 

of di, the values of ai and f3i lie in the square [0,3] X [0,3], a larger subset of S 

than in the case for the Butland formula (2.6), allowing more visually pleasing 

curves to be produced (see, for example, Figure 2.31 and Figure 2.32). 

2.3.4 Costantini Method. 

This technique presented by Costantini [16] also employs the weighted 

Harmonic mean in which weights can be varied, subject to certain conditions, 

and the slopes are computed using the following formula: 

where 

0, 

hi + (p(q, k) - 1)hi - 1 ' 

p(q, k)hi-lhi 
hi - 1 + (p(q, k) - l)hi' 

q qt 1 (q ~ 1) 
q - 2k j=k J 

p( q, k) = --------'--------

2k qt1 (q ~ 1) _ 2 ~ (q ~ 1) 
q - 2k j=k J j=o J 
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and q, k are integers such that ° < k < q - k. 

This formula satisfies the monotonicity condition (2.4) provided that 

p(q, k) < 3. In particular when q = 3 or q = 4 and k = 1, this corresponds 

to the Fritsch-Butland formula (2.8). When q > 5 and * :::; 3, then the 

values of (ai,!3i) are always restricted to the smaller square [0, 2]x[0, 2] in 

Figure 2.1 and consequently tighter curves are produced. As an illustration, 

the curves drawn in Figure 2.2 are produced by using values of q = 3, k = 1; 

q = 5, k = 2; q = 7, k = 3 and q = 11, k = 5 in the formula (2.9) for Data 

4. The corresponding values of ai and !3i, as well as the jumps in the second 

derivative at the interior knots, denoted by Ji, are listed in Table 2.1 and Table 

2.2 respectively. In Figure 2.2, clearly increasing the values of q and k give the 

effect of tightening the curve toward the straight line between the points 

25.0 

20.05 

15.1 

10.15 

5.2 

0.25 

____ q=3, k=1 

q=5, k=2 
____ q=7, k=3 

q=11,k=5 

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 2.2 Costantini Method with different values of q and k. 
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Data Points q = 3, k = 1 q = 5, k = 2 q = 7, k = 3 q = 11, k = .j 
1, Xi Yi ai f3i a· I f3i ai 3! ai 3, 
1 -2.0 0.25 0.00 2.72 0.00 2.02 0.00 1.76 0.00 1..5-± 

2 -1.0 1.0 0.14 2.48 0.11 1.92 0.09 1.69 0.08 1.-±9 

3 -0.3 11.1111 0.26 1.11 0.20 1.11 0.18 1.11 0.16 1.11 

4 -0.2 25.0 

Table 2.1 The values associated with the curves in Figure 2.2. 

Data Points q = 3, k = 1 q = 5, k = 2 q = 7, k = 3 q = 11, k = 5 
1, X· l Yi Ji Ji Ji Ji 

1 -2.0 0.25 

2 -1.0 1.0 6.02 34.53 45.55 55.41 

3 -0.3 11.1111 3722.57 4099.27 4246.05 4377.95 

4 -0.2 25.0 

Table 2.2 Jumps in the second derivative at the interior knots. 

(Xi,Yi) and (Xi+l,Yi+I), and move the values of (ai,f3i) presented in Table 

2.1 towards the origin of Figure 2.1. Note that for q > 5 and f :::; 3, these 

values fall within the smaller square [0,2] x [0,2] of the monotonicity region S, 

as observed by Fritsch and Butland [32], and the jump in the second derivative 

at the knots increases with the rise in the values of q and k as shown in Table 

2.2. Larger values of ai and f3il within the square [0,3] x [0,3] of Figure 2.1, 

generate smaller discontinuities in the second derivative and produce the more 

visually pleasing shape of the curves. It is worthwhile to mention here that 

varying either q or k, while keeping the other fixed such that p( q, k) :::; 3, will 

alter the shape of the curve in a manner similar to that noticed in the case of 

the simultaneous variation of these parameters in Figure 2.2. The effects due 

to these operations on the shape of the curves are demonstrated in Figure 2.3 

and Figure 2.4. 
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25.0 

20.05 

15.1 

10.15 

5.2 

0.25 

____ q=11, k=2 

q=11, k=3 

____ q=11, k=4 

q=11, k=5 

;1 
/ 

/ 

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 2.3 Costantini method with different values of k and fixed q. 

25.0 

20.05 

15.1 

10.15 

5.2 

0.25 

____ q=5, k=2 

q=8, k=2 

___ q=10, k=2 

q=11, k=2 

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 2.4 Costantini method with different values of q and fixed k. 
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2.3.5 Huynh Method. 

Huynh [40] has described several effective slope calculation formulae by 

naming them as limiter functions and some of these yield the values of di such 

that condition (2.4) is directly satisfied. These formulae are described below: 

di = {min(maX(Oi-I,Oi),3min(Oi_I,Oi)), if Oi-IOi > 0 

0, otherwise. 

{ 

. (Oi-I + Oi . ( )) 
di = mm 2 ,3mm Oi-I, 0i , if 0i-10i > 0 

0, otherwise. 

{ 

30i-10i(Oi-1 + Oi) 

di = 0;_1 + 40i-IOi + 0;' 

0, otherwise. 

(2.10) 

(2.11) 

(2.12) 

Formulae (2.10), (2.11) and (2.12) are called the Superbee, average and 

rational limiter respectively. It is worthwhile to mention here that, in practice, 

the formula (2.12) produces more visually pleasing curves than that of (2.10) 

and (2.11). In this chapter, unless otherwise stated, the Huynh method means 

formula (2.12) and its performance is compared with other existing methods 

in Section 2.8. 

We see that all the formulae given m (2.6) through (2.12) satisfy the 

following condition 

(2.13) 

This means that the slope of the curves lies between the slopes of the adjacent 

data segments and, as a consequence, when the data is linear (i.e. where 
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8i-1 = 8i), then di = 8i- 1. While this condition is not necessary for 

monotonicity, it seems intuitively reasonable as noted by Fritsch and Butland 

[32]. The standard cubic spline often exhibits unwanted oscillations due to the 

emergence of overshoots and/or extraneous inflection points. The above slope 

estimation methods ensure us that the C 1 cubic splines remedy this situation, 

for appropriate values of di chosen through them. 

The slope estimation formulae described in (2.6) through (2.12) only 

provide derivative values di at interior data points. There are a variety of 

ways to determine the derivative values d1 and dn at the end points. vVe have 

used the non-centered 3-point difference formula, setting the result to zero if 

its sign does not agree with that of 81 (or 8n -d. This procedure yields values 

of d1 and dn that fulfill the condition (2.4). Unless otherwise stated, these end 

conditions given by 

(2.14) 
otherwise. 

{ 

0, if 8n -1 = ° or sign(dn ) =I sign(8n -d 
d ) (2.15) 

n = 8 hn - 1(8n -1 - 8n -2 . 
+ otherWIse. 

n-1 h' hn -1 + n-2 

are used for all curves shown in Section 2.8. 

For completeness, we show here that, if 81 =I 0, sign(81)=sign(82), and d1 

is computed as described above, then 0:1 = d1 < 2, so that this method of 
81 
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determining end derivative values is compatible with monotonicity preserving 

conditions at the extreme points. After simplification, from (2.14), we ha\'e: 

If 82 is too large compared to 81 , this can be negative, which is why the 

adjustment to zero may be needed. However, we are interested only in an 

upper bound and assuming 81 and 82 have the same sign, we have: 

Since hI and h2 are assumed to be positive, hI < (hI + h2), so that a1 < 2, 

as claimed. 

2.4 Van Method. 

The method developed by Van [67] considers the interpolation problem 

p(Xi) = Yi, i = 1, ... , n by constructing the interpolant as a C 1 cubic spline 

with knots at the data points XI, ... , Xn and with two extra knots inserted 

in those subintervals at which the points (ai, f3i) tJ. 5, in order to preserve 

monotonicity of the data. It shows when it is necessary to add knots to a 

subinterval and where they should be placed. 

In contrast to the Fritsch and Carlson [33] method, Van's method does 

not modify the chosen values of di. Instead, when (ai, f3i) does not lie in 

5, rather than changing the slopes, two extra knots Ei,I and Ei,2 such that 

Xi < Ei,I ::; x* ::; Ei,2 < Xi+I are inserted in the subinterval [Xi, Xi+I], where 
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is the unique extremum of the quadratic which is obtained by differentiating 

the cubic (2.2) in the subinterval [Xi, Xi+l]. 

Let Di =I 0 and define 

TJ = Xi+l - x* , 
, 

LV = P (x*) (2.16) 

It is clear that p( x) is not monotone on [Xi, Xi+l] if and only if 

(2.17) 

In this case, the new interpolant on [Xi, Xi+l] is chosen to have a derivative 
, 

P (x) of the following form: 

al(X - (i,I)2 + b, X E [Xi, (i,l] 
, 

P (X) = b, X E [(i,l, (i,2] (2.18) 

a2(x - (i,2)2 + b, X E [(i,2, Xi+l] 

where aI, a2 and b are the constants in which b is chosen as zero (see Section 

2.5 for the case where b =I 0) and are determined in such a way that p(x) 

satisfies all interpolation and monotonicity requirements. 

By imposing the continuity and interpolation conditions on (2.18), and 

after simple calculations, the expressions for the additional knots (i,l and (i,2 

are given by 

(Yi+l - Yi) 
and (i,2 = Xi+l - 3TJ d + d 

iJl i+ITJ 

The interpolant p( x) is modified so that it becomes a C l cubic with respect 

to the expanded set of knots and preserves the monotonicity of the data. The 
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shape of the interpolant becomes flat between the additional inserted knots, 

that is, on the interval [ei,l, ei,2], preserving the monotonicity of the data. An 

algorithm is described briefly as follows: 

Algorithm. 

Step 1 

Step 2 

Step 3 

Calculate the slopes di at Xi using 4-point difference formula as 

For i = 2 to n-2 do 

At the end points, for i = 1, n, use non-centered 4-point difference 

formula to compute di, which uses the value of Yi at the four points 

nearest to Xi. 

Guarantee that no two of di, di+1, Di are of opposite signs: if diDi ~ 0, 

then set di = 0 and if di+lDi ~ 0, then set di+l = o. 

For each subinterval [Xi, Xi+l] in which (ai,{3i) E 5, represent p(x) 

as cubic Hermite polynomial (2.2) with slopes di, di+l and which is 

monotone on [Xi, Xi+l]. 
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Step 4 

If (CXi,{3i) tf- 5, then choose extra knots ~i.1 and ~i,2 as proposed 

above and defined p( x) as 

p(X) = c, 

a2(X - ~i,2)3 
3 +c, 

di 
where a1 = ( )2 ' 

xi - ~i,l 

x E [Xi, ~i,d 

X E [~i,l' ~i,2] 

X E [~i,2,Xi+l] 

di(Xi - ~i,l) di+1(Xi+1 - ~i,2) 
C = Yi - 3 = Yi+1 - 3 . 

Then p( x) is also monotone on [Xi, Xi+ 1]. 

2.5 Gasparo and Morandi Method. 

The method proposed by Gasparo and Morandi [34] is very similar to 

the Van [67] method except that the former draws a straight line between 

the additional inserted knots by imposing b :f 0 in (2.18), as opposed to the 

latter which always selects b as zero and yields a constant value throughout 

the interval [~i,l' ~i,2]. The process of finding the extra knots is achieved by 
I 

integrating p (x) on [Xi, xi+d and imposing the interpolation conditions. Then 

~i 1 and ti 2 are calculated as , '" , 

~i,l = Xi + ji and ~i,2 = Xi+1 - iJ 

where 
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In order to determine b, the authors suggest the formula 

where'P E [0,1) is a given real number and the slope b in the interval [Xi, Xi~l] 

can be varied by choosing different values of 'P, which in turn, may lead to 

better results. An algorithm is given as follows: 

Algorithm. 

Here Steps 1, 2 and 3 are the same as given in the Van method, except 

Step 4 which is outlined as. 

Step 4 

If (ai, (3i) tJ. 5, then add extra knots ~i,l and ~i,2 as mentioned above 

and define 

al(X - ~i,1)3 + bx + c, 
3 

p(x) = bx + c, 

a2(x - ~i,2)3 + bx + c, 
3 

where al = (Xi _ ~i,1)2 ' 

X E [Xi, ~i,l] 

X E [~i,I, ~i,2] 

X E [~i,2' Xi+l] 

and 

b 
(di - b)(Xi - ~i,I) b. (di+l - b)(Xi+l - ~i,2) 

C = Yi- Xi- 3 = Yi+l- Xz+l- 3 . 

Thenp(x) is also monotone on [Xi,Xi+l]. 

The above algorithms described by Van and Gasparo-Morandi give us a 

fourth-order approximation to monotone functions. We should point out that 

when the slopes for the data change abruptly from large to small values, the 
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curves produced by both algorithms change quickly due to the high order of 

convergence and are not as pleasing as those produced by other algorithms 

(see Section 2.8). 

2.6 Beatson and Wolkowicz Method. 

Beatson and Wolkowicz [5] have described methods which preserve 

monotonicity of the data by extending the monotonicity region S into a 

superset W which consists of union of monotonicity region S \vith the squares 

[0,1] X [3,4] and [3,4] X [0,1]. Here, when (ai, (3i) ¢ S, then ai, {3i are projected 

onto the superset of the monotonicity region for each subinterval (Xi, Xi+l) and 

then an extra knot is added where necessary to allow monotonicity without 

further modifying the derivative values di at the data points. The authors 

have presented two algorithms but here we only consider the second algorithm 

which provides more visually pleasing curves than the first. The basis of the 

method rests on the result of a lemma and a relaxation function g( x) such that 

g(x) ::; x for all x E [0,1] and (1- g(x))/(l- x) is bounded on [0,1). Suppose 

we are given a set of monotone data and a number X such that 1 ::; X ::; 2. An 

algorithm implementing the method is outlined briefly as follows: 

Algorithm 

Step 1 

Step 2 

Calculate the derivative values di using standard C 2 cubic spline 

interpolation with I not-a-knot I end conditions. 

For i = 1 to n do 

Correct the sign of derivative, that is, if dibi < 0, then set 

di = -di 
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Step 3 

Step 4 

Step 5 

For each subinterval [Xi,Xi+l] in which (Q:i,f3i) E S, represent p(x) 

as cubic Hermite polynomial (2.2) with slopes di , di+1 and which is 

monotone on [Xi, Xi+l]. 

For i = 1 to n-1 do 

If (Q:i,f3i) tJ. S, then perform a relaxed projection of (Q:i' 3z ) onto 

W by computing v > 0 such that (1,1) + V(Q:i - 1,f3i - 1) lie on 

the boundary of S and define a relaxation function g(v) as 

( ) _ {V/2, v < j 
9 v - 2 

2v - 1, v 2: 3· 

If Q:i > 1 and f3i 2: 1 Then 

Q:i = 1 + 9 (v) (Q:i - 1) 

f3i = 1 + 9 ( v ) (f3i - 1) 

Else 

If Q:i < 1 Then 

f3i = 1 + 9 ( v ) (f3i - 1) 

Else 

Q:i = 1 + g(V)(Q:i - 1) 

For i = 1 to n-1 do 

8 = 2Q:i + f3i - 3 
3 (Q:i + f3i - 2) 

If (Q:i,f3i) tJ. S, then choose an additional knot ~i,l as 

If Q:i < 1 then 

~il = Xi + 2hi8 

Calculate p(~i,d and pi (~i,l) using (2.2) and define 

p(~i,d = p(~i,d + !hi h"iX8 ( 8(2Q:i + f3i - 3) - Q:i) 
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Step 6 

, , 
p (ti,I) p (ti,l) 

Else 

, 
Compute P(ti,I) and p (ti,I) using (2.2) and set 

P(ti,t) = p(ti,l) -thi8ix(1 - 8) (8(2Qi +,Bi - 3) - Qi) 
, , 

p (ti,t) p (ti,l) 

If (Qi' ,Bi) (j. S, then choose an extra knot til as proposed above and 

modify the original piecewise single cubic spline on [Xi, xi+d into 

two cubic splines on [Xi, ti,d and [ti,l, Xi+l]. 

This algorithm becomes completely local if the derivative values di in Step 

1 are replaced with the 4-point difference formula as given in Step 1 of the 

Yan method. 

2.7 Pruess Method. 

In contrast to the above methods, Pruess [54] presents a local C2 cubic 

spline method which preserves monotonicity and convexity of the data by 

dividing each data subinterval [Xi, Xi+l] into three pieces using two additional 

knots ti,1 and ti,2 such that Xi < ti,l < ti,2 < Xi+l. The additional knots are 

constructed as follows: 

A piecewise interpolating function p( x) E C2 [Xl, xn] is then defined such that 

, ", 
P(Xi) = Yi, P (Xi) = di and p (Xi) = di, i = 1, ... , n. 
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where di and d~ are the first and second derivative values at the endpoints of 

the subinterval [Xi) Xi+l] respectively. Now p(x) is defined on each [Xi) Xi-,-l] as 

(2.19) 
p(X) = 

where 

(2.20) 

(2.21 ) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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p(X) is then in C 2[Xl, xn] for any choice of di and d~, i = 1, ... , n and for any 

choice of (J'i and Ti, i = 1, ... , n - 1. 

In order to derive the sufficient conditions attached to preserving local 

monotonicity and convexity, the author has, for simplicity, assumed (J'i = Ti 

for each interval. It is convenient to define 

Ii = sign(8i), i = 1, ... , n - 1. 

I 

'l/;i,l = sign(di), 'l/Ji,2 = sign(di), i = 1, ... , n. 

These signs are defined as III definition 1.3 of Chapter 1 and determined 

computationally as 

and at the end points '1/;1,1 

'l/;n-1,2. 

i = 2, ... , n -1. (2.26) 

'1/;2,2 and 'l/;n,2 

When (J'i = Ti, i = 1, ... , n - 1, the sufficient conditions for monotonicity 

are obtained as follows: 

(2.27) 

(2.28) 
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I 

-Tihid(Yi ::; 4di'Yi 

[Ti(l - Ti)hid: - Tlhid:+l]'Yi < [68i - 2di - 4Tidi+l]'Yi 

[Tlhid: - Ti(l- Ti)hid~+d'Yi < [68i - 4Tidi - 2di+l]'Yi 
I 

Tihidi+l'Yi ::; 4di+l'Yi 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

If conditions (2.27) through (2.35) hold true, then sign (p' (X)) = sign( 8i) for 

each x E [Xi, Xi+l]. 

Similarly, the sufficient conditions given by Pruess for convexity preserving 

are: 

or, equivalently, from (2.22) with (J'i = Ti, p" (~i,l) has the correct sign if and 

only if 

(2.37) 

" Similarly, from (2.23) with (J'i = Ti, P (~i,2) has the correct sign if and only if 
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To preserve monotonicity, some feasible techniques for choosing the free 
, 

parameters d i and d i are needed and for this purpose, if we choose the slope 

di satisfying the monotonicity condition (2.4), then the inequalities (2.27) 

through (2.35) are satisfied for any choice of d~ as long as Ti is sufficiently 

small. Pruess suggests to use Ti < 1/3 and the formula for d~, i = 1, ... , n, as 

follows: 

{ 

~/. . (1fJi,2 R2i-1 
d' 'f/i 2 mIn , 

i =' hi 
0, 

if R 2i-1 and R 2i-2 > 0 
(2.39) 

otherwise. 

where 

Now, we consider the convexity preserving case which is more complicated 

than the monotonicity preserving case. We first consider a reduced case by 

taking Ti = o. The inequalities (2.37) and (2.38) in terms of R's can then be 

written as: 

(2.40) 

~/··2R2· > 0 'f/', , - (2.41) 

The quadratic optimization method of Burmeister et al [10] can now be 

employed to get a 0 1 convex cubic spline interpolant satisfying conditions 

(2.40) and (2.41). Here again, Ti ::; 1/3 is chosen and the formula (2.39) 

is used for the d: to get 0 2 convexity preserving interpolants. An algorithm 

concerning the above theory has been implemented and is compared with other 

methods in the next section. It is worthwhile to note that Schmidt and Reb 

[59] have also described a 0 2 convexity preserving method using cubic splines 

which is very similar to the above method. 
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2.8 Numerical Examples and Conclusions. 

In this section, the different methods introduced earlier in this chapter 

are compared. For this purpose, a series of experiments have been conducted 

using the data sets introduced in Chapter 1 to examine the performance of 

each method. The results of these tests are now described. 

Data 1 is monotone increasing, so it is reasonable to expect a monotone 

increasing interpolant. However, the data contains both flat and steep 

regions which must be accommodated, making monotonicity preservation more 

difficult to achieve. The methods described in this chapter were applied to this 

test data and the resulting curves are shown in Figures 2.,5 through 2.12. The 

Gasparo-Morandi and Van methods introduce a pair of extra knots in the 

interval [9.0,11.0] at (9.097,10.781) and (9.184,10.584) respectively. In Figure 

2.9 and Figure 2.12, although shapes of the curves are monotone increasing, 

there exists a non-pleasing behaviour in the above interval, where shapes are 

linear and flat between the additional inserted knots. For this data, it is clear 

that the Gasparo-Morandi and Van methods do not give visually pleasing 

curves, but the other methods cope fairly well in general and produce visually 

pleasing shapes. 

Data 2 contains a very steep region between points 8.7 and 10.0, a very 

flat region between points 10.0 and 20.0 and a difficult step feature between 

points 7.99 and 8.7. The data is also convex from the point 8.7 onwards. The 

methods were applied to fhis data set and the resulting curves are shown in 

Figures 2.13 through 2.20. The most striking feature of the curves in Figures 

2.13 to 2.20 is the sharp corner at point 8.09 in each case. This occurs because 

each method preserves monotonicity in the data and the point 8.09 is the 
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junction of a very flat and a very steep segment. In Figure 2.17 and Figure 

2.20, the results for this data show once again that the Gasparo-.\Iorandi and 

Yan methods produce sharper changes in slope of the curve at the additional 

knots, and as a result the curve segments are not visually pleasing between 

the additional inserted knots at (10.227,11.894) and (10.430,11.798) in the 

interval [10.0,12.0] respectively. As before, the other methods produce cunes 

which are visually pleasing; in particular, the shape of curve in the region of 

the interval [10.0,12.0]. 

Data 3 contains a flattish region at each end and a very steep section in 

the middle. Note also that this data is convex in the interval [22.0,23.1] in 

which the points 22.5, 22.6 and 22.7 are collinear, and concave in the interval 

[23.2,24.0]. This shows that the interpolating curve will have a single point 

of inflection in [23.1,23.2]. Figures 2.21 through 2.28 show the results of 

interpolating this data set by various the methods. Figure 2.21 is the graph 

of the interpolating curve generated by Beatson-Wolkowicz method. It can be 

seen that some erratic and non-pleasing behaviour appears in the shape of the 

curve segments, specifically in the intervals [22.8,23.0] and [23.2,24.0]. From 

the plots of the interpolating curves shown in Figure 2.25 and Figure 2.28, 

we note, in particular that shapes of the curves in the intervals [23.0,23.1] 

and [23.5,24.0] show unpleasant behaviour due to the linear and flat segments 

drawn over the extra knots inserted at (23.009,23.074) and (23.659,23.733) by 

the Gasparo-Morandi method and at (23.016,23.055) and (23.669,23.717) by 

the Yan method, respectively. The Beatson-Wolkowicz, Gasparo-Morandi and 

Yan methods produce totally unpleasant curves for this difficult data and in 

fact they are trying to preserve monotonicity instead of convexity in the data. 

The Brodlie, Fritsch-Butland, Huynh and Pruess methods give more natural 
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looking and visually pleasing curves, but the remaining methods produce sub­

standard interpolants to the data, where a noticeable change in the shape of 

the curve at the intervals [22.9,23.1] and [23.2,23.4] can be seen. 

Data 4 is convex and monotone increasing and Figures 2.29 through 

2.36 are the graphs of the interpolation curves drawn by the methods in 

question. In Figure 2.33, the pair of additional knots inserted by the Gasparo­

Morandi method are placed at (-1.991, -1.004) and (-0.945, -0.441), while 

in Figure 2.36, the extra knots introduced by the Yan method are located 

at (-1.983, -1.008) and (-0.900, -0.558), in the intervals [-2.0, -1.0] and 

[-1.0, -0.3] respectively. Once again, the Gasparo-Morandi and Van methods 

fail to maintain the shape of the data because they are trying to preserve 

monotonicity rather than convexity and the effects of linear and flat curve 

segments drawn due to the insertion of extra knots can be seen in the region 

of the first, second and third interpolation points. Figure 2.29 shows a 

curve generated by the Beatson-Wolkowicz method. The shape of this curve, 

particularly in the region of the first and second interpolation points, is slightly 

unpleasant. Figure 2.31 is the graph of the interpolating curve by the Butland 

method. It can be seen that the curve produces a shape with a rapid turn 

at the interior data points. The reason for these may be due to the rapid 

change in the slopes at those points. As a comparison, the interpolating curves 

discussed above are compared to the rest of the curves shown in Figures 2.30, 

2.32, 2.34 and 2.35: we focus, in particular, on the shape of the curve in the 

region of the second and third interpoaltion points. It can be seen that these 

curves produced by the Brodlie, Fritsch-Butland, Huynh and Pruess methods 

are more satisfactory and visually pleasing than those obtained by the other 

methods. 
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The Gasparo-Morandi and Van methods generate a C l piecewise cubic 

spline interpolant and only add two extra knots between the existing data 

points at which (ai, f3i) f/- S, in order to preserve monotonicity of the data. 

The disadvantage of adding extra knots is that the resulting curve generally 

yields an undesirable feature on the shape of the interpolant. This is due to 

the fact that former method always contructs a straight line with non-zero 

slope and the latter always draws a horizontal line, between the additional 

inserted knots. Obviously, the linear or flat curve segments drawn by these 

methods can not produce a visually pleasing graph, as is evident from the 

aforementioned examples. Furthermore, these methods require more storage 

and increased search time during evaluation. 

The C 2 shape-preserving interpolation method proposed by Pruess has 

an advantage in terms of accuracy and additional smoothness, which may be 

necessary in some applications, but is less efficient in both the preprocessing 

and evaluation phase. It always adds two additional knots in each interval and 

thus, using three cubics per interval, is less cost effective in terms of evaluation. 

In the preprocessing phase, particularly in the case of convex data, it requires 

solving an optimization problem in order to satisfy the convexity conditions. 

Also, this process must be repeated if an additional data point is added to the 

data set, whereas other methods depend only on a few nearby data points, 

which allow for efficient updating of the data set. Thus, the Pruess method is 

not competitive in terms of computational cost with the methods described in 

this chapter. 

All other methods produce shape-preserving interpolating curves usmg 

C l cubic splines and are simple, fast, very easy to implement) and cheap 

in terms of computational cost in that they do not require the insertion of 

55 



additional knots. Also, they demand a lesser number of operations per single 

piece of interpolant compared to the Beatson-Wolkowicz, Gasparo-Morandi, 

Van and Pruess methods. The main disadvantages for the methods which add 

extra knots are that the amount of extra storage required for the data, and 

the amount of search time needed to evaluate the spline interpolant are both 

increased. 

Furthermore, on the basis of appearance of the shapes of the curves, we 

conclude from the above results that the Brodlie, Fritsch-Butland, Huynh 

and Pruess methods are, in general, able to produce both smooth and visually 

pleasing shapes of the interpolating curves and are the best among the existing 

local methods. 
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Figure 2.5 Beatson-Wolkowicz method which interpolates Data 1. 
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Figure 2.6 Brodlie method which interpolates Data 1. 
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Figure 2.7 Butland method which interpolates Data 1. 
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Figure 2.8 Fritsch-Butland method which interpolates Data 1. 
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Figure 2.9 Gasparo-Morandi method which interpolates Data 1. 
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Figure 2.10 Huynh method which interpolates Data 1. 

59 



85 

70 

55 

40 

25 

10 

o 3 6 9 12 15 

Figure 2.11 Pruess method which interpolates Data 1. 

85. 

70 

55 

40 

25 

10 

o 3 6 9 12 15 

Figure 2.12 Van method which interpolates Data 1. 
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Figure 2.13 Beatson-Wolkowicz method which interpolates Data 2. 
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Figure 2.14 Brodlie method which interpolates Data 2. 
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Figure 2.15 Butland method which interpolates Data 2. 
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Figure 2.16 Fritsch-Butland method which interpolates Data 2. 
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Figure 2.17 Gasparo-Morandi method which interpolates Data 2. 
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Figure 2.18 Huynh method which interpolates Data 2. 
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Figure 2.19 Pruess method which interpolates Data 2. 
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Figure 2.20 Yan method which interpolates Data 2. 
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Figure 2.21 Beatson-Wolkowicz method which interpolates Data 3. 
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Figure 2.22 Brodlie method which interpolates Data 3. 
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Figure 2.23 Butland method which interpolates Data 3. 
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Figure 2.24 Fritsch-Butland method which interpolates Data 3. 

66 



986.0 

893.4 

800.8 

708.2 

615.6 

523.0 

22.0 22.4 22.8 23.2 23.6 24.0 

Figure 2.25 Gasparo-Morandi method which interpolates Data 3. 
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Figure 2.26 Huynh method which interpolates Data 3. 
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Figure 2.27 Pruess method which interpolates Data 3. 
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Figure 2.28 Van method which interpolates Data 3. 
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Figure 2.29 Beatson-Wolkowicz method which interpolates Data .t. 
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Figure 2.30 Brodlie method which interpolates Data 4. 
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Figure 2.31 Butland method which interpolates Data 4. 
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Figure 2.32 Fritsch-Butland method which interpolates Data 4. 
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Figure 2.33 Gasparo-Morandi method which interpolates Data 4. 
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Figure 2.34 Huynh method which interpolates Data 4. 
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Figure 2.35 Pruess method which interpolates Data -1. 
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Figure 2.36 Van method which interpolates Data 4. 
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Chapter 3 

Shape-Preserving Algorithms 

Using Quadratic Splines 

As we have discussed in Chapter 2, by relaxing the C2 continuity of cubic 

splines, we get enough degrees of freedom to satisfy the monotonicity and/or 

convexity conditions. Nevertheless, one of the very important reasons to prefer 

cubics over quadratics is their C2 continuity. If we do not have this, then an 

important advantage is lost. An attractive alternative over cubic splines is 

then to use the C 1 piecewise quadratic splines with additional knots chosen so 

as to preserve the shape characteristics of the data. Methods of this type are 

described below. 

McAllister and Roulier [50] developed an algorithm in which the slope and 

knot assignments are made automatically to preserve monotonicity and/or 

convexity, based on a geometrical argument. The resulting quadratic piecewise 

polynomial is constructed from Bernstein polynomials. A similar algorithm 

using quadratic piecewise polynomials is presented by Schumaker [61]. This 

preserves both monotonicity and/or convexity by the addition of at most one 

knot in each data subinterval. This algorithm leaves judgement about control 

of inflection points, monotonicity, etc. up to an interactive computer user who 

modifies the interpolant either by changing the slopes or by altering the knot 

locations. Lahtinen [45, 46] has described the implementation and application 

of a minor modification of Schumaker's algorithm. 
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This chapter has been published in Iqbal [41] and expores the relationship 

between the ideas of the Schumaker and the McAllister and Roulier algorithms 

by presenting them in a common notation. In Section 3.1, we show that at the 

internal points the slope calculation method used by :'IcAllister and Roulier 

[50], which is derived geometrically, generates slopes which are identical to 

those proposed by Butland [11]. In Section 3.2, we then prm"e that the 

slopes obtained from Butland's method satisfy all of the monotonicity and/or 

convexity conditions described in the algorithm of Schumaker [61] and that. 

using these slopes, the algorithm generates a shape-preserving interpolant in 

one pass, rather than requiring the adjustment of any slope or knot location. In 

Section 3.3, we determine the location of the knot introduced by the algorithm 

of McAllister and Roulier, and in Section 3.4 it is shown that the interpolating 

quadratic splines generated by this method and by Schumaker's algorithm 

are identical if the slopes required by Schumaker's algorithm are estimated 

by Butland's slope method. In Section 3.5, the Butland slopes are further 

improved iteratively for the convex data using a technique described in Frey 

[31]. Finally, conclusions and numerical examples are presented in Section 3.6. 

3.1 Slope Calculation Methods. 

The local slope estimation method of Butland [11], referred to above, was 

proposed for use with cubic interpolants. Fritsch and Butland [32] show that 

the slopes lie within the monotonicity region for piecewise cubic interpolation 

as defined by Fritsch and Carlson [33]. Here, we consider the use of the 

Butland slope formula with the piecewise quadratic interpolation methods of 

Schumaker [61] and McAllister and Roulier [50]. At the interior data points 

(Xi, Yi), i = 2, ... , n - 1, the slopes are estimated as 
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(3.1) 
otherwise. 

At the extreme points (Xl, Yl) and (xn, Yn), the slopes are calculated by using 

a forward and a backward 3-point difference formulae. ~ow from (3.1), it is 

obvious that 

d· 0<_l_<2 
- Oi-l 

and (3.2) 

Now, we prove that the Butland and the McAllister and Roulier slope 

calculation methods are identical. In the McAllister and Roulier slope 

estimation method, for i = 2, ... , n - 1, di = 0 if Oi-lOi -:; O. Otherwise, if 

IOi-ll > IOil > 0, then the line through (Xi,Yi) with slope Oi-l is extended 

until it meets the horizontal line through (Xi+l, Yi+d at the point (x, Yi+d as 

shown in Figure 3.1. The equation of the line passing through (Xi, Yi) with 

slope Oi-l is given by 

. . Yi+l - Yi ~ x + Xi+l 
McAllIster and RoulIer set di = A , where X = 2 From (3.3), 

X - Xi 

Thus, 

di = Yi-;l - Yi = --:0 ___ 
2 __ _ 

X - Xi 1 xi+ 1 - Xi --+----
Oi-l Yi+l - Yi 

2 

(3.4) 
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Y 

x 

Figure 3.1 Data configuration for McAllister and Roulier's slope 

method when 18i-11 > 18il > o. 

On the other hand, if 0 < 18i-11 :s: 18il as shown in Figure 3.2, then the 

line through (Xi, Yi) with slope 8i is extended until it meets the horizontal line 

through (Xi-I, Yi-I) at the point (x, Yi-I). By applying a similar argument as 

above leads to 

(3.5) 

From (3.4) and (3.5), we can write, for i = 2, ... , n - 1 

(3.6) 
otherwise. 

At the end points, for i = 1, n, the slopes are estimated as follows: 

76 



and 

Y 

(X,Yi-J) 

x 

Figure 3.2 Data configuration for McAllister and Roulier's slope 

method when 0 < !Oi-l! < !Oi!. 

otherwise. 

otherwise. 

(3.7) 

(3.8) 

From (3.1) and (3.6), we deduce that the internal slopes derived from 

the Butland formula and from the construction of McAllister and Roulier are 

identical. The term "Butland formula" is used hereafter for the slopes that 

are estimated by the Butland method at the interior points and at the end 

points by the McAllister and Roulier method. 
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3.2 Schumaker Algorithm. 

Schumaker [61] describes a fairly straightforward shape-preserving method 

which constructs the interpolant as a C l quadratic spline with knots at the 

data points Xl, ... , Xn and with at most one additional knot in each subinterval 

(Xi, Xi+l), i = 1, ... , n - 1. The additional knot is inserted under certain 

conditions and, when it is inserted, there is some freedom of choice in exactly 

where it can be placed. 

The method is based on a number of lemmas which characterise the 

solution of the interpolation problem (1.8). These state that if di + di+ l = 28i, 

then a single quadratic polynomial 

(3.9) 

interpolates the data in [Xi, Xi+l], and otherwise a quadratic spline with a 

single additional knot at an arbitrarily chosen point ~i is required. This spline 

is given by 

X E [Xi, ~i] 

X E [~i' Xi+l] 
(3.10) 

with 

where 

(3.11) 
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Schumaker has presented the following results about the shape character­

istics of the interpolant. 

Proposition 3.2.1. 

If di + di+l = 28i, then the single quadratic polynomial p( x) in the interval 

[Xi, Xi+l] will be monotone if and only if di and di+l are of same sign and 

convex (concave) when di+l > di (di+l < di). 

Proposition 3.2.2. 

If di+di+l =1= 28i, and di, di+l and 8i have the same sign, then the quadratic 

spline p(x) on [Xi, Xi+l] : 

(I) is monotone if and only if 

and (3.12) 

~i - Xi 
where w = . 

Xi+l - Xi 

(II) is convex when 

(3.13) 

and concave when 

(3.14) 

where di is the slope at ~i. 

(III) If (di+l - 8i)(di - 8i) < 0, then p(x) is convex (concave) if di+l > di 

(di+l < di) assuming that the additional knot ~i is chosen so that 
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(3.15) 

Moreover, if didi+ 1 > 0, then p( x) is also monotone on [Xi, Xi+ 1]. 

(IV) If (di+l - bi)(di - bi) > 0, then p(x) has a point of inflection on [Xi, Xi+d. 

The requirements on di restrict the choice of ~i for given di, di+l and 

it is not possible to satisfy conditions (3.13) and (3.14) for arbitrary knot 

locations. So ~i must satisfy conditions (3.15) that show which knot locations 

lead to convex or concave splines. Schumaker proposes the choice as follows: 

Case 1. 

(3.16) 

Case 2. 

( _ Xi + Xi+l 
l - 2 (3.17) 

which are the centre points of the region of admissibility (note that, for 3.16 

at least, this implies di = bi). When the data is convex or concave, only Case 

1 will be selected. 

In order to ensure that the interpolants preserve the monotonicity and/or 

convexity of the data, it is necessary to specify how the slopes di are to be 

chosen from the given data. Schumaker proposes a formula for generating 
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initial slope estimates which does not automatically ensure this (see. for 

example, Figures 3.5 and 3.6) and proposes instead to allow the user to modify 

the slopes and/or the knot locations to obtain shape-preserving interpolants. 

We now show that the Butland formula yields values of di and di+1 which 

directly satisfy all the conditions specified in Propositions 3.2.1 and 3.2.2 and 

that the resulting interpolant becomes monotone and/or convex automatically, 

without adjusting the slopes or the inserted knot. It is ob\"ious that the 

Butland formula satisfies Proposition 3.2.1. Now we prove the other results in 

Proposition 3.2.2. 

w= 
Xi+l - Xi 

and, from (3.11), we have 

di+1 - 8i 

di+l - di 
(3.18) 

(3.19) 

To ensure monotonicity in this case, we must show that (3.12) is satisfied 

for the Butland slopes. Now if 8i-I, 8i, 8i+l are of the same sign, then the 

Butland slopes di, di+l are also of the same sign and hence didi+l ~ O. So, 

from (3.18), we have 
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(3.20) 

2 If t. = Xi + Xi+l then 
• 1,1 2' 

~i - Xi 1 
w= -

Xi+l - Xi 2 

and (3.12) becomes 

or 

(3.21 ) 

which follows immediately from (3.2). Hence, we conclude from (3.20) and 

(3.21) that the Butland formula satisfies the monotonicity condition (3.12). 

Let us now consider the convexity condition (3.13) i.e., 

which in view of (3.19) may be written as 

(3.22) 

We know that the Butland formula satisfies the inequalities 

and 

Now (3.22) follows from these inequalities automatically and so we see that 

inequality (3.13) always holds. Similarly, it can be proved that inequality 

(3.14) always holds with Butland formula when the data is concave. 
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Now we are in a position to say that by substituting the slopes estimated 

by the Butland formula into the Schumaker method: it becomes a one-pass 

algorithm for shape-preserving interpolation. 

3.3 McAllister and Roulier Algorithm. 

The algorithm proposed by McAllister and Roulier [50] produces a local, 

c1 quadratic spline interpolant which preserves monotonicity and/or convexity 

of the data by inserting at most two additional knots per data interval. The 

selection of slopes and knots is based on the geometric argument described 

below and the polynomial pieces are constructed using Bernstein polynomials. 

Let 5 = (Xi, Yi) and T = (Xi+l, Yi+d be two non-decreasing data points 

with Xi < Xi+1 having slopes di and di+1 respectively. Let L1 and L2 be the 

two straight lines through points 5 and T with slopes di and di+l respectively. 

Let R be the set of points, 

R = {(x, Y) : Xi < X ::; Xi+1, and Yi::; Y ::; Yi+1} - {5, T} 

that is, R is the boundary and interior of the rectangle defined by the 

points (Xi, Yi), (Xi, Yi+I), (Xi+1' Yi+1) and (Xi+l, Yi) minus the points 5 and 

T. Suppose M is the midpoint line segment through the points F = 

( Xi + Xi+1 ) (Xi + Xi+1 ) Z ( ) b . f 2 ,Yi and G = 2 ,Yi+1· Let = Zl, Z2 e a pomt 0 

intersection of L1 and L2. We now show how to construct the desired quadratic 

McAllister and Roulier consider four cases which can arise in general, but 

describe a local method for assigning slopes to the data points (as shown in 
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Section 3.1) which yields only the first two cases. For our comparison purpose, 

only the these two cases are relevent here. 

Case 1. 

Here LI and L2 intersect each other at the point Z = (Zl' Z2) in R, as 

shown in Figure 3.3, where 

(3.23) 

The algorithm inserts an additional knot at x = ~i. 

Now suppose that 

V - ( ) - (Xi + ~i L (Xi + ~i ») 
- VI, v2 - 2' I 2 (3.24) 

W - ( ) - (Xi+1 + ~i L (Xi+l + ~i») 
- WI, w2 - 2 ,2 2 (3.25) 

T 

w 

u 

s 
Figure 3.3 Case 1 configuration for McAllister-Roulier algorithm. 

Let us define TJi = L(~i)' where L is the line passing through the points V and 

W. Then definep(x) on [Xi,Xi+l] with a join point U = (~i,TJi) as follows: 
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p(X) = (3.26) 

If the first degree spline defined by the join points S, V, U, Wand T is 

convex (concave) and/or monotone, then p(x) is also convex( concave) and/or 

monotone. 

Case 2. 

In this case, Ll and L2 do not intersect in R. Instead both intersect the 

line segment M (see Figure 3.4), and the method introduces one additional 

knot 

t. _ Xi + Xi+l ( 
I"l - 2 3.27) 

G T 

M W 

s F 

Figure 3.4 Case 2 configuration for McAllister-Roulier algorithm. 
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in (Xi, xi+d· Then define V, W, U and the spline p(x) with a common point 

U = (~i,TJi) on [Xi,Xi+l] as in Case 1. Then p(x) will have a continuous first 

derivative and preserve the shape of the data on [Xi, Xi+l]. The details of 

other two cases are omitted here, as they are rather complex and cannot be 

succinctly described with a few equations or figures. The reader should refer 

to the descriptions found in McAllister and Roulier [50]. 

3.4 Similarity Between McAllister-Roulier and 

Schumaker Algorithms. 

In the following section, we show that the McAllister-Roulier and Schu-

maker algorithms produce identical interpolants if the slopes used are calcu-

lated by the Butland formula. In Section 3.3, we observed that in Case 1, from 

(3.23), the McAllister-Roulier algorithm selects the additional knot at 

and in Case 2, from (3.27), at 

which are the same as the Schumaker algorithm does in equations (3.16) and 

(3.17) if di+l + di 1= 28i, though the latter does not introduce any knot if 

di+l + di = 28i. We will now show that the ordinate TJi at ~i is the same for 

both methods when slopes are calculated by the Butland formula. 

We first consider the Schumaker algorithm. In the case where di+1 + di = 
28i, the Schumaker algorithm does not insert a knot. If ~i is the knot inserted 
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by the McAllister-Roulier algorithm, then from (3.9), the value at ~i of the 

single polynomial used by Schumaker is 

and, since di = 28i - di+l, we have 

Now when di+l + di :j:. 28i, from (3.10), we obtain 

By substituting the values of AI, BI and GI, we have 

and on simplification, we get 

(3.29) 

Now by substituting the value of di from(3.1l) in (3.29), we obtain 
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From (3.28) and (3.30), we conclude that Schumaker's algorithm gives 

(3.31) 

We now look at the McAllister-Roulier algorithm where "Ii can be calculated 

as 

(3.32) 

where 

By substituting the values of VI, V2, WI and W2 in (3.32), we obtain 

(3.33) 

N ow consider 

1 1 
= Yi+1 - Yi - 2di+I(Xi+1 - Xi) + 2(di+1 - di)(~i - Xi) 

W2 - v2 = bi _ di+1 + (di+1 - di)(~i - Xi) 
Xi+1 - xi 2 2(Xi+1 - Xi) 

Substituting this expression into (3.33), we get 

(3.34) 
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From (3.31) and (3.34), we see that the 'T]i are identical in both methods. 

This means that both methods select the same ordinate value for the additional 

inserted knot. We have then proved that both methods make use of same 

slopes at the original data points, select the same additional knots in the 

same circumstances, and use the same slope and ordinate values at the extra 

inserted knots. The uniqueness of the quadratic spline follows immediately 

from a well-known theorem on splines (see Schumaker [62], theorem 4.53, page 

160). 

We conclude that the McAllister-Roulier and the Schumaker algorithms 

are identical if the slopes in Schumaker algorithm are estimated by the Butland 

formula. Furthermore, when di+1 +di = 2bi, then there is no need for an extra 

knot and so, in this case, the additional knot introduced by the McAllister­

Roulier algorithm is redundant. 

3.5 Iterative Improvement to the Slopes. 

In Section 3.2, it is shown that the Schumaker algorithm yields shape­

preserving interpolants for all data types, provided the slopes required at the 

data points are estimated by the Butland formula (3.1). However, in some 

convex data cases, especially where curves with sharply varying curvature 

implicit in the data are to be produced, the Schumaker interpolant with 

Butland slopes sometimes displays excessively large local curvatures. For the 

purpose of illustration, the curves drawn in Figure 3.10 and Figure 3.11 are 

produced using Butland's slopes (full line) and Frey's improved slopes (broken 

line) and the corresponding jumps in the second derivative at the interior 

knots, denoted by Ji, are presented in Table 3.1 and Table 3.2 respectively. 
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Data Points Butland :"Iethod Frey :"Iethod 
1, Xi Yi Ji Ji 

1 -2.0 0.25 

2 -1.0 1.0 37.90 11.89 

3 -0.3 11.1111 2222.60 803.10 

4 -0.2 25.0 

Table 3.1 Jumps in the second derivative at the interior knots for Data -1. 

Data Points Butland Method Frey Method 

1, Xi Yi Ji Ji 

1 0.0 19.0476 

2 0.1 7.0175 1910.17 838.43 

3 0.4 3.4188 78.67 46.24 

4 0.7 3.8095 125.43 25.55 

5 0.8 4.7059 415.35 200.59 

6 1.0 19.0476 

Table 3.2 Jumps in the second derivative at the interior knots for Data 6. 

The graph shown by a full line exhibits a shape with a rapid turn and tightening 

effect in the region of the third interpolation point in Figure 3.10, while a 

similar behaviour is observed in the region of the second interpolation point 

in Figure 3.11 where curve is also turning sharply. The reason for these may 

be due to the rapid change in the slopes at those points. Also, this is in 

agreement with the discussion on page 12 of Lancaster and Salkauskas [47], 

which states that if the curvature value is large at Xi, then the slope of the 

curve is turning I rapidly I with X as X increases through Xi. In that sense, 

the shape of the curve is tightened at Xi. In the case of the curvature value 

being small at Xi, then the slope of the curve is turning I slowly I with X as 

X increases through Xi. As a result, I flat spots I are produced on the curve 
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corresponding to almost zero curvature values. The curves drawn by a broken 

line display a visually pleasing shape of the interpolants, particularly in the 

region of the second and third interpolation points in Figure 3.10 and Figure 

3.11 where improvement in the shape of curve segments can be clearly seen, 

than those obtained by a full line. The reason may be due to the fact that the 

Frey method of improving the slopes keeps the jumps in the second derivative 

at the knots small in comparision with the Butland method, as shown in Table 

3.1 and Table 3.2, and hence produces more visually pleasing shapes of the 

curves. 

In this section, the Butland slope calculation method is further developed 

with an iterative technique to overcome the above problem. For this purpose, 

we adopt an iterative improvement method for slopes, due to Frey [31], where 

Butland slopes can be employed as an initial guess. Like the Butland slope 

method, the Frey technique is also local, and the slope of the curve at a 

particular data point is improved iteratively by influencing the slopes of two 

other data points in its vicinity (the slope at data point in question is taken 

as a central point with one data point on each side). 

Frey proposes a method of iterative improvement of the slopes applicable 

to successive initial guesses of slopes at given data points. He assumes a 

convex data set consisting of three consecutive data points (Xi-I, Yi-l), (Xi, Yi) 

and (Xi+I' Yi+I). The paper describes his method in great detail, but here we 

simply list the iterative process as follows. First compute 

91 



Then di is computed as 

(3.35 ) 

We use the Butland slope formula (3.1) for the initialization of slopes 

required in the above steps, and apply (3.35) iteratively to each slope in 

succession to produce improved estimates. Frey does not perform convergence 

analysis; however, in applications his scheme converges adequately within ten 

to fifteen iterations through the data points. 

3.6 Numerical Examples and Conclusions. 

The algorithm described in the preceding section has been tested on the six 

data sets which have been already discussed in Chapter 1. The corresponding 

plots of the interpolants, showing the data points marked by circles (0), are 

presented in Figures 3.7 through 3.12. Data points, slopes, additional inserted 

knots and case numbers are listed in Tables 3.3 through 3.8. The additional 

(unnecessary) knots introduced by the McAllister-Roulier algorithm and not 

by the Schumaker algorithm are marked with an asterisk (*). We observe that 

the algorithm generates visually pleasing interpolants automatically as shown 

in Figures 3.7 to 3.12. Comparing Figure 3.7 with the corresponding Figures 

3.5 and 3.6 generated by the Schumaker [61], where three adjustments to the 

slopes are made to obtain a similar shape, we see that the present algorithm 

behaves very well. 

92 



In Figure 3.10, the curve obtained using Butland's slopes (solid line) and 

the curve achieved by the iterative scheme (dotted line) are displayed. The 

two curves lie almost on top of one another, apart from the interval [-1.0, -0.3] 

where the curve produced with Butland slopes is tighter than that generated by 

the iterative scheme. Similarly, in Figure 3.11, the two curves agree very closely 

with one another except in the interval [0.1, 0.4]' where the curve displayed 

with Butland slopes is tighter than the curve produced by the iterative scheme. 

We have shown that the Schumaker algorithm using the Butland slope 

formula generates a shape-preserving interpolant in one pass and is identical 

to the McAllister-Roulier algorithm if the same slopes are used in each. 

Schumaker's algorithm has advantages over the McAllister-Roulier algorithm, 

as it is much simpler to implement and requires less storage since it introduces 

extra knots only in those intervals where di + di+1 =f. 2bi, whereas the latter 

method always generates one additional knot per data interval. 

The Schumaker algorithm can be used in conjunction with the Roulier 

[58] method for shape-preserving surface interpolation. This is presented in 

Chapter 6. 
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Figure 3.5 Schumaker algorithm with initial slopes estimates. 
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Figure 3.6 Schumaker algorithm with improved slopes estimates. 

94 



85 

70 

55 

40 

25 

10 

o 3 6 9 12 15 

Figure 3.7 Shape-preserving quadratic spline interpolant to Data 1. 

Data Points Slopes Additional Knots Case on 

z Xi Yi d· l ~i [Xi, Xi+ll 

1 0.0 10.0 0.0 1.0* 2 

2 2.0 10.0 0.0 2.5* 2 

3 3.0 10.0 0.0 4.0* 2 

4 5.0 10.0 0.0 5.5* 2 

5 6.0 10.0 0.0 7.0* 2 

6 8.0 10.0 0.0 8.389 1 

7 9.0 10.5 0.8182E+00 10.160 1 

8 11.0 15.0 0.4228E+01 11.5 2 

9 12.0 50.0 0.8750E+01 13.0 2 

10 14.0 60.0 0.8333E+01 14.5* 1 

11 15.0 85.0 0.4167E+02 

Table 3.3 The values associated with Figure 3.7. 
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1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

8.0 10.4 12.8 15.2 17.6 20.0 

Figure 3.8 Shape-preserving quadratic spline interpolant to Data 2. 

Data Points Slopes Additional Knots Case on 

z x· z Yi d· z ~i [Xi, Xi+l] 

1 7.99 0.0 0.3750E-06 8.040* 1 

2 8.09 2.76429E-05 O.5725E-03 8.140 2 

3 8.19 4.37498E-02 0.3148E+00 8.445 2 

4 8.70 0.169183 0.3490E+00 8.950 2 

5 9.20 0.469428 0.5967E+00 9.994 1 

6 10.0 0.943740 0.5247E-01 11.031 1 

7 12.0 0.998636 0.8422E-03 13.471 1 

8 15.0 0.999919 0.2898E-04 17.499* 1 

9 20.0 0.999994 0.1016E-05 

Table 3.4 The values associated with Figure 3.8. 
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893.4 
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708.2 
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523.0 

22.0 22.4 22.8 23.2 23.6 24.0 

Figure 3.9 Shape-preserving quadratic spline interpolant to Data 3. 

Data Points Slopes Additional Knots Case on 

1. X· l Yi d· l ~i [Xi, Xi+d 

1 22.0 523.0 0.2909E+02 22.250* 1 

2 22.5 543.0 0.5091E+02 22.550 2 

3 22.6 550.0 0.7000E+02 22.650 2 

4 22.7 557.0 0.7467E+02 22.763 1 

5 22.8 565.0 0.8889E+02 22.864 1 

6 22.9 575.0 0.1200E+03 22.963 1 

7 23.0 590.0 0.2000E+03 23.070 1 

8 23.1 620.0 0.5333E+03 23.150 2 

9 23.2 860.0 0.8949E+03 23.233 1 

10 23.3 915.0 0.3798E+03 23.353 1 

11 23.4 944.0 0.1888E+03 23.455 1 

12 23.5 958.0 0.8000E+02 23.750* 1 

13 24.0 986.0 0.3200E+02 

Table 3.5 The values associated with Figure 3.9. 
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-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 3.10 Shape-preserving quadratic spline interpolant to Data 4. 

Data Points Slopes Additional Knots Case on 

z x· z Yi d· z ~i [Xi, Xi+d 
1 -2.0 0.2500 0.7404E-01 -1.500* 1 

2 -1.0 1.0000 0.1426E+01 -0.668 1 

3 -0.3 11.1111 0.2617E+02 -0.250* 1 

4 -0.2 25.0000 0.2516E+03 

Table 3.6 The values associated with Figure 3.10. 
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Figure 3.11 Shape-preserving quadratic spline interpolant to Data 6. 

Data Points Slopes Additional Knots Case on 

1, X' 1 Yi d· l ~i [Xi, Xi+l1 

1 0.0 19.0476 -0.2188E+03 0.050* 1 

2 0.1 7.0175 -0.2182E+02 0.265 1 

3 0.4 3.4188 0.0 0.528 1 

4 0.7 3.8095 0.2274E+Ol 0.751 1 

5 0.8 4.7059 0.1594E+02 0.900* 1 

6 1.0 19.0476 0.1275E+03 

Table 3.7 The values associated with Figure 3.11. 
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Figure 3.12 Shape-preserving quadratic spline interpolant to Data ,5. 

z 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Data Points Slopes Additional Knots Case on 

x· z Yi d· z ~i [Xi, Xi+d 

595.0 0.644 0.4000E-03 615.000* 1 

635.0 0.652 0.0 665.000 2 

695.0 0.644 0.0 737.958 1 

795.0 0.694 0.8765E-03 824.243 1 

855.0 0.907 0.6092E-02 862.560 1 

875.0 1.336 0.3078E-Ol 880.000 2 

885.0 1.881 0.3769E-Ol 892.642 1 

895.0 2.169 0.0 899.015 1 

905.0 2.075 -0.1570E-Ol 910.000 2 

915.0 1.598 -0.3977E-01 931.131 1 

935.0 0.916 -0.1046E-01 964.217 1 

985.0 0.607 -0.1580E-03 1010.324 1 

1035.0 0.603 0.0 1055.000* 1 

1075.0 0.608 0.2500E-03 

Table 3.8 The values associated with Figure 3.12. 
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Chapter 4 

An Algorithm for Shape-Preserving 

Curve Drawing 

In this chapter we develop a new automatic algorithm for interpolating 

the data using local procedures. The algorithm is arranged to produce 

monotone and/or convex interpolants using C 1 cubic splines when the data 

have the corresponding properties by means of a robust slope algorithm 

and is designed to deal with the data points (Xi, Yi), i = 1, ... , n, and so is 

comparable with the methods presented in Chapter 2. We also give an analysis 

of the slope parameter t that provides a quantitative means by which the 

derivative values di that control the shape of the curve are reliably generated 

without experimentation or interactive user direction. It is assumed that the 

data is monotonic in X but the Y values are arbitrary. In Section 4.1, we 

introduce a new slope estimation method which provides the basis of the 

new algorithm and discuss the derivation and analysis of the algorithm in 

Section 4.2. Finally, conclusions and several numerical examples illustrating 

the inherent superiority of the new algorithm to the existing methods are 

described in Section 4.3. 

4.1 New Generalized Slope Estimation Method. 

Here, we describe a new slope estimation method which generalizes the 

harmonic mean, satisfies condition (2.4) and produces more visually pleasing 
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curves. This method uses the minimum number of data values for assigning 

the slope at each data point, that is, the coordinates of the point itself and 

one point on either side. The idea is motivated by the introduction of slope 

estimation formulae given in (2.6) through (2.12) and is derived from Hardy, 

Littlewood and Polya [39], where they define the general Harmonic mean as 

m 1 
LWi·8~ 
i=I l 

By considering the case m = 2, our method calculates the derivative values by 

usmg: 

(4.1 ) 

otherwise. 

where t is a non-negative real number and, WI and W2 are positive weighting 

factors. Here, when WI = 1, W2 = 1 and t = 1, we have the Butland original 

formula (2.6). Also note that with the restrictions of WI = 1, W2 = 2 and 

t = 1, we get the Fritsch-Butland formula (2.8). Similarly, by choosing the 

appropriate values for WI, W2 and taking t = 1, the formulas (2.7) and (2.9) 

for the Brodlie and Costantini's methods can be easily deduced. 

4.2 An Automatic Algorithm Using Cubic Splines. 

Here, we present an algorithm which preserves both monotonicity and 

convexity of the data using C I cubic splines. Our algorithm is based on a 

new slope estimation formula which is deduced from (4.1) and computes the 
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derivative by using: 

( -1.2) 

where t > 0 is chosen to be as small as possible, while still ensuring that 

di maintains monotonicity and convexity, \vhenever the data is monotone and 

convex. We have plotted the characteristics of this formula given \"arious slopes 

and some values of t in Figure 4.1. Consider 

1 
2 I u 

di = ---'-1 

(1 + rt)I 
(1.3) 

where u = min(b'i-l, b'i), L = max(b'i-l, b'i), and r = u/ L. Then dd L will be 

normalized between 0 and 1. Note that as t decreases, it will tend to favour 

the larger b'i. That is, di will lie closer to L than to u. This, in turn, creates 

larger values of (Qi' {3i) and spreads these throughout the entire region 5 of 

Figure 2.1 more completely. The advantage of this method appears to be that 

it produces smaller second derivative discontinuities than the corresponding 

methods described in Section 2.3 of Chapter 2. As an illustration, Data 4 

is used for comparison purposes. The jumps in the second derivative at the 

interior data points, denoted by Ji, generated by the new method with t = 0.3 

and other methods are shown in Table 4.1. Comparing the discontinuities given 

in Table 2.2 of Chapter 2 and Table 4.1 clearly shows that the new method 

reduces these as compared to all other methods and hence will produce more 

visually pleasing curves. Similar comparisons also apply to the other data sets. 

Conceptually, a "visually pleasing curve" is a curve that looks good to the 

human eye and it can not be described in precise mathematical terms. This 

definition is, of course, purely subjective as it is impossible to construct a curve 
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Figure 4.1 Visualization of slope formula with different values of t. 

Butland Brodlie Huynh Fritsch-Butland New Method 

Data Points Method Method Method method with t = 0.3 
1, X· l Yi Ji Ji Ji Ji Ji 
1 -2.0 0.25 

2 -1.0 1.0 39.69 19.89 13.52 6.02 0_94 

3 -0.3 11.1111 4167.96 3863.23 3829.91 3722.57 3665.67 

4 -0.2 25.0 

Table 4.1 Jumps in the second derivative at the interior knots. 

to everyone's liking. However, this property may be very important to 

designers, as they would like to get visually pleasing curves for their work. 
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Now we prove that formula (4.2) satisfies inequality (2.13). Suppose 

o ~ 8i-l < 8i. Then, for t > 0 

( 4.4) 

Now 

d· < 8· 1 _ 1 (4.5) 

Combining (4.4) and (4.5), we obtain 

(4.6) 

A similar result holds for 0 < 8i ~ 8i-l. That is 

(4.7) 

Hence from (4.6) and (4.7), we conclude that min(8i-b 8i) ~ di ~ max(8i-b 8i). 

Now we show some results that are useful for determining the limits on tin 

order to get shape-preserving interpolants using cubic splines. By considering 
, 

P (x) of (2.2), we see that it has a unique extremum at 

( 4.8) 
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Hence, if x* tf. (Xi, Xi+t), convexity would be satisfied. That is, for XX < Xi 

(4.9) 

( 4.10) 

or di+2di+1-3hi < 0 when di+di+1-2hi > O. If di+di+1-2hi < 0, a similar 

result holds. This can be summarized in terms of Qi = di and f3i = di+1 in 
hi hi 

the following lemmas: 

Lemma 4.2.1 

(i) 

(ii) 

If Qi + f3i - 2 > 0 then p(x) is convex on [Xi, Xi+l] if and only if either: 

2Qi + f3i - 3 <0 or 

Q' + 2f3· - 3 < 0 1 1 _ 

Lemma 4.2.2 

(i) 

(ii) 

If Qi + f3i - 2 ~ 0 then p( x) is convex on [Xi, Xi+l] if and only if either: 

2Qi + f3i - 3 >0 or 

Q' + 2f3· - 3 > 0 , , -

Using these two lemmas and the condition that (Qi,f3i) lie in the region S 

of Figure 4.2, we now have the following theorem: 

Theorem 4.2.1 

If Qi, f3i are both positive and either Lemma 4.2.1 or Lemma 4.2.2 is 

satisfied, then p(x) maintains both monotonicity and convexity on [Xi, Xi+l]. 
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The proof of this follows by observing that if sign(ai) = sign(8i) > 0 then 

sign(di) = sign(di+l) = sign(oi). Also, Lemma 4.2.1 and Lemma 4.2.2 provide 

the sufficient conditions for Theorem 2.2.1, hence monotonicity is satisfied. 

The above provides us with regions of convexity and monotonicity that are 

shown in Figure 4.2, where the horizontally hatched area shows the convexity 

region and the shaded area with dots shows the monotonicity region. 

4.0 

3.5 

f3i 2.5 

2.0 -k-.--' ... --,.-\ .... ::::::: ::: ::::::: . 
.. ,\, .. ':::::::::::::::: 

" .. , ............... . 

1.5 
. ..... .............. . 

f---................. -\ .. :: ::::: ::::::: 
.. V

o
.':::::::::::: 
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. ~~::-\ ... :':::: : ..... . 

1.0 

0.5 
::::::::: ::::: :::::......... .~..... ,-:::::::::::::::::::: .............. ~ .. " .... : 

•••• n f < .•...••.•••••••••• : •• : ••.. : •.••. : .••. : .•• : ..•.•. : .•.. : ••. :.~1.:.~ •. :.,.::/~: ••.•. _ .,.~ 
0.0 .... 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
ai 

Figure 4.2 Monotonicity region S (shaded with dots) and 

convexity region (hatched horizontally). 

By considering di < f3iOi (= di+l) for both ai, f3i > 0, then where given 

ai, f3i is computed as follows: 
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then by Theorem 4.2.1: 

{
If ai < 1 then H 3 - ai) < f3i ~ 3 - 2ai, 

If ai > 1 then 3 - 2ai ~ f3i < ~(3 - ai). 

(II) If [Yi-l, Yi+2] forms a non-convex monotone data set, then set 

(4.11) 

( 4.12) 

This follows from Theorem 2.2.1 (ii.iii) of Chapter 2, which leads to a quadratic 

equation in terms of f3i and after some simplifications, is given in the form: 

In fact, f3i in (4.12) is the larger root of this equation and represents the upper 

half of the elliptical boundary drawn by a full line in Figure 4.2, covering the 

entire monotonicity region S. 

Now, in order to establish a bound on the value of t in (4.3), let r 

and 

d· 1 
then 8; < 21" a <f3i. That is, 

if 8i+l 2: 8i 

if 8i+l < 8i 

1 
di 21"a 
- - l' 
8i (1 + rt)1" 

In2 
t>---­

- Inf3i -Ina 
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As an example of maintaining monotonicity, consider the case of monotone 

data with max(,Bi) = 4 when Q:i = 1 and t = 0.5, hence from (4.3)~ we ha,'e 

1 
2Tu 4u 

lim = - = u 
T-->l (1 + rt)t 4 
t=0.5 

also 
1 

2Tu 4u 
lim 1 = - = 4u 
t::O~5 (1 + rt)T 1 

If u = Oi, then, since Q:i = 1, ,Bi = di/Oi = 4u/u = 4, which is within the 

monotonicity region. If u = Oi+l then Oi > Oi+l and,Bi = di/bi = 40i~dbi < 4, 

which again is within the necessary region. Similar results hold for convexity 

in the case of convex data by considering max(,Bd = 3 when t = In 2. 
In 3 

In the above discussion, we have assumed that the data are monotone 

increasing and convex. The case of monotone decreasing and convex data can 

be treated in a similar manner. For these data, we only need to use IOi I rather 

than Oi when applying the formula (4.14). Having computed the derivative 

value di in this way, only its sign is chosen to be negative for the monotone 

decreasing data (Oi < 0). This approach has been followed for Data 6, which 

is comprised of a mixture of monotone decreasing, monotone increasing and 

convex data segments. The resulting curve is displayed in Figure 4.7 in the 

next Section 4.3. 

For practical purposes, it is worthwhile mentioning here that when t tends 

to 00, then we have (see, [39]): 

1 
2Tu 

di = lim 1 = u 
t---->oo (1 + rt)T 
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The above proceeding can now be summarized by presenting an algorithm 

for estimating the derivative values di at each data point. \Ye refer the 

algorithm as Algorithm SLOP. 

Algorithm SLOP. 

Given Di-l, Di, Di+l and d1 , then the derivative values di, i = 2, .. " n -1 are 

estimated as follows: 

Step 1 

Step 2 

Step 3 

Step 4 

If (Di-l - Di) (Di - Di+ 1) > 0 then 

Compute f3i to satisfy (4.11) (convex). 

Else 

Compute f3i to satisfy (4.12) (monotone). 

Choose a as in (4.13) and then set 

t= In2 to satisfy (4.14). 
Inf3i - In a 

If DiDi+l :s; 0 then 

Set di = 0 

Else 

If t = 00 then 

Else 
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The Algorithm SLOP described above only provides a means for setting 

interior derivative values di. For the end point derivatives, d 1 and dn , we shall 

use the method proposed by McAllister-Roulier [50]. This has been discussed 

in Section 3.1 (see (3.7) and (3.8)). The McAllister-Roulier method is robust 

for calculating the derivative values at the end points, produces good results in 

all cases and automatically satisfies the required shape-preserving conditions 

at the extreme points. This is the scheme adopted for all curves drawn in the 

next Section 4.3. 

Now, an algorithm for constructing the interpolating curve usmg the 

piecewise cubic Hermite interpolant (2.2) according to proposals discussed 

above is outlined. 

Algorithm. 

Step 1 

Step 2 

Step 3 

Step 4 

Input number of data points, n. 

Calculate the derivative values di by applying the 

Algorithm SLOP mentioned above. 

For i=1 to n-l do 

Use equation (2.2) to generate the curve segment 

on the subinterval [Xi, Xi+l]' 

Display the resulting curve. 
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4.3 Numerical Examples and Conclusions. 

In this section, our algorithm is applied to a selection of standard data 

sets introduced earlier in Chapter 1 and the results are compared with those 

obtained using the existing local methods described in Chapter 2. The basis 

of comparison is a collection of data sets drawn from existing literature on 

the comparison of shape-preserving interpolation methods. It follows that the 

comparison is unbiased to the methods since it utilises established data sets. 

The algorithm introduced above has been applied to the data sets Data 1 

through Data 4. The resulting plots of the interpolating curves are shown in 

Figures 4.3 through 4.6, and each figure is accompanied by a table detailing 

the data points, slopes and corresponding selected values for the parameter t. 

It can be observed in Table 4.4 that the new algorithm has selected t = 00 

at the data point X4 = 22.7. This is due to the fact that points 22 .. 5, 22.6 

and 22.7 are collinear and are part of a convex region between points 22.0 and 

23.2. As a consequence, the Algorithm SLOP computes 0:4 = 1 in Step 1, 

f34 = 1 in Step 2 and a = 1 in Step 3 respectively and then t = 00 is obtained 

from (4.14). Several other examples taken from various sources have also been 

worked out and in all of these cases, we have not encountered t = 00 except for 

the above Data 3. However, the selection of t = 00 to estimate the derivative 

value di at any data point does not present a problem as is evident from (4.15) 

which establishes di = u = min( 8i-1, 8i) and this always restricts the values of 

(O:i,f3i) to be within the region 5 of Figure 4.2. 

As a comparison, the interpolating curves shown in Figure 4.3 to Figure 

4.6 are compared to the corresponding curves drawn in Figure 2.2 through 

Figure 2.33 which were obtained by applying the different methods described 
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III Chapter 2. A study of these curves indicates that the new algorithm 

produces curves that are smooth, shape-preserving, more visually pleasing and 

offers substantial confirmation of the superiority of the new algorithm. The 

new algorithm also has an advantage that it does not insert additional knots 

between the original data points in order to preserve the shape characteristics 

of the given data. 
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Figure 4.3 New automatic algorithm interpolating Data 1. 

Data Points Slopes Value of t on 

1, Xi Yi di [Xi, Xi+ll 

1 0.0 10.0 0.0 

2 2.0 10.0 0.0 

3 3.0 10.0 0.0 

4 5.0 10.0 0.0 

5 6.0 10.0 0.0 

6 8.0 10.0 0.0 

7 9.0 10.5 0.8930E+00 0.631 

8 11.0 15.0 0.5661E+01 0.515 

9 12.0 50.0 0.1196E+02 0.215 

10 14.0 60.0 0.9400E+01 0.553 

11 15.0 85.0 0.4060E+02 

Table 4.2 The values used in the construction of Figure 4.3. 
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Figure 4.4 New automatic algorithm interpolating Data 2. 

Data Points Slopes Value of t on 

1- Xi Yi di [Xi, xi+d 

1 7.99 0.0 0.0 

2 8.09 2.76429E-05 0.1089E-02 0.500 

3 8.19 4.37498E-02 0.3225E+00 0.407 

4 8.70 0.169183 0.3657E+00 0.503 

5 9.20 0.469428 0.5967E+00 1.174 

6 10.0 0.943740 0.9823E-01 0.226 

7 12.0 0.998636 0.2546E-02 0.139 

8 15.0 0.999919 0.6024E-04 0.207 

9 20.0 0.999994 0.0 

Table 4.3 The values used in the construction of Figure 4.4. 
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Figure 4.5 New automatic algorithm interpolating Data 3. 

Data Points Slopes Value of t on 

z Xi Yi di [Xi, xi+d 

1 22.0 523.0 0.2811E+02 

2 22.5 543.0 0.5189E+02 0.503 

3 22.6 550.0 0.7000E+02 0.502 

4 22.7 557.0 0.7000E+02 00 

5 22.8 565.0 0.8776E+02 3.106 

6 22.9 575.0 0.1152E+03 3.116 

7 23.0 590.0 0.1914E+03 1.819 

8 23.1 620.0 0.6535E+03 0.505 

9 23.2 860.0 0.1062E+04 0.292 

10 23.3 915.0 0.2940E+03 50.247 

11 23.4 944.0 0.1898E+03 0.961 

12 23.5 958.0 0.8031E+02 0.959 

13 24.0 986.0 0.3169E+02 

Table 4.4 The values used in the construction of Figure 4.5. 
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Figure 4.6 New automatic algorithm interpolating Data -1. 

Data Points Slopes Value of t on 

z Xi Yi di [Xi, Xi+l] 

1 -2.0 0.2500 0.0 

2 -1.0 1.0000 0.1737E+Ol 0.673 

3 -0.3 11.1111 0.3216E+02 0 .. 5-19 

4 -0.2 25.0000 0.2456E+03 

Table 4.5 The values used in the construction of Figure 4.6. 
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Figure 4.7 New automatic algorithm interpolating Data 6. 

Data Points Slopes Value of t on 

z Xi Yi di [Xi, Xi+l] 

1 0.0 19.0476 -0.2110E+03 

2 0.1 7.0175 -0.2957E+02 0.390 

3 0.4 3.4188 0.0 

4 0.7 3.8095 0.2590E+01 0.631 

5 0.8 4.7059 0.1935E+02 0.524 

6 1.0 19.0476 0.1241E+03 

Table 4.6 The values used in the construction of Figure 4.7. 
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Chapter 5 

Interactive Algorithms for 
Shape-Preserving Curve Drawing 

In the prevIOUS chapters we have described several one-pass algorithms 

for constructing C 1 shape-preserving curves through the data points, using 

quadratic and cubic splines. This chapter deals with interactive shape­

preserving interpolation which is very important for curve drawing in CA 0 

and other scientific areas. An interactive system for curve drawing permits 

the user to model the form of the curve following his own needs. Here, unlike 

the slope estimation formulae (2.6) through (2.12), one seeks a means which 

allows, among possibilities, the choice of an interactive algorithm that always 

guarantees the construction of a shape-preserving curve. In this chapter, we 

create this flexibility by using the generalized slope estimation formula (4.1) 

which satisfies the shape-preserving conditions associated with the method in 

question. The formula uses the minimum number of data points for assigning 

the slope at each data point; that is, the coordinates of the point itself and one 

point on either side. It also involves a parameter t which is used to control the 

size of the estimated slope. As t increases, so the estimated slope decreases 

in magnitude and a tighter curve results. The extreme choices t ~ 0 and 

t ~ 00 will generate the largest and the smallest values of the slope at the 

data points. In Sections 5.1 and 5.2, we discuss the slope estimation formula 

along with corresponding interactive algorithms using C 1 piecewise quadratic 

and cubic splines respectively. Several numerical examples and conclusions are 

presented in Section 5.3. 
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5.1 An Interactive Algorithm Using 

Quadratic Splines. 

As we have shown in Chapter 3, a piecewise quadratic Hermite interpolant 

preserves monotonicity if the derivative values at the data points satisfy 

the condition (3.12), and maintains convexity/concavity of the data if the 

conditions (3.13) and (3.14) are fulfilled together with (3.15). In this 

section, we consider the derivation and analysis of a specific interactive shape­

preserving interpolating curve algorithm based on the results presented in 

Chapter 3 and the new slope estimation formula (4.1) which provides the 

basis of the new algorithm. As a first step, let us assume that hi =j:. 0 and 

di d f3 di + 1 b h . . ai = hi an i = -----g-; e t e respectIve ratIOs of the end slopes to the chord 

slope. Now suppose that there is no additional knot inserted in the interval 

[Xi, Xi+l]. Then it is easy to see from Proposition 3.2.1 that the quadratic 

spline p(x) defined in (3.9) is monotone on [Xi, xi+d if sign(di)=sign(di+d 

ai + f3i = 2 (5.1 ) 

Moreover, p( X ) is also convex ( concave) on [Xi, Xi+ 1] if di < di+ 1 (di > di+ 1). In 

Figure 5.1 below, we display (5.1) which is exactly the line segment drawn by 

a broken line and this is in agreement with the results described in Edelman 

and Micchelli [26]. In order that the interpolant p( x) be monotone and/or 

convex on [Xi, Xi+l], the derivative values di and di+1 must be chosen so that 

(ai, f3i) lie on the broken line. 

Next, we consider the situation when di + di+l :j:. 2hi and there is an extra 

knot placed in the interval [Xi, Xi+l]. To ensure monotonicity, it is necessary 

to enforce a condition on the relationship between the size of the slopes and 
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the location of the additional knot ~i' In fact this has already been achie\'ed 

in Chapter 3, where Case 2 (see page 80) is always selected in the case of a 

monotone data and the additional knot is inserted at ~i = Xi + Xi-r1 (from 
2 

(3.17)). It has also been observed that this choice always leads to a monotone 

interpolant if the slopes are calculated using the Butland formula (3.1). The 

following lemma provides the general condition to be satisfied by the derivative 

values di and di+1 in order to preserve the monotonicity of the data when 
Xi + Xi+1 

~i = . 
2 

Lemma 5.1.1 

Let c; __ Xi + Xi+1 
r". 2 be an additional knot inserted in the interval [Xi, xi+d. 

Now if sign(di )=sign(di+1)=sign(8i), then the quadratic spline p(x) defined in 

(3.10) is monotone on [Xi, Xi+l] if and only if 

Q'.·+{3·<4 1 1 _ (5.2) 

The proof of this statement follows directly from Proposition 3.2.2 (I) together 

with (3.12), (3.17) and (3.21) of Chapter 3. As a consequence of Lemma 5.l.1, 

it is possible to construct a region M of allowable values for (ai, (3i), which 

always guarantee to produce a monotone interpolant on [Xi, Xi+1]. This region 

is depicted with dots in Figure 5.1 and is in fact the triangular area with 

vertices (0,0), (4,0) and (0,4). It is useful here to point out that for the 

monotone data, Edelman and Micchelli [26] have shown that a C1 piecewise 

quadratic spline with an arbitrary additional knot in [Xi, Xi+l] is monotone if 

(ai,{3i) lies in the region enclosed by the triangle with vertices (0,0), (2,0) and 

(0,2). This region is also contained within the monotonicity region M. 
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Figure 5.1 Monotonicity region M for quadratic splines. 

Now, we turn our attention to the convexity/concavity and first assume 

that the data is convex; that is 0 < t5i-l < t5i. In this case, we know that 

Case 1 (see page 80) is always chosen and the additional knot is inserted at 

t (di - t5i)(Xi+l - Xi) ( ()) . . ( ) ~i = Xi+l + from 3.16 . From ProposItIOn 3.2.2 II , the 
di+l - di 

convexity condition to be satisfied by the derivative values di and di+l along 

with the additional knot ei is given by 

(5.3) 

which in view of (3.16), (3.18) and (3.19) may be written as di ::; t5i < di+l or 

equivalently: 

(5.4) 
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Similarly, in the case of concave data, that is, hi - I 2: hi, it can easily be proyed 

from (3.14), (3.16), (3.18) and (3.19) that 

Cti > 1 and f3i::; 1 (5.5) 

In addition, when didi+I > 0, then (5.4) and (5.5) also preserve the 

monotonicity of the data. 

We claim that the modified form of the slope estimation formula (4.1), 

that is 

0, 

(5.6) 

where t > ° and, WI and W2 are positive weighting factors such that WI = 1 

and 1 ::; W2 ::; 2, produces the derivative values di and di+I which ensure 

that Cti and f3i always satisfy the monotonicity condition (5.2) and the 

convexity/concavity conditions (5.4) and (5.5). Note that the weights WI and 

W2 in (5.6) can be scaled arbitrarily and assigning them high values will not 

have a significant effect, since a common factor in weights will simply cancel 

out. However, there are no specific criteria for choosing these but the work of 

Costantini [16] and Fritsch and Butland [32] show that Wl = 1 and 1 ::; W2 ::; 2 

are suitable for all data types and will produce visually pleasing curves. The 

effects of varying W2 will be further discussed in Section 5.3. For practical 
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purposes, it is useful here to point out that when t = 0, the well-known 

generalized geometric mean (see [39]) is achieved; namely, 

(5.7) 

and as t ---+ 00 we obtain 

(5.8) 

In fact, the formula (5.6) generates its maxImum and mInImUm derivative 

values for t = 0 and t = 00 respectively and t serves as a control parameter 

for the slope in the sense that as t tends to 00 the curve tightens towards the 

chord segments connecting the data points. 

The formula (5.6) normally calculates derivative values on interior data 

points only, so that a different approach must be used for the endpoints and 

one needs to supply the derivative values d1 and dn which affect the behaviour 

of the curve near its endpoints. The simplest way is to simply ask the user 

to supply them. The only danger here is that the user-supplied values may 

be incompatible with monotonicity and/or convexity in the end intervals. We 

recommend using the method described in Section 3.1 (see (3.7) and (3.8)) to 

evaluate the derivative values at the endpoints. This method automatically 

matches the required shape-preserving conditions in the extreme intervals. 

This approach has been followed for all curves shown in this chapter. 

Now, we devise a method for determining the limits on t in order to get 

the derivative values di consistent with the monotonicity-preserving condition. 
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By considering di ~ {3i6i (= di+I ) for both Qi,{3i ~ 0, then, given ai, 3
j 

is 

computed as follows: 

If the data is monotone, then from (5.2) set: 

{3i = 4.0 - Qi 

a=t if 6i+I ~ 6i 

if 6i+I < 6i 

Then (5.6) can be written as 

otherwise. 

and now from 
1 

di ( W 1 + W2) I a 

6i - (WI + w2rt)t' 

. di ( 1 
It is easy to see that 6i < WI + W2) I a ~ (3i. That is, 

In(WI + W2) 
t > ----:----'­

- In{3i -Ina 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Next, we prove that the slope estimation formula (5.6) always satisfies the 

convexity/concavity conditions (5.4) and (5.5) for every choice of parameter 

t > O. Let us first consider the convex data case; that is, when 0 < 6i-1 < 

6i ~ 6i+I. We then have: 
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Also, we have: 

1 
(WI + W2)T8i-1 

---------'--""7" ~ 1 
(wI8LI + w281)} 

Q;i ~ 1 

1 

(WI + W2)T8i+1 1 < --------..:.---,-
(w l 8f + w28f+I)} 

f3i ? 1 

(5.13) 

(.S.H) 

The convexity condition (5.4) follows from (5.13) and (5.14). Similary, 

it can be proved that inequality (5.5) always holds with the slope estimation 

formula (5.6) when the data is concave; that is, when 8i - 1 ? 8i ? Di,l. Hence, 

we infer the conclusion that formula (5.6) always provides the derivative values 

consistent with the convexity/concavity preserving conditions (5.4) and (5.5) 

for every choice of parameter t > o. Thus, if the data is convex/concave, then 

t can be chosen arbitrarily to be any positive value and we set it equal to one 

in the algorithm QSLOPE given below, for the generation of the default curve. 

The above discussion can now be concluded by presenting an explicit 

algorithm for obtaining the derivative values di at each interior data point. 

We refer the algorithm as Algorithm QSLOPE. 
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Algorithm QSLOPE. 

Given 8i'S and d l , then the derivative values di, i = 2, ... , n-1 are calculated 

as follows: 

Step 1 

Step 2 

If monotone data, then 

S di-I 
et D:i = --

8i-1 

Compute f3i by applying the formula (5.9). 

Choose a as in (5.10) and then set 

In(wl + W2) . 
ti = I f3 I to satIsfy (5.12). 

n i - na 

If convex/concave data, then 

Set ti=l.O 

If 8i8i+1 ::; 0 then 

Set di = 0 

Else 

If ti = 00 then 

Else 

Set 

The above conditions (5.2), (5.4) and (5.5), along with the slope estimation 

formula (5.6), leave considerable freedom for choosing the derivative values 

di such that the resulting interpolant exhibits desirable shape properties 

present in the data. An interactive algorithm for generating shape-preserving 

interpolating curve is now described. We refer the algorithm as Algorithm 

QCURVE. A default curve is first generated by setting WI = 1.0, W2 = 1.0 

and initial values for ti, denoted by tt are determined using the Algorithm 
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QSLOPE for each i = 2, ... , n - 1. The shape of any curve segments can then 

be altered interactively by varying the values of ti. 

Algorithm QCURVE. 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Input number of data points, n. 

For i=l to n-1 do 

Use Algorithm QSLOPE to find t; and the corresponding 

derivative values di. 

For i=l to n-1 do 

If di + di+ 1 = 20i then 

Use equation (3.9) to generate the curw segment on [Xi, xi+d. 

Else 

If (di - Oi)( di+l - Oi) 2: 0 then 

Choose Case 2 (monotone data). 

Else 

Select Case 1 (convex/concave data). 

Use equation (3.10) to produce the curve segment on [Xi, Xi+l]. 

Display the resulting curve. 

Modification of the shape of the curve. 

If Case 2, then input a new value for ti > t; (using (5.12)). 

If Case 1, then input any new value for ti > O. 

Use formula (5.11) to compute the new di. 

Repeat Step 4 until the desired picture of the curve is achieved. 
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5.2 An Interactive Algorithm Using Cubic Splines. 

In this section, we describe an interactive algorithm for generating shape­

preserving interpolating curve using C1 cubic splines. Suppose that the given 

data set is monotone and/or convex. The case of the monotone and/or concave 

data set can be tackled in a similar fashion. We claim that the slope estimation 

formula (5.6) for t > 0 and with positive weighting factors WI and W2 such 

that WI = 1 and 1 < W2 < 2, always yields values of di and di+l which 

ensure that ai and f3i lie directly inside the allowable region S of Figure 4.2. 

The overall idea for constructing an interactive algorithm which produces a 

C1 interpolant is similar to that discussed in Section 4.2 of Chapter 4. Now, 

we proceed with determining the bounds on the magnitude of t so that the 

interpolant will preserve the monotonicity and/or convexity of the given data 

in each subinterval, as follows: 

By assuming di < f3iOi (= di+l) for both ai, f3i ~ 0, then, given ai, f3i is 

computed as follows: 

If the data set is non-convex monotone, then from Theorem 2.2.1 (ii.iii) of 

Chapter 2, we set: 

(5.15) 

If the data set is convex (i.e., (Oi-l -Oi)(Oi-Oi+t) > 0), then using Lemma 

4.2.1 and Lemma 4.2.2. of Chapter 4, we have: 

{

If ai < 1 then ~(3 - ai) < f3i ::; 3 - 2ai, 

If ai > 1 then 3 - 2ai < f3i < ~(3 - ai). 
(5.16) 

Now, as in the preceeding section (see (5.10) through (5.12)), a range of 
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acceptable values for t is obtained: 

t > _In--,-( W_l _+_W_2....:....) 
- In,Bi -Ina (5.1/) 

From the above discussion, we propose the following algorithm for 

calculating the derivative values di at each interior data point. \\'e refer the 

algorithm as Algorithm CSLOPE. 

Algorithm CSLOPE. 

Given Di's and d1 , then the derivative values di, i = 2, ... , n-1 are estimated 

as follows: 

Step 1 

Step 2 

Step 3 

Step 4 

(a) Case of monotone data: Compute,Bi using the formula (.).15). 

(b) Case of convex data: Compute,Bi from the formula (5.16). 

Choose a as in (5.10) and then set 

In(wl + W2) . 
ti = to satIsfy (5.17). 

In,Bi -In a 

If DiDi+l < 0 then 

Set di = 0 

Else 

If ti = 00 then 

Else 

Set 
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An interactive algorithm for constructing the shape-preserving curve IS 

now outlined. We refer the algorithm as Algorithm CCCR\'E. A default curw 

is first produced with WI = 1.0, W2 = 1.5 and initial values for t· denoted b\' 
1, • 

tt for each i = 2, ... , n - 1, are chosen applying the Algorithm CSLOPE. 

Algorithm CCURVE. 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Input number of data points, n. 

For i=l to n-1 do 

Apply Algorithm CSLOPE to find tt and the corresponding 

derivative values di. 

For i=l to n-1 do 

Use equation (2.2) to produce the curve segment on [Xi, Xi+l]. 

Display the resulting curve. 

Modification of the shape of the curve. 

Set new value for ti > tt (using (5.17)). 

Apply formula (5.11) to estimate new di. 

Repeat Step 4 until the desired shape of the curve is obtained. 

In practical computation, rather than attempt to decide directly which 

parameter values to use in the algorithms of Section 5.1 and Section 5.2 above, 

the idea is to choose the initial values for ti, denoted by tt, using the alorithms 

QSLOPE and CSLOPE for each i, i = 2, ... , n-1, to generate an initial default 
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curve. Once this curve has been generated and displayed: then the shape of 

any of the curve segments can be modified interactively by assigning a new 

value to the parameter ti > fi, 2 < i < n - 1. 

It should be noted that formula (5.6) also satisfies the condition (2.13) i.e., 

and varying ti for a particular 2 ::s: i ::s: n - 1, will change the derivative value 

di. There are two curve segments which will be affected by a change in t z: 

the curve segment preceding and succeeding the knot Xi. The need to use 

the derivatives as a tool to modify the shape of the curve generally arises in 

the case when the curve exhibits any sharp turns at a data point where the 

slopes of the adjacent data segments change rapidly, or at the turning point 

of a given data set. Hence, we can loosen or tighten the shape of the curve at 

that point by changing the derivative value. 

5.3 Numerical Examples and Conclusions. 

The proposed algorithms have been incorporated into an interactive 

package which allows the user to examine different shapes of the curve by 

varying the values of the parameter ti. An important property of the schemes 

is that, for any ti ~ tt, they produce a shape-preserving curve. The local 

nature of the schemes and the control of the shape by the parameter ti are 

also important features for curve design. The interactive algorithms discussed 

above combine the three ingredients: locality, interpolation and shape control. 

As is the case for any local interpolation algorithm, the above algorithms are 

very fast and convenient for computing all the points required for the graphical 
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display of a curve. The evaluation of a point on the curve at a prescribed 

parameter value is also quite fast, due to the local nature of the schemes. 

The following examples show that the algorithms described in the previous 

section are robust and provide a control parameter ti for the derivati\'e yalues 

associated with each data point, which can be used to flatten or tighten the 

curve locally. Hence these schemes are capable of producing shape-preserving 

curves which can be made visually more pleasing than the curves produced by 

existing one-pass methods. 

Now we first investigate the effect of changing W2 on the shape of the 

resulting curve such that 1 < W2 < 2. As an illustration, Data 4 is used 

to show the application of the algorithm QCURVE to the case when W2 is 

varied, while keeping WI = 1.0 and ti = 1.0 fixed. The resulting curves are 

displayed in Figure 5.2. Similarly, the effect of varying W2 is demonstrated in 

Figure 5.3, where interpolating curves are generated applying the algorithm 

CCURVE. However, testing on several sets of data has shown that varying W2 

has little visual effect on the shape of the curve as compared to variation in 

ti. It should also be noted that the simultaneous variation of W2 and ti does 

not give a clear indication of the scale of the impact on the shape of the curve. 

Hence in subsequent testing, we have decided to fix W2 = 1.0 for generating the 

default curve applying the Algorithm QCURVE and W2 = 1.5 for construction 

of the default curve using algorithm CCURVE. In the next step, varying ti 

will change the shape of the curve in a predictable manner as shown in the 

following examples. 

We now present some numerical output and discuss the results of applying 

the Algorithm QCURVE of Section 5.1 to two typical data sets. For each set 

of data, we first present the default curve accompanied by a table detailing the 
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data points, slopes, additional inserted knots, case numbers and corresponding 

selected initial values for the parameter tt. Next, various effects of varying 

ti will also be demonstrated. Figure 5.4 shows the default curve to Data 1 

obtained by taking WI = 1.0 and W2 = 1.0. In the following Figures 5.5 

through 5.7, a magnified portion of the curve between the knots X7 = 9.0 and 

Xll = 15.0 is shown to highlight the differences in the interpolant with the 

variation in the parameter ti. The effect of varying the values of parameter 

tg ~ t g, keeping ti = tt (see Table 5.1) otherwise, is illustrated in Figure 5.5. 

Only two curve segments are affected, namely the curve segments between the 

intervals [11.0,12.0] and [12.0,14.0] respectively. Figure 5.6 exhibits the effect 

of varying an individual tlO, while all other are kept fixed with ti = tt. The 

curve in Figure 5.7 is generated by letting tg = tlO = 50 simultaneously. The 

effects due to these variations on the shape of the curve between the interval 

[12.0,14.0] are clearly seen, where the curve tends to a linear form. The default 

curve for the interpolation of Data 6 is shown in Figure 5.8 with WI = 1.0 and 

W2 = 1.0. As the data is convex, this leaves us considerable freedom for 

choosing any value for ti > 0 such that the resulting interpolant will exhibit 

desirable shape properties present in the data. Thus, Figure 5.9 illustrates the 

effect of successively increasing the value of parameter t2 = 0.2,0.8,1.5 and 

3.0, while other ti are the same as tt listed in Table 5.2. The effect of the high 

parameter value is clearly seen in that the resulting interpolant approaches 

the chord segment connecting the data points. 

The result of applying the interactive cubic spline algorithm CCURVE 

of Section 5.2 with WI = 1.0 and W2 = 1.5 to the same data sets used in the 

applications of the algorithm QCURVE above, is now presented. For each data 

set, the default curve is first displayed and then a table containing the data 
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points, derivative values and the initial computed values for the parameter tt 
is provided. Next, the effects of varying ti are also considered. Figure 5.10 

is the graph of the default curve to Data 1. In the following Figures 5.11 to 

5.13, an enlarged part of the curve in the interval [9.0, 15.0) is given to show 

the effects on the resulting interpolant with the variation in the parameter ti. 

The effects due to these variations on the shape of the curves are analogous 

to those shown in Figure 5.5 through Figure 5.7, where noticeable change in 

the magnitudes of the slope of the curves at the data points X9 = 12.0 and 

XIO = 14.0 can be seen. Now the default curve is modified by changing the 

parameter t9 such that t9 > t9, while all other are kept fixed with ti = tt as 

given in Table 5.3. The resulting interpolants are shown in Figure 5.11 where 

the variation in t9 only effects the shape of the curve in the neighbourhood 

of the data point X9 = 12.0. Similarly, Figure 5.12 illustrates the effect of 

varying the parameter tlO > tio, while letting all other ti = tt. Figure 5.13 is 

the graph of the interpolating curve where the curve segment in the interval 

[12.0,14.0] is modified by allowing t9 = tlO = 40 simultaneously, so that the 

resulting curve segment approaches a linear segment. Figure 5.14 shows the 

default curve to Data 6 and the progressive increase in parameter t2 ~ ti, 
while keeping ti = tt (see Table 5.4) otherwise, is demonstrated in the curves 

of Figure 5.15. This is accomplished for the values t2 = 0.618,0.9,1.5 and 2.5 

respectively. Clearly the effects of varying t2 is that increasing it pulls the 

curve segment in the interval [0.1,0.4) towards the chord joining the two end 

points of this subinterval. 

For design flexibility in manipulating the curves, the user should be given 

an interactive option to adjust the value of ti in those intervals where the curve 

is to be loosened or tightened, rather than using a uniform value for the tension 
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parameter throughout all intervals. After the default curve has been produced, 

the algorithms QCURVE and CCURVE provide considerable freedom in 

choosing different values for ti on each curve segment and produce visually 

pleasing shape-preserving C 1 interpolating curves. Figures 5.4 through 5.15 

clearly demonstrate the increase in the tightness of the curve with the increase 

in ti. Thus, the effect of varying ti may be thought of as operations which 

"loosen" and "tighten" the corresponding curve segments. 

In comparison with Montefusco's interactive shape-preserving method [52] 

which is based on C1 cubic interpolating splines, the interactive algorithms 

proposed here are completely local and more efficient since they do not 

require solving optimization problems as in [52]. Also, they have an added 

advantage of always producing shape-preserving interpolants for every choice 

of parameter ti > tt, while the tensioning procedure in the Montefusco method 

requires more than one adjustment to generate acceptable shape-preserving 

curves. 
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25.0 

20.05 

15.1 

10.15 

5.2 

0.25 

----w2=1.0 

............ w2= 1.3 

------------------ w2 = 1.6 

------------- w2 = 2.0 

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 5.2 Algorithm QCURVE with varying w2; WI = 1.0 and ti = 1.0. 

25.0 

20.05 

15.1 

10.15 

5.2 

0.25 

----W2=1.0 

w2= 1.3 

-- -- -- -- -- ---- -- -- w2 = 1.6 

------------. w2 = 2.0 

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 5.3 Algorithm CCURVE with varying w2; WI = 1.0 and ti = 1.0. 
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10 

o 3 6 9 12 15 

Figure 5.4 Default curve: ti = fi for each i, 2 ::S i ::S n - 1. 

Data Points Slopes Additional Knots Case on Value of t; at 

Xi Yi di ~i [Xi, Xi+l] di 

1 0.0 10.0 0.0 

2 2.0 10.0 0.0 

3 3.0 10.0 0.0 

4 5.0 10.0 0.0 

5 6.0 10.0 0.0 

6 8.0 10.0 0.0 8.389 1 

7 9.0 10.5 0.8182E+00 10.398 1 1.000 

8 11.0 15.0 0.5572E+01 11.5 2 0.537 

9 12.0 50.0 0.1198E+02 13.0 2 0.211 

10 14.0 60.0 0.8333E+01 1 1.000 

11 15.0 85.0 0.4167E+02 

Table 5.1 The values associated with Figure 5.4. 
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85.5 ----- t9 = 0.211 

----------------- t9 = 0.6 

70.5 
------t9 = 1.5 

t9=10.0 

55.5 

40.5 

25.5 

10.5 

9.0 10.2 11.4 12.6 13.8 15.0 

Figure 5.5 Modified curve: tg = 0.211,0.6,1.5 and 10.0; ti = t~ otherwise. 

85.5 ----tlO= 1.0 

----------------- t10 = 2.0 

70.5 
-------- tlO= 10.0 

55.5 

40.5 

25.5 

10.5 

9.0 10.2 11.4 12.6 13.8 15.0 

Figure 5.6 Modified curve: tID = 1.0,2.0 and 10.0; ti = tt otherwise. 
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85.5 

70.5 

55.5 

40.5 

25.5 

10.5 

9.0 10.2 11.4 12.6 13.8 15.0 

Figure 5.7 Modified curve with large parameter values: t9 = 50 and tlO = 50. 
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19.0476 r. 

15.9218 

12.7961 

9.6703 

6.5446 

3.4188 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.8 Default curve: ti = tt for i = 2, ... , n - 1. 

Data Points Slopes Additional Knots Case on Value of t; at 
1, Xi Yi di ~i [Xi, X1-'-1] di 

1 0.0 19.0476 -0.2188E+03 1 1.0 

2 0.1 7.0175 -0.2182E+02 0.265 1 1.0 

3 0.4 3.4188 0.0 0.528 1 1.0 

4 0.7 3.8095 0.2274E+01 0.751 1 1.0 

5 0.8 4.7059 0.1594E+02 1 1.0 

6 1.0 19.0476 0.1275E+03 

Table 5.2 The values associated with Figure 5.8. 
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19.0476 

15.9218 

12.7961 

9.6703 

6.5446 

3.4188 

0.0 0.2 

----t2 =0.2 

-----t2 = 0.8 

-- -- -- -- -- -- -- -- -- t2 = 1 .5 

-------------t2 = 3.0 

0.4 0.6 0.8 

r 
I 

1.0 

Figure 5.9 Modified curve: t2 = 0.2,0.8,1.5 and 3.0; ti = t; otherwise. 
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Figure 5.10 Default curve: ti = tt for each i, 2 :::; i :::; n - 1. 

Data Points Slopes Value of tt at 

1- Xi Yi di di 

1 0.0 10.0 0.0 

2 2.0 10.0 0.0 

3 3.0 10.0 0.0 

4 5.0 10.0 0.0 

5 6.0 10.0 0.0 

6 8.0 10.0 0.0 

7 9.0 10.5 0.9787E+00 0.834 

8 11.0 15.0 0.6378E+01 0.678 

9 12.0 50.0 0.1409E+02 0.283 

10 14.0 60.0 0.1021E+02 0.794 

11 15.0 85.0 0.3979E+02 

Table 5.3 The values associated with Figure 5.10. 
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85.5 ----t9 = 0.283 
f 

----- t9 = 0.8 

70.5 
-- -- -- -- -- -- -- -- -- t9 = 1.5 

------------ t9 = 10.0 

55.5 

40.5 

25.5 

10.5 

9.0 10.2 11.4 12.6 13.8 15.0 

Figure 5.11 Modified curve: tg = 0.283,0.8,1.5 and 10.0; ti = tt otherwise. 

85.5 

70.5 

55.5 

40.5 

25.5 

10.5 

---- tlO= 0.794 

tlO= 2.0 

-- -- -- -- -- -- -- -- -- tlO= 10.0 

9.0 10.2 11.4 12.6 13.8 15.0 

Figure 5.12 Modified curve: tlO = 0.794,2.0 and 10.0; ti = tt otherwise. 
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85.0 

70.1 

55.2 

40.3 

25.4 

10.5 

9.0 10.2 11.4 12.6 13.8 15.0 

Figure 5.13 Modified curve with large parameter values: tg = 40 and tlO = 40. 
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19.0476 

15.9218 

12.7961 

9.6703 

6.5446 

3.4188 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.14 Default curve: ti = t; for i = 2, ... , n - 1. 

Data Points Slopes Value of t; at 
1, Xi Yi di di 

1 0.0 19.0476 -0.2064E+03 

2 0.1 7.0175 -0.3420E+02 0.515 

3 0.4 3.4188 0.0 

4 0.7 3.8095 0.2852E+01 0.834 

5 0.8 4.7059 0.2173E+02 0.689 

6 1.0 19.0476 0.1217E+03 

Table 5.4 The values associated with Figure 5.14. 
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19.0476 ----t2 =0.515 

----t2=0.8 

15.9218 
------------------ t2 = 1.3 

------------. t2 = 2.5 

12.7961 

9.6703 

6.5446 

3.4188 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.15 Modified curve: t2 = 0.515,0.8,1.3 and 2.5; ti = tt otherwise. 
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Chapter 6 

Algorithms for Shape Preserving 
Surface Drawing 

In this chapter we concern ourselves with the matters related to bivariate 

shape-preserving interpolation. For the case of curve generation, several 

methods which preserve properties such as monotonicity and/or convexity 

of the data have been presented in Chapters 2 through 5. However, shape­

preserving interpolation techniques for the surface generation problem to 

a set of bivariate data defined over a rectangular grid have not yet been 

adequately dealt with, and only a few methods are available, such as in [3], 

[6], [12], [13], [18] and [24]. The methods used for generating C l interpolating 

surfaces are the blending function method and the tensor product method. 

Some of these methods are briefly describe in Section 6.1. This chapter has 

been published in Iqbal [42] and discusses the use of the Butland [11] slope 

estimation method in the method of Roulier [58]. In Section 6.2, we review 

the Roulier algorithm briefly and present a Modified algorithm in Section 6.3 

which illustrates the ways in which Butland slopes and the one-dimensional 

shape-preserving method of Schumaker [61] can be used in the Roulier method. 

Finally, conclusions and numerical results showing the performance of our 

algorithm are presented in Section 6.4. 
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6.1 Literature Review. 

The representation of a surface using a blending function technique is an 

approach taken by Dodd, McAllister and Roulier [24]. The method constructs 

surfaces which preserve the shape of the data along grid lines, such that if 

the data points form a convex shape along the grid lines, then the resulting 

curve passing through these points will also have a convex shape, and if the 

data points have a maximum or minimum point, then the interpolating curve 

should also have a maximum or minimum at that point. In this scheme, the 

one-dimensional shape-preserving method of McAllister and Roulier [50] is 

applied to estimate the functions along the grid lines, and then rectangular 

patches are constructed using blending functions as proposed by Gregory [36]. 

The specification of the first and mixed partial derivatives at each grid point 

are required. Their algorithm generally produces visually pleasing results, but 

may not preserve the shape of the data inside the rectangles in extreme cases. 

Also, the condition of imposing zero mixed partial derivatives, suggested and 

used by the authors, at the grid points causes undesirable flat spots in the 

resulting surface. 

Beatson and Ziegler [6] give a method which preserves the monotonicity of 

the data by a C 1 piecewise quadratic function defined over triangular elements 

which are obtained by subdividing each grid rectangle into a grid of sixteen 

triangles. The quadratic polynomials are uniquely determined by the function 

value and first partial derivatives at the vertices of the grid rectangle. The 

method requires the specification of the values for the first partial derivatives 

at each of the grid points. The first partial x and y derivatives are initialised 

using a divided difference formula. A similar algorithm is presented by 

Asaturyan and Unsworth [3], where monotonicity is achieved using biquadratic 
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splines defined over rectangular elements formed by the partition of each 

initial rectangle into four subrectangles. Over each subrectangle, the surface 

is defined by biquadratic functions, requiring the specification of the first 

and mixed partial derivatives at each grid point. These derivative values 

are constrained to satisfy conditions which ensure the generation of shape­

preserving surfaces. 

Carlson and Fritsch [12, 13] develop schemes which produce a monotone 

interpolant to monotone data defined on a rectangular grid. The interpolating 

surfaces are obtained using the tensor product of C 1 cubic splines which are 

based upon their univariate piecewise cubic monotone interpolation schemes 

described in [32, 33]. These methods require the specification of values for 

the first partial derivatives and the first mixed partial derivatives at each grid 

point. A bicubic Hermite polynomial is defined over each grid rectangle and 

monotonicity constraints are imposed on the first partial derivatiws and the 

first mixed partial derivatives at the grid points. These constraints are then 

satisfied by steadily reducing the magnitude of the first partial derivatives 

and the mixed partial derivatives from their initial values specified at the four 

corner of the grid rectangle. The schemes guarantee that the generated surface 

preserves the monotonicity of the surface along the grid lines and inside the 

surface patches. 

Costantini and Fontanella [18] have approached the bivariate shape­

preserving interpolation problem in a different way, by local adjustment of 

the degree of the interpolating functions (in either of the variables). No 

constraints are imposed on the partial derivatives as in above methods. The 

scheme is extension of the univariate shape-preserving interpolation scheme 

described in [15, 16, 17] to the bivariate case, and requires the specification of 
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values for the first partial derivatives and the first mixed partial derivati\'es 

at each grid point. Over each grid rectangle, the surface patch is defined by a 

tensor product spline using bivariate Bernstein polynomials and the resulting 

interpolant is of an arbitrary continuity class. The shape preserving constraints 

such as monotonicity and/or convexity are satisfied by adjusting the degree of 

the function interpolating the data. These constraints are applied and satisfied 

along the grid lines, which preserves the monotonicity and/or convexity of the 

data along the boundaries of the generated surface. The scheme is not however 

local since the degrees of an edge of the grid rectangle, say in the x direction, 

must be the same throughout the corresponding column in the y direction. 

In contrast to above methods, Roulier [58] presents a refinement technique 

which is local and successively refines grid data which is convex along grid 

lines in such a way that the refined data exhibit the same convexity and 

monotonicity along the appropriate grid lines. This method uses the shape­

preserving quadratic splines of McAllister and Roulier [50], and includes 

some geometric observations of the data. The method is first applied to the 

original data to generate refined grid data which exhibits the convexity and/or 

monotonicity of the original data along new grid lines. The method produces 

the refined data by inserting new data points between the original data points 

using McAllister and Roulier's algorithm [50]. These new points are within 

the convexity and monotonicity limits which are derived from the piecewise 

linear interpolant to the original data. The algorithm is applied repeatedly to 

the updated refined grid data and the final refined data can be used as points 

on a convex and monotone surafce, or can be used as bivariate data for an 

alternative surface interpolation scheme. 
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6.2 Roulier Algorithm. 

Roulier [58] describes the following algorithm for convex bivariate grid 

data. For brevity and simplicity, we assume throughout the remainder of this 

chapter that the initial grid data is convex and monotone increasing in both 

x and y directions: 

i = 1, ... , n - 2, j = 1, ... , m. (6.1 ) 

i = 1, ... , n, j = 1, ... , m - 2. (6.2) 

where 8Xi,j and 8Yi,j are defined in (1.9) and (1.10) of Chapter 1 and the 

extension to convex decreasing grid data is trivial. Here we only give a very 

brief review of the Roulier [58] method. This is necessary for us to describe 

our Modified algorithm. 

In the first step of the method, one dimensional shape-preserving splines 

are found for the sets of data {(Xi, Yj, Aj), i = 1, ... , n} for each j. These one-

dimensional approximations are used to determine an approximate value for 

the function at the mid-points of each interval on grid lines in the X directions. 

At the next step the roles of x and yare reversed. The typical one-dimensional 

shape-preserving interpolation step on a grid line is characterised by data of 

the form (tk' fk), k = 1, ... , n, where tk is either Xk or Yk, and where 

(6.3) 

and 

k=I, ... ,n-l. (6.4) 

The step computes estimates dk of the slopes at tk which satisfy 
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In terms of these slopes, we define constants Ak, Bk as follows: 

and 

Bk = max( dk(h - tk) + ik, dk+1 (tk - tk+d + ik+l), k = 1, ... , n - 1. 

- tk + tk+l t k = -------'--
2 

where 

This one-dimensional scheme forms the basis of each step of the 2-

dimensional interpolation algorithm described by the Pascal-like pseudocode 

given below. 

Step 1 

For j : = 1 to m do 

Begin 

For i : = 1 to n do 

Use the slope calculation method as proposed by McAllister 

and Roulier [50] to produce estimates of slopes dXi,i' 

For i : = 1 to n do 

End 

Use the shape-preserving quadratic interpolant of the McAllister 

and Roulier [50] to produce Pj such that Pj(Xi) = Aj and 

I 

Pj (Xi) = dXi,j' 
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Step 2 

For j : = 1 to m do 

For i : = 1 to n - 1 do 

Begin 

Xi + Xi+l 
xi = ----

2 

End 

For j : = 1 to m do 

For i : = 1 to n - 1 do 

Begin 

f~· = P·(x·)· 1,] ] 1, j- . . _ li,j + 11-1.j 
1,] - 2 

Generate numbers Bi,j (corresponding to B k above) with dXi,j 

from Step 1 and they satisfy B i ]· < f*· < l-i}·. 
, I,} , 

End 

Step 3 

For i : = 1 to n - 1 do 

For j : = 2 to m do 

Begin 

8; .. = Itj - li~j-l 
t,] Yj - Yj-l 

End 

Step 4 

If for some io we have a jo such that 8y* . . > 8y*.. ,then use the data to ,}o to,}o+ 1 

(Yj, fio,j) to generate Aio,j, j = 1, ... , m (corresponding to Ak above). 

Step 5 

For this io if li:,j < Aio,j then set li:,j 

(Yj, li:,j)' j = 1, ... , m are convex. 
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Step 6 

Go to Step 1 and use new grid data consisting of (Xi, Yj ~ Aj) i = L ... ~ n. 

j = 1, ... , m. and (Xi, Yj, f i: j ) i = 1, ... , n - 1, j = 1, ... , m but reverse the 

roles of x and Y (i and j). 

The points on a surface are generated and monotonicity and conYexity 

parallel to the grid lines is maintained by the algorithm when applied to com'ex 

grid data. 

6.3 Modified Algorithm. 

Now we present a new modified algorithm based on an altern at in' one-

dimensional shape-preserving algorithm due to Schumaker, using a slope 

estimation technique due to Butland. The Butland slope formula (3.1) satisfies 

(6.5), since from (6.3), we have 

and also, from (6.6), 

D~ + DkDk+l < 2DkDk+l 

2DkDk+l 
Dk < 

Dk + Dk+l 

Dk < dk+l 

DkDk+l < Di+l 

2DkDk+l < DkDk+l + D~+l 
2DkDk+l c 
---- <Uk+l 
Dk + Dk+l 

dk+1 < Dk+l 
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Now by (6.7) and (6.8), we obtain (6.5) 

In Chapter 3 we have shown that Schumaker's algorithm becomes a one­

pass algorithm automatically if the Butland slopes are used and that, in this 

case, it produces an interpolant which is identical with the McAllister-Roulier 

interpolant, though by an easier computation. The bivariate interpolant 

produced by the Modified algorithm given below is therefore identical. 

In the Modified algorithm Step 1 of the main algorithm is replaced using 

the Butland [11] slopes and the Schumaker [61] shape-preserving interpolant 

as described in Chapter 3 in such a manner that resulting interpolant preserves 

the convexity and monotonicity of the grid data. Step 1 is now performed as: 

Step 1 

For j : = 1 to m do 

Begin 

For i : = 1 to n do 

Use the Butland slope formula to produce slopes dXi,j. 

For i := 1 to n do 

Use the shape-preserving quadratic interpolation method of 

Schumaker to produce Pj such that Pj(Xi) = Aj and 

End. 

Step 2 through Step 6 are the same as given in the Roulier algorithm 

above. The Butland slopes can be further improved iteratively using Frey's 

iteration technique as described in Section 3.5 of Chapter 3. An advantage 

156 



of this improvement is that it leads more visually pleasing interpolants than 

those using just Butland slopes. This is demonstrated practically in the next 

section. 

6.4 Numerical Examples and Conclusions. 

In this section, we present the results of some numerical experiments using 

the schemes described in previous sections. The algorithms have been tested 

on several sets of grid data widely used in the literature, but here we consider 

only the two convex data sets used earlier by Roulier [58] and described in 

Chapter 1, to illustrate the performance of the method. In each of the following 

figures, the interpolant has been evaluated on a uniform 3x3 refinement of the 

original rectangular partition and the resulting points joined with straight 

lines for display purposes. The surfaces shown in Figures 6.1 and 6.2 are 

the result of applying the Modified algorithm using the Butland and Frey 

slope schemes respectively to Data 7 (Table 1.9). The plots for Data 8 (Table 

1.10) produced by the Modified algorithm with the Butland and Frey slope 

methods are represented in Figures 6.7 and 6.8 respectively. Figures 6.5, 6.6, 

6.11 and 6.12 show combined plots of the interpolating surfaces generated 

by the Modified algorithm with Butland and with Frey slopes, and which 

allow direct comparison of the different surfaces. Areas in which the resulting 

approximations show noticeable visual differences are highlighted and clearly 

observed on the diagrams. The algorithms have been implemented in Fortran-

77 under the SunDS 4.1.3 operating system and run on a SPARCserver-670:'IP 

machine. For each algorithm, the computation time required for interpolating 

the surfaces is very important. In order to compare CPU time, we further 

interpolate the above surfaces by evaluating on a uniform 7 X 7 refinement of the 
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original rectangular grid shown in Figures 6.3, 6.4, 6.9 and 6.10 respectively. 

Table 6.1 summarizes the CPU seconds required to produce above Figures. 

It is clear from Table 6.1 that the Modified algorithm with Butland slopes is 

faster than the other two algorithms. 

Figures Modified Algorithm Modified Algorithm Roulier Algorithm 

(with Butland Slopes) (with Frey Slopes) (Original) 

6.1,6.2 0.081 0.356 0.262 

6.3, 6.4 0.111 0.571 0.509 

6.7,6.8 0.091 0.375 0.326 

6.9,6.10 0.110 0.540 0.461 

Table 6.1 Timing information for the Figure 6.1 through Figure 6.10. 

These examples reveal that both algorithms with Butland slopes gIve 

identical interpolants and the resulting surfaces are shape-preserving. We 

conclude from these figures that the Modified algorithm with the Frey slope 

scheme produces more visually pleasing surfaces than that which uses Butland 

slopes. 

We want to point out that our Modified algorithm provides an alternative 

and simpler method for constructing the interpolant given by Roulier's 

method. The Modified algorithm has the merit that it is very easy to 

implement, and that it is more efficient in terms of both CPU time and storage 

requirements. 
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Figure 6.1 Modified algorithm with Butland slopes. 

Figure 6.2 Modified algorithm with Frey slopes. 
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Figure 6.3 Modified algorithm with Butland slopes. 

Figure 6.4 Modified algorithm with Frey slopes. 
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Figure 6.5 Combined plot by Modified algorithm with Butland and Frey Slopes. 

Figure 6.6 Combined plot by Modified algorithm with Butland and Frey Slopes. 
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Figure 6.7 Modified algorithm with Butland slopes. 

Figure 6.8 Modified algorithm with Frey slopes. 
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Figure 6.9 Modified algorithm with Butland slopes. 

Figure 6.10 Modified algorithm with Frey slopes. 
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Figure 6.11 Combined plot by Modified algorithm with Butland and Frey Slopes. 

Figure 6.12 Combined plot by Modified algorithm with Butland and Frey Slopes. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions. 

In this thesis we have presented several algorithms for generating shape­

preserving interpolants to a set of arbitrary data using C 1 piecewise quadratic 

and cubic Hermite interpolation. These algorithms are local and have the 

distinct feature that the curve is constructed in a piecewise manner, and 

creation of each curve segment depends only on information related to a few 

neighbouring points. The most significant characteristic of algorithms of this 

category is that the slope at each data point is estimated before the actual 

generation of the curve segment takes place. The flexibility and versatility 

of these algorithms make them applicable to any situation which requires 

preservation of shape properties such as monotonicity and/or convexity. The 

main conclusions of this research work are summarized as follows: 

• In Chapter 2, a survey of a number of the currently accepted shape­

preserving interpolation methods based on piecewise cubic splines has 

been provided. Several methods including a number of formulae for 

specifying the derivative values at the data points have been reviewed 

and the intercomparisons have also been carried out by examining their 

performance on four data sets. Careful observation of the graphical 

results has suggested that the Brodlie, Fritsch-Butland, Huynh and 

Pruess methods are the best on the basis of producing visually pleasing 
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shapes of the interpolating curves. However, the Pruess method is not 

efficient as it inserts two additional knots in each interval and requires 

solving an optimization problem in the case of convex data sets which , 

results in a corresponding increase in the complexity of computer code 

and execution time than the other methods. 

• In Chapter 3, algorithms proposed by McAllister-Roulier and Schu­

maker for the construction of interpolating curves which preserve the 

monotonicity and/or convexity of the data using Cl quadratic splines 

have been analysed and proved to give precisely the same interpolants, 

if the slopes used in both algorithms are estimated by the Butland slope 

method. Furthermore, in the case of convex data, the slopes have been 

improved iteratively using the scheme proposed by Frey to produce 

more visually pleasing curves. The Schumaker algorithm has the merit 

that it is easy to implement, and that it needs fewer operations and 

less computation time than the McAllister-Roulier algorithm as it in­

troduces an additional knot only in those intervals where di+di+l =I 2hi, 

whereas the latter algorithm always adds one extra knot in each inter-

val. 

• In Chapter 4, a new slope estimation method based on a generalized 

harmonic mean of chord slopes with a control parameter t has been 

introduced which provides a means for generating the slope at each 

data point. An advantage of this technique is that the slope at a data 

point is chosen within bounds given by the slopes of the two adjacent 

data segments to that data point. Based on this slope generation 

scheme, a new local automatic algorithm which has the property of 

preserving both monotonicity and/or convexity has been developed. 
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Necessary and sufficient conditions for a curve to be monotone and/or 

convex have been established. Compared to a number of current C 1 

curve interpolation methods which have been presented in Chapter 2, 

this algorithm demonstrates its superiority in producing curves of high 

quality which are also visually pleasing. 

• Two interactive algorithms have been described in Chapter 5 for the 

generation of interpolating curves which preserve the monotonicitv 

and/ or convexity of the data using C 1 quadratic and cubic splines 

respectively. Similar to above methods, these algorithms are also local 

and depend upon the new slope estimation formulae for determining the 

slope of the curve at each data point. Testing several sets of data has 

shown that changing the derivative value at the respective data point 

is an effective way of modifying the shape of the curve. These examples 

also illustrate that these algorithms give the user a control parameter 

ti for the derivative value associated with each data point, which is 

utilized to modify the shape of the curve segment in an interval locally. 

These interactive algorithms are a powerful addition to the local one­

pass algorithms and are capable of producing shape-preserving curves 

which are more visually pleasing. 

• Finally in Chapter 6, the application of Schumaker's algorithm for 

shape-preserving curve for constructing a C 1 surface which interpolates 

given bivariate convex data defined on a rectangular grid is considered. 

An algorithm proposed by the Roulier is modified in which the above 

algorithm is used to generate curves along the grid lines. The Modified 

algorithm is much faster and gives more visually pleasing surfaces. 
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Given the summary of the methods listed above, it is now possible to 

analyse some of the main advantages of the new algorithms, in terms of general 

characteristics, when compared with other methods outlined in Chapter 2 and 

Chapter 3. The following overall conclusions can be drawn: 

• An important advantage of the new algorithms is that they preserve 

both monotonicity and/or convexity of the data and produce visually 

pleasing curves. Undesirable features such as points of inflection and 

flat regions do not occur unless specified by the given data. 

• Their defining formulae are quite simple and the generation of the curve 

segments is done on a local basis, in order to allow local changes in the 

curve. This local characteristic is desirable because adding, changing 

or removing a data point will only alter the curve in the vicinity of that 

point and is also important when storage requirements are critical as is 

the case for very large data sets. 

• The specific advantage of the new automatic algorithm developed in 

Chapter 4 is that it is simple, fast, easy to code and from the standpoint 

of speed and storage; it does not require either the solution of an 

optimization problem as in the Pruess method or the insertion of 

additional knots between the original data points as seen in the methods 

described in Chapter 3. 

• The main difference between the new interactive algorithms proposed 

in Chapter 5 is the size of storage required and the time of computation. 

The interactive algorithm based on C1 quadratic splines adds one 

additional knot in each interval when di+di+1 =f. 20i, whereas the other 

algorithm makes use of C 1 cubic splines and does not insert any extra 
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knot. Both algorithms provide the flexibility to design a large variety 

of visually pleasing shapes of the curves, by varying the parameter ti 

which can be used interactively to give a means of local control over 

the shape of the curve. 

7.2 Future Work. 

While this research has attempted to gain insight into the shape-preserYing 

algorithms issues associated with curve and surface design, many areas need 

further investigation. Even though the following list is suggested as an 

immediate extension to what has been achieved so far, it does not in any 

way exhaust all possiblities for future research. With this in mind, we would 

like to identify the following research topics which are highly relevant to the 

present work and deserve further study: 

• We have considered the case of generating shape-preserving curves 

through C I quadratic and cubic splines. An attempt may be made to 

generalize this to higher degrees, i.e., quintic splines. In this regard, our 

new slope estimation method can be used in conjuction with the Ulrich­

Watson [66] method, where the monotonicity region for quintic splines 

consists of the square [0,5] X [5,0] and derivative values must lie within 

it. The derivative values can be forced to lie in this region using the 

slope estimation formula (5.6) with WI = 1 and 1 < W2 ::; 2. A similar 

approach to ours (as described in Chapter 4) might be developed to 

construct an algorithm for generating the curves. Further investigations 

could also be carried out to build an interactive algorithm by varying 

the values of t to produce more visually pleasing curves. 
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• Our new slope estimation method has promising results when it is used 

with the piecewise rational splines of Stineman [65]. For example, 

Figure 7.1 shows the effect of progressively increasing the value of t. 

Further work is now being undertaken to investigate the possiblities of 

building automatic and interactive algorithms based on this rational 

representation. 

25.0 .................................... t= 0.0 

20.05 

15.1 

10.15 

5.2 

0.25 

. t= 0.3 

-----t=0.6 

-----t=1.0 

------------- t = 1 .5 

-.-.---.---- - t = 2.5 

-.-.-.. ----- t = 6.0 

----- -- t = 00 

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2 

Figure 7.1 Interactive rational spline interpolant to Data 4. 

• For surface interpolation by blending function schemes, the above 

rational scheme may be employed using Coon's technique as discussed 

in Gordon [38]. More analysis will be needed to investigate the 

possiblities of preserving the shape of the surface inside rectangles. 

• An investigation into the possible modification of the Roulier approach 
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to construct an interactive algorithm using the new slope estimation 

method could be made. This may allow different values of the 

parameter t in different segments of the surface and different values 

of t in different directions. 

The purpose of this research, as pointed out from the outset, was to 

develop shape-preserving algorithms in one and two dimensions. From the 

research that we have carried out and which is reported in this thesis, we 

can conclude that 0 1 piecewise quadratic and cubic Hermite interpolation 

techniques are very powerful and flexible tools for the construction of shape­

preserving algorithms for curves and surfaces. They offer smooth and good 

visual quality interpolants, in association with the new slope estimation 

formula which invloves a parameter t to control the size of estimated slope, 

and a simple representation of the underlying splines. It is hoped that this 

work will contribute to the development of systems for curve design and to the 

understanding of the mechanisms linking imposed shape-preserving constraints 

to properties of required shapes. 
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