
THE UNIVERSITY OF NEWCASTLE UPON TYNE
DEPARTMENT OF COMPUTING SCIENCE

NEWCASTLE UNIVERSITY LIBRARY

097 52893 X

-rhes\s LIo\Cl8

Shape-Preserving Algorithms
for

Curve and Surface Design

by

Rafbat Iqbal

PhD Thesis

August 1998

Abstract

This thesis investigates, develops and implements algorithms for shape­

preserving curve and surface design that aim to reflect the shape characteristics

of the underlying geometry by achieving a visually pleasing interpolant to a

set of data points in one or two dimensions. All considered algorithms are

local and useful in computer graphics applications. The thesis begins with an

introduction to existing methods which attempt to solve the shape-preserving

curve interpolation problem using C 1 cubic and quadratic splines. Next, a

new generalized slope estimation method involving a parameter t, which is

used to control the size of the estimated slope and, in turn, produces a more

visually pleasing shape of the resulting curve, is proposed. Based on this slope

generation formula, new automatic and interactive algorithms for constructing

shape-preserving curves from C 1 quadratic and cubic splines are developed

and demonstrated on a number of data sets. The results of these numerical

experiments are also presented. Finally, a method suggested by Roulier which

generates C 1 surfaces interpolating arbitrary sets of convex data on rectangular

grids is considered in detail and modified to achieve more visually pleasing

surfaces. Some numerical examples are given to demonstrate the performance

of the method.

11

Acknow ledgements

I would like to express my sincere gratitude to my supervisor, Dr John

Lloyd, for his guidance, cooperation and enormous patience in the progress

of this research. He has been exceptionally kind to me and, through him,

several opportunities have been made available that would have otherwise

been impossible.

I wish to thank Dr Chris Phillips and Dr Kenneth Wright for their useful

suggestions and serving as members of the thesis committee. Thanks also go

to Richard Achmatowicz, Liaqat Hussain (Stoke-on-Trent), Dr Darren Hodge,

Prof Zahid H Kazmi, Dr Maciej Koutny, Dr Murtaza Malik, Dr Amer Saeed,

Hatim M Tahir, Shirley Craig (Dept. Librarian) and all the staff in the

Department of Computing Science who helped me in one way or another during

the course of this work.

I am deeply grateful to the Ministry of Education, Government of

Pakistan for awarding me the Quaid-e-Azam scholarship which enabled me

to accomplish this research.

The acknowledgements would be incomplete without recognizing the love

and patience of the author's parents, sisters and brothers who, through the

years, have incessantly boosted the morale and the ambition of the author,

without which little could have been achieved. My loving gratitude and

heartfelt thanks go to all of them for their everlasting support throughout

the course of my education.

111

Dedication

This work is dedicated to the memory of my beloved grandmothers who

passed away during my stay in the UK.

IV

Contents

Abstract

Acknow ledgements

Dedication

Contents

List of Figures

List of Tables

Chapter 1

Introduction and Preliminaries

1.1 The Spline Function

1.1.1 Ok Continuity for Spline Curves

1.2 Shape-Preserving Interpolation

1.2.1 Polynomial Splines

1.2.2 Splines under Tension

1.2.3 Rational Splines

1.3 Organisation and Layout of the Thesis

1. 3 .1 Publications

1.4 Some Definitions

1.5 Definition of Test Problems

1.5.1 Univariate Data Sets

1.5.1.1 Monotone Data

1.5.1.2 Monotone and Convex Data

1.5.1.3 Convex Data

1.5.2 Bivariate Data Sets

1.5.2.1 Convex Data

v

11

111

IV

v

Vlll

Xll

1

4

4

7

9

10

12

15

16

16

20

20

20

21

21

21

21

Chapter 2 27

Shape-Preserving Algorithms Using Cubic Splines

2.1 Piecewise Cubic Hermite Interpolation 28

2.2 Fritsch and Carlson Method 30

2.3 Slope Estimation Methods 33

2.3.1 Butland Method 33

2.3.2 Brodlie Method 33

2.3.3 Fritsch and Butland Method 34

2.3.4 Costantini Method 3-1

2.3.5 Huynh Method 38

2.4 Yan Method 40

2.5 Gasparo and Morandi Method 43

2.6 Beatson and Wolkowicz Method 45

2.7 Pruess Method 47

2.8 Numerical Examples and Conclusions 52

Chapter 3 73

Shape-Preserving Algorithms Using Quadratic Splines

3.1 Slope Calculation Methods 74

3.2 Schumaker Algorithm 78

3.3 McAllister and Roulier Algorithm 83

3.4 Similarity Between McAllister-Roulier and Schumaker Algorithms 86

3.5 Iterative Improvement to the Slopes 89

3.6 Numerical Examples and Conclusions 92

Chapter 4 101

An Algorithm for Shape-Preserving Curve Drawing

4.1 New Generalised Slope Estimation Method 101

VI

4.2 An Automatic Algorithm using Cubic Splines

4.3 Numerical Examples and Conclusions

Chapter 5

Interactive Algorithms for Shape-Preserving

Curve Drawing

5.1 An Interactive Algorithm using Quadratic Splines

5.2 An Interactive Algorithm using Cubic Splines

5.3 Numerical Examples and Conclusions

Chapter 6

Algorithms for Shape-Preserving Surface Drawing

6.1 Literature Review

6.2 Roulier Algorithm

6.3 Modified Algorithm

6.4 Numerical Examples and Conclusions

Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.2 Future Work

References

Vll

102

112

119

120

129

132

148

149

152

155

157

165

165

169

172

List of Figures

1.1 The Lagrange polynomial fit to the data given in Table 1.1 3

1.2 Standard cubic spline interpolant showing unwanted inflections

to the data given in Table 1.1 I

1.3 Shape-preserving interpolant to the data given in Table 1.1 9

1.4 Standard bicubic spline interpolating the data given in Table 1.2 14

1.5 Shape-preserving interpolant to the data presented in Table 1.2 14

1.6 Graphic representation of Data 1 22

1.7 Graphic representation of Data 2 22

1.8 Graphic representation of Data 3 23

1.9 Graphic representation of Data 4 23

1.10 Graphic representation of Data 5 24

1.11 Graphic representation of Data 6 24

1.12 Graphic representation of Data 7 at the grid points 25

1.13 Graphic representation of Data 8 at the grid points 26

2.1 Monotonicity region S for cubic splines 31

2.2 Costantini method with different values of q and k 35

2.3 Costantini method with different values of k and fixed q 37

2.4 Costantini method with different values of q and fixed k 37

2.5 Beatson-Wolkowicz method which interpolates Data 1 57

2.6 Brodlie method which interpolates Data 1 57

2.7 Butland method which interpolates Data 1 58

2.8 Fritsch-Butland method which interpolates Data 1 58

2.9 Gasparo-Morandi method which interpolates Data 1 59

2.10 Huynh method which interpolates Data 1 59

V111

2.11 Pruess method which interpolates Data 1 60

2.12 Yan method which interpolates Data 1 60

2.13 Beatson-Wolkowicz method which interpolates Data 2 61

2.14 Brodlie method which interpolates Data 2 61

2.15 Butland method which interpolates Data 2 62

2.16 Fritsch-Butland method which interpolates Data 2 62

2.17 Gasparo-Morandi method which interpolates Data 2 63

2.18 Huynh method which interpolates Data 2 63

2.19 Pruess method which interpolates Data 2 64

2.20 Yan method which interpolates Data 2 64

2.21 Beatson-Wolkowicz method which interpolates Data 3 65

2.22 Brodlie method which interpolates Data 3 65

2.23 Butland method which interpolates Data 3 66

2.24 Fritsch-Butland method which interpolates Data 3 66

2.25 Gasparo-Morandi method which interpolates Data 3 67

2.26 Huynh method which interpolates Data 3 67

2.27 Pruess method which interpolates Data 3 68

2.28 Yan method which interpolates Data 3 68

2.29 Beatson-Wolkowicz method which interpolates Data 4 69

2.30 Brodlie method which interpolates Data 4 69

2.31 Butland method which interpolates Data 4 70

2.32 Fritsch-Butland method which interpolates Data 4 70

2.33 Gasparo-Morandi method which interpolates Data 4 71

2.34 Huynh method which interpolates Data 4 71

2.35 Pruess method which interpolates Data 4 72

2.36 Yan method which interpolates Data 4 72

3.1 Data configuration for McAllister and Roulier's slope

method when Ibi-ll > Ibil > 0 76

lX

3.2 Data configuration for McAllister and Roulier's slope

method when 0 < 18i-ll ::::: 18il 77

3.3 Case 1 configuration for McAllister-Roulier algorithm 8-1

3.4 Case 2 configuration for McAllister-Roulier algorithm 85

3.5 Schumaker algorithm with intial slopes estimates 9-1

3.6 Schumaker algorithm with improved slopes estimates 94

3.7 Shape-preserving quadratic spline interpolant to Data 1 95

3.8 Shape-preserving quadratic spline interpolant to Data 2 96

3.9 Shape-preserving quadratic spline interpolant to Data 3 97

3.10 Shape-preserving quadratic spline interpolant to Data -1 98

3.11 Shape-preserving quadratic spline interpolant to Data 6 99

3.12 Shape-preserving quadratic spline interpolant to Data 5 100

4.1 Visualization of slope formula with different values of t 104

4.2 Monotonicity region S (shaded with dots) and

convexity region (hatched horizontally) 107

4.3 New automatic algorithm interpolating Data 1 114

4.4 New automatic algorithm interpolating Data 2 115

4.5 New automatic algorithm interpolating Data 3 116

4.6 New automatic algorithm interpolating Data 4 117

4.7 New automatic algorithm interpolating Data 6 118

5.1 Monotonicity region M for quadratic splines 122

5.2 Algorithm QCURVE with varying w2; WI = 1.0 and ti = 1.0 137

5.3 Algorithm CCURVE with varying W2; WI = 1.0 and ti = 1.0 137

5.4 Default curve: ti = tt for each i, 2 < i < n - 1 138

5.5 Modified curve: tg = 0.211,0.6,1.5 and 10.0; ti = tt otherwise 139

5.6 Modified curve: t10 = 1.0,2.0 and 10.0; ti = tT otherwise 139

5.7 Modified curve with large parameter values: tg = 50 and tlO = 50 140

5.8 Default curve: ti = tT for i = 2, ... , n - 1 141

x

5.9 Modified curve: t2 = 0.2,0.8,1.5 and 3.0; ti = tt otherwise I-l2

5.10 Default curve: ti = tt for each i, 2 :::;: i < n - 1 U3

5.11 Modified curve: tg = 0.283,0.8,1.5 and 10.0; ti = ti otherwise 1-l-i

5.12 Modified curve: tID = 0.794,2.0 and 10.0; ti = tt otherwise U-i

5.13 Modified curve with large parameter values: tg = 40 and tID = 40 1-i5

5.14 Default curve: ti = tt for i = 2, ... , n - 1 U6

5.15 Modified curve: t2 = 0.515,0.8,1.3 and 2.5; ti = tt otherwise U I

6.1 Modified algorithm with Butland slopes 159

6.2 Modified algorithm with Frey slopes 159

6.3 Modified algorithm with Butland slopes 160

6.4 Modified algorithm with Frey slopes 160

6.5 Combined plot by Modified algorithm with

Butland and Frey slopes 161

6.6 Combined plot by Modified algorithm with

6.7

6.8

6.9

6.10

6.11

6.12

7.1

Butland and Frey slopes

Modified algorithm with Butland slopes

Modified algorithm with Frey slopes

Modified algorithm with Butland slopes

Modified algorithm with Frey slopes

Combined plot by Modified algorithm with

Butland and Frey slopes

Combined plot by Modified algorithm with

Butland and Frey slopes

Interactive rational spline interpolant to Data 4

Xl

161

162

162

163

163

164

164

170

List of Tables

1.1 Monotone and convex data 2

1.2 Bivariate monotone data 13

1.3 Monotone Data 1 22

1.4 Monotone Data 2 22

1.5 Monotone Data 3 23

1.6 Monotone and convex Data 4 23

1.7 Locally monotone and convex Data 5 24

1.8 Convex Data 6 24

1.9 Convex Data 7 25

1.10 Convex Data 8 26

2.1 The values associated with the curves in Figure 2.2 36

2.2 Jumps in the second derivative at the interior knots 36

3.1 Jumps in the second derivative at the interior knots for Data 4 90

3.2 Jumps in the second derivative at the interior knots for Data 6 90

3.3 The values associated with Figure 3.7 95

3.4 The values associated with Figure 3.8 96

3.5 The values associated with Figure 3.9 97

3.6 The values associated with Figure 3.10 98

3.7 The values associated with Figure 3.11 99

3.8 The values associated with Figure 3.12 100

4.1 Jumps in the second derivative at the interior knots 104

4.2 The values used in the construction of Figure 4.3 114

4.3 The values used in the construction of Figure 4.4 11.5

4.4 The values used in the construction of Figure 4.5 116

xu

4.5 The values used in the construction of Figure -!.6 117

4.6 The values used in the construction of Figure -!.t 118

5.1 The values used in the construction of Figure 5.4 138

5.2 The values used in the construction of Figure 5.8 1-!1

5.3 The values used in the construction of Figure 5.10 1-!3

5.4 The values used in the construction of Figure 5.14 146

6.1 Timing information for the Figure 6.1 through Figure 6.10 158

XlIl

Chapter 1

Introduction and Preliminaries

This thesis is concerned with the process of representing a given set of data

by a smooth curve or surface which exactly reproduces the given values and

preserves the shape characteristics of the data. This is a problem which arises

frequently in a wide range of applications in science, engineering and computer

graphics. The classical interpolation methods developed by Lagrange and

Hermite are used in data interpolation even today. Unfortunately, these

methods often fail to reproduce important qualitative aspects of the data

such as monotonicity and/or convexity and may not meet the expectations of

the designer. They typically generate unexpected bumps, oscillations, wan's

or spurious wrinkles that ruin the shape of curves or surfaces. :'Iuch work

has been done subsequently, but surprisingly the curve and surface design

problems have not yet been dealt with adequately. For example, before the

advent of computers, the method used by a draftsman or engineer was to draw

the curve manually through the data points. This was a skilled job but very

tedious and the opinion of different people might vary as to what constituted

the "best" curve. It is not completely understood why a draftsman's curve

usually looks better than one generated by some automatic curve interpolation

algorithms. The draftsman somehow senses the shape information contained

in the data and draws curves that are correct, smooth and pleasing to the

eye. However, with the advent of the computer and its ability to perform

many calculations in a relatively short time, the question arises - why not

1

let the computer draw the curve? To do this, of course, we must provide

a mathematical representation of the curve. Fortunately: there are several

mathematical methods of representing a curve, given a set of ordinates and

abscissas, and these have been well documented in the literature.

Perhaps the best known method is fitting by polynomials. In spite of

its theoretical appeal, polynomial interpolation suffers from several serious

drawbacks; for example, any local modification to the data has a global effect

on the interpolant. Thus, they are unsuitable for applications where the data

may be frequently changed, or where one wishes to compute the interpolant

as the data arrives. Polynomials seem to do all right for small numbers of

data points, but when we go to higher degree, that is, as the number of

interpolation points increases, so does the complexity of the interpolant and

severe oscillations often appear. This is a major disadvantage of polynomial

interpolation and is especially undesirable in many design problems when

practical considerations indicate that the data has some additional properties

such as monotonicity and/or convexity. An example illustrates the problem:

when Lagrange polynomial interpolation is applied to a set of monotone and

convex data given in the following Table 1.1. The results obtained are displayed

Xi -2.0 -1.0 -0.5 -0.25 -0.1

Yi 0.25 1.0 4.0 16.0 100.0

Table 1.1 Monotone and convex data.

in Figure 1.1. While this procedure can often yield quite satisfactory results,

Figure 1.1 shows a very different behaviour from what one would normally

expect. Clearly Lagrangian interpolation has introduced bumps and unwanted

2

inflection points in the first three subintervals that are not supported by the

data. In most practical applications, these oscillations are unacceptable.

100

30

-40

-110

-180

-250

-2.0 -1.62 -1.24 -0.86 -0.48 -0.1

Figure 1.1 The Lagrange polynomial fit to the data given in Table 1.1.

Several schemes have been suggested for combating the difficulties encoun­

tered with polynomial interpolation. One of the most successful approaches

is to use piecewise polynomial interpolation which leads to the division of

the interval into small subintervals: instead of trying to interpolate the data

over the entire interval by one polynomial of high degree, one interpolates the

data by a piecewise polynomial function, where the degree of the polynomial

pieces associated with each subinterval is small and where the pieces satisfy

certain continuity conditions. This avoids the problems associated with high

degree polynomials and retains the inherent conceptual simplicity of polyno-

3

mial interpolation. The use of piecewise polynomials for curve and surface

interpolation was stimulated in the early 1960's by the introduction of spline

functions. There are various possible methods of introducing the theory of

spline functions and a considerable volume of literature has been written on

these functions since their development by Schoenberg [60].

1.1 The Spline Function.

Let (Xi, Yi), i = 1, ... , n, be a given set of data points such that Xl < X2, ... , <

X n . Spline functions are piecewise polynomials with derivatives constrained for

the purpose of making the resulting function smooth at the knot points Xi.

An interpolating spline function of degree k with interpolating points Xi, i =

1, ... , n, is a piecewise polynomial p(x) satisfying the following properties:

1. p(x) is k - 1 times differentiable at each point Xi, i = 1, ... , n.

2. On each subinterval [Xi, Xi+l], p(x) is a polynomial of degree not

exceeding k.

3. p(Xi) = Yi, i = 1, ... , n.

In other words the property 1 ensures that the interpolating spline function

p(x) is of class Ok-l as p(x) is continuous and has continuous derivatives for

all orders less than or equal to k - 1.

1.1.1 Ok Continuity for Spline Curves.

An interpolating spline function p(x) on [Xl, xn] is called Ok continuous

(k times continuously differentiable) at the knot Xi if the following conditions

hold:

4

, ,
Pi(Xi) = Pi+l (Xi), i = 1, ... , n - 2

" " Pi (Xi) = Pi+l (Xi), i = 1, ... ~ n - 2

..

..

(k)(.) _ (k) (.) Pi Xl - Pi+l Xl, i = 1, ... , n - 2

The spline function can be represented in vanous ways: the simplest,

and one of the most common representations, being in terms of B-splines

as basis functions. This basis is fairly well conditioned and has many other

nice properties which usually lead to stable and simple algorithms; see de Boor

[7] and Schumaker [62]. Interpolation schemes using a B-spline representation

have been developed by Cox [19] and de Boor [8].

A spline function is the mathematical equivalent of the draftsman's

physical spline - a long narrow strip of wood or plastic used to fit curves

through specified data points, for example, in shipbuilding, automotive and

aircraft design. The splines are shaped by lead weights called ducks. By

varying the number and positions of the lead weights, the spline is made to

pass through the specified data such that the resulting curve appears smooth,

or fair and pleasing to the eye. The mechanical spline has the properties of

continuity in slope and curvature while minimizing the "strain energy" of a

thin elastic beam subject to the interpolation constraints. Cubic splines have

the same properties of continuity, but only approximate to the minimization

of energy, by minimizing J y,,2 dx. The most attractive property of the cubic

spline is that, at each point, in the range the function is represented by a cubic

with C2 continuity at the data points, while flexibility is retained due to the

5

discontinuities in the third derivatives at the "joins" of the individual cubics.

Some of the earlier work on the use of spline functions in curve interpolation is

due to Ahlberg, Nilson and Walsh [1]. Gordon [38] extended these techniques

to surface fitting and bivariate interpolation through curve networks.

Standard cubic spline interpolation is a global method in the sense that

estimation of the derivatives at the data points is made on the basis of all the

data points by solving a system of linear equations. Consequently, all the data

must be available before computation of the interpolant can begin. Also, if

a small portion of the data is changed, the entire linear system of equations

must be recomputed. Hence, this results in a change in the whole curve.

Cubic splines are among the most widely used interpolants because they

offer attractive smoothness properties and computational convenience and

efficiency. The practical utility of cubic splines is quite evident from their

widespread use as finite element basis functions, in collocation approximations

to differential equations and data fitting applications. On the other hand,

they are not without their shortcomings and have a tendency to produce more

inflection points and overshoots than a draftsman would ordinarily include

when drawing a curve through the data. This occurs when the interpolant

cannot bend sharply enough at certain points and, as a consequence, breaks

out into spurious oscillations. Figure 1.2 displays the standard cubic spline

interpolant that interpolates to the same data used for Figure 1.1 and we

immediately notice some erratic behaviour in the resulting curve. Although

it is neither monotone nor convex, it oscillates much less widely than the

Lagrange polynomial interpolant in Figure 1.1. In fact, while one might desire

a monotone and convex interpolant in this example, the cubic spline is neither.

6

Thus, if these shape-preserving constraints are needed, one certainly must look

beyond the standard cubic spline.

100

30

-40

-110

-180

-250

-2.0 -1.62 -1.24 -0.86 -0.48 -0.1

Figure 1.2 Standard cubic spline interpolant showing unwanted

inflections to the data given in Table 1.1.

1.2 Shape-Preserving Interpolation.

Often data in an interpolation problem represents a physical quantity

having a certain behaviour (monotone decreasing, concave etc) as a func­

tion of other quantities, but the previous examples show that polynomial

and standard spline interpolation methods are not guaranteed to satisfy these

shape characteristics of the data. Thus, one would like to describe an inter­

polation scheme preserving these shape properties. Such "shape-preserving

interpolation" provides a means of avoiding the extraneous oscillations often

7

seen in standard cubic spline interpolation and similar algorithms. In addition

to the shape-preserving requirements, it is often desirable that the method

should be local. A local method is such that if a small portion of the data is

changed, the effect will only be apparent in the neighbourhood of the change

and one would then like the rest of it to remain unaffected. Here, the esti­

mation of the slope at a data point is based only on information at the point

itself and neighbouring points. In contrast with global methods, local methods

often produce C 1 interpolants and the discontinuity in the second derivative at

the data points does not constitute a serious problem as they usually provide

curves which are visually pleasing. Their simplicity makes them popular in

computer graphics, and because they are local methods, the interpolant can

be generated as the data points are collected. A number of local methods

have been developed which attempt to maintain shape characteristics of the

data, amongst which are the so called shape-preserving methods. These meth­

ods are shape-preserving in the sense that, in those intervals where the data

is monotone increasing or decreasing, the interpolant has the same property;

similarly, in those intervals where the data is convex or concave, the same is

also true of the interpolant. Figure 1.3 illustrates the result of interpolating

to the same data used for Figure 1.1 by a shape-preserving method, and the

resulting graph is both convex and monotonic increasing as well as pleasing

to the eye, as compared with the curves drawn in Figure 1.1 and Figure 1.2

which are neither monotone nor convex.

Some progress has been made in the last decade in the field of shape­

preserving interpolation and three different techniques which provide some

control over the shape of the interpolating curve have been considered so far;

namely,

8

a) Polynomial splines.

b) Spline under tension.

c) Rational splines.

These are discussed in the following sections.

100 :2

30 oj
0 0

-40

-110

-180

-250

-2.0 -1.62 -1.24 -0.86 -0.48 -0.1

Figure 1.3 Shape-preserving interpolant to the data given in Table 1.1.

1.2.1 Polynomial Splines.

The specific problem of shape-preserving interpolation using polynomial

splines, especially quadratic and cubic, has been considered by a number of

authors. de Boor [7] proposed a taut spline algorithm which makes use of

C 1 piecewise cubic polynomials and preserves the convexity of the data by'

inserting at most one additional knot between each pair of data points but does

9

not guarantee monotonicity. Fritsch and Carlson [33] describe an algorithm

in which an initial piecewise cubic interpolant is modified by changing the

derivative values of the interpolant (where necessary) to produce a monotone

piecewise cubic interpolant. Costantini [16] has developed the Fritsch and

Carlson method further to include interpolants of arbitrary degree and has

proposed a new technique for slope estimation. Beatson and \Yolkowicz [5]

and Van [67] describe methods which preserve the monotonicity of the data

and provide an alternative to the Fritsch and Carlson [33] method. Here,

derivative values are not modified; instead, when derivative values do not

ensure monotonicity, rather than changing the slopes, extra knots are inserted

in that subinterval. Dougherty, Edelman and Hyman [25] have introduced C1

cubic and C2 quintic spline polynomials for shape-preserving interpolation.

Fiorot and Tabka [28] have described shape-preserving global C2 cubic spline

interpolants, where the existence of such an interpolant depends upon the

existence of solutions of a system of linear inequalities representing the first

derivative values at the data points.

McAllister, Passow and Roulier [49] consider the problem of interpolating

monotone and convex data. They make use of piecewise polynomial Bernstein

representations and introduce additional knots into their schemes. Such

a scheme for quadratic spline interpolation is described by McAllister and

Roulier [50] and this technique is developed further by Schumaker [61].

1.2.2 Splines under Tension.

The idea of an interpolating spline under tension was first introduced by

Schweikert [63] in order to eliminate extraneous inflection points in cun-es

fitted by cubic splines. Schweikert used uniform tension and obtained on each

10

subinterval an interpolant that was a linear combination of 1 x etz and e- tz , , ,

with t as "tension parameter". These interpolants, with a sufficiently large

tension, do remove extraneous points of inflections, but are more expensive to

construct and evaluate than cubic splines. His idea was further investigated

and implemented by Cline [14] and generalized by Spath [64]. A detailed

derivation of the generalized form based on a variational principle is given by

Barsky [4]. These generalizations allow local choices of the tension parameter.

A common feature of all of these notions is that of a tension parameter which

may depend on the knot interval. As the tension parameters increase, the

graph of the spline tends to pull closer to the shape of the polygonal segments

connecting the data. Thus, for sufficiently high tension parameters, the spline

will be shape-preserving. Typically, one knows from experience how to choose

the tension parameters so that shape-preservation is achieved in two or three

attempts. Each time a change is made in the tension parameters, the complete

spline must be recalculated by solving a system of linear equations.

The main advantage of the spline under tension is that sufficient tension

yields a shape-preserving interpolant; that is, an interpolant which matches the

monotonicity and convexity properties of the data (see Fletcher and McAllister

[29], Kaklis and Pandelis [44], McCartin [51], Pruess [53], and Rentrop [57]).

In this connection, Renka [56] has suggested heuristic ways of choosing a

local tension parameter associated with each subinterval which yield shape­

preserving interpolants. In general, splines under tension are satisfactory

for many purposes, but they have the added disadvantage that exponential

functions must be computed for each evaluation.

11

1.2.3 Rational Splines.

Besides polynomials, other classical functions have also been used exten­

sively for interpolation. The most popular include rational functions. Rational

splines are also of use for producing smooth curves through the given data

points. The computational effort involved in their calculation and their sub­

sequent use for interpolation is not significantly greater than that required for

polynomial splines, but is significantly less than that for splines under tension.

In recent years, several shape-preserving methods have been developed which

make use of piecewise rational quadratic or cubic interpolants. :\ rational

spline solution to the problem of shape-preserving interpolation is provided

by Delbourgo and Gregory [23] and Gregory [35]. The use of a piecewise ra­

tional quadratic function for constructing a C 1 monotonic interpolant which

interpolates monotone data has been described by Gregory and Delbourgo

[37]. These authors [22] use a similar representation to obtain a global C2

interpolant which requires solving a set of non-linear equations in the knot

derivatives, derived by the imposition of the C2 continuity constraints at all

interior knots. Rational spline approaches to achieve convexity-preserving in­

terpolants to the convex data have been proposed by Delbourgo [20, 21], and

Ramirez and Lorente [55].

The ideas of shape-preserving curve interpolation can be extended to

surfaces if the defining data points lie on grid lines. The problem of generating

shape-preserving surfaces is very important in computer aided geometric

design applications and it is often desirable to interpolate three-dimensional

surface data defined by two independent variables (x and y) and one dependent

variable. A number of techniques have been developed for surface interpolation

including Coons and Bezier patches and tensor products of Bezier curves, cubic

splines, and B-splines. A difficulty arises with these methods, especially the

12

spline methods: abrupt changes in the dependent variable of the data may

induce artificial or exaggerated hills and valleys in the interpolating surface.

Figure 1.4 illustrates the interpolating bicubic spline surface for the EOS data

given in the following Table 1.2. This data comes from Carlson and Fritsch [12]

and represents an equation of state (EOS) surface for aluminum with pressure

T -2.30 -1.61 -0.92 -0.51 -0.22 0.00
p

-0.07 -34.54 -13.82 -10.10 -7.26 -5.66 -4.53
0.33 -34.54 -13.82 -10.10 -7.26 -5.66 -4.13
0.55 -34.54 -13.82 -10.10 -7.26 -4.88 -3.35
0.69 -34.54 -13.82 -10.10 -4.82 -3.34 -2.73
0.84 -34.54 -13.82 -2.52 -2.22 -1.98 -1.78
0.93 -34.54 -2.68 -1.88 -1.56 -1.41 -1.28
0.98 -3.06 -2.28 -1.63 -1.32 -1.15 -1.05
1.02 -2.86 -1.92 -1.39 -1.10 -0.92 -0.81
1.08 -2.37 -1.60 -1.17 -0.90 -0.72 -0.60
1.13 -1.89 -1.30 -0.95 -0.71 -0.54 -0.41

Table 1.2 Bivariate monotone data.

as a function of density (p) and temperature (T). For univariate data having

a drastic change in slope, the cubic spline typically deviates extensively from

the desired trend between data points (see Figure 1.2). Figure 1.4 shows

that the same phenomenon occurs with the bicubic spline interpolation. The

interpolating bicubic spline has produced unwanted ripples or overshoots that

are clearly unacceptable. A small number of methods have been proposed

which eliminate these unwanted hills and valleys in an interpolating spline

surface not indicated by the data. These methods are shape-preserving in the

sense that if the data exhibits a given monotonicity and/or convexity along all

grid lines parallel to the axes, then the resulting interpolant also exhibits

13

Figure 1.4 Standard bicubic spline interpolating the data given in Table 1.2.

Figure 1.5 Shape-preserving interpolant to the data presented in Table 1.2.

14

the same monotonicity and/or convexity along lines parallel to these grid lines

as well. Figure 1.5 shows the result of applying a shape-preserving method to

the same data used for Figure 1.4, where all of the ripples or overshoots have

been eliminated. The resulting surface is monotonic along the grid lines and

visually pleasing.

1.3 Organisation and Layout of the Thesis.

The aim of this thesis is to investigate, develop and implement local

algorithms for shape-preserving curve and surface design using C 1 quadratic

and cubic interpolating splines. These algorithms are used to fit a number of

data sets of practical significance and the results are compared to test their

performance. The rest of the thesis is organized in the following manner. We

conclude this chapter with some formal definitions to be used in the discussion

to aid the understanding of subsequent chapters and a description of data

sets for both curve and surface interpolation problems which will be used to

illustrate the behaviour of the various algorithms to be considered. Chapter 2 is

devoted to previous relevant research for the construction of shape-preserving

curve interpolants using cubic splines. Here, several slope estimation methods

which satisfy conditions of monotonicity for the cubic splines are discussed

and compared. In Chapter 3, we study the methods of interpolating shape­

preserving curves proposed by McAllister and Roulier [50] and Schumaker [61]

which use C 1 quadratic splines, and prove that these are identical if the slopes

required by the Schumaker algorithm are estimated by the formula proposed

by Butland [11]. We also, in the case of convex data, improve slopes further by

using an iterative technique to guarantee more visually pleasing shapes for the

resulting curves. In Chapter 4, a new generalized slope estimation method is

introduced and a new local automatic shape-preserving interpolation algorithm

15

based on this formula is constructed using C l cubic splines. The new algorithm

is found to compare favourably with the best of the existing methods. In

Chapter 5, the interactive curve building algorithms are developed with specific

application to the shape-preserving problem. These algorithms are local and

depend upon the slope estimation techniques involving a parameter which is

used to control the size of the estimated slope. This, in turn, yields a more

flexible tool for curve generation in computer graphics. The main work in this

thesis is concerned with the study of shape-preserving algorithms for curve

design and some of the results obtained for curves are then extended to the

problem of surface design. In Chapter 6, we review some of the existing shape­

preserving surface interpolation methods and describe some improvements.

Finally, Chapter 7 presents the conclusions as well as some suggested future

research.

1.3.1 Publications.

Parts of the work described in Chapter 3 and Chapter 6 of this thesis have

appeared in Iqbal [41, 42]. Other parts will be submitted for publication in

the near future.

1.4 Some Definitions.

The purpose of this section is to introduce some of the concepts that will

be pertinent to this thesis. In these definitions we consider first the univariate

case; that is, we assume that (Xi, Yi), i = 1, ... , n is a given set of data points in

a Cartesian co-ordinate system, where the x-values are monotonic increasing,

that is, Xl < X2, ..• , < X n . It is also convenient to define the first-order divided

differences.

16

b' - Yi+ 1 - Yi h .
l - hi ' i = Xi+l - xi, Z = 1, ... , n - 1. (1.1)

and the second-order divided differences

i = 1, ... , n - 2. (1.2)

The sign of bi is defined as

(1.3)
otherwise.

Definition 1.4.1

The univariate data set is said to be monotone increasing if the following

condition holds:

bi ~ 0, i = 1, .. " n - 1 (1.4)

and to be monotonic decreasing if

bi < 0, i = 1, ... , n - 1 (1.5)

We say that the data set is strictly monotone if there is no equality in equations

(1.4) and (1.5).

Definition 1.4.2

The univariate data set is said to be convex if we have

(1.6)

and said to be concave if

(1. 7)

17

We say that the data set is strictly convex/ooncave when the inequalies

(1.6) and (1.7) are strict. Note that under these definitions, straight line

segments are considered to be both convex and concave.

Definition 1.4.3

An inflection point in the interval (Xi, Xi+l) is said to be extraneous if

b.ib.i+l > o. Perhaps most important of the several desirable properties of

an interpolation curve is being able to control the extraneous points. Dealing

with the problem of these inflection points is equivalent to preserving the

convexity of the data. For example, Figure 1.2 shows the standard cubic spline

interpolant that interpolates the data given in Table 1.1 for which all second-

order differences are positive. The interpolant does not have a positive second

derivative everywhere and instead introduces extraneous inflection points in

the first three subintervals, [-2.0, -1.0], [-1.0, -0.5] and [-0.5, -0.25].

The problem that we intend to address in the first part of this thesis is that

of shape-preserving curve interpolation using spline interpolation. A piecewise

interpolating function p(x) E C l [Xl, xn] is defined such that

i = 1, ... ,n. (1.8)

where di are the derivative values at the endpoints of the subinterval. The

interpolating function p(x) is specified on the interval in terms of the data Yi,

and the derivative values di at the endpoints of the subinterval. In order that
I

the function p(x) be monotonicity preserving on [Xi, Xi+l], the sign of p (x)

must agree with the sign of 8i on [Xi, Xi+l]. We say that p(x) is convexity
I

preserving if p (x) is monotonic increasing in intervals in which the data are
I

convex and p (x) is monotonic decreasing in intervals in which the data are

concave. The interpolating function p(x) is said to be shape-preserving if it is

18

both monotonicity and convexity preserving.

We end this section by introducing some important definitions for bivariate

data sets. Let a given set of m by n data points in three dimensions

be represented by (Xi, Yj, Ai), where i = 1, ... , nand j = 1, ... , m. It is

assumed that the independent variables are ordered (Xl < X2 <, < Xn

and YI < Y2 <, ... , < Ym) and form a rectangular grid, but are not necessarily

equally spaced. Now we introduce some notation and definitions as follo\\"s .

8x' . - fi+l,i - Ai
l,} - ,

Xi+l - Xi
i = 1, ... , n - 1; j = 1, ... , m. (1.9)

f: Ai+l - Aj
uYi,j = ,

Yi+l - Yi
i = 1, ... , n; j = 1, ... , m - 1. (1.10)

Definition 1.4.4

The bivariate data is said to be monotone increasing (monotone decreas-

ing) along the grid line X = Xi if

8Yi,i ~ 0 (8Yi,j::; 0), j = 1, ... ,m-1. (1.11)

Definition 1.4.5

The bivariate data is said to be convex (concave) along the grid line X = Xi

if
(1.12)

Similarly, we can define the terms monotone increasing/decreasing, and

convex/ concave along the grid line Y = Yi'

The problem we intend to address in the second part of this thesis is that

of determining a surface which interpolates the given data and which preserves

convexity and monotonicity along grid lines. Mathematically, the problem is

that of finding a smooth bivariate function P(x, y) with continuous first partial

19

derivatives such that

P(Xi, Yj) = fi,j, i = 1, ... , n; j = 1, ... , m. (1.13)

subject to the shape-preserving constraints. The interpolant P(x, y) is called

shape-preserving if it is both monotonicity and convexity preserving on each

grid line.

1.5 Definition of Test Problems.

Several sets of test data have appeared in the literature. In this thesis,

we consider six data sets for univariate and two data sets for bivariate

interpolation and all of them are either monotone and/or convex. These appear

in Tables 1.3 through 1.10 and the corresponding data plots with data points

marked with a circle (0) for the univariate cases are presented in Figures 1.6

through 1.11. The skeleton graphs of bivariate data sets are shown in Figure

1.12 and Figure 1.13, where the data points are connected by straight lines

over a rectangular grid for display purposes. It is worthwhile to point out

that there is no essential (theoretical) difference between monotone increasing

and monotone decreasing data or between convex and concave data. Now, we

characterize the data sets into following catagories.

1.5.1 Univariate Data Sets.

1.5.1.1 Monotone Data.

Data 1 (Table 1.3, Figure 1.6) is taken from Akima [2]. It has been used

by several authors for comparison purposes.

Data 2 (Table 1.4, Figure 1.7) is used in Fritsch and Carlson [33] and

represents data from Livermore radio-chemical calculations.

20

Data 3 (Table 1..5, Figure 1.8) is the third example reported in Pruess [53].

It represents data from a potentiometric titration calculation.

1.5.1.2 Monotone and Convex Data.

Data 4 (Table 1.6, Figure 1.9) is from McAllister, Passow and Roulier [49]

and represents the convex function -; at x = -2, -1, -0.3, -0.2.
x

Data 5 (Table 1.7, Figure 1.10) comes from deBoor [7] and relates to

a property of titanium as a function of temperature. This data is locally

monotone and convex.

1.5.1.3 Convex Data.

Data 6 (Table 1.8, Figure 1.11) is used in Irvine, Marin and Smith [43]

and comes from the convex function
1

-------- at x = 0.0,0.1,0.4,0.7,0.8,1.0.
(0.05 + x)(1.05 - x)

1.5.2 Bivariate Data Sets.

1.5.2.1 Convex Data.

Data 7 (Table 1.9, Figure 1.12) is obtained from Roulier [58] and is from

the equation

f(x, y) = (x - 3)2 + (y - 4)2.

Data 8 (Table 1.10, Figure 1.13) is also provided by Roulier [58] and is

from the equation

21

Xi

Yi

Xi

Yi

X· 2 0.0

Yi 10.0

7.99

0.0
12.0

,

85l 0

70

0
55

0

40

25

0
10 0 00 00 00

0 3 6 9 12 15

Figure 1.6 Graphic representation of Data 1.

2.0 3.0 5.0 6.0 8.0 9.0 11.0 12.0 14.0
10.0 10.0 10.0 10.0 10.0 10.5 15.0 50.0 60.0

Table 1.3 Monotone Data 1.

1.0 o o o
o

0.8

0.6

o
0.4

0.2 o

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 1.7 Graphic representation of Data 2.

8.09 8.19 8.70 9.20

15.0

85.0

10.0

2.76429E-05 4.37498E-02 0.169183 0.469428 0.943740
15.0 20.0

0.998636 0.999919 0.999994

Table 1.4 Monotone Data 2.

22

Xi

Yi

Xi

Yi

22.0

986.01

893.4

800.8

708.2

615.6

523.0 0

o
o

o o
o

22.0 22.4 22.8 23.2 23.6 24.0

Figure 1.8 Graphic representation of Data 3.

22.5 22.6 22.7 22.8 22.9 23.0 23.1

523.0 543.0 550.0 557.0 565.0 575.0 590.0 620.0

23.3 23.4 23.5 24.0

915.0 944.0 958.0 986.0

Table 1.5 Monotone Data 3.

25.0 0

20.05

15.1

10.15
0

5.2

0.25 0 0

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 1.9 Graphic representation of Data 4.

Xi -2.0 -1.0 -0.3 -0.2

Yi 0.2500 1.0000 11.1111 25.0000

Table 1.6 Monotone and convex Data 4.

23

23.2

860.0

Xi

Yi
Xi

Yi

595.0

0.644

915.0
1.598

2.169~
I

1.8558

1.5426

1.2294

0.9162

0.603 00 0 o

s
o

o

o

o

o 0

o 00

595 691 787 883 979 1075

Figure 1.10 Graphic representation of Data 5.

635.0 695.0 795.0 855.0 875.0 885.0 895.0
0.652 0.644 0.694 0.907 1.336 1.881 2.169

935.0 985.0 1035.0 1075.0

0.916 0.607 0.603 0.608

Table 1.7 Locally monotone and convex Data 5.

19.0476 0 0

15.9218

12.7961

9.6703

6.5446 0

0

3.4188 1 0 0

I
I I

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.11 Graphic representation of Data 6.

Xi 0.0 0.1 0.4 0.7 0.8 1.0

Yi 19.0476 7.0175 3.4188 3.8095 4.7059 19.0476

Table 1.8 Convex Data 6.

24

905.0

2.075

Figure 1.12 Graphic representation of Data 7 at the grid points.

X 1.000 2.000 3.000 4.000 5.000 6.000
Y

1.000 13.000 10.000 9.000 10.000 13.000 18.000
2.000 8.000 5.000 4.000 5.000 8.000 13.000

3.000 5.000 2.000 1.000 2.000 5.000 10.000
4.000 4.000 1.000 0.000 1.000 4.000 9.000

5.000 5.000 2.000 1.000 2.000 5.000 10.000

6.000 8.000 5.000 4.000 5.000 8.000 13.000

7.000 13.000 10.000 9.000 10.000 13.000 18.000

8.000 20.000 17.000 16.000 17.000 20.000 25.000

Table 1.9 Convex Data 7.

25

Figure 1.13 Graphic representation of Data 8 at the grid points.

X 1.000 2.000 3.000 4.000 5.000 6.000 7.000
Y

1.000 7.813 10.590 12.257 12.813 12.257 10.590 7.813
2.000 6.250 9.028 10.694 11.250 10.694 9.028 6.250
3.000 5.313 8.090 9.757 10.313 9.757 9.090 5.313
4.000 5.000 7.778 9.444 10.000 9.444 7.778 5.000
5.000 5.313 8.090 9.757 10.313 9.757 9.090 5.313
6.000 6.250 9.028 10.694 11.250 10.694 9.028 6.250

7.000 7.813 10.590 12.257 12.813 12.257 10.590 7.813

Table 1.10 Convex Data 8.

26

Chapter 2

Shape-Preserving Algorithms

U sing Cubic Splines

In this chapter we discuss the development of many effective local methods

which use 0 1 piecewise cubic splines to provide an additional opportunity

to control the shape of an interpolatory curve. The detailed mathematical

background of these methods may be found in the original articles. Here, we

are mostly interested in the final form of the algorithm. The explicit form

of the piecewise cubic Hermite interpolation, which is used to interpolate

a set of data (Xi, Yi), i = 1, ... , n, is given in Section 2.1. The necessary

and sufficient conditions for a 0 1 cubic spline to preserve monotonicity are

described in Section 2.2. The derivative values at the interpolation points

may not be available as part of the data and one would be required to estimate

these values before constructing an interpolant to a set of data. These values

are usually specified in some manner in order to satisfy the shape related

criteria. A review of some standard formulae for calculating the derivative

values at the interpolation points is provided in Section 2.3. Various techniques

for constructing shape-preserving curves with a specific order of continuity

have been developed by a number of authors using piecewise cubic Hermite

interpolants. Methods of this type are described in Section 2.4 through Section

2.7. Finally, conclusions and a number of experiments performed by applying

different algorithms to several data sets are presented in Section 2.8.

27

2.1 Piecewise Cubic Hermite Interpolation.

The spline fit by its very nature is a global scheme as it requires the

solution of a tridiagonal system. On the other hand, osculatory or Hermite

interpolation provides a local means of interpolation. For this reason, Hermite

interpolation is often preferred over spline interpolation. The local nature

of this scheme is obtained at the expense of smoothness. For example. if

we specify the derivatives, a cubic Hermite interpolant \vhich is only C 1

as opposed to the C 2 smoothness provided by the standard cubic splines

is achieved. Moreover, the required derivatives are typically not available

and must themselves be estimated. With these provisos duly noted, we now

proceed to discuss Hermite interpolation by cubic splines.

Let(Xi, Yi), i = 1, ... , n be the given data set. A C 1 piecewise function p(x)

is constructed on [Xl, xn] with the following characteristics:

i = 1, ... ,n (2.1)

where for each i = 1, ... , n - 1,

(2.2)

is a cubic polynomial interpolant defined on the subinterval [Xi, Xi+l] and the

d/s are the approximations to the derivatives of Y at Xi to be determined.

The construction of p(x) is then essentially based on the calculation of

the derivative values di , i = 1, ... , n; and the process is known as piecewise

cubic Hermite interpolation and the p(x) in (2.2) is called the cubic Hermite

interpolant in the subinterval [Xi, Xi+l]. We observe that p(x) is determined

28

on each subinterval by four parameters. Two of these parameters are given

by the interpolation constraint. The other two are specified in terms of the

derivatives at the interpolation points.

In general, the slopes di are unknown and our problem can be seen

as one of finding a formula to estimate these slopes so that the resulting

approximation preserves the shape characteristics inherent in the data. l\Iany

slope calculation techniques are now available, amongst the earliest used is

the Akima [2] method. In this method, the slope of the curve is determined

locally at each given data point by a geometrical condition using coordinates

of five data points. The data point in question is taken as a centre point with

two neighbouring data points on each side. The slope at Xi is calculated as

follows:

IOi+l - oiloi-l + IOi-2 - Oi-lloi
IOi+l - oil + IOi-2 - Oi-ll

otherwise.

and

(2.3)

The slope di is the weighted average of the secant slopes Oi-l and Oi about Xi.

When interpolation is made near the end points of the curve, two extra points

are generated using an extrapolation technique. Akima does this by fitting

a quadratic through the three end points (either Xl,X2,X3 or X n -2,Xn -l,Xn)

and reading off two extra points. These extra points can then be regarded as

an extension of the data set for the purposes of applying the slope formula,

enabling every slope to be calculated in the same way.

It is worthwhile to point out that the Akima [2] method usually does not

preserve any shape characteristics present in the data such as monotonicity

29

and/or convexity, as it is not designed for such purposes. In order that the

interpolants (2.2) should maintain shape-preserving properties the derivative

values, di, must satisfy certain conditions. These conditions can be written

in terms of restrictions on the derivative values di and di+l at the end points

of the subinterval [Xi, Xi+l] as a function of 8i's. Thus, the problem is to

determine a local method for finding the derivative values di which causes the

conditions always to be satisfied. The conditions appropriate to particular

methods are described below.

2.2 Fritsch and Carlson Method.

Several attempts have been made at finding an efficient and automatic

method for constructing shape-preserving interpolants using quadratic splines.

In the case of cubic splines, the major breakthrough was in the publication of

the paper by Fritsch and Carlson [33]. In this paper, they consider monotone

data and have shown necessary and sufficient conditions for a Hermite cubic

interpolant to maintain monotonicity. In the case 8i = 0, the requirement

that p(x) be mono tonicity preserving implies di = di+l = 0, and p(x) = Yi
d·

in [Xi, Xi+l]. For 8i #- 0, their conditions are defined in terms of Cti = 8; and

di+l d h d·· b d t . ed Th d·t· C f3i = -- where i are t e envatIves to e e ermm. ese con 1 IOns lor
8i

monotone data sets can be summarized as follows:

Theorem 2.2.1.

If sign(di) = sign(di+d = sign(8i), then p(x) is monotone on [Xi, xi+d if

and only if either

(i) Cti + f3i - 2 ::; 0 or

(ii) Cti + f3i - 2 > 0 and

either

30

(ii.i)

(ii.ii)

(ii.iii)

Fritsch and Carlson proved this theorem by considering the extremum of
I

P (x). Conditions on ai,{3i were derived so as to ensure that this extremum is

forced outside of the interval [Xi, Xi+l], or by considering necessary bounds if

it does fall in the interval. The conditions ai and {3i must satisfy in order to

guarantee monotonicity are depicted in Figure 2.1, by the area shaded with

dots. The region in which the conditions are satisfied is denoted by S and is

in fact the finite region of the first quadrant of the a{3-plane bounded by the

ellipse a~ + (31 + ai{3i - 6ai - 6{3i + 9 = O. In order that the interpolant p(x)

4.0

3.5

3.0

2.5

{3i 2.0 ~~:.;..;.: :;..;.; .. .;..;..;..;....: .;..;..;.:.;..;... .. ;..;..;. •.• -. -.; .-•• -.-:-.-:-:-:1

1.5

1.0

0.5

.....
...................

.
.....

...

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 2.1 Monotonicity region S for cubic splines.

31

be monotone on [Xi, Xi+l], the derivative values di and di~l must be chosen

so that (CXi' (3i) fall within region S. If (CXi' (3i) (j S, then di and di+ 1 are

modified to satisfy appropriate conditions such that all (CXi,{3i) E S. Fritsch

and Carlson suggest working with different subregions of S and amongst them,

the following is an easier condition to satisfy:

(2.4)

The authors initially estimate the slopes di using a 3-point difference formula

i.e., for i = 2, ... , n - 1,

{

hi8i~1 + hi~18i,
di = h1- 1 + hl

0,

(2.5)
otherwise.

The derivatives at the end points Xl and Xn are estimated usmg a non-

centered 3-point difference formula. With these values of di, CXi and {3i are

calculated for each segment and tested to check that they lie within the

allowable monotonicity region S. If not, then the di are modified such that all

(CXi,{3i) E S. Their process of modification requires two passes over the data

and is essentially a non-local approach. The modification step is complicated

and is dependent on the direction in which the data is scanned.

The success of the Fritsch-Carlson method has inspired a series of papers,

all of which have abandoned the old one-pass techniques for the two-pass

approach. Eisenstat, Jackson and Lewis [27] have subsequently analyzed

some of these algorithms, which they term "fit and modify", and show that

the Fritsch-Carlson method is only third-order accurate to an underlying C3

monotone function. They also produce a fourth-order algorithm of their own.

32

2.3 Slope Estimation Methods.

In this section, several methods for estimating the deri\'atiYe values di at

the interpolation points are presented which directly satisfy condition (2, -!).

All the methods are local and calculate the derivative at a point using a mean

of first-order divided differences about the point in question. In the following,

Oi and hi are defined as in (1.1), and i = 2, ... , n - 1.

2.3.1 Butland Method.

This is the method introduced by Butland [11]. The formula IS the

Harmonic mean between Oi-l and Oi:

(2.6)

otherwise,

This formula restricts the d/s to points of (ai, f3i) in Figure 2.1 within a square

[0,2] X [0,2] and may not produce a visually pleasing curve because it fails to

consider the relative spacing of the data points as noted in Fritsch and Butland

[32].

2.3.2 Brodlie Method.

This procedure developed by Brodlie [9] is a modification of (2.6) and

calculates the derivatives by taking account of the relative spacing of the data

points:

{

_ _ ---:01_' -_10_i -,---_ 'f c. c, °
, 1 Ut-lUt >

di =)..Oi + (1 -)..)Oi-l
0, otherwise.

(2.7)

where).. = ~(1 + hi). Note that).. = ~ gives the Butland formula (2.6).
3 hi-l + hi 2

33

2.3.3 Fritsch and Butland Method.

This is the method proposed by Fritsch and Butland [32]. The formula is

a weighted Harmonic mean as follows:

0,

3hi-lhi

hi + 2hi-l '
3hi-lhi

hi-l + 2hi'

(2.8)

Both formulae given in (2.7) and (2.8) fulfill condition (2.4). For this choice

of di, the values of ai and f3i lie in the square [0,3] X [0,3], a larger subset of S

than in the case for the Butland formula (2.6), allowing more visually pleasing

curves to be produced (see, for example, Figure 2.31 and Figure 2.32).

2.3.4 Costantini Method.

This technique presented by Costantini [16] also employs the weighted

Harmonic mean in which weights can be varied, subject to certain conditions,

and the slopes are computed using the following formula:

where

0,

hi + (p(q, k) - 1)hi - 1 '

p(q, k)hi-lhi
hi - 1 + (p(q, k) - l)hi'

q qt 1 (q ~ 1)
q - 2k j=k J

p(q, k) = --------'--------

2k qt1 (q ~ 1) _ 2 ~ (q ~ 1)
q - 2k j=k J j=o J

34

(2.9)

and q, k are integers such that ° < k < q - k.

This formula satisfies the monotonicity condition (2.4) provided that

p(q, k) < 3. In particular when q = 3 or q = 4 and k = 1, this corresponds

to the Fritsch-Butland formula (2.8). When q > 5 and * :::; 3, then the

values of (ai,!3i) are always restricted to the smaller square [0, 2]x[0, 2] in

Figure 2.1 and consequently tighter curves are produced. As an illustration,

the curves drawn in Figure 2.2 are produced by using values of q = 3, k = 1;

q = 5, k = 2; q = 7, k = 3 and q = 11, k = 5 in the formula (2.9) for Data

4. The corresponding values of ai and !3i, as well as the jumps in the second

derivative at the interior knots, denoted by Ji, are listed in Table 2.1 and Table

2.2 respectively. In Figure 2.2, clearly increasing the values of q and k give the

effect of tightening the curve toward the straight line between the points

25.0

20.05

15.1

10.15

5.2

0.25

____ q=3, k=1

q=5, k=2
____ q=7, k=3

q=11,k=5

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.2 Costantini Method with different values of q and k.

35

Data Points q = 3, k = 1 q = 5, k = 2 q = 7, k = 3 q = 11, k = .j
1, Xi Yi ai f3i a· I f3i ai 3! ai 3,
1 -2.0 0.25 0.00 2.72 0.00 2.02 0.00 1.76 0.00 1..5-±

2 -1.0 1.0 0.14 2.48 0.11 1.92 0.09 1.69 0.08 1.-±9

3 -0.3 11.1111 0.26 1.11 0.20 1.11 0.18 1.11 0.16 1.11

4 -0.2 25.0

Table 2.1 The values associated with the curves in Figure 2.2.

Data Points q = 3, k = 1 q = 5, k = 2 q = 7, k = 3 q = 11, k = 5
1, X· l Yi Ji Ji Ji Ji

1 -2.0 0.25

2 -1.0 1.0 6.02 34.53 45.55 55.41

3 -0.3 11.1111 3722.57 4099.27 4246.05 4377.95

4 -0.2 25.0

Table 2.2 Jumps in the second derivative at the interior knots.

(Xi,Yi) and (Xi+l,Yi+I), and move the values of (ai,f3i) presented in Table

2.1 towards the origin of Figure 2.1. Note that for q > 5 and f :::; 3, these

values fall within the smaller square [0,2] x [0,2] of the monotonicity region S,

as observed by Fritsch and Butland [32], and the jump in the second derivative

at the knots increases with the rise in the values of q and k as shown in Table

2.2. Larger values of ai and f3il within the square [0,3] x [0,3] of Figure 2.1,

generate smaller discontinuities in the second derivative and produce the more

visually pleasing shape of the curves. It is worthwhile to mention here that

varying either q or k, while keeping the other fixed such that p(q, k) :::; 3, will

alter the shape of the curve in a manner similar to that noticed in the case of

the simultaneous variation of these parameters in Figure 2.2. The effects due

to these operations on the shape of the curves are demonstrated in Figure 2.3

and Figure 2.4.

36

25.0

20.05

15.1

10.15

5.2

0.25

____ q=11, k=2

q=11, k=3

____ q=11, k=4

q=11, k=5

;1
/

/

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.3 Costantini method with different values of k and fixed q.

25.0

20.05

15.1

10.15

5.2

0.25

____ q=5, k=2

q=8, k=2

___ q=10, k=2

q=11, k=2

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.4 Costantini method with different values of q and fixed k.

37

2.3.5 Huynh Method.

Huynh [40] has described several effective slope calculation formulae by

naming them as limiter functions and some of these yield the values of di such

that condition (2.4) is directly satisfied. These formulae are described below:

di = {min(maX(Oi-I,Oi),3min(Oi_I,Oi)), if Oi-IOi > 0

0, otherwise.

{

. (Oi-I + Oi . ())
di = mm 2 ,3mm Oi-I, 0i , if 0i-10i > 0

0, otherwise.

{

30i-10i(Oi-1 + Oi)

di = 0;_1 + 40i-IOi + 0;'

0, otherwise.

(2.10)

(2.11)

(2.12)

Formulae (2.10), (2.11) and (2.12) are called the Superbee, average and

rational limiter respectively. It is worthwhile to mention here that, in practice,

the formula (2.12) produces more visually pleasing curves than that of (2.10)

and (2.11). In this chapter, unless otherwise stated, the Huynh method means

formula (2.12) and its performance is compared with other existing methods

in Section 2.8.

We see that all the formulae given m (2.6) through (2.12) satisfy the

following condition

(2.13)

This means that the slope of the curves lies between the slopes of the adjacent

data segments and, as a consequence, when the data is linear (i.e. where

38

8i-1 = 8i), then di = 8i- 1. While this condition is not necessary for

monotonicity, it seems intuitively reasonable as noted by Fritsch and Butland

[32]. The standard cubic spline often exhibits unwanted oscillations due to the

emergence of overshoots and/or extraneous inflection points. The above slope

estimation methods ensure us that the C 1 cubic splines remedy this situation,

for appropriate values of di chosen through them.

The slope estimation formulae described in (2.6) through (2.12) only

provide derivative values di at interior data points. There are a variety of

ways to determine the derivative values d1 and dn at the end points. vVe have

used the non-centered 3-point difference formula, setting the result to zero if

its sign does not agree with that of 81 (or 8n -d. This procedure yields values

of d1 and dn that fulfill the condition (2.4). Unless otherwise stated, these end

conditions given by

(2.14)
otherwise.

{

0, if 8n -1 = ° or sign(dn) =I sign(8n -d
d) (2.15)

n = 8 hn - 1(8n -1 - 8n -2 .
+ otherWIse.

n-1 h' hn -1 + n-2

are used for all curves shown in Section 2.8.

For completeness, we show here that, if 81 =I 0, sign(81)=sign(82), and d1

is computed as described above, then 0:1 = d1 < 2, so that this method of
81

39

determining end derivative values is compatible with monotonicity preserving

conditions at the extreme points. After simplification, from (2.14), we ha\'e:

If 82 is too large compared to 81 , this can be negative, which is why the

adjustment to zero may be needed. However, we are interested only in an

upper bound and assuming 81 and 82 have the same sign, we have:

Since hI and h2 are assumed to be positive, hI < (hI + h2), so that a1 < 2,

as claimed.

2.4 Van Method.

The method developed by Van [67] considers the interpolation problem

p(Xi) = Yi, i = 1, ... , n by constructing the interpolant as a C 1 cubic spline

with knots at the data points XI, ... , Xn and with two extra knots inserted

in those subintervals at which the points (ai, f3i) tJ. 5, in order to preserve

monotonicity of the data. It shows when it is necessary to add knots to a

subinterval and where they should be placed.

In contrast to the Fritsch and Carlson [33] method, Van's method does

not modify the chosen values of di. Instead, when (ai, f3i) does not lie in

5, rather than changing the slopes, two extra knots Ei,I and Ei,2 such that

Xi < Ei,I ::; x* ::; Ei,2 < Xi+I are inserted in the subinterval [Xi, Xi+I], where

40

is the unique extremum of the quadratic which is obtained by differentiating

the cubic (2.2) in the subinterval [Xi, Xi+l].

Let Di =I 0 and define

TJ = Xi+l - x* ,
,

LV = P (x*) (2.16)

It is clear that p(x) is not monotone on [Xi, Xi+l] if and only if

(2.17)

In this case, the new interpolant on [Xi, Xi+l] is chosen to have a derivative
,

P (x) of the following form:

al(X - (i,I)2 + b, X E [Xi, (i,l]
,

P (X) = b, X E [(i,l, (i,2] (2.18)

a2(x - (i,2)2 + b, X E [(i,2, Xi+l]

where aI, a2 and b are the constants in which b is chosen as zero (see Section

2.5 for the case where b =I 0) and are determined in such a way that p(x)

satisfies all interpolation and monotonicity requirements.

By imposing the continuity and interpolation conditions on (2.18), and

after simple calculations, the expressions for the additional knots (i,l and (i,2

are given by

(Yi+l - Yi)
and (i,2 = Xi+l - 3TJ d + d

iJl i+ITJ

The interpolant p(x) is modified so that it becomes a C l cubic with respect

to the expanded set of knots and preserves the monotonicity of the data. The

41

shape of the interpolant becomes flat between the additional inserted knots,

that is, on the interval [ei,l, ei,2], preserving the monotonicity of the data. An

algorithm is described briefly as follows:

Algorithm.

Step 1

Step 2

Step 3

Calculate the slopes di at Xi using 4-point difference formula as

For i = 2 to n-2 do

At the end points, for i = 1, n, use non-centered 4-point difference

formula to compute di, which uses the value of Yi at the four points

nearest to Xi.

Guarantee that no two of di, di+1, Di are of opposite signs: if diDi ~ 0,

then set di = 0 and if di+lDi ~ 0, then set di+l = o.

For each subinterval [Xi, Xi+l] in which (ai,{3i) E 5, represent p(x)

as cubic Hermite polynomial (2.2) with slopes di, di+l and which is

monotone on [Xi, Xi+l].

42

Step 4

If (CXi,{3i) tf- 5, then choose extra knots ~i.1 and ~i,2 as proposed

above and defined p(x) as

p(X) = c,

a2(X - ~i,2)3
3 +c,

di
where a1 = ()2 '

xi - ~i,l

x E [Xi, ~i,d

X E [~i,l' ~i,2]

X E [~i,2,Xi+l]

di(Xi - ~i,l) di+1(Xi+1 - ~i,2)
C = Yi - 3 = Yi+1 - 3 .

Then p(x) is also monotone on [Xi, Xi+ 1].

2.5 Gasparo and Morandi Method.

The method proposed by Gasparo and Morandi [34] is very similar to

the Van [67] method except that the former draws a straight line between

the additional inserted knots by imposing b :f 0 in (2.18), as opposed to the

latter which always selects b as zero and yields a constant value throughout

the interval [~i,l' ~i,2]. The process of finding the extra knots is achieved by
I

integrating p (x) on [Xi, xi+d and imposing the interpolation conditions. Then

~i 1 and ti 2 are calculated as , '" ,

~i,l = Xi + ji and ~i,2 = Xi+1 - iJ

where

43

In order to determine b, the authors suggest the formula

where'P E [0,1) is a given real number and the slope b in the interval [Xi, Xi~l]

can be varied by choosing different values of 'P, which in turn, may lead to

better results. An algorithm is given as follows:

Algorithm.

Here Steps 1, 2 and 3 are the same as given in the Van method, except

Step 4 which is outlined as.

Step 4

If (ai, (3i) tJ. 5, then add extra knots ~i,l and ~i,2 as mentioned above

and define

al(X - ~i,1)3 + bx + c,
3

p(x) = bx + c,

a2(x - ~i,2)3 + bx + c,
3

where al = (Xi _ ~i,1)2 '

X E [Xi, ~i,l]

X E [~i,I, ~i,2]

X E [~i,2' Xi+l]

and

b
(di - b)(Xi - ~i,I) b. (di+l - b)(Xi+l - ~i,2)

C = Yi- Xi- 3 = Yi+l- Xz+l- 3 .

Thenp(x) is also monotone on [Xi,Xi+l].

The above algorithms described by Van and Gasparo-Morandi give us a

fourth-order approximation to monotone functions. We should point out that

when the slopes for the data change abruptly from large to small values, the

44

curves produced by both algorithms change quickly due to the high order of

convergence and are not as pleasing as those produced by other algorithms

(see Section 2.8).

2.6 Beatson and Wolkowicz Method.

Beatson and Wolkowicz [5] have described methods which preserve

monotonicity of the data by extending the monotonicity region S into a

superset W which consists of union of monotonicity region S \vith the squares

[0,1] X [3,4] and [3,4] X [0,1]. Here, when (ai, (3i) ¢ S, then ai, {3i are projected

onto the superset of the monotonicity region for each subinterval (Xi, Xi+l) and

then an extra knot is added where necessary to allow monotonicity without

further modifying the derivative values di at the data points. The authors

have presented two algorithms but here we only consider the second algorithm

which provides more visually pleasing curves than the first. The basis of the

method rests on the result of a lemma and a relaxation function g(x) such that

g(x) ::; x for all x E [0,1] and (1- g(x))/(l- x) is bounded on [0,1). Suppose

we are given a set of monotone data and a number X such that 1 ::; X ::; 2. An

algorithm implementing the method is outlined briefly as follows:

Algorithm

Step 1

Step 2

Calculate the derivative values di using standard C 2 cubic spline

interpolation with I not-a-knot I end conditions.

For i = 1 to n do

Correct the sign of derivative, that is, if dibi < 0, then set

di = -di

45

Step 3

Step 4

Step 5

For each subinterval [Xi,Xi+l] in which (Q:i,f3i) E S, represent p(x)

as cubic Hermite polynomial (2.2) with slopes di , di+1 and which is

monotone on [Xi, Xi+l].

For i = 1 to n-1 do

If (Q:i,f3i) tJ. S, then perform a relaxed projection of (Q:i' 3z) onto

W by computing v > 0 such that (1,1) + V(Q:i - 1,f3i - 1) lie on

the boundary of S and define a relaxation function g(v) as

() _ {V/2, v < j
9 v - 2

2v - 1, v 2: 3·

If Q:i > 1 and f3i 2: 1 Then

Q:i = 1 + 9 (v) (Q:i - 1)

f3i = 1 + 9 (v) (f3i - 1)

Else

If Q:i < 1 Then

f3i = 1 + 9 (v) (f3i - 1)

Else

Q:i = 1 + g(V)(Q:i - 1)

For i = 1 to n-1 do

8 = 2Q:i + f3i - 3
3 (Q:i + f3i - 2)

If (Q:i,f3i) tJ. S, then choose an additional knot ~i,l as

If Q:i < 1 then

~il = Xi + 2hi8

Calculate p(~i,d and pi (~i,l) using (2.2) and define

p(~i,d = p(~i,d + !hi h"iX8 (8(2Q:i + f3i - 3) - Q:i)

46

Step 6

, ,
p (ti,I) p (ti,l)

Else

,
Compute P(ti,I) and p (ti,I) using (2.2) and set

P(ti,t) = p(ti,l) -thi8ix(1 - 8) (8(2Qi +,Bi - 3) - Qi)
, ,

p (ti,t) p (ti,l)

If (Qi' ,Bi) (j. S, then choose an extra knot til as proposed above and

modify the original piecewise single cubic spline on [Xi, xi+d into

two cubic splines on [Xi, ti,d and [ti,l, Xi+l].

This algorithm becomes completely local if the derivative values di in Step

1 are replaced with the 4-point difference formula as given in Step 1 of the

Yan method.

2.7 Pruess Method.

In contrast to the above methods, Pruess [54] presents a local C2 cubic

spline method which preserves monotonicity and convexity of the data by

dividing each data subinterval [Xi, Xi+l] into three pieces using two additional

knots ti,1 and ti,2 such that Xi < ti,l < ti,2 < Xi+l. The additional knots are

constructed as follows:

A piecewise interpolating function p(x) E C2 [Xl, xn] is then defined such that

, ",
P(Xi) = Yi, P (Xi) = di and p (Xi) = di, i = 1, ... , n.

47

where di and d~ are the first and second derivative values at the endpoints of

the subinterval [Xi) Xi+l] respectively. Now p(x) is defined on each [Xi) Xi-,-l] as

(2.19)
p(X) =

where

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

48

p(X) is then in C 2[Xl, xn] for any choice of di and d~, i = 1, ... , n and for any

choice of (J'i and Ti, i = 1, ... , n - 1.

In order to derive the sufficient conditions attached to preserving local

monotonicity and convexity, the author has, for simplicity, assumed (J'i = Ti

for each interval. It is convenient to define

Ii = sign(8i), i = 1, ... , n - 1.

I

'l/;i,l = sign(di), 'l/Ji,2 = sign(di), i = 1, ... , n.

These signs are defined as III definition 1.3 of Chapter 1 and determined

computationally as

and at the end points '1/;1,1

'l/;n-1,2.

i = 2, ... , n -1. (2.26)

'1/;2,2 and 'l/;n,2

When (J'i = Ti, i = 1, ... , n - 1, the sufficient conditions for monotonicity

are obtained as follows:

(2.27)

(2.28)

49

I

-Tihid(Yi ::; 4di'Yi

[Ti(l - Ti)hid: - Tlhid:+l]'Yi < [68i - 2di - 4Tidi+l]'Yi

[Tlhid: - Ti(l- Ti)hid~+d'Yi < [68i - 4Tidi - 2di+l]'Yi
I

Tihidi+l'Yi ::; 4di+l'Yi

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

If conditions (2.27) through (2.35) hold true, then sign (p' (X)) = sign(8i) for

each x E [Xi, Xi+l].

Similarly, the sufficient conditions given by Pruess for convexity preserving

are:

or, equivalently, from (2.22) with (J'i = Ti, p" (~i,l) has the correct sign if and

only if

(2.37)

" Similarly, from (2.23) with (J'i = Ti, P (~i,2) has the correct sign if and only if

50

To preserve monotonicity, some feasible techniques for choosing the free
,

parameters d i and d i are needed and for this purpose, if we choose the slope

di satisfying the monotonicity condition (2.4), then the inequalities (2.27)

through (2.35) are satisfied for any choice of d~ as long as Ti is sufficiently

small. Pruess suggests to use Ti < 1/3 and the formula for d~, i = 1, ... , n, as

follows:

{

~/. . (1fJi,2 R2i-1
d' 'f/i 2 mIn ,

i =' hi
0,

if R 2i-1 and R 2i-2 > 0
(2.39)

otherwise.

where

Now, we consider the convexity preserving case which is more complicated

than the monotonicity preserving case. We first consider a reduced case by

taking Ti = o. The inequalities (2.37) and (2.38) in terms of R's can then be

written as:

(2.40)

~/··2R2· > 0 'f/', , - (2.41)

The quadratic optimization method of Burmeister et al [10] can now be

employed to get a 0 1 convex cubic spline interpolant satisfying conditions

(2.40) and (2.41). Here again, Ti ::; 1/3 is chosen and the formula (2.39)

is used for the d: to get 0 2 convexity preserving interpolants. An algorithm

concerning the above theory has been implemented and is compared with other

methods in the next section. It is worthwhile to note that Schmidt and Reb

[59] have also described a 0 2 convexity preserving method using cubic splines

which is very similar to the above method.

51

2.8 Numerical Examples and Conclusions.

In this section, the different methods introduced earlier in this chapter

are compared. For this purpose, a series of experiments have been conducted

using the data sets introduced in Chapter 1 to examine the performance of

each method. The results of these tests are now described.

Data 1 is monotone increasing, so it is reasonable to expect a monotone

increasing interpolant. However, the data contains both flat and steep

regions which must be accommodated, making monotonicity preservation more

difficult to achieve. The methods described in this chapter were applied to this

test data and the resulting curves are shown in Figures 2.,5 through 2.12. The

Gasparo-Morandi and Van methods introduce a pair of extra knots in the

interval [9.0,11.0] at (9.097,10.781) and (9.184,10.584) respectively. In Figure

2.9 and Figure 2.12, although shapes of the curves are monotone increasing,

there exists a non-pleasing behaviour in the above interval, where shapes are

linear and flat between the additional inserted knots. For this data, it is clear

that the Gasparo-Morandi and Van methods do not give visually pleasing

curves, but the other methods cope fairly well in general and produce visually

pleasing shapes.

Data 2 contains a very steep region between points 8.7 and 10.0, a very

flat region between points 10.0 and 20.0 and a difficult step feature between

points 7.99 and 8.7. The data is also convex from the point 8.7 onwards. The

methods were applied to fhis data set and the resulting curves are shown in

Figures 2.13 through 2.20. The most striking feature of the curves in Figures

2.13 to 2.20 is the sharp corner at point 8.09 in each case. This occurs because

each method preserves monotonicity in the data and the point 8.09 is the

52

junction of a very flat and a very steep segment. In Figure 2.17 and Figure

2.20, the results for this data show once again that the Gasparo-.\Iorandi and

Yan methods produce sharper changes in slope of the curve at the additional

knots, and as a result the curve segments are not visually pleasing between

the additional inserted knots at (10.227,11.894) and (10.430,11.798) in the

interval [10.0,12.0] respectively. As before, the other methods produce cunes

which are visually pleasing; in particular, the shape of curve in the region of

the interval [10.0,12.0].

Data 3 contains a flattish region at each end and a very steep section in

the middle. Note also that this data is convex in the interval [22.0,23.1] in

which the points 22.5, 22.6 and 22.7 are collinear, and concave in the interval

[23.2,24.0]. This shows that the interpolating curve will have a single point

of inflection in [23.1,23.2]. Figures 2.21 through 2.28 show the results of

interpolating this data set by various the methods. Figure 2.21 is the graph

of the interpolating curve generated by Beatson-Wolkowicz method. It can be

seen that some erratic and non-pleasing behaviour appears in the shape of the

curve segments, specifically in the intervals [22.8,23.0] and [23.2,24.0]. From

the plots of the interpolating curves shown in Figure 2.25 and Figure 2.28,

we note, in particular that shapes of the curves in the intervals [23.0,23.1]

and [23.5,24.0] show unpleasant behaviour due to the linear and flat segments

drawn over the extra knots inserted at (23.009,23.074) and (23.659,23.733) by

the Gasparo-Morandi method and at (23.016,23.055) and (23.669,23.717) by

the Yan method, respectively. The Beatson-Wolkowicz, Gasparo-Morandi and

Yan methods produce totally unpleasant curves for this difficult data and in

fact they are trying to preserve monotonicity instead of convexity in the data.

The Brodlie, Fritsch-Butland, Huynh and Pruess methods give more natural

53

looking and visually pleasing curves, but the remaining methods produce sub­

standard interpolants to the data, where a noticeable change in the shape of

the curve at the intervals [22.9,23.1] and [23.2,23.4] can be seen.

Data 4 is convex and monotone increasing and Figures 2.29 through

2.36 are the graphs of the interpolation curves drawn by the methods in

question. In Figure 2.33, the pair of additional knots inserted by the Gasparo­

Morandi method are placed at (-1.991, -1.004) and (-0.945, -0.441), while

in Figure 2.36, the extra knots introduced by the Yan method are located

at (-1.983, -1.008) and (-0.900, -0.558), in the intervals [-2.0, -1.0] and

[-1.0, -0.3] respectively. Once again, the Gasparo-Morandi and Van methods

fail to maintain the shape of the data because they are trying to preserve

monotonicity rather than convexity and the effects of linear and flat curve

segments drawn due to the insertion of extra knots can be seen in the region

of the first, second and third interpolation points. Figure 2.29 shows a

curve generated by the Beatson-Wolkowicz method. The shape of this curve,

particularly in the region of the first and second interpolation points, is slightly

unpleasant. Figure 2.31 is the graph of the interpolating curve by the Butland

method. It can be seen that the curve produces a shape with a rapid turn

at the interior data points. The reason for these may be due to the rapid

change in the slopes at those points. As a comparison, the interpolating curves

discussed above are compared to the rest of the curves shown in Figures 2.30,

2.32, 2.34 and 2.35: we focus, in particular, on the shape of the curve in the

region of the second and third interpoaltion points. It can be seen that these

curves produced by the Brodlie, Fritsch-Butland, Huynh and Pruess methods

are more satisfactory and visually pleasing than those obtained by the other

methods.

54

The Gasparo-Morandi and Van methods generate a C l piecewise cubic

spline interpolant and only add two extra knots between the existing data

points at which (ai, f3i) f/- S, in order to preserve monotonicity of the data.

The disadvantage of adding extra knots is that the resulting curve generally

yields an undesirable feature on the shape of the interpolant. This is due to

the fact that former method always contructs a straight line with non-zero

slope and the latter always draws a horizontal line, between the additional

inserted knots. Obviously, the linear or flat curve segments drawn by these

methods can not produce a visually pleasing graph, as is evident from the

aforementioned examples. Furthermore, these methods require more storage

and increased search time during evaluation.

The C 2 shape-preserving interpolation method proposed by Pruess has

an advantage in terms of accuracy and additional smoothness, which may be

necessary in some applications, but is less efficient in both the preprocessing

and evaluation phase. It always adds two additional knots in each interval and

thus, using three cubics per interval, is less cost effective in terms of evaluation.

In the preprocessing phase, particularly in the case of convex data, it requires

solving an optimization problem in order to satisfy the convexity conditions.

Also, this process must be repeated if an additional data point is added to the

data set, whereas other methods depend only on a few nearby data points,

which allow for efficient updating of the data set. Thus, the Pruess method is

not competitive in terms of computational cost with the methods described in

this chapter.

All other methods produce shape-preserving interpolating curves usmg

C l cubic splines and are simple, fast, very easy to implement) and cheap

in terms of computational cost in that they do not require the insertion of

55

additional knots. Also, they demand a lesser number of operations per single

piece of interpolant compared to the Beatson-Wolkowicz, Gasparo-Morandi,

Van and Pruess methods. The main disadvantages for the methods which add

extra knots are that the amount of extra storage required for the data, and

the amount of search time needed to evaluate the spline interpolant are both

increased.

Furthermore, on the basis of appearance of the shapes of the curves, we

conclude from the above results that the Brodlie, Fritsch-Butland, Huynh

and Pruess methods are, in general, able to produce both smooth and visually

pleasing shapes of the interpolating curves and are the best among the existing

local methods.

56

85

70

55

40

25

10

o 3 6 9 12 15

Figure 2.5 Beatson-Wolkowicz method which interpolates Data 1.

85

70

55

40

25

10

o 3 6 9 12 15

Figure 2.6 Brodlie method which interpolates Data 1.

57

85

70

55

40

25

10

o 3 6 9 12 15

Figure 2.7 Butland method which interpolates Data 1.

85

70

55

40

25

10

o 3 6 9 12 15

Figure 2.8 Fritsch-Butland method which interpolates Data 1.

58

85

70

55

40

25

10

o 3 6 9 12 15

Figure 2.9 Gasparo-Morandi method which interpolates Data 1.

85

70

55

40

25

10

o 3 6 9 12 15

Figure 2.10 Huynh method which interpolates Data 1.

59

85

70

55

40

25

10

o 3 6 9 12 15

Figure 2.11 Pruess method which interpolates Data 1.

85.

70

55

40

25

10

o 3 6 9 12 15

Figure 2.12 Van method which interpolates Data 1.

60

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.13 Beatson-Wolkowicz method which interpolates Data 2.

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.14 Brodlie method which interpolates Data 2.

61

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.15 Butland method which interpolates Data 2.

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.16 Fritsch-Butland method which interpolates Data 2.

62

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.17 Gasparo-Morandi method which interpolates Data 2.

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.18 Huynh method which interpolates Data 2.

63

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.19 Pruess method which interpolates Data 2.

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 2.20 Yan method which interpolates Data 2.

64

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.21 Beatson-Wolkowicz method which interpolates Data 3.

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.22 Brodlie method which interpolates Data 3.

65

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.23 Butland method which interpolates Data 3.

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.24 Fritsch-Butland method which interpolates Data 3.

66

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.25 Gasparo-Morandi method which interpolates Data 3.

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.26 Huynh method which interpolates Data 3.

67

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.27 Pruess method which interpolates Data 3.

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 2.28 Van method which interpolates Data 3.

68

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.29 Beatson-Wolkowicz method which interpolates Data .t.

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.30 Brodlie method which interpolates Data 4.

69

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.31 Butland method which interpolates Data 4.

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.32 Fritsch-Butland method which interpolates Data 4.

70

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.33 Gasparo-Morandi method which interpolates Data 4.

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.34 Huynh method which interpolates Data 4.

71

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 2.35 Pruess method which interpolates Data -1.

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1 .64 -1.28 -0.92 -0.56 -0.2

Figure 2.36 Van method which interpolates Data 4.

72

Chapter 3

Shape-Preserving Algorithms

Using Quadratic Splines

As we have discussed in Chapter 2, by relaxing the C2 continuity of cubic

splines, we get enough degrees of freedom to satisfy the monotonicity and/or

convexity conditions. Nevertheless, one of the very important reasons to prefer

cubics over quadratics is their C2 continuity. If we do not have this, then an

important advantage is lost. An attractive alternative over cubic splines is

then to use the C 1 piecewise quadratic splines with additional knots chosen so

as to preserve the shape characteristics of the data. Methods of this type are

described below.

McAllister and Roulier [50] developed an algorithm in which the slope and

knot assignments are made automatically to preserve monotonicity and/or

convexity, based on a geometrical argument. The resulting quadratic piecewise

polynomial is constructed from Bernstein polynomials. A similar algorithm

using quadratic piecewise polynomials is presented by Schumaker [61]. This

preserves both monotonicity and/or convexity by the addition of at most one

knot in each data subinterval. This algorithm leaves judgement about control

of inflection points, monotonicity, etc. up to an interactive computer user who

modifies the interpolant either by changing the slopes or by altering the knot

locations. Lahtinen [45, 46] has described the implementation and application

of a minor modification of Schumaker's algorithm.

73

This chapter has been published in Iqbal [41] and expores the relationship

between the ideas of the Schumaker and the McAllister and Roulier algorithms

by presenting them in a common notation. In Section 3.1, we show that at the

internal points the slope calculation method used by :'IcAllister and Roulier

[50], which is derived geometrically, generates slopes which are identical to

those proposed by Butland [11]. In Section 3.2, we then prm"e that the

slopes obtained from Butland's method satisfy all of the monotonicity and/or

convexity conditions described in the algorithm of Schumaker [61] and that.

using these slopes, the algorithm generates a shape-preserving interpolant in

one pass, rather than requiring the adjustment of any slope or knot location. In

Section 3.3, we determine the location of the knot introduced by the algorithm

of McAllister and Roulier, and in Section 3.4 it is shown that the interpolating

quadratic splines generated by this method and by Schumaker's algorithm

are identical if the slopes required by Schumaker's algorithm are estimated

by Butland's slope method. In Section 3.5, the Butland slopes are further

improved iteratively for the convex data using a technique described in Frey

[31]. Finally, conclusions and numerical examples are presented in Section 3.6.

3.1 Slope Calculation Methods.

The local slope estimation method of Butland [11], referred to above, was

proposed for use with cubic interpolants. Fritsch and Butland [32] show that

the slopes lie within the monotonicity region for piecewise cubic interpolation

as defined by Fritsch and Carlson [33]. Here, we consider the use of the

Butland slope formula with the piecewise quadratic interpolation methods of

Schumaker [61] and McAllister and Roulier [50]. At the interior data points

(Xi, Yi), i = 2, ... , n - 1, the slopes are estimated as

74

(3.1)
otherwise.

At the extreme points (Xl, Yl) and (xn, Yn), the slopes are calculated by using

a forward and a backward 3-point difference formulae. ~ow from (3.1), it is

obvious that

d· 0<_l_<2
- Oi-l

and (3.2)

Now, we prove that the Butland and the McAllister and Roulier slope

calculation methods are identical. In the McAllister and Roulier slope

estimation method, for i = 2, ... , n - 1, di = 0 if Oi-lOi -:; O. Otherwise, if

IOi-ll > IOil > 0, then the line through (Xi,Yi) with slope Oi-l is extended

until it meets the horizontal line through (Xi+l, Yi+d at the point (x, Yi+d as

shown in Figure 3.1. The equation of the line passing through (Xi, Yi) with

slope Oi-l is given by

. . Yi+l - Yi ~ x + Xi+l
McAllIster and RoulIer set di = A , where X = 2 From (3.3),

X - Xi

Thus,

di = Yi-;l - Yi = --:0 ___
2 __ _

X - Xi 1 xi+ 1 - Xi --+----
Oi-l Yi+l - Yi

2

(3.4)

75

Y

x

Figure 3.1 Data configuration for McAllister and Roulier's slope

method when 18i-11 > 18il > o.

On the other hand, if 0 < 18i-11 :s: 18il as shown in Figure 3.2, then the

line through (Xi, Yi) with slope 8i is extended until it meets the horizontal line

through (Xi-I, Yi-I) at the point (x, Yi-I). By applying a similar argument as

above leads to

(3.5)

From (3.4) and (3.5), we can write, for i = 2, ... , n - 1

(3.6)
otherwise.

At the end points, for i = 1, n, the slopes are estimated as follows:

76

and

Y

(X,Yi-J)

x

Figure 3.2 Data configuration for McAllister and Roulier's slope

method when 0 < !Oi-l! < !Oi!.

otherwise.

otherwise.

(3.7)

(3.8)

From (3.1) and (3.6), we deduce that the internal slopes derived from

the Butland formula and from the construction of McAllister and Roulier are

identical. The term "Butland formula" is used hereafter for the slopes that

are estimated by the Butland method at the interior points and at the end

points by the McAllister and Roulier method.

77

3.2 Schumaker Algorithm.

Schumaker [61] describes a fairly straightforward shape-preserving method

which constructs the interpolant as a C l quadratic spline with knots at the

data points Xl, ... , Xn and with at most one additional knot in each subinterval

(Xi, Xi+l), i = 1, ... , n - 1. The additional knot is inserted under certain

conditions and, when it is inserted, there is some freedom of choice in exactly

where it can be placed.

The method is based on a number of lemmas which characterise the

solution of the interpolation problem (1.8). These state that if di + di+ l = 28i,

then a single quadratic polynomial

(3.9)

interpolates the data in [Xi, Xi+l], and otherwise a quadratic spline with a

single additional knot at an arbitrarily chosen point ~i is required. This spline

is given by

X E [Xi, ~i]

X E [~i' Xi+l]
(3.10)

with

where

(3.11)

78

Schumaker has presented the following results about the shape character­

istics of the interpolant.

Proposition 3.2.1.

If di + di+l = 28i, then the single quadratic polynomial p(x) in the interval

[Xi, Xi+l] will be monotone if and only if di and di+l are of same sign and

convex (concave) when di+l > di (di+l < di).

Proposition 3.2.2.

If di+di+l =1= 28i, and di, di+l and 8i have the same sign, then the quadratic

spline p(x) on [Xi, Xi+l] :

(I) is monotone if and only if

and (3.12)

~i - Xi
where w = .

Xi+l - Xi

(II) is convex when

(3.13)

and concave when

(3.14)

where di is the slope at ~i.

(III) If (di+l - 8i)(di - 8i) < 0, then p(x) is convex (concave) if di+l > di

(di+l < di) assuming that the additional knot ~i is chosen so that

79

(3.15)

Moreover, if didi+ 1 > 0, then p(x) is also monotone on [Xi, Xi+ 1].

(IV) If (di+l - bi)(di - bi) > 0, then p(x) has a point of inflection on [Xi, Xi+d.

The requirements on di restrict the choice of ~i for given di, di+l and

it is not possible to satisfy conditions (3.13) and (3.14) for arbitrary knot

locations. So ~i must satisfy conditions (3.15) that show which knot locations

lead to convex or concave splines. Schumaker proposes the choice as follows:

Case 1.

(3.16)

Case 2.

(_ Xi + Xi+l
l - 2 (3.17)

which are the centre points of the region of admissibility (note that, for 3.16

at least, this implies di = bi). When the data is convex or concave, only Case

1 will be selected.

In order to ensure that the interpolants preserve the monotonicity and/or

convexity of the data, it is necessary to specify how the slopes di are to be

chosen from the given data. Schumaker proposes a formula for generating

80

initial slope estimates which does not automatically ensure this (see. for

example, Figures 3.5 and 3.6) and proposes instead to allow the user to modify

the slopes and/or the knot locations to obtain shape-preserving interpolants.

We now show that the Butland formula yields values of di and di+1 which

directly satisfy all the conditions specified in Propositions 3.2.1 and 3.2.2 and

that the resulting interpolant becomes monotone and/or convex automatically,

without adjusting the slopes or the inserted knot. It is ob\"ious that the

Butland formula satisfies Proposition 3.2.1. Now we prove the other results in

Proposition 3.2.2.

w=
Xi+l - Xi

and, from (3.11), we have

di+1 - 8i

di+l - di
(3.18)

(3.19)

To ensure monotonicity in this case, we must show that (3.12) is satisfied

for the Butland slopes. Now if 8i-I, 8i, 8i+l are of the same sign, then the

Butland slopes di, di+l are also of the same sign and hence didi+l ~ O. So,

from (3.18), we have

81

(3.20)

2 If t. = Xi + Xi+l then
• 1,1 2'

~i - Xi 1
w= -

Xi+l - Xi 2

and (3.12) becomes

or

(3.21)

which follows immediately from (3.2). Hence, we conclude from (3.20) and

(3.21) that the Butland formula satisfies the monotonicity condition (3.12).

Let us now consider the convexity condition (3.13) i.e.,

which in view of (3.19) may be written as

(3.22)

We know that the Butland formula satisfies the inequalities

and

Now (3.22) follows from these inequalities automatically and so we see that

inequality (3.13) always holds. Similarly, it can be proved that inequality

(3.14) always holds with Butland formula when the data is concave.

82

Now we are in a position to say that by substituting the slopes estimated

by the Butland formula into the Schumaker method: it becomes a one-pass

algorithm for shape-preserving interpolation.

3.3 McAllister and Roulier Algorithm.

The algorithm proposed by McAllister and Roulier [50] produces a local,

c1 quadratic spline interpolant which preserves monotonicity and/or convexity

of the data by inserting at most two additional knots per data interval. The

selection of slopes and knots is based on the geometric argument described

below and the polynomial pieces are constructed using Bernstein polynomials.

Let 5 = (Xi, Yi) and T = (Xi+l, Yi+d be two non-decreasing data points

with Xi < Xi+1 having slopes di and di+1 respectively. Let L1 and L2 be the

two straight lines through points 5 and T with slopes di and di+l respectively.

Let R be the set of points,

R = {(x, Y) : Xi < X ::; Xi+1, and Yi::; Y ::; Yi+1} - {5, T}

that is, R is the boundary and interior of the rectangle defined by the

points (Xi, Yi), (Xi, Yi+I), (Xi+1' Yi+1) and (Xi+l, Yi) minus the points 5 and

T. Suppose M is the midpoint line segment through the points F =

(Xi + Xi+1) (Xi + Xi+1) Z () b . f 2 ,Yi and G = 2 ,Yi+1· Let = Zl, Z2 e a pomt 0

intersection of L1 and L2. We now show how to construct the desired quadratic

McAllister and Roulier consider four cases which can arise in general, but

describe a local method for assigning slopes to the data points (as shown in

83

Section 3.1) which yields only the first two cases. For our comparison purpose,

only the these two cases are relevent here.

Case 1.

Here LI and L2 intersect each other at the point Z = (Zl' Z2) in R, as

shown in Figure 3.3, where

(3.23)

The algorithm inserts an additional knot at x = ~i.

Now suppose that

V - () - (Xi + ~i L (Xi + ~i »)
- VI, v2 - 2' I 2 (3.24)

W - () - (Xi+1 + ~i L (Xi+l + ~i»)
- WI, w2 - 2 ,2 2 (3.25)

T

w

u

s
Figure 3.3 Case 1 configuration for McAllister-Roulier algorithm.

Let us define TJi = L(~i)' where L is the line passing through the points V and

W. Then definep(x) on [Xi,Xi+l] with a join point U = (~i,TJi) as follows:

84

p(X) = (3.26)

If the first degree spline defined by the join points S, V, U, Wand T is

convex (concave) and/or monotone, then p(x) is also convex(concave) and/or

monotone.

Case 2.

In this case, Ll and L2 do not intersect in R. Instead both intersect the

line segment M (see Figure 3.4), and the method introduces one additional

knot

t. _ Xi + Xi+l (
I"l - 2 3.27)

G T

M W

s F

Figure 3.4 Case 2 configuration for McAllister-Roulier algorithm.

85

in (Xi, xi+d· Then define V, W, U and the spline p(x) with a common point

U = (~i,TJi) on [Xi,Xi+l] as in Case 1. Then p(x) will have a continuous first

derivative and preserve the shape of the data on [Xi, Xi+l]. The details of

other two cases are omitted here, as they are rather complex and cannot be

succinctly described with a few equations or figures. The reader should refer

to the descriptions found in McAllister and Roulier [50].

3.4 Similarity Between McAllister-Roulier and

Schumaker Algorithms.

In the following section, we show that the McAllister-Roulier and Schu-

maker algorithms produce identical interpolants if the slopes used are calcu-

lated by the Butland formula. In Section 3.3, we observed that in Case 1, from

(3.23), the McAllister-Roulier algorithm selects the additional knot at

and in Case 2, from (3.27), at

which are the same as the Schumaker algorithm does in equations (3.16) and

(3.17) if di+l + di 1= 28i, though the latter does not introduce any knot if

di+l + di = 28i. We will now show that the ordinate TJi at ~i is the same for

both methods when slopes are calculated by the Butland formula.

We first consider the Schumaker algorithm. In the case where di+1 + di =
28i, the Schumaker algorithm does not insert a knot. If ~i is the knot inserted

86

by the McAllister-Roulier algorithm, then from (3.9), the value at ~i of the

single polynomial used by Schumaker is

and, since di = 28i - di+l, we have

Now when di+l + di :j:. 28i, from (3.10), we obtain

By substituting the values of AI, BI and GI, we have

and on simplification, we get

(3.29)

Now by substituting the value of di from(3.1l) in (3.29), we obtain

87

From (3.28) and (3.30), we conclude that Schumaker's algorithm gives

(3.31)

We now look at the McAllister-Roulier algorithm where "Ii can be calculated

as

(3.32)

where

By substituting the values of VI, V2, WI and W2 in (3.32), we obtain

(3.33)

N ow consider

1 1
= Yi+1 - Yi - 2di+I(Xi+1 - Xi) + 2(di+1 - di)(~i - Xi)

W2 - v2 = bi _ di+1 + (di+1 - di)(~i - Xi)
Xi+1 - xi 2 2(Xi+1 - Xi)

Substituting this expression into (3.33), we get

(3.34)

88

From (3.31) and (3.34), we see that the 'T]i are identical in both methods.

This means that both methods select the same ordinate value for the additional

inserted knot. We have then proved that both methods make use of same

slopes at the original data points, select the same additional knots in the

same circumstances, and use the same slope and ordinate values at the extra

inserted knots. The uniqueness of the quadratic spline follows immediately

from a well-known theorem on splines (see Schumaker [62], theorem 4.53, page

160).

We conclude that the McAllister-Roulier and the Schumaker algorithms

are identical if the slopes in Schumaker algorithm are estimated by the Butland

formula. Furthermore, when di+1 +di = 2bi, then there is no need for an extra

knot and so, in this case, the additional knot introduced by the McAllister­

Roulier algorithm is redundant.

3.5 Iterative Improvement to the Slopes.

In Section 3.2, it is shown that the Schumaker algorithm yields shape­

preserving interpolants for all data types, provided the slopes required at the

data points are estimated by the Butland formula (3.1). However, in some

convex data cases, especially where curves with sharply varying curvature

implicit in the data are to be produced, the Schumaker interpolant with

Butland slopes sometimes displays excessively large local curvatures. For the

purpose of illustration, the curves drawn in Figure 3.10 and Figure 3.11 are

produced using Butland's slopes (full line) and Frey's improved slopes (broken

line) and the corresponding jumps in the second derivative at the interior

knots, denoted by Ji, are presented in Table 3.1 and Table 3.2 respectively.

89

Data Points Butland :"Iethod Frey :"Iethod
1, Xi Yi Ji Ji

1 -2.0 0.25

2 -1.0 1.0 37.90 11.89

3 -0.3 11.1111 2222.60 803.10

4 -0.2 25.0

Table 3.1 Jumps in the second derivative at the interior knots for Data -1.

Data Points Butland Method Frey Method

1, Xi Yi Ji Ji

1 0.0 19.0476

2 0.1 7.0175 1910.17 838.43

3 0.4 3.4188 78.67 46.24

4 0.7 3.8095 125.43 25.55

5 0.8 4.7059 415.35 200.59

6 1.0 19.0476

Table 3.2 Jumps in the second derivative at the interior knots for Data 6.

The graph shown by a full line exhibits a shape with a rapid turn and tightening

effect in the region of the third interpolation point in Figure 3.10, while a

similar behaviour is observed in the region of the second interpolation point

in Figure 3.11 where curve is also turning sharply. The reason for these may

be due to the rapid change in the slopes at those points. Also, this is in

agreement with the discussion on page 12 of Lancaster and Salkauskas [47],

which states that if the curvature value is large at Xi, then the slope of the

curve is turning I rapidly I with X as X increases through Xi. In that sense,

the shape of the curve is tightened at Xi. In the case of the curvature value

being small at Xi, then the slope of the curve is turning I slowly I with X as

X increases through Xi. As a result, I flat spots I are produced on the curve

90

corresponding to almost zero curvature values. The curves drawn by a broken

line display a visually pleasing shape of the interpolants, particularly in the

region of the second and third interpolation points in Figure 3.10 and Figure

3.11 where improvement in the shape of curve segments can be clearly seen,

than those obtained by a full line. The reason may be due to the fact that the

Frey method of improving the slopes keeps the jumps in the second derivative

at the knots small in comparision with the Butland method, as shown in Table

3.1 and Table 3.2, and hence produces more visually pleasing shapes of the

curves.

In this section, the Butland slope calculation method is further developed

with an iterative technique to overcome the above problem. For this purpose,

we adopt an iterative improvement method for slopes, due to Frey [31], where

Butland slopes can be employed as an initial guess. Like the Butland slope

method, the Frey technique is also local, and the slope of the curve at a

particular data point is improved iteratively by influencing the slopes of two

other data points in its vicinity (the slope at data point in question is taken

as a central point with one data point on each side).

Frey proposes a method of iterative improvement of the slopes applicable

to successive initial guesses of slopes at given data points. He assumes a

convex data set consisting of three consecutive data points (Xi-I, Yi-l), (Xi, Yi)

and (Xi+I' Yi+I). The paper describes his method in great detail, but here we

simply list the iterative process as follows. First compute

91

Then di is computed as

(3.35)

We use the Butland slope formula (3.1) for the initialization of slopes

required in the above steps, and apply (3.35) iteratively to each slope in

succession to produce improved estimates. Frey does not perform convergence

analysis; however, in applications his scheme converges adequately within ten

to fifteen iterations through the data points.

3.6 Numerical Examples and Conclusions.

The algorithm described in the preceding section has been tested on the six

data sets which have been already discussed in Chapter 1. The corresponding

plots of the interpolants, showing the data points marked by circles (0), are

presented in Figures 3.7 through 3.12. Data points, slopes, additional inserted

knots and case numbers are listed in Tables 3.3 through 3.8. The additional

(unnecessary) knots introduced by the McAllister-Roulier algorithm and not

by the Schumaker algorithm are marked with an asterisk (*). We observe that

the algorithm generates visually pleasing interpolants automatically as shown

in Figures 3.7 to 3.12. Comparing Figure 3.7 with the corresponding Figures

3.5 and 3.6 generated by the Schumaker [61], where three adjustments to the

slopes are made to obtain a similar shape, we see that the present algorithm

behaves very well.

92

In Figure 3.10, the curve obtained using Butland's slopes (solid line) and

the curve achieved by the iterative scheme (dotted line) are displayed. The

two curves lie almost on top of one another, apart from the interval [-1.0, -0.3]

where the curve produced with Butland slopes is tighter than that generated by

the iterative scheme. Similarly, in Figure 3.11, the two curves agree very closely

with one another except in the interval [0.1, 0.4]' where the curve displayed

with Butland slopes is tighter than the curve produced by the iterative scheme.

We have shown that the Schumaker algorithm using the Butland slope

formula generates a shape-preserving interpolant in one pass and is identical

to the McAllister-Roulier algorithm if the same slopes are used in each.

Schumaker's algorithm has advantages over the McAllister-Roulier algorithm,

as it is much simpler to implement and requires less storage since it introduces

extra knots only in those intervals where di + di+1 =f. 2bi, whereas the latter

method always generates one additional knot per data interval.

The Schumaker algorithm can be used in conjunction with the Roulier

[58] method for shape-preserving surface interpolation. This is presented in

Chapter 6.

93

85

r
70

55

40

25

10

o 3 6 9 12 15

Figure 3.5 Schumaker algorithm with initial slopes estimates.

85

70

55

40

25

10

o 3 6 9 12 15

Figure 3.6 Schumaker algorithm with improved slopes estimates.

94

85

70

55

40

25

10

o 3 6 9 12 15

Figure 3.7 Shape-preserving quadratic spline interpolant to Data 1.

Data Points Slopes Additional Knots Case on

z Xi Yi d· l ~i [Xi, Xi+ll

1 0.0 10.0 0.0 1.0* 2

2 2.0 10.0 0.0 2.5* 2

3 3.0 10.0 0.0 4.0* 2

4 5.0 10.0 0.0 5.5* 2

5 6.0 10.0 0.0 7.0* 2

6 8.0 10.0 0.0 8.389 1

7 9.0 10.5 0.8182E+00 10.160 1

8 11.0 15.0 0.4228E+01 11.5 2

9 12.0 50.0 0.8750E+01 13.0 2

10 14.0 60.0 0.8333E+01 14.5* 1

11 15.0 85.0 0.4167E+02

Table 3.3 The values associated with Figure 3.7.

95

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 3.8 Shape-preserving quadratic spline interpolant to Data 2.

Data Points Slopes Additional Knots Case on

z x· z Yi d· z ~i [Xi, Xi+l]

1 7.99 0.0 0.3750E-06 8.040* 1

2 8.09 2.76429E-05 O.5725E-03 8.140 2

3 8.19 4.37498E-02 0.3148E+00 8.445 2

4 8.70 0.169183 0.3490E+00 8.950 2

5 9.20 0.469428 0.5967E+00 9.994 1

6 10.0 0.943740 0.5247E-01 11.031 1

7 12.0 0.998636 0.8422E-03 13.471 1

8 15.0 0.999919 0.2898E-04 17.499* 1

9 20.0 0.999994 0.1016E-05

Table 3.4 The values associated with Figure 3.8.

96

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 3.9 Shape-preserving quadratic spline interpolant to Data 3.

Data Points Slopes Additional Knots Case on

1. X· l Yi d· l ~i [Xi, Xi+d

1 22.0 523.0 0.2909E+02 22.250* 1

2 22.5 543.0 0.5091E+02 22.550 2

3 22.6 550.0 0.7000E+02 22.650 2

4 22.7 557.0 0.7467E+02 22.763 1

5 22.8 565.0 0.8889E+02 22.864 1

6 22.9 575.0 0.1200E+03 22.963 1

7 23.0 590.0 0.2000E+03 23.070 1

8 23.1 620.0 0.5333E+03 23.150 2

9 23.2 860.0 0.8949E+03 23.233 1

10 23.3 915.0 0.3798E+03 23.353 1

11 23.4 944.0 0.1888E+03 23.455 1

12 23.5 958.0 0.8000E+02 23.750* 1

13 24.0 986.0 0.3200E+02

Table 3.5 The values associated with Figure 3.9.

97

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 3.10 Shape-preserving quadratic spline interpolant to Data 4.

Data Points Slopes Additional Knots Case on

z x· z Yi d· z ~i [Xi, Xi+d
1 -2.0 0.2500 0.7404E-01 -1.500* 1

2 -1.0 1.0000 0.1426E+01 -0.668 1

3 -0.3 11.1111 0.2617E+02 -0.250* 1

4 -0.2 25.0000 0.2516E+03

Table 3.6 The values associated with Figure 3.10.

98

19.0476

15.9218

12.7961

9.6703

6.5446

3.4188

0.0

, , ,
,
,

.. ,

0.2

-A------

0.4 0.6 0.8 1.0

Figure 3.11 Shape-preserving quadratic spline interpolant to Data 6.

Data Points Slopes Additional Knots Case on

1, X' 1 Yi d· l ~i [Xi, Xi+l1

1 0.0 19.0476 -0.2188E+03 0.050* 1

2 0.1 7.0175 -0.2182E+02 0.265 1

3 0.4 3.4188 0.0 0.528 1

4 0.7 3.8095 0.2274E+Ol 0.751 1

5 0.8 4.7059 0.1594E+02 0.900* 1

6 1.0 19.0476 0.1275E+03

Table 3.7 The values associated with Figure 3.11.

99

2.169

1.8558

1.5426

1.2294

0.9162

0.603

595 691 787 883 979 1075

Figure 3.12 Shape-preserving quadratic spline interpolant to Data ,5.

z

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Data Points Slopes Additional Knots Case on

x· z Yi d· z ~i [Xi, Xi+d

595.0 0.644 0.4000E-03 615.000* 1

635.0 0.652 0.0 665.000 2

695.0 0.644 0.0 737.958 1

795.0 0.694 0.8765E-03 824.243 1

855.0 0.907 0.6092E-02 862.560 1

875.0 1.336 0.3078E-Ol 880.000 2

885.0 1.881 0.3769E-Ol 892.642 1

895.0 2.169 0.0 899.015 1

905.0 2.075 -0.1570E-Ol 910.000 2

915.0 1.598 -0.3977E-01 931.131 1

935.0 0.916 -0.1046E-01 964.217 1

985.0 0.607 -0.1580E-03 1010.324 1

1035.0 0.603 0.0 1055.000* 1

1075.0 0.608 0.2500E-03

Table 3.8 The values associated with Figure 3.12.

100

Chapter 4

An Algorithm for Shape-Preserving

Curve Drawing

In this chapter we develop a new automatic algorithm for interpolating

the data using local procedures. The algorithm is arranged to produce

monotone and/or convex interpolants using C 1 cubic splines when the data

have the corresponding properties by means of a robust slope algorithm

and is designed to deal with the data points (Xi, Yi), i = 1, ... , n, and so is

comparable with the methods presented in Chapter 2. We also give an analysis

of the slope parameter t that provides a quantitative means by which the

derivative values di that control the shape of the curve are reliably generated

without experimentation or interactive user direction. It is assumed that the

data is monotonic in X but the Y values are arbitrary. In Section 4.1, we

introduce a new slope estimation method which provides the basis of the

new algorithm and discuss the derivation and analysis of the algorithm in

Section 4.2. Finally, conclusions and several numerical examples illustrating

the inherent superiority of the new algorithm to the existing methods are

described in Section 4.3.

4.1 New Generalized Slope Estimation Method.

Here, we describe a new slope estimation method which generalizes the

harmonic mean, satisfies condition (2.4) and produces more visually pleasing

101

curves. This method uses the minimum number of data values for assigning

the slope at each data point, that is, the coordinates of the point itself and

one point on either side. The idea is motivated by the introduction of slope

estimation formulae given in (2.6) through (2.12) and is derived from Hardy,

Littlewood and Polya [39], where they define the general Harmonic mean as

m 1
LWi·8~
i=I l

By considering the case m = 2, our method calculates the derivative values by

usmg:

(4.1)

otherwise.

where t is a non-negative real number and, WI and W2 are positive weighting

factors. Here, when WI = 1, W2 = 1 and t = 1, we have the Butland original

formula (2.6). Also note that with the restrictions of WI = 1, W2 = 2 and

t = 1, we get the Fritsch-Butland formula (2.8). Similarly, by choosing the

appropriate values for WI, W2 and taking t = 1, the formulas (2.7) and (2.9)

for the Brodlie and Costantini's methods can be easily deduced.

4.2 An Automatic Algorithm Using Cubic Splines.

Here, we present an algorithm which preserves both monotonicity and

convexity of the data using C I cubic splines. Our algorithm is based on a

new slope estimation formula which is deduced from (4.1) and computes the

102

derivative by using:

(-1.2)

where t > 0 is chosen to be as small as possible, while still ensuring that

di maintains monotonicity and convexity, \vhenever the data is monotone and

convex. We have plotted the characteristics of this formula given \"arious slopes

and some values of t in Figure 4.1. Consider

1
2 I u

di = ---'-1

(1 + rt)I
(1.3)

where u = min(b'i-l, b'i), L = max(b'i-l, b'i), and r = u/ L. Then dd L will be

normalized between 0 and 1. Note that as t decreases, it will tend to favour

the larger b'i. That is, di will lie closer to L than to u. This, in turn, creates

larger values of (Qi' {3i) and spreads these throughout the entire region 5 of

Figure 2.1 more completely. The advantage of this method appears to be that

it produces smaller second derivative discontinuities than the corresponding

methods described in Section 2.3 of Chapter 2. As an illustration, Data 4

is used for comparison purposes. The jumps in the second derivative at the

interior data points, denoted by Ji, generated by the new method with t = 0.3

and other methods are shown in Table 4.1. Comparing the discontinuities given

in Table 2.2 of Chapter 2 and Table 4.1 clearly shows that the new method

reduces these as compared to all other methods and hence will produce more

visually pleasing curves. Similar comparisons also apply to the other data sets.

Conceptually, a "visually pleasing curve" is a curve that looks good to the

human eye and it can not be described in precise mathematical terms. This

definition is, of course, purely subjective as it is impossible to construct a curve

103

1.0-r-----------------~

0.8

0.6

d· z

L
...................... t= 0.0

0.4 t= 0.2
---------------------- t = 0.5
-- -- -- -- -- -- t= 0.7
-----t=1.0

0.2 -------- t = 2.0
-- - - -.-- t = 5.0
_.--- - - t= 10.0

-- - --t=oo

0.0 ~--_._--____,;___-~~=======;:::=====:=J

0.0 0.2 0.4 0.6 0.8 1.0
r

Figure 4.1 Visualization of slope formula with different values of t.

Butland Brodlie Huynh Fritsch-Butland New Method

Data Points Method Method Method method with t = 0.3
1, X· l Yi Ji Ji Ji Ji Ji
1 -2.0 0.25

2 -1.0 1.0 39.69 19.89 13.52 6.02 0_94

3 -0.3 11.1111 4167.96 3863.23 3829.91 3722.57 3665.67

4 -0.2 25.0

Table 4.1 Jumps in the second derivative at the interior knots.

to everyone's liking. However, this property may be very important to

designers, as they would like to get visually pleasing curves for their work.

104

Now we prove that formula (4.2) satisfies inequality (2.13). Suppose

o ~ 8i-l < 8i. Then, for t > 0

(4.4)

Now

d· < 8· 1 _ 1 (4.5)

Combining (4.4) and (4.5), we obtain

(4.6)

A similar result holds for 0 < 8i ~ 8i-l. That is

(4.7)

Hence from (4.6) and (4.7), we conclude that min(8i-b 8i) ~ di ~ max(8i-b 8i).

Now we show some results that are useful for determining the limits on tin

order to get shape-preserving interpolants using cubic splines. By considering
,

P (x) of (2.2), we see that it has a unique extremum at

(4.8)

105

Hence, if x* tf. (Xi, Xi+t), convexity would be satisfied. That is, for XX < Xi

(4.9)

(4.10)

or di+2di+1-3hi < 0 when di+di+1-2hi > O. If di+di+1-2hi < 0, a similar

result holds. This can be summarized in terms of Qi = di and f3i = di+1 in
hi hi

the following lemmas:

Lemma 4.2.1

(i)

(ii)

If Qi + f3i - 2 > 0 then p(x) is convex on [Xi, Xi+l] if and only if either:

2Qi + f3i - 3 <0 or

Q' + 2f3· - 3 < 0 1 1 _

Lemma 4.2.2

(i)

(ii)

If Qi + f3i - 2 ~ 0 then p(x) is convex on [Xi, Xi+l] if and only if either:

2Qi + f3i - 3 >0 or

Q' + 2f3· - 3 > 0 , , -

Using these two lemmas and the condition that (Qi,f3i) lie in the region S

of Figure 4.2, we now have the following theorem:

Theorem 4.2.1

If Qi, f3i are both positive and either Lemma 4.2.1 or Lemma 4.2.2 is

satisfied, then p(x) maintains both monotonicity and convexity on [Xi, Xi+l].

106

The proof of this follows by observing that if sign(ai) = sign(8i) > 0 then

sign(di) = sign(di+l) = sign(oi). Also, Lemma 4.2.1 and Lemma 4.2.2 provide

the sufficient conditions for Theorem 2.2.1, hence monotonicity is satisfied.

The above provides us with regions of convexity and monotonicity that are

shown in Figure 4.2, where the horizontally hatched area shows the convexity

region and the shaded area with dots shows the monotonicity region.

4.0

3.5

f3i 2.5

2.0 -k-.--' ... --,.-\ ::::::: ::: ::::::: .
.. ,\, .. '::::::::::::::::

" .. ,

1.5
.

f---................. -\ .. :: ::::: :::::::
.. V

o
.'::::::::::::

....
. ~~::-\ ... :':::: :

1.0

0.5
::::::::: ::::: :::::......... .~..... ,-:::::::::::::::::::: ~ .. " :

•••• n f < .•...••.•••••••••• : •• : ••.. : •.••. : .••. : .•• : ..•.•. : .•.. : ••. :.~1.:.~ •. :.,.::/~: ••.•. _ .,.~
0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ai

Figure 4.2 Monotonicity region S (shaded with dots) and

convexity region (hatched horizontally).

By considering di < f3iOi (= di+l) for both ai, f3i > 0, then where given

ai, f3i is computed as follows:

107

then by Theorem 4.2.1:

{
If ai < 1 then H 3 - ai) < f3i ~ 3 - 2ai,

If ai > 1 then 3 - 2ai ~ f3i < ~(3 - ai).

(II) If [Yi-l, Yi+2] forms a non-convex monotone data set, then set

(4.11)

(4.12)

This follows from Theorem 2.2.1 (ii.iii) of Chapter 2, which leads to a quadratic

equation in terms of f3i and after some simplifications, is given in the form:

In fact, f3i in (4.12) is the larger root of this equation and represents the upper

half of the elliptical boundary drawn by a full line in Figure 4.2, covering the

entire monotonicity region S.

Now, in order to establish a bound on the value of t in (4.3), let r

and

d· 1
then 8; < 21" a <f3i. That is,

if 8i+l 2: 8i

if 8i+l < 8i

1
di 21"a
- - l'
8i (1 + rt)1"

In2
t>---­

- Inf3i -Ina

108

(4.13)

(4.14)

As an example of maintaining monotonicity, consider the case of monotone

data with max(,Bi) = 4 when Q:i = 1 and t = 0.5, hence from (4.3)~ we ha,'e

1
2Tu 4u

lim = - = u
T-->l (1 + rt)t 4
t=0.5

also
1

2Tu 4u
lim 1 = - = 4u
t::O~5 (1 + rt)T 1

If u = Oi, then, since Q:i = 1, ,Bi = di/Oi = 4u/u = 4, which is within the

monotonicity region. If u = Oi+l then Oi > Oi+l and,Bi = di/bi = 40i~dbi < 4,

which again is within the necessary region. Similar results hold for convexity

in the case of convex data by considering max(,Bd = 3 when t = In 2.
In 3

In the above discussion, we have assumed that the data are monotone

increasing and convex. The case of monotone decreasing and convex data can

be treated in a similar manner. For these data, we only need to use IOi I rather

than Oi when applying the formula (4.14). Having computed the derivative

value di in this way, only its sign is chosen to be negative for the monotone

decreasing data (Oi < 0). This approach has been followed for Data 6, which

is comprised of a mixture of monotone decreasing, monotone increasing and

convex data segments. The resulting curve is displayed in Figure 4.7 in the

next Section 4.3.

For practical purposes, it is worthwhile mentioning here that when t tends

to 00, then we have (see, [39]):

1
2Tu

di = lim 1 = u
t---->oo (1 + rt)T

109

(4.15)

The above proceeding can now be summarized by presenting an algorithm

for estimating the derivative values di at each data point. \Ye refer the

algorithm as Algorithm SLOP.

Algorithm SLOP.

Given Di-l, Di, Di+l and d1 , then the derivative values di, i = 2, .. " n -1 are

estimated as follows:

Step 1

Step 2

Step 3

Step 4

If (Di-l - Di) (Di - Di+ 1) > 0 then

Compute f3i to satisfy (4.11) (convex).

Else

Compute f3i to satisfy (4.12) (monotone).

Choose a as in (4.13) and then set

t= In2 to satisfy (4.14).
Inf3i - In a

If DiDi+l :s; 0 then

Set di = 0

Else

If t = 00 then

Else

110

The Algorithm SLOP described above only provides a means for setting

interior derivative values di. For the end point derivatives, d 1 and dn , we shall

use the method proposed by McAllister-Roulier [50]. This has been discussed

in Section 3.1 (see (3.7) and (3.8)). The McAllister-Roulier method is robust

for calculating the derivative values at the end points, produces good results in

all cases and automatically satisfies the required shape-preserving conditions

at the extreme points. This is the scheme adopted for all curves drawn in the

next Section 4.3.

Now, an algorithm for constructing the interpolating curve usmg the

piecewise cubic Hermite interpolant (2.2) according to proposals discussed

above is outlined.

Algorithm.

Step 1

Step 2

Step 3

Step 4

Input number of data points, n.

Calculate the derivative values di by applying the

Algorithm SLOP mentioned above.

For i=1 to n-l do

Use equation (2.2) to generate the curve segment

on the subinterval [Xi, Xi+l]'

Display the resulting curve.

111

4.3 Numerical Examples and Conclusions.

In this section, our algorithm is applied to a selection of standard data

sets introduced earlier in Chapter 1 and the results are compared with those

obtained using the existing local methods described in Chapter 2. The basis

of comparison is a collection of data sets drawn from existing literature on

the comparison of shape-preserving interpolation methods. It follows that the

comparison is unbiased to the methods since it utilises established data sets.

The algorithm introduced above has been applied to the data sets Data 1

through Data 4. The resulting plots of the interpolating curves are shown in

Figures 4.3 through 4.6, and each figure is accompanied by a table detailing

the data points, slopes and corresponding selected values for the parameter t.

It can be observed in Table 4.4 that the new algorithm has selected t = 00

at the data point X4 = 22.7. This is due to the fact that points 22 .. 5, 22.6

and 22.7 are collinear and are part of a convex region between points 22.0 and

23.2. As a consequence, the Algorithm SLOP computes 0:4 = 1 in Step 1,

f34 = 1 in Step 2 and a = 1 in Step 3 respectively and then t = 00 is obtained

from (4.14). Several other examples taken from various sources have also been

worked out and in all of these cases, we have not encountered t = 00 except for

the above Data 3. However, the selection of t = 00 to estimate the derivative

value di at any data point does not present a problem as is evident from (4.15)

which establishes di = u = min(8i-1, 8i) and this always restricts the values of

(O:i,f3i) to be within the region 5 of Figure 4.2.

As a comparison, the interpolating curves shown in Figure 4.3 to Figure

4.6 are compared to the corresponding curves drawn in Figure 2.2 through

Figure 2.33 which were obtained by applying the different methods described

112

III Chapter 2. A study of these curves indicates that the new algorithm

produces curves that are smooth, shape-preserving, more visually pleasing and

offers substantial confirmation of the superiority of the new algorithm. The

new algorithm also has an advantage that it does not insert additional knots

between the original data points in order to preserve the shape characteristics

of the given data.

113

85

70

55

40

25

10

o 3 6 9 12 15

Figure 4.3 New automatic algorithm interpolating Data 1.

Data Points Slopes Value of t on

1, Xi Yi di [Xi, Xi+ll

1 0.0 10.0 0.0

2 2.0 10.0 0.0

3 3.0 10.0 0.0

4 5.0 10.0 0.0

5 6.0 10.0 0.0

6 8.0 10.0 0.0

7 9.0 10.5 0.8930E+00 0.631

8 11.0 15.0 0.5661E+01 0.515

9 12.0 50.0 0.1196E+02 0.215

10 14.0 60.0 0.9400E+01 0.553

11 15.0 85.0 0.4060E+02

Table 4.2 The values used in the construction of Figure 4.3.

114

1.0

0.8

0.6

0.4

0.2

0.0

8.0 10.4 12.8 15.2 17.6 20.0

Figure 4.4 New automatic algorithm interpolating Data 2.

Data Points Slopes Value of t on

1- Xi Yi di [Xi, xi+d

1 7.99 0.0 0.0

2 8.09 2.76429E-05 0.1089E-02 0.500

3 8.19 4.37498E-02 0.3225E+00 0.407

4 8.70 0.169183 0.3657E+00 0.503

5 9.20 0.469428 0.5967E+00 1.174

6 10.0 0.943740 0.9823E-01 0.226

7 12.0 0.998636 0.2546E-02 0.139

8 15.0 0.999919 0.6024E-04 0.207

9 20.0 0.999994 0.0

Table 4.3 The values used in the construction of Figure 4.4.

115

986.0

893.4

800.8

708.2

615.6

523.0

22.0 22.4 22.8 23.2 23.6 24.0

Figure 4.5 New automatic algorithm interpolating Data 3.

Data Points Slopes Value of t on

z Xi Yi di [Xi, xi+d

1 22.0 523.0 0.2811E+02

2 22.5 543.0 0.5189E+02 0.503

3 22.6 550.0 0.7000E+02 0.502

4 22.7 557.0 0.7000E+02 00

5 22.8 565.0 0.8776E+02 3.106

6 22.9 575.0 0.1152E+03 3.116

7 23.0 590.0 0.1914E+03 1.819

8 23.1 620.0 0.6535E+03 0.505

9 23.2 860.0 0.1062E+04 0.292

10 23.3 915.0 0.2940E+03 50.247

11 23.4 944.0 0.1898E+03 0.961

12 23.5 958.0 0.8031E+02 0.959

13 24.0 986.0 0.3169E+02

Table 4.4 The values used in the construction of Figure 4.5.

116

25.0

20.05

15.1

10.15

5.2

0.25

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 4.6 New automatic algorithm interpolating Data -1.

Data Points Slopes Value of t on

z Xi Yi di [Xi, Xi+l]

1 -2.0 0.2500 0.0

2 -1.0 1.0000 0.1737E+Ol 0.673

3 -0.3 11.1111 0.3216E+02 0 .. 5-19

4 -0.2 25.0000 0.2456E+03

Table 4.5 The values used in the construction of Figure 4.6.

117

19.0476

15.9218

12.7961

9.6703

6.5446

3.4188

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.7 New automatic algorithm interpolating Data 6.

Data Points Slopes Value of t on

z Xi Yi di [Xi, Xi+l]

1 0.0 19.0476 -0.2110E+03

2 0.1 7.0175 -0.2957E+02 0.390

3 0.4 3.4188 0.0

4 0.7 3.8095 0.2590E+01 0.631

5 0.8 4.7059 0.1935E+02 0.524

6 1.0 19.0476 0.1241E+03

Table 4.6 The values used in the construction of Figure 4.7.

118

Chapter 5

Interactive Algorithms for
Shape-Preserving Curve Drawing

In the prevIOUS chapters we have described several one-pass algorithms

for constructing C 1 shape-preserving curves through the data points, using

quadratic and cubic splines. This chapter deals with interactive shape­

preserving interpolation which is very important for curve drawing in CA 0

and other scientific areas. An interactive system for curve drawing permits

the user to model the form of the curve following his own needs. Here, unlike

the slope estimation formulae (2.6) through (2.12), one seeks a means which

allows, among possibilities, the choice of an interactive algorithm that always

guarantees the construction of a shape-preserving curve. In this chapter, we

create this flexibility by using the generalized slope estimation formula (4.1)

which satisfies the shape-preserving conditions associated with the method in

question. The formula uses the minimum number of data points for assigning

the slope at each data point; that is, the coordinates of the point itself and one

point on either side. It also involves a parameter t which is used to control the

size of the estimated slope. As t increases, so the estimated slope decreases

in magnitude and a tighter curve results. The extreme choices t ~ 0 and

t ~ 00 will generate the largest and the smallest values of the slope at the

data points. In Sections 5.1 and 5.2, we discuss the slope estimation formula

along with corresponding interactive algorithms using C 1 piecewise quadratic

and cubic splines respectively. Several numerical examples and conclusions are

presented in Section 5.3.

119

5.1 An Interactive Algorithm Using

Quadratic Splines.

As we have shown in Chapter 3, a piecewise quadratic Hermite interpolant

preserves monotonicity if the derivative values at the data points satisfy

the condition (3.12), and maintains convexity/concavity of the data if the

conditions (3.13) and (3.14) are fulfilled together with (3.15). In this

section, we consider the derivation and analysis of a specific interactive shape­

preserving interpolating curve algorithm based on the results presented in

Chapter 3 and the new slope estimation formula (4.1) which provides the

basis of the new algorithm. As a first step, let us assume that hi =j:. 0 and

di d f3 di + 1 b h . . ai = hi an i = -----g-; e t e respectIve ratIOs of the end slopes to the chord

slope. Now suppose that there is no additional knot inserted in the interval

[Xi, Xi+l]. Then it is easy to see from Proposition 3.2.1 that the quadratic

spline p(x) defined in (3.9) is monotone on [Xi, xi+d if sign(di)=sign(di+d

ai + f3i = 2 (5.1)

Moreover, p(X) is also convex (concave) on [Xi, Xi+ 1] if di < di+ 1 (di > di+ 1). In

Figure 5.1 below, we display (5.1) which is exactly the line segment drawn by

a broken line and this is in agreement with the results described in Edelman

and Micchelli [26]. In order that the interpolant p(x) be monotone and/or

convex on [Xi, Xi+l], the derivative values di and di+1 must be chosen so that

(ai, f3i) lie on the broken line.

Next, we consider the situation when di + di+l :j:. 2hi and there is an extra

knot placed in the interval [Xi, Xi+l]. To ensure monotonicity, it is necessary

to enforce a condition on the relationship between the size of the slopes and

120

the location of the additional knot ~i' In fact this has already been achie\'ed

in Chapter 3, where Case 2 (see page 80) is always selected in the case of a

monotone data and the additional knot is inserted at ~i = Xi + Xi-r1 (from
2

(3.17)). It has also been observed that this choice always leads to a monotone

interpolant if the slopes are calculated using the Butland formula (3.1). The

following lemma provides the general condition to be satisfied by the derivative

values di and di+1 in order to preserve the monotonicity of the data when
Xi + Xi+1

~i = .
2

Lemma 5.1.1

Let c; __ Xi + Xi+1
r". 2 be an additional knot inserted in the interval [Xi, xi+d.

Now if sign(di)=sign(di+1)=sign(8i), then the quadratic spline p(x) defined in

(3.10) is monotone on [Xi, Xi+l] if and only if

Q'.·+{3·<4 1 1 _ (5.2)

The proof of this statement follows directly from Proposition 3.2.2 (I) together

with (3.12), (3.17) and (3.21) of Chapter 3. As a consequence of Lemma 5.l.1,

it is possible to construct a region M of allowable values for (ai, (3i), which

always guarantee to produce a monotone interpolant on [Xi, Xi+1]. This region

is depicted with dots in Figure 5.1 and is in fact the triangular area with

vertices (0,0), (4,0) and (0,4). It is useful here to point out that for the

monotone data, Edelman and Micchelli [26] have shown that a C1 piecewise

quadratic spline with an arbitrary additional knot in [Xi, Xi+l] is monotone if

(ai,{3i) lies in the region enclosed by the triangle with vertices (0,0), (2,0) and

(0,2). This region is also contained within the monotonicity region M.

121

4.0

3.5

3.0

f3i 2.5

2.0 -lr-:,;';';: :;.;.;: :..;.;.: :.;..;..::.;..;..:: :;.;.;: :.;.;.: :..;.;.: :.;..;..:.;..;..: : ;.;.; . .;.;.;.;. .. .;..;... ;.;,..;.;.;~
... ,
::::x::::::::::::

1.5 ::::::"~:::::.:.:.:.:.:.:.:.·.··.··.:.:.·:.:.·M···· ::::,:
...... :::, :::::::::::

:::::::,: ..
......... , ..

::::::::x
1 .0 -+.;.;.; ... ;.;.; .. .;.;. .. ;,.;.. ... ;.;.; .. .;.;..;.;.~

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ai

Figure 5.1 Monotonicity region M for quadratic splines.

Now, we turn our attention to the convexity/concavity and first assume

that the data is convex; that is 0 < t5i-l < t5i. In this case, we know that

Case 1 (see page 80) is always chosen and the additional knot is inserted at

t (di - t5i)(Xi+l - Xi) (()) . . () ~i = Xi+l + from 3.16 . From ProposItIOn 3.2.2 II , the
di+l - di

convexity condition to be satisfied by the derivative values di and di+l along

with the additional knot ei is given by

(5.3)

which in view of (3.16), (3.18) and (3.19) may be written as di ::; t5i < di+l or

equivalently:

(5.4)

122

Similarly, in the case of concave data, that is, hi - I 2: hi, it can easily be proyed

from (3.14), (3.16), (3.18) and (3.19) that

Cti > 1 and f3i::; 1 (5.5)

In addition, when didi+I > 0, then (5.4) and (5.5) also preserve the

monotonicity of the data.

We claim that the modified form of the slope estimation formula (4.1),

that is

0,

(5.6)

where t > ° and, WI and W2 are positive weighting factors such that WI = 1

and 1 ::; W2 ::; 2, produces the derivative values di and di+I which ensure

that Cti and f3i always satisfy the monotonicity condition (5.2) and the

convexity/concavity conditions (5.4) and (5.5). Note that the weights WI and

W2 in (5.6) can be scaled arbitrarily and assigning them high values will not

have a significant effect, since a common factor in weights will simply cancel

out. However, there are no specific criteria for choosing these but the work of

Costantini [16] and Fritsch and Butland [32] show that Wl = 1 and 1 ::; W2 ::; 2

are suitable for all data types and will produce visually pleasing curves. The

effects of varying W2 will be further discussed in Section 5.3. For practical

123

purposes, it is useful here to point out that when t = 0, the well-known

generalized geometric mean (see [39]) is achieved; namely,

(5.7)

and as t ---+ 00 we obtain

(5.8)

In fact, the formula (5.6) generates its maxImum and mInImUm derivative

values for t = 0 and t = 00 respectively and t serves as a control parameter

for the slope in the sense that as t tends to 00 the curve tightens towards the

chord segments connecting the data points.

The formula (5.6) normally calculates derivative values on interior data

points only, so that a different approach must be used for the endpoints and

one needs to supply the derivative values d1 and dn which affect the behaviour

of the curve near its endpoints. The simplest way is to simply ask the user

to supply them. The only danger here is that the user-supplied values may

be incompatible with monotonicity and/or convexity in the end intervals. We

recommend using the method described in Section 3.1 (see (3.7) and (3.8)) to

evaluate the derivative values at the endpoints. This method automatically

matches the required shape-preserving conditions in the extreme intervals.

This approach has been followed for all curves shown in this chapter.

Now, we devise a method for determining the limits on t in order to get

the derivative values di consistent with the monotonicity-preserving condition.

124

By considering di ~ {3i6i (= di+I) for both Qi,{3i ~ 0, then, given ai, 3
j

is

computed as follows:

If the data is monotone, then from (5.2) set:

{3i = 4.0 - Qi

a=t if 6i+I ~ 6i

if 6i+I < 6i

Then (5.6) can be written as

otherwise.

and now from
1

di (W 1 + W2) I a

6i - (WI + w2rt)t'

. di (1
It is easy to see that 6i < WI + W2) I a ~ (3i. That is,

In(WI + W2)
t > ----:----'­

- In{3i -Ina

(5.9)

(5.10)

(5.11)

(5.12)

Next, we prove that the slope estimation formula (5.6) always satisfies the

convexity/concavity conditions (5.4) and (5.5) for every choice of parameter

t > O. Let us first consider the convex data case; that is, when 0 < 6i-1 <

6i ~ 6i+I. We then have:

125

Also, we have:

1
(WI + W2)T8i-1

---------'--""7" ~ 1
(wI8LI + w281)}

Q;i ~ 1

1

(WI + W2)T8i+1 1 < --------..:.---,-
(w l 8f + w28f+I)}

f3i ? 1

(5.13)

(.S.H)

The convexity condition (5.4) follows from (5.13) and (5.14). Similary,

it can be proved that inequality (5.5) always holds with the slope estimation

formula (5.6) when the data is concave; that is, when 8i - 1 ? 8i ? Di,l. Hence,

we infer the conclusion that formula (5.6) always provides the derivative values

consistent with the convexity/concavity preserving conditions (5.4) and (5.5)

for every choice of parameter t > o. Thus, if the data is convex/concave, then

t can be chosen arbitrarily to be any positive value and we set it equal to one

in the algorithm QSLOPE given below, for the generation of the default curve.

The above discussion can now be concluded by presenting an explicit

algorithm for obtaining the derivative values di at each interior data point.

We refer the algorithm as Algorithm QSLOPE.

126

Algorithm QSLOPE.

Given 8i'S and d l , then the derivative values di, i = 2, ... , n-1 are calculated

as follows:

Step 1

Step 2

If monotone data, then

S di-I
et D:i = --

8i-1

Compute f3i by applying the formula (5.9).

Choose a as in (5.10) and then set

In(wl + W2) .
ti = I f3 I to satIsfy (5.12).

n i - na

If convex/concave data, then

Set ti=l.O

If 8i8i+1 ::; 0 then

Set di = 0

Else

If ti = 00 then

Else

Set

The above conditions (5.2), (5.4) and (5.5), along with the slope estimation

formula (5.6), leave considerable freedom for choosing the derivative values

di such that the resulting interpolant exhibits desirable shape properties

present in the data. An interactive algorithm for generating shape-preserving

interpolating curve is now described. We refer the algorithm as Algorithm

QCURVE. A default curve is first generated by setting WI = 1.0, W2 = 1.0

and initial values for ti, denoted by tt are determined using the Algorithm

127

QSLOPE for each i = 2, ... , n - 1. The shape of any curve segments can then

be altered interactively by varying the values of ti.

Algorithm QCURVE.

Step 1

Step 2

Step 3

Step 4

Step 5

Input number of data points, n.

For i=l to n-1 do

Use Algorithm QSLOPE to find t; and the corresponding

derivative values di.

For i=l to n-1 do

If di + di+ 1 = 20i then

Use equation (3.9) to generate the curw segment on [Xi, xi+d.

Else

If (di - Oi)(di+l - Oi) 2: 0 then

Choose Case 2 (monotone data).

Else

Select Case 1 (convex/concave data).

Use equation (3.10) to produce the curve segment on [Xi, Xi+l].

Display the resulting curve.

Modification of the shape of the curve.

If Case 2, then input a new value for ti > t; (using (5.12)).

If Case 1, then input any new value for ti > O.

Use formula (5.11) to compute the new di.

Repeat Step 4 until the desired picture of the curve is achieved.

128

5.2 An Interactive Algorithm Using Cubic Splines.

In this section, we describe an interactive algorithm for generating shape­

preserving interpolating curve using C1 cubic splines. Suppose that the given

data set is monotone and/or convex. The case of the monotone and/or concave

data set can be tackled in a similar fashion. We claim that the slope estimation

formula (5.6) for t > 0 and with positive weighting factors WI and W2 such

that WI = 1 and 1 < W2 < 2, always yields values of di and di+l which

ensure that ai and f3i lie directly inside the allowable region S of Figure 4.2.

The overall idea for constructing an interactive algorithm which produces a

C1 interpolant is similar to that discussed in Section 4.2 of Chapter 4. Now,

we proceed with determining the bounds on the magnitude of t so that the

interpolant will preserve the monotonicity and/or convexity of the given data

in each subinterval, as follows:

By assuming di < f3iOi (= di+l) for both ai, f3i ~ 0, then, given ai, f3i is

computed as follows:

If the data set is non-convex monotone, then from Theorem 2.2.1 (ii.iii) of

Chapter 2, we set:

(5.15)

If the data set is convex (i.e., (Oi-l -Oi)(Oi-Oi+t) > 0), then using Lemma

4.2.1 and Lemma 4.2.2. of Chapter 4, we have:

{

If ai < 1 then ~(3 - ai) < f3i ::; 3 - 2ai,

If ai > 1 then 3 - 2ai < f3i < ~(3 - ai).
(5.16)

Now, as in the preceeding section (see (5.10) through (5.12)), a range of

129

acceptable values for t is obtained:

t > _In--,-(W_l _+_W_2....:....)
- In,Bi -Ina (5.1/)

From the above discussion, we propose the following algorithm for

calculating the derivative values di at each interior data point. \\'e refer the

algorithm as Algorithm CSLOPE.

Algorithm CSLOPE.

Given Di's and d1 , then the derivative values di, i = 2, ... , n-1 are estimated

as follows:

Step 1

Step 2

Step 3

Step 4

(a) Case of monotone data: Compute,Bi using the formula (.).15).

(b) Case of convex data: Compute,Bi from the formula (5.16).

Choose a as in (5.10) and then set

In(wl + W2) .
ti = to satIsfy (5.17).

In,Bi -In a

If DiDi+l < 0 then

Set di = 0

Else

If ti = 00 then

Else

Set

130

An interactive algorithm for constructing the shape-preserving curve IS

now outlined. We refer the algorithm as Algorithm CCCR\'E. A default curw

is first produced with WI = 1.0, W2 = 1.5 and initial values for t· denoted b\'
1, •

tt for each i = 2, ... , n - 1, are chosen applying the Algorithm CSLOPE.

Algorithm CCURVE.

Step 1

Step 2

Step 3

Step 4

Step 5

Input number of data points, n.

For i=l to n-1 do

Apply Algorithm CSLOPE to find tt and the corresponding

derivative values di.

For i=l to n-1 do

Use equation (2.2) to produce the curve segment on [Xi, Xi+l].

Display the resulting curve.

Modification of the shape of the curve.

Set new value for ti > tt (using (5.17)).

Apply formula (5.11) to estimate new di.

Repeat Step 4 until the desired shape of the curve is obtained.

In practical computation, rather than attempt to decide directly which

parameter values to use in the algorithms of Section 5.1 and Section 5.2 above,

the idea is to choose the initial values for ti, denoted by tt, using the alorithms

QSLOPE and CSLOPE for each i, i = 2, ... , n-1, to generate an initial default

131

curve. Once this curve has been generated and displayed: then the shape of

any of the curve segments can be modified interactively by assigning a new

value to the parameter ti > fi, 2 < i < n - 1.

It should be noted that formula (5.6) also satisfies the condition (2.13) i.e.,

and varying ti for a particular 2 ::s: i ::s: n - 1, will change the derivative value

di. There are two curve segments which will be affected by a change in t z:

the curve segment preceding and succeeding the knot Xi. The need to use

the derivatives as a tool to modify the shape of the curve generally arises in

the case when the curve exhibits any sharp turns at a data point where the

slopes of the adjacent data segments change rapidly, or at the turning point

of a given data set. Hence, we can loosen or tighten the shape of the curve at

that point by changing the derivative value.

5.3 Numerical Examples and Conclusions.

The proposed algorithms have been incorporated into an interactive

package which allows the user to examine different shapes of the curve by

varying the values of the parameter ti. An important property of the schemes

is that, for any ti ~ tt, they produce a shape-preserving curve. The local

nature of the schemes and the control of the shape by the parameter ti are

also important features for curve design. The interactive algorithms discussed

above combine the three ingredients: locality, interpolation and shape control.

As is the case for any local interpolation algorithm, the above algorithms are

very fast and convenient for computing all the points required for the graphical

132

display of a curve. The evaluation of a point on the curve at a prescribed

parameter value is also quite fast, due to the local nature of the schemes.

The following examples show that the algorithms described in the previous

section are robust and provide a control parameter ti for the derivati\'e yalues

associated with each data point, which can be used to flatten or tighten the

curve locally. Hence these schemes are capable of producing shape-preserving

curves which can be made visually more pleasing than the curves produced by

existing one-pass methods.

Now we first investigate the effect of changing W2 on the shape of the

resulting curve such that 1 < W2 < 2. As an illustration, Data 4 is used

to show the application of the algorithm QCURVE to the case when W2 is

varied, while keeping WI = 1.0 and ti = 1.0 fixed. The resulting curves are

displayed in Figure 5.2. Similarly, the effect of varying W2 is demonstrated in

Figure 5.3, where interpolating curves are generated applying the algorithm

CCURVE. However, testing on several sets of data has shown that varying W2

has little visual effect on the shape of the curve as compared to variation in

ti. It should also be noted that the simultaneous variation of W2 and ti does

not give a clear indication of the scale of the impact on the shape of the curve.

Hence in subsequent testing, we have decided to fix W2 = 1.0 for generating the

default curve applying the Algorithm QCURVE and W2 = 1.5 for construction

of the default curve using algorithm CCURVE. In the next step, varying ti

will change the shape of the curve in a predictable manner as shown in the

following examples.

We now present some numerical output and discuss the results of applying

the Algorithm QCURVE of Section 5.1 to two typical data sets. For each set

of data, we first present the default curve accompanied by a table detailing the

133

data points, slopes, additional inserted knots, case numbers and corresponding

selected initial values for the parameter tt. Next, various effects of varying

ti will also be demonstrated. Figure 5.4 shows the default curve to Data 1

obtained by taking WI = 1.0 and W2 = 1.0. In the following Figures 5.5

through 5.7, a magnified portion of the curve between the knots X7 = 9.0 and

Xll = 15.0 is shown to highlight the differences in the interpolant with the

variation in the parameter ti. The effect of varying the values of parameter

tg ~ t g, keeping ti = tt (see Table 5.1) otherwise, is illustrated in Figure 5.5.

Only two curve segments are affected, namely the curve segments between the

intervals [11.0,12.0] and [12.0,14.0] respectively. Figure 5.6 exhibits the effect

of varying an individual tlO, while all other are kept fixed with ti = tt. The

curve in Figure 5.7 is generated by letting tg = tlO = 50 simultaneously. The

effects due to these variations on the shape of the curve between the interval

[12.0,14.0] are clearly seen, where the curve tends to a linear form. The default

curve for the interpolation of Data 6 is shown in Figure 5.8 with WI = 1.0 and

W2 = 1.0. As the data is convex, this leaves us considerable freedom for

choosing any value for ti > 0 such that the resulting interpolant will exhibit

desirable shape properties present in the data. Thus, Figure 5.9 illustrates the

effect of successively increasing the value of parameter t2 = 0.2,0.8,1.5 and

3.0, while other ti are the same as tt listed in Table 5.2. The effect of the high

parameter value is clearly seen in that the resulting interpolant approaches

the chord segment connecting the data points.

The result of applying the interactive cubic spline algorithm CCURVE

of Section 5.2 with WI = 1.0 and W2 = 1.5 to the same data sets used in the

applications of the algorithm QCURVE above, is now presented. For each data

set, the default curve is first displayed and then a table containing the data

134

points, derivative values and the initial computed values for the parameter tt
is provided. Next, the effects of varying ti are also considered. Figure 5.10

is the graph of the default curve to Data 1. In the following Figures 5.11 to

5.13, an enlarged part of the curve in the interval [9.0, 15.0) is given to show

the effects on the resulting interpolant with the variation in the parameter ti.

The effects due to these variations on the shape of the curves are analogous

to those shown in Figure 5.5 through Figure 5.7, where noticeable change in

the magnitudes of the slope of the curves at the data points X9 = 12.0 and

XIO = 14.0 can be seen. Now the default curve is modified by changing the

parameter t9 such that t9 > t9, while all other are kept fixed with ti = tt as

given in Table 5.3. The resulting interpolants are shown in Figure 5.11 where

the variation in t9 only effects the shape of the curve in the neighbourhood

of the data point X9 = 12.0. Similarly, Figure 5.12 illustrates the effect of

varying the parameter tlO > tio, while letting all other ti = tt. Figure 5.13 is

the graph of the interpolating curve where the curve segment in the interval

[12.0,14.0] is modified by allowing t9 = tlO = 40 simultaneously, so that the

resulting curve segment approaches a linear segment. Figure 5.14 shows the

default curve to Data 6 and the progressive increase in parameter t2 ~ ti,
while keeping ti = tt (see Table 5.4) otherwise, is demonstrated in the curves

of Figure 5.15. This is accomplished for the values t2 = 0.618,0.9,1.5 and 2.5

respectively. Clearly the effects of varying t2 is that increasing it pulls the

curve segment in the interval [0.1,0.4) towards the chord joining the two end

points of this subinterval.

For design flexibility in manipulating the curves, the user should be given

an interactive option to adjust the value of ti in those intervals where the curve

is to be loosened or tightened, rather than using a uniform value for the tension

135

parameter throughout all intervals. After the default curve has been produced,

the algorithms QCURVE and CCURVE provide considerable freedom in

choosing different values for ti on each curve segment and produce visually

pleasing shape-preserving C 1 interpolating curves. Figures 5.4 through 5.15

clearly demonstrate the increase in the tightness of the curve with the increase

in ti. Thus, the effect of varying ti may be thought of as operations which

"loosen" and "tighten" the corresponding curve segments.

In comparison with Montefusco's interactive shape-preserving method [52]

which is based on C1 cubic interpolating splines, the interactive algorithms

proposed here are completely local and more efficient since they do not

require solving optimization problems as in [52]. Also, they have an added

advantage of always producing shape-preserving interpolants for every choice

of parameter ti > tt, while the tensioning procedure in the Montefusco method

requires more than one adjustment to generate acceptable shape-preserving

curves.

136

25.0

20.05

15.1

10.15

5.2

0.25

----w2=1.0

............ w2= 1.3

------------------ w2 = 1.6

------------- w2 = 2.0

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 5.2 Algorithm QCURVE with varying w2; WI = 1.0 and ti = 1.0.

25.0

20.05

15.1

10.15

5.2

0.25

----W2=1.0

w2= 1.3

-- -- -- -- -- ---- -- -- w2 = 1.6

------------. w2 = 2.0

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 5.3 Algorithm CCURVE with varying w2; WI = 1.0 and ti = 1.0.

137

85

70 I
55

40

25

10

o 3 6 9 12 15

Figure 5.4 Default curve: ti = fi for each i, 2 ::S i ::S n - 1.

Data Points Slopes Additional Knots Case on Value of t; at

Xi Yi di ~i [Xi, Xi+l] di

1 0.0 10.0 0.0

2 2.0 10.0 0.0

3 3.0 10.0 0.0

4 5.0 10.0 0.0

5 6.0 10.0 0.0

6 8.0 10.0 0.0 8.389 1

7 9.0 10.5 0.8182E+00 10.398 1 1.000

8 11.0 15.0 0.5572E+01 11.5 2 0.537

9 12.0 50.0 0.1198E+02 13.0 2 0.211

10 14.0 60.0 0.8333E+01 1 1.000

11 15.0 85.0 0.4167E+02

Table 5.1 The values associated with Figure 5.4.

138

85.5 ----- t9 = 0.211

----------------- t9 = 0.6

70.5
------t9 = 1.5

t9=10.0

55.5

40.5

25.5

10.5

9.0 10.2 11.4 12.6 13.8 15.0

Figure 5.5 Modified curve: tg = 0.211,0.6,1.5 and 10.0; ti = t~ otherwise.

85.5 ----tlO= 1.0

----------------- t10 = 2.0

70.5
-------- tlO= 10.0

55.5

40.5

25.5

10.5

9.0 10.2 11.4 12.6 13.8 15.0

Figure 5.6 Modified curve: tID = 1.0,2.0 and 10.0; ti = tt otherwise.

139

85.5

70.5

55.5

40.5

25.5

10.5

9.0 10.2 11.4 12.6 13.8 15.0

Figure 5.7 Modified curve with large parameter values: t9 = 50 and tlO = 50.

140

19.0476 r.

15.9218

12.7961

9.6703

6.5446

3.4188

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.8 Default curve: ti = tt for i = 2, ... , n - 1.

Data Points Slopes Additional Knots Case on Value of t; at
1, Xi Yi di ~i [Xi, X1-'-1] di

1 0.0 19.0476 -0.2188E+03 1 1.0

2 0.1 7.0175 -0.2182E+02 0.265 1 1.0

3 0.4 3.4188 0.0 0.528 1 1.0

4 0.7 3.8095 0.2274E+01 0.751 1 1.0

5 0.8 4.7059 0.1594E+02 1 1.0

6 1.0 19.0476 0.1275E+03

Table 5.2 The values associated with Figure 5.8.

141

19.0476

15.9218

12.7961

9.6703

6.5446

3.4188

0.0 0.2

----t2 =0.2

-----t2 = 0.8

-- -- -- -- -- -- -- -- -- t2 = 1 .5

-------------t2 = 3.0

0.4 0.6 0.8

r
I

1.0

Figure 5.9 Modified curve: t2 = 0.2,0.8,1.5 and 3.0; ti = t; otherwise.

142

85

I
70

55 (
40

25

10

o 3 6 9 12 15

Figure 5.10 Default curve: ti = tt for each i, 2 :::; i :::; n - 1.

Data Points Slopes Value of tt at

1- Xi Yi di di

1 0.0 10.0 0.0

2 2.0 10.0 0.0

3 3.0 10.0 0.0

4 5.0 10.0 0.0

5 6.0 10.0 0.0

6 8.0 10.0 0.0

7 9.0 10.5 0.9787E+00 0.834

8 11.0 15.0 0.6378E+01 0.678

9 12.0 50.0 0.1409E+02 0.283

10 14.0 60.0 0.1021E+02 0.794

11 15.0 85.0 0.3979E+02

Table 5.3 The values associated with Figure 5.10.

143

85.5 ----t9 = 0.283
f

----- t9 = 0.8

70.5
-- -- -- -- -- -- -- -- -- t9 = 1.5

------------ t9 = 10.0

55.5

40.5

25.5

10.5

9.0 10.2 11.4 12.6 13.8 15.0

Figure 5.11 Modified curve: tg = 0.283,0.8,1.5 and 10.0; ti = tt otherwise.

85.5

70.5

55.5

40.5

25.5

10.5

---- tlO= 0.794

tlO= 2.0

-- -- -- -- -- -- -- -- -- tlO= 10.0

9.0 10.2 11.4 12.6 13.8 15.0

Figure 5.12 Modified curve: tlO = 0.794,2.0 and 10.0; ti = tt otherwise.

144

85.0

70.1

55.2

40.3

25.4

10.5

9.0 10.2 11.4 12.6 13.8 15.0

Figure 5.13 Modified curve with large parameter values: tg = 40 and tlO = 40.

145

19.0476

15.9218

12.7961

9.6703

6.5446

3.4188

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.14 Default curve: ti = t; for i = 2, ... , n - 1.

Data Points Slopes Value of t; at
1, Xi Yi di di

1 0.0 19.0476 -0.2064E+03

2 0.1 7.0175 -0.3420E+02 0.515

3 0.4 3.4188 0.0

4 0.7 3.8095 0.2852E+01 0.834

5 0.8 4.7059 0.2173E+02 0.689

6 1.0 19.0476 0.1217E+03

Table 5.4 The values associated with Figure 5.14.

146

19.0476 ----t2 =0.515

----t2=0.8

15.9218
------------------ t2 = 1.3

------------. t2 = 2.5

12.7961

9.6703

6.5446

3.4188

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.15 Modified curve: t2 = 0.515,0.8,1.3 and 2.5; ti = tt otherwise.

147

Chapter 6

Algorithms for Shape Preserving
Surface Drawing

In this chapter we concern ourselves with the matters related to bivariate

shape-preserving interpolation. For the case of curve generation, several

methods which preserve properties such as monotonicity and/or convexity

of the data have been presented in Chapters 2 through 5. However, shape­

preserving interpolation techniques for the surface generation problem to

a set of bivariate data defined over a rectangular grid have not yet been

adequately dealt with, and only a few methods are available, such as in [3],

[6], [12], [13], [18] and [24]. The methods used for generating C l interpolating

surfaces are the blending function method and the tensor product method.

Some of these methods are briefly describe in Section 6.1. This chapter has

been published in Iqbal [42] and discusses the use of the Butland [11] slope

estimation method in the method of Roulier [58]. In Section 6.2, we review

the Roulier algorithm briefly and present a Modified algorithm in Section 6.3

which illustrates the ways in which Butland slopes and the one-dimensional

shape-preserving method of Schumaker [61] can be used in the Roulier method.

Finally, conclusions and numerical results showing the performance of our

algorithm are presented in Section 6.4.

148

6.1 Literature Review.

The representation of a surface using a blending function technique is an

approach taken by Dodd, McAllister and Roulier [24]. The method constructs

surfaces which preserve the shape of the data along grid lines, such that if

the data points form a convex shape along the grid lines, then the resulting

curve passing through these points will also have a convex shape, and if the

data points have a maximum or minimum point, then the interpolating curve

should also have a maximum or minimum at that point. In this scheme, the

one-dimensional shape-preserving method of McAllister and Roulier [50] is

applied to estimate the functions along the grid lines, and then rectangular

patches are constructed using blending functions as proposed by Gregory [36].

The specification of the first and mixed partial derivatives at each grid point

are required. Their algorithm generally produces visually pleasing results, but

may not preserve the shape of the data inside the rectangles in extreme cases.

Also, the condition of imposing zero mixed partial derivatives, suggested and

used by the authors, at the grid points causes undesirable flat spots in the

resulting surface.

Beatson and Ziegler [6] give a method which preserves the monotonicity of

the data by a C 1 piecewise quadratic function defined over triangular elements

which are obtained by subdividing each grid rectangle into a grid of sixteen

triangles. The quadratic polynomials are uniquely determined by the function

value and first partial derivatives at the vertices of the grid rectangle. The

method requires the specification of the values for the first partial derivatives

at each of the grid points. The first partial x and y derivatives are initialised

using a divided difference formula. A similar algorithm is presented by

Asaturyan and Unsworth [3], where monotonicity is achieved using biquadratic

149

splines defined over rectangular elements formed by the partition of each

initial rectangle into four subrectangles. Over each subrectangle, the surface

is defined by biquadratic functions, requiring the specification of the first

and mixed partial derivatives at each grid point. These derivative values

are constrained to satisfy conditions which ensure the generation of shape­

preserving surfaces.

Carlson and Fritsch [12, 13] develop schemes which produce a monotone

interpolant to monotone data defined on a rectangular grid. The interpolating

surfaces are obtained using the tensor product of C 1 cubic splines which are

based upon their univariate piecewise cubic monotone interpolation schemes

described in [32, 33]. These methods require the specification of values for

the first partial derivatives and the first mixed partial derivatives at each grid

point. A bicubic Hermite polynomial is defined over each grid rectangle and

monotonicity constraints are imposed on the first partial derivatiws and the

first mixed partial derivatives at the grid points. These constraints are then

satisfied by steadily reducing the magnitude of the first partial derivatives

and the mixed partial derivatives from their initial values specified at the four

corner of the grid rectangle. The schemes guarantee that the generated surface

preserves the monotonicity of the surface along the grid lines and inside the

surface patches.

Costantini and Fontanella [18] have approached the bivariate shape­

preserving interpolation problem in a different way, by local adjustment of

the degree of the interpolating functions (in either of the variables). No

constraints are imposed on the partial derivatives as in above methods. The

scheme is extension of the univariate shape-preserving interpolation scheme

described in [15, 16, 17] to the bivariate case, and requires the specification of

150

values for the first partial derivatives and the first mixed partial derivati\'es

at each grid point. Over each grid rectangle, the surface patch is defined by a

tensor product spline using bivariate Bernstein polynomials and the resulting

interpolant is of an arbitrary continuity class. The shape preserving constraints

such as monotonicity and/or convexity are satisfied by adjusting the degree of

the function interpolating the data. These constraints are applied and satisfied

along the grid lines, which preserves the monotonicity and/or convexity of the

data along the boundaries of the generated surface. The scheme is not however

local since the degrees of an edge of the grid rectangle, say in the x direction,

must be the same throughout the corresponding column in the y direction.

In contrast to above methods, Roulier [58] presents a refinement technique

which is local and successively refines grid data which is convex along grid

lines in such a way that the refined data exhibit the same convexity and

monotonicity along the appropriate grid lines. This method uses the shape­

preserving quadratic splines of McAllister and Roulier [50], and includes

some geometric observations of the data. The method is first applied to the

original data to generate refined grid data which exhibits the convexity and/or

monotonicity of the original data along new grid lines. The method produces

the refined data by inserting new data points between the original data points

using McAllister and Roulier's algorithm [50]. These new points are within

the convexity and monotonicity limits which are derived from the piecewise

linear interpolant to the original data. The algorithm is applied repeatedly to

the updated refined grid data and the final refined data can be used as points

on a convex and monotone surafce, or can be used as bivariate data for an

alternative surface interpolation scheme.

151

6.2 Roulier Algorithm.

Roulier [58] describes the following algorithm for convex bivariate grid

data. For brevity and simplicity, we assume throughout the remainder of this

chapter that the initial grid data is convex and monotone increasing in both

x and y directions:

i = 1, ... , n - 2, j = 1, ... , m. (6.1)

i = 1, ... , n, j = 1, ... , m - 2. (6.2)

where 8Xi,j and 8Yi,j are defined in (1.9) and (1.10) of Chapter 1 and the

extension to convex decreasing grid data is trivial. Here we only give a very

brief review of the Roulier [58] method. This is necessary for us to describe

our Modified algorithm.

In the first step of the method, one dimensional shape-preserving splines

are found for the sets of data {(Xi, Yj, Aj), i = 1, ... , n} for each j. These one-

dimensional approximations are used to determine an approximate value for

the function at the mid-points of each interval on grid lines in the X directions.

At the next step the roles of x and yare reversed. The typical one-dimensional

shape-preserving interpolation step on a grid line is characterised by data of

the form (tk' fk), k = 1, ... , n, where tk is either Xk or Yk, and where

(6.3)

and

k=I, ... ,n-l. (6.4)

The step computes estimates dk of the slopes at tk which satisfy

152

In terms of these slopes, we define constants Ak, Bk as follows:

and

Bk = max(dk(h - tk) + ik, dk+1 (tk - tk+d + ik+l), k = 1, ... , n - 1.

- tk + tk+l t k = -------'--
2

where

This one-dimensional scheme forms the basis of each step of the 2-

dimensional interpolation algorithm described by the Pascal-like pseudocode

given below.

Step 1

For j : = 1 to m do

Begin

For i : = 1 to n do

Use the slope calculation method as proposed by McAllister

and Roulier [50] to produce estimates of slopes dXi,i'

For i : = 1 to n do

End

Use the shape-preserving quadratic interpolant of the McAllister

and Roulier [50] to produce Pj such that Pj(Xi) = Aj and

I

Pj (Xi) = dXi,j'

153

Step 2

For j : = 1 to m do

For i : = 1 to n - 1 do

Begin

Xi + Xi+l
xi = ----

2

End

For j : = 1 to m do

For i : = 1 to n - 1 do

Begin

f~· = P·(x·)· 1,]] 1, j- . . _ li,j + 11-1.j
1,] - 2

Generate numbers Bi,j (corresponding to B k above) with dXi,j

from Step 1 and they satisfy B i]· < f*· < l-i}·.
, I,} ,

End

Step 3

For i : = 1 to n - 1 do

For j : = 2 to m do

Begin

8; .. = Itj - li~j-l
t,] Yj - Yj-l

End

Step 4

If for some io we have a jo such that 8y* . . > 8y*.. ,then use the data to ,}o to,}o+ 1

(Yj, fio,j) to generate Aio,j, j = 1, ... , m (corresponding to Ak above).

Step 5

For this io if li:,j < Aio,j then set li:,j

(Yj, li:,j)' j = 1, ... , m are convex.

154

Aio,j. This guarantees that

Step 6

Go to Step 1 and use new grid data consisting of (Xi, Yj ~ Aj) i = L ... ~ n.

j = 1, ... , m. and (Xi, Yj, f i: j) i = 1, ... , n - 1, j = 1, ... , m but reverse the

roles of x and Y (i and j).

The points on a surface are generated and monotonicity and conYexity

parallel to the grid lines is maintained by the algorithm when applied to com'ex

grid data.

6.3 Modified Algorithm.

Now we present a new modified algorithm based on an altern at in' one-

dimensional shape-preserving algorithm due to Schumaker, using a slope

estimation technique due to Butland. The Butland slope formula (3.1) satisfies

(6.5), since from (6.3), we have

and also, from (6.6),

D~ + DkDk+l < 2DkDk+l

2DkDk+l
Dk <

Dk + Dk+l

Dk < dk+l

DkDk+l < Di+l

2DkDk+l < DkDk+l + D~+l
2DkDk+l c
---- <Uk+l
Dk + Dk+l

dk+1 < Dk+l

155

(6.6)

(6.7)

(6.8)

Now by (6.7) and (6.8), we obtain (6.5)

In Chapter 3 we have shown that Schumaker's algorithm becomes a one­

pass algorithm automatically if the Butland slopes are used and that, in this

case, it produces an interpolant which is identical with the McAllister-Roulier

interpolant, though by an easier computation. The bivariate interpolant

produced by the Modified algorithm given below is therefore identical.

In the Modified algorithm Step 1 of the main algorithm is replaced using

the Butland [11] slopes and the Schumaker [61] shape-preserving interpolant

as described in Chapter 3 in such a manner that resulting interpolant preserves

the convexity and monotonicity of the grid data. Step 1 is now performed as:

Step 1

For j : = 1 to m do

Begin

For i : = 1 to n do

Use the Butland slope formula to produce slopes dXi,j.

For i := 1 to n do

Use the shape-preserving quadratic interpolation method of

Schumaker to produce Pj such that Pj(Xi) = Aj and

End.

Step 2 through Step 6 are the same as given in the Roulier algorithm

above. The Butland slopes can be further improved iteratively using Frey's

iteration technique as described in Section 3.5 of Chapter 3. An advantage

156

of this improvement is that it leads more visually pleasing interpolants than

those using just Butland slopes. This is demonstrated practically in the next

section.

6.4 Numerical Examples and Conclusions.

In this section, we present the results of some numerical experiments using

the schemes described in previous sections. The algorithms have been tested

on several sets of grid data widely used in the literature, but here we consider

only the two convex data sets used earlier by Roulier [58] and described in

Chapter 1, to illustrate the performance of the method. In each of the following

figures, the interpolant has been evaluated on a uniform 3x3 refinement of the

original rectangular partition and the resulting points joined with straight

lines for display purposes. The surfaces shown in Figures 6.1 and 6.2 are

the result of applying the Modified algorithm using the Butland and Frey

slope schemes respectively to Data 7 (Table 1.9). The plots for Data 8 (Table

1.10) produced by the Modified algorithm with the Butland and Frey slope

methods are represented in Figures 6.7 and 6.8 respectively. Figures 6.5, 6.6,

6.11 and 6.12 show combined plots of the interpolating surfaces generated

by the Modified algorithm with Butland and with Frey slopes, and which

allow direct comparison of the different surfaces. Areas in which the resulting

approximations show noticeable visual differences are highlighted and clearly

observed on the diagrams. The algorithms have been implemented in Fortran-

77 under the SunDS 4.1.3 operating system and run on a SPARCserver-670:'IP

machine. For each algorithm, the computation time required for interpolating

the surfaces is very important. In order to compare CPU time, we further

interpolate the above surfaces by evaluating on a uniform 7 X 7 refinement of the

157

original rectangular grid shown in Figures 6.3, 6.4, 6.9 and 6.10 respectively.

Table 6.1 summarizes the CPU seconds required to produce above Figures.

It is clear from Table 6.1 that the Modified algorithm with Butland slopes is

faster than the other two algorithms.

Figures Modified Algorithm Modified Algorithm Roulier Algorithm

(with Butland Slopes) (with Frey Slopes) (Original)

6.1,6.2 0.081 0.356 0.262

6.3, 6.4 0.111 0.571 0.509

6.7,6.8 0.091 0.375 0.326

6.9,6.10 0.110 0.540 0.461

Table 6.1 Timing information for the Figure 6.1 through Figure 6.10.

These examples reveal that both algorithms with Butland slopes gIve

identical interpolants and the resulting surfaces are shape-preserving. We

conclude from these figures that the Modified algorithm with the Frey slope

scheme produces more visually pleasing surfaces than that which uses Butland

slopes.

We want to point out that our Modified algorithm provides an alternative

and simpler method for constructing the interpolant given by Roulier's

method. The Modified algorithm has the merit that it is very easy to

implement, and that it is more efficient in terms of both CPU time and storage

requirements.

158

/
" ,

Figure 6.1 Modified algorithm with Butland slopes.

Figure 6.2 Modified algorithm with Frey slopes.

159

Figure 6.3 Modified algorithm with Butland slopes.

Figure 6.4 Modified algorithm with Frey slopes.

160

Figure 6.5 Combined plot by Modified algorithm with Butland and Frey Slopes.

Figure 6.6 Combined plot by Modified algorithm with Butland and Frey Slopes.

161

Figure 6.7 Modified algorithm with Butland slopes.

Figure 6.8 Modified algorithm with Frey slopes.

162

Figure 6.9 Modified algorithm with Butland slopes.

Figure 6.10 Modified algorithm with Frey slopes.

163

Figure 6.11 Combined plot by Modified algorithm with Butland and Frey Slopes.

Figure 6.12 Combined plot by Modified algorithm with Butland and Frey Slopes.

164

Chapter 7

Conclusions and Future Work

7.1 Conclusions.

In this thesis we have presented several algorithms for generating shape­

preserving interpolants to a set of arbitrary data using C 1 piecewise quadratic

and cubic Hermite interpolation. These algorithms are local and have the

distinct feature that the curve is constructed in a piecewise manner, and

creation of each curve segment depends only on information related to a few

neighbouring points. The most significant characteristic of algorithms of this

category is that the slope at each data point is estimated before the actual

generation of the curve segment takes place. The flexibility and versatility

of these algorithms make them applicable to any situation which requires

preservation of shape properties such as monotonicity and/or convexity. The

main conclusions of this research work are summarized as follows:

• In Chapter 2, a survey of a number of the currently accepted shape­

preserving interpolation methods based on piecewise cubic splines has

been provided. Several methods including a number of formulae for

specifying the derivative values at the data points have been reviewed

and the intercomparisons have also been carried out by examining their

performance on four data sets. Careful observation of the graphical

results has suggested that the Brodlie, Fritsch-Butland, Huynh and

Pruess methods are the best on the basis of producing visually pleasing

165

shapes of the interpolating curves. However, the Pruess method is not

efficient as it inserts two additional knots in each interval and requires

solving an optimization problem in the case of convex data sets which ,

results in a corresponding increase in the complexity of computer code

and execution time than the other methods.

• In Chapter 3, algorithms proposed by McAllister-Roulier and Schu­

maker for the construction of interpolating curves which preserve the

monotonicity and/or convexity of the data using Cl quadratic splines

have been analysed and proved to give precisely the same interpolants,

if the slopes used in both algorithms are estimated by the Butland slope

method. Furthermore, in the case of convex data, the slopes have been

improved iteratively using the scheme proposed by Frey to produce

more visually pleasing curves. The Schumaker algorithm has the merit

that it is easy to implement, and that it needs fewer operations and

less computation time than the McAllister-Roulier algorithm as it in­

troduces an additional knot only in those intervals where di+di+l =I 2hi,

whereas the latter algorithm always adds one extra knot in each inter-

val.

• In Chapter 4, a new slope estimation method based on a generalized

harmonic mean of chord slopes with a control parameter t has been

introduced which provides a means for generating the slope at each

data point. An advantage of this technique is that the slope at a data

point is chosen within bounds given by the slopes of the two adjacent

data segments to that data point. Based on this slope generation

scheme, a new local automatic algorithm which has the property of

preserving both monotonicity and/or convexity has been developed.

166

Necessary and sufficient conditions for a curve to be monotone and/or

convex have been established. Compared to a number of current C 1

curve interpolation methods which have been presented in Chapter 2,

this algorithm demonstrates its superiority in producing curves of high

quality which are also visually pleasing.

• Two interactive algorithms have been described in Chapter 5 for the

generation of interpolating curves which preserve the monotonicitv

and/ or convexity of the data using C 1 quadratic and cubic splines

respectively. Similar to above methods, these algorithms are also local

and depend upon the new slope estimation formulae for determining the

slope of the curve at each data point. Testing several sets of data has

shown that changing the derivative value at the respective data point

is an effective way of modifying the shape of the curve. These examples

also illustrate that these algorithms give the user a control parameter

ti for the derivative value associated with each data point, which is

utilized to modify the shape of the curve segment in an interval locally.

These interactive algorithms are a powerful addition to the local one­

pass algorithms and are capable of producing shape-preserving curves

which are more visually pleasing.

• Finally in Chapter 6, the application of Schumaker's algorithm for

shape-preserving curve for constructing a C 1 surface which interpolates

given bivariate convex data defined on a rectangular grid is considered.

An algorithm proposed by the Roulier is modified in which the above

algorithm is used to generate curves along the grid lines. The Modified

algorithm is much faster and gives more visually pleasing surfaces.

167

Given the summary of the methods listed above, it is now possible to

analyse some of the main advantages of the new algorithms, in terms of general

characteristics, when compared with other methods outlined in Chapter 2 and

Chapter 3. The following overall conclusions can be drawn:

• An important advantage of the new algorithms is that they preserve

both monotonicity and/or convexity of the data and produce visually

pleasing curves. Undesirable features such as points of inflection and

flat regions do not occur unless specified by the given data.

• Their defining formulae are quite simple and the generation of the curve

segments is done on a local basis, in order to allow local changes in the

curve. This local characteristic is desirable because adding, changing

or removing a data point will only alter the curve in the vicinity of that

point and is also important when storage requirements are critical as is

the case for very large data sets.

• The specific advantage of the new automatic algorithm developed in

Chapter 4 is that it is simple, fast, easy to code and from the standpoint

of speed and storage; it does not require either the solution of an

optimization problem as in the Pruess method or the insertion of

additional knots between the original data points as seen in the methods

described in Chapter 3.

• The main difference between the new interactive algorithms proposed

in Chapter 5 is the size of storage required and the time of computation.

The interactive algorithm based on C1 quadratic splines adds one

additional knot in each interval when di+di+1 =f. 20i, whereas the other

algorithm makes use of C 1 cubic splines and does not insert any extra

168

knot. Both algorithms provide the flexibility to design a large variety

of visually pleasing shapes of the curves, by varying the parameter ti

which can be used interactively to give a means of local control over

the shape of the curve.

7.2 Future Work.

While this research has attempted to gain insight into the shape-preserYing

algorithms issues associated with curve and surface design, many areas need

further investigation. Even though the following list is suggested as an

immediate extension to what has been achieved so far, it does not in any

way exhaust all possiblities for future research. With this in mind, we would

like to identify the following research topics which are highly relevant to the

present work and deserve further study:

• We have considered the case of generating shape-preserving curves

through C I quadratic and cubic splines. An attempt may be made to

generalize this to higher degrees, i.e., quintic splines. In this regard, our

new slope estimation method can be used in conjuction with the Ulrich­

Watson [66] method, where the monotonicity region for quintic splines

consists of the square [0,5] X [5,0] and derivative values must lie within

it. The derivative values can be forced to lie in this region using the

slope estimation formula (5.6) with WI = 1 and 1 < W2 ::; 2. A similar

approach to ours (as described in Chapter 4) might be developed to

construct an algorithm for generating the curves. Further investigations

could also be carried out to build an interactive algorithm by varying

the values of t to produce more visually pleasing curves.

169

• Our new slope estimation method has promising results when it is used

with the piecewise rational splines of Stineman [65]. For example,

Figure 7.1 shows the effect of progressively increasing the value of t.

Further work is now being undertaken to investigate the possiblities of

building automatic and interactive algorithms based on this rational

representation.

25.0 t= 0.0

20.05

15.1

10.15

5.2

0.25

. t= 0.3

-----t=0.6

-----t=1.0

------------- t = 1 .5

-.-.---.---- - t = 2.5

-.-.-.. ----- t = 6.0

----- -- t = 00

-2.0 -1.64 -1.28 -0.92 -0.56 -0.2

Figure 7.1 Interactive rational spline interpolant to Data 4.

• For surface interpolation by blending function schemes, the above

rational scheme may be employed using Coon's technique as discussed

in Gordon [38]. More analysis will be needed to investigate the

possiblities of preserving the shape of the surface inside rectangles.

• An investigation into the possible modification of the Roulier approach

170

to construct an interactive algorithm using the new slope estimation

method could be made. This may allow different values of the

parameter t in different segments of the surface and different values

of t in different directions.

The purpose of this research, as pointed out from the outset, was to

develop shape-preserving algorithms in one and two dimensions. From the

research that we have carried out and which is reported in this thesis, we

can conclude that 0 1 piecewise quadratic and cubic Hermite interpolation

techniques are very powerful and flexible tools for the construction of shape­

preserving algorithms for curves and surfaces. They offer smooth and good

visual quality interpolants, in association with the new slope estimation

formula which invloves a parameter t to control the size of estimated slope,

and a simple representation of the underlying splines. It is hoped that this

work will contribute to the development of systems for curve design and to the

understanding of the mechanisms linking imposed shape-preserving constraints

to properties of required shapes.

171

References

[1] J. H. Ahlberg, "The theory of splines and their applications", Academic

Press, New York, 1967.

[2] H. Akima, "A new method of interpolation and smooth curve fitting based

on local procedures", J. ACM, 17 (1970), pp. 589-602.

[3] S. Asaturyan and K. Unsworth, "A C1 monotonicity preserving surface

interpolation scheme", The Mathematics of Surfaces III , D.C. Hand­

scomb, eds., Clarendon Press, Oxford, UK, 1989, pp. 243-263.

[4] B. A. Barsky, "Exponential and polynomial methods for applying tension

to an interpolating spline curve", Computer Vision, Graphics, and Image

Processing, 27 (1984), pp. 1-18.

[5] R. K. Beatson and H. Wolkowicz "Post-processing piecewise cubics for

monotinicity", SIAM J. Numer. Anal., 26 (1989), pp. 480-502.

[6] R. K. Beatson and Z. Ziegler, "Monotonicity preserving surface interpo­

lation", SIAM J. Numer. Anal., 22 (1985), pp. 401-411.

[7] C. de Boor, "A practical guide to splines", Springer-Verlag, New York,

1978.

[8] C. de Boor, "Package for calculating with B-splines", SIAM J. Numer.

Anal., 14 (1977), pp. 441-472.

[9] K. W. Brodlie, "A review of methods for curve and function drawing",

in "Mathematical methods in computer graphics and design", (K. W.

Brodlie ed.), pp. 1-37, Academic Press, New York and London, 1980.

[10] W. Burmeister, W. Heb and J. W. Schmidt, "Convex spline interpolants

with minimal curvature", Computing, 35 (1985), pp. 219-229.

[11] J. Butland, "A method of interpolating reasonably-shaped curves through

any data", Proc. Computer Graphics 80, Online Publication Ltd,

172

Middlesex, U.K, 1980, pp. 409-422.

[12] R. E. Carlson and F. N. Fritsch, "Monotone piecewise bicubic interpola­

tion", SIAM J. Numer. Anal., 22 (1985), pp. 386-400.

[13] R. E. Carlson and F. N. Fritsch, "An algorithm for monotone piecewise

bicubic interpolation", SIAM J. Numer.Anal., 26 (1989), pp. 1-9.

[14] A. K. Cline, "Scalar and planar-valued curve fitting using splines under

tension", Commun. ACM, 17 (1974), pp. 218-220.

[15] P. Costantini, "An algorithm for computing shape-preserving splines of

arbitrary degree", J. Comput. Appl. Math., 22 (1988), pp. 89-136.

[16] P. Costantini, "Co-monotone interpolating splines of arbitrary degree. A

local approach", SIAM J. Sci. Stat. Comput.,8 (1987), pp. 1026-1034.

[17] P. Costantini, "On monotone and convex spline interpolation", Math.

Comp., 46 (1986), pp. 203-214.

[18] P. Costantini and F. Fontanella, "Shape-preserving bivariate interpola­

tion", SIAM J. Numer. Anal., 27 (1990), pp. 488-506.

[19] M. G. Cox, "An algorithm for spline interpolation", J. Inst. Math. Appl.,

15 (1975), pp. 95-108.

[20] R. Delbourgo, "Accurate C2 rational interpolants in tension", SIAM J.

Numer. Anal., 30 (1993), pp. 595-607.

[21] R. Delbourgo, "Shape-preserving interpolation to convex data by rational

functions with quadratic numerator and linear denominator", IMA J.

Numer. Anal., 9 (1989), pp. 123-136.

[22] R. Delbourgo and J. A. Gregory, "C2 rational quadratic spline interpola­

tion to monotonic data", IMA J. Numer. Anal., 3 (1983), pp. 141-152.

[23] R. Delbourgo and J. A. Gregory, "Shape-preserving piecewise rational

interpolation", SIAM J. Sci. Stat. Comput., 6 (1985), pp. 967-876.

[24] S. 1. Dodd, D. F. McAllister and J. A. Roulier, "Shape-presering spline

173

interpolation for specifying bivariate functions on grids"~ IEEE Computer

Graphics and Applications, 3 (1983), pp. 70-79.

[25] R. L. Dougherty, A. Edelman and J. H. Hyman, ".\"onnegativity, mono­

tonicity or convexity preserving cubic and quintic Hermite interpolation",

Math. Comp., 52 (1989), pp. 471- 494.

[26] A. Edelman and C. A. Micchelli "Admissible slopes for monotone and

convex interpolation", Numer. Math., 51 (1987), pp. 441-458.

[27] S. C. Eisenstat, K. R. Jackson and J. W. Lewis, "The order of monotone

piecewise cubic interpolation", SIAM J. Numer. Anal., 22 (1985), pp.

1220-1237.

[28] J. C. Fiorot and J. Tabka, "Shape-preserving C2 cubic polynomial

interpolating splines", Math. Comp., 57 (1991), pp. 291-298.

[29] Y. Fletcher and D. F. McAllister, "An analysis of tension methods

for convexity-preserving interpolation", IEEE Computer Graphics and

Applications, 7 (1987), pp. 7-14.

[30] Y. Fletcher and D. F. McAllister, "Automatic tension adjustment for

interpolatory splines", IEEE Computer Graphics and Applications, 10

(1990), pp. 10-17.

[31] W. H. Frey, "A useful variant of McLaughlin's interpolant", Technical

Report GMR-5004, General Motors Research Lab., Warren, Mich., May

1985.

[32] F. N. Fritsch and J. Butland, "A method of constructing local monotone

piecewise cubic interpolants", SIAM J. Sci. Stat. Comput., 5 (1984), pp.

300-304.

[33] F. N. Fritsch and R. E. Carlson, "Monotone piecewise cubic interpola­

tion", SIAM J. Numer. Ana1., 17 (1980), pp. 238-246.

[34] M.G. Gasparo and R. Morandi, "Piecewise cubic monotone interpolation

with assigned slopes", Computing, 46 (1991), pp. 355-365.

174

[35] J. A. Gregory, "Shape-preserving spline interpolation" 1 Computer Aided

Design, 18 (1986), pp. 53-57.

[36] J. A. Gregory, "Smooth interpolation without twist constraints",

Computer Aided Geometric Design, R. E. Rarnhill and R. F. Riesenfeld.

eds., Academic Press, New York and London, 197-1, pp. 71-87.

[37] J. A. Gregory and R. Delbourgo, "Piecewise rational quadratic interpo­

lation to monotonic data", IMA J. Numer. Ana1., 2 (1982), pp. 123-130.

[38] W. J. Gordon, "Spline blended surface interpolation through curve

networks", J. Math. and Mech., 18 (1969), pp. 931-951.

[39] G. H. Hardy, J. E. Littlewood and G. Polya, "Inequalities", Cambridge

University Press, 1959.

[40] H.T. Huynh, "Accurate monotone cubic interpolation", SIA:\/ J. Numer.

Ana1., 30 (1993), pp. 57-100.

[41] R. Iqbal, "A one-pass algorithm for shape-preserving quadratic spline

interpolation", J. Sci. Comput., 7 (1992), pp. 359-376.

[42] R. Iqbal, "An algorithm for convexity-preserving surface interpolation",

J. Sci. Comput., 9 (1994), pp. 197-212.

[43] 1. D. Irvine, S. P. Marin and P. W. Smith, "Constrained interpolation

and smoothing", Constr. Approx., 2 (1986), pp. 129-151.

[44] P. D. Kaklis and D. G. Pandelis, "Convexity-preserving polynomial

splines of non-uniform degree", IMA J. Numer. Anal., 10 (1990), pp.

223-234.

[45] A. Lahtinen, "On the construction of monotony preserving taper curves",

Acta For. Fennica, 203 (1988), pp. 1-34.

[46] A. Lahtinen, "Shape-preserving interpolation by quadratic splines", J.

Comput. App. Math., 29 (1990), pp. 15-24.

[47] P. Lancaster and K. Salkauskas, "Curve and surface fitting: An introduc­

tion", Academic Press, London, 1986.

175

[48] E. T. Y. Lee, "A simplified B-spline computation routine", Computing,

29 (1982), pp. 365-371.

[49] D.F. McAllister, E. Passow and J.A. Roulier, "Algorithms for computing

shape-preserving spline interpolation to data", _Hath. Comp., 31 (1977),
pp. 717-725.

[50] D.F. McAllister and J.A. Roulier, "An algorithm for computing a shape­

preserving osculatory quadratic spline", ACAI Trans .. Math. Softv.rare, I

(1981), pp. 331-347.

[51] B. J. McCartin, "Computation of Exponential splines", SLL\/ J. Sci.

Stat. Comput., 11 (1990), pp. 242-262.

[52] 1. B. Montefusco, "An interactive procedure for shape-preserving cubic

spline interpolation", Computers and Graphics, 11 (1987), pp. 389-392.

[53] S. Pruess, "An algorithm for computing smoothing splines in tension",

Computing, 19 (1978), pp. 365-373.

[54] S. Pruess, "Shape preserving C 2 cubic spline interpolation", !J\/A J.

Numer. Anal., 13 (1993), pp. 493-507.

[55] V. Ramirez and J. Lorente, "C1 rational quadratic spline interpolation

to convex data", Applied Numerical Mathematics, 2 (1986), pp. 37-42.

[56] R. J. Renka, "Interpolatory tension splines with automatic selection of

tension factors", SIAM J. Sci. Stat. Comput.,8 (1987), pp. 393-415.

[57] P. Rentrop, "An algorithm for the computation of exponential spline",

Numer. Math., 35 (1980), pp. 81-93.

[58] J.A. Roulier, "A convexity-preserving grid refinement algorithm for

interpolation of bivariate functions", IEEE Computer Graphics and

Applications, 7 (1987), pp. 57-62.

[59] J. W. Schmidt and W. Reb, "An always successful method in univariate

convex C2 interpolation", Numer. Math., 71 (1995), pp. 237-252.

176

[60] I. J. Schoenberg, "Contributions to the problem of approximation of

equidistant data by analytic functions", Quart. Appl. Math., 4 (1946),

pp. 45-99.

[61] L.L. Schumaker, "On shape-preserving quadratic spline interpolation",

SIAM J. Numer. Anal., 20 (1983), pp. 854-864.

[62] L. L. Schumaker, "Spline functions: Basic theory", Wiley-Interscience,

New York, 1981.

[63] D. G. Schweikert, "An interpolation curve using a spline in tension", J.

Math. Phys., 45 (1966), pp. 312-317.

[64] H. Spath, "Exponential spline interpolation", Computing, 4 (1969), pp.

225-233.

[65] R.W. Stineman, "A consistently well-behaved method of interpolation",

Creative Computing, July 1980, pp. 54-57.

[66] G.Ulrich and L.T. Watson, "Positivity conditions for quintic polynomi­

als", SIAM J. Sci. Comput., 15 (1994), pp. 528-544.

[67] Z. Yan, "Piecewise cubic curve fitting algorithm", Math. Camp., 49

(1987), pp. 203-213.

[68] Z. J. Zhang, Z. Q. Yang and C. M. Zhang, "Monotone piecewise curve

fitting algorithms", J. Compo Math., 12 (1994), pp. 163-172.

177

	245701_0001
	245701_0002
	245701_0003
	245701_0004
	245701_0005
	245701_0006
	245701_0007
	245701_0008
	245701_0009
	245701_0010
	245701_0011
	245701_0012
	245701_0013
	245701_0014
	245701_0015
	245701_0016
	245701_0017
	245701_0018
	245701_0019
	245701_0020
	245701_0021
	245701_0022
	245701_0023
	245701_0024
	245701_0025
	245701_0026
	245701_0027
	245701_0028
	245701_0029
	245701_0030
	245701_0031
	245701_0032
	245701_0033
	245701_0034
	245701_0035
	245701_0036
	245701_0037
	245701_0038
	245701_0039
	245701_0040
	245701_0041
	245701_0042
	245701_0043
	245701_0044
	245701_0045
	245701_0046
	245701_0047
	245701_0048
	245701_0049
	245701_0050
	245701_0051
	245701_0052
	245701_0053
	245701_0054
	245701_0055
	245701_0056
	245701_0057
	245701_0058
	245701_0059
	245701_0060
	245701_0061
	245701_0062
	245701_0063
	245701_0064
	245701_0065
	245701_0066
	245701_0067
	245701_0068
	245701_0069
	245701_0070
	245701_0071
	245701_0072
	245701_0073
	245701_0074
	245701_0075
	245701_0076
	245701_0077
	245701_0078
	245701_0079
	245701_0080
	245701_0081
	245701_0082
	245701_0083
	245701_0084
	245701_0085
	245701_0086
	245701_0087
	245701_0088
	245701_0089
	245701_0090
	245701_0091
	245701_0092
	245701_0093
	245701_0094
	245701_0095
	245701_0096
	245701_0097
	245701_0098
	245701_0099
	245701_0100
	245701_0101
	245701_0102
	245701_0103
	245701_0104
	245701_0105
	245701_0106
	245701_0107
	245701_0108
	245701_0109
	245701_0110
	245701_0111
	245701_0112
	245701_0113
	245701_0114
	245701_0115
	245701_0116
	245701_0117
	245701_0118
	245701_0119
	245701_0120
	245701_0121
	245701_0122
	245701_0123
	245701_0124
	245701_0125
	245701_0126
	245701_0127
	245701_0128
	245701_0129
	245701_0130
	245701_0131
	245701_0132
	245701_0133
	245701_0134
	245701_0135
	245701_0136
	245701_0137
	245701_0138
	245701_0139
	245701_0140
	245701_0141
	245701_0142
	245701_0143
	245701_0144
	245701_0145
	245701_0146
	245701_0147
	245701_0148
	245701_0149
	245701_0150
	245701_0151
	245701_0152
	245701_0153
	245701_0154
	245701_0155
	245701_0156
	245701_0157
	245701_0158
	245701_0159
	245701_0160
	245701_0161
	245701_0162
	245701_0163
	245701_0164
	245701_0165
	245701_0166
	245701_0167
	245701_0168
	245701_0169
	245701_0170
	245701_0171
	245701_0172
	245701_0173
	245701_0174
	245701_0175
	245701_0176
	245701_0177
	245701_0178
	245701_0179
	245701_0180
	245701_0181
	245701_0182
	245701_0183
	245701_0184
	245701_0185
	245701_0186
	245701_0187
	245701_0188
	245701_0189
	245701_0190

