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Abstract 

The focus of the research is on the analysis of complex bioprocess datasets with the 

ultimate goal of forming a link between the data and its underlying biological patterns. 

The challenges associated with investigating complex bioprocess data include the high 

dimensionality of the underlying measurements, the limited number of “observations”, 

and the complexity of selecting meaningful features to characterise the data. Contained 

within these data is a wealth of information that can contribute to inferring process 

outcomes and providing insight into improving productivity and process efficiency. To 

address these challenges, there is a real need for techniques to analyse and extract 

knowledge from the data.  This thesis investigates an integrated discrete wavelet 

transform (DWT) and multiway principal components analysis (MPCA) approach to 

extract meaningful information from different types of bioprocess data.  

 

The integrated methodology is demonstrated by application to two types of bioprocess 

data: a near infrared (NIR) dataset collected from an industrial monoclonal antibodies 

(MAb) process, and an electrospray ionisation mass spectrometry (ESI-MS) dataset 

generated during the development of recombinant mammalian cell lines. The objective 

of the thesis was to develop a methodology that enabled the extraction of information 

from these two data sets. For the industrial NIR dataset, the genealogy or parent-child 

relationship of batch process from monoclonal antibodies (MAb) manufacturing was 

investigated whilst for the ESI-MS dataset goal was to identify characteristics that 

would enable the differentiation between high and low cell producers.   

 

The main challenges of the NIR and ESI-MS data sets lay in the complexity of the 

spectra. The NIR spectra usually have broad overlapping peaks and baseline shifts. 

Furthermore, as the NIR spectra used in this thesis were collected from batch process, 

there is an extra dimension in the data that of batch. On the one hand, the extra 
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dimension provides extra information but on the other, it presents a further challenge 

as the data now is three-dimensional and requires additional pre-processing, including 

data matrix unfolding and batch alignment. Similar to the NIR spectra, the ESI-MS 

dataset also faces the problem of baseline shifts along with other complexities 

including high noise to signal ratio, shifts in the mass-to-charge       ratio, and 

differences in signal intensities. These challenges lead to difficulties in extracting 

relevant information about the feature of interest. The proposed methodology was 

proven effective in extracting meaningful information from both data sets.   

 

In summary, the proposed method which utilised the integration of discrete wavelet 

transform and multiway principal component analysis was able to differentiate the 

distinguished characteristics of the spectra in the datasets thereby providing 

understanding of the relationships between spectral data and the underlying behaviour 

of the process.  
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Chapter 1 Introduction 

1.1 Objective of the Thesis 

The pharmaceutical industry develops and manufactures therapeutics that aid 

improvements in the health and quality of life of people. Therapeutics can be 

categorised into two major classes: small molecule and large molecule compounds.  

The first class, small molecule compounds, are synthesised from chemical reactions 

between different organic and/or inorganic compounds. The second class, large 

molecule therapeutics, also known as biopharmaceuticals, are derived from 

recombinant protein technology or new biotechnology. Small molecule drugs comprise 

a limited number of atoms and can generally be manufactured with high consistency 

(Rader, 2008) whereas the manufacture of biopharmaceuticals produces 

heterogeneous mixtures which translate into variability in process batches (Steinmeyer 

and McCormick, 2008). Alongside small molecules, biopharmaceuticals have an 

important role in the treatment of diseases.  

 

Today’s pharmaceutical industry has observed a shift in the direction of the market, 

moving towards innovation and the manufacture of biopharmaceutical therapeutics. As 

reported by Goodman (2009), constant or decreasing amounts in revenue portfolios of 

most pharmaceutical companies is due to the expiry of older blockbuster products 

patents that are mainly small molecules and the reassignment of resources towards 

research and development of biopharmaceutical therapeutics. The trend in patent filing 

also shows an increasing gap between patent filing for biopharmaceutical and small 

molecules drugs from 2007 to 2009. In 2009, 60% of the patents filed were for 

biopharmaceutical drug products (Philippidis, 2012). Key reasons for the increasing 

interest in biopharmaceutical therapeutics development lies in both their scientific and 

economic potential. On the scientific front, their high selectivity and specificity mean a 
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lower probability of non-mechanism-based toxicity (Steinmeyer and McCormick, 2008; 

Nicolaides et al., 2006). On the economic front, biopharmaceutical therapeutics present 

high potential for robust sales even after patent expirary (Projan et al., 2004). This is 

due to biologic products being quite rare leading to minimum pricing competitions 

including biologic generics. 

 

One of the fastest growing biopharmaceutical therapeutics in the current market is the 

monoclonal antibody whose global sales were reported at USD44.6 billion in 2011 and 

projected to rise to USD56 billion by 2016 (BCC Research, 2012). The first monoclonal 

antibody, murine monoclonal antibody, or muramonab, was introduced into clinical 

development in 1987 (Buss et al., 2012). Since then, antibody-based therapeutics have 

rapidly expanded their market share and become the leading blockbuster 

biopharmaceutical therapeutics during the last three decades (Ryu et al., 2012). 

Expressions of all commercial therapeutics monoclonal antibodies were derived from 

mammalian cells with the majority being from Chinese Hamster Ovary (CHO), mouse 

myeloma (NS0) and Sp2/0, a mouse myeloma often used in hybridoma fusion  with 

CHO being the main choice (Kelley, 2009). While biopharmaceutical therapeutics 

promise favourable profit returns, their manufacture involves high production costs 

(Johnson-Leger et al., 2006) which is partly due to a longer development timeline i.e. 

time from product development to marketed products (Kozlowski and Swann, 2006), 

therefore it is imperative to speed up the development and the achievement of right-

first-time production (Jungbauer and Gobel, 2011). Along with the high production 

costs, the manufacture of the monoclonal antibody presents unique challenges 

including; the development of cell lines that are capable of producing high yields to 

meet the market demands at a reasonable cost-of-goods (Nicolaides et al., 2006), the 

screening and selecting of highly productive and stable cell lines (Luo and Chen, 

2007), and the manufacture of consistently high quality product (FDA, 2004). 

Improvements throughout process development and manufacture are essential in order 

to overcome these hurdles.  
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In an attempt to address these challenges, input is required from a number of 

areas including cell engineering, product development, data mining, and process 

modelling. A paper by Kelley (2009) suggested that the process development groups of 

the monoclonal antibody industry should switch their objectives from invention and 

innovation of new development technologies, to focusing on understanding the process 

fundamentals of their current platforms. This view is in line with the Pharmaceutical 

Quality for the 21st century initiative introduced by the U.S. Food and Drug 

Administration (FDA). The initiative includes: 

 

(1) Process Analytical Technology (PAT) (FDA, 2004), 

(2) the International Conference on Harmonization (ICH) guidance Q9: Quality Risk 

Management (FDA, 2006), 

(3) the International Conference on Harmonization (ICH) guidance Q10: 

Pharmaceutical Quality System (FDA, 2009b), and  

(4) the International Conference on Harmonization (ICH) guidance Q8(R2): 

Pharmaceutical Development (FDA, 2009a).  

 

These initiatives describe the idea of the design space that connects product and 

process knowledge. FDA (2009a) defines a design space as “the multidimensional 

combination and interaction of input variables and process parameters that have been 

demonstrated to provide assurance of quality”. Furthermore, they highlight the 

utilisation of mathematical models as one of the current gaps and challenges in 

pharmaceutical process development and manufacturing. Building a bridge between 

product and process knowledge necessitates the implementation of analytical tools 

including process modeling and simulation which utilize data generated during 

development and production to help enhance process understanding. Rathore et al. 

(2010) emphasized the application of chemometric methods to ensure effective 

analysis of data from complex systems such as biopharmaceutical products. Data 
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collected throughout process development which includes process and spectral data 

hold a wealth of information which provides insight which may improve the steps in 

process development (Bhushan et al., 2011; Rathore et al., 2011). Such information 

will also be invaluable to the progress of a bioprocess in industrial-scale operations, for 

example in process scale-up, process comparability and technical transfer between 

production sites.  

 

A growing body of literature has investigated spectral data generated during bioprocess 

process development; for example, Damen et al. (2009), Pons et al. (2004), and Wan 

et al. (2001).  The common objectives of these papers were the investigation of the 

spectral data for bioprocess monitoring and fault detection, and fingerprinting of the 

protein to serve as biomarkers for disease identification. While these objectives are 

important in their own right, there is a lack of contributions to process understanding to 

aid process development. This thesis focuses on the investigation of the underlying 

behaviour of the process through spectral data. It is hypothesised that this approach 

will contribute to knowledge enhancement in terms of process understanding.   

 

The investigation of two different types of complex spectral data from the manufacture 

of monoclonal antibodies underpins this thesis: the first type is near infra-red spectra 

and the second is electrospray ionisation spectra. Spectral data of these types are 

typically complex, and of high dimensionality, and hence their analyses is a challenge. 

In this thesis the aim is to develop fingerprints of the bioprocess spectral data through 

the application of a combined discrete wavelet transform and the multivariate statistical 

technique of principal component analysis. Fingerprinting of the spectral data in the 

context of this thesis is of importance as it potentially provides a link between spectral 

data and the underlying pattern of the biological behaviour of the monoclonal antibody. 

This will not only add value to process understanding but will also establish a set of 

benchmarks for subsequent processes in product development. Information gained 

from the fingerprint can be used as a benchmark for selecting the appropriate batch to 
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subcultured and as valuable information to rank cell line producer, in addition to 

information generated from quality parameters (e.g.: titre and product quality). 

 

In the following sections, the objectives, contributions and contents of each chapter of 

the Thesis are described. 

1.2 Contributions of the Thesis 

The primary contribution of the thesis is in the field of the development of fingerprinting 

models for complex bioprocess data. More specifically the key contributions include: 

 

(1) The development of a methodology for selecting the type of mother wavelet and 

wavelet decomposition level required for the analysis.  Key decisions from this 

investigation form the basis of the subsequent model development. 

 

(2) One of the challenges when analysing bioprocess spectral data is the 

complexity and multidimensionality of the dataset, with meaningful information 

masked by overlapping bands and/or high noise to signal ratio. The discrete 

wavelet transform technique, which was adopted as one of the stages in the 

model development, has an interesting characteristic, multiresolution analysis. 

In multiresolution analysis, the spectral data is decomposed into different levels 

of resolution; these levels are known as wavelet sub-bands. The wavelet sub-

bands were used in two contrasting ways in this thesis. In the first case study, 

the concept of feature extraction was used to select meaningful wavelet 

coefficients from the wavelet sub-bands to represent the spectra in the 

subsequent analysis. Meanwhile, in the second case study, all wavelet 

coefficients in the wavelet sub-bands were retained and each wavelet sub-band 

was analysed individually.  
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(3) An application of the wavelet denoising algorithm to near infra-red spectra was 

investigated. It was demonstrated that denoising is not necessary for near infra-

red spectra because of the low noise to signal ratio in the near infra-red spectra. 

It was also shown that denoising flattened the peaks of the spectra.   

 

(4) A demonstration that distinct characteristics in the behaviour of the batches can 

be explained by the underlying genealogy. One of the case studies presented 

was a batch process in which batches from the process were organised into 

their genealogy or parent-child relationships. Strong similarities and differences 

between batches within and between families were identified.  

 

(5) The development of a pre-processing technique for near infra-red batch data is 

proposed. It involves unfolding methods and the alignment of the three-

dimensional near infra-red spectral batch data. The commonly applied unfolding 

approach for batch data has focused on process data whereas in this thesis the 

focus is on spectral data.  

 

(6) The development of an integrated approach comprising the discrete wavelet 

transform technique and principal component analysis for application as a 

fingerprinting framework. The methodology is investigated through its 

application to near infra-red spectral data and electrospray ionisation data from 

the industrial and laboratory scale manufacture of monoclonal antibodies. It is 

hypothesised that the results obtained provide a meaningful link between the 

spectral data and their genealogy in the former and biological behaviour in the 

latter, hence leading to enhanced process understanding. 

 

(7) The development of contribution plots of principal component scores of the 

wavelet sub-bands enables the characterisation of cell lines and replicates. 

Analyses of the contribution plots resulted in the establishment of the 
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characteristics that differentiated between high and low producer cell lines 

which potentially aid to better process development. 

1.3 Thesis Outline  

The following provides a summary of each of the chapters in the thesis.  

 

Chapter 1 provides an introduction to the motivation and the objectives for undertaking 

research into the fingerprinting of complex spectral data generated from bioprocess. 

The contributions of the thesis are also identified and briefly discussed. Following this, 

an outline of the thesis is given. The thesis is organised into six chapters with Chapter 

2 and Chapter 3 providing an overview of the techniques forming the basis of the 

fingerprinting framework, wavelet theory and principal component analysis. 

Investigations into the application of the techniques to fingerprint near infra-red and 

electrospray ionisation spectral data sets are discussed in Chapter 4 and Chapter 5 

respectively. Following this, a summary of the key results and proposal for future work 

are presented in Chapter 6.  

 

An introduction to wavelet transform theory is provided in Chapter 2. Initially the 

rationale for adopting the wavelet technique in this thesis is provided. Then a brief 

review of the Fourier transform and the short-time Fourier transform is given, prior to 

introducing the wavelet transform. The concept of the wavelet is placed within the 

general framework of time-frequency analysis. Following this, multiresolution analysis, 

which is one of the pivotal theoretical bases of the wavelet transform, is explained. 

Finally, an investigation of the application of wavelet denoising algorithm on near infra-

red spectra is presented.  

 

Chapter 3 provides an introduction to the multivariate statistical technique of principal 

component analysis (PCA), and its extension to batch processes multiway PCA. An 
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overview of the algorithm is given, along with a discussion on the associated metrics 

necessary for the development of a fingerprinting framework. Particular attention is 

given to PCA since it is this technique which underpins the thesis.     

 

The aim of the research, presented in Chapter 4, is to investigate the impact of 

genealogy on batch behaviour by developing a fingerprinting model from near infra-red 

spectral dataset generated from the industrial manufacture of monoclonal antibodies. 

Batch processes form a significant part of monoclonal antibodies production and 

generally exhibit batch-to-batch variation. There is thus a need to understand the 

connection between batch genealogy and their behaviour. Initially, a description of the 

process and the genealogy of the batches which represent the family structure or 

parent-child relationship of the batches is given. A brief background to near infra-red 

spectroscopy is presented followed by a brief discussion on a number of pre-

processing techniques. Forming the basis of the fingerprinting framework is the 

integration of the discrete wavelet transform and principal component analysis. The 

motivation for this integrated approach and a number of applications reported in the 

literature are discussed prior to describing the application of the framework to the near 

infra-red batch spectral data set. The development strategy of the fingerprint 

representation, which includes a route for selecting the type of mother wavelet and 

wavelet decomposition levels required for the analysis, wavenumber selection, 

multiresolution analysis of the wavelet transform and feature extraction are also 

discussed.  

 

Chapter 5 describes a case study to investigate the fingerprinting of electrospray 

ionisation spectra data from a different monoclonal antibodies process. One of the 

major challenges in the development process of monoclonal antibodies is to screen 

and select highly productive and stable cell line producers. There are two main 

objectives in this chapter. The first is to describe and establish the characteristics that 

differentiate between high and low cell line producers. Secondly it is to investigate the 



  Chapter 1 Introduction 

9 
 

transferability of the integrated wavelet-principal component analysis framework to 

analyse a complex dataset of a different structure. A brief introduction to electrospray 

ionisation spectra is presented prior to introducing the process. A specific data pre-

processing technique with regard to the electrospray ionisation spectral data is also 

described. More specifically in this chapter, a different perspective to the application of 

contribution plots of principal component scores is proposed. The standard use of 

contribution plots has been in process monitoring and fault diagnosis whilst this case 

study utilises the contribution plots to characterise cell line producers.  

 

Finally, in Chapter 6, a summary of the key results are given with proposals for future 

work.  
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Chapter 2 Review of Discrete Wavelet Transform  

2.1 Introduction 

Over the past two decades, the development and application of the wavelet transform 

has attracted interest from both mathematicians and engineers. In the early stage of 

the wavelet transform development, much of the literature focused on its mathematical 

aspect. As the application of wavelet transform becomes widespread more literature 

relating to both the theory and application are published. More specifically the wavelet 

technique has been successfully employed as one of the signal processing tools in 

various fields of analytical chemistry including infrared spectrometry and mass 

spectrometry (Jetter et al., 2000).  The focus of this chapter is to provide an 

introduction to the fundamental theory of the wavelet transform. Furthermore this 

chapter will define the basic terms and provide the theoretical background to the 

application of the wavelet transform in Chapter 4 and 5.  

 

In this chapter, firstly the rationale for implementing the wavelet transform is given. 

Then the history of wavelet theory, which is inherently linked to the Fourier Transform 

and Windowed or Short-Time Fourier Transform, is provided. Therefore prior to 

introducing the wavelet transform, the Fourier transform and short-time Fourier 

transform are defined. Following this, an overview of the wavelet transform along with 

examples of wavelet families is described.  Finally the concept of multiresolution, which 

is the key theoretical basis of the wavelet transform, is then discussed.  

 

Numerous books have been published on the subject of wavelets including the book by 

Mallat (1998) which provides an introduction to the theory of wavelets. Other early 

technical references include Strang and Nguyen (1997), Meyer and Ryan (1993), 

Daubechies (Daubechies, 1992), and Meyer and Salinger (Meyer and Salinger, 1992). 
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Hubbard (Hubbard, 1996) provides an excellent introduction to wavelets from a less 

mathematical perspective. More recent books on wavelets focus on its application in 

specific fields, including Chau et al. (2004) in chemometrics, Gopalakrishnan (2010) on 

dynamic problems on structures including metallic, composite, and nano-

composite, Sarkar et al. (2002) on engineering electromagnetics, and Tang et al. 

(2000) on pattern recognition. The rationale for the application of wavelet transform in 

this thesis is discussed in the next section, Section 2.2.  

2.2 Rationale 

The rationale behind implementing the discrete wavelet transform is based on the 

underlying advantages of the methodology.  One advantage is its time-frequency 

localisation property which differs from the traditional Fourier techniques. This property 

enables the analysis of a signal in time and frequency domain simultaneously. As a 

result the wavelet transform can ‘zoom-in’ and ‘zoom-out’ of any part of the signal to be 

analysed. Furthermore, the application of wavelet has been proven to be more efficient 

and faster as compared to the Fourier transform in capturing significant information of a 

dataset (Lio, 2003).  

 

Previous studies have shown that application of the wavelet is an efficient and practical 

way to extract information including identification of breakdown points trends, and self-

similarity in signals from dataset by utilising this property (Li et al., 2011; Borah et al., 

2007; Carreno and Vuskovic, 2007). In the study undertaken by Li et al. (2011), it has 

been proven that due to this property, the discrete wavelets transform is the 

appropriate technique to detect cutting tool failure in automatic machining processing. 

A system to recognize the cutting tool wear states was developed utilising the wavelet 

time-frequency information. Carreno and Vuskovic (2007) applied the discrete wavelet 

transform to extract important features from electromyographic signals (EMG) which 

consist of four grasping motions. The extracted features were then categorised for the 
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purpose of controlling a prosthetic device. It was shown that the application of the 

discrete wavelet transform has significantly reduced the dimensionality of the extracted 

feature vectors whilst retaining the important information in the signals. Moreover, in 

the study of tea sorting process through image textures of tea granules, Borah et al. 

(2007) demonstrate that the first and second wavelet resolution are more sensitive to 

the image texture which enables the accurate classification of the tea images.   

 

In view of the application of the wavelet transform in chemometrics, its application has 

been demonstrated in various chemometrics fields including signal denoising and 

compression, classification and multivariate calibration over the past two decades. For 

example, in data denoising and compression (Barclay et al., 1997), and classification 

and multivariate calibration (Pinto et al., 2011; Jouan-Rimbaud et al., 1997). Data 

denoising and compression work together by removing noise from the data by applying 

thresholding and simultaneously compressing the data. This results in a smoother and 

denoised (‘cleaner’) data, and reduction in dimensionality of the dataset in study 

reported by Barclay et al. (1997). Meanwhile, Pinto et al. (2011) and Jouan-Rimbaud et 

al. (1997) proved that classification and multivariate calibration models of diverse 

chemical datasets are improved through the application of the wavelet transform. 

Evidently, the application of the wavelet transform as a signal processing has proven to 

be advantageous hence the decision to utilise it in this thesis. The following section 

provides a historical review of the wavelet transform.  

2.3 Historical Review of Wavelet 

The work of Jean Morlet who developed wavelets as an oil prospecting tool in 1980 is 

considered the ‘formal’ root of the wavelet theory; as there were at least 15 distinct 

roots identified by Meyer (Hubbard, 1996). Morlet then collaborated with Alex 

Grossman to mathematically validate the empirical results of using wavelets to 

represent a signal by proving that the average value of the square of the signal is 
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unaffected. This is a crucial condition as it means that a signal can be transformed into 

wavelets and then reconstructed to its original form.  

 

Then in 1986, a work by Stephane Mallat justifies that many studies which appeared 

under different names including wavelets, the pyramid algorithms in image processing, 

the sub-band coding of signal processing, the quadrature mirror filters of digital speech 

processing were fundamentally the same. Furthermore, he demonstrated the use of a 

new function, the scaling function, to speed up the computation of wavelet coefficients. 

Also he describes a systematic way to construct new orthogonal wavelet basis 

functions which used truncated versions of infinite wavelets. The work of Mallat 

instigated Ingrid Daubechies to construct a set of orthogonal wavelet basis functions 

with compact support that can prevent errors due to the truncation. This new wavelet 

basis functions which is orthogonal and has compact support has become the 

foundation of wavelet application (Daubechies, 1992). The next section gives a 

definition of the Fourier transform and the short time Fourier transform which are part of 

the building blocks of the wavelet transform.  

2.4 The Fourier Transform and Short Time Fourier Transform 

A signal is defined as a mathematical function that transmits information which arises 

from either natural phenomenon or synthesized designs (Alterovitz, 2007) and is 

usually evolved from the field of time series analysis in modern signal processing. It is 

analysed in either a time-domain or a frequency domain by the application of various 

mathematical tools, including the Fourier transform and short time Fourier transform 

which are discussed in Section 2.4.1 and Section 2.4.2  respectively.  
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2.4.1 The Fourier Transform  

The Fourier transform can be used to transform a signal from the time-domain to the 

frequency-domain. Transformation of a signal from one domain to the other is of 

importance as it leads to better understanding and additional insight of the signal under 

analysis.  

 

The relationship between the time domain, f(t), and the frequency domain, F(ω), is 

established by the Fourier transform and inverse Fourier transform. The Fourier 

transform decomposes a signal into oscillatory functions and is define as:  

 

     ∫          
 

  

    2.1 

 

and its inverse is given by 

      
 

  
∫            

 

  

 2.2 

 

where      represents imaginary  

   frequency in radians per seconds 

   time in unit seconds 

 

Both the Fourier transform and its inverse functions can be written in terms of sine and 

cosine functions by replacing the exponential term with Euler’s equation:  

 

                       2.3 
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The revised FT and IFT are as follows: 

      ∫                       
 

  

 2.4 

and, 

      
 

  
∫                        

 

  

  2.5 

 

Equation 2.4 and 2.5 demonstrates that the transform uses sines and cosines functions 

as bases for the transformation between the time and frequency domains. The function 

f(t) in Equation 2.5 exhibits the time information but masks the information about 

frequency. Meanwhile the Fourier transform F(ω) in Equation 2.4 expresses 

information in terms of frequency of which the time information is contained in the 

phases of the displacement of the sines and cosines for each frequency. The phase 

displacement occurs when the sines and cosines are either combined amplifying the 

signals; or subtracted from each other thereby cancelling the signal. Consequently, a 

signal can only be studied either in the time or frequency domain through the 

transformation by the Fourier transform. This means that the application of the Fourier 

transform is appropriate for the analysis of stationary signals, a signal whose frequency 

does not change over time. The following example shows a non-stationary signal with 

two different frequencies (80Hz and 160Hz) which are buried in noise. Figure 2.1 

shows that the frequency components of this signal are difficult to identify when the 

signal is analysed in the time-domain. However, performing the Fourier transform to the 

signal enables the identification of the frequency components (Figure 2.2) even though 

they were buried in the noise.  
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Figure 2.1 Example signal with two different frequencies buried in noise 

 

 

Figure 2.2 Fourier transform of the signal enables the extraction of the frequency 
components 
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2.4.2 The Short Time Fourier Transform 

The inability of the Fourier transform to display both time and frequency simultaneously 

has become a limitation to its ability to analyse non-stationary signals. To address this 

limitation, a short time Fourier transform was introduced by Gabor in 1946 (Hubbard, 

1996). In the short time Fourier transform, the sinusoidal wave in the Fourier transform 

is replaced by the product of a sinusoid and a time localisation window; i.e. replacing 

f(t) in Equation 2.1 with f(t)g(t - τ). Hence the short-time Fourier transform is defined as 

 

        ∫                   
 

  

 2.6 

 

The function g(t - τ) in Equation 2.6 is the time localisation window which allows the 

short-time Fourier transform to split the signal into blocks of equal length. The window, 

g(t) which is fixed in size then passes between analysing individual block i.e. the short-

time Fourier transform of each block is calculated as shown in Figure 2.3. Hence the 

calculated short time Fourier transform is a description of the evolution of the signal 

frequency over time. With the window function, the short-time Fourier transform seems 

an ideal technique to examine a signal in both the time and frequency domain.  

 

Figure 2.3 The short Fourier transform 
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However, since the same window size is used for all frequencies, the choice of window 

size is critical for the analysis of non-stationary signal. Figure 2.4 shows two sinusoids 

signal with two different frequencies, 100 Hz and 125 Hz. As shown in Figure 2.5 the 

short time Fourier transform of the signal, when the window size is too narrow, the 

transformed signal lacks resolution to display the frequency content. In contrast to 

Figure 2.6 of which the window size is appropriate, the two sinusoids with different 

frequencies can be identified. If the window size in increase and becomes too wide, the 

changes in the frequency content over time will become blurred.  

 

 

Figure 2.4 Example signal which comprises two different frequencies sinusoids. 
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Figure 2.5 The short time Fourier transform of the example signal in Figure 2.4 using a 
32-sample window 

 

Figure 2.6 The short time Fourier transform of the example signal in Figure 2.4 using a 
256-sample window 

This example shows that the fixed resolution property of the short-time Fourier 

transform in which, the same window size is used for all frequencies limit its flexibility 

as there is a trade-off between time and frequency resolution. A narrow window which 

gives better time resolution is desirable for the analysis of the low frequency 

components of a signal. On the other hand, a wider window is preferable for the 

analysis of the high frequency component as it means better frequency resolution. 

Hence, provided that an appropriate window size is selected and the frequency of the 
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signal is stationary within that window, the short time Fourier transform is applicable for 

the analysis of a signal in both the time and frequency domain. However, the analysis 

of many signals requires a signal processing tools with varying size of windows thereby 

instigated the work of Jean Morlet on the wavelet transform. The following section 

described the wavelet transform in the time-frequency domain framework with varying 

analysing window.  

2.5 The Wavelet Transform 

Wavelets means ‘little waves’ which are used to analyse signals or data. The wavelet 

transform is an extension to Fourier analysis. In the Fourier transform, the signal is 

decomposed into sine and cosine waves of various frequencies whilst in wavelet 

analysis, the signal is decomposed into a set of wavelets which later can be used to 

reconstruct the original signal without loss of information.   

 

The main characteristic of the wavelet transform is its ability to process signals at 

different resolutions and hence it has been termed a ‘mathematical microscope’, due to 

its ability to assess both local and global features of signals by adjusting its “focus” 

(Hubbard, 1996). This gives the wavelet transform an advantage over the Fourier 

transform and the short time Fourier transform in the signal processing field. 

 

The wavelet transform represents a signal as a set of basis functions i.e. wavelets 

which are generated by dilation and translation of a single function called the ‘mother 

wavelets’     , 

         
 

√| |
 (

   

 
)  2.7 

 

where   is the dilation parameter and   is the translation parameter. The dilation 

parameter   stretches or compresses the mother wavelet to generate wavelets that are 



 Chapter 2 Review of Discrete Wavelet Transform 

21 
 

used to captures different frequency components. The translation parameter   is the 

shifting parameter that determines the position of the wavelet to capture the time 

information of the signal under analysis.  As the goal in the wavelet transform is to 

analyse a signal by measuring the similarity between the signal of interest and the 

analysing wavelet     ,   and   are varied to achieve that objective. When | |>>1 the 

mother wavelet is stretched (Figure 2.7(b)) and used to analyse the high frequency 

components whilst if | |<< 1, the mother wavelet is compressed (Figure 2.7(c)) and 

used to study the low frequency components. The translated wavelet is shown in 

Figure 2.7(d).    

 

Figure 2.7 Example of a mother wavelet with its stretched, compressed and translated 
wavelets.  

The mother wavelet selected to be the wavelet basis function for analysis requires to 

possess certain properties including number of vanishing moments, good time 

localisation and good frequency localisation. The number of vanishing moments is a 

property that enables the wavelet to suppress a polynomial where it determines the 

degree of accuracy of the wavelet in representing a signal (Strang and Nguyen, 1997). 



 Chapter 2 Review of Discrete Wavelet Transform 

22 
 

Details of the good time and good frequency localisation are discussed in Section 

2.5.2.  There exist a number of wavelet transform, the two main forms are continuous 

and discrete. The next section describes the continuous and discrete wavelet 

transform. 

2.5.1 The Continuous and Discrete Wavelet Transform 

The type of input signal, and the translation and dilation needed to analyse the input 

signal determines which wavelet transform is applicable. The continuous wavelet 

transform (CWT) is defined as  

 

         〈      〉  | |    ∫       (
   

 
)  

  

  

           2.8 

which means it is the sum of the signal,     multiplied by the scaled and shifted 

versions of the wavelet function,  , over all time. For the continuous wavelet transform, 

the dilation parameter     and translation parameter     change continuously which 

results in a smooth transformation of a signal and generation of a lot of wavelet 

coefficients.   

 

In contrast, the dilation and translation parameters are discretised for the discrete 

wavelet transform and the wavelets are calculated on dyadic scales and position i.e. 

the scaling and translation of the wavelet is based on the power of two. This is a more 

efficient approach of calculating the wavelet as the wavelet are calculated at alternating 

scales and positions, which improves calculation time and data storage. Hence the 

discrete wavelet transform is selected as the wavelet form of choice in this thesis. The 

discrete wavelet transform is defined as 
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         〈      〉    
    

∫         
           

 

  

 2.9 

 

 

The discrete wavelet transform approach is implemented using complementary low and 

high pass filters. This concept was introduced by Mallat and Meyer and is termed 

multiresolution wavelet analysis (Vetterli and Herley, 1992). The following section 

discusses the concept of multiresolution analysis of the discrete wavelet transform.  

2.5.2 Multiresolution Analysis 

The key principal of multiresolution wavelet analysis is the decomposition and 

reconstruction of a signal using the wavelet transform. As a signal is analysed using 

the discrete wavelet transform, it is actually being decomposed into wavelet sub-bands 

which consist of wavelet coefficients. Figure 2.8 shows the fundamental of the 

decomposition process where the signal is passed through a low pass and high pass 

filter. The low pass and high pass filters referred to above are denoted as LP and HP 

are the key elements of the decomposition process. The function of the low pass filter 

is to remove the high-frequency component in the signal while retaining the low-

frequency components which are termed as approximation coefficients. Meanwhile, the 

highpass filter is used to capture the ‘bump’ or the high frequency components while 

simultaneously removing the low-frequency components. The signal components that 

pass through the high pass filter are termed detail coefficients.  

 

For the successive decomposition, only the low frequency component is passed 

through another set a low pass and high pass filter whilst the high frequency 

where    and     the dyadic scale and position respectively, 

    and     the   discretised scaling and  translation parameter 

respectively. 
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component is not analysed. As shown in Figure 2.8 at the first level of decomposition, 

the original signal was decomposed into an approximation and a detail sub-band, 

namely A1 and D1 respectively. Then the approximation sub-band A1 was 

decomposed into A2 and D2. An example of the decomposition process to a sample 

signal from the data of Chapter 5 is shown in Figure 2.9.  

 

Figure 2.8 A wavelet decomposition process of a signal 

 

Figure 2.9 A multilevel decomposition performed to an ESI spectroscopy from the data 
of Chapter 5   
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The maximum number of decomposition depends on the length of the data to be 

analysed. For a signal with N data samples, the maximum scale is 2n where n is the 

scale. At each successive decomposition (n-1) the length of the signal is halved due to 

downsampling. Figure 2.9 shows the length of the signal is halved as the 

decomposition level increase from 1 to 3. 

 

Each of the low and high pass filters is coupled with downsampling where 

downsampling is the process of reducing the sampling rate of a signal. This approach 

is needed in the discrete wavelet transform computation as it avoids doubling the 

length of the original signal when the original signal is passed through the lowpass and 

highpass filters. A simple explanation of this is the length of output signal coming out of 

the filter is equal to the length of the input signal. Therefore, when the signal is passed 

through two parallel filters, its length doubles. By applying the downsampling procedure 

after each filter, the signal’s length coming out of each filter is halved. Later when the 

two halves signals are combined, they will produce a signal of the same length as the 

input signal.  

 

Figure 2.10 shows that the time-frequency plane is divided into tiles by the wavelet 

transform. The varying widths and heights of the tiles represent the compromise 

between the time and frequency resolutions. For example, at scale n=2, a signal 

component being analysed will result in a ‘good time resolution’ as the wavelet is wide 

and any peaks in the spectrum get smoothed out. A ‘good frequency resolution’ of the 

analysed signal can be observed at wavelet scale n=4 at which the frequency of the 

wavelet is narrower and the peaks are sharper and have larger amplitude. In essence, 

the different window sizes have enabled the wavelet transform to analyse 

nonstationary signals.  
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Figure 2.10 Tiling of the time-frequency plane defines the time-frequency boxes of a 
wavelet basis 

On the other hand reconstruction is a process where the wavelet coefficients are 

reconstructed and summed into the original signal with minimum loss of information. 

The decomposed sub-bands will be used to reconstruct the original signal in the 

wavelet reconstruction process. A signal that has been decomposed into wavelet sub-

bands can be reconstructed utilising the wavelet reconstruction algorithm of the 

discrete wavelet transform.  

 

Mathematically, wavelet reconstruction is essentially the inverse discrete wavelet 

transform. The approximation and detail coefficients from the decomposition stage are 

upsampled in the reconstruction stage. The purpose of the upsampling operation is to 

retrieve full-length vectors of the original signal. Contrary to downsampling, upsampling 

is an approach where zeros are inserted between samples to lengthen a signal 

component. Once upsampled, the approximation and details coefficients are passed 

through lowpass and highpass filters respectively. The multiresolution property of the 

discrete wavelet transform allows different ways to reconstruct a signal. Figure 2.11 

shows an example of three-level wavelet reconstruction for which there are three ways 

to reconstruct the original signal: 
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Original signal = A1 + D1 

 = A2 + D2 + D1 

 = A3 + D3 + D2 + D1 

 

 

Figure 2.11 Several options to reconstruct a 5 level wavelet reconstruction  

However, prior to reconstruction, these coefficients can be analysed (Mallet et al., 

1997) for a number of purposes including wavelet denoising, data reduction, feature 

extraction, and multiscale analysis. Application of the discrete wavelet transform as 

data reduction and feature extraction technique are described in Chapter 4 whereas 

multiscale analysis is discussed in Chapter 5. An example of wavelet denoising is 

discussed in Section 2.6.  

2.6 Wavelet Denoising 

The objective of wavelet denoising is to remove noise from the data through the 

application of a thresholding algorithm. This has been shown in studies on NIR spectra, 

(Donald et al. 2005). Applying a denoising algorithm to the transformed spectra results 

in the removal of small-amplitude components in the transformed domain (Barclay et 
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al., 1997). The corrected coefficients are considered ‘noise-free’ and the reconstructed 

signal from these 'noise-free' coefficients is termed the denoised signal. 

 

In the application of the denoising technique, certain aspects require to be considered 

including selecting between global and level dependent thresholding and choosing 

between soft and hard thresholding. A global thresholding considers a constant 

threshold value for all wavelet decomposition levels whilst a level-dependent 

thresholding is where the threshold value is local to a particular decomposition level. 

The denoising threshold value   is defined as 

   √      2.10 

 

where     standard deviation of the wavelet coefficients 

    number of data points 

 

In hard thresholding, the detail coefficients with an absolute value lower than the set 

threshold, δ, are set to zero. For soft thresholding the nonzero coefficients are shrunk 

towards zero by subtracting the threshold δ from the values larger than δ. Both global 

and level-dependent thresholding are investigated on a sample near infra-red spectrum 

with the soft thresholding option because in MATLAB hard thresholding is a default 

setting for data compression.  Mother wavelet sym8 with five levels of decompositions 

is selected as the wavelet basis.  The procedure for de-noising is as follows:  

 

1. Wavelet decomposition: decompose the NIR spectrum using sym8 with a 

decomposition of level 5.  

2. Threshold the detail coefficients using the global and level-dependent 

thresholding.  

3. Reconstruct the signal the denoised signal 
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Figure 2.12 illustrates the original spectra and the denoised spectra for the application 

of wavelet denoising utilising the global thresholding. It is observed that the magnitude 

of the denoised spectra was smaller than that of the original spectra. This is due to the 

removal of the detail coefficients. The denoised spectrum of a wavelet denoising 

performed with the level-dependent thresholding appears to mapped on the original 

spectrum. However, a closer inspection reveals that there is a slight phase shift and 

slight decrease in the magnitude of the peaks as shown in Figure 2.13(b) and Figure 

2.13(c). The results from this investigation are used in the development of the process 

representation in Chapter 4.  

 

Figure 2.12 A wavelet denoising is perfomed with global thresholding on the NIR 
spectroscopy from the data of Chapter 4   
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(a) Original and denoised signals 

 

(b) zoom in on peak between wavenumber 8000 - 6500 

 

(c)   zoom in on peak between wavenumber 6000 - 5000 

 

Figure 2.13 Example of wavelet denoising with level dependent thresholding 
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2.7 Summary  

Wavelet theory is heavily supported by mathematical theories. Its applications 

nevertheless extend to various scientific and engineering fields. This chapter has only 

provided a brief overview of the theory of the wavelets which are related to the studies 

of this thesis.  

 

Firstly, the rationale of the implementation of the wavelet transform was discussed. 

Brief descriptions of the Fourier transform and short time Fourier transform were first 

given before discussing the wavelet transform in more depth. Then the key theoretical 

basis of the wavelet transform, multiresolution, was discussed. The multiresolution 

property of the wavelet transform allows for features of the signals (in the form of 

wavelet coefficients) at different resolution to be extracted. This is a powerful technique 

in extracting hidden features in signals masked by noise and overlapping spectra. As 

shown in the case studies presented in Chapter 4 and 5, features extracted using the 

multiresolution technique result in fingerprinting of the complex bioprocess data. 

 

Finally, the investigation of wavelet denoising, one property of the discrete wavelet 

transform is performed. This investigation is a part of the foundation to the application 

of discrete wavelet transform in Chapter 4 and 5. 
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Chapter 3 Overview of Multivariate Data Analysis Technique 

3.1 Introduction 

As protein therapeutics increasingly become major player in the pharmaceutical 

industry (Goodman, 2009), biopharmaceutical companies are on the search for more 

efficient manufacturing strategies and an increase in process understanding to cope 

with the increasing demands. Hence consistency in the manufacturing of high quality 

product and reduction in product development time can be achieved.  

 

From product development to manufacturing stages of the protein therapeutics, 

involves the measurement and recording of an enormous amount of data which 

represent an opportunity for data mining that can contribute to process understanding. 

However, this data is typically complex as it is multidimensional and comprises multiple 

variables hence necessitates the utilisation of multivariate data analysis.  

 

Multivariate data analysis is recognized as one of the promising techniques for 

enhancing process understanding by the FDA’s Process Analytical (PAT) initiative 

(FDA, 2004). It is the extension of bivariate data analysis to higher-order datasets (Acar 

and Yener, 2009). The objective of applying multivariate data analysis is to enable the 

analyses of data comprising multiple variables to capture hidden structures and 

underlying correlations between variables.  The goal of this chapter is to present an 

introduction to the multivariate data analysis technique employed in this thesis. Also, it 

provides the theoretical background to the application of multivariate data analysis in 

the two case studies discussed in this thesis.  

 

The next section discusses the definition of principal component analysis and its 

metrics as it is the specific form of multivariate data analysis employed in this thesis.  
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Following this, two techniques of data preprocessing are presented. The two 

techniques, mean centring and standardisation, are the techniques used in both case 

studies presented in this thesis. Finally the concept of multiway techniques which 

includes detailed discussion of batch data unfolding and two primary techniques of 

multiway principal component analysis are provided.  

3.2 Principal Component Analysis 

 “Principal component analysis is the backbone of latent variable methods” 

(Geladi and Grahn, 1996).  

 

One form of multivariate analysis is principal component analysis (PCA). It is a 

technique in which the original variables are transformed into a new set of latent 

variables called principal components. The principal components are mutually 

orthogonal and are linear combinations of the original variables. The first principal 

component (PC1) defines the direction of greatest variability, with subsequent principal 

components explaining a decreased amount of variability within the data set. 

Consequently lower order principal components can be excluded as they characterise 

the noise in the process. By retaining a limited number of principal components the 

dimensionality of the problem is then reduced (Jolliffe, 2002). 

 

The history of PCA goes back to 1901 when it was proposed by Karl Pearson but  the 

algorithm was developed by Harold Hotelling in 1933 (Jolliffe, 2002). The application of 

PCA became more widespread with the advance in computer power. PCA has been 

widely applied and covers wide variety of areas such as chemistry and biology. Some 

of the major objectives of the application of PCA are: 

 identifying principal components or new meaningful variables from the original 

variables to determine the underlying trend of the problem;  

 dimensional reduction of the problem; 
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 exclusion of some of the original variables that only contribute limited information 

in the context of the problem. 

The methodology of PCA is discussed in the next section and the statistical metrics are 

then introduced. 

3.2.1 Methodology of Principal Component Analysis 

Principal components are derived by projecting the samples in a data set onto new 

space.  From data generated during a process, consider a data matrix X with n rows 

(samples) and p columns (variables). The samples are typically time points or batches 

for particular measurements of a variable such as wavenumber.  

 

The derivation of the principal components of a data matrix X involves its 

decomposition into a sum of the outer product of vectors    and   : 

 

 

where vector ti is the scores vector, pi is the loadings vector and R represents the 

maximum number of principal components, i.e. min (n, p). The scores vector ti is the 

projection of the samples onto the principal components. It describes the relationships 

between samples and is a weighted linear combination of the original variables with the 

weight defined by the loadings, pi. The scores vector is defined by 

 

 

where     is the element of the jth variable measured for the ith sample and      is the 

vector of loadings for variable j in dimension d. The superscript T of the matrix   

indicates the matrix needs to be transposed. 

        
      

        
        

   2.1 

              2.2 
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Hence for a particular sample the score is  

 

 

The loading vector,    describes the relationships between variables and is defined as 

the eigenvector of the covariance matrix of X: 

 

          

   
    )  2.4 

  

For each   , Equation 2.4 can be written as: 

 

The eigenvalue    for eigenvector    is a measure of the variance explained by each 

principal component with the largest eigenvalue corresponding to the first principal 

component thereby capturing the main source of variability in the data with subsequent 

principal components explaining less amount if variability.  

 

Typically, the first few principal components account for most of the variability and have 

information in the data and hence Equation 2.1 can be simplified to 

 

 

where E is a residual matrix in which the variance not explained by the retained 

principal components is captured. The superscript T of the matrix p refers to matrix p 

being transposed. The method of selecting   is discussed in section 3.2.3. It is noted 

that there exists other methods of calculating principal components including singular 

value decomposition (SVD) and non-linear iterative partial least squares (NIPALS). In 

                             2.3 

                 2.5 

        
      

        
    2.6 
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the cases where the columns of X are scaled, the covariance matrices in Equations 2.4 

and 2.5 are replaced with correlation matrices.  

3.2.2 Scores and Loadings Plots 

As stated in the Section 3.2.1, scores convey knowledge on relationships between 

samples whilst loadings provide information on relationships between variables. There 

are several ways to represent scores and loadings matrices graphically. In this section, 

two types of graphical representations will be discussed.  

 

The first graphical representation is bivariate scores plot and univariate loadings plot as 

these are the plots utilised in the analysis of the problems presented in this thesis. 

Figure 3.1 shows an example of bivariate scores plot of a sample data taken from 

Chapter 4 where the scores of principal component one is plotted against the scores of 

principal component two. The points plotted represent the position of the samples in 

the scores plane. The underlying trend that can be extracted from Figure 3.1 is the 

process batch was clustered according to their groups with Group 1 and Group 2 were 

positioned near to the origin. Bivariate scores plot of the remaining principal 

components can be plotted in the same manner, for example PC3 against PC4. 

 

A univariate loadings plots is a bar chart of a particular loadings against variables. 

Figure 3.2 demonstrates an example of a univariate loadings plot from an analysis on a 

near infrared dataset where PC1 is plotted against the wavenumber of the near infrared 

spectra. The loadings plot helps identify the most important wavenumbers in terms of 

individual principal components. According to Figure 3.2, large magnitude of loadings 

comes from the wavenumbers 7200 to 6500, 5500 to 5000, and 5800 to 4500. Other 

than bar chart, the univariate loadings plot can be plotted as lines.  
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Figure 3.1 An example of bivariate scores plot (PC1 vs. PC2) generated from the NIR 
data from Chapter 4 

 

 

Figure 3.2 An example of univariate loadings plot generated from the NIR data from 
Chapter 4 
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3.2.3 Selection of the Number of Principal Components to be retained 

In constructing the PCA representation, one crucial step is to determine the number of 

principal components to retain to capture the main sources of variability in the data. A 

number of techniques have been proposed in the literature for selecting the number of 

principal components required to retain. One technique is to include sufficient principal 

components so that the cumulative variability explained is between 80% and 90% or 

more; 

 

 

where λ is the eigenvalues of the dataset, r is the number of principal components 

being retained, and R is the maximum number of principal components.  

 

 Another technique is to consider the explicit values of the principal components, those 

whose eigenvalues are less than one should be excluded as they explain less 

variability than an individual variable. Alternatively, a plot of the eigenvalue against the 

number of principal components can be used to identify where an “elbow” in the curve 

occurs and define the number of principal components to retain as shown in Figure 3.3. 

In the near infrared data, the “elbow” in the curve is identified at the second principal 

component whilst in the electrospray ionisation mass spectrometry data it is detected at 

the sixth principal component.  

 

                                      
∑   

 
   

∑   
 
   

     2.7 
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(a)  (b)  

Figure 3.3 Examples of number of principal components retained: (a) near infrared data 
of Chapter 4; (b) electrospray ionisation mass spectrometry data of Chapter 5 

3.2.4 Contribution Plots 

The contribution plots can be calculated for the scores provide insight as to which 

variables are responsible for the non-conforming behavior. The principal components 

scores can be described as a weighted sum of the process variables: 

 

     ∑      

 

   

 2.8 

 

where      value to sample i and variable j 

      loading for variable j for principal component r.  

 

The score tir for each sample i and principal component r can then be decomposed into 

j=1,2,…, p variables. The contribution of each process variable to the individual scores 

of the PCA model is given by: 

 

                
   

  
    (    ̅ ) 2.9 
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where      score of sample i for principal component r 

      loading for the sample i and variable j  

     standard deviation of sample i 

  ̅   mean of variable j 

     corresponding variable j 

 

The variables with large absolute contribution are expected to contribute to the cause 

of the sample not exhibiting similar performance to the other (Westerhuis et al., 2000).  

Other than the contribution plots to the scores, the contribution plots for metrics 

including Hotelling’s T2 and square prediction error (SPE) can also be calculated. 

However, it is not discussed as these two metrics are not utilised in this thesis.  

3.3 Data Prepocessing 

The data matrix X may require to be scaled prior to applying principal component 

analysis. The rational for scaling the data is that if the variables have significant 

difference and standard deviation then the main source of variability will be attributed to 

the variable with the large standard deviation. Consequently the principal component 

will not reflect the maximum scores of variability inherent to the process under 

investigation.  

 

There are a number of techniques by which to scale a dataset. These can be 

categorized into a number of types (Brereton, 2009) where two main types are:  (1) row 

(samples) scaling, and (2) column (variable) scaling. Each type of scaling provides a 

number of techniques to choose from. Two techniques, mean centring and 

standardisation, which are used in this thesis are discussed below. The application of 

mean centring in the context of this thesis is discussed in Section 4.10 and Section 

5.6.2. 
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3.3.1 Mean Centring 

 Mean centring is defined as removing a constant offset across the columns or rows of 

a data matrix (Gurden et al., 2001). Column centring is when the column average,  ̅  is 

subtracted from each element in a column: 

then the mean centred element    
  is given by  

where n is the number of samples. 

 

The second type, centring across the second mode or row centring is when the row 

average is subtracted from every element in the row. It can be mathematically 

expressed as 

 

The mean of the i th row of data matrix X is given by 

 

where p is the number of variables.  

 

Centring across either a column or row is known as single centring whilst double 

centring is where both form of single centring are applied (Bro and Smilde, 2003). The 

order is irrelevant as the application of single centring to one direction does not disturb 

the centring in the other direction.  

 ̅    ∑    
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        ̅  2.11 

   
         ̅  2.12 
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3.3.2 Standardisation 

Standardisation involves first mean centring and then scaling the data to unit standard 

deviation. The original sample i for variable j, that     is transformed into: 

 

where  ̅   mean of variable j 

     standard deviation of variable j 

 

Standardisation is applied so that all variables have a similar influence when 

developing the process representation. 

3.4 Multiway Techniques 

3.4.1 Introduction to Batch Data Unfolding 

Batch process data typically comprises measurement of J process variables 

(j=1,2,…,J) recorded at regular time intervals (k=1,2,…,K) throughout the batch run. 

Similar data is collected for a number of batch runs i =1,2,…, I. This information can be 

organized into a three-dimensional data array, X, Figure 3.4.  

 

Multiway principal component analysis is an extension of principal component analysis 

for three-dimensional data. It is performed by initially unfolding the three-dimensional 

data array to a two-dimensional matrix and then by the application of principal 

component analysis to the resulting two-dimensional matrix.  

 

 

 

          ̅ 

  
 

2.14 
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Figure 3.4 A three-dimensional data array, X, of batch process 

There are three possible methods to unfold the data matrix, X. In each case the 

direction of one axis is preserved and the direction of the other two axes are 

transposed, resulting in 3 two-dimensional matrices: A (I x KJ), B (I x JK) and C (J x IK) 

illustrated in Figure 3.5.  

 

 

Figure 3.5 Unfolding methods of a three-dimensional data matrix 
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For matrix A and C, measurements of variables logged at the same time were kept 

together for all batch runs. For matrix B, measurements of an individual variable during 

the duration of the batch were kept together for all batch runs. These different unfolded 

matrices plus PCA on them corresponds to the analysis a different type of variability. 

 

MPCA allows the description of the multiple batches operation by compressing the 

information contained in the data trajectories into low-dimensional spaces. It develops 

a data-based model by utilising a number of orthogonal latent variables.  Once the data 

set is unfolded, the model is constructed in a manner that its maximizes covariance 

between the input and output data spaces (Wold et al., 1987). Consequently, the 

unfolding approach of choice depends on the objective of the data analysis. The 

subsequent section provides description the unfolding of matrix A. 

3.4.2 Multiway PCA - The Nomikos and MacGregor Approach 

The approach introduced by Nomikos and MacGregor (1994) is to unfold the three-

dimensional data matrix to a two-dimensional data matrix by preserving the direction of 

the batches. As discussed in Section 3.4.1, when the direction of the batches is 

preserved, the results are two-dimensional data matrices A (Figure 3.5). Data matrix A 

is the format proposed by Nomikos and Macgregor (1994). 

  

The two-dimensional data matrix A (I x KJ) shown in Figure 3.5 is obtained by slicing 

the three-dimensional matrix X vertically and organising each vertical slice, side by 

side. The vertical slices (I x J) representing the values of all variables for all the batches 

at time interval k. Adopting this approach the information contained in the data matrix X 

can be summarised with respect to both variables and their time variation, allowing the 

analysis of variability between the batches and subsequently making this approach an 

effective one to analyze historical data (Wold et al., 1998). Also, the goals and benefits 
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of MPCA are similar to PCA. It has been shown that MPCA is statistically and 

algorithmically consistent with PCA (Nomikos and MacGregor, 1994).  

 

The objective of MPCA is to decompose the matrix X into a summation of the product 

of the score vector (tr) and the loading matrices (Pr), plus a residual E: 

       ∑        

 

   

 
2.15 

or 

       ∑     
   

 

   

 
2.16 

 

where R is the number of principal components.  

 

This decomposition conforms to the principles of PCA as it separates the data into two 

parts (Jolliffe, 2002), the systematic variation (∑       
 
   ), i.e. it expresses one 

fraction (tr) related to the batches I and a second fraction (Pr) related to the variables J 

and their time variation K. The second part is the residual E, which typically describes 

the noise associated with the data.  

 

The unfolded data matrix A is usually mean centred prior to performing PCA. Mean 

centring the matrix A results in the removal of the mean trajectory of all spectra thereby 

removing the main non-linear component in the data. As a result, applying PCA to the 

mean-corrected data is a study of the systematic variation in the resulting trajectories of 

the spectral data for all batch about the mean trajectory. The following section provides 

description another option to unfold the three-dimensional matrix X. 
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3.4.3 Multiway PCA - The Wold, Kettaneh, Friden and Holmberg Approach 

In the original paper of Wold et al. (1998), they proposed an alternative approach to 

MPCA to that of Nomikos and MacGregor (1994). Their approach is based on unfolding 

the three-dimensional data matrix by preserving the direction of the variables. The 

resulting two-dimensional matrix consists of (I x K) rows and J columns, assuming 

equal batch length, Figure 3.6. Each row then comprises the data for all variables for 

an individual batch at time point k. The unfolding of this method is defined by: 

       ∑     
   

 

   

 
2.17 

 

where     scores vector of size (1 xIK) 

     loadings vectors of length (J x 1) 

    residual matrix 

    number of principal components 

 

Figure 3.6 Unfolding method of Wold, Kettaneh, Friden and Holmberg (1998) 
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 There are three differences between the Wold et al. (1998) approach and the Nomikos 

and MacGregor (1994) approach. The key difference is in terms of the length of 

batches in the three-dimensional matrix X. Wold et al. (1998) argued that although the 

MPCA approach proposed by Nomikos and MacGregor is powerful and effective in 

batch analysis specifically in batch monitoring, it has a downside in that it assumes the 

data for the complete batch is available.  

 

The second difference concerns the rows of the unfolded matrices D and A. The rows 

of matrix D consist of the data for all variables for an individual batch at time point k 

whilst the rows of matrix A comprises the data for all variables and time points for a 

batch. In other words, matrix D regards individual sample as a unit whilst matrix A 

regards the whole batch as a unit.  

 

The third difference relates to the mean centring and scaling of the unfolded matrix. 

Prior to applying PCA to matrix D, it is scaled to zero mean and unit variance.  Mean 

centring of matrix D is done by subtracting the mean of each variable over all batches 

and all times from the trajectory of each variable in each batch. The mean-centred 

matrix D captures covariance among the variables (Westerhuis et al., 1999).  

 

One limitation in the Wold et al. (1998) approach is the number of principal components 

required to explain the structured variation in the data. Westerhuis et al. (1999) claimed 

that the Wold et al. (1998) approach demands nearly as many latent variables as 

original variables to describe the same variation in the data as described by the 

Nomikos and MacGregor (1994) approach. Consequently, this does not contribute to 

the dimension reduction of the problem which is one of the objectives in applying PCA.  
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3.5 Summary  

In this chapter, an overview of multivariate data analysis technique specifically PCA is 

provided. Statistical metrics utilised in this thesis are described with their application to 

samples of spectral data from subsequent chapters. MPCA, the extension of PCA is 

also discussed as the problems presented in Chapter 4 and 5 involve three-

dimensional data matrix which require to be unfolded prior to analysis. Of the two 

unfolding methods discussed (Section 3.4.2 and Section 3.4.3), the Nomikos and 

MacGregor (1995) approach was utilised in the data analysis of both Chapter 4 and 5. 

Furthermore the next two chapters will described the application of combination of 

MPCA and the discrete wavelet transform as an approach to fingerprint bioprocess 

data.  
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Chapter 4 Integrated Modelling for NIR Industrial Process Data  

4.1 Introduction 

Biopharmaceuticals represents a rapidly evolving segment of the pharmaceutical 

industry. The manufacture of biopharmaceutical products is currently a business trend 

in the pharmaceutical industry with global revenues generated from this business 

reported at USD120 billion per annum and projected to increase to USD150 billion by 

2015 (Butler and Meneses-Acosta, 2012). The economic success of the 

biopharmaceutical industry is largely a consequence of the manufacture of monoclonal 

antibodies produced from mammalian cell culture bioprocesses (Walsh, 2010) with the 

majority of commercial monoclonal antibodies derived from the expression of Chinese 

Hamster Ovary (CHO) cell lines (Kelley, 2009). 

 

Monoclonal antibodies (MAb) are primarily produced through recombinant mammalian 

cell culture batch processes which are subjected to batch-to-batch variability (Ferreira 

et al., 2005). Typically monoclonal antibodies production involves upstream cell culture 

processes and downstream purification processes. It starts with a vial from the cell 

bank and ends with the final product (Rathore et al., 2011). Shukla and Thommes 

(2010) provide a general description of the monoclonal antibodies production process 

which is shown schematically in Figure 4.1. The cells in the vial are expanded through 

a series of seed batches in increasing volumes moving from shake flasks. The cell 

culture is then transferred to the production bioreactor where the cells continue to grow 

and the monoclonal antibody is expressed into the medium. Following this, the cell 

culture broth is harvested through centrifugation and filtration steps to remove cells and 

cell debris.  The next stage involves product capture through Protein A affinity 

chromatography and a further one or two polishing chromatography steps to remove 



Chapter 4 Integrated Modelling for NIR Industrial Process Data 

 

50 
 

impurities. Finally, the ultralfiltration/ diafiltration step is performed to formulate the bulk 

drug product.  

 

 

Figure 4.1 Upstream and downstream process of monoclonal antibody (Shukla and 
Thommes, 2010) 

The relationship between process batches make up the genealogy or family tree with 

the genealogy of a production batch being complex. Inconsistency in process scale-up 

from the shake flasks to production scale and batch-to-batch variability are among the 

key challenges in industrial bioprocess (Schmidt, 2005) where producing consistent 

and good quality product is the central goal of process development (Steinmeyer and 

McCormick, 2008).  To increase product quality, Jenzsch (2006) proposed maintaining 

good reproducibility of the batch process. This can be achieved through understanding 

of the variability of batch behaviour and hence knowledge of the genealogy (parent-

child or seed-production relationship) is key requirement.  Process understanding is a 

key component of the Process Analytical Technology (PAT) initiative introduced by the 

Food and Drug Administration (FDA) (FDA, 2004). 
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The case study described in this chapter is based on a monoclonal antibody (MAb)  

manufacturing process from a mammalian cell from which on-line traditional 

measurements, on-line spectral measurements, and off-line sample analysis are 

recorded. This data is a source of information from which enhanced process 

understanding can be attained.  

 

The primary objective of this Chapter is to investigate whether process understanding 

may be enhanced by utilising information from the process genealogy. Such knowledge 

may potentially be invaluable in terms of industrial-scale operations, for example in 

process scale-up, process comparability, and technical transfer between production 

sites. The approach adopted is to develop and establish a fingerprint of the process 

NIR spectroscopy data to capture differences between batches. The methodology 

adopted is a combination of the wavelet transform and multiway PCA. It is shown that 

the proposed procedure is successfully able to describe distinctive characteristics of 

batches relative to the underlying genealogy.  

 

Traditional chemometrics approaches applied to mammalian cell culture unit operations 

include principal component analysis (PCA) (Gunther et al., 2007) , partial least 

squares (Teixeira et al., 2009; Riley et al., 1999), and, multiway principal component 

analysis (MPCA) and multiway partial least squares (MPLS) (Ferreira et al., 2007; 

Cunha et al., 2002); with the primary focus being monitoring and fault detection. For 

example, Gunther et al. (2007) developed a PCA model to detect abnormal process 

conditions resulting from different fault types. Both Teixeira et al. (2009) and Riley et al. 

(1999)  constructed PLS calibration models for process monitoring purposes, with the 

former’s objective being to correlate fluorescence maps with viable cells and 

recombinant protein concentrations and the latter’s objective being to predict analyte 

concentrations in NIR spectra. Studies by Ferreira et al. (2007) and Cunha et al. (2002) 

involved developing both MPCA and MPLS models. Ferreira et al. (2007) constructed 
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an MPCA model to diagnose process faults and an MPLS model to predict final product 

concentration whilst Cunha et al. (2002) developed an MPCA model to assess the 

quality of seed batches and an MPLS to infer the final productivity.   

 

The work described is novel, as so far neither the study of batch behaviour relative to 

the process genealogy nor the application of the integrated wavelet transform-multiway 

PCA framework to such data has been conducted.  

4.2 Process Description 

The process of interest is an industrial pilot-plant involving the manufacture of 

monoclonal antibodies and considers both the seed and production stages of the cell 

culture process. Three types of measurement data were collected from the process; 

on-line traditional measurements including alkali addition rate and dissolved oxygen 

rate, on-line  spectral measurements i.e. in-situ near infrared (NIR), and off-line sample 

analysis such as viable and total cell count and media components.  

 

Figure 4.2 shows a schematic of the cell culture process used in this research for the 

production of a monoclonal antibody. Cell culture from the shake flask was transferred 

into seed bioreactors which contained growth media that provide nutrients for the 

multiplication of cells. During the seed stage, the cell lines undergo inoculum expansion 

to accumulate sufficient cell concentration for inoculation of the production stage. The 

cell culture is then transferred to a production bioreactor in which the medium is 

designed for the cells to continue to grow and to express the desired MAb. The cells in 

each seed and production stage are subcultured on a 3-4 day cycle to allow synthesis 

and product secretion. Subculture is a procedure that removes the medium in the 

bioreactor and transfers the cells from a previous culture into a fresh growth medium. It 

enables further propagation of the cell line.  
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Figure 4.2 Schematic of monoclonal antibody cell culture process 

There were seven seed and three production bioreactors selected for this study, where 

each operating bioreactor represents one process batch. Other batches were not 

selected because their relationship to other batch cannot be identified. All bioreactors 

had a working volume of 5 liter.  

 

From a discussion with the engineer in charge of the MAb manufacturing process from 

CHO cell line, a specific protocol was developed to organize the batches into the 

genealogy shown in Figure 4.3. Firstly, batches cultured in the same bioreactor were 

identified and grouped together. Secondly, the batch with the lowest passage number 

and the earlier culture date was placed at the top of the genealogy. Passage number 

refers to the number of times the cells have been subcultured into a new vessel with 

the lowest number representing the earliest subculture. The rest of the batches in that 

group are then arranged according to the sequence of passage number and culture 

date. These procedures were repeated for another group of batches. As a result, the 

batches were organized into three groups which are named Family 1, Family 2 and 

Family 3. Family 1, the largest family in the genealogy comprises of four seed batches 

and one production batch. The first member of Family 2 and Family 3 were subcultured 
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from Seed Batch 3 and Seed Batch 2 of Family 1 respectively. This results in a ‘cousin’ 

relationship between Family 1 and Family 2, and Family 1 and Family 3.  Production 

batches of all families were subcultured at an identical sequence, resulting in the same 

passage number. It is hypothesised that the genealogy of the process batches may 

potentially affect batch behaviour.  

 

 

Figure 4.3 Genealogy of the process batches 

A Bruker Matrix-F FT-NIR process spectrometer (Bruker Optics Ltd., Coventry, 

England, U.K.) with a transflectance probe was used to record the NIR spectra. The 

spectra lay between 800 and 2500 nm. The transflectance probe (precision sensing 

devices model 625) was operated at 1.0mm peripheral pathlength. The Matrix-F FT-

NIR process spectrometer has an internal multiplexer for up to six fibre optics channels 

which allows for the simultaneous monitoring of multiple bioreactors run.  

 

The NIR spectral measurements were recorded every 2.5 minutes in the seed and 

production bioreactors during the 3 and 4 day cycle. Over the duration of the batch, 

approximately 90 and 230 NIR spectral measurements were collected for seed and 
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production batches respectively. Based on visual observation, Figure 4.4, changes in 

the NIR spectral measurements for a particular batch were slow due to the behaviour 

of the process. Cell culture process usually follows a characteristic growth pattern 

comprises of four phases: lag, exponential, stationary, and death as shown in Figure 

4.5. When the cell is introduced into the growth medium, it grows slowly in the lag 

phase and then steadily increases in the exponential phase for a certain period. After 

that the subculture enters the stationary phase where the rate of growth of the cell 

slows down due to declining concentrations of nutrients and/or accumulating 

concentration of toxic substance. The subculture enters a death phase as the rate of 

growth declines. As a consequence of this behaviour, the NIR spectral measurements 

logged were averaged over every hour. The batch information is summarized in Table 

4.1. Each batch was coded with a batch ID for subsequent analysis. The batch length 

between the seed batches did not differs much with three batches comprising 89 

spectra, three with 92 spectra and one with 90 spectra whilst for the production 

batches, two batches had 236 spectra and one batch comprising 260 spectra.  

 

 

Figure 4.4 Evolution of raw spectra collected throughout Seed Batch 1  
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Figure 4.5 Growth culture showing the lag, exponential, stationary and death phases 
(Reference: Davis, 2011) 

Table 4-1 Batch information for the MAb manufacturing process 

 

 

 

 

 

 

 

 

 

 

 

 

 

Batch Name Batch ID 
Batch Length 

(number of spectra) 

Seed Batch 1 S1 97 

Seed Batch 2 S2 89 

Seed Batch 3 S3 89 

Seed Batch 4 S4 89 

Seed Batch 5 S5 92 

Seed Batch 6 S6 92 

Seed Batch 7 S7 92 

Production Batch 1 P1 236 

Production Batch 2 P2 260 

Production Batch 3 P3 236 
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4.3 Data Preprocessing 

Prior to developing a fingerprint from the NIR spectra, the spectra need to be 

preprocessed. There are three stages of preprocessing: (1) NIR spectroscopy 

preprocessing which includes the removal of baseline shifts and first derivative 

smoothing (Section 4.4.1), (2) NIR batch unfolding (Section 4.5), and (3) alignment of 

NIR batch data (Section 4.6).  

4.4 Near Infrared Spectroscopy: Literature Review on Its Application to 

Cell Culture and Multivariate Data Analysis 

NIR spectroscopy is a methodology that uses the NIR region of the electromagnetic 

spectrum and lies between 700nm to 2500 nm, which is between the red band of 

visible light and the mid infrared (mid-IR) region. The absorption of electromagnetic 

radiation in the NIR region is caused by the combinations and overtones of the 

fundamental vibrations of molecules seen in the mid IR bands. Vibrations of –CH, –OH, 

–SH, and –NH bonds and their combination and overtones are observed in the NIR 

region (Roggo et al., 2007). The assignment of these hydrogen bonds to NIR bands is 

illustrated in Figure 4.6. As these bonds are essentially observed in all biological 

molecules, NIR spectroscopy becomes a theoretical means to measure the majority of 

the fundamental components in bioprocesses (Scarff et al., 2006).  

 

Three measurement approaches are possible with NIR, off-line, at-line and on-line  

(Cervera et al., 2009). In off-line analysis, a sample is collected and analysed later, 

usually at a different location. Meanwhile, a sample is collected and analysed 

immediately in an at-line measurement approach. On the other hand, an on-line 

measurement eliminates the need for manual sample handling as the sample is 

analysed directly. There are two categories of on-line measurement, in-situ and ex-situ. 

A sampling device, for example a fiber-optic probe is positioned inside the bioreactor in 
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in-situ whilst in ex-situ is where the sampling device is placed on a glass window 

inserted into the bioreactor.  

 

 

Figure 4.6 Near Infrared band assignment table (from Bruker Optics, Germany) 

In recent years, the application of NIR spectroscopy in the area of cell culture system 

monitoring and control has expanded significantly (Scarff et al., 2006). This 

development was discussed in a review carried out by Cervera et al. (2009) where they 

showed that research in the field has advanced from simple systems with anaerobic 

conditions and/or low agitation to more complex systems with vigorous agitation and 

aeration. Configuration of probes has also progressed from at-line and ex situ to more 

challenging in situ implementation.  

 

In the past decades, a number of studies (Arnold et al., 2003; Vaidyanathan et al., 

2001b; Hagman and Sivertsson, 1998) have demonstrated that NIR spectroscopy is a 

reliable and robust tool for bioprocess monitoring. Arnold et al. (2003) and Hagman and 
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Sivertsson (1998) used near infrared spectroscopy as a technique to monitor the 

bioprocessing of mammalian cell cultures whilst Vaidyanathan et al. (2001b) monitored 

fungal bioprocesses. The analytes monitored in these three studies included glucose, 

lactate, and ammonia. Other than analytes, Hagman and Sivertsson (1998) also 

monitored the biomass and viability of the mammalian cells, and Vaidyanathan et al. 

(2001b) monitored biomass of the fungal. The calibration model developed in these 

studies demonstrated that NIR spectroscopy is a useful tool for bioprocess monitoring 

as it shows good predictive ability in terms of analyte concentrations.  

 

Furthermore for bioprocesses monitoring and control diagnosis, NIR spectroscopy 

measurements offer many attractive features including real time measurements of a 

number of bioprocess variables simultaneously (Rodrigues et al., 2008; Arnold et al., 

2003). Rodrigues et al. (2008) developed an NIR calibration model for the real time 

monitoring of the concentration of active pharmaceutical ingredient content, viscosity, 

nitrogen source and carbon source for an industrial fermentation process of an API. 

The feasibility of their proposed method was demonstrated through the satisfactory 

accuracy of the simultaneous monitoring of multi-parameter on on multiple fermentation 

bioreactors. Arnold et al. (2002) demonstrated that the NIR spectroscopy could be 

used to attain good predictive models for multiple-analytes through the application of 

an in-situ NIR to fed-batch industrial E. coli process. 

 

Despite the advantages offered by NIR spectroscopy in bioprocess monitoring, its 

application is not yet routine due to two main reasons. The first challenge is related to 

the complexity of bioprocess datasets which is a consequence of the nature of 

microbial growth and product formation in batch cultivations (Clementschitsch and 

Bayer, 2006), and an extensive amount of data attained from a large number of 

process variables logged at high frequency (Gunther et al., 2007). The second 

challenge relates to the fact that raw NIR spectra have broad bands and baseline shifts 

leading to difficulties in interpreting the spectra (Roggo et al., 2007). Broad bands are 
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due to the dispersion of the spectra, which occurs when radiation in the near infrared 

range excites overtone and combination vibrations in the sample material (Mark et al., 

2010). This translates to absorbance at a specific wavenumber comprising of more 

than one chemical substance and, the chemical substance can also be absorbed at 

different wavenumber. 

 

The combination of the aforementioned challenges necessitates the application of 

multivariate statistical techniques to extract real-time information from the NIR spectra. 

Challenges associated with complex bioprocess NIR datasets include multi-collinearity 

(McShane and Cote, 1998) and inherent correlation between different chemical 

substances (Petersen et al., 2010). These issues can be addressed through the 

application of multivariate statistical techniques (Zou et al., 2010). Furthermore, the 

combination of NIR spectroscopy and its analysis using multivariate statistical 

techniques has been proven to be effective in various fields of study including 

pharmaceutical (Luypaert et al., 2007), biodiesel (Balabin and Smirnov, 2011), 

agriculture (Sato, 1994), and wastewater treatment (Pons et al., 2004). 

 

Three types of analysis performed on NIR using multivariate statistical techniques 

performance are mathematical pretreatment, classification and calibration modelling 

(Roggo et al., 2007). The cases of broad bands and poor baseline resolution discussed 

previously can be handled using mathematical pretreatment methods such as Savitzky-

Golay derivatives, multiplicative scatter correction, standard normal variate and 

orthogonal signal correction (Cervera et al., 2009; Scarff et al., 2006). This matter is 

discussed further in Section 4.4.1. Classification methods categorize samples 

according to their spectra for the purpose of extraction of underlying trend in the 

dataset whereas calibration methods link the spectra absorbance value to quantifiable 

properties such as cell viability and concentration of analytes (for example, glucose and 

lactate).  
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Some of the commonly used classification and calibration methods are principal 

component analysis (PCA) (Tatavarti et al., 2005; Vaidyanathan et al., 2001a) and 

partial least square (PLS) (Petersen et al., 2010; Rhiel et al., 2002). Tatawarti et al. 

(2005) applied PCA to the NIR spectral data of a veterinary pharmaceutical drug to 

determine content uniformity, tablet crushing strength, and dissolution rate in the 

dosage samples. Differences in chemical composition and physical attributes of the 

drug samples were captured by principal component 1 and principal component 2 

respectively. The application of PCA by Vaidyanathan et al. (2001a) was performed on 

NIR spectral data from culture samples of antibiotic production to monitor variations in 

the bioprocess through changes in the NIR spectral data. Scores and loadings of the 

PCA were able to capture process related changes including variations in medium 

composition and reactor configuration. Both Petersen et al. (2010) and Rhiel et al. 

(2002) built PLS calibration models to predict the concentration of analytes such as 

glucose and ammonia in NIR spectral datasets from different types of cell cultures. The 

results of Petersen et al. (2010) demonstrated that the PLS algorithm can satisfactorily 

predict glucose but not ammonia from on-line NIR spectroscopy of filamentous 

fermentation media whereas Rhiel et al.’s (2002) study showed that the PLS algorithm 

can selectively extract analyte specific information from the NIR spectroscopy of animal 

cell culture.  

 

The main objective of this case study is to classify the spectra to allow the 

fingerprinting of the process batches and to link the fingerprint to the process 

genealogy, and ultimately relate knowledge acquired from this relationship to the off-

line quality process measurements through the implementation of the combination of 

discrete wavelet transform and multivariate statistical analysis.  
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4.4.1 Preprocessing of NIR Spectroscopy 

The raw NIR spectra are subjected to broad bands, baseline shifts and light scattering. 

These aspects can be addressed by pre-treating the raw NIR spectra with the Savitzky-

Golay smoothing algorithm. Previous research has shown that the application of 

multiplicative scatter correction (Roychoudhury et al., 2007) and standard normal 

variate (Rodrigues et al., 2008) can be used to reduce light scattering effects whilst first 

derivatives (Ferreira et al., 2005) and second derivatives (Arnold et al., 2003) can 

remove baseline shifts. Roychoudhury et al. (2007) applied multiplicative scatter 

correction whereas Rodrigues et al. (2008) applied the standard normal variate as a 

pre-processing technique to handle the effects of light scattering in the NIR spectra 

collected from cell culture during the manufacture of monoclonal antibodies and 

antibiotic respectively. To remove baseline shifts, Ferreira et al. (2005) identified that 

the most appropriate result for their NIR spectral data generated from an industrial 

fermentation was first derivatives, whilst Arnold et al. (2003) performed second 

derivatives on the NIR spectra from the bioprocessing of industrial E. coli. 

 

Second derivatives not only remove baseline shifts but also deconvolute the 

overlapping peaks seen in the raw spectra, Figure 4.8 shows the deconvolution of the 

overlapping peaks. However, second derivatives amplify the noise in the NIR spectra 

because they calculate the rate of change of the signal hence affecting the noise-to-

signal ratio (Candolfi et al., 1999).  

 

Figure 4.4 provides an example of the raw NIR spectra collected over the duration of a 

batch. It is evident from the illustration of the first derivatives and second derivatives of 

the NIR spectra, Figure 4.7 and Figure 4.8 respectively, that second derivatives amplify 

the noise in the raw spectra. Consequently for the purpose of this case study, the raw 

NIR spectra were corrected using first derivatives. This resolves baseline shifts while 

minimizing noise resulting from the derivatives. A window size of 15 and a second 
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order polynomial were employed by the person in charge of handling the initial 

preprocessing of the raw spectral data. This pre-treatment replaces the raw NIR 

spectra with a set of data which shows clear absorbance peaks. As seen in Figure 4.7, 

two absorbance peaks were identified at the following wavenumber ranges: 8000 - 

7000 and 6000 - 5000. All spectra manipulations were performed using PLS Toolbox, 

MATLAB 8.1.  

 

Figure 4.7 First derivative NIR spectra of Seed Batch 1 

 

Figure 4.8 Second derivative NIR spectra of Seed Batch 1 
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4.5 NIR Batch Unfolding 

In Section 3.4.1, an overview of batch analysis was provided. The concept is now 

transferred to NIR spectra logged throughout the duration of a particular batch. For 

batch NIR spectra the three dimensions are wavenumber, spectra recorded through 

the duration of the batch and batch number. Therefore, for a data array Y of batches 

comprising NIR spectral measurements, the convention adopted is batches (I) x 

wavenumber (J) x number of spectra (K), Figure 4.9.  

 

Figure 4.9 Batches of NIR spectroscopy data with respect to number of spectra 

The three-dimensional data array Y requires to be unfolded prior to subsequent 

analysis. In this study, the behaviour of the batches within a particular wavenumber is 

of interest hence variability in batch-to-batch behaviour for a specific wavenumber 

region is considered. Thus the three-dimensional data array Y requires to be unfolded 

to allow these investigations to be performed. The unfolded matrix, E (K x IJ) is shown 

in Figure 4.10. This way of unfolding considers all batches as one object hence 

enables the possibility of comparing between spectra from different batch runs 

throughout the whole NIR spectrum or for selected wavenumber regions. The individual 

spectra information is captured by the principal component scores thereby enabling the 

study of similarities and differences between batches within a wavenumber region. 
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Loadings of the matrix Y is the weight of the wavenumbers in terms of defining the 

individual principal component. 

 

 

Figure 4.10 Three-dimensional NIR data array Y and its unfolded matrix E 

4.6 Alignment of NIR Batch Data 

By adopting the unfolding approach proposed in the previous section the number of 

spectra in each batch needs to be equal. As observed from Table 4-1 and illustrated in 

Figure 4.11, the batches from the manufacture of MAb were from seed and production 

and hence were of unequal duration. This is a further challenge in terms of the analysis 

performed in this study.  

 

A number of methods have been proposed to resolve the issue of unequal batch 

length, cut to minimum length, multivariate dynamic time warping (Ramaker et al., 

2003; Kassidas et al., 1998; Gollmer and Posten, 1996) and the use of an indicator 

variable (Nomikos and MacGregor, 1994). The batch processes in the aforementioned 
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studies comprise process variables measurements whereas in this study the batch 

processes under investigation comprise NIR spectra. Of the three techniques, 

multivariate dynamic time warping and the use of an indicator variable are not 

applicable due to loose biological structure and no surrogate variable available. There 

are no references in the literature proposing a method to equalize the length of batches 

comprising NIR spectral measurements. A technique to address this problem is 

proposed in Section 4.6.2.  

 

Figure 4.11 Illustration of unequal batch length in MAb manufacturing 

4.6.1 Cutting to Minimum Length 

With respect to batch NIR spectral measurements, cutting to minimum length means 

reducing the number of spectra in all batches to the selected minimum number of 

spectra, sk. This technique may impact on the resulting fingerprinting as important 

information may be contained towards the end of batches runs. This technique is 

appropriate when the difference in batch length is small as successfully demonstrated 

by Gunther et al. (2007) in their fault detection and diagnosis analysis of data from an 

industrial pilot plant cell culture. In this case study, batch durations differed by less than 

10%, therefore they selected the shortest batch duration and used this as a reference 

for other batches.  
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4.6.2 Re-sampling Spectra Count 

The aim of the proposed approach is to include spectra throughout the duration of a 

process. The rationale is, if a batch is cut to a certain length to comply with a reference 

batch, the information towards the end of the process will be removed and this may be 

of interest. The procedure for this approach is to increase the step count or sampling 

rate of the long batches so that the number of spectra in that batch is relatively closer 

to the number of spectra in the reference batch. Details of this procedure are explained 

in the following example in which Seed Batch 3 (S3) is used as a reference batch and 

Production Batch 1 (P1) as a batch that needs re-sampling.  As stated in Table 4-1, S3 

and P1 have 89 and 236 NIR spectra respectively. Therefore, P1 needs to be re-

sampled so that the number of NIR spectra is as close as possible to 89. To 

accomplish this, every other NIR spectrum was selected starting from the first one. This 

reduced the NIR spectra to 118. Figure 4.12 describes monoclonal antibodies cell 

culture growth phases relative to the NIR spectra collected throughout the duration of 

S3 and P1. It can be seen that re-sampling of the spectra takes account of the spectra 

throughout the duration of the batch whilst reducing the batch length. Once re-sampled, 

P1 is cut to a minimum length of 89 NIR spectra prior to developing the model using 

the matrix unfolding approach discussed in Section 4.5. Even though the re-sampled 

batch data still needs to be reduced, this only resulted in a few NIR spectra being 

removed in contrast to cutting to minimum length from original batch. If P1 is simply cut 

to synchronize with the length of S3, NIR spectra from the middle of the growth phase 

to the end of the batch run will be discarded.  
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Figure 4.12 Cell culture growth phase relative to NIR spectra 

4.7 Development of Process Representation 

The focus of the analysis is to develop an integrated discrete wavelet transform-

multiway PCA model to extract underlying behaviour and distinctive characteristics of 

the process batches, seed and production, i.e. to fingerprint the process. The ultimate 

goal is to link the behaviour and characteristics of the seed and production batches to 

the genealogy.  

 

Prior to the development of the integrated discrete wavelet transform-multiway PCA 

model, an initial study was conducted. In the initial study, a range of approaches were 

investigated to determine the most appropriate approach to accomplish the objectives 

of this study. Results from this study formed the basis of the proposed approach. 

Details of the initial study are discussed in each development stage of the process 

representation. 

 

Seven seed batches were included in the development of the fingerprint. The 

representation was then applied to the production batches. Differences between the 

batches were revealed via scores plots and were further investigated through the 
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loading of the wavelet features to the scores. Having preprocessed the raw NIR 

spectra using first derivative, the next step was to develop a fingerprinting 

representation. Fingerprinting in the context of this thesis is defined as the underlying 

pattern of the data represented by the PCA metrics. A schematic of the development of 

the process representation is illustrated in Figure 4.13. 

 

 The development of the process representation comprises three key stages: 

investigation and implementation of the discrete wavelet transform, application of 

feature extraction, and projection of the selected features from the seed and production 

batches onto the PCA space. The first stage, the discrete wavelet transform, involves 

determining the appropriate wavelet family and decomposition level to be applied to the 

NIR spectra of the batches to transform them into different frequency components. 

Details of the discrete wavelet transform implementation to the NIR spectra is 

discussed in Section 4.9 with the selection of wavenumber intervals outlined in Section 

4.9.2. The second stage describes the feature extraction step and is discussed in 

Section 4.10. Finally the third stage focus on the superposition of the production batch 

onto the developed representation and is discussed Section 4.11. Each stage starts 

with an initial study with the aim of selecting the optimal approach for that stage. 

Results from this study are discussed along with the subsequent development stages.  



Chapter 4 Integrated Modelling for NIR Industrial Process Data 

 

70 
 

 

Figure 4.13 A schematic diagram of the development of process representation of the 
NIR data 

4.8 Motivation for Integrated Modelling 

The implementation of the combination of the discrete wavelet transform and MPCA 

was driven by results from the initial study. In the initial study, MPCA was applied to the 

first derivative NIR spectra (all wavenumbers) and it is observed that batches (seed 

and production) from the same family were clustered as shown in Figure 4.14. It is 

important to note that the goal of developing the process representation is to 

investigate whether process understanding may be improved by drawing on 

information from the process genealogy. Thus, this finding is agreeable as batches 

from the same family were expected to display similarities in their behaviour which is 

reflected in the bivariate scores plot. Figure 4.15 shows closer observation of the seed 
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and production batches for Family 1. It is observed that the top batch in the genealogy 

is located at the right end whilst the bottom batch in the genealogy is located at the left 

end. It is observed that batch position in the cluster is sequential according to their 

position in the genealogy. The parent (S1) on the right end, the child (P1) on the left 

end, and the other batches following through.  On the other hand, this finding is 

unsatisfactory as the correlation between families in the genealogy is not evident, for 

example S6 of Family 2 and S4 of Family 3 were subcultured from S3 and S2 

respectively.  

 

PC1 and PC2 explain approximately 99% of the variance whereas PC3 and PC4 

explain of the order of 0.005%. The bivariate scores plot of PC3 and PC4 is shown in 

Figure 4.16 where the small magnitude of the variance explained translate into the 

batches overlapping and non-evident clustering. This preliminary result suggests that 

meaningful information is being masked in the NIR spectra hence the integration 

approach was proposed. 

 

 

Figure 4.14 Bivariate scores plot of PC1 vs. PC2 for all wavenumbers  
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Figure 4.15 Zooming in on Family 1 on Figure 4.14 

 

Figure 4.16 Bivariate scores plot of PC3 vs. PC4 for all wavenumbers 
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It has been demonstrated in a significant number of papers that multivariate statistical 

techniques can be very useful in extracting valuable information and demonstrating 

correlation structures in a dataset thereby enhancing process knowledge (Kirdar et al., 

2007). Through scores and loading plots, Kirdar et al. (2007) successfully extracted 

process knowledge from cell culture process data comprising small scale (2 litres) and 

large scale (2000 litres) batches to assess scale up and comparability of the process. 

In terms of PCA applications, which focused on investigating NIR spectra generated 

from cell cultures to help identify bioprocess variations, Vaidyanathan et al. (2001a) 

concluded that PCA can identify variations in a bioprocess relative to changes in 

spectral information and can assess the structure of the data in terms of differences 

within and between process.  

 

Furthermore, PCA has been proven to be an effective method for identifying abnormal 

process conditions in both continuous and batch industrial processes (Kourti, 2005). A 

process representation based on MPCA has been demonstrated to successfully 

distinguish between high and low productivity of industrial seed fermentation batches 

(Cunha et al., 2002). Their model was developed to investigate the benefits of including 

seed quality information into data-based models for final productivity estimation. Cunha 

et al. (2002) took two different approaches to handling different batch lengths in their 

production-scale seed data. Firstly, the on-line data from the first 24-hours of the 

cultivation were discarded, followed by cutting to the length of the shortest batch. In the 

second approach, they subsampled the on-line data at hourly intervals in reverse order 

from the end of the cultivation. Gunther et al. (2007) successfully developed a process 

representation based on PCA to detect and diagnose abnormal process conditions in 

an industrial fed-batch cell culture process. Three fault types, irregular thermal heating, 

elevated dissolved oxygen values, and large variations in agitation were detected by 

their model.  
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In another development, Luo and Chen (2007), and Teixeira et al. (2009) investigated a 

combined PCA and PLS approach. Despite a wide range of reactor operating 

conditions, the combined PCA and PLS model of Teixeira et al. (2009) accurately 

estimated the concentration of viable cells and the concentration of recombinant 

protein in mammalian cell cultures. Studies by Roggo et al. (2004) used PCA to 

compare pharmaceutical products produced at different manufacturing sites. Their PCA 

score plots demonstrated that spectra recorded at different manufacturing sites are 

statistically different due to differences in physical aspects including particle size and 

aspects of surface or density, and moisture content of the tablets.  

 

The application of PCA however, faces two limitations, poor discriminatory power and 

large computational load, as identified by Feng et al. (2000) in a study pertaining to 

human face recognition. Hence, the combination of the wavelet transform and PCA 

approach was proposed. A study conducted by Shao et al. (1999) used the wavelet 

coefficients as inputs into a non-linear principal component analysis algorithm. The 

focus of the study was to implement non-linear PCA for process monitoring and fault 

detection on industrial process data. The application of the wavelet transform for 

identification purposes has also been successfully demonstrated for the detection of 

infrared spectra of benzenes (Bos and Vrielink, 1994). A study by Tian et al. (2005) 

proposed integrating wavelet coefficients with principal component analysis (PCA) for 

better extraction of defect information for pulsed eddy current non-destructive testing. 

The focus was on classifying and quantifying the defect signals extracted from the 

pulsed eddy current signals.  

 

Other applications of the combination of the wavelet transform and PCA approach 

include de Bianchi et al. (2006) and Borah et al. (2007) where the wavelet 

transformation  was used to consider extracted image features, in the area of facial 

expressions and tea granules respectively. The latter used a combination of the 

wavelet transform and principal component analysis to classify the tea granules. Even 
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though both adopted the basic principles of integrating the wavelet transform with PCA 

their approaches differed. de Bianchi et al. (2006) in their research applied the discrete 

wavelet transform to images and used the generated wavelet coefficients to create 

matrices that contained key features of the original data. Subsequently, principal 

component analysis was applied to the matrices to find the projections of the original 

data. Meanwhile Borah et al. (2007) used the fast wavelet transform (Daubechies 

family) to decompose the images of the tea granules into sub-band images. Statistical 

features including mean, variance, entropy and energy, of the sub-band images were 

calculated. In this research, principal component analysis was used as a visualization 

method to differentiate between the statistical features. 

 

Apart from quantification and classification, the integration of the wavelet transform and 

principal component analysis may also result in a reduction in the size of the dataset as 

suggested by Trygg et al. (2001). It was shown in this study that the NIR dataset 

collected from the on-line monitoring of wood chips was reduced 70 times from its 

original size.  

 

Based on the literature discussed above, two hypotheses are proposed. The first is that 

by integrating the wavelet transform and principal component analysis, important 

information can be extracted and analysed from a large set of data. Secondly, the 

versatility offered by the integration of the wavelet transform and principal component 

analysis draws on the abilities of the wavelet transform to zoom in and zoom out of any 

part of the signal and also reduce data size. Furthermore the ability of principal 

component analysis to reduce the number of original variables into a smaller number of 

uncorrelated variables is utilized. The next logical step in this research is to apply the 

concept to analyse the NIR spectra from the seed and production batches.  
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4.9  Discrete Wavelet Transform 

Within this section, two investigations are reported. The first relates to the type of 

wavelet family to be used in transforming the NIR spectra and the second concerns the 

selection of the decomposition level.  

4.9.1 Selection of Wavelet Family and Decomposition Level 

The two-dimensional NIR data matrix, E, shown in Figure 4.10 was first analysed using 

the discrete wavelet transform decomposition. Prior to the analysis, the first task was to 

determine the appropriate mother wavelet and the number of decomposition levels to 

be used for the analysis. There is no defined approach for selecting either factor when 

applying the discrete wavelet transform.  

 

However, Mallat (1998) emphasized selecting a mother wavelet that produces a 

maximum number of wavelet coefficients that are close to zero and therefore can 

efficiently approximate signals with a few non-zero coefficients. Properties of a mother 

wavelet including the number of vanishing moments and the support size of the 

wavelet determine the number of ‘close to zero’ wavelet coefficients of a signal. The 

number of vanishing moments is a criterion of wavelets that enables a wavelet to 

suppress a polynomial. The need to suppress a signal in the application of the wavelet 

transform is so that the remainder of the signal may be highlighted. As explained by 

Strang & Nguyen (1997) the number of vanishing moments in a wavelet determines the 

degree of accuracy of the wavelet in representing a signal. Also, numerous vanishing 

moments helps eliminate background effects in a signal (Chen et al., 2004). As for the 

support size, a minimal support of a mother wavelet means fewer large magnitude 

wavelet coefficients (Chau et al., 2004). 
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The Daubechies mother wavelets have a minimum size support for a given number of 

vanishing moments which effectively suppresses low degree polynomials present in 

NIR spectra (Esteban-Diez et al., 2004). Therefore in determining the appropriate 

mother wavelet for the subsequent analysis, two members of the Daubechies family 

were investigated: db3 and db5, where ‘db’ represents the wavelet name and the 

number next to the wavelet name represents the number of vanishing moments for the 

subclass of wavelet. Daubechies family members have been applied previously to NIR 

spectra, for example db4 and db6 (Cai et al., 2008), db4 (Esteban-Diez et al., 2004) , 

and db4, db6, db8,db10 and db12  (Bos and Vrielink, 1994). Comparing the results 

from wavelet decomposition performed with db3 level 3 (Figure 4.17) and db5 level 3 

(Figure 4.18), it is observed that the high amplitude of wavelet coefficients in the sub-

band D3 was evident in db5. Based on this db5 was deemed to be the more suitable of 

the two. Wavelet decomposition performed with db3 level 5 and db3 level 10 can be 

referred to in Appendix A. 

 

The next stage was to determine the level of decomposition of the discrete wavelet 

transform. The maximum level of decomposition to apply depends on the total points in 

a spectrum, since each decomposition level involves a down-sampling by 2. Previous 

literature including Bruce et al. (2002) and Jouan-Rimbaud et al. (1997) applied 

different decomposition levels. Bruce et al. (2002) selected seven levels of 

decomposition with a range of mother wavelet including Haar, Daubechies, 

Biorthogonal, Coiflet and Symlet to extract features from agricultural hyperspectral 

data. The study showed that the extracted wavelet coefficients resulted in a significant 

increase in classification accuracy in contrast to techniques such as best spectral band 

selection and traditional PCA. Meanwhile, Jouan-Rimbaud et al. (1997) applied four  

levels of decomposition with two Daubechies family (db8 and db9) on NIR spectra 

datasets. Elimination of irrelevant signal component and noise from the original signal 

prior to multivariate calibration resulted in an improved PLS model.  
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A decomposition of level 5 was selected following the analysis of each batch using 

decomposition levels 3, 5 and 10. An example of the analysis on a single spectrum 

from Seed Batch 1 is shown in Figure 4.18, Figure 4.19, and Figure 4.20 respectively. 

Through visual comparison between Figure 4.18 and Figure 4.19, level 3 was not 

chosen because it only extracted a limited amount of the high frequency components 

from the original spectrum. Furthermore it was observed in Figure 4.20 that from A6 to 

A10 the wavelet approximation coefficients show little resemblance to the original 

spectra. Hence the decision not to use level ten since the aim of performing the 

wavelet decomposition is to efficiently represent the signal.  

 

 

Figure 4.17 Wavelet decomposition using db3 with 3 levels of decomposition 
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Figure 4.18 Wavelet decomposition using db5 with 3 levels of decomposition 

 

Figure 4.19 Wavelet decomposition using db5 with 5 levels of decomposition 
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Figure 4.20 Wavelet decomposition using db5 with 10 levels of decomposition 
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4.9.2 Wavenumber Interval Selection in Spectral Data Analysis 

Following the series of investigations in terms of the application of the discrete wavelet 

transform to the NIR spectra, the next step was to select appropriate wavenumber 

regions. Only selected regions of the spectrum were used to build the fingerprint 

representation because information of interest lay in a relatively small number of 

spectral regions. Essentially, the remainder of the spectral regions that are deemed 

uninformative were eliminated because they may lead to a degradation in the result. 

Namkung et al. (2008) built a PLS model on a selected spectral range for the analysis 

of etchant solutions and proved that the prediction selectivity was significantly 

degraded in a condition where whole spectral range was used for the model.  

 

Glucose plays a vital role in the success of MAb manufacture as it is the primary 

carbon and energy source for mammalian cells. Arnold et al. (2003) suggested that 

monitoring the on-line NIR spectra measurements of glucose levels within animal cell 

culture systems may avoid premature cell death, thus leading to higher productivity. 

This indicates that the glucose spectral regions contain a wealth of information that 

may help determine the behaviour of the batches relative to their genealogy. The 

spectral regions used in this study were selected based on glucose (CH) overtones 

regions. These regions were first CH overtone (1600 – 1800 nm), second CH overtone 

(1100 – 1250 nm), third CH overtone (850 – 950 nm), and fourth CH overtone (700 – 

800 nm). The spectral regions representing other important analytes including 

ammonia and lactate were not investigated because they are by-products of the 

process and this study aims to focus on the main analyte that contribute to growth in 

the cell culture. 

 

The selection of wavenumber intervals in NIR spectral measurements applied to cell 

culture systems has been addressed in several small scale studies and the 

wavenumber intervals adopted vary according to the objectives and analytes of 
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interest. The mammalian cell lines used in this study were used in previous studies. 

One key difference was that the previous models built using glucose spectral region 

were calibration models (Roychoudhury et al., 2007; Arnold et al., 2003; Hagman and 

Sivertsson, 1998). Although the models built by these authors were based on glucose 

wavenumber regions, the selected wavenumber regions varied. Roychoudhury et al. 

(2007) selected the first overtone of C-H combinations band (1333-1640 nm) whereas 

Arnold et al. (2003) opted to use C-H first overtone band (1650 – 1750 nm) and C-H 

combination band (2260 – 2290 nm) to build their calibration model for glucose. 

Hagman and Sivertsson (1998) did not specify the spectra regions used in their 

calibration model despite highlighting the need to use the spectral region which shows 

strong intensity of the analyte band and low intensity of the interfering compounds. For 

other types of cell culture systems, different wavenumber regions were chosen to 

model glucose. The choice of wavenumber regions, however, ultimately depends on 

the nature of application (Vaidyanathan et al., 1999; Ge et al., 1994).  

4.10 Integrated Wavelet Decomposition-Multiway PCA Model 

As outlined in Section 4.5, a batch process comprising NIR spectra is unfolded to a 

two-dimensional data matrix E (KxIJ) illustrated in Figure 4.10. The rows of matrix E, 

k=1,2,...,K are number of spectra logged throughout i=1,2,…, I batch runs and the 

columns j=1,2,...,J are wavenumber of the NIR spectra. Information contained in the 

NIR spectra is the absorbance intensity of the animal cell culture cultivation in the 

bioreactor.  

 

After the selection of appropriate wavenumber regions, a process representation was 

built. The full NIR spectra consisted of 1945 data points but by partitioning the spectra 

according to the CH bands as illustrated in Figure 4.21, the resulting spectra comprised 

200 (CH1), 150 (CH2), 100 (CH3) and 100 (CH4) wavenumber in the four NIR 
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overtone regions respectively. Each CH band was modelled separately as well as in 

combination, i.e. 550 wavenumbers. 

 

 

Figure 4.21 NIR spectra partitioned into CH bands to the four overtone regions.  

Once the NIR spectra were partitioned, the discrete wavelet transform (db5) was 

applied to the partitioned columns of the unfolded matrix E. This transformed the NIR 

spectra into wavelet coefficients thereby providing a compact representation that 

shows the energy distribution of the NIR spectra in time and frequency. The five levels 

of wavelet decomposition partitioned the NIR spectra into ten sub-bands; cD1, cD2, 

cD3, cD4, cD5, cA1, cA2, cA3, cA4 and cA5, where the first five are detail sub-bands and 

the latter five are approximation sub-bands.  The letter ‘c’ in the abbreviation of the 

sub-bands stands for wavelet coefficient, ‘D’ for detail sub-band, ‘A’ for approximation 

sub-band, and the number represents the level of wavelet decomposition. 

 

Each sub-band contains wavelet coefficients of the corresponding wavelet 

decomposition level. In wavelet terms, this procedure is known as multiresolution 

wavelet decomposition. The procedure of multiresolution wavelet decomposition for the 

first CH overtone region is shown in Figure 4.22. It summarises the number of wavelet 
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coefficients in each sub-band following a discrete wavelet decomposition. These 

wavelet coefficients are often called features and using they have been found to be 

useful for discrimination (Bos and Vrielink, 1994). In their study they showed that the 

wavelet coefficients extracted features from the infra-red spectra that enabled the 

identification of benzenes.  

 

 

Figure 4.22 Wavelet decomposition of a NIR spectra in first CH overtone region in 
terms of its coefficients. 

Based on the discrete wavelet transform theory discussed in Section 3.2, the original 

signal can be reconstructed from these sub-bands. However, reconstruction of the 

original NIR spectra directly after its decomposition defeats the purpose of transforming 

it in the first place. As pointed out by Daubechies (1992), the application of wavelet 

decomposition allows further manipulation of the NIR spectral data which has been 

transformed into wavelet coefficients. Therefore to extract the underlying information in 

the NIR spectra, manipulation of the wavelet coefficients is required to identify 

characteristics of the signal that were not apparent from the original NIR spectra. In this 



Chapter 4 Integrated Modelling for NIR Industrial Process Data 

 

85 
 

study, manipulation of the wavelet coefficient takes the form of calculating its statistical 

feature (standard deviation). 

 

On completion of the wavelet decomposition, the wavelet coefficients were mean 

centred without scaling to unit variance. Scaling is omitted because the NIR spectra 

absorbance intensities are measured in the same units (Gurden et al., 2002). The 

process of mean centring the wavelet coefficients was to calculate the row-wise 

average and subtract it from each wavelet coefficient, thereby relocating the mean at 

the origin.  After mean centring, the standard deviation of the mean centred wavelet 

coefficients was calculated. Details of these procedures are described in Figure 4.23 

using sub-band cD1 of the NIR spectra in the first CH overtone region.  

 

It has been suggested that accuracy of the classification is often improved by 

representing signals by their important features (Cvetkovic et al., 2008; Jahankhani et 

al., 2006). Also, to prevent overfitting, it is best to keep the features used for 

classification to less than one-third of the number of points in the original dataset 

(Walczak et al., 1996). Therefore, prior to applying PCA, the mean centred wavelet 

coefficients were further manipulated by calculating their standard deviation. Other 

statistical features including mean, maximum and minimum of the wavelet coefficients 

were not considered as this study focuses on the measurement of dispersion between 

the wavelet coefficients.  

 

Calculation of the standard deviation for the 6 sub-bands for each NIR spectra resulted 

in a total of six features per spectra. Each NIR spectra has now been reduced by 

approximately 320-fold, i.e. from 1945 points to 6 features. Figure 4.24 shows the six 

features per spectrum extracted from the seed batches. The x-axis represents the 

number of spectra from each batch where the batches were arranged according to the 

genealogy discussed previously. The y-axis represents the magnitude of the standard 

deviation in each sub-band. The top graph shows the features extracted from the sub-
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band cA5, followed by graphs of features extracted from sub-band cD5, cD4, cD3, cD2 

and cD1. It is observed that the magnitude of the features in the sub-band cA5, cD5, 

cD4 and cD3 of batch S6 were lower that the features from other batches. The impact 

of this difference is shown in the subsequent PCA analysis (Section 4.11.1).  

 

The new matrix contains the standard deviations of the mean centred wavelet 

coefficients and this will be used as an input for unsupervised principal component 

analysis. The loadings were then used to project the resulting standard deviation for 

the production batches onto the principal component space. 

  

                 Equation 4.1 

 

where  

    Matrix of the projected scores of the production batches 

           standard deviation extracted from the production batches 

   = Loadings matrix obtained from the PCA of seed batches 

 

 

The results of the analyses are discussed in the following section. It is important to note 

that in this study the standard deviation was employed to represent the original spectra 

in the unsupervised principal component analysis.  
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Original matrix of cD1 sub-band: 
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Mean of the sub-band is calculated as follows: 

 

 ̅ =                                            

                          
 

Equation 4.2 

 

resulting in a column vector : 
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Thus matrix of the mean centred sub-band cD1 is: 
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Then, standard deviation,     
  , of the mean centred sub-band cD1 is calculated as follows: 

    
  

√
        ̅            ̅     (       ̅ )

 

                                                 
 

Equation 4.3 

 

where   ̅   mean of the mean centred matrix; calculated using a formula similar to 

Equation 4.2.  

 

The resulting vector is a matrix as follows: 

 

          

         

 
         

 

 

 

 

   

  

Figure 4.23 Derivation of the calculation of the mean centred sub-band and its standard 
deviation 
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Figure 4.24 Features extracted from the seed batches in each sub-band  

4.11  Results and Discussion of the Integrated Model 

PCA was performed on the extracted features of the NIR spectra and it is found that 

two principal components capture more than 90% of the variance in the datasets, as 

shown in Table 4-2. Figure 4.25 to Figure 4.36 show the bivariate score plots for the 

four CH overtone regions for PC1 and PC2.  

 

The bivariate scores plots provide a visual representation and a summary of the 

relationship between the extracted features of the spectral data enabling interpretation 

of the spectral fingerprints in the context of the genealogy of the batches. Wavelet 

features loading plots were then analysed to provide further in depth analysis.  

 

The labeling convention used throughout the bivariate scores plots was based on 

colours being used to represent each family with different symbols defining the position 
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of the batches in the genealogy. As shown in Figure 4.3, S3 and S4 were direct 

successors of S2, and were inoculated on the same date, thus they are represented by 

the same symbol. All production batches were represented with the symbol ‘+’ despite 

being in different families. The reason is that all three production batches were cultured 

on the same date and there is only one production batch in each family.  

 

It is important to note that square prediction error (SPE) and Hotelling T2 were not 

analysed in this study because these two metrics are more applicable for process 

monitoring and fault detection.  

 

Table 4-2 Percentage of variance explained by the individual principal components 

Principal component 1 2 3 4 

First CH 

Overtone 

Individual %variance captured 97.49 2.38 0.12 0.01 

Cumulative %variance captured 
97.49 99.87 99.99 100 

Second CH 

Overtone 

Individual %variance captured 92.50 7.48 0.02 - 

Cumulative %variance captured 
92.50 99.98 100 - 

Third CH 

Overtone 

Individual %variance captured 99.57 0.23 0.16 0.04 

Cumulative %variance captured 
99.57 99.80 99.96 100 

Fourth CH 

Overtone 

Individual %variance captured 81.47 12.23 5.24 1.00 

Cumulative %variance captured 
81.47 93.70 98.95 99.95 

ALL CH 

Overtone 

Individual %variance captured 
96.46 3.44 0.08 0.01 

Cumulative %variance captured 
96.46 99.90 99.98 99.99 
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4.11.1 Principal Component Scores Plots 

In the first CH overtone, the plane defined by the first two principal components (PC1 

vs. PC2) explains 99.87% of the variance of the dataset. It is interesting to observe a 

separation between seed batches and production batches, with the exception of P2, 

along the PC2 axis as shown in Figure 4.25. The cluster of production batches (except 

for P2) are located to the top right of the separation line i.e. in the dotted circle. P2 

however is interspersed between the clusters of Family 1 seed batches and Family 3 

seed batches. The seed batches of Family 1 are located diagonally at the origin 

whereas the seed batches of Family 3 (blue) are spread diagonally to the right of PC2. 

Furthermore, it is observed that seed batch of Family 2 is placed to the left of Family 1 

and spread vertically across PC1. Figure 4.26 zooms in on the features of S4 and S7 

that deviated from the main cluster of seed batches which were located towards the 

bottom right of the figure. Further interrogation on the PC1-PC2 space reveals they are 

the extracted features at the end of S4 and the beginning of S7. Based on the 

genealogy, the cell culture in S4 was used to subculture S7 and this results in overlaps 

of the spectra. Meanwhile Figure 4.27 shows the area where S4 overlaps with seed 

batches of Family 1.  

 

As described previously in Section 4.2, the spectra comprised 89 spectra. In context of 

the cell culture growth curve, approximately the first 20 spectra represent Day 1 (lag 

phase) whilst the remaining spectra represent Day 2 to Day 3 (spectra 21 to 70) and 

Day 4 (exponential phase i.e. spectra 71 to 89) of the subculture process (Figure 4.5).  
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Figure 4.25 PC1 vs. PC2 for first CH overtone 

 

Figure 4.26 PC1 vs. PC2 for first CH overtone - features of S4 and S7 that deviate from 
the main cluster of seed batches 
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Figure 4.27 PC1 vs. PC2 for first CH overtone – features of P2 overlap with Family 1 
seed batches  

 

Figure 4.28 PC1 vs. PC2 for second CH overtone 

It can be seen that for the second CH overtone the seed batches of Family 3 were 

scattered diagonally across PC1 and PC2 (Figure 4.28). PC1 and PC2 explained 

99.98% of the variance in the features extracted from the second CH overtone. Some 
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features from the cluster of Family 3 seed batches were detected at the top right, far 

from the majority of features for the same family. These are the same features 

identified in the first CH overtone analysis (Figure 4.29). Figure 4.30 and Figure 4.31 

exhibit two areas where the overlaps occur: features from the end of S7 overlap with 

the middle of P1, and features from the middle of S4 merge with the start of P2, 

respectively. A cluster of Family 1 seed batches (S1, S2, S3 and S5) were located near 

the origin whilst at its top left is a S5 of Family 1 and S6 of Family 2.  Extracted features 

of the production batches from Family 1 (P1) and Family 2 (P2) form a tight cluster 

within itself whereas the features of the production batch of Family 3 (P3) were spread 

out near to the cluster of Family 3 seed batches. Further discussion regarding the 

relationship between the principal component scores and the genealogy is discussed in 

Section 4.11.3. 

 

 

Figure 4.29 PC1 vs. PC2 for second CH overtone - features of S7 that deviate from the 
main cluster of seed batches 
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Figure 4.30 PC1 vs. PC2 for second CH overtone - overlap between features from end 
of S7 with middle P1 

 

Figure 4.31 PC1 vs. PC2 for second CH overtone - overlap between features from 
middle of S4 with start of P2 
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For the third CH overtone, it is clearly seen in Figure 4.32 that the extracted features 

divide into two clusters: the seed batches to the left, and the production batches to the 

right of the separation line.  There is however, a slight overlap between the Family 3 

seed batches with the cluster of production batches along PC1. Figure 4.33 shows a 

closer view of the overlap. It can be seen that the features from the end of S4 and S7 

are interspersed with features from the middle of P7. Also, features from the middle of 

S7 overlap with features at the start of P2.    

 

 

Figure 4.32 PC1 vs. PC2 for third CH overtone 
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Figure 4.33 PC1 vs. PC2 for third CH overtone – overlap between seed and production 
clusters 

Extracted features of the NIR spectra in the fourth CH overtone are more scattered 

compared to the other three CH overtones. Although the objectives differ to those in 

Roychoudhry et al. (2007), whose findings showed that the variance is greater at lower 

wavenumbers due to the energy throughput being directly proportional to the 

wavenumber. As shown in Table 4-2, the percentage of variance captured in the fourth 

CH overtone by the first four principal components is 94.85%, approximately 5% less 

than the other three CH overtones. The scores scatter plot of the NIR extracted 

features in fourth CH overtone (Figure 4.34) shows a slight resemblance to those in 

third CH overtone (Figure 4.32). The cluster of seed batches is located at the top left of 

the separation line whereas the cluster of production batches is placed at the bottom 

right. Also there is an overlap between clusters of seed batches and production 

batches. The overlap in the fourth CH overtone involves all except one of the seed 

batches (S1). Detailed discussion is presented in Section 4.11.3. 
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Figure 4.34 PC1 vs. PC2 for fourth CH overtone 

 

 

Figure 4.35 PC1 vs. PC2 for fourth CH overtone - overlap between seed and 
production clusters 

Finally a model was established which combines the individual overtone CH regions. It 

is interesting to note that the resulting representation is heavily influenced by the first 

CH overtone region as shown in the bivariate scores plot (Figure 4.36) with it being 

very similar to the bivariate plot for the first CH overtone (Figure 4.25). This shows that 
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the behaviour of the NIR spectra in the first CH overtone shapes the overall average 

behaviour. The percentage of variance explained by the first two principal components 

for the combined CH overtone model is 99.91%.  

 

 

Figure 4.36 PC1 vs. PC2 for all CH overtones 

The bivariate scores plots for PC3 and PC4 for the individual CH overtones and the 

combined CH overtones were included in Appendix A.  

4.11.2 Loadings Plots  

Six wavelet sub-bands were taken into account for feature extraction. Figure 4.37 to 

Figure 4.41 show the univariate loadings plot of PC1 to PC4 in terms of the wavelet 

features for the individual CH overtones and the combined CH overtones. All five 

figures show that features extracted from A5, i.e. approximation coefficients sub-band 

from decomposition at level 5, have a large impact in terms of defining the direction of 

greatest varibility in PC1. For all CH overtones, the features from A5 are the largest 

positive loadings for PC1 as demonstrated in Figure 4.37 to Figure 4.40. This 

association between the A5 features and PC1 is an advantage because it reflects the 

ability of the model to captures the underlying information.  
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The proportion of the sub-band A5 decreases whilst the proportion of the sub-band D1 

increases as the principal component move from PC1 through to PC4.  This is 

anticipated as it relates to the content of detail coefficients of level 1 which is mostly 

high frequency component or better known as noise.    

 

Figure 4.37 Univariate loadings plot of PC1 to PC4 in terms of wavelet features for first 
CH overtone 

 

Figure 4.38 Univariate loadings plot of PC1 to PC4 in terms of wavelet features for 
second CH overtone 
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Figure 4.39 Univariate loadings plot of PC1 to PC4 in terms of wavelet features for third 
CH overtone 

 

 

Figure 4.40 Univariate loadings plot of PC1 to PC4 in terms of wavelet features for 
fourth CH overtone 
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Figure 4.41 Univariate loadings plot of PC1 to PC4 in terms of wavelet features for all 
CH overtones  

4.11.3 Discussion 

Although complex to interpret, the scores and wavelet feature loadings plots are shown 

to demonstrate how underlying information can be extracted in terms of the relationship 

between the batch genealogy and process behaviour. Changes in the spectral 

information that correspond to process genealogy could be deciphered from these 

plots. These are discussed in detail in this section.  

 

There are a number of factors which may cause the clustering behavior identified in 

terms of the spectral data for the seed batches within the same family and between 

different families, and the production batches of different families (Figure 4.25, Figure 

4.28, and Figure 4.32). The factors vary from the apparatus used in the experiment 

such as the probes and bioreactors, to the process related measurements such as cell 

density, subculture ratio and passage number.  

 

The probes and bioreactors have a strong influence in terms of the clustering of the 

batches. Optical differences between probes have been shown to cause the most 
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variability in the NIR spectra and these differences are detectable in the scores plot 

(Roychoudhury et al., 2007). Based on the information from the engineer in charge of 

the manufacturing process, for the genealogy under study there exist optical 

differences between the probes used in different bioreactors. Minor differences in the 

alignment and calibration of each probe results in minor differences between the 

spectra collected. It is thus possible that the differences or similarities detected 

between the different families were a result of the optical differences or similarities of 

the probes. On the one hand, this variability is an advantage in that seed batches 

cultured in the same bioreactor with the same probe would be expected to form a 

cluster. On the other hand, the setting up of the probes is done manually.  In a situation 

where the probes were not set up in a consistent manner by the operator, probe set up 

variability may occur. This can lead to reduced signal intensity and impact on the 

starting baseline and detector limit for saturation. Similar to probe set up variability, 

variability in bioreactor set up and operation may also contribute to differences between 

bioreactors with small differences in bioreactor set up and operation having a large 

impact on growth and substrate utilisation characteristics of a culture.  

 

Aside from the apparatus used in the experiment, subculture ratio and passage number 

are other contributing factors that can impact the clustering behaviour of the batches. 

Subculture ratio which is also known as inoculum carry over ratio is a measure of how 

much an inoculum culture is diluted to achieve a specified starting viable cell 

concentration in a subsequent culture. Subculture ratio is of importance because it 

indicates the volume of carryover material from the inoculum. The volume being carried 

over from the previous to the next batch is measured based on the volume of alkali 

being carried over. It is a ratio of the final time of the batch run (in seconds) to 

subculture ratio. As some component in the inoculum is being carried over into the 

subsequent culture, this will impact on the startup and progression of the culture and 

spectral fingerprint. The volume of alkali carry over affects not only process behaviour 

but also the quality of the NIR spectra. In the alkali carried over, there is a substance 
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named methyl red and the yellow colour of the methyl red base will change to red if the 

culture inside the bioreactor turns acidic. The red colour of methyl red may affect the 

quality of spectra collected by the spectrometer.  

 

The graphs for subculture ratio for all three families are shown in Figure 4.42 (a), (b) 

and (c). During the MAb manufacturing process, the subculture ratio in S2 shows a 

significant drop from the subculture ratio of its predecessor, S1 as depicted in Figure 

4.42 (b). S2 is then directly used to derive Family 3, as described in the genealogy of 

the batches shown in Figure 4.3. It is conjectured these two factors have caused the 

projection on principal components space of both seed batches in Family 3 to part with 

the projection of seed batches from Family 1 and 2.  

 

Passage number of the mammalian cell culture is another factor to be considered. As a 

culture goes through successive passages in similar culture conditions, a culture can 

display adaptation characteristics such as faster growth and substrate utilisation, higher 

cell concentration and so forth. 

 

On the other hand, the projections of Families 1 and 2 in the principal component 

space is strong evidence that support the hypothesis that batches originating from the 

same ancestor exhibit similar behaviour. The fact that Families 1 and 2 were projected 

near each other in the principal component space despite being inoculated in different 

bioreactors and different probes were used to obtain the spectra measurement should 

not be overlooked. Furthermore, through the plot of the subculture ratio of Families 1, 2 

and 3 in Figure 4.42, it can be seen that the trend of the subculture ratio for Family 1 

and 2 are similar compared to Family 3. This is probably another factor that contributes 

to the clustering pattern seen in Figure 4.25 to Figure 4.36.  
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Figure 4.42  Subculture ratio of (a) Family 1. (b) Family 2, and (c) Family 3. 
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4.12 Summary 

The capabilities of the integrated approach, which combines the discrete wavelet 

transform and PCA, were demonstrated by its application to NIR spectra from an 

industrial monoclonal antibody batch process. The NIR spectra were initially 

preprocessed using first derivatives prior to equalizing batch length using an approach 

that was based on the underlying biological process. The discrete wavelet 

decomposition with an appropriate mother wavelet and wavelet decomposition level 

was applied to the glucose overtone regions. The next stage was to apply multiway 

PCA to the decomposed NIR spectra from the seed batches. The production batches 

were then projected onto this representation and difference in behaviour were 

observed through loadings analysis.  

 

This study demonstrates that the integrated approach was able to identify and 

differentiate using spectral features between different batches. The information 

extracted from the integrated model coupled with the information from the genealogy of 

the batches aid understanding of process behaviour. This development theoretically 

provides a powerful tool to enhance the understanding of process behaviour. It is 

possible to utilise the methodology to assist in scaling-up a process from pilot plant to 

full scale manufacturing plant. Results generated from this study can be utilised to 

select the suitable batches to be subcultured in the commercialization process based 

on the families in the genealogy that demonstrate stable and robust behaviour.  

 

In the next chapter, the versatility of the integrated model is tested on a different type of 

dataset with a different objective. The dataset under investigation in Chapter 5 is in the 

form of electrospray ionisation mass spectra collected from another manufacture of 

monoclonal antibody cell lines where the main objective is the characterisation of the 

criteria that differentiate between high and low CHO cell lines.  
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Chapter 5 Enhanced Integrated Model Application on ESI Data 

5.1 Introduction 

The high cost of generating cell lines for recombinant monoclonal antibodies (MAb) 

production necessitates improvements in production techniques to ensure product 

quality, a reduction in development timelines, and an increase in cost efficiency. 

Enhancements in the initial steps of the development process would reduce the time 

from development to commercialization. One of the major challenges in the 

development process involves the rapid screening and selecting of highly productive 

and stable cell lines from the transfectant population (Li et al., 2010). Figure 5.1 shows 

diagrammatically the strategy for the selection of a recombinant MAb cell line.In paving 

the way towards commercialization, one key issue is to identify the criteria that 

differentiate between high and low producer cell lines.  

 

 

Figure 5.1 A strategy for recombinant MAb cell line selection 
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In Chapters 2 and 3, the background to the techniques used in the wavelet-PCA 

integrated approach were reviewed. Chapter 4 focused on the development of the 

wavelet and PCA integrated methodology and its application to investigate the impact 

of batch genealogy on process behaviour. Following the successful results from this 

case study, its more widespread applicability is investigated by applying it to analyse 

electrospray (i.e. electrospray ionisation, ESI) mass spectrometry data. The ESI data 

analysed in this Chapter was generated by Kent University.  

 

The goal of this second study was to distinguish between and characterize the criteria 

that enable differentiation between high and low producer CHO cell lines. This 

approach exploits the concepts of data mining, signal processing and multivariate 

statistical analysis. The motivation for this study is discussed in the Section 5.2. 

5.2 Motivation for Enhanced Model 

Two research areas that may help enhance in the development of cell lines are: 1) the 

extraction of meaningful information from the generated data set which is generally 

large, multidimensional and complex, and 2) the identification of techniques to interpret 

the information inherent within the data. The extraction of information from a complex 

data set is related to the technical challenges summarised by Hilario et al. (2006). 

Firstly, fingerprinting of mass spectra involves the need to extract patterns from 

data that is contaminated by noise, and secondly, the need to manage ‘high 

dimensional-small sample size’ data sets. It was suggested by Arneberg et al. 

(2007) and van den Berg et al. (2006) for protein mass spectra that appropriate 

preprocessing methods can address these technical challenges. In addition 

separating biological variation in the mass spectrometry data from variability pertaining 

to the influence from measurement noise can improve the biological interpretability of 

the developed models (Archibald and Akin, 2000).  
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Compounding these technical challenges are issues related to the screening and 

selection of highly productive and reproducible cell lines from amongst the transfectant 

population in a limited time frame. Furthermore, the product quality and productivity of 

cell lines is highly dependent on cell culture conditions (Li et al., 2010).  

 

Meanwhile, another ongoing issue is interpretability of models involving mass spectra 

classification. Hilario et al. (2006) stated that of the studies they reviewed many 

focused on the general performance of the models and failed to produce information on 

the model classifiers i.e. the mass-to-charge ratio of the ions, which would be of use to 

biomedical researchers. The definition of mass-to-charge ratio is explained in Section 

5.4. It is emphasised that the interpretation and identification of biomarkers will be less 

complicated if the information on the direction and magnitude of the discriminatory 

mass-to-charge ratio is provided. 

 

A considerable amount of literature has been published on mass spectrometry data 

fingerprinting and the objectives include investigation of preprocessing techniques for 

optimal feature extraction and fingerprinting of the mass spectrometry. Studies by 

Arneberg et al. (2007) and van den Berg et al. (2006) investigated the impact of 

different preprocessing techniques on the extraction of information from matrix-assisted 

laser desorption/ionisation mass spectrometry (MALDI-MS) and gas chromatography 

mass spectrometry (GC-MS) respectively. The impact of preprocessing techniques 

including smoothing, binning, centering, and scaling on the interpretation of the 

datasets was studied and it was shown that the outcome of the data analysis was 

significantly affected. For example, false biomarker candidates resulted from 

normalization of the spectral data without first addressing to the noise structure 

(Arneberg et al., 2007). Three important factors in determining a preprocessing 

technique that enable the extraction of information from a dataset are summarised by 

van den Berg et al. (2006), they are: (1) the biological question to be answered, (2) the 

properties of the data set, and (3) the chemometric tools selected.  
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In terms of mass spectrometry data fingerprinting, previous literature has focused on 

determining the fingerprint of the protein or metabolites, Zhang et al. (2006) and 

Danielsson et al. (2011). Zhang et al. (2006) showed that by fingerprinting the protein 

in MALDI-MS data the identification of three different types of mammalian cell was 

possible. Meanwhile Danielsson et al. (2011) successfully identified possible 

biomarkers of prostate and bladder cancer in human urine samples analysed with liquid 

chromatography–mass spectrometry (LC-MS). 

 

Fingerprinting of mass spectrometry data largely depends on the application of 

chemometric tools including PCA and analysis of variance (ANOVA). Trim et al. (2008) 

investigated the application of PCA to aid the interpretation of MALDI-MS image data of 

brain regions. Scores plots from the supervised PCA showed differentiation between 

different brain regions whilst interpretation of the loadings plots enabled the 

identification of white and grey matter in the brain. Other applications of PCA include 

Mattoli et al. (2011) and de Souza et al. (2007). In these cases PCA was applied to 

electrospray ionisation mass spectrometry (ESI-MS) to fingerprint botanical dietary 

products and alcoholic beverages respectively. There was clear separation between 

different classes of samples in both studies. ANOVA was applied to capillary 

electrophoresis electrospray ionisation time-of-flight mass spectrometry (CE-ESI-TOF-

MS) data generated from the analysis of human urine samples (Allard et al., 2008). 

Significant differences in intensities of the mass spectrometry due to the influence of 

three beverages (coffee, tea and water) were reflected in the first 10 principal 

components in that were presented to an ANOVA analysis.  

 

Despite intensive ongoing research into the fingerprinting of mass spectra, no study 

exists which address classification in the context of Electrospray Ionisation-Mass 

Spectroscopy (ESI-MS) data using integrated discrete wavelet transform-PCA. The 

application of the discrete wavelet transform to extract features from other types of 

protein mass spectra has been limited. A study by Xia et al. (2007) applied the wavelet 
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transform with PCA and artificial neural networks (ANN) to perform a pattern 

recognition task on a metabolimics dataset generated from gas chromatography-mass 

spectrum (GC-MS). Application of the wavelet transform allowed the decomposition of 

the spectra into wavelet sub-bands and the filtering of the noise component from the 

spectra through the wavelet denoising algorithm. The approach proposed was to 

remove all detail wavelet coefficients and thereby, reconstruct and classify the spectra 

using only the approximation wavelet coefficients. Contrary to Xia et al. (2007), 

Randolph and Yasui (2006) did not utilise using the wavelet denoising algorithm in the 

application of the multiscale wavelet transform to quantify MALDI-TOF mass 

spectrometry. Their methodology was based on a hypothesis that the identification and 

quantification of the signal content from the mass spectrometry was possible without 

prior estimation of the signal to noise ratio.  

 

Furthermore, although a number of studies discussed previously adopted PCA as their 

chemometric tool, the studies only focused on the analyses of the principal component 

scores and loadings. There exists further a tool in PCA that can be of used in the 

fingerprinting of protein mass spectra, contribution analysis.  

 

Contribution analysis was introduced in multivariate statistical process control to help 

identify which process variables were indicative of the changes in process signals for 

continuous and batch process (Conlin et al., 2000; Simoglou et al., 2000; Westerhuis et 

al., 2000). As described in Section 3.2.4, the contributions of individual variables to the 

principal component scores, squared prediction error (SPE or Q-statistic) and the 

Hotelling’s T2 (D-statistic) can be calculated. The basis of this technique is to compare 

the contributions of individual variables to the aforementioned statistics for a process 

which is recognized to not operate under normal conditions. The credibility of this 

approach has been successfully demonstrated by Simoglou et al. (2000), Nomikos 

(1996), Kourti et al. (1996) and Kourti et al. (1995). Even though the contribution 

analysis may not reveal the specific cause of the operational changes, it identifies the 
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non-conforming variables and in conjunction with process understanding the source of 

the issue can be diagnosed.  

 

This study introduces a new application of contribution analysis. The goal is to look at 

the contribution of the variables to help characterise the criteria that distinguish 

between high and low producing CHO cell lines. The integrated discrete wavelet 

decomposition-PCA approach results in the contribution analyses being performed on 

the wavelet coefficients.  

 

The utilisation of mathematical models is highlighted as one of the current challenges 

in pharmaceutical process development and manufacturing in the Pharmaceutical 

Quality for the 21st Century initiative introduced by the U.S. Food and Drug 

Administration (FDA) (FDA, 2009a; FDA, 2009b; FDA, 2006; FDA, 2004). This is 

concurrent with a shift in focus in cell line process development, with the goal being to 

control product quality and the process as opposed to achieving high titre (Li et al., 

2010).  Assessment of product quality and process performance necessitates the 

implementation of analytical tools including process modeling and simulation which 

utilize data generated during development and production.  

5.3 Process Description 

The process forming the basis of this study is the manufacture of recombinant MAb cell 

lines. The selection strategy is as shown in Figure 5.1. Firstly, the host cell line is first 

transfected with an expression vector. The transfected cell lines are then diluted and 

cultivated in 96 well plates and screened for highly productive cell lines. The selected 

cell lines progress to the next stage with non- or low cell line producers being 

discarded. The selected cell lines are then cultivated in a set of 24 well plates followed 

by another screening. The next two stages involve the selected cell lines being 

cultivated in shake flasks to mimic a batch process and a fed-batch process. Each 
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stage was followed by screening. After the screening in the fed-batch stage, the 

selected cell lines are cultured in small-scale bioreactors for cloning purposes, stability 

assessment and bioreactor studies. Cell pellets from the small scale bioreactor stage 

were collected and analysed using the liquid chromatography ESI-MS platform.  

 

Based on a discussion with Kent University who were responsible in generating the 

ESI-MS data, cell lysis in different buffer systems was performed on the cell pellets for 

the liquid chromatography ESI-MS analysis. The cell pellets were of varying sizes and 

were from a range of different cell lines. This was followed by enzymatic digestion of 

the supernatant obtained from the cell lysis step. Next a series of high-performance 

liquid chromatography (HPLC) methods were examined to define the liquid 

chromatography method and the conditions that would result in appropriate mass 

spectra. Section 5.4 describes the process of electrospray ionisation mass 

spectrometry. 

5.4 Electrospray Ionisation Mass Spectrometry 

Mass spectrometry is a microanalytical technique that can be used to determine the 

elemental composition of an analyte through the measurement of the mass of gas-

phase ions produced from molecules of an analyte. One of the unique features of mass 

spectrometry is its ability to produce and detect fragments of molecule that correspond 

to discrete groups of atoms of different elements that reveal structural features.  

 

The tools used in the study of mass spectrometry are mass spectrometers and the 

generated data. The mass spectrometer measures the mass-to-charge ratio (m/z) of an 

ion instead of the mass of the ion. The mass-to-charge ratio, a dimensionless number, 

is the mass of the ion on the atomic scale divided by the number of charges that the ion 

possesses. A principle requirement of mass spectrometry is that the ions are in the gas 

phase before they can be separated according to their individual m/z values and 
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detected to obtain the mass spectra. There are many different ionisation techniques 

available for producing gas-phase ions in mass spectrometry, electrospray ionisation is 

one example. Griffiths et al. (2001) reported that electrospray ionisation is the optimum 

method of ionisation for the widest range of biological macromolecules in their review 

of the mass analysis of ions.  

 

ESI-MS is known for its ability to provide a simple, rapid, and sensitive analytical tool 

for the mass analysis of macromolecules. As was shown by Wan et al. (2001) in the 

determination of the glycoform amounts in a recombinant antibody produced in 

Chinese hamster ovary (CHO) cells, the application of ESI-MS enabled a fast analysis 

of the spectra and hence provided important product quality early in cell culture 

production.  

 

Electrospray ionisation (ESI) is a soft ionisation technique that has been used to 

investigate noncovalent bonding of biological macromolecules such as protein and 

peptides. A noncovalent bond is defined as any relatively weak chemical bond that 

does not involve an intimate sharing of electrons (Lodish, 2007). Noncovalent bonding 

is the basis of many dynamic biological processes as it enables large molecules to bind 

specifically but transiently to one another.  

 

The operating principle of ESI is based on electrical energy. This enables the transfer 

of ions from solution to the gas-phase prior to being subjected to mass spectrometric 

analysis. Figure 5.2 shows a schematic diagram of a typical ESI source with the zoom-

in circle showing the mechanism of ion formation in ESI. A solution of the analyte is 

pumped into a small capillary/electrospray needle either from a syringe pump or as 

effluent flow from liquid chromatography. As shown in the zoom-in circle, the analyte 

solution then passes through the electrospray needle whose tip is of high potential 

difference. This generates a split of charge which forces the spraying of charged 

droplets from the needle. The electrosprayed droplets now possess an excess of 
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positive and negative charges and have the same polarity as the charge on the needle. 

This causes the droplets to push away from the needle and move towards the source 

sampling cone on the counter electrode.  

 

As the droplets traverse the space between the needle tip and the cone, they become 

gradually smaller due to the evaporation of the solvent in a drying gas at atmospheric 

pressure. This leads to an increase in surface charge density and a decrease in the 

droplet radius. The droplet will reach its ‘Rayleigh limit’, a point where its surface 

tension can no longer sustain the repulsion forces between charges resulting in a 

‘Coulombic explosion’ hence ripping the droplet apart. The electric field strength within 

the charged droplet will eventually reach a critical point at which it is kinetically and 

energetically possible for the ions at the surface of the droplets to be ejected into the 

gas-phase as analyte molecules. The ions are sampled via a skimmer cone and then 

transported into the mass spectrometer. When the ionized proteins hit the detector of 

the mass spectrometer, information is compiled into a histogram. Through time, a 

series of consecutive histogram are registered for a number of samples. These 

histograms are known as the mass spectrum and form the basis of the raw data. Figure 

5.3 shows a sample of a raw ESI-MS.  
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Figure 5.2 A schematic diagram of an ESI mechanism (Reference: School of 
Chemistry, University of Bristol) 

  

Figure 5.3 A raw ESI-MS spectrum from one of the CHO cell lines analysed in this 
Chapter 
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5.5 Data Preprocessing 

A significant amount of data is produced by the liquid chromatography electrospray 

mass spectrometry (LC-ESI-MS) platform. In this study the order of the data point for 

each raw ESI-MS spectrum is more than 105. This necessitates preprocessing of the 

ESI-MS data prior to subsequent data analysis. Primarily, the goal of the preprocessing 

stage is to achieve an operational size data set and comparable spectra, enabling the 

application of multivariate analysis. The left diagram in Figure 5.4 shows a three-

dimensional dataset established for each cell line replicate, that is, intensity of the ions 

(I), mass-to-charge ratio of ions as detected in the ESI-MS (m/z), and retention time (tR). 

The three-dimensional dataset is concatenated to form a three-dimensional matrix X 

whose convention is intensity of cell line (I of CL) x mass-to-charge ratio (J) x retention 

time (K), where cell line, C =1 … L is shown in the right hand diagram of Figure 5.4. 

Retention time is defined as the elapsed time between the time of injection of a fluid 

and the time of elution of the maximum peak of that fluid i.e. the time from the column 

inlet to the detector. The files produced by the LC-ESI-MS platform were converted 

from the proprietary Bruker file format to a universal standard (mzML), using 

CompassExport.  

 

The ESI-MS generated are of unequal length, therefore need to be aligned and binned 

to allow for comparison of multiple datasets from different samples or between 

replicates from the same sample. In aligning the spectra, the longest spectrum is 

selected as a reference thus the other spectra have to be upsampled by zero-padding 

to obtain equal length. Once aligned, the intensity of the ESI-MS were binned 

according to retention time and mass-to-charge ratio.  
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Figure 5.4 Three-dimensional data matrix of the ESI-MS data 

 

5.5.1 Binning 

Binning is one of the most widely applied preprocessing techniques to mass 

spectrometry data and is a standard approach in the analysis of electrospray 

ionisation-mass spectrometry (ESI-MS) data. The goal of the binning procedure is to 

extract information while performing data reduction prior to further data processing and 

analysis. The binning procedure was performed by dividing the retention time (elution 

time from the liquid chromatography system) and m/z range into equally spaced 

intervals. This is so that the intensity values are comparable across cell line replicates, 

m/z values, and retention time dimensions.  
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As discussed previously, the ESI-MS analysed in this study were collected by from 

Stage 6: small-scale bioreactor stage (Figure 5.1). The ESI-MS data generated is 

massive and highly complex. Using the whole spectral profiles may lead to problems 

including a large number of linearly correlated m/z ratios describing one profile and a 

shift in the m/z ratio between corresponding molecules in different spots i.e. alignment 

problem. Hence the binning approach will allow a compromise between full spectral 

profiling and peak integration (Arneberg et al., 2007). Peak integration is where 

adjacent m/z ratios are summarised throughout the spectrum and this requires the 

determination of an appropriate bin size that will ensure a good description of the full 

spectra with minimum information loss.   

 

Determining the bin size is the critical stage in the binning procedure. If the bin size is 

too large, the binned data may have poor resolution of the peaks (Krishnan et al., 

2012) and also there may also be the risk of different events registering in the same bin 

(Nielsen et al., 2010). Smith et al. (2006) suggested the use of overlapping adjacent 

bins instead of separate bins to avoid the risk of splitting a group of signals. Therefore, 

the bin size needs to be one that is comparable with the spectra peaks width in time 

and m/z ratio whilst retaining a good description of the features in the profiles (Fonville 

et al., 2011; Nielsen et al., 2010). 

 

For the purpose of this study, the person in charge of the binning procedure considered 

the mass range of 100-2500 m/z with a bin size of 1 m/z. The time range selected was 0 

– 2220 seconds with a bin size of 60 s. This range was selected following visual 

inspection of the ESI spectra showed that approximately 95% of the peaks were 

located in that range as shown in Figure 5.5. 
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Figure 5.5 Peak intensities of the ESI-MS   

Following the splitting of the retention time and m/z range into equally spaced bins, for 

each spectrum the raw intensities within the same m/z bin were summed to give a pair 

of intensity and mass-to-charge ratio value i.e. (I, m/z). This pair was then used to 

represent the relative intensities in that bin. On completion of the binning procedure, 

the three-dimensional data matrix X was unfolded to a two dimensional data matrix X 

(CL x (I x J x K)) as shown in Figure 5.6. The rows of X represents cell lines and their 

replicates and the columns represent the intensity of the ESI spectra after binning on 

retention time and m/z ratio. This method of unfolding allows the variability in the data to 

be observed as it accentuates the similarities and dissimilarities between cell lines and 

also cell replicates. The unfolded data matrix X consists of 50 cell replicates from 19 

cell lines. Table 5-1 provides the cell line information used in this study including the 

three product quality parameters: Product Quality 1 (PQ1), Product Quality 2 (PQ2), 

and Product Quality 3 (PQ3). The cut-off value for PQ1 is 0.59, PQ2 is 0.53 and PQ3 is 

0.34. A cell line is considered as high producing when all three of its product qualities 

are above the cut-off values. It is noted that the product quality information for PQ1, 

PQ2, and PQ3 has been normalised due to legality issue of restricted information. 
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Figure 5.6 Unfolding of the three dimensional ESI-MS data set to two dimensional 
matrix after binning on retention time and mass-to-charge ratio 
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Table 5-1 Cell lines information and their corresponding product qualities 

High/ Low 

Producing 

Cell 

Cell Lines 
Number of 

replicates 

Product 

Quality 1 

(PQ1) 

 

Product 

Quality 2 

(PQ2) 

 

 

Product 

Quality 3 

(PQ3) 

 

High 

Producing 

Cell 

CL10 2 0.71 0.83 0.40 

CL11 3 0.76 0.54 0.61 

CL12 5 1.00 0.67 0.69 

CL13 3 0.68 0.85 0.38 

CL16 3 0.66 0.77 0.40 

Low 

Producing 

Cell 

CL19  2 0.70 1.00 0.34 

CL2 2 0.38 0.71 0.24 

CL6 3 0.13 0.68 0.08 

CL8 3 0.09 0.68 0.05 

CL15 2 0.30 0.68 0.29 

CL17 3 0.35 0.58 0.26 

CL18 3 0.37 0.65 0.25 

CL1 2 0.44 0.11 0.81 

CL3 2 0.37 0.00 1.00 

CL4 2 0.52 0.47 0.47 

CL5 2 0.55 0.49 0.47 

CL9 2 0.54 0.20 0.79 

CL7 3 0.00 0.42 0.00 

CL14 3 0.35 0.45 0.32 
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5.6 Model Development  

 

Figure 5.7 Schematic of model development 

Following the successful results from the NIR batch data fingerprinting approach 

(Section 4.10), the concept of integrating the discrete wavelet transform with MPCA as 

a method to analyse complex data was again implemented in this chapter. The goal of 

this study is to apply the concept to extract information from the ESI-MS dataset that 

would enable the characterisation of high and low cell line producers.   

 

Figure 5.7 describes a schematic of the model development which consists of five 

stages. At the first stage, the ESI-MS dataset was pre-processed as has been 

discussed in Section 5.5. Once pre-processed, the discrete wavelet transform 

decomposition is applied to the ESI-MS dataset. Details of this stage are explained in 

Section 5.6.1. Following this, Section 5.6.2 describes the data scaling scheme 

performed to the wavelet sub-bands generated from the application of the discrete 
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wavelet transform decomposition. Finally, unsupervised and supervised PCA are 

performed on the ESI-MS dataset and is discussed in Section 5.6.3. Results generated 

from both applications are each discussed in Section 5.7 and Section 5.8 respectively.  

5.6.1 Application of Wavelet to ESI-MS Data 

This section provides a detailed description of the application of the discrete wavelet 

transform decomposition to the ESI-MS dataset and how the method of analysis has 

been developed. As per the previous case study, the ESI-MS data was analysed using 

wavelets from the Daubechies family 5 (db5) with five levels of decomposition. This 

combination is selected as the analysing wavelet and decomposition levels because it 

has been proven to efficiently extract information in the previous case study. This 

transformation procedure which is also known as multiresolution wavelet 

decomposition decomposed each spectrum into five sub-bands of approximation 

spectra components (A1 to A5) and five sub-bands of detail spectra components (D1 to 

D5). It is shown in Figure 5.8 that for 5 levels of decomposition, the multiresolution 

wavelet decomposition of the ESI-MS data has reduced the binned spectra to the finest 

approximation level (A5) by 95%.  

 

Previously in Chapter 4, standard deviations of the wavelet coefficients from the sub-

bands A5, D5, D4, D3, D2 and D1 were calculated and used to represent each NIR 

spectrum. In this study all wavelet coefficients in the sub-bands A5, D5, D4, D3, D2 

and D1 were selected for the analysis of the ESI-MS data with each sub-band 

individually.    

 

 Prior to making the decision to use all wavelet coefficients in the sub-bands, an initial 

investigation is performed to determine the combination of discrete wavelet transform 

and PCA that is most suitable to analysis the ESI-MS data. The investigation involved 

the application of an unsupervised PCA to all wavelet coefficients and to the standard 
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deviations of the wavelet coefficients. Both PCA applications are performed on 

combined sub-bands, which is similar to the application of PCA in Chapter 4.  

 

Figure 5.8 Multiresolution wavelet decomposition of an ESI-MS  

A plot of the percentage variance explained for the former application is shown in 

Figure 5.9. For the latter application 100% of the variance of the standard deviation of 

the wavelet coefficients is explained by principal component 1 (PC1) when PCA was 

performed on the standard deviation of the wavelet coefficients. Meanwhile, ten 

principal components were required to explain approximately 50% of the variance in 

the wavelet coefficients. Based on the result of this investigation, it is hypothesised that 

potential information in the data is best to be extracted from all wavelet coefficients 

than from the standard deviation of the wavelet coefficients.  
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Figure 5.9 Percentage of variance explained for the application of PCA to all wavelet 
coefficients  

5.6.2 Data Scaling 

The ESI-MS was subjected to not only biological variation but also experimental and 

instrumental variation which affects the level of spectral response intensity (Fonville et 

al., 2011). Varying amounts of sample, degradation in the sample or variations in the 

instrument detector sensitivity are some examples of these variations. Scaling of the 

data removes the unwanted variations between measurements whilst retaining the 

meaningful biological variation (Katajamaa and Oresic, 2007). Therefore the sub-bands 

A5, D5, D4, D3, D2 and D1 acquired from wavelet decomposition were subjected to 

data scaling prior to subsequent analysis. Since the data has been decomposed into 

sub-bands previously, each sub-band is scaled individually. The data scaling of choice 

is standardisation, where the data is transformed to have zero mean and unit variance.  

 

 

                        

      
 

(5.1) 
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Calculation of xstand requires the mean and standard deviation of the sub-band. Figure 

5.10(a) shows the sub-band A5 extracted from the two-dimensional data matrix 

following the application of the discrete wavelet transform. The columns of sub-band 

A5 are the wavelet coefficients relative to the intensity binned on retention time and 

mass-to-charge ratio whereas the rows are the cell lines and replicates. The statistical 

measurements can be calculated in two ways. They can either be calculated for an 

individual spectrum component in each sub-band, Figure 5.10(b), i.e. approach 1 or as 

illustrated in Figure 5.10(c), approach 2, they can be determined for a particular relative 

intensity binned on retention time and m/z ratio across all spectra for every in the sub-

band. Approach 1 will combine the effect of each wavelet coefficient whilst approach 2 

will combine the effect of each sample.  

 

 

Figure 5.10 (a) Sub-band A5, (b) statistical measurement of approach 1, and (c) 
statistical measurement of approach 

Equations 5.2 and 5.3 describe the calculations using approach 1 whilst equations 5.5 

and 5.6 describe the calculation using approach 2. In approach 1, the mean is given by 
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   ̅̅ ̅̅ ̅   ∑              
   

 
 

(5.2) 

 

where  

   ̅̅ ̅̅ ̅   mean of the spectrum component , approach 1 

    wavelet coefficient i (i=1 … N) of the spectrum component  in the sub-band 

   number of wavelet coefficients of the spectrum component in the sub-band 

 

and the standard deviation is given by 

     

√
∑        ̅̅ ̅̅ ̅   

   

   
 

(5.3) 

 

where  

     standard deviation of the spectrum component   

    wavelet coefficient i (i=1 … N) of the spectrum component  in the sub-band 

   ̅̅ ̅̅ ̅   mean of the spectrum component, approach 1   

   number of wavelet coefficients of the spectrum component in the sub-band. 

 

In approach 2, the mean is given by  

   ̅̅ ̅̅ ̅   ∑(           
           

             
)

 
 

(5.4) 

 

where  

   ̅̅ ̅̅ ̅   mean of the spectrum component, approach 2  

    wavelet coefficient i (i=1 … N) of each spectra in the sub-band that 

correspond to a particular intensity 

   number of cell lines replicates  

 

 and the standard deviation is given by  
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√∑ (           
    ̅̅ ̅̅ ̅)

 
 
   

   
 

(5.5) 

 

where 

 

     standard deviation in the sub-band set using approach 2 

   wavelet coefficient i (i=1 … N) of each spectra in the sub-band that 

correspond to a particular intensity 

   ̅̅ ̅̅ ̅   mean of the spectrum component , approach 2 

   number of cell lines replicates  

 

Examples of the above techniques are shown in Figure 5.11 to Figure 5.14. Figure 5.11 

shows a sample of the binned spectrum whilst Figure 5.12 shows the raw data for sub-

band A5. Figure 5.13 and Figure 5.14 illustrate the plots of the standardised sub-band 

A5 using approaches 1 and 2 respectively.   

 

A significant difference is observed between standardisation of the sub-band for the 

two approaches. The mean trajectory was removed from the spectrum for approach 2, 

Figure 5.14. However, in approach 1, the mean trajectory remains in the data as the 

trace in Figure 5.13 shows the same pattern as the raw data. Following this 

investigation, it was decided that standardisation using statistical measurement of 

approach 2 will be employed to scale the sub-bands.  
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Figure 5.11 A sample of the binned spectrum 

 

 

Figure 5.12 Sample spectrum of the sub-band A5 
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Figure 5.13 Standardising using statistical measurement of approach 1 

 

Figure 5.14 Standardising using statistical measurement of approach 2 
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5.6.3 Application of Principal Component Analysis 

Once the sub-bands of the ES-MS data had been standardised, they were subjected to 

the application of principal component analysis. The multiresolution property of the 

discrete wavelet transform decomposition enables the application of PCA to the 

individual sub-bands realising the closer examination of the data at different 

resolutions. The PCA approach comprised two stages:  an unsupervised analysis and 

a supervised analysis. In the unsupervised approach prior knowledge about the data 

was not used whereas in the supervised analysis the data were categorized into user-

defined groups prior to analysis.  

 

The unsupervised approach was adopted for the purpose of identifying hidden patterns 

(Lhoest et al., 2001), extracting and explaining key features of the data (Borah et al., 

2007), and to identify those wavelet sub-bands making the largest contribution to the 

model.  The supervised methodology was performed by superimposing the test set on 

the model built using the training set to project its behaviour.  

5.7 Results and Discussion: Unsupervised Representation 

After the application of the discrete wavelet transform decomposition to the data matrix 

X, followed by standardisation of each sub-band, PCA was applied to each sub-band. 

As shown in the scree plots of the sub-bands (Figure 5.15) the number of principal 

components (PC) retained differs for each sub-band. Table 5-2 summarizes the 

number of principal component retained in each sub-band.  
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Table 5-2 Number of principal component retained in each sub-band and combined 
sub-bands 

Sub-band 
Number of principal 

component retained 
Variance explained (%) 

A5 6 83.8 

D5 6 39.06 

D4 14 63.02 

D3 14 56.66 

D2 6 17.39 

D1 6 41.05 

Combined 14 51.80 

 

 

The bivariate scores plots for the combined sub-bands and for each sub-band are 

shown in Figure 5.16 to Figure 5.18 (combined sub-bands), Figure 5.19 (sub-band A5), 

Figure 5.20 (sub-band D5), Figure 5.21 (sub-band D4), Figure 5.22 (sub-band D3), 

Figure 5.23  (sub-band D2), and Figure 5.24 (sub-band D1). For the combined sub-

bands the first fourteen PC were retained based on the highest number of PC retained 

in two of the sub-bands.   

 

As can be seen from the bivariate scores plot of the combined sub-bands in Figure 

5.16 (a), the cell replicates from the high and low cell producers were tightly clustered 

and located at the origin of the PC1-PC2 space. Interestingly, the bivariate scores plots 

of the wavelet detail sub-bands D5, D4, D3, D2, and D1 also show relatively similar 

patterns. Possible outliers in the bivariate scores plot of the combined sub-bands and 

each sub-band are identified and presented in Table 5-3. The number following the 

dash after the cell line ID represents the cell line replicate.   
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The same cell line replicates, CL6-3, CL10-2, and CL11-2, are identified as outliers in 

the bivariate scores plot of PC1 vs. PC2 in the combined sub-band and the sub-bands 

A5 and D1.  Based on all three product quality parameters, cell lines CL10 and CL11 

were categorised as high producer whilst CL6 was a low producer.  

 

  

Sub-band A5 Sub-band D5 

  

Sub-band D4 Sub-bandD3 

  

Sub-band D2 Sub-band D1 

Figure 5.15 Scree plots for wavelet sub-bands A5, D5, D4, D3, D2 and D1 
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(a) PC1 vs. PC2 

 

(b) PC3 vs. PC4 

Figure 5.16 Bivariate scores plot of the combined sub-bands: PC1 vs. PC2 and PC3 
vs. PC4 
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(c) PC5 vs. PC6 

 

(d) PC7 vs. PC8 

Figure 5.17 Bivariate scores plot of the combined sub-bands: PC5 vs. PC6 and PC7 
vs. PC8 
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(f) PC9 vs. PC10 

 

(e) PC11 vs. PC12 

 

(g) PC13 vs. PC14 

Figure 5.18 Bivariate scores plot of the combined sub-bands: PC9 vs. PC10, PC11 vs. 
PC12, and PC13 vs. PC14 
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(a) PC1 VS. PC2 

 

(b) PC3 VS. PC4 

 

(c) PC5 VS. PC6 

Figure 5.19 Bivariate scores plot of the sub-band A5 
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(a) PC1 VS. PC2 

 

(b) PC3 VS. PC4 

 

(c) PC5 VS. PC6 

Figure 5.20 Bivariate scores plots of the sub-band D5 
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(a) PC1 vs. PC2 (b) PC3 vs. PC4 

  

(c) PC5 vs. PC6 (d) PC7 vs. PC8 

  

(e) P9 vs. PC10 (f) PC11 vs. PC12 

 

 

(g) PC13 vs. PC14  

Figure 5.21 Bivariate scores plots of the sub-band D4 
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(a) PC1 vs. PC2 (b) PC3 vs. PC4 

  

(c) PC5 vs. PC6 (d) PC7 vs. PC8 

  

(e) P9 vs. PC10 (f) PC11 vs. PC12 

  

(g) PC13 vs. PC14  

Figure 5.22 Bivariate scores plot of the sub-band D3 
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(a) PC1 vs. PC2 

 

(b) PC3 vs. PC4 

 

(c) PC5 vs. PC6 

 

(d) PC7 vs. PC8 

Figure 5.23 Bivariate scores plot of the sub-band D2 
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(a) PC1 vs. PC2 

 

(b) PC3 vs. PC4 

 

(c) PC5 vs. PC6 

 

(d) PC7 vs. PC8 

Figure 5.24 Bivariate scores plots of the sub-band D1 
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Table 5-3 Outliers in the retained principal components for the combined sub-bands 
and each sub-band 

Bivariate scores 

plot 

Outlier 

Combined 

sub-bands 
A5 D5 D4 D3 D2 D1 

PC1 vs. PC2 

CL6-3 

CL10-2 

CL11-2 

CL6-3 

CL1-2 

CL11-2 

CL6-2 

CL6-3 

CL10-2 

CL6-2 

CL6-3 

CL8-2 

CL10-2 

CL6-3 

CL7-3 

CL10-2 

CL6-3 

CL11-2 

CL6-3 

CL10-2 

CL11-2 

PC3 vs. PC4 

CL11-2 CL8-1 

CL8-3 

CL6-3 

CL8-2 

CL8-3 

CL3-1 

CL6-2 

CL8-2 

CL2-2 

CL8-1 

CL8-3 

CL8-3 

CL7-3 

CL10-2 

CL7-2 

CL11-2 

PC5 vs. PC6 

CL5-1 

CL6-2 

CL8-3 

None CL8-2 

CL10-2 

CL11-2 

CL5-1 

CL6-3 

CL13-2 

CL2-2 

CL4-2 

CL5-1 

CL6-3 

CL8-1 

CL10-2 

CL11-1 

CL7-3 

CL8-1 

CL11-2 

CL5-1 

CL7-1 

CL7-2 

PC7 vs. PC8 

CL5-1 

CL7-2 

CL11-1 

Not 

retained 

Not 

retained 

CL5-1 

CL6-3 

CL10-2 

CL13-2 

CL2-1 

CL5-1 

CL6-3 

CL8-1 

CL10-2 

CL11-1 

CL8-1 

CL9-1 

CL12-5 

CL5-1 

CL6-3 

CL7-1 

CL8-3 

PC9 vs. PC10 

CL7-3 

CL8-1 

CL11-1 

Not 

retained 

Not 

retained 

CL4-2 

CL8-3 

CL11-2 

CL13-3 

CL4-2 

CL5-1 

CL8-1 

CL9-2 

CL11-1 

Not 

retained 

Not 

retained 
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Bivariate scores 

plot 

Outlier 

Combined 

sub-bands 
A5 D5 D4 D3 D2 D1 

CL11-2 

CL12-3 

PC11 vs. PC12 

CL6-2 

CL7-3 

CL8-1 

CL9-1 

Not 

retained 

Not 

retained 

CL8-3 

CL10-2 

CL11-1 

CL11-2 

CL13-3 

CL5-1 

CL9-2 

CL10-2 

CL11-2 

CL12-3 

Not 

retained 

Not 

retained 

PC13 vs. PC14 

CL2-2 

CL6-2 

CL7-1 

CL9-1 

CL10-1 

Not 

retained 

Not 

retained 

CL7-3 

CL11-1 

CL13-3 

CL4-1 

CL11-2 

32 

CL13-3 

Not 

retained 

Not 

retained 

 

 

Although they share the same outliers, it is evident that the bivariate scores plot of the 

combined sub-bands is a mirror of the bivariate scores plot of the sub-band D1. This 

indicates that the combined sub-bands were heavily influenced by the wavelet 

coefficients in sub-band D1. Furthermore, CL6-3 and CL11-2 are observed to be 

outliers in most of the bivariate scores plot. The characteristic of these cell line 

replicates will be investigated further in Section 5.7.1. Another PCA is performed with 

CL11-2 removed to examine its effect on the dataset. Interestingly, the bivariate scores 

plots of PC1 vs. PC2 generated for the combined sub-bands and each sub-band 

(Appendix B: Figure B.8 to Figure B.9) were similar to those shown in Figure B.1 and 

Figure B.2. The only difference is two of the outliers identified have changed, CL6-2 

replaces CL6-3 and CL11-3 replaces CL11-2.   
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On the other hand, the bivariate scores plot of the wavelet approximation sub-band A5 

reveals that the cell replicates were separated into two clusters along PC2 (Figure B.2). 

One group was clustered at the top left while the cell replicates in another group were 

located to the right and along PC1. Both clusters contain a mixture of high and low 

producers. No clear separation between high and low cell producers was observed in 

any of the bivariate scores plots.  

 

Although no significant separation was observed, these results were nevertheless 

important. As was previously discussed in Chapter 3, the wavelet approximation sub-

band contains the information in the spectra whilst the wavelet detail sub-band contains 

the noise in the spectra. The strong similarity between the bivariate scores plot of the 

combined sub-bands to those of the wavelet detail sub-bands indicate that the 

combined sub-bands were heavily masked by noise as discussed previously.  

 

Percentage of variance explained in the retained principal components is presented in 

Table 5-2. For the combined sub-bands, the first fourteen principal components capture 

51.8% of the variance in the dataset. 83.38% of the variance in the information 

extracted by the sub-band A5 is captured by the first six principal components. For the 

rest of the sub-bands, the variance captured is approximately less than 60%.  

5.7.1 Contribution Plots 

Score plots explain average behaviour of the cell replicates but a lack of clustering in 

the bivariate scores plots instigated another investigation of the ESI-MS dataset. By 

interrogating the underlying model, contribution plots may reveal the wavelet 

coefficients making the largest contribution to the model and causing the differences 

between cell replicates.  
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Based on the previous results, a different number of principal components were 

retained. Contribution analysis on the retained principal components from six wavelet 

sub-bands (A5, D5, D4, D3, D2 and D1) was performed to determine the 

characteristics of the high and low producers’ cell lines. Figure 5.25 shows the 

breakdown of the contribution matrix. The rows represent data from 19 cell lines with 

varying number of replicates (Table 5-1), whilst the columns correspond to the 

contribution of the wavelet sub-bands to the retained principal component scores.  

 

 

Figure 5.25 Matrix of the contribution of the wavelet sub-bands to the retained principal 
components 

Figure 5.27 to Figure 5.35 and Figure B.1 to Figure B.10 provide the contribution plots 

of the wavelet sub-bands for the principal component scores for all cell lines and their 

replicates listed in Table 5-1. Figure 5.26 describes the legends for these figures. To 

establish the significance of the contribution analysis, an unsupervised PCA was also 

performed on the data matrix X without the application of the discrete wavelet 

transform. Based on the minimum and maximum number of principal component 
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retained in the sub-bands, the percentage variance explained was calculated for the 

first six and fourteen principal components. It was found that 86.09% of the variance 

was captured by the first six principal components whilst 94.55% by the first fourteen 

principal components. Since the difference between percentages of variance is small, it 

is decided to retain six principal components for the application of PCA without discrete 

wavelet transform. The contribution plots on the retained principal components from the 

unsupervised PCA without discrete wavelet transform were plotted (Figure 5.36 and 

Appendix B: Figure B.11 to Figure B.18) and compared with the contribution plots of 

the wavelet sub-bands (Figure 5.27 to Figure 5.35 and Appendix B: Figure B.1 to 

Figure B.10).   

 

These contribution plots are quite revealing in several ways. Firstly, it is interesting to 

discover that the cell replicates from the same cell line demonstrate diverse behaviour. 

This can be seen in both the integrated discrete wavelet decomposition-PCA model 

and in the stand alone PCA model. For example for the replicates of cell line CL12 and 

cell line CL14 which are shown in Figure 5.28 and Figure 5.35 respectively, CL12-5 

exhibits different characteristics to the other four replicates. For the cell line CL14 all 

three replicates show distinctive characteristics with CL14-2 being significantly 

different.  

 

Secondly, it can be seen that the significantly different cell replicates usually have a 

large contribution from wavelet sub-band D1. Figure 5.29 and Figure 5.30 respectively 

shows that CL13-3 and CL16-3 were significantly different to the other replicates from 

the same cell line. Further interrogation found that the two largest contributions to these 

two replicates were for the wavelet sub-bands D1 and D2 to PC1, PC2, PC3, PC4, 

PC5, and PC6. Also, it can be seen in Figure 5.32 and Figure 5.33 respectively that 

CL17-1 and CL18-1 differed from the other replicates from the same cell lines. It was 

interesting to observe that the largest contribution to the first replicate also came from 
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the wavelet detail sub-bands D1 and D2. Similar behaviour was evident for CL14-2 as 

shown in Figure 5.35. 

 

Another observation that can be drawn was that significant differences were identified 

between the integrated discrete wavelet decomposition-PCA model and the stand-

alone PCA model. As can be seen from Figure B.10 (Appendix B), the highest 

contribution for cell replicate CL11-3 came from PC1. However, Figure 5.27 reveals 

that the contribution of the wavelet sub-band D4 to PC4 is the highest contributor. 

Similar behaviour was observed for CL4-2 (Figure 5.34). Further interrogation reveals 

that the highest contribution to this cell replicates was from the wavelet sub-band D3 to 

PC6.  

 

Previously in the scores plots CL11-2 was identified as one of the significant outliers. 

From the contribution plot of cell line CL11 (Figure 5.27), it was observed that CL11-2 

is significantly different from CL-1 and CL-3. The largest contribution to CL11-2 is the 

sub-band D4. When CL11-2 was removed and a second PCA was performed, the 

position of CL11-2 was replaced by CL11-3. Further interrogation of the contribution 

plot of CL11-3 found that the largest contribution to CL11-3 came from the sub-band 

D4. It is noted that the sub-band D3 and D4 were the two sub-bands that required the 

most principal components i.e. PC1 to PC14 to capture approximately 50% and 60% of 

the variance in the dataset. Meanwhile, the other significant outlier, CL6-3, was 

observed to have the largest contribution from the sub-band D3 (Figure 5.31).  
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  A5 - PC1  D4 - PC1  D3 - PC1  D2 - PC1  

  A5 – PC2  D4 – PC2  D3 – PC2  D2 – PC2  

  A5 – PC3  D4 – PC3  D3 – PC3  D2 – PC3  

  A5 – PC4  D4 – PC4  D3 – PC4  D2 – PC4  

  A5 – PC5  D4 – PC5  D3 – PC5  D2 – PC5  

  A5 – PC6  D4 – PC6  D3 – PC6  D2 – PC6  

  D5 - PC1  D4 – PC7  D3 – PC7  D2 – PC7  

  D5 – PC2  D4 – PC8  D3 – PC8  D2 – PC8  

  D5 – PC3  D4 – PC9  D3 – PC9  D1 - PC1  

  D5 – PC4  D4 – PC10  D3 – PC10  D1 – PC2  

  D5 – PC5  D4 – PC11  D3 – PC11  D1 – PC3  

  D5 – PC6  D4 – PC12  D3 – PC12  D1 – PC4  

    D4 – PC13  D3 – PC13  D1 – PC5  

    D4 – PC14  D3 – PC14  D1 – PC6  

      D3 – PC13  D1 – PC7  

      D3 – PC14  D1 – PC8  

          

Figure 5.26 Legends for contribution plots figures (Figure 5.25 to Figure 5.34 and 
Figure B.4 to Figure B.10) 
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Figure 5.27 Unsupervised PCA: Contribution plots of the wavelet sub-bands on PC1 to PC6 for cell line CL11 (high producing cell line) 
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Figure 5.28 Unsupervised PCA: Contribution plots of the wavelet sub-bands on PC1 to PC6 for cell line CL12 (high producing cell line)  
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Figure 5.29 Unsupervised PCA: Contribution plots of the wavelet sub-bands on P1 to PC6 for cell line CL13 (high producing cell line)  
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Figure 5.30 Unsupervised PCA: Contribution plots of the wavelet sub-bands on P1 to PC6 for cell line CL16 (high producing cell line)  
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Figure 5.31 Unsupervised PCA: Contribution plots of the wavelet sub-bands on P1 to PC6 for cell line CL6 (low producing cell line) 
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Figure 5.32 Unsupervised PCA: Contribution plots of the variables on PC1 to PC6 for cell line CL17 (low producing cell line) 
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Figure 5.33 Unsupervised PCA: Contribution plots of the variables on PC1 to PC6 for cell line CL18 (low producing cell line) 
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Figure 5.34 Unsupervised PCA: Contribution plots of the variables on P1 to PC6 for cell line CL4 (low producing cell line) 
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Figure 5.35 Unsupervised PCA: Contribution plots of the variables on P1 to PC6 for cell line CL14 (low producing cell line) 
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Figure 5.36 Contribution plots of the ESI spectra on P1 to PC6 (without discrete wavelet decomposition) for cell lines CL10 and CL11 (high producing 
cell line) 
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5.8 Results and Discussion: Supervised Model 

A supervised model was developed utilising the measurements of three types of 

product quality parameters: PQ1, PQ2 and PQ3. These parameters were measured 

off-line. Based on a discussion with the engineer in charge of the ESI-MS data, each 

product quality has a cut-off value which is used to classify a cell line as high or low 

producer. A cell line is classified as high in a particular product quality group if its 

parameter measurement is equal to or above the respective cut-off value.  

 

The cell lines were divided into a training set and a test set based on their 

measurements of the product quality parameters. The training set consists of cell lines 

that take low values for all the product quality parameters whereas the high cell lines 

were grouped into the test set. Table 5-4 shows a complete list of the training and test 

sets.   

 

Figure 5.37 to Figure 5.43 shows bivariate scores plots for the first two principal 

components for each wavelet sub-band and the combined sub-bands. The most 

striking observation to emerge from the bivariate scores plots was that the outlying cell 

replicates CL13 and CL16 detected in the PC1-PC2 space of the whole spectra (Figure 

5.43) were also identified in the PC1-PC2 space of the wavelet detail sub-bands D1 

(Figure 5.42) and D2 (Figure 5.41). Interestingly, these outlying cell replicates were 

positioned almost at the same spot in all three bivariate scores plots. This observation 

was identical to the one found earlier in the unsupervised model. Similarity among 

these three bivariate scores plots gives a strong indication that the whole spectra were 

highly masked by noise. As with the unsupervised PCA, no evident clustering were 

observed in the bivariate scores plots. 
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Table 5-4 Cell lines information for the training and test sets   

Test data set Training data set 

Cell lines 
Number of 

replicates 
Cell lines 

Number of 

replicates 

CL10 2 CL19 2 

CL11 3 CL2 2 

CL12 5 CL6 3 

CL13 3 CL8 3 

CL16 3 CL15 2 

  CL17 3 

  CL18 3 

  CL1 2 

  CL3 2 

  CL4 2 

  CL5 2 

  CL9 2 

  CL7 3 

  CL14 3 

Total cell replicates 16 Total cell replicates 34 
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Figure 5.37 PC1 vs. PC2 for predicted wavelet sub-band A5 

 

 

Figure 5.38 PC1 vs. PC2 wavelet sub-band D5 
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Figure 5.39 PC1 vs. PC2 for predicted wavelet sub-band D4 

 

 

Figure 5.40 PC1 vs. PC2 for predicted wavelet sub-band D3 
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Figure 5.41 PC1 vs. PC2 for predicted wavelet sub-band D2 

 

 

Figure 5.42 PC1 vs. PC2 for predicted wavelet sub-band D1 
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Figure 5.43 PC1 vs. PC2 for predicted for predicted combined sub-bands 

5.9 Summary 

The concept of developing a model to establish the criteria of the CHO cell lines 

producers has been introduced and the research has been observed to make a 

significant contribution to the analyses of a complex biological data set. Screening and 

selecting highly stable cell lines is a major challenge in the process development of the 

CHO cell lines producers. Hence, characterisation of the CHO cell lines producers is of 

high importance as the subsequent process stages condition on the previous 

screening.  Despite its importance, methodologies for extraction of information from the 

complex biological data are limited. The development of the integrated discrete wavelet 

transform-PCA approach can help characterise the CHO cell lines. Also, it gives 

another perspective on the fingerprinting of the CHO cell lines producers.  

 

More specifically in this chapter, a successful application of the integrated discrete 

wavelet decomposition-PCA platform in teasing out hidden information in the spectra 
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has been proposed. This information was incorporated with the information on the 

quality parameters to help characterise the cell line producers. The benefits of the 

integrated discrete wavelet decomposition-PCA platform were highlighted. The 

challenges presented by the ESI-MS dataset were also discussed.  

 

Although the ultimate objective of this study which is to characterise the criteria of the 

high and low CHO cell line producers is not fully justified, the study reveals a number of 

significant observation. Firstly, the bivariate scores plots show a strong relationship 

between the cell replicates from the same cell line. This was observed in the bivariate 

scores plot of the PCA on the dataset when a cell line replicate (CL11-2) was removed. 

It was demonstrated that another cell replicate from the same cell line i.e. CL11-3 was 

located at the position of CL11-2. Secondly, the contribution plots of the wavelet sub-

bands reveal that most cell line replicates have different characteristic despite coming 

from the same cell line. This is surprising because the cell replicates that come from 

the same cell line are highly anticipated to have the same characteristic.  

 

In conclusion, the differences in the characteristic of the cell line replicates may 

potentially be the key to answer questions including why cell culture from the same cell 

line behave differently. Therefore, fingerprinting of the CHO cell line producers from the 

perspective of this study requires further interrogation including the analysis of square 

prediction error and Hotelling’s T2.  
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

The aim of the thesis was to investigate strategies for the analysis of spectral 

measurements in two bioprocess applications. The outcome of the thesis was a 

number of contributions being made to the field of fingerprinting of complex bioprocess 

spectral data.  

 The use of spectroscopy as a potential source of information to add value to the 

understanding of a process offers major opportunities. However, extracting 

meaningful information from spectral data can be hampered by the large 

number of variables, overlapping spectra, and the presence of a high noise to 

signal ratio in parts of the data.  

 

 The successful application of fingerprinting to extract information and hence 

process understanding requires an approach that can extract latent information 

from complex data structure.  

 

 A new approach based on the application of the combination of the discrete 

wavelet transform and the multivariate statistical technique of principal 

component analysis was proposed. This methodology offers the opportunity to 

extract features at different scales from the data. The flexibility of the proposed 

framework was demonstrated by its application to two contrasting sets of 

spectral data.  

 

The application focus of the thesis was on complex bioprocess data, specifically 

spectral data from the manufacture of monoclonal antibodies from Chinese Hamster 

Ovary (CHO) cell lines. The proposed methodology was shown to be effective for the 
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analyses of both near infra-red and electrospray ionisation spectra data sets. The raw 

near infra-red spectra are subjected to broad overlaps and baseline shifts whilst the 

electrospray ionisation mass spectra are subjected to high noise to signal ratio and 

shifts in mass-to-charge       ratio. The differences in structures of these data sets 

required the application of different pre-processing techniques, prior to the 

implementation of the proposed methodology.  

 

A generic flow diagram of the framework developed in this thesis is shown in Figure 

6.1. The framework comprises three main steps. Firstly, the spectral data sets require 

to be pre-processed with techniques that are suitable for their structure. Secondly, the 

discrete wavelet decomposition is performed on the pre-processed spectra. The 

wavelet coefficients resulting from the discrete wavelet decomposition of the spectra 

were then used as inputs to principal component analysis.  

 

Figure 6.1 Generic flow diagram of the framework developed 

Prior to developing a fingerprinting representation of the data sets, an investigation into 

the application of the wavelet denoising algorithm was undertaken. The wavelet 

denoising algorithm was applied to on the near-infra red data set to examine its effect 



Chapter 6 Conclusions and Future Work 

 

169 
 

on reducing the noise in the data. Based on the investigation, it was concluded that the 

implementation of the wavelet denoising algorithm can be omitted because it changes 

the peaks of the spectra. Flattened peaks were observed in the denoised spectra.  

 

The development of a fingerprinting representation and its application to near infra-red 

spectral data generated from the industrial manufacture of monoclonal antibodies was 

described in Chapter 4. Data preprocessing techniques were reviewed prior to this. Of 

particular interest was the re-sampling of spectra due to the use of seed and production 

batches in the analysis. It was thus essential to the near infra-red spectral batch data. 

The approach to the re-sampling of the spectra aimed to include spectra throughout the 

duration of the growth curve.  

 

A novel approach was also required for the near infra-red spectral batch data in terms 

of unfolding it from a three dimensional structure to a two dimensional matrix. The 

selection of informative spectral regions was also discussed and utilised in the 

development of the process representation.  It has been shown in previous research 

that wavelength selection can improve the results by decreasing the influence of 

unwanted information contained in the spectra. More specifically, the wavelength 

regions selected were for glucose overtones as it is the primary carbon and energy 

source for mammalian cells, and hence observation of its consumption contributes to 

process understanding.  

 

Furthermore, a route for selecting the mother wavelet and levels of decomposition were 

explained. The key advantage of the proposed approach is that it utilises the 

multiresolution property of the discrete wavelet transform in the feature extraction.  

Information wavelet coefficients were selected at different resolutions of the spectra 

and used as features to represent the spectra for subsequent analysis. It was 

demonstrated that the combination of the discrete wavelet transform and the 

multivariate statistical technique of principal component analysis was able to extract 



Chapter 6 Conclusions and Future Work 

 

170 
 

relevant features from the spectral data and establish a relationship between batch 

genealogy and spectral data behaviour.  The genealogy enabled an explanation to be 

provided in terms of the distinguishing characteristics observed between the batches 

from same and/or different families.   

 

In Chapter 5, the wider applicability of the framework developed in Chapter 4 was 

demonstrated through its application to a different form of spectral data. Electrospray 

ionisation spectral data from the laboratory scale development of monoclonal 

antibodies formed the basis of this chapter. The main challenge was to characterize the 

criteria that differentiated between highly productive and low producer cell lines. The 

wavelet coefficients of the proposed model were utilised differently in this chapter. The 

strategy adopted was to consider all the wavelet coefficients in each wavelet sub-band 

from the discrete wavelet transform decomposition. The wavelet sub-bands were 

analysed individually using contribution plots of the principal component scores. This 

approach differs in two ways from the approach undertaken in Chapter 4 where firstly, 

only certain wavelet coefficients from the wavelet sub-bands were selected to 

represent the spectra, and secondly, the wavelet sub-bands were combined prior to the 

subsequent analyses.  The patterns contained within the contribution plots were used 

to establish the criteria for high and low cell line producers. In contrast to the standard 

use of contribution plots in multivariate statistical technique, this chapter introduced a 

different perspective on the use of contribution plots of principal component scores.   

6.2 Recommendations for Future Work 

This thesis has demonstrated two successful applications that address some of the 

emerging challenges in the bioprocess manufacturing industries. The bioprocess 

manufacturing industries present unique challenges including high production costs 

and the manufacture of consistently high quality product. Addressing these challenges 

requires input from multifaceted areas such as cell engineering, bioinformatics, process 
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development and process modeling. The initial research and development into an 

integrated discrete wavelet transform and multivariate statistical technique 

representation has been undertaken in this thesis. Opportunities for further 

improvements and exploitation of the techniques are summarized below:  

 

1) The data matrix unfolding in both case studies discussed in Chapter 4 and 5 

adopted the Nomikos and MacGregor (1994) approach for the multiway 

principal component analysis. Further research requires to be performed using 

the approach proposed by Wold et al. (1987). As the Wold et al. (1987) 

approach does not require equivalent batch length; data from batch process of 

longer duration will have more features (wavelet coefficients) in the data 

representation which may potentially affect the interpretation of the behaviour of 

the projected batches.  

 

2) The discrete wavelet transform with mother wavelet of Daubechies 5 (db5) was 

selected as the most suitable of the mother wavelets investigated in this thesis. 

Further research requires to be performed into the investigation of the wavelet 

packet as a platform to extract and select meaningful wavelet coefficients from 

the complex spectra. More specifically, the electrospray ionisation mass 

spectral data set for which the noise to signal ratio is high, the implementation 

of the wavelet packet is anticipated to extract more interesting information 

hidden within the noise.   

 

3) The case studies carried out in this thesis used measurements collected from 

spectral data of different types, therefore a key part of any future work should 

involve incorporating process data or quality parameters into the model through 

the application of other types of multivariate statistical analysis such as Partial 

Least Squares (PLS).   
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4) Both of the data sets investigated in this thesis involved a number of 

preprocessing techniques. Further research requires to be performed 

investigating the range of preprocessing tools and the sensitivity of the analysis 

to these and to test the robustness of the data representation developed in this 

thesis.  
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Appendices 

Appendix A: Appendices for Chapter 4- Integrated Modelling for NIR Industrial 

Process Data 

 

Figure A.1 PC3 vs. PC4 for first CH overtone 

 

Figure A.2 PC3 vs. PC4 for second CH overtone 
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Figure A.3 PC3 vs. PC4 for third CH overtone 

 

 

Figure A.4  PC3 vs. PC4 for fourth CH overtone 
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Figure A.5 PC3 vs. PC4 for all CH overtones 

 

 

Figure A.6 Wavelet decomposition using db3 with 5 levels of decomposition 
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Figure A.7 Wavelet decomposition using db3 with 10 levels of decomposition 
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Appendix B: Appendices for Chapter 5- Enhanced Integrated Model Application on 

ESI Data 

 

(a) Combined sub-bands 

 

(b) Sub-band A5 

 

(c) Sub-band D5 

Figure B.8 Bivariate scores plot when CL11-2 is removed from the dataset for the 
combined sub-bands  and sub-bands  A5, D5 and D4 
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(d) Sub-band D4 

 

(e) Sub-band D3 

 

(g) Sub-band D2 

 

(g) Sub-band D1 

Figure B.9 Bivariate scores plot when CL11-2 is removed from the dataset for the sub-
bands D3, D2 and D1 
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Figure B.1 Contribution plots of the wavelet sub-bands on PC1 to PC6 for cell line CL10 (high producing cell line) 
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Figure B.2 Contribution plots of the wavelet sub-bands on P1 to PC6 for cell line CL19 (low producing cell line) 
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Figure B.3 Contribution plots of the wavelet sub-bands on P1 to PC6 for cell line CL2 (low producing cell line) 
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Figure B.4 Contribution plots of the wavelet sub-bands on P1 to PC6 for cell line CL4 (low producing cell line) 
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Figure B.5 Contribution plots of the variables on PC1 to PC6 for cell line CL15 (low producing cell line) 
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Figure B.6 Contribution plots of the variables on P1 to PC6 for cell line CL1 (low producing cell line) 
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Figure B.7 Contribution plots of the variables on P1 to PC6 for cell line CL3 (low producing cell line) 
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Figure B.8 Contribution plots of the variables on P1 to PC6 for cell line CL5 (low producing cell line) 
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Figure B.9 Contribution plots of the variables on P1 to PC6 for cell line CL9 (low producing cell line) 
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Figure B.10 Contribution plots of the variables on P1 to PC6 for cell line CL7 (low producing cell line) 
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Figure B.11 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL12 and CL13 (high 
producing cell line)
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Figure B.12 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL13 and CL16 (high 
producing cell line)
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Figure B.13 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL19, CL2 and CL6 
(low producing cell line)
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Figure B.14 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL8 and CL15 (low 
producing cell line)
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Figure B.15 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL17 and CL18 (low 
producing cell line)
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Figure B.16 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL1, CL3 and CL4 
(low producing cell line) 
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Figure B.17 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL5 and CL9 (low 
producing cell line) 
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Figure B.18 Contribution plots of the ESI spectra on P1 to PC6 without discrete wavelet decomposition for cell lines CL7 and CL14 (low 
producing cell line) 
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