
Fault Injection Testing of Software Implemented

Fault Tolerance Mechanisms of Distributed Systems

Sha Tao

Ph.D. Thesis

October 1996

University of Newcastle upon Tyne

Department of Computing Science

NEWCASTLE UNIVERSITY LIBRARY
.. _

Abstract

One way of gaining confidence in the adequacy of fault tolerance mechanisms of a

system is to test the system by injecting faults and see how the system performs under

faulty conditions. This thesis investigates the issues of testing software-implemented

fault tolerance mechanisms of distributed systems through fault injection.

A fault injection method has been developed. The method requires that the target

software system be structured as a collection of objects interacting via messages. This

enables easy insertion of fault injection objects into the target system to emulate

incorrect behaviour of faulty processors by manipulating messages. This approach

allows one to inject specific classes of faults while not requiring any significant changes

to the target system. The method differs from the previous work in that it exploits an

object oriented approach of software implementation to support the injection of specific

classes of faults at the system level.

The proposed fault injection method has been applied to test software-implemented

reliable node systems: a TMR (triple modular redundant) node and a fail-silent node.

The nodes have integrated fault tolerance mechanisms and are expected to exhibit

certain behaviour in the presence of a failure. The thesis describes how various such

mechanisms (for example, clock synchronisation protocol, and atomic broadcast

protocol) were tested. The testing revealed flaws in implementation that had not been

discovered before, thereby demonstrating the usefulness of the method. Application of

the approach to other distributed systems is also described in the thesis.

Acknowledgements

First and foremost, I would like to thank my supervisor Professor Santosh Shrivastava

for his constant support and constructive advice. I am grateful to Professor Shrivastava

for his comments and criticisms on the preliminary drafts of the work.

I would also like to thank my colleagues Dr Paul Ezhilchelvan, Dr Neil Speirs, and Dr

Francisco Brasileiro for the many fruitful discussions I had with them during the course

of the work.

The support and encouragement offered by my family during my studies are also greatly

acknowledged.

The work reported in this thesis was financially supported by grants from the CEC

ESPRIT programme and the UK Engineering and Physical Sciences Research Council

(EPSRC).

ii

Table of Contents

Chapter 1 Introduction

Chapter 2 Fault Injection Techniques and Software Testing 5

2.1. Introduction 5

2.2. Simulated Fault Injection 7

2.3. Hardware-Implemented Fault Injection 11

2.3.1. Pin Level Fault Injection 11

2.3.2. Heavy-ion Radiation Injection 15

2.3.3. Other Techniques of Hardware-Implemented Fault Injection 17

2.4. Software-Implemented Fault Injection 17

2.4.1. FIAT Fault Injection Tool 18

2.4.2. FERRARI Fault Injection Tool 20

2.4.3. SFI Fault Injection Tool 22

2.4.4. FINE Fault Injection Tool 23

2.4.5. Simulation-Assisted Fault Injection 26

2.4.6. Other Work on Software-Implemented Fault Injection 27

2.5. Fault Injection for Fault Removal 28

2.5.1. Testing of Distributed Fault Tolerant Algorithms 28

2.5.2. Fault Tolerance Testing of AAS 30

2.6. Overview of Software Testing Techniques 33

2.6.1. Structural Testing 33

2.6.2. Functional Testing 34

111

2.6.3. Random Testing

2.6.4. Equivalence Partitioning Testing

2.6.5. Cause-effect Testing

2.6.6. Mutation Testing

2.6.7. Assertion Testing

2.6.8. Comments

2.7. Fault Tolerance Testing Strategies

2.7.1. Structural Testing

2.7.2. Functional Testing

2.8. Summary

Chapter 3 Focused Fault Injection Method

3.1. Introduction

3.2. Modelling Faulty Behaviour

3.2.1. Simple Responses

3.2.2. Replicated Responses

3.3. Software Structure Permitting Focused Fault Injection

3.4. Injection of Replicated Responses

3.5. Injection of Multiple Processes

3.6. Injection of Multiple Processors

3.7. Ordering Arrivals of Erroneous Messages

3.8. Software-Implemented Fault Tolerance in Distributed Systems

3.8.1. Node Level Fault Tolerance

3.8.2. Distribution Level Fault Tolerance

3.8.3. Application Level Fault Tolerance

3.9. Summary

iv

35

35

36

38

39

40

41

42

44

46

50

50

51

52

53

55

59

61

63

67

70

70

71

72

73

Chapter 4 Focused Fault Injection on Voltan TMR Node

4.1. Introduction

4.2. Voltan TMR Node Architecture

4.2.1. System Model and Assumptions

4.2.2. Node Software Architecture

4.3. Implementation

4.3.1. Voting Module

4.3.2. Clock Synchronisation Module

4.3.2.1. The Protocol

4.3.2.2. The Implementation

4.3.3. Ordering Module

4.3.3.1. The Protocol

4.3.3.2. The Implementation

4.3.4. Communications Layer

4.4. Fault Injection Implementation

4.5. Experiments and Results

4.5.1. Voting Module

4.5.2. Clock Synchronisation Module

4.5.3. Ordering Module

4.5.4. Comments

4.6. Summary

Chapter 5 Focused Fault Injection on A Fail-Silent Node

5.1. Introduction

5.2. Fail-Silent Node Architecture

\'

75

75

76

77

79

81

83

84

84

89

90

91

95

96

97

100

101

105

111

115

115

117

117

118

5.2.1. System Model and Assumptions

5.2.2. Basic Node Architecture

5.2.3. Node Failure Semantics

5.2.4. The Symmetric Node Design

5.2.5. The Leader-Follower Node Design

5.3. Leader-Follower Node Implementation

5.3.1. Communications Layer

5.3.2. Ordering Modules

5.3.3. Comparison Modules

5.4. Implementing Focused Fault Injection

5.5. Experiments and Results

5.5.1. Experimental Set-Up

5.5.2. Comparison Module of Follower

5.5.3. Comparison Module of Leader

5.5.4. Time-Monitoring Mechanism of Follower

5.6. Summary

Chapter 6 Applying Focused Fault Injection at Higher Levels of a Distributed

System

6.1. Introduction

6.2. Distribution Level Fault Tolerance

6.2.1. Focused Fault Injection Scheme

6.2.2. The ISIS Example

6.3. Application Level Fault Tolerance

6.3.1. The Manetho Example

6.4. Summary

VI

119

120

121

123

125

128

130

131

133

135

137

138

140

141

142

143

144

144

146

146

149

153

154

155

Chapter 7 Conclusions

7.1. Contributions

7.2. Future Directions

7.2.1. Limitations of the Work

7.2.2. Further Work

References

vii

157

157

159

159

160

163

Chapter 1: Introduction

Very high reliability is required from computing systems that are used in life- and

mission-critical applications. Enormous effort is put into the design and implementation

of such systems. Various types of fault tolerance mechanisms are employed to achieve

that required level of system reliability. A major problem related to the development of

fault tolerant computing systems is their validation.

Fault tolerant systems must handle an 'extra class' of inputs, i.e., failure events, which

they are designed to cope with. For systems intended for critical applications, failure

probabilities in the range of 10.6 to 10.10 per hour are often specified [WensI78]. It is

simply not possible to take the conventional approach of running a system for long

periods (so failure events do occur) to collect failure data for evaluating the reliability

properties of a system. Other ways of system validation must be employed to examine

the behaviour of the system in the presence of failures.

Fault injection based testing is recognised as an effective means of validating reliability

properties of systems. It has been used to examine reliability mechanisms, such as error

detection mechanisms, error recovery schemes, and other aspects of fault tolerance.

Fault injection can also be used to study the behaviour of large systems under faulty

conditions. Over the years, various fault injection tools and methods have been

developed and implemented in both hardware and software.

Fault injection is the general term used to describe a wide range of activities which

create the effects of fault occurrences. Especially, 'software-implemented fault

injection' actually refers to software based approaches to the injection of errors

(manifestations of faults).

This thesis describes a fault injection method that we have developed for testing

software-implemented fault tolerance mechanisms of distributed systems. The method

differs from the previous work in that it exploits an object oriented approach of software

implementation to support the injection of specific classes of faults at the system level.

The method requires that the target software system be structured as a collection of

objects interacting via messages so that fault injection objects can be easily inserted into

the target system to emulate incorrect behaviour of faulty processors by manipulating

messages. This approach allows one to inject specific classes of faults without requiring

any significant changes to the target system. The method has been applied to test the

implementation of redundancy management protocols of a TMR (triple modular

redundant) node and a fail-silent node.

The need for the injection of specific classes of faults at the system level is exemplified

by the so called 'Byzantine Generals problem'. The problem refers to a situation in

which a failed processor of a system exhibits 'two-faced' behaviour, telling one

processor one thing and another processor a different thing, thereby 'confusing' the

correct processors of the system. It is therefore necessary that the correct processors

execute an 'agreement' protocol to prevent any disagreement about the disseminated

information. Such Byzantine agreement protocols do exist. These protocols have been

validated by formal correctness proofs. However, faults can still be introduced at the

2

implementation stage. Testing-based validation of the implementation is therefore

required. Effective testing of software modules implementing these protocols can only

be achieved by the injection of specific types of faults that can create required failure

scenarios, such as 'two-faced' Generals. We show in chapter 3 how such software

modules can be effectively tested using the method presented in the thesis.

The rest of the thesis is organised as follows.

Chapter 2 gives a survey of the existing work on fault injection. Various fault injection

tools and methods and their applications are analysed. Their merits and shortcomings

are discussed. A brief discussion on software testing techniques in general is also

presented.

In chapter 3, we present our fault injection method. We first describe a fault model for

distributed systems. Then we discuss in detail how the target software should be

structured to support fault injection and how various failure scenarios can be created

through fault injection. In this chapter we also discuss the various levels at which fault

tolerance can be provided in a distributed system.

Chapter 4 describes the fault injection experiments conducted to test the soundness of

the design and implementation of Voltan TMR node. The Voltan TMR node is

implemented entirely in software using standard transputer hardware. A TMR node

consists of three processors and is capable of masking the failure of a single processor

through replicated processing. The key to the correct functioning of a TMR node is

redundancy management. In a software-implemented TMR node, this is provided by the

.3

implementation of redundancy management protocols which forms the 'hard-core' of

system software of a node. The 'hard-core' must function correctly in the presence of a

single failure for the node to be correct. We tested the 'hard-core' consisting of the

voting, clock synchronisation and ordering modules of the Voltan TMR node software.

Our fault injection method has also been applied to test the fault tolerance mechanisms

of a software-implemented fail-silenJ node. Unlike a TMR node which is designed to

mask the failure of a single processor and continue to provide a required service, a fail­

silent node is only required to exhibit certain fail-silence properties in the presence of a

single processor failure. In chapter 5 we describe the fault injection experiments

performed on a fail-silent node.

In chapter 6 we discuss the application of our fault injection method to distributed

systems where fault tolerance is provided at distribution level or application level. In

such systems, message exchanges among the processors of the system are often based

upon the use of a set of primitives provided by the underlying communication layer.

The target system modules have direct access to the primitives for sending and receiving

messages, rather than make use of link handling objects as suggested in chapter 3. It is

not possible to insert an injection object to intercept and manipulate output messages. In

chapter 6 we describe how our fault injection method can be adapted to be used in the

testing of such systems. Thus we show that our approach can be used to test a wide class

of distributed computing systems.

Chapter 7 concludes the thesis. Limitations of our work are discussed and plans for

future work are outlined.

Chapter 2: Fault Injection Techniques and Software Testing

2.1. Introduction

For systems intended for critical applications, failure probabilities in the range of 10-6 to

10-10 per hour [Wens178] and system down times in the range of 3 to 156 seconds per

year [Crist90] are often specified. It is simply not feasible to take the conventional

approach of running a system for long periods (so failure events do occur) to collect

failure data for evaluating the reliability properties of such systems. A more direct

means of feeding the target system with a special category of inputs, i.e. failure events,

through fault injection, is therefore required. Fault injection based experiments have

increasingly been recognised as a very useful way of validating system reliability. Fault

injection can be employed for two different objectives with regard to system reliability

validation: fault forecasting and fault removal [Arlat91, Lapri92].

Fault forecasting is not about forecasting the occurrence of faults. It is about the impact

of faults on the target system, that is, forecasting the consequences of faults. Fault

forecasting handles issues such as the likelihood of a fault being detected, how long it

takes to detect a fault, and how the target system would behave under the influence of

faults, etc. Fault injection has been widely used to examine coverage and detection

latency of various error detection mechanisms, and to study system behaviour under

5

faulty conditions.

Within the context of fault tolerant systems, fault removal deals with the uncovering of

flaws and deficiencies in the design and implementation of fault tolerance mechanisms,

to make sure that fault tolerance mechanisms do cope with the faults which they are

designed to handle. In other words, fault removal is concerned with the removal of fault

tolerance deficiency faults. In this sense, the process of fault tolerance testing for the

objective of fault removal is similar to that of conventional software testing, only that

the inputs are of a special category (faults).

The fault injection techniques and methods used in fault injection experiments for the

two different objectives are quite different. In the experiments for fault forecasting, the

essential requirement is to emulate the occurrence of faults in the real world as closely

as possible. The techniques are usually geared towards supporting fault injection of

random nature at low levels. While in the experiments for fault removal, the

requirement is to be able to inject specific classes of faults so that the fault tolerance

mechanisms under test can be checked adequately. Such experiments allow testers to

find out whether the fault tolerance mechanisms can indeed tolerate the faults which

they are supposed to tolerate.

There is a wide range of techniques which are used to implement fault injection for the

purpose of fault forecasting at various stages of the development process of reliable

systems. These techniques can be classified into three categories: simulated fault

injection, hardware-implemented fault injection, and software-implemented fault

injection. Simulated fault injection is typically employed at the design stage, so

6

that different architectural design ideas can be tested and evaluated, and potential

reliability deficiencies can be identified. Hardware- and software-implemented fault

injection approaches are suitable for prototype testing and evaluation; these direct

approaches avoid the task of constructing complex simulation models. In sections 2.2 -

2.4 we will discuss and analyse the three categories of fault injection techniques.

In section 2.5 we will discuss some existing work on fault injection with the objective of

fault removal. Such work is similar in nature to software testing, that is the aim is to test

that a system does what it is expected to do. Section 2.6 gives an overview of software

testing techniques in general. Section 2.7 presents a brief discussion on the issue of

testing strategies that are used in fault tolerance testing. Section 2.8 summarises the

chapter.

2.2. Simulated Fault Injection

Simulated fault injection is carried out by injecting faults into the simulation model of

the target system under study. It constitutes an important means for performance and

reliability evaluation [lyer93]. Such evaluation is highly useful in comparing alternative

design ideas and analysing reliability characteristics. Another obvious advantage of

simulated fault injection over hardware/software-implemented fault injection is that

there is no restriction in accessing internal parts of components of a processor, and very

low level faults can be simulated (see below). Simulated fault injection has been used in

evaluating fault tolerant processor architectures during the design stage.

Various levels of system abstraction can be considered for simulated fault injection. In

7

practice, three levels of abstraction are often used for injection based analysis. They are:

transistor level, gate level, and function level.

A wide range of research work has been carried out concerning simulated fault injection

at all three levels of system abstraction. Some of them deal mainly with simulation

tools, while others concentrate on studying reliability characteristics of some specific

systems.

Transistor level faults are simulated by changing the electric voltage and current inside a

circuit, which is in fact a form of circuit simulation. FOCUS [Choi92] is a transistor

level simulation tool, it adopts a mixed-mode approach of simulation. The non-faulty

parts of the circuit are simulated at the logical level while the injected parts are

simulated at the electrical (analogical) level. Logical level simulation of the non-faulty

parts helps reduce the complexity of the simulation model while electrical level

simulation of the faulty parts enables a more realistic emulation of real world faults.

FOCUS has been used to study error propagation within a microprocessor [Choi92]. In

the study, a total of 2100 simulations was performed to obtain stable results. The study

found: 71.9% of the faults injected never caused an error (a faulty signal has to be

'latched' to become an error); 16.4% of the faults injected caused errors that propagated

to a pin of an IC chip; and 9.2% of the faults injected caused errors that propagated to

the functional output of the microprocessor.

Gate level fault simulation adopts fault models at a higher level of system abstraction. It

simulates logical faults, such as stuck-at-O, stuck-at-l, or inverted logic value faults. A

8

number of studies have used gate level fault simulation to analyse error propagation in

IC chips and to characterise the impact of gate level faults on program behaviour.

Lomelino [Lome186] investigated error propagation from the gate level to the pin level.

Czeck and Siewiorek [Czeck90] injected faults in a gate level simulation model of the

IBM RT PC to investigate the impact of transient gate level faults on program

behaviour.

Simulated fault injection can also be carried out at function level to study the reliability

of complete computer systems or even distributed systems. In such simulations,

components of the system of either hardware (e.g. cpu, memory) or software (e.g.

workload) are modelled and their interaction considered.

DEPEND [Goswa90] is a typical example of a function level fault simulation

environment. It takes an object oriented approach and provides a collection of objects

representing hardware and software components of systems. Users can use these objects

to build simulation models rapidly. DEPEND has been used to simulate the UNIX­

based Tandem Integrity S2, a TMR node system [Jewet91]. Faults were injected into the

simulation model of the system to evaluate the impact on the system MTBF (mean time

between failure) by correlated errors, latent errors, memory scrubbing, and repair times

[Goswa91]. The results show that correlated errors (i.e., errors affecting two or three

processors) with no latency cause enormous degradation to the system MTBF. However,

errors typically have latencies and when error latency is taken into account the reduction

in the MTBF is not as pronounced. The results also show that there is no relationship

between the size of error latency and the system MTBF. For systems designed to tolerate

9

single faults, repair time is a window of vulnerability. The study shows that reduced

repair time improves the system MTBF as long as there are no correlated errors.

Memory scrubbing, which is used to detect and remove memory errors, is found to be

extremely effective at eliminating errors with large latencies.

Jenn et al [Jenn94, Rimen93] reported work on a simulated fault injection tool

(MEFISTO) based on a widely used hardware description language (VHDL). The work

differs from previous research work in this area in two aspects. Firstly, MEFISTO is

based on VHDL [IEEE88], an existing hardware description language with a wide

spectrum of applications. Target system simulation models written in VHDL can be

injected directly. This removes the burden of having to learn a new simulation language

and construct a simulation model in this language. Secondly, MEFISTO allows fault

injection at multiple levels of abstraction. This feature is supported by VHDL's ability

to describe both structure and behaviour of a target system. MEFISTO has been used to

fault inject a processor. The main objective of the experiment is to analyse the impact of

the choice of the injection method and the model description level on the error outcome.

Another example of function level fault simulation tool is React [Clark95]. React is

specifically designed to assess reliability properties of multi-processor architectures. It

can be used to study different fault tolerant architectures such as, N modular

redundancy, duplication and comparison, and standby sparing.

Some of the network simulation tools, such as NEST [Dupuy90], which were not

originally developed for fault simulation, can also be used to simulate node and link

10

failures to model faults in distributed systems.

2.3. Hardware-Implemented Fault Injection

Hardware-implemented fault injection is also known as physical fault injection and

involves the physical introduction of faults into the target system either by applying

voltage levels to the pins of Ie chips, radiating Ie chips with heavy ion, or some other

forms of physical interference. Pin level fault injection changes the external behaviour

of an Ie chip by having some of its pins stuck-at-l, stuck-at-O, or inverted. Heavy ion

radiation allows faults to be injected inside a chip and so changes the external behaviour

of the chip in an indirect way. The behaviour of Ie chips can also be modified through

power disturbance or electro-magnetic interference.

2.3.1. Pin Level Fault Injection

Pin level fault injection is the most widely used hardware fault injection method. It is

especially useful in evaluating error detection mechanisms for detection latency and

coverage. There are two different techniques used for implementing pin level fault

injection, known asforcing and insertion respectively.

With the forcing technique, probes are attached to the Ie pins (injection points) directly.

The current/voltage levels of the injected pins can then be altered to emulate erroneous

logic values. Using the forcing technique, the fault types allowed are limited to stuck-at­

° and stuck-at-l.

The insertion technique requires some physical modification of the target

11

hardware. The selected IC chip is extracted from the circuit board and an extra piece of

hardware, called socket, is then inserted between the IC chip and the circuit board.

Through the socket, logic values of the pins can be manipulated. Apart from the stuck­

at-O and stuck-at-l fault types, more complex fault types, such as inverted faults where

logic values are inverted (0 to 1, or 1 to 0) and open faults where pins are 'open'

(disconnected), can also be injected. Most pin level fault injection tools use insertion

technique.

For an early example of pin level fault injection method, see the papers by Decouty and

Crouzet [Decou80, Crouz82]. The aim was to evaluate the coverage of error detection

mechanisms attached to various modules of a self-checking microcomputer [Morei76].

Faults were injected into the target microcomputer and results were monitored through

the use of a purpose-built tool. The tool consisted of a fault injector and a hardware

monitor. The hardware monitor observed whether the errors caused by the injected

faults were detected by the error detection mechanisms and whether erroneous outputs

were emitted by the microcomputer. The study found error detection rates to be very

high: 96% CPU errors, 99% ROM errors, and 99% RAM errors were detected. Another

significant observation of the experiments was that no erroneous outputs were emitted

by the microcomputer. In other words, either the microcomputer was stopped when an

error was detected or the error didn't result in the microcomputer emitting erroneous

outputs.

The fault recovery mechanism of the FfMP computer [Hopki78] was evaluated using

pin level fault injection [FineI87]. The main objective was to collect data on fault

12

recovery times and establish their statistical distribution. This information is of vital

importance for reliability estimation of the FfMP. The fault injection set-up has a

hardware fault injector, interface hardware, and support software. Experiments \vere

controlled from a host computer on which the support software was run. Fault injection

instructions were issued from the host computer to the injector; the results were read by

the FfMP itself and sent back to the host computer through the hardware interface. The

results of the experiments were very interesting. While no single distribution of fault

recovery times was shown to be the best fit for all the data sets, the exponential

distribution, which is often assumed in reliability modelling, was a bad fit for all data

sets.

The MESSALINE fault injection tool [Arlat89, Arlat90a, Arlat90b] developed at LAAS

has been used to test both centralised and distributed target systems with reliability

mechanisms through pin level fault injection. In the case of the centralised target system

[Arlat90a], the target system was a subsystem of a computerised interlocking system for

railway control applications. The mechanisms examined were a self-test program and

the hardware error detection mechanism of the system. Stuck-at-l, stuck-at-O, and open

faults were injected. The experiments showed that the test program was far more

efficient in detecting errors than the hardware error detection mechanism.

In the second exercise [Arlat90a], the Multicast Communication System (MCS) of

Delta-4 distributed system [PoweI91] was examined. The MCS provides multicast

services that are built using an atomic multicast protocol (AMP). The MCS is

implemented within Network Attachment Controllers (NACs) which connect the host

13

machines of a distributed fault tolerant system to a local area network. The NACs have

self-checking capabilities and are assumed to be fail-silent (i.e., they fail by stopping

and becoming silent). Fault tolerance of the MCS depends on two levels of coverage:

local coverage, provided the self-checking capabilities of the NACs, and distributed

coverage provided by the defensive properties of the AMP. The defensive properties of

the AMP refer to its ability to provide continued fault tolerance in the event that the fail­

silence property of NACs is broken and erroneous messages are sent by NACs. The

experimental results showed that 67.47% of the errors caused by injected faults were

detected and the NAC was subsequently extracted from the network (become silent).

The results also showed that 23.79% of the errors, though not detected, did not result in

any erroneous behaviour of the MCS. This was due to the distributed fault tolerance

coverage provided by the AMP. Thus, in 91.26% of the injections, the MCS was able to

handle the error correctly.

In a more recent study, Madeira and Silva [Madei94] investigated the effectiveness of

error detection mechanisms in guaranteeing fail-silent behaviour by using pin level fault

injection. Two target computers, one Z80 based and the other 68000 based, were

evaluated. A number of error detection mechanisms were tested in the contexts of the

two computers. These error detection mechanisms check program control flow, memory

access behaviour, and illegal instructions. The results showed that by using a

combination of such error detection mechanisms, very high error detection rates could

be achieved. The Z80 based computer achieved a combined error detection rate of

97.8%; while the 68000 based computer achieved 90.4%. As expected, not all

undetected errors would cause a violation of fail-silence. The actual fail-silence

14

coverages achieved were higher than the error detection rates. The ZSO based computer

achieved a fail-silence coverage of 99.6%; while the 68000 based computer achieved

98.1%.

Fault injection experiments were also conducted on the Z80 and 68000 based computers

without any added error detection mechanism. The results were not surprising. 16.7% of

errors caused by injected faults resulted in a fail-silence violation in the 68000 based

computer; while 45.6% of such errors resulted in a fail-silence violation in the Z80

based computer.

Other examples of pin level fault injection include [Shin86] for measuring error

detection latency and [Schue86] for rating the coverage of error detection mechanisms.

2.3.2. Heavy-ion Radiation Injection

Heavy-ion radiation of IC chips [Gunne89, Mirem92] allows faults to be injected within

IC chips which is not possible with pin level fault injection. Another difference between

pin level injection and heavy-ion radiation injection concerns the certainty of fault

injection. With pin level fault injection, one has control over the faults being injected

with regard to the types of faults and the location of injection. However, when a IC chip

is radiated with heavy-ion, there is no such certainty of control. As a result, heavy-ion

radiation based fault injection experiments are conducted in ways different from those

of pin level fault injection. An experimental set-up consisting of two CPUs is nonnally

required; one is subject to fault injection and the other acts as a reference. The two

CPUs operate in synchrony using the same main clock and are connected to a

15

comparator. When a fault which actually causes an error is injected, it will be detected

by the comparator and the output signals of both CPUs are recorded.

Heavy-ion radiation testing was used when a MC6809E rrucroprocessor was fault

injected to generate error data [Gunne89]. The error data were later used as input of

programs which simulated error detection schemes suitable for a watchdog processor. A

watchdog processor is a small processor that checks the behaviour of the main processor

on the external bus [Mahm088]. Each error detection scheme consisted of a number of

individual error detection mechanisms for checking program control flow, memory

access behaviour, and illegal instructions. All error detection mechanisms were

individually evaluated and then a number of combinations (schemes) were also

evaluated. The results showed that, while the individual error detection mechanisms

typically have detection rates at around 25% - 60%, the error detection schemes have

much higher coverage. The best scheme detected 79% of errors and 99% of the errors

that caused execution to diverge were detected by the scheme.

Heavy-ion radiation has also been used to examine two software error detection

techniques directly [Mirem92]. These two error detection techniques are known as

Block Signature Self-Checking (BSSC) and Error Capturing Instructions (ECn,

respectively [Mirem92]. They are intended for checking program control flow. In the

experiments, the two error detection techniques were evaluated under different

workloads and detection coverage and latency were measured.

16

2.3.3. Other Techniques of Hardware-Implemented Fault Injection

Other techniques of hardware-implemented fault injection include electro-magnetic

interference [Leber93] and power supply disturbance [Damm86, Mirem92]. These

techniques of fault injection are similar in nature to that of heavy-ion fault injection.

They allow faults to be injected within IC chips but they suffer from the same lack of

experimental control in terms of fault injection location and types of faults to be

injected. However, electro-magnetic interference and power supply disturbance do

emulate faults in the real world most closely.

2.4. Software-Implemented Fault Injection

Software-implemented fault injection introduces errors into the target system by

software means. Compared with hardware-implemented fault injection, the software

approach does not require special hardware equipment, therefore it offers reduced cost,

more flexibility and better experimental control. With the software approach, high level

fault injection becomes possible, which opens the way for effective testing of some

software implemented fault tolerance mechanisms. For these reasons, software­

implemented fault injection has become increasingly popular in recent years.

Software-implemented fault injection is typically carried out by changing memory

content in either data or program code sections, changing register content, or triggering

some built-in hardware error detection mechanism. The injection techniques used

mostly involve modifying the memory image of processes at compile time. In this way,

the program control flow can be altered and fault injection routines can be incorporated

17

into the target program which will later carry out fault injection work when the program

IS run.

2.4.1. FIAT Fault Injection Tool

Segall et al [SegaI88] developed the FIAT fault injection environment for evaluating

reliability properties of distributed real-time fault tolerant systems. FIAT works by

manipulating the target software systems, known as workloads, at symbolic level (see

the explanation in the following paragraph). A target software system is a collection of

communicating processes, with each process consisting of a code segment and a data

segment.

The target system is first analysed and the symbolic names (known as attributes) are

extracted. These symbolic names identify individual processes, and code and data

segments within individual processes of the target software system. Using the extracted

symbolic names, the tester can express what faults are to be injected at what objects

identified by the symbolic names. These fault injection intentions consisting of type of

fault to inject and location of injection are expressed in the form of/ault classes. A fault

class is like an abstract data type. The tester specifies the characteristics of the faults to

be injected in a fault class, and later the fault class will be used by the fault instance

generator to generate a list of faults to be injected.

The fault classes provided by FIAT are:

• Memory fault;

18

• Register fault;

• Communication fault;

• Error detection mechanism triggering fault.

A number of program attachments are linked to the target system at link time. These

program attachments monitor the target system, carry out actual fault injection, and

report high level abnonnal events. The specially linked target software systems are

executed on Fault Injection Receptacle (FIRE) machines and the experiment is

controlled from a Fault Injection Manager (FIM) machine. The FIREs and the FIM are

connected by a local area network.

FIAT has been used to examine a real-time distributed checkpointing fault tolerant

system [Segal88]. The target system consisted of two computational engines: the

primary and the secondary. The primary, on receiving a request for real-time

computation, informs the secondary of the request as well as the time for next

interaction. The primary then executes the request. The secondary waits for the next

interaction. If the next interaction has exceeded the time bounds (i.e., primary failure),

the secondary then initiates a recovery action and becomes the primary. If the primary

detects that no secondary exists (i.e., secondary failure), it creates a secondary. In the

experiments, the primary was fault-injected to examine the failure detection coverage

and detection latency of the secondary.

The FIAT fault injection environment demonstrated the viability of emulating hardware

19

faults through software-implemented fault injection.

2.4.2. FERRARI Fault Injection Tool

The FERRARI fault injection tool [Kanaw92] made improvements in software­

implemented fault injection in terms of better controllability. It allows faults to be

injected in specific physical locations instead of only those mapped by symbolic names.

The time of fault injection during the execution of the target system can also be

controlled. FERRARI can also inject transient faults which cause errors of limited

durations.

In FERRARI, the target system is first analysed and executed. The purpose of this

analysis and execution phase is to determine the starting address and size of the text

(code) and data segments of the executable file, and to extract the execution behaviour

of a fault free run, such as the execution time, the output, and the addresses used by the

program. Fault injection instructions of a user are expressed through experiment

parameters. These parameters include:

• Experiment modes (user specified or automatic selection of fault location, time and

duration);

• Fault types (bit XOR, bit set, bit reset, byte set, or byte reset);

• Fault class (data, control flow, or user defined);

20

• Type of reliability measurements (coverage, or coverage and latency).

Using the results of the target system analysis and the experiment parameters provided

by the user, the target system is modified and injection points (software traps) are set up.

When the modified target system is run, it will be trapped at the injection points, where

selected faults are injected.

FERRARI supports the injection of both transient faults (called transient errors in

[Kanaw92]) and permanent faults. When the execution reaches a specified address, the

program is trapped. For transient faults, a selected fault is injected and the current

instruction is executed, and then the error caused by the injected fault is removed and

the program is allowed to resume execution. For permanent faults. the error caused by

the injected fault is not removed. The program is trapped for the next n instructions,

where n is the duration of the fault.

In FERRARI, faults are modelled on bus line faults (both address line faults and data

line faults) and faults in condition code flags, though the actual manipulations (fault

injection) are applied to memory cells and registers. For example, an "address line fault

while the processor is fetching an instruction" is said to have been injected when the

processor is forced to fetch a different instruction. This is achieved by modifying the

program counter. For transient faults. the modified program counter will be restored to

its correct value after the execution of the incorrect instruction. While for permanent

faults, the program counter will be modified repeatedly for several instructions. or the

entire execution interval of the target application.

21

FERRARI has been implemented on a SUN SPARC station and used to measure the

effectiveness of several redundancy based error detection techniques that were built into

application programs [Kanaw92]. As the experimental results showed, most of the

errors caused by injected faults were detected by the built-in error detection mechanisms

of the SPARC system before the application level error detection techniques had a

chance. However, most of the errors that slipped through the detection of the SP ARC

system were either detected by the application level detection techniques or caused a

program crash.

2.4.3. SFI Fault Injection Tool

The Software Fault Injector (SF!) developed by Rosenberg and Shin [Rosen93] allows

fault injection at various levels for different purposes. Low level faults can be injected

to create memory errors and CPU failures (such as the failure of the adder or multiplier)

for testing reliability mechanisms implemented on single nodes. Injection at message

level facilitates the testing of distributed reliability mechanisms. Messages from the

injected node can be omitted, delayed, or altered.

Compared with other software-implemented fault injection tools, SFI also offers better

timing control. With SFI, faults can be injected as transient, intermittent, and permanent

faults, and the timing parameters of all these types can be specified by the user. A

transient fault is injected only once, at a given time after the start of an experiment run.

An intermittent fault is injected repeatedly at the same location. For an intermittent

fault, the tester can specify the distribution of the interval time between injections. The

interval time can be detenninistic, with a set time between injections, or can follow an

exponential distribution with a given mean. When the interval time between injections

is small, the injected fault will behave like a permanent fault.

Three methods are employed in implementing fault injection in SFI. They are active

injection, control flow alteration, and code replacement. Active injection is performed

by a process that runs concurrently with the executing workload. Active injection is

used to inject memory faults. Control flow alteration can be used to modify the

functional behaviour of the system. It is used to inject communication faults. Code

replacement can be used to emulate faults in areas which are otherwise not accessible,

such as the adder or the multiplier of the processor.

SFI has been used to examine the effect of intermittent communication failures

(message omissions) on the message delivery time between two adjacent nodes in the

HARTS distributed real-time system [Shin91], and it has also been used to evaluate a

number of routing algorithms for distributed systems by injecting omission faults in

selected nodes.

2.4.4. FINE Fault Injection Tool

While most fault injection based studies concentrate on the final impact of faults on the

target system with emphasis on latency and coverage issues, Kao et al [Ka093] looked

into the issue of how errors propagate in a software system. A software tool for fault

injection and monitoring (FINE) was developed and used to trace UNIX system

behaviour under the influence of faults. FINE is made up of four major components

23

(fault injector, software monitor, workload generator, and controller) and some analysis

utilities.

The fault injector supports the injection of both hardware faults and software faults.

Since the application programs do not have the privilege to modify the kernel, the fault

injector is implemented in two parts, client and server. The server part is implemented

in the UNIX kernel. It provides an interface for the client part to specify the faults to be

injected into the kernel.

The software monitor traces the execution flow (by using probes) and key variables of

the kernel, and writes trace data to a file. The probes are inserted into most of the

significant functions to keep track of the execution flow and arguments. The software

instrumentation is embedded in the kernel to monitor system behaviour. While the

functionality of the software monitor is implemented in the kernel, an interface (in the

form of a system call) is provided so that a user program can specify the probes and key

variables to trace.

The workload generator generates synthetic workload of system calls according to user

specification. The controller specifies the fault for the fault injector, the key variables

for the software monitor, and the workload specification for the workload generator; it

then starts the experiment.

Both hardware faults and software faults (software bugs) can be injected with FINE. The

hardware fault types are:

24

• Memory faults;

• CPU faults (register faults);

• Bus faults;

• 110 faults.

The software faults modelled in FINE are:

• Initialisation faults;

• Assignment faults;

• Checking faults;

• Function faults.

Initialisation faults include uninitialised variables and wrongly initialised variables.

Assignment faults can be missing assignment or incorrect assignment. Checking faults

include missing condition checks and incorrect condition checks. Function faults are

those which involve multiple incorrect statements.

Experiments on SunOS 4.1.2 were conducted to investigate error propagation and to

evaluate the impact of various types of faults. Based on the results of the experiments,

error propagation models were built for both hardware and software faults. The

experimental results also revealed that memory faults and software faults usually have a

25

very long latency while bus faults and CPU faults tend to crash the system immediately.

2.4.5. Simulation-Assisted Fault Injection

Software-implemented fault injection is restricted to the parts of the target system that

are accessible to software. Sub-instruction level faults, such as the omission of a micro­

instruction in a RISC (Reduced Instruction Set Computer) processor can not be directly

injected using conventional software-implemented fault injection methods. Guthoff and

Volkmar [Guth095] proposed a simulation-assisted software-implemented fault

injection method.

Under this method, fault injection is carried out in three steps. In the first step, the target

system starts off normally and then is interrupted when a fault is to be injected. In the

second step, the state of the target system is transferred to the simulator and the resulting

state after fault injection is calculated. In the final step, the resulting state is transferred

back to the target system and execution is resumed. This method has been used to

investigate the impact of the omission of a single micro-instruction on the behaviour of

a Motorola MC88100 RISC processor. The experiments were carried out while the

processor was running a benchmark program. The experiments revealed that the

omission of a single micro-instruction can cause segmentation violation, bus error, and

division by zero error. The detection latency of these errors by the processor's built-in

error detection mechanisms was also measured.

This combined method offers the benefits of software-implemented fault injection while

allows access to parts of the target system which are not accessible using conventional

26

software approach. Because the portion of the target system which is simulated is only

the part of the target system which is not accessible by software, the effort required for

the construction of the simulation model is kept to a minimum.

2.4.6. Other Work on Software-Implemented Fault Injection

Software-implemented fault injection provides an important means for studying systems

behaviour under faulty conditions. Chillarege and Iyer [ChiIl87] investigated error

latency in systems by injecting memory faults in a V AX 111780 system using data

gathered through hardware instrumentation. The workload is that of a typical multi-user

time-sharing system, which consisted of a variety of scientific and miscellaneous word

and data processing applications. The study finds that the mean error latency in the

memory containing the operating system varies by a factor of 10 to 1 (in hours) between

the low and high workloads. The study also finds that most errors were discovered

within a day of fault injection.

Chillarege and Bowen introduced the idea of failure acceleration, and studied the

failure behaviours of a large commercial transaction processing system using memory

fault injection [ChiIl89]. The work revealed: only 16% of faults actually cause a total

loss of primary service; some errors do not affect short term system availability but

would cause a catastrophic failure following a change in operating state, where a change

of operating state refers to a substantial change in workload or a change in system

configuration; some errors are potential candidates for repair before total failure.

Though the emphasis of the two papers has been on the methodology and design of such

27

experiments rather than on the fault injection techniques, it does show the value of

software-implemented fault injection in such investigations.

2.5. Fault Injection for Fault Removal

Unlike fault injection for the purpose of fault forecasting (i.e., issues of error latency,

error detection coverage and error propagation, etc.), fault injection for the purpose of

fault removal inevitably requires the injection of specific classes of faults in order to

uncover flaws in the design/implementation of fault tolerance mechanisms. The issues

of injecting specific classes of faults (also known as deterministic fault injection

[EchtI91]) for the objective of fault removal have been looked at in a number of

contexts.

2.5.1. Testing of Distributed Fault Tolerant Algorithms

The issue of fault injection based testing for the removal of design faults of distributed

fault tolerant algorithms has been discussed in [EchtI91], and a structural testing

approach suggested. It is observed that the distributed fault tolerant algorithm under test

can be represented by a structure graph. The goal of structural testing is to feed the

software implementation of the algorithm with carefully selected inputs so that some (or

all) structural parts of the algorithm are executed and results (outputs) are monitored. It

is hoped that design faults can be revealed through this execution.

For distributed fault tolerant algorithms, the inputs also include faults. In distributed

systems, the behaviour of a faulty processor is exhibited by the erroneous messages the

28

faulty processor sends. So message level fault injection was adopted in [Echtl91] for the

testing of distributed fault tolerant algorithms. The internal conditions of a faulty

processor is of no significance for the distributed fault tolerant algorithm under test.

One important issue in structural testing is the selection of faults in order to cover

certain structural parts of the algorithm. Echtle et al [EchtI91] suggested the use of a

special heuristics which is based on the typical characteristics of distributed fault

tolerant algorithms.

EFA [Echtl92], a distributed testbed system for testing the fault tolerance capabilities of

distributed algorithms, was developed to support the implementation of deterministic

fault injection. This distributed testbed system provides a number of facilities, including

special communication primitives. These special communication primitives allow the

transmission and receipt of messages to be intercepted and monitored. This provides the

basis for deterministic fault injection. The intercepted messages can be manipulated in a

number of ways. Injection of the following faults is supported:

• Falsification of message contents;

• Multiple transmission of messages;

• Falsification of message transmission times (delays);

• Re-ordering of message transmissions;

• Generating spontaneous messages;

29

• Combinations of the fault types listed above.

The fault cases to be injected are expressed by the testers in the form of a program

module which will be called by the testbed system software when the experiment is

executed.

The distributed fault tolerant algorithms to be tested must be implemented using the

special facilities provided by EFA. The main idea here is to modify messages in a

manner that will force the algorithm under test to take specific execution paths.

Distributed fault tolerant target systems implemented using the usual communication

facilities provided by a communication subsystem can not be tested in this testbed. In

other words, this testbed is for algorithms, not for implementations.

A vresky et al [A vres92] also investigated the issue of structural testing of fault tolerant

algorithms through deterministic fault injection, and the Inter-Replica protocol (IRp) of

Delta-4 distributed fault tolerant architecture [PoweI91] was partially tested on a

simulator. The IRp provides co-ordination functions necessary to handle

communications between replicated application processes. A small part of the code

implementing the IRp was tested on a simulator. The simulator simulated three stations

(three replicas). Two faults were discovered: one was an implementation fault and the

other was a protocol design fault.

2.5.2. Fault Tolerance Testing of AAS

The Advanced Automation System (AAS) is a distributed real-time system developed

30

for the US Federal Aviation Administration to provide future air traffic control services

for the US [Avizi87, Benel89, Crist90]. It is a large and complex system with very high

reliability requirements. To verify its reliability properties prior to commissioning, it

becomes necessary to conduct a systematic testing of the fault tolerance capabilities of

AAS at all levels through various forms of fault injection [Dilen91].

Fault tolerance in AAS is provided in a hierarchy of fault handling facilities, at both

local level and distributed systems level. These fault handling facilities include error

detection, error reporting, and error recovery. The AAS fault tolerance testing is

intended for both reliability assessment (fault forecasting) and validation of fault

tolerant software. As a result, two approaches were taken: specific testing and selective

sample testing. With specific testing, specific error conditions are created to verify

wheth,er the system can operate correctly and cope with the expected failures. With

selective sample testing, large numbers of faults of random nature are injected in the

system under various operational conditions in order to identify any previously unknown

failure modes and to establish a statistical basis for the evaluation of system reliability.

The method adopted in the AAS fault tolerance testing is to integrate the fault injection

provisions into the AAS architecture. Each Ada (the AAS implementation language)

program address space contains a fault injection subsystem which interprets and co­

ordinates the execution of fault injection instructions in that address space. At the local

level, the faults which can be injected include:

• Ada exceptions raised;

31

• Memory corruption;

• Timer manipulation;

• Processes delayed or terminated;

• Operating system failures.

At the distributed systems level, communication messages can be manipulated to

emulate:

• Message loss;

• Message delay;

• Message corruption;

• Message duplication.

These fault injection capabilities allow a wide range of AAS modules to be tested for

fault tolerance. A good example of how specific testing can help uncover software bugs

is the testing of the implementation of a group membership protocol in AAS. After the

initial analysis showed possible flaws in the implementation, a specific test case was

constructed to test the software. The experiment revealed a missing piece of exception

handling code.

Although the AAS fault tolerance testing mainly centres on specific testing for the

32

removal of fault tolerance deficiency faults, the fault injection capabilities developed are

also used in selective sample testing for assessing system reliability.

2.6. Overview of Software Testing Techniques

The testing activities that occur during a software project can be classified into unit

testing, integration testing and system and acceptance testing [Ince89]. Unit testing is

the process of checking a program unit (subroutine or procedure) with test data. The

main aim of unit testing is to ensure that a program unit meets its specification.

Integration testing is the process of testing a partial version of the system while small

chunks of the system are added. The aim is to ensure that the interface between the

chunk that has been integrated and the system is correct. Finally, system and acceptance

testing is conducted to ensure that a software system meets its system specification.

System testing is carried out by the developers of the system while acceptance testing is

carried out by the users though the aim of the testing and the techniques used are the

same.

In this section we present an overview of some of the established software testing

techniques and discuss their application in different testing activities.

2.6.1. Structural Testing

Structural testing [Ince93] involves testing a program so that some structural metric is

satisfied or a particular path is traversed. The latter is often referred to as path testing.

Examples of program metric include percentage rate of statements or conditional

33

branches being executed. While in path testing, a program path can be any execution

path from the beginning to the end of the program being tested.

The test data for structural testing can be generated by analysing the source code of the

program. Whether particular parts of a program have been executed can be monitored by

inserting software probes into the program under test.

Structural testing is normally employed during unit testing where specific structural

metrics are set, for example, all statements are to be executed and 90% of conditional

branches are to be traversed.

The advantage of structural testing is that test data can be derived systematically and test

coverage measured. In the next section we will discuss structural testing further in the

context of fault tolerance testing.

2.6.2. Functional Testing

Functional testing is a testing technique where the specification of the program under

test is used to derive test data and then the test data is used to check whether the

program behaves as specified. In functional testing, the tester is not concerned with the

internal structure of the program being tested.

The key issue here for the tester whose aim is to discover program defects is to select

test data which have a high probability of exposing program defects. Effective selection

of test data is dependent on the skills and experience of the tester but there are some

structured techniques (see sub-sections 2.6.4 and 2.6.5) which can be used to guide the

34

selection.

Functional testing can be employed In unit testing, integration testing, and system

testing.

2.6.3. Random Testing

Random testing is a technique of randomly generating test data. It involves identifying

the input data space for a program and randomly generating test data inside that space.

Random testing is cheap to conduct in terms of tool support as all that required is some

form of random number generator. Another advantage of random testing is that it is

extremely good at producing data which a human tester would not think of. The main

disadvantage of random testing is that for large programs the amount of data needs to be

generated is prohibitively high. And this ensures that random testing can only be used

for unit testing.

Due to the random nature of this approach to testing, it should only be employed as a

useful adjunct to other testing techniques.

2.6.4. Equivalence Partitioning Testing

Equivalence partitioning [Somme92] is a test data selection technique whereby the input

data is divided into classes (equivalence partitions) of common properties. A program

should behave in a comparable way for all members of an equivalence partition.

35

The equivalence partitions may be identified by using design or functional specification

and by the tester using experience to predict classes of input data which may lead to

different execution paths. For example, a program processing temperatures may process

temperature readings in different ranges (below zero, at zero, and above zero)

differently. Then the input data space can be divided into three equivalence partitions.

Test data will be selected from the three equivalence partitions.

This test data selection technique is useful during unit testing, integration testing, and

system testing.

2.6.5. Cause-effect Testing

Cause-effect testing [Ince93] is another test data selection technique. This technique

involves examining the program output and analysing it to establish the relationship

between input events (causes) and output events (effects). The main advantage of cause­

effect testing is in that it is possible to consider combinations of events that occur in a

test.

The basic elements of the cause-effect testing notation are shown in Fig. 2.1. On the

left-hand side of the graphs are the causes which give rise to events in a system. Typical

causes might be an operator typing a command, or a valve closing. On the right-hand

side of the graphs are the events that occur because of causes, for example, an alarm

being sounded, or an error message being displayed on a screen.

36

a b a b

0 0 0 0
(a) (b)

a
a

~
0---

(c) (d)

Fig. 2.1

The first graph in Fig. 2.1 states that event b will occur when event a occurs. The

second graph states that event b will occur when event a does not occur. The third graph

states that event c will occur when events a and b occur, and the fourth graph states that

event C will occur when event a or event b occurs. A simple example cause-effect graph

is shown in Fig. 2.2. The graph shows that event e will occur when either event a occurs

or events band C both occur.

37

a

Fig. 2.2

The cause-effect graph of a software system is derived from the functional specification

of the system. This process involves a number of steps. First the system is partitioned

into manageable chunks so that each chunk can be analysed on a piece of paper or on a

computer screen. Then the causes and effects are identified. The cause-effect graph is

then built up. The resulting graph is used to guide the selection of test data.

The cause-effect testing technique is mainly employed during system testing.

2.6.6. Mutation Testing

Mutation testing [Mathu94] is a technique which is used to examine the adequacy or

effectiveness of test data. Once a series of tests have been conducted, a collection of test

data will have accumulated. One important question a tester may ask is: is the test data

used adequate in terms of test effectiveness? Mutation testing is a technique aimed at

answering this question.

Mutation testing is based on creating mutants of a program. A mutant is a

38

modified version of the original program in which a small error is inserted. A typical

error would be to replace an operator with a different one, for example, replacing an

addition operator with a multiplication operator. A large number of such mutants are

created, and are then executed using the test data which was employed in testing the

original program. If the mutant gives a result which is different from the result of the

test of the original program then the mutant is said to have been killed. This means that

the test data is able to distinguish between the original program and the mutant.

The percentage rate of the mutants having been killed reflects the level of adequacy of

the test data. If the tests of the mutants result in all the mutants being killed then the test

data is adequate. However, if any mutants are still living after the tests then it is clear

that the test data is incapable of exposing these bugs. Further test data will be required

to kill off any living mutants.

Though mutation testing can be used during integration testing and system and

acceptance testing, it is best employed during unit testing. This is mainly due to the fact

that in general there are a massive number of mutants that can be created.

2.6.7. Assertion Testing

An assertion is a predicate which relates the values of variables in a program and

describes a condition which must be true during the execution of a program. Assertion

testing [Ince93] is a technique which checks such properties of a program during

execution. If a program is correct then such properties must hold during program

execution. As a simple example, the following predicate is an assertion: a > b + c. It

39

states that during program execution variable a must be greater than the sum of variable

b and variable c.

Assertions can be inserted into a program under test either by hand or by means of a

software tool [Ince93]. Assertion testing can be employed during the whole testing

process up to system testing.

It should be pointed out that assertion testing only checks certain properties of a

program. Such properties must hold if the program is correct. However, such properties

may still hold even if the program contains bugs. Hence assertion testing should only be

used in addition to other testing techniques.

2.6.8. Comments

In general there are two broad approaches to software testing: structural testing and

functional testing [Somme92]. In the structural approach, the aim is to achieve certain

structural metrics or to traverse a particular path in the testing. The selection of test data

is clearly guided by this aim.

In the functional approach, the tester is not concerned with the internal structure of the

program under test. The key issue here for the tester is to select test data which has a

high probability of exposing program defects. In this section we have examined a

number of test data selection techniques: random testing, equivalence partitioning, and

cause-effect testing.

The adequacy or effectiveness of test data in tenns of its defect revealing power can be

40

checked through mutation testing. The assertion testing technique is aimed at testing a

program from a different perspective by checking certain run-time properties of a

program which must be true if the program is correct.

In this section we only discussed generic software testing techniques which are generally

independent of application domains. Some application domain specific testing

techniques have also been proposed which take into account the characteristics of

application. For example, the testing of telecommunications software [Avrit95], where

the arrival distribution of input (telephone calls) is of great importance in revealing

software defects.

2.7. Fault Tolerance Testing Strategies

When considering fault injection based testing for the purpose of removlllg fault

tolerance deficiency faults, one is faced with two related issues: fault injection

techniques and testing strategies. While fault injection techniques deal with the question

of how to inject required faults effectively, testing strategies deal with the issue of what

faults to inject in order to achieve an adequate test of the target system. In this chapter

we have already described the techniques for fault injection, now we discuss the related

issue of testing strategies.

As in conventional software testing, there are two broad testing strategies: structural

testing and functional testing. In the structural approach, the idea is to select faults such

that these faults will cause certain structural parts of the target software system to be

executed. The overall aim is to inject a set of faults so that all parts of the target system

41

are executed at least once, with the hope that fault tolerance deficiency faults in the

target system will be exposed once the system is fully exercised. Functional testing takes

a more direct approach. Faults are injected to create specific failure scenarios to

ascertain that the target system can indeed tolerate such faulty conditions. These two

contrasting approaches are discussed and their merits and shortcomings are analysed in

the following sub-sections.

2.7.1. Structural Testing

The first step in structural testing involves the construction of the structure graph

[Echt191] (or execution tree [Avres92]) of the program under test. The structure graph

models a program by characterising it as forks leading to branches. A node in the

structure graph represents a sequence of statements, while an edge represents a branch

of a conditional statement. An example of a structure graph is shown in Fig. 2.3. When

constructing the structure graph of a program, conditional loops are modelled as a chain

of forks if the number of iterations is finite. With the structure graph of a program

constructed, faults can be selected and injected in 'faulty' processor(s) with the aim of

having the program running on correct processor(s) execute certain branch(es) of the

structure graph.

42

Fig. 2.3 Program Structure Graph

The structural approach towards fault tolerance testing has the theoretical nicety of

completeness, in the sense that a complete test of the target program can be carried out

by covering all the branches of the structure graph. The level of testing granularity can

also be determined according to the amount of resources allocated to the testing efforts.

In a 'large grain' testing, the leaves of the structure graph may be large pieces of

program that contain conditional statements; while in a 'fine grain' testing, the leaves

may contain only sequential statements (non-conditional statements). Given enough

resources, it is possible to have each and every one of the statements of the program

covered (executed) in a complete test.

The structural approach has some serious problems. The first question one would ask is

"what is the relationship between the correctness of a program under test and a complete

coverage of its structure graph". Obviously achieving a complete coverage of the

structure graph does not necessarily mean that a program is correct. The execution of a

part of the structure graph may give correct results for some input data but incorrect

results for some other input data. Another shortcoming with the structural approach has

to do with the way the structure graph is generated. A structure graph is generated from

43

the design of the target software system to be tested. So if the design is incorrect then

the structure graph, which is used as a reference framework for testing, may be incorrect

as well. For example, if a branch of the structure graph is missing due to a system design

fault (i.e. a certain failure scenario is not handled by the program), the bug would not be

revealed by a testing based on structural coverage.

There are also some practical difficulties in implementing structural testing of fault

tolerance. In order to cover the structure graph with a limited number of test runs, a

mechanism for recording information regarding which parts of the graph have been

covered will be needed. It was suggested in [Echtl91] that software implemented probes

be planted in the program code to record the actual program flow. It might be feasible

for testing fault tolerant algorithms implemented in a purpose-built testbed system with

facilities supporting the use of probes, but it is likely to be difficult to plant probes in a

target system implemented in its own environment. Structural testing is generally a

tedious process and is not scaleable. Thus it is often impractical to conduct on complex

target systems.

2.7.2. Functional Testing

Functional testing of fault tolerance takes a more direct approach. Faults are selected

from the domain of all possible faults and then are injected in the 'faulty' processor(s) to

create specific failure scenarios. The selection of faults is based on an analysis of the

target system which looks into the possible failure scenarios.

In functional testing, the selection of faults is of crucial importance. Because the domain

44

of all possible faults is often large, it is impossible in practice to inject all of them. With

limited time and resources, one must be vary careful in fault selection. The

corresponding failure scenarios created through fault injection should be representative

of possible failures and include those known as malicious failures.

In order to be able to selected the appropriate faults to inject, a tester must fully

understand the algorithm employed by the software system under test. Only with a solid

understanding of the algorithm, the tester can determine what failure scenarios to create

for the testing. The tester also needs to know the implementation structure of the target

system in terms of the processes that make up the system and how they interact with one

another. This outline knowledge of implementation is needed for inserting fault

injection objects. The testing of the clock synchronisation module of Voltan TMR node

described in chapter 4 offers a good example. The tester must know the clock

synchronisation algorithm well to be able to select sensitive faults and the tester also

needs to know the implementation structure of the module to be able to insert the fault

injection object.

Most distributed fault tolerant systems and algorithms reported in the literature assume

processors are fail-silent (i.e., a processor either works correctly or fails by crashing).

Therefore, in such systems, the only failure processors can suffer is stop sending

messages (permanent omission fault). This assumption greatly simplifies the efforts of

fault selection; fault selection becomes a matter of deciding at what points during the

execution of the target system the message flow should be cut off to emulate processor

failure. Although in theory there are numerous points during the execution of the target

45

system processors can fail, an analysis of the system may show that there are only

limited number of logical points which are representative of various failure scenarios.

What is important in distributed systems is the sequence of events, not absolute timings

of events.

Functional testing based on initial analysis was adopted in the fault tolerance testing of

the Advanced Automation System [Dilen91]. A number of errors in system

requirements, system design, and system implementation were uncovered through the

fault tolerance testing.

2.8. Summary

As stated at the beginning of the chapter, fault injection can be used for two objectives

with regard to system reliability validation: fault forecasting and fault removal. The fault

injection techniques required for the two different objectives of system reliability

validation are quite different.

The essence of fault forecasting is that of understanding, to understand how various

reliability mechanisms perform and to understand how systems behave under faulty

conditions [Stein95]. The measurements taken in fault injection experiments include

coverage and detection latency of various error detection mechanisms, and recovery

latency of error recovery mechanisms. Such measurements can be used to estimate the

actual performance of the reliability mechanisms in field use [PoweI95]. With regard to

systems behaviour under faulty conditions, work has been carried out to investigate

error propagation, error latency (the time it takes for an error to cause a system failure),

46

and the various ways in which errors can cause system failures.

The basic requirement for fault injection techniques used for fault forecasting is to

emulate the occurrence of faults in the real world as closely as possible. The techniques

are geared towards supporting fault injection of a random nature. In this chapter we

discussed various techniques and their applications; a number of examples in each

category were examined in some detail. As we can see from this discussion, hardware­

implemented fault injection requires special hardware equipment and is generally

difficult to conduct. The experiment personnel must have detailed knowledge of the

target system's hardware implementation to be able to carry out experiments. And in

many cases, access to registers or memory addresses in chips is impossible. Software­

implemented fault injection generally allows more flexibility and controllability. A wide

variety of faults can be injected by software means. However, software-implemented

fault injection is not without shortcomings. First, the fault injection software integrated

with the target system may affect the running of the target system, though careful

experimental design can alleviate the problem. Second, poor time resolution of the

software approach can be a problem in some experiments, e.g., when measuring error

detection latency.

The nature of fault removal through fault injection based testing is rather similar to that

of conventional software testing. The aim is to uncover any fault tolerance deficiency

faults in the design and/or implementation of fault tolerance mechanisms. Here the

faults injected need not necessarily represent closely the occurrence of faults in the real

world, rather faults should be selected for their potential for exposing flaws in the fault

47

tolerance mechanisms under test. This implies the injection of specific classes of faults

at levels appropriate to the target systems under test.

Compared with the research work carried out on fault injection for fault forecasting,

existing work on fault injection for fault removal has been of a rather limited nature.

The issue of structural testing of fault tolerant algorithms through the injection of

specific classes of faults has been investigated by some researchers, and a distributed

testbed system (EFA) has been developed for such testing. EFA allows the injection of

specifically altered messages, including those emulating malicious faults. However this

tool is designed to test algorithms instead of target systems (implementations), the

algorithms must be implemented using the primitives provided by the tool to allow it to

be tested.

As we all know, implementing distributed fault tolerant algorithms is not a trivial task.

All sorts of errors can be introduced at the implementation stage. It is very important to

be able to test a fully implemented target system. This point is well illustrated by the

experience with the fault tolerance testing of AAS. In the fault tolerance testing of AAS,

fault injection provisions were made in the target system by the system developers. The

testers can later make use of these provisions to conduct fault injection experiments.

In this chapter, we also discussed software testing techniques in general. As it is clear, in

conventional software testing, the ability to feed the target system with required input is

not an issue; the research work has centred around the issue of test data selection. While

in fault tolerance testing one has to face the additional issue of how to inject a specific

48

fault once it has been selected though the issue of fault selection is still there.

Testing fault tolerance mechanisms of distributed systems is generally a difficult task. In

this thesis, we develop a fault injection method which exploits the object oriented

approach of software implementation to support the injection of specific classes of

faults at the distributed systems level. This method does not require fault injection

provisions to be made in the target system, only that the target system be structured in

an object oriented way.

49

Chapter 3: Focused Fault Injection Method

3.1. Introduction

Our fault injection method is intended for testing software-implemented fault tolerance

mechanisms of distributed systems. It requires that the target software be structured in a

modular fashion of objects interacting via messages so that messages can be

manipulated to emulate incorrect behaviour of faulty processors [Ta093].

In distributed systems where processors interact by message exchanges, the failure of a

processor will be exhibited by its external behaviour which is entirely represented by the

messages the processor sends (or fails to send). Thus the failure of a processor can be

emulated by altering the messages a processor is supposed to send. There is no need to

be concerned about the internal conditions of the failed processor. This helps explain the

suitability of message level fault injection for testing fault tolerance mechanisms of

distributed systems.

Such an approach should ideally achieve the following two objectives: (1) The task of

instrumenting the system in order to perform fault injection based testing should be

simplified as much as possible. (2) A tester should be able to test the system without

having to ask the target system designers to make explicit provisions in the target

system in order to support such testing. The benefits of easing the task of testing are

obvious. Separating the tasks of implementing and testing a target system is highly

50

desirable, because it allows testers to test the target system independently without being

influenced by the target system designers.

The focused fault injection method supports the injection of specific classes of faults at

specially selected points within the target software system. To allow focused fault

injection, the target software system must be structured in a modular fashion of objects

interacting via messages. In such a system, fault injection objects can easily be inserted

into the target software system to carry out fault injection work and no other provisions

for fault injection are required in the target system. The target system needs only

minimal changes in order to run the experiments.

This chapter is organised as follows. In section 3.2 we present a fault model which

characterises the faulty behaviour of a processor when a simple response of one message

or a replicated response of multiple message replicas is expected from the processor. In

sections 3.3 - 3.6 we describe how various failure scenarios can be created using the

fault injection method. Section 3.7 discusses controlling the arrival order of erroneous

messages at a correct processor. In section 3.8 we present a brief discussion on software­

implemented fault tolerance in distributed systems and put our fault injection method in

this context. Section 3.9 concludes the chapter.

3.2. Modelling Faulty Behaviour

Faults are causes of failures. In this section we consider various forms of faults in

distributed systems. We assume the components in our systems to be processors and

communication links connecting them. We can model link failures by the failures of the

51

processors associated with the links. We therefore restrict our discussion of faults in

distributed systems to that of processor faults. We start with the simplest case, that is

when a processor is expected to produce a response consisting of only a single message;

later on we consider more complicated situations.

3.2.1. Simple Responses

Processor faults can be classified into the value and time domains as omission fault,

value fault, timing fault, and arbitrary fault according to the types of failures caused by

the faults [Ezhil86, Shriv90]. When a processor is expected to produce a simple

response consisting of a single message, a correctly functioning processor will produce

a message with the correct value and within the correct time frame; whilst a faulty

processor's behaviour could be any violation of this correct behaviour.

An omission fault would cause an expected message not to be produced at all; the

corresponding failure is called an omission failure.

A value fault would cause a message to be produced within the specified time frame but

with its content corrupted; the corresponding failure is called a value failure.

A timing fault would cause a message with correct content to be produced outside the

specified time frame, either early or late; the corresponding failure is called a timing

failure.

An arbitrary fault would cause any violation from the specified behaviour in terms of

timing and/or value; the corresponding failure is called an arbitrary failure. A fault

52

which causes a processor to produce an unexpected message IS also classified as

arbitrary fault.

An arbitrary fault (failure) subsumes all other three classes of faults (failures). The

relationships among these four fault (failure) classes can be expressed by the fault

(failure) lattice in Fig. 3.1, where an arrow from A to B, A ~ B, indicates that fault

(failure) class A is a special case of fault (failure) class B. Omission fault can be treated

as either a (very) late timing fault or a fault causing no value to be produced (a special

case of corrupted value).

omission

/ ~
timing value

~ /'
arbitrary

Fig. 3.1 FaultlFailure Lattice (simple response)

3.2.2. Replicated Responses

In distributed fault tolerant systems, replicated processing is often employed to increase

system reliability. In such systems, a processor is often required to generate a replicated

response. A replicated response consists of a number of message replicas. The fault

model outlined in Fig. 3.1 can be extended to deal with the various ways a replicated

response may differ from the correct one [EzhiI86, Shriv90).

53

A correct replicated response will be the one in which all individual message replicas

have identical and correct values and are produced within the required time frame.

An incorrect replicated response can take many forms. One specific type of fault can be

defined as a consistent fault which would cause the individual messages of a replicated

response to violate the specified behaviour in an identical way, such as having identical

but wrong values (consistent value fault), while with the general case of a value fault,

the individual message values could be wrong and need not be identical, or only some

values could be wrong and others correct.

In a similar manner, consistent omission fault and consistent timing fault can be seen as

special cases of omission fault and timing fault respectively.

A consistent omission fault would cause all messages in a replicated response not to be

produced at all, while with the general case of an omission fault, it could be that only

some messages are not produced.

A consistent timing fault would cause all messages in a replicated response to be

produced either early or late, while with the general case of a timing fault, it could be

that only some messages are produced late or early.

We use the fault (failure) lattice in Fig. 3.2 to summarise the relationship among the

fault (failure) classes in the extended fault model [EzhiI86, Shriv90].

cons. omission

'O",H~ 1 1 omission

timing

~
arbitrary

Fig. 3.2 FaultlFailure Lattice (replicated response)

The fault model discussed here has similarities to other fault models proposed in the

literature [Crist91, Powel92]. Essentially addressing faults which cause incorrect simple

responses and incorrect replicated responses, these models are mainly used as the basis

for the design of fault tolerant system architectures and algorithms [Crist91] and for

system reliability analysis [Powel92].

3.3. Software Structure Permitting Focused Fault Injection

The key of focused fault injection is the way the target software system is structured. To

support focused fault injection, the software within a processor must be structured out of

a collection of active objects representing processes, which communicate with one

another by exchanging messages through message queues.

An example of such systems is illustrated in Fig. 3.3. In this system, there are six active

objects (processes), two of which (Lin and Lout) are link handling objects. For each

physical link of the processor, there will be a link handling object (Lin) which receives

messages and distributes them to their destination processes by depositing the messages

55

in the message queues associated with the processes; and there will be another link

handling object (Lout) which actually sends messages down the link. Other processes

wishing to send messages to destinations outside the local processor would deposit

messages in the message queue associated with the link handling object (Lout).

o Active Object

[§J Message Queue

Fig. 3.3 Software System Structure

This system structuring approach makes it possible for a simple and effective way of

injecting faults. Fault injection is carried out by fault injection objects, which are active

objects.

A fault injection object (FO) with its own input message queue (FQ) is inserted between

two normal active objects (P, L) which are connected by a message queue (Q) (see Fig.

3.4(a) and Fig. 3.4(b». P represents a functional process while L represents a link

handling (output) process which actually sends outgoing messages down a physical link

of the processor hosting P and L. Thus, the faulty behaviour of this processor can be

emulated by modifying the messages being output by L. P puts its output messages on

FQ. FO picks up messages from FQ, does the fault injection work by modifying the

56

messages, and puts the output messages on Q which is used by L as its input queue. In

the nonna! operation mode, P is started with Q as one of its parameters, but in fault

injection mode, P is started with FQ instead of Q as one of its parameters. The fault

injection object is started with FQ and Q as its parameters. The active object L is

unchanged.

Fig. 3.4(a) Normal Software Structure

.

Fig. 3.4(b) Software Structure with Fault Injection Object

Various classes of faults can be injected by the fault injection object. The net effect is

the processor hosting P and L producing erroneous messages. Thus we can tamper with

messages produced by specific processes within a processor, so as to be able to create

required failure scenarios.

An omission fault in P can be injected by having the injection object delete a message

produced by P. A value fault in P can be injected by having the injection object change

the content of a message produced by P. A late timing fault in P can be injected if the

57

injection object holds a message produced by P for a period of time before depositing

the message in its output queue (Q).

Unfortunately there is no equivalent way of injecting an early timing fault, though it is

possible to achieve this in a target-system-dependent way. For example, an early timing

fault in the ordering module of Voltan TMR node (see chapter 4) can be emulated by

changing the value of the timestamp of a broadcast message.

The injection of an arbitrary fault can be done either by the injection object injecting

both timing and value faults, or by having two pipelined injection objects, one injecting

timing fault and the other injecting value fault. A faulty processor may also produce a

message unexpectedly. This failure scenario can be created by having the fault injection

object send a self-made message.

It should be noted that although a late timing fault can be injected by delaying the

message for a certain mount of time which can be specified by the tester, the tester has

no control over either the time when the message actually arrives at its destination

process or the relative ordering position of the message with regard to other messages

received by the destination process. This is due to variable message transmission delays

which are inherent to distributed systems. A different way of fault injection will be

required to achieve the desired behaviour at the destination. We discuss this issue and

the solution in section 3.7.

58

Inserting a fault injection object into the target system is simple, it needs only minimal

changes to the target system. This can be illustrated by the implementation of focused

fault injection on a Voltan TMR node (see chapter 4).

3.4. Injection of Replicated Responses

We have described the injection of simple responses involving only one single message

in the last section. Now we describe how failure scenarios of replicated responses can be

created with the flexible use of fault injection objects. When a processor is expected to

produce a replicated response and has failed, the possible failures are classified in the

fault lattice for replicated response (Fig. 3.2).

If the processor only has one link through which messages are sent out, one can use a

single fault injection object to inject faults and create incorrect responses the same way

as for simple responses. The injection object has full control over the erroneous

messages injected in terms of value and timing of the individual messages. Omission

fault, consistent omission fault, timing fault, consistent timing fault, value fault,

consistent value fault, and arbitrary fault can all be injected. Desired failure scenarios

can thus be created according to experimental requirements.

However, if the processor has multiple links and the message replicas of a replicated

response need to be sent down the multiple links, the situation becomes complicated

(see Fig. 3.5(a)). Consider, for example, that a consistent value fault is to be injected and

the incorrect value is dynamically generated at run time. Such a fault would be difficult

to inject simply by inserting multiple injection objects between the functional process P

59

and the multiple link handling processes (Ll, ... , Ln), due to the co-ordination required

among the multiple injection objects.

Though it is possible for the fault injection objects to co-ordinate their injection

activities, a straightforward solution would be to use a single injection object with

multiple input and output queues (see Fig. 3.S(b)). The injection object FO has full

control over the erroneous messages injected. This structure is particularly suitable

when the effects of a processor behaving like a 'two-faced General' [Lamp082] are to be

emulated.

Fig. 3.5(a) Normal Software Structure

--------------------------;

. .
,--------------------------'

Fig.3.S(b) Software Structure with Fault Injection Object

60

The fault injection object FO can manipulate individual message replicas of the

response in the value and time domains using the techniques described in the previous

section. Extra messages can also be generated by the fault injection object.

3.5. Injection of Multiple Processes

In this section we discuss the injection of multiple processes, that is, to emulate the

faulty behaviour of a processor which has a number of processes running on it. Apart

from the manipulation of the individual messages produced by the processes, it may also

require the order of the messages be manipulated in some fault injection experiments.

One possible approach of injecting multiple processes is to use multiple fault injection

objects to intercept and manipulate individual messages of the processes. The fault

injection objects can also co-ordinate their injection activities to change the order of the

messages involved. However, as we suggested in the previous section, a straightforward

solution would be to use a single injection object with multiple input and output queues

to centralise the co-ordination work involved.

Let us consider another example for which the use of a single injection object will be

highly suitable. In this example, a processor with multiple output links hosts a number

of processes and a crash-failure (permanent omission failure) of the processor is to be

emulated. There are large numbers of distributed fault tolerant services that are designed

on the assumption that the processor fails by crashing (becoming silent). These services

can be rigorously tested by having a participating processor fail at a critical moment, for

example, in the midst of an atomic transaction.

61

Fig. 3.6(a) shows the software structure within a processor before the injection object is

inserted. There are three functional processes (PI, P2, and P3) and two link handling

(output) processes (LI and L2) which actually send the outgoing messages down the two

links respectively. The functional processes send messages on the links by putting the

messages on the respective queues (QI and Q2). Fig. 3.6(b) shows the software structure

with the injection object (FO) inserted.

Fig. 3.6(a) Normal Software Structure

Fig.3.6(b) Software Structure with Fault Injection Object

62

The injection object has two input queues and two output queues. Its essential role is to

inspect the incoming messages and decide whether to pass them on or cut off the

message flow.

3.6. Injection of Multiple Processors

In a more generalised situation, more than one processor of a distributed system can fail

and their failures can be related. Many distributed fault tolerant algorithms are designed

to handle such multiple failures, the testing of their implementation would require the

injection of multiple processors to emulate such failure scenarios.

The injection of multiple processors generally requires a certain amount of co-ordination

among the fault injection objects running on the injected processors. The exact pattern

of co-ordination depends on the failure scenario being created and the nature of the

target system under test. We first consider a number of cases in which the only co­

ordination required is among the fault injection objects of the injected processors. In the

following section we will discuss the situation in which a fault injection object may

need to be inserted into the software running on a non-faulty processor.

Here we discuss some of the examples we have looked at.

Example 1: Voting protocol for a five-processor NMR node.

A five-processor NMR (N-Modular Redundant) node is designed to tolerate up to two

failures of its constituent processors. This is achieved through replicated processing on

the individual processors and voting on their outputs. As long as there are at least three

63

processors functioning correctly, a correct majority can be chosen from the outputs of

the five processors. When testing the implementation of the voting protocol of such a

node, two selected processors are subject to fault injection, creating double failures.

A malicious double failure scenario will be one in which the two injected processors

produce incorrect but identical output messages. This has the effect of two faulty

processors colluding with each other.

Such a failure scenario can be easily created by programming the fault injection objects

on the two injected processors to manipulate output messages in an identical manner,

for example, by adding the same values to the intercepted output messages.

Example 2: A clock synchronisation algorithm.

We consider the testing of the implementation of a clock synchronisation algorithm. To

be specific, we consider the algorithm by Srikanth et al [Srika87] for a five-processor

system. The algorithm can tolerate up to f processor failures in a system of n processors,

where n=2f+ 1. In a five-processor system, it tolerates up to two processor failures.

Assuming the clocks on the processors are initialized correctly, they are synchronised on

a periodic basis using the clock synchronisation algorithm. A processor will sign and

broadcast a clock synchronisation message to all other processors when the expected

synchronisation time is up according to its local clock. When a processor gathers f+ 1

messages it will synchronise its local clock and relay the f+ 1 messages to other

processors. The idea is that when f+ 1 messages are received, at least one correct

processor is ready to synchronise.

64

A situation of collusion by two faulty processors would be one in which the two faulty

processors both send a clock synchronisation message to a correct processor in a pre­

determined synchronisation round earlier then a non-faulty processor would, with the

aim of having the correct processor synchronise earlier then it should.

The fault injection objects on the two injected processors can be programmed to send

such an early synchronisation message in the pre-determined synchronisation round.

Example 3: Byzantine agreement protocol.

Being able to reach agreement in the presence of faults is of fundamental importance.

The agreement problem can be stated simply as follows. Assume there are n processors.

Each non-faulty processor produces a value and the value must be communicated to

each other non-faulty processor. Non-faulty processors always communicate 'honestly',

whereas faulty processors may 'lie'. An agreement protocol, in which processors

communicate their own values and relay values received from others, allows each non­

faulty processor to infer a value for each processor. Such a protocol satisfies the

following two conditions:

(1) Validity: The value inferred for a non-faulty processor must be the value produced

by that processor.

(2) Unanimity: The value inferred for a faulty one must be consistent with the

corresponding value inferred by each other non-faulty processor.

65

The authenticated agreement protocol by Pease et al [Pease80] is such an agreement

protocol. A message authentication mechanism is assumed to make sure that

modification of messages relayed by faulty processors can be detected by non-faulty

processors, though faulty processors may lie about their own values and decide not to

relay certain messages. This protocol can tolerate up to n faulty processors, though it

will be vacuous if fewer than two processors are non-faulty.

The essence of the protocol is that it ensures each non-faulty processor receives an

identical set of values produced by other processors (non-faulty processors or faulty

processors), knowing that a faulty processor may send one value to a non-faulty

processor and a different value to another non-faulty processor. Once all non-faulty

processors have the identical set of values, they can derive an identical value for each

processor, faulty or non-faulty.

In the testing of the implementation of this protocol, a sensitive failure scenario which

stretches the protocol to its limits would be one in which the faulty processors co­

operate in not sending/relaying a value to a non-faulty processor.

We consider a system of four processors, where two of them are faulty. The fault

injection object in one injected processor can be programmed such that a value

(message) is not sent to a non-faulty processor, while the injection object on the other

injected processor can be correspondingly programmed not to relay this value (message)

to that non-faulty processor.

66

3.7. Ordering Arrivals of Erroneous Messages

We have investigated the faulty behaviour of processors in distributed systems and

described how such behaviour can be emulated using the focused fault injection method.

The perspective taken is that of a faulty processor or a set of faulty processors.

Due to the inherent variation in message transmission delays in distributed systems, the

exact impact of such faulty behaviour on correct processors may not be deterministic. In

other words, though we are able to control the faulty behaviour of a processor through

fault injection we may not be able to control the way a correct processor is affected by

such faulty behaviour of the injected processor.

Let us consider a simple example. In a distributed fault tolerant system of four

processors, three processors (PI, P2, and P3) will each send a message (msgl, msg2.

and msg3 respectively) to the fourth processor (P4). When the processors are fault free,

the three messages will arrive at P4 in the order of msgl msg2 msg3. Now we want to

test whether a late timing fault of PI can indeed be tolerated by the system as it is

designed to. The message msgl from processor PI is delayed by a pre-determined

amount of time before it is sent to P4, emulating a late timing fault suffered by Pl.

Apart from msgl sent by PI, the correct processor P4 also receives two other messages

(msg2 and msg3) from P2 and P3 respectively. Because of the unpredictable message

transmission delays, there are three possible orders of message arrival: (1) msgl msg2

msg3; (2) msg2 msgl msg3; (3) msg2 msg3 msgl. The three different message arrival

orders may represent three different failure scenarios as far as the correct receiving

processor P4 is concerned. The fault injection based testing of the software running on

67

the correct processor P4 may require the failure scenario III which the erroneous

message msgl arrives between the two correct messages (msg2, msg3).

From a practical point of view, it would be very useful to be able to control the arrival

order of erroneous messages relative to the correct messages and the arrival order

among the erroneous messages themselves. This would allow the creation of failure

scenarios as perceived by a correct processor. Here the perspective taken is that of a

correct processor.

Fault injection techniques similar to those described in previous sections for

manipulating output messages from 'faulty' processors can be employed here to

manipulate the arrival order of input messages which originated from 'faulty'

processors.

It should be emphasized that, this means planting fault injection objects in the software

running on correct processors. One must be very careful so that the semantics of the

software which is under test is not altered by the introduction of fault injection objects.

This is quite different from inserting a fault injection object into the software running on

a 'faulty' processor, in which case one's only concern is the creation of a certain failure

scenario.

Fig. 3.7(b) shows the insertion of an injection object between a link handling (input)

process L and a functional process P. The software structure before the insertion of the

injection object is shown in Fig. 3.7(a). The fault injection object FO can control and

68

manipulate the arrival order of the erroneous messages relative to the correct messages

and the arrival order among the erroneous messages themselves.

Fig. 3.7(a) Normal Software Structure

Fig.3.7(b) Software Structure with Fault Injection Object

When an erroneous message destined for P arrives at the correct processor, it is received

by L and is deposited in Q. FO picks up the erroneous message and can decide whether

to deliver the message to P immediately or hold the message until certain correct

messages have been delivered to P.

The fault injection object FO can also control and manipulate the message order among

the erroneous messages themselves instead of just the order of erroneous messages

relative to the correct messages.

69

3.8. Software-Implemented Fault Tolerance in Distributed Systems

The central objective of implementing fault tolerance in distributed systems is to

achieve systems reliability so that the services provided by the system will still be

available in the presence of component failure(s). Fault tolerance can be applied at three

different levels in distributed systems to achieve systems reliability as shown in Fig. 3.8.

They are node level, distribution level, and application level.

application level

platform! platform2 distribution level

node level

communications network

Fig. 3.8 Levels of Fault Tolerance in Distributed Systems

3.8.1. Node Level Fault Tolerance

At the node level, fault tolerance can be implemented so that the nodes are capable of

masking internal component failures or exhibiting fail-silent behaviour. If the nodes of a

distributed system are capable of masking their internal component failures. then no

fault tolerance for component failures will be required at higher levels. Conventional

application programs should run on such nodes with little or no change. If the nodes are

70

only capable of exhibiting fail-silent behaviour then failure-masking capabilities will

need to be provided at a higher level.

A failure-masking node consisting of multiple conventional processors can be

implemented either in hardware [Jewet91] or in software [Shriv92]. A software­

implemented failure-masking node is effectively a distributed system itself. This is due

to the fact that the multiple processors of a node communicate with one another through

message exchanges using fault tolerant protocols. The same comments apply to fail­

silent node implemented in software.

Focused fault injection method can be used in fault injection testing of failure-masking

and fail-silent nodes implemented in software. The ability of the method to inject

arbitrary faults is especially useful since the processors of such nodes can fail in any

arbitrary way.

3.8.2. Distribution Level Fault Tolerance

Fault tolerance can also be provided at the distribution level. This level is typically

responsible for implementing distribution transparency, permitting application level

programs to manipulate local and remote objects in a uniform manner. At this level,

mechanisms are required for providing continued service in the presence of failures.

Normally, the nodes of the distributed system are assumed to be fail-silent. The

distribution layer software, sometimes called fault tolerant platfonn, is responsible for

redundancy management in the presence of failures. Applications developed on top of

71

this layer are shielded from the complex techniques required for redundancy

management.

Arjuna [Shriv91, Parri95] and ISIS [Birma93] are two good examples in this category.

Arjuna adopts an object oriented and provides atomic transaction facilities for

manipulating persistent objects. Objects can be replicated for availability. While in ISIS

the central structuring concept is fault tolerant process groups. ISIS provides reliable,

ordered multicast protocols for managing process groups.

Our fault injection method can be employed in the testing of such platforms; for

example, by injecting permanent omission faults to emulate node crashes.

3.8.3. Application Level Fault Tolerance

Finally, fault tolerance can also be built into the application directly. In this approach,

fault tolerance techniques are used in the development of applications and the

application programmers are directly involved in using fault tolerance techniques.

The most well known type of application level fault tolerance are those using

checkpointing algorithms[Elnoz92, Plank95]. A checkpointing system itself does not

provide continued service in the presence of node failures. What it provides is a series of

consistent states of the distributed system so that when a node failure is detected a back­

up node can be activated. The previously stored consistent states of the system can be

retrieved <md the replacement node can join remaining nodes. In a distributed

application employing a checkpointing algorithm, it is the responsibility of the

application programmers to implement error recovery so that services can be restored.

72

Checkpointing algorithms typically assume that the nodes are fail-silent. Fault injection

testing of a checkpointing system would involve injecting permanent omission faults in

the selected node(s).

3.9. Summary

The focused fault injection method is most suitable when the target software system is

structured in a modular fashion of active objects communicating with one another by

sending messages via message queues. This software structuring approach allows easy

insertion of fault injection objects into the target software system. The inserted fault

injection objects can be programmed to manipulate the output messages to emulate

incorrect behaviour of faulty processors. No other provisions for fault injection are

required in the target system under test. The method not only simplifies the task of fault

injection based testing but also separates the task of system testing from system

development. Details of how various faults can be injected were described in this

chapter.

Due to the inherent non-determinism in message transmission delays in distributed

systems, the arrival order of a late message (resulting from the injection of a late timing

fault) relative to other messages at a correct receiving processor may be arbitrary,

though the injected late timing fault is itself well defined. The testing of a target

software system may well require specific arrival orders of erroneous messages at a

correct processor. This problem can be addressed by inserting fault injection objects in

the software running on the correct processor.

73

In this chapter we also discussed the different architectural levels of distributed systems

at which various software-implemented fault tolerance mechanisms can be applied to

achieve system reliability. We mentioned briefly how at each of the three levels focused

fault injection can be applied for fault tolerance testing. In chapter 4 and chapter 5, we

describe in great detail how we have applied focused fault injection technique at node

level. Here a node (a collection of processors) is treated as a distributed system. In

chapter 6 we describe how our approach can also be applied at higher levels.

74

Chapter 4: Focused Fault Injection on Voltan TMR Node

4.1. Introduction

Reliable nodes capable of tolerating individual processor failures can be constructed by

adopting replicated processing on distinct processors, whereby outputs from faulty

processors can be prevented from appearing at application level. This is achieved by

voting the outputs produced by the processors. Processors of a reliable node need to

execute special protocols to carry out replicated processing to achieve node level fault

tolerance. Such a reliable node is commonly known as N-Modular Redundant (NMR)

node; it is capable of tolerating up to m individual processor failures, where N=2m+ I.

When the degree of replication is three, it is called Triple Modular Redundant (TMR)

node. A TMR node can tolerate the failure of a single constituent processor.

We have implemented a family of fault tolerant nodes called Voltan [Shriv92. Speir93].

One of the members of the Voltan family is a three-processor TMR node capable of

masking the failure of one processor. The special protocols employed for replicated

processing on Voltan TMR nodes are all implemented in software while only standard

off-the-shelf processors are used in the construction of Voltan TMR nodes. Since the

processors of a Voltan TMR node communicate with one another only through message

exchanges using fault tolerant protocols. the node is effectively a distributed system on

its own.

75

Our objective in focused fault injection experiments on a Voltan TMR node is to test the

soundness of the implementation of the protocols used in Voltan TMR nodes and to

demonstrate how focused fault injection can be easily applied to a practical target

software system [Ta095a]. These protocols are themselves quite well known, but their

implementation is no trivial task. It should be emphasised that, since the Voltan TMR

node is implemented entirely in software, its correct implementation relies on the

correctness of its system software. We will test the major modules of the system

software of the node through fault injection.

We will first briefly introduce the architecture and implementation of Voltan TMR

nodes, because knowing the target software structure is essential for focused fault

injection. Then the implementation of focused fault injection in a Voltan TMR node is

explained in detail. Finally we present the experiments and the results obtained.

4.2. Voltan TMR Node Architecture

A Voltan TMR node is constructed out of three interconnected conventional processors

on which application level processes are replicated to achieve fault tolerance. By voting

the outputs from the individual processors of the node, erroneous output from a faulty

processor can be prevented from appearing at application level, and so providing fault

tolerance. The basic idea behind replicated processing is conceptually simple: a node is

built out of a number of processors which execute special protocols to carry out

replicated processing of computations to achieve fault tolerance. The three-processor

TMR node is capable of tolerating the failure of a single processor by masking the faulty

76

processor's output. Such reliable TMR nodes can be used as building blocks for

constructing fault tolerant distributed systems [EzhiI89].

4.2.1. System Model and Assumptions

It is assumed that a computation consists of a number of processes residing potentially

on a number of processors and the processes of the computation communicate with one

another through message exchanges. As an example, the function of a typical 'server'

process is to pick up an input message from one of its input ports, process it and if

required, output one or more messages on its output ports. It is also assumed that if a

process with multiple input ports has input message pending on those ports then any of

these messages is chosen non-deterministically for processing. Message selection is

however assumed to be fair, that is, the process will eventually select a message present

on a port. Here is such a process that picks up a pending message, processes the

message, and sends a result message (output message):

process S: /* a typical server process */

cycle

receive(msg);

process msg;

send(result_msg);

end

endS

The model presented here is based on the well known state machine model (where a

state machine is a process) for which the precise requirements for supporting replicated

processing are known [Schne90]. Basically, in the replicated version of a process,

mUltiple input ports of the non-replicated process are merged into a single port and the

replica selects the message at the head of its port queue for processing. It is also

necessary to assume that the computation performed by a process on a selected message

is deterministic. This assumption is fundamental to active replication.

Given such a model of computation, replication of a process (with a replica, one each

running on the underlying processors of anode) will require the following two

conditions to be met:

1. Agreement: all the non-faulty replicas of a process receive identical input messages.

2. Order: all the non-faulty replicas process the messages in an identical order.

So, if all the non-faulty replicas of a process of a node have identical initial states then

identical output messages in an identical order will be produced by them. This is the

underlying principle of active replication [Schne90].

Practical distributed programs often require additional functionality such as the use of

time-outs when waiting for messages. Time-outs (and other asynchronous events), high

priority messages etc. are potential sources of non-determinism during input message

selection, making such programs difficult to replicate. However, it is possible to

transform some of these non-deterministic programs into deterministic ones [Tully90,

Shriv92].

78

It will be assumed throughout that a message can be signed by its originator such that

any modification of the message can be detected by a non-faulty receiver through a

process of authentication. The implementation of such a mechanism in Voltan nodes is

discussed in next section.

4.2.2. Node Software Architecture

The TMR node has the following two properties: 1) it functions correctly as long as

there is no more than one processor failure; and 2) any spurious messages emitted by the

failed processor of a correctly functioning node can be detected and rejected by all the

correctly functioning receiver nodes.

As stated early, it is necessary that the replicas of computational processes on non-faulty

processors within a node select identical messages for processing, to ensure that they

produce identical outputs. This can be guaranteed by presenting a single input queue,

referred to as a delivered message queue (DMQ), to a process and ensuring that a

process picks up the message at the head of its DMQ for processing. An atomic

broadcast protocol, designed to tolerate Byzantine failures, meeting both the agreement

and order property is then used to ensure that identical messages are enqueued in an

identical order at all the non-faulty replicas of a node. The broadcast mechanism itself

requires that the clocks of all non-faulty processors of a node be synchronised such that

the measurable difference between readings of the clocks at any instant is bounded by a

known constant. The application output messages are voted to prevent erroneous

messages from appearing at the application level.

79

The Voltan system software running on each processor of a TMR node has three major

fault tolerant software modules: voting module, clock synchronisation module, and

ordering module. These modules are supported by some communications software.

1. Voting Module: the voting module is responsible for voting the messages produced

by the application and thus preventing erroneous output from appearing at the

application level. This module consists of two processes.

2. Clock synchronisation module: the clock synchronisation module maintains the local

clocks on the non-faulty processors of the node synchronised such that at any instant of

time the difference between the local clock readings of any two non-faulty processors is

within a certain bound. This service is required by the ordering module. This module

consists of two processes.

3. Ordering Module: the ordering module orders messages by atomically broadcasting

authentic messages received to all the order modules of that node (including itself). This

permits order modules to construct identical queues of authentic messages (DMQs) for

application processes. The ordering module requires the clocks on the non-faulty

processors be synchronised. The ordering module consists of four processes which will

be explained in detail in next section.

The communications software provides services for both inter-node and intra-node

communications. The communications software is quite different from the three major

modules of Voltan software in the sense it is conventional non-fault tolerant software.

80

While the three major modules are fault tolerant software; they are required to deliver a

specified service in the presence of faults.

4.3. Implementation

Fig 4.1 shows the node hardware organisation of the present implementation which uses

T800 transputers [Inmos88]. A transputer has four communication links. We use two of

them for intra-node communication and the other two for inter-node communication.

The TMR node masks the failure of one component which may be a processor and/or its

links. Since a link failure can be seen as the failure of the processor associated with the

link, we will only be concerned with processor failures. A link failure that prevents a

message sent from a processor to be received by its neighbour in the node will be

considered as a failure of the sender processor.

internal link for
intra-node communication

~ processor

external link for
inter-node communication

Fig.4.1 Voltan TMR Node Hardware Organisation

As described in the last section, the system software of Voltan TMR node consists of

three major modules and some communications software. A copy of the system software

runs on each processor of a node. Fig. 4.2 shows how the three major modules of Voltan

system software relate to a given application process replica S.

81

C§;Ck S~ - - -_ ~ ~ :1 Clock 1
.. '

Fig. 4.2. Volt an TMR Node Software Organisation

The application process replica S has access to two message queues: delivered message

queue (DMQ) and processed message queue (PMQ). When messages destined for the

application process S arrive at a processor, they are ordered by the ordering module. The

ordering module makes use of the local clock (Clock) which is kept in synchronisation

with clocks on other correct processors by the clock synchronisation module. The

ordered messages are made available to S via the DMQ_ When the application process

generates an output message, it is deposited in the PMQ. These deposited messages are

voted by the voting module before being sent to their destinations.

The three modules of Voltan software all require the use of a message authentication

mechanism - both for creating digital signatures and authenticating them. A message

authentication mechanism allows a message to be signed and the signature of a received

message to be verified. As a result, any alteration to a signed message can be detected

by a recipient. The simplest form of digital signature is a checksum; checksums are

adequate if it can be assumed that a processor would not deliberately forge signatures.

More sophisticated forms of digital signature could be developed based on the

techniques proposed in [Rives78]. In Voltan TMR software, a simple checksum based

authentication mechanism is implemented.

82

4.3.1. Voting Module

The voting module (Fig. 4.3) consists of two processes: diffuser process and voter

process. The diffuser picks up a message from the PMQ, signs the message, and puts a

copy of it in the IMQ (internal message queue) and sends one copy to each of its two

neighbouring processors. Each message contains a sequence number assigned to it by

the application process. The sequence numbers are unique to each application process.

Non-faulty replicas of a given application process will assign identical sequence

numbers to message replicas. At the neighbouring processor, the authenticity of the

incoming signed message is verified; if found authentic, the message is deposited at the

local EMQ (external message queue).

The job of the voter is to vote the matching messages in the IMQ and EMQ. Messages

from IMQ and EMQ are matched by using their sequence numbers. The voted message

from the EMQ is counter-signed (the local processor signature is added to the original

signature). Such a double-signed message is then sent to its destination node. At a

destination node, only double-signed and authentic messages will be accepted for

processing (such messages will be termed valid).

83

-§§]--+I

from neighbouring processors

Fig. 4.3. The Voting Module of a Processor

4.3.2. Clock Synchronisation Module

The ordering protocol used in Voltan TMR node assumes that the clocks of the non­

faulty processors of the node are synchronised, so that the difference of the readings of

clocks at any instant is bounded by a known constant E. The clock synchronisation

module is implemented using the protocol by Halpern et al [Halpe84]. We first briefly

describe the clock synchronisation protocol and then details our implementation of the

protocol for Voltan TMR node.

4.3.2.1. The Protocol

The clock synchronisation protocol [Halpe84] makes the following assumptions.

(I) A correct clock's rate of drift from the real time is bounded by a known constant p >

O. Formally, between real time u and v the clock's readings C(u) and C(v) satisfies the

condition: (l+pr1(v-u) < C(v)-C(u) < (l+p)(v-u). Based on this assumption, it follows

that the relative drift rate between two correct clocks will be bounded by dr,

dr=p(2+p)/(1 +p).

84

(2) Processors are connected by a point-to-point network and faults do not cause

network partition.

(3) A message sent between two adjacent correct processors is delivered within 0 time

units.

(3) Messages can be signed and subsequently authenticated. Any modification of a

message while the message is being relayed can be detected by the destination

processor.

Clock synchronisation is modelled by starting a new clock. After the kth round of

synchronisation, a processor has clock Ck running as its current clock, or, put it another

way, the current clock Cis Ck
. The beginnings (beg) and ends (end) of a synchronisation

round is defined as follows: begk is the (real) time that the first correct processor starts

its kth clock; endk is the (real) time the last correct processor starts its kth clock. Between

kth and k+ 1 st synchronisations, a processor will consider ~ its current clock.

The clock synchronisation protocol maintains the following three properties for all

correct processors Pi and Pj in the presence of arbitrary failures. In the following

expressions, C j " and ct are the kth clocks of processors Pi and Pj respectively.

(1) There is an upper bound on the difference between correct processors' kth clocks.

More precisely, there is a constant DMAX such that

dk dk+l] Vt E [en ,en ,

85

Icht) - q\t)1 < DMAX

(2) If k> 1, then the time the kth clock of Pi reads is no less than that of Cr1 (i.e., clocks

are never set back) and can differ from C j
k

-
1 by at most a bounded amount. Formally,

there is a small constant ADJ and a time t E [bet, endk] such that Cj
k is started at t and

ifk>l

(3) The length of a synchronisation round is small, that is, there exists a small constant

dmin such that

The exact values for DMAX, ADJ, and dmin are to be discussed later in this sub-section

after the presentation of the protocol itself.

Now we describe the protocol. The protocol consists of two tasks (TIME_MONITOR

and MESSAGE_MANAGER) which run continuously on each correct processor. The

clock of a processor can be synchronised by either of the two tasks. There are two

parameters of the protocol: PER and D. PER is the time between synchronisations,

while D is an upper bound on the difference between correct clocks. The selection of

values for PER and D needs to satisfy certain conditions which we will discuss later in

this sub-section. There are three global variables shared between the two tasks: ET (the

expected time of the next synchronisation), CURRENT (the current clock being used,

e.g., if CURRENT=5 then the current clock C is C'\ and C (the clock).

86

When a processor is started, ET=PER, CURRENT=O, and Co=O. It is also assumed that

all processors in the network are started within drnin of each other. The two tasks are

presented below with comments.

task TIME_MONITOR

var m: message;

global var C, ET: time; CURRENT: integer;

cycle

if (C==ET) then { II it is time to synchronise

endcycle

endtask

m="The time is ET"; II generate synchronisation message

sign(m); II sign the synchronisation message

send_on_aIUinks(m); II send it to all neighbours

CURRENT =CURRENT + 1; II update to the next clock

C=ET;

ET=ET+PER; II set the next synchronisation time

task MESSAGE_MANAGER

var m: message; s: integer; T: time;

global var C, ET: time; CURRENT: integer;

cycle

receive(m); II receive a synchronisation message

if (m is authentic saying "The time is T") then {

s=no_oCsignatures(m); II extract the number of signatures of m

if ((T==ET) and (ET-sD)<C)) then { II it is the expected

II synchronisation and it is not too early

sign(m); II add the processor's own signature

send_on_aIUinks(m); II send it to all neighbours

CURRENT =CURRENT + 1; II update to the next clock

C=ET;

ET=ET+PER; II set the next synchronisation time

87

endcycle

endtask

The clock synchronisation protocol maintains three properties as stated earlier in this

sub-section. The exact values of the first two bounds (DMAX and ADJ) depend on the

protocol parameters (PER and D) and the third bound (dmin). The selection of values

for PER and D needs to satisfy certain constraints of which dmin is a factor. Thus the

value of dmin needs to be determined first.

For a fully and directly connected TMR node system with at most one processor failure,

dmin is easily determined: dmin=o, where 0 is the upper bound of message transmission

time between two adjacent correct processors.

The selection of the values for the two protocol parameters needs to satisfy the

following two conditions, where f is the number of faulty processors:

(l+p)dmin + dr(l+p)pER:::; D

PER> (1 +p)dmin +fD

For a TMR node hardware configuration in which p=1O.6 and 8=5 ms (milliseconds),

the conditions are very easily satisfied. For example, PER=lO s (seconds) and D=5.1

ms, will satisfy the conditions.

DMAX and ADJ are worked out using the following formulae:

88

DMAX=(1 +p)dmin + dr(1 +p)PER

AD1= (f+l)D, where f=1 for a TMR node.

Thus for the hardware configuration mentioned above and the protocol parameter values

subsequently selected, we have DMAX=5.02 ms, and AD1=1D.2 ms.

In this sub-section we only presented the bounds achieved by the protocol for a TMR

node, with an example hardware configuration, more detailed analysis and formal proofs

of the protocol can be found in [Halpe84J.

4.3.2.2. The Implementation

In our implementation of the protocol, there are two processes (see Fig. 4.4): TM and

MSG. They implement the TIME_MONITOR task and MESSAGE_MANAGER task

of the protocol respectively.

from neighbouring processors
to one of the neighbouring processors

~ ... ~ f:::\-..
~ ~

to neighbouring processors

Fig. 4.4. The Clock Synchronisation Module of a Processor

Assuming the clocks of the three processors of a node are initialized correctly. here we

briefly describe the functionality of the two processes of the clock synchronisation

module as implemented for Voltan TMR node.

89

The TM process sleeps until the expected synchronisation time has come. It will first

check whether the clock has already been synchronised by MSG. If the clock has been

synchronised, TM will do nothing and go to sleep till the next expected synchronisation

time. If the clock has not been synchronised, TM will broadcast a signed clock

synchronisation message to other processors saying "It is time to start kth clock", start

the new clock and set the next expected synchronisation time on the local processor, and

go to sleep again.

When an authentic clock synchronisation message arrives from a neighbouring

processor, the MSG process picks it up from the CMQ (clock message queue). MSG

will check whether the clock number (k) carried by the message matches the number it

expects and whether the message arrives within the acceptable time frame (for details

see the protocol description in sub-section 4.3.2.1). If one of the conditions is not

satisfied, MSG will do nothing and wait for the next message. If both conditions are

satisfied, MSG will relay the clock synchronisation message (with its own signature

added) to the other processor saying "It is time to start kth clock", start the new clock

and set the next expected synchronisation time on the local processor, and wait for the

next message.

4.3.3. Ordering Module

The ordering module employs the atomic broadcast protocol of [Crist85] adapted for a

fully and directly connected three-processor system. It ensures that all non-faulty

replicas of an application process receive identical input messages in an identical order.

90

We first briefly describe the atomic broadcast protocol and then details our

implementation of the protocol for Voltan TMR node.

4.3.3.1. The Protocol

The atomic broadcast protocol developed by Cristian et al [Crist85] exhibits the

following properties in the presence of arbitrary failures:

(1) Termination: It delivers every message broadcast by a correct sender to all correct

receivers within some known time bound.

(2) Atomicity: It ensures that every message whose broadcast is initiated by a sender is

either delivered to all correct receivers or to none of them.

(3) Order: It guarantees that all delivered messages from all senders are delivered in the

same order at all receiving processors.

In order for the protocol to work, the following assumptions are made:

(I) Processors are connected by a point -to-point network.

(2) Faults do not cause network partition.

(3) A message sent between two adjacent correct processors is delivered within 8 time

units.

(4) The clocks of the correct processors are synchronised to within E time units.

91

(5) No correct processor issues the same timestamp twice.

(6) Messages can be signed and subsequently authenticated.

Now we describe the atomic broadcast protocol as adapted for a fully and directly

connected three-processor TMR node system, where there is at most one processor

failure.

The protocol is based on the following two basic observations. First, to achieve the

order property it is sufficient that in every correct processor messages be delivered in the

order of their generation times (timestamps), and that messages generated at the same

clock time be delivered in increasing order of their sender's identifier. Second, to ensure

that any message broadcast at clock time t by some processor s and received by one

correct processor p is also received by the other correct processor q, a timeliness check

must be carried out when a message is received. If a message is received directly from

the original sender then the message will be accepted and relayed to the other processor

only if the current clock reading of the local clock t_local satisfies the condition: t-£ <

Clocal < t+M£. If a message is received indirectly through relay then the message will

be accepted only if the following condition is satisfied: t-E < Uocal < t+2(M£).

In this way, a message can spend at most (M£) clock time units in transit before being

accepted by a correct processor. From that moment, it needs at most 3 time units to

reach the other correct processor. So the message can be delivered at the local clock

time t+2(M£). The protocol terminates.

92

The description of the protocol is modelled on three tasks: START task, RELAY task,

and END task. There is one global variable, pool, which is shared among the three

tasks. The global variable pool holds accepted messages which will later be delivered to

the target processes with duplicates discarded. The three tasks are presented below.

task START;

var m: message; t: time;

global var pool: message_pool;

const time_delivery=2(d+e);

cycle

take_a_msg(m);

t=read_clockO;

timestamp(m,t);

deposit(m, pool);

schedule(END, time_delivery+t);

endcycle

endtask

task RELAY

var m: message; t: time;

global var pool: message_pool;

const time_delivery=2(d+e);

cycle

receive_on_a_link(m);

if (authentic(m) and timely(m)) then {

deposit(m, pool);

II take a message

II read the local clock

II timestamp the message

II deposit the message in the

II local message pool

II send the message to the

II other processors

II arrange for the message's

II delivery

II receive a message

II check for authenticity and

II timeliness

II deposit the message in the

II local message pool

93

if (from_sender(m)) then

send_on_otheUink(m);

t=timestamp_oCmsg(m);

schedule(END, time_delivery+t);

else discard(m);

endcycle

endtask

task END(ttime)

var m: message;

global var pool: message_pool;

while (messages_ready-to_deliver(pool, t»O)

take_a_ready_msg(m, t);

if (duplicate(m)) then discard(m);

else deliver(m);

endtask

II relay the message if it is from

II the original sender

II get the timestamp of m

II arrange for the message's

II delivery

II take a ready message

II discard it if it's a duplicate

II deliver it to the target process

The main difference between the protocol presented in this sub-section and the original

protocol of [Crist85] is that messages are not signed when they are relayed. In the

original protocol, the signatures are used to count the hops a message has been through

in order to determine the timeliness of a message. In a fully and directly connected TMR

node system, there is no need for this. If a message is received from the original sender

then it has been through one hop; if a message is received through relay then it has been

through two hops.

94

4.3.3.2. The Implementation

In our implementation of the protocol, there are four processes (Fig. 4.5): broadcaster,

relayer, transferrer, and deliverer. The protocol task START is mapped to

broadcaster, RELAY to relayer and transferrer, and END to deliverer. By splitting

RELA Y into two processes, each process will handle only one type of message. The

synchronised clock service required by the protocol is provided by the clock

synchronisation module described in section 4.2.

to neighbouring processors

to one of the neighbouring processors

broadcast messages

relayed messages

Fig. 4.5. The Ordering Module of a Processor

When a valid (i.e., double-signed and authentic) message is received at a processor, the

broadcaster appends the message with the current reading of the local clock as

message timestamp, signs the message (this third signature is needed because a

timestamp has been added to the message), broadcasts the message to its two

neighbouring processors, and also inserts a copy of it in the local OMQ (ordered

message queue) where messages are queued in increasing timestamp order.

95

When a broadcast message arrives at a processor, the relayer will receive it. ~ote that

the message received by the relayer will have three signatures and would have been

received from the processor that is the creator of the third signature. The relayer verifies

the authenticity and timeliness of the received message (as specified by the atomic

broadcast protocol). If the message is authentic and timely, it is relayed to the other

(non-signatory) processor and a copy of it is inserted in the local OMQ.

The transferrer process picks up relayed messages, and inserts them in the local OMQ

if the messages are found to be valid and timely. The message picked up by the

transferrer will also have three signatures, but would have been received directly from

the processor who is not the owner of the third signature. This simple way of

distinguishing the broadcast messages from the relayed messages eliminates the need (as

required by [Crist85]) to sign a message by the relayer.

The deliverer process will be checking the messages in the OMQ regularly to see

whether a message has become stable, that is whether the delivery time of the message

as specified by its timestamp has come. The deliverer process moves stable messages to

the DMQ for consumption by the application process. The deliverer process queues

messages in the DMQ in increasing timestamp order, while duplicates are discarded.

4.3.4. Communications Layer

The communications layer of the Voltan software contains four software modules for

supporting both intra-node and inter-node communications. The intra-node messages are

transmitted over raw transputer links. The internal links (see Fig. 4.1) between

96

constituent processors of a TMR node are configured in such a way that they can be

accessed directly by V oltan software. This allows fast intra-node communication. The

inter-node messages are transmitted through the use of a message passing service

provided by the Helios operating system [Perih89] running on top of each transputer.

The external links (see Fig. 4.1) of a transputer are used by the Helios operating system

to provide basic operating system services (including the message passing service).

The two modules for intra-node communications are RX and TX. For each internal link

of a transputer, there is a pair of RX process and TX process. The RX process listens on

the link. When a message arrives through the link the RX receives the message and

deposits it in the message queue associated with its destination process. The TX process

waits on the message queue associated with the link. When the queue is not empty the

TX process picks up a message at the head of the queue and sends it down the link.

The two modules for inter-node communications are Receive and Send. For each

processor (transputer) of a TMR node, a pair of Receive and Send are employed to

receive messages from other nodes and to send messages to other nodes respectively.

The Receive process and Send process work in a way similar to that of RX and TX.

Send and Receive are implemented on top of the message passing service supported

by the Helios operating system.

4.4. Fault Injection Implementation

The Voltan software has been implemented on top of the Helios operating system

[Perih89] which runs on each transputer to provide essential operating system services.

97

All of the Volt an software is written in C++ [Lippm89], as are the fault injection

objects. Each Voltan system service is provided by a system module consisting of one or

more processes as described in the previous section.

Messages are instances of a class called Message_Block. Queues are instances of a class

called Message_Block_Queue. These passive (data) objects are used for

communications between the active objects which represent processes. Active objects

are also instances of C++ classes.

The object-oriented implementation of the Voltan TMR node software makes it quite

easy and convenient to implement focused fault injection. The overall Voltan software

system with an application process has the following form:

1* passive objects for communications between active objects */

Message_Block_Queue moO, mo1, vmp, rmp, omq, dmq, *mp[41, pmq, imq;

/* active objects for link handling */

RX rx1 (O, mp), rx2{1, mp);

TX tx1 (O, &moO), tx2{1, &mo1);

1* passive object representing synchronised clock */

Clock clockO;

1* active objects implementing clock synchronisation algorithm */

Time_Monitor tm{&clock, &moO, &mo1);

Message_Manager msg{&clock, &moO, &mo1, mp[O]);

1* active objects implementing ordering module */

Broadcaster broadcaster{&rmp, &omq, &moO, &mo1, &clock);

Relayer relayer{mp[2J, &omq, &moO, &mo1, &clock);

Transferrer transferrer{mp[31, &omq, &clock);

Deliverer deliverer(&omq, &dmq. &clock);

1* active objects implementing voting module */

98

Diffuser diffuser(&pmq,&imq,&moO,&mo1);

Voter voter(&imq, mp[1], &vmp);

1* active objects for inter-node message communications */

Receive receive(&rmq);

Send send(&vmq);

/* active objects representing application processes * /

Application application(&dmq, &pmq);

With a particular fault injection object inserted, the above program would change

slightly to the following fonn:

Message_Block_Queue moO, mo1, vmp, rmp, omq, dmq, *mp[4], pmq, imq, fq;

RX rx1 (0, mp), RX rx2(1, mp);

TX tx1 (0, &moO), tx2(1, &mo1);

Clock clockO;

Time_Monitor tm(&clock, &moO, &mo1);

Message_Manager msg(&clock, &moO, &mo1, mp[O]);

Broadcaster broadcaster(&rmp, &omq, &moO, &mo1, &clock);

Relayer relayer(mp[2], &omq, &moO, &mo1, &clock);

Transferrer transferrer(mp[3], &omq, &clock);

Deliverer deliverer(&omq, &dmq, &clock);

Receive receive(&rmq);

Send send(&vmq);

/* one of the parameters of the following object is changed */

Diffuser diffuser(&pmq,&imq,&fq,&mo1);

/* fault injection object */

FaulCObject fo(&fq, &moO);

Voter voter(&imq, mp[1], &vmp);

Application application(&dmq, &pmq);

99

When this program is run on a selected 'faulty' processor, it will be injecting faults in

those output messages which are diffused by the Diffuser and sent to one of the

neighbouring processors. This creates the failure scenario in which the 'faulty' processor

sends erroneous output messages to one of its neighbouring processors for voting. Thus

the voting module running on the processor which receives the erroneous messages is

tested for its effectiveness in masking the failure of the injected processor.

Note that there are only two small differences between the original version of the

program and the one with the fault injection object: 1) the application object is defined

(started) with a different parameter; 2) an extra active object fo (of object class

FaulLObject) and a queue it uses are added to the system. The Voltan system software

modules do not need to be changed. Thus, the efforts involved in fault injection

experiments are kept to a minimum.

4.5. Experiments and Results

According to the design, a Voltan TMR node should continue to function correctly even

if one of its three constituent processors has failed. The delivery of this correctness

property relies on the correctness of the system software of the node, since the TMR

node is implemented entirely in software and only standard off-the-shelf hardware is

used. As described earlier in the chapter, there are three fault tolerant modules in the

system software. These modules are required to perform certain functions in the

presence of faults, so they are subject to fault injection based testing.

100

Before starting fault injection experiments, we had tested the system software without

fault injection and it worked correctly. We assume that the checksum based message

authentication mechanism has been implemented correctly. The message authentication

service was not subject to fault injection testing.

Our experiments concentrate on injecting faults to test the three fault tolerant modules,

namely voting, clock synchronisation, and ordering modules. In particular, we wish to

ascertain that a single processor failure does not cause the node to fail, even if the faulty

processor behaves in a 'two-faced' manner [Lampo82J.

Faults are injected into the software of one of the three TMR node processors and the

behaviour of the modules under test are observed in various ways. How faults are

injected on the selected processor depends on which fault tolerant software module is

being tested and the nature of that module.

4.5.1. Voting Module

In the experiments, the three replicas of the server (S) running on a TMR node provide a

reliable service, with clients (Cl, C2) running on a separate processor sending requests

and receiving replies. The system configuration is shown in Fig. 4.6.

101

Conventional Processor

TMRNode

Fig. 4.6. System Configuration for Testing Voting Module

The application server S running on the TMR node provides a positioning service. It

holds two sets of co-ordinates for two graphical objects. Each client manoeuvres an

object; for this purpose, it needs the positioning service provided by the server S. A

client sends a request to the server giving its identity and the next position number. The

corresponding reply from the server will contain the co-ordinates for the next position.

To test the voting module, we injected faults to emulate the behaviour of a faulty

processor generating erroneous output messages . The correct functioning of the voting

module can be observed by the clients from the fact that double-signed and authentic

reply messages are still being sent by the TMR node despite the 'failure' of one

processor.

The Voting module is a relatively simple module, it consists of two active objects (see

Fig. 4.3). However, even such a simple module has been known to contain software

bugs [Yang85]. We inserted two injection objects (FO] and F02) each with its own

message queue (FQ] or FQ2) between the diffuser object and the link handling objects

102

in the software of one processor (see Fig. 4.7). The link handling objects which actually

send the messages down the links are not shown in the figure.

Fig. 4.7. Fault Injection in Diffuser

This created the effects of a faulty processor producing incorrect output (reply)

messages. It is the job of the voting modules on the other two correct processors to weed

out wrong reply messages and so masking the failure of one processor.

The following classes of faults were injected by the two fault injection objects in our

experiments.

Omission Faults: In the experiment, we first injected consistent omission faults by

having the two injection objects both delete messages. This simulates a faulty processor

which is not producing any message for voting. Despite the silence of the faulty

processor, the other two correct processors could still vote and manage to send double­

signed reply messages to the clients. We then generalised the case whereby the

processor sometimes appeared silent to just one of the remaining two processors. No

bugs were discovered.

Value Faults: In the experiment, value faults were injected by replacing one byte of

application data with a randomly generated byte or by replacing the sequence number of

103

the message with a random number. A new signature was also generated to replace the

one on the intercepted message, otherwise the injected fault will be easily picked up by

the message authentication mechanism. The two injection objects operated

independently of each other. This creates the effects that the processor concerned is

sending messages with wrong contents and correct signatures. The voting modules on

the other two processors (where byte-by-byte comparison is performed) successfully

detected and discarded all incorrect messages from the injected processor.

During this experiment, a software bug regarding the data structure of a message was

discovered. It was not in the voting module, but in the passive object class

Message_Block. This was not expected, so shows the value of fault injection based

testing.

Timing Faults: Timing faults of a single failed processor should also not affect voting

at the voters of the correct processors. This was the case when we injected late timing

faults at the selected processor. Random and independent delays were injected by the

two fault injection objects.

Arbitrary Faults: Arbitrary faults which cause the processor to violate expected

behaviour in both timing and value domains were injected in the experiment. These

faults were introduced by having the fault injection objects injecting both timing and

value faults. The intercepted messages were first delayed and then the message values

were modified, by the same fault injection objects. No bugs were discovered.

104

4.5.2. Clock Synchronisation Module

A precise testing of any clock synchronisation module is impossible unless special

hardware support, such as the one used in [Palum94], is available for correctly

measuring clock differences. The impossibility arises from the fact that a processor

cannot 'instantly' read another processor's clock to check whether the clock difference

at a given instant of time is within the bound e. The error or imprecision involved in

reading a remote clock is influenced by variation in message transmission and

processing delays. The special hardware support of [Palum94] provides each processor

with access to a global reference clock. With such a facility, a processor can then

indicate to another processor its own time with reference to this globally accessible time

base. This enables processors to compute accurately their relative differences at a given

instant of the reference time.

In our testing of the clock synchronisation module, no special hardware is used. We

however circumvent the impossibility of instant access by exploring the minimum

requirement imposed by the ordering module on the clock synchronisation module. This

requirement (see below) is weaker than requiring that correct processors' clocks be

synchronised within some known bound e.

Thus the experiments reported here only check whether the clock synchronisation

module provides what is required from it by the ordering module, rather than whether

processor clocks are synchronised within e. This is enough for our purpose which is to

test the Voltan software in implementing failure masking strategies. We will first

105

describe the mechanism we have set up to measure the difference in clock readings of

two processors.

This mechanism involves two processes (reader and checker), each running on a

processor. The reader process on one processor reads its local clock and sends a

message containing the clock reading to the checker process on the other processor.

Upon receiving the message, the checker process reads its own clock and works out the

difference by subtracting the clock reading contained in the message from the local

clock reading. The actual message transmission and processing delay involved in taking

a measurement varies and is bounded by the known constant 5.

Using this measurement mechanism, we will not test whether the actual difference

between two clocks is within the bound £, but will ascertain whether the measured clock

difference, d, is within the range: -£ < d < £+5. A careful analysis of the correctness

reasoning in [Crist85] will indicate that the ordering protocol presented there will be

correct so long as -£ < d < £+5 holds; in fact any ordering protocol that assumes £­

synchronised clocks will only require -£ < d < £+5. (Note that £-synchronisation implies

that -£ < d < £+5 holds, but not vice versa.)

The testing of the clock synchronisation module does not require the running of an

application. The experimental set-up only involves a TMR node. Let the three

processors of a TMR node be designated as PI, P2, and P3. P3 is selected for fault

injection while the clock differences between PI and P2 are measured. We put the

106

reader process of the measurement mechanism on P2 and the checker process on PI

(see Fig. 4.8).

,

FO: fault injection object

.. ~

Fig. 4.8. Node Configuration for Testing Clock Synchronisation Module

It is assumed that there is no fault when the clocks of the processors are initialized. A

simple non-fault tolerant program is used to initialise the clocks. Due to the way the

clocks are initialized, we know that PI is running ahead of P2 and P3.

Two kinds of clock difference measurements were taken during the experiments. One is

when both processors are running the same clock (kth clock or k+ 1 sl clock); the other is

when one processor is running kth clock while the other processor is already running

k+ 1 Sl clock. It is in the second scenario when one clock has been synchronised while the

other has yet to be synchronised, the clock difference is potentially the largest (see the

protocol description in sub-section 4.3.2.1).

As shown in Fig. 4.4, the clock synchronisation module consists of two active objects

(TM and MSG), either one of them can synchronise the local clock and send

synchronisation messages to other processors. We first fault-injected TM of the selected

processor P3. Two fault injection objects were used as shown in Fig. 4.9.

107

IClOCk t···

Fig. 4.9. Fault Injection in TM

Omission Faults: In the experiment, we first injected consistent omission faults by

having the injection objects delete all clock synchronisation messages from TM. The

measurements taken on PI and P2 indicated the two non-faulty processors remained in

synchronisation. We then generalised the case whereby TM appeared silent to just one

of the two processors. No bugs were discovered.

Value Faults: In the experiment, value faults were injected by adding a random value to

the synchronisation round number k carried by the messages. A new signature was also

generated to replace the old one on the intercepted message. This creates the scenario

where a faulty processor sends clock synchronisation messages with incorrect round

numbers which should be rejected by non-faulty processors. The measurements taken on

PI and P2 indicated the two non-faulty processors remained in synchronisation.

Early Timing Faults: The injection of early timing faults requires an additional fault

injection object. The two existing fault injection objects now delete messages as if

omission faults were being injected. The third injection object (see Fig. 4.10) will

generate and send a clock synchronisation message before the next round of

synchronisation is due. The message is only sent to PI, the processor with a fast clock.

108

The aim here is to create a malicious failure scenario in which the faulty processor tries

to push the correct processor with a fast clock even faster so as to cause a violation of

the clock synchronisation bound.

~
...... ~

ICIOCk t:
.... CL ~ ~

Fig. 4.10. Fault Injection in TM

The experimental results were quite interesting. The measurements taken on PI and P2

showed that on four occasions the recorded difference of clock readings of the two

correct processors exceeded the bound of £+0, other figures were all within the bound.

These violations happened during the first four rounds of fault injection, and when P2

was running kth clock while PI had started k+I st clock. The experiment was repeated

several times and this phenomenon recurred. This indicated a bug in the program.

Our subsequent analysis of the source code revealed a subtle bug. The clock

initialisation program makes use of the clock synchronisation program. To allow the

synchronisation program to be used in this manner, the message timeliness check (which

detects synchronisation messages that arrive too early) is disabled during initialisation

period. It takes two rounds of synchronisation during the initialisation period to get the

clocks initialized within the required initial bound; at each round a processor is expected

109

to receive at most two messages. The timeliness check at each processor is restored after

receiving exactly four messages. This is incorrect because according to the clock

synchronisation protocol, a processor with the fastest running clock does not receive any

message from any other non-faulty processor. Due to this bug, PI - the processor with

fastest running clock - thought it was still in initialisation period and did not do

timeliness check when the first four erroneous messages arrived, and allowed itself to be

pushed exceeding the bound. This bug was later corrected.

Late Timing and Arbitrary Faults: These faults were also injected in TM using fault

injection objects of FO I and F02 (Fig. 4.9). The measurements taken indicated no

further bugs.

Having injected TM, we also fault-injected MSG of P3, using the following software

structure (Fig. 4.11). During the experiments, the clocks of PI and P2 remained

synchronised.

Fig. 4.11. Fault Injection in MSG

110

4.5.3. Ordering Module

With the voting module and clock synchronisation module tested, we then went on to

the testing of the ordering module. The testing of the ordering module relies on the

correct functioning of both the voting module and clock synchronisation module.

If the ordering module of a non-faulty processor does not work correctly and as a result

replicas of the application process on non-faulty processors end up processing different

input messages and producing different output messages, the voting module will be

unable to form a majority. So the failure of the ordering module, manifested by the lack

of double-signed and authentic reply messages, can be observed by the clients.

The experimental set-up required for testing the ordering module is similar to that used

for testing voting module (see Fig. 4.7). The only difference is that the operations of the

two clients C 1 and C2 need to be carefully co-ordinated.

In order to put the ordering module through its paces, we would need a scenario like

this: a processor receives Cl's request followed by C2's request while another processor

of the node receives C2's request followed by Cl's request. To guarantee this scenario,

a single process is used to simulate two clients sending independent requests.

Message ordering in the TMR node is achieved by the use of an atomic broadcast

protocol [Crist85] as described earlier in this chapter. The protocol achieves the required

ordering properties in two stages: 1) broadcast stage, 2) relay stage. A message sent to

the TMR node would first be times tamped and broadcast by the processor to its two

neighbours, and the other processors (in the second stage) would then relay the message

III

to each other. The idea behind all this is that every one of the non-faulty processors

should receive identical messages while timestamps are used to achieve identical

message ordering.

As we have seen, the ordering module handles two types of messages received from

other processors: broadcast messages at the broadcast stage and relayed messages at the

relay stage. In other words, a faulty processor could only produce two types of message

to 'confuse' non-faulty processors. In the experiments we fault-injected the software of

one processor so it produced erroneous broadcast and relayed messages.

We first fault-injected the broadcaster of the selected processor by inserting an

injection object as shown in Fig 4.12. The injection object has two input and two output

channels. The reason we used a single injection object instead of two separate ones is

that we need to co-ordinate the injection to emulate a 'two-faced General' [Lampo82].

The effect of this fault injection is that erroneous broadcast messages will be generated

by the processor selected for fault injection.

newly arrived messages

~e~ broad- FO

~~~~J. ~ 
OMQ 

to a neighbouring processor 

to a neighbouring processor 

Fig. 4.12. Fault Injection in Broadcaster 

When injecting value faults we injected faults at the timestamp field of the messages. 

This is because the timestamp is the only piece of data appended to the message when a 

112 



message is broadcast and it is the value of the timestamp that decides message order. 

Value faults injected in other parts of a message would be detected by the authentication 

mechanism which had been assumed to work correctly as stated before. 

The experiment results are described below. 

Omission Faults at the Broadcast Stage: The fault injection object deleted broadcast 

messages. For the case of consistent omission faults, no broadcast messages were sent to 

neighbouring processors; while for the case of inconsistent omission faults, only one of 

the two neighbouring processors received broadcast messages. The ordering module and 

the TMR node as a whole were observed to work correctly. 

Value Faults at the Broadcast Stage: The injection object would add a random 

number to the timestamp of a message and generate a new signature for the message to 

replace the one generated by broadcaster. When we had the injection object add the 

same random number to the timestamps of the two messages (emulating consistent 

value fault), experimental results showed that the ordering modules of the two non­

faulty processors worked as expected. However, when different random numbers were 

used by the injection object (emulating inconsistent value fault), creating the scenario of 

a 'two-faced General', identical message ordering at the server replicas running on the 

two non-faulty processors was not always achieved. 

The cause of the problem was eventually traced to an incorrect optimisation of the 

broadcast protocol. This was later corrected. 

113 



Timing and Arbitrary Faults at the Broadcast Stage: These faults were also injected 

at the broadcaster, no further bugs were found. 

Having injected broadcaster, we then injected relayer. This was also done by inserting 

a single injection object (see Fig. 4.13). We only injected omission faults and timing 

faults (as the authentication mechanism will catch corruption of messages, so there is no 

need to inject value faults). The node was observed to work correctly. No bugs were 

discovered. 

-e~~ relayer ~ 

_'.'m....... ~ FQ'~ ~ 
OMQ 

10 a neighbouring processor 

10 a neighbouring processor 

Fig. 4.13. Fault Injection in Relayer 

Omission Faults at Relay Stage: Omission faults were introduced by the injection 

object. The reliable service provided by the TMR node was maintained despite these 

faults. No bug or unexpected behaviour was observed. 

Timing Faults at Relay Stage: Late timing faults were introduced by the injection 

object. The two streams of messages were subject to random delays. The ordering 

module functioned correctly despite these faults. 

ll~ 



4.5.4. Comments 

The experiments described in this section have clearly demonstrated the value of the 

focused fault injection method. Adopting the method, we were able to inject specific 

classes of faults and create required failure scenarios quite easily. Only minimal changes 

are required of the main program of target software system, the modules which 

implement the various system functions do not even need to be re-compiled. 

4.6. Summary 

Fault injection based testing is a very useful way of uncovering faults in the 

implementation of a system. Even if the design has been validated adequately, faults can 

still be introduced at the implementation stage. In the case of the Voltan TMR node, the 

basic algorithms that form the core of the node (voting, clock synchronisation, and 

ordering protocols) are really quite well-known, but their implementation is not a trivial 

task. 

In this chapter we described fault injection based testing of the Voltan TMR node. The 

Voltan TMR node is implemented entirely in software using only standard off-the-shelf 

hardware. Whether the node can satisfy the required failure-masking property depends 

on the correctness of its system software. We tested the three fault tolerant modules of 

the node software through focused fault injection. 

The experiments we carried out on the Voltan TMR node are by no means exhaustive, 

in fact there can be many combinations and variations of the basic faults we injected. 

For example, faults can be injected simultaneously into the voting and ordering modules 

115 



and the behaviour of the node can be observed. However, the experiments performed by 

us does test the most essential parts of the node. This is so because the voting sub­

system is independent, in that it does not require the services of the ordering or the clock 

synchronisation module, so can be tested by fault-injecting just within the voting 

module as described here. The ordering module depends on the services of the clock 

synchronisation module (but not vice versa), so it is essential to test the clock 

synchronisation module first, and having satisfied that it functions correctly. test the 

ordering module. 

The experiments performed on the Voltan TMR node have demonstrated the usefulness 

of our fault injection method. It helped to uncover subtle implementation bugs that had 

remained undetected. 

116 



Chapter 5: Focused Fault Injection on A Fail-Silent Node 

5.1. Introduction 

Replicated processing on distinct processors whereby outputs from faulty processors can 

be prevented from appearing at the application level (by employing means such as 

comparing or voting the outputs produced by the processors), not only provides a 

practical means of constructing systems capable of masking individual processor 

failures (e.g., a TMR node) but also provides the basis for the construction of Jail-silem 

nodes. 

A fail-silent node of f+ 1 processors either works correctly or stops functioning 

(becomes silent) soon after an internal failure is detected. This behaviour of a node is 

guaranteed so long as no more than f processors of the node fail. A two-processor fail­

silent node (f=l) provides fail-silence property in the presence of at most one processor 

failure. In this chapter we concentrate our discussions on software-implemented two­

processor fail-silent nodes. 

One of the members of the Voltan family of reliable nodes [Shriv92, Speir93] is a two­

processor fail-silent node. This node is essentially a 'cut-down' version of the Voltan 

TMR node. It shares the basic system architecture with the TMR node and employs the 

same protocol to order input messages. Its comparison module also works in a way 

similar to the voting module of the TMR node. 

117 



Though this fail-silent node delivers the required fail-silence property, careful analysis 

indicates that the order protocol used in a fail-silent node does not need to be a fault 

tolerant one as in a failure-masking TMR node. This is because the order protocol is 

only required to deliver message order when both processors are correct. When there is 

a failure the fail-silence property is guaranteed by the comparison protocol. This led to 

the development of a leader-follower fail-silent node [Brasi94] which offers better 

performance than the original Voltan fail-silent node which uses a fault tolerant order 

protocol. In this chapter we describe the fault injection based testing of this leader­

follower fail-silent node [Tao95b]. Like the TMR node described in chapter 4, the 

leader-follower fail-silent node is effectively a distributed system on its own. The two 

processors of the node communicate with each other through message exchanges. 

This chapter is structured as follows. In section 5.2 we introduce the architecture of fail­

silent node and discuss in particular a node design which is based on the leader-follower 

technique. Section 5.3 presents the current implementation of the leader-follower node. 

The implementation of focused fault injection in the node is explained in section 5.4. 

Section 5.5 presents the experiments and the results obtained. Section 5.6 summarises 

the chapter. 

5.2. Fail-Silent Node Architecture 

A software implemented two-processor fail-silent node is a self-checking node 

composed of two conventional 'fail-uncontrolled' processors that work together to 

provide the fail-silence property. Such a node achieves the abstraction of fail-silence in 

the following sense: a node produces either valid messages which can be verified as 

118 



such by destination nodes, or it ceases to produce new valid messages, in which case 

destination nodes can detect any messages it may produce as unwanted. A valid message 

is signed by both correct processors of the node and can be verified as such. The two 

processors of a software implemented fail-silent node, on which the application 

processes are replicated, need to execute message order and comparison protocols to 

'keep in step' and check each other respectively. 

S.2.1. System Model and Assumptions 

Like the Voltan TMR node, a fail-silent node adopts active replication to achieve fail­

controlled behaviour. The system model and assumptions described in section 4.2.1 of 

the last chapter also apply to fail-silent node. Here we only present a brief summary. 

A distributed computation is assumed to be composed of a number of processes that 

interact only via message exchanges. The function of a process is to pick up the input 

message at the head of its only input queue, process it and, if necessary, output one or 

more messages. The computation performed by a process on an input message is 

assumed to be deterministic. Given such a computational model, if the non-faulty 

replicas of a process have identical initial states then identical output messages will be 

produced by them, provided the input queues of all correct replicas can be guaranteed to 

contain identical messages in an identical order. This requirement of "identical 

messages in an identical order" is satisfied by the ordering module of a fail-silent node. 

We also assume the sender of a message is able to sign a message which can later be 

authenticated by the receiver of the message. 

119 



5.2.2. Basic Node Architecture 

The basic software architecture of a fail-silent node consists of two modules: ordering 

module and comparison module. Fig. 5.1 shows how these two modules relate to a 

given application process replica S. 

Fig. 5.1. Basic Node Architecture 

The role of the ordering module is to guarantee that the application process replicas 

process identical input messages in an identical order. The input messages are ordered 

by the module and then delivered in the delivered message queue (DMQ) of the 

application process. The application process picks up an input message at the head of its 

DMQ, processes it and, if necessary, output one or more messages. The output messages 

are deposited in the processed message queue (PMQ). Each application process has its 

own DMQ while the PMQ is shared among all application processes running on the 

processor. 

The comparison module compares locally produced messages with their counterparts 

produced by the neighbour processor. It takes output messages produced by the local 

application process replica, signs them and sends them to the neighbouring processor for 

comparison. It also receives signed application output messages from the neighbour 

120 



processor, authenticates them, and (if found authentic) compare them with the 

corresponding messages produced by the local application process replica. 

If a message received from the neighbour processor fails authentication or does not 

match its locally produced counterpart, a failure is detected. Similarly, an absence of a 

message for comparison (after a node specific time-out interval) also indicates a failure. 

Once a failure is detected, the processor stops functioning and the node becomes silent. 

If a received message is found to be authentic and matches its locally produced 

counterpart, the received message is counter-signed (double-signed) and sent to its 

destination. A double-signed and authentic message is termed a valid message. 

Depending on the design of the fail-silent node (either symmetric or asymmetric), the 

system software running on the two processors of the node mayor may not be identical. 

In a symmetric design, an identical copy of the system software runs on each processor 

of the node. While in an asymmetric design (leader-follower node), the system software 

running on one processor is different from the one running on the other processor. 

5.2.3. Node Failure Semantics 

As stated earlier in the chapter, a fail-silent node either works correctly or stops 

functioning (becomes silent) soon after an internal failure is detected. Let us assume that 

an application process running on a correctly functioning fail-silent node takes at most t 

time units to compute the response (output message) to a given input message. If the 

output from the fail-silent node is produced later than t then the node is said to have 

suffered a performance failure. A fail-silent node can be in one of the three states: 

121 



(1) Normal State: In this state, a node produces correct outputs. Detection of an internal 

failure (by the comparison module) causes the node to irreversibly enter either the 

failing state or the silent state. 

(2) Failing State: This is an intermediate state in which the node can suffer at most one 

performance failure. From this state the node enters the terminal silent state. 

(3) Silent State: No new valid messages are produced by the node. Any messages 

produced by the node can only be invalid or copies of previously produced valid 

messages: any functioning destination node can detect these messages as unwanted. 

Here we assume the use of monotonically increasing sequence numbers for output 

messages so that any duplicates can be easily detected. 

The relationship among the three states of a fail-silent node is illustrated in Fig. 5.2. The 

reason for the existence of the failing state is as follows. A faulty processor can contain 

a message from the correct processor sent for comparison (a message that was sent 

before the correct processor stopped). The faulty processor can output this as a double­

signed valid message at any future time. The comparison module of each processor must 

therefore incorporate an intra-node message synchronisation mechanism to ensure that 

each processor of a node at any time contains no more than one message from the 

neighbour processor for comparison; in this way, the number of performance failures in 

the failing state is limited to at most one. 

122 



Fig. 5.2. Fail-Silent Node States 

In the following two sub-sections, we first present a simple symmetric design which 

allows multiple performance failures in the failing state and then describes an 

asymmetric design which not only improves node response time when it functions 

correctly but also guarantees that the node suffers at most one performance failure in the 

failing state. 

5.2.4. The Symmetric Node Design 

This is essentially a 'cut-down' version of the three-processor TMR node. The ordering 

module of the node employs the same order protocol [Crist85] as the TMR node and 

much of the source code is shared. Like the TMR node, it requires the clocks of the 

node processors be synchronised. The comparison module of the node also works in a 

way similar to that of the voting module of the TMR node. 

The ordering module consists of three processes: broadcaster, transferrer, and 

deliverer (see Fig. 5.3). If we compare this module with the ordering module of the 

TMR node, we will find the relayer process is missing. This is because there are only 

two processors in the fail-silent node and a broadcast message does not need to be 

123 



relayed. Otherwise it works the same way as the ordering module of the TMR node (see 

section 4.3). 

to neighbour processor 

newly arrived valid messages 

broadcast messages 

Fig. 5.3. The Ordering Module of a Processor 

The comparison module consists of two processes: diffuser and comparator (see Fig. 

5.4). The diffuser process picks up a message from the PMQ, signs the message, and 

deposits a copy of it in the internal message queue (IMQ) and sends another copy to 

the neighbouring processor. At the neighbouring processor, the authenticity of the 

incoming signed message is verified; if found authentic, the message is deposited in the 

external message queue (EMQ). The comparator process compares a locally 

produced message with its counterpart produced by the neighbour processor. If the two 

messages match, the copy from the neighbour processor will be counter-signed and sent 

to its destination. The comparator will stop the processor if one of the following three 

conditions is satisfied: (1) a message fails authentication; (2) a message mismatch is 

detected; (3) a message fails to arrive (after a time-out interval). 

124 



to neighbouring processor 

Fig. 5.4. The Comparison Module of a Processor 

As we can see in this simple comparison module, the EMQ of a processor is permitted 

to contain more than one correct messages from the neighbour processor; thus 

potentially, a faulty processor can emit more than one late valid messages. 

5.2.5. The Leader-Follower Node Design 

A careful analysis of the ordering requirement of fail-silent node indicates that a fail­

silent node is fundamentally different from a failure-masking TMR node though both 

architectures adopt active replication and require an ordering module to make sure 

application process replicas 'keep in step'. 

A TMR node is a failure-masking node, it is required to produce correct outputs in the 

presence of a single processor failure. Thus the order protocol used in a TMR node must 

be a fault tolerant one. Despite the failure of a single processor, application process 

replicas on the other two correct processors must still be guaranteed to process identical 

messages in an identical order. 

A fail-silent node is not required to produce any correct output in the presence of a 

failure. The order protocol used in a fail-silent node does not need to be a fault tolerant 

125 



one. The order protocol is only required to guarantee that application process replicas 

process identical messages in an identical order when there is no failure. When a failure 

occurs, it is up to the comparison module to detect the failure and stop the node. 

The leader-follower fail-silent node [Brasi94] employs a simple non-fault tolerant order 

protocol. The two processors of a fail-silent node are designated as leader and follower 

respectively. It is the leader that decides the message order and this order is followed in 

the follower processor. 

When a valid message is received by the leader processor, one copy of the message is 

deposited in the DMQ of the destination application process and another copy of the 

message is relayed to the follower processor. At the follower processor, the relayed 

message is deposited in the DMQ of the destination application process. This is how 

message ordering is achieved in the leader-follower fail-silent node. 

This simple order protocol used in the leader-follower fail-silent node helps reduce 

substantially the message ordering delay as compared with the original Voltan fail-silent 

node which uses a fault tolerant order protocol. A detailed comparative performance 

evaluation is presented in [Brasi94]. 

Another issue addressed in the leader-follower fail-silent node is the "at most one 

performance failure" issue. The comparison protocol discussed in the last sub-section 

permits a node in the failing state to commit more than one performance failures. The 

only way of preventing this from happening is to use a comparison protocol that 

guarantees that a processor sends the next message for comparison to its neighbour only 

126 



after the processor has compared the current one. In order to prevent deadlocks, it is also 

necessary that the processors agree on the next message to compare. This ordering 

requirement can be achieved by inserting an order process between the PMQ and the 

comparison module. This ordering process for output messages adopts an approach 

similar to the one employed for ordering input messages. Now we describe the 

asymmetric comparison protocol used in the leader-follower node. 

This comparison protocol is also based on the same leader-follower concept. Of the two 

processors of the node, one is assigned the role of a leader, and the other the follower. In 

the leader, the messages in the PMQ follow the same path as in the original Voltan node 

(see Fig. 5.4). However, it is necessary to synchronise the diffuser and the comparator: 

the diffuser is allowed to send a new message to the neighbour processor for 

comparison only if permitted by the comparator, and this permission is granted by the 

comparator after it has finished comparing the current message. 

On the follower's side, messages produced by the application processes follow a slightly 

different path, as shown in Fig. 5.5. The comparator compares a message in the EMQ 

(sent by the leader) with its locally produced counterpart in the PMQ; if the comparison 

succeeds, the message received from the leader is counter-signed and this valid message 

is sent to its destination, and then the locally produced copy is sent to the leader for 

comparison. This message will arrive in the EMQ of the leader, get compared and, if 

successful, the comparator of the leader will then permit the next message from the 

leader to be transmitted to the follower for comparison. 

127 



to the leader 

from the leader 

Fig. 5.5. The Comparison Module ofthe Follower 

The message synchronisation mechanism incorporated in the leader's comparison 

module alone can not guarantee "at most one performance failure" suffered by the node 

in the failing state. This is due to the asymmetric design of the ordering module of the 

leader-follower node. If the leader processor is faulty, its ordering module can delay a 

valid message for a while before ordering it. As a result, the output messages produced 

by both leader and follower will be late and this delay can not be detected by the time­

out mechanism employed in the comparison modules. 

To overcome this problem, a time_monitor is employed in the follower processor. Its 

role is to monitor the arrival times of the valid messages relayed by the leader and 

compare them with those of their counterparts which the follower receive from the 

network directly. If a valid message received from the leader is found to be late, the 

time_monitor will stop the processor. 

5.3. Leader-Follower Node Implementation 

The leader-follower fail-silent node has been implemented on Inmos T800 transputers 

[Inmos88]. The two processors of a node are directly connected to each other by a 

128 



transputer link (see Fig. 5.6), thereby providing a fast internal path for intra-node 

communication . 

...................... .. 
: : 

--+--4 1----

................. 

internal link for 
intra-node communication 

o processor 

external link for 
inter-node communication 

Fig. 5.6. Leader-Follower Node Hardware Connection 

The Helios operating system [Perih89] runs on each of the transputers to provide 

operating system services. The basic implementation environment for the leader-

follower fail-silent node is the same as the one for the Voltan TMR node described in 

chapter 4. 

The leader-follower node software is written in C++. Messages are instances of a class 

called Message_Block. Queues are instances of a class called Message_Block_Queue. 

Processes are implemented as active objects which are instances of C++ classes. Apart 

from Message_Block and Message_Block_Queue, a C++ class called Message_Ust is 

also defined for the efficient implementation of the leader-follower node. 

Message_List supports two important operations (methods) called find_ocadd_tIn and 

find_oc add3mp, they are used by the ordering module of the follower and comparison 

modules respectively. As we shall see later, the use of Message_Ust makes the 

implementation of time-outs simple and efficient. 

129 



The following sub-sections describe the implementation of the leader-follower node in 

detail. 

5.3.1. Communications Layer 

The communications layer of the node is rather similar to that of the Voltan TMR node. 

It contains four processes: RX and TX for intra-node communication, and Receive and 

Send for inter-node communication. The basic function of the four processes are 

summarised here. 

RX is used to receive messages from the neighbour processor through the internal link. 

TX is used to send messages to the neighbour processor through the internal link. 

Messages handled by RX and TX are used for either ordering or comparison. RX and 

TX are implemented on top of the hardware only using the 'raw' link. Receive is used 

to receive double-signed valid messages from the network. Send is used to send 

double-signed valid messages to the network. Receive and Send are implemented on 

top of the message passing system provided by the Helios operating system. 

Another important function provided by the communication layer is message 

authentication. When a message is received, either a double-signed valid message from 

the network or a single-signed message from the neighbour processor, the message will 

be authenticated. If a message fails authentication, it will be discarded. Currently a 

checksum based message authentication mechanism is implemented. 

130 



I 

5.3.2. Ordering Modules 

The ordering module of the leader processor is made up of a single process: relayer. As 

shown in Fig. 5.7, the relayer picks up a valid message, relays a copy of it to the 

follower processor and deposits another copy in the DMQ of the destination application 

process. 

/ to the follower 

valid messages ~ 

Fig. 5.7. Ordering Module of Leader 

The ordering module of the follower processor is made up of two processes: receiver 

and deliverer (see Fig. 5.8). 

valid messages 

relayed valid messages 

Fig. 5.8. Ordering Module of Follower 

Before explaining the operation of the module, we describe the find_oCadd_tm method 

of Message_List since it plays an important part in the implementation of module. The 

find_or_add_tm method takes a message as its parameter and tries to find its matching 

131 



copy on the list. If the matching copy is found, the matching copy's timestamp is 

checked against the current clock reading to determine whether the original message 

(supplied as the parameter of the method) is late or not. If the message is late, the 

processor will be stopped; if the message is not late, the message itself and its matching 

copy on the Message_List will be discarded. If there isn't a matching copy, the original 

message is timestamped and added to the tail of the Message_List. 

The deliverer handles valid messages relayed by the leader. When a relayed message 

arrives, it calls, with a copy of the relayed message as the parameter, the 

find_ocadd_tm operation on the temporary message list (TML) which is an instance 

of Message_List. Then the deliverer will deliver another copy of the relayed valid 

message to the DMQ of the destination application process. Note that if the relayed 

valid message is late, the find_or_add_tm method will stop the processor before a copy 

of it can be delivered to the DMQ. 

The operation of the receiver is trivial. It simply calls the find_or_add_tm method of 

the TML with the valid message it itself receives from the network. 

Strictly speaking, for the purpose of message ordering, the ordering module of the 

follower only needs to deliver the valid messages relayed by the leader to the DMQ of 

the destination application process. The rest of the functionality described here is really 

for the purpose of detecting late relayed valid messages which may cause more than one 

late output messages to be emitted by the node in the failing state. 

132 



5.3.3. Comparison Modules 

Before explaining the operation of the comparison modules, we describe the 

find_ocadd_cmp method of Message_List, it is vital to the implementation of 

comparison modules. The find_ocadd_cmp method takes a message as its parameter 

and tries to find its counterpart on the Message_List. If the counterpart message is not 

on the Message_List, the original message is timestamped and added to the tail of the 

Message_List, and a null pointer is returned. If the counterpart message is found, the 

counterpart's timestamp is checked against the current clock reading to determine 

whether the original message (supplied as the parameter of the method) is late, and the 

two messages are also compared. If either the message is late or the comparison fails, 

the processor will be stopped; otherwise the counterpart of the original message is 

returned. 

Fig. 5.9 shows the comparison module of the leader processor. It consists of two 

processes: diffuser and comparator. The diffuser diffuses a message by sending a 

signed copy of the message to the follower and calling the find_ocadd_cmp method of 

the candidate message list (CML) with another copy of the message as the parameter. 

The CML is an instance of Message_List. If the invocation of the find_ocadd3 mp 

method returns the matching copy of the original message, the diffuser will counter­

sign the returned message, send it to its destination, and signal a semaphore (see below). 

The diffuser can only diffuse the next message when permission is granted. This is 

implemented by using a semaphore. The semaphore is initialized to 1, meaning that the 

diffuser can diffuse the first message. Then the diffuser will have to wait on the 

133 



semaphore before it can diffuse the next message. The semaphore is signalled when a 

successful comparison is done, either by the diffuser itself or by the comparator. 

to the network 'l to the follower 

from the follower ~ ~ to the network 
~ 

Fig. 5.9. The Comparison Module of the Leader 

The comparator process receives a message diffused by the follower and calls the 

find_ocadd3mp method of the CML with a copy of the message as the parameter. If 

the call returns the matching copy of the message, the comparator will sign the 

message it received from the follower and send it to its destination (to the network), and 

then signals the semaphore so that the diffuser can diffuse the next message. The 

matching copy of the original message returned by the find_or_add3mp method is 

discarded. 

The comparison module of the follower is illustrated in Fig. 5.10. It has two processes: 

diffuser and comparator. The diffuser picks up an output message, signs it, and calls 

the find_ocadd_cmp method of the CML with the message as the parameter. If the call 

returns the matching copy of the original message, the returned message is counter-

signed and sent to its destination (to the network), and then the locally produced copy of 

the message is sent to the leader. 

134 



to the leader 

output messages from the leader ~ 
to the leader 

comp 

arator~ 

to the network 

Fig. 5.10. The Comparison Module of the Follower 

The comparator receives an output message diffused from the leader and calls the 

find_ocadd_cmp method of the CML with the message as the parameter. If the call 

returns the matching copy of the message, the message received from the leader is 

counter-signed and sent to its destination (to the network), and then the returned 

matching copy of the message is sent to the leader. 

5.4. Implementing Focused Fault Injection 

The system software of the leader-follower fail-silent node is structured in a way that 

meets the requirement of the focused fault injection method. Focused fault injection is 

easily implemented on the node for fault tolerance testing. The software running on the 

leader processor of the node, including the system software and an application program, 

has the following form: 

r passive objects for communications between active objects *' 

Message_BloclcQueue mo, imq, omq, *mp[41, dmq, pmq; 

Message_List CML; 

r active objects for intra-node communication *' 

135 



RX rx(O, mp); 

TX tx(O, &moO); 

1* active objects for inter-node communication *f 

Receive receive(&imq); 

Send send( &omq); 

/* active object implementing ordering module *f 

Relayer relayer(&imq, &dmq, &mo); 

1* active objects implementing comparison module *f 

Diffuser diffuser(&pmq,&CML,&mo); 

Comparator comparator(mp[1], &CML,&omq); 

1* active object of the application process *f 

Application application(&dmq, &pmq); 

With a particular fault injection object, the above program would change slightly to the 

following form: 

/* passive objects for communications between active objects *f 

Message_Block_Queue mo, imq, omq, *mp[4], dmq, pmq, fq; 

Message_List CML; 

1* active objects for intra-node communication *f 

RX rx(O, mp); 

TX tx(O, &moO); 

1* active objects for inter-node communication *f 

Receive receive(&imq); 

Send send( &omq); 

1* one of the parameters of the following object is changed *J 

Relayer relayer(&imq, &dmq, &fq); 

1* fault injection object *f 

136 



'III' 'I 

FaulCObJect fo(&fq, &mo); 

r active objects implementing comparison module */ 

Diffuser diffuser(&pmq,&CML,&mo); 

Comparator comparator(mp[1], &CML,&omq); 

r active object of the application process */ 

Application application(&dmq, &pmq); 

This program will be capable of injecting faults (such as late timing faults) in the 

double-signed valid messages which are being relayed by the relayer of the leader 

processor to the follower processor, and hence can be used to test the effectiveness of 

the time-monitoring mechanism of the follower. Other fault tolerant modules of the 

node can be tested in the same manner. 

5.5. Experiments and Results 

Our objective in the fault injection experiments on the leader-follower fail-silent node is 

to ascertain that the node does deliver the fail-silence properties expected from it. 

Especially, we want to verify, through fault injection based testing, that the node stops 

when one of the two processors of the node fails and the node suffers at most one 

performance failure in the failing state. 

Since the node is implemented entirely in software using only standard off-the-shelf 

hardware, the delivery of fail-silence properties relies on the correctness of the system 

software of the node. We concentrate our efforts on the testing of the fault tolerant 

modules of the system software by injecting faults in one of processors of the node. It 

137 



should be pointed out that the correct functioning of the node in the absence of faults is 

not our concern, it can be dealt with using conventional software testing techniques. 

An analysis of the system software of the node indicates there are three pieces of 

software in the node that are responsible for implementing the checking mechanisms of 

fail-silence: comparison module of the leader, comparison module of the follower, and 

the time-monitoring mechanism of the follower. We tested these software modules 

through fault injection. 

Before fault injection experiments, the node had been tested by its developer with no 

fault injected and the node worked correctly. We assume that the checksum based 

message authentication mechanism has been implemented correctly. The message 

authentication mechanism was not subject to fault injection testing. 

5.5.1. Experimental Set-Up 

The set-up for our fault injection experiments is shown in Fig. 5.11. The application 

server S is replicated on the two processors of the node, so that either correct service is 

delivered or no service is delivered at all. The client runs on a conventional processor 

which is connected to both processors of the fail-silent node. 

138 



................ 

Fail-Silent Node 

Conventional Processor 

S: server 

C: client 

Fig. 5.11. Experimental Set-Up 

The service provided by the server is trivial. When a request message which contains a 

number is received by the server, it sends back a reply message which contains a 

character string saying the number is even or odd. 

The client C sends requests to the server asynchronously in close succession. This is 

meant to create the condition in which an incorrectly implemented fail-silent node could 

suffer more than one performance failures in the failing state. The violation of the "at 

most one performance failure in the failing state" semantics may not happen even if the 

node is not implemented correctly. For example, if the client sends requests to the server 

synchronously, i.e., it sends the next request only after the reply to the current request 

has been received, then the violation will not occur even if the comparison modules of 

the node do not incorporate a message synchronisation mechanism such as the one used 

in the leader-follower fail-silent node. 

In the following sub-sections we describe the experiments carried out to test the three 

fault tolerant modules of the system software of the node. 

139 



5.5.2. Comparison Module of Follower 

The task of the comparison module of the follower processor is to stop the processor 

when it receives an erroneous message for comparison. To test the module, we fault­

injected the leader processor so that the output messages sent by the leader for 

comparison at the follower were erroneous. 

We first injected omission and late timing faults using the software structure shown in 

Fig. 5.12. The fault injection object FO was inserted into the software running on the 

leader processor to intercept and manipulate the output messages produced by the server 

s. 

to the follower 

to the network 

Fig. 5.12. Fault Injection in S 

The experiments revealed no faults in the comparison module. The node stopped 

successfully and there was no violation of the "at most one performance failure" 

semantics in the failing state. 

We then injected value faults. In this experiment, we emulated a faulty situation in 

which incorrect output is produced by S and this output is diffused by the diffuser. As a 

result, not only the message sent to the follower is erroneous, the local copy used for 

comparison is also erroneous. 

140 



In the experiment, we injected value faults by modifying a single byte of the character 

string carried by the output message. To our surprise, the node did not stop and incorrect 

reply messages were sent to the client. 

This phenomenon was reported to the implementer of the node. A subsequent analysis 

of the code by the implementer revealed that a wrong function was called to compare 

two messages. The function only compares the control sections of the messages while 

the data sections are not compared at all. This function was written for a different 

purpose but was mistakenly used. This bug was also present in the comparison module 

of the leader processor. This bug was later corrected. 

We also injected arbitrary faults by both modifying the content of the message and 

delaying the message for a while. No further bug was detected. 

5.5.3. Comparison Module of Leader 

To test the comparison module of the leader processor, we fault-injected the follower 

processor so that the output messages sent by the follower for comparison at the leader 

were erroneous. The experiments carried out were identical to those carried out to test 

the comparison module of the follower. 

Using the software structure shown in Fig. 5.12, we injected omission, late timing, 

value, and arbitrary faults. The node stopped successfully and there was no violation of 

the "at most one performance failure" semantics in the failing state either. 

141 



Note that the bug uncovered in the comparison module of the follower had also been 

present in the comparison module of the leader, but it was corrected before the 

experiments reported here were carried out. 

5.5.4. Time-Monitoring Mechanism of Follower 

The time-monitoring mechanism of the follower is integrated in the ordering module. Its 

sole function is to detect a late relayed valid message and stop the processor. 

We injected late timing faults in the leader processor using the following software 

structure (Fig. 5.13). The valid messages relayed by the leader to the follower were 

delayed by the fault injection object FO. 

~ to the follower 

valid messages ~ 

Fig. 5.13. Fault Injection in Leader 

The time-monitoring mechanism of the follower successfully detected the fIrst late 

relayed message. As a result, the processor was stopped and the node became silent, and 

there was no violation of the "at most one performance failure" semantics in the failing 

state. 

142 



5.6. Summary 

In this chapter we described the fault tolerance testing of the leader-follower fail-silent 

node, using focused fault injection. Like the Voltan TMR node, the leader-follower fail­

silent node is also implemented entirely in software. Its ability to fulfil the fail-silence 

properties depends on the correctness of the system software of the node. The fault 

tolerant modules of the system software must perform their specified functions in the 

presence of failures. 

The fault injection experiments carried out on the node again demonstrated the 

usefulness of the focused fault injection method in uncovering fault tolerance deficiency 

faults in systems. One bug in the comparison module of the follower processor was 

detected. 

143 



Chapter 6: Applying Focused Fault Injection at Higher 

Levels of a Distributed System 

6.1. Introduction 

In chapter 3 we discussed the three levels of a distributed system at which fault 

tolerance can be applied to achieve system reliability. They are node level, distribution 

level, and application level. Here we reproduce Fig. 3.8 to illustrate the point. 

application level 

platformt platform2 distribution level 

node level 

communications network 

Fig. 3.8 Levels of Fault Tolerance in Distributed Systems 

We have shown in previous chapters how focused fault injection method can be used for 

fault tolerance testing at node level when the fault tolerant node concerned is 

implemented in software. The purpose of this chapter is to show that the same approach 

144 



can also be used for fault tolerance testing at distribution level and application level. 

In Voltan nodes, access to communication software for insertion of fault injection 

objects was straightforward. However, in many distributed systems where fault 

tolerance is applied at higher levels, message exchanges among the processors of the 

system are based upon the use of a set of primitives provided by the underlying 

communication layer. Examples include the Arjuna distributed programming system 

[Shriv91, Parri95] and ISIS system [Birma93]. The target system modules have direct 

access to the primitives for sending and receiving messages, rather than make use of link 

handling objects as in Voltan software architecture. For these systems it is not possible 

to insert an injection object to intercept and manipulate output messages. 

The focused fault injection method described in chapter 3 obviously can not be 

employed directly in such distributed systems. The essence of the focused fault injection 

method is the transparent implementation of fault injection. Transparent implementation 

means not having to go through the source code of the target system and make 

considerable changes to accommodate fault injection activities. This essential point 

must be maintained when the focused fault injection method is modified and applied to 

such systems. 

In order to conduct focused fault injection in such systems, we will need to have the 

ability to intercept communication messages in a transparent way. Once communication 

messages are intercepted. it will be possible to manipulate them to emulate the faulty 

behaviour of processors. 

145 



In this chapter we show, through examples, the application of focused fault injection at 

higher levels of distributed systems. Section 6.2 discusses focused fault injection at 

distribution level. Application level fault injection is described in section 6.3. Section 

6.4 summarises this chapter. 

6.2. Distribution Level Fault Tolerance 

Distribution level fault tolerance is typically provided as a separate layer of software 

(fault tolerance platform software) between the 'raw' distributed system (hosts 

connected through a communications subsystem) and application software. It shields the 

application developers from the complexities of transparent access to remote objects and 

redundancy management. 

In this section, we first introduce a generic scheme for applying fault injection and 

discuss its implementation using a known technique. And then we describe how the 

scheme can be usefully applied to the ISIS system [Birma93] for testing its atomic 

broadcast protocol. 

6.2.1. Focused Fault Injection Scheme 

The first step in focused fault injection involves the interception of communication 

messages which characterise the external behaviour of processors in distributed systems. 

Once messages are intercepted, they can be manipulated to emulate the faulty behaviour 

of processors. 

We take the approach of structuring the fault injection software into two logical 

146 



layers for message interception and message manipulation, respectively. 

Communication messages intercepted by the message interception functions will be 

passed on to the fault injection functions for manipulation. On the injected processor, 

there will be a fault injection synchronisation object (FISO) through which injection 

activities on the processor can be co-ordinated if required. The software structure is 

shown in Fig. 6.1. The target system processes PI and P2 are linked to the fault 

injection software. The individual fault injection functions communicate with the FISO 

for the necessary fault injection control information. The FISO is an independent 

process dedicated to co-ordinating injection activities on the injected processor. 

PI P2 

MIFs MIFs 

FIFs FISO FlFs 

OS Interface I I 

MIF: message interception function 

FIF: fault injection function 

FISO: fault injection synchronisation object 

Fig. 6.1. Fault Injection of Multi-Process Target System 

An omission fault (message loss) is injected, if the fault injection function concerned 

does not send the message at all and simply returns. A value fault is injected by having 

the fault injection function concerned change the value of the message. A late timing 

fault can be injected by delaying the delivery of the intercepted message. Other more 

147 



complex failure scenarios can be created in ways similar to those described in chapter 3. 

The injected process can either be a management process which only contains platform 

software or an application process which contains both platform software and 

application software. 

Techniques for transparent message interception do exist. For example, a tool, Delayline 

[lngha94], has been developed, originally to simulate wide area network characteristics 

over a local area network for UNIX based distributed systems. It has the capability of 

intercepting communication messages transparently; neither the source code nor the 

operating system needs to be changed in any way to accommodate message interception. 

Intercepted communications messages are manipulated to simulate the characteristics of 

a wide area network. Message interception is achieved by using compile time switches 

to force the application program to use a set of alternative header files in preference to 

the standard ones. As a result, Delayline versions of the communication primitives are 

called. In this way, messages are intercepted and manipulated. 

Another issue we come across when we consider fault injection based testing of 

distributed systems that manage persistent, long lived data is that these systems assume 

the existence of stable storage. Stable storage is used to support persistence and crash 

recovery properties. The general assumption is that data written to the stable storage will 

survive processor failures. In many practical distributed systems, the disk based flle 

system is used as stable storage. 

Because of the use of stable storage in distributed systems for achieving fault tolerance, 

148 



fault injection based testing would inevitably have to take into account the operations on 

stable storage. For example, a processor failure just before writing a piece of important 

information to the stable storage and one just after the write operation may well have 

different consequences. In other words, they are two different failure scenarios. 

The focused fault injection method should allow these different failure scenarios to be 

emulated. This means operations on stable storage must be monitored so that one is able 

to determine when to fault-inject the processor. Fortunately, file system operations are 

invoked through the use of system calls. These system calls can be intercepted using 

standard Delayline like techniques. 

Once intercepted, system calls for disk operations are inspected to monitor 

computational progress only and no manipulation will be required. The information 

extracted from inspecting the parameters of the system call will be communicated to the 

FISO on the local processor. This information can later be used by the FISO in making 

fault injection decisions, such as when to inject and what to inject. 

6.2.2. The ISIS Example 

Here we discuss the ISIS system [Birma93] as an example of distribution level fault 

tolerance. ISIS has been widely used in the financial sectors as an alternative to the 

traditional fault tolerant computers. ISIS supports the development of fault tolerant 

application systems out of conventional UNIX machines connected by a network. It 

does not require any specialised hardware. Redundancy management required for 

149 



replicated processing is provided by the ISIS software. 

The central idea to the ISIS approach of distributed fault tolerant computing is process 

group. An application system is modelled as a collection of communicating processes. 

To achieve required system reliability, these processes are replicated among a number of 

hosts, in the form of process groups. Each application process is now represented by a 

replicated process group. The member processes of a process group must receive and 

process identical messages in identical order to 'keep in step'. This is a basic 

requirement for replicated processing as discussed in chapter 4. In ISIS, this ordering 

requirement is satisfied by an atomic broadcast protocol [Birma87]. This protocol 

guarantees that all members of a process group receive identical messages in identical 

order even if the sender process fails while sending the message. This protocol is one of 

the key components underpinning the ISIS architecture. We consider the fault tolerance 

testing of the implementation of this protocol using focused fault injection. 

We first present the essence of the protocol (the insignificant details are omitted here, 

for a full description of the protocol see [Birma87]) and then describe how failure 

scenarios can be created using focused fault injection method to test the implementation 

of the protocol. 

The atomic broadcast protocol is a two-phase protocol. The protocol assumes that the 

hosts (called sites in ISIS) on which the protocol executes are fail-silent. For each 

application process, the protocol maintains two separate queues: temporary queue and 

delivery queue. The temporary queue is used as a buffer for messages to be ordered. The 

delivery queue contains ordered messages for the process. Messages on the 

150 



temporary queue are assigned priority values. Priority values are integers with a process 

ID appended as a suffix to disambiguate the priority values assigned for different 

processes. Each message in the temporary queue is tagged deliverable or undeliverable. 

The protocol works as follows: 

1. The sender transmits the message to its destinations. 

2. Each recipient adds the message to the temporary queue, tagging it as undeliverable. 

It assigns this message a priority value lager than the priority value of any message 

on the queue, with the process ID of the application process as a suffIX. It then 

informs the sender of the priority value that it assigned to the message. 

3. The sender collects responses from recipients that remain operational. It then 

computes the maximum value of all the priority values it received, and sends this 

value back to the recipients. 

4. The recipients change the priority value of the message to the value they receive from 

the sender, tag the message as deliverable, and re-sort their temporary queue. They 

then transfer messages from the temporary queue to the delivery queue in order of 

increasing priority value, until the temporary queue becomes empty or the message 

with the lowest priority value is undeliverable. In the latter case no more messages 

are transferred until the message at the head of the queue becomes deliverable. 

If a sender failure occurs, any site that has a message tagged undeliverable detects this 

using the monitoring mechanism and can then take over as the new co-ordinator to 

151 



complete the protocol. It does so by interrogating participants about the status of the 

message. A participant being interrogated either has never received the message or 

responds with the priority value and tag. The new co-ordinator collects responses. If any 

process has marked the message deliverable, the new co-ordinator distributes the 

corresponding priority value to other processes; if the message is marked as 

undeliverable by all participants, it computes the maximum priority value and 

distributes it (step 3). Otherwise, it resumes from step 1. 

From the description of the protocol, we can see a number of rather difficult failure 

scenarios the protocol must cope with. These are the sender failures at the various points 

of the protocol execution. The first one is when the sender fails while sending the 

message to its destinations; the second one is when the sender fails just after it finished 

sending the message to its destinations; the third one is when the sender fails while 

sending the maximum priority value. Each of the three failure scenarios requires the site 

which takes over the control of the protocol execution from the sender to respond in a 

different way. 

In the implementation of the protocol, the sender part is implemented in a library. This 

library is linked to any application process which sends messages to a process group. 

This library can be re-compiled using an alternative set of header files such that all 

operating system calls for message communications are replaced by calls to our message 

interception functions (see Fig. 6.1). The message interception functions will then call 

fault injection functions for the actual fault injection. In this case, the fault to be injected 

is simple. All fault injection functions need to do is to monitor the outgoing messages 

152 



and stop the process at the required point of protocol execution. 

The above-mentioned three failure scenarios can be created using this technique. Such 

failure scenarios can be used to test the fault tolerance capabilities of the protocol 

implementation. 

6.3. Application Level Fault Tolerance 

Fault tolerance can also be built into distributed applications using fault tolerance 

techniques such as checkpointing based recovery protocols. A checkpointing based 

recovery protocol supports fault tolerance through non-replicated processing. It provides 

facilities which allow a process to recover the state of a previously crashed process and 

resume the computation. This approach to fault tolerance is suitable for long-running 

distributed applications without real-time requirements. 

In such systems, a distributed application is modelled as a collection of processes 

communicating with one another through message exchanges. The processes also have 

access to stable storage for saving checkpoints - process states. Messages exchanged 

and other information may also be saved on stable storage to assist recovery. The 

processes are assumed to be fail-silent. 

Recovery protocols are typically designed to allow arbitrary number of process failures, 

especially process failures can occur when a previously crashed process is being 

recovered. To effectively test the recovery capabilities of a protocol implementation, 

faults must be injected to create such failure scenarios. 

153 



The generic fault injection scheme described in section 6.2 for distribution level fault 

tolerance can also be used for application level fault tolerance. This is because fault 

injection is achieved by intercepting and manipUlating the messages sent by the 

processes running on the injected processor. The internal structure of a injected process 

is not important. Within a process, the application software can be built on top of a fault 

tolerance layer as in the case of distribution level fault tolerance, or fault tolerance 

mechanisms can be built into the application software as in the case of checkpointing 

based recovery systems. 

6.3.1. The Manetho Example 

Manetho [Elnoz92] is a recovery protocol which employs antecedence graphs to record 

'happened before' relations [Lamp078] between events of the system. An event can be 

the receipt of a message or an internal state change triggered by the operating system. In 

Manetho, each process of the system maintains its own growing antecedence graph as 

the computation progresses. When a message is transmitted from one process to another, 

the sender (conceptually) attaches its current antecedence graph to the message so that 

the receiver knows the events that have happened before the receipt of the message. 

When a process is recovered, it first retrieves its previously saved state (checkpoint) 

from stable storage and then it queries the surviving processes for their antecedence 

graphs. By conducting the query, the process is effectively asking the surviving 

processes for information on the state to which it had progressed before crashing. Based 

on the information gathered, in the form of antecedence graphs, it can 'replay' the 

154 



computation between the time the last checkpoint was saved and the time it crashed. 

During the replay the recovering process may ask the surviving processes to send some 

messages they sent before the crash. 

While a process is recovering, another process can crash and subsequently needs to 

recover. The antecedence graph or the messages needed for the replay by the ftrst 

recovering process may not be available. A deadlock situation may potentially arise. 

Focused fault injection method would be suitable for creating various required failure 

scenarios to test the implementation of the protocol. By intercepting messages (see sub­

section 6.2.1), either messages sent to other processes or information saved on the stable 

storage, a process can be crashed at any desired point during the execution and hence 

creating the required failure scenario. 

For example, during a recovery, a surviving process can be crashed after it has sent its 

antecedence graph to the recovering process but before it has sent the messages required 

for the replay by the recovering process. This may cause a potential deadlock since the 

messages required by the (ftrst) recovering process will not be available until the second 

crashed process recovers successfully. 

6.4. Summary 

In this chapter we discussed the application of focused fault injection to distributed 

systems where fault tolerance is provided at either distribution level or application level. 

In the implementation of such systems, typically messages are sent by invoking 

155 



primitives provided by the operating system instead of depositing messages in an output 

message queue. This makes it impossible to intercept and manipulate communication 

messages as described in chapter 3. To apply focused fault injection in these systems, 

different techniques are required. 

We propose the use of a transparent message interception technique which has been 

developed and used elsewhere for a different purpose. futercepted massages can then be 

passed to fault injection functions for manipulation to create failure scenarios. 

fu this way, our focused fault injection method can be used for a wide variety of 

distributed systems while the essence of the method is maintained, that is, supporting 

transparent implementation of fault injection. 

fu a recent paper by Dawson and Jahanian [Daws095], a different approach of testing 

error handling capabilities of distributed systems was proposed. The essence of the 

approach is to re-implement the target software in one or more testing (injected) 

processors in a layered architecture such that a fault injection layer can be easily 

inserted. This approach is suitable for the testing of implementations of standard 

protocols, e.g., TCP [PosteI81]. This is because once the protocol has been implemented 

in a testing host it can then be used to test any implementation of the protocol. However, 

for distributed fault tolerant systems, it typically means one re-implementation for each 

system to be tested, which requires substantial efforts. 

156 



Chapter 7: Conclusions 

7.1. Contributions 

Fault tolerant computing systems are designed to perform specified functions even in 

the presence of specified types of faults. Testing fault tolerance capabilities of such 

systems therefore requires creation of faulty conditions the system is supposed to 

tolerate. In this thesis we presented a fault injection method which is essentially 

intended for testing software-implemented fault tolerance mechanisms of distributed 

systems. 

In distributed systems where processors communicate with one another through message 

exchanges, messages provide a natural and convenient way of injecting faults into the 

system. The focused fault injection method described in the thesis is based on an object 

oriented approach of software implementation. It requires that the target system be 

structured as a collection of objects interacting via message exchanges. In such a 

system, fault injection objects can be easily inserted into the system to intercept and 

manipulate output messages so that incorrect behaviour of faulty processors can be 

emulated. We described, in a systematic manner, how various failure scenarios can be 

created using the fault injection method. 

The central objective of implementing fault tolerance in distributed systems is to 

achieve system reliability so that the services provided by the system will still be 

157 



available in the presence of component failure(s). Fault tolerance can be applied at three 

different levels in distributed systems to achieve system reliability. They are node level, 

distribution level, and application level. 

The method has been applied to test two different reliable node systems constructed out 

of conventional processors using software-implemented fault tolerance. In the ftrst case, 

the target system is a three-processor TMR node which is required to mask the failure of 

a single processor. Two fault tolerance deftciency faults - software bugs that 

compromise the system's fault tolerance capabilities, were uncovered in the 

experiments. 

In the second case study, a leader-follower fail-silent node was subject to fault injection 

based testing. The fail-silent node is not required to mask a processor failure, it is 

required just to stop outputting valid messages. The aim of the testing was to check 

whether this and other related properties were maintained when one of the processors of 

the node was fault-injected. One fault tolerance deftciency fault was uncovered. 

In both case studies, the focused fault injection method has been shown to be easy to use 

and allow us to inject speciftc classes of faults to create failure scenarios required by the 

experiments. 

From our experience of fault tolerance testing using focused fault injection, we made the 

following two observations. First, in order to select appropriate faults to inject, the tester 

must fully understand the algorithm employed by the software system under test. Only 

with a solid understanding of the algorithm, the tester can determine what failure 

158 



scenarios to create for the testing, especially when creating 'stress conditions'. Second, 

the tester also needs to know the implementation structure of the target system in terms 

of the processes that make up the system and how they interact with one another. This 

outline knowledge of implementation is needed for inserting fault injection objects. 

However, the tester does not need to know the internal details of the implementation of 

individual processes. 

In the thesis, we also described the application of our fault injection method to 

distributed systems where fault tolerance is provided at either distribution level or 

application level. 

7.2. Future Directions 

7.2.1. Limitations ofthe Work 

Software testing involves two separate issues: the ability to test and the selection of test 

data. In conventional software testing, the ability to test is not normally regarded as a 

real issue; once the test data is selected, the testers are assumed to know how to feed the 

test data to the target system. As a result, software testing research has concentrated on 

test data selection. The software testing techniques reported in the literature are mostly 

test data selection techniques. 

Fault tolerant computing systems must handle an additional class of inputs: failures. The 

ability to test is a real issue here. This is especially true for complex distributed fault 

tolerant systems which are designed to cope with various failure scenarios. This is the 

issue tackled in this thesis. However, the issue of test data selection, i.e., the selection of 

159 



failure scenarios, is still with us. This issue is largely untouched in the thesis. The 

experiments reported in the thesis were mainly intended to demonstrate the usefulness 

of focused fault injection method. The results of the experiments must be interpreted 

cautiously since the failure scenarios selected have not been examined for their fault 

revealing power using techniques such as mutation testing. 

Using focused fault injection method, a fault injection object is inserted into the target 

system to intercept and manipulate output messages. This obviously causes delays to the 

messages intercepted. The amount of delay added is implementation dependent and its 

impact on the experiments also depends on the nature of the target system. The 

important issue is whether the added delay is within an acceptable bound. This delay 

may be unacceptable for some real-time systems. For example, when a value fault is to 

be injected and the added delay would make the fault appear like a value and timing 

fault (arbitrary fault). 

7.2.2. Further Work 

As discussed in the previous section, fault selection is an important issue in fault 

tolerance testing. More research is needed in this area so that fault selection has a sound 

theoretical basis and one can be more confident in interpreting test results. There are 

two potential approaches. Since faults are an extra class of inputs for fault tolerant 

systems, one may treat faults as any other inputs. In this approach, the established 

software testing techniques can be used to test fault tolerant systems. However, faults 

are not ordinary inputs; system reliability requirements and functional requirements are 

often specified separately. In the second approach, faults and functional inputs are 

160 



categorised separately. One can first test the system under fault-free conditions and then 

carry out fault tolerance testing with faults and functional inputs selected using certain 

methods. 

Powell et al [PoweI95] investigated the problem of estimating the coverage of a fault 

tolerance mechanism through statistical processing of observations collected in fault 

injection experiments. A framework which clearly characterises the activity set 

(functional inputs) and fault set (faults) was used to model the experiments. Though this 

work was aimed at estimating fault tolerance coverage, a similar approach can also be 

adopted in software testing for the purpose of removing fault tolerance deficiency faults. 

In chapter 6 we discussed the possibility of adapting the focused fault injection method 

and applying it to existing message based fault tolerant systems. Further detailed 

investigations are needed in this area and the approach should be evaluated with 

practical examples. 

We have exploited the software implementation approach of structuring a target system 

as a collection of objects interacting via messages for fault injection by inserting fault 

injection objects into the target system to intercept and manipulate output messages. We 

realise that this system structuring approach may be exploited more generally for 

distributed systems testing. Due to the inherent non-determinism in message 

transmission delays in distributed systems, repeatability of certain operational scenarios 

may be difficult. The message manipulation techniques described in chapter 3 could be 

used to create required operational scenarios, provided that the target system semantics 

161 



are not violated. It would be quite interesting to investigate how such techniques can be 

applied to distributed systems testing. 

162 



References 

[Arlat89] 
J. Arlat, Y. Crouzet and J.-C. Laprie, "Fault Injection for Dependability Validation of 
Fault-Tolerant Computing Systems", Proc. 19th International Symposium on Fault­
Tolerant Computing(FTCS-19), pp. 348-355, Chicago, IL, USA, June 1989. 

[Arlat90a] 
J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-c. Fabre, J.-c. Laprie, E. Martins, and D. 
Powell, "Fault Injection for Dependability Validation: A Methodology and Some 
Applications", IEEE Transactions on Software Engineering, 16( 2), pp. 166-182, 
February 1990. 

[Arlat90b] 
J. Arlat, M. Aguera, Y. Crouzet, J.-C. Fabre, E. Martins, and D. Powell, "Experimental 
Evaluation of the Fault Tolerance of an Atomic Multicast System", IEEE Transactions 
on Reliability, 39(4), pp. 455-467, October 1990. 

[Arlat91] 
J. Arlat, Y. Crouzet and J.-c. Laprie, "Fault Injection for the Experimental Evaluation 
of Fault Tolerance", Proc. Esprit'91 Conference, pp. 791-805, Bru~~cls. November 

1991. 

[Avizi87] 
A. A vizienis and D. Ball, "On the Achievement of a Highly Dependable and Fault 
Tolerant Air Traffic Control System", IEEE Computer, 20(2), pp. 84-90, February 1987. 

[Avres92] 
D. Avresky, J. Arlat, J.-C. Laprie and Y. Crouzet, "Fault Injection for the Formal 
Testing of Fault Tolerance", Proc. 22nd International Symposium on Fault-Tolerant 
Computing(FTCS-22), pp. 345-354, Boston, MA, USA, July 1992. 

[Avrit95] 
A. Avritzer and E. Weyuker, "The Automatic Generation of Load Test Suites and the 
Assessment of the Resulting Software", IEEE Transactions on Software Engineering, 

21(9), pp. 705-716, September 1995. 

[Barton90] 
J. Barton, E. Czeck, Z. Segall and D. Siewiorek, "Fault Injection Experiments Using 
FIAT', IEEE Transactions on Computers, 39(4), pp. 575-582, April 1990. 

[BeneI89] 
R. Benel, R. Dancey, J. Dehn, J. Gutmann, and D. Smith, "Advanced Automation 
System Design", Proceedings of the IEEE, 77(11), pp. 1653-1660, November 1989. 

163 



[Birma87] 
K. P. Birman and T. A. Joseph, "Reliable Communication in the Presence of Failures" 
ACM Transactions on Computer Systems, 5(1), pp. 47-76, February 1987. ' 

[Binna93] 
K. P. Birman, "The Process Group Approach to Reliable Distributed Computing", 
Communications of the ACM, 36(12), pp. 37-53, December 1993. 

[Brasi94] 
F. V. Brasileiro, P. D. Ezhi1chelvan, S. K. Shrivastava, N. A. Speirs and S. Tao, 
"Implementing Fail-Silent Nodes for Distributed Systems", Technical Report, 
Department of Computing Science, University of Newcastle upon Tyne, January 1994. 

[Budd81] 
T. A. Budd, "Mutation Analysis: Ideas, Examples, Problems, and Prospects", in 
Computer Program Testing (Eds., B. Chadrasekaran and S. Radicchi), North-Holland, 
pp. 129-148,1981. 

[Chill89] 
R. Chillarege and N. S. Bowen, "Understanding Large System Failures - A Fault 
Injection Experiment", Proc. 19th International Symposium on Fault-Tolerant 
Computing(FTCS-19), pp. 356-363, Chicago, IL, USA, June 1989. 

[Chill87] 
R. Chillarege and R. K. Iyer, "Measurement-Based Analysis of Error Latency", IEEE 
Transactions on Computers, 36(5), pp. 529-537, May 1987. 

[Choi90] 
G. S. Choi, R. K. Iyer, and V. A. Carreno, "Simulated Fault Injection: A Methodology 
to Evaluate Fault Tolerant Microprocessor Architectures", IEEE Transactions on 
Reliability, 39(4), pp. 486-491, October 1990. 

[Choi92] 
G. S. Choi and R. K. Iyer, "FOCUS: An Experimental Environment for Fault Sensitivity 
Analysis", IEEE Transactions on Computers, 41(12), pp. 1515-1526, December 1992. 

[Clark95] 
J. A. Clark and D. K. Pradhan, "Fault Injection: A Method for Validating Computer-
System Dependability", IEEE Computer, 28(6), pp. 47-56, June 1995. 

[Crist85] 
F. Cristian, H. Aghili, R. Strong, and D. Dolev, "Atomic Broadcast: from Simple 
Message Diffusion to Byzantine Agreement", Proc. 15th International Symposium on 
Fault-Tolerant Computing(FTCS-15), pp. 200-206, Ann Arbor. MI. USA. June 1985. 

164 



[Crist90] 
F. Cristian, B. Dancey, and J. Dehn, "Fault Tolerance in the Advanced Automation 
System", Proc. 20th International Symposium on Fault-Tolerant Computing(FfCS-20), 
pp. 6-17, Newcastle upon Tyne, UK, June 1990. 

[Crouz82] 
Y. Crouzet and B. Decouty, "Measurement of Fault Detection Mechanisms Efficiency: 
Results", Proc. 12th International Symposium on Fault-Tolerant Computing(FfCS-12), 
pp. 373-376, Santa Monica, CA, USA, June 1982. 

[Czeck90] 
E. W. Czeck, and D. P. Siewiorek, "Effects of Transient Gate-Level Faults on Program 
Behaviour", Proc. 20th International Symposium on Fault-Tolerant Computing(FTCS-
20), pp. 236-243, Newcastle upon Tyne, UK, June 1990. 

[Damm86] 
A. Damm, "The Effectiveness of Software Error-Detection Mechanisms in Real-Time 
Operating Systems", Proc. 16th International Symposium on Fault-Tolerant 
Computing(FTCS-16), pp. 171-176, Vienna, Austria, July 1986. 

[Daws095] 
S. Dawson and F. Jahanian, "Probing and Fault Injection of Protocol Implementations", 
Proc. 15th International Conference on Distributed Computing Systems, pp. 351-359, 
Vancouver, Canada, May 1995. 

[Decou80] 
B. Decouty, G. Michel, and C. Wagner, "An Evaluation Tool of Fault Detection 
Mechanisms Efficiency", Proc. 10th International Symposium on Fault-Tolerant 
Computing(FTCS-10), pp. 225-227, Kyoto, Japan, October 1980. 

[Dilen91] 
T. R. Dilenno, D. A. Yaskin and J. H. Barton, "Fault Tolerance Testing in the Advanced 
Automation System", Proc. 21st International Symposium on Fault-Tolerant 
Computing(FTCS-21), pp. 18-25, Montreal, Canada, June 1991. 

[Dupuy90] 
A. Dupuy, J. Schwartz, Y. Yemini and D. Bacon, "NEST: A Network Simulation and 
Prototyping Testbed", Communications ofthe ACM, 33(10), pp. 64-74, October 1990. 

[Dyer89] 
M. Dyer, "The Clean-Room-Software Development Process", i~ Measurement ~or 
Software Control and Assuraance (eds. B. A. Kitchenham and B. Littlewood), ElseVIer 
Applied Science, pp.1-62, 1989 

[Echtl91] 

165 



K. Echtle and Y. Chen, "Evaluation of Deterministic fault Injection for Fault-Tolerant 
Protocol Testing", Proc. 21st International Symposium on Fault-Tolerant 
Computing(FTCS-21), pp. 418-425, Montreal, Canada, June 1991 

[Echtl92] 
K. Echtle and M. Leu, "The EFA Fault Injector for Fault-Tolerant Distributed System 
Testing", Proc. 1992 IEEE Workshop on Fault-Tolerant Parallel and Distributed 
Systems, pp. 28-35, Amherst, MA, USA, July 1992. 

[Elnoz92] 
E. N. Elnozahy and W. Zwaenepoel, "Manetho: Transparent Rollback-Recovery with 
Low Overhead, Limited Rollback, and Fast Output Commit", IEEE Transactions on 
Computers, 41(5), pp. 526-531, May 1992. 

[Ezhil86] 
P. D. Ezhilchelvan and S. K. Shrivastava, "A Characterisation of Faults in Systems", 
Proc. 5th Symposium on Reliability in Distributed Software and Database Systems, pp. 
215-222, Los Angeles, CA, USA, January 1986. 

[Ezhil89] 
P. D. Ezhilchelvan, S. K. Shrivastava and A. Tully, "Constructing Replicated Systems 
Using Processors with Point to Point Communication Links", Proc. 16th Annual 
Symposium on Computer Architecture, pp. 177-184, Jerusalem, Israel, June 1989. 

[FineI87] 
G. B. Finelli, "Characterization of Fault Recovery through Fault Injection on FTMP", 
IEEE Transactions on Reliability, 36(2), pp. 164-170, June 1987. 

[Goswa90] 
K. K. Goswami and R. K. Iyer, "DEPEND: A Design Environment for Prediction and 
Evaluation of System Dependability", Proc. 9th Digital Avionics Systems Conference, 
pp. 87-92, Virginia Beach, VA, USA, October 1990. 

[Goswa91] 
K. K. Goswami and R. K. Iyer, "A Simulation-Based Study of a Triple Modular 
Redundant System Using DEPEND", Proc. 5th International Conference on Fault 
Tolerant Computing Systems: Tests, Diagnosis, Fault Treatment, pp. 300-311, 
Nuremberg, Germany, September 1991. 

[Gunne89] 
U. Gunnefio, 1. Karlsson and J. Torin, "Evaluation of Error Detection Schemes Using 
Fault Injection by Heavy-ion Radiation", Proc. 19th International Symposium on Fault­
Tolerant Computing(FTCS-19), pp. 340-347, Chicago, IL, USA, June 1989. 

166 



[Guth095] 

J. ~~hof~ and V,. Sieh, "Combining Software-hnplemented and Simulation-Based Fault 
Injection mto a SmgIe Fault Injection Method", Proc. 25th International Symposium on 
Fault-Tolerant Computing(FTCS-25), pp. 196-206, Pasadena, CA, USA, June 1995. 

[Halpe84] 

J. Y. Halpern, B. Simons, H. R. Strong, and D. Dolev, "Fault-tolerant Clock 
Synchronization", Proc. 3rd ACM Symposium on Principles of Distributed Computing, 
pp. 89-102, Vancouver, B.C., Canada, August 1984. 

[Hopki78] 
A. L. Hopkins, T. B. Smith, and J. H. Lata, "FfMP - A Highly Reliable Fault Tolerant 
Multiprocessor for Aircraft", Proceedings of IEEE, 66(10), pp. 1221-1239, October 
1978. 

[IEEE88] 
IEEE Standard VHDL Language Reference Manual, 1988. 

[lngha94] 
D. B. Ingham and G. D. Parrington, "Delayline: A Wide-Area Network Emulation 
Tool", USENIX Computing Systems, 7(3), pp. 313-332, Summer 1994. 

[Inmos88] 
lnmos Limited, "Transputer Reference Manual", Prentice Hall International, 1988. 

[Iyer93] 
R. K. lyer and D. Tang, "Experimental Analysis of Computer System Dependability", 
Technical Report, CRHC-93-15, Center for Reliability and High Performance 
Computing, University of Illinois at Urbana-Champaign, September 1993. 

[Jenn94] 
E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, "Fault Injection into VHDL 
Models: The MEFISTO Tool", Proc. 24th International Symposium on Fault-Tolerant 
Computing(FTCS-24), pp. 66-75, Austin, Texas, USA, June 1994. 

[Jewet91] 
D. Jewett, "Integrity S2: A Fault-Tolerant UNIX Platform", Proc. 21st International 
Symposium on Fault-Tolerant Computing(FTCS-21), pp. 512-519, Montreal, Canada, 
June 1991. 

[Kanaw92] 
G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, "FERRARI: A Tool for the 
Validation of System Dependability Properties", Proc. 22nd International Symposium 
on Fault-Tolerant Computing(FTCS-22), pp. 336-344, Boston, MA, USA, July 1992. 

[Ka093] 

167 



W. Kao'. R. K. Iyer, and D. Tang, "FINE: A Fault Injection and Monitoring Environment 
for Tracmg the UNIX System Behaviour under Faults", IEEE Transactions on Software 
Engineering, 19(11), pp. 1105-1118, November 1993. 

[Lamp082] 
L. Lamport, R. Shostak, and M. Pease, ''The Byzantine Generals Problem" ACM 
Transactions on Programming Languages and Systems, 4(3), pp. 382-401, July 1982. 

[Lapri92] 
J.-C. Laprie (ed.), "Dependability: Basic Concepts and Terminology in English, French, 
German, Italian and Japanese", Springer-Verlag, 1992. 

[Leber93] 
G. Leber, "Preliminary Results of the Validation of the MARS System by EMI Fault 
Injection", Proc. IEEE International Workshop on FaultlError Injection for 
Dependability Validation of Computer System, Gothenburg, Sweden, June 1993. 

[Lippm89] 
S. B. Lippman, "C++ Primer", Addison-Wesley Publishing Company, 1989. 

[LomeI86] 
D. Lomelino and R. K. Iyer, "Error Propagation in a Digital Avionic Processor: A 
Simulation-Based Study", Proc. Real-time Systems Symposium, pp. 218-225, New 
Orleans, Louisiana, USA, December 1986. 

[Madei94] 
H. Madeira and J. G. Silva, "Experimental Evaluation of the Fail-Silent Behaviour in 
Computers Without Error Masking", Proc. 24th International Symposium on Fault­
Tolerant Computing(FTCS-24), pp. 350-359, Austin, Texas, USA, June 1994. 

[Mahm088] 
A. Mahmood and E. J. McClusky, "Concurrent Error Detection Using Watchdog 
Processors -- A Survey", IEEE Transactions on Computers, 37(2), pp. 160-174, 

February 1988. 

[Mirem92] 
G. Miremadi, J. Karlsson, U. Gunneflo, and J. Torin, ''Two Software Techniques for 
On-line Error Detection", Proc. 22nd International Symposium on Fault-Tolerant 
Computing(FTCS-22), pp. 328-335, Boston, MA, USA, July 1992. 

[Morei76] 
J. Moreira de Souza, E. Peixoto Paz, and C. Landrault, "A Research Oriented 
Microcomputer with Built-in Auto-diagnosis", Proc. 6th International Symposium on 
Fault-Tolerant Computing(FTCS-6), pp. 151-157, Pittsburg, USA, June 1976. 

[Palum94] 

168 



D. L. ~al~mbo, "The Derivation and Experimental Verification of Clock 
Synchrorusatlon Theory", IEEE Transactions on Computers 43(6) pp. 676-686 June 
1994. " , 

[Parri95] 
G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C. Little, ''The Design and 
Implementation of Arjuna", USENIX Computer Systems Journal, 8(2), Spring 1995. 

[Perih89] 
Perihelion Software Ltd, "the Helios Operating System", Prentice Hall International, 
1989. 

[Plank95] 
J. S. Plank, Y. Kim, and J. J. Dongarrat, "Algorithm-Based Diskless Checkpointing for 
Fault Tolerant Matrix Operations", Proc. 25th International Symposium on Fault­
Tolerant Computing(FTCS-25), pp. 351-360, Pasadena, CA, USA, June 1995. 

[PosteI81] 
J. Postel, ''Transmission Control Protocol", RFC-793, Network Information Center, 
September 1981. 

[PoweI91] 
D. Powell (ed.), "Delta-4: A Generic Architecture for Dependable Distributed 
Computing" , Springer-Verlag, 1991. 

[PoweI92] 
D. Powell, "Failure Mode Assumptions and Assumption Coverage". Proc. 22nd 
International Symposium on Fault-Tolerant Computing(FTCS-22), pp. 386-395, Boston, 
MA, USA, July 1992. 

[PoweI95] 
D. Powell, E. Martins, J. Arlat, and Y. Crouzet. "Estimators for Fault Tolerance 
Coverage Evaluation", in Predictably Dependable Computing Systems (ed. B. Randell, 
J. C. Laprie, H. Kopetz, and B. Littlewood), Springer-Verlag, pp. 347-366, 1995. 

[Rimen93] 
M. Rimen, J. Ohlsson, J. Karlsson, E. Jenn, and J. Arlat, "Design Guidelines of a 
VHDL-based Simulation Tool for the Validation of Fault Tolerance", Proc. 1st ESPRIT 
Basic Research Project PDCS-2 Open Workshop. pp. 461-483, LAAS-CNRS, 
Toulouse, France, September 1993. 

[Rives78] 
R. Rivest, A. Shamir and L. Adleman, "A Method of Obtaining Digital Signature and 
Public-Key Cryptosystems", Communications of the ACM. 21(2), pp. 120-126, 

February 1978. 

[Rosen93] 

169 



H: ~. Rosenberg and K. G. Shin, "Software Fault Injection and Its Application in 
Dlstnbuted Systems", Proc. 23rd International Symposium on Fault-Tolerant 
Computing(FTCS-23), pp. 208-217, Toulouse, France, June 1993. 

[Schne90] 
F. Schneider, "Implementing Fault-tolerant Services Using the State Machine Approach: 
A Tutorial", ACM Computing Surveys, 22(4), pp. 299-319, December 1990. 

[Schue86] 
M. A. Schuette, J. P. Shen, D. P. Siewiorek, and Y. X. Zhu, "Experimental Evaluation 
of Two Concurrent Error Detection Schemes", Proc. 16th International Symposium on 
Fault-Tolerant Computing(FTCS-16), pp. 138-143, Vienna, Austria, July 1986. 

[Schue87] 
M. A. Schuette and J. P. Shen, "Processor Control Flow Monitoring Using Signature 
Instruction Streams", IEEE Transactions on Computers, 36(3), pp. 264-275, March 
1987. 

[Segal88] 
Z. Segall, D.Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R. Dancey, A. 
Robinson, and T. Lin, "FIAT - Fault Injection Based Automated Testing Environment", 
Proc. 18th International Symposium on Fault-Tolerant Computing(FTCS-18), pp. 102-
107, Tokyo, Japan, June 1988. 

[Shin86] 
K. G. Shin and Y. H. Lee, "Measurement and Application of Fault Latency", IEEE 
Transactions on Computers, 35(4), pp. 370-375, April 1986. 

[Shin91] 
K. G. Shin, "HARTS: A Distributed Real-Time Architecture", IEEE Computer, 24(5), 
pp. 25-35, May 1991. 

[Shriv90] 
S. K. Shrivastava, P. Ezhilchelvan, and M. Little, "Understanding Component Failures 
and Replication in Distributed Systems", ISA Project Report (UNTfl'Rl), Department 
of Computing Science, University of Newcastle upon Tyne, May 1990. 

[Shriv91] 
S. K. Shrivastava, G. N. Dixon and G. D. Parrington, "An Overview of the Arjuna 
Distributed Programming System", IEEE Software, pp. 66-73, January 1991. 

[Shrlv92] " . . 
S. K. Shrivastava, P. D. Ezhilchelvan, N. A. Speirs, S. Tao, and A. Tully, .Pn~clpal 
Features of the VOLTAN Family of Reliable Node Architectures for DIstrIbuted 
Systems", IEEE Transactions on Computers, 41(5), pp. 542-549, May 1992. 

[Somme92] 

170 



I. Sommerville, "Software Engineering" (4th Edition), Addison-Wesley, 1992. 

[Speir93] 

N. A. Speirs, S. Tao, F. V. Brasileiro, P. D. Ezhilchelvan and S. K. Shrivastava, "The 
Design and Implementation of VOLTAN Fault-Tolerant Nodes for Distributed 
Systems", Transputer Communications, 1(2), pp. 93-109, November 1993. 

[Srika87] 

T. K. Srikanth and S. Toueg, "Optimal Clock Synchronisation", Journal of the ACM, 
34(3), pp. 626-645, July 1987. 

[Stein95] 

A. Steininger and H. Schweinzer, "A Model for the Analysis of the Fault Injection 
Process", Proc. 25th International Symposium on Fault-Tolerant Computing(FTCS-25), 
pp. 186-195, Pasadena, CA, USA, June 1995. 

[Ta093] 
S. Tao, P. D. Ezhilchelvan, N. A. Speirs, and S. K. Shrivastava, "Fault Injection for 
Fault Tolerance Validation: an Object-Oriented Approach", Proc. IEEE International 
Workshop on FaultlError Injection for Dependability Validation of Computer System, 
Gothenburg, Sweden, June 1993. 

[Ta095a] 
S. Tao, P. D. Ezhilchelvan, and S. K. Shrivastava, "Focused Fault Injection Testing of 
Software Implemented Fault Tolerance Mechanisms of Voltan TMR Nodes", 
Distributed Systems Engineering Journal, 2(1), pp. 39-49, March 1995. 

[Tao95b] 
S. Tao, P. D. Ezhilchelvan, and S. K. Shrivastava, "Fault Injection Based Testing of 
Software Implemented Fail-Silent Node", Technical Report, Department of Computing 
Science, University of Newcastle upon Tyne, February 1995. 

[Theve91] 
P. Thevenod-Fosse, H. Waeselynck and Y. Crouzet, "An Experimental Study of 
Software Structural Testing: Deterministic versus Random Input Generation", Proc. 21 st 
International Symposium on Fault-Tolerant Computing(FTCS-21), pp. 410-417, 
Montreal, Canada, June 1991. 

[Tully90] 
A. Tully and S. K. Shrivastava, "Preventing State Divergence in Replicated Distributed 
Programs", Proc. 9th IEEE Symposium on Reliable Distributed Systems, pp. 104-113, 
Huntsville, AL, USA, October 1990. 

[Wensl78] 
J. H. Wensley et al., "SIFr: Design and Analysis of a Fault-Tolerant Computer for 
Aircraft Control", Proceedings of IEEE, 66(10), pp. 1240-1255, October 1978. 

171 



[Yang85] 
X.-Z. Yang and G. York, "Fault Recovery of Triplicated Software on the Intel iAPX 
432", Proc. 5th International Conference on Distributed Computing Systems, pp. 438-
443, Denver, Colorado, USA, May 1985. 

172 


	319204_0001
	319204_0002
	319204_0003
	319204_0004
	319204_0005
	319204_0006
	319204_0007
	319204_0008
	319204_0009
	319204_0010
	319204_0011
	319204_0012
	319204_0013
	319204_0014
	319204_0015
	319204_0016
	319204_0017
	319204_0018
	319204_0019
	319204_0020
	319204_0021
	319204_0022
	319204_0023
	319204_0024
	319204_0025
	319204_0026
	319204_0027
	319204_0028
	319204_0029
	319204_0030
	319204_0031
	319204_0032
	319204_0033
	319204_0034
	319204_0035
	319204_0036
	319204_0037
	319204_0038
	319204_0039
	319204_0040
	319204_0041
	319204_0042
	319204_0043
	319204_0044
	319204_0045
	319204_0046
	319204_0047
	319204_0048
	319204_0049
	319204_0050
	319204_0051
	319204_0052
	319204_0053
	319204_0054
	319204_0055
	319204_0056
	319204_0057
	319204_0058
	319204_0059
	319204_0060
	319204_0061
	319204_0062
	319204_0063
	319204_0064
	319204_0065
	319204_0066
	319204_0067
	319204_0068
	319204_0069
	319204_0070
	319204_0071
	319204_0072
	319204_0073
	319204_0074
	319204_0075
	319204_0076
	319204_0077
	319204_0078
	319204_0079
	319204_0080
	319204_0081
	319204_0082
	319204_0083
	319204_0084
	319204_0085
	319204_0086
	319204_0087
	319204_0088
	319204_0089
	319204_0090
	319204_0091
	319204_0092
	319204_0093
	319204_0094
	319204_0095
	319204_0096
	319204_0097
	319204_0098
	319204_0099
	319204_0100
	319204_0101
	319204_0102
	319204_0103
	319204_0104
	319204_0105
	319204_0106
	319204_0107
	319204_0108
	319204_0109
	319204_0110
	319204_0111
	319204_0112
	319204_0113
	319204_0114
	319204_0115
	319204_0116
	319204_0117
	319204_0118
	319204_0119
	319204_0120
	319204_0121
	319204_0122
	319204_0123
	319204_0124
	319204_0125
	319204_0126
	319204_0127
	319204_0128
	319204_0129
	319204_0130
	319204_0131
	319204_0132
	319204_0133
	319204_0134
	319204_0135
	319204_0136
	319204_0137
	319204_0138
	319204_0139
	319204_0140
	319204_0141
	319204_0142
	319204_0143
	319204_0144
	319204_0145
	319204_0146
	319204_0147
	319204_0148
	319204_0149
	319204_0150
	319204_0151
	319204_0152
	319204_0153
	319204_0154
	319204_0155
	319204_0156
	319204_0157
	319204_0158
	319204_0159
	319204_0160
	319204_0161
	319204_0162
	319204_0163
	319204_0164
	319204_0165
	319204_0166
	319204_0167
	319204_0168
	319204_0169
	319204_0170
	319204_0171
	319204_0172
	319204_0173
	319204_0174
	319204_0175
	319204_0176
	319204_0177
	319204_0178
	319204_0179
	319204_0180

