Selective Transparency in Distributed
Transaction Processing

Daniel L. McCue

Ph.D. Thesis

The University of Newcastle upon Tyne
Computing Laboratory

April 1992

Abstract

Abstract

Object-oriented programming languages provide a powerful interface for
programmers to access the mechanisms necessary for reliable distributed
computing. Using inheritance and polymorphism provided by the object model, it
is possible to develop a hierarchy of classes to capture the semantics and
inter-relationships of various levels of functionality required for distributed
transaction processing. Using multiple inheritance, application developers can

selectively apply transaction properties to suit the requirements of the application
objects.

In addition to the specific problems of (distributed) transaction processing in an
environment of persistent objects, there is a need for a unified framework, or
architecture in which to place this system. To be truly effective, not only the
transaction manager, but the entire transaction support environment must be

described, designed and implemented in terms of objects.

This thesis presents an architecture for reliable distributed processing in which
the management of persistence, provision of transaction properties (e.g.,
concurrency control), and organisation of support services (e.g., RPC) are all

gathered into a unified design based on the object model.

Acknowledgments

Acknowledgements

“Induced, by a conviction of the great utility of such
engines, to withdraw for some time my attention from
a subject on which it has been engaged during several
years, and which possesses charms of a higher order, 1
have now arrived at a point where success is no longer

doubtful.” [Charles Babbage 1822]

I'sincerely thank my supervisor, Professor Santosh Shrivastava, who has taught
me so much about reliability and distributed systems. His unfailing generosity with
time, ideas and collaborative work is sincerely appreciated. He has been an

inspiration and a role model for the highest level of professionalism.

Professor Pete Lee, a trusted friend and adviser, deserves my thanks for
bringing me to Newcastle in the first place and for his diligent reading of early
drafts of this thesis. His patience, stamina and encouragement have kept me going

and encouraged me to complete the work once started.

I'would also like to thank the many members of the Arjuna project, particularly
Mark Little, Graham Parrington and Stuart Wheater for their help and support.

The members of the Computing Laboratory, especially Ron Kerr and Graham
Megson, have also been a continuing source of inspiration and encouragement,
keeping me intellectually challenged and making my stay here all the more
pleasant.

The work described in this thesis has been supported in part by grants from the
UK Science and Engineering Council and ESPRIT project No. 2267 (Integrated
Systems Architecture).

Finally, I must thank my wife, Charlene, who has always been there when 1
needed her.

il

Table of Contents

ADBSETACE . . .ttt i
Acknowledgementsvtu e i
Table of Contentst e iii
LISt Of FIguresooiitt ity \%
List of Tables . ..o e e e vii
1 Introductioncovvvvievnnnnnnnns 1
1.1 Developing Reliable Software 1
1.2 The Programming Interface 4
1.3 Mechanisms for Reliable Controlled Sharing 5
1.4 Mechanisms for Managing Persistent Data 6
L5 Programming Language Optionsoovoiennn.. 9
1.6 Building a Reliable Distributed Object System 11
L7 Contributions of the Thesisccooiievviooo... 13
2 Transactions on Persistent Objects S T
21 Introduction 14
2.2 Achieving Fault Tolerance with Transactions 15
23 Distribution ... e 21
2.4 Persistent ODJECtSttt 26
2.5 Transparencies and Propertiesccooiiunno... 27
2.6 Object-Oriented Programmingc.ccovvinnn.. 30
2.7 Objects and Transactions in Distributed Systems 33
2.8 Related Systemst 34
29 SUmMmMAry 45
3 Architectural ISSuesccoeveueeneencnnn " |
3.1 INtroduCtionou e 46
3.2 System Archit€Ctureevuurunnnnneenennn. 46
3.3 Support Service Interfacesiiiiiiiiiiiian. 62
3.4 Architectural Summary 67
4 A Class Hierarchy for Actions AP 1.
41 Introduction e 68
4.2 Object Propertiesoouuiieeeeinninnnnnnnn. 69
43 Transactionsc..iiiiiie 82
4.4 Summary of Class Hierarchy Development............... 86
45 Class Definitionscovriineiireenneeinnann.. 87
4.6 Class Hierarchy Summarycovonn.. 103

I

S Developing Reliable Distributed Applications 104

51 Introductionc.c.oeoiiiieiiiii 104
5.2 Design and Implementation Issuesc..... 105
53 Anlmplementation0oiiiiiiiiiiinnnn. 118
5.4 Application Developmentccooveieeininnn... 119
6 Conclusions and Further Work Ceeerenen 138
6.1 Some Remaining Issuescccvviiininnn.. 139
6.2 Some Observations of the use of C++ 141
6.3 Thesis SUMMArYttt iiiiinnnnn. 142
References...... i 144
Index 165

v

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 4-22:

Figure 5-1:
Figure 5-2:
Figure 5-3;
Figure 5-4:

Asimple class hierarchy o i i 31
An example of single inheritance 32
An example of multiple inheritance 32
Components of a Persistent Object Transaction System 49
An Instantiation of the Architecture 51
Object State Transitionsttt eeeeneaeenns 54
Objects, Clients and Serverscoovtiiineenenennn. 55
An Example Transaction, 59
Abstract Classes for Object Identity and Naming 72
Some possible derivations from object hierarchy 73
Transaction object hierarchy(s) including the concept of identity 74
An object hierarchy including variants of Persistent 77
Class hierarchy including variants of Recoverable 80
Class hierarchy including locks 82
Class hierarchy including transactions 83
Complete class hierarchy o oo 84
Class CheckpointObject o i, 87
Class ObjectState i, 89
Class UID e 91
Class NamedUID 92
Class Identified i i 92
Class Recoverable i, 93
Class StateRecoverable o i 94
Class OpRecoverable i, 95
Class UndoRecoverableo i, 96
Class Persistent it 98
ClassLock 100
Lock modes and permissible transitions for nested transactions101
ClassShared i i 101
Class Transaction iiiineiineinnennnen 102
Transaction State Transitions, 112
A C+ + definition of the abstract class BankAccount 122
Specialisations of the BankAccount class 122
Implementation of the class BankAccount 124

Figure 5-5: Overloading selected operations in a derived class 125
Figure 5-6: A Client accessing a BankAccount from within a Transaction . 126
Figure 5-7: Multiple signal sources merging through a single queue 127
Figure 5-8: Class definition for N-writer, 1-reader, unrecoverable queue . 128
Figure 5-9: Class Definition for a Recoverable, Concurrency-controlled

Routing Table e 129
Figure 5-10: Defining a Recoverable Storage Allocator 131
Figure 5-11: Implementing a Recoverable Storage Allocator 132

Figure 5-12: Classes of a Printing Subsystemoeuuunneennn 136

vi

List of Tables

Table 2-1: Related Systems Summary Chart

Table 2-2: Distributed Operating Systems Summary Chart

Table 5-1: Transaction transition actions (2-phase commit)

vii

.............

.............

Introduction

1 Introduction

“Contrary to the situation with hardware, where an
increase in reliability usually has to be paid for by a
higher price, in the case of software unreliability is the
greatest cost factor.”

Edsger W, Dijkstra [Dijkstra 1982]

1.1 Developing Reliable Software

As businesses, governments and individuals become increasingly dependent on
computer systems, the reliability of computer software and systems becomes ever
more important. Software and hardware design techniques that were once
employed only for “life-critical” computer applications are now recognised to be
necessary for a wide range of “business—critical” functions. Modern approaches to
software design should show increasing use of techniques to improve reliability,
and increasingly reliable software should result.

Unfortunately, some of the otherwise beneficial trends in computer systems
development, such as better communications and increased computing power,
have had an adverse effect on the level of reliability which has been achieved.
Networking technology has advanced to a point to allow even heterogeneous
machine interconnection with relative ease. However, reliable management of
distributed data remains a difficult, burdensome chore for programmers.
Furthermore, the problems of data and code distribution, management of
communications and system failures, and access to remote data have been added to
the already difficult task of application programming. Larger computer networks
and ever faster CPUs further tempt applications designers to attempt ever more

complex projects. The effect of the increased size and complexity of computer

Introduction

applications is to reduce their reliability. Thus, while business demand for
reliability is increasing, technology trends are eroding the level of reliability that

programmers can achieve with present-day tools.

The difficulties of producing reliable software for distributed systems are
manifest in many ways. Some of the problems stem directly from the addition of
distribution to already complex applications. Other problems arise because
distribution introduces more possibilities for failure, which causes overall
reliability to suffer. Three fundamental application requirements which are
difficult to meet reliably in distributed applications are data sharing, data (and
code) distribution and data storage. Each requirement gives rise to problems

which programmers must resolve in developing reliable distributed applications.

® Data Sharing - As computer systems are applied to a wider variety of
applications, business data is increasingly viewed as a resource to be shared -
indeed a valuable corporate asset. Maintaining consistency of shared data is
an absolute requirement of reliable applications. In distributed systems, asin
non-distributed systems, concurrent access to shared data must be controlled
to prevent inconsistencies from arising. When a single object is involved, for
example in recording a deposit into a single bank account, access may be
controlled through the use of a simple locking protocol. Different
applications accessing the bank account can follow a protocol of acquiring
the lock first, accessing the account, then releasing the lock. Consistency of
the account balance will be ensured for this simple case, assuming that all
applications obey this protocol when accessing the account.

In general however, a more sophisticated mechanism is required to maintain
consistency and maximise concurrency for simultaneous accesses to multiple
objects. For example, when multiple objects using this protocol are involved
in a single logical operation, as in a transfer from one bank account to
another, no single lock will cover both accounts simultaneously. If locks on
the individual accounts are to be acquired in sequence, a protocol must be
employed for lock acquisition and release to ensure consistency and avoid
deadlock. Expressing appropriate concurrency controls on access to
application data adds complexity to the programmer’s interface and
introduces a potential source of errors in programming. Programmers need a
Systematic way to control interactions among concurrent uses of data.

Introduction

® Distribution of data and programs - As computers are increasingly linked
together using sophisticated networks, it becomes necessary to access both
remote and local data at the same time from a single program. Benefits that
potentially accompany distribution, such as increased availability, reliability
and performance, incur a cost in increased implementation complexity. Not
only are the problems of locating and accessing remote data added to the
programming problem, but also new kinds of system failures may occur when
access to shared data may involve communications with remote machines.
Programmers require a reliable means of locating and accessing data which
may be distributed throughout a large network of machines.

® Storage of data - A major source of complexity in the design and
development of computer applications is the management of persistent data.
The process of describing persistent application data and data relationships,
traditionally associated with database systems, is a science in itself. Countless
hours of human effort have been applied to the design and development of
modern database systems. Yet, the programming interfaces used for creating,
manipulating and destroying persistent data are virtually unchanged since the
first data processing languages were developed. These traditional interfaces
are primitive, requiring each programmer to encode application abstractions
into linear, unstructured representations for storage, and then decode these
unstructured representations when the stored data is accessed again. This
encoding/decoding is tedious and error-prone, reducing overall reliability
and increasing the level of complexity which programmers must manage.

Improved programming language support for persistent data must be
provided.

Research into database systems and programming languages has produced a
variety of methods, tools and techniques to address these three requirements. The
following sections of this chapter summarise the key concepts of these techniques.
However, existing solutions are not well integrated with each other or with modern
programming languages. A proliferation of programming interfaces, addressing
these problems piecemeal, causes undue complexity for application programmers,
inviting errors and reducing overall reliability.

Introduction

1.2 The Programming Interface

A programming language is the tool with which a programmer expresses the
intent of the application. Until constructs for sharing, distribution and storage of
data are smoothly integrated into a programming language, the development of
reliable distributed applications will remain a monumental chore. To control this
proliferation of interfaces and thus simplify the programming effort requires a
coherent set of abstractions which render “transparent” the various mechanisms
for sharing, distribution and storage. That is, programmers should be provided with
uniform access to data whether it is private or shared, local or remote, temporary or
persistent. To effect complete uniformity in these respects, it is also necessary to
mask the effects of failures due to conflicting concurrent accesses, distribution and
storage management. The set of abstractions provided in the programming
language to meet these requirements must be integrated with each other, yet
individually applicable to classes of application data. These abstractions must be
selectively intermixed as required to provide an exact match to the requirements of
any particular application. Thus, for applications that involve temporary shared
structures, the programmer should be able to specify support for sharing (and
possibly distribution), without persistence. The ability to apply exactly the desired
set of properties to individual application structures provides programming

flexibility and run-time performance without sacrificing reliability.

How can these goals be achieved? There are three key questions to be
addressed:

® What mechanisms should be developed or chosen to address the problems of
reliable sharing, distribution and storage of data?

® How can the chosen mechanisms be smoothly integrated into a programming
language interface, providing the desired level of transparency and
selectivity?

® How can the desired combination of services be provided? That is, what
kinds of operating system services, compiler and language features, and
run-time support libraries must exist to implement the system?

Introduction

1.3 Mechanisms for Reliable Controlled Sharing

Transactions (sometimes called atomic actions or atomic transactions) are the
most commonly provided mechanism for reliable management of shared data. The
transaction mechanism addresses both concurrency control and failure

management for computations involving single or multiple objects.

Transactions are a structuring mechanism used by programmers to indicate a
collection of operations that should (at least appear to) occur atomically. Why is
such a mechanism necessary? The consistency of a set of objects could be
compromised if either:

® two (correctly implemented) operations execute to completion, but their
individual steps are interleaved in such a way that they each perform

calculations using partially updated information of the other.
or

® an operation fails before completion, leaving some objects updated and
others not

Transactions provide three properties which together ensure consistency of
data: (i) serialisability, (i) atomicity, and (iii) permanence of effect. The first property
ensures that the concurrent execution of transactions which access common data
objects s free from interference, thatis, a concurrent execution can be shown to be
equivalent to some serial order of execution. The second property, atomicity,
ensures that a computation can either be terminated normally (committed),
Producing the intended results or it can be aborted producing no results. Since the
distribution of data introduces new sources of faults which can be difficult to cope
with at the application level, e.g., communications failures, the atomicity property
is especially important in distributed systems. The third property, permanence of
effect, requires that final commit or abort decisions made for a transaction are
irreversible and that any state changes produced by the end of the transaction are

recorded on stable storage, a type of storage which can survive crashes with high
probability.

While traditional transaction systems have been developed for use on a single
machine, attempts to distribute transaction management capabilities over a

network of computers are receiving renewed attention as networked computers

Introduction

become commonplace and customer demands drive applications designers to
consider access to distributed data. Several transaction management systems have
been successfully extended across machine boundaries although many research
problems remain in improving performance, reliability, availability and
administration of these systems.

1.4 Mechanisms for Managing Persistent Data

Traditionally, persistent application data has been stored in files or, for more
complex data or data that was shared concurrently by many users, in databases.
Because the transaction concept and development came from the database
community, most transaction systems today are intimately linked to a particular
database interface. It is from the operations of the database system that the

transaction systems achieve their permanence of effect property.

The design of present-day database systems typically includes a collection of
modules or processes which are organised by function e.g. locking for concurrency
control, logging for recovery management, to provide the transaction facilities and
management of persistent data. However, designs based on files or relations suffer
from a weak data model and limited data manipulation functions. These weakness
result in a view of data that is:

® lacking data abstraction
Transaction processing systems modelled on relations or files rather than
objects often expose details of data representation to all applications through
the schema or file record layout. This makes applications unnecessarily
vulnerable to “syntactic” changes in data representation and requires each

application to reconstruct an appropriate interpretation for complex data
items.

® passive
The view of data as a passive “bag of bits” is especially evident in the
traditional organization of transaction systems into transaction manager,
concurrency-control manager, recovery manager, scheduler, etc. which are
all independent of the actual data being manipulated. Each of these agents
Or processes maintains its own data structures for managing the data and is
independently consulted in the access path to that data. When these agents
all agree to allow a particular type of access to some datum, the data (bits) are

Introduction

transferred to the application which may then operate on that data without
regard to its higher level structure. Thus, while the database system permits
some relationships to be expressed, it remains the responsibility of each
application (programmer) to interpret the data correctly e.g., by performing
“joins” that are meaningful. Application programs may perform invalid
operations on the data items. Such invalid operations, if detected at all, will
be detected only when an attempt is made to return the data to the DBMS for
storage.

® Inflexible

Policy decisions such as the locking protocol, recovery method and
availability are centralized in the form of the agents mentioned above. These
policies can rarely be varied on a type-specific or instance-specific basis.
This lack of flexibility in control of policies results in operating inefficiencies
and semantic problems. Since policies are decided once for all or at least
once for each large group of items, the chosen policy must be very general to
accommodate the range of items that fall within its scope. The application of
such general policies precludes the use of type-specific performance
optimisations and may conflict with semantics of some types, sacrificing
representational accuracy for generality.

These weaknesses in conventional data models result from their inability to
express the relationship between data objects and the operations which can be
performed on them. There is an analogy here to early programming languages
which failed to make the correspondence between the data structures used to
implement some abstract type, and the operations which provided the behaviour of
the object. While some programmers using these languages defined the data
Structures and operations together, the programming languages failed to provide a
notation for expressing such relationships. Similarly, transaction operations for
updating persistent data, usually provided in conjunction with some database
System, are not usually well integrated into the programming languages from which
they are used (cf. embedded SQL). This mismatch is due in part to the failure to
accommodate the concept of persistent data in programming languages. Instead,
programming languages typically provide procedural interfaces to operating
System facilities like disk interfaces and file systems that provide primitive support
for persistent data storage.

Introduction

Since programming languages typically have no representation for persistent
data, it is difficult to smoothly integrate a mechanism for manipulating persistent
data into such languages. The result is a discontinuity in the semantics of data
objects in which persistent data may be managed under the control of a transaction
system, including concurrency control and failure management, but temporary
data such as program variables are not. Individual programmers must make
allowance for the differences in these interfaces. However, in the research
community, there have been investigations into the development of programming
models that include persistence as a language feature rather than an operating
system feature. In such programming languages, the programming interface for
data objects is the same, regardless of whether or not the data object “outlives” the
execution of the program. That is, temporary and persistent data are treated
uniformly. The adoption of persistence as a language feature leads to simpler

programming models albeit with attendant complexity in compiler and run-time
support.

There are several problems that arise as soon as one permits data to outlast a
single program execution the most obvious of which is: How does one find the data
again when the program (or some other program operating on the same data) is
re-executed? Some kind of data naming scheme must be employed. In traditional
database systems, the application program must identify an item of data by a key
containing, for example, the database identifier (to locate the right database), the
relation or set identifier (which identities the right portion of the database and also
conveys type information) and the “record key” or similar identifying information
(toidentify the individual item of data). All persistent data managers require some
naming scheme, implying that some underlying mechanism must be provided to
locate data efficiently. Ina distributed system, this “location service” may naturally
be distributed since the data will be distributed. The relationship of the location

and naming services to the run-time support of persistent data is discussed in some
detail in Chapter Three.

A second and more difficult problem arises from the difficulty of determining
how to save program data in a way that preserves the semantics, especially the
sharing semantics, of the data structures. For example, in a program containing a

hash table which uses chaining to cope with overflow, saving a persistent hash table

Introduction

structure implies saving (a copy of) the elements of the hash chains. However, if the
hash table entries consist of references to other persistent data objects, for
example bank accounts, the saved hash table must not contain copies of the bank
accounts, but references to them. These and other persistence support problems

are addressed more fully in Chapters Three and Four.

The combination of ideas from the programming language community about
persistent programming languages, from the database community about using
transactions for concurrency control and failure management, and from the
distributed systems community about managing distribution of data objects have
the potential to provide a powerful toolkit for the development of reliable
distributed applications. Applications programmers using such a toolkit should
find it relatively easy to construct distributed applications that are reliable. To
exploit the power of these tools, however, a uniform programming language

interface must be developed.

1.5 Programming Language Options

To create a programming environment that smoothly integrates the chosen
abstractions for persistence (persistence as a language feature), and concurrency
control and failure management (transactions) requires careful attention to be
paid to the stated goals of transparency and selectivity. The goal of transparency
can be most easily met by inventing a new programming language which
incorporates the desired abstractions into the programming language semantics,
and developing language processors which invoke the supporting mechanisms as
required to provide those semantics. Other implementations, for example,
extending an existing language by pre-processing or compiler changes, could be
nearly as effective if carefully developed. However, the overriding issue is of the
abstractions that should be provided. This issue is especially evident in the goal of
selectivity. What kinds of abstractions should be provided to minimize the burden
On programmers?

Abstract Data Type (ADT) programming languages of the 1970’s and 1980s,
for example Ada or CLU, support a notion of encapsulation or modularity in which
functions and variables which were part of the implementation of an ADT were

hidden from the programmer using the ADT. The specification of a data type

Introduction

included only the functions of the interface, not their implementation. This idea of
encapsulation has been carried forward in the next, evolutionary step in
programming language design: object-oriented programming languages.
Object-Oriented programming is an approach to program design and
implementation that places primary importance on objects, that is the data in the
design, and the behaviour of these data objects as specified by the operations they
provide.

Object-oriented programming languages extend the encapsulation ideas of
ADT languages with an explicit expression of the relationship between types.
While encapsulation permits the programmer to express one kind of relationship
between types, namely the “is-part-of” or aggregation relationship,
object-oriented languages allow the expression of a second important relationship
as well: the “is-a” or inheritance relationship. Objects are grouped into classes
according to common behaviour (as defined by the operations provided). Each
class definition specifies the programmer interface to the objects of that class and
the relationship between classes — the inheritance hierarchy. Each object instance
contains some variables (its instance variables) which are determined by the
particular implementation of that object. The operations supported by an object

have access to the instance variables and can thus modify the internal state.

In the object-oriented model of computation, encapsulation, inheritance and
autonomy are fundamental principles. Encapsulation provides abstraction, and
hides details of representation. Inheritance provides a mechanism for organizing
classes of objects into a tree or, in the case of multiple inheritance, a directed
acyclic graph, according to the generalisation / specialisation relationship. The
autonomous nature of objects, whether actually realised by independent threads of
control or not, is manifest in the concept that each object, or each class of objects,
should “define” its own behaviour. That is, all of the behaviour of an object is
defined by the operations which it exports. No direct external manipulation of the

internal state is possible.

The ability to express in a “super—class” some common behaviour which is
Inherited by its “sub-classes” of objects enables the definition of classes that
Tepresent “properties” of objects. A new class of objects could inherit from

multiple classes, acquiring the operations and properties of each of the parent

10

Introduction

classes. For example, classes such as IsPrintable or IsSortable convey attributes to
objects which serve to classify them along alternate taxonomies. Thus, the class
Integer might derive from the class Number to inherit basic mathematical
operations, but also Number might derive from both IsPrintable and IsSortable in
that numbers can be printed and sorted as well. This technique is widely applicable
to other object-oriented languages and forms the basis of the reliability support
described in this thesis.

Because object-oriented programming provides the best features of modular
programming and augments them with explicit type relationships through the class
hierarchy, this approach appears to offer a powerful aid to management of the
complexities of reliable distributed applications development. The ability to
combine, through inheritance, the behaviour of one class of objects with another
class of objects proves to be valuable in providing the desired selective support for
sharing, distribution and storage of data. Transaction classes can be developed to
co-ordinate the operation of these different mechanisms with respect to managing

failures and concurrent interactions.

1.6 Building a Reliable Distributed Object System

Adapting the object-oriented programming technique to the design of
transaction systems requires a perspective shift in which data objects become
“responsible” for themselves - rather than relying on external agents to control
them. This autonomous, almost anthropomorphic view of data is characteristic of
object-oriented designs. In the transaction processing field, this implies that
functions like locking, transaction management, persistence and recovery are no
longer provided by “manager processes™ or “modules” but by the data objects
themselves. Database systems for objects must be restructured to allow an abstract
view of objects that are self-managing (although the implementation may still

employ processes and modules for efticiency).

The individual properties of transaction management, concurrency control,
Persistence, recovery, and distribution must be separated to identify their
individyal requirements and interactions. Isolating these features allows
applications designers to capture the exact level of functionality required, incurring

Cost only for the features that are actually used in each application level object. The

11

Introduction

ability to selectively apply these properties to different classes of objects is referred
to as selective transparency. An important problem to be solved then is how to
integrate the powerful, proven technology of modern transaction processing
Systems with the clear benefits of the object-oriented programming model to

provide a programming interface that supports this selective transparency goal.

An object-oriented transaction system design will necessarily be structured in
several levels. The overall system architecture, integrating the transaction system
with the surrounding environment (operating system, communications network,
Storage systems) forms the highest level of the design. The structure of the
run-time system for the classes and the client-server interactions with those class
implementations forms another layer. Finally, a hierarchy of class definitions
which can be individually applied to application-level objects provides the lowest
level of the design - the programming interface to the system. These topics are

addressed in turn in the chapters that follow:

® The applications programs execute in an environment, sometimes called a
virtual machine, which provides services for locating, accessing, updating and
controlling data and programs (and sometimes devices) that are outside the
context of the application. Chapter Three proposes an architecture for this
execution environment that addresses all of the external needs of reliable
distributed applications. These are typically provided by a combination of
operating systems support, hardware and software subsystems.

® The combination of services provided by the external support services and
the programming language facilities provides the programming interface on
which applications developers must build reliable distributed applications.
Smooth integration of these facilities into the programming language
(syntactically and especially conceptually) is essential. Chapter Four
provides a description and rationale for the use of Object-Oriented
programming techniques to capture these mechanisms and services in an
integrated programming interface.

® Chapter Five outlines a series of example applications using the techniques
described in Chapter Four and assuming the existence of a run-time
environment as described in Chapter Three. The program fragments and
discussion of these examples illustrate the usefulness of selective
transparency in the development of reliable distributed applications.

12

Introduction

® The final chapter concludes with a brief summary of the results and a look
forward to implications for future operating systems, communications
systems and programming languages.

1.7 Contributions of the Thesis

This thesis presents a novel architecture for distributed transaction processing
in which the management of persistence, provision of transaction properties, and
organisation of support services are all gathered into a unified design based on the

object-oriented programming model.

Many mechanisms have been developed to address various aspects of
reliability, persistence and distribution of objects. When applied in combination,
these mechanisms may interact in fortuitous, or, more often, diabolical ways. This
thesis explores the ways in which a set of known mechanisms for reliability,
distribution, and persistence can be smoothly integrated, yet independently
applied, by exploiting the power of object-oriented programming. The resulting
programming interface should be powerful enough and simple enough to provide a
significant improvement in the reliability of distributed applications constructed
using this interface.

As this thesis will show, the integration of object-oriented programming
concepts, persistent data as a language feature, and transaction processing
mechanisms provides increased semantic information, better isolation of locking
protocols and commit protocols, and independent management of persistence,
Tecovery, concurrency, replication and migration. The result of these
improvements is a better programming environment which simplifies the
development of reliable distributed applications.

Thus, the thesis makes a contribution to the field of distributed transaction
Processing and databases, explaining how to apply the latest developments in
Programming languages to advantage. The thesis also makes a contribution to the
field of object-oriented analysis, design, and programming in investigating the
Power and limitations of current object-oriented programming models.

13

Transactions on Persistent Objects

2 Transactions on Persistent Objects

‘An unreliable programming language generating
unreliable programs constitutes a far greater risk to
our environment and to our society than unsafe cars,
toxic pesticides or accidents at nuclear power stations”
C. A. R. Hoare [Hoare 1981]

2.1 Introduction

The motivation for studying reliable, distributed, object-oriented
programming with persistent objects is straightforward: programmers cannot cope
with the enormous complexity of developing reliable distributed applications with
present day tools. Although many individual mechanisms have been developed, a
simple aggregation of those mechanisms would increase the complexity of the
programming interface by confronting the programmer with a multiplicity of
concepts, techniques and interfaces. What is needed is a programming model
which encompasses some reasonable set of mechanisms in an integrated uniform
interface. Furthermore, the facilities provided to the programmer must be cleanly

Separated and independently applicable to application-level objects.

As will be seen in later chapters, this thesis proposes just such a flexible,
uniform interface - a declarative, object-oriented programming interface for the
development of reliable distributed applications. However, to establish the
background leading to this result, it is necessary to consider the requirements of a
Programming environment for reliable distributed programming, and the
mechanisms that might support those requirements. The previous chapter
identified a possible set of mechanisms:

® A transaction mechanism as the basis for achieving reliability; support for
nested transactions removes constraints on the use of transactions in modular
software development

14

Transactions on Persistent Objects

® A remote procedure call mechanism, augmented with naming and locating
services, for supporting distribution;

® A persistent programming mechanism instead of other less transparent
mechanisms, such as files or relational database systems, for uniform
treatment of persistence.

This chapter explains the rationale for this choice of mechanisms, including the
choice of object-oriented programming as an integration vehicle, and compares
the facilities provided by the proposed mechanisms with other systems which have

addressed some aspects of the problems of reliable distributed programming.

In the first half of this chapter, each of the issues of reliability, distribution and
persistence are addressed in turn. A framework of requirements is established and
a range of mechanisms to support those requirements is discussed. Particular
Consideration is given to the interaction of object-oriented programming with the
various mechanisms. The second half of the chapter surveys related systems, not to
explore their many merits, but to highlight the different tradeoffs that have been
made in those systems and to evaluate their capabilities and deficiencies in light of

the framework of requirements established here.
2.2 Achieving Fault Tolerance with Transactions

2.2.1 Fault Tolerance

Although the term “reliable” colloquially implies trustworthiness,
predictability, security and safety, within the research community studying fault
tolerance, reliability has a more precise technical meaning; “the ability of the system
to deliver its normal service” [Lee and Anderson 90] [Laprie 89]. Fault avoidance,
for example, through improved specitication and design methods and tools,
Provides one means for improving the reliability of a system. However, to the
€xtent that faults can never be completely avoided, fault tolerance remains

Necessary as a means of improving the reliability of a system.

Following the terminology of Melliar-Smith and Randell [Melliar-Smith and
Randell 77], the following terminology is used throughout this thesis:

® A fault is the mechanical, human or algorithmic cause of an error.

15

Transactions on Persistent Objects

® An error is an item of information designating the part of the state which is
erroneous or “incorrect”.

® An erroneous state is an internal state of a system such that further normal
processing may lead to a failure.

® Afailure is an event that occurs when a system does not perform according to
its specification.

The precise use of this terminology will be especially important in the
discussion of recovery mechanisms. 1f the meaning of reliability is to deliver
normal service in spite of faults, it is important to identify explicitly the nature of
the faults that can be tolerated. Attempts to classify faults [Powell 91] [Shrivastava
et al 90] [Bernstein et al 87] [Ezhilchelvan and Shrivastava 86] have helped to
identify the range of faults that can occur in distributed computing systems. These
classifications differ in that some attempt to classify the faults according to their
sources; others classify according to the consequences of the faults, i.e., the severity
of failure that would result if the fault were not properly treated. These taxonomies
of possible faults provide a systematic framework against which a range of fault

tolerance techniques can be applied and evaluated.

Program faults, in the design or implementation of algorithms, may occur in any
type of programming although they are likely to occur more frequently in complex
programming environments such as those presented by distributed systems. The
incidence of desi gn faults may be reduced by software engineering methods such as
formal specification / verification. The effects of design faults may be minimised by
the application of design fault tolerance techniques such as N-version
programming [Avizienis 85] [Knight and Leveson 86] or recovery blocks [Horning
et al 74] [Anderson and Kerr 76] [Lee et a/ 80]. Beyond design faults, there exist
many other potential sources of faults in a distributed system such as operator
faults, programming faults and physical hardware faults. Permanent faults, such as
those exhibited by hardware components suffering physical deterioration, can be
addressed by spatial redundancy - e.g., disk media faults can be masked by
appropriate use of disk mirroring. Transient faults are typically treated at a higher
level - e.g. temporary communications loss can be masked by reliable
Communications protocols using temporal redundancy. Program faults are always
Permanent with respect to a single version of a program, but may cause transient,

Intermittent or permanent failures of system components. For example, a program

16

Transactions on Persistent Objects

fault in the operating system may cause intermittent system crashes; a program
fault in a software protocol engine may cause occasional communications failures

due to a failure to meet the protocol specification.

2.2.2 Transactions

To tolerate component faults, whether due to hardware or software faults or
human mistakes, some kind of error recovery mechanism must be employed. For
information processing applications, as opposed to, for example, process control
or other real-time activities, transactions [Spector and Schwartz 83] (also known as
atomic actions or atomic transactions) are a widely accepted software structuring

tool for demarcating the scope of error recovery for high-level fault-tolerance:

“... regardless of advances in hardware, we believe atomic actions are necessary
and are a natural model for a large class of applications. If the language / system does
hot provide actions, the user will be compelled to implement them, perhaps unwittingly
reimplementing them with each new application, and may implement them

incorrectly” [Liskov and Scheifler 83].

Some radically different, non-transaction-based approaches have been
Proposed to address the problem of maintaining consistency despite faults (cf. ISIS
below). While these approaches have been successtully employed for certain
application areas, transactions are the most widely used, best understood approach

in database systems supporting information processing.

Transactions provide the properties of (i) concurrency control, (ii) permanence of

effect, and (iii) atomicity:

® Concurrency control means that concurrent operation invocations from
different transactions accessing common data objects are free from
interference. One way to ensure that interleaved transaction steps are free
from interference is to ensure that the schedule of interleaving is serialisable
[Bernstein and Goodman 81]. Serialisability means that a concurrent
execution of transaction steps can be shown to be equivalent to some serial
order of execution of those steps. Some form of concurrency control policy,
such as that enforced by two-phase locking [Eswaren et al 76], is required to
ensure the serialisability property of transactions.

® Permanence of effect means that any changes produced in the states of
persistent objects during the execution of a transaction are recorded on stable

17

Transactions on Persistent Objects

storage, a type of storage which can, with high probability, mask faults such as
processor failure or power failure.

® Atomicity means that a computation executing within the bounds of a
transaction will either be terminated normally (committed), producing the
intended results (and intended state change to the data objects involved) or it
will be aborted producing no results and no state change to the data objects;
no intermediate states will be visible outside a single transaction even if
failures occur. Whenever a fault occurs that cannot be masked, atomic
recovery of the states of objects involved in a transaction is invoked. Typical
failures causing a transaction to be aborted include process or machine
“crashes” and communication failures such as the continued loss of
messages. A commit protocol is required during the termination of an atomic
action to ensure that either all the objects updated within the action have
their new states recorded on stable storage (committed), or, if the atomic
action aborts, no updates get recorded [Bernstein et al 87].

Transaction begin and end operations define the boundaries between which
these properties take effect. That is, the sequence of operations that is performed
between the start and end of a transaction is atomic with respect to all other
accesses to the objects involved. Similarly, the transaction end determines the
point at which intermediate state changes to the objects involved in a transaction
become permanent. Each of these properties is examined in more detail in the

sections that follow.

Concurrency Control in Transactions

The purpose of concurrency control in the behaviour of transactions is to
ensure object state consistency in the event of concurrent access. Although this
property is generally enforced by a serialisability constraint on transactions,
serialisability itself is not a goal of transaction processing systems; the goal is to
achieve maximum concurrency without compromising correctness. However, the
Correctness of an arbitrary interleaving of transaction steps is difficult to determine
directly. Some non-serialisable interleavings of transaction steps are correct in
that the resulting object states are entirely consistent. Unfortunately, no general
method has been devised for distinguishing these correct, non-serialisable
interleavings from inconsistent ones. Although serialisability sometimes restricts

Concurrency to something less than the maximum achievable, the serialisability

18

Transactions on Persistent Objects

property is a simple way to isolate the interactions of transactions and simplifies
reasoning about their correctness. The effect of enforcing a serialisable ordering
on transaction steps and hence excluding some correct, but non-serialisable
interleavings is to reduce potential concurrency resulting in reduced performance.
In an attempt to increase concurrency, some researchers have investigated relaxing
the serialisability constraint to include a larger class of schedules for transaction
steps, for example, by employing multi-level serialisability constraints [Weikum
91]. System R [Gray et al 81] was one of the few systems ever actually developed

which employed a notion of multi-level serialisability to increase concurrency.

Permanence of Effect in Transactions

The requirement for permanence of effect for transactions implies that the
results of transactions can be recorded in some way that survives subsequent system
(or media) failures. The concept of stable storage provides just such high reliability
permanent storage. Implementation techniques for stable storage using multiple
disks or stable RAM have been proposed in [Lampson and Sturgis 79] and
[Banitre er al 83] among others. Stable storage may be employed in the
implementation of the transaction system, to provide permanence for transaction
state and operation logging, as well as at the application level, providing

permanent storage for application program objects.

Atomicity in Transactions

To provide atomicity, a transaction system must provide some co-ordinated
form of recovery for objects that were modified in the course of execution of a
transaction in case that transaction is aborted. The two principal techniques that
can be used for error recovery are backward error recovery and forward error
recovery. The type of recovery that is employed to implement atomicity for the
transaction abstraction will depend on the nature of the objects and the extent to

which damage resulting from faults can be predicted.

In forward error recovery, the recovering objects perform some specific
corrections to their state in an attempt to remove errors and hence permit the
System to continue operation without a failure occurring. The changes do not
usually or necessarily return the individual objects or the overall system to some

prior state. The use of forward recovery is dependent on the ability of the

19

Transactions on Persistent Objects

programmer to anticipate the kinds of faults that could occur, the nature and extent
of the resulting errors, and appropriate responses to ensure a consistent system
state.

Backward error recovery is a more general technique which can accommodate
the effects of unanticipated faults. In backward error recovery, the objects
involved in a transaction are restored to some consistent prior state. This
restoration of a prior state may be effected either by replacing the entire state of
the object with a previously captured snapshot of the prior state (state-based
recovery) or by logging a record of all operations performed since the start of the
transaction and “undoing” the effects of those operations by applying inverse

operations (operation-based recovery).

Backward error recovery is inappropriate when the effects of a transaction
cannot be reversed by restoring the state of the objects involved in the transaction.
For example, if a rocket was fired as a result of some action taken in a transaction
and the transaction was subsequently aborted, recovery of the state of the rocket
will be impossible. Gray has called such irreversible operations “real” because
they involve objects in the real world [Gray 80] although there also exist abstract
operations from which is it difficult to recover. Recovery from “real” operations

may require forward error recovery or manual intervention.

Recovery techniques, especially state~based recovery techniques, are related
to persistence because of the recovery requirement to store a “copy” of the state
that will survive a failure. In the case of persistent objects, a copy of the persistent
state may already exist on some permanent media providing a ready snapshot of the
prior state, hence the relationship between the otherwise separate concepts of

persistence and recovery.

2.2.3 Transactions as a Tool for Fault Tolerance

The predominant use of transactions for fault-tolerance in information
processing applications is perhaps attributable to the simplicity of the interface and
the power of the mechanisms, encompassing at a stroke concurrency-control and
atomicity. Extending a transaction processing environment across machine
boundaries offers the potential to expand the power available to applications

beyond the capabilities of any single computer system. For the purposes of this

20

Transactions on Persistent Objects

thesis, it is sufficient to consider a distributed system to be any collection of two or
more computers (nodes), connected by a communication subsystem (for example,
a local area network). To support transaction processing in such a system, at least
one node must posses some form of stable storage. Faults in the communication
subsystem may result in problems such as lost, duplicated or corrupted messages.
However, transient communication faults such as these can be dealt with by well
known network protocol level techniques, so their treatment will not be discussed
further. Permanent communications faults in a distributed system such as network
hardware failure, network partitioning or continued loss of messages can be

treated at the transaction level using recovery techniques as described above.

2.3 Distribution

Distribution can offer more than just increased computing power. To improve
availability and reliability, data and computations can be replicated on multiple
machines in a distributed system. This replication can be used to permit continued
operation in the event of machine failures and hence availability can be increased.
Going a step further, if the results of independent replicated computations are
compared, certain kinds of software and hardware errors can be detected and
masked, resulting in improved reliability. Distribution may also facilitate sharing
of scarce network-wide resources, for instance, to balance the computational load
across computing resources. However, the benefits of distributed systems are not

achieved without cost.

The primary cost incurred in exploiting the potential benefits of distributed
systems arises from the increased complexity of the programming interface for such
systems. Unless care is taken in the design of the application programmers’ tools,
programming a distributed system can be intolerably difficult. Programmers must
not be burdened with of the complexities of a distributed environment in addition
to the difficult tasks they already face in the development of complex applications.
To relieve programmers of the additional burden of distribution requires tools or

System facilities which make distribution transparent.

2.3.1 Distribution Transparency

The concept of “transparency” has been proposed to describe distributed

Systems which can be made to behave like their non-distributed counterparts

21

Transactions on Persistent Objects

[ANSA 89]. This transparency property minimises the difference to the
application developer between programming for a distributed systems
environment and programming for a single machine. There are several

complementary aspects of transparency:

® gccess transparency mechanisms provide a uniform means of invoking
operations of both local and remote objects, concealing any requisite
inter-node communications;

® Jocation transparency mechanisms conceal the need to know the physical
location an object, making it sufficient to be able to name an object to access
it;

® migration transparency mechanisms support the movement of objects from
node to node, for example, to improve performance or fault-tolerance;

® concurrency transparency mechanisms ensure interference-free access to
objects in the presence of concurrent invocations;

® replication transparency mechanisms increase the availability or reliability of
objects by replicating them while concealing the intricacies of maintaining
consistency among the replicas;

® fault transparency mechanisms help exploit the redundancy in the system to
mask faults where possible and to effect recovery measures when faults
cannot be masked.

Access transparency and location transparency are closely linked, but are not
the same. Access transparency implies thatlocal and remote operation invocations
are specified identically in application programs. That is, access transparency
implies that:

® no extra information need be specified to access remote objects

® itis not apparent from the invocation syntax whether a local or remote object
is being operated upon

® the semantics of an operation are unaffected by whether the operation is
local or remote

22

Transactions on Persistent Objects

In contrast, location transparency requires that the programmer need not be aware
of whereabouts of an object used in the program. This implies that the location of
the object can somehow be derived from the name of the object, for example,
through a name server or location server. In a system that lacked location
transparency, the programmer might be required to supply a host node name when
first referencing a remote object, although subsequent operation invocations on
the object might be access transparent in that they had the same syntax and
semantics as local operations.

As an example illustrating the difference between access and location
transparency, consider a network file system in which a remote file can be operated
upon like a local file, but the file name includes the host name on which the file
currently resides e.g., host:foo.dat. Such a file system interface is access
transparent because operations like read and write are identical for all files.
However, the interface is not location transparent because it is the responsibility of
the user or programmer to identity the location of every file to be opened.
Compare this with a distributed file system that maintains an up-to-date
distributed database which maps every file name to the present location of that file.
The user or programmer of this second system need only specify the name
“foo.dat” to access the file anywhere in the network. This second system supports

location transparency as well as access transparency.

Access transparency is linked to the operation invocation mechanisms of
programming languages. Since the goal of access transparency is to make the
specification of operation invocations uniform regardless of whether or not the
invoked object is local, the syntax and semantics of remote and local invocation
must be made identical. Since many object-oriented languages define operation
invocation to be synchronous, remote procedure call (RPC) [Nelson 81] is a natural
communications paradigm to adopt for the support of access transparency in
object-oriented languages. Access transparency is normally provided by
integrating an RPC pre-processor into the program development cycle [Birrell and
Nelson 84].

An RPC pre-processor parses the interfaces to application objects and
produces “stub” code for both the client, the application program, and the server,
object implementation. The stub code on the client side converts operation

invocations into messages and forwards them to the server. The stub code on the

23

Transactions on Persistent Objects

server side unpacks the messages and converts them into operation invocations on
the actual object implementations. Results of the invocation are packed into
messages by the server stub code and transmitted back to the client. Finally, the
client stub code unpacks the reply messages and returns the results to the
application. Note that some kinds of operation invocation semantics are difficult
to provide across machine boundaries. For example, some languages require
parameters to be passed by name or by reference. These semantics are difficult to
achieve across address space boundaries making some programming languages
more difficult to distribute than others. Object-oriented programming languages
are generally less troublesome in this regard because they enforce encapsulation of
object data and hence support controlled, functional access to data rather than

direct, address-space-dependent reference semantics.

Location transparency can be provided by a location or naming service such as
the ANSA Trader [ANSA 89] or Sun NIS [Sun 88]. A variety of naming, binding

and caching strategies are possible to manage this service efficiently.

The property of migration transparency requires both access and location
transparency. If a program does not specity the location of the objects upon which
it is operating, and the syntax and semantics of local and remote operations are
uniform, then objects could move transparently from one node to another. In the
simplest case, objects may move while not involved in any transactions. It is also
possible to move objects between individual operations of transactions or even (in
limited cases) during operation invocations on those objects, but these moves

require additional context information to be transmitted with the object state.

Objects might be migrated for a number of reasons. One obvious use of
migration would be for load balancing, but efficient load balancing by object
migration has been shown to be problematical [Eager et a/ 88]. However, there
are other reasons, such as reliability, security or logistics, why one might like to
move objects during a system’s operation [Liskov and Scheifler 83]. Migration
transparency simply states that this migration can occur without explicit

programmer intervention.

Concurrency transparency, one of the principal properties of transactions, frees
the programmer from concern over the effects of interacting operations. Providing

concurrency control for shared objects is a serious complication for application

24

Transactions on Persistent Objects

programmers even in centralised systems, hence transparent concurrency control is
desirable. Since, in distributed systems, concurrency—control state is necessarily
distributed, the problems of serialisability and deadlock management are severely
complicated. The lack of global state information for the distributed system makes
it difficult to determine the overall state of a set of objects e.g., to detect deadlock.
The lack of global control makes it difficult to correct errors when they are
detected e.g., to break a deadlock. Finally, inconsistencies may arise because
individual components of a distributed system, such as a single node, can fail while
the remaining components continue processing a transaction. For example, a node
may fail while some application running on that node is holding locks on remote
objects. When the failed node recovers from the crash, there may be no record of
which locks were held before the crash. These difficulties compound the problem
of developing reliable distributed applications and hence, in distributed systems,

concurrency transparency is a practical necessity.

Replication transparency frees the programmer from the necessity of knowing
which of the objects used in a transaction are replicated. Replicated objects must
be managed through appropriate replica—consistency protocols to ensure that the
object copies remain mutually consistent. Such protocols can be integrated within
transaction systems as discussed in [Bernstein et a/ 87] to provide replication
transparency. In transparent replication schemes, programmers specify the desired
level of availability or reliability for an object, leaving the creation and initial
pPlacement of replicas and the consistency and population management of the
replica group to the distributed system. Note that, like migration transparency,

replication transparency implies access and location transparency.

Fault transparency mechanisms are particularly important in distributed
Systems where the possibilities of node crashes and communications faults
significantly increase the range of failures which could affect an application. In a
fault transparent system, a programmer need only indicate the bounds of a
recovery region. When faults occur, the underlying system transparently recovers
the state of the objects which have been modified within the bounds of the recovery
region. The abstraction of a transaction is, among other things, a means of defining

the bounds of a recovery region.

25

Transactions on Persistent Objects

Each of the six types of distribution transparency described above can
contribute to the development of reliable distributed applications. However, not
all such applications will need all types of transparency and some important aspects
of the programming problem are not addressed by any of the above. In particular,
the provision of a persistent programming mechanism, while somewhat
independent of distribution aspects, is another important facet of the programming
interface for reliable applications development. Taken together, the support for
distribution delineated in the section above and the support for persistence
described in the next section form a framework of requirements against which a

distributed system could be developed.

2.4 Persistent Objects

Traditionally, persistent or permanent data has been stored in files or, for more
complex data or data that was shared concurrently by many users, in databases.
Basic research into persistent programming languages such as PS-Algol [Atkinson
et al 81] and Napier [Morrison et al 89] have extended the traditional concepts of
program state to include persistence as an orthogonal property. The following
taxonomy of the uses of persistence and the mechanisms that support them is given
in [Atkinson et al 90]:

Persistence is a property of data which describes “...the period of time for which
the data exists and is usable. A spectrum of persistence exists and is categorized by

1.transient results in expression evaluation

2.]ocal variables in procedure activations

3.own variables, global variables and heap items whose extent is different from

their scope
4.data that exists between executions of an application program
5.data that exists between various versions of an application program

6.data that outlives an application program.

The first three persistence categories are usually supported by programming
languages and the second three categories by the DBMS, whereas filing systems are

pPredominantly used for categories 4 and 5.”

26

Transactions on Persistent Objects

Understanding the spectrum of persistence and observing the dichotomy that
currently exists in the treatment of objects with differing lifetimes helps explain
some of the difficulties programmers face in managing persistent objects using
conventional programming languages and tools. As Atkinson et al have observed,
the conventional split between temporary and permanent data causes difficulties
for programmers, employing programming language operations and semantics for
the former and file or database system operations and semantics for the latter.
Other research efforts have included the more involved concept of a persistent
object in the sense of object-oriented programming languages such as Beta
[Agesen et al 89}, Procol [van den Bos and Laffra 89], Galileo [Albano et al 88],
Trellis/Owl [O’Brien et a/ 86], and E [Richardson and Carey 88]. In some cases,
persistence has been provided in existing object-oriented languages by creating
libraries of classes with operations that specifically support persistence, for
example the NIH class library [Gorlen et al 89] and Arjuna [Dixon et a/ 87] [Dixon
88]. The distinction between operations on traditional state variables and objects is

more fully discussed in section 2.6.

The results of the research into persistence as a programming language feature
lead persuasively to the conclusion that both temporary and persistent objects can,
and should, be treated uniformly. The simplification of programmingin alanguage
that treats the full spectrum of persistence in a uniform way should reduce
conceptual overhead for programmers and result in more reliable programs. The
term, persistence transparency, captures the concept of uniform treatment of
persistent and transient objects analogous to distribution transparency for local vs.
remote objects. Although some notion of persistence is implicit in the

“permanence of effect” property of transactions, persistence is a separate concept.

2.5 Transparencies and Properties

Each of the transparencies described above is identifying a dimension along
which objects may be categorised. For example, concurrency transparency refers
to uniform treatment of objects whether or not they are shared, while persistence
transparency refers to uniform treatment of objects regardless of how long they
last. Since different classes of application objects have differing requirements,

there is a need to allow programmers to apply these properties selectively.

27

Transactions on Persistent Objects

For an example of the importance of selective application of properties to
objects, consider the actions of a free storage manager like the unix facility, malloc.
The objects composing the data structures of the storage allocator will need to be
recoverable since any storage allocated during the execution of a transaction
should be returned to the free storage pool if that transaction aborts. Access to the
objects which implement the storage allocator may need to be concurrency
controlled if multiple transactions might simultaneously access the same heap.
However, the objects which maintain the structure of the heap may not need to be
persistent. Thus, the objects used in the implementation of the storage allocator

might require recovery and concurrency control properties, but not persistence.

Another class of objects that has similar requirements is network routing
tables. Network routing tables might need to be concurrency controlled, because
they are potentially concurrently accessed by many different users. They might
need to be recoverable, to maintain consistency when transactions that update
them abort, but they might not need to be persistent since they are normally
acquired by interaction with neighbouring sites during system startup. Whatever
combination of properties is applied to an object, the transparencies ensure that
the object can and will be treated uniformly. How do these properties and their

corresponding transparencies relate to transactions?

Traditional notions of transactions incorporate persistence, COncurrency
control and recovery in the definition of “transaction”. The relationship of the
transaction to the other objects involved in the transaction is one of boundary
definition. A transaction defines the duration for which locks are held (in strict
locking schemes), the point at which updates to persistent objects are recorded,
and the recovery region over which a recovery point is active (for backward
recovery schemes). While this use of transactions for demarcating the boundaries
of transparency behaviours is beneficial, traditional transaction systems have failed
to separate these transparencies from each other or from other kinds of
transparency which are more specifically related to distribution such as access,
location, replication and migration transparencies. Selective application of
transparencies generalizes the transaction concept by separating it from specific
transparencies and by employing the transaction as a general boundary manager

for all transparencies.

28

Transactions on Persistent Objects

If transactions are serving to delineate boundaries over which the distribution
and persistence transparencies operate, it is reasonable to ask what happens when
no transaction is present. Our model is that application programmers create and
start transactions, perform a sequence of operations on a set of objects, then
commit or abort the transactions. In such cases, the transaction termination serves
as a boundary to the persistence and distribution mechanisms, indicating that some
action must be taken which is appropriate to the termination of the transaction.
For example, locks can be acquired on an object in the course of execution of a
transaction. These locks will be released “automatically” when the transaction
commits or aborts. But what happens when the same object is operated upon by an
application that is not executing a transaction? Locks should still be acquired to
ensure consistent access to the state of the object, but will not be automatically
released until the object reaches the limit of its extent (in the programming sense)
i.e., it ceases to exist in the application program. The ability to employ either
“transaction-oriented” or non-transaction-oriented clients with the same objects
is an additional form of transparency which may be termed, transaction

lransparency.

For the distribution and persistence transparencies to make sense in the
absence of transactions, some other boundary determination must be used. Two
obvious candidates are: 1) explicit boundary determination and 2) behavioural
boundaries coincident with the lifetime of the object in the application. For
example, an application can define its own recovery regions by explicit operations
to start and end a recovery region. Similarly, an application could explicitly end a
persistence region by force-writing the current state of the object to stable storage.
A more subtle and perhaps more useful means of determining the boundaries over
which the transparencies apply would be to use the variable extent rules of the
programming language to mark the start and end of the regions., For example,
when a persistent object first comes into scope (extent) in the application program,
its state can be automatically loaded from stable store. When the object extent has
ended, the persistent state can be updated on stable storage. No explicit action
would be required on the part of the application programmer to manipulate the
persistent state of the object. Hence, transaction transparency allows an additional

degree of flexibility in the selective application of properties to classes of objects.

29

Transactions on Persistent Objects

Even the most basic properties implied by access and location transparency
may be selectively applied. In a distributed system supporting transparency,
remote access and location transparency are basic properties which all shared or
persistent objects must possess. However, not all objects in a distributed system
are shared or persistent. Local, transient objects such as temporary variables in an
application or partially computed results need not have their locations recorded
anywhere because their location can always be known to all of their clients without
any run-time lookup; such objects need not be available for remote access because
they are always accessed locally. The concept of transparency still applies: objects
which are local are invoked in the same way with the same syntax and semantics as
objects that are (potentially) remote. However, the combination of properties

assigned to individual classes of objects will vary.

The requirements for an effective development environment for reliable
distributed applications then must include the ability to apply transparencies
selectively to objects. It must be possible to apply any combination of the
properties implied by the various forms of transparency, while maintaining
uniform syntax and semantics of operation invocation regardless of the particular
combination selected. The principal means by which programmers attribute
properties to objects is through programming language constructs and facilities.
As discussed in Chapter One, object-oriented programming may provide a
particularly appropriate mechanism for selective attribution of some of these
properties to objects through the use of multiple inheritance. The next section
provides a discussion of the fundamentals of object-oriented programming and, in

particular, the concept and application of multiple inheritance.

2.6 Object-Oriented Programming

Object-orientation is an approach to program design and implementation that
places primary importance on objects. Objects are grouped by an application
designer into classes according to common behaviour (as defined by the operations
provided). Each class definition specifies the programming interface to the objects
of that class and one important aspect of its relationship to other classes — the
inheritance hierarchy. Each object instance contains some variables (its instance

variables) which are determined by the particular implementation of that class of

30

Transactions on Persistent Objects

objects. The operations supported by an object have access to the instance
variables and can thus modify the internal state of the object. It is assumed that, in
the absence of failures and concurrent invocation of operations on an object, the
invocation of any of the operations of the object produces consistent state changes
to the object.

Object-oriented programming languages allow programmers to express an
important relationship between object classes, the “is-a” or inheritance
relationship. For example, in an object-oriented language one can define a class,
creatures-that-fly, that represents an abstraction of a number of subclasses like
flying-insect or bird. Each of these classes can be further refined to more concrete

subclasses such as bumble-bee or macaw (see Figure 2-1).

creatures-that-fly

bumble-bee

Figure 2-1: A simple class hierarchy

Associated with each class, such as creatures-that-fly, is some set of properties,
operations, that define some aspect of behaviour which is common to all the
members of that class and, in some form, to all subclasses. For example, all
Creatures-that-fly have some positive, even number of wings. The operation,
number-of-wings, could be defined for the abstract class, creatures-that-fly, thus

abstracting a common feature of all flying creatures.

A similar class hierarchy could be defined for all creatures-that-swim (see
Figure 2-2). The abstraction, creatures-that-swim, might capture features
common to all such creatures, such as the type(s) of water in which they swim: fresh

Wwater, salt water or both.

31

Transactions on Persistent Objects

creatures-that-swim
>

Figure 2-2: An example of single inheritance

These examples illustrate the use of single inheritance — each class is derived
from at most one other class. A derived class is termed a subclass and the the class
from which it is derived is termed its superclass. What happens now when one tries
to incorporate into these two single inheritance hierarchies a class of creatures
called, ducks? Ducks can swim and fly. In fact, ducks are a subclass of a more
general class of creatures called, waterfowl, that can both swim and fly. One could
define a new “top level” class called, creatures-that-fly-and-swim. However,

such a solution is undesirable for two reasons:

1. The number of class definitions explodes combinatorially with the number of
properties to be modelled.

2.The potential for sharing of specifications and possibly implementations that
might have occurred between the classes, creatures-that-fly class and
creatures—that-swim-and-fly is lost.

To adequately model the abstraction of waterfowl within the hierarchies
already developed and preserving sharing, requires multiple inheritance, that is, the
ability to derive a new class from more than one other class, hence incorporating

the behaviour of all of the superclasses in the subclass (see Figure 2-3).

creatures-that-fly creatures-that-swim

bumble-bee

Figure 2-3: An example of multiple inheritance

Transactions on Persistent Objects

While Figure 2-3 may represent a naive taxonomy of the species, it serves to
illustrate the power of multiple inheritance to model the relationships between
abstract classes of objects. Furthermore, the top two classes in Figure 2-3,
creatures-that-fly and creatures-that-swim, represent abstractions, not of whole
disjoint subclasses of creature, but of particular aspects of creatures in general.
One could imagine defining creatures-that-walk, creatures-that-burrow, etc.
With a range of such classes, it would be possible to classify, for example, muskrats
(swimming, walking, burrowing), elephants (walking) and hummingbirds (flying,
walking). Such a categorisation by properties is not the only way to organise
species data, but it is useful because it gathers subclasses of objects together

according to common behaviours.

The ability to express in a superclass some common behaviour of several
subclasses of objects is equivalent to the definition of classes that represent
“properties” of objects. This idea was explored in depth in the development and
application of “mixins” in the Flavors System [Weinreb and Moon 81] [Moon 86]
and “traits” in the Star system [Curry ef a/ 82]. In these systems, classes of objects
were defined that simply added some characteristic to a class derived from them. A
new class of objects could inherit from multiple classes, acquiring the operations
and properties of each of the parent classes. This technique is applicable to other
object-oriented languages and provides a mechanism for selective attribution of
properties to objects. Thus, as Chapter Four will explain in detail, multiple
inheritance can be used to represent properties of object classes supporting

reliable distributed programming.

2.7 Objects and Transactions in Distributed
Systems

An object-oriented programming language supporting multiple inheritance to
“mix and match” object properties could provide a suitable basis for reliable
distributed programming by enabling an application programmer to selectively
apply properties to objects. Given a set of classes that provide the properties of
persistence, concurrency control, and recovery, multiple inheritance could be used
to derive application classes that exhibit persistence, concurrency and fault

transparencies. Building an appropriate support environment including

33

Transactions on Persistent Objects

communications, location services and stable storage could provide the remaining
distribution transparencies. These support facilities, their organisation and

relationship to transaction management are discussed more fully in Chapter Three.

Distribution transparency and persistence transparency have been treated in
various ways in previous works, but rarely with a clear separation of properties. As
with traditional transaction systems, previous research efforts have generally failed
to provide the ability to selective apply properties to objects, while retaining the
overall transparency of operation invocation syntax and semantics. Other
researchers in this area have made differing assumptions about requirements and
have focussed on different aspects of the general problem of programming
distributed systems. In the next section, related systems are examined with
particular emphasis on their relationship to the research reported in this thesis. In
particular, for systems supporting reliability in some way, attention is paid to the
ability of programmers to separate the concerns of recovery, persistence and
concurrency control from each other and from other aspects of distribution

transparency as defined above.

2.8 Related Systems

There are many aspects to the development of a system for reliable distributed
programming. Not surprisingly, there are many related research efforts that bear
on different aspects of the overall problem. Each of these efforts has contributed
knowledge, insight, and experience in addressing the issues arising from reliability,
distribution and persistence. However, none of the systems described below has

tackled the difficult, but valuable issue of selective transparency.

One approach to the development of a programming environment for reliable
distributed applications is to construct an object-oriented interface to a
conventional transaction processing system. In some such systems,
object-orientation has permeated several layers of the system, but the rigidity of
the underlying system still shows through this object-oriented veneer. As a
consequence, these systems are unable to grow and evolve naturally in an
object-oriented framework because the fundamental properties of transactions
are represented by collections of subroutines rather than by objects. Other

approaches incorporate the object-oriented paradigm at lower levels, providing a

34

Transactions on Persistent Objects

smooth progression of functionality for application level programs. A brief study

of the most closely related systems is given in the next five sections, 2.8.1 to 2.8.5.

Distributed programming languages / environments such as Emerald [Black et
al 87] [Raj et al 91}, Distributed Smalltalk [Bennett 90] Amber [Chase et al 89],
Argus [Liskov 84] [Liskov 88], and Comandos [Marques and Guedes 89] have
made considerable progress in the provision of a truly object-oriented distributed
programming system addressing issues of distribution transparency and migration.
However, in supporting persistence and reliability, these systems do not generally
separate issues of recovery, concurrency control and persistence, preferring to

provide “atomic” data type declarations which are all-or-nothing mechanisms.

Persistent object programming languages such as Napier, Galileo, Procol and E
have cleanly incorporated persistence with the object model, but generally
consider distribution, migration, reliability and availability as an afterthought, if at
all. Section 2.8.6 summarises related research projects into programming

languages for distributed systems.

Some attempts have been made to address the difficult problem of maintaining
a consistent view of data across heterogeneous machines in a network. For
example, Ovid [Hollberg et al 90] is an “open distributed support environment”
supporting distribution in a heterogeneous network. More generally, distributed
operating systems have been extended in various ways to provide primitive support
for objects and / or to provide extended support for reliability, usually through
some kind of transaction mechanism. Research efforts in the area of distributed

operating systems are described in section 2.8.7 below.

Object-oriented data base systems have addressed many of the problems of
concurrency control, persistence and recovery of objects, but are generally weak in
the area of distribution especially with respect to migration, replication and
location transparency. An excellent summary of current research in this area is
given in [Zdonik and Maier 90]. The subject of object-oriented database systems

is not treated further in this thesis.

In each of the systems examined below, there has been a somewhat different

focus. The following sections briefly outline these related projects, describing their

35

Transactions on Persistent Objects

relevance to the present work and their shortcomings in addressing the goal of

reliable distributed processing within the framework described in this chapter.

2.8.1 Arjuna

Arjuna [Dixon et a/ 89] [Parrington and Shrivastava 88] [Parrington 90]
[Shrivastava et al 91] is an object-oriented programming system that provides a set
of tools for the construction of fault-tolerant distributed applications. Arjuna
provides nested transactions for structuring application programs. Transactions
operate on objects, which are instances of classes, by making use of remote
procedure calls (RPCs).

Three properties were considered highly important in the design and

implementation of Arjuna:

® Integration of mechanisms: a fault-tolerant distributed system requires a
variety of system functions for naming, locating and invoking operations
upon local and remote objects and also for concurrency control, error
detection and recovery from failures. These mechanisms must be provided in
an integrated manner such that their use is easy and natural.

® Flexibility: these mechanisms should also be flexible, permitting application
specific enhancements, such as type-specific concurrency and recovery

control, to be produced easily from existing default ones.

® Portability: the system should be easy to install and run on a variety of
hardware configurations.

The computational model of transactions controlling operations upon objects
provides a natural framework for incorporating integrated mechanisms for
fault-tolerance and distribution as has been discussed in section 2.7. In Arjuna,
these mechanisms have been provided through a number of C+ + classes. Arjuna
is novel with respect to earlier fault-tolerant distributed systems in taking the
approach that every major entity in the Arjuna system is an object. Thus, Arjuna
not only supports an object-oriented model of computation, but its internal
structure is also object-oriented. This approach permits the use of the inheritance
mechanisms of object-oriented systems for incorporating the properties of
fault-tolerance and distribution in a flexible way, permitting type-specific

implementation of concurrency control and recovery for objects. Arjuna has been

36

Transactions on Persistent Objects

implemented without any changes to the underlying operating system or language,
employing single inheritance to organise the “property” classes for management of
persistence, recovery and concurrency control. Persistence and recovery are
treated together in one class and concurrency control in another which is derived

from the first.

The Arjuna system was the starting point for the work reported in this thesis and
therefore the two systems bear a strong resemblance to each other. However,
Arjuna fails to provide adequate support for selective application of properties.
This inability to selectively apply properties to classes of objects in Arjuna arises

from two sources:

1.The classes defined by Arjuna are restricted to single inheritance thereby
limiting the extent to which properties can be independently applied.

2.In some cases, the “property” classes defined by Arjuna incorporate more
than one concept in the same class. For example, unique network-wide
identity is mixed up with the property of persistence. While this kind of
identity is required for persistent objects, not all identifiable objects need be
persistent.

2.8.2 Camelot / Avalon

Camelot [Spector et al 87] [Spector et al 88] is a successor to the TABS system
[Spector ez al 85], augmenting the TABS concepts for virtual storage management
and recovery with optimised commit protocols as in R* [Mohan et al 86] and with
support for nested transactions. Camelot is based on the Mach operating system
and provides a conventional non-object-oriented interface for programming.
Avalon [Herlihy and Wing 87] is a language layer that embeds Camelot facilities in
some host language e.g., C+ +. In this way, powerful concurrency control and
recovery facilities are provided to programmers in a syntactically integrated
interface. However, since the mechanisms of Camelot are implemented by
non-object-oriented means, some of the power of the object-oriented interface is
lost. For example, extending the recovery behaviour of objects using inheritance in
Avalon/C + + is complicated because the underlying system features do not have
the same semantics of subclassing and inheritance. The lack of object-oriented
design also inhibits the ability to develop application classes that inherit multiple

properties.

37

Transactions on Persistent Objects

2.8.3 RelaX

RelaX [Kroeger et al 90] [Schumann et a/ 89] is a system software interface
supporting nested transactions on a wide range of object types. The management
of recovery, synchronisation and persistence in RelaX is very flexible, but RelaX is
not object-oriented in either its interface or implementation, relying instead on a
more traditional imperative programming interface. The result is a system with
limited extensibility. The basic system offers many primitives which can be
combined in many ways, but extending the set of primitives is difficult because of

the lack of object orientation.

2.8.4 ISIS

ISIS [Birman and Joseph 87] [Birman et al 88] is a toolkit for distributed
programming that represents a non-transaction based approach to the
development of reliable distributed applications. Rather than employing
transactions to provide fault-tolerance, ISIS depends on a checkpoint facility and a
broadcast communications mechanism designed to support a layered set of
protocols for ensuring atomicity and causality. The tools of the ISIS toolkit are
combined with a concept called “virtual synchrony” which is interesting in its own
right. This concept is powerful in application areas where transactions are
unsuitable or impractical because backward error recovery is not possible, for
example, certain process control applications. However, ISIS has limited

applicability to the traditional domains of transaction systems.

2.8.5 Related Systems Summary

These four systems, Arjuna, Camelot/Avalon, RelaX, and ISIS have
contributed greatly to the design ideas developed in this thesis. Each system is an
example of an attempt to provide a coherent programming environment for the
development of reliable distributed applications. Table 2-1 summarises the
capabilities of these systems relative to the requirements developed in the previous
sections. The most important issue which is not adequately addressed by any of
these systems is the selective application of properties to objects or object classes.
Although these systems have provided limited separation of properties, for

example separating persistence from concurrency control, they have failed to

38

Transactions on Persistent Objects

clearly separate all the properties implied by the different forms of transparency —

especially recovery and persistence.

Syl
> 4
& N\ e}¢ &
. v 2® < 5
System Requirements &
cP
Object-Oriented
Interface v v
Object-Oriented Design
Retliability support v Vv v 4
Persistence Transparency Vv v I
Distribution Transparency v v Vv v
Selective property support

Table 2-1: Related Systems Summary Chart

Beyond consideration of these systems for reliable distributed programming,
there are numerous related works in the areas of programming languages and
distributed operating systems. Section 2.4 has already discussed the contributions
of persistent programming languages to the concept of persistence transparency.
Other research into programming language and operating systems has contributed
in various ways to our understanding of distribution transparencies and

object-oriented programming, as described in the next two sections.

2.8.6 Programming Languages

Considerable research has been undertaken in the areas of object-oriented
design and programming. Many object-oriented programming languages have
been designed and implemented e.g., Smalltalk [Goldberg and Robson 83], C++
[Stroustrup 86] [Lippman 89], Trellis/Owl [Schaffert et a/ 86], Simula [Dahl et al
70] [Birtwhistle et al 73] and Eiffel [Meyer 88]. Beyond mere syntactic differences,
there are important differences in the semantics of these languages particularly
concerning their encapsulation model, degree of autonomy for objects and
“purity” (i.e., the degree to which a/l programming constructs are objects). There

have also been attempts to augment programming languages with transaction

39

Transactions on Persistent Objects

processing constructs to provide a measure of reliable programming, notably in

Argus and Emerald.

Argus [Liskov 84] [Liskov 88] is a programming language for distributed
systems that provides reliability support through nested transactions and atomic
types. Objects which are instances of an “atomic type” are atomically updated
when the action that invoked them completes. Argus has two main concepts: A
guardian which is a logical node of the system and an action which is a nested atomic

transaction as described above [Liskov and Scheifler 83].

There are three key differences between Argus and the work reported in this thesis:

® Argus is based on Abstract Data Types rather than objects. Argus does not
support inheritance.

e In Argus, no separation is made between recovery, persistence and
concurrency control. An “atomic type” acquires all of these properties
whether or not it needs all of them.

® Argus uses transactions only for remote invocations. Local operations have
no recovery or concurrency control possibilities.

Emerald [Black et al 87] [Raj et al 91] is a general purpose object-based
programming language for distributed systems. Developed in parallel with the
Eden distributed operating system, Emerald has extensively explored concepts of
distribution transparency, including not only location and access transparencies,
but also concurrency and migration transparencies. The key differences between

Emerald and this work are:
e Emerald objects are active, using monitors to control concurrent accesses.

¢ Emerald does not support any kind of inheritance.

e Emerald does not attempt to address fault transparency.

Ultimately, the virtual machine on which a programmer develops an
application is a combination of the features of the programming language, the
operating system and, in limited ways, the hardware architecture. The distinction
between programming language run-time support and operating system support is
frequently blurred and of little relevance to the programmer. Indeed, many

“language features™ have been successtully migrated into operating systems where

40

Transactions on Persistent Objects

issues of global resource management and access control can be more easily

addressed.

2.8.7 Distributed Operating Systems

There has been considerable research in the past ten years in the area of
distributed operating systems. As the next chapter bears out, the design of the
operating system - its features and computational model - will have important
effects on the provision of reliability, distribution and persistence by higher level
software. In many cases, recent research into the design of operating systems has
incorporated some combination of reliability features, persistence and
distribution. The level at which these facilities are provided is an architectural
decision that must be taken with respect to the overall goal of a development
environment for reliable distributed applications. Numerous research projects in
this area such as Cronus [Schantz et al 86], Gothic [Banatre er a/ 86], LOCUS
[Walker et al 83] [Walker 85] [Moore 82] and Zeus [Browne et al 83] influenced the
work reported in this thesis. The following paragraphs summarise the most
relevant research developments and indicate their relation to the topic of this

thesis.

Clouds [Allchin 83] [Allchin and McKendry 83][Dasgupta et al 88] [Pitts 88] is
a distributed operating system developed at the Georgia Institute of Technology
with a specific goal of integrated reliability. Clouds supports reliability by offering
nested transactions, including replicated transactions. Location transparency is
supported through the provision of a global object name space. Access
transparency is provided by transparent remote invocation. Concurrency
transparency and fault transparency are provided by the transaction mechanism.
Asin Argus, transaction boundaries are determined semi-automatically by causing
the transaction commit operation to occur as a side effect of the termination of a
“consistency-preserving” thread of control. A thread of control becomes a
“consistency-preserving” thread automatically by invoking a
“consistency-preserving” operation of an object. In Clouds, all objects are
notionally persistent and a distributed garbage collector is employed. Clouds

differs from the work reported in this thesis in the following ways:

41

Transactions on Persistent Objects

e Clouds supports objects, but does not provide an object-oriented interface;
Aeolus, the Clouds programming language does not support inheritance or
subclassing.

® Clouds clearly separates concurrency control from recovery, but fails to
separate recovery from persistence.

® Clouds transaction boundaries are automatically determined, restricting the
level of control which application programmers can exercise.

Guide [Balter et al 91] is an object-oriented distributed operating system
supporting reliable computing through nested transactions. As in Argus and
Clouds, objects may be attributed with the property “atomic”, which implies
recovery and concurrency control. All objects are implicitly persistent and a
distributed garbage collector is employed. Guide fails to address some issues

treated in this thesis as follows:

e In Guide, no separation i1s made between recovery, persistence and
concurrency control. An “atomic type” acquires all of these properties
whether or not it needs all of them.

® Guide employs a special programming language to make its atomicity
features available and is thus restricted in its applicability.

® Inheritance in Guide is limited to single inheritance and is not employed to
provide the properties of recovery and concurrency control.

SOS [Shapiro et al 89] is a distributed, object-oriented operating system
supporting distribution transparency including location, access and migration
transparency. While SOS is not focused on reliability, SOS provides most of the
operating system facilities that provide the necessary support environment for

distributed transaction support and persistent programming.

Amoeba [Tanenbaum and Mullender 81] is a distributed operating system
based on processes, messages and ports, with a specific goal of efficient use of
network resources. Its relation to this work is in its use of global object identifiers
and distribution transparency, including location and access transparency and
migration. The object support in Amoeba derives from its use of capabilities to
refer to and provide access control for objects anywhere in the system. Unlike the
work in this thesis, Amoeba does not provide any direct support for reliability or

availability. Although Amoeba support objects in a primitive sense, it does not

42

Transactions on Persistent Objects

employ object-oriented concepts such as inheritance in its interface or

implementation.

Eden [Lazowska er a/ 81] is a distributed object-based operating system
developed at the University of Washington. In conjunction with the programming
language Emerald, described above, Eden provides primitive support for active
objects, including migration support. The Eden File System [Jessop et al 82]
supports nested transactions, although the interface is not object-oriented in the
sense that no use is made of inheritance. Eden does not support transactions for

general program objects - only for file system objects.

Choices [Campbell et a/ 89] is an object-oriented operating systems
development kit. Sometimes referred to as a family of operating systems, Choices
provides basic operating systems facilities using an object-oriented design and
implementation. While Choices makes no particular provision for reliability, its
object-orientation and idea of feature composition and tailoring by the use of
object-oriented aggregation and inheritance closely parallels the work of this
thesis. The Choices system also provides support for persistent objects and
consideration has been given to the general implications of persistence support for

operating systems design [Campbell and Madany 91].

Chorus [Rozier er al 88] and Mach [Jones and Rashid 86] are distributed
operating systems based on processes, messages and ports. There is no particular
emphasis on reliability in either Chorus or Mach. However, some recent attempts
have been made to build fault tolerance mechanisms “on top™ of Mach using
process pairs and periodic checkpointing rather than the “application level”
concept of transactions [Babaoglu 90]. COOL [Habert ef al 90] is a layered
extension to the Chorus system to provide facilities for object management
including migration. These layered fault-tolerance mechanisms build
object-oriented transaction and persistence features on a basic operating system
kernel.

43

Transactions on Persistent Objects

&

System Requirements o®

& CQO&’

.

Object-Oriented
Interface

Object-Oriented Design

Reliability support v Vv v
Persistence Transparency ' 'd v v
Distribution Transparency v Vv v v v | v v |
Selective property support v

Table 2-2: Distributed Operating Systems Summary Chart

Table 2-2 summarizes the properties of various distributed operating systems
relative to the requirements stated in section 2.5. Note that the systems are treated
fairly generously in that all are attributed with distribution transparency although
not all systems support all of the transparencies. In particular, Eden and SOS are
the only systems on the list that have extensively considered migration of objects.
However, as mentioned above in section 2.3.1, migration and replication
transparencies are second order problems since they depend on the existence of
access and location transparency. Hence, the four primary transparencies, access,
location, concurrency and fault transparency, have been used in the construction of
this chart.

2.8.8 Client - Server model

The concept of a “client - server architecture” has been widely applied in
modern distributed systems. For example, NFS [Sun 88] employs a client-server
design, although it is simply a network file system, not a complete operating system
or programming environment. In the client-server model of computation, an
active process (the client process) on one node invokes an operation provided by a
server (process) which may be on a different node. The operation invocation is
typically by message passing and usually involves a result which is returned in a
subsequent message. Although many variations are possible (e.g., allowing

asynchronous reply), the most common style of interaction involves blocking the

44

Transactions on Persistent Objects

client until the server has completed the requested operation and responded. This
style of synchronous invocation maps easily to conventional programming notions
of procedure calls and has led to a proliferation of “remote procedure call”

facilities.

The model presented in this thesis adapts the conventional client - server
model with the difference that the entities that are communicating are objects. The
client application (object) invokes an operation provided by a server (object) which
may in turn invoke an operation of another server. Thus a single running process

may be simultaneously acting as a client and as a server.

2.9 Summary

Many abstractions have been developed to address various aspects of
reliability, persistence and distribution of objects. One choice for an integrated set
of these abstractions includes nested transactions on persistent objects, employing
a remote procedure call communications model augmented with naming and
locating support. This chapter has explained the rationale for this choice of
abstractions, the mechanisms needed to implement them, and the relationship

between this work and prior developments.

In summary, basic distribution transparencies such as access transparency, and
location transparency are necessary precursors to more advanced forms of
distribution transparency such as replication transparency or migration
transparency. Transparent concurrency control and fault semantics are also
necessary to achieve a simple uniform programming model. Atomicity implies
recovery transparency and some aspects of persistence, for example, to achieve the
permanence of effect property of transactions. When the concept of persistence
transparency is added to the list of transparencies, the necessity for the separation
of persistence from recovery becomes clear. The importance of such selective

attribution of properties to objects has been emphasized.

The next chapter describes an architecture for reliable distributed systems,
explaining the role of support services such as naming and location services and
emphasizing the potential for portable systems development by defining clear,

narrow interfaces to operating system services.

45

Architecture

3 Architectural Issues

“The Machine is the architect’s tool — whether he
likes it or not. Unless he masters it, the Machine has
mastered him. The Machine? What is the Machine?
It is a factor Man has created out of his brain, in his

own image — to do highly specialized work,
mechanically, automatically, tirelessly and cheaper
than human beings could do it. Sometimes better.”
Frank Lloyd Wright [Wright 1927]

3.1 Introduction

The architecture of a distributed information processing system can have a
profound effect on the structure, efficiency, portability and reliability of
applications written for it. To minimise the dependence of applications on
operating system and machine architecture, it is useful to define the programming
interface to these low level services in terms of high level abstractions that provide
the distribution and persistence transparencies described in Chapter Two.
Attainment of the desired levels of transparency requires the support of various
mechanisms; for example, access transparency requires a remote communications
mechanism. The combined set of mechanisms for support of persistence,
communications, naming and location, recovery, concurrency control and
transactions must be organised into some structure, that is, into an architecture
that provides a sensible programming interface to the full range of transparency
services. This chapter describes one such organisation that minimises dependence
on specific operating system features, explains the rationale for its selection and

discusses the implications of the architectural alternatives which have been chosen.

3.2 System Architecture

To provide an architectural view of a distributed transaction processing system,

the following list summarizes the requirements of each of the desired

46

Architecture

transparencies together with the system dependencies inherent in the

implementation of mechanisms to support those transparencies.

® Access transparency requires an interface for non-local communications
which mirrors local communications. In the case of object-oriented
programming languages, the communications model could be based either
on explicit message-passing, as in Smalltalk, or on operation invocation, asin
Eiffel, C+ +, Trellis/Owl and others. If the programming language employs
a message passing model for inter-object communications, the mapping to
distributed systems is clear. If inter-object communications are based on
synchronous operation invocation, Remote Procedure Call (RPC) seems a
natural mechanism to support access transparency. As discussed in Chapter
Two, RPC is adopted in this thesis as the work is based on an object-oriented
programming language that uses synchronous operation invocation to

communicate between objects.

Communications in the distributed system requires access to
communications devices which may vary from small local area networks to
wide area networks involving thousands of nodes. The many different
devices provide many different interfaces, making the implementation of the
communications interface a system dependent problem.

® Replication and migration protocols can be incorporated into the chosen
communication mechanism to provide higher levels of performance,
reliability or availability. In both the message passing model and the RPC
model, replication support will imply that multiple physical messages are sent
in response to a single logical communication. Migration involves not only
physical moving the object, but also updating the location service in some

way to preserve location transparency.

® Location transparency requires a mechanism that can locate any object in the
system using a uniform interface, regardless of whether the object is local or
remote. In fact, although a single interface is required, several mechanisms
will be used to implement that interface to efficiently support location
services in different circumstances. Purely local, transient objects may be
identified and located by means internal to the programming language
implementation, e.g., stack offsets or heap addresses. For shared or
persistent objects, some kind of location service must be provided. Naming
services that map programmer-readable names of objects to some kind of

47

Architecture

unique, unambiguous identity must also be provided and may be combined

with location services.

Note that the mappings maintained by the name service and location service
are themselves examples of replicated, shared, persistent objects which
should be updated under the control of some concurrency control protocol.

e Persistence transparency must be supported by some underlying mechanism
that involves external storage media such as disks, tape, or optical storage
devices. Access to these kinds of devices will be dependent on the specific
details of the hardware and low-level software interfaces. The persistent
storage subsystem may escape dependence on such low-level device
interfaces if the operating system on which it is based provides a measure of
device independence, but the storage subsystem will still be dependent on the
operating system interface.

® Failure transparency, provided by recovery mechanisms and co-ordinated by
a transaction protocol, and Concurrency transparency, provided by locking
or timestamping mechanisms, can be built using the other facilities of the
transaction services kernel without reference to other operating system or
hardware facilities. Transactions can be distributed without introducing
further operating system or hardware dependencies if access and location
transparencies are provided.

From this list of the transparencies and the kinds of support they require, it is
clear that the mechanisms necessary to support distribution and persistence
transparencies may be loosely divided along the lines of system dependence and
independence. Indeed, previous research in this area has addressed the issue
explicitly. Some existing environments for applications programming for
distributed systems have focussed on heterogeneous RPC facilities [Bershad et al
87] and common run-time environments [Weiser et @/ 89)]. Such systems support
access transparency even in heterogeneous networks, but fail to provide the range
of facilities necessary to support reliable distributed transaction processing for
persistent objects. Yet, these previous works have demonstrated that only a small
kernel set of the mechanisms must interface directly with operating systems or
hardware systems to provide the desired services. The whole set of support
mechanisms can be layered in such a way as to depend on only two basic kinds of
Operating system service: multicast communications and stable storage. From

these two basic services, higher level services such as naming, location, persistence,

48

Architecture

and RPC services can be constructed to provide a suitable environment for support

of concurrency control, recovery and transaction management.

From these observations, the following key architectural components emerge:

e Communications: To provide an object invocation facility through an RPC
mechanism

® Object Storage: To provide a repository for objects in stable storage

® Naming: To provide a mapping from user-given names of objects to
system-assigned unique identifiers

® Locating: To provide a mapping from unique identifiers to location
information

® Transactions: To provide atomic action support to application programs,
including recovery, concurrency control and persistence

The relationship amongst these services is depicted in Figure 3-1.

Application Application ®e o o

Naming
Transaction Services Module

Service

Locating .
Service X

[Portable implementation - e----- possibly remote invocati

System dependent implementation — local invocation

Figure 3-1: Components of a Persistent Object Transaction System

To gain the benefit of the transparencies provided by the system, an application
uses objects and operations defined in the Transaction Services module which in

turn use the lower-level services. Since the Transaction Services module includes

49

Architecture

the ability to access local and remote persistent objects, complete applications can
be written using only this service without any direct access to other operating
system facilities. An application may also directly access the host operating system
services (see Figure 3-1). Such an application can maintain portability by using
portable sub-systems for all services. For example, an application which requiresa
graphical interface might use a portable system such as the X Window System
[Scheifler and Gettys 86] in addition to the services provided by the Transaction
Services module. However, recoverability, availability, persistence, concurrency
control and transparent communications will not be provided for the window
manager objects. In effect, the Transaction services module provides portable
persistent object support with the transparency properties described in Chapter

Two.

As shown in Figure 3-1, location transparency can be supported by services
outside the main transaction system. This architectural decision arises from the
assumption that there is no programming construct associated with location; to be
used, all objects must be located in some way, although not all objects must be, for
example persistent or recoverable. Similarly, a naming service can be
implemented outside the Transaction Services module and “on top” of it. That s,
name mapping can be provided using the concurrency control and persistence

mechanisms provided by the Transaction Services module.

Figure 3-1 indicates the inter-relationships between the main architectural
components, but does not show the distribution of these components across the
machines that compose the distributed system. In fact, to provide communications,
every node in the system must contain the communications service; its
implementation may well be specific to the operating system of that node. Not
every node needs to provide an object storage facility, but those nodes that do
provide such a facility will contain Object Stores which again could have

implementations specific to their host operating system.

Figure 3-2 illustrates an example instantiation of the architecture of Figure
3-1 on four nodes to exemplify the relationship of the services to application
programs. In this example, an application program containing references to
persistent objects is executing at node N. This application program is the root of

the computation. Distributed execution is achieved by invoking operations on

50

Architecture

remote objects, Object; and Object ; on nodes N3 and Ny respectively. The set of
nodes involved in a transaction will be determined dynamically according to the
objects and operations accessed in the course of executing the application
program. In this example, at the stage depicted in Figure 3-2, the application
program has referenced objects on nodes N, N3 and Ng. Node N; may also be
involved in the distributed computation it, for example, Objects is a persistent
object stored in the Object Store at N».

Ni N3

Clicnt application
including
Transaction services

Naming and
Localting

Naming and
Locating
rvice

RPC

Object Storage
Scrvice

Figure 3-2: An Instantiation of the Architecture

In the sections that follow, each of the principal components of the architecture
is described. Each description includes a discussion of the role of the component in
providing support for distribution and persistence transparencies and a few
remarks about implementation issues that arise from architectural decisions. A

detailed discussion of implementation issues is deferred to Chapter Five.

51

Architecture

As indicated in Figure 3-1, the two architectural components which form the
interface between the host operating system and the distributed transaction
processing system are the communications module and the object storage module.
These components are discussed first, followed by the naming and locating
modules and finally, the programmer’s interface to the entire system, the

transaction services module.

3.2.1 Communications (RPC)

The purpose of the RPC service is to provide access transparency for
distributed applications. In the client-server model adopted here, the application
is the initial client and the objects are the servers. The operations of an object may
make use of other objects, in which context the first object becomes a client and the

invoked object is the server.

To transparently interface the synchronous operation invocations of the
application program to possibly remote objects, a suitable stub generator can be
used to pre-process the class descriptions to provide the RPC stubs necessary to
interface to the lower level communications interface. The details of such RPC
stub generating systems are well explained in the literature [Bershad et al 87]
[Gibbons 87] [Parrington 90].

The RPC service provides three operations: call, to be used by the client, and
get_request and send_reply, to be used by the server. Of course, appropriate
operations for establishing and breaking connections must also be provided.
Clients and servers have communication identifiers (CIDs), such as sockets in
Unix, for sending and receiving messages. The architecture is equally valid for
RPC systems employing synchronous (get-request, send-reply) interfaces or
asynchronous (action routine registration) interfaces. The RPC system is designed

to cope with conventional network faults (e.g., duplicate messages, lost messages).

3.2.2 Object Storage

To provide persistence transparency, the Transaction Services module employs
operations of Object Stores to access the saved state of objects. Persistent objects
notin use are said to be in a passive state. A passive objectis made active by loading

its state and methods from an Object Store to the volatile store. A persistent object

52

Architecture

must provide operations to enable it to be activated or de-activated. Note that this
operational description of the activation and de-activation of objects is intended to
give the semantics of object activation rather than a precise description of the
mechanics. An implementation of the object store is free to use caching,
pre-fetching, clustering, etc. to optimise the movement of objects (code and data)
from stable storage to volatile storage and back. Furthermore, each object is
responsible for providing concurrency control operations through mechanisms
such as locking or path expressions describing permissible concurrency within an
object [Campbell and Habermann 74]. An essential point is that programmers
must be able to treat persistent objects in the same way that they treat local objects.
Like local objects, persistent objects are “active™ as soon as they are in scope — an
extra “activation” step must not be required for persistent objects as this would

violate transparency.

Like the RPC service, the Object Store has two interfaces: a client interface -
available to every application, and a server interface present only on the nodes
containing object stores. The client interface, with support from the RPC
interface, hides the potential remoteness of object stores from the applications,
while the server interface of an object store hides the system specific details of

stable storage.

The passive representation of an object may ditfer from its active volatile store
representation. For example, an object in volatile store may contains pointers to
other objects as part of its state. When the object is to be saved in an object store,
the pointers in the volatile state of the object may be represented as offsets or UIDs
in the passive state of the object. The passive representations of objects are
instances of the class ObjectState. A persistent object is assumed to be capable of
packing its state into an ObjectState instance and unpacking a previously packed
ObjectState instance into its instance variables by invoking operations on
ObjectState objects. These packing and unpacking operations will be invoked
(automatically by the Transaction Services module) to make transitions between

active and passive states of objects.

53

Architecture

Object storage Volatile storage

read_state]

A o
Object
Activation

passive

Object sl

. De-activation /
write_state < L -
make _pcrmancni7wnlcshadow/

delete_shadow

ObjectState:@ Passive Object: i

Figure 3-3: Object State Transitions

Active Object

Figure 3-3 shows the lifetime and state transitions of a persistent object along
with the operations that produce the transitions. Operations to the left of the
vertical dashed line e.g., read_state, write_state are performed by the Object Store,
the other operations are performed by the Transaction services module. The class
ObjectState ensures that the instance variables of an object are stored in a form
that may be transmitted between nodes with different architectures. As a result,
instances of the class ObjectState may be sent in messages to other nodes to

support object caching, migration and recovery.

The primary function of an object store is to store and retrieve instances of the
class ObjectState: the read_state operation returns the instance of ObjectState
named by a uid and the write_state operation stores an instance of ObjectState in
the object store under the given uid. The operations, write_shadow, delete shadow
and make-permanent are provided to support a recovery technique based on a
shadowing mechanism. The requirements of various recovery techniques and the
implications for the interface to the ObjectStore will be discussed further in
Chapter Four, but for the rest of this chapter, we will assume that recovery is based
on a shadowing mechanism. Two additional operations (not shown) are also

necessary: create and delete for creating and deleting objects.

54

Architecture

In a typical implementation of the server interface of the object store, the only
client operation that would be provided isactivate, as described earlier. Figure 3-4
depicts the set of servers that are involved in the activation of an object, thisone, on
a remote node. In this example, the application program is executing at node N;
and the object, thisone, isin the object store of node N,. The class definition for the
object, thisone, will have been processed by a stub generator. The application
program contains the stub code for object thisone. The stub generator will have
produced a constructor for the object which will perform the naming and binding
operations necessary to map from the name, thisone, to the uid and location of the
object. The constructor code will then invoke the activate operation of the object

stored at the remote node.

When the object, thisone, comes into scope in the application program, the
constructor operation of the stub object is (automatically) invoked and the objectis
activated at node Nj. The activate operation causes the object store at node Nj to
create a server (thread or process) to manage the active state of the object thisone.
Using the uid of the object, thisone, the server retrieves the ObjectState instance
which contains the passive state of the object thisone from the stable store, loads
the methods of thisone’s class into the server process, and invokes the unpack
operation to restore the active state of the object thisone in volatile memory. All
subsequent operation invocations on the object thisone, including concurrent
invocations by other transactions, will use the RPC mechanism to access the server

on node N, which is servicing the object, thisone.

N N2

Figure 3-4: Objects, Clients and Servers

55

Architecture

Application programs or servers that create transactions will act as the
transaction co-ordinators for the transaction which they initiated. When a
transaction completes, the decision to commit or abort that transaction will be
made by the co-ordinator after communications with the objects involved in the
transaction. Although the decision is made in one place, the co-ordinator must
first communicate with the objects (this is, with the servers that are managing the
active state of those objects) because the object state and all associated recovery

state, persistence state and concurrency—control state are held in the servers.

At commit time, using a conventional two-phase distributed commit protocol,
the transaction co-ordinator will invoke the prepare operation of all the objects
involved in that transaction. Three object store operations are necessary for
commit processing: write_shadow, make_permanent, and delete_shadow. When the
Prepare operation is received by the server, the volatile state of the object will be
packed into an ObjectState and the object store operation, write_shadow, will be
invoked to create a stable, passive version. If the server subsequently receives a
commit invocation, it executes the make_permanent operation of the object store
to convert the temporary version into the new stable state of the object. The
response of the server to an abort operation is to execute the delete_ shadow

operation and to discard the volatile copy of the object.

To summarize: an object store supporting recovery by shadowing provides
seven operations (create, delete, read_state, write_state, write_shadow,
delete_shadow, make_permanent) which are used by a persistent object, which itself
exports operations prepare, commit and abort. A client program need only use the

activate operation of an object store before accessing the object.

It should be noted that a transaction itself needs to record some recovery data
on stable storage: an intentions list [Bernstein ez «/ 87] for committing or aborting
the action in the presence of node failures. An intentions list is a kind of persistent
object associated with a transaction. The next chapter describes the way in which
the basic facilities of the transaction services module are employed to manage the

intentions list data associated with transactions.

56

Architecture

3.2.3 Naming and Locating Services

Naming services are required to locate objects by name and to manage naming
contexts. Such services are often designed together as a part of a “name server”
which becomes responsible for mapping user supplied names of objects to their
locations [Oppen and Dalal 81}; sometimes such services are implemented as an
integral part of the RPC system [Black et a/ 87]. However, naming and location
services can be looked upon as logically different subsystems, related to

applications as indicated in Figure 3-1.

The human-readable names associated with objects are a convenience for
application programmers, not a fundamental part of the system’s operation; the
Transaction services module is responsible for manufacturing an object name (uid)
and assigning it to an object. The mapping from names of persistent objects to their
corresponding UIDs is performed by the Naming service operation, lookup. The
Naming service can be implemented entirely as an application using the
Transaction Services. The apparent recursion in design in which the Naming
Services use the Transaction Services and the Transaction Services use the Naming
Service is easily broken by using well-known identifiers for accessing the Naming
Service. Inaddition to the lookup operation, the Naming service must also provide
add and delete operations for inserting and removing names in a given naming

context.

Considerable research effort has been invested in designing flexible, efficient
naming services. For example, the International standard, 1SO, X.500 directory
service, the ANSA Trader [ANSA 89], Sun NIS [Sun 88] and OSF’s DNS are
widely-available standard services. The Naming Service described in this
architecture could be implemented using one of these existing services rather than
depending solely on the Transaction services for persistent object storage.
However, the portability of the system then becomes dependent on the portability

of that additional service.
The Locating service, which maps UIDs to nodes, can also be designed as an

application. In addition to the locate operation, add and delete operations must

also be made available. For performance reasons, locating services are often

57

Architecture

implemented with special purpose protocols bypassing the RPC service and/or are

integrated with Naming Service.
3.2.4 Transaction Services module

The transaction services, including transparent access to objects, remote or
local, transient or persistent, can be designed in a wide variety of ways with
different tradeoffs. One distinguishing characteristic of the design of the
transaction services is the extent to which it is language-specific. This decision
affects other aspects of the design profoundly. To provide a language-independent
service, a common approach involves designing a module providing language
independent primitive operations such as begin-action(), end-action(), and so
forth which can be used by arbitrary application programs. Language-specific
interfaces to such a “subroutine library™ can be developed and multi-language

applications can be constructed. (c.f. Camelot/Avalon).

If a language-specific approach is taken, the next decision that must be made is
whether to construct a support library using the structuring mechanisms of an
existing language or to develop a new language, either from scratch or by extension
of an existing language. One alleged benetit of object-oriented languages is in the
ability to construct powerful user-defined abstractions which merge seamlessly
and elegantly with the primitives of the base language. To the extent that this is
true, it should not be necessary to design a new language to provide these
mechanisms. Furthermore, the provision of inheritance mechanisms in
object-oriented languages provides scope for application-specific enhancements
to the basic services, such as type-specific concurrency control or type-specific
recovery methods, which are difficult to provide in the language-independent
approach. The usefulness of this extensibility and the means by which it is achieved

are discussed in more detail in Chapter Five.
3.2.5 An Example

To illustrate the interactions between the various components of the
architecture, Figure 3-5 contains a small fragment of C+ + code which performs
an operation on a single persistent object from within a transaction. The following
line-by-line account explains the actions that occur as the example program

€xecutes.

58

Architecture

Transaction A;
Example B ("thisone");

// start of atomic action A
A.Begin();

// invocation of operation, OP, on object B
B.op();

if (...) A.Abort(); // abort the transaction
else A.Commit(); // or commit the transactio

Figure 3-5: An Example Transaction
Line 1: An instance, A of class Transaction is created.
Line 2: An instance, B, of class Example is created. The string “thisone” is used
at object creation time to access the permanent object by that name. As B is
created, the following functions are performed:

o the lookup operation of the Naming service is invoked, passing the string
“thisone” to obtain the uid of the object;

» the locate operation of the Locating Service is invoked to find the Object
Store containing the object state of thisone; and finally

o theactivate operation of the Object Store is invoked at the host identified
by the location service; the activate operation is responsible for activating
the object and returning a communication identifier (CID) suitable for
RPC communications.

Line 3: A’s begin operation is called to start the transaction.

Line 4: The operation B.op(...) is invoked. The stub version of this operation
which is linked with the application causes an RPC call to be made using the
CID established at line 2. This invocation will succeed as long as there are no
failures and there are no conflicting invocations on B already in progress. If
the invocation is refused due to a conflict, then either it could be re-tried or
the entire transaction 4 could be aborted.

Line 5: The action may be Aborted under program control, undoing all the
changes to B.

Line 6: The Commit operation is responsible for committing the atomic action.
This is achieved by invoking the prepare operation of B (during phase one) to

enable B to be made stable. If the prepare succeeds, the commit operation of

59

Architecture

B is invoked (during phase two) otherwise the abort operation of B is invoked
as the action aborts. These three operations are provided by B especially for

transaction termination.

This example illustrates the kind of interface a programmer might use to access
the facilities of the transaction services module. The objects in the example are

accessed uniformly without regard to their location or other properties.

3.2.6 Replication and Migration Transparencies

The architecture discussed so far possesses the functionality to support all the
forms of transparency described in Chapter Two except for replication and
migration transparency. These facilities build upon the previous services, typically
augmenting the communications service to accommodate multicast

communications with specialised protocols for consistency maintenance.

A considerable body of knowledge has been developed on the application of
data replication techniques for transaction systems. Such techniques can be
adapted to support replica transparency for objects. For example, the available
copies approach to replica consistency maintenance — where updates are
performed on all available copies of data — can be adapted for replicated objects as
follows: the name lookup would return a list of UIDs of object replicas; all of these
replicas can be activated by the client performing object activation. Similarly, an
object invocation could be converted to invocation of all the activated replicas by
the client stub. Object replicas that are found to be unavailable can be excluded
from the list maintained at the Naming service. Application level programs can be
developed for excluding and joining object replicas. Such techniques can be used
to provide the one copy serializability property ensuring that replicas appear to
behave like a single object thus achieving replication transparency [Bernstein et al

87]. To support object migration, it is necessary is to:

e transmit the state of the object to the destination in a passive form;

® unpack the contents of the received message into the state variables of a new

object;
® associate the necessary methods of the object with this state; and

® update location bindings.

60

Architecture

One design for a migration mechanism would involve enhancing the
functionality of the activate operation, supplying it with the identity of the
destination host as well as the object UID, thus permitting the object server to be
created away from the object store. Initial placement of objects is a useful but

limited form of object migration.

A more dynamic mechanism could move an object that was already active,
possibly involved in ongoing transactions. Consider the following example. A
client has invoked some operation op on an object z which happens to be remote.
The operation z.op requires a single parameter, another object x of type Xtype. The
server executing the operation z.op needs to invoke an operation of object x; for
this purpose the client has passed the object x to the server as a part of the RPC
message. The server will either have to recreate x (if x is passed by value), assuming
it can determine the type ot x, or refer back to the client’s copy of x (if x is passed by
reference). Often the type information necessary for object creation is not easy to
obtain - the situation becomes complicated when Xtype has subclasses; say Xtype
has a subclass Yrype, then the server has to determine whether the actual object
received as a parameter is an instance of Xtype or Ytype (inheritance rules permit x
to be either). Although solutions to this problem can be found, the general
observation is that the existence of a class hierarchy, and in particular the use of
inheritance, can complicate the mechanization of object migration schemes. These
problems have not arisen as a consequence of the architecture presented here,
rather they are inherently difficult to solve because of polymorphism in the

programming language.

Two further issues concerning object migration must be resolved: concurrency
control and updating location bindings. An object is responsible for enforcing its
own concurrency control policy - this can to a large extent solve the problem of
migrating concurrency control information with the object, since the “concurrency
controller™ of the object will move with the object. The subject of updating
location bindings is somewhat more involved. Suppose that a client wants to access
an object s. This object s is normally resident at node N;, but has migrated and is
currently active at Nj. A simple way of making migration information available to
other clients is to leave a “forwarding address™ at Nj so that any access to s at Nj i1s

automatically forwarded to N;. This scheme works satisfactorily if objects have

61

Architecture

“home sites” where they are normally resident, although chains of forwarding can
become bottlenecks to both performance and reliability. More complex location
finding mechanisms are required if node failures are considered. The Emerald
system [Black et al 87] attempted to solve the location problem for migrating object
using a combination of forwarding addresses and broadcasting. This combination
worked tolerably well for Emerald but does not scale well to wide area networks
due to the reliance on broadcast communications [Barak and Kornatzky 87]. A
more robust solution involving update to the distributed naming service must be
employed for better fault-tolerance. It is clear from these comments that if
migration of objects is a goal of the design of a distributed object system, the

implications of migration must be considered in the design of the location service.

3.3 Support Service Interfaces

Given the architectural framework described in this section, it is now possible
to describe the detailed interfaces to the various services necessary for a complete
system. The remaining sections of this chapter describe details of the operations

provided by the various components identified in the architectural discussion.

3.3.1 Naming Interface

® Lookup (string) -> UID
Maps the given string to a UID using some explicit mapping which was
entered previously using Add. The structure of the string may interpreted by
the naming service to define a naming context.

® Add (string, UID)
Adds an explicit mapping from the string to the UID.

® Delete (string, UID)
Removes an existing mapping from the given string to the UID.

3.3.2 Locating Interface

® Locate (UID) -> Host
Returns the host (name, address, or other identity) which contains the object
store in which the object designated by UID is stored.

e Enter (host, UID)
Enters/replaces a location mapping from UID to host.

62

Architecture

e Delete (host, UID)
Removes a mapping from UID to host.

3.3.3 Group Communications (RPC) interface

Client Interface:

e call (CID,...)
Sends a message to the server process indicated by the communications
identifier, CID, and awaits a reply.

Server Interface:

e get request (CID, ...)
Blocks until a message is received on the channel indicated by CID, then

returns the message.

e put_reply (CID, ...)
Sends a reply message to the client whose request was most recently
dequeued.

As stated above, there must also be operations to establish and break

connections which are available to both client and server.

Communications Quality of Service Requirements

When an RPC call operation is invoked, what quality of service is required to
meet the demands of the transaction services module? Using well known protocols
such as TCP/IP [Leiner et al 85] [Postel 81a, 81b] or ISO OSI protocol stacks
[ISO7498] [ISO8073], primitive unreliable messaging systems can be made
reliable. For simple client-server interactions without hard real-time
requirements, a reliable RPC service built upon reliable datagram service will
suffice. In particular, session management can be quite limited without adversely
affecting the performance or utility of the RPC service. However, when replicated
objects are actively involved as servers, multicast communications will be required
(to reach all of the replicas) and more stringent reliability and ordering constraints
may be imposed. In addition, if migration of active objects is considered,
up-to—date location information may need to be acquired before an invocation

1.e., RPC call, can be successfully completed.

63

Architecture

3.34 Object Storage Interface

The implementation of the persistence for objects requires an object storage
system capable of providing stable storage functions. In the client-server
environment in which the transaction management system runs, there are two
interfaces to the object store: one as seen from the client, and one as seen from the

server. These interfaces are detailed below.

The Client Interface
On the client side, the persistent object class must take the following actions:

e When an object first comes into scope in the application program, a
connection must be established to a server which can service operation
invocations for this object.

e When the destructor for an object is invoked, the client can discard the
connection to the object server.

e All other object operations are passed directly to the server by the RPC

mechanism.

To provide this behaviour, the following operations are required in the client

interface to the persistent object class:

e Activate (UID, location) -> CID
The Activate operation takes as input parameters the UID of an object to be
activated, and, optionally, the location at which the server should execute. It
is up to the implementation of Activate to locate the object which may be at
any site in the network. The result of the operation is a communications
identifier. The form of this identifier is dependent on the particular RPC
interface chosen.

® DeActivate()
The DeActivate operation destroys the connection to the server.

The Server Interface

Persistent object operations, including constructor operations, are executed
inside the server for the persistent object. The server is initially created when an
application program executes the constructor for the stub object corresponding to

some persistent object (see the operationactivate above). After the server process

64

Architecture

is created, the constructor in the server must actually load the state of the persistent
object into memory to prepare for future operation invocations. The actions taken
by the server in response to the operations of the persistent object class are detailed

below.

There must be at least two forms of constructor for persistent objects: one for
constructing a memory image of an existing object, the other for creating a new
instance. Both forms “construct” an object in memory. The form for existing
objects restores its state from the passive image in the object store. The form for
new objects simply initializes the state of the new object. Both constructors also
record that the object is part of the current transaction (if any) so that appropriate

action can be taken when the action commits or aborts.

When a transaction commits, the persistent object operation, Prepare, is called
first according to the two-phase commit protocol. The persistent object must write
its state provisionally to the object store. If the prepare phase is successful, the
Commit operation is called and the provisional new version of the object must

atomically replace the old version.

If the transaction aborts at any stage, the persistent object operation, Abort, will
be invoked. This operation must inform the object store that the provisional

version of the object, if any, is not valid.

Finally, the operation, UnCatalog, removes an object from the permanent

Store.

From these operation requirements, we derive the following interface for the

object store:

® ReadState (UID) —=> ObjectState
The ReadState operation takes as input a UID specifying the object to be
read. The result of the operation is an ObjectState object suitable for use in a
RestoreState operation.
® ProvisionalWrite (ObjectState)
The ProvisionalWrite operation copies the ObjectState to stable storage.
e CommitState()
The Commit operation causes a provisional version of the object to replace

the old version, if any.

65

Architecture

® Create (UID, ObjectState, < Location>)
The Create operation Stores a new object in the permanent store with the
identity given by UID. The (optional) location information indicates the host
machine at which the object will be stored. The default location will be
selected by the object storage system (usually the ‘nearest’ host).

e Remove ()
The Remove operation deletes an object from the permanent store.

Client Interface:

® Activate (UID) -> CID
Creates (or connects to) a server for the object designated by UID and
returns the communications identifier for that server.

Server Interface:

e Create (UID, ObjectState)
Stores a new object on stable storage. The ObjectState may be subsequently
retrieved using UID.

® Destroy (UID)
Removes the ObjectState designated by UID from the object store.

e ReadState (UID) -> ObjectState
Reads the saved state of the object designated by UID and returns it (as an
instance of the class, ObjectState).

e WriteState (UID, ObjectState)
Over-writes the existing stable state of the object designated by UID.

e WriteShadow (UID, ObjectState)
Creates a new, temporary version of the object designated by UID on the
stable store. The old state is still stored in the object store and subsequent
attempts to read the state will get the old state.

® DeleteShadow (UID)
Removes the ObjectState associated with the new, temporary version of the
object designated by UID. 'the old state of the object is not affected

e MakePermanent (UID)
Causes the temporary version of the object designated by UID (previously
written by WriteShadow) to replace the old state. Subsequent attempts to
read the object will return the new state.

66

Architecture

3.4 Architectural Summary

The mechanisms supporting the distribution transparencies outlined in
Chapter Two can be implemented in a variety of ways. The organisation of the
support mechanisms forms the basic architecture of the system. The architecture
proposed in this chapter provides the necessary environment for transaction
support, persistence and basic communications. The detailed structure of the
transaction services component of this architecture, the programming interface to

the system, is the subject of the next chapter.

67

A Class Hierarchy for Actions

4 A Class Hierarchy for Actions

“I am perfectly convinced that there will
come a time when it will be recognized
that programming is one of the more
difficult branches of applied mathematics
because it is also one of the more difficult
branches of engineering, and vice versa.”
Edsger W Dijkstra [Dijkstra 1975]

“It happens that programming is a relatively
easy craft to learn. Almost anyone with a
reasonably orderly mind can become a fairly
good programmer with just a little instruction
and practice”

Joseph Weizenbaum [Weizenbaum 1976]

4.1 Introduction

To perform object-level transaction processing, an applications programmer
must have a means for accessing and manipulating persistent objects through
atomic operations (or operation sequences) i.e. transactions. A hierarchy of object
classes can be designed to provide a programming interface which collects the
behaviour, that is, the operations, into coherent abstractions which support the
distribution and persistence transparencies. These abstractions are the
programming language manifestation of the transparencies. Higher-level
abstractions can be derived by examining common behaviour of the interface
abstractions. This chapter explains the development of such a programming
interface, starting with basic concepts of recovery, persistence, concurrency control
which directly support the distribution and persistence transparencies. The
discussion continues with the development of a complete class hierarchy
incorporating transaction management and interfacing to the architecture
described in Chapter Three. In fact, the resulting class structure is not a strict

hierarchy, since it is not rooted in a single class. It forms a directed graph

68

A Class Hierarchy for Actions

describing a partial order among the classes. For simplicity however, this class

structure will be referred to using the conventional term, class hierarchy.

This chapter is divided into five parts followed by a brief concluding section.
Section 4.2 describes the evolution of the class hierarchy from the desired
properties at the leaves of the hierarchy through the necessary supporting classes to
the root classes, forming a complete hierarchy of property classes for the support of
distribution and persistence transparencies. Section 4.3 explains the object class,
Transaction and its relationship to the property classes. The development of this
class library, summarised in section 4.4, is interesting in itself as an example of an
approach to object-oriented design. Section 4.5 of this chapter explains the
detailed interfaces and semantics for operations of the classes outlined in the first
part of the chapter. These details provide a complete description of the externally

visible behaviour of the classes.

4.2 Object Properties

Object-oriented programming languages provide a means for programmers to
express common operations of a collection of types in the form of an abstract class
definition. An object-oriented programming language like C+ + [Stroustrup 86]
can be extended to include abstract concepts, such as persistence, by defining
classes that provide these properties. New classes of objects, derived from these
property classes will inherit the behaviour of their parent classes. There are several

basic properties that can be provided to the programmer in this way:

® identity - for shared or persistent objects, a unique identity must be
established. Local, transient objects may not need this “unique identity”
property.

® naming — naming involves a mapping from strings to unique identities. These
name mappings might not be unique: a single unique identity may have
several names associated with it, and a single name might designate different
objects in different contexts or at different times.

® recovery - the ability to recover the state of the object to the boundary of the
smallest enclosing recovery region.

® persistence — objects with the persistence property will retain their state on
stable storage even after the program which created them has terminated.

69

A Class Hierarchy for Actions

e concurrency control — shared objects, whether persistent or not, recoverable
or not, may require concurrency control.

Each of these abstract properties may be used independently of the others and
of transactions. The properties can be intermixed as all combinations have
plausible applications. However, in the context of a transaction system, the
operations of these abstract classes must be invoked according to a strict protocol to
guarantee the three transaction properties of serialisability, atomicity and

permanence of effect.

Each of these basic properties can be represented by an abstract class which
conveys some behaviour to the classes of objects which inherit from them. Other
distribution transparencies such as replication, migration, access and location must
be dealt with at a lower level because they involve changes to the operation
invocation mechanism rather than direct manipulations of an object. As
mentioned in Chapters Two and Three, access and location transparency are
typically provided by extending the programming language through the use of an
RPC pre-processor. Replication and migration transparencies are provided by
additional mechanisms layered over the basic access and location transparency
mechanisms. In the sections that follow, the “inheritable” properties, identity,
naming, recovery, persistence and concurrency control, and their specific behaviours

are described.

4.2.1 Object Identity

Object identity is fundamental to sharing and persistence, and hence a
consistent view of object identity is critical to the integration of database-style
persistence into programming languages. In their excellent paper on the subject of
object identity, Khoshafian and Copeland state, “Identity is that property of an
object that distinguishes it from all other objects. Most programming and database
languages use variable names to distinguish temporary objects, mixing
addressability and identity. Most database systems use identifier keys (i.e.,
attributes which uniquely identify a tuple) to distinguish persistent objects, mixing
data value and identity. Both of these approaches compromise identity”
[Khoshafian and Copeland 86]. The authors go on to discuss the impact of identity
on the semantics of object equality and conclude that, “The most powerful
technique for supporting identity is through surrogates [Abrial 74] [Hall et al 76]

70

A Class Hierarchy for Actions

[Kent 78] [Codd 79]. Surrogates are system-generated, globally unique
identifiers, completely independent of any physical location” [Khoshafian and
Copeland 86]. This assertion about the usefulness of surrogates applies to the
construction of reliable distributed systems: for persistent objects to be retrieved,
they must have an identity which is unique in space and time, and independent of
the state of the object. For an object to be shared by two or more transactions, the

object must have a unique identity which is independent of the state of the object.

A class of surrogates called unique identifiers (UIDs) must be defined. One
way to generate identifying numbers which are sure to be unique in a distributed
system is to concatenate a timestamp and some kind of unique host-identifier.
Thus, each host can produce unique identifiers autonomously without the
overhead of consulting other hosts in the system. This method for construction of
identifiers will not defeat the condition of complete independence of physical
location laid down by Khoshafian and Copeland as long as the host information in

the UID is not relied upon to locate objects.

The adoption of globally unique identifiers for objects results in a two-level
addressing scheme for objects. Objects which are active in memory will necessarily
be addressed using machine addresses (unless the machine supports direct access
via UID such as the Recursiv[Harland and Beloff 87] [Harland 88]). Objects which
are remote or passive must be addressed by UID since they have no meaningful
machine address in the local context. Emerald [Jul et al 88] and Amber [Chase et al
89] hide the distinction between local and global references by a combination of
compiler-inserted code and run-time support. The possibility of hiding this
distinction is only available because these systems employ special programming
languages for which customised compilers and run-time support can be
constructed. In SOS [Shapiro et al 89] as in this work, the distinction is made visible
to programmers although support tools are provided to make manipulation of the

two types of addressing as straightforward as possible.

The class UID provides these unique surrogates. All objects in the system
which can be identified by a UID can be grouped together into a separate class,
Identified. Thus, “identified objects” are just those objects that have UIDs.

71

A Class Hierarchy for Actions

4.2.2 Object Naming

While system-generated unique identifiers are important as a means of
unambiguous identification of objects, they are not especially convenient for
programmers to use. Programmers prefer to refer to objects by names like
“/shared/census/data/1989” or “General Ledger”. Naming objects with
human-readable names, typically managed by a name server, can be expressed in
the class hierarchy as a new class, derived from the class UID, called NamedUID.
An instance of the class NamedUID is an object which represents the mapping
from a string name to a UID. Because the class NamedUID is derived from UID, it
is a UID and can be used in any context in which a UID is required (see Figure 4-1).
The implementation of the class NamedUID will use a name server as describedin
Chapter Three.

Identified UID

NamedUID

Figure 4-1: Abstract Classes for Object Identity and Naming

4.2.3 Persistence, Recovery, Concurrency Control

The remaining properties desired for programming persistent objects using

transactions can be manifest by object classes as follows:

e Persistence can be represented by an abstract class Persistent, which provides
operations to manage the activation and update of stable (passive) copies of
an object i.e., a stable storage interface;

® Recovery can be represented by another abstract class Recoverable which
provides operations to define the start and end of recovery regions [Lee and
Anderson 90] and to manage the restoration of consistent object state in the
event of a fault or explicit abort;

e Concurrency control for transaction-level concurrency can be represented
by an abstract class Shared which provides operations to enforce some
concurrency control protocol such as strict two-phase locking or timestamp
ordering.

72

A Class Hierarchy for Actions

Figure 4-2 illustrates some possible derivations including:

(A) asimple persistent object class,
(B) a temporary recoverable, concurrency—controlled object class, and

(C) a persistent, recoverable, concurrency-controlled object class.

G

-
\ PR /

N
/’ (User-Defined Class \,

Figure 4-2: Some possible derivations from object hierarchy
4.2.4 Persistence

Creating a class Persistent which confers the property of persistence on classes
of objects derived from it simplifies a programmer’s model of maintaining
permanent state. By defining a class of objects that inherits this property, a
programmer creates a class of objects that automatically maintain their state across
program executions. However, just as files and relations have names that identify
the collections that they represent, and elements of files and relations have keys (or
seek keys) that identify the individual elements, persistent objects require an
identity which can be interpreted across program execution boundaries. Hence,
the class Persistent must be derived from the class Identified (see Figure 4-3).

73

A Class Hierarchy for Actions

Identified UID

> __.___:—.\\\
P T e e —— ~
"— —— \
/// \\\\\\)
{ User-Defined Classes /V
AN ~~
~ -~

T v ——

Figure 4-3: Transaction object hierarchy(s) including the concept of identity

There are many aspects to the management of persistent objects: when is the
persistent state updated? How is the object state recorded? How long is an object
persistent for? That is, are objects explicitly deleted or is deletion automatically
managed as with a garbage collector? Some of these questions affect the interface
and hence the use of persistent objects; others are only of interest to implementers.

Addressing these questions in turn:

e When is persistent state updated?

This question has a significance in transaction-based systems that may not
otherwise be apparent. In a non-transaction system, persistent object state
can be viewed as being continuously updated. That is, the permanent state is
always the same as the transitory state. When shared access to permanent
state is permitted, this definition becomes somewhat ambiguous and when
atomicrecoveryis provided, it may lead to difficulties such as cascaded aborts
of transactions that have “viewed” uncommitted changes. A preferred
approach for transaction-based system is that the permanent state of an
object reflects the last “committed” state of that object. While a transaction
is in progress, the permanent state may be undefined. Moreover, the state of
an object cannot be assumed to have changed permanently before the end of
a transaction, even if the “in-memory” copy of the state has been deleted.
The question can be answered simply for a transaction system: the permanent
state of an object is updated only upon completion of a transaction.

e How is the object state recorded?
Since the act of saving (restoring) the state of an object requires knowledge of

74

A Class Hierarchy for Actions

the semantics of the object, state capture (restoration) must be explicitly
programmed by the class developer. Once the save and restore operations
have been programmed, they will be invoked automatically at appropriate
times according to the transaction protocol. The interaction of the
persistence operations with transactions is discussed fully in section 4.3.1.

The choice of mechanism for recording object state is an implementation
issue with important consequences for the use of the object. As observed
elsewhere [Parrington 88][Mohan et a/ 89][Rothermel and Mohan 89],
concurrency control policies that permit multiple concurrent writers for an
object cannot employ state-based recovery or persistence mechanisms.
There is simply no time at which the state of the object can be consistently
captured vis a vis the concurrent updates. In this situation, an
operation-based scheme may be employed. Hence, at least two variants of
Persistent must be provided:

 StatePersistent — a simple state-based variant of the class Persistent for
which the class implementer must provide operations to save and restore
the entire state of the object. This classis suitable for use with objects that
use an exclusive writer policy for concurrency control.

o LogPersistent ~ a log-based variant of Persistent for which the class
implementer must provide “undo-" and “redo-" operations associated
with every operation exported by the class. This class is suitable for
concurrent writers.

e When / how are objects deleted?
This important issue has only a minor impact on the interface for persistent
objects: the availability of an explicit delete operation. However, the choice
of implicit (garbage collected) vs. explicit deletion has a major impact on the
use and usefulness of the system. The management of a global heap of
persistent, shared objects in a distributed system is a topic of intense research
interest at present as evidenced by the wealth of current research in this area
cf., [Atkinson et al 88] [Bailey 89] [Brown 87, 89]. This is a global issue
requiring an architectural solution like the issues discussed in Chapter Three.

The provision of an abstract class for persistence provides a clear, simple

mechanism for programmers to express this property and to control the behaviour

75

A Class Hierarchy for Actions

of save and restore operations. The discussions that follow include both
state-based and operation-based techniques. At one level of abstraction, the
choice of technique used to capture the permanent state is unimportant. However,
the choice must still be expressed and indeed, different “non-functional”
properties accrue to the two techniques (as discussed more fully in the next
chapter). It is a feature of the inheritance mechanism provided by object-oriented
programming languages that the abstract property of persistence can be expressed
as a class and applications can operate on objects at this level of abstraction. At the
same time, the specific techniques employed to maintain the state, such as,
“before-image” snapshots or operation logging, can also be expressed as classes
and can be related to the abstract concept of persistence through inheritance. The
abstract class Persistent conveys the behaviour that the permanent state of an object
is updated at the successful completion of a (top-level) transaction, or, in the event
of a transaction abort, reverts to the state it had at the start of the transaction. The
mechanism by which this behaviour is achieved is determined by the subclass of
Persistent, in this case, either State Persistent or LogPersistent. Unfortunately, these
names are somewhat misleading since the aim in both cases is to cause the state of
the object to be persistent. The two sub-classes are discussed in turn in the sections
that follow.

4.2.5 State-Based Persistence Mechanisms

Since the state of an object will be maintained on permanent storage
independent of the execution context in which it was created, a mechanism must be
provided to convert an active object into a passive state (e.g., a bit-stream). There

are several aspects to this conversion:

e Since the passive state of the object will be re-activated in a different
execution context, memory pointers and other context dependent data must
be converted to a context independent form (e.g., UID).

e Since the passive state of the object may be re-activated on a machine of a
different architecture, the state should be saved in an architecture neutral
form analogous to “network byte—order”[Sun 88] and possibly including
word size and floating-point number representation encoding, depending on
the range of architectures involved.

76

A Class Hierarchy for Actions

To encapsulate the semantics of an object whose state can be converted back
and forth from a passive, context independent representation to an active,
“in-memory” representation, a new abstract class, CheckpointObject is defined.
The implications of deep-copying vs. shallow-copying in the process of state
capture and the related issues of object identity and equality are explored in depth
in [Sollins 79]. While automated techniques for “passivating” an object which take
account of sharing semantics have been proposed, no robust, general technique
has been validated which does not require that programmers be involved in the
translation of abstract objects to a passive form. In an object-oriented system, this
translation would take the form of object operations for saving and restoration of
state. Hence, in the system described in this thesis, the capture and restoration of
the state of an object are explicitly programmed by the class developer for each
class of objects derived (directly or indirectly) from the class CheckpointObject. An
additional class is required to represent the passive state of these objects,
ObjectState. Members of class CheckpointObject can save their current state in an

instance of class ObjectState or restore their state from an instance of class

ObjectState (see Figure 4-4).

Identified CheckpointObject

>
Named-UID

LogPersistent

StatePersistent

Figure 4-4: An object hierarchy including variants of Persistent

The class StatePersistent provides the property of persistence to any other class
derived from it. However, inheriting from the class StatePersistent imposes
obligations on the sub-class implementer as well as providing benefits. Since
StatePersistent inherits from CheckPointObject, the implication is that the state of
any object derived from StatePersistent must be “checkpointable”. That is, the

77

A Class Hierarchy for Actions

operations SaveState and RestoreState must be provided by the sub-class
implementer. Furthermore, for StatePersistent to “know” whether to update the
persistent state in stable storage, the sub-class implementer must provide an
indication of whether or not the object state has been modified in the course of
execution of an application (or some portion of the application). In some
object-oriented programming languages, there is an explicit syntax for indicating
which operations modify the state of an object and which operations are read-only
(e.g., const in C+ +). In other languages there is no such explicit syntax. In any
case, it is a small matter for the implementer of a sub-class to add an extra
operation invocation to notify the superclass StatePersistent whenever the state is
about to be modified.

4.2.6 Log-Based Persistence Mechanisms

A variant on simple state capture for persistence, called Write-Ahead Logging
(WAL) [Moss 87] [Rothermel and Mohan 89] [Mohan et al 89], employs an
auxiliary data structure, the log, to improve flexibility and performance of
persistent object management. As with the simpler StatePersistent class,
LogPersistent objects must also provide a means for state capture in some
architecturally neutral form, that is, they must be CheckPointObjects. However, in
WAL schemes, operations are logged as they occur and it is only the operation log
which must be synchronously flushed to stable storage at transaction commit time.
The actual state of the object can be moved from volatile to stable storage as time
permits. If a node crash occurs before the state is properly moved to stable storage,
the correct, consistent state of the object can be deduced by interpreting the log
entries. This ability to delay writing the object state to disk can yield substantial
performance benefits over the simple state capture scheme. Moreover, since the
log includes information about which transactions have committed and which
uncommitted operations have been performed, log-based persistence schemes
can be used for objects which have multiple concurrent writers. Hence, a wealth of
new concurrency control schemes can be employed when log-based persistence is

provided.

78

A Class Hierarchy for Actions

4.2.7 Recovery

The ability to recover from an erroneous state is, like persistence, an abstract
concept that can be realised in many ways. The definition of the Recoverable class is
formulated to encompass various recovery techniques (e.g., state—based recovery,
operation logging) without modification (i.e., these would simply be different
implementations of the interface). Its operation definitions refer only to
establishing a recovery region, reverting to the state at the start of a recovery region,
and discarding a recovery region [Lee and Anderson 90]. In the context of
transactions, these operations would be invoked at action begin, abort and commit
respectively. As with the class Persistent, the class Recoverable has several
subclasses each of which employs a particular technique to provide the abstract
behaviour of recovery. Again, it is possible for many users of Recoverable objects to
operate entirely at this level of abstraction without ever knowing which technique
was employed for which objects. The sub-classes of Recoverable which are
discussed in the next sections include:

e a state—based recovery class StateRecoverable

® an abstract class OpRecoverable, covering all operation-based techniques
(the existence of this class, grouping all of the operation-based recovery
schemes together, is an implementation consideration which is discussed
below)

e three operation-based recovery classes derived from the class
OpRecoverable: UndoRecoverable, RedoRecoverable, and CompRecoverable.

4.2.8 Saving and Restoring Object State for Recovery

For state-based (backward) error recovery there is a requirement to capture
the state of an active object at various points in its execution. The same
checkpointing operations required to support the persistence mechanism can be
used to save and restore the state of the object for state-based recovery. This
relationship is explicit in the class hierarchy by the fact that the class
StateRecoverable inherits from both Recoverable and CheckPointObject (see Figure
4-5).

79

A Class Hierarchy for Actions

ObjectState,

Identified @ CheckpointObject
Named-UID

[2

OpRecoverable

StateRecoverable RedoRecoverable
UndoRecoverable CompRecoverable

Figure 4-5: Class hierarchy including variants of Recoverable

Because StateRecoverable employs the CheckPointObject operations SaveState
and RestoreState to “programmatically” capture the state of an object, the actual
state that gets saved is determined by each class implementer. A large overhead
may be associated with capture of the “before image” for a large object. A
potentially faster means of capturing the state has been proposed: by augmenting
the operations of the virtual memory system of the host operating system, it may be
possible to “snapshot” the current memory state of an active object [Traiger 82].
This method, while faster, does make the recovery state dependent on both
machine architecture and process context. Migrating an object whose recovery
state is so captured could be extremely difficult. There are also potentially large
recovery times required when different objects share the same page. However, if
migration of active objects is not considered and page placement issues are
resolved, the shadow paging technique may well be the most efficient way to effect

state-based recovery.

The operation-based recovery classes share many implementation
requirements such as the ability to capture a sequence of operation records and to
process them in order at appropriate phase changes in transactions. These

common implementation requirements are captured in the class OpRecoverable.

The class UndoRecoverable implements an update-in—place policy in which an
object’s state is updated directly by the operations of the object class
implementation, but in addition, operation records are created and logged which
can “undo” the effects of these operations should it become necessary toreverttoa

prior state.

80

A Class Hierarchy for Actions

The class RedoRecoverable implements a deferred update policy in which
operations on an object do not actually update the state of the object until the
recovery region is successfully exited (i.e., transaction commit). Until that point,
the current state of the object is determined by the initial state plus the set of “redo”
operations which have been logged against it since the establishment of the
recovery region. This is a conservative policy which may be applicable in restricted
circumstances when “undo” is impossible e.g., the missile-firing example given in

Chapter Two.

The class CompRecoverable implements a forward recovery policy for which
compensating actions are recorded corresponding to each operation on an object.
If recovery becomes necessary, the compensating actions are employed to return
the object to a consistent state. The only difference between the compensating
action and the UndoRecoverable class is in the semantics of the state of the object
after recovery: the UndoRecoverable class reverts to a prior state — specifically, to
the state which the object had at the start of the recovery region. The
CompRecoverable class restores the object to some consistent state, although it may
not be the same as the state at the start of the action - indeed, it may not be a state

the object has ever been in before i.e., not_necessarily a prior state.

Note that the operation-based classes do not inherit from CheckPointObject
and hence there is no requirement for these classes or their descendants in the class
hierarchy to implement the state capture and restoration routines SaveState and
RestoreState. Instead, the operation-based recovery classes impose a different
obligation on the sub-class implementer: the implementation and registration of

appropriate undo, redo, or compensating actions.

4.2.9 Concurrency Control

The most widely studied form of locking is conservative two-phase locking
[Bernstein et al 87]. Many alternatives or extensions have been proposed e.g.,
non-strict two—phase locking, time-stamp ordering, optimistic two-phase locking.
While these alternative locking strategies may be excellent for specific classes of
objects, they all suffer some disadvantage in recovery (e.g., cascaded aborts),
distribution (e.g., central timestamp generator) or correctness (e.g., by breaking

serializability or atomicity) that limits their general applicability. Since

81

A Class Hierarchy for Actions

conventional transaction processing systems are not flexible enough to vary the
concurrency control method by object class or workload, they typically adopt a
single general purpose policy such as two-phase locking. By encapsulating the
semantics of concurrency control in an object class, Shared, as in Figure 4-5, it is
possible, using inheritance and polymorphic operations, to gain back the flexibility

to vary the concurrency control policy by object class.

Identified ObjectState

Cum >

CheckpointObject

OpRecoverable

StateRecoverable RedoRecoverable
UndoRecoverable

Figure 4-6: Class hierarchy including locks

StatePersisten

LogPersistent

CompRecoverable

To define a concurrency control class that supports two-phase locking, it is
necessary to define a Lock class. The Lock class encapsulates the lock conflict
information and implements a specific locking policy (e.g., simultaneous read,
exclusive write). Even within the protocol of two-phase locking, there may a
requirement for different lock types for different classes of object. This
requirement is met by allowing new Lock classes to be derived from the basic Lock
class. These derived classes may inherit from Recoverable or Persistent if these
properties are desired for the Lock class. The concurrency controller embodied by
the Shared class can continue to manage operation invocation conflicts by invoking

polymorphic operations defined by the basic Lock class.

4.3 Transactions

In the spirit of the object programming model, transactions can be defined by a
class of objects exporting the operations, Begin, Commit and Abort. The question
is, given the hierarchy shown in Figure 4-6, where should such a class be derived?

In conventional transaction systems, there is a certain amount of state associated

82

A Class Hierarchy for Actions

with each transaction which must be recorded on stable storage. This data,
sometimes called the intentions list, is usually written to a transaction log [Bernstein
et al 87] which contains a (roughly) time-ordered sequence of transaction records.
In the model presented here, the class Transaction can simply be derived directly
from the class Persistent (see Figure 4-7), the intentions list being captured as the
permanent state of the transaction record. The transaction data itself is not
recoverable so there is no need to derive from the class Recoverable. Since the
information associated with each transaction is encapsulated in a separate object,
there is no need to apply concurrency control to these objects (unlike a transaction
log). In effect, the concurrency control problem has been shifted to the object

store, where concurrent accesses to persistent object states are serialised.

Identified ObjectState

Cum >

CheckpointObject

StatePersisten

StateRecoverable

OpRecoverable
RedoRecoverable

UndoRecoverable

LogPersistent

CompRecoverable

Figure 4-7: Class hierarchy including transactions
4.3.1 Integrating Transactions with other classes

The properties exported by classes Persistent, Recoverable, and their
descendants in the class hierarchy are useful in their own right. As has been shown
by the positioning of the class Transaction, a programmer might define a class of
persistent objects which are not shared or recoverable. The concept of a
transaction is a boundary definition, a grouping of operations. In a transaction
processing environment there is a definite protocol imposed on the invocation of
the operations of these property classes. The Begin operation of the class
Transaction, defines the starting boundary of a recovery / atomicity / persistence

83

A Class Hierarchy for Actions

region. All operations between the start and end of the transaction on Persistent,
Recoverable or Shared objects are grouped together to provide the atomicity of
transactions. When an (top-level) transaction commits, for example, locks should
be released (an operation of the Shared class), permanent state should be recorded
on stable storage (an operation of the Persistent class) and recovery state should be
discarded (an operation of the Recoverable class). In fact, all the operations of these
classes should be invoked only in respect of state changes to the enclosing
transaction (i.e., an individual object should not release locks mid-transaction).

How can we arrange for the correct operations to be invoked at the correct times?

. CheckpointObject
Identified ObjectState
@ Named-UID

StatePersisten
StateRecoverable OpRecoverable

RedoRecoverable
CompRecoverable

Figure 4-8: Complete class hierarchy!

LogPersistent

UndoRecoverable

4.3.2 Detecting Transaction State Changes

One possibility for co-ordinating the operations of the transaction with the
operations of the property classes, would be to explicitly insert the necessary
invocations on the property classes with the transaction invocations. For example,
after invoking Transaction.Commit, the application could invoke each of
Shared.ReleaseAllLocks, etc. If application programs were actually written in some
higher-level language which was translated down into C + +, this option might be
acceptable. However, in the absence of such a preprocessor, it is necessary to

devise some way to trigger the correct operations “automatically” for classes

1 Note that UID and NamedUID are shown in their actual position in the hierarchy as
subclasses of CheckpointObject. This is because these classes are “checkpointable” and
used in the implementation of state-based classes.

84

A Class Hierarchy for Actions

derived from these property classes (e.g., StatePersistent). In any case, the
transaction object must record the identity of the objects which were affected by
the action in the intentions list so that server faults during the commit process can

be tolerated.

After the start of a transaction, every object upon which operations are invoked
becomes part of the action group for that transaction. When the transaction
completes, either successfully or unsuccessfully, there is a need for the object of
class Transaction to inform the members of the action group of the result of the
transaction. Since the set of objects accessed between the start and end of the
transaction will be determined by the control flow of the application and cannot
generally be determined statically, Transaction objects will maintain the action
group. At the start of a transaction, the action group is empty. As operations are
performed on objects, those objects must be added to the set to be informed at
transaction completion. This implies that an operation of the class Transaction
(e.g., AddToActionGroup) gets invoked each time any operation is invoked on

some application object which is derived from a “property” class.

As mentioned above, each of the classes, Persistent, Recoverable and Shared and
their descendants, already imposes a requirement on sub—class implementers to
notify them of key events. For example, the state-based persistence class
State Persistent requires a sub-class implementer to indicate the operations that will
modify the state of the object; the lock-based concurrency control class Shared
requires a sub-class implementer to take an appropriate lock at the start of every
operation. These super—class operations can, in addition to providing their stated
behaviour, also notify any transaction in progress that the object has been accessed,
is participating in the transaction, and should be notified about transaction state
changes. In this way, without additional effort on the part of application class
developers, objects can be dynamically added to the action group maintained by

the transaction object.

Although some objects may be accessed without being added to the action
group, those accesses are by definition accesses that do not affect transaction
semantics. For example, for a class of objects derived from Persistent but not from
Shared, read operations will not notify the Persistent class (it is only notified if the

state is modified). However, transactions, whether committed or aborted, have no

85

A Class Hierarchy for Actions

effect upon read-only access to persistent (non-shared) objects. If an object is
shared, the sub—class implementer will have acquired a read lock for the operation
and the object will be added to the action group maintained by the transaction. The
lock will be released when the transaction terminates because the transaction
object will invoke an operation on the application object which will in turn release
locks. By this mechanism, overhead for transactions and objects is kept to a

minimum according to the selected properties ascribed to an object.

4.4 Summary of Class Hierarchy Development

The class hierarchy shown in Figure 4-8 has all the necessary functionality to
support transaction processing for persistent objects. An applications developer
can derive new object classes with precisely the properties desired. By instantiating
objects of the class Transaction, the applications developer can create transactions

to manipulate objects of these classes.

The class hierarchy is complete for non-distributed transaction processing with
persistent objects. The addition of distribution, replication and migration
properties would extend the breadth of the hierarchy but would not require any

structural changes.

The remainder of this chapter details the operations defined for each of the
classes in the hierarchy. The semantics of these operations are carefully defined to
retain independence among the classes - to maintain the pure semantics suggested

by the class names in this informal introduction.

86

A Class Hierarchy for Actions

4.5 Class Definitions

In the descriptions that follow, the actual class definitions are presented along
with explanatory text. Although the definitions are shown in C+ +, the same
classes and semantics could be used in other object-oriented languages. Some of
the difficulties of “mixing” properties could be alleviated by improved language
support offered by some object—oriented languages, but no significant change to

the hierarchy would be required or enabled by these features.

Most of the operations shown below are defined to return as their value an
ErrorCode. Since the programming language in which these classes are
implemented (C+ + as implemented in AT&T CFront, version 2.1) does not
support exception handling, an explicit status code is returned from each
operation. In an improved version of C+ + or any other language where
exception handling was available, the operations would generally return no value,
raising exceptions when errors were encountered that needed to be reported to the

invoker.

4.5.1 Checkpoint Object

The class CheckpointObject defines two abstract functions SaveState and
RestoreState. These operations, which are intrinsic to some object-oriented
languages, provide a means for saving the state of an object in a form suitable for
storage on disk or transmission across a network. That is, these functions must
encode any address-space relative information (e.g., pointers) in an address-space
independent fashion such as UIDs.

class CheckPointObject {

protected:
virtual ErrorCode SaveState(ObjectState&) const=0;
virtual ErrorCode RestoreState(ObjectState&)=0:

b

Figure 4-9: Class CheckpointObject

e SaveState encodes the current state of the object into an ObjectState object
(essentially a buffer). This operation is sometimes called marshalling in
RPC-related literature [Sun 88]. The state of the object is encoded to

87

A Class Hierarchy for Actions

eliminate references to volatile objects e.g., memory addresses, replacing
them with permanent identifiers. The encoded form of the object is not
required to resemble the natural structure of the object. Note that the state
of the object is saved into a buffer only; this operation does not imply any disk
or other stable storage operation.

® RestoreState is the inverse operation of SaveState. Also known as
un-marshalling in RPC-related literature, RestoreState simply decodes the
information in the ObjectState and initialises the state of the object
accordingly.

4.5.2 ObjectState

An ObjectState object is a buffer containing the “serialised” state of another
object. It is the ObjectState which is read from and written to stable storage. The
class ObjectState defines only two operations: Pack and Unpack. These operations
are overloaded for all primitive types in the host language. For example, in C+ +,
the Pack and Unpack operations are defined for the basic types: int, long, float,
double and char and unsigned variants of these. For all objects of class
CheckpointObject, Pack (object) invokes Object.SaveState(). Similarly, Unpack
(Object) invokes Object. RestoreState. In this way, the operations Pack and Unpack
are defined for all primitive types and for all classes derived from class
CheckpointObject. Pack and Unpack are also defined for class ObjectState, as if it
were a primitive type. Although it could logically be derived from
CheckpointObject thus inheriting these operations, such a definition may run afoul

of circularities in the operation definitions for the two classes.

88

A Class Hierarchy for Actions

enum { RecoveryState, StorageState } ObjectStateType;

class ObjectState {
public:
ObjectState(ObjectStateType,unsigned char *,unsigned long);
~“ObjectState() ;
ObjectStateType Type();
unsigned long Size() const;
const unsigned char *Buffer() const;

ErrorCode Pack(const ObjectState &);
ErrorCode Pack(const CheckPointObject &):
ErrorCode Pack(char);

ErrorCode Pack(unsigned char);
ErrorCode Pack(int);

ErrorCode Pack(unsigned int);
ErrorCode Pack(short int);

ErrorCode Pack(unsigned short int);
ErrorCode Pack(long int);

ErrorCode Pack(unsigned long int);
ErrorCode Pack(float);

ErrorCode Pack(double);

ErrorCode Unpack(ObjectState &);
ErrorCode Unpack(CheckPointObject &);
ErrorCode Unpack(char &);
ErrorCode Unpack(unsigned char &);
ErrorCode Unpack(int &);
ErrorCode Unpack(unsigned int &);
ErrorCode Unpack(short int &);
ErrorCode Unpack(unsigned short int &);
ErrorCode Unpack(long int &);
ErrorCode Unpack(unsigned long int &);
ErrorCode Unpack(float &);
ErrorCode Unpack(double &);
private:
ObjectStateType MyType;
unsigned char *buffer;
unsigned long size, used, start;
ErrorCode PackBytes(unsigned char *, unsigned long);
ErrorCode UnpackBytes(unsigned char *, unsigned long);

Figure 4-10: Class ObjectState

® Pack is defined for all primitive (scalar, non-pointer) types in C+ +. It
encodes the value of its parameter in a representation which is “suitably

89

A Class Hierarchy for Actions

independent” of machine architectures and implementations. For example,
an implementation might encode integers in “network byte order” to
overcome differences in byte-ordering, but employing a standard word size
(e.g., 32-bits). Another implementation of Pack might cater to different
word sizes as well by storing additional information. In its full generality,
Pack might employ some international standard encoding scheme such as
ASN.1 [Steedman 90].

As described above, when Pack is invoked with an object of a class derived
from CheckpointObject, it invokes the SaveState operation of that object to
Pack the state.

® Unpack is the inverse operation of Pack. The ObjectState instance on which
it is invoked interprets the next bits of the saved state according to the type of
the (output) parameter. Type checking information may be encoded (by the
Pack operation) and decoded here to detect incorrect usage.

Unpacking a CheckpointObject is accomplished by invoking the object’s
RestoreState operation.

4.5.3 Unique Identifier

A Unique Identifier is an object which can be distinguished from all other
objects of its type created anywhere in the network at any time. It typically consists
of a number of 64-128 bits which is composed by appending a local sequence
number or time-stamp to a some kind of (compact) host identifier (e.g., a machine
serial number). The resulting number is unique to the local machine (because of
the sequencing) and unique in the network because of the host identifier. Aslong
as the sequence numbers are monotonically increasing, there will never be two
Unique Identifiers (UIDs) with the same number. It is desirable that the UID can
be locally generated without consulting other nodes since UIDs are used often and
need to be generated efficiently. The scheme described here has this property.
Also, it is desirable that no interpretation be applied to the contents of the UID.
This allows for other generation techniques (e.g., random numbers) and facilitates

migration of objects.

90

A Class Hierarchy for Actions

class UID : public virtual CheckPointObject {

public:
UID(); // Generate a new unique identifier
UID(char *); // Parse a string containing a UID

virtual unsigned long Hash() const;
virtual operator==(const UID &u) const;
virtual operator!=(const UID &u) const;

virtual istream & Parse(istream &);

virtual ostream & Print (ostream &) const;
protected:

virtual ErrorCode SaveState(ObjectState &) const;

virtual ErrorCode RestoreState(ObjectState &);
private:

unsigned long value[UID_LONG_COUNT] ;

s

extern const UID UID_NIL;

Figure 4-11: Class UID

The two forms of constructor for UID are used to handle new and existing
UIDs.

e Hash returns a hash value for a UID which is used in various tables as a key.
Although this function could be provided separately, it is so frequently used
and useful with UIDs that it was placed as a class member.

e The comparison operators, operator= = and operator!= are defined to
perform simple bit-wise comparison of UID values. These are the only
operators defined for UIDs, hence, for example, sorting UIDs is not possible
since no ordering operations are provided.

e Print and Parse are defined to allow easy transition of UIDs to/from a
printable form.

Since class UID is derived from CheckpointObject, it must implement the virtual
operations, SaveState and RestoreState. This is simply a convenience for the users
of the class UID so that they can Pack UIDs directly into ObjectStates rather than
having first to convert them to strings.

4.5.4 NamedUID

UIDs are system generated to ensure uniqueness. These UIDs are typically
difficult for people to remember and awkward to type because they are such large

91

A Class Hierarchy for Actions

numbers. People would rather assign names to objects which could be mapped to
UIDs. The class NamedUID defines just such objects. NamedUIDs are objects
that contain a string name which is mapped to a UID using a name server. The
structure of names (e.g., context identifiers, naming hierarchies, naming syntax) is

independent of this class specification.

class NamedUID : public UID {

public:
// Create a new mapping from string to UID
NamedUID(const char *, const UID &);

// Lookup an old mapping (UID_NIL if not found)
NamedUID(const char *);

Figure 4-12: Class NamedUID
4.5.5 Identified

The class Identified provides identity for objects that is independent of the
contents (i.e., value) of the object and independent of the address-space (i.e.,
context). A member of this class (or a derivative class) has an identity which is
unique from all other objects on all other machines everywhere, and permanent
(i.e., the identity is permanently assigned to the given object). This is the class of
objects that contains a (single, identifying) UID. Note that this is different from the
class UID which defines the actual identifier objects. The new operations at this

node of the class hierarchy are:

class Identified {
public:
const UID &GetUID() const;
const UID &GetTypeUID() const;
protected:
Identified(const UID &typ);
Identified(const UID &typ, const UID &u);
private:
UID uid;
UID typeuid;

}

Figure 4-13: Class Identified

92

A Class Hierarchy for Actions

The default constructor for the Identified class creates a new object and assigns

a new unique identifier to it.

The alternate form of the constructor, taking a UID as a parameter, creates an
object and assigns the specified unique identifier to it. Note that this operation
simply gives the specified identity to the object; no other change is made to the

state of the object.

o GetUID returns the object’s unique identifier (which was assigned when the
object was first constructed).

4.5.6 Recoverable

The class Recoverable defines operations required for the management of

recovery regions:

class Recoverable {
public:
Recoverable() ;
~“Recoverable();
virtual ErrorCode Establish();
virtual ErrorCode Recover();
virtual ErrorCode Discard();
protected:
int Regionlndex;

}s

Figure 4-14: Class Recoverable
e Establish creates a new recovery region for the object.

® Recover ends a recovery region and restores the object state (in the case of
backward recovery) or at least leaves it in some consistent state.

® Discard ends a recovery region leaving the object state alone (as of the last
operation that modified it) and discarding any recovery state information
that was associated with the recovery region.

These three operations are normally not invoked by an application program
that is using transactions. The Recoverable object will be enrolled as an active
object in the transaction’s action group as necessary. The Establish operation will
be called as necessary (logically at the start of the transaction in which the object is
modified). When the transaction completes, either Recover or Discard will be

invoked depending on whether the transaction aborted or committed.

93

A Class Hierarchy for Actions

4.5.7 StateRecoverable

StateRecoverable is a kind of Recoverable which relies on “before image” state

capture to implement recovery.

class StateRecoverable : public virtual Recoverable,
public virtual CheckPointObject {
public:
StateRecoverable();
virtual ~“StateRecoverable();

virtual ErrorCode Discard();

virtual ErrorCode Recover();
protected:

class StateRecoveryMgr;

StateRecoveryMgr *mgr;

virtual ErrorCode Modified();

}i

Figure 4-15: Class StateRecoverable

The operation Establish from class Recoverable is not redefined at this level.
The parent class behaviour is sufficient. The operations Recover and Discard
however need to be redefined in StateRecoverable to implement the correct

behaviour.

e The protected operation Modified must be called by the sub-class
implementer prior to the first modification of the object state in any
operation. The Modified operation causes the object to be added to the
action group for any transaction in progress and causes a snapshot of the
“before image” of the object to be taken (if necessary) using the
CheckpointObject operation SaveState.

® Recover pops the top checkpoint from the recovery stack and restores the
object state from that checkpoint using the CheckpointObject operation
RestoreState.

@ Discard pops the top checkpoint from the recovery stack and discards it.

e Establish is inherited from the class Recoverable and is not redefined at this
level of the class hierarchy

As described above for the class Recoverable, the operations Recover and

Discard will not normally be invoked directly by applications programs. They will

94

A Class Hierarchy for Actions

invoked as a result of transaction state changes. Only the operation Modified will
be directly invoked and then only by a sub-class implementer creating a

StateRecoverable class.

4.5.8 OpRecoverable

OpRecoverable is a kind of Recoverable which relies on operation logging to
implement recovery. Since all of the different kinds of operation based recovery
require sub-class developers to define operations which can be invoked (at times
appropriate to the recovery technique), an abstract class Operation is defined which
has a single (pure virtual) operation Perform. Sub-class developers implementing
application classes using operation-based recovery must derive suitable
sub—classes of Operation to capture enough information to perform the recovery
operation. For example, if undo-based recovery is chosen, a sub—class developer
will derive the application class from UndoRecoverable and also derive
application-specific Operation sub—classes for use in recovery. The Operation
sub-classes need not be visible to any user of the application class - they form part
of the implementation.

class Operation {
public: :
virtual ErrorCode Perform()=0;

}i

class OpRecoverable : public virtual Recoverable {

public:

OpRecoverable () ;

virtual ~OpRecoverable();
protected:

class OpRecoveryMgr *mgr;
virtual OpRecoveryMgr *MakeMgr (int idx)=0;

virtual ErrorCode AddOperation(Operation ¥):

}s

Figure 4-16: Class OpRecoverable

The operations Establish, Recover and Discard from class Recoverable are not
redefined at this level. They may be redefined by sub-classes of OpRecoverable
that embody specific recovery techniques.

95

A Class Hierarchy for Actions

® The protected operation MakeMgr is used only by the recovery classes
UndoRecoverable, RedoRecoverable, and CompRecoverable and is provided
only as an implementation convenience.

e AddOperation is the operation which sub-class developers invoke to record
a new recovery operation. The class OpRecoverable maintains this sequence
of recovery operations for use by the specific recovery sub-classes,
UndoRecoverable, RedoRecoverable and CompRecoverable.

4.5.9 UndoRecoverable

UndoRecoverable is a kind of OpRecoverable which allows operations to update
the object state in-place, recording a corresponding undo operation in each case.

If recovery is necessary, the undo operations are Performed to restore the object to

its prior state.

class UndoRecoverable : public virtual OpRecoverable {
public:

UndoRecoverable();

virtual ~UndoRecoverable();

virtual ErrorCode Discard();
virtual ErrorCode Recover();

protected:
virtual OpRecoveryMgr *MakeMgr (int idx);

}s

Figure 4-17: Class UndoRecoverable

The operation Establish from class Recoverable is not redefined at this level.
The parent class behaviour is sufficient. The operations Recover and Discard
however need to be redefined in UndoRecoverable to implement the correct

behaviour.
® Each operation of a class derived from UndoRecoverable must register
“undo” operations.

® Recover performs the undo operations, starting with the most recent “done”
operation and proceeding to the least recent (i.e., LIFO or stack order).

® Discard simply discards all the undo operations as the state of the object is
already correct for the committed case.

96

A Class Hierarchy for Actions

As described above for Recoverable, Recover and Discard will not normally be
invoked directly by applications programs. They will be invoked as a result of
transaction state changes. Only the operation AddOperation (inherited from the
class OpRecoverable) will be directly invoked to register undo operations and then
only by a sub-class implementer creating a new class which is derived from the

UndoRecoverable class.

4.5.10 RedoRecoverable and CompRecoverable

The classes RedoRecoverable and CompRecoverable are very similar to
UndoRecoverable in their interfaces and implementations, differing only in the
implementation of operations Recover and Discard. RedoRecoverable implements
a deferred update policy such that state changes are only applied if and when the
transaction commits. Thus, RedoRecoverable.Discard actually applies the
operations to the state at commit time; RedoRecoverable. Recover simply discards
the operations. The class CompRecoverable has the same implementation as
UndoRecoverable: Discard discards the operation list and Recover applies it. The
difference between UndoRecoverable and CompRecoverable is in the semantics of

the class - providing backward or forward error recovery respectively.

4.5.11 Persistent

The class Persistent defines operations required to manage the persistent state
of the object in the context of a transaction system.

97

A Class Hierarchy for Actions

class Persistent : public virtual Identified {
public:

Persistent (const UID &typ, const UID &);

Persistent (const UID &typ, const char *hostname=0);

~Persistent();

virtual ErrorCode Modified();

virtual ErrorCode Initialize();

virtual ErrorCode UnCatalog();

virtual ErrorCode ForceWrite();

virtual ErrorCode Terminate();
protected:

virtual ErrorCode SaveState(ObjectState&) const;

virtual ErrorCode RestoreState(ObjectState&);
private:

long version;

bool modified;

ObjectStore MyObjectStore;

ErrorCode OnPrepare(const UID &);

ErrorCode OnCommit () ;

ErrorCode OnAbort();

PersistenceActionManager *mgr;

Figure 4-18: Class Persistent

There are two forms of constructor for persistent objects: one takes a UID and
accesses an existing persistent object; the other takes a host name an creates a new
persistent object at that host location. The new instance of the class will actually
become permanent if and when the enclosing (top-level) transaction commits. If
the enclosing action does not successfully commit, the object created by this

constructor will not be made permanent.

e The UnCatalog operation removes the object from the persistent store and
prevents its state from being recorded at transaction commit time.

e The OnPrepare operation ensures that the current state of the object is
recorded on stable storage. For implementations that perform updates in
place and log operations, there is little work to do to prepare. For
implementations that do not update in place, the Prepare operation must
write the current state of the object into the permanent object store
provisionally. This ensures that the current state of the object (in volatile
memory) is safely stored in stable storage. However, subsequent attempts to

98

A Class Hierarchy for Actions

read the state will return the old state until and unless a Commit operation is
applied.

® The OnCommit operation makes a provisional update of the permanent
store take effect permanently. The old state of the object in the object store,
if any, is discarded and replaced by the provisional state. Subsequent
attempts to read the state of the object will return the new state. In an
implementation that uses update in place and operation logging, the effect of
the commit operation is only to make the updated state of the object visible.

e The OnAbort operation discards the provisional update, if any, which was
made to an object by the Prepare operation. Subsequent attempts to read the
object will return the last committed state. In an operation logging situation,
this operation will trigger undo operations to restore the previous state of the
object.

The first three of these operations, the two forms of constructor and the
UnCatalog operation are the only Persistent operations that an applications
program will normally invoke (directly). The constructors provide the means for
instantiating persistent objects and the UnCatalog operation provides the means
for deleting an object from the permanent object store. The last three of these
operations, Prepare, Commit, and Abort, are normally invoked as part of a

transaction commit or abort operation.

4.5.12 Lock

The class Lock is defined independently from the class Shared to allow
applications programmers to derive application-specific lock types. The class
Lock provides shared-read, exclusive-write locks in its default implementation.
Naturally, to support type-specific locking requirements, different lock types can
be derived from the Lock class using the inheritance mechanism. Although the
basic concurrency control model is based on a strict two—phase commit protocol,
any type of lock can be accommodated. The operations supported by the Lock class
are as follows:

99

A Class Hierarchy for Actions

enum { ReadLock, WriteLock } LockType;
enum { FreeLock, SetLock, RetLock, UnInitLock } LockStatus;

class Lock : public CheckPointObject {
public:
Lock();
Lock (LockType t,const UID &own);
virtual bool Conflicts(const Lock&) const;
virtual LockType GetType(void) const;
virtual const UID &GetOwnerID(void) const;
virtual void SetOwnerID(const UID &);
virtual LockStatus GetStatus(void);
virtual void SetStatus(LockStatus);
virtual operator==(const Lock &l) const;
virtual operator!=(const Lock &l) const;
protected:
virtual ErrorCode SaveState(ObjectState&) const;
virtual ErrorCode RestoreState(ObjectState&):
private:
LockType Type;
LockStatus Status;
UID OwnerlD;

}i

Figure 4-19: Class Lock

The constructor for a Lock takes, as input parameters, the UID of the owner of
the lock, and the type of the lock (e.g., read or write). In the context of transactions,
the UID identifies the transaction on which the lock depends. In another context,
this might be the UID of a thread of control (e.g., a simple multi-tasking
application without transactions).

o Conlflicts returns true if the lock object conflicts with the other lock object
given as an input parameter.

® GetOwner returns the UID of the owner of the lock.

e SetOwner changes the ownership of the lock. This operation is used to
manage the locks held by nested transactions at the time that they commit.

o GetStatus returns the current status of the lock.

100

A Class Hierarchy for Actions

e SetStatus changes the state of the lock according to the following state
transition diagram:

For a further explanation of these lock modes,
consult [Moss 81].

Figure 4-20: Lock modes and permissible transitions for nested transactions
4.5.13 Shared

It is now possible to explain the operations provided by the class Shared. This
class provides the locking operations, SetLock, ReleaseLock, ReleaseAll and

Propagatelocks.

class Shared {
public:

Shared() ;

virtual ErrorCode TakeLock(Lock *1);

virtual ErrorCode ReleaseLock (Lock&);

virtual ErrorCode ReleaseAll (const UID &);

virtual ErrorCode Propagate (const UID &, const UID &);
private:

LockList locks;

}s

Figure 4-21: Class Shared

e SetLock attempts to apply a lock to an object by comparing the desired lock
with other locks already held on the object. This comparison is performed by
repeated invocations of the Conflicts operation provided by the lock class.
The Conflicts operation checks for conflicting lock modes, the SetLock
operation may take lock owners into account in determining whether or not
conflicting modes are acceptable. For example, in [Moss 81], nested
transactions may take locks previously held in a ‘conflicting’ mode by another
nested transaction within the same top-level action.

® ReleaseLock changes the lock status to 'FREE’ and removes the lock from
the list of locks held on this object.

o ReleaseAll releases all locks associated with a particular owner.

e Propagate changes the ownership of all locks with owner, UIDjy, to be owned
by UID,. This operation is normally invoked by the transaction system at the
commit phase of a nested transaction to propagate the locks to the parent

transaction.

101

A Class Hierarchy for Actions

4.5.14 Transaction

Transaction objects may be declared in any declaration context in the
programming language just like other kinds of objects. To increase programming
flexibility, the transaction is initially ‘inactive’. The transaction boundaries must be
explicitly established by invoking the Begin operation of the object. Hence, merely
declaring a transaction object in some scope does not begin a transaction for that
scope. Similarly, transactions must be explicitly terminated by invocation of either
the commit or abort operation. It is an error to destroy a transaction object while

the transaction which it represents is still active.

enum { DefinedAction, ActiveAction, InTransitionAction,
CommittedAction, AbortedAction } ActionStatus;

enum { IndependentAction, ContextAction } ActionType;

class Transaction : public Persistent {
public:

static Transaction *Current(); // Current action of this process

Transaction(ActionType t=ContextAction);

Transaction(UID &u);

“Transaction();

Transaction *GetParent() const;

ActionStatus GetStatus() const;

ActionType GetType() const;

virtual ErrorCode Begin();

virtual ErrorCode Commit () ;

virtual ErrorCode Abort();

virtual ErrorCode Join(const ActionMgr &);
protected:

virtual ErrorCode SaveState(ObjectState &) const;

virtual ErrorCode RestoreState(ObjectState &);
private: ‘

ActionType Type,;

ActionStatus Status;

Transaction *Parent;

ActionManagerSet Managers;

ErrorCode Propagate();

bool IsNested() const;

Figure 4-22: Class Transaction

® Begin starts the transaction. Until a Commit or Abort is executed, the
transaction state will be ‘active’.

102

A Class Hierarchy for Actions

e Commit terminates the action, invoking all the action managers in the set to
notify them of successful completion of the action.

® Abort terminates the action, invoking all the action managers in the set to
notify them of unsuccessful completion of the action.

¢ Join adds an object to the action group for the transaction. This operation is
invoked “automatically” by the property classes on behalf of user objects.

4.6 Class Hierarchy Summary

This chapter has explained the development of a class hierarchy which provides
applications programmers with the ability to selectively apply the distribution and
persistence transparencies to application object classes. The next chapter outlines
several different example applications, illustrating the way in which this
programming interface can be used to develop reliable distributed applications by
selective application of distribution and persistence transparencies.

103

Developing Reliable Applications

5 Developing Reliable Distributed
Applications

“Our first duty is to understand the problem.
Having understood the problem as a whole, we go
into detail. We consider its principal parts, the
unknown, the data, the condition, each by itself.”
G. Polya [Polya 1957]

5.1 Introduction

How does the collection of classes defined in the previous chapter support the
ultimate goal of assisting in the development of reliable distributed applications?
These classes can be selectively applied to application object classes, through
inheritance, to provide the key transparencies of distribution and persistence
described in Chapter Two. This chapter describes the application of the ideas

presented in the previous chapters from two points of view:

® design and implementation of the Transaction Services i.e., the class
hierarchy described in the previous chapter

e use of the class hierarchy for the development of reliable distributed
applications

Section 5.2 discusses the issues involved in the design and implementation of
the “property” classes. Section 5.3 briefly describes an implementation of the class
hierarchy and supporting systems which has been developed to validate these ideas.
Section 5.4 details the issues involved in the use of such a system for applications
development. Taking the view of a class designer, several small example classes are

defined showing the application of selective transparency through multiple

104

Developing Reliable Applications

inheritance. In each case, the class definition is given with an explanation of the
properties being inherited. Some of the more interesting fragments of the
implementation are presented. For clarity and conciseness, obvious or repetitive

parts of the implementation are omitted.

5.2 Design and Implementation Issues

There are many small decisions to be made in the design of transaction services,
however, the four discussed here have such a large impact that they have been given
special attention. These four key design issues are:

e Heterogeneity - how does heterogeneity affect the design of the classes and
support services described in the previous chapters?

® Object lifetimes — how to resolve the conflict between lexically scoped
languages like C+ + and dynamically scoped transactions?

e Commit protocols and nested transactions— what are the interactions of
commit protocols with mechanisms for recovery, persistence and
concurrency control?

¢ Buffer management and recovery techniques — what are the combinations of
persistence, recovery and concurrency control mechanisms that make sense?

To summarise some of the other design issues previously discussed for which
decisions have been taken: We are considering a programming environment based
on an object-oriented programming language that uses synchronous operation
invocation. The transaction services interface provides a means for defining
classes of objects that have some subset of the properties of persistence,
recoverability, and concurrency control. Concurrency control is provided by
locking using a strict two-phase locking policy although other concurrency control
techniques could be employed. Persistence is provided by simple checkpointing or
by checkpointing augmented with logging. Recovery is provided by shadowing
(state-based recovery) or some form of operation logging. The transaction
services interface also provides a means for expressing transaction start and end
boundaries, permitting nested and concurrent sub-transactions. Transactions
employ a two-phase commit protocol and support both upward and downward
inheritance of locks. Remote object invocations will employ a Remote Procedure

Call protocol, expecting at most one response for each request, after network level

1056

Developing Reliable Applications

error handling. Communications and system faults and explicit transaction aborts
will be handled by the transaction recovery mechanism. Media faults will be
handled in some other way such as disk mirroring or replication. An execution
environment like the one described in Chapter Three will provide underlying

services of naming and locating objects, communications and stable storage.

The issue of local vs. global or remote addressing is one aspect of a general
issue relating to access across machine boundaries. In homogeneous systems, that
is, machines with a common hardware architecture and a common operating
system interface, it might be possible to use some combination of machine
addresses and machine identifiers to address objects anywhere in a network. In
heterogeneous systems, even this is not generally possible since machine addresses
will not generally have the same interpretation on different machine
configurations. This is but one of the problems of heterogeneous machine support
which is discussed in the following section.

5.2.1 Heterogeneity

Heterogeneity in a distributed object system raises several interesting
engineering design problems. Apart from the requirement of all distributed
systems that communications between machines must be possible, the issues of
common data representation and, if migration is to be supported, code
interpretation, must be resolved. Specifically, if objects can move among the
machines of a distributed system (migration transparency), how can the
representation of the data of the passive object and the operations (code) move so
as to preserve the semantics of the objects? There are three aspects to this

problem:

® There must be a method for capturing the state of an object in a
context-independent and architecture-independent representation. The
symmetric counterpart to this “capturing” operation, restoring the state of an
object from some passive form, must also exist.

e Executable versions of the methods of an object must be available on all the
machines of interest. This implies both a means of producing executable
methods and a means of distributing them to the machines where they are
needed.

106

Developing Reliable Applications

® Machine-architecture independent representations of data must be obtained
for transmission via messages. Architecture independence is somewhat more
complex than context independence as it requires translation to and from
some canonical passive representation for primitive data and a canonical
representation for object composition. Higher-level protocols in the ISO
OSI protocol stack, such as ASN.1, have addressed substantial parts of this
data representation problem. Existing RPC systems e.g., [Bershad ef al 87]
employing such protocols provide adequate support for this mapping.

Of the three issues, the first and third seem to be adequately addressed by
existing mechanisms although the difficulty of representing the type of an object
across machine boundaries remains. This difficulty is related to the second issue —
distributing some executable form of object methods to machines with varying
hardware or software architectures. This problem has been superficially addressed
by systems such as Distributed Smalltalk [Bennett 90], in which each machine hasa
Smalltalk interpreter and method code is sent with the objects. SOS [Shapiro et al
89] employs a very general mechanism of execution pre-requisites (including
pre-requisite code objects) to overcome this problem. The problem is not
addressed further in this thesis — it is assumed that proper versions of the
executable code are available at each machine.

With a means for representing the state of objects so that all machine types in
the distributed system can interpret them, and a means for distributing suitable
executable code to machines that need it, the problem of heterogeneous machines
can be adequately solved. Ongoing research into sophisticated interpreters and
general pre-requisite facilities may lead to improved solutions for automatic
distribution of executable code. Improving standards in architecture-independent
data representation will also help to simplify the management of data in a
heterogeneous network. This first of the four problems mentioned above seems
well in hand. Turning attention to the second issue, the conflict of lexical and

dynamic scoping, the solution seems less clear.

5.2.2 Object Lifetimes

There is a conflict that arises when programming language concepts of object
lifetime, possibly extended to include persistent objects, interact with transaction

mechanisms. The problem derives from the fact that most object-oriented

107

Developing Reliable Applications

programming languages are lexically scoped while transactions are inherently
dynamic. To be precise, it is not scope (a visibility constraint), but extent (a lifetime
constraint) of the objects which is the source of the difficulty. However, since
objects are generally unreachable once program execution leaves the scope of their
class definition, programming language implementations ensure that objects
which are no longer reachable are destroyed either immediately, by
compiler-placed code e.g., for stack allocated objects, or eventually by garbage
collection. Transactions by their nature are dynamic, typically spanning multiple
operation invocations on many objects. There is critical state information relating
to recovery, persistence and concurrency—control which must be preserved until
the transaction completes even if the lifetime of some objects involved in the
transaction has expired with respect to the programming language semantics. This
section describes the interactions of programming models of object lifetime and
transaction requirements and the effect of these interactions on transaction system

structure.

One of the distinguishing characteristics of object-oriented programming
languages is the treatment of objects as autonomous entities “responsible” for
maintaining their own state. Each object must be properly initialised on creation
by the execution of some class-specific initialisation code, often expressed as an
operation called a constructor. Similarly, when an object is to be deleted because
its lifetime has ended, some finalisation code may be executed to tidy up referenced
data structures, etc. This finalisation code may be separated into an operation

called a destructor.

Object-oriented programming languages differ in the level of autonomous
activity that they assign to objects. All objects are active for at least the duration of
invocations on them. Some objects may have activity which is not related to
specific client invocations. For example, in Emerald, an object operation
invocation is viewed as a temporary transfer of control to an object for the
execution of the invocation. However, in Emerald, each object may also contain an
independent thread of control which is not related to any specific invocation. Such
background activity may be, for example, to maintain internal data structures for

improved efficiency in space or time.

108

Developing Reliable Applications

When an object declaration comes into scope, for example by invoking an
operation f that creates an object o with scope and extent local to operation f,
storage is allocated for the objecto and the constructor for object o is automatically
invoked to initialise it. When the object lifetime expires, that is, when operation f
completes, the destructor for object o is automatically invoked to finalise it before

the storage is returned.

For persistent objects, these initialisation and finalisation operations provide a
convenient place to fetch the saved state of an object and write back the state to
stable storage. Just after the object’s memory storage has been allocated, but
before any operations are invoked on the object, the object can be initialised by
loading the saved state. Finally, after all requisite operations have been performed
on the object, but before the memory image of the object’s state is discarded, the
persistence mechanism can be invoked to capture the state of the object and record
it on stable storage. Similarly, for recovery state and concurrency-control state
e.g., locks, these initialisation and finalisation points are critical stages in the object

lifetime where some work must be performed to provide the desired semantics.

However, when transactions are employed to provide failure atomicity and
concurrency-control for objects, it is the lifetime of the transaction rather than the
lifetime of the object that matters. Objects involved in an ongoing transaction
must not have their state indiscriminately written to stable storage before the
transaction commits, even if the executing program has no further use for the
objects. A subsequent failure and consequent transaction abort might require the
old state of the object to be restored or retained in the stable store.

For transient objects whose lifetime is totally contained within transaction
boundaries, concurrency—control information and recovery state could be simply
discarded when an object lifetime expired. What use is recovery state for an object
that no longer exists? What concurrency violation could occur after an object has
been destroyed? However, the possibility that an object is persistent implies that
the object may not really have disappeared - just moved to a stable memory.
Although a currently executing transaction (presently) has no further use for the
object, and might discard the recovery state, the object could reappear in this same
transaction later in the execution. If the object should come back into scope

(extent) during the execution of the transaction, the old recovery state and

109

Developing Reliable Applications

concurrency—control information would be required. Indeed, until the transaction
completes, the concurrency—control information is required to prevent
inconsistent access by other transactions whether or not the initial transaction ever
accesses the object again. Hence object state, including recovery state and
concurrency control information, might need to be retained even after an object’s

lifetime had expired.

One way to address the problem of ensuring that objects are no destroyed until
the transactions in which they are involved have ended would be to restrict the
choice of possible programming languages to those that allocate all objects “in the
heap” such as CLU [Liskov ef a/ 79]. In such languages, the lifetime of objects is
completely divorced from their scope. A transaction would presumably have some
reference to the object in its action group even after the application program had
ceased to refer to the object and the garbage collector would retain the object in
the heap until all references were gone. Thus, the problem of early death of objects
could be reduced to a problem of reliable distributed garbage collection. This is a
promising future direction, although much work remains to be done before this
“reduced” problem can be considered solved for general networks of machines.
The problem of objects leaving extent before the end of their transactions is also
complicated by the provision of nested transactions although the same basic
mechanisms can be applied. In the following section, the interactions of commit
protocols with the operations of the property classes are discussed.

5.2.3 Commit Protocols and Nested Transactions

Nested transactions, as described by Moss [Moss 81], permit the construction
of a hierarchy of atomic actions in which sub-transactions may be aborted without
aborting the enclosing transactions. An excellent database-oriented summary of
the interactions of nested transactions with recovery and concurrency control
including an exhaustive consideration of various design parameters is available in
two papers by Haerder and Rothermel [Haerder and Rothermel 87a] [Haerder and
Rothermel 87b]. However, there are two important aspects which need further

consideration:

e the interaction of nested transactions with objects that have reached the end
of their extent in the programming language sense

110

Developing Reliable Applications

e the clear separation of persistence, recovery and concurrency control as
orthogonal properties

The first issue requires object destruction to be linked with transaction state
transitions. The second issue, raised in Chapter Two, is addressed here by
separating the actions required for the various transparencies at transaction state
transitions. Since these issues must be addressed in relation to transitions in the
state of a transaction, the next section describes the nested transaction model and
the state transitions of nested and top-level actions with respect to commit

protocols.

As a program executes, invoking transactions, which in turn invoke
sub-transactions, a hierarchy of transactions is dynamically constructed. The root
of the hierarchy of transactions is referred to as a top-level transaction. The
interior nodes and the leaves of the hierarchy are called sub-transactions. Nested
transactions offer several advantages over flat transaction models including the
possibility of intra—transaction parallelism and recovery control. Perhaps the most
important advantage of the nested transaction structure however is that it matches
well with current programming language technology for structuring software.
Programming languages introduce dynamic modularity by the use of subroutines.
This general subroutine invocation model is carried through most modern
programming languages with minor variations called functions, procedures,
routines, subroutines, subprograms, operations, methods, or handlers. The
variations have mostly to do with parameter and result passing conventions,
different scoping rules, and occasionally, asynchronous invocation. However, all
of these programming language notions produce a dynamic tree or hierarchy of
executions that is very similar to the transaction tree resulting from successive or
concurrent invocations of nested transactions. Consider the problem of writing a
reliable utility function in a flat transaction model. If the utility function employs
transactions to achieve its reliability, then no caller of that utility can use
transactions for such use would constitute nesting transactions when the utility
function was invoked. The significance of nested transactions for integrating
programming language structures with database concepts of transactions cannot

be overstated.

111

Developing Keliable Applications

To analyse the interactions of nested transaction semantics with the semantics
of objects possessing one or more of the properties of persistence, recoverability or
concurrency control, it is necessary to consider the state transitions of transactions.
These state transitions are a function of the commit protocol employed. Figure 5-1
depicts the state transitions of transactions for both two-phase and three-phase
commit protocols. In a “centralised commit site” variation of either two—phase or
three-phase commit protocols, the actual operations that take individual
transaction participants from state to state differ depending on whether one
considers the transaction co-ordinator or slave. Decentralised commit site
protocols have uniform actions at all sites although they incur extra message traffic
to reach consensus. Nested transactions have all the same states and transitions as
top-level transactions although the “final” commit of a nested transaction may be

undone by an abort of enclosing action.

b) Top-level transaction states, three-phase commit

Key: ,
Initial State @ Final State

Figure 5-1: Transaction State Transitions

112

Developing Reliable Applications

For each of the properties of recovery, persistence and concurrency control, the
chart below (table 5-1) summarizes the action that must be taken on a transaction
state change assuming that recovery is implemented using shadowing and
concurrency control is achieved by locking. A similar chart can be constructed for
other approaches to concurrency control, recovery, or transaction commit protocol

without substantially altering the discussion. The following sections explain these

actions in more detail.

: Concurrency
Recovery Persistence Control
Begin N fetch state —
Top-level ration save prior state if update, mark :
ope P 3 lock
invocation as necessary as modified acquire loc
if modified, write release read locks
Prepare - provisional state
. discard state | commit provisional| release write locks
Commit state
Abort restore state | discard provisional release all locks
state
Begin — fetch/nop —
; if update, save
operation ’ .
inlx)rocation prior state _ acquire lock
Nested Prepare —_— — -
Commit promote state join object to promote all locks
enclosing action
Abort restore state -— release locks
) prepare discards | . - .
Object D;leted bef(_)re state, commit and if mo.d§f1ed, write preserve locks
transaction comrmit abort become nop provisional state

Table 5-1: Transaction transition actions (2-phase commit)

Recovery Management

Haerder and Rothermel [Haerder and Rothermel 87a] and Kohler [Kohler 81]
have made comprehensive studies of the interactions of transactions and recovery

techniques in database systems - the former deals especially with variations of

113

Developing Reliable Applications

design parameters for nested transactions and the latter focuses on distributed
systems. The recovery actions shown Table 5-1 can be explained as follows:

e Logically, the state of an object involved in a transaction is “captured” when
the transaction begins. Actually, the capture operation can be deferred until
just before the first update operation (if any) on the object during that
transaction. This deferred snapshot option is shown above.

® When a transaction prepares, there is no recovery action required. The saved
state cannot be discarded until the final outcome of the transaction is known.

e When a nested transaction commits, the saved recovery state must be
propagated to the enclosing transaction. The propagated state may be
discarded by the enclosing transaction if an earlier saved state already exists
for the enclosing action. If a nested transaction aborts, the recovery state
must be used to restore the volatile state of the object.

e When a top-level transaction commits, the saved recovery state can be
discarded. As with nested transactions, if a top-level transaction aborts, the
recovery state must be used to restore the volatile state of the object.

e If a recoverable object which was created during the course of execution of a
top-level transaction does not exist at the end of that transaction, then the
recovery state is simply discarded at or before prepare time. The recovery
state must be retained until the transaction prepares, in case the object is
re-incarnated and reused in the transaction. However, once the transaction
prepares, there will be no further introduction of objects into the action
group (hence, re-incarnation ceases to be a possibility). If the object does
not exist at prepare time, the volatile state cannot possibly be restored so the
recovery state can be discarded regardless of the ultimate outcome of the
transaction.

Persistence Management

Logically, when a transaction begins, the persistent state of objects which will
be used in that transaction is loaded from the stable store. Unless the object is
modified in the course of the transaction, there is no further action required for
persistence. If an operation modifies the (volatile) state of an object during a
transaction, the object must be marked as “modified” so that appropriate steps can
be taken when the transaction terminates. When a top-level transaction prepares,

persistent objects which have been modified must create a provisional new state in

114

Developing Reliable Applications

the stable store. For nested transactions, there is no further action for persistence,
except to ensure that the object is included in the action group of the enclosing
action. Whether a nested transaction commits or aborts, the stable state of objects
which were modified during that nested transaction is not known until the
enclosing top-level action terminates. The provisional state will become the actual
state if the top-level transaction commits. The provisional state can be discarded if
the top-level transaction aborts. We treat the case of an object which is
prematurely deleted as an “early prepare” for that object. That is, if the object is
unmodified, there is no action to take. If the object is modified, the modified state
is written provisionally to the stable store where its ultimate fate will be decided at

top-level commit or abort just as for all other objects in the action group.

Concurrency Control Management

The concurrency control actions shown in Table 5-1 are just those for strict
two-phase locking. The only point of interest is that locks must be preserved if an
object leaves extent before the end of transactions in which it was involved. Hence,

the lock state must be separate from the object.

As Table 5-1 has shown and the following text has explained, the management
of lexically scoped objects in a dynamic transaction environment requires some
careful consideration. Although this explanation has been framed in terms of a
specific set of recovery, persistence and concurrency control options, there are
similar actions to be taken at transaction state transitions for all of the other design

choices outlined in the previous chapter.

The remaining design issue which is directly relevant to these choices of
mechanism is the relationship of buffer management and recovery techniques and

levels of concurrency. This is the final design topic discussed in this chapter.

524 Buffer Management and Recovery Techniques

The class hierarchy described in Chapter Four offers application programmers
a range of mechanisms for achieving persistence, recovery and concurrency
control. How should a programmer select among these options? Which
combinations make sense? The discussion that follows outlines the principal

effects of various choices and offers some guidance for selection.

115

Developing Reliable Applications

State-based recovery techniques employ one of two basic mechanisms: logging
or shadowing. In Argus, code inserted by the language processor causes log records
to be created whenever changes are made to an “atomic” object [Oki 83}. Guide
[Balter e al 91] similarly uses deferred updates and logs to support recovery in its
transaction model. Aries/NT [Rothermel and Mohan 89] uses a variation of
logging called write—ahead logging (WAL) in which log records describing changes
are forced to the log so that the state of the object need not be flushed to stable
storage immediately on transaction commit. System R creates a shadow copy of a
page of data just before the first modification to that page in a transaction [Gray et
al 81]. Updates to the object can then be made “in place”. If the transaction aborts,
the main version is replaced with the backup copy. Clouds uses shadowing in just
the opposite, more pessimistic way: updates made during the transaction are made
to the shadow. If the transaction commits, the main copy of the object is replaced
with the shadow copy. How were all of these design choices made?

The characteristics of objects which are being traded off in the selection of
persistence and recovery mechanisms are flexibility, concurrency and
performance. Consider the options for persistence. Persistence can be achieved
either by a pure state-based approach or by operation logging. The state-based
approach is simple and effective, but may be costly for large objects where the state
of the entire object must be copied even when only a small part of the object is
being modified. More critically, because the state must be captured consistently,
concurrent updates from different transactions cannot be supported [Rothermel
and Mohan 89]. Hence, operation logging is the mechanism of choice for large
objects, especially if concurrent updates are desirable. However, operation
logging in a conventional database system is considerably easier than in an
object-oriented system: the only operations supported by database systems are
read and write. Hence the operation log needs only a trivial encoding of the
operation and the data that was affected by the operation. In an object-oriented
system, an operation of some class of objects may have rich semantics and complex
effects. The encoding of these operations and their subsequent interpretation

during recovery is a considerable engineering undertaking.

Recovery options are similar to persistence options in the sense that state based

recovery is simple and effective, but potentially inefficient for large objects. Also,

116

Developing Reliable Applications

as for persistence, state—based recovery limits concurrency. The use of state—based
recovery is limited to objects which employ an exclusive update policy for
concurrency control. One further aspect to recovery arises from the fact that some
operations are by their nature unrecoverable. For object classes with
unrecoverable operations, state-based recovery is not an option. The
operation-based recovery class, CompAction, was provided specifically to allow
class developers to manage unrecoverable operations by compensating actions

rather than state restoration.

The general problem of interactions between buffer management and recovery
techniques have been extensively addressed in a paper by Haerder and Reuter
[Haerder and Reuter 83]. However, since the authors were considering
conventional relational databases, some of the unique aspects of object-oriented
databases were not fully addressed. The key observation that can be made in light
of the discussions of object mechanisms above is that the management of buffers of
database pages in conventional systems is just a lower-level manifestation of the
constraints on concurrent update. That is, conventional systems do not allow
programmers to employ concurrent writer policies, but since the implementation
of these systems store multiple objects on a page, they encounter the same kinds of
problems with concurrent updates. For performance, conventional systems need
to perform concurrent updates on a page even though they do not allow concurrent
updates to individual objects on the page. In these implementations, the “object” is
a database page and the concurrent update of these “objects” requires the
adoption of a non-state-based approach to recovery and persistence. The
solutions which they have adopted in their implementation, such as
Write-Ahead-Logging, are visible to application programmers in the choice of
mechanisms provided through the class hierarchy described in Chapter Four.

The four key design topics of heterogeneity, object lifetimes, commit protocols
and nested transactions and buffer management and recovery techniques have
been discussed. In each case, there are many possible design choices and many
considerations. This discussion has simply attempted to present a plausible set of
design tradeoffs that support the goals described in Chapter One for a

development environment for reliable distributed applications. The remainder of

117

Developing Reliable Applications

this chapter describes an implementation of this environment and some experience

of its use.

5.3 An Implementation

To validate the ideas put forward in the previous chapters, a prototype
implementation has been developed in C+ + on a network of Sun workstations.
Experience with developing applications using the prototype system provides
insight into the practical engineering issues involved in a full-scale development
and permit the ideas for reliable distributed applications programming to be put to
the test.

The class hierarchy that has been implemented includes all of the classes
described in the previous chapter except the log-based persistence class. The
components of the execution environment, including machine-to-machine
communications via RPC, naming service and object storage, have been
implemented more or less as outlined in Chapter Three. RPC is provided by a
simple layer on top of IP-based datagram service. Name service is provided by a
collection of persistent objects which are accessed and updated under the control
of atomic actions. Object storage is provided by the Unix file system, storing one
object per file, named with the object UID. The mechanisms used for these
services are very similar to the mechanisms used in Arjuna, although the interfaces

and organisation are along the lines of the architecture outlined in Chapter Three.

Because the prototype implementation uses the same basic mechanisms for
communications and storage as the Arjuna software, the performance of the
prototype of this system is consistent with the performance of Arjuna. In both
cases, the overhead of dynamic binding, separate handling of locks and other
aspects of the class hierarchy structure are completely dominated by network
delays and slow access times to the disk through the Unix file system. Although the
class hierarchy described here is considerably more complex than the class
hierarchy of Arjuna, using multiple inheritance, advanced recovery mechanisms
and selective inheritance, the performance aspects of these differences are
negligible. The focus of the work described in this thesis has been on separating
out the various properties that derive from the distribution and persistence

transparencies and experimenting with the use of multiple inheritance as a

118

Developing Reliable Applications

programming interface for specifying these attributes. As with Arjuna, the

performance of subsystems has not been a priority.

There is one substantial difference in potential performance between these two
systems: Arjuna uses only state-based recovery; the class hierarchy described here
allows for log-based recovery as an alternative to state-based recovery. Not only
does log-based recovery allow increased flexibility, for example, by supporting
multiple concurrent writers, but for large objects which undergo small changes in
the course of a transaction, log-based recovery may exhibit a substantial

performance gain over state-based recovery schemes.

5.3.1 Design and Implementation Summary

The design of a development environment for reliable distributed applications
has been proven to be feasible by a prototype implementation. Feasibility is a
necessary but not sufficient condition - an important question that remains to be
answered is whether or not this system actually provides an improved environment
for the development of reliable applications. This question can only be answered
by experience of developing applications in the environment to determine if they
are easier to develop and/or more reliable. The remaining sections of this chapter
attempt to address this question. A deeper analysis of the sources of improvement
is deferred to the final chapter.

To evaluate the effectiveness of the design requires some measure of subjective
judgement - is this a simpler programming interface for reliable distributed
applications programming than the alternatives? - and some measure of objective
measurement and analysis. The remaining sections of this chapter briefly present a
series of example applications, showing the use of the class hierarchy to achieve

persistence, recovery and concurrency control in a variety of situations.

5.4 Application Development

Programmers using the class hierarchy must be familiar with object-oriented
programming and the general concept of transactions. What other concepts must
programmers understand to make use of the system? To answer this question, one

must first separate the uses of the system into two different activities:

119

Developing Reliable Applications

® designing new classes of objects

e creating and accessing instances of existing classes of objects

The programming interfaces for the two types of use are somewhat different.

Each is described with appropriate examples in the sections that follow.

5.4.1 Class design

To design a new class of objects requires attention to the potential uses of the
object which in turn determine the properties that class should exhibit. The focusis
on the behaviour of a single class of application-level objects. In addition to

defining the functional behaviour of the class, the class designer must consider:

e whether or not the objects might be persistent
e the extent to which the objects need to be recoverable

e the potential for sharing and the semantics of concurrent access

There is little need to consider transaction boundaries since it may be assumed
that, for normal “reliable” applications, all the operations of the class will be
invoked from within a transaction. Indeed, the transaction transparency property
described in Chapter Two requires that the behaviour be independent of whether
the operations are invoked from within a transaction or not. However, if a class
designer determines that it is necessary or desirable, the implementation of some
operations of a class may create nested sub-transactions in which access to other
objects may be contained. That is, the implementation of an operation, whether or
not it is invoked within the bounds of some enclosing transaction, may itself create
new transactions to define the boundaries for persistence, recovery, and
concurrency control for its own operations. Bearing in mind the dependencies
among transparencies mentioned in the previous chapter, any combination of
transparencies can be selected by appropriate use of inheritance. Even access and
location transparency can be controlled by the class designer. Access and location
transparency will rarely be separated since it makes little sense to have transparent
access to an object which cannot be found or to transparently locate an object
which cannot be accessed. Recovery, concurrency control and persistence

properties are design choices which must be addressed when a class is designed.

120

Developing Reliable Applications

5.4.2 Application design

In the development of reliable applications, the role of application designers
will be extended to include consideration of appropriate transaction boundaries.
At the level of the application, distribution and persistence transparencies can be
assumed. Although it is possible for an application to selectively apply these
properties to application objects, the modification of class properties casts the
application designer in the role of class designer. For most application designers,

the set of object classes and their properties will be pre~determined.

To the extent that designing an application involves defining new classes of
objects to implement the application, the two roles of “class designer” and
“applications programmer” may be assumed by a single person. However, in the
design of a single class, the developer may consider all other classes of objects to
exhibit the uniform transparent behaviour described above. Hence the modular,
encapsulated design feature of object-oriented design is carried through to include
the persistence and distribution transparencies. In encapsulating reliability,
distribution and persistence issues within the programming language’s unit of
modularity, the object class, the programmer gains conceptual simplicity which

should improve his ability to produce reliable systems.

543 Application Example 1 - A Bank Account

A classic example of a transaction processing application, the management of
bank accounts, is a good example with which to illustrate the kinds of objects that
require a full range of transparency support including persistence, concurrency
control, recovery, possibly distribution (access and location transparency) and
possibly replication. This first example demonstrates the capability of the class
hierarchy described above to model conventional transaction processing problems
and illustrates the usefulness of inheritance in modelling complex real-world

problems.

Consider the abstraction of (a simplified view of) an account at a bank. The
account consists of a balance which is positive for deposit accounts, negative for
loan accounts and varies from positive to negative for chequing accounts. There

are operations on the account — payments into the account, withdrawals from the

121

Developing Reliable Applications

account and interest accumulated to the balance. An example of a C+ + definition

of the class, BankAccount is given in Figure 5-2.

class BankAccount : public StateRecoverable,
public StatePersistent,
public Shared {
public:
BankAccount () ;
void Deposit (Money amount);
boolean Withdraw(Money amount); // returns true if succeeded
Money Balance(void);
void Accruelnterest(float rate);
protected:
// Two operations inherited from CheckpointObject
ErrorCode SaveState (ObjectState &);
ErrorCode RestoreState (ObjectState &);
private:
Money balance;

}i

Figure 5-2: A C+ + definition of the abstract class Bank Account

Some specific types of account which a bank offers can be derived from this
basic bank account class as shown in Figure 5-3.

class DepositAccount : public BankAccount {
public:
DepositAccount () ;

}i

class ChequingAccount : public BankAccount {
public:
ChequingAccount (Money OverdraftAllowance);
boolean Withdraw(Money amount); // returns true if succeeded
void Accruelnterest (float rate);
protected:
ErrorCode SaveState (ObjectState &);
ErrorCode RestoreState (ObjectState &):
private:
Money OverdraftLimit;

}s

class LoanAccount : public BankAccount {
public:
LoanAccount (Money amountOfLoan);

}s

Figure 5-3: Specialisations of the BankAccount class

122

Developing Reliable Applications

For each type of account, the desired transparencies of concurrency control,
recovery and persistence are inherited from the property classes Shared,
StateRecoverable and StatePersistent respectively. Client applications accessing
these accounts from within the boundaries specified by transactions will be assured
of these transparency properties. Because persistence requires a notion of identity,
these objects will inherit from the class Identified and will thus be locatable
through a distributed location or naming service. The bank accounts may be
transparently distributed over a network.

Because the BankAccount class inherits persistence and recovery properties,
the class developer needs to implement the SaveState and RestoreState operations
inherited from CheckpointObject. These operations will save the state of the bank
account object as and when necessary for recovery or persistence. The only other
additional effort required on the part of the class developer to achieve the
transparencies is to add invocations of appropriate lock operations to the
operations of the class Bank Account. A sample of the resulting code to implement

the operations of the basic Bank Account class is given in Figure 5-4.

123

Developing Reliable Applications

#include "BankAccount.h"
BankAccount: :BankAccount () { balance = 0; }

void BankAccount: :Deposit (Money Amount)

{
TakeLock (new Lock(WriteLock));
balance += Amount;
}
boolean BankAccount::Withdraw(Money Amount)
{
TakeLock (new Lock(WriteLock));
balance -= Amount;
return true;
}
Money BankAccount::CurrentBalance (void)
{
TakeLock (new Lock(ReadLock));
return balance;
}
BankAccount: :Accruelnterest (float rate)
{
TakeLock (new Lock(WriteLock));
balance += balance * rate;
}
ErrorCode BankAccount::SaveState (ObjectState &SaveBuffer)
{
StateRecoverable: :SaveState (SaveBuffer);
StatePersistent::SaveState(SaveBuffer);
Shared: :SaveState(SaveBuffer) ;
return SaveBuffer.Pack(balance);
}
ErrorCode BankAccount::RestoreState (ObjectState &RestoreBuffer)
{
StateRecoverable: :RestoreState (RestoreBuffer);
StatePersistent::RestoreState(RestoreBuffer);
Shared: :RestoreState(RestoreBuffer);
return RestoreBuffer.Unpack(balance);
}

Figure 5-4: Implementation of the class Bank Account

Derived classes such as ChequingAccount need not specify transparency

properties again since these are inherited from the parent class BankAccount.

124

Developing Reliable Applications

Selected operations might be overloaded in the derived class to produce the
appropriate semantics for that type of account. For example, the
ChequingAccount class might maintain overdraftAllowance as a private data

member and overload the operations:
e Withdraw, to check against the allowed overdraft
e Accruelnterest, to prevent the account accruing interest

o SaveState and RestoreState to save and restore the private data associated
with this type of account

Sample code for these operations is shown in Figure 5-5. The other derived

classes would be similarly implemented.

ChequingAccount: :ChequingAccount (Money Overdraft)

{
OverdraftLimit = Overdraft;
}
boolean ChequingAccount::Withdraw (Money Amount)
{
if ((Balance() + Amount) > OverdraftLimit) {
BankAccount: :Withdraw(Amount);
return true;
}
return false; // Not enough money in account
}
void ChequingAccount::Accruelnterest (float rate)
{
error ("This account does not pay interest"):
}

ErrorCode ChequingAccount::SaveState (ObjectState &Buffer)

{

BankAccount: :SaveState (Buffer);
return Buffer.Pack(OverdraftLimit):

}

ErrorCode ChequingAccount::RestoreState (ObjectState &Buffer)

{

BankAccount: :RestoreState (Buffer);
return Buffer.Unpack (OverdraftLimit);

Figure 5-5: Overloading selected operations in a derived class

A client operation making use of a bank account object would normally

(dynamically) enclose the operation invocations on the bank account in a

125

Developing Reliable Applications

transaction as discussed in Chapter Three. Figure 5-6 illustrates the use of
transactions in a simplified cheque clearing operation in which it is assumed that an
accounting log is updated with the status of the operation regardless of whether the
cheque cleared. The log is updated atomically with the withdrawal to ensure that
the account balances agree with the recorded operations even in the event of a

failure during the cheque clearing operation such as a system crash.

void ClearCheque (ChequingAccount &Acct, Money Amount, int Number)

{

Transaction Action;
Action.Begin();
if (Acct.Withdraw(Amount))
AccountLog.Record (Acct, Amount, CLEARED, Number):
else

AccountlLog.Record (Acct, Amount, BOUNCED, Number);

Action.Commit () ;

}

Figure 5-6: A Client accessing a BankAccount from within a Transaction

The overview presented here of a simplified banking example is intended to
show the application of the classes described in the previous chapter to a
traditional transaction processing problem - an all or nothing, recoverable,
concurrency controlled, persistent atomic transaction example. The more general
and powerful use of these properties, the selective application of properties to

object classes, is illustrated in the examples that follow.

5.4.4 Example 2 - A Producer-Consumer Queue

Producer-consumer queues are somewhat problematical entities for
traditional transaction systems because it is so difficult to reconcile the recovery
property of transactions with the need for concurrent updates implied by the use of
a producer-consumer queue. If the enqueue actions of the producer are to be
recoverable in the event of a transaction abort then the corresponding dequeue
actions and all the effects generated from them must be included in the transaction
of the producer. However, such an all encompassing transaction restricts (to one)
the number of producers that can simultaneously access the queue. Indeed, even

with a single producer and a single consumer, unless the entire history of

126

Developing Reliable Applications

enqueuing and dequeuing operations is enclosed in a single transaction, some
unrecoverable behaviour may occur. For many applications however, although
concurrency control is a necessity, to ensure that consumers get consistent units of
data from the queue, overall recovery may not be necessary. Dequeued objects
which were produced by producers that later failed may have no adverse effect on

the system and hence may not need to be ‘recovered from’.

For example, suppose that as part of some real-time control or tracking
problem, several sensor units are feeding a single evaluator through a
multi-producer, single-consumer queue (see Figure 5-7). Assume that critical
real-time signal processing, such as Kalman filtering, is performed by each unit
before sending higher-level items into the queue. Also, assume that the sensor
units are fail-silent, implying that the failure of a unit does not invalidate the data
which was previously received from it. Hence, the evaluator does not need
recovery actions to eliminate data received from a failed producer. Of course,
higher-level compensation actions may be required to account for the loss of the
producer - for example, sending control signals to other sensors to increase their

range of coverage.

Sensor Unit #1

Sensor Unit #2 |
N-Writers,
Sensor Unit #3 1-Reader | Evaluator
Queue
Sensor Unit #N

Figure 5-7: Multiple signal sources merging through a single queue

The queue object in this application needs concurrency control, but not
persistence or recovery. (Another kind of application such as distributed
simulation might require recoverable and persistent queues). Using the classes
defined in the previous chapter, one could define the queue class as shown in

Figure 5-8.

127

Developing Reliable Applications

class SignalQueue : public Shared {
public:

SignalQueue (void);

void Enqueue(Signal);

Signal Dequeue (void);

boolean IsEmpty (void);

}s

Figure 5-8: Class definition for N-writer, 1-reader, unrecoverable queue

A simple application of the Shared class described in the previous chapter
would severely restrict concurrency. Once a single transaction had updated the
queue, acquiring a write lock on critical data structures, no other transaction could
access those data structures at all until the first transaction had terminated. Since
the SignalQueue requires an unconventional multiple-writer, single-reader
concurrency control policy, the application designer might want to provide a
non-locking concurrency controller based for example on timestamps.
Alternatively, keeping the lock-based concurrency controller, an application
designer might simply define a new lock type with the appropriate conflict checking
policy. In the latter case, the implementation of the class SignalQueue would
employ the modified lock type in the implementation of the individual operations,
Enqueue, Dequeue and IsEmpty.

5.4.5 Example 3 - A Network Routing Database

A network routing database could be an example of an application object that
requires concurrency control and recovery, but not persistence. Consider a

communications system in which routers operate as follows:
e When a router object is first created, it acquires a consistent snapshot of the
network topology from a neighbouring node.

® Asnodes go up and down and communications connectivity changes, routing
table updates are broadcast to all routers by the routers that detect the
changes.

® An individual update message may modify several parts of the routing table
and must be considered atomic.

e Since updates are circulated and processed asynchronously, it is possible for
two updates to be concurrently applied to the same routing table.

128

Developing Reliable Applications

® Because the network topology and connectivity are so volatile (in this
example), individual router objects do not attempt to maintain their state
across machine crashes - it would be grossly out-of-date anyway when the
node recovered. Instead, this kind of recovery from catastrophic failure is
handled at a higher level, by using a snapshot of routing data from some
surviving node, or by re-computing the routing information from some other
method e.g., manual intervention or broadcast to all nodes requesting
routing and topology information.

class RoutingTable : public Shared,
public StateRecoverable {
public:
RoutineTable();

void AddEntry (Location &src, Location &dst):

void ProcessUpdates (EntryList &1):

boolean DirectConnection (Location &from, Location &to):

Route FindRoute (Location &from, Location &to);
protected:

ErrorCode SaveState (ObjectState &) const;

ErrorCode RestoreState (ObjectState &);
private:

RouteTable Table;

}s

Figure 5-9: Class Definition for a Recoverable, Concurrency-controlled
Routing Table

The class definition for RoutingTable shows the selective use of the “property
classes” StateRecoverable and Shared. The operations SaveState and
RestoreState must be provided by the class developer to support state-based
recovery. Standard locking policies (strict 2-phase locking with single-write XOR
multiple-reader locks) seem appropriate so the standard lock class can be used
without modification. As in the previous example, the implementations of the
operations must take appropriate locks before performing operations. This
simplified example could be made more realistic by the addition of new lock modes
such as intention-read and intention-write to support multi-granular locking for
the RouteTable aggregate. The object-oriented approach makes this particularly
easy since the class developer would need only to derive a new type of lock that
provided the new locking modes and implemented the operation to compute the

conflict matrix including those new modes.

129

Developing Reliable Applications

5.4.6 Example 4 - A Dynamic Storage Allocator

Another example of a class of objects that is naturally concurrency-controlled
and recoverable, but not persistent is the class of objects used to implement a
dynamic storage allocator. Because dynamic (heap) storage is normally volatile,
the data structures that track allocation and deallocation need only to be volatile.
However, concurrency control and recovery may still be necessary. Because
successive allocations are independent and there are few read—only accesses to the
data structures, concurrency control may be provided by a a simple semaphore,
locking out all access during any operation. However, such a solution does not
address the requirement for recovery. For example, if a transaction aborts in the
course of execution of an operation invocation, how will the dynamic storage
allocated before the abortion be deallocated? If the allocator’s data structures are
recoverable, the abortion of the transaction will undo the effects of the allocation,

freeing the storage for other use.

The state-based recovery scheme offered by the StateRecoverable class is not
valid in the presence of multiple concurrent updates. Hence, an operation based
recovery scheme is called for. As described in Chapter Four, a class developer who
derives an application class from an OperationRecoverable class, such as
UndoRecoverable, must invoke the AddOperation operation, passing an undo
operation (closure), whenever an application-level operation is invoked. The
UndoRecoverable class logs the undo operations as the transaction progresses. If
the transaction should abort, the action manager of the UndoRecoverable class
will apply the logged undo operations. If a transaction terminates successfully

(commits), the logged undo operations can be discarded.

Figure 5-10 illustrates the use of the UndoRecoverable class to define a
recoverable storage allocator class. Concurrency control for this class of objects
will be provided by simple binary semaphore, so there is no need to inherit the
lock-based class, Shared. In this example, it is assumed that storage is allocated
according to some simple allocation scheme such as “first-fit” [Knuth 73].

130

Developing Reliable Applications

class HeapAllocator : public UndoRecoverable {
public:

HeapAllocator();

void *Allocate (unsigned int nbytes);

void Deallocate (void *);
private:

BinarySemaphore HeapLock;

Chunk *FreeList, *AllocatedList;

}i

Figure 5-10: Defining a Recoverable Storage Allocator

The allocate operation finds an appropriate sized chunk of storage on a “free
list” and moves it to the “allocated list” before returning it to the caller. The
deallocate operation simply moves the storage chunk back to the free list. Undo
operations for allocate and deallocate operations are straightforward and
idempotent. The “undo objects” represent closures of behaviour and state which
can be applied to reverse the effects of a previous operation. The actual first-fit

algorithm is provided by utility routines alloc and dealloc which are not shown.

131

Developing Reliable Applications

struct Chunk { int size; Chunk *next; int bytes; };

//
// Define some undo operations for the allocator
//
class MoveToFreeList : public Operation {
public:
MoveToFreeList (Chunk *ptr);
ErrorCode Perform();
private:
Chunk *p;
}
class MoveToAllocatedList : public Operation {
public:
MoveToAllocatedList (Chunk *ptr);
ErrorCode Perform();
private:
Chunk *p;
}i
//
// Implement the allocator operations
//
HeapAllocator: :HeapAllocator ()
{
HeapLock.V();
}
void *HeapAllocator::Allocate(unsigned int nbytes)
{
void *ptr = O;
HeapLock.P();
ptr = alloc(nbytes+sizeofheader);
if (ptr)
AddOperation (new MoveToFreeList(ptr));
HeapLock.V();
return &ptr.bytes;
}
void HeapAllocator::Deallocate (void *ptr)
{ chunk *c = GetChunkFromPtr(ptr);
HeapLock.P();
AddOperation (MoveToAllocatedList(c));
dealloc(c);
HeapLock.V() ;
}

Figure 5-11: Implementing a Recoverable Storage Allocator

132

Developing Reliable Applications

The recovery property of the HeapAllocator class is providing tolerance to
transaction aborts which may be due in turn to programmer initiated aborts,
communications failures, deadlocks, or other causes of transaction failure. The
class as defined does not cope with asynchronous faults since, for example, no
provision is made for releasing the semaphore if the Allocate operation should be
interrupted by a fault which later leads to transaction failure. Asynchronous faults
can be dealt with in the same manner as shown above, although the code becomes
considerably more complex and has been omitted since it adds no insight to the

usefulness of selective transparency in this example.

5.4.7 Example 5 - A Printing Subsystem

This final example illustrates the use of a variety of properties for the various
components of a printing subsystem in a modern operating system. The users of
any modern operating system expect to be able to queue files to be printed.
Furthermore, they expect that the files are copied into a spool area before printing
and that the queue of files waiting to print can be inspected. Finally, users expect to
be able to abort the printing of some previously spooled file whether it is still in the
queue or actively printing. From this informal statement of requirements, we can
develop an object-oriented design for such a subsystem. There must be a Spooler
class which is the user’s interface to the printing subsystem. The Spooler class must
support the operations: Print, Cancel and ShowQueue. There must be a
SpoolDirectory into which the files are copied before printing and a PrintQueue
which keeps track of the order of printing of the files, accounting information etc.
Finally, there must be a PrintDeviceDriver which transfers data from the filesin the
SpoolDirectory to the actual printing device in an order determined by the
PrintQueue. This example does not treat the problems of security of the files and
the queue or the issues of accounting for page charges. These classes are depicted

in Figure 5-12.
The class Spooler provides the following operations:

e Print - allocates a new job number, copies the file to SpoolDirectory and
adds an entry for it in PrintQueue

e Cancel - removes the specified job from SpoolDirectory and PrintQueue

e List — enumerates the entries in PrintQueue

133

Developing Reliable Applications

The allocation of a job number is performed under control of a mutual
exclusion lock, but since the number has no meaning other than to be a locally
unique identifier, more sophisticated, transaction-level locking is not required.
Concurrent access is permitted and uncontrolled. Cancelling involves invoking
operations on other objects (PrintQueue and SpoolDirectory), but does not affect
the nextjobnumber. List is a readonly operation. The class Spooler inherits from
class CompRecoverable so that a Print request that is made during a transaction
that later aborts is automatically cancelled. The recovery method is compensating
rather than “undo” since the job cannot be “unprinted” if it has already left the
spool directory / print queue. The effect of a transaction abort will be to remove
any as-yet—unprinted files from the queue and directory.

The class PrintQueue provides the following operations:

® Add - adds a new job to the end of the queue, recording the job number,
original file name and user name.

® Remove - removes a job from the queue if present.

e List — enumerates the entries in the queue in order.

PrintQueue objects are persistent, so that system crashes do not lose track of
the jobs that have been queued to print. Printing resumes after a crash by restarting
the printing of the first job in the queue. These objects must be recoverable so that
transaction aborts cause queue entries made during those transactions to be
removed. The recovery method of choice is “UndoRecoverable” in order to permit
concurrent updates to the queue. However, concurrent updates to individual
entries must be controlled, hence the class PrintQueue inherits concurrency
control from the class Shared. This is an example of a class that might employ a
derivative lock type to permit concurrent update access to the queue object, but
control concurrent access to the individual entries. The implementations of these
operations are mostly self-evident, but the Remove operation will also invoke
PrintDeviceDriver.Abort if the first job in the queue is removed.

The class SpoolDirectory provides the following operations:

e CopyFile - copies the specified file into the spool area

e DeleteFile — deletes the specified file if it exists in the spool area

134

Developing Reliable Applications

The class SpoolDirectory inherits the same properties as the class PrintQueue
and for most of the same reasons: persistence to survive system crashes,
undo-based recovery to cope with transaction aborts yet allow limited
concurrehcy, and concurrency control, possibly based on a derivative lock class
which would allow concurrent update of the spool area, but not of individual

entries in it.
The class PrintDeviceDriver provides the following operations:

e StartPrint — begins a background activity of transferring data from the
specified file to the printing device.

® Abort - stops printing

It is assumed that the actual transfer of lines of data to the printer is carried out
in the background, perhaps by having the printer interrupt at the end of each line or
page of data printed. That interrupt could trigger the transfer of the next chunk of
data to the printer and so on until the entire file was printed. When all data has
been transferred, the PrintDeviceDriver object invokes PrintQueue.Remove to
delete the first element of the PrintQueue.

Additional operations must be provided to read the data from the files in the
spool area and to synchronise the starting and stopping of the printer as the
PrintQueue transitions from empty to non-empty and back. However, these
operations do not contribute anything to the understanding of the use of the

property classes and have been omitted from the example.

135

Developing Reliable Applications

class Spooler : public virtual CompRecoverable {
public:

int Print(const char * filename);

void Cancel(int job);

void ShowQueue () ;
private:

mutex lock;

int nextjobnumber;

PrintQueue Queue;

SpoolDirectory Dir;

}s

class PrintQueue : public virtual LogPersistent,
public virtual UndoRecoverable,
public virtual Shared {
public:
void Add(int job, const char *filename, const char *user);
void Remove(int job);
void List();

}s
class SpoolDirectory : public virtual LogPersistent,
public virtual UndoRecoverable,
public virtual Shared {
public:
void CopyFile(int job, const char *filename);
void DeleteFile (int job);
}s
class PrintDeviceDriver {
public:

void StartPrint(int job, const char *filename) ;
void Abort();

private:
int currentjob;

}s

Figure 5-12: Classes of a Printing Subsystem
5.4.8 Summary of Examples

The examples given in this chapter have illustrated the use of the class hierarchy
for selective application of distribution and persistence transparencies. Many
combinations of transparencies have not been illustrated here although they may
be useful in certain applications. The ability to selectively apply transparencies
through inheritance and to derive new property classes, e.g., operation-based

recovery vs. state-based recovery, are principal strengths of the object-oriented

136

Developing Reliable Applications

approach to reliable distributed programming. Although the examples given here
use C+ + to illustrate the concepts, the technique is applicable to any
object-oriented language that supports multiple inheritance.

This chapter began with a brief discussion of some key design issues in the
development of the property classes and finished with a series of examples
illustrating the usefulness of the class hierarchy. This progression has illustrated
both the feasibility and the value of selective transparency in general and
specifically the system described in Chapters Three, Four and Five. The next and
final chapter summarises this thesis by reviewing the goals established in the first
chapter and evaluating the software solution to address those goals which was
developed in the following chapters.

137

Conclusions

6 Conclusions and Further Work

“The successful construction of all machinery depends
on the perfection of the tools employed, and whoever
is a master in the art of tool-making possesses the key

to the construction of all machines”
Charles Babbage [Babbage 1889]

The development of reliable computer software and systems is gaining
importance from two sources: market pull and technology push. Market pull
comes from the fact that computers are being used in ever more demanding
applications including life-critical applications. Hence, people are becoming
increasingly reliant on the correct functioning of computer systems. Technology
push arises from the critical mass in reliability technology which has been
developed over the past several decades and the dramatic increases in computer
hardware reliability and performance that make the application of this reliability
technology economically viable. Software developers must take steps to improve

the reliability of their systems to meet the reliability requirements of applications.

Improvements in the reliability of software systems have not kept pace with
increases in complexity of these systems. Despite the increased awareness of the
importance of software quality, software applications today continue to be
delivered late and error-laden. The source of this unfortunate problem is not
difficult to discover. The ambitions of software developers have outstripped their
ability to deliver reliable software. The complexity and plasticity of large software
systems requires a powerful new approach to reliability. Since the technology to
deliver error-free applications is not available, large software systems must be
designed to accommodate the inevitable faults in software design and

implementation as well as (equally inevitable) hardware faults.

138

Conclusions

The technological push that arises from the availability of distributed systems
adds urgency to the problems of developing reliable software. Data and code
distribution, management of communications and system failures, and access to
remote data have been added to the already difficult task of application
programming. To address these problems in the development of reliable
distributed applications, a new approach is required. This thesis proposes a
program development environment, based on objects and actions, that provides a
powerful, flexible tool for the development of reliable distributed applications.
This chapter identifies some of the remaining issues for further research and

summarises the major contributions of the thesis.

6.1 Some Remaining Issues

“*When the solution that we have finally obtained
is long and involved, we naturally suspect that there is
some clearer and less roundabout solution: Can you
derive the result differently? Cuan you see it at a glance?”
[Polya 57, p. 01]

Further research is presently underway to extend the class hierarchy to include
replication and migration as abstract “property” classes. These extensions may
take the same form as the existing property classes and use the same mechanisms.
Depending on the choice of replication protocol, replication support may also
require a change in the interface to the underlying support systems such as RPC
and storage services. A variety of other open design questions are discussed in the

sections that follow.

6.1.1 Open Design Issues

There are many aspects to engineering a production quality distributed
transaction system which have been deliberately ignored in the prototype
developed for this thesis as they convey no new research content and would only
clutter the discussion of key issues. However, the following list enumerates some
of the principal design embellishments which would be required to deliver a

production quality system.

139

Conclusions

e Commit Protocol - The prototype implementation employs only a
two-phase commit protocol. In practice, two-phase commit suffers from
blocking problems, when the co-ordinator node crashes, and possibly some
reduced concurrency, due to the late release of locks. More powerful commit
protocols such as Open Commit Protocol [Rothermel and Pappe 89]
[Rothermel and Pappe 90] and three-phase commit [Skeen 81] could be
introduced without affecting the substance of this thesis.

e Administration — Large distributed systems are rarely controlled by a single
administrative body. Facilities for system management that take account of
different administrative domains of control are vitally necessary to successful
distributed systems deployment.

® Deadlock — Deadlock has been treated in this system by timeouts, causing an
aborted transaction whenever a lock cannot be acquired “in time”. This
simplistic deadlock management technique may well suffice even in a large
system since, “Measurements of experimental and commercial DBSs
indicate that deadlocks are much rarer than conflicts” [Bernstein et al 87, p.
88]. However, a variety of more sophisticated techniques for deadlock
detection, prevention and recovery could be applied [Bernstein et al 87].

e Transactions on objects of arbitrary type may cause difficulties in precise
definition of semantics [Jacobsen 82].

e Alternative concurrency control policies based on timestamping could be
added either independent of the lock-based policies or integrated with them
via some kind of abstract concurrency control class.

6.1.2 Dependencies on Commit Protocol

A complex issue which needs turther thought is how to modify the existing
hierarchy to incorporate different commit protocols. While the specific locking
protocol (e.g., two—phase locking) is nicely encapsulated in the implementation of
the Shared class, the commit protocol (e.g., two-phase commit) is visible in the
interface to the object managers. This implies that a different atomic action object
(employing a different commit protocol e.g., three-phase commit) would require a
different implementation of the classes. Yeta persistent object ought to be able to
participate (even simultaneously) in atomic actions employing different commit

protocols. This is not possible in the current design.

140

Conclusions

6.2 Some Observations of the use of C+ +

The prototype software developed for validating the ideas presented in this
thesis was written entirely in C+ 4. C+ + is a hybrid object-oriented language,
developed as an extension of C (of which it is a proper superset). The goals of the
C+ + language designers did not include the development of distributed

applications and it shows.

C+ + adopts the same shared memory, single thread-of-control model of C.
This programming model is difficult to map to a distributed system where objects
may reside in multiple, physically and logically distinct address spaces and parallel
execution is not only possible, but inevitable. This mismatch between the
programming model presented by C+ + and the goals of this thesis was the

principal source of ditficulty in the development of the system.

A further complication arises from the lack of support for “reflection” in
C+ +. There is no support in the C+ + language for program access to
meta—data such as run-time type identification, dynamic instantiation, or type
structure enquires. These missing facilities require further restrictions for
programmers in the subset of C 4 + which can be accommodated in the prototype

system. See [Parrington 90] for a detailed discussion of the problems.

In summary, C+ + is an excellent object-oriented programming language for
non-distributed programming despite certain deficiencies in current versions of
the language, such as the lack of garbage collection, no sate downcasting (due to
the lack of run-time type information), no exception handling facilities. Some of
these problems are being addressed in the C+ + standardization work which is
underway and it is only a matter of time before these problems are solved. The
object—oriented facilities of the language served well in the development of the
prototype system described in this thesis. However, C+ + isan unfortunate choice
for distributed systems development. The irregularities of the language, manual
storage management, complex interactions of scope and extent, and fundamental
shared memory model are all obstructions which are ditficult to overcome without

substantial and continuing effort of the part of programmers.

141

Conclusions

6.3 Thesis summary

This thesis has presented a novel architecture for distributed transaction
processing in which the management of persistence, provision of transaction
properties, and organisation of support services are all gathered into a unified
design based on the object-oriented programming model. Derived from the
pioneering work of the Arjuna project, this thesis takes the idea of using
inheritance to control the application ot properties much further than Arjuna,
separating out the protocols required to support each property and providing new

flexibility, through multiple inheritance.

Isolating properties in separate classes which can be individually inherited
clearly establishes the protocols required by each property and identifies
interdependencies between properties. This exposition of protocols for properties
such as persistence, recovery and concurrency control and the analysis of the
interactions of these properties are contributions of this thesis that will assist
developers of transaction-based software whether or not they choose to use

inheritance as the mechanism for conveying properties.

The integration of object-oriented programming concepts, persistent data as a
language feature, and transaction processing mechanisms provides increased
semantic information, better isolation of locking protocols and commit protocols,
and independent management of persistence, recovery, concurrency, replication
and migration. Each of these properties contributes to the reduction of complexity
for programmers developing reliable distributed applications. The use of multiple
inheritance allows programmers to achieve unprecedented flexibility and
selectivity in the application of distribution and persistence transparencies to

application objects.

To fully exploit the power of this class hierarchy requires consideration of the
overall system architecture — not only the structure of the transaction system itself
and the programming language interface to the system, but also the relationships
between the transaction system (here embodied in a class hierarchy) and operating
systems, networks and storage subsystems. Chapter Three placed the transaction

services component in context by describing a system architecture that includes the

142

Conclusions

wider issues of naming, binding, communications and storage in a distributed

system.

A prototype system has been implemented, verifying the feasibility of both the
architectural organisation described in Chapter Three and the approach of
providing transaction services by the use of multiple inheritance in an
object-oriented programming language. Chapter Five explained some of the
detailed design and implementation issues that had to be addressed to implement
the proposed system and illustrated the ways in which it could be exploited to
provide reliable applications in a wide variety of domains with differing

requirements.

The development of reliable distributed applications is a complex task which
must be performed successfully to meet the demands of modern software
applications. This thesis makes a contribution to the field of distributed
transaction processing and databases, explaining how to apply the latest
developments in programming languages to advantage. The thesis also makes a
contribution to the tield of object-oriented analysis, design, and programming in
investigating the power and limitations of current object-oriented programming

models.

143

References

References

[Abrial 74}
J. R. Abrial, “Data Semantics”, in Data Base Management, J. W. Klimbie and
K. L. Kofferman, (eds.), North-Holland Publishing Co., New York, 1974.
[Agesen ef al 89]

O. Agesen, S. Frglund, M. H. Olsen, “Persistent and Shared Objects in Beta”,
Technical Report DAIMI IR - 89, Computer Science Department, Aarhus
University, DK, April 1989.

[Albano et al 88}

A. Albano, G. Ghelli, R. Orsini, “The Implementation of Galileo’s Persistent
Values”, in Data Types and Persistence, M. P. Atkinson, P. Buneman, R.
Morrison (eds.), Springer—Verlag, 1988, pp. 253-263.

[Allchin 83]

J. E. Allchin, “An Architecture for Reliable Decentralized Systems”, Ph.D.
Thesis, School of Information and Computer Science, Georgia Institute of
Technology, September 1983. Also available as Technical Report
GIT-I1CS-83/23.

[Allchin and McKendry 83]

J. E. Allchin and M. S. McKendry, “Synchronizing and Recovery of Actions”,
Proceedings of the 2™ Annual ACM Symposium on Principles of Distributed
Computing, August 1983, pp. 31-44.

[Anderson and Kerr 76]

Anderson, T and R. Kerr, “Recovery Blocks in Action: A System Supporting
High Reliability”, Proceedings of 2™ International Conference on Sofiware
Engineering, San Francisco, October 1976, pp. 447-457.

[ANSA 89]

Advanced Networked Systems Architecture (ANSA) Reference Manual,

Volume A, Release 1.00, Part VI, Computational Projection, March 1989.
[Atkinson et al 81]

M. P. Atkinson, K. J. Chisholm and W. P. Cockshott, “PS-Algol: An Algol witha
Persistent Help”, ACM SIGPLAN Notices, Vol. 17, No. 7, July 1981, pp.
24-31.

144

References

[Atkinson et al 88]

M. P. Atkinson, P. O. Buneman, R. Morrison, Data_Types and Persistence,
Springer-Verlag, Berlin, 1988.

[Atkinson et al 90]

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison,
“An Approach to Persistent Programming” in Readings in Object-Oriented
Database Systems, S. B. Zdonik and D. Maier (eds.), Morgan Kaufmann,
1990, pp. 141-146.

[Avizienis 85]

Avizienis, A, “The N-Version Approach to Fault-Tolerant Software”, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 12, December
1985, pp. 1491-1501.

[Babaoglu 90]

O. Babaoglu, “Fault-Tolerant Computing based on Mach”, Operating Systems
Review, Vol. 24, No. 1, January 1990, pp. 27-39.

[Babbage 1822]

C. Babbage, “On the Application of Machinery to the Purpose of Calculating
and Printing Mathematical Tables”, A Letter to Sir Humphry Davy, Bart.,
President of the Royal Society, July 3, 1822, in Charles Babbage and his
Calculating Engines, P. Morrison and E. Morrison, (eds.), Dover
Publications, New York, 1961, pp. 298-305.

[Babbage 1889]

C. Babbage, “Chapter X111, The Exposition of 18517, in Calculating Engines, H.
P. Babbage (ed.), E. and F. N. Spon, 1889, and reprinted in Charles Babbage
and_his Calculating Engines, P. Morrison and E. Morrison, (eds.), Dover
Publications, New York, 1961, pp. 322-330.

[Bailey 89]

P. J. Bailey, “Performance LEvaluation in a Persistent Object System”,
Proceedings of the Third International Wokshop on Persistent Object Systems,
1989, pp. 373-385.

145

References

[Balter et al 91]

R. Balter, J. Bernadat, D. Decouchant, A. Duda, A. Freyssinet, S. Krakowiak,
M. Meysembourg, P. L. Dot, H. N. Van, E. Paire, M. Rivelli, C. Roisin, X. R.
de Pina, R. Scioville, and G. Vandoéme, “Architecture and Implementation
of Guide, an Object-Oriented Distributed System”, Computing Systems,
Vol. 4, No. 1, Winter 1991, pp. 31-68.

[Banatre et al 83]

J. P. Banatre, M. Banitre, and F. Ployette, “Construction of a Distributed
System Supporting Atomic Transactions”, Proceedings of the 3" 4 Symposium
on Reliability in Distributed Software and Database Systems, IEEE, October
1983, pp. 95-99.

[Banitre et al 86]
J. P. Banitre, M. Banitre, and F. Ployette, “An Overview of the Gothic
Operating System”, Rapport de Recherche 504, INRIA, March 1986.

[Barak and Kornatzky 87]

A. Barak and Y. Kornatzky, “Design Principles of Operating Systems for Large

Scale Multicomputers”™, in Experiences with Distributed Systems, Lecture
Notes in Computer Science, Vol. 309, Springer-Verlag, Berlin, 1987, pp.

104-123.
[Bennett 90]
J. K. Bennett, “Experience with Distributed Smalltalk”, Software - Practice
and Experience, Vol. 20, No. 2, February 1990, pp. 157-180.
[Bernstein and Goodman 81]

P. A. Bernstein and N. Goodman, “Concurrency Control in Distributed
Database Systems”, ACM Computing Surveys, Vol. 13, No. 2, June 1981,
pp- 185-221.

[Bernstein et al 87]

P A. Bernstein, V. Hadzilacos and N. Goodman, ncurren ntrol an
Recovery in Database Systems, Addison-Wesley, 1987.

146

References

[Bershad et al 87}
B.N.Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo, M. Schwartz, “A Remote

Procedure Call Facility for Interconnecting Heterogeneous Computer
Systems”, IEEE Transactions on Software Engineering, Vol. SE-13, No. 8,
August 1987, pp. 880-894.

[Birman and Joseph 87]

K. Birman and T. Joseph, “Exploiting Virtual Synchrony in Distributed
Systems”, Proceedings of the 11" Symposium on Operating System Principles,
ACM SIGOPS, November 1987, pp. 123-138.
[Birman et al 88]

K. Birman, T. Joseph and E Schmuck, “ISIS - A Distributed Programming
User’s Guide and Reference Manual”, The ISIS Project, Department of
Computer Science, Cornell University, Ithaca, NY, 14853, March 1988.

[Birrell and Nelson 84]

A. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls”, ACM

Transactions on Computer Systems, Vol. 2, No. 1, February 1984, pp. 39-59.
[Birtwhistle et al 73]

G. M. Birtwhistle, O-J. Dahl, B. Myhrhaug and K. Nygaard, Simula Begin,

Academic Press, 1973.
[Black et al 87}

A. Black, N. Hutchinson, E. Jul, H. Levy, L. Carter, “Distribution and Abstract
Types in Emerald”, IEEE Transactions on Software Engineering, Vol.
SE-13, No. 1, January 1987, pp. 65-76.

[Brown 87]

A. L. Brown, “A Distributed Stable Store”, Proceedings of the Second

International Workshop on Persistent Object Stores, Appin Scotland, 1987.
[Brown 89]

A. L. Brown, “Persistent Object Stores”, PhD Thesis, University of St Andrews,
1989.

147

References

[Browne et al 83]

J. C. Browne, J. E. Dutton, V. Fernandes, A. Palmer, A. R. Tripathi, P. Wang,
“Zeus: An Object-Oriented Distributed Operating System for Reliable
Applications”, RADC Technical Report, October 1983.

[Campbell and Habermann 74]

R. H. Campbell and A. N. Habermann, “The Specification of Process
Synchronization by Path Expressions”, Lecture Notes in Computer Science,
Vol. 16, Springer—Verlag, 1974.

[Campbell and Madany 91]

R. H. Campbell and P. W. Madany, “Considerations of Persistence and Security
in Choices, an Object-Oriented Operating System”, Technical Report
UIUCDCS-R-91-1670, Department of Computer Science, University of
Illinois at Urbana-Champaign, March 1991.

[Campbell et al 89]

R. H. Campbell, G. M. Johnston, P. W. Madany, and V. E. Russo, “Principles of
Object-Oriented Operating System Design”, Technical Report
UIUCDCS-R-89-1510, Department of Computer Science, University of
Illinois at Urbana-Champaign, April 1989.

[Chase et al 89]

J. S. Chase, E. Amador, E. Lazowska, H. Levy, R. Littlefield, “The Amber
System: Parallel Programming on a Network of Multiprocessors”,
Proceedings of the 12" ACM Symposium on Operating System Principles,
Litchfield Park AZ, December 1989, pp. 147-158.

[Codd 79]

E. F. Codd, “Extending the Database Relational Model to Capture More
Meaning”, ACM Transactions on Database Systems, Vol. 4, No. 4,
December 1979, pp. 397-434.

[Curry et al 82]

G. Curry, L. Baer, D. Lipkie, B. Lee, “Traits: An Approach to
Multiple-Inheritance Subclassing”, Proceedings of the ACM SIGOA
Conference on Office Information Systems, University of Pennsylvania, 1982,

pp. 1-9.

148

References

[Dahl et al 70]

O-J, Dahl, B. Myhrhaug and K. Nygaard, “SIMULA Common Base
Language”, Norwegian Computing Centre S-22, Oslo, Norway, 1970.

[Dasgupta et al 88]

P. Dasgupta, R. LeBlanc Jr., W. Appelbe, “The Clouds Distributed Operating
System”, Proceedings of the 8" International Conference on Distributed
Computing Systems, San Jose, June 1988.

[Dijkstra 75]

E. W. Dijkstra, “Comments at a Symposium”, in Selected Writings in
Computing: A Personal Perspective, Springer—Verlag, New York, 1982, pp.
161-164. Also presented at the IBM/Newcastle Seminar on “Computers
and the Educated Individual”, 8-12 September, 1975, The University of
Newcastle upon Tyne, England.

[Dijkstra 82]

E. W. Dijkstra, ““Why is Software So Expensive?” An Explanation to the

Hardware Designer”, in Selected Writings in Computing: A Personal
Perspective, Springer-Verlag, New York, 1982, pp. 338-348.

[Dixon and Shrivastava 87]

G. N. Dixon and S. K. Shrivastava, “Exploiting Type-Inheritance Facilities to
Implement Recovery in Object Based Systems”, Proceedings of 6"
Symposium on Reliability in Distributed Software and Database Systems,
Williamsburg, March 1987, pp. 107-114.

[Dixon et al 87]

G. N. Dixon, S. K. Shrivastava and G. D. Parrington, “Managing Persistent
Objects in Arjuna: A System for Reliable Distributed Computing”,
Proceedings of the Workshop on Persistent Object Systems, Persistent
Programming Research Report 44, Department of Computational Science,
University of St. Andrews, August 1987.

[Dixon 88]

G. N. Dixon, “Object Management for Persistence and Recoverability”, Ph.D
Thesis, Technical Report TR/276, Computing Laboratory, University of
Newcastle upon Tyne, December 1988.

149

References

[Dixon et al 89]

G. N. Dixon, G. D. Parrington, S. K. Shrivastava and S. M. Wheater, “The
Treatment of Persistent Objects in Arjuna”, Proceedings of ECOOP 89,
University of Nottingham, July 1989, pp. 169-204. Also in The Computer
Journal, Vol. 32, No. 4, pp. 323-332, April 1989.

[Eager et al 88]

D. L. Eager, E. D. Lazowska, and J. Zahorjan, “The Limited Performance
Benefits of Migrating Active Processes for Load Sharing”, ACM SigMetric
’88, 1988, pp. 63-72.

[Eswaran et al 76]

K. P. Eswaran, J. N. Gray, R. A. Lorie and 1. L. Traiger, “The Notion of
Consistency and Predicate Locks in a Database System”, Communications
of the ACM, Vol. 19, No. 11, November, 1976, pp. 624-633.

[Ezhilchelvan and Shrivastava 86]

P .D. Ezhilchelvan and S. K. Shrivastava, “A Characterisation of Faults in
Systems”, Proceedings of the 5™ Symposium on Reliability in Distributed
Software and Database Systems, L.os Angeles, CA, January 1986, pp.
215-222.

[Geihs et al 86]

K. Giehs, H. Eberle, B. Schoner, M. Seifert, “Distributed Object Sharing in
Heterogeneous Environments”, IBM European Networking Center
Technical Report No. 43.8610, IBM Deutschland GMBH, 1986.

[Gibbons 87]

P. B. Gibbons, “A Stub Generator for Multi-language RPC in Heterogeneous
Environments”, IEEE Transactions on Software Engineering, Vol. SE-13,
No. 1, January, 1987, pp. 77-87.

[Goldberg and Robson 83]
A. Goldberg and D. Robson, Smalltalk-80: The Tan e and i

Implementation, Addison-Wesley, 1983.

[Gorlen et al 89]

K. E. Gorlen, S. M. Orlow, P. S. Plexico, Data Abstraction and
Object-Oriented Programming in C+ +., John Wiley and Sons, 1989.

150

References

[Gray et al 76]

J.N. Gray, R. A. Lorie, G. R. Putzolu and 1. L. Traiger, “Granularity of Locks
and Degrees of Consistency in a Shared Data Base”, in Modelling in D
Base Management Systems, ed. G. M. Nijssen, North-Holland, 1976.

[Gray 78]

J.N. Gray, “Notes on Data Base Operating Systems”, in Operatin tems An
Advanced Course, Lecture Notes in Computing Science, Vol. 60,
Springer-Verlag, 1978, pp. 393-481.

[Gray 80]
J. N. Gray, “A Transaction Model”, IBM Research Report RJ2895, IBM
Research Laboratory, San Jose, CA, August 1980.
[Gray et al 81]

J.N. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, E Putzolu, I.
Traiger, “The Recovery Manager of the System R Database Manager”,
ACM Computing Surveys, Vol 13, No. 2, June 1981, pp. 223-242.

[Habert et al 90]

S. Habert, L. Mosseri, and V. Abrossimov, “COOL: Kernel Support for
Object-Oriented Environments”, Proceedings of the joint ECOOP [
OOPSLA Conference, Ottawa, October 1990.

[Haerder and Reuter 83]

Haerder, T. and Reuter, A., “Principles of Transaction-Oriented Database
Recovery”, ACM Computing Surveys, Vol. 15, No. 4, December 1983, pp.
287-317.

[Haerder and Rothermel 87a]

Haerder, T. and Rothermel, K., “Concepts for Transaction Recovery in Nested
Transactions”, Technical Report RJ 5534 (56433), IBM Almaden Research
Center, San Jose, CA, March 1987.

[Haerder and Rothermel 87b]

Haerder, T. and Rothermel, K., “Concurrency Control Issues in Nested
Transactions”, Technical Report RJ 5803 (58533), IBM Almaden Research
Center, San Jose, CA, August 1987.

151

References

[Hall et al 76]

P. A. V. Hall, J. Owlettand S. J. P Todd, “Relations and Entities”, in Modeling in
Data Base Management Systems, G. M. Nijssen, ed., North-Holland
Publishing Co., New York, 1976.

[Harland and Beloff 87]

D. M. Harland and B. Belotf, “OBJEKT - a persistent object store with an
integrated garbage collector”, ACM SIGPLAN Notices, Vol. 22, April 87,
pp- 70-79.

[Harland 88]

D. M. Harland, REKURSIV - Object Oriented Computer Architecture, Ellis
Horwood, 1988.

[Herlihy and Wing 87]

M. P. Herlihy and J. M. Wing, “Avalon: Language Support for Reliable
Distributed Systems”, Digest of Papers FTCS-17: Seventeenth Annual
International Symposium on Fault-Tolerant Computing, Pittsburgh PA, July
1987, pp. 89-94.

[Hoare 1981]

C. A. R. Hoare, “The Emporer’s Old Clothes”, 1980 Turing Award Lecture,
ACM Turing Award Lectures - The First Twenty Years 1966-1985, ACM
Press Anthology Series, ACM Press, New York, 1987, pp. 143-161.

[Hollberg et al 90]

U. Hollberg, H. Eberle, K. Geihs, R. Heite, H. Schmutz, “An Object Oriented
View of Distribution”, Technical Report No. 43.9004, IBM European
Networking Center, Heidelberg, July 1990.

[Horning et al 74]

J. J. Horning, H. C. Lauer, P. M. Melliar-Smith and B. Randell, “A Program
Structure for Error Detection and Recovery”, in Lecture Notes in
Computer Science, Vol. 16, Springer-Verlag, Berlin, 1974, pp 171-187.

[ISO7498]

ISO/TC97/SC16/WG1, “Information Processing Systems —— Open Systems
Interconnection — Basic Reference Model”, ISO Standard 1S7498, 1984
(also CCITT recommendation X.200).

152

References

[1SO8073]

ISO/TC97/SC16/WG1, “Information Processing Systems —— Open Systems
Interconnection -- Connection Oriented Transport Protocol
Specification”, ISO Standard 1S8073, 1984.

[Jacobson 82]

D. M. Jacobson, “Transactions on Objects of Arbitrary Type”, Technical Report
82-05-02, Department of Computer Science, University of Washington,
Seattle, WA, May 1982.

[Jessop et al 82]

W. H. Jessop, J. D. Noe, D. M. Jacobson, J.L.. Baer and C. Pu, “The Eden
Transaction-Based File System”, Proceedings of the 2" Symposium on
Reliability in Distributed Software and Database Systems, University of
Pittsburgh, Pittsburgh, PA, IEEE, July 1982.

[Jones and Rashid 86]

M. B. Jones and R. F. Rashid, *“Mach and Matchmaker: Kernel and Language
Support for Object-Oriented Distributed Systems”, Proceedings of
OOPSLA ’86, September 1986, pp. 67-77.

[Jul et al 88]

E. Jul, H. Levy, N. Hutchinson, A. Black, “Fine-grained Mobility in the
Emerald System”, ACM Transactions on Computer Systems, Vol. 6, No. 1,
February 1988, pp. 109-133.

[Kent 78]

W. Kent, Data and Reality, North-Holland Publishing Co. New York 1978.

[Khosatian and Copeland 86]

S.N. Khosafianand G. P. Copeland, “Object Identity”, Proceedings of OOPSLA

'86, September 1986, pp. 400-416 also in Readings in Object Oriented
Database Systems, S. B. Zdonik and D. Maier (eds.), Morgan Kaufman,

1990, pp. 37-47.

153

References

[Knight and Leveson 86]

J. C. Knight and N. G. Leveson, “An Empirical Study of Failure Probabilities in
Multi-Version Software”, Digest of Papers FTCS-16: Sixteenth Annual
International Symposium on Fault-Tolerant Computing, Wien, July 1986, pp.
165-170.

[Knuth 73]

D. Knuth, Sorting and Searching, Volume 3, The Art of Computer

Programming, Addison-Wesley, Menlo Park CA, 1973.
[Kohler 81]

W. H. Kohler, “Survey of Techniques for Synchronization and Recovery”, ACM

Computing Surveys, Vol. 13, No. 2, June 1981, pp. 149-183.
[Kroeger et al 90]

R. Kroeger, M. Mock, R. Schumann, “The RelaX Architecture - Overview and
Interfaces”, COMANDOS Working Paper GMD-RelaX 004, February
1990.

[Lampson and Sturgis 79]
B. W. Lampson and H. E. Sturgis, “Crash Recovery in a Distributed Data
Storage System”, Unpublished internal report, Xerox PARC, April 1979.
[Laprie 89]

J. C. Laprie, “Dependability: A Unitying Concept for Reliable Computing and
Fault Tolerance™, in Dependability of Resilient Computers, T. Anderson
(ed.), BSP Professional Books, Oxford, 1989, pp. 1-28.

[Lazowska et al 81]

E. D. Lazowska, H. M. Levy, G. T. Almes, M. J. Fisher, R. J. Fowler and S. C.
Vestal, “The Architecture of the Eden System”, Proceedings of the 8%
Symposium on Operating System Principles, ACM, December 1981, pp.
148-159.

[LeBlanc and Wilkes 85]

R. J. LeBlanc and C. T. Wilkes, “Systems Programming with Objects and
Actions”, Proceedings of the 5" International Conference on Distributed
Computing Systems, May 1985, pp. 132-1309.

154

References

[Lee and Anderson 90]
P. A. Lee and T. Anderson, Fault Tolerance: Principl nd Practice, Second,
Revised Edition, Springer-Verlag, 1990.
[Lee et al 80]
P. A. Lee, N. Ghani and K. Heron, “A Recovery Cache for the PDP-11", IEEE
Transactions on Computers, Vol. C-29, No. 6, June 1980, pp. 546-549.
[Leiner et al 85]
P.J. Leiner, R. Cole, J. Postel, D. Mills, “The DARPA Internet Protocol Suite”,
IEEE Communications Magazine, Vol. 23, No. 3, March 1985, pp. 29-34.
[Lippman 89]
S. B. Lippman, C+ + Primer, Addison-Wesley, 1989.

[Liskov et al 79]
B. Liskov, R. Atkinson, T. Bloom, J. E. B. Moss, C. Schaffert, R. Scheifler and
A. Snyder, “Clu Reference Manual”, Technical Report MIT/LCS/TR-225,
MIT Laboratory for Computer Science, Cambridge, Mass., October 1979.
[Liskov and Scheitler 83]

B. Liskov and R. Scheifler, “Guardians and Actions: Linguistic Support for
Robust, Distributed Programs”, ACM Transactions on Programming
Languages and Systems, Vol. 5, No. 3, July 1983, pp. 381-404.

[Liskov 84]

B. Liskov, “Overview of the Argus Language and System”, Programming
Methodology Group Memo 40, Massachusetts Institute of Technology
Laboratory for Computer Science, February, 1984.

[Liskov 88]
B. Liskov, “Distributed Programming in Argus”, Communications of the ACM,
Vol. 31, No. 3, March 1988, pp. 300-312.
[Lomet 77]

D. B. Lomet, “Process Structure, Synchronisation and Recovery using Atomic
Actions”, Proceedings of ACM Conference on Language Design for Reliable
Software, SIGPLAN Notices, Vol. 12, No. 3, March 1977, pp. 128-137.

155

References

[Marques and Guedes 89]
J. A. Marques and P. Guedes, “Extending the Operating System to Support an
Object-Oriented Environment”, Proceedings of OOPSLA '89, October
1989, pp. 113-122.
[Melliar-Smith and Randell 77]

P M. Melliar-Smith and B. Randell, “Software Reliability: The Role of
Programmed Exception Handling”, ACM SIGPLAN Notices, Vol. 12, No.
3, 1987, pp. 95-100.
[Merlin and Randell 78]

P. M. Merlin and B. Randell, “State Restoration in Distributed Systems”, Digest
of Papers FTCS-8: FEighth Annual International Symposium on
Fault-Tolerant Computing, Toulouse, June 1978, pp. 129-134.

[Meyer 88]

B. Meyer, Object-oriented Software Construction, Prentice-Hall, 1988.

[Mohan et al 86]

C.Mohan, B. Lindsay, and R. Obermarck, “Transaction Management in the R*
Distributed Database Management System”, ACM Transactions on
Database Systems, Vol. 11, No. 4, December 1986, pp. 378-396.

[Mohan et al 89]

C. Mohan, D. Haderle, B. Lindsay, B. H. Pirahesh, P. Schwartz,
“ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging”, Research
Report RJ 6649R, Data Base Technology Institute, IBM Almaden Research
Center, September 1989.

[Moon 86]
D. Moon, “Object-Oriented Programming with Flavors”™, Proceedings of

OOPSLA '86, September 1986, pp. 1-8.

[Moore 82]

J.D.Moore, “Simple Nested Transactions in LOCUS: A Distributed Operating
System”, M.Sc. Dissertation, University of California at Los Angeles, 1982.

156

References

[Morrison et al 89]

R. Morrison, F. Brown, R. Connor, A. Dearle, “The Napier88 Reference
Manual”, Technical Report PPRR-77-89, Universities of Glasgow and St.
Andrews, 1989.

[Moss 81]

J. E. B. Moss, “Nested Transactions: An Approach to Reliable Distributed
Computing”, Technical Report MIT/LCS/TR-260, Massachusetts Institute
of Technology, Laboratory for Computer Science, April, 1981.

[Moss 87}

E. Moss, “Log Based Recovery for Nested Transactions”, Proceedings of the
13th International Conference on Very Large Data Bases, Brighton,
September 1987.

[Nelson 81]

B. J. Nelson, “Remote Procedure Call”, Ph.D. Thesis, Technical Report
CMU-CS-81-119, Department of Computer Science, Carnegie-Mellon
University, 1981.

[Nett et al 85]

E. Nett, K. E. Grosspietsch, A. Jungblut, J. Kaiser, R. Kroger, W. Lux, M.
Speicher, H. W. Winnebeck, “Profemo: Design and Implementation of a
Fault Tolerant Distributed System Architecture”, GMD-Studien, No. 100,
Technical Report, GMD, St. Augustin, June, 1985.

[O’Brien et al 86]

P. O’Brien, B. Bullis and C. Schatfert, “Persistent and Shared Obijects in
Trellis/Owl”, Proceedings of the International Workshop on Object—Oriented
Databases, Pacific Grove, CA, September 1986.

[Oki 83]

B. Oki, “Reliable Object Storage to Support Atomic Actions”, Technical
Report MIT/LCS/TR-308, Massachusetts Institute of Technology,
Laboratory for Computer Science, May, 1983.

157

References

[Oppen and Dalal 81]

D. C. Oppen and V. K. Dalal, “The Clearinghouse: A Decentralized Agent for
Locating Named Objects in a Distributed Environment”, Technical Report
OPD-T8103, Xerox Office Products Division, Systems Development
Department, October 1981.

[Parrington 88]

G. D. Parrington, “Management of Concurrency in a Reliable
Object-Oriented Computing System”, Ph.D Thesis, Technical Report
TR/277, Computing Laboratory, University of Newcastle upon Tyne,
December 1988.

[Parrington and Shrivastava 83]

G. D. Parrington and S. K. Shrivastava, “Implementing Concurrency Controlin
Reliable Distributed Object-Oriented Systems”, Proceedings of ECOOP
‘88, Norway, August 1988.

[Parrington' 90]

G. D. Parrington, “Reliable Distributed Programming in C+ +: The Arjuna
Approach”, Proceedings of the USENIX 2" C++ Conference, San
Francisco, April 1990, pp. 37-50.

[Pitts 88]

D. Pitts, “Recovery in the Clouds Kernel”, Proceedings of the 7! International
Conference on Reliable Distributed Systems, Columbus, October 1988, pp.
167-176.

[Polya 57]

G. Polya, How to Solve It, Second Edition, Princeton University Press, 1957, p.
173.

[Postel 81a]

J. B. Postel, “Internet Protocol”, DARPA Internet Program Protocol
Specification, September 1931.

[Postel 81b]

J. B. Postel, “Transmission Control Protocol”, DARPA Internet Program
Protocol Specitication, September 1981.

158

References

[Powell 91]
D. Powell, “Fault Assumptions and Assumption Coverage”, Proceedings of the
2”4 Open PDCS Workshop, Newcastle upon Tyne, May 1991, Vol. 1, Ch. 5, L.
[Pu er al 88]

C. Pu, G. Kaiser, and N. Hutchinson, “Split-Transactions for Open-Ended
Activities”, Proceedings of the 14" International Conference on Very Large
Data Bases, Los Angeles, California, September 1988, pp. 26-37.

[Raj et al 91]

R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, E. Jul,

“Emerald: A General-Purpose Programming Language”, Software -
Practice and Experience, Vol 21, No. 1, January 1991, pp. 91-118.

[Randell 75}

B. Randell, “System Structure for Software Fault Tolerance”, IEEE
Transactions on Software Engineering, Vol. SE-1, No. 2, June 1975, pp.
220-232.

[Richardson and Carey 88]
J. E. Richardson, M. J. Carey, “Persistence in the E language”, Software ~
Practice and Experience, Vol. 19, No. 2, December 1988, pp. 1115-1150,

[Rothermel and Mohan 89]

K. Rothermel and C. Mohan, "ARIES/NT: A Recovery Method Based on
Write-Ahead Logging for Nested Transactions”, Proceedings of the
Fifteenth International Conference on Very Large Data Bases, Amsterdam,
August 1989, pp. 338-346.

[Rothermel and Pappe 89]

K. Rothermel and S. Pappe, “Open Commit Protocols for the Tree of Processes
Model”, IBM European Networking Center Technical Report No. 43.8909,
IBM Deutschland GMBH, 1989.

[Rothermel and Pappe 90]

K. Rothermel and S. Pappe, “Open Commit Protocols Tolerating Commission
Failures”, IBM European Networking Center Technical Report No.
43.9006, IBM Deutschland GMBH, 1990.

159

References

[Rozier et al 88]

M. Rozier, V. Abrsossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F.
Herrman, P. Léonard, S. Langlois, W. Neuhauser, “Chorus Distributed
Operating Systems”, Computing Systems, Vol 1, No. 4, 1988, pp. 305-370.

[Schaffert e al 86]

C. Schaffert, T. Cooper, B. Bullis, M. Kilian and C. Wilpolt, “An Introduction to

Trellis/Owl”, Proceedings of OOPSLA ’86, September 1986, pp. 9-16.
[Schantz et al 86]

R. E. Schantz, R. H. Thomas, G. Bono, “The Architecture of the Cronus
Distributed Operating System™, Proceedings of the 6™ International
Conference on Distributed Computer Systems, IEEE Computer Society, May
1986.

[Scheifler and Gettys 80]
R. Scheifler and J. Gettys, “The X Windows System”, ACM Transactions on
Graphics, Vol. 5, No. 2, April 1986, pp. 79-109.
[Schumann et al 89]

R. Schumann, R. Kroger, M. Mock, E. Nett, “Recovery Management in the
RelaX Distributed Transaction Layer”, Proceedings of the 8" Symposium on
Reliable Distributed Systems, Seattle WA, October 1989, pp. 21-28.

[Schwarz and Spector 84]

P. M. Schwarzand A. Z. Spector, “Synchronizing Shared Abstract Types”, ACM
Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp.

223-250.
[Sha 85]

L. Sha, “Modular concurrency control and failure recovery — Consistency,
correctness and optimality”, Ph.D. dissertation, Department of Electrical
and Computer Engineering, Carnegie-Mellon University, 1985.

[Sha et al 88]

L. Sha, J. P. Lehoczky and E.D. Jensen, “Modular Concurrency Control and
Failure Recovery”, IEEE Transactions on Computers, Vol. 37, No. 2,
February 1988, pp. 146-159.

160

References

[Shapiro et al 89]

M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Vaolt, “SOS:
An Obiject Oriented Operating System — Assessment and Perspectives”,
Computing Systems, Vol. 2, No. 4, Fall 1989, pp. 287-338.

[Shrivastava 82]

S. K. Shrivastava, “A Dependency, Commitment and Recovery Model for
Atomic Actions”, Proceedings of the Second Symposium on Reliability in
Distributed Software and Database Systems, University of Pittsburgh,
Pittsburgh, PA, July 1982, pp. 112-119.

[Shrivastava et al 87}

S. K. Shrivastava, L. Mancini and B. Randell, “On the Duality of Fault Tolerant

System Structures”, in Experiences with Distributed Systems, Lecture
Notes in Computer Science, Vol. 309, Springer—Verlag 1987, pp. 19-37.

[Shrivastava et al 88]

S. K. Shrivastava, G. N. Dixon, F Hedayati, G. D. Parrington and S. M.
Wheater, “A Technical Overview of Arjuna: A System for Reliable
Distributed Computing”, Proceedings of UK IT '88 Conference, July 1988,
pp. 601-605.

[Shrivastava et al 90)

S. K. Shrivastava, P. Ezhilchelvan, and M. C. Little, “Understanding
Component Failures and Replication in Distributed Systems, ISA Project
Report UNT/TR1, May 1990.

[Shrivastava et al 91]

S. K. Shrivastava, G. N. Dixon, G. D. Parrington, “An Overview of the Arjuna
Distributed Programming System”, IEEE Software, Vol. 8, No. 1, 1991, pp.
66-73.

[Skeen 81]

D. Skeen, “Nonblocking Commit Protocols”, Proceedings of the ACM
SIGMOD International Conference on Management of Data, Ann Arbor,
Michigan, ACM, New York, 1981, pp. 133-142.

161

References

[Sollins 79]
K. R. Sollins, “Copying Complex Structures in a Distributed System”, M.Sc.
and Technical Report MIT/LCS/TR-2219, Massachusetts Institute of
Technology, Cambridge, MA, May 1979.

[Spector and Schwarz 83}

A. Z. Spector and P. M. Schwarz, “Transactions: A Construct for Reliable
Distributed Computing”, ACM Operating Systems Review, April 1983, pp.
18-34.

[Spector ef al 85]

A. Z. Spector, J. Butcher, D. S. Daniels, D. Duchamp, J. L. Eppinger, C. E.
Fineman, A. Heddaya, P. M. Schwarz, “Support for Distributed
Transactions in the TABS Prototype”, IEEE Transactions on Software
Engineering, Vol. SE-11, No. 6, June 1985, pp. 520-530.

[Spector et al 87]

A. Z. Spector, D. Thompson, R. F. Pausch, J. L. Eppinger, D. Duchamp, R.
Draves, D. S. Daniels, and J. J. Bloch, “*Camelot: A Distributed Transaction
Facility for Mach and the Internet - An Interim Report™, Technical Report
CMU-CS-86-129, Department of Computer Science, Carnegie-Mellon
University, June 1987.

[Spector et al 88]

A. Z. Spector, R. F. Pausch, G. Bruell, “Camelot: A Flexible Distributed
Transaction Processing System”, Proceedings of IEEE Compcon, Spring
1988, San Francisco, March 1988.

[Spector 89}
A. Z. Spector, “Distributed Transaction Processing Facilities”, in Distributed
Systems, S. Mullender (ed.). ACM Press Frontier Series, Addison-Wesley,
1989, pp. 191-214.
[Steedman 90]

D. Steedman, ASN.1 The Tutorial and Reference, Technology Appraisals, The
Camelot Press, Trowbridge, Wiltshire, UK, 1990.

[Stroustrup 86]
B. Stroustrup, The C+ + Programming Language, Addison Wesley, 1986.

162

References

[Sun 88]

“Network Programming”, Sun Microsystems, Mountain View CA, Revision A,
May 1988.

[Tanenbaum and Mullender 81]

A. S. Tanenbaum and S. J. Mullender, “An Overview of the Amoeba
Distributed Operating System”, ACM Operating Systems Review, Vol. 15,
No. 3, July 1981, pp. 51-64.

[Traiger 82]

I. L. Traiger, “Virtual Memory Management for Database Systems”, ACM

Operating Systems Review, Vol 16, October 1982, pp. 24-48.
[van den Bos and Lattra 89]

J. van den Bos and C. Laffra, “PROCOL - A parallel object language with
protocols”, Proceedings of OOPSLA '89, New Orleans, October 1989, pp.
95-102.

[Walker et al 83]

B. J. Walker, G. J. Popek, R. English, C. Kline and G. Thiel, “The LOCUS
Distributed Operating System”, Proceedings of the 9" ACM Symposium on
Operating System Principles, Bretton Woods, New Hampshire, October
1983, pp. 49-70.

[Walker 85]

B. J. Walker, The Locus Distributed System Architecture, MIT Press, 1985.

[Weihl 89a]

W. E. Weihl, “Remote Procedure Call”, in Distributed Systems, S. Mullender
(ed.), ACM Press Frontier Series, Addison-Wesley, 1989, pp. 65-86.

[Weihl 89b]
W. E. Weihl, “Using Transactions in Distributed Applications”, in Distri
Systems, S. Mullender (ed.), ACM Press Frontier Series, Addison-Wesley,
1989, pp. 215-236.
[Weikum 91]

G. Weikum, “Principles and Realization Strategies of Multi-level Transaction
Management”, ACM Transactions on Database Systems, Vol. 16, No. 1,
March 1991, pp. 132-180.

163

References

[Weinreb and Moon 81]
D. Weinreb and D. Moon, LISP Machine Manual, Third Edition, March 1981.

[Weiser et al 89]

M. Weiser, A. Demers, C. Hauser, “The Portable Common Runtime Approach
to Interoperability”, ACM Operating Systems Review, Vol. 23, No. 5,
December 1989, pp. 114-122.
[Weizenbaum 1976]

J. Weizenbaum, Computer Power and Human Reason, W. H. Freeman and Co.,

San Francisco, 1976, page 277.

[Wright 1927]

E L. Wright, “The Architect and the Machine”, in In the Cause of Architecture,
F. Gutheim, ed., Architectural Record, McGraw-Hill, New York, 1975, pp.
131-134.

[Zdonik and Maier 90]

S. B. Zdonik and D. Maier (eds.), Readings in Object-Oriented Database
Systems, Morgan Kaufmann, San Mateo, 1990.

164

Index

A

Abrial, J. R., 70

Ada, 9

Agesen, O., 27

Albano, A, 27

Allchin, J. E., 41

Amber, 35, 71

Amoeba, 42

Anderson, T, 15, 16, 72, 79
ANSA, 22, 24, 57

Argus, 35, 40, 116
Aries/NT, 116

Arjuna, 27, 36

ASN.1, 107

Atkinson, M. P, 26, 27, 75
Avalon, 37

Avizienis, A., 16

B

Babaoglu, O., 43
Babbage, C., ii, 138
Bailey, P. J., 75
Balter, R., 42, 116
Banatre, J. P, 19, 41
Barak, A, 62

Beloff, B., 71
Bennett, J. K., 35, 107

Bernstein, P. A., 16, 17, 18, 25, 56,
60, 81, 83, 140

Bershad, B. N., 48, 52, 107
Beta, 27
Birman, K., 38

Birrell, A., 23
Birtwhistle, G. M., 39
Black, A, 35, 40, 57, 62
Brown, A. L., 75
Browne, J. C., 41

C

C++, 39,47
Camelot, 37
Campbell, R. H., 43, 53
Carey, M. J., 27
Chase, J. S,, 35, 71
Choices, 43
Chorus, 43
Clouds, 41, 116
CLU, 9, 110
Codd, E. E, 71
Comandos, 35

Commit protocols
three-phase, 112
two-phase, 112

COOL, 43

Copeland, G. P, 70, 71
Cronus, 41

Curry, G., 33

D
Dahl, O-1., 39
Dalal, Y. K., 57
Dasgupta, P, 41
Dijkstra, E. W, 1, 68
Dixon, G., 27, 36

E
E, the language, 27, 35

Eager, D. L., 24
Eden, 43

Eiffel, 39, 47
Emerald, 35, 40, 71
Eswaran, K. P, 17
Ezhilchelvan, P. D., 16

F
Flavors, 33

G

Galileo, 27, 35

Gettys, J., 50

Gibbons, P. B., 52
Goldberg, A., 39
Goodman, N, 17
Gorlen, K., 27

Gothic, 41, 42

Gray, J. N, 19, 20, 116
Guedes, P, 35

Guide, 116

H

Habermann, A. N., 53
Habert, S., 43

Haerder, T, 110, 113, 117
Hall, P. A. V., 70
Harland, D. M., 71
Herlihy, M., 37

Hoare, C. A R, 14
Hollberg, U., 35
Horning, J. J., 16

I

Inheritance
multiple, 32
single, 32

ISIS, 38

J

Jacobson, D. M., 140
Jessop, W. H., 43
Jones, M. B., 43
Joseph, T, 38

Jul, E., 71

K

Kent, W., 71
Kerr, R., 16

Khoshafian, S. N., 70, 71

Knight, J. C., 16
Knuth, D., 130
Kohler, W. H., 113
Kornatzky, Y., 62
Kroeger, R., 38

L

Laffra, C., 27
Lampson, B. W,, 19
Laprie, J. C,, 15
Lazowska, E. D., 43

Lee, P. A, 15, 16, 72, 79

Leiner, P, J., 63
Leveson, N. G., 16
Lippman, S., 39

Liskov, B., 17, 24, 35, 40, 110

Locus, 41

M

Mach, 37, 43

Madany, P. W,, 43

Maier, D., 35

Marques, J. A., 35
McKendry, M. S,, 41
Melliar-Smith, P. M., 15
Meyer, B., 39

Mohan, C., 37, 75, 78, 116
Moon, D., 33

Moore, J. D., 41
Morrison, R., 26

Moss, J. E. B., 78, 101, 110
Mullender, S. J., 42

N
Napier, 26, 35
Nelson, B. J., 23

0]
QO’Brien, P, 27
Object-oriented programming, 30
Oki, B., 116
Oppen, D. C,, 57

OSI (Open Systems Interconnect),
63

Ovid, 35

P
Pappe, S., 140
Parrington, G. D, 36, 52, 75, 141

Persistence, 26
transparency, 27

Pitts, D., 41

Polya, G., 104, 139

Postel, J. B., 63
Powell, D., 16
Procol, 27, 35
PS-Algol, 26

R
R*, 37
Raj, R. K., 35, 40
Randell, B., 15
Rashid, R. E, 43

Recovery
forward vs. backward, 19
logging vs. shadowing, 116
operation based, 20
state based, 20
write-ahead logging, 116

Recursiv, 71

RelaX, 38

Remote Procedure Call, 23
Reuter, A., 117
Richardson, J. E., 27
Robson, D., 39

Rothermel, K., 75, 78, 110, 113,
116, 140

Rozier, M., 43
RPC, 23

S

Schaffert, C., 39

Schantz, R. E., 41
Scheifler, R., 17, 24, 40, 50
Schumann, R., 38
Schwartz, P. M., 17

Serialisability, 18
multi-level, 19

Shapiro, M., 42, 71, 107
Shrivastava, S. K., 16, 36

Simula, 39
Skeen, D., 140
Smalltalk, 39, 47

Distributed Smalltalk, 35, 107

Sollins, K., 77

SOS, 42, 71, 107
Spector, A. Z., 17, 37
Stable storage, 19
Steedman, D., 90
Stroustrup, B., 39, 69
Sturgis, H. E., 19
Sun Microsystems, 57
System R, 19, 116

T

TABS, 37
Tanenbaum, A. S., 42
Traiger, I. L., 80
Traits, 33

Transaction
class, 82
log, 83
Transparency, 22
access, 22
concurrency, 22

distribution, 21
failure, 22
location, 22
migration, 22
persistence, 27
replication, 22

Trellis/Owl, 27, 39, 47

\"
van den Bos, J., 27
W
WAL, 78
Walker, B. J., 41
Weikum, G., 19

Weinreb, D., 33
Weisenbaum, J., 68
Weiser, M., 48

Wing, J. M., 37

Wright, F. L., 46
Write-ahead logging, 78

Z

Zdonik, S. B., 35
Zeus, 41

