SPECIFICATION AND VERIFICATION ISSUES
IN A PROCESS LANGUAGE

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF NEWCASTLE UPON TYNE

NEWCASTLE UNIVERSITY LIBRARY

088 17705 6

By
Giuseppe Pappalardo
December 1995

PAGINATED
BLANK PAGES
ARE SCANNED AS
FOUND IN
ORIGINAL
THESIS

NO
INFORMATION
MISSING

i1

To Enza

Abstract

While specification formalisms for reactive concurrent systems are now reason-
ably well-understood theoretically, they have not yet entered common, widespread
design practice. This motivates the attempt made in this work to enhance the
applicability of an important and popular formal framework: the CSP language,
endowed with a failure-based denotational semantics and a logic for describing

failures of processes.

The identification of behaviour with a set of failures is supported by a convinc-
ing intuitive reason: processes with different failures can be distinguished by easily
realizable experiments. But, most importantly, many interesting systems can be
described and studied in terms of their failures. The main technique employed
for this purpose is a logic in which process expressions are required to satisfy an
assertion with each failure of the behaviour they describe. The theory of complete
partial orders, with its elegant treatment of recursion and fixpoint-based verifi-
cation, can be applied to this framework. However, in spite of the advantages
illustrated, the practical applicability of standard failure semantics is impaired by
two weaknesses.

The first is its inability to describe many important systems, constructed by
connecting modules that can exchange values of an infinite set across ports invis-
ible to the environment. This must often be assumed for design and verification
purposes (e.g. for the many protocols relying upon sequence numbers to cope with
out-of-sequence received messages). Such a deficiency is due to the definition of the
hiding operator in standard failure semantics. This thesis puts forward a solution

based on an interesting technical result about infinite sets of sequences.

Another difficulty with standard failure semantics is its treatment of divergence,

\4

the phenomenon in which some components of a system interact by performing
an infinite, uninterrupted sequence of externally invisible actions. Within failure
semantics, divergence cannot be abstracted from on the basis of the implicit fairness
assumption that, if there is a choice leading out of divergence, it will eventually
be made. This ‘fair abstraction’ is essential for the verification of many important
systems, including communication protocols. The solution proposed in this thesis is
an extended failure semantics which records refused traces, rather than just actions.
Not only is this approach compatible with fair abstraction, but it also permits, like
ordinary failure semantics, verification in a compositional calculus with fixpoint
induction. Rather interestingly, these results can be obtained outside traditional
fixpoint theory, which cannot be applied in this case. The theory developed is
based on the novel notion of ‘trace-based’ process functions. These can be shown to
possess a particular fixpoint that, unlike the least fixpoint of traditional treatments,
is compatible with fair abstraction. Moreover, they form a large class, sufficient to
give a compositional denotational semantics to a useful CSP-like process language.

Finally, a logic is proposed in which the properties of a process’ extended fail-
ures can be expressed and analyzed; the methods developed are applied to the
verification of two example communication protocols: a toy one and a large case

study inspired by a real transport protocol.

vi

Acknowledgements

I am very grateful to my supervisor, Santosh Shrivastava, for his continuing guid-
ance and help. He has been exceptionally kind, patient and generous with me
throughout these years of study.

I feel deeply indebted to Maciej Koutny, who read many parts of this work with
great care and perception, providing precious and enlightening comments. Maciej
has given me prompt and invaluable help and sympathy, exactly when I needed
them.

Pippo Scollo introduced me to this beautiful and intriguing field. The example
of his enthusiasm and rigour helped me to overcome many difficult moments.

The friendship of Teresa Cartella, Antonella Di Stefano, Luigi Mancini, Geppino
Pucci and Giuseppe Sarné has also helped me in many, emotional and material,
ways throughout these years.

The cooperation and support of the Faculty of Engineering at Reggio Calabria,
Italy, and particularly of its head, Vincenzo Coccorese, allowed me to pursue this
work together with my academic duties.

Finally, I am grateful to my wife, parents and sister with her husband. The
best thing I can say about them is that this work would have never been completed

without their love and encouragement.

vii

Contents

Abstract
Acknowledgements

1 Introduction
1.1 About This Chapter
1.2 Abstraction in Specification

1.2.1 System Description

..............

..............

1.2.2 Specification, Implementation and Abstraction

1.3 Formalisms for Reactive Systems
1.4 Formalizing Implementations.
1.4.1 Processes and Process Expressions
1.4.2 Transitional Process Semantics . .
1.4.3 Observation Set Process Semantics
1.4.4 Algebraic Process Semantics
1.5 Formalizing Specifications and Satisfaction
1.6 Objectives and Contents of This Work . .

..............

..............

..............

..............

1.6.1 The Formalism Employed: A Motivation

1.6.2 Problems with Failure Semantics .

2 Two Process Languages
2.1 About This Chapter
2.2 Notation,
2.3 The Process Language PL,
231 Syntax

ix

..............

..............

<
00 =1 =1 O & o= = =

[I N I e
— O O O Ot N

23.2 Semanticsof PL, 33

2.3.3 Equational Lawsfor PL, 34
2.4 The Process Language PLE 36
241 Syntax e e e e 36
2.4.2 ‘Transitional Semantics 37
2.4.3 Compositional Denotational Semantics 38
25 PLEversusPL, 41
2.6 Problems with Failure Semantics 41
2.6.1 Hiding Infinite Action Sets: A Solution 42
2.6.2 Failures and Fair Abstraction 48
2.6.3 Extended Failures for Fair Abstraction 55
Extended Failures 59
3.1 About This Chapter 59
3.2 An Extended Failure Model 60
3.2.1 The Domain of Processes 60
3.2.2 Deterministic Processes. 67
3.2.3 A Partial Order for Processes 69
324 ProcessTuples 71
3.2.5 Setsof Process Tuples 72
3.2.6 Properties of Process Functions 74
327 Fixpoints 77
3.2.8 A Fixpoint InductionRule 82
3.3 Basic Process Functions 96
3.3.1 Component Extraction 96
332 StOP . . . e e 96
3.3.3 Operational Justification, 97
3.3.4 Non-Deterministic Choice 97
3.3.5 Deterministic Choice 98
3.3.6 Multiple Action Sequence, 100
337 Renaming 103
3.3.8 Parallel Composition 104

339 Hiding 109

4 sat Verification 119
4.1 About This Chapter 119
42 Outlineofasat Logic 120

4.2.1 Consequence Rule. 121
4.2.2 Operator and Fixpoint Rules 121
4.2.3 Specification Classes and Two Derived Rules 123
4.2.4 Process-Oriented and Consistency Rules 128
43 AShort Example 132
43.1 Specification L 132
4.3.2 Deadlock Freedom Verification 135
4.3.3 A Deadlock Freedom Verification Strategy for Systems with
Hidden Channels 139
4.4 Specifying Unreliable Media 142
4.4.1 Introducing Media Deadlock Freedom 142
4.4.2 Media Deadlock Freedom: the General Case 143
4.5 A Sliding Window Protocol 150
4.5.1 Informal Description 151
4.5.2 A Plan of the Formal Treatment 152
4.5.3 Formal Specification 155
4.5.4 Derived Component Properties 159
4.5.5 System Safety Verification 166
4.5.6 System Deadlock Freedom Verification 167
4.5.7 Component Implementation and Verification 174

5 Conclusions 179
51 ScopeandResults. 179
5.2 Related Work and Further Studies. 180

Bibliography 183

xi

List of Tables

4.1 Properties of the sender, the receiver and medium M,

xiii

List of Figures

1.1
2.1
2.2
4.1
4.2
4.3
4.4
4.5

Relation between process semantics 15
Bergstra, Klop and Olderog’s example. 53
o and m are failure- but not extended failure-equivalent. 56
o and 7 are failure- but not extended failure- equivalent. 131
The example system SP. 133
LTS describing the behaviours of medium RDMED. 148
LTSs describing the behaviours of IDMED, Sand R. 149
Architecture of the system TSP 156

Xv

Chapter 1

Introduction

1.1 About This Chapter

Many authors have employed in noticeably different ways some key notions like
abstraction, specification, implementation, verification and correctness, behaviour
and process. Thus, before embarking on a work where these play a fundamental role,
it seems appropriate to attempt a clarification both of concepts and terminology,
without any pretence to novelty, but only for the sake of laying the groundwork for
later study. This is the subject of the first sections, up to 1.5.

The contents and results of this thesis are then outlined in the concluding
Section 1.6.

1.2 Abstraction in Specification

1.2.1 System Description

The description of a physical system, including a computer system, presupposes a
twofold conceptual effort.
Firstly, the system must be perceived as separate from the environment sur-

rounding it.! This entails identifying the interface of the system, i.e. the boundary

In fact, this idea of separation would be better described by the term ‘object’, rather than
‘system’, which in modern natural languages is suggestive of a set of interacting parts. The

1

1.2. ABSTRACTION IN SPECIFICATION 2

through which it interacts with the environment. Since interaction across an inter-
face implies an exchange of information, it is also referred to as communication.

The other main intellectual activity involved in system description is abstraction
—from detail viewed as irrelevant. Abstraction in system description takes two
typical forms. The first consists in ignoring particular classes of system properties;
these include, in the approach of this work, any property irrelevant as to what a
system does (e.g., in most cases, colour or weight). The other form of abstraction
is to omit describing how a system accomplishes what it does; this topic will be
examined in detail in Section 1.2.2.

Thus, a system will be described in terms of what it does or, technically speak-
ing, its behaviour (systems for which this is appropriate are called reactive af-
ter [Pnueli, 1986]). More precisely, the behaviour of a system is identified with the
interaction that it is observed engage in with the environment, across the interface
between them. However, this does not determine the exact nature of behaviour
yet, but rather relates it to a hypothetical observer asked to describe it. In the
following, this observer’s choices or limitations may be borne in mind as a justifi-
cation for the ways abstraction is further exercised in the description of behaviour.

In this respect, four principal abstractions will be employed in this work:
1. indivisible (or atomic) actions;
2. abstraction from priority and probability in choice;
3. abstraction from time duration;
4. interleaving concurrency.

By the first abstraction, a description conceptually subdivides the interaction
observed, and the associated information flow, into indivisible instances. Each
instance causes the exchange of an amount of information that is represented by a
value of a suitable set. These values are referred to as actions. Note that different

interaction instances may result in the exchange of the same value, i.e. in the

fortune of ‘system’ in computer science stems from the typically structured nature of the objects
this discipline deals with.

CHAPTER 1. INTRODUCTION 3

same action; in other words, an action may occur several times. Most interaction
mechanisms relevant to computer technology (from buttons and wires to hardware

registers and procedure calls) can be easily modelled by actions.

Descriptions that will be considered also abstract from behaviour aspects related
to priority and probability in choices, and the measure of time. Thus, the duration
of actions and intervals between them is ignored; only the order in which actions
occur is described. This order must be total because descriptions are also assumed
to eschew the representation of true concurrency: the simultaneous occurrence of

actions is replaced by all their possible interleavings.

It now seems appropriate to give a brief assessment of the four abstractions
introduced. While they are probably the most common and established in the
literature (starting from [Dijkstra, 1965]), they seem to enjoy different degrees of
consensus. Action atomicity can usually be assumed at some level, however low (be
it digital electronics or quantum mechanics); it has also been shown that groups
of actions may be rigorously viewed as a unique action at a higher abstraction
level [Lamport, 1986]. For the class of applications considered in this work, priority
and probability issues are usually abstracted from, but have received a growing
attention recently [Vardi, 1985; Pnueli & Zuck, 1986; Baeten, Bergstra, & Klop,
1987; Larsen & Skou, 1989; Christoff, 1990; Jou & Smolka, 1990; Tofts, 1990;
v. Glabbeek, Smolka, Steffen, & Tofts, 1990; Tofts, 1994]. Abstraction from time
duration has been overcome by many researchers, in many different frameworks, in
order to describe real-time systems; in particular, the works [Milner, 1983; Moller
& Tofts, 1990; Gerth & Boucher, 1987; Reed & Roscoe, 1988; Groote, 1990; Baeten
& Bergstra, 1991; Davies & Schneider, 1993] are worth citing here because they
aim at extending non-timed methodologies similar to those of this work. Timed
approaches also provide a way of representing concurrency without recourse to
interleaving; another alternative (see e.g. [Best, 1985]) is to model concurrency
as a partial order over actions (leaving truly concurrent actions out of the order
relation); true concurrency can also be described by means of nets (see e.g. [Reisig,
1985)).

The four abstractions adopted certainly limit the properties that can be con-

veyed by the description of a system. On the other hand, they allow a description,

1.2. ABSTRACTION IN SPECIFICATION 4

and the facts proved about it, to apply to a wider set of systems. Moreover, they
afford a simpler formal modelling of systems, and an easier and rich theory. It
seems therefore fair to conclude, generalizing a view of [Pnueli, 1986], that the
best tradeoff among these contrasting issues should be suggested by the applica-
tion or the area of interest. In general, however, the abstractions introduced above

and adopted in this work have proved ‘very successful’ and ‘popular’, in the words
of [Best, 1990].

1.2.2 Specification, Implementation and Abstraction

The development of a computer system depends on the ability to describe it. In
some sense, system development may even be viewed as an activity that starts from
a description of a system in terms of the customer’s requirements, and ends with
an executable description of it in a programming language (or perhaps as a digital
circuit, depending on the target technology). Commonly, the initial, requirement
description is referred to as a specification, and the final, executable one as an
implementation of the system.

Since the implementation is in fact the system, it should be consistent with,
or satisfy, the description represented by the specification. Thus the specification
should not give more information about the system than the implementation does;
in fact, it normally provides less information and is therefore more abstract a
description than the implementation. A notion of satisfaction of a specification
by an implementation should therefore conceal the additional detail present in
the implementation, by mapping it onto suitable aspects of the more abstract
specification.

Which abstraction level is desirable for a specification may not be thoroughly
obvious for the application studied, even after taking into due account the class of
properties that have to be formalized. Clearly, such considerations heavily influ-
ence the abstraction level adopted, but this will also ultimately depend on personal
taste or inclination. The goal to be pursued, however, is to strike a balance between
giving sufficient, but not excessive, information to specification users, and allowing
developers among them enough leeway in choosing the most effective implementa-

tion solutions.

CHAPTER 1. INTRODUCTION 5

Related Concepts and Terminological Issues

In the literature, the basic concepts outlined above are expressed in many ways,
which are worth recalling briefly. Consider a specification and an implementation
that satisfies it. In this context, ‘to implement’ may be used as synonymous with
‘to satisfy’. Moreover, the implementation is said to be correct with respect to
the specification; establishing correctness is the goal of verification.? Finally, with
reference to its richer amount of detail, the implementation is said to refine the
specification.

Since the abstraction gap between realistic specifications and implementations
may be rather noticeable, refinement must in practice be carried out stepwise.
Typically, each step makes a distinct implementation choice, e.g. an algorithm, a
representation of data or a decomposition into modules (each of which may then be
refined separately). Thus, stepwise refinement gives rise to a series of decreasingly
abstract system descriptions, which begin from the specification and culminate in
the final implementation. In fact, any two adjacent descriptions in the series may be
relatively viewed as a specification and an implementation respectively, according
to the notion of satisfaction associated with the refinement step? relating them.

The latter observation, that any description may serve as a specification, has
led some authors to use these terms as synonyms, perhaps adding a qualification
to distinguish the intended use of a specification. E.g., [Sannella, 1988] calls ‘high-
level specification’ a description intended to convey requirements, and ‘executable
specification’ the final implementation. In [Pnueli, 1986], refinement starts from ‘re-
quirement specification’ and continues through an an intermediate (architectural)
‘system specification’.

In this work, any two descriptions such that one is a refinement of the other
may be termed specification and implementation respectively. Two cases are typical

though not exclusive, mutually or of others.

2In practice, correctness of an implementation with respect to a specification may also be
ascertained by testing.

3This step may be devised out of intuition and then proved correct by verification, or selected
with suitable criteria from a library of refinement patterns known to be correct in advance. The
latter approach, first advocated in [Burstall & Darlington, 1977}, will not be pursued in this work.

1.3. FORMALISMS FOR REACTIVE SYSTEMS 6

1. Tightening refinement: the specification loosely describes the behaviour of a
system, and the implementation removes (part of) this looseness. E.g. while
the specification of a channel may require it to output data in the order in
which they are input, the implementation may also insist that any input

should be immediately followed by an output.

2. Decomposition refinement: the implementation describes a set of systems,
and a way of combining them into one whose behaviour satisfies the specifi-

cation.

Finally, a terminological remark seems appropriate: the terms ‘specification’
and ‘implementation’ denote not only instances of a description, but also the ac-
tivity of producing these instances. The converse can be said about the word

‘refinement’.

1.3 Formalisms for Reactive Systems

There is substantial agreement in the computer science community that precise
descriptions and trusted reasoning must be formal, i.e. based on the methods of
mathematics and logic. However, it has been the subject of much controversy
whether the higher level of confidence attained by formal methods is worth the
complexity they bring about in the specification and verification stages of system
development. This work clearly presupposes an affirmative answer, but will not
try to put the case for it; the interested reader is referred e.g. to [Meyer, 1985]
and [Hall, 1990], which also highlights the role formal methods may have in other
development phases (like implementation and testing). A thorough survey on the
role of formal methods in system development can be found in [Wing, 1990], which
is also a rich source of further reference.

A formal approach to specification and verification requires that mathematical
concepts should be employed to represent implementations, specifications and the
satisfaction relationship between them. It should be expected that accomplishing
this will involve recourse to the two main forms of abstraction identified earlier,

in Sections 1.2.1 and 1.2.2 respectively: (1) only behavioural properties (subject

CHAPTER 1. INTRODUCTION 7

to the specific abstractions assumed in Section 1.2.1) will be formalized, and (2)
formalization should reflect the abstraction gap between a specification and an im-
plementation satisfying it. These topics are examined in the following Sections 1.4
and 1.5.

1.4 Formalizing Implementations

1.4.1 Processes and Process Expressions

It would seem natural to begin by seeking a set Proc, whose elements, referred to as
processes, are suited to representing implementations. A process should therefore
provide, at least, a suitable formalization of system behaviour.

On the other hand, an implementation is intended to describe not just the
behaviour of a system, but also how that behaviour can be obtained. A member of
a set without sufficient structure does not appear to be suitable for capturing this
notion. Instead, there would appear to be a need for a formal (process) language
PL, with constants, denoting elementary behaviour patterns, and operators, used to
construct expressions denoting complex behaviour. Of course, different expressions
may happen to denote the same behaviour, reflecting the intuition that a behaviour
may be implemented in different ways.

In the following, the term ‘process’ will be reserved for mathematical entities
providing a precise formalization of the intuitive idea of behaviour; by this it is
meant that (mathematically) different processes should denote (intuitively) differ-
ent behaviours. Thus, processes cannot be the process expressions of the process
language PL, nor can the set Proc coincide with PL. Rather, process expressions
should be given an interpretation as processes, in order to define which behaviour
they denote. The dichotomy between processes and process expressions is an in-
stance of the classical one between syntax and semantics or, more philosophically,
form and function.

There are many approaches to the problem of selecting a suitable Proc set and
relating it to PL. In all of them, however, actions from a set Act can be expected

to play a role in that, as assumed in Section 1.2.1, they represent the smallest

1.4. FORMALIZING IMPLEMENTATIONS 8

instances in which behaviour may take place. The two approaches employed in
this work are described in Sections 1.4.2 and 1.4.3.

1.4.2 Transitional Process Semantics
Labelled Transition Systems

Transitional process semantics rests on the idea that any behaviour transforms into
another behaviour after performing an action, which can be either observable, i.e.
a member of Act, or unobservable, denoted by the symbol + and also called internal
or silent. The set Act U {1} of all actions (observable or not) will be denoted by
Act,.

Thus, formally, any behaviour is to be modelled by an element 7 of a suitable
set Stat endowed with a relation —> C Stat x Act, X Stat. That (7, a,7") €— or,
more suggestively, 7 25 7' is understood to mean that the behaviour represented
by 7 may perform action o and transform into the behaviour represented by 7';
sometimes, 7’ is said to be an a-derivative of w. A similar terminology applies to
the other transition relations introduced later.

The structure (Stat, Act,, —>) is called a labelled transition system (LTS) over
Stat, the set of states, and Act,, the set of labels; a triple (7, e, ') in — is called
a (a)-transition from state 7 to the successor state m'. Note that the exact nature
of states is relevant for behaviour representation only up to isomorphism; for it
is clear that if a behaviour is representable within a LTS (Stat, Act,, —>), so it
is within (Stat’, Act,, —b') provided Stat and Stat' are isomorphic with respect to
—> and —b'.

It will be postulated that states of a LTS are adequate for representing be-
haviour, in the sense that two systems that behave as though they contained the
same LTS in the same state are indistinguishable.

However, LTS states cannot be adopted as processes in the sense introduced
earlier, because the converse is not true: different states may well represent the
same behaviour. An easy example of this is provided by infinitely many distinct

states m, mg, m1,. .. having only the transitions:

a a a
T—>T g —> T —> ...

CHAPTER 1. INTRODUCTION 9

A partial solution, and a step towards the discovery of a set Proc, requires
a sharper insight into the nature of behaviour. It will now be postulated that a
behaviour is completely determined by the order in which its actions occur, and
its branching structure, i.e. the choices it makes among the actions available to
it at a certain stage. This information can be easily recovered from a state of a
LTS: it suffices to ‘unwind’ transitions from it and its successors into a rooted,
unordered derivation tree, with edges that are labelled by actions, and nodes that
are anonymous (not labelled by states). Thus, two states 7, o generating the same
derivation tree—in symbols 7 ~ o—will be assumed to denote the same behaviour.
This also suggests that (for a fixed Act,) a sufficient condition for a LTS to describe
every possible behaviour is that its states generate every possible derivation tree.*
For the rest of Section 1.4.2, a fixed LTS (Stat, Act,, —>) satisfying the previous
condition will be assumed.

Bisimulation Equivalence

Even Stat/~, the set obtained partitioning Stat with the equivalence relation ~, is
unsuitable as a candidate for Proc. Intuitive arguments whereby different deriva-
tion trees may represent the same behaviour, originally due to Robin Milner, can
be found in his book [Milner, 1989]. Hence, we have still to pursue the goal of find-
ing an equivalence relation ~ that equates LTS states iff they describe behaviours
indistinguishable to observation or experimentation. This equivalence will be as-
sumed as the observation equivalence, and the set Proc will then be identified with
Stat/~. As noted previously, this amounts to tying the exact, formal nature of
behaviour to the abilities intuitively attributable to the observer that describes it.

The solution of [Milner, 1989) is to define three, increasingly coarse, equivalence
relations over Stat.

The characteristic property of the strongest one, ~, is that LTS states 7, o sat-
isfying m ~ o bisimulate each other, i.e. belong to a (strong) bisimulation relation
B such that:

4Thus, the cardinality of Stat for such a ‘most general’ LTS should be at least that of the set
of derivation trees.

1.4. FORMALIZING IMPLEMENTATIONS 10

[+3 «
(1) whenever 1 —> 7', for any o € Act,, then also ¢ —> ¢’ for some ¢/, and 7’

and o' are in B;
(2) B is symmetric.

Strong bisimulation equivalence ~ is defined to be the largest B enjoying properties
(1) and (2). It gets closer to the sought ~ but cannot yet be it. For, while states
that bisimulate each other do not appear to be distinguishable by any plausible
experiment, state pairs may be exhibited that are not in ~ and still could not
possibly be distinguished. The reason lies in the observers’ inability to perceive
every possible occurrence of the internal action :.

In fact, any activity observed coming from a system may be interspersed with

arbitrarily many internal actions. To take this into account, define:®

o =0 iff eithero’ =0 (1-1)

L L L
oro —b 0y... —> 0, —> ¢’ for some oy, ...,0, (n=>0)
and, for a € Act:
a ' . () a ())
o=d iff 0 =0, —> gy =2 0’ for some 01, 0,. (1-2)

Then, after letting & = a for a € Act, i = (), we may replace —b> by =45 in (1)
above in order to obtain the definitions of weak bisimulation and, accordingly, weak
bisimulation equivalence =.

A slight problem with & is that 7 &~ o does not guarantee that the behaviours
denoted by 7 and o can replace each other within a larger behaviour, leaving this
one unchanged. The remedy is to modify the definition of # = o slightly, so that
initial + actions of 7 must be matched by initial ¢+ actions of o and viceversa. The
resulting equivalence relation is therefore finer (identifies less) than =; as it enjoys
substitutivity, it is called weak bisimulation congruence (~ is also a congruence and
is thus also called strong bisimulation congruence). In the following, the qualifiers
‘strong’ or ‘weak’ and ‘bisimulation’ will be omitted when they are clearly supplied
by the context.

5() denotes the empty sequence.

CHAPTER 1. INTRODUCTION 11

Other Observation Equivalences

The observer associated with bisimulation equivalence is quite a powerful one: it
must be capable of global testing [Abramsky, 1987] of all the different options avail-
able to a behaviour at any stage. Normally, no observer is thought to be more pow-
erful than this one, which amounts to admitting that the sought ideal observation
equivalence ~ should not be finer than bisimulation equivalence. The only no-
table exception is represented by branching bisimulation equivalence [v. Glabbeek
& Weijland, 1989], which is a slight variation on bisimulation anyway.

On the other hand, many authors have proposed notions of behaviour and
observation equivalences corresponding to less powerful (discriminating) observers.
These equivalences are therefore coarser than bisimulation equivalence.

Surveys and comparisons of observation equivalences can be found in [De Nicola,
1987] and [v. Glabbeek, 1990; v. Glabbeek, 1993], where each of the best known ones
is explained in terms of a specific kind of system interface and a class of experiments
that can be performed on it. The equivalences considered in [v. Glabbeek, 1990;
v. Glabbeek, 1993], if compared in terms of how many identifications they induce,
form a lattice with bisimulation equivalence at the top and, among the minimal
ones, failure equivalence, which is related to the approach of [Brookes, Hoare, &
Roscoe, 1984]. Formally, states 7 and o are failure equivalent if they possess the
same failure sets, as defined later, in Section 1.4.3.

Transitional Observation Equivalence-Based Semantics for a Process
Language

As discussed earlier, in the transitional approach processes may be thought of as
equivalence classes of an equivalence relation, e.g. =, over the states of a LTS.
Therefore, a technique for interpreting process expressions of the language PL as
processes is to define a relation —> C PL x Act, x PL, hence a LTS (PL, Act,, —)
in which states are process expressions. Then, =~ may be applied to process ex-
pressions as well, and a process expression p € PL is interpreted with, or given as

meaning, the set

{¢ePL|p~q}

1.4. FORMALIZING IMPLEMENTATIONS 12

which is the equivalence class of p, i.e. a process.

As the language PL will be inductively defined, the definition of the relation
—> C PL x Act, x PL can be expected to reflect the structure of process expressions
in PL. This will be obtained, following an approach introduced in [Plotkin, 1982]
and generalized in [Baird, Istrail, & Meyer, 1988], by a set of inference rules; in
the typical case, a transition of process expression op(py,...,pn), Where op is an

operator of PL, is inferred from transitions of p;, ..., ps.

1.4.3 Observation Set Process Semantics

In this approach to process semantics, the set Proc is given explicitly; processes
are sets of observations, which in turn are elements of a set Obs. The intention is
that observations should represent the outcomes of experiments that an observer
may conduct on a system; the system is then identified with the set of all possible
outcomes (of all experiments). Typically, the observations that compose a process
are made up of actions, and provide at least enough information to recover the
traces, i.e. the sequences of actions that can be performed by the system described
by the process. Below let (ay,...,a,) denote the sequence of actions ay,...,a, ({)
is the empty sequence) and st the concatenation of sequences s and t.

Not every observation set can be a process; intuitively, a process should at least
contain the ‘empty observation’ and be closed with respect to shorter observations:
if observation z can be made only after a shorter one z’, then a process containing
z should also contain z'. E.g. if observations are simply taken to be traces, then
processes must be non-empty, prefix-closed trace sets.

Many observation set approaches have been proposed. The work [v. Glabbeek,
1990] surveys the most interesting ones, and devises ingenious experiments capable
of detecting the kind of observations underlying each approach. An important
example is represented by the failure model of CSP [Brookes, Hoare, & Roscoe,
1984]. In it, an observation is a failure, i.e. a pair (s, X) where s€ Act and X € pAct
(the set of finite subsets of Act); this is intended to express that a system can be
observed perform the trace s and then refuse all the actions in the finite refusal set

X. A process is a failure set satisfying the constraints defined below.

CHAPTER 1. INTRODUCTION 13

Definition 1.1 According to [Brookes, Hoare, & Roscoe, 1984], a process is a set
P C Act* x pAct satisfying the following constraints:

1. non-emptiness: ({), @) € P;
2. trace prefix-closure: if (st, &) € P, then (s, @) € P;
3. refusal subset-closure: if (s, X) € P and Y C X, then (s,Y) € P;

4. trace-refusal consistency: if (s, X) € P and (s, XU{a}) ¢ P, then (s{(a), @) €
P. O

The previous constraints are easy to justify appealing to intuition. More formally,
assume (as in Section 1.4.2) that a LTS (Stat, Act,, —>) provides enough informa-
tion about every behaviour; complete the definitions (1-1) and (1-2) of the =
relation by letting, for s € Act*, s = (ai1,as,...,a,) (n > 0):

8 7 . a) a2 an 1
m=m iff T=>m =>...7_y => 7' for some 7,7y, ..., Tph_.

3 . 8
7 => iff ® = 7' for some 7'.

Note that the LTS (Stat, Act*, =) also captures enough information about observ-
able behaviour. In accordance with the intuitive meaning of failures, it is possible
to define the failure set of a state 7 as in [Brookes, Hoare, & Roscoe, 1984]:

failures(m) = {(s,X) € Act* x pAct | 3n’ : 7 => 1’ and Vz € X : 7' £} (1-3)

and it is immediate to verify that it satisfies the constraints of Definition 1.1. Con-
versely, given a failure set P satisfying those constraints, it is possible to construct
a LTS with a state 7, i.e. a behaviour, such that failures(r) = P [Brookes, Hoare,
& Roscoe, 1984].

Observation Set Semantics for a Process Language

An observation set semantics for a process language PL is defined by a meaning
function, mapping every process expression p of PL onto an observation set, called
the meaning or denotation of p. Observation set semantics is therefore of the

denotational kind.

1.4. FORMALIZING IMPLEMENTATIONS 14

In Section 1.4.2 we discussed how a process expression p can be viewed as a state
of a LTS. As such, p can be easily ascribed an observation set obsset(p), exploiting
the LTS transition relations —> or ==, as done e.g. for failures in equation (1-3).
This allows obsset() to be taken as a meaning function for a denotational semantics
over PL.

In fact, it is easy to give an equivalent transitional style semantics in which
process expressions are instead interpreted as equivalence classes. For, if two states,
or process expressions, p and g are defined to be equivalent whenever obsset(p) =
obsset(q), then obsset(p) characterizes the equivalence class (meaning) of p with
respect to this new equivalence relation.

Adopting observation sets as processes can also support a compositional deno-
tational semantics for process expressions. In this case, the meaning function Of]
should map a complex process expression p of the form op(p,, . . ., p,) onto an obser-
vation set O[p], determined by the denotations Ofp1], ..., O[pa] of the operands,
in a way that reflects the intended meaning of the operator op. Moreover, it is often
possible to compare observation sets by set inclusion or in related ways that give
Proc the status of a complete partial order, and to interpret language operators as
continuous functions over Proc. In this setting, powerful techniques are available
for introducing recursively defined process expressions and reasoning about them
(see e.g. [Loeckx & Sieber, 1987]). This has been accomplished e.g. in [Brookes,
Hoare, & Roscoe, 1984] for the CSP language with the failure semantics.

A more general and formal treatment of what has been described here as ob-

servation set semantics is given in [Olderog & Hoare, 1986).

Relating Transitional, Equivalence-Based and Observation Set Seman-
tics

Figure 1.1 depicts the relationship between the above-mentioned approaches to
semantics. For this relationship to be consistent, a process expression p should
be mapped onto the same observation set by both the techniques introduced for
this purpose: the compositional meaning function O[] and the obsset() function

applied to p viewed as a state of a LTS. Thus, it is required:
for all p in PL: O[p] = obsset(p) (1-4)

CHAPTER 1. INTRODUCTION 15

by transition inference rules

denotational semantic function O[]
LTS (Stat, Act,, —)

obsset() function
definition of ~

Proc = Stat/~ Proc = observation sets

Figure 1.1: Relation between process semantics

Since bisimulation equivalence =~ is about the strongest meaningful observation

equivalence available, other consistency requirements could be that:

for all p,q in PL: p ~ ¢ implies obsset(p) = obsset(q) (1-5)
for all p,q in PL: p = ¢ implies O[p] = O[q]

Of course, a sufficient condition for the latter property to hold is that the previous
two (1-4) and (1-5) hold. E.g. if observations are failures, defined as in equa-
tion (1-3), it is well-known (see e.g. [De Nicola, 1987]) that (1-5) holds (however
the converse does not); (1-4) is stated in [Brookes, 1983a] (for a slightly different

notion of failures).

1.4.4 Algebraic Process Semantics

There is undoubtedly a degree of arbitrariness in building process semantics upon
a particular notion of equivalence or a particular sort of observations. This seems
to be confirmed by the wealth of process semantics proposed. The remedy adopted
in ACP (Algebra of Communicating Processes [Bergstra & Klop, 1984; Baeten &
Weijland, 1990]) is to found the semantics on a set of axioms that represent equa-
tions between process expressions. These describe equalities that actual processes

and process operations are expected to satisfy, but do not prescribe a particular

1.5. FORMALIZING SPECIFICATIONS AND SATISFACTION 16

choice for them: any choice which is is consistent with (or, technically, is a model
of) the equations will do.

In this way, however, it is the choice of equations and process language oper-
ators that becomes critical: somehow, it is as though the arbitrariness has been
moved from the semantic to the syntactic level. This may be viewed as advanta-
geous as far as the choice of equations is concerned: it is instructive to realize how
including or excluding some equations, which amounts to accepting or refusing cer-
tain identifications between processes, corresponds to accepting or refusing models
based on particular observation equivalences or observation sets. An example of
this is given in Section 2.6.2. However, the generality of the ACP approach is also
tied to the process operators chosen, and no such set is universally adopted by all
authors.® Moreover, other algebraic process semantics could replace equations with
more complex logical formulae, and make an even stronger claim to being general.

A process semantics independent even of the operators and the logic in which
axioms are expressed can be given by resorting to institutions [Goguen & Burstall,
1984).

The algebraic approach to semantics will not be pursued in this work.

1.5 Formalizing Specifications and Satisfaction

A rigorous general description of specification formalisms can be found e.g. in
[Larsen, 1990]. The discussion here is informal and geared to the view introduced
in Section 1.2.2, that any two behaviour descriptions of which the first is more
detailed, but consistent with (satisfies) the second, represent an implementation
and a specification respectively.

In an attempt to organize the numerous formal specification techniques pro-
posed, most authors distinguish between those rendered by logical formulae and

those rendered by formal devices (like LTSs, automata etc.). In our view, it is

6In contrast, when the algebraic approach is applied to the functional description of a particular
software system (rather than the behavioural description of the set of all systems), the operators
are either legitimately selected by the system designer or universally accepted, e.g. push() and
pop() for a stack.

CHAPTER 1. INTRODUCTION 17

perhaps more appropriate to classify a specification, primarily, according as the
behaviour it aims to describe is a single one or any member of a set. This alterna-
tive, indeed, is often more a matter of aim or convention (between specifiers and
users), than form of the specification (like its being a LTS or a logical formula).
Thus, e.g., the informal specification ‘data input are output in the same order’ may
be taken to describe any behaviour that fulfils it (including one that does nothing),
or the behaviour that fulfils it precisely, by performing any permitted action at any
stage.

It is often the case that a specification approach may be indifferently understood
either way, simply by choosing the right semantic level. Four possible approaches
to formal specification will now be examined in the light of this and the other

considerations above.

First Approach

In this approach, a process expression p is regarded as a specification of a single’
behaviour—that denoted by p in the chosen semantics. E.g. within the observation
equivalence semantic framework, p can be taken to specify its ~-equivalence class.

Implementations are also formalized by process expressions: a process expres-
sion ¢ satisfies p if it denotes the same behaviour, (i.e. in the example cited if
p =~ q). The added detail provided by ¢ (if any) is its structure as a process ex-
pression (of course, also p has a structure, which is however irrelevant to its use as
a specification).

Specifications of this kind are therefore rather demanding: no leeway is allowed

for the behaviour of implementations.

Second Approach

The first framework may be modified by stipulating that ¢ satisfies p if the be-
haviour denoted by ¢ approximates that denoted by p. The formalization is often

"Even in this case, a specification p may be regarded as describing any member of a set, i.e.
{g | q denotes the same behaviour as p}, but this is a set of distinct process expressions, not
behaviours.

1.5. FORMALIZING SPECIFICATIONS AND SATISFACTION 18

based on a partial order < over states of a LTS (e.g. simulation [Larsen, 1987]);
satisfaction of p by ¢ is then rendered as ¢ < p.

An obviously equivalent alternative presentation is to view the specification p
as describing any behaviour that approximates that denoted by p; satisfaction is
then viewed as set membership: ¢ € {p' | p’ < p}.

In any case, the information that the implementation g adds to that specified by
p is not only structure, as in the first approach, but also knowledge of the particular

behaviour approximating that denoted by p.

Third Approach

This case occurs when a specification is formalized with a formula S of a logic
interpreted over a set U whose elements denote behaviour (in one of the ways
described in Section 1.4). S is assumed to describe any of the behaviours denoted
by an element of U upon which S is true. Implementations may be taken to be
either, directly, elements of U or, indirectly, process expressions equipped with
a mapping onto U (generally through a LTS). An implementation I satisfies the
specification S if S is true for the element of U associated with I. The additional
information I provides is: (i) which behaviour it denotes among those allowed by
S, and (ii), if I is a process expression, how this behaviour can be obtained.

We have mentioned that either process expressions or more direct denotations of
behaviour (e.g. states of a LTS) may serve as implementations.® However, it is clear
that interesting implementations must ultimately provide detailed information on
how they are to be constructed, which can be ensured only by recourse to process
expressions.

Finally, let us consider two examples of the third approach. (i) Satisfaction of
a branching temporal logic formula may be defined over a state or a state path,
which may be thought of as generated by a fixed LTS (of a restricted kind) [Emerson
& Halpern, 1986]. (ii) The interpretation of Hennessy-Milner logic [Hennessy &
Milner, 1985] is given over a state of a LTS.

8In fact this applies whenever the specification does not already identify a unique behaviour
(as it does in the first approach above).

CHAPTER 1. INTRODUCTION 19

Fourth Approach

The last case occurs when behaviour is understood as an observation set, as dis-
cussed in Section 1.4.3. Then, a specification is a logical formula S interpreted over
an observation; S is aimed at describing any behaviour which makes S true with
each observations that can be made on it. An implementation I may be an observa-
tion set or (with the usual difference of added detail) a process expression mapped
onto an observation set by some semantics. I satisfies S if every observation in the
set associated with I makes S true.

In general, logical formalisms of the fourth kind can be expected to be less ex-
pressive than those of the third. In practice, however, they have proved to suffice for
many application areas, and in many different formal settings (Lamport [Lamport,
1980] has even suggested the view (criticized in [Emerson & Halpern, 1986]) that
they are preferable for reasoning about concurrent systems). This can be seen as a
consequence of the observation set philosophy: once behaviour has been identified
with a set of experiment outcomes, it becomes natural to express requirements on
a system as properties that must be confirmed by every experiment.

An important advantage of formalisms of the fourth kind is that specifications
typically take a conjunctive form, and each conjunct can be verified separately and
to a large extent independently of the others. E.g. in a CSP-based sat formalism
like that employed in this work, the analyses of input-output relation and deadlock-
freedom (each expressed with a different set of conjuncts) exhibit a high degree of
independence (or ‘orthogonality’).

In this work only the fourth approach to formalization will be employed. As
discussed in [Pnueli, 1986], this framework is well-suited to nearly all design phases,
ranging from early requirement specification, up to detailed system specification,

which immediately precedes actual coding.

1.6 Objectives and Contents of This Work

While specification formalisms of the previously described kinds are now suffi-
ciently well-understood theoretically, they have not yet succeeded to enter com-

mon, widespread design practice. This may be partly due to a failure to realize

1.6. OBJECTIVES AND CONTENTS OF THIS WORK 20

their cost-effectiveness, and to an obvious resistance by designers who have not
been trained to their use. However, our past experience with formal specification
and verification of OSI systems [Carchiolo, Di Stefano, Faro, Pappalardo, & Scollo,
1986; Carchiolo, Di Stefano, Faro, & Pappalardo, 1989] has convinced us that there
are also margins to try to improve the applicability of current formal techniques.
For this attempt, the framework selected in this work is a process language simi-
lar to CSP, with a failure-based denotational semantics and a logic for describing
failures of processes. Two crucial areas where the applicability of this formalism

might be enhanced are:

1. the description of networks of systems that can exchange data from an infinite

set;

2. fair abstraction from loops of internal actions, and a calculus for reasoning

about the properties of processes affected by such loops;

These issues will be clarified and analyzed in Section 1.6.2 below; the solutions
proposed will then be expounded in Section 2.6.1 and Chapter 3, which proposes a
new, extended failure semantics. Finally, Chapter 4 is devoted to the development
of a logic in which properties of the extended failures of a process can be expressed
and verified; these ideas will be applied to the verification of two example commu-
nication protocols: a toy one and a large case study inspired by a real transport
protocol. But let us try first to provide a motivation for preferring the chosen

formal framework.

1.6.1 The Formalism Employed: A Motivation

In the formalism considered in this work, processes are identified with failure sets
(of a suitable kind). This identification is supported by convincing reasons, ranging
from the theoretical® to the intuitive: processes that are equivalent in some mean-

ingful sense cannot possess different failures, or they would easily be distinguished

9In an appropriate setting, failure equivalence is the largest congruence that guarantees equal-
ity of maximal traces [Bergstra, Klop, & Olderog, 1988]. Moreover, if observers are assumed
to be a sort of processes, then failure equivalence amounts to indistinguishability by these ob-
servers [De Nicola & Hennessy, 1984].

CHAPTER 1. INTRODUCTION 21

by a suitable observer. But the most important justification is, as usual, pragmatic:
the work of Hoare [Hoare, 1985] and other researchers has clearly shown that many
interesting systems can be described and studied in terms of their failures. The
main technique for this purpose is a formalism of the fourth kind considered in Sec-
tion 1.5; it is based on a “sat logic” in which process expressions may be required
to satisfy an assertion with every failure of the behaviour they denote. Of course,
setting up the sat logic requires just that every process expression is ascribed a set
of failures, e.g. through a LTS, and not necessarily a denotational failure semantics.
The advantage of the latter approach is that failure sets form a complete partial
order (cpo), and process language operators can be defined through continuous
functions over this cpo. This facilitates a smooth treatment of recursively defined
process expressions, which can be interpreted as least fixpoints of continuous func-
tions, and reasoned about by introducing powerful fixpoint induction rules in a

calculus for the verification of sat properties.

1.6.2 Problems with Failure Semantics

Although standard failure semantics affords the advantages illustrated above, its
practical applicability is impaired by two weaknesses that will be examined in the

remainder of this section.

Hiding Infinite Action Sets

Many important systems are constructed by connecting modules that can exchange
values of an infinite set across ports invisible to the environment. While values
actually exchanged during real operation will in practice belong to a finite set, for
design and verification purposes it is often necessary or more convenient to think
that these values are drawn from an infinite set.

As an illustration, consider the many protocols relying upon sequence num-
bers to cope with messages received out of sequence. These protocols are usually
designed and proved correct by assuming that infinitely many sequence numbers
are available. In practice, sequence numbers are implemented as N-bit integers,

but this only works if suitable bounds are assumed on message lifetime. However,

1.6. OBJECTIVES AND CONTENTS OF THIS WORK 22

specifying this assumption in order to verify that it guarantees correctness requires
the ability to describe quantitative time, which is eschewed in this work and brings
about considerable complexity anyway (see [Shankar & Lam, 1987] for an example).

Unfortunately, the potential exchange of infinitely many values at an internal
port cannot be satisfactorily described in standard failure semantics. This defi-
ciency is due to the definition of the hiding operator. This problem and a possible

solution will be analyzed in Section 2.6.1.

Divergence and Fair Abstraction

Intuitively, divergence, also called livelock, is a phenomenon in which some com-
ponents of a system interact by performing an infinite, uninterrupted sequence of
externally invisible actions. Thus, divergence may arise when system components
reach a stage after which they persistently have an option to interact with each
other, although options to interact with the environment may also be available.
Divergence does in fact arise when the former option is always taken; it is instead
averted by fairness, the requirement that, if the latter options are infinitely often
available, they should infinitely often be chosen (in the words of [Apt, Francez, &
Katz, 1988]).1°

How these ideas should be reflected by a formal technique is a complex issue,

with a strongly philosophical flavour. Here a pragmatic approach is taken:

Req A formalism will just be required to allow a potentially diverging system to be
proved correct, if it intuitively appears to be so under some informal fairness

assumption.

Temporal logic clearly satisfies this criterion in a direct way, in that it can either
express fairness or be interpreted over a fair computational model (as in [Clarke,
Emerson, & Sistla, 1986]). This of course stems from its interpretation being based
on infinite sequences of observations (computation states) [Gabbay, Pnueli, She-
lah, & Stavi, 1980; Lehmann, Pnueli, & Stavi, 1981; Lamport, 1980; Emerson &

10This is actually a rather specific form of fairness: a thorough analysis of its many forms is
given in [Apt, Francez, & Katz, 1988).

CHAPTER 1. INTRODUCTION 23

Halpern, 1986]. There is however a price to be paid for this (unless a real num-
bers interpretation is adopted [Barringer, Kuiper, & Pnueli, 1986)): either finite
or infinite stuttering (dummy state repetition) has to be treated unsatisfactorily,
which would seem to indicate that divergence-related phenomena have a rather
fundamental complexity.

On the other hand, to quote [Brookes, Hoare, & Roscoe, 1984], ‘it seems im-
possible to define a notion of fairness such that a fair process can be distinguished
from an unfair one by any finite observation’. This implies that in semantics based
on failure or bisimulation equivalences (and intermediate ones) fairness cannot be
specified (but see [Parrow & Gustavson, 1984] for an infinite observation equiv-
alence). Likewise, knowledge of all the finite observations on a system does not
reveal whether it would actually diverge if part of its actions were regarded as

internal; in general, this knowledge can only suggest the possibility of divergence.

As an illustration, consider two systems P and @ that can only perform infinite
sequences of actions from {a,b} and never stop: P performs all such sequences,
while @ performs only those where a occurs infinitely often. Then, if b is made
internal, P will diverge, while @ will not. However, P and @) have exactly the same
set {a,b}* of finite sequences: all that can be said from this set is that both P and
Q could diverge.

It would therefore seem that, in general, all that finite observation semantics can
do, concerning divergence, is either record its possibility or abstract from it. The
latter alternative is referred to as fair abstraction, for it presupposes the assumption
that, in practice, fairness will never allow potential divergence to become actual
(as though systems like P in the example above were simply not realizable). It
should be noted that in this way fairness, while beyond the discriminating power
of semantics, finds nevertheless a formal expression. With fair abstraction, also
formalisms based on finite observation can fulfil the criterion Req stated above:
they enable systems to be proved correct by abstracting from potential divergence

in accordance with an (implicit) fairness assumption.

Whether fair abstraction or potential divergence representation is preferable
largely depends on the kind of applications one has in mind.

An example is provided by a replicated process control system within which

1.6. OBJECTIVES AND CONTENTS OF THIS WORK 24

faulty replicas of a controller and an actuator engage in infinite chatter. A rea-
sonable correctness requirement for this replicated system is that such divergence
phenomena should not be allowed unless they are already possible for the ideal,
non-replicated version of the system. Formalizing this presupposes a representa-
tion of potential divergence, as e.g. in the CSP model employed for this purpose
in [Mancini & Pappalardo, 1988; Koutny, Mancini, & Pappalardo, 1991; Koutny,
Mancini, & Pappalardo, 1993].

A contrasting example is a communication system built around a lossy medium
and employing retransmission. Since, in general, no fixed upper bound on con-
secutive losses can be assumed, this system is a potentially divergent one. It is
only medium fairness that ensures that messages are eventually delivered, and it is
only through fair abstraction that this fairness can be taken into account in finite

observation formalisms.

Often, versions of finite observation semantics in which potential divergence can
be represented have been viewed as superior. This was mainly due to their being
discovered after their fair abstraction counterparts and as elaborations of these.
In our view, superiority is rather to be judged from practical utility, and in this
respect fair abstraction, with its application to communication protocols, definitely
has an edge. This is in agreement with the opinion stated in [Milner, 1989] (pages
148-149). In any case, it would be desirable at least that every finite observation
semantics could be employed both in a fair abstraction and in a potential divergence
version.

While this is possible for bisimulation equivalence [Walker, 1987], it will be
shown in Section 2.6.2 that fair abstraction does not blend well with a large class
of equivalences, ranging from simulation equivalence [Larsen, 1987] to failure equiv-
alence. Of course, this is not to be taken as an argument against fair abstraction,
but rather as a motivation for seeking a semantics that combines the advantages
of failures (cf. Section 1.6.1) with those of fair abstraction. A candidate such
semantics was proposed in [Bergstra, Klop, & Olderog, 1987], but, as argued in

Section 2.6.2, it does not seem to be immune from problems either.

The solution we put forward in Chapter 3 is an extended failure semantics

which records refused traces, rather than just actions. This approach will turn out

CHAPTER 1. INTRODUCTION 25

to be compatible with fair abstraction and also permit, like ordinary failure seman-
tics, verification in a compositional sat calculus with fixpoint induction. Rather
interestingly, these results have been obtained outside the traditional cpo-fixpoint
theory. This is necessary because fair abstraction requires that the extended failure
model should be structured as a cpo without a bottom, which prevents recursively
defined process expressions from being interpreted as least fixpoints. The the-
ory developed has therefore been based on the novel notion of 'trace-based’ process
functions. These can be shown to possess a particular fixpoint that, unlike the least
fixpoint of traditional treatments, is compatible with fair abstraction. Moreover,
they form a large class, sufficient to give a compositional denotational semantics

to a widely applicable CSP-like process language.

Chapter 2

Two Process Languages

2.1 About This Chapter

After introducing some notation in Section 2.2, a CCS-like and a CSP-like process
language are presented. The former, PL,, is described in Section 2.3, together
with its transitional semantics and a small set of equational laws. The latter, PLg,
is described in Section 2.4, where its CSP-style compositional denotational failure
semantics is also outlined. The two languages, and the underlying approaches,
are briefly compared in Section 2.5. It should be pointed out that later chapters
focus on PLg, for which a new failure semantics and sat calculus will be defined
and applied at length; the essential reason for introducing also PL, is to place the
important material of Section 2.6.2 in the same operational-transitional setting in
which it is treated by other authors, like e.g. [Bergstra, Klop, & Olderog, 1988;
Bergstra, Klop, & Olderog, 1987]) (a comparison and discussion would otherwise
tend to be rather cumbersome).

Finally, Section 2.6 deals with two objectives that the standard failure semantics
of [Brookes, Hoare, & Roscoe, 1984; Hoare, 1985] cannot ensure: hiding of infinite
action sets and fair abstraction. A solution for infinite hiding is put forward in
Section 2.6.1. The fair abstraction issue is analyzed in detail in Section 2.6.2 (its
solution will be tackled in Chapter 3).

27

2.2. NOTATION 28

2.2 Notation

Some notational conventions that will be employed throughout the rest of this work
are collected here. Most of them are in fact standard, so this section is intended

mainly to be used as a reference, as the need arises.

Tuples

We define as usual the set D* of tuples of elements of D over an (arbitrary) index
set A. When a meta-variable ranges over D?, this may be emphasized with a A

subscript, as in z,.

Definition 2.1 Define D* to be (A — D) (the set of functions from A to D).

Moreover, let £, € D*. Then:
1. for all A € A,), or (z5), are alternative notations for x4 (\)

2. if dy € D for all A € A, then (d) | A € A) is the member x4 of D such that

I =d)‘. 0

Sequences

A (finite) sequence over D is either the empty sequence () or a tuple in D{}»-N}
for some N > 1. Sequences will be ranged over by s,t,u,v,w, 2. The following

conventions apply.

1. Length: #s, the length of s, is 0 if s is (), N if s € D{L-N},

2. Element: for 1 < i < #s, s(i) € D is said to be the ith element of s. In
the following, as in common programming languages, the notation s[i] will

be preferred to s(i).
3. Sequence Notation: (dy,...,dn) (d; € D) is the sequence s such that #s =N
and s[i] =d; for 1 < i < #s.

For K > 0, d € D, d¥ is the trace s such that #s = K and s[i] = d for
1<i<K.

CHAPTER 2. TWO PROCESS LANGUAGES 29

4. Prefiz: s < t holds true if #s < #t and s[i] = t[i] for 1 < i < #s; s < t holds
ifs<tands#t.

5. Concatenation: the sequence s-t is defined by #(s-t) = #s+#t, (s-t)[¢] = s[4
for 1 < i < #s and (s-t)[i+#s] = t[i] for 1 < < #t.

The ‘-’ operator will nearly always be omitted: we write st for s-t.

Concatenation may be extended to take one sequence set operand and return
a sequence set: sT = {st |t € T} and Ts = {ts | t € T}; note that
sS=Cs =4,

6. Head, last, tail: if #s > 0, define head(s) = s[1], last(s) = s[#s], and
tail(s) = t such that ¢[i) = s[i + 1] for 1 < 7 < #t = #s—1. Of course
s = head(s) - tail(s). On the empty string argument, these functions may be

assumed to return a fresh error value, when convenient.

7. Subsequence: if 1 < i < j < #s, s[i.. j] is the sequence t such that #t =
j—ti+1land tlk] =sli+k—1)for 1 < k < j — 4+ 1; moreover si..] is
sfi .. #s).

8. Hiding: s\E, for E C D, is the sequence obtained from s by deleting elements
that are in E.

9. Projection: s|FE, for E C D, is the sequence s\(D — E).

10. Elements for sequences: if d € D, d may replace (d) in contexts where a

sequence over D is expected; e.g. ds for the concatenation (d)s, or even
di...dg (k > 1) for (dl,...,dk).

11. Sequences for sets: in contexts where a set is expected, s also denotes {s[i] |

1 < i < #s}, the set of the elements of sequence s.

Miscellaneous

The notation pS will stand for the set of finite subsets of set S.

2.3. THE PROCESS LANGUAGE PL, 30

Substitution of expression e, for variable z, (1 < n < N) in a logical formula
S will be denoted:

let z, :=e€1,..., 2y :=enxin S

Process correctness properties will be verified within suitable formal systems,
with derivations that assume the valid statements about common data types.

All other proofs are conducted informally, within elementary set and number
theory. However, for the sake of conciseness, we shall sometimes take the licence
to use logical quantifiers and connectives as shorthands for their natural language

counterparts.

2.3 The Process Language PL,

The first process language considered, PL,, is a mixture of CCS [Milner, 1989] (with
its explicit modelling of nondeterminism by internal actions), and CSP [Brookes,
Hoare, & Roscoe, 1984; Hoare, 1985 (with its non-directed actions and synchro-
nized parallel composition). This makes PL, quite similar, in form and motivation,
to the standard process language LOTOS [ISO, 1989] and on the whole closer to
CCS than CSP.

2.3.1 Syntax
The Basic PL,

First of all,