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Abstract

While specification formalisms for reactive concurrent systems are now reason-
ably well-understood theoretically, they have not yet entered common, widespread
design practice. This motivates the attempt made in this work to enhance the
applicability of an important and popular formal framework: the CSP language,
endowed with a failure-based denotational semantics and a logic for describing
failures of processes.

The identification of behaviour with a set of failures is supported by a convinc-
ing intuitive reason: processes with different failures can be distinguished by easily
realizable experiments. But, most importantly, many interesting systems can be
described and studied in terms of their failures. The main technique employed
for this purpose is a logic in which process expressions are required to satisfy an
assertion with each failure of the behaviour they describe. The theory of complete
partial orders, with its elegant treatment of recursion and fixpoint-based verifi-
cation, can be applied to this framework. However, in spite of the advantages
illustrated, the practical applicability of standard failure semantics is impaired by
two weaknesses.

The first is its inability to describe many important systems, constructed by
connecting modules that can exchange values of an infinite set across ports invis-
ible to the environment. This must often be assumed for design and verification
purposes (e.g. for the many protocols relying upon sequence numbers to cope with
out-of-sequence received messages). Such a deficiency is due to the definition of the
hiding operator in standard failure semantics. This thesis puts forward a solution
based on an interesting technical result about infinite sets of sequences.

Another difficulty with standard failure semantics is its treatment of divergence,
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the phenomenon in which some components of a system interact by performing
an infinite, uninterrupted sequence of externally invisible actions. Within failure
semantics, divergence cannot be abstracted from on the basis of the implicit fairness
assumption that, if there is a choice leading out of divergence, it will eventually
be made. This 'fair abstraction' is essential for the verification of many important
systems, including communication protocols. The solution proposed in this thesis is
an extended failure semantics which records refused traces, rather than just actions.
Not only is this approach compatible with fair abstraction, but it also permits, like
ordinary failure semantics, verification in a compositional calculus with fixpoint
induction. Rather interestingly, these results can be obtained outside traditional
fixpoint theory, which cannot be applied in this case. The theory developed is
based on the novel notion of 'trace-based' process functions. These can be shown to
possess a particular fixpoint that, unlike the least fixpoint of traditional treatments,
is compatible with fair abstraction. Moreover, they form a large class, sufficient to
give a compositional denotational semantics to a useful eSP-like process language.

Finally, a logic is proposed in which the properties of a process' extended fail-
ures can be expressed and analyzed; the methods developed are applied to the
verification of two example communication protocols: a toy one and a large case
study inspired by a real transport protocol.
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Chapter 1

Introduction

1.1 About This Chapter

Many authors have employed in noticeably different ways some key notions like
abstraction, specification, implementation, verification and correctness, behaviour

and process. Thus, before embarking on a work where these playa fundamental role,
it seems appropriate to attempt a clarification both of concepts and terminology,
without any pretence to novelty, but only for the sake of laying the groundwork for
later study. This is the subject of the first sections, up to 1.5.

The contents and results of this thesis are then outlined in the concluding
Section 1.6.

1.2 Abstraction in Specification

1.2.1 System Description

The description of a physical system, including a computer system, presupposes a
twofold conceptual effort.

Firstly, the system must be perceived as separate from the environment sur-
rounding it.! This entails identifying the interface of the system, i.e. the boundary

1In fact, this idea of separation would be better described by the term 'object', rather than
'system', which in modern natural languages is suggestive of a set of interacting parts. The

1



1.2. ABSTRACTION IN SPECIFICATION 2

through which it interacts with the environment. Since interaction across an inter-

face implies an exchange of information, it is also referred to as communication.

The other main intellectual activity involved in system description is abstraction

-from detail viewed as irrelevant. Abstraction in system description takes two

typical forms. The first consists in ignoring particular classes of system properties;

these include, in the approach of this work, any property irrelevant as to what a

system does (e.g., in most cases, colour or weight). The other form of abstraction

is to omit describing how a system accomplishes what it does; this topic will be

examined in detail in Section 1.2.2.

Thus, a system will be described in terms of what it does or, technically speak-

ing, its behaviour (systems for which this is appropriate are called reactive af-

ter [Pnueli, 1986]). More precisely, the behaviour of a system is identified with the

interaction that it is observed engage in with the environment, across the interface

between them. However, this does not determine the exact nature of behaviour

yet, but rather relates it to a hypothetical observer asked to describe it. In the

following, this observer's choices or limitations may be borne in mind as a justifi-

cation for the ways abstraction is further exercised in the description of behaviour.

In this respect, four principal abstractions will be employed in this work:

1. indi visible (or atomic) actions;

2. abstraction from priority and probability in choice;

3. abstraction from time duration;

4. interleaving concurrency.

By the first abstraction, a description conceptually subdivides the interaction

observed, and the associated information flow, into indivisible instances. Each

instance causes the exchange of an amount of information that is represented by a

value of a suitable set. These values are referred to as actions. Note that different

interaction instances may result in the exchange of the same value, i.e. in the

fortune of 'system' in computer science stems from the typically structured nature of the objects
this discipline deals with.
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same action; in other words, an action may occur several times. Most interaction
mechanisms relevant to computer technology (from buttons and wires to hardware
registers and procedure calls) can be easily modelled by actions.

Descriptions that will be considered also abstract from behaviour aspects related
to priority and probability in choices, and the measure of time. Thus, the duration
of actions and intervals between them is ignored; only the order in which actions
occur is described. This order must be total because descriptions are also assumed
to eschew the representation of true concurrency: the simultaneous occurrence of
actions is replaced by all their possible interleavings.

It now seems appropriate to give a brief assessment of the four abstractions
introduced. While they are probably the most common and established in the
literature (starting from [Dijkstra, 1965]), they seem to enjoy different degrees of
consensus. Action atomicity can usually be assumed at some level, however low (be
it digital electronics or quantum mechanics); it has also been shown that groups
of actions may be rigorously viewed as a unique action at a higher abstraction
level [Lamport, 1986]. For the class of applications considered in this work, priority
and probability issues are usually abstracted from, but have received a growing
attention recently [Vardi, 1985; Pnueli & Zuck, 1986; Baeten, Bergstra, & Klop,
1987; Larsen & Skou, 1989; Christoff, 1990; Jou & Smolka, 1990; Tofts, 1990;
v. Glabbeek, Smolka, Steffen, & Tofts, 1990; Tofts, 1994]. Abstraction from time
duration has been overcome by many researchers, in many different frameworks, in
order to describe real-time systems; in particular, the works [Milner, 1983; Moller
& Tofts, 1990; Gerth & Boucher, 1987; Reed & Roscoe, 1988; Groote, 1990; Baeten
& Bergstra, 1991; Davies & Schneider, 1993] are worth citing here because they
aim at extending non-timed methodologies similar to those of this work. Timed
approaches also provide a way of representing concurrency without recourse to
interleaving; another alternative (see e.g. [Best, 1985]) is to model concurrency
as a partial order over actions (leaving truly concurrent actions out of the order
relation); true concurrency can also be described by means of nets (see e.g. [Reisig,

1985]).

The four abstractions adopted certainly limit the properties that can be con-
veyed by the description of a system. On the other hand, they allow a description,
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and the facts proved about it, to apply to a wider set of systems. Moreover, they
afford a simpler formal modelling of systems, and an easier and rich theory. It

seems therefore fair to conclude, generalizing a view of [Pnueli, 1986], that the
best tradeoff among these contrasting issues should be suggested by the applica-
tion or the area of interest. In general, however, the abstractions introduced above
and adopted in this work have proved 'very successful' and 'popular', in the words
of [Best, 1990].

1.2.2 Specification, Implementation and Abstraction

The development of a computer system depends on the ability to describe it. In
some sense, system development may even be viewed as an activity that starts from
a description of a system in terms of the customer's requirements, and ends with
an executable description of it in a programming language (or perhaps as a digital
circuit, depending on the target technology). Commonly, the initial, requirement
description is referred to as a specification, and the final, executable one as an
implementation of the system.

Since the implementation is in fact the system, it should be consistent with,
or satisfy, the description represented by the specification. Thus the specification
should not give more information about the system than the implementation does;
in fact, it normally provides less information and is therefore more abstract a
description than the implementation. A notion of satisfaction of a specification
by an implementation should therefore conceal the additional detail present in
the implementation, by mapping it onto suitable aspects of the more abstract
specification.

Which abstraction level is desirable for a specification may not be thoroughly
obvious for the application studied, even after taking into due account the class of
properties that have to be formalized. Clearly, such considerations heavily influ-
ence the abstraction level adopted, but this will also ultimately depend on personal
taste or inclination. The goal to be pursued, however, is to strike a balance between
giving sufficient, but not excessive, information to specification users, and allowing
developers among them enough leeway in choosing the most effective implementa-
tion solutions.
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Related Concepts and Terminological Issues

In the literature, the basic concepts outlined above are expressed in many ways,
which are worth recalling briefly. Consider a specification and an implementation
that satisfies it. In this context, 'to implement' may be used as synonymous with
'to satisfy'. Moreover, the implementation is said to be correct with respect to
the specification; establishing correctness is the goal of verification.2 Finally, with
reference to its richer amount of detail, the implementation is said to refine the
specification.

Since the abstraction gap between realistic specifications and implementations
may be rather noticeable, refinement must in practice be carried out stepwise.
Typically, each step makes a distinct implementation choice, e.g. an algorithm, a
representation of data or a decomposition into modules (each of which may then be
refined separately). Thus, stepwise refinement gives rise to a series of decreasingly
abstract system descriptions, which begin from the specification and culminate in
the final implementation. In fact, any two adjacent descriptions in the series may be
relatively viewed as a specification and an implementation respectively, according
to the notion of satisfaction associated with the refinement step3 relating them.

The latter observation, that any description may serve as a specification, has
led some authors to use these terms as synonyms, perhaps adding a qualification
to distinguish the intended use of a specification. E.g., [Sannella, 1988] calls 'high-
level specification' a description intended to convey requirements, and 'executable
specification' the final implementation. In [Pnueli, 1986], refinement starts from 're-
quirement specification' and continues through an an intermediate (architectural)
'system specification'.

In this work, any two descriptions such that one is a refinement of the other
may be termed specification and implementation respectively. Two cases are typical
though not exclusive, mutually or of others.

2In practice, correctness of an implementation with respect to a specification may also be
ascertained by testing.

3This step may be devised out of intuition and then proved correct by verification, or selected
with suitable criteria from a library of refinement patterns known to be correct in advance. The
latter approach, first advocated in [Burstall & Darlington, 1977), will not be pursued in this work.
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1. Tightening refinement: the specification loosely describes the behaviour of a
system, and the implementation removes (part of) this looseness. E.g. while
the specification of a channel may require it to output data in the order in
which they are input, the implementation may also insist that any input
should be immediately followed by an output.

2. Decomposition refinement: the implementation describes a set of systems,
and a way of combining them into one whose behaviour satisfies the specifi-
cation.

Finally, a terminological remark seems appropriate: the terms 'specification'
and 'implementation' denote not only instances of a description, but also the ac-
tivity of producing these instances. The converse can be said about the word
'refinement' .

1.3 Formalisms for Reactive Systems

There is substantial agreement in the computer science community that precise
descriptions and trusted reasoning must be formal, i.e. based on the methods of
mathematics and logic. However, it has been the subject of much controversy
whether the higher level of confidence attained by formal methods is worth the
complexity they bring about in the specification and verification stages of system
development. This work clearly presupposes an affirmative answer, but will not
try to put the case for it; the interested reader is referred e.g. to [Meyer, 1985]
and [Hall, 1990], which also highlights the role formal methods may have in other
development phases (like implementation and testing). A thorough survey on the
role of formal methods in system development can be found in [Wing, 1990], which
is also a rich source of further reference.

A formal approach to specification and verification requires that mathematical
concepts should be employed to represent implementations, specifications and the
satisfaction relationship between them. It should be expected that accomplishing
this will involve recourse to the two main forms of abstraction identified earlier,
in Sections 1.2.1 and 1.2.2 respectively: (1) only behavioural properties (subject
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to the specific abstractions assumed in Section 1.2.1) will be formalized, and (2)
formalization should reflect the abstraction gap between a specification and an im-
plementation satisfying it. These topics are examined in the following Sections 1.4
and 1.5.

1.4 Formalizing Implementations

1.4.1 Processes and Process Expressions

It would seem natural to begin by seeking a set Proc, whose elements, referred to as
processes, are suited to representing implementations. A process should therefore
provide, at least, a suitable formalization of system behaviour.

On the other hand, an implementation is intended to describe not just the
behaviour of a system, but also how that behaviour can be obtained. A member of
a set without sufficient structure does not appear to be suitable for capturing this
notion. Instead, there would appear to be a need for a formal (process) language
PL, with constants, denoting elementary behaviour patterns, and operators, used to
construct expressions denoting complex behaviour. Of course, different expressions
may happen to denote the same behaviour, reflecting the intuition that a behaviour
may be implemented in different ways.

In the following, the term 'process' will be reserved for mathematical entities
providing a precise formalization of the intuitive idea of behaviour; by this it is
meant that (mathematically) different processes should denote (intuitively) differ-
ent behaviours. Thus, processes cannot be the process expressions of the process
language PL, nor can the set Proc coincide with PL. Rather, process expressions
should be given an interpretation as processes, in order to define which behaviour
they denote. The dichotomy between processes and process expressions is an in-
stance of the classical one between syntax and semantics or, more philosophically,
form and function.

There are many approaches to the problem of selecting a suitable Proc set and
relating it to PL. In all of them, however, actions from a set Act can be expected
to playa role in that, as assumed in Section 1.2.1, they represent the smallest
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instances in which behaviour may take place. The two approaches employed in
this work are described in Sections 1.4.2 and 1.4.3.

1.4.2 Transitional Process Semantics

Labelled Transit.ion Systems

Transitional process semantics rests on the idea that any behaviour transforms into
another behaviour after performing an action, which can be either observable, i.e.
a member of Act, or unobservable, denoted by the symbol L and also called internal
or silent. The set Act u {i} of all actions (observable or not) will be denoted by

Act~.
Thus, formally, any behaviour is to be modelled by an element 7r of a suitable

set Stat endowed with a relation ---i> ~ Stat x Act~ x Stat. That (7r, a, 7r') E---i> or,
more suggestively, 7r ~ 7r' is understood to mean that the behaviour represented
by 7r may perform action a and transform into the behaviour represented by 7r';

sometimes, 7r' is said to be an a-derivative of tc. A similar terminology applies to
the other transition relations introduced later.

The structure (Stat, Acto ---i» is called a labelled transition system (LTS) over
Stat, the set of states, and Acto the set of labels; a triple (7r, a, 7r') in ---i> is called
a (a)-transition from state 7r to the successor state n', Note that the exact nature
of states is relevant for behaviour representation only up to isomorphism; for it
is clear that if a behaviour is representable within a LTS (Stat, Act~, ---i», so it
is within (Stat', Act~, ---i>') provided Stat and Stat' are isomorphic with respect to
---i> and ---i>'.

It will be postulated that states of a LTS are adequate for representing be-
haviour, in the sense that two systems that behave as though they contained the
same LTS in the same state are indistinguishable.

However, LTS states cannot be adopted as processes in the sense introduced
earlier, because the converse is not true: different states may well represent the
same behaviour. An easy example of this is provided by infinitely many distinct
states it, 7ro, 7rl,' •• having only the transitions:

a
7r ---i> 7r

a a
7r0 ---i> 7r1 ---i> . . .
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A partial solution, and a step towards the discovery of a set Proc, requires
a sharper insight into the nature of behaviour. It will now be postulated that a
behaviour is completely determined by the order in which its actions occur, and
its branching structure, Le. the choices it makes among the actions available to
it at a certain stage. This information can be easily recovered from a state of a
LTS: it suffices to 'unwind' transitions from it and its successors into a rooted,
unordered derivation tree, with edges that are labelled by actions, and nodes that
are anonymous (not labelled by states). Thus, two states 7r, a generating the same
derivation tree-in symbols 7r ,:;.-a-will be assumed to denote the same behaviour.
This also suggests that (for a fixed ActJ a sufficient condition for a LTS to describe
every possible behaviour is that its states generate every possible derivation tree."
For the rest of Section 1.4.2, a fixed LTS (Stat, ActL, ----1» satisfying the previous
condition will be assumed.

Bisimulation Equivalence

Even Stat/,:;.-, the set obtained partitioning Stat with the equivalence relation x-, is
unsuitable as a candidate for Proc. Intuitive arguments whereby different deriva-
tion trees may represent the same behaviour, originally due to Robin Milner, can
be found in his book [Milner, 1989]. Hence, we have still to pursue the goal of find-
ing an equivalence relation ~ that equates LTS states iff they describe behaviours
indistinguishable to observation or experimentation. This equivalence will be as-
sumed as the observation equivalence, and the set Proc will then be identified with
Stat/:0. As noted previously, this amounts to tying the exact, formal nature of
behaviour to the abilities intuitively attributable to the observer that describes it.

The solution of [Milner, 1989] is to define three, increasingly coarse, equivalence
relations over Stat.

The characteristic property of the strongest one, "', is that LTS states 7r, a sat-
isfying 7r '" a bisimulate each other, i.e. belong to a (strong) bisimulation relation
B such that:

4Thus, the cardinality of Stat for such a 'most general' LTS should be at least that of the set
of derivation trees.
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(1) a awhenever 7[' --{> 7[", for any a E Actt, then also a --{> a' for some a', and 7["

and a' are in B;

(2) B is symmetric.

Strong bisimulation equivalence f'V is defined to be the largest B enjoying properties
(1) and (2). It gets closer to the sought ~ but cannot yet be it. For, while states
that bisimulate each other do not appear to be distinguishable by any plausible
experiment, state pairs may be exhibited that are not in f'V and still could not
possibly be distinguished. The reason lies in the observers' inability to perceive
every possible occurrence of the internal action i.

In fact, any activity observed coming from a system may be interspersed with
arbitrarily many internal actions. To take this into account, define:"

a :::& a' iff either a' = a
t tt, c ( 0)or a --{> a1 ... --{> an --{> a lor some a1,' .. , an n~

(1-1)

and, for a E Act:

(1-2)

Then, after letting a = a for a E Act, i = 0, we may replace ~ by ~ in (1)
above in order to obtain the definitions of weak bisimulation and, accordingly, weak

bisimulation equivalence ~.

A slight problem with ~ is that 7[' ~ a does not guarantee that the behaviours
denoted by 7[' and a can replace each other within a larger behaviour, leaving this
one unchanged. The remedy is to modify the definition of 7[' ~ a slightly, so that
initial [,actions of 7[' must be matched by initial [,actions of a and viceversa. The
resulting equivalence relation is therefore finer (identifies less) than ~; as it enjoys
substitutivity, it is called weak bisimulation congruence (f'V is also a congruence and
is thus also called strong bisimulation congruence). In the following, the qualifiers
'strong' or 'weak' and 'bisimulation' will be omitted when they are clearly supplied
by the context.

5 () denotes the empty sequence.
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Other Observation Equivalences

The observer associated with bisimulation equivalence is quite a powerful one: it
must be capable of global testing [Abramsky, 1987]of all the different options avail-
able to a behaviour at any stage. Normally, no observer is thought to be more pow-
erful than this one, which amounts to admitting that the sought ideal observation
equivalence ~ should not be finer than bisimulation equivalence. The only no-
table exception is represented by branching bisimulation equivalence [v. Glabbeek
& Weijland, 1989], which is a slight variation on bisimulation anyway.

On the other hand, many authors have proposed notions of behaviour and
observation equivalences corresponding to less powerful (discriminating) observers.
These equivalences are therefore coarser than bisimulation equivalence.

Surveys and comparisons of observation equivalences can be found in [DeNicola,
1987]and [v.Glabbeek, 1990; v. Glabbeek, 1993],where each of the best known ones
is explained in terms of a specific kind of system interface and a class of experiments
that can be performed on it. The equivalences considered in [v. Glabbeek, 1990;
v. Glabbeek, 1993], if compared in terms of how many identifications they induce,
form a lattice with bisimulation equivalence at the top and, among the minimal
ones, failure equivalence, which is related to the approach of [Brookes, Hoare, &
Roscoe, 1984]. Formally, states 7r and a are failure equivalent if they possess the
same failure sets, as defined later, in Section 1.4.3.

Transitional Observation Equivalence-Based Semantics for a Process
Language

As discussed earlier, in the transitional approach processes may be thought of as
equivalence classes of an equivalence relation, e.g. ~, over the states of a LTS.
Therefore, a technique for interpreting process expressions of the language PL as
processes is to define a relation ----{> ~ PL x Act, x PL, hence a LTS (PL, Act" ----{»

in which states are process expressions. Then, ~ may be applied to process ex-
pressions as well, and a process expression p E PL is interpreted with, or given as
meaning, the set

{q E PL I p ~ q}
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which is the equivalence class of p, Le. a process.
As the language PL will be inductively defined, the definition of the relation

--i> ~ PL X ActL x PL can be expected to reflect the structure of process expressions
in PL. This will be obtained, following an approach introduced in [Plotkin, 1982]
and generalized in [Baird, Istrail, & Meyer, 1988], by a set of inference rules; in
the typical case, a transition of process expression OP(PI, ... ,PN), where op is an
operator of PL, is inferred from transitions of PI, ... ,Pn.

1.4.3 Observation Set Process Semantics

In this approach to process semantics, the set Proc is given explicitly; processes
are sets of observations, which in turn are elements of a set Obs. The intention is
that observations should represent the outcomes of experiments that an observer
may conduct on a system; the system is then identified with the set of all possible
outcomes (of all experiments). Typically, the observations that compose a process
are made up of actions, and provide at least enough information to recover the
traces, Le. the sequences of actions that can be performed by the system described
by the process. Below let (aI, ... ,an) denote the sequence of actions al, ... ,an (0
is the empty sequence) and st the concatenation of sequences sand t.

Not every observation set can be a process; intuitively, a process should at least
contain the 'empty observation' and be closed with respect to shorter observations:
if observation x can be made only after a shorter one x', then a process containing
x should also contain x', E.g. if observations are simply taken to be traces, then
processes must be non-empty, prefix-closed trace sets.

Many observation set approaches have been proposed. The work [v. Glabbeek,
1990] surveys the most interesting ones, and devises ingenious experiments capable
of detecting the kind of observations underlying each approach. An important
example is represented by the failure model of CSP [Brookes, Hoare, & Roscoe,
1984]. In it, an observation is a failure, Le. a pair (s, X) where sEAct and X E pAct
(the set of finite subsets of Act); this is intended to express that a system can be
observed perform the trace s and then refuse all the actions in the finite refusal set

X. A process is a failure set satisfying the constraints defined below.
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Definition 1.1 According to [Brookes, Hoare, & Roscoe, 1984], a process is a set
P ~ Act* x pAct satisfying the following constraints:

1. non-emptiness: (0,0) E P;

2. trace prefix-closure: if (st, 0) E P, then (s,0) E P;

3. refusal subset-closure: if (s,X) E P and Y ~ X, then (s, Y) E P;

4. trace-refusal consistency: if (s, X) EP and (s, XU{ a}) ¢ P, then (s(a), 0) E

P. 0

The previous constraints are easy to justify appealing to intuition. More formally,
assume (as in Section 1.4.2) that a LTS (Stat, Actt, -t» provides enough informa-
tion about every behaviour; complete the definitions (1-1) and (1-2) of the ~
relation by letting, for s E Act·, s = (aI, a2, ... , an) (n > 0):

s s
1f ~ iff 1f ~ n' for some n',

Note that the LTS (Stat, Act·, ~) also captures enough information about observ-
able behaviour. In accordance with the intuitive meaning of failures, it is possible
to define the failure set of a state 1f as in [Brookes, Hoare, & Roscoe, 1984]:

failures{1f) = {(s, X) E Act* x pAct I :31f': 1f ~ n' and Vx EX: n' ~} (1-3)

and it is immediate to verify that it satisfies the constraints of Definition 1.1. Con-
versely, given a failure set P satisfying those constraints, it is possible to construct
a LTS with a state 1f, i.e. a behaviour, such that failures(7r) = P [Brookes, Hoare,
& Roscoe, 1984].

Observation Set Semantics for a Process Language

An observation set semantics for a process language PL is defined by a meaning
function, mapping every process expression p of PL onto an observation set, called
the meaning or denotation of p. Observation set semantics is therefore of the
denotational kind.
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In Section 1.4.2 we discussed how a process expression p can be viewed as a state
of a LTS. As such, p can be easily ascribed an observation set obsset(p), exploiting
the LTS transition relations ~ or ==t>, as done e.g. for failures in equation (1-3).
This allows obsset() to be taken as a meaning function for a denotational semantics
over PL.

In fact, it is easy to give an equivalent transitional style semantics in which
process expressions are instead interpreted as equivalence classes. For, if two states,
or process expressions, p and q are defined to be equivalent whenever obsset(p) =
obsset(q), then obsset(p) characterizes the equivalence class (meaning) of p with
respect to this new equivalence relation.

Adopting observation sets as processes can also support a compositional deno-
tational semantics for process expressions. In this case, the meaning function O[]
should map a complex process expression p of the form op (PI, ... ,Pn) onto an obser-
vation set O[P], determined by the denotations O[Pd, ... ,O[pn] of the operands,
in a way that reflects the intended meaning of the operator op. Moreover, it is often
possible to compare observation sets by set inclusion or in related ways that give
Proc the status of a complete partial order, and to interpret language operators as
continuous functions over Proc. In this setting, powerful techniques are available
for introducing recursively defined process expressions and reasoning about them
(see e.g. [Loeckx & Sieber, 1987]). This has been accomplished e.g. in [Brookes,
Hoare, & Roscoe, 1984] for the CSP language with the failure semantics.

A more general and formal treatment of what has been described here as ob-
servation set semantics is given in [Olderog & Hoare, 1986].

Relating Transitional, Equivalence-Based and Observation Set Seman-

tics

Figure 1.1 depicts the relationship between the above-mentioned approaches to
semantics. For this relationship to be consistent, a process expression p should
be mapped onto the same observation set by both the techniques introduced for
this purpose: the compositional meaning function O[] and the obsset() function
applied to p viewed as a state of a LTS. Thus, it is required:

for all p in PL: Ol[p] = obsset(p) (1-4)
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PL

LTS (Stat, Act.,-I»
denotational semantic function O[]

by transition inference rules

definition of ~

Pmc == Stat / ~ Proc == observation sets

Figure 1.1: Relation between process semantics

Since bisimulation equivalence ~ is about the strongest meaningful observation
equivalence available, other consistency requirements could be that:

for all p, q in PL: p ~ q implies obsset(p) = obsset(q) (1-5)

for all p, q in PL: p ~ q implies O[P] = O[q]

Of course, a sufficient condition for the latter property to hold is that the previous
two (1-4) and (1-5) hold. E.g. if observations are failures, defined as in equa-
tion (1-3), it is well-known (see e.g. [De Nicola, 1987]) that (1-5) holds (however
the converse does not); (1-4) is stated in [Brookes, 1983a] (for a slightly different
notion of failures).

1.4.4 Algebraic Process Semantics

There is undoubtedly a degree of arbitrariness in building process semantics upon
a particular notion of equivalence or a particular sort of observations. This seems
to be confirmed by the wealth of process semantics proposed. The remedy adopted
in ACP (Algebra of Communicating Processes [Bergstra & Klop, 1984; Baeten &
Weijland, 1990]) is to found the semantics on a set of axioms that represent equa-
tions between process expressions. These describe equalities that actual processes
and process operations are expected to satisfy, but do not prescribe a particular
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choice for them: any choice which is is consistent with (or, technically, is a model

of) the equations will do.

In this way, however, it is the choice of equations and process language oper-

ators that becomes critical: somehow, it is as though the arbitrariness has been

moved from the semantic to the syntactic level. This may be viewed as advanta-

geous as far as the choice of equations is concerned: it is instructive to realize how

including or excluding some equations, which amounts to accepting or refusing cer-

tain identifications between processes, corresponds to accepting or refusing models

based on particular observation equivalences or observation sets. An example of

this is given in Section 2.6.2. However, the generality of the ACP approach is also

tied to the process operators chosen, and no such set is universally adopted by all

authors." Moreover, other algebraic process semantics could replace equations with

more complex logical formulae, and make an even stronger claim to being general.

A process semantics independent even of the operators and the logic in which

axioms are expressed can be given by resorting to institutions [Goguen & Burstall,

1984].

The algebraic approach to semantics will not be pursued in this work.

1.5 Formalizing Specifications and Satisfaction

A rigorous general description of specification formalisms can be found e.g. in

[Larsen, 1990]. The discussion here is informal and geared to the view introduced

in Section 1.2.2, that any two behaviour descriptions of which the first is more

detailed, but consistent with (satisfies) the second, represent an implementation

and a specification respectively.

In an attempt to organize the numerous formal specification techniques pro-

posed, most authors distinguish between those rendered by logical formulae and

those rendered by formal devices (like LTSs, automata etc.). In our view, it is

6In contrast, when the algebraic approach is applied to the functional description of a particular
software system (rather than the behavioural description of the set of all systems), the operators
are either legitimately selected by the system designer or universally accepted, e.g. push () and
pop 0 for a stack.
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perhaps more appropriate to classify a specification, primarily, according as the
behaviour it aims to describe is a single one or any member of a set. This alterna-
tive, indeed, is often more a matter of aim or convention (between specifiers and
users), than form of the specification (like its being a LTS or a logical formula).
Thus, e.g., the informal specification 'data input are output in the same order' may
be taken to describe any behaviour that fulfils it (including one that does nothing),
or the behaviour that fulfils it precisely, by performing any permitted action at any
stage.

It is often the case that a specification approach may be indifferently understood
either way, simply by choosing the right semantic level. Four possible approaches
to formal specification will now be examined in the light of this and the other
considerations above.

First Approach

In this approach, a process expression p is regarded as a specification of a single"
behaviour-that denoted by p in the chosen semantics. E.g. within the observation
equivalence semantic framework, p can be taken to specify its ~-equivalence class.

Implementations are also formalized by process expressions: a process expres-
sion q satisfies p if it denotes the same behaviour, (i.e. in the example cited if
p ~ q). The added detail provided by q (if any) is its structure as a process ex-
pression (of course, also p has a structure, which is however irrelevant to its use as
a specification).

Specifications of this kind are therefore rather demanding: no leeway is allowed
for the behaviour of implementations.

Second Approach

The first framework may be modified by stipulating that q satisfies p if the be-
haviour denoted by q approximates that denoted by p. The formalization is often

7Even in this case, a specification p may be regarded as describing any member of a set, i.e.
{q I q denotes the same behaviour as p}, but this is a set of distinct process expressions, not
behaviours.
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based on a partial order ~ over states of a LTS (e.g. simulation [Larsen, 1987]);
satisfaction of p by q is then rendered as q ~ p.

An obviously equivalent alternative presentation is to view the specification p

as describing any behaviour that approximates that denoted by p; satisfaction is
then viewed as set membership: q E {pI I p' ~ p}.

In any case, the information that the implementation q adds to that specified by
p is not only structure, as in the first approach, but also knowledge of the particular
behaviour approximating that denoted by p.

Third Approach

This case occurs when a specification is formalized with a formula S of a logic
interpreted over a set U whose elements denote behaviour (in one of the ways
described in Section 1.4). S is assumed to describe any of the behaviours denoted
by an element of U upon which S is true. Implementations may be taken to be
either, directly, elements of U or, indirectly, process expressions equipped with
a mapping onto U (generally through a LTS). An implementation I satisfies the
specification S if S is true for the element of U associated with I. The additional
information I provides is: (i) which behaviour it denotes among those allowed by
S, and (ii), if I is a process expression, how this behaviour can be obtained.

We have mentioned that either process expressions or more direct denotations of
behaviour (e.g. states of a LTS) may serve as Implementations." However, it is clear
that interesting implementations must ultimately provide detailed information on
how they are to be constructed, which can be ensured only by recourse to process
expressions.

Finally, let us consider two examples of the third approach. (i) Satisfaction of
a branching temporal logic formula may be defined over a state or a state path,
which may be thought of as generated by a fixed LTS (of a restricted kind) [Emerson
& Halpern, 1986]. (ii) The interpretation of Hennessy-Milner logic [Hennessy &

Milner, 1985] is given over a state of a LTS.

SIn fact this applies whenever the specification does not already identify a unique behaviour
(as it does in the first approach above).
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Fourth Approach

The last case occurs when behaviour is understood as an observation set, as dis-
cussed in Section 1.4.3. Then, a specification is a logical formula S interpreted over
an observation; S is aimed at describing any behaviour which makes S true with
each observations that can be made on it. An implementation I may be an observa-
tion set or (with the usual difference of added detail) a process expression mapped
onto an observation set by some semantics. I satisfies S if every observation in the
set associated with I makes S true.

In general, logical formalisms of the fourth kind can be expected to be less ex-
pressive than those of the third. In practice, however, they have proved to suffice for
many application areas, and in many different formal settings (Lamport [Lamport,
1980] has even suggested the view (criticized in [Emerson & Halpern, 1986]) that
they are preferable for reasoning about concurrent systems). This can be seen as a
consequence of the observation set philosophy: once behaviour has been identified
with a set of experiment outcomes, it becomes natural to express requirements on
a system as properties that must be confirmed by every experiment.

An important advantage of formalisms of the fourth kind is that specifications
typically take a conjunctive form, and each conjunct can be verified separately and
to a large extent independently of the others. E.g. in a eSP-based sat formalism
like that employed in this work, the analyses of input-output relation and deadlock-
freedom (each expressed with a different set of conjuncts) exhibit a high degree of
independence (or 'orthogonality').

In this work only the fourth approach to formalization will be employed. As
discussed in [Pnueli, 1986], this framework is well-suited to nearly all design phases,
ranging from early requirement specification, up to detailed system specification,
which immediately precedes actual coding.

1.6 Objectives and Contents of This Work

While specification formalisms of the previously described kinds are now suffi-
ciently well-understood theoretically, they have not yet succeeded to enter com-
mon, widespread design practice. This may be partly due to a failure to realize
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their cost-effectiveness, and to an obvious resistance by designers who have not
been trained to their use. However, our past experience with formal specification
and verification of OSI systems [Carchiolo, Di Stefano, Faro, Pappalardo, & Scollo,
1986; Carchiolo, Di Stefano, Faro, & Pappalardo, 1989]has convinced us that there
are also margins to try to improve the applicability of current formal techniques.
For this attempt, the framework selected in this work is a process language simi-
lar to CSP, with a failure-based denotational semantics and a logic for describing
failures of processes. Two crucial areas where the applicability of this formalism
might be enhanced are:

1. the description of networks of systems that can exchange data from an infinite
set;

2. fair abstraction from loops of internal actions, and a calculus for reasoning
about the properties of processes affected by such loops;

These issues will be clarified and analyzed in Section 1.6.2 below; the solutions
proposed will then be expounded in Section 2.6.1 and Chapter 3, which proposes a
new, extended failure semantics. Finally, Chapter 4 is devoted to the development
of a logic in which properties of the extended failures of a process can be expressed
and verified; these ideas will be applied to the verification of two example commu-
nication protocols: a toy one and a large case study inspired by a real transport
protocol. But let us try first to provide a motivation for preferring the chosen
formal framework.

1.6.1 The Formalism Employed: A Motivation

In the formalism considered in this work, processes are identified with failure sets
(of a suitable kind). This identification is supported by convincing reasons, ranging
from the theoretical? to the intuitive: processes that are equivalent in some mean-
ingful sense cannot possess different failures, or they would easily be distinguished

9In an appropriate setting, failure equivalence is the largest congruence that guarantees equal-
ity of maximal traces [Bergstra, Klop, & Olderog, 1988]. Moreover, if observers are assumed
to be a sort of processes, then failure equivalence amounts to indistinguishability by these ob-
servers [De Nicola & Hennessy, 1984].



CHAPTER 1. INTRODUCTION 21

by a suitable observer. But the most important justification is, as usual, pragmatic:
the work of Hoare [Hoare, 1985]and other researchers has clearly shown that many
interesting systems can be described and studied in terms of their failures. The
main technique for this purpose is a formalism of the fourth kind considered in Sec-
tion 1.5; it is based on a "sat logic" in which process expressions may be required
to satisfy an assertion with every failure of the behaviour they denote. Of course,
setting up the sat logic requires just that every process expression is ascribed a set
of failures, e.g. through a LTS, and not necessarily a denotational failure semantics.
The advantage of the latter approach is that failure sets form a complete partial
order (cpo), and process language operators can be defined through continuous
functions over this cpo. This facilitates a smooth treatment of recursively defined
process expressions, which can be interpreted as least fixpoints of continuous func-
tions, and reasoned about by introducing powerful fixpoint induction rules in a
calculus for the verification of sat properties.

1.6.2 Problems with Failure Semantics

Although standard failure semantics affords the advantages illustrated above, its
practical applicability is impaired by two weaknesses that will be examined in the
remainder of this section.

Hiding Infinite Action Sets

Many important systems are constructed by connecting modules that can exchange
values of an infinite set across ports invisible to the environment. While values
actually exchanged during real operation will in practice belong to a finite set, for
design and verification purposes it is often necessary or more convenient to think
that these values are drawn from an infinite set.

As an illustration, consider the many protocols relying upon sequence num-
bers to cope with messages received out of sequence. These protocols are usually
designed and proved correct by assuming that infinitely many sequence numbers
are available. In practice, sequence numbers are implemented as N-bit integers,
but this only works if suitable bounds are assumed on message lifetime. However,
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specifying this assumption in order to verify that it guarantees correctness requires
the ability to describe quantitative time, which is eschewed in this work and brings
about considerable complexity anyway (see [Shankar & Lam, 1987] for an example).

Unfortunately, the potential exchange of infinitely many values at an internal
port cannot be satisfactorily described in standard failure semantics. This defi-
ciency is due to the definition of the hiding operator. This problem and a possible
solution will be analyzed in Section 2.6.1.

Divergence and Fair Abstraction

Intuitively, divergence, also called livelock, is a phenomenon in which some com-
ponents of a system interact by performing an infinite, uninterrupted sequence of
externally invisible actions. Thus, divergence may arise when system components
reach a stage after which they persistently have an option to interact with each
other, although options to interact with the environment may also be available.
Divergence does in fact arise when the former option is always taken; it is instead
averted by fairness, the requirement that, if the latter options are infinitely often
available, they should infinitely often be chosen (in the words of [Apt, Francez, &
Katz, 1988]).10

How these ideas should be reflected by a formal technique is a complex issue,
with a strongly philosophical flavour. Here a pragmatic approach is taken:

Req A formalism will just be required to allow a potentially diverging system to be
proved correct, if it intuitively appears to be so under some informal fairness
assumption.

Temporal logic clearly satisfies this criterion in a direct way, in that it can either
express fairness or be interpreted over a fair computational model (as in [Clarke,
Emerson, & Sistla, 1986]). This of course stems from its interpretation being based
on infinite sequences of observations (computation states) [Gabbay, Pnueli, She-
lah, & Stavi, 1980; Lehmann, Pnueli, & Stavi, 1981; Lamport, 1980; Emerson &

lOThis is actually a rather specific form of fairness: a thorough analysis of its many forms is
given in [Apt, Francez, & Katz, 1988].
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Halpern, 1986]. There is however a price to be paid for this (unless a real num-
bers interpretation is adopted [Barringer, Kuiper, & Pnueli, 1986]): either finite
or infinite stuttering (dummy state repetition) has to be treated unsatisfactorily,
which would seem to indicate that divergence-related phenomena have a rather
fundamental complexity.

On the other hand, to quote [Brookes, Hoare, & Roscoe, 1984], 'it seems im-
possible to define a notion of fairness such that a fair process can be distinguished
from an unfair one by any finite observation'. This implies that in semantics based
on failure or bisimulation equivalences (and intermediate ones) fairness cannot be
specified (but see [Parrow & Gustavson, 1984] for an infinite observation equiv-
alence). Likewise, knowledge of all the finite observations on a system does not
reveal whether it would actually diverge if part of its actions were regarded as
internal; in general, this knowledge can only suggest the possibility of divergence.

As an illustration, consider two systems P and Q that can only perform infinite
sequences of actions from {a, b} and never stop: P performs all such sequences,
while Q performs only those where a occurs infinitely often. Then, if b is made
internal, P will diverge, while Q will not. However, P and Q have exactly the same
set {a, b} * of finite sequences: all that can be said from this set is that both P and
Q could diverge.

It would therefore seem that, in general, all that finite observation semantics can
do, concerning divergence, is either record its possibility or abstract from it. The
latter alternative is referred to as fair abstraction, for it presupposes the assumption
that, in practice, fairness will never allow potential divergence to become actual
(as though systems like P in the example above were simply not realizable). It
should be noted that in this way fairness, while beyond the discriminating power
of semantics, finds nevertheless a formal expression. With fair abstraction, also
formalisms based on finite observation can fulfil the criterion Req stated above:
they enable systems to be proved correct by abstracting from potential divergence
in accordance with an (implicit) fairness assumption.

Whether fair abstraction or potential divergence representation is preferable
largely depends on the kind of applications one has in mind.

An example is provided by a replicated process control system within which
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faulty replicas of a controller and an actuator engage in infinite chatter. A rea-
sonable correctness requirement for this replicated system is that such divergence
phenomena should not be allowed unless they are already possible for the ideal,
non-replicated version of the system. Formalizing this presupposes a representa-
tion of potential divergence, as e.g. in the CSP model employed for this purpose
in [Mancini & Pappalardo, 1988; Koutny, Mancini, & Pappalardo, 1991; Koutny,
Mancini, & Pappalardo, 1993].

A contrasting example is a communication system built around a lossy medium
and employing retransmission. Since, in general, no fixed upper bound on con-
secutive losses can be assumed, this system is a potentially divergent one. It is
only medium fairness that ensures that messages are eventually delivered, and it is
only through fair abstraction that this fairness can be taken into account in finite
observation formalisms.

Often, versions of finite observation semantics in which potential divergence can
be represented have been viewed as superior. This was mainly due to their being
discovered after their fair abstraction counterparts and as elaborations of these.
In our view, superiority is rather to be judged from practical utility, and in this
respect fair abstraction, with its application to communication protocols, definitely
has an edge. This is in agreement with the opinion stated in [Milner, 1989] (pages
148-149). In any case, it would be desirable at least that every finite observation
semantics could be employed both in a fair abstraction and in a potential divergence
version.

While this is possible for bisimulation equivalence [Walker, 1987], it will be
shown in Section 2.6.2 that fair abstraction does not blend well with a large class
of equivalences, ranging from simulation equivalence [Larsen, 1987] to failure equiv-
alence. Of course, this is not to be taken as an argument against fair abstraction,
but rather as a motivation for seeking a semantics that combines the advantages
of failures (cf. Section 1.6.1) with those of fair abstraction. A candidate such
semantics was proposed in [Bergstra, Klop, & Olderog, 1987], but, as argued in
Section 2.6.2, it does not seem to be immune from problems either.

The solution we put forward in Chapter 3 is an extended failure semantics
which records refused traces, rather than just actions. This approach will turn out
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to be compatible with fair abstraction and also permit, like ordinary failure seman-
tics, verification in a compositional sat calculus with fixpoint induction. Rather
interestingly, these results have been obtained outside the traditional cpo-fixpoint
theory. This is necessary because fair abstraction requires that the extended failure
model should be structured as a cpo without a bottom, which prevents recursively
defined process expressions from being interpreted as least fixpoints. The the-
ory developed has therefore been based on the novel notion of 'trace-based' process
functions. These can be shown to possess a particular fixpoint that, unlike the least
fixpoint of traditional treatments, is compatible with fair abstraction. Moreover,
they form a large class, sufficient to give a compositional denotational semantics
to a widely applicable eSP-like process language.
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Chapter 2

Two Process Languages

2.1 About This Chapter

After introducing some notation in Section 2.2, a eeS-like and a eSP-like process
language are presented. The former, PL+, is described in Section 2.3, together
with its transitional semantics and a small set of equational laws. The latter, PL:,
is described in Section 2.4, where its eSP-style compositional denotational failure
semantics is also outlined. The two languages, and the underlying approaches,
are briefly compared in Section 2.5. It should be pointed out that later chapters
focus on PL:, for which a new failure semantics and sat calculus will be defined
and applied at length; the essential reason for introducing also PL+ is to place the
important material of Section 2.6.2 in the same operational-transitional setting in
which it is treated by other authors, like e.g. [Bergstra, Klop, & Olderog, 1988;
Bergstra, Klop, & Olderog, 1987]) (a comparison and discussion would otherwise
tend to be rather cumbersome).

Finally, Section 2.6 deals with two objectives that the standard failure semantics
of [Brookes, Hoare, & Roscoe, 1984; Hoare, 1985] cannot ensure: hiding of infinite
action sets and fair abstraction. A solution for infinite hiding is put forward in
Section 2.6.1. The fair abstraction issue is analyzed in detail in Section 2.6.2 (its
solution will be tackled in Chapter 3).

27
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2.2 Notation

Some notational conventions that will be employed throughout the rest of this work
are collected here. Most of them are in fact standard, so this section is intended
mainly to be used as a reference, as the need arises.

Tuples

We define as usual the set DA of tuples of elements of D over an (arbitrary) index
set A. When a meta-variable ranges over DA, this may be emphasized with a A
subscript, as in XA.

Definition 2.1 Define DA to be (A -+ D) (the set of functions from A to D).
Moreover, let XA E DA. Then:

1. for all >. E A, x). or (xAh are alternative notations for XA(>')

2. if d). E D for all >. E A, then (d>.,I >. E A) is the member XA of DA such that
o

Sequences

A (finite) sequence over D is either the empty sequence () or a tuple in D{1, ..·,N},
for some N ~ 1. Sequences will be ranged over by s, t, u, v, w, z. The following
conventions apply.

1. Length: #s, the length of s, is 0 if s is 0, N if sE D{l, ...,N}.

2. Element: for 1 ~ i ~#s, s(i) E D is said to be the ith element of s. In
the following, as in common programming languages, the notation sri] will
be preferred to s(i).

3. Sequence Notation: (d1, •.• , dN) (di E D) is the sequence s such that #s = N

and sri] = d; for 1 ~ i ~#s.

For K ~ 0, d E D, dK is the trace s such that #s = K and sri] = d for
1~ i ~K.
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4. Prefix: s ~ t holds true if #s ~ #t and sri] = t[i] for 1 ~ i ~is; s < t holds
if s ~ t and s =1= t.

5. Concatenation: the sequence s-t is defined by #(s·t) = #s+#t, (s·t)[i] = sri]
for 1 ~ i ~#s and (s·t)[i+#s] = t[i] for 1 ~ i ~it.

The '.' operator will nearly always be omitted: we write st for s-t.

Concatenation may be extended to take one sequence set operand and return
a sequence set: sT = {st I t E T} and Ts = {ts I t ET}; note that
s0 = 0s = 0.

6. Head, last, tail: if #s > 0, define head(s) = s[l], last(s) = s[#s], and
tail(s) = t such that t[i] = sri + 1] for 1 ~ i ~ #t = #s-1. Of course
s = head(s) . tail(s). On the empty string argument, these functions may be
assumed to return a fresh error value, when convenient.

7. Subsequence: if 1 ~ i ~j ~ is, sri .. j] is the sequence t such that #t =

j - i+ 1 and t[k] = sri + k - 1] for 1 ~ k ~ j - i+ 1; moreover s[i .. ] is
sri .. is].

8. Hiding: s\E, for E ~ D, is the sequence obtained from s by deleting elements
that are in E.

9. Projection: s fE, for E ~ D, is the sequence s \ (D - E).

10. Elements for sequences: if d E D, d may replace (d) in contexts where a
sequence over D is expected; e.g. ds for the concatenation (d)s, or even
d1 ... dk (k > 1) for (d1, ..• ,dk).

11. Sequences for sets: in contexts where a set is expected, s also denotes {s[i] I
1 ~ i ~#s}, the set of the elements of sequence s.

Miscellaneous

The notation pS will stand for the set of finite subsets of set S.
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Substitution of expression en for variable Xn (1 ::::;;;n ::::;;;N) in a logical formula
S will be denoted:

Process correctness properties will be verified within suitable formal systems,
with derivations that assume the valid statements about common data types.

All other proofs are conducted informally, within elementary set and number
theory. However, for the sake of conciseness, we shall sometimes take the licence
to use logical quantifiers and connectives as shorthands for their natural language
counterparts.

2.3 The Process Language PL+

The first process language considered, PL+, is a mixture ofeeS [Milner, 1989] (with
its explicit modelling of nondeterminism by internal actions), and esp [Brookes,
Hoare, & Roscoe, 1984; Hoare, 1985] (with its non-directed actions and synchro-
nized parallel composition). This makes PL+ quite similar, in form and motivation,
to the standard process language LOTOS [ISO, 1989] and on the whole closer to
ees than csr.

2.3.1 Syntax

The Basic PL+

First of all, process expressions of PL+ are built with actions from Act£ (ranged
over by a, while Act is ranged over by a, b). A, B will be used to range over subsets
of Act. Where no confusion arises, a singleton {a} may also be denoted simply by
a.

stop is a process expression denoting a totally inactive behaviour and therefore
referred to as inaction.

Process constants (or simply constants, ranged over by K.,1]) are also needed, in
order to denote a process by an identifier, as necessary for recursive definitions.

Process expressions are ranged over by p, q. Process expression tuples over the
index set A are ranged over by PA, qA.
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The language PL+ of process expressions is the smallest set containing stop, the
process constants and such that, if P,Pl,'" ,PN are in PL+ and PA is in (PL+)A,
then the following are members of PL+:

a .p, for every a E Act,;

prj]' for every injective J: Act ~ Act;

II(Pl:B1"",PN:BN), for any Bn ~ Act, 1 ~ n ~ N; this expression is also

written (Pl:Bl II .. ·11 PN:BN) or 11:=1«»;
p\B, for every B ~ Act;

(p). Parentheses may be spared by assuming that operator precedence de-
creases from postfix operators through a·, then +, and, lowest, infix II.

A unique defining equation of the form K := P must be assumed to be given for
every constant K.

Some technical notions (the first three from [Milner, 1989]) will be useful.

Definition 2.2 A constant K is weakly (strongly) guarded in a process expression
q if it always occurs within some subexpression a . q' (respectively a . q') of q.

Moreover, K is sequential in q if every subexpression of q (except q and K) in
which K occurs is of the form a . q' or EA qA.

As usual p[q/K] is the result of replacing K with q in p. Simultaneous indexed
substitution is also admitted. o

The intended meaning of the above constructs is as follows. As in ees, ac-
tion prefix a . p performs a and then behaves like p, and choice (or sum) EAPA
may choose to behave as any P>..for AEA. Renaming p[J] behaves like p with
observable actions renamed by J. As in esp, hiding p \B behaves like p with every
action in B occurring silently, turned into t, Again as in esp, parallel composi-
tion II(pl:Bl,'" ,PN:BN) behaves like PI, ... ,PN operating and interacting concur-
rently, each with the corresponding action set Bn enforced as an interface (acting
like the alphabets of [Hoare, 1985]). Thus an action a E Act is performed by
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II(PI:BI, ... ,PN:BN) iff it is in U~=lBn and is performed simultaneously by every
Pn such that a E Bn; no synchronization is required for (,actions.

The Value-Passing PL+

For applications, it is often convenient to describe interactions that involve the
exchange of values from a universe set D. The ability to do so is already in the
basic PL+, but some notational conveniences are useful.

For this purpose, a set of channels (ranged over by c, d) is presupposed such
that, if c is a channel and V a value, then dv E Act; action dv is said to occur

at c and to exchange v. With some abuse, channels and actions will sometimes
be confused; in particular, in appropriate contexts, sets of channels may figure in
lieu of the set of actions occurring at them. A set of parametric process constants,
each with an arity, is also needed; it is assumed that, if '" is such a constant with
arity N and VI, ... , VN are values, then "'Vl, ... ,VN is a process constant of the basic
language. Finally, a set of value expressions or terms (ranged over bye) is assumed;
as usual, terms are formed from constants, operators and variables (ranged over by
x), Constants and operators are assumed to be standard both in name / ari ty and
interpretation, which is therefore fixed; thus, when an assignment of values to the
variables of a term e is provided, e evaluates (in the standard way) to a value of
D. A boolean expression is a term that, given an arbitrary assignment, evaluates
to a member of Baal = {true,Jalse}, which is assumed to be a subset of D.

Value passing process expressions are formed like the basic ones, with the addi-
tion of parametric constants ",(ell' .. ,eN) (where", has arity N and en is a term)
and, for any value passing process expression p:

de .p, for every channel c and term e;

c?X . p, for every channel c and variable X;

b -+ p, for every boolean expression b.

All the newly introduced constructs have the same binding power as action prefix.
For every parametric constant '" with arity n, there must be a defining equation
"'(XI,"" XN) := p, where P can only contain the value variables XI,"" XN.
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Intuitively, if e is a variable-free term and v its value, the behaviour of de .p is
to perform action C!V and continue like p.

With some licence, the multiple prefix c?x . p can be thought to describe a
behaviour that may perform any action c!x, for x in the universe D, and continue
like p. A further convenience is to write c?x: T· p, where T is an identifier denoting
a set DT ~ D to which the choice of x is restricted.

Finally, if the conditional b is variable-free, b -+ P behaves like p if b evaluates
to true, or like stop if b evaluates to false.

The above notation is slightly adapted from [Milner, 1989], which also shows
how an extended process expression can be easily translated into the basic lan-
guage, provided all its value variables are bound (in the sense of logic); the binding
occurrences of variable x are of the form c?x.

A direct value-passing semantics is given in [Hennessy, 1991].

2.3.2 Semantics of PL+

As discussed at length in Section 1.4.2, the first step in giving a meaning to ex-
pressions of the basic PL+ is to make them the states of a LTS through a set
of transition inference rules. Those given below for PL+ are adapted from those
of [Milner, 1989]. Action prefix and sum are straightforward:

p>..~p' (,x E A) o
a·p-t>p

o
L.APA -t> p'

Renaming is also simple, especially if the renaming function J : Act -+ Act is
extended by defining J (t,) to be t,

p~p'

plJ] /(0) t> P'lJ]

Hiding is easy too, but should not be confused with ees restriction, which would
not have the first rule:

aEB
p~p'

p\B ~P'\B p\B ~P'\B
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For parallel composition, it is useful to extend the relation --t> by defining ~ to
be the identity relation. Also, let a fB be a if a E B, 0 otherwise, Then observable
transitions of parallel composition obey the rule:

\.J { } atBnvn E 1, ... ,N : Pn ~ qn

Letting cnk(t,) be t, if n = k and 0 otherwise, the internal transition rule can be
expressed:

{ }
enk{t)'In E 1, ... ,N :Pn ~ qn

11:=1 Pn:Bn ~ 11:=1 qn:Bn
Finally, process constants obey the rule:

p~pl
at;, --t> p'

(1 :s;; k :s;; N)

(t;, := p)

Following Section 1.4.2, the semantics of PL+ is completed by introducing the
following relations over it: strong (bisimulation) congruence, (bisimulation) obser-
vation equivalence and (weak bisimulation) congruence.

2.3.3 Equational Laws for PL+

A collection of laws for strong and weak bisimulation congruence is now given. All
of them can be derived practically in the same way as in [Milner, 1989], where the
issue of completeness of an equational calculus is also tackled.

As in [Milner, 1989], in view of its importance, weak bisimulation congruence
between process expressions of PL+ (cf. Section 1.4.2) will be simply denoted by
the equality symbol (this of course does not apply anywhere the language PL+ is
not employed); this notion of equality is not to be confused with syntactic equality
(denoted with =, where necessary). Strong bisimulation congruence will continue
to be denoted with the symbol 'rv'.

The laws are given with (hopefully) suggestive labels for future reference in
proofs.

Strong congruence implies the weak one:

STRONG If P rv q, then P = q.
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The internal action c may be manipulated with the axioms:

iCANC

iLAWl

iLAW2

p+/"p=/,'p

a· (p + /,.q) = a . (p + /,.q) + a . q

The main properties of sum (note also stop tv EO) are:

ASSO+

IDEM+

COMM+

NEUT+

PI +P2 tv P2 +PI

P + stop tv P

The expansion law EXPop describes how operator op distributes over action prefix
and sum. For renaming and hiding it splits into two.

EXP[i

EXPil

EXP'\

(a· p)[J] tv J(a) . prj]

(EpA)[J] tv E(P>.[J] I x E A)

(a· p)\B tv i - (p\B), if a E B;
(a· p)\B tv a· (p\B) otherwise.

The expansion law for parallel composition could be expressed formally, based on
the corresponding transition rule, but is perhaps more understandable informally:

EXPII If each Pn (1 ~ n ~ N) is a sum of action prefixes, then

N N
II Pn:Bn tv 2:{a. II qn:Bn I a,qI, ... ,qN are as in (1) or (2)}

n=I n=I

where:

1. a = i, c . qk is a summand of Pk, and qn is Pn for n i= k
(1 ~ n ~ N, 1 ~ k ~ N);
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2. 0: E U~=IBn' and if 0: E Bn (1 ~ n ~ N), then 0:' qn is a
summand of Pn, otherwise qn is Pn.

The next group of rules deals with tuples "'A of distinct process constants such
that, for every >. E A, "'>. := P>. and P>. contains no process constant but those in
"'A. The constants may be seen as solutions of their defining equations:

FIX "'A f"V PA

where f"V and = have been extended to tuples. Uniqueness of this solution (also up
to =) depends on suitable side conditions (introduced in Definition 2.2):

UNIQ", If qA f"V PA[qA/"'A] then q« f"V "'A, provided "'>" is weakly guarded
in P>.. for all x, >.' E A.

If qA = PA[qA/ "'A]then qA = "'A,provided "')..'is strongly guarded
and sequential in P>. for all .x, >.' E A.

2.4 The Process LanguagePL:

The other process language considered, PL:, practically coincides (except for mi-
nor syntactic features) with CSP [Brookes, Hoare, & Roscoe, 1984]. The main
difference between PL: and PL+ is that internal actions are not modelled explic-
itly; instead, PL: has an operator to express internal choice, which cannot be
controlled by the environment.

2.4.1 Syntax

Not surprisingly, only observable actions of Act are employed in the construction
of process expressions of PL:. The notational conventions applicable carryover
from those established for PL+. Process constants, inaction, renaming, hiding and
parallel composition have syntax and intended meaning as in PL+. The choice and
action prefix of PL+ are instead replaced by assuming that, if PI, P2 are in PL:, PA

is in (PL:)A and PA is in (PL:)A for A ~ Act, then the following are members of
PL::
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A; PA, also written a; P if A = {a},Pa = P;

The process expression ltJA PA is referred to as internal or non-deterministic choice

(among the behaviours P)" for A E A). The process expression PI E9P2 is instead
(environment-driven) external choice (between the behaviours of PI and P2). Fi-
nally, multiple action sequence A;PA denotes a behaviour that may deterministically
choose to begin by any action a in A and continues like Pa; but, in addition, any Pa,

for a E A, is allowed to make internal progress while waiting for one of the initial
actions in A. This feature is adopted from [Brookes, Hoare, & Roscoe, 1984] and
entails that the behaviour of A; PA cannot be straightforwardly expressed in PL:

with a combination of the sum and action prefix of PL+.
A value passing version of PL: can be introduced along the lines employed for

PL+ (note that multiple action sequence is already in the basic language).

2.4.2 Transitional Semantics

It would be easy to define a relation --t> for PL:, via a set of inference rules
analogous to those for PL+. However, for future developments, it is enough to
provide some results only for the derived transition relation ==t> over PL: x Act* x
PL: defined as in Section 1.4.3. It can be proved in a straightforward manner that
the ==t> transitions are exactly those derivable from the following rules.

Relation ==t> is, in a sense, reflexive:

()
P ==t> P

and transitive:
• 8 t stIf p ==t> p' and p' ==t> q, then p ==t> q

Rules for constants, renaming, hiding and parallel composition are clearly related
to the corresponding ones for --t> (as given earlier for PL+):

p~p'
s

'" ==t> p'
('" := p)



2.4. THE PROCESSLANGUAGE PL: 38

p[J] £p'[J]

{ }
stBn

'VnE 1, ... ,N :Pn~qn

11:=1 Pn:Bn ~ 11:=1 qn:Bn

sP ==t> p'
s\B

p\B~p'\B

N

(8 E (U Bn)*)
n=1

The rules for internal and external choice, and multiple action sequence reflect the
intended meaning of these operators.

P>. ~pl
(A EA)sl:IA PA ==t> p'

p~p'
(8 # ()) q~ql

(8 # 0)sp EB q ==t> p'
8

P EB q ==t> q'

While waiting for an external choice to be resolved, its operands are allowed by the
next rule to make internal progress (even independently, because q ~ q for all q):

() ()
P ==t> p', q ==t> q'

()
p EB q ==t> p' EB q'

Internal progress is also possible for multiple action sequence:

\.I A () IvaE :pa==t>Pa Pa~P' (a E A)as
Ai PA ==t> p'

Since PL: can be mapped, like PL+, onto a LTS, its process expressions can be
compared by any observation equivalence for LTSs.

2.4.3 Compositional Denotational Semantics

As noted in Section 1.4.3, an alternative to transitional semantics is to identify a
process with a set of observations, and, letting Proc (ranged over by P, Q) stand for
the set of processes, try to define a compositional meaning function O[] : PL: -+
Proc.

This definition is based on the association of every A-ary operator op of PL:
with a function Op: ProcA -+ Proc. For simplicity, but without harm for practical
applications, it will be assumed that Kr is a tuple of distinct constants that are
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the only ones occurring in process expressions, and (as usual) there is a unique
definition K..., := q..., for every 'Y E r. First, every expression P is compositionally
mapped onto a function O[P]: Procr -+ Proc:

Definition 2.3 The semantic functional OU : PL: -+ (Procr -+ Proc) is induc-
tively defined by letting, for Pr E Proc'':

O[ Op(PA)] (Pr)

O[K...,](Pr)

Op( (O[PAHPr) I A E A)) (op a A-ary operator) (2-1)

('Y E r) (2-2)

Process functions obtained by application of 6[] are said to be PL:-generated:

Definition 2.4 A function F: Procr -+ Proc is said to be PL:-generated if F is
6[p] for some process expression P in PL:.

A function tuple (F...,: Procr -+ Proc I'Y E I'), viewed as a function F: Procr -+
Proc'', is said to be PL:-generated if every F..., is PL:-generated. 0

The semantic function proper O[] : PL: -+ Proc can now be defined:

Definition 2.5 Let every PL:-generated function F: Procr -+ Procr possess a
particular fixpoint fixF. Then (recalling K..., := q..., for 'Y E r) define, for every
process expression p:

o

In sum, whatever the observation set model Proc, defining a compositional de-
notational semantics for PL: over Proc amounts to defining: (i) a function Op:
ProcA -+ Proc for every A-ary operator op of PL:, and (ii) a fixpoint for PL:-
generated process functions.

Standard Failure Semantics

In [Brookes, Hoare, & Roscoe, 1984], failures are employed as observations. It is
worth recalling, from Section 1.4.3, that a failure is a trace-refusal pair in Act· x
pAct, and that a failure set suitable as a process must satisfy non-emptiness, prefix
closure, inclusion closure and trace-refusal consistency (Definition 1.1). Let then
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Proc denote the set of such failure sets. In accordance with the scheme outlined
above, for every operator of PL:, a suitable process function is now introduced,
which, for simplicity, is still denoted like the operator. Note that these functions are
well-defined over any failure sets (in Act· x pAct) and process-preserving [Brookes,
Hoare, & Roscoe, 1984].

STOP

PffiQ

P[f]

{(0,X) IX E pAct } (the denotation of stop)

{(O,X) I (O,X) E pnQ} U

{(s,X) I s =I- 0, (s,X) EPUQ}

{(O,X) I X E p(Act - An U

{(as,X) I a E A, (s,X) EPa}

{(f(s), f(X)) I (s, X) E P} (f injective)

{(s, Y U U~=l Xn) I sE B*, YE p(Act - B),

The definition of P\B, which is based on that of the trace set 8BP, makes sense
only for a finite B:

sE 8BP iff {u E B* I (su,0) E P} are unbounded (in length)

P\B {(s\B,X) I (s,XUB) E P} U

{((s\B)t,X) It E Act·, X E pAct, sE 8BP}

To complete the definition of failure semantics, Proc is given the structure of a
cpo and the above functions are shown to be continuous. This ensures that every
PL:-generated function F: Procr ~ Procr is continuous, so fixF can be taken to
be the least fixpoint of F.

A different denotational semantics for PL:, motivated by compatibility with
fair abstraction (cf. Section 2.6.2), is proposed in Chapter 3.
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2.5 PL: versus PL+

Which of the approaches represented by PL+ and PL: is preferable is a highly
debated issue, which is rather difficult to answer definitively. This explains why
both approaches boast a long-standing tradition in the literature and have failed
to prevail or converge so far, although their relationship has been investigated at
length (see e.g. [Brookes, 1983aj Brookes, 1983b]).

Formally, both languages can be mapped onto a LTS, so both can be endowed
with an observational equivalence like ss, However, in our view, many equational
laws for PL+ tend to take a more suggestive form than their counterparts for PL:,
thanks to the presence of the explicit internal action c. On the other hand, exactly
for the same reason, a compositional denotational semantics is more easily intro-
duced for PL:j indeed, giving such a semantics to PL+ is possible, but requires the
observation set to contain also 'instability information', which makes the definition
of process semantic functions more cumbersome.

The practical upshot of these differences is that PL+ may prove more useful as a
basis for equational verification, whereas PL: lends itself more easily to the design
of a sat calculus for reasoning about input-output relation and deadlock. Since
the latter is our ultimate goal, the rest of this work is mainly based on PL:. The
only exception, and the reason for introducing PL+ and its equational calculus,
is represented by the important Section 2.6.2j this establishes the incompatibility
between fair abstraction and traditional failure semantics, thus motivating the
extension proposed in Chapter 3. Below, introducing Section 2.6.2, we also put the
case for preferring PL+ in it.

2.6 Problems with Failure Semantics

This section deals with two problems presented by the denotational failure seman-
tics of Section 2.4.3. As already discussed informally in Section 1.6.2, they are
the impossibility of hiding infinite sets of actions and applying fair abstraction to
divergence. It will be seen that the latter problem is in fact common to any failure
semantics.
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2.6.1 Hiding Infinite Action Sets: A Solution

The hiding function of [Brookes, Hoare, & Roscoe, 1984], reproduced below for
convenience from Section 2.4.3, does not allow an infinite action set B to be hidden.

sE OBP iff {u E B* I (su,0) E P} is unbounded

P\B {(8\B,X) I (8, X U B) E P} U

{((s\B)t,X) It E Act*, X E pAct, 8 E OBP}

(2-3)

The reason, clearly, is that in the latter equation the set X U B, being infinite,
cannot be a refusal of P (by Definition 1.1 a refusal is a finite set). A possible
remedy could be to redefine P\B thus:

P\B {(s\B, X) I X E pAct, 'v'Y E p(X U B): (s, Y) E P} U

{((s\B)t,X) It E Act*, X E pAct, sE 8BP}
(2-4)

This exploits the same 'compactness' closure condition whereby infinite refusal
sets were introduced in [Brookes & Roscoe, 1985]. Unfortunately, hiding, redefined
as above and extended to infinite sets, is not associative. A counterexample is
provided by P below:

B {bI, b2, •.• } (an infinitely countable set)

P - {(s, X) Is ET, sX nT = 0}

T - U {t I t ~ bnacn}
n>O

Indeed, OBU{c}P= 0, so the only non-empty trace of P\(BU{ c}) is (a). In contrast,
(bnacn,X) E P for all n and X E pAct+, which implies (cc", 0) E P\B for all n,
so a E O{c}P\B, whence, for all wE Act*, (aw,0) E P\B\{c}.

We shall show that this problem can be obviated, if also OBP is redefined thus:

s E 8BP iff {u E B* I (su,0) E P} is infinite (2-5)

It should be noted that, for B finite (by Konig's lemma) this definition coincides
with the previous one (2-3), and that of hiding coincides with the original one
of [Brookes, Hoare, & Roscoe, 1984].

It will be shown first, after a preliminary lemma, that the new hiding function
defined with (2-4) and (2-5) is process-preserving.
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Lemma 2.6 If P is a process and (s,0) E P, then (s\B,0) E P\B.

Proof. If s E 8BP, the lemma follows immediately. If, instead, the set U = {u E

B* I (su,0) E P} is finite, let w be one of its maximal traces; the lemma then
follows from (sw, Y) E P for all finite Y ~ B. To see this, suppose by contradiction
(sw, Y U {b}) i P and (sw,Y) E P for a finite Y ~ B. Then, by trace-refusal
consistency, (swb,0) E P, which contradicts the maximality of w. o

Theorem 2.7 If P is a process, so is P\B.

Proof. The only non-trivial proofs are those of prefix-closure and trace-refusal
consistency.

Suppose (st,0) E P\B. If (w,0) E P and w\B = st choose u ~ w such that
u\B = s; then (u,0) E P by prefix-closure of P and (s, 0) E P\B by the previous
lemma. Otherwise, choose w E 8BP such that w\B ~ st. There are two cases for
w. If w\B ~ s, then (s,0) E P\B is obvious. If instead s < w\B ~ st, choose
u ~ w such that u\B = s; then (u,0) E P (by (w,0) E P and prefix-closure of
P) and (s,0) E P\B by the previous lemma.

To prove trace-refusal consistency, suppose (s,X) E P\B and (sa,0) i P\B. If
a E B, it is obvious that (s,X U {a}) E P\B. If a ~ B, there is no t E 8BP for
which t\B ~ s or (sa,0) E P\B. Thus for some t, t\B = sand (t,Xu Y) E P
for all finite Y ~ B. Now (ta,0) ~ P or, by the previous lemma, the assumption
(sa,0) i P\B would be contradicted. So trace-refusal consistency of P implies
(t, XUYU{a}) E P for all finite Y ~ B, whence, as desired, (s, XU{a}) E P\B. 0

The last proofs have closely followed the style of their counterparts in [Brookes,
Hoare, & Roscoe, 1984]. However, the proof that hiding is associative is based on
a thoroughly new lemma.

Lemma 2.8 Let B be a (possibly infinite) action set and S an infinite trace set.
If S\B is a finite set, then there exist a trace x and an infinite subset W ~ B*
such that the traces in xWare prefixes of S.

Proof. For at least a trace (ab , aM) E 8\B, there must be an infinite subset
S' ~ 8 such that 8'\B = {(at aM)}. If M = 0, just take W = S'. For M > 0,
it is possible to define u~ E B* (for 0 ~ n ~ M) such that:
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(1) if S E S', then s = Uo al'" UM-l aM UM.

For 0 ~ m ~ M, defining

Um - {u:n I sE S'}

u; {u~ al'" U:n-l am I sE S'}

(and letting Uo al ... U:n-l am = () if m = 0) yields

(2)

Now let m be the minimum index for which Um is infinite (this m must exist or
by (1) S' would be finite). Then U:n is finite, so by (2) we can choose x E U:n that
makes infinite the set Um,x' This Um,x is the sought W, because if w E Um,x, then
some s E S'<;S satisfies w = u:n and x = Uo al ... U:n-l am, whence (using (1) for
the last relation)

o

The latter result is a non-trivial extension of Lemma 2 of [Brookes, Hoare, &
Roscoe, 1984] (where B is assumed to be finite). It will be employed below in the
form of the following lemma.

Lemma 2.9 Let B be an action set, P a process and tU an infinite subset of its
traces.

Then if U\B is finite, there exists a prefix x of some trace of U such that
tx E bBP.

Proof. By the previous lemma, there exist a trace x and an infinite W ~ B* such
that all the traces in xW are prefixes of traces in U. Moreover, all the traces in
txW belong also to P, so tx E bBP. 0

The associativity proof is split into two halves.

Theorem 2.10 Let P be a process and B,C action sets. Then P\B\C ;2 P\B U
C.



CHAPTER 2. TWO PROCESS LANGUAGES 45

Proof. Assume (s,X) E P\B U C. By the definition of hiding there can be two
cases.

If t\(B U C) = s and, for all finite Z ~ C and Y ~ B, (t, Xu Y U Z) E P, then,
for all finite Z ~ C, (t\B, Xu Z) E P\B and (t\B\C, X) E P\B\C, as desired.

If, on the other hand, t E &BUCPand (t\B UC) ~ s, then (s,X) E P\B\C may
be obtained by showing:

(1) t\B E 8c(P\B)

For this purpose, observe that the set U = {u E (B U C)· I (tu,0) E P} must be
infinite and prefix-closed and the traces in tU are also traces of P. Now, if U\B is
infinite, then (using Lemma 2.6) t\B E &c(P\B), and (1) holds. If instead U\B is
finite, by Lemma 2.9, there exists a trace x E (BUC)· such that tx E 8BP. Hence,
by equation (2-4), ((t\B)(x\B)u,0) E P\B for all u E C·, so (1) holds again. 0

The second half of the proof is preceded by a technical result that will be needed
again in later sections.

Lemma 2.11 Let 3 be a non-empty set of sets, ordered with inclusion. Suppose
every finite subset of 3 has an upper bound in 3.1

Let I: 3 ~ E be a function under which 3 has a finite image. Then there exists
e E E such that for all Z E :=: there is Z' E 3 such that Z' 2 Z and I(Z') = e.

Proof. Let 1(3) = {el,' .. , eH} (H > 0). By contradiction, suppose:

By hypothesis, there must exist Z' E 3 such that, for all h E {I, ... ,H}, Z' 2 Zh,
whence f(Z') =f:. eh, Thus f(Z') ~ f(3): a contradiction. 0

Theorem 2.12 Let P be a process, B, C action sets. Then P\B\C ~ P\B UC.

Proof. Assume (w, X) E P\B\C. It is necessary to find s such that either of the
two following statements holds:

1In practice, :: is usually such that this upper bound is the lub/union.
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(1) s\B\C = wand, for all YE pB and Z E pC, (s,Xu Y U Z) E P, or:

(2) s E 8BUCP and s\B\C ~ w.

There are two cases why (w, X) E P\B\C, treated as A and B below.

Case A. There exists t such that:

(3) t\C = wand, for all Z E pC, (t, Xu Z) E P\B.

Again, this statement splits into two subcases.

If there exists at least one s E 8BP such that s\B ~ t, then (2) holds.

Otherwise (using 3) assume:

(4) for all Z E pC, there is «z such that sz\B = t and, for all Y E pB, (sz,X U

y UZ) E P holds.

and let S = {sz I Z E pC}, so that S ~ rP and S\B = {t}. If S is infinite, by
Lemma 2.9 there exists s E 8BP prefix of some sz, and (2) can be seen to hold. If
S is finite, by Lemma 2.11 there exists sE S that, using (4), can be recognized to
satisfy (1).

Case B. There exists t such that:

(5) t\C ~ wand t E 8c(P\B), so that U = {u E C· I (tu,0) E P} is infinite.

Two sub cases may be considered.

If there is u E U such that, for some sE 8BP, s\B ~ tu, then (2) holds.

Otherwise (using the definition of U in (5)) assume:

(6) for all u E U, there is Su such that SU \B = tu and, for all Y EpB, (su, Y) E P.

and let S = {su I u E U}, so that S\B\C = (tU)\C = {t\C}. S is infinite (or
S\B = tU would be finite too, contradicting (5)). Then by Lemma 2.9 there exists
s E 8BUCP prefix of some su, for u E U, and (2) can be seen to hold. 0

With respect to the process partial order of [Brookes, Hoare, & Roscoe, 1984],
the proposed hiding function is not continuous, but is easily seen to be monotonic.
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Discussion

The new hiding function might also appear to suffer from a weakness, as it enlarges
the set 8BP of traces of P after which P\B behaves chaotically (being permitted
to do or refuse anything by (2-4)), from that of equation (2-3) to that of (2-5): it
is now possible for P\B to degenerate into chaos also if, at a certain stage, P can
choose among infinitely many actions from B. However, in practice this is rather
unlikely to occur at an internal channel c of a real system. Usually, subsystems do
not offer each other at c infinitely many values upon which to synchronize: while
one of them, which is therefore thought to use c as an input channel, may be
prepared to accept any value from an infinite set, the other is normally willing to
output just a finite number of values." The resulting match will then give rise to
only finitely many options at c, which avoids chaotic behaviour even with the new
hiding.

Another problem with the new function is that, while it is monotonic and hence
endowed with a least fixpoint (by Knaster- Tarski's theorem, see [Loeckx & Sieber,
1987]), it is not continuous. Thus, fixpoint induction cannot be employed, as
in [Brookes, Hoare, & Roscoe, 1984], to reason about process constants that occur
within the scope of hiding in their recursive defining equations. This, however,
is rather unlikely to happen in practical system specifications, which instead, as
discussed, often need to hide channels that may exchange an infinite number of
data.

Finally, it should be observed that, in any case, the new hiding is not inferior
to the old one, in that they coincide if the hidden set B is finite (as required by the
old one). It seems therefore acceptable to conclude that the new hiding function
widens the applicability of the language PL: with failure semantics. Furthermore,
we conjecture that the noted tradeoff between continuity and infinite set hiding is
related by a subtle interplay to the requirement of finiteness for refusal sets. We
plan to investigate this issue in future work.

2An exception could be a random generator of infinitely many values, but this would only
represent a modelling problem for our version of hiding if this infinity were crucial for correctness.
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2.6.2 Failures and Fair Abstraction

We will now substantiate the claim, made in Section 1.6.2, that fair abstraction
is incompatible with failure semantics, whether it is defined denotation ally, as in
Section 2.4.3 for PL:, or operationally through a LTS. More precisely, an incon-
sistency will be derived from a set of equational laws, of which one reflects fair
abstraction, while the others must necessarily hold in failure semantics, and indeed
in a lot more: possible futures and ready simulation semantics together with all
coarser ones, which include simulation, ready trace, ready, and failure trace seman-
tics (see [v. Glabbeek, 1993]for a definition and a survey). That so many semantics
can be treated with a single argument is an obvious benefit of the equational ap-
proach.

In fact, similar incompatibility results were already given in [Bergstra, Klop, &
Olderog, 1988]. However, we provide a simpler counterexample and, more impor-
tantly, a weaker and smaller set of incompatible equational laws; this permits the
results to be extended from ready and failure semantics to the many others cited.
Furthermore, the incompatibility established would appear to confute successfully
the contrary view put forward in [Bergstra, Klop, & Olderog, 1987].

While it would be possible to recast the following treatment in the setting
of PL:, this would make a comparison with the cited works rather cumbersome,
and would prevent a direct use of their results. It can be added that the process
properties that will be exploited, and the spirit of the argument altogether, are more
clearly conveyed in terms of explicit internal actions, in an explicit operational-
transitional framework.

We will therefore work with the language PL+ and, for simplicity, will assume
that only finitary choice is employed. We postulate that this language is endowed
with a congruence ~ satisfying the laws described below.

To begin with, we assume the laws EXP" NEUT+, FIX and UNIQ~, ob-
tained from EXP" NEUT+, FIX and UNIQ= of Section 2.3.3 by replacing f"V

or = by ~. A weak distributivity of choice over action prefix is also required:

DISTR-
N H

i"'-.J (a· L: bn . Pn) + (a· L: bnh . Pnh)'
n=l h=l
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N H
provided U {bn} = U {bnh}·

n=l h=l

Example applications of this law are (the second will be repeated in Proposi-
tion 2.13):

a·(b·p+b·q+c·r) - a·(b·p+b·q+c·r)+a·(b·p+c·r)

a- (b· p + b- q + b- r) a· (b· p + b- q + b- r) + a . b- q

Finally, we need a law to capture fair abstraction of tight z-loops. 'Koomen's fair
abstraction rule' [Koomen, 1985], in the formulation of [Bergstra, Klop, & Olderog,
1988], is one such law:

Let p ~ b . p + q. Then p \ b ~ t . (q \ b).

We are now ready to state:

Proposition 2.13 Let ~ be a congruence over PL+ and suppose it satisfies the
laws EXP\, NEUT+, FIX, UNIQ~, DISTR- and KFAR1.3 Then, rather
unexpectedly:

t . t . a . stop ~ t : (t . a . stop + t . t . stop)

Proof. Let us define:

(2-6)

K, := b- K,+ b . a . stop "I := b . "I + b . ( + b . a . stop (:= b· (

Then the laws selected suffice for the following derivation:

7J I'V b » (b . "I + b . ( + b . a . stop) + b . b . ( + b . a . stop

I'V b· (b . "I + b . ( + b . a . stop) + b . a . stop

I'V b· "I + b . a . stop

FIX for "I, "I, (

by DISTR-

FIX for "I

SO UNIQ~ implies:

(1)

3In fact, the proof shall be given as though the operator + denoted multiple finitary, rather
than binary, choice (more precisely, we should either replace + by 2: or invoke also the associa-
tivity of +).

In [Bergstra, Klop, & Olderog, 1988], a stronger distributivity and their version of iCANC
(here 0: • £ • p ~ 0: . p) were also needed for a different counterexample.
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The fair abstraction law, with the other laws in the second column below, justifies
the congruences in the first column:

/'i, \ b [, . [, . a . stop

(\b - c- stop

FIX, KFAR1, EXP,

FIX, NEUT+, KFAR1, EXP,

TJ\b - t : ([,. a· stop + i - c- stop) FIX, KFAR1, EXP" (\b ~ i - stop

Hence and from (1), since ~ is a congruence, relation (2-6) follows. o

Equation (2-6) is the inconsistency promised: it clearly cannot be valid in any
meaningful observation equivalence ce. It is now important to analyze what hap-
pens when ~ is instantiated by one of the known observation congruences.

If ~ is weak bisimulation congruence ~b, then DISTR- simply does not hold,
so no inconsistency arises.

Let instead ~ be an equivalence relation satisfying DISTR - and UNIQ", and
coarser than ~b; then EXP" NEUT+, FIX, KFARI must also be valid (as they
are for ~b). Therefore, the only way to prevent the problematic Proposition 2.13
from holding is to admit that ~ is not a congruence, in that it is not preserved
by the application of \b, as assumed in deriving (2-6). This applies to ready
simulation equivalence and all the above-mentioned weaker equivalences, down to
failure equivalence, if they are defined in such a way to be coarser than ~b.

Suppose, e.g., that ~ is defined as the failure equivalence:

p ~ q iff failures (p) = failures (q) and p ~ iff q ~ (2-7)

Jailures(p) {(s,X) I X~Act, 3p/: p =k> p' &VxEX: pl#} (2-8)

(the second conjunct of (2-7) aims at ensuring substitutivity of summands). This
failure equivalence can be proved to satisfy UNIQ", and is easily recognized to
satisfy DISTR - and be coarser than ~b. Moreover it clearly does not satisfy
equation (2-6), so it cannot be a congruence.

A way to regain a congruence is to give up fair abstraction and equate all process
expressions that may perform an infinite sequence of z-actions. E.g., if /'i" TJ,( are
defined as in Proposition 2.13, Le.

/'i, := b . /'i, + b . a . stop TJ:= b . TJ+ b . a . stop + b . ( (:= b·(
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then:

(2-9)

This treatment of divergence is said to be catastrophic, because it collapses all
behaviours for which divergence cannot be excluded. It is clearly incompatible
with the idea of fair abstraction, under which the expressions equated in (2-9)
should be equivalent (cf. proof of Proposition 2.13) to:

t : a· stop l, • a . stop + l, • stop c - stop

respectively and therefore differ. Technically, the undesirable Proposition 2.13
cannot be proved because KFARI is now rejected; for the same reason, the catas-
trophic version of ~ cannot be coarser than bisimulation congruence ~b.

Relation ~ can be (re)defined as a 'catastrophic' failure equivalence-congruence
in at least two ways. The first is to keep (2-7), but redefine the failures function
as in [Brookes, 1983a] (with a slight simplification justified if process constants are
weakly guarded in all defining equations):

failures(p) = {(s,X) I X~Act, :Jp': p ~ P' &'VxEX: p'~} U

{( st, X) I ieAct*, X ~ Act,
::JI 8, L L L }zsp ,PI, P2, ... : P ===t> P ----i> PI ----i> P2 ----i> •..

Another definition could be based on a compositional denotational semantic func-
tion O[] similar to that of Section 2.4.3 (but adapted for PL+):

P ~ q iff O[P] = O[q]

A Failure Semantics with Fair Abstraction?

Is there a way to integrate a failure-based semantics with fair abstraction? This
would be an appealing achievement, for it would combine the advantages attributed
to each approach in Sections 1.6.1 and 1.6.2.

A solution was proposed by Bergstra, Klop and Olderog in their paper Failures
without Chaos: A New Process Semantics for Fair Abstraction [Bergstra, Klop,
& Olderog, 1987]. Below, we shall argue that their results, albeit sound, are not
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particularly useful in practice, for correctness verification. As discussed in Sec-
tion 1.6.2, we envisage a thoroughly different solution, which will be the subject of
Chapter 3.

The approach of [Bergstra, Klop, & Olderog, 1987] is based on replacing the
KFAR rules with a weaker infinitary version:

KFAR- Let Pn ~ bn . Pn+l + qn, where b« E B, for all n ~ 0; assume
qm ~ b- q for some m ~ 0, s « B.

Then Po \B ~ i- En~o(qn \B).

Unlike KFAR1, KFAR- does not allow the inconsistency represented by Proposi-
tion 2.13 to be derived. On the contrary, Bergstra, Klop and Olderog provide a fail-
ure congruence that satisfies KFAR-, UNIQ~, (a stronger law than) DISTR-,
and (substituting ~ for f'V) EXP" FIX and the laws for t and + from Section 2.3.3.

Their definition is as follows (we still denote this new congruence by ~ to avoid
rewriting equational laws with yet another relation syrnboljr'

p ~ q iff jailuresBKo(p) = jailuresBKo(q), p ~ iff q ~,
and traces (p) = traces (q)

traces (p) {s I ::Ip':p ~ p'}

!ailuresBKo(p) {(s, X) I X~Act,
::lp' : P ~ p', p' /--C>, 'VxEX: p' =I=t>} (2-10)

The need for traces() arises because, even if s E traces(p), it may happen that
(8,0) tt jailuresBKo{p) (if p ~ p' implies p' ~).

The problem with this approach is, in our view, that the applicability of a rule
like KFAR- is rather limited: basically, it says that an z-loop can be abstracted
from, provided there is an z-transition taking out of it. It is not difficult to think
of practically relevant cases in which this is insufficient to prove correctness. Ac-
tually, in [Bergstra, Klop, & Olderog, 1987] an example communication system is
presented with the opposite intent.

4The semantics of [Bergstra, Klop, & Olderog, 1987] is in fact slightly more complicated, in
order to treat successful termination and sequential composition.
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·1 b aek Jsnd S R rev

M
m

Figure 2.1: Bergstra, Klop and Olderog's example.

This example, depicted in Figure 2.1, is a toy communication system made up
of a sender S and a receiver R that exchange messages, through a lossy medium M,
and acknowledgements, directly, through a shared channel ack. The service offered
by the system is a cycle in which a snd action is accepted by S, and subsequently
a rev action is issued by R. The protocol is based on the assumption that, if M
accepts an action in from S, then it either notifies R with action out or reports an
error action err back to S, which will then retry in. This assumption, which would
seem to aim at avoiding z-loops that KFAR- cannot reduce, is rather unrealistic.

Indeed, consider the mechanism whereby M may realize at the transmitting
end that delivery at the receiving end has failed: M can forward the data and
start waiting for an acknowledgement (a new one, inside M); if ack transmission
is totally reliable and timings are predictable, then a timeout expiry may tell the
transmitting end for sure that data have not been delivered. But, apart from this
unusual case, rather complex protocols would seem necessary, based on repeated
back and forth communication within M; yet this is what Sand R already carry
out on top of M: considerable function duplication among adjacent layers would
ensue, in contrast with the principles of sound protocol design [Tanenbaum, 1988].
In any case, the problem circumvented by the error report action would only have
been moved to a lower level, namely the verification of M.

So let us consider instead a realistic modelling of the famous alternating bit pro-

tocol [Bartlett, Scantlebury, & Wilkinson, 1969],whereby the system of Figure 2.1
may provide a reliable service based on retransmission, without any need for the
medium to possess the questionable error-reporting capability.

The service expected by the system is easily described by:

SE := snd· rcu- SE
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The service provided by the system can be specified as SPooo(O, 0, 0), where SPijk(l,
rn, n) is just a shorthand (not a constant) for the process expression:

(Si{l):{snd, in, aek} II Mj(rn):{in, out} II Rk(n):{out, aek, rev}) \ {in, out, aek}

Sender, medium and receiver are respectively described by the indexed and para-
metric constants S, M and R.

The sender starts out as So(O). Initially, So(l) accepts a snd request from a
user, tries to inform the receiver by passing bit I at in to the medium. and starts
waiting for an acknowledgement. Waiting may be disrupted by an internal action,
followed by a retry to send bit 1 at in (this models a timeout expiry, abstracting
from timeout duration). If instead an ack carrying bit I arrives, all the above
behaviour is repeated with bit I negated.

So(l) ._ snd·S1(1)

SI (l) inll . S2(l)

S2(1) ._ /"Sl(l)+aekll·So(·l)

The medium starts as Mo(O) (the parameter of Mo is in fact a dummy, introduced
for uniformity). It behaves like a one-bit buffer that may internally decide to lose
the yet undelivered bit m, as described by MI(rn).

inlO· MI (0) + in!1 . MI (1)

outlrn . Mo(O) + /,.Mo(O)

The receiver starts as Ro(O). Initially, Ro(n) repeatedly acknowledges the previous
reception of bit .n and waits for bit n to come out from the medium, at out. If

this happens, the user of R is informed with a rev, and the above behaviour is
repeated with bit n negated.

Ro(n) ._ aek!(.n)· Ro(n) + out!n· Rl(n)

RI (n) ._ rev· Ro( .n)

Proving by hand that SE is bisimulation congruent to SPooo(O, 0, 0) is slightly
tedious, because the latter expression corresponds to about thirty LTS states. A
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proof has been more easily obtained with our mechanical tool described in [Pap-
palardo, 1987].

In contrast, SE ::: SPooo(O, 0, 0) does not hold if ::: is the failure equivalence
of [Bergstra, Klop, & Olderog, 1987], with failuresBKoO defined as in (2-10).
Clearly, the failure ((snd), {snd} ) lies in failuresBKo (SE), but it will now be shown:

Proposition 2.14 ((snd),{snd}) ~ failuresBKo(SPooo(O,O,O)), for failuresBKoO
as in (2-10).

Proof. It is enough to show:

and ~. L(1) SPooo(O, 0, 0) ====t> p and p r=v Imply p -{>

To see this, note first that SPooo(O, 0, 0) ~ p entails that p is SPijk(l, m, n) for
proper indices and parameters (this claim is easily proved by induction). Moreover,
p A implies that i is either 1 or 2. If i = 2 or j = 1, the proposition follows
from S2(l) ~ or Ml(m) ~, respectively. If i= 1 and j = 0, it follows from:

Sl(l):{snd, in, ack}IIMo(m):{in, out} ~ S2(1):{snd, in, ack}IIMl(l):{in, out}. 0

In a more realistic specification, acknowledgements would be dealt with just like
messages and media capacity would be unbounded. However, the previous propo-
sition would still hold because of the persistent z-actions arising.

2.6.3 Extended Failures for Fair Abstraction

The previous discussion should have convinced the reader that no failure semantics
is really compatible with fair abstraction. It is therefore necessary to settle for a
less ambitious goal: to find a process semantics that (1) enables fair abstraction,
and (2) is based on observations such that any failure of a process can be extracted
from (at least) one of them. A good candidate observation is an extended failure,
Le. a member of the set:

xfailures(p) = {(s,X) I X~Act+, 3p/: p ~ p' &VxEX: p/~}

Thus, in an extended failure (s, X), the refusal X also records non-empty traces
that can be refused by a process after performing X. Of course, an ordinary, 'action-
refusing' failure is also an extended failure, which easily fulfils the requirement (2)
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b b

b

Figure 2.2: a and 1f are failure- but not extended failure-equivalent.

identified above. Henceforth, we will mainly rely on the context to make clear
whether a failure is an extended or an ordinary one.

The other requirement noted, viz. (1), that extended failure semantics should
permit fair abstraction, is also satisfied because bisimulation congruence ~b is
easily proved to be a finer relation than the new ~ adopted, defined this time as
an extended failure equivalence:

p ~ q iff xfailures (p) = xfailures (q) and p ~ iff q ~

Thus, any fair abstraction identifications permitted by ~b (including those induced
by the KFAR rules) is also valid under this c-. Further, for a LTS without t, ~ is
stricter than failure equivalence. Thus, since ~ lies between two well-established
observation equivalences, it should also be intuitively acceptable. More precisely,
in the 'equivalence lattice' of [v. Glabbeek, 1990], ~ would be inserted out of the
ready-simulation sublattice, above ordinary failure equivalence, and below Milner's
~2 equivalence.

Of course, it must also be ensured that ~ does not suffer from inconsistencies
like that represented by Proposition 2.13. Evidence that this should not be the
case is provided by the remark that this ~ does not satisfy DISTR -, so one of
the hypotheses of Proposition 2.13 does not hold. Informally, it should be quite
convincing to consider the LTS of Figure 2.2 and observe that, unlike the ordinary
failure equivalence (2-7), the new ~ does distinguish the states a and 1f both before
and after b is hidden. Indeed,

(b, {(b, c), (c)}) E xfailures(1f)

(b, {(b, c), (c)}) ¢. xfailures(a)

b be e
by 1f =t> 1f2, 1f2 -F=t>, 1f2 ~

be eby a ==P, al =t>
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More formally, it should be proved that ~ is a congruence. The critical case,
hiding, is dealt with by proving that, for fixed B, x/ailures(p\B) depends only on
x/ailures(p). A proof can be given along the lines of Proposition 3.99. However,
we shall not pursue this approach any further.

Extended failures will instead be employed, in Chapter 3, to give an observation
set-based, compositional denotational semantics. The advantage of this approach
is to afford a smooth treatment of fixpoints.





Chapter 3

Extended Failures

3.1 About This Chapter

The adoption of a denotational process semantics based on failures that record
refused traces has been motivated at length, in Sections 1.6.2 and 2.6.2, with the
goal of combining fair abstraction, the ease of failure-oriented specification, and

fixpoint- related techniques.

In the followingSection 3.2, a process domain of sets of such failures is presented,
and provided with sufficient structure to afford a smooth definition of fixpoints and
a fixpoint induction rule. These results cannot be obtained as customary [Brookes,
Hoare, & Roscoe, 1984], by making the process domain a complete partial order
(cpo), without also jeopardizing fair abstraction; the alternative approach devised
here is to identify the class-large enough for applications-of trace-based process
functions, and show that they possess a particular fixpoint, compatible with fair
abstraction. It should also be remarked that the fixpoint rule provided is more
manageable than that of [Brookes, Hoare, & Roscoe, 1984] because it suggests a
possible induction basis which can be proved without further recourse to fixpoint
induction. The search for practical fixpoint rules also brings us to discovering an
interesting alternative process order, and the useful notion of specification-oriented
process predicate.

In Section 3.3, the process language PL: is given a compositional denotational
semantics as described in Section 2.4.3, by choosing as semantic domain that of (ex-

59
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tended failure) processes and defining, for each language operator, an appropriate
process function.

In our view, a rather pleasing conclusion about the formalism of this chapter is
that, while the proposed extension of conventional failure-based approaches appears
to be natural and useful (cf. Chapter 4), it is by no means straightforward. Indeed,
throughout the treatment, several novel concepts arise and some results turn out to
be non-trivial to derive, like e.g. the relationship between processes and LTSs (cf.
Proposition 3.11), fixpoint theory and fixpoint induction rules (revolving around
the notions of trace-based process function and specification-oriented predicate),
continuity of the action sequence operation, and associativity of hiding combined
with parallel composition.

3.2 An Extended Failure Model

3.2.1 The Domain of Processes

Preliminaries

As amply discussed earlier, in the approach under study, a process is essentially
identified with a set of failures recording also refused traces. However, we find it
more convenient here to represent a process, equivalently, with two structures. The
first is a non-empty, prefix-closed set of traces:

Definition 3.1 A trace is a sequence of actions, i.e. a member of Act·.
A tree is a non-empty, prefix-closed set of traces. The set of trees is denoted by

Tree and ranged over by T, U, V, . . .. 0

The other structure is a function mapping a trace onto a set of (extended) refusals.

Definition 3.2 A refusal function r maps a trace s to a set r(s) satisfying the
following constraints:

1. 0 C r(s) ~ pAct+;

2. refusal subset-closure: if X E r(s) and Y ~ X, then Y E r(s);
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3. refusal suffix-closure: If X E r(s) and t E X, then Xu {tw} E r(s) for all

wE Act+.

The set of refusal functions is denoted by Ref Fun and ranged over by r. A refusal

function image is a set of trace sets called refusals and ranged over by X, Y, Z .... 0

Note that, since every value r(s) of a refusal function r is a non-empty, subset-

closed set, it must always contain 0 (which is a member of pAct+), i.e. 0 E r(s)
for all s.

Trees and refusal functions can be paired to obtain a semi-process:

Definition 3.3 A semi-process is a pair (T, r) E Tree x Ref Fun such that r has do-

main T. The set of semi-processes is denoted 'Proc and ranged over by P,Q, R, ....
For P = (T, r), P E "Proc, define TP (the traces of P) and pP (the refusal

function of P) as:

TP=T pP=r

The T, P operators will in fact be used to access the elements of any pair (T, r)
where T is a trace set and r maps a trace to a set of trace sets.

In order to spare parentheses, with a device typical of functional program-

ming, the application of function pP to trace s will be denoted pP(s) rather than

(pP)(s). 0

Some licence will be taken as to the domain of the refusal function in a semi-process:

Remark 3.4 The condition that, for a semi-process P, TP and the domain of pP
should coincide is often implied.

Thus (T, r), where dom r ~ T, should be viewed as a shorthand for the semi-

process (T, restr- r) (restrj- r denotes the restriction of function r to domain T).
Likewise, in defining a semi-process P through TP and pP(s), the condition

SET P is normally omitted for brevity. 0

Examples

In order to illustrate the previous concepts, consider three systems behaving as

described by the following trees:
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a

b b

dc d

a a

b

c d c

The semi-processes describing these behaviours will be denoted respectively by
(T, Td, (T, T2), (T, Ta). All of them share the tree

T = {(), (a), (a, b), (a, b, c), (a, b, d)}

As for refusal functions, Tl (s) is defined to contain X iff the first system refuses
every trace in X from at least a state reached after s:

Tl(O) - {XEpAct+lxnT=0}

Tl( (a)) {X E pAct+ I X n {(b), (b, c), (b, d)} = 0}

Tl((a,b)) - {X E pAet+ I X n {(c), (d)} = 0}

Tl ( (a, b, c)) pAet+

Tl ((a, b, d)) pAct+

Likewise, T2(s) is defined to contain X iff the second system refuses every trace in
X from at least a state reached after s. SOT2(S) agrees with Tl(S) for s =1= (a, b)
and:

T2((a, b)) = {X E pAet+ I X n {(c)} = 0 V X n {(d)} = 0}

Finally, rs (s) is defined to contain X iff the third system refuses every trace in X
from at least a state reached after s. So Ta(S) agrees with T2(S) for s i=- (a) and:

Ta((a)) = {X E pAct+ IX n {(b), (b, e)} = 0 V X n {(b), (b,d)} = 0}

It is worth noting that the second and third behaviour are indistinguishable in the
standard failure model; yet it is not difficult to devise simple experiments that can
distinguish between them: the crucial difference suggested by our model is that,
after doing an a, the second system can never refuse to perform (b, c) and (b, d),
whereas the second will certainly refuse either (b, c) or (b, d).
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As a final example semi-process, suppose s« Act and consider (To, ro) with

To {(), (a)}

TO(O) - {0}

ro( (a)) - pAct+

Now ro is indeed a refusal function, but seems to be inconsistent with To, if (To, To)
is to represent the behaviour of a system. For the assumed To( 0) seems to indicate

that the system can silently move to a state whence no trace is refused, but then

we would expect (b) to be in T.

Processes

The first three example semi-processes above seem to represent correctly the re-

spective intended behaviour, but the fourth example shows that not any tree T and

refusal function r, once paired, do actually correspond to real process behaviour.

For this purpose, T and r must satisfy a consistency requirement; this may be

explained by recalling that, operationally, a LTS state a refuses X after a trace s
if, for some a', a ~ a' and

for all x EX, a' =I=t>. (3-1)

Therefore, if a refuses X but not Xu {t} after s, then a' =h. a" must hold. Two

consequences follow. (1) a ~ a" (st is a trace of a). (2) For all tw EX, a" =/=t>
must hold or a' ~ would follow, contradicting (3-1) above; in other words, a

refuses any trace like wafter st. Thus:

Definition 3.5 A process is a semi-process (T, r) E 'Proc such that T and rare

consistent in the sense that, for all sET: if X E r(s) and Xu it} ¢ r(s), then:

(1) st E T, and (2) X -:- t E r(st), where:

X -:-t = {w I tw E X}

X -:- t is read 'X after t'.
The set of processes is denoted Proc and ranged over by P, Q, R, . . .. 0
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Note that, in the consistency requirement, since t f/:. X, 0 f/:. X -:- t, as necessary
for X -:- t E r (st) . Moreover, the consistency requirement also (vacuously) holds
for t = ()because X -:- () = X.

The following consequence of trace-refusal consistency resembles more closely
consistency for ordinary failures (cf. Definition 1.1):

Proposition 3.6 Let P E Proc, and s E rP, X E pAct+. Then sX n r P = 0

implies X E pP(s).

Proof. By induction on the size of X. Let IXI = n + 1, X = X' U {t}, IX'I = n.
Then X' E pP(s) by induction hypothesis and X'U{t} E pP(s) or, by trace-refusal
consistency, st E rP, contradicting sX n rP = 0. D

Sufficiency of Process Properties

Trace-refusal consistency has been informally seen to be a necessary condition for
a failure set to be generable by a LTS. The same can be easily shown for the non-
emptiness and closure process properties. It is natural to ask, besides, if these
properties also suffice to characterize process behaviour, or if more are needed
instead. A way to answer this question affirmatively is to show that every failure
set enjoying the process properties can be generated by a suitable LTS.

For this purpose, a LTS having processes as states will be defined, beginning
from a ===t> relation over Proc.

Definition 3.7 For P, Q E Proc, P ~ Q holds iff:

Vt E rQ, X E pQ(t): st E r P A X E pP(st). D

Constructing a -t> relation for this LTS is not difficult and will be omitted; it
will just be observed here that the construction depends on the following 'reflexive-
transitive' closure property of ===t>:

Proposition 3.8 For all P, Q E Proc and s, t E Act·:

1. P -kp;

st . s t2. P ====t> Q IffP ===t> Rand R ===t> Q for some RE Proc.
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Proof. Reflexivity and the transitivity if-part are immediate to prove. For the
only-if part, the R sought is the process Pw s introduced below, within Proposi-
tion 3.9. 0

Proposition 3.9 For P E Proc such that s E tP, let

r(P+s) = (rP) + s p(P+s)(t) = pP(st)

Then (1) r-» ('P after s') is a process, and (2) P d:c> r-.«
Proof. Proving (2) is immediate. Below we consider (1).

r(P+s) is a tree: () E r(P+s) by s E t P, and tu E r(P + s) implies stu E tP,
whence st E rP and t E r(P+s).

Assume now t E r(P+s) and X E p(P+s)(t). Then st E tP and X E pP(st). It
is easy to infer subset-, suffix-closure and trace-refusal consistency for P+s from
the corresponding property of P. E.g. for the latter: if X U{w} ~ p(P+s)(t), then
X U {w} tf. pP (st), so trace-refusal consistency of P implies stw E t P, whence
tw E r(P+s), and X + wE pP(st), whence X +w E p(P+s)(t). 0

We now get back to the main issue, Le. showing that, in the LTS introduced,
transition-based traces and refusals of P coincide with r P and pP respectively.
Formally:

Theorem 3.10 Let P E Proc. Then s E -rP and X E pP(s) iff, for some Q E

Proc, P d:c> Q and Q=I=t> for all x EX,

Proof. The if-part follows, by definition of P d:c> Q, from X E pQ( ()). This, in
turn, follows by Proposition 3.6 because x E X implies x tf. rQ (or, by Proposi-
tion 3.9, Q ~ Q + x, against the hypothesis).

For the only-if part, note that X E p(P+s)( ()). By the following Proposition 3.11,
this ensures that there exists Q such that Pe-e ~ Q and Q =I=t> for all x E X.
Hence, by Propositions 3.9 and 3.8(2), P d:c> Q and the theorem follows. 0

The proof obligation left from Theorem 3.10 is rather hard:
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Proposition 3.11 Let PE Proc and X E pP{ 0). Define:

X {xw E Act+ I x E X} (suffix-closure of X)

"-Px - {s Is ¢ X, 'Vu,ZEpAct+: u ~ s I\uZ ~ X => u E,,-P 1\ Z E pP{u)}

pPx{s) {Y E pAct+ I sY n TPx = 0}

Then Px E Proc, Px =I=t> for all x EX, and P ~ t».
Proof. To see that Px E Proc, we invoke Proposition 3.15 and show here that

TP» is a tree. Indeed, 0 E TPx holds because () ¢ X and Z ~ X, Z finite, implies

Z E pP{O); the latter fact follows from znx E pP{O), by suffix-closure of pP{())
and induction on the size of Z - X. As for prefix-closure, st E TPx easily implies

s E TPX (s ¢ X, or st E X would follow).

The second claim is easy. If, by contradiction, x E X and Px ~ then, by

Theorem 3.10 (if-part, already proved), x E TPX, so X ¢ X, a contradiction with

xEX.

For the third claim (P ~ Px), assume s E TPX and Y E pPx(s), i.e.:

(1) sE TPX and sYnTPx = 0.

Now, that s E TP is obvious from the definition of TPX, so we must only show:

(2) Y E pP(s).

Let Y1 = {y E Y I sy E X} and Y2 = {y E Y I sy ¢ X}. Suppose y E Y2• Then

from (1) it follows sy ¢ TPX; so (since sy ¢ X) there are u and Z E pAct+ such

that u ~ sy, uZ ~ X, and u E TP 1\ Z E pP(u) is false. This would be impossible

for u ~ s (because s E TPx), so u = sw for some w. Thus it has been proved that,

for all y, there are Wy E Act* and Zy E pAct+ such that:

(3) If yE Y2, then Wy ~ y, SWyZy ~ X, and sWy ¢ TP or z; ¢ pP(swy)

Let

W= U WyZy
yEY2

and recall Y = Y1U Y2• The desired result (2) will now be derived by proving

Y1UW U 1'2 E pP{s), by induction on the size of Y2·
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Basis. By (3), s(Yi uW) ~ X. Hence, by sE rPx (from (1)), and the way rPx is
defined, Y1U WE pP(s) follows.

Step. Let IY21= n + 1, Y2 = Y~ u {y}, IY~I= nand

(4) Y1UW UY~e pP(s) (induction hypothesis).

We shall now prove:

(5) sWy ¢ rP or (YI UW UY~) -;-Wy ¢ pP(swy)

Statement (5) follows from (3) and Zy ~ (YI U W U Y~) -;-wy; to see this, assume
Z E Zy, then WyZ EW ~ (YI UW Uyn, whence Z E (Yi UW UY~)-;-wy. Now, from
(4) and (5), by consistency of rP and pP:

(YI UW U Y~U {wy}) E pP(s)

whence, by suffix-closure of pP(s) and Wy ::;;Y (by (3)):

(YI UW U Y~U {y}) = (YI UW U l2) E pP(s) o

3.2.2 Deterministic Processes

In this section we shall overload the p operator by applying it to a tree U; the
result will be defined to be a refusal function pU, relating s to the refusal set X iff
in the tree U every trace x E X is impossible after s. Formally:

Definition 3.12 Let U E Tree. The function pU defined, for all trace s E Act*,
by:

pU(s) = {X E pAct+ I sX n U = 0}

is easily shown to be a refusal function. o

Note in particular that 0 E pU (s) for all s, because sX is defined to be 0 for

X=0.
Tree based refusal functions interact with set operations in a natural way:

Proposition 3.13 Let T, V E Tree and V ~ Tree, V # 0. Then, for all trace s:

1. pT(s) 2 pV(s) if T ~ V;
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2. p(U V)(s) = n{pV(s) I V E V}, p(n V)(s) = U{pV(s) I V E V}.

Proof. Let X be a finite subset of Act+.

1. X E pV(s) means sX nV = 0, whence also sX n T = 0, i.e. X E pT(s).

2. X E p(UV)(s) holds iff sX n UV = 0, which holds iff sX n V = 0 for all
V E V, Le. X E pV(s) for all V E V. The other equality under (2) is proved
similarly. o

A deterministic process is one that refuses only impossible traces. Formally:

Definition 3.14 A process P is deterministic if pP = p(TP). o

Thus, there is at most one deterministic process with a given trace set, and indeed
there is exactly one:

Proposition 3.15 Let T be a tree. Then (T, pT) is a deterministic process, de-
noted by det(T).

Proof. We need only show that T and pT are consistent. Let sET and X E pT(s),
i.e. sX n T = 0. If s(X u {t}) n T =I- 0, then st E T. Moreover (st)(X -:- t) =
s(t(X -:-t)) ~ sX, so (st)(X + t) nT = 0, Le. X + t E pT(st). 0

Conversely, a process is non-deterministic if it refuses more traces than those im-
possible.

A notable deterministic process is STOP, which has as trace set ., the tree
containing only the empty trace:

Definition 3.16 The empty tree. and the deadlock process STOP are defined:

.={()} STOP = det(.)

Note that, for every trace s:

p. (s) = pAct+ o



CHAPTER 3. EXTENDED FAILURES 69

3.2.3 A Partial Order for Processes

In this chapter, a process P is considered to be 'less than' another process Q
(P C Q) if P may perform a trace s only if Q may too, and P is less non-
deterministic than Q. This means that, after any trace common to P and Q, Q
may refuse any trace set that P refuses, and possibly more. This ordering is the
reverse of that defined in [Brookes, Hoare, & Roscoe, 1984] for ordinary failures.

Definition 3.11 For all P, Q E Proc, the relation P ~ Q holds if:

2. pP(s) ~ pQ(s) for all s E rP

pr;;;; Q is also written Q ~ P. o

It is immediate to show that:

Proposition 3.18 (Proc, r;;;;) is a reflexive partial order. o

Proposition 3.19 For all P E Proc, P ~ det(rP).

Proof. Clearly, rdet(rP) = r P, For refusal functions, assume s E rP, and
X E p(det(rP))(s). Then sX n tP = 0, and, by Proposition 3.6, the claim
follows. o

Let Dom be a non-empty set and ~ a partial order relation over Dom. It is
convenient to introduce the well-known notion of least upper bound for the generic
partial order (Dom, ~).

Definition 3.20 Let (Dom,~) be a partial order and 'D a non-empty subset of
Dom. A member e E Dom is said to be an upper bound of'D if d ~ e for all d E 'D;
furthermore, e is said to be a least upper bound (lub) of'D if, for all upper bounds
e' of'D, e ~ e'. It is easy to prove that'D can have at most one lub, which is
denoted U 'D. o

The notion of chain is also best defined for the generic partial order (Dom, ~):

Definition 3.21 A chain is a non-empty subset 'D of Dom such that, if d, e E 'D,
then either d r;;;; e or e r;;;; d. 0
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The above concepts apply in particular to the partial order (Proc, !;).
If P is a non-empty set of processes, I:!:JP is intended to represent the process

that may nondeterministically choose to behave as any PEP (for a justification, cf.
the transitional semantics in Section 2.4 and Property 3.84 for the related operators
1±J, I:!:JA).

Definition 3.22 Let P ~ Proc, P =1= 0. Define I:!:J P as the pair:

T(l±JP) = U{TP I PEP} p(l±J'P)(s) = U{pP(s) I PEP, sE TP} 0

I:!:J P is indeed a process:

Proposition 3.23 If P ~ Proc, 'P =1= 0, then l!) 'P E Proc.

Proof. Tl!)P is easily proved a tree using just the fact that, for each PEP, TP
is a tree.

To show that p(l!) P) is a refusal function, let SET l!) P. Then p(l!)PH s) is non-
empty, being the union of a non-empty set of non-empty sets. Further, assume
X E p(l!JP)(s); then there is P E 'P such that s E TP and X E pP(s). If

y ~ X, then Y E pP(s) by the subset-closure property of pP(s), whence also
Y E p(l!JP)(s). If t E X and w is a trace, then Xu {tw} E pP(s) by the suffix-
closure property of pP(s), whence also Xu {tw} E p(l!JPHs).

Finally, to see that traces and refusals ofl!)P are consistent, suppose that XU{t} ¢
p(l!)P)(s). Then Xu {t} ¢ pP(s), whence st E TP and X -;- t E pP(st) (by
consistency of TP, pP), so that st E TI:!:J'Pand X -;- t E pI:!:JP(st).

A fundamental, though easy to prove, result is:

Theorem 3.24 For every non-empty process set P, the lub UP exists and is
l!)P. 0

o

Compared to conventional complete partial orders, (Proc,!;) lacks a bottom .L

(such that j_ ~ P for all P), but enjoys the property that every non-empty set,
not just a chain, has a lub. Of course, the partial order introduced has a top T
(such that P ~ T for all P), defined by:

TT = Act· pT(s) = pAct+

T is obviously a process.
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3.2.4 Process Tuples

In the following, process tuples (over an arbitrary index set A) are widely employed.
For this purpose, the notation of Section 2.2 needs to be completed thus:

Definition 3.25 Let XA E DA, YA E EA. Then XA x YA (cross-product of XA and
YA) is defined as the tuple ((x>., Y>.) I ,\ EA) of (D x E)A. 0

Some process-related notions will now be extended to process tuples. To begin
with, the operators T, p are component-wise extended to tuples.

Definition 3.26 For PA E Proc'', let

o

Some easy-to-derive relations between T, p and process tuples follow.

Proposition 3.27 Let PA E Proc'', TA E Tree A , rAE Re/PunA. Then:

3. TA x rA E ProcA provided (T>., r>.) E Proc for every ,\ E Aj

o

Determinism and tree-defined refusal functions generalize thus:

Definition 3.28

1. Let UA E TreeA. Then pUA E Re/FunA is defined to be (pU>. I x EA).

2. A process tuple PA E ProcA is deterministic if, for all ,\ E A, P>. is determin-
istic or, equivalently, if PPA = p(TPA).

3. If TA E TreeA, det(TA) is defined to be the deterministic process tuple TA x pTA
(which coincides with (det(T>.) I x E A)).

Note that PA is deterministic iff PA = det( TPA). o
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Tuples having the empty tree e and the deadlock process STOP as elements will
be needed:

Definition 3.29 For all AE A, define the tuples eA and STOP A by:

(STOPAh = STOP

Note that:
o

Finally, the partial order relation is extended component-wise to process tuples:

Definition 3.30 Let PA, QA E Proc/', Define PA !;; QA if P).. !;; Q).. for anA E A. 0

iProc/', ~) is easily proved to be a partial order. An extension of an order-related
property to process tuples is:

Proposition 3.31 For all PA E Proc/' , PA ~ det(TPA).

Proof. It is sufficient to observe that, for A E A, using Proposition 3.19:

o

3.2.5 Sets of Process Tuples

It will also be necessary to consider sets of process tuples like PA ~ ProcA (note
that, despite the subscript, PA is not a tuple).

The ()A operation (A E A) on tuples over A is pointwise extended to sets of
such tuples; thus, when applied to PA ~ Proc'", it produces a set of processes:

Definition 3.32 Let PA ~ Proc'', Then, for all A E A, (PAh is {(PA) x I PA E

PAl·
Note that, just as PA is shorthand for (PAh, P).. will abbreviate (PAh 0

The T operator is also pointwise extended to sets of process tuples (and of pro-
cesses).

o
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These extensions commute:

Proposition 3.34 For PA ~ Proch, (rPAh = r((Phh). o
Since (Proch,~) is a partial order, the notion of lub can be considered for a

subset Ph ~ Proc/", and turns out to be related to the lubs of each P>.:

Proposition 3.35 Every Ph ~ Proc/: has a lub, and UPA = (UP>. I AE A)

Proof. Since every P>. (AE A) has a lub (by Theorem 3.24), the proposition is a
general property of partial order tuples ([Loeckx & Sieber, 1987], Theorem 4.3). 0

This provides the motivation for extending the l:!:)operation to sets of process tuples:

Definition 3.36 Let PA ~ Proch, PA f. 0. Define l:!:)PA as (l:!:)P>.I AEA). 0

Thus, the fundamental Theorem 3.24(about the existence oflubs) may be extended
from process sets to process tuple sets:

Theorem 3.37 For every non-empty process tuple set PA ~ Proch, UPh exists
and coincides with l:!:)PA.

Proof. By Proposition 3.35, Theorem 3.24 and Definition 3.36 of l:!:)PA' 0

Complements for Trees

It should be recalled that, like every set of sets closed under intersection and union,
(Tree, ~) is a partial order with bottom n Tree = e, and every set 7 ~ Tree has
U7 as a lub. As was done for process tuples, by general results, these order and
lub notions can be component-wise extended to the set TreeA of tree tuples; with
some overloading, they will also be denoted by ~ and U respectively. Treeh has
bottom eA.

When applied to a set of process tuples, the lub and r operator commute:

Lemma 3.38 Let PA ~ ProcA. Then rUPA = UrPh.

Proof.

r(U PA) r{l:!:)P>. I A E A)

- (U r(P>.) I A E A)

(U(rPA)>. I A E A)

- UrPh

by Proposition 3.35

rand ()>. commute, Proposition 3.34

by counterpart of Prop. 3.35 for trees 0
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3.2.6 Properties of Process Functions

A function F: Proc -+ Proc may enjoy several desirable properties:

• monotonicity, if it preserves the order ~;

• continuity, if it preserves the lub of a chain;

• distributivity, if it preserves non-deterministic choice [i.e., in the chosen pro-

cess order, the lub of a non-empty set).

These notions readily generalize to functions over process tuples. Formally:

Definition 3.39 A function F: Proc': -+ Proc/: is said to be:

• continuous if, for all chain PA in Proc/' , the lub U F(PA) exists and U F(PA) =

F(UPA);

• distributive if, for all subset PA of Proc'' , l:!:J F(PA) = F(l:!:J PA). o

In the general theory of partial orders, continuity implies monotonicity. Moreover,

for our c: partial order, since every process tuple set has a lub (by Theorem 3.37),

distributivity is enough to ensure continuity. Thus:

Theorem 3.40 Let F: Proc/: -+ Proc'" be a function. Then:

1. if F is continuous, then it is monotonic;

2. if F is distributive, then it is continuous (this fact is normally used just to

prove that a function F: Proc -+ Proc is continuous).

Proof. For (1), see [Loeckx & Sieber, 1987], Theorem 4.14. (2) follows immediately

from Theorem 3.37 and distributivity. 0

Complex functions may be built out of simpler ones by the usual (function)

composition and by juxtaposition, defined through tuple construction as follows:
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Definition 3.41 Let F6: PracA -+ Proc be a function for every 6 E ~. Then the
function Ffl: PracA -+ Proc': is defined, for PA E Proc'' , by: Ffl(PA) = (Fd(PA) I
6 E ~).

Conversely, given a function G : Proc/: -+ Proc'", the component functions
Cd: PracA -+ Proc (<5 E~) are defined, for PA E Proc/' , by: G6(PA) = (G(PA))6. 0

Luckily, any property among monotonicity, continuity and distributivity may be
determined, for a complex function, from the corresponding property of its compo-
nent functions. This is true independently of the particular partial order ~ chosen.
This fact will be shown for function composition first.

Proposition 3.42 Let F: Prace -+ Proc/", G: PracA -+ Proce be functions.
Then the function FoG: PracA -+ Prac

fl
is:

1. monotonic if F and G are monotonic;

2. continuous if F and G are continuous;

3. distributive if F and G are distributive.

Proof. For monotonicity, the proof is immediate. For continuity, it is a standard
result of partial order theory ([Loeckx & Sieber, 1987], Theorem 4.21).

For distributivity, let 0 C PA ~ PracA. Applying distributivity of G, then F
yields:

A similar result applies to juxtaposition and component functions:

Proposition 3.43 F: Proc/: -+ Proc/: is:

1. monotonic iff, for every 8 E ~, F8 is monotonic;

2. continuous iff, for every 6 E ~, F6 is continuous;

3. distributive iff, for every 6 E ~, F6 is distributive.
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Proof. For the monotonicity part, let PA, QA E Proc'", PA ~ QA. Then F(PA) ~
F(QA) iff, for all 6 E 6, (F(PA))cS ~ (F(QA))cS iff, for all 6 E 6, FcS(PA) ~ FcS(QA).

The continuity result is standard ([Loeckx & Sieber, 1987], Theorem 4.20).

For distributivity, let 0 C PA ~ PracA. By definition of l:!:J on tuples:

On the other hand, by definition of FcS:

Now F is distributive iff the two right hand sides above coincide, i.e. iff each FcS
(6 E 6) is distributive. 0

Most basic process functions employed in the following are binary. The following

result is then very handy, in that it allows such a function to be recognized as

monotonic or continuous by simply checking that it is so with respect to each

argument separately.

Theorem 3.44 Let F: Proc" -+ Proc be a function. For any Q E Proc, define the

functions GQ: Proc -+ Proc and HQ: Proc -+ Proc by letting, for PE Proc:

GQ(P) = F(P, Q) HQ(P) = F(Q, P)

Then F is continuous (resp. monotonic) iff, for every process Q, GQ and HQ are

continuous (resp. monotonic) .

Proof. For monotonicity, the only-if part is obvious; for the if-part, let PI C Ql
and P2 ~ Q2; then:

For continuity, see [Loeckx & Sieber, 1987], 4.2-5. o

As a matter of fact, the result that continuity in a finite number of arguments

is implied by continuity in each argument holds for any partial order. Moreover,

for our ~, it is possible to infer continuity and monotonicity in an argument from

distributivity in that argument (Theorem 3.40).
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3.2.7 Fixpoints

This section tackles the problem of determining a fixpoint of a continuous function

F: ProcA -+ Proc", i.e. a process tuple PA E Proc/: such that:

Trace-based Functions

In fact, a fixpoint will be sought for a continuous function F that is also trace-based,
in the sense that the trace set of its image is only determined by the trace set of

its argument.

Definition 3.45 A function F : Proc/: -+ Proc': is trace-based if there exists a

function Fr: TreeA -7 TreeA such that, for all PA E Proct .

o

In practice, defining a fixpoint only for trace-based functions is not a serious lim-

itation. For all the basic process functions to be introduced in Section 3.3 are

trace-based, and it is immediate to check that function composition and juxtapo-

sition preserve this property.

The pointwise extension to a set of a trace-based function is still trace-based:

Lemma 3.46 Let PA ~ Proc\ F: ProcA -+ Proc/" trace-based. Then

Proof.

T{F{PA) IPA EPA}

{TF(PA) IPA EPA}

{Fr(TPA) IPA EPA}

Fr({TPA IPA EPA})

Fr(TPA)

(F trace-based)

o

Taking the trace version F; of a trace-based process function F preserves mono-

tonicity and continuity.
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Proposition 3.47 Let a function F : ProcA ~ ProcA be trace-based so that
FT: Tree': ~ TreeA• Then:

1. FT is continuous if F is continuous;

2. FT is monotonic if F is monotonic.

Proof. The reasoning for monotonicity is easy, along the lines of that below for
continuity.

Let TA be a chain in TreeA• Introduce the refusal function r E Re/Fun such that
for all trace s, r(s) = pAct+, and the refusal function tuple rA such that (rAh = r.
Now define (recalling Remark 3.4):

'PA = {TA x rA I TA E TA}

By Proposition 3.27, 'PA is a subset of Proc/', Moreover, it is a chain: let TA x
rA, UA x rA with TA, UA E TA be members of 'PA; without loss of generality, assume
TA ~ UA (TA is a chain); then (TA, r) ~ (UA, r) for all A E A and TA x rA ~ UA x r«.

Since F: ProcA ~ ProcA is continuous, F('PA) has a lub and UF('PA) = F(U 'PA).
Thus:

r(UF('PA)) = rF(U'PA)

Now, the left-hand side rewrites (by Lemma 3.38) to Ur(F('PA)) and (by Lemma
3.46) to UFT(r'PA), i.e. U FT(TA). The right hand side rewrites (by FT trace-based)
to FT(r U 'PA) and (by Lemma 3.38) to FT(U r'PA), i.e. FT(U TA). 0

Fixpoints of Trace-based Continuous Functions

For a continuous, trace-based (endo-)function F it is always possible to find .iF, a
member of F's domain which is never greater than its F-image.

Definition 3.48 Let F: Proc/: ~ Proc': be a continuous, trace-based function.

Define

Note that, since {FT n( eA) I n ~ O}always has a lub (like any set of tree tuples),
.iF is well-defined. Moreover, it is a chain (eA is the bottom of Tree': and FT is
monotonic by Proposition 3.47). 0



CHAPTER 3. EXTENDED FAILURES 79

Lemma 3.49 Let F: ProcA -+ ProcA be a continuous, trace-based function. Then

T_iF is the least fixpoint of FT'

Proof. A standard result of fixpoint theory, applied to the partial order (TreeA, ~)

and the continuous function FT: TreeA -+ TreeA • 0

The fundamental result of this section is:

Theorem 3.50 Let F: Proc': -+ ProcA be a continuous, trace-based function.

Then:

2. {Fn(.1_F) I n ~ O} is a chain and its lub is a fixpoint for F.

Proof. The first statement is proved by induction: the basis is trivial; for the step:

which orderly exploits: F being trace-based, the induction hypothesis, and T _iF

being a fixpoint of FT'

For part (2), we first prove by induction that F" (.1-F) ~ Fn+1 (j_ F) holds for n ~ O.

The basis is derived using Proposition 3.31, part (1) and the definition of _iF:

F(_iF) ~ det(TF(_iF)) = det(T_iF) = _iF

The step uses monotonicity of F and the induction hypothesis:

Thus {Fn(j_F) I n ~ O} is a chain. Now, by continuity of F:

F(U{Fn(j_F) In ~ O}) U{Fn(.LF) In> O}

U{Fn(j_F) I n ~ O}

Thus, U{Fn(j_F) I n ~ O} is a fixpoint of F. 0

That just identified will be taken to be 'the' fixpoint of a function:
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Definition 3.51 Let F: ProcA ~ Proc''' be a continuous; trace-based function.
Then define the process tuple fixF E Proc/: as:

By Theorem 3.50, fixF is indeed a fixpoint of F. o

In general, it could be shown, along the lines of [Brookes, Hoare, & Roscoe, 1984],
that if a function is PL:-generated (see Definition 2.4), it may have several fix-
points, unless all process constants are guarded in the generating process expres-
sions. However, the fixpoint fixF is minimal in the following sense:

Proposition 3.52 For a continuous, trace-based function F: Proc/: ~ Proc/",
fix F is the least fixpoint with trace set T j_F'

Proof. Let Q be a fixpoint for F and TQ = T ..lp. Then, using Proposition 3.31:

Q ~ det(TQ) = det(T ..IF) =..IF

Hence, by induction, Q ~ Fn(j_F)' Thus, Q is an upper bound of the same chain
that has fixF as lub. 0

It will be recalled from Section 2.4.3 that the compositional denotational semantics
of the process language PL: presupposes that every PL:-generated process function
possesses a fixpoint. For our semantics, this is ensured by the following:

Remark 3.53 Every continuous, trace-based process function F has a fixpoint
fixF, as defined above. This still holds if continuity is replaced by monotonicity,
as shown in the following section.

All the basic process functions defined in Section 3.3 are trace-based, and con-
tinuous or, at least, monotonic.

Furthermore, PL:-generated functions are also trace-based, and continuous or
monotonic; this follows, by structural induction, from the previous fact and because
each of these three properties is preserved by function composition and juxtaposi-
tion (see Section 3.2.6). 0
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Fixpoints of Trace-based Monotonic Functions

The process tuple j_F may be introduced also for a monotonic function F.

Definition 3.54 Let F: Proc/: -+ ProcA be a monotonic, trace-based function.

Define

where FT is monotonic by Proposition 3.47 and fix FT is its least fixpoint (which

exists by Knaster- Tarski's theorem). o

As for a continuous F, j_F is never greater than its F-image:

Proposition 3.55 Let F: Proc/: -+ Proc/: be a monotonic, trace-based function.

Then:

2. {Fn(j_F) I n ~ O} is a chain.

Proof. See Theorem 3.50. o

A non-trivial adaptation of Knaster- Tarski's theorem shows that the 'fix' functional

of Definition 3.51 can be extended to monotonic, trace-based functions.

Theorem 3.56 Let F: ProcA -+ Proc/: be a monotonic, trace-based function, and

I1F = {P ~ ProcA I F{P) ~ P, j_F E P, 'v'nonemptyS ~ P: US E P}

Then un I1F is a fixpoint of F, and will be denoted by fix F.

Proof. I1F comprises all process sets that are closed under F and are 'complete'

with respect to subsets (rather than sub-chains).

First, note IIF =1= 0, because Proc': E IIF. Also, n IIF E IIF is easy to establish. It

will now be proved that:

That PF is closed under F is an immediate consequence of F being monotonic.

Clearly, j_F E PF. We must also show that, if S is a non-empty subset of PF, then
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US E PF, Le. US ~ F(US); for this it is enough to show that F(US) is an upper
bound of S:

PA E S ~ 'PF

PA ~US

PA C F(PA) ~ F(US)

Finally:

un rIF E nn,
unrIF E 'PF

unrIF ~ F(UnrIF)

F(unrIF) E nIIF

assumption (1)

(2)from (1)

from (1) and, by F monotonic, (2)

by nrIF E rIF

from (3), by PF E rIF

from (4), using definition of PF

from (3), by n rIF E IIF (n rIF is F-closed)

(3)

(4)

(5)

(6)

From (5) and (6) it follows that un IIF is a fixpoint. o

Theorem 3.57 If F : ProcA -+ Proc/: is continuous and trace-based, fix F of
Theorem 3.56 coincides with fixF of Definition 3.51.

Proof. Let j_F be as in Definition 3.54 and

F = F U {U F}

F belongs to the set I1F defined in Theorem 3.56: indeed F(Fn(j_F)) E F is
obvious, F(U F) E :F holds because U:F is a fixpoint of F (Theorem 3.50), j_F E :F
is obvious; so we need only show that, if 0 C S ~ F, then USE F. This is easy
if UF E S or S is finite; if, instead, for all k ~ 0 there is nk ~ k such that
Fnk (j_F) E S, then US is an upper bound of:F and hence must coincide with U F.

Moreover, if P E rIF, it is easy to see that :F ~ P. It follows that n rIF = F,
whence:

o

3.2.8 A Fixpoint Induction Rule

A tool is now needed to reason about fixpoints of functions, proving that they
satisfy the desired properties, expressed as a predicate 'IjJ over process tuples. For
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this purpose, a fixpoint induction rule similar to Scott's (see [Loeckx & Sieber,
1987]) can be given. The predicate 'Ij;is admissible (for application of the induction
rule) if, whenever it is satisfied by every member of a chain, it is also satisfied by
the lub of the chain.

Definition 3.58 A predicate 'Ij;: Proc/: ~ Bool is admissible if, for every chain
PA ~ ProcA such that 'Ij;(P) holds for all P EPA, also 'Ij;(l:!:JPA) holds. 0

The induction rule can now be stated.

Theorem 3.59 Let F: Proc': ~ Proc': be a continuous, trace-based function, and
'Ij;:ProcA ~ Bool an admissible predicate such that:

1. 'Ij;(l-F) holds (basis), and

2. for all PA E Proc/", if 'Ij;(PA) holds, then 'Ij;(F(PA)) holds ('Ij;is F-inductive).

Then 'Ij;(fixF) holds.

Proof. By induction it is easy to prove that 'Ij;(Fn(J_F)) is true for n ~ O. Since
'Ij; is admissible, 'Ij;(l:!:J{Fn(j_F) I n ~ O}). So by the fixpoint theorem, 'Ij;(fixF) is
true. o

It would now be possible to show that the class of admissible predicates is adequate
for practical purposes. This will not be done here because this induction rule is of
limited applicability. The difficulty in its use lies in the requirement that 'Ij;(j_F)
should hold; for, as a result of the inductive definition of j_F, the proof of 'Ij;(j_F)
is likely to need some form of induction itself. It should be noted that a similar
difficulty arises in using the induction rule of [Brookes, Hoare, & Roscoe, 1984],
which requires 'Ij;(QA) to hold for at least some process tuple QA-a fact that may
require an induction in order to be proved. A more manageable induction rule may
be obtained by restricting the classes of functions and predicates.

Trace-Based Semi-Process Functions

The generic process function F that will now be considered must have in fact semi-
process tuples as domain and range. However, F is also required to be process-
preserving, so that its restriction to the set of process tuples has a set of process
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tuples as range. Viewed as a function over process tuples, F must be continuous

and trace-based so that fix F is defined. Viewed in its entirety, F must also be

trace-based, though in a sense that is wider than that introduced for process tuple

functions.

Explaining this sense requires extending the notion of partial order to semi-

process tuples. Actually, partial order and also lub definitions (3.17), (3.20) for

processes are already immediately applicable to semi-processes, for they make no

reference to consistency between traces and refusals. Therefore, in the following the

relation ~ and the operator U will be indifferently applied also to semi-processes

and semi-process tuples. Likewise, the definition of monotonicity is extended with-

out change to functions over semi-process tuples.

A function F over semi-process tuples is trace-based if it 'commutes' not only

with the T operator, but also, in a limited way, with the p operator on tree tuples

(Definitions 3.12, 3.28):

Definition 3.60 A function F: 'Proc': -+ "Proc/" is said to be trace-based if there

exists a function FT: Treeh -+ Tree!:. such that, for all Ph E "Proc'", Th, UA E Tree A ,

Th ~ VA:

If only the first condition holds, F is said to be weakly trace-based. o

Note that, if F: -Proch -+ -Proc!:. is weakly trace-based and process-preserving,

then its restriction to ProcA is trace-based according to Definition 3.45.

The question now arises whether the function class introduced is large enough

and how membership can be determined for it. An answer is provided by the

following:

Remark 3.61 Except hiding, all the basic process functions defined in Section 3.3

are well-behaved, in the sense that they enjoy these properties:

1. they map a semi-process tuple to a semi-process;

2. they are trace-based and monotonic (monotonicity is needed for Proposi-

tion 3.62);
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3. they are process-preserving;

4. their restriction to process tuples is continuous.

Hiding-free PL:-generated functions (seeDefinition 2.4) enjoy the above properties;
this follows, by structural induction, from the previous fact and because each of
the above properties is preserved by function composition and juxtaposition. D

That composition and juxtaposition preserve properties (1-4) above is either obvi-
ous or has already been established (see Section 3.2.6), except for composition and
property (2):

Proposition 3.62 Let F: -proce -t "Proc'", G: "Proc'" -t -proce be functions.
Then the function FoG: -ProcA -t -Proci:l.is trace-based and monotonic if F and

G are trace-based and monotonic.

Proof. The proof is immediate for monotonicity and the first condition for FoG
to be trace-based. For the second condition, let TA, UA E TreeA, TA ~ UA' Then:

GT(UA) :J GT(TA) by G monotonic

G(TA x pUA) :J GT(TA) x pGT(UA) by G trace-based

F(G(TA x pUA)) :J F(GT(TA) x pGT(UA)) by F monotonic

:J FT(GT(TA)) x pFT(GT(UA)) by F trace-based

The last two inequalities complete the proof. D

For a refusal-based process function F, the ~component of the image is only
determined by the ~component of the argument:

Definition 3.63 A function F: 'Proc': -t 'Proc is said to be refusal-based if there
exists a function Fp: RefFunA -t Ref Fun such that for all TA x rA E 'Proc/", over
the trace domain rF(TA x rA):

D

This allows the statement of a useful sufficient condition for a process function to
be trace-based:
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Proposition 3.64 Let F: 'Proc/' -+ "Proc be monotonic, weakly trace-based and
refusal-based. Then F is trace-based.

By the hypotheses and Proposition 3.19:

In particular, this condition holds for S E FT(TA) (TA ~ UA and FT is monotonic
by Proposition 3.47). Using this fact and the hypotheses:

o

Finally, it is convenient to show that l:!:I, viewed as an operator, enjoys a property
analogous to being trace-based:

Proposition 3.65 Let r; Vn E Tree for ti ~ o. Then

Proof. Let Q denote the left-hand side above. Then rQ = U{Tn I n ~ O}and, for
all S E rQ:

Let sET m for some m ~ 0; then, using also Proposition 3.13:

This can be generalized to tuples:

Proposition 3.66 Let Tn, Vn E Tree': for n ~ o. Then
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Proof. Define the sets:

P = {Tn X pVn I n ~ O} T = {Tn I n ~ O} V = {Vn I n ~ O}

Then the proposition follows if, for all A E A, (l'!:l 'Ph ;;;;)((U Ti», (p UVh), Le. if
for all A E A:

(1)

Indeed, for A E A, letting T)',n = (Tnh, V)',n= (Vnh yields:

and (1) is ensured by applying to these sets, for each A E A, Proposition 3.65,
which yields:

Another Partial Order

It is convenient at this stage to introduce briefly another partial order ~, to capture
the fact that a (semi-)process is 'lazier' (has less traces and more refusals) than
another one.

Definition 3.67 For all P,Q E "Proc, the relation P ~ Q holds if:

1. rP ~ rQ,

2. pP(s) ;2 pQ(s) for all s E -r.
P ~ Q is also written Q~ P. o

This relation is dearly a partial order over 'Proc. A ~-chain is simply a chain for
the order ~.

It is easy to define an operator ~ that, applied to a semi-process set, represents
its lub for the partial order ~.

Definition 3.68 Let 'P ~ -Proc, 'P =1= 0. Define ~'P by the pair:

r(~'P) = U{rP I PE 'P} p(~'P)(s) = n{pp(s) I PE 'P, sE rP} 0



3.2. AN EXTENDED FAILURE MODEL 88

~P is indeed a semi-process:

Proposition 3.69 If P ~ "Proc, P #- 0, then ~P E "Proc.

Proof. T~P is easily proved a tree using just the fact that, for each PEP, TP is
a tree.

To show that p~P is a refusal function, assume s E T~P. Then p~P(s) is non-
empty (intersection of a non-empty set of sets each containing 0). Further, let
X E p~P; then, for all PEP, sE TP (there must be at least one such P) implies
X E pP( s). If Y ~ X, Y E pP( s) by the subset-closure property of pP( s), whence
also Y E p~P(s). If t E X and w is a trace, then Xu {tw} E pP(s) by the
suffix-closure property of pP(s), whence also Xu {tw} E p~P(s). o

It is worth noting that the partial order (-Proc, ~) has STOP as a bottom.
The generalization of ~ to semi-process tuples is defined component-wise, ex-

actly as for the!;;;; order. The ~ operator can also be extended component-wise to
a subset PA ~ 'Proc': and turns out to be the lub of PA for the order ~.

Two connections between !;;;;and ~ are immediate:

Proposition 3.70

It is also useful to show:

Proposition 3.71 Let r; Vn E Tree for n ~ o. Then

Proof. Let Q denote the left-hand side above. Then TQ = U{Tn I n ~ O}and, for
sE TQ:

where the last equality is justified by Proposition 3.13. o

This can be generalized to tuples:
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Proposition 3.72 Let r; Vn E TreeA for n ~ O. Then

Proof. Define the sets:

P = {Tn X pVn I n ~ O} v = {Vn I n ~ O}

Then the proposition follows if, for all A E A, (IjP)A;:;;;! ((UnA, (pUV),x), i.e. if for
all A E A:

(1)

Indeed, for A E A, letting TA,n= (Tnh, VA,n= (Vnh yields:

7>. = {TA,n I n ~ O}

and (1) is ensured by applying, for each A E A, the previous proposition, which
yields:

Specification-Oriented Predicates

The predicate 'IjJ occurring in the induction rules introduced later on must be
specification-oriented, in the following sense (different from that of [Olderog &
Hoare, 1986]):

1. if'IjJholds for a nondeterministic choice over a set, then it also holds for every
member of the set (this is quite natural for a specification); equivalently, it
can be required that validity of 'IjJ is preserved by making its argument more
deterministic; this is also expressed by saying that 'IjJ is ~-closed;

2. 'IjJ should be admissible both for process chains and semi-process ~-chains.

Formally:

Definition 3.73 A predicate 'IjJ: -ProcA -+ Bool is specification-oriented if:
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2. if PA is a chain over ProcA and 'IjJ(P) holds for all P EPA, then 'IjJ(ltJPA)
holds;

3. if PA is a ~-chain over "Proc/: and 'IjJ(P) holds for all P EPA, then 'IjJ(~PA)
holds too. 0

It is now important to show that interesting specification-oriented predicates do
exist. The basic specification-oriented predicate is dealt with in:

Proposition 3.74 For any Q E "Proc, the predicate 'ljJQ:"Proc -t Bool defined by
'ljJQ(P) = P ~ Q is specification-oriented.

Proof. The proof that 'I/J is ~-closed is immediate. Admissibility is a consequence
of another easy fact: given any subset P of Proc such that P ~ Q for all PEP,
it follows that ltJP ~ Q (because Q is an upper bound of P and l:!:JP is the lub).
Finally, ~-admissibility follows from the latter fact and ~P ~ l!J P. o

Another specification-oriented predicate is 'l/Js{P) which holds if the predicate S is
satisfied by every trace and refusal of P. This predicate serves to give a meaning
to the formulae of the sat language introduced in Chapter 4.

Proposition 3.75 Let S: Act'" x pAct+ -t Bool be a predicate over failures. The
predicate vs: "Proc -t Bool defined by:

'ljJs(P) = true iff for all t E TP and X E pP(t), S(t, X) = true

is specification-oriented.

Proof. Consider the pair

TQ {t I :3XE pAct+: S(t, X) = true}

pQ(s) - {XEpAct+IS(s,X)=true}

Though Q may not be a semi-process, 'l/Js(P) is true iff P ~ Q, which may be shown
to be specification-oriented with the same reasoning as in Proposition 3.74. 0
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With some licence, in the following the operators 1\, V, =} are applied to predicates
to denote the boolean connectives 'and', 'or' and 'implication' respectively.

A specification-oriented predicate over a process tuple can be obtained from the
conjunction of specification-oriented predicates over each process in the tuple.

Proposition 3.76 For all A E A, let 'I/J)..: -Proc --+ Bool be a specification-oriented
predicate. Then 'I/J: 'Proc'' --+ Bool defined by 'I/J(PA) = A{'I/J)..(P)..) I A E A} is
specification-oriented.

Proof. Proving that 'I/Jis ~-closed is immediate.

For admissibility, let PA be a chain over Proc/', 'I/J(PA) = true for all PA EPA. By
definition of 'I/J,it follows that, for A E A and PEP).., 'I/J)..(P) holds. Since P).. is a
process chain for every A E A, the admissibility of 'I/J)..implies that 'I/J)..(l!:J P)..) holds.
Thus, by definitions of'I/Jand I:!:l for a process tuple, 'I/J(l!:JPA) holds too.

The ~-admissibility proof is similar. o

Finally, it is worth noting that the conjunction and disjunction of specification-
oriented predicates is specification oriented.

Proposition 3.77 The following predicates over -ProcA are specification oriented:

1. AiEl 'l/Ji(PA) if, for every i E I, 'l/Ji: -ProcA --+ Bool is specification oriented;

2. 'l/Jl (PA) V 'l/J2(PA) if, for i = 1,2, 'l/Ji: -ProcA --+ Bool is specification oriented.

Proof. Showing that in both cases the relevant predicate is ~-closed is easy.

That admissibility is preserved by conjunction and finite disjunction is a standard
result [Loeckx & Sieber, 1987]. 0

Other Fixpoint Induction Rules

We are now ready to formulate an induction rule that is easier to use than The-
orem 3.59, in that the basis ('I/J(.iF)) is replaced by a condition whose proof does
not require induction.

Theorem 3.78 Let F: "Proc': --+ 'Proc" be trace-based and process-preserving;
suppose its restriction to process tuples is continuous. Let 'I/J: "Proc/: --+ Bool be a
specification-oriented predicate. If:
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1. 'IjJ(.Ax pF/(.A)) holds for some k ~ 0 (basis);

2. for all PI'. E Proc/' , if 'I/J(PA) holds, then 'I/J(F(PA)) holds ('I/J is F-inductive).

Then 'IjJ(fixF) holds.

Proof. Because of Theorem 3.59, it is only necessary to prove that 'IjJ(l.F) holds.

First, note that {FTn(.A) I n ~ O} is a chain of trace tuples (cf. Definition 3.48).
Induction on n is now used to show that, for all n ~ 0,

(1)

The basis is true by hypothesis. For the step, assume as induction hypothesis that
(1) holds; then, since ¢ is F-inductive, it follows that 'I/J(F(FT n(.A) x pF/+n(.A))).
Since F is trace-based and ¢ is !;-c1osed, ¢ must also hold for the argument
FTn+1(.A) X pF/+n+1(.A).

The set
{FTn(.A) X pF/+n(.A) I n ~ O}

is a ~-chain, because {FT n (. A) I n ~ O}is a chain of trace tuples, and by Proposi-
tion 3.13. Thus:

'IjJ(l:9{FTn(.A) X pFTk+n(.A) I n ~ O}) from (1), by 'I/J ~-admissible

'I/J(U{FTn(.A) I n ~ O}X pU{F/+n(.A) I n ~ O}) by Prop. 3.72, 'I/J !;-c1osed

In order to show that the argument of ¢ in the latter condition is actually l.F it
suffices to observe that

o

The basis of the previous induction rule may be replaced by one which is slightly
stronger, but handier in practice because only F, not FT! appears in it:

Theorem 3.79 Let F: "Proc': -+ 'Proc': be trace-based and process-preserving;
suppose its restriction to process tuples is continuous. Let ¢: "Proc'' -+ Bool be a
specification-oriented predicate. If:
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1. 7/J( (( -rSTOP, p(Fh(>') (STOPA))>. ) I A EA)) holds for some function h: A ~
Nat bounded by some k (basis);

2. for all PA E Proc/', if ,¢(PA) holds, then ,¢(F(PA)) holds ('¢ is F-inductive).

Then 7/J (fixF) holds.

Proof. Since F is trace-based and monotonic, it can be shown by induction, for
all h ~ 0:

whence, for all A E A:

Hence, since h(A) ~ k and {FT n( eA) I n ~ O} is a chain of trace tuples, recalling
Proposition 3.13 it follows:

Hence, by the basis and since '¢ is ~-closed:

from which the theorem follows by Theorem 3.78. o

Remark 3.80 The latter induction rule may be even more useful when the pred-
icate ,¢(PA) is of the form A>'EA v». (P>.), i.e.:

For then the basis need not mention semi-processes:

A>'EA AtE. AXEP(Fh(>")(STOP,,')h(t) S>.(t, X) =

A>'EA AtET(Fh(>') (STOPA)h(t) AXEP(Fh(>")(STOPA)h(t) t = 0 =* S>.(t, X) -

A>'EA '¢(t=O=>s>..(t,X»( (Fh(>') (STOP A)h) 0
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The next induction rule has the least demanding basis, but only applies when the
function FT has a unique fixpoint. This is not always the case, as for, e.g., FT(T) =
TU aT. Actually, F must also be bi-continuous, i.e. continuous also with respect
to a partial order and lub which are dual of ~ and U (in that they are obtained
by replacing ~ with :2 and U with n everywhere). However, most interesting
process function are indeed bi-continuous (see [Brookes, Hoare, & Roscoe, 1984]
for a treatment of this dual kind of continuity).

The rule is best preceded by a lemma. In both, let nA stand for component-wise
intersection: nA XA = (n XA I >.E A) and define * and *A by:

* = Act·

Note that p*(s) = {0} for all s.

Lemma 3.81 Let F : -ProcA ~ -ProcA be trace-based and process-preserving;
suppose FT is bi-continuous and has a unique fixpoint. Then

is a chain and UP ~ .IF.

Proof. By the monotonicity of FT (Proposition 3.47), which entails (by induction)
for all n:

and Proposition 3.13, the set P is a chain.

It is possible to establish:

(1) UP ~ U{FTn(.A) In ~ O} x pn{FTn(*A) In ~ O}
A

This relationship will be proved for each >.-component. Let Tn = FTn( eA), Vn =
FT n (*A)' Then for every>. E A:

(rUPh rL!JPA = U{rP I PE PAl = U{rPA IPA E P}

U{(Tnh I n ~ O} = (U{Tn I n ~ O}h
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as desired. Moreover, let s be in the latter trace set, and in particular let m be the
minimum index such that sE (Tmh. Then:

p(UPh(s) p(l!JP>.)(s)

:::> U{pP(s) I PEP>., sE rP}

U{pP>.(s) IPA E P, sE rP>.}

U{p(Vnh(s) I n ~ 0, s E (Tnh}

U{p(Vn».(S) I n ~ m}

p(n{(Vn)>. I n ~ m})(s)

p(n{(Vn)>. I n ~ O})(S)

p(nA {Vn I n ~ O}».(S)

by t; ~Tk+ 1, k ~ 0

by Proposition 3.13

by Vk ;;;;;! Vk+1, k ~ 0

Since FT is bi-continuous, nA {FT n( *A) I n ~ O}is, by duality, a fixpoint of FT and
must coincide, by hypothesis, with U{FT n(.A) I n ~ O}. Thus the right-hand side
of (1) is indeed j_F. 0

Theorem 3.82 Let F: -PracA ~ -PracA be trace-based and process-preserving;
suppose its restriction to process tuples is bi-continuous and FT has a unique fix-
point. Assume the predicate 'I/J : -ProcA -t Bool is ~-closed and admissible for
chains over "Proc", If:

1. 'I/J(.A x P*A) holds (basis);

2. for all PA E Proc'' , if 'I/J(PA) holds, then 'I/J(F(PA)) holds ('I/J is F-inductive).

Then 'I/J(fixF) holds.

Proof. Since F is trace-based and monotonic, it can be shown from the basis, by
induction, that for all n ~ 0:

(1)

By the previous lemma P = {FTn(.A) X pFTn(*A) I n ~ O}is a chain. Thus, from
(1) and since 'I/J is ~-admissible, 'I/J(UP) follows, whence, again by the previous
lemma and since 'I/J is ~-closed, 'I/J(j_F) follows. This suffices by Theorem 3.59. 0
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3.3 Basic Process Functions

According to the flexible scheme introduced in Section 2.4.3, two steps are nec-
essary in order to give the language PL: a denotational semantics with Proc as
semantic domain. The first is to make each language operator denote a process
function (or operation) with domain and range in accordance with the operator
arity. The second is to show that PL:-generated process functions possess a fix-
point; by Remark 3.53, this is ensured if the basic process functions employed in the
construction of PL:-generated ones are trace-based, and continuous or monotonic.
Basic process functions comprise, besides those denoted by operators, extraction
of a component from a tuple (cf. equation (2-2), Definition 2.3), and are treated in
the remainder of this section.

In the light of the fixpoint rules presented and of Remark 3.61, it will also be
examined whether basic functions, which can all be viewed also as functions over
semi-processes, are well-behaved (continuous, monotonic,' trace-based, process-
preserving and refusal-based, both for processes and-where applicable-semi-
processes) .

3.3.1 Component Extraction

For each), E A, the function (),x: Proch ~ Proc is defined by (Phh = P,x, for
Ph E Proch. It is straightforward to see that these functions must be well-behaved
for every). EA.

3.3.2 Stop

The process expression stop is associated with the well-behaved constant function
having as value STOP. This process can be characterized, in accordance with its
Definition 3.16, by the relations:

TSTOP={O} pSTOP( 0) = pAct

1 While continuity is only needed for process functions, its proof will always be applicable also
to semi-process extensions, which yields monotonicity for these extensions too, as demanded by
Remark 3.61.
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3.3.3 Operational Justification

The definition of the remaining process functions can be justified in terms of the
transitional definition of the corresponding operators. Ideally, consistency should
be required between the compositional denotational semantics O[] induced by the
basic functions, and the transitional semantics based on the operator transition
rules. Thus, one would hope that, for all process expression P in PL::

O[P] = irp, pp) (3-2)

where r, p are operationally defined (overloading them once more) as follows:

Definition 3.83 For all process expression p:

rp {s E Act· I P ~}

pp(s) {X E pAct+ 13q: P ~ q & \Ix E X: q~} (for S E rP) o

Thus, informally, rp is defined as the set of traces that P may perform according to
the derivation relation ==t>, and X E pp(s) is defined to hold if, after performing
s, P may reach a state whence it is unable to continue with any trace in X.

In fact, for the technical reasons examined in Section 3.3.9, the consistency
equation (3-2) can only hold if the relation ==t> is image-finite; even so a proof
is rather hard and better omitted, as done in [Brookes, 1983a] for the ordinary
failures case (see [Barrett, 1991] for the proof of a similar result). We will settle
instead for a weaker justification: if op is an n-ary operator, it will be shown
that the relation defining op(PI, ... , Pn) in terms of its operands Pl, ..• , Pn also
holds between (r OP(PI,'" ,Pn), P OP(PI,'" ,Pn)) and (rpl, PPI), ... , (rpnl PPn), for
all process expressions PI, ... ,Pn'

3.3.4 Non-Deterministic Choice

Binary non-deterministic choice is a specialization of nondeterministic choice over
a process set (Definition 3.22):

pl±JQ ltj{P, Q}
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Previous results about the ~ operator ensure that binary I±l is well-defined. It is im-
mediate to prove that I±l is distributive in each argument, hence (by Theorems 3.44
and 3.40), continuous and monotonic. Furthermore, it is also process-preserving,
weakly trace-based and trace-based (owing to Proposition 3.65). In short, the
operation I±l is well-behaved.

It is not difficult to extend the previous results to a function ~A: ProcA -+ Procr
The operational justification for this operation is represented by the following

result.

Proposition 3.84 For all process expressions p and q:

r(p I±l q) rpUrq

{

pp(s) U pq(s) if sE rp n t«
pp(s) if s E rp - rq
pq(s) if sE rq - rp

p(pltJq)(s)

P f B f 8·ff 88Th h firoo. y a property 0 ==t>, P I±l q ==t> r m p ==t> r or q ==t> r. us t erst
equality above is obviously true.

For the second equality, suppose s E rp U tq.

Then X E p(p ltJ q)(s) holds iff, for some r, p ltJ q ~ rand r ~ for all x E X.
Without loss of generality, suppose p ~ r: then X E pp(s), hence X is in the
right hand side of the second equality.

Conversely, if X is in the right hand side, assume without loss of generality that
s E rp and X E pp(s). Then for some r, p ~ rand r ~ for all x E X. Since
also p I±l q ~ r, it follows that X E p(p ltJ q)(s). 0

3.3.5 Deterministic Choice

Deterministic choice is the binary process operation defined by:

r(P Ea Q) = iP U rQ

2It is worth noting that, in contrast to the l:!:I operation over sets of processes or process tuples,
ttlA applies to process tuples of ProcA and (by pointwise extension) to sets of such tuples. Thus,
for PA ~ Proc/", there is a difference between ttlA PA = {ttlA PA I PA EPA} and ttl PA = (ttl 'Pl\ I
AE A) (cf. Definition 3.36): the former is a process set, the latter a process tuple.
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p(P Ea Q)(s)

pP( 0) n pQ( ())

{

pP(s) U pQ(s) if s E -r n rQ
pP( s) if s E r P - rQ
pQ( s) if s E rQ - rP

for s t- ()

p(P El) Q)( ())

To see that this operation is well-defined and process-preserving, we can adapt the
analogous result about non-deterministic choice:

Proposition 3.85 If P, Q are (semi-)processes, so is PEa Q.

Proof. The proofs that r(PEaQ) is a tree and, for s t- 0, p(PEaQ) is a (consistent)
refusal function are the same as for the l±J operation.

To complete the proof, assume X E p(P Ea Q)(O). Then X E pP(O) and X E
pQ(()) hold. IfY ~ X, then YE pP(()) and YE pQ(O), whence YE p(PEaQ)(O)·
Likewise, if t E X, for all w, Xu {tw} E pP(O) and Xu {tw} E pQ(O), whence
X U {tw} E p( P Ea Q) (()). Thus we have proved the subset and suffix closure
properties of P Ea Q.

To prove consistency, let X U {t} ~ p( P Ea Q)( 0). Withou t loss of generality, let
then Xu {t} ~ pP(O). Consistency of rP,pP implies t E tP and X -;-t E pP(t),
so t E r(P Ea Q) and X -;-t E p(P Ea Q)(t). 0

The operational justification for this operation is represented by the following re-
sult.

Proposition 3.86 For all process expressions p and q:

r(p Ea q) rpUrq

p(p Ea q)( ()) - pp( ()) n pq( () )

{ pp(s) u pq(s) if sE rpn rq
p(p Ea q)(s) pp(s) if sE rp - rq for s =1= 0

pq(s) if sE rq - rp

Proof. The proof of the corresponding result for the l±I operation can be readily
adapted for the first and third equality.

For the second equality, X E p(p Ea q) (0) iff, for some r, r -I=t> for all x E X and
pEa q ~ r, By the properties of ==t>, this can be the case iff r = p' Ea q', p ~ p',
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q ~ q' and, for all x EX, p' =/=t> and q' =/=t>. This is equivalent to X E pp( ()) and
X Epq(()). 0

Deterministic choice is distributive in each argument, hence (by Theorems 3.44
and 3.40) continuous and monotonic:

Proposition 3.87 For all process set P, (~P) Ea Q = ~{P Ea Q I PEP}.
Proof. It is easy to see that L, the left-hand side of the above equality, and R,
the right-hand side, have the same trace sets. We now prove equality of refusal
functions.

Suppose X E pL(()). Then X E pP(()) and X E pQ(()). So, there exists PEP
such that X E pP( () ). This implies X E p(P Ea Q) (()), hence X E pR( ()). This
argument can be easily reversed to show pR( ()) ~ pL( () ).

Let now 8 =1= () and 8 E rL = rR. X E pL(8) holds iff X E pQ(8) and 8 E rQ or,
for some PEP, X E pP(8) and 8 E rP. All together this is equivalent to stating
that for some PEP, X E p(P Ea Q)(8) and 8 E r(P Ea Q). Finally, the latter
requirement means that X E pR( 8). 0

To complete showing that this operation is well-behaved, we prove:

Proposition 3.88 The function Ea: -Proc2 -+ -Proc is trace-based.

Proof. Clearly, Ea is weakly trace-based. We only need to check that for all trees
TI, VI, T2, '\12 such that TI ~ Vl and T2 ~ V2:

For this purpose, suppose s E T, U T2 and X E P(VI U '\I2)(s). Then by Propo-
sition 3.13, X E pVt{s) and X E pV2(s). Thus, whether s = () or not, X E

p((T1, pV1) Ea (T2, pV2))(s). 0

3.3.6 Multiple Action Sequence

For any (possibly infinite) non-empty subset A ~ Act, multiple action sequence Ai
is a function that maps every tuple PA E "Proc/: onto Ai PA defined by:

r(Ai PA) = {()}U U a(rPa)
aEA
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p(A; PA)(O) - {X E pAct+ I 'Va EA: X + a E pPa(O)}

p(A; PA)(as) pPa(s), for a E A

It should be noted that if a E X nA then 0 E X + a, which ensures that X + a ~
pPa( 0) and, as intuition demands, X ~ p(A; PA)( 0). Moreover, if no x E X starts
with any a E A (i.e. if X + a = 0 for all a E A), then certainly X E p(A; PA)( 0).

Multiple action sequence is well-defined and process-preserving.

Proposition 3.89 Let A ~ Act, PA E -ProcA (resp. PA E procA). Then A; PA E

"Proc (resp. PA E Proc).

Proof. The arguments for r(A; PA) and, with s #- 0, p(A; PA)(S) are straightfor-
ward.

We consider therefore p( A; PA)( 0), and assume X is in this set. By definition of
A; PA, X + a E pPa(O) for a EA.

If X' ~ X, then, for a E A, X' + a ~ X + a, hence X' + a E pPa(O) by the
subset-closure property of pPa. It follows that X' E p(A; PA)( 0) (subset-closure of
p(A; PA)).

Let t = bs E X; then (Xu{tw})+a = X +a for all a:l b. Moreover sEX +b and,
if b E A, the suffix-closure property of PPb implies that (X + b) U {sw} E pPb( 0)
for any w. Hence, using (X + b) u {sw} = (X U {tw}) + b, the suffix-closure of
p(A; PA) follows.

Finally, for trace-refusal consistency, suppose PA E Proc" and

(1) Xu {bu} ~ p(A; PA)(O) (b E Act).

Since a #- b implies (X U {bu}) + a = X + a, then b E A must hold or (1)
would be contradicted; moreover, for the same reason, it must be the case that
((X U {bu}) + b) ~ pPb(O). Since (X U {bu}) + b = (X + b) U {u}, consistency of
rPb, pH entails u E rH and (X + b) + u E pH(u). Hence, easily, bu E r(A; PA)
and, using (X + b) + u = X + bu, X + bu E p(A; PA)(bu). 0

The operational motivation for multiple action sequence is provided by:
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Proposition 3.90 Let 0 C A ~ Act. For every tuple PA = (Pa I a E A) of process
expressions:

aEA

p(A;PA)(()) {X E pAct+ I 'Va EA: X -;-a E PPa(O)}

p(A; PA)(as) - PPa(s), for a E A

Proof. We prove only the less straightforward second equality.

Let X E p( A; PA) ( () ). Choose then a process expression q such that A; PA ~ q
and, for all x E X, q~; by the properties of ===t>, there exists a process tuple qA

()
such that q = A; qA and Pa ===t> qa, for all a E A. For every a E A and z E X -;-a,
qa -I=t>, otherwise q ~, a contradiction with az EX. Thus X -;-a E PPa(()).

Let now X be a member of the right hand side of the second equality in the
proposition statement. For all a E A, choose qa such that Pa ~ qa and, for all
z E (X -;-a), qa -I=t>. Hence, A; PA ~ A; qA. To conclude the proof it suffices to
show that, for all bz EX, A; qA~' This is obvious for b ~ A; for b E A, A; qA ~
would imply (by the properties of ===t» qb ~: a contradiction, because z E X -;-a
(since bz EX). 0

For the process function A;: Proc" ~ Proc proving continuity is rather hard:

Proposition 3.91 Multiple action sequence is continuous.

Proof. Let PA be a chain in ProcA. We must show:

(1)

Let Land R denote the left and right hand sides of (1). The difficult case is proving

pL(()) = pR(O).

For this purpose, assume X E pL( 0). Thus:

Let B = {a EA I X -;-a i= 0}. B must be finite or X would be infinite. For every
bE B, by (2) we can choose Q)b) EPA such that:
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Letting QA = U{QA (b) I bE B} entails QA (b) ~ QA for all b E B, hence:

Since PAis a chain, QA is the lub of a finite chain in P A and must itself be in
P A. Moreover QA must satisfy X -;- a E pQa( ()) for all a E A; this follows if a
is abE B from (3) and (4), for a ~ B from X -;-a = 0 (definition of B). Thus
X E p(A; QA)(O) and, by definition of U (going back to (1)), X E pR(O).

Conversely, assume X E pR( 0). Then, for some QA EPA, X E p(A; QA)( 0) i.e.
X -;-a E pQa(O) for all a E A. Hence for all a E A:

which entails X E p(A; (UPA))(O). o

Finally, note that multiple action sequence is weakly trace-based and refusal-based,
hence trace-based.

3.3.7 Renaming

Let f: Act --+ Act be an injective function, which is extended to traces and trace
sets in the obvious way. The renaming process function is defined by:

rP[f]

p( P[J]) (J (8))

f(rP)

f(pP(8)) (8 E rP)

For brevity this operator has been made less general than that of [Brookes, Hoare,
& Roscoe, 1984], but it is sufficient for most practical applications. Since f: Act --+
Act is injective, it is straightforward to check that the process function f is well-
defined, consistent with the derivation relation ===t>, distributive (hence continuous
and monotonic) and generally well-behaved.
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3.3.8 Parallel Composition

Let Bl, ... BN be non-empty action sets and Pt, ... ,PN be processes (N ~ 0). The
parallel composition 11:=1Pn:Bn of PI, ... , PN over Bl, ... , BN is defined by:

N
T( II Pn:Bn)

n=l
N

p( II Pn:Bn}(s}
n=l

where the operators II and ~ are defined, for trace sets VI, ... , VN:

N

{u E (U Bn)* I 'VI ~ n ~ N : u fBn E Vn}
n=l
N

{u E (U Bn)* 131 ~ n ~ N :ufBn E Vn}
n=l

The function 1I:=lPn:Bn will also be written as II(Pl:Bl, ... ,PN:BN}. The same
applies to ~.

First, we prove that parallel composition is well-defined.

Proposition 3.92 For all non-empty action sets Bi, ... , BN, if PI, ... PN are
(semi-}processes, so is 11:=1Pn:Bn.
Proof. Let B = U~=l Bn· It is straightforward to realize that T 11:=1Pn:Bn is a
tree. To see that p 11:=1Pn:Bn is a refusal function, let SET 11:=1Pn:Bn and X E

p(II:=1 Pn:Bn)(s). Thus, s E B* and, for 1 ~ m ~ N, sfBn E TPn. Moreover we
-Ncan choose Xl E pPl(sfBd,···, XN E pPN(sfBN} such that XnB* ~ Iln=l Xn:Bn.

-N
For subset-closure, suppose Y ~ X. Then Y n B* ~ Iln=l Xn:Bn, whence it follows

Y E p(II:=l Pn:Bn)(s}.

For suffix-closure, let t E X and w be a trace. If tw fj B*, then (X U {tw}) n
B* = X n B*, whence (X U {tw}} E p(II:=l Pn:Bn)(s). Otherwise, let tw E B*,
so that t E X n B* ~ ~:=l Xn:Bn' whence, for some rn, t fe; E Xm. Letting
X:n=Xm u {twfBm} and X~ = Xn for n t= m, it follows (X u {tw}} n B* ~
-NIln=l X~:Bn' Finally, by the suffix-closure property of PPm, X:n E pPm(sfBm),
whence Xu {tw} E p(II:=1 Pn:Bn)(s}, as desired.
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Finally, for consistency of trace and refusals, let Xu {t} ¢ p(II:=l Pn:Bn)(s). To
avoid contradicting this assumption, two conditions must hold: (i) t E B* (or
(X U {t}) n B* = X n B*), and (ii) for all n, x; U {tfBn} ¢ pPn(srBn). Thus, by
consistency of TPn, pPn:

(1) for n E {1, ,N}, (st) rBn E TPn;

(2) for n E {1, ,N}, Xn -;- (HBn) E pPn(sHBn).

Hence consistency of TP,pP follows: st E tP from (1); X -;- t E p(II:=l Pn:Bn)(st)
from the conjunction of (2) and

(3)

which is inferred thus: w E (X -;- t) n B* implies tw E X n B*, so, for some
mE {1, ... , N}, twfBm E Xm, Le. wrBm E Xm -;- (tfBm). 0

To verify that the definition of parallel composition is operationally satisfactory,

we prove:

Proposition 3.93 Let Bl, ... BN be non-empty action sets and PI,· .. ,PN be pro-
cess expressions (N ~ 0). Then

N
T( II Pn:Bn)n=l
N

p( II Pn:Bn)(s)
n=l

Proof. The first equality is straightforward. For the second, let B = U~=l Bn,

s E r(II:=1 Pn:Bn).

Let X E p(II:=1 Pn:Bn)(s) and choose q such that 11:=1Pn:Bn ~ q and q ~ for
all x EX. By the properties of ==t>, there exist ql, ... , qN such that q = 11:=1qn :Bn

stBnand Pn ==t> qn for all n. For 1 ~ n ~ N, let

x, = {xfBn I x E X,qn~}

(
. _r~. xtBm

Note that Xn E PPn sfBn). Let x E X n B*: smce qr==='V,It follows that qm~
-N

for some m such that 1 ~ m ~ N. Thus xrBm E Xm, x E Iln=1Xn:Bn and we
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may conclude that X belongs to the right hand side of the second equality in the
proposition statement.

To prove the converse, suppose now that, for 1 :::;;n :::;;N, Xn E PPn(sfBn). Choose
stBn

then qn such that Pn ~ qn and

(1) z
qn=Ft> for all z E Xn

By definition of =t>, 11:=1 Pn:Bn ~ 11:=1 qn:Bn. Let X be finite and X n B* ~
-NIln=lx.i»; If x E X n B*, choose then m such that x fe; E Xm; it fol-

lows 11:=1 qn:Bn I=t> or else qm ~, contradicting (1). If instead x E X - B*,

11:=1 qn:Bn I=t> is an immediate consequence of the way =t> is defined for II. In
both cases we have that X E p(II:=l Pn:Bn){s). 0

It is easy to recognize that parallel composition is refusal-based and trace-based.

Commutativity and Associativity

It is obvious that parallel composition is commutative, in the sense that the as-
signment of the indices 1, ... ,N to the composed processes is immaterial. This
operation is also associative, in the sense represented by the following:

Proposition 3.94 Let Bl, ... , BN, BN+1, ... , BN+M be non-empty action sets and
Pi, ... ,PN, PN+1, ... , PN+M be processes (N, M ~ 0). Then

N+M N N
II Pk:Bk = II(( II Pn:Bn):{ U Bn), PN+1:BN+1, ... , PN+M:BN+M )k=l n=l n=l

Proof. Let Land R denote the left and right hand side of the above equality.
That TL = TR is a consequence of the associativity of the IIoperator on trace sets.
We now prove that, for s E TL = TR, pL(s) = pR(s). Below, it is convenient to

let B = U~=le;
Suppose X E pL(s). Then there exist Xl, ... , XN, XN+l, ... , XN+M such that

x, E pPk(sfBk) for all k and

N+M
X n ( U Bk)* C

k=l

N+M
TI xee,
k=l
- -NII( (1In=lXn:Bn):B, XN+1:BN+l, ... , XN+M:BN+M)
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where the equality holds by associativity of IT and entails X E pR( s) because, by
definition of parallel composition:

N

p( II Pn:Bn)(srB)
n=l

To complete the proof, suppose X E pR(s). Then there exist

(1)
N

Y E p( II Pn:Bn)(srB)
n=l

such that

N+M
(2) X n ( U Bk)* c IT(Y:B, XN+1:BN+I, ... , XN+M:BN+M)

k=l

By definition of parallel composition and (1), there exist XI, ... ,XN such that

x, E pPk(srBk) for all k and

(3)
N

Y n B* c IT Xn:Bn
n=l

To infer the desired X E pL( s) it suffices to show that

(4)
N+M

X n ( U Bk)* ~
k=l

N+M
IT x.»,
k=l

For this purpose, assume x E X and x E (Uf=~M Bk)*. Then, by (2) either x rBk E

Xk for some k E {N+1, ... ,N+M} or xrB E Y; in the latter case (3) implies
-N

that xrB E Iln=1 Xn:Bn, whence xrBk E Xk for some k E {1, ... ,N}. This shows
-N+M

x E Ilk=1 Xk:Bk, hence (4). 0

Binary Parallel Composition

By repeated application of the associativity Property 3.94 with N = 2, a parallel

composition of arbitrary arity may be expressed with its binary version. This allows

the remaining process properties to be studied for binary parallel composition only.

As customary, the binary operator II is written infix.

This operation is distributive in either argument, hence continuous and mono-

tonic:
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Proposition 3.95 Parallel composition is distributive.

Proof. Let B, C be non-empty sets of actions. Let Q E Proc and P ~ Proc. It is
necessary to prove:

(l:tjP):B II Q:C = l:tj{P:B II Q:C I PEP}

Let Land R denote as usual the left and right hand sides of the above equality.
The proof that TL = TR is easy. We show that, for s E TL = TR, pL(s) = pR(s).

If X E pL(s), then X n (B U C)* ~ Y:B ~ Z:C for some Z E pQ(sfC) and
YE p(l:!:Jp)(srB). Thus there exists PEP such that srB E rP and YE pP(sfB).
It follows that sE r(P:B II Q:C) and X E p(P:B II Q:C)(s), hence X E pR(s).

This argument is easily reversed to prove the converse inclusion. o

We conclude with an important condition that allows the action set of a parallel
composition to be enlarged without affecting the result:

Lemma 3.96 For all P, Q E Proc, P:B II Q:C = P:B' II Q:C if TP ~ B*, B ~ B'
and (B' - B) nC = 0.

Proof. We let Land R denote the left and right side of the desired equality, and
begin with a useful, if obvious, fact:

(1) if srB' E B* or s E (B U C)*, then srB = srB'.

Now if s E TL, then s E (B U C)*, so (1) yields s ErR. Conversely, if s E TR,
then s rB' E rP ~ B* and again (1) yields s E rL.

We must now prove that, for s E t L = rR, pL(s) = pR(s). The proof is split into
two parts.

First, assume X E pR(s). To prove X E pL(s) it is enough to derive, for Y, Z E

pAct+:

(2) If X n (B' UC)* ~ Y:B' ~ Z:C, then X n (B UC)* ~ Y:B ~ Z:C.

To show (2), let x E Xn(BUC)*; then, assuming the premise of (2), x E Y:B'~Z:C.
Thus, xfC E Z or xfB' E Y hold; in the latter case (by x E (B U C)* and (1))
xfB E Y; in both cases, then, x E Y:B~ Z:C, which proves the conclusion of (2).
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Before showing the converse, observe that:

(3) if wE TP and YE pP(w), then Y u Y' E pP(w), for all Y' E pAct+ - B*.

This holds by consistency of TP, pP and wY' nTP = 0, inferred from TP ~ B".

We now assume X E pL(s). To prove X E pR(s), we use (3) and show that, for
Y, Z E Act+:

(4) if X n (B U C)* ~ Y:B IT Z:C, then, for some Y' E pAct+ - B*,

X n (B' U C)* ~ (Y U Y'):B' IT Z:C.

This last obligation is proved by induction on the size of X. The basis is easy. For

the step, let IXI = n + 1, X = {x} U Xo, IXol = n. Assume the premise of (4)

for X, so that also Xo n (B U C)* ~ Y:B IT Z:C. By induction hypothesis, there

is Yo E pAct+ - B* for which Xo n (B' U C)* ~ (Y U Yo):B' IT Z:C. We look for

YI E pAct+ - B* such that

(Xou{x})n(B'UC)* C (YUYt}:B'ITZ:C

YI is determined by case analysis on x. The interesting case is x E (B' U C)*,

xfB' (j. YUYo, xfC (j. Z (otherwise just take YI = Yo). There are two subcases: (1)

x E (B u C)*, then xfB E Y by the assumed premise of (4), and we take YI = Yo;

(2) x (j. (B U C) *, then x fB' (j. B*, and we take YI = YoU {x fB'}. 0

3.3.9 Hiding

Let B be a (possibly infinite) set of actions. The hiding operation is defined to

map any P E -Proc onto P\B defined by:

T(P\B)

p(P\B)(s)

X/B

(TP)\B

{X E pAct+ I :3t E TP : t\B = s & 'VYE p(X/ B): Y E pP(t)}

{u E Act· I u\B E X} (X E pAct+)

Hiding is well defined:

Proposition 3.97 If P is a (semi-) process, so is P\B for an action set B.
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Proof. It is easy to check that r(P\B) is a tree. To prove that p(P\B) is a refusal

function, assume sE r(P\B) and X E p(P\B)(s). Choose then t such that:

(1) t E t P, t\B = s, and, for YE pAct+, Y\B ~ X implies Y E pP(t).

Subset-closure is easy to show. For suffix-closure, we assume x E X and prove

that X U {xw} E p(P\B)(s) for any trace w. For this, we let Y E pAct+ and

Y\B ~ Xu {xw}, and try to derive Y E pP(t). Let Y' = {y E Y I y\B EX}.
Clearly yI\B ~ X, so Y' E pP(t) from (1). If yE Y - Y', then y\B = xw, so for

some y', z: y = y'z, y'\B = x. Since y' E Y', Y' U {y'z} E pP(t) (by suffix-closure

of pP) i.e. Y' U {y} E pP(t). As the number of traces like y in Y - Y' is finite, the

same argument may be applied finitely many times (through induction) to infer

YE pP(t).

Finally, we show consistency between the traces and refusals of P\B. Assume

X u{w} ¢ p(P\B)(s). Then, by (1), there are Yx, Yw E pAct+ such that: Yx \B ~
X, Yw\B = {w} and YxUYw ¢ pP(t). Let

:=: = {Y E pAct+ I Y 2 Yx, Y\B ~ X}

Suppose Y E 2. Then Y E pP(t) (by (1)) and Y U Yw ¢ pP(t) (by subset-closure).

Hence, by consistency and subset-closure of rP, pP, there exists Uy such that:

(2) Uy E Yw, tUy E t P and Y -;-Uy E pP(tUY)

By (2), as Y varies in S, Uy can only take on the finitely many values of Yw' Then

Lemma 2.11 ensures that there exists u such that:

(3) u E Yw, and for all YES there is Y' E S such that Y' 2 Y and UY' = U.

From (3) and (2) tu E r P follows, whence (from (1) by u E Yw) sw E r(P\B). To

conclude the proof, it is enough to show that, if Z E pAct+ and Z\B ~ X -;-w, then

Z E pP(tu). Let then Y = uZuYx. From (3), by the definitions ofYw, Yx, we infer

YES, so there is Y' as in (3) and, from (2) and (3), it follows Y' -;-u E pP(tu).
Hence Z E pP(tu) follows by Z ~ Y' -;-u, which is proved thus: z E Z implies

uz E Y; by (3) Y ~ Y' holds; hence z E Y' -;-u. 0
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The usual operational justification does not hold, in general, for hiding. As a
counterexample, consider the process constants:

K := b; KI Kn := en; a; stop E9 b; Kn+l (n > 0)

(where the notation en is self-explanatory) and let q be K\b. Then {a} ¢ p(q\e)( ()),
because q\e ~ q'\e implies q'\e~. However:

{a} E {X E pAet+ 13t E rq: t\e = ()& VYEpAct+: Y\e ~ X => Y E pq{t)}

To show this, we assume YEpAet+, Y\e ~ {a} and derive YE p(q)(()). Elements
of Y must be of the form c"aeh for some k, h ~ o. Let n - 1 be the maximum such

bn () ~k; then K ===t> Kn, so q=(K\b) ===t> (Kn\b) and (Kn\b) r==v for k < n.
The problem with q above is that ~ is not image-finite (i.e. q ~ q' for

infinitely many q'). Note that this constraint may be acceptable in many practical
cases; in particular it does not rule out, in the construction of q, the use of multiple
action sequence (A;) with A infinite. Image finiteness allows a useful lemma to be
proved.

Lemma 3.98 Let t be a trace, Z ~ Act+ and p a process expression such that
p ~ is image-finite. Suppose that for all Y E pZ there is py such that p ~ py
and, for all yE Y, py~.

Then there exists pz such that p ~ pz and, for all Z E Z, Pz~.

Proof. Let {q I P ~ q} = {PI, ,pd (by the hypothesis, k > 0). By contradic-
tion, suppose that for all h E {I, , k} there is Zh E Z such that Ph ~. Then,
taking Y = {Zl, ... , Zk} contradicts the hypothesis. 0

We can now prove an operational justification for hiding:

Proposition 3.99 Let B be a set of actions and p a process expression such that
P ~ is image-finite for all t. Then:

r{p\B)

p{p\B)(s)

{rp)\B

{X E pAct+ I 3t E rp: t\B = s & 'lYE p{X/ B): Y E pp{t)}
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Proof. The first equality is easy. For the second, let s E r(p\B).

If X E p(p\B)(s), then p\B ~ q' for some q' and q' ~ for all x E X. By the

properties of ===l>, for some t,p': s = t\B, q' = p'\B and p ~ p', so t E rp. Let

now Y\B ~ X, Y finite. For all y E Y, p' I/=:t> or else q' ~, a contradiction

because y\B E X. Thus Y E pp(t).

Suppose now that X belongs to the right hand side of the second equality required

for the proposition. Thus there exists t E rp such that t\B = s and, for all

Y E p(X/ B), Y E pp(t); so for all y E Y there exists py such that p ~ py and

py~. The previous lemma may now be invoked to infer that there exists q such

that p ~ q and q~ for all Z E X/B. Thus p\B ~ q\B and, if x E X, q\B-::/=t>
(or q ~ for some z E X/B). This amounts to X E p(p\B)(s), as required. 0

The hiding operator is not continuous, but is weakly trace-based and monotonic.

While this is sufficient for the language definition (cf. Remark 3.53), it does not

permit application of the various fixpoint induction rules developed. It must be

said, however, that use of hiding in a recursively defined process constant hardly

ever occurs in practice. It is also worth noting that the loss of continuity is the

price paid to allow the hidden action set to be infinite. Thus, the reasons adduced

in Section 2.6.1 for ordinary failures hiding might be repeated here to argue that

this infinitary hiding operator is crucial for practical applications. Here, however,

the additional issue of associativity has still to be considered.

Associativity of Hiding

The hiding operation introduced is not associative. The relevant counterexample

is clearly related to that devised for the operational justification (with slight abuse,

process P below is introduced inductively, rather than as a fixpoint):

Pn = en; a; STOP Ea b; Pn+1 (n > 0)

It is not difficult to check that

{a} E p(P\b\e)(()), but {a} ~ p(P\c\b)(()) = p(P\{c, b})(())
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the argument is surprisingly similar to that employed for the operational justifica-
tion counterexample. In fact, all the problems with hiding (the imperfect opera-
tional justification and the lack of associativity and continuity) seem facets of the
same limitation: the finiteness of refusal sets; but this is a topic for further study.

Nevertheless, use of the present form of hiding can be justified in various ways.
First, it can be shown that associativity does hold for P\ ... \ ..., provided none
of the hiding operations involved makes the ==t> relation non-image-finite in the
LTS corresponding to process P; the class of such processes is large enough for
many applications. Another justification is provided by the fact that, for all B,C,
P\B UC ~ P\B\C and r(P\B UC) = r(P\B\C); thus, any verification that
consists in proving every extended failure of P\B\C enjoys a certain property will
also apply to P\BUC. Finally, the main argument for this notion of hiding is that
it enjoys a weak form of associativity, which applies to a combination of processes
by parallel composition followed by hiding of shared actions: it will be shown that
combining thus PI, ... ,PN (in this particular order) is the same as combining PI
with P2 and the resulting process with the remaining ones (still in the same order).
This property supports the study of hierarchical systems.

In the formalization, it is convenient to introduce an operator #, with a syntax
similar to that of II, to model parallel composition followed by hiding.

Definition 3.100 Let the action sets Bi, ... , BN (N)O) be non-empty and triple-
disjoint tB, nB, nBk = 0, for i oF j oF k). Let 2:~1B« denote the disjunct sum
of the sets BI, ... BM (M ~ 1). Define:

N N
# Pn:Bn = ( II Pn:Bn)\BI nB2\ ... \(2:~;/ Bn) n BN
n=l n=l

o

Theorem 3.101 For N > 2, let PI, ... ,PN be processes and BI, ... ,BN non-
empty and triple-disjoint action sets. Then:

Proof. Note that since action sets are triple-disjoint:

(1)
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The main argument is:

#~=1 Pn:Bn = (11:=1 Pn:Bn) \B1 n B2 \ \(E~,;l Bn) n BN

= II ( (P1:B1 II P2:B2) : (B1UB2), P3 : B3, , PN : BN

) \B1 n B2 \ ... \(E~,;l Bn) n BN (by associativity of II, Prop. 3.94)

= II ( ((Pt:B1 II P2:B2)\B1nB2) : (B1UB2), P3 : B3, .•. , PN : BN

) \(B1 + B2) n B3 \ ... \(E~,;l Bn) n BN

(by Prop. 3.103, using (1))

= II ((P1:B1 # P2:B2) : (B1+B2), P3 : B3, ... , PN : BN

) \(B1 + B2) nB3 \ ... \(L~,;lBn) n BN

(by definition of #, and (1), Lemma 3.96 to reduce B1UB2 to B1+B2)

= #( (P1:B1 # P2:B2): (B1 +B2)' P3:B3, ... , PN:BN )

Note that the above derivation hides some extra applications of associativity of II
to indices 3, ... ,N in 11(... , P3:B3, .. ·, PN:BN). 0

Before turning to Proposition 3.103, which encompasses the essence of weak asso-

ciativity of #, it is convenient to introduce a particular way of merging two traces

sand w that agree if we project s on B and conceal the actions of w at E; the

result will be denoted by s BI>E W, introducing a new merge operator BI>E:

Lemma 3.102 Let E ~ B ~ Act. For traces S,W such that w\E = srB, the

trace s BI>E w is recursively defined by:

{

s if w\E = w

s BI>E W = s'e (s" BI>E w") if w = w'ew", w'\E = w', e E E
and s = s's", s' = max{u I u ~ s, s'rB = w'}

(Note that above w"\E = 8" rB, so 8" BI>E W" is well-defined.) Then:

8\E = s (s BI>E w)\E = s

Proof. The first equality follows from 8 rE = s rBr E = w \E rE = (). The last two

are proved using induction on the number of elements of E occurring in w. 0
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It is now possible to prove that hiding can be brought within a parallel composition

and applied to one of the composed processes, provided it does not affect actions

shared by the other composed process.

Proposition 3.103 Let E ~ B ~ Act, C ~ Act, EnG = 0. For all processes P,
Q:

(P:B II Q:C)\E = (P\E):B II Q:C
where the left and right hand side are also denoted by Land R respectively.

Proof. Showing that TL ~ TR is straightforward. The converse inclusion is proved

by assuming s E TR. Then s E (B U G)*, srB E T(P\E) and srC E TQ. Choose

w E TP such that w\E = srB, and let z = s BI>E w. Then (using Lemma 3.102),
zrB=w E TP and zrC=(z\ErG)=srG E TQ. It follows that z E T(P:B II Q:G),
whence z \E=s E TL.

The refusal functions are proved to agree in the two following lemmata. 0

Lemma 3.104 Under the assumptions of Proposition 3.103, pR(s) ~ pL(s) for

every sE TL = TR.

Proof. If X E pR(s), by definition of II, it is possible to choose XB E p(P\E)(s rB)
and Xc E pQ(srC) such that:

(1)

By definition of \, choose t E TP such that t\E = srB and, for YE pAct+, if

Y\E ~ XB then Y E pP(t). We now show that:

(2) if Z E pAct+, Z\E ~ X, then Z = {zrB I z E zn (B UC)*,zrC ~ Xc} E

pP(t).

For this purpose, we prove Z\E ~ XB. Let w E Z\E; then, for some u E Z,
u\E = wand, for some z E Z n (B U C)*, zrB = u and zrG ¢ Xc. Clearly

z\E E (B U C)* and, by the assumption Z\E ~ X, z\E E X; thus (1) implies

at least one of two facts: z\EfG=zfC E Xc, which has already been excluded,

or, as is the case, z\EfB E XB. The desired w E XB then follows because

z\EfB = zfB\E = u\E = w.
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We are now ready to prove that X E pL(s). Let y = s Br>Et; then:

(3) y\E = s yrB = t yrC = y\ErC = src

Now, y E T(P:B II Q:C) follows from (3) by t E TP, srC E TQ (because s E TR).
Thus, it is enough to show that, for Z E pAct+, Z\E ~ X implies Z E p(P:B II
Q:C)(y). This follows from the obvious inclusion Z n (B U C)* ~ Z:B IT Xc:C,
where Xc E pQ(yrC) (using (3)), and Z E pp(yrB) (by (2), using (3)). 0

Lemma 3.105 Under the assumptions of Proposition 3.103, pL(s) ~ pR(s) for
every sE TL = TR.

Proof. If X E pL(s) then, by definition of \, there is t E T(P:B II Q:C) such that
t\E = sand Y E p(P:B II Q:C)(t), for any finite Y satisfying Y\E ~ X. Thus,
t E (B U C)*, nB E TP, trC E TQ; moreover, with every Y as above we may
associate Z~ E pP(trB) and Zt E pQ(tfC) such that

(1) Y n (B U C)* ~ Z~:B IT Zt:C

It is possible to assume Zt ~ X rC (otherwise, exploiting E nC = 0, just let
Zt n X rC be the new Zt). As a result, as Y varies, Zt may take on only finitely
many values. By Lemma 2.11 this implies that, for some Zc ~ X rc:

(2) VY'EpAct+: Y'\E ~ X:::} 3YEpAct+ : Y\E ~ X, Y 2 Y', Zt = Zc

Clearly:

X n (B U C)* C ZB:B IT Zc:C, where

ZB {zrB I z E X n (B U C)*, zrC rt. Zc}

Since Zc E pQ(srC) (by srC = t\ErC = nC), to obtain the desired X E pR(s) it
suffices to prove ZB E p(P\E)(sfB) and srB E TP\E. For the latter, recall that
tfB E TP and note trB\E = t\ErB = srB.

The last proof obligation left can be satisfied by assuming WE pAct+, W\E ~ ZB
and deriving:

(3) WE pP(tfB)
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For this, note that, if w E W, since w\E E ZB, it is possible to choose Zw E

X n (B U C)* such that ZwrB = w\E and Zw rC ¢ Zc; from (zw BI>E w) \E = zw,
it follows:

Yw\E ~ X, where Yw = {zw BI>E wi w E W}

By (2), choose Y 2 Yw such that also Y\E ~ X and Zl; = Zc. Since Z~ E

pP(tfB)' (3) will follow if we show W ~ Z};.

Suppose then w E W. Thus

where the second inclusion is an instance of (1). That (zw BI>E w) rC E Zc can be
excluded on the grounds that (zw BI>E wHC = (zw BI>E w)\ErC = zwrc. So, by
(4), (zw BI>E wHB E Z~; since (zw BI>E w)fB = w, the desired w E Z~ follows. 0





Chapter 4

Extended Failures and sat
Verification

4.1 About This Chapter

The 'sat' logic outlined in Section 4.2 may express that a property is satisfied by
all the failures of the behaviour denoted by a process expression. A calculus for
this logic is briefly presented and, in Section 4.3, illustrated by a first non-trivial
example.

Like the standard sat logic of [Hoare, 1985], that proposed here can describe
both input-output relation, for which process traces alone suffice, and, exploiting
also refusals, system-environment interaction in the form of deadlock freedom. In
the CSP approach and terminology, the former kind of properties is associated
with partial correctness and safety, the latter with total correctness and liveness.

Rather interestingly, verification proofs of the two kinds have proved, both in the
standard logic and ours, fairly orthogonal.

Our sat logic and underlying model would appear to represent a major advance
over the standard ones in at least two respects: (i) they allow a satisfactory speci-
fication of an almost totally unreliable communication medium (Section 4.4), and
(ii) they can be successfully applied to the verification of diverging systems.

Section 4.5 is devoted to a larger, medium-sized example: a system made up
of two entities carrying out a sliding-window protocol across an unreliable network

119
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layer. The overall system, which represents the core of class 4 ISO Transport layer,
is first specified at a reasonable level of detail, then verified within the sat calculus,
with the help of a suitable set of effective proof techniques. Of these, the main are
based upon the so-called process-oriented consistency rules, which-in essence-
allow properties of longer refusals to be derived from those of shorter ones {see
Section 4.2.4}. This affords deadlock-freedom proofs which are only slightly more
complicated than those in the standard sat calculus, in that they need fixpoint
induction only to derive properties of standard (one-action) refusals of recursive
processes (cf. Section 4.5.4). As a result, the bulk of deadlock freedom proofs
may be carried out before recursive processes have been actually defined (cf. Sec-
tion 4.5.4); this ensures all the typical advantages of decision postponement, as
discussed in Section 4.5.2.

In sum, it seems fair to conclude that the work outlined succeeds in proving the
practical applicability of our sat calculus.

4.2 Outline of a sat Logic

This section illustrates a sat logic and calculus for specification and verification.
This logical system is a natural extension of that employed in [Hoare, 1985]. Both
belong to the fourth kind identified and evaluated in Section 1.5: a specification is
viewed as a property to be satisfied by every possible observation about a system.
In the proposed framework, extended failures {instead of failures} are adopted as
observations, and the associated process domain supplies a model for the sat logic.

Formulae of the sat logic have the form p sat S, where p is a process expression
of PL: and S-often referred to as an assertion-is a predicate logic formula that
may contain the variables tr and Ref. Informally and with some abuse, p sat S is
valid if S holds whenever tr and Ref are replaced, respectively, by any trace t of
p and any X refused by p after t.1 We avoid setting up any formal preliminaries,
which are not difficult and coincide with those of the renowned book [Hoare, 1985].
In particular, to understand the following it is unnecessary to define precisely a

-or course, traces and refusals belong in fact to OlP], the denotation of p,
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particular syntax or semantics for S: symbols occurring in formulae are assumed
to be given a fixed interpretation (which is the usual one for standard symbols, and
is introduced informally along the way for new symbols). This justifies the liberty
we take to blur the distinction between a formula S and its interpretation as a
predicate over Act·, pAct+ and possibly other domains; accordingly, metalanguage
and logic notation will be freely mixed; e.g. tr E Act· may occur in S. (Of course,
in a more rigorous setting, such an S would either employ type-predicates or be
expressed in a many-sorted logic).

Our sat calculus comprises healthiness, operator and fixpoint rules. The for-
mer include the consequence rule and the other standard ones of [Hoare, 1985]
(these will not be repeated here); they will be completed in Section 4.2.4 with the
introduction of the novel process-oriented rules. Only a presentation of operator
and fixpoint rules is provided, in Section 4.2.2 below; their soundness proofs will
be omitted, being straightforward consequences of the operator definitions in Sec-
tion 3.3 and, for the fixpoint rule, of the results in Section 3.2.82. Completeness
will be investigated in further studies; here it is just worth observing that the re-
striction of the calculus to PL: without recursion is easily proved complete with
the usual techniques, based on the notion of strongest specification.

4.2.1 Consequence Rule

The classical weakening rule of [Hoare, 1985]:

P sat S, S => T
psat T

4.2.2 Operator and Fixpoint Rules

The rules for stop and the choice operators are straightforward, practically coin-

ciding with those of the ordinary failure-based calculus:

stop sat tr = ()1\ Re! E pAct+

2These are summarized in Remark 3.80, for predicates that are the semantic counterpart of
sat formulae (recall that, thanks to Proposition 3.75, these predicates are specification-oriented).



4.2. OUTLINE OF A SAT LOGIC 122

P sat S, q sat T
P I±J q sat S V T

P sat S, q sat T
P Ea q sat (tr = 0 :::}S /\ T) /\ (tr ::I 0 :::}S V T)

The next rule for multiple action sequence, instead, reflects the fact that failures
are extended. In it, the convention is introduced that S(t, X) stands for S with tr
and Ref replaced by t and X. This device will be widely employed in the following.

Pa sat Sa, for a E A
(XE pAct+ /\ XnA = 0):::} (\::faE A: Sa(O,X -;-a)):::} S({),X),

X E pAct+ :::} Sa(s,X) :::}S(as, X), for a E A
A;PA sat S

The rule for renaming is made simpler by its side-condition:

P sat T, X E pAct+ :::} T(s, X) :::}S(J(s), f(X))
p[J] sat S (J injective)

The rule for parallel composition is new, but has the usual conjunctive form:

Pn sat Sn for 1 ~ n ~ N, B = U~=1ti;
-N

sE B* /\ Xl!"" XN, YE pAct+ /\ X ~ Iln=1x..n; /\ Y nB* = 0
:::} (J\~=1Sn(sfBn,Xn)):::} S(s,XUY)

The last operator rule to be presented is for hiding:

P sat T,
X E pAct+:::} (\::fYE p(X/ B) : T(s, Y)) :::} S(s\B, X)

p\B sat S

Finally, we present the fixpoint rule. It assumes that, for every ,x E A, the natural
number h(,x) is bounded and p>. contains no process constant but those in the tuple
"'A of distinct constants. Also, note the rule employs a generalized substitution:

PA O[stOPA] stoPA

PA n+1[stOPA] - (P>.[PA n[stOPAl/"'A] I ,x EA)
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The fixpoint rule is:

(PAh(A) [stoPAlh sat tr = 0 ::::}SA, for all A E A,

PA sat SA for all A E A can be proved
by assuming KA, sat SA' for all N E A

KA sat SA, for all A E A
(KA := PA, h(A) ~ H,
A EA)

4.2.3 Specification Classes and Two Derived Rules

Under suitable assumptions about specification predicates, the rules for parallel
composition and hiding simplify considerably. We begin by identifying some inter-
esting classes of specification predicates.

No-Junk and Subset-Closure

First, it should be obvious that a plausible specification predicate T ought to
be satisfiable, i.e. there should exist P such that P sat T. A stronger, but still
reasonable requirement on T is the following 'no-junk' condition:

if T(s, X), then sE TO[P] and X E pO[P](s) for some P such that P sat T

If this condition is violated, T will be unnecessarily weak, in that it can be strength-
ened without restricting the class of specificands satisfying it. Thus, although we
will not explicitly pose a no-junk requirement on specifications, interesting ones
probably satisfy it anyway. Consider, e.g.:

T(s,X) = s=()VX={a}

T contains the junk s = b,X = {a}; indeed, a p such that b E TO[P] and p sat
T should have pO[P] (b) = {{a}}, violating subset-closure. On the other hand
T'(s, X) = s=() does exactly the same job as T, there being no P that satisfies T
but not T'.

lt is worth noting that if T contains no junk, then it will coincide with a process,
in that:

{(s, X) I T(s, X)}

Q

{(s, X) Is E TQ, X E pQ(s)}

l!J{O[P] I p sat T}
where:
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Next, we identify the class of subset-closed specification predicates:

Definition 4.1 A specification predicate T is subset-closed if, for all s E Act·,
X E pAct+ and Y ~ X, T(s, X) implies T(s, Y). 0

Subset-closure is also a reasonable property because it is implied by the no-junk
condition (as a result of the subset-closure of processesj.! The above example of
T containing junk also violates subset-closure (T(b, {a}) holds, but T(b,0) does
not).

Essentiality

Another useful class is introduced in:

Definition 4.2 Tis B-essential (0 C B ~ Act) if, for all sE Act· and X E pAct+,
T(srB, X n B·) implies T(srB,X). 0

A useful specification T for p such that rO[p] C B· should be B-essential for
every Act ;2 B. This guarantees that T is insensitive to the choice of Act, or, in
other words, that it needs no adaptation if Act is changed. To see why, let first
Act = B, p sat T, O[P] = P and suppose that, if Act grows, O[P] becomes P'. If
s E t P' and X E pP'(s), we could prove (by induction on the structure of p) that
X n B· E pP(s) and s E r P, which was assumed to be a subset of B·. It follows
that s = s fB, T(s, X n B·) and, since T is B-essential for the new Act, T(s, X),
which shows that p sat T is still true under the new Act.

E.g. For B = {a, b} and any Act ;2 B, the assertion ir = 0 => a ¢ Ref is
B-essential, and indeed

a; b; stop sat tr = 0 => a ¢ Ref

holds independent of Act.
On the contrary, the assertion tr = 0 1\ Ref ~ {a, b} is not B-essential for, e.g.,

Act = {a, b, c}. Accordingly, the specification

stop sat tr = 0 1\ Ref ~ {a, b}

holds for Act ~ {a, b}, but does not for Act = {a, b, c}.

3In fact, and for the same reason, a specification predicate containing no junk also enjoys the
other process properties.
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Compactness

This is the last class of specification predicates to be introduced:

Definition 4.3 T is compact if, for all s E Act* and X ~ Act+, T(s, Y) for all
YE pX implies T(s, X). 0

Constructing Specification Predicates

Specification predicates belonging to the classes introduced above may be con-
structed or recognized exploiting the following result:

Proposition 4.4

1. A specification T(s, Y) that does not depend on Y is subset-closed, B-

essential and compact.

2. The following, typical deadlock-freedom specification is subset-closed, B-
essential and compact:

T(s, Y) = Tr(s) =} w(s) fj. Y (w(s) E B* for Tr(s))

3. Conjunction preserves each of subset-closure, essentiality and compactness.

4. Disjunction preserves each of subset-closure and essentiality; finite disjunction
preserves compactness supplemented with subset-closure.

Proof. For the finite disjunction case, let Tt, T2 be compact and subset-closed. Let
sE Act*, X ~ Act+, and suppose that, for all YE pX, Tt(s, Y) V T2(s, Y) holds.
Then, for Y E pX define:

f(Y)={ 1 if Tt(s,.Y) is true,
2 otherwise.

We may now exploit Lemma 2.11 to choose iE{I, 2} such that, for all YE pX, there
is Y' E pX, Y' 2 Y such that f(Y') = i, Le. Ti(s, Y') holds; thus, by subset-closure,
also Ti(s, Y) is true. So we have found iE {I, 2} such that, for all YE pX, Ti{s, Y)
holds; hence, by compactness of Ti, Ti(s, X) and T,(s, X) V T2(s, X) follow. This
shows the disjunction of Tt and T2 is compact.

Proof of the remaining statements is straightforward. o
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Related to Proposition 4.4 is:

Proposition 4.5 The following deadlock-freedom specifications are subset-closed,
B-essential and compact:

(a) T.,.(tr) => W(tr) n Ref = 0, provided W(tr) ~ B* for T.,.{tr);

(b) T.,.{tr) => W{tr) Cl Ref, provided W{tr) E pB* for T.,.{tr);

(c) T.,.(tr) => 3w E W{tr): Vu:::; w: u ¢ Ref, provided W{tr) ~ B* and (taking
the minimum with respect to the prefix order relation) min W (tr) is finite for
T.,.(tr).

Proof. All the required properties are trivial to show (from Proposition 4.4) for
(a) and (b); for (c) only compactness is not. Given a suitable WO, assume that
for sE Act* and X ~ Act+:

(1) for all YE pX: T.,.(s) => 3w E W(s): Vu:::; w: u ¢ Y

If 0 EW (s ), clearly 0¢X, so the compactness requirement is satisfied. If 0 ¢W (s),
assume, contradicting compactness:

T.,.(s) /\ Vw E W (s): 3uw :::;w: Uw EX.

Let Y = {uw' I w' EminW (s) }; then Y E pX and provides a contradiction with (1).
Indeed, for any wE W(s), choose w' Emin W(s) such that w' ~ w; then Uw' ~ w' ~ w
and Uw' E Y. o

Some observations are worth making on the assertion patterns (a), (b) and (c)
considered in the statement of this lemma:

Remark 4.6

1. Patterns (a) and (b) could be rewritten in the form of a conjunction and a
finite disjunction respectively.

2. The finiteness conditions that patterns (b) and (c) place on the set W{tr)
serve to ensure compactness for assertions conforming to them. Compactness
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may instead not hold for an infinite min W (tr), even in the restricted case
that W(tr) only contains traces over a finite set B. Consider e.g.:

T = 3w E W: w f{. Ref

Now T(Y) holds for any Y E pW (just choose w = bn(a) for n > maxi #Y I
yE Y}); yet T(W) is false, so T is not compact.

Both the need for compactness and the fact that it fails to hold in some
cases stem from the same semantic issue: the finiteness constraint on re-
fusals. Other related problems, examined in Section 3.3.9, are the imperfect
associativity and operational justification of hiding.

The relationship among these issues may be illustrated by means of an inter-
esting example. Let the process expression p stand for ""1, where

It is not difficult to show that p sat T and, despite operational intuition, p\b
refuses {a}.4 Accordingly, it should not be possible to infer p\b sat S, with
S being tr = () =} a f{. Ref. Indeed, such an inference is allowed neither by the
hiding rule introduced earlier (because V'YE p(XI B): T(t, Y) does not imply
S(t\B,X)), nor by the simpler rule (4-2) below (inapplicable, even though
T(t, XI B) implies S(t\B, X), because T is not compact).

3. Last, it may be worth mentioning another problem of assertions like:

Tr(tr) =} 3w E W(tr): w f{. Ref

in connection with the cardinality of the set W (tr). If, for all s making TT (s)
true, the set {u[l] I U EW (s) - { 0}} turns out to be infinite, then every p will
vacuously satisfy the above assertion. Indeed, let p refuse X E pAct+ after s
such that TT (s); to find w E W (s) such that w f{. X, it suffices to choose in
W(s) a w such that no trace in X begins with w[I].

4As examined in Section 3.3.9, this fact is related to the transition relation of p not being
image-finite (p ~ has an infinite image).
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Derived Rules

Weaker but simpler derived rules may now be presented for parallel composition:

Pn sat s; for 1 ~ n ~ N, B= U;;=I s;
(A;;=I(Xn E pAct+ 1\ Sn(sfBn,Xn))) =>

-N
S(sfB, Iln=1Xn:Bn) (S subset-closed,

B-essential) (4-1)

and hiding:

P sat T, X E pAct+ => T(s, XI B) => S(s\B, X)
p\B sat S

(T compact) (4-2)

For simplicity, we stipulate:

Assumption 4.7 Henceforth all assertions introduced, unless otherwise stated,

admit the application of rules (4-1) and (4-2). 0

This assumption is convenient because most of the assertions employed in the

following fall into one of the cases dealt with by Proposition 4.5.

4.2.4 Process-Oriented and Consistency Rules

Process-oriented rules may be viewed as a new kind of healthiness rules, in that

they reflect and stem from specific process properties.

First, we introduce a rule that stems from the finiteness of refusal functions

Images:

p sat Ref E pAct+ (4-3)

The original sat calculus of [Hoare, 1985] did not contain any counterpart of this

rule. In fact, it could have been spared here too if the semantic interpretation of sat

formulae had been defined in a suitable way, limiting the universe of variable Ref
to pAct+. Since (in the style of [Hoare, 1985]) we wanted to skirt such intricacies,

we preferred to include explicitly in the calculus this assumption (and similar ones,

cr. the premise X E pAct+ in various rules from Section 4.2.2 onwards).
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The following three process-oriented rules result from trace-refusal consistency
of processes (see proof of Proposition 4.8). The simplest is:

p sat S, X E pAct+ => S(t, X) => T(t, X),

X E pAct+ => H(t, X) => S(t, X) =>
-au,Xu {y(t)})
p sat H => S(tr· y(tr), Ref -;- y(tr))

(y(t) E Act+
for t E Act-) (4-4)

Now, two rules combining consistency with 'V introduction:

p sat S,

X E pAct+ => S(t, X) => 'VyEY(t): T(t, X),

X E pAct+ => H(t, X) => S(t, X) =>
'VyEY(t): -r«,Xu {y})

p sat H => 'VYEY(tr): S(tr. y, Ref -;- y)

(y not in S,
Y(t) ~ Act+
for t E Act-)

(4-5)

and :3 introductionr'

p sat S,

X E pAct+ => S(t, X) => T(t, X),

X E pAct+ => H(t,X) =>
S(t, X) => -,T(t, xu Y(t)) (Y(t) ~ Act+ for t E Act-,

T compact, y not in S) (4-6)p sat H => :3YEY(tr): S(tr· y, Ref -;- y)

Note that all these 'consistency' sat rules admit of a simpler form in which H is
dropped (by letting it be identically true).

Proposition 4.8 Rules (4-4), (4-5), (4-6) are sound.

Proof. For the first rule, assume its premises and side condition; let P be O(P],
and assume t E iP, X E pP(t) and H(t, X). This implies S(t, X) and -,T(t, XU
{y(t)}). Moreover, we claim that Xu {y(t)} ¢ pP(t), or S(t, Xu {y(t)}) and the
contradictory T (t, X U {y (t) }) would follow. Trace-refusal consistency therefore
ensures t·y(t) E t P and X -;-y(t) E pP(t·y(t)), whence the desired S(t·y(t), X -;-y(t))
follows.

5The side condition that T is compact may be exchanged with the finiteness of Y().
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Proof of the V introduction rule is an easy extension; we provide only that of the :3
introduction one. Again, assume its premises and side conditions, and P = O[P],
t E TP, X E pP(t), H(t, X). Then S(t, X), T(t, X) and -r«, Xu Y(t)) hold. We
claim that we can:

(1) choose yE Y(t) and Y' ~ Y(t) such that: for all Z E pY', Z U X E pP(t), but
for some Z' E pY', Z' U {y} UX (j. pP(t).

Then, by trace-refusal consistency and refusal subset-closure: t·y E TP and X +y E

pP(t· y), whence the desired S(t . y, X + y) follows.

To show (1) is possible, infer from its contradiction:

for all yE Y(t), Y' E pY(t): if Y' U X E pP(t), then Y' U {y} U X E pP(t).

Hence, by induction on the size of Y':

for all Y' E p(Y(t)), Y' U X E pP(t).

Using, p sat Sand S => T, by compactness of T, it follows that T(t, X UY(t))-a
contradiction. 0

Motivating Consistency Rules

Consistency rules essentially represent a means whereby, given some process re-
fusals juxtaposed into a longer one, the properties of the former may be combined
to derive a property of the latter. Such rules are well motivated by natural ques-
tions like the following: "if p never refuses (a), how can we conclude it never
refuses (aa), even if we don't know anything else about p?". An answer is provided
by rule (4-4), letting H be true, Sand T be (a) (j. Ref, and y be (a); the rule implies
p sat (a) ¢ (Ref + (a)), Le. p sat (aa) ¢ Ref.

An interesting issue is the relationship between consistency rules and those
presented earlier. To begin with, at a semantic level consistency rules only hold
for processes, whereas the previous operator-related rules also apply to the more
general failure sets over which process operators are in fact defined. At present,
it is not clear whether consistency rules can be derived from the rest of the sat
calculus (through e.g. some form of structural induction on process expressions),
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b b

b

Figure 4.1: a and 7r are failure- but not extended failure- equivalent.

or whether they are instead independent or even required for completeness. In any
case, they enable us to reason about process expressions known only through the
assertions they satisfy. Consider, e.g., the previous example; if p were known to be
K, and K, := a; K" it would be easy to derive p sat (aa) ¢:. Ref without consistency
rules, but this becomes impossible if p is unknown except for the specification
p sat (a) ¢:. Ref. Section 4.5.4 proves several sat formulas in which the process
expressions (a sender, a receiver and two media) are only known up to a set of
basic assertions they are required to satisfy. As discussed in Section 4.5.2, the
ability to reason about specified but undefined process expressions is an important
feature of the sat approach overall; this ability is enhanced, in the presence of
extended refusals, by the introduction of consistency rules.

Another interesting topic for further investigation is the extent to which con-
sistency rules suffice to derive properties of extended refusals from those of simple,
one-action refusals. That this extent cannot be complete is readily shown (switch-
ing to LTSs to aid intuition) by a counterexample already exploited earlier, shown
in Figure 4.1. It is not difficult to realize that every failure (tr, Ref) of a must
satisfy:

tr E b* =? c ¢:. Ref V be ¢:. Ref (4-7)

whereas the failures of 7r do not; on the other hand the simple failures of a and
7r coincide and hence satisfy exactly the same properties; therefore these cannot
suffice to infer that the extended failures of a satisfy (4-7), or those of 7r would
too. However, no such problem occurs for the non-trivial (but less pathological)
examples of Section 4.5.4: in all of them, properties of extended refusals are inferred
from those of one-action refusals.
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4.3 A Short Example

The sat-calculus will now be applied to the verification of a system that provides
reliable communication over an unreliable medium. This goal is achieved by a naive,
brute-force protocol: all messages are transmitted over and over again across the
medium, which can fail in arbitrary ways, but does not corrupt messages; sequence
numbers allow the correct message sequence to be reconstructed at the receiving
end. Such a protocol is clearly unacceptable in practice, for efficiency reasons;
however, what matters here is that its verification employs techniques that are far
from trivial and playa key role in important applications (like, e.g., the sliding-
window protocol that will be verified later). In fact, even this simplified example
already illustrates the main advantage that our sat-calculus has over the original
one of [Hoare, 1985]: the ability to deal with potentially diverging systems.

4.3.1 Specification

Architectural Specification

The system studied is expected to behave like a reliable buffer conveying service
data units (sdus) between a sending and a receiving user. In order to ensure
reliability, a sender and a receiver module must be added on top of the unreliable
medium available. The sender and the receiver are linked by the medium, through
which they exchange protocol data units (pdus).

Data representation will just be sketched. A pdu p encodes a pair (x, n), where
x is a sdu and n a sequence number; formally, this is modelled with a constructor
function pdu, and accessors sdu and seqno satisfying:

seqno(pdu(x,n)) n

sdu(pdu(x, n)) - x

pdu{sdu{p), seqno(p)) - p

The system structure is shown in Figure 4.2. Accordingly, the behaviour of
the system will be described by a process expression SP (for Service Provider),
whose interface comprises the channels snd and rcv. Sender, receiver and medium
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Figure 4.2: The example system SP.

are described by the process expressions Sender, Receiver and MEDp respectively.
Sender accepts sdus at snd and passes pdus to MEDp at srcp. Receiver receives
pdus from MEDp at end» and outputs sdus at rcv. Thus, the interfaces of Sender,
MEDp and Receiver are respectively the channel sets:

Cs = {snd, srcp} C» = {srcp, endp} eR = {endp, rcv}

In the following, it is also convenient to let, for any channel set C:

Ae = {c!v IcE C} Ba = Aeo' for a = S, P, R

SP can now be defined:

SP == (Sender: Cs II MEDp: c- II Receiver: eR) \ Cp

Specifying the Behaviour of the System and its Components

The desired behaviour of SP can be formally specified in the sat logic by:

SP sat PREFIX 1\ INLIV 1\ OUTLIV

PREFIX requires that the output sdu sequence should be a prefix of the input

one:
PREFIX = tr-l-rcv ~ tr-l-snd
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INLIV specifies that, if there are no undelivered sdus, the system should accept

any input:

INLIV = tr .,t..rcv= tr .,t..snd => Vx: snd!x ¢ Ref

Finally, OUTLIV prescribes that, if a sdu x is the next to be delivered according

to PREFIX, it should not be refused at rcv:

OUTLIV = (tr.,t..rcv)x ~ tr.,t..snd => rcv!x ¢ Ref

The behaviour of the components will now be described both informally and,

for some selected aspects, formally. One of the rewards of the sat approach is

the ability to carry out partial specification and verification. E.g., in the present

example, verifying that SP sat OUTLIV requires only:

Assumption 4.9

Sender sat Ts Receiver sat TR MEDp sat Tp

for Ts, TR and Tp allowing Lemma 4.10 to be proved and satisfying the require-

ments identified below, Le. implying (4-8), (4-9), (4-10) respectively. 0

According to this assumption, it is not necessary for Ts, TR and Tp to identify

Sender, Receiver and MEDp precisely (i.e. to be their strongest specifications) or

even for these process expressions to be actually defined; this definition can be

deferred to a later refinement step or even omitted. It should in fact be viewed

as an advantage that the results obtained will hold for any Sender, Receiver and

MEDp satisfying Ts, TR and Tp respectively. These ideas are further developed

in Section 4.5.2.

For brevity, we shall refrain from defining Ts, TR and Tp fully and concentrate

instead on their parts that are crucial for deadlock freedom verification.

Sender accepts sdus at snd and repeatedly transmits pdus at srcp; in particular,

it is always ready to transmit pdu(x, n), where x is the nth sdu received. Thus Ts
should imply:

Vn: 0 < n ~ #(tr .,t..snd)=> srcp!pdu((tr .,t..snd)[n], n) ¢ Ref (4-8)
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Receiver receives pdus at end», ignoring those out-of-sequence and extracting from

those expected a sdu that is then output at rcv. More specifically, suppose Receiver
has already output r sdus; then, ifit has just received pdu(x, r+1), it will not refuse

to output x at rev; otherwise, it will not refuse any group of out-of-sequence pdus,

followed by the expected pdu(x, r+1) at end» and by the output of x at rcv.
Formally, all this can be expressed by requiring TR to imply:

let r:= #(tr.j..rcv), 1:= #tr in
if 1> 0 /\ tr[l] = endp!pdu(z, r+1)
then rcv!z rJ. Ref
else Vu E {endp!p I seqno(p) =I- r+1}* : Vd:

u (endp!pdu(d, r+l), rcv!d) rJ. Ref

(4-9)

The medium MEDp will be required to never reach a state from which a pdu q

cannot be output after a suitable preamble; moreover, of course, no prefix of this

behaviour should be refused. So Tp must imply:

\/q::Jw E Pteomolevitr, q): Vu:::; w(endp!q): u rJ. Ref (4-10)

The trace set Preamblevitr, q) will be assumed finite. This assumption will be

justified in Section 4.4, which contains a detailed discussion on media specification.

4.3.2 Deadlock Freedom Verification

For brevity, we only provide a verification of the OUTLIV property (the next sdu

to be delivered at rev is not refused). OUTLIV is more complicated than INLIV,
and more interesting than PREFIX because it cannot be treated entirely within

the known methods of [Hoare, 1985]. However, also these methods are needed (with

the full knowledge of Ts, TR and Tp postulated by Assumption 4.9), in order to

show:

Lemma 4.10 Pdus input at src» or output at end» faithfully reflect sdus input

at snd:

(Sender: Cs II MEDp: Gp II Receiver: CR) sat FIDEL

FIDEL = Vz, n: pdu(z, n) E (tr.j..srcp) U (tr.j..endp) ~ (tr.j..snd)[n] = z 0
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The desired result is:

Proposition 4.11 SP sat OUTLIV.

Proof. Lemma 4.12 (given below) implies:

(Sender: Gs " MEDp: Gp " Receiver: GR) sat
(tr ,j..rcv)x ~ tr ,i..snd =>
3z: (z = x V pdu(z, l+#(tr ,j..rcv)) E tr ,j..srcp U tr ,i..endp) /\
3u E Wz(tr) : u(rcv!z) ~ Ref

where, for all relevant s, Wz(s) is a finite non-empty subset of Bp· (the set of
actions at channels in Gp). This assertion and FIDEL imply:

OL _ (tr,i..rcv)x ~ tr,i..snd => 3u E Wx(tr) : u(rcv!x) ~ Ref

So the previous lemma, with the conjunction and consequence rules of [Hoare,
1985], imply:

(Sender: CS II MEDp: Gp II Receiver: GR) sat OL

By Proposition 4.5 OL is compact because Wx(s) is finite, so the desired result
would follow by the hiding rule (4-2) from:

OL(s,X/Bp) => OUTLIV(s\Bp,X)

To see this, assume (s rrcv)x ~ s rsnd; if, by contradiction, rcv!x EX, then
u(rcv!x}EX / Bp for all uEBp·, against OL(s, X/Bp) (note the hypothesis Wx(s) =1=

o is crucial for the contradiction). o
The proof obligation left is the hardest:

Lemma 4.12

(Sender: Cs II MEDp: Gp II Receiver: GR) sat T

T(s, Y) = (s.!.rcv)x ~ s.!.snd =} let r := #(s.!.rcv) in
3z: (z = x V pdu(z, r-l-I] E s.!.srcp U s.!.endp) /\

(rcv!z ~ Y V

3w E Preamblep(s fGp, pdu(x, r+1)) : 3w':
w' ~ w /\ w'(endp!pdu(z, r+1), rcv!z) ~ Y)
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Proof. We observe first that T(s, Y) and T(s r( es u Gp u eR), Y) are equivalent.

By the sat rule (4-1) for parallel composition, under Assumption 4.9, the proof
amounts to deriving:

from the assumptions:

(2) Xs, x-, XR E pAct+

and Ts(s fes, Xs), Tp(s fep, Xp), TR(S feR, XR). By Assumption 4.9, these imply:

(2s) \/n: 0 < n ~ #(sJ.,snd) =} srcp!pdu((sJ.,snd)[nJ, n) ~ Xs

(2p) \/q::3w E Preamblevis rep, q): T:/u~ w(endp!q): u ~ X»

(2R) let r := #(sJ.,rcv), I := #(s feR) in
if 1> 0 A (s feR)[l] = endp!pdu(z, r+1)
then rcv!z ~ XR
else T:/uE {endp!q I seqno(q) =1= r+1}* : T:/d:

u (endp!pdu(d, r+1), rcv!d) ~ XR

The intended meaning of the set Preamblep() should give plausibility to the fol-

lowing facts, stipulated later as Assumption 4.16:

(3) For all sE Bp· and q, wE Preamblep(s, q) implies wE Bs"; wJ.,srcp = q and

wJ.,endp ~ (sJ.,srcp) U {q}.

Let (1.1) and (1.2) denote respectively the first and second conjunct in the scope of

the first :3 of (1). To establish (1), we shall infer (1.1) and (1.2) from the premise:

(4) (sJ.,rcv)x ~ sJ.,snd, whence, letting r = #(sJ.,rcv):
r+1 ~ #(sJ.,snd) and (sJ.,snd)[r+1] = x.

We now consider two cases. The first consists in assuming, for some z:

(5) 1 = #(sfeR) > 0 and (sfeR)[l] = endp!pdu(z, r+1)

This implies (1.1) directly, and (1.2) because from (2) and (2R) it follows:
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The other case is that (5) does not hold. Using (zr-), we choose w such that:

(6) wE Preambleyis fCp, pdu(x, r+l)), and Vu::;; w(endp!pdu(x, r+l)): u ¢: X»

and we may distinguish two subcases.

Letting w' = wand z = x (which verifies (1.1)), suppose:

(7) w'rendp E {endp!q I seqno(q) i= r+l}*.

Letting Wl = w' (endp!pdu(z, r+l), rcv!z), the following argument can be arranged

(relations in the second column" follow from (6) and (3), the third '¢:' column

follows from the fourth):

Wl rcs (E {(), (srcp!pdu(x, r+l))} ) ¢: Xs (2) or (4),(28)

(6)

(7), (2R)

Wl rcp (= w'(endp!pdu(z, r+l)) ) ¢: Xp

wdCR (= (w'rendp) (endp!pdu(z, r+l), rcv!z)) ¢: XR

Hence follows (1.2), since:

w' (endp!pdu(z, r+l), rcv!z) = WI ¢: Xs: Cs n Xp: Cp n XR: CR

The last case to consider is that (7) does not hold for w' = w. But then we may

choose w', z such that

(8) W' (endp!pdu(z, r+l)) ::;;wand (7) holds

Hence (1.2) can be derived as in the previous case. Finally, pdu(z, r+l) E w..l-endp
(from (8)) and w..l-endp ~ (s.!.srcp) U {pdu(x, r+l)} (from (6) and (3)); this estab-

lishes (1.1). o

6The first row has a more liberal 'E {(), (srcp!pdu(x, r+l)))', in lieu of '= (srcp!pdu(x, r+l))'
(from (3)), to suit also the last part of the proof.
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4.3.3 A Deadlock Freedom Verification Strategy for Sys-
tems with Hidden Channels

From the material in the previous section, a general strategy seems to emerge for

proving a deadlock freedom property of the form:

p \ C sat TT(tr) ::} c!v(tr) ~ Ref (c ~ C) (4-11)

Validity of (4-11) can be inferred from that of:

p sat TT(tr) ::} 3w E W(tr): w(c!v(tr)) rI. Ref (4-12)

as stated in:

Proposition 4.13 The sat formula (4-11) follows from (4-12), provided, for any

relevant argument sE Act·, TT(S\C) implies TT(S) and W(s) E p(Ac)· - {0}.

Proof. An application of the hiding rule (4-2), via the same argument used for

Proposition 4.11 (an instance of that at hand).

Rather than repeating the proof, we stress two interesting facts. (i) Since TT (tr) is

part of the specification (4-11) of p \ C, it can usually be written with occurrences

of tr projected onto channels of p\C, which are outside C; this means that in

TT (s \ C) hiding at C is superfluous for the occurrences of s; as a result TT (s \ C)
will imply TT(s), as required by the hypothesis. (ii) The finiteness of W(s) serves

to ensure compactness" of the assertion in (4-12), by Proposition 4.5. o

We are now faced with the problem of identifying a suitable W(). For this purpose,

we shall make recourse to operational intuition and therefore deliberately avoid

distinguishing between the process expression p and a LTS producing the failures

denoted by p. We proceed by considering the traces of the form w(c!z) (w E (Ac t)
which p may perform from states reached after a generic trace s satisfying TT. The

verifier should identify a finite set of the former traces, and convince himself that

at least one of these is not refused by p from any state reached through s. This

7Note that giving up compactness and relying on the more complex, full hiding sat-rule would
not help, essentially owing to refusal finiteness (a counterexample can be constructed along the
lines of Remark 4.6, item (2)).
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informal analysis, based on suitable deadlock freedom assumptions (reflecting (4-
10)) for the media within p, should enable the deadlock freedom requirements for
the other components to be checked and if necessary adjusted, or even discovered
from scratch.

As an example, let p be the system

Sender: Cs II MEDp: Gp II Receiver: CR

of Section 4.3. Suppose p has done S such that (s..!,rcv)x ~ s..!,snd, and let r be
#(s..!,rcv), the number of sdus output with Sj intuition suggests that some of the
traces p can produce after s have one of the following forms:

1. rcv!z, where pdu(z, r+1) is the last pdu arrived at etui» with Sj

2. w'(end!pdu(z, r+1), rcv!z), where z is a sdu that entered MEDp with s, and
w' E A:ndp does not contain any pdu with sequence number r+ 1j

3. w'(end!pdu(z, r+1), rcv!z), where w'=w~ (srcp!pdu(x, r+1))w~, W~,W~EA:ndp

do not contain any pdu with sequence number r+1, and z is x or a sdu that
entered MEDp with s.

For MEDp to be guaranteed to perform its share w'(end!pdu(z, r+1)) of cases (2)
and (3), we need to constrain the range where w' and z may vary. We recall (er. (4-
10)) that there must exist awE Preamblep(s fCp, pdu(x, r+1)) such that MEDp
does not refuse any prefix of w(endp!pdu(x, r+1)). So w'(end!pdu(z, r+1)) will be
required to be one such prefix.

Further, it is not difficult to argue that, if Sender and Receiver fulfil the prop-
erties formalized by (4-8) and (4-9), they will not refuse to take part in at least
a trace as in (1)-(3), whichever state they have reached by participating in s. In
fact, these informal and often rough arguments were the starting point of an effort
that, through some stepwise refinement, culminated in the formulation of (4-8)
and (4-9), and the reasoning employed in subsequent proofs.

Generalizing these results, we may state that the previous step should yield a
sat formula of the form:

p sat T~(tr) =? 3z E V(tr): 3w E Wz(tr): w(c!z) ¢ Ref (4-13)
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where (for all relevant argument s) V(s) is finite, and Wz(s) should be finite too,
being expressed in terms of (supposedly) finite media preamble sets. Note that
the system p is thus guaranteed to perform the desired instance of w(e!z) from
states reached through traces satisfying T~, rather than the TT considered initially
in (4-12); this provides for the eventuality that, in the informal analysis step, such
alternative states might appear to be easier to deal with. In any case, it is to be
expected that, under a suitable safety property, for any trace s of p, TT( s) should
imply T;(s) and zE V(s) should imply z=v(s). This will allow (4-12) to be inferred
from (4-13), which therefore remains as the last obligation of the verification proof
outlined.

In the example worked out earlier, the role of obligation (4-13) is played by the
sat formula proved in Lemma 4.12; this formula is indeed an instance of (4-13)
under the definitions:

e rev

#(s,irev)

(s,isnd)[l +r( s) 1
r(s) < #(s,isnd)

{x(s)} U {y I pdu(y, r(s)+l) E (s,isrep) U (s,iendp)}

{O} U {w'(endp!pdu(z, r(s)+l)) I
3u E Preamblep(srCp,pdu{x(s), r(s)+l)): w' ~ u}

We conclude this topic with a useful observation.

r(s)

x{s)

T~(s)

V(s)

Remark 4.14 The exact nature of the set W{tr) in (4-12) is in fact unimpor-
tant for applying sat rule (4-2) to (4-12) in order to infer the desired (4-11) (cf.
Proposition 4.13 and, as an aid to intuition, recall traces in W (tr) are to be hid-
den anyway). It is only mandatory that W(s) should be non-empty and finite for

appropriate s.
Therefore, a derivation of Wz (s) like that sketched above is only necessary to

ensure that W{s) (which depends on Wz{s)) enjoys non-emptiness and finiteness.
In turn, for this purpose, as shown by the example Wz(s) above, it is not

necessary to know media preamble sets exactly, but only to rely on them to possess
just the same non-emptiness and finiteness properties. 0
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4.4 Specifying Unreliable Media

This section deals with the specification of a process MED intended to model an
unreliable communication medium. MED has input channel src and output channel
end, and will usually be considered through its renamed instances, like e.g. MEDp
of Section 4.3.

An otherwise unreliable medium is normally at least assumed not to corrupt
messages (thanks to redundancy checks); thus any pdu coming out of end must
have been previously input at src. Formally:

MED sat M.REL

M.REL = tr ~end ~ trLsrc

(4-14)

4.4.1 Introducing Media Deadlock Freedom

Intuitively, one would expect that MED must also guarantee to perform some sort
of activity every now and then, or even a deadlocked medium would be acceptable.
However, the ordinary sat calculus does not allow such requirements to be formal-
ized satisfactorily in a general way. Consider, e.g., a medium that has no buffering
capacity and can only fail by losing messages but is otherwise ideal; little can be
guaranteed about its (one-action) refusals: we might tentatively require that either
the medium does not refuse input, or is ready to output the last message that has
just entered it (the previous ones having been already delivered or lost):

MED sat end!last(tr~src) ¢ Ref V 'rIe: src!e ¢ Ref

But this does not ensure the medium is useful; no conclusion can be drawn as to
whether any message will eventually get through; a MED that just throws input
data away would satisfy the above specification. Of course, in this framework dead-
lock freedom cannot be verified for systems built on top of such a MED. A partial
remedy could be based on placing an upper bound on the number of consecutive
losses, but choosing such bounds is always arbitrary and leads to treatments that,
depending on the bound chosen, are more cumbersome and complex than desirable.

These limitations can be overcome using our extended failures and calculus,
which make it possible to specify that the medium is not deadlocked, in that it is
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capable of conveying any message d. For this purpose, it will be required that at
any stage either MED (being empty) does not refuse to input and output d, or that
it does not refuse to output the message it holds and then acquire and output d:

MED sat \::Id:\::Iu~ (src!d, end!d): u ~ Ref V

\::Iu~ (end!last(tr.J_sre),src!d, end!d): u ~ Ref
(4-15)

Note that it is explicitly being excluded that two or more inputs are necessary for
the medium to output d, not that the medium may lose several consecutive inputs.
Thus the medium may well e.g. perform initially a trace (sre!d, sre!d, sre!d) and
reach a state whence end!d is refused; however, both from the initial and final state
it should not refuse to perform (sre!d, end!d).

The deadlock freedom property introduced can be effectively exploited in verifi-
cation, and indeed was in Section 4.3.2. The form of the assertion (4-10) employed
there can be given to that in (4-15) above by rewriting it as:

\::Id: 3w E Preamble{tr, d) : \::Iu~ w(end!d): u ~ Ref

having defined the finite set

Preamble{ tr, d) = {(src!d), (end!last{tr Lsrc), sre!d)}

It may also be worth observing here that, for the application discussed, the
sat methodology turns out to be superior to the purely equational one (case 1,
Section 1.5). The above sat specification of a medium affected by message loss
encompasses many realizations of MED, among which, in contrast, an equational
specification would be forced to choose a particular one; the chosen MED could
e.g. be one capable of losing every input message, or just every second one, or just
a 0 and no other message, and so on."

4.4.2 Media Deadlock Freedom: the General Case

A medium that cannot be used to transfer a message d is of course unacceptable.
Therefore, in general, MED should never reach a state from which d cannot be

8This problem can be mitigated with a mixed approach, ultimately amenable to case 2, Sec-
tion 1.5.
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output after a suitable preamble including a single input of d. A formalization is
best introduced by means of transitional semantics. Below, suppose MED ~ M;
then there must exist w such that:

w-l.S1'C= d

w-l.end ~ (s.Lsrc) U d

M
w(end!d)

(4-16)

(4-17)

(4-18)

These conditions warrant some comments, especially in order to dispel some pos-
sible misconceptions:

Remark 4.15

1. (4-17) can be understood as a result of the requirement that any message
output must have been input earlier (whence w-l.end ~ (sw)-l.src), combined
with (4-16).

2. (4-16) rules out media that require multiple inputs of d before d can be out-
put. An example of this could be an otherwise ideal MED that always throws
away the first input message; for s = () and M being MED, this makes (4-18)
only possible with w = (src!d, src!d), against (4-16). Practical applications
hardly ever employ such curious media, admitting inputs that have no po-
tential effect; besides, if necessary, their formalization can be tackled anyway
along the same lines of the case treated, assuming suitable bounds on the
number of multiple inputs required to obtain an output.

3. On the other hand, remark 2 does not imply that an input message cannot
be lost, thus requiring a second input to produce a single output. E.g. it is
perfectly possible that:

MED ~ M, M ~, M (src!d,end!d~)

But, in accordance with remark 2, it is also required that MED
Brc!d,end!d

4. (4-16) and (4-18) do not prevent an s-derivative M of MED from inputting
d and then losing it, reaching a state from which d cannot be output any
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more; i.e. there may be WI, 'lll2 E A:nd, M' such that:

M wl(src!d}1II2 M' M' ,Wa(end!d} r •
" t> lor all W3 E Aend•

But of course also M' must be able to find its way to outputting dafter

inputting it again, just as formalized for M above.

5. (4-16) does not prevent M from outputting d without inputting it first (pro-

vided d had been input by MED with s). It is therefore possible that:

M
w(end!d} o

By the preceding discussion, we may define a function pre mapping every trace s,
s-derivative M of MED and message d onto a trace W = pre(s, M, d) such that:

w_J..src= d w_J..end ~ (s.l.src) U d M
w(end!d}

We now let:

Pre(s, d) = {pre(s, M, d) I MED =k. M}

Provided MED =k., this set must be non-empty and:

"is, M: MED =k. M ~ "id: 3w E Pre(s, d): "iu ~ w(end!d): M ~

These conditions can be translated into the denotational-sat framework by requir-

ing that

MED sat M.LIV

M.LIV = Vd: 3w E Preamble(tr, d) : "iu ~ w(end!d): u ¢ Ref

(4-19)

and

Assumption 4.16 Every acceptable medium MED is associated with a function

Preamble. This maps a trace s over C = {src, end} and message d onto a finite,

non-empty set Preamble(s, d) of traces over C such that wEPreamble(s, d) implies:

1. w_J..src= d,
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2. w-!-end ~ (s.Lsrc) U id}. o

All these requirements, except the image-finiteness of Preamble, reflect those al-
ready identified operationally in the transitional framework (cf. (4-16) and (4-17)).
The finiteness assumption ensures (by virtue of Proposition 4.5) that assertions
containing Preamble are compact, thus permitting the application of the simpler
hiding rule (4-2). This is generally needed for deadlock freedom verification of
systems built around media satisfying (4-19), as discussed in Section 4.3.3 and es-
pecially in Remark 4.14. That remark and the experience of this work even suggest
that for verification no information on media is necessary beyond those laid down
in Assumption 4.16; in particular, an exact knowledge of function Preamble does
not appear to be indispensable.

Justifying Preamble Image Finiteness

We shall now justify also the finiteness assumption for Preamble by showing that,
for nearly all media, it can also be made for Pre, the operational counterpart of
Preamble.

We first observe that:

s·w·(end!d}
Pre(s, d) ~ {w I MED ======t>, w-!-src = d}

Hence it follows, using the (transitional) r operator of Definition 3.83:

Pre(s, d) ~ {WI (src!d)1V2 I WI, 1V2 E A:nd,
SW! (src!d)1V2(end!d) E r MED}

C {wI(srcld)1V21 WI E out(s),
1V2(end!d) E out(SWI (src!d)) }

where we have defined:

out(s) = {u E A:nd I su E rMED}, for sE rMED

The tree out(s) comprises all the output traces that MED can perform after trace s,
and therefore is a very natural means of describing the characteristics of a medium.
Whenever out(s) is finite for all traces s of MED, the upper bound derived above
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ensures finiteness for Pre{s, d) too. This turns out to be the case for many impor-
tant classes of media. E.g. a medium that may be affected only by message losses
will have (:::;being the subsequence relation):

out{s) ~ {u E A:nd I {su)..l.end:::; s.l.src]

A medium that may also fail to preserve message ordering has:

out{s) ~ {u E A:nd I {su)..l.end:::; t,for some permutation t of s,!,src}

However, if out(s) is infinite the above argument cannot be used to infer that
Pre(s, d) is finite. An example is a medium allowing any loss, reordering and
unbounded duplication of undelivered messages, so that:

out(s) = {u E A:nd I u,!,end ~ s.l.src]

which is an infinite set.
Note however that out{ s) is still finite in the presence of bounded duplication.

Normally, solving cardinality-related issues by placing bounds is not particularly
attractive, because the bound chosen is apt to have a flavour of arbitrariness and
furthermore to clutter the resulting specification and proof. The case at hand,
however, does not suffer from this flaw, because the bound is encoded and 'encap-
sulated' in the image-finite function Preamble, and this one (as discussed above and
in Remark 4.14) need not be known except for what stated in Assumption 4.16.
This makes our approach more than satisfactory for practical applications.

However, we will also show how to tackle many cases in which out{s) is infinite.
We go back to the definition:

Pre(s, d) = {pre(s, M, d) I MED ~ M}

First, we may count on many interesting media MED having, for all s, an image-
finite "MED ~" relation (i.e. finitely many s-derivatives), which guarantees that
the set Pre(s, d) is finite.

If this fails to happen, recall that function pre need only satisfy, for all w =

pre{s, M, d):

w,!,src = d w,!,end ~ (s,!,src) U d M
w(end!d)
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Figure 4.3: LTS describing the behaviours of medium RDMED.

Now, suppose that, for fixed s, d and each M such that MED ~ M, there is a w

as above, bounded in length by some integer, say n(s). Then pre(s, M, d) may be
chosen to return this w, so that

Pre(s, d) - {pre(s, M, d) I MED ~ M}
C ({src!d, end!d} U {end!v I v E s.!.src})R(8)

and again Pre(s, d) is finite. As explained above, in this case we do not view as a
real limitation the recourse to a bound, since this remains implicit by virtue of the
introduction of function Preamble. Thus, a great deal of the remaining media and
applications may be catered for.

In particular, we may treat a medium affected by unbounded duplication, pro-
vided from each state it also has a route available along which duplication is
bounded; in some sense this may be seen as duplication being reversible up to
a bounded threshold. As an example, consider a one-bit buffer RDMED that du-
plicates an undelivered 0; for simplicity we do not define it as a process expression
and work out its transitions instead from the LTS in Figure 4.3. We choose:

pre(s, RDMED, 1)
pre(s, E, 1)
pre(s, D", 1)

(src!1)
(end!l, srcll )

(end!O, src!1)

(we omit making the range of s precise, or showing that, for the relevant s, condi-
tion (4-17) is satisfied). As explained before, since pre is image-bounded, Pre will
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IDMED end!O

Figure 4.4: LTSs describing the behaviours of IDMED, Sand R.

be image-finite.
£

It is worth noting that the internal transitions Dk+l ==t> Dk that undo the
duplication of bit 0 might as well be interpreted as losses of the duplicated bit,
which-quite surprisingly-means that loss can obviate the undesired effects of

duplication.
If these duplication-undoing transitions are removed from the behaviour of

RDMED, for the resulting medium IDMED (Figure 4.4) we can't help defining
for, say, s = (end!O) and k ~ 0:

pre(s, Ik, 1) = (end!O)k+l (srcll)

which clearly results in an infinite Pre(s, 1) and ultimately in the impossibility of
satisfying Assumption 4.16. Thus, deadlock freedom assertions for systems based
on IDMED may fail to be compact, which makes verification in the style of Sec-
tion 4.3.3 impossible. Actually, this is not a new problem, but, like many others
before, can be traced to the adoption of finite refusals. Moreover, it should not
represent an additional concern, because in our model the medium IDMED is of
limited use anyway.

To see why, let SIR represent the parallel composition of IDMED with Sand R
described in Figure 4.4. Note that we may rely on these LTSs to determine failures
and transitions of SIR, but for the failures of HSIR = SIR\ {src, end} we need to
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revert to the denotational definition of hiding, owing to its imperfect operational
correspondence (cf. Proposition 3.99 and the discussion preceding it). Intuitively,
S reacts to a by probing R through the medium with both a 0 and a l , in the hope
that R will respond to one of these bits by performing b, as it does indeed for a 1.

This is intended to ensure for HSIR the external requirement:

HSIR sat ir = a => b ~ Ref

However, it is not difficult to show that instead {b} E pHSIR(a), if the refusal
function p is understood denotationally. Indeed, letting C = {src, end}, we have:

VY E pAet+: Y\C = {b} => YE pSIR((a, sre!O)) (4-20)

To see this, choose one such Y and observe that, since Y\ C = {b}, its traces must
have the form w' b ui" with w', ui" E (Aa)*; since Y is finite, let m be the maximum
integer such that w' = (end!O)m+1(sre!l, end!I), if any, or else o. We now show
that Y EpSIR( (a, src!O)) (this p can be interpreted operationally because SIR does
not contain hiding); Figure 4.4 should convince the reader that:

1. SIR (~ Q iff Q is, for some k ~ 0, the composition SIRl,k of SI, hand R;

2.
Wi b w"

SIRl,k ===t> for w', ui" E (Aa)· holds only if w' = (end!O)k+l(src!l, end!I).

Therefore SIR1,m+1 cannot perform any trace of Y, and the desired (4-20) follows.

4.5 A Case Study: A Sliding Window Protocol

The sat calculus will now be applied to the verification of a system that provides
reliable communication over an unreliable network. This goal is achieved by a
fault-tolerant version of the sliding-window protocol, which is at the core of class 4
Transport protocol [ISO, 1988]. It should be stressed that the protocol to be studied
is a non-trivial one and will be formally described at a realistic level, despite the
omission of some features of a full-fledged Transport protocol, such as connection
management, multiplexing or fragmenting.
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4.5.1 Informal Description

The system studied is expected to behave like a finite buffer of length L (L ~ 1).
More specifically, it must guarantee reliable communication satisfying the following
requirements:

REL data conveyed are neither corrupted nor spuriously created, Le. any data
output must have been previously input;

SEQ data are output in the input order;

BUF data input and still undelivered are at most L;

INLIV the system cannot refuse to input data, unless BUF would be violated as

a result;

OUTLIV the system cannot refuse to output undelivered data.

Note that compared to the example in Section 4.3, the requirements BUF is new
and INLIV has been adjusted accordingly. This will result in considerable added
complexity in the system architecture, the protocol governing it and, consequently,
the overall treatment.

The system is built on top of a network that provides communication me-
dia satisfying the requirements described in Section 4.4, but otherwise unreliable.
Therefore, such a medium satisfies the safety property (4-14), which is tantamount
to REL, and the deadlock freedom property (4-19). On the other hand, it may
lose, duplicate or reorder input data, thus violating OUTLIV and SEQ; BUF
and INLIV are not guaranteed either.

In order to ensure the missing functionalities, a suitable layer must be added
on top of the network. Again, adhering to protocol terminology we shall call sdus
the data conveyed by the added layer on behalf of its users, and pdus the data
exchanged by the entities that compose the layer. In our case study there are
only two entities, a sender and a receiver. The sender accepts sdus from a user,
while the receiver delivers sdus to another user. They also exchange pdus in both
directions, through the network. Any pdu p issued by the sender carries a sdu d
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and a sequence number n. Data representation is modelled as in Section 4.3, with
three functions pdu, sdu and seqnowhich satisfy:

seqno(pdu(d,n)) n

sdu(pdu(d,n)) d

pdu(sdu(p),seqno(p)) p

Pdus issued by the receiver are integers called called acks (acknowledgements).
The sender and the receiver obey a sliding window protocol [Tanenbaum, 1988],

which is now sketched along with an informal derivation of the 'partial correctness'
system properties REL and BUF.

Since the network satisfies REL, the receiver knows that the pdus it receives
actually originate from the sender; it can also assume that

S.FIDEL If the sender issues a pdu p such that sdu(p) = d and seqno(p)= n,
then d was the nth sdu accepted by the sender.

Hence it follows that

R.RECOV the receiver has enough information to reconstruct the sequence of
input data, guaranteeing REL and SEQ for the system.

Since the network satisfies REL, the sender knows that the acks it receives
actually originate from the receiver; it can also assume that:

R.ACKLIM any ack issued by the receiver is not greater than the number of sdus
delivered by the receiver.

Thus, for BUF to be satisfied, it is sufficient that:

S.INLIM the sender does not let the number of sdus accepted exceed the highest
ack received by more than L.

4.5.2 A Plan of the Formal Treatment

Consider the formula p sat S, with p not a process constant. Proving its validity,
ultimately involves the sat rule for the outermost operator of p; the premises of
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this rule will include the formula Pa sat Sa for each generic operand P« of P, and
may otherwise refer to Sa but not Pa' Thus the desired conclusion P sat S can be
inferred simply from assumptions ensuring Pa sat Sa for each Cl, and knowledge of
Sa, but not Per. This pattern of reasoning may of course be applied again to any
operand Pa'

The ability to reason about a partially unknown process expression like P above,
affords some important advantages:

• greater generality of the results obtained, which will apply to any process
expression P whose operands Per satisfy the specifications Sa;

• deferment of many implementation decisions, irrelevant for correctness, to
late design stages (each Pa can be defined after the premises needed to infer
p sat S have been established);

• the ability to study systems whose components (i.e. Per) may be affected by
largely unpredictable errors; such components are best collectively described
through constraints like those introduced in Section 4.4 for media, rather
than tied to specific-and arbitrary-realizations as process expressions;

• a means through which verifications of different process expressions may be
combined without involving the process expressions themselves; this facili-
tates bottom-up, top-down and mixed approaches to design.

These observations suggest that a top-down approach to the formal analysis of a
system can be conveniently structured in steps according to the following checklist.

1. The system is assumed to be modelled with a process expression having a
suitable interface.

2. External requirements specification. Informal requirements on the external
behaviour of the system are rendered as an assertion that it must satisfy.

3. Architectural specification. System components, in number and interface, and
their interconnection and internal channels are identified.
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4. Hiding rule inference. Rule (4-2) is employed to infer that the system satisfies
its external specification. Note that among the premises of the rule there
must be a sat formula for the parallel composition of system components; it
may be identified through the strategy proposed in Section 4.3.3, and can be
introduced at this stage as an assumption or follow from one-presumably
another sat formula about the parallel composition.

5. Component specification. Components are formally specified in the sat logic.

6. Parallel composition rule inference. On the assumption that components
satisfy their specifications, this rule is employed to infer that their composi-
tion satisfies the assumption made in step 4. Thus, that assumption may be
discharged.

7. Component implementation and verification. Components to be implemented
are defined as process expressions, which are then proved to satisfy the re-
spective specifications, discharging the assumptions introduced in step 6.9

Of course this ordering and structuring is bound to be, to some extent, arbitrary,
and ignores the cyclic refinements of real design. It is however fairly typical and,
by leaving component implementation last, or even aside, enjoys the advantages
noted earlier. It can also be readily rearranged in a different (partial) order, to
reflect other design routes; e.g. if architecture and components (steps 3 and 5) are
fixed, determining the properties of external system behaviour (step 2) becomes
a goal. Note that, even in the present arrangement, architecture and components
may result partly from design choices and partly from design requirements (e.g.,
as in our examples, that remote sites are to be connected through faulty media).

The specification steps 1, 2, 3 and 5 for our case study are carried out in
Section 4.5.3. Being fairly orthogonal, safety and deadlock freedom verifications

9This step is skipped for components that need not or cannot be implemented as process
expressions. Consider, e.g., a communication medium or an off-the-shelf module, known to the
designer only through specifications; or a component that has been implemented and verified in
advance (that is, a partially bottom-up design).

On the other hand, the component to be implemented may be complex enough to warrant a
further, 'recursive' application of the checklist methodology.
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are considered separately; for the latter, steps 4 and 6 are presented in considerable
detail in Section 4.5.6. Finally, the component implementation step 7 is discussed
in Section 4.5.7.

4.5.3 Formal Specification

Our example communication system will be modelled with a process expression
referred to as TSP (for Transport Service Provider), which accepts sdus at channel

snd and delivers them at rev.

External Requirements

The informal requirements of Section 4.5.1 may be formalized thus in the sat logic:

TSP sat PREFIX 1\ OUTLIV 1\ INLIV 1\ BUF (4-21)

PREFIX is as in Section 4.3 and OUTLIV too (except for the form chosen); INLIV
instead takes BUF into account:

PREFIX _ tr.J,rcv ~ tr.J,snd

OUTLIV #(tr.J,rev) < #(tr.J,snd) ::::}rev!(tr.J,snd)[1+#(tr.J,rcv)] ¢ Ref

BUF - #(tr.J,snd) ~ #(tr.J,rev)+L

INLIV #(tr.J,snd) < #(tr.J,rcv)+L::::} "Ix: snd!x ¢ Ref

Architecture

The architecture of system TSP is depicted in Figure 4.5. Its internal components
are modelled by process expressions SENDER, MEDp, MEDA and RECEIVER,
interacting at the channels:

CPA = {srep, end», srcA, endA}

The media MEDp and MED A make up the communication network connecting
SENDER and RECEIVER; they carry pdus from src» to etul» and acks from srcA
to endA respectively. SENDER accepts sdus at snd and acks at endA, and outputs
pdus at src». RECEIVER outputs sdus at rev and acks at srCA, and receives pdus
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snd rcv
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Figure 4.5: Architecture of the system TSP

at end». Thus, the interfaces of SENDER, MEDp, MEDA and RECEIVER are

respectively the four channel sets:

{snd, src», endA}
{srcA, endA}

{srcp, endp}
{endp, srCA, rcv}

As in Section 4.3, we let:

Ae = {c!v ICE C} Bo:= Aea, for a = S,P,A,R

TSP can now be defined as:

TSP - PSP\ CPA (4-22)

PSP - (SENDER: c» II MEDp: Cp II MEDA: CA II RECEIVER: CR)

Component Specification and Basic Properties

Component specification represents step 5 in the design checklist of Section 4.5.2.

As observed before, one of the rewards of the sat approach is the ability to

carry out partial specification and verification. Thus it will be possible to derive

the desired property (4-21) for TSP simply by assuming

SENDER sat r,
RECEIVER sat TR

MEDp sat r;
MEDA sat TA

(4-23)
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for suitable Ts, T», TA, TR, and this result will hold for any choice of SENDER,
MEDp, MEDA RECEIVER orderly satisfying them. Note that at this stage none of
these expressions need be known or precisely identified by the respective assertion,
which in turn does not have to be stronger than required by proofs. In fact, for
the reasons examined in Section 4.5.2, the definition of SENDER and RECEIVER
as process expressions is deferred to a later step, while that of MEDp, MED A will
not even be attempted.

We are not ready, yet, to formulate the full assertion To. for any a = S, P, A, R.
For now we shall confine ourselves to some properties, referred to later as basic,
that will playa role in the quest of the To.s. Property names will obey the pattern
"a ... ", in order to let them be immediately related to the process expression they
specify.

The basic safety and liveness properties for media MEDp and MED A are ob-
tained from the pair M.REL, M.LlV defined for MED in Section 4.4, by renaming
channels src, end as src», end» and srcA, endA respectively. The resulting assertions
will be named P.REL, P.LIV and A.REL, A.LlV.

Assertions S ... and R ... below apply to SENDER and RECEIVER respec-
tively; they express either 'safety' properties concerning only traces, or deadlock-
freedom properties involving also one-action refusals.

Safety assertions S.FIDEL and S.INLIM formalize the corresponding require-
ments of Section 4.5.1 for the sender:

S.FlDEL = 'rip E (tr.!,.srcp): sdu(p) = (tr.!,.snd)[seqno(p)]

S.INLIM = #(tr.!,.snd) ~ max(tr.!,.endA)+L

Note that henceforth it will be assumed that max( ()) = o.
S.SDU.LlV states that the sender should not refuse to input a sdu at snd so

long as this does not violate S.lNLlM:

S.SDU.LlV = #(tr.!,.snd) < max(trtendA)+L => tlx: snd!x ¢ Ref

By S.ACK.LlV the sender should accept any ack at endA:

S.ACK.LIV = 'rIn: endA!n ¢. Ref
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By S.PDU.LIV the sender never refuses to send at src» a pdu containing the oldest
unacknowledged sdu (if any):

S.PDU.LIV = let h:= max(tr..l-endA) in h < #(tr..l-snd) =>
srcp!pdu((tr ..l-snd)[h+1J, h+1) ¢ Ref

Safety assertions R.RECOV and R.ACKLIM formalize the corresponding in-
formal requirements of Section 4.5.1 for the receiver:

R.RECOV == 'rim: 1~m~#(tr..l-rcv) => pdu((tr..l-rcv)[m], m) E (tr..l-endp)

R.ACKLIM = 'rIn: nE (tr..l-srcA) => n ~ #(tr..l-rcv)

The receiver accepts pdus at end», ignoring those out-of-sequence and extracting
from those expected a sdu that will be output at rcv. More specifically, let r be
the number of sdus output; by R.SDU.LIV, the receiver does not refuse to output
the sdu contained in the first pdu arrived with sequence number r+ 1:

R.SDU.LIV = let r:= #(tr..l-rcv) in let u := trrA~~Jp in
u::j:. () => rcv!sdu(head( u..l-endp)) ¢ Ref

where, for i natural, it has been defined:

A~ndp = {endp!q I seqno(q) = i} (4-24)

Note that in the simpler example of Section 4.3 the sdu output is instead the
one carried by the latest pdu with the expected sequence number (these sdus will
coincide anyway, in the complete system, by S.FIDEL and P.REL).

No data incoming at end» is refused:

R.PDU.LIV = 'rIq: endp!q ¢ Ref

After receiving data at end», the receiver does not refuse to ack at srCA with the
number of sdus output. However, note that the specification R.ACK.LIV does not
force the receiver to acknowledge immediately (it may instead output sdus or keep
accepting pdus, but will not withdraw its offer to acknowledge):

R.ACK.LIV = last(trr{endp, srcA}} E Aendp => srcA!#(tr..l-rcv) ¢ Ref
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4.5.4 Derived Component Properties

Motivation

In our experience, the single most difficult verification task is the application of the
parallel composition inference rule (4-1) (step 6 of the checklist in Section 4.5.2).
For the case at hand, letting ps, Pp, PA, PR be the system components SENDER,
MEDp, MEDA, RECEIVER respectively, and a range over S, P, A, R, we can
instantiate rule (4-1) thus:

Po sat To for all a,

(l\o(Xo E pAct+ /\ To(s rCa, Xo))) =* T(s r UoCo, IToXo: Co)
(4-25)

This rule will be applied twice, in Lemmata 4.28 and 4.29, with T defined so as to be
employed in the verification of deadlock freedom properties INLIV and OUTLIV
respectively. If each To were simply the conjunction of the basic a. .. assertions
introduced earlier, the left side of the second premise of rule (4-25) would be too
weak to imply the right side T(s r UoCo, IToXo: Co), thus preventing application of
the rule. This is because T must also depend on extended refusals, whereas the
basic assertions only refer to one-action refusals.

In connection with the problem of strengthening the assertions To and in the
light of the checklist in Section 4.5.2 (steps 6, 7), it is now necessary to choose the
role of the Tos in the treatment. There are essentially two alternatives:

1. to assume Po satisfies To;

2. to assume Po satisfies just the basic a. .. assertions, and thereby establish
the required To by exploiting consistency rules (4-4), (4-5), (4-6).

The latter approach is, in our view, preferable, essentially because it is more in
keeping with the decision deferring spirit advocated in Section 4.5.2. With this
choice, the bulk of deadlock freedom verification (related to (4-25)) can be tack-
led with a comparatively small set of assumptions; this ensures a high degree of
confidence in the results obtained, throughout the entire treatment, even before
the process expressions Po have been defined. In contrast, the former approach



4.5. A SLIDING WINDOW PROTOCOL 160

needs uncomfortably heavy assumptions, which can only be discharged after defin-
ing each Pet! if possible, or else never; e.g. with reference to Table 4.1, satisfaction
of assertion o:.t.7r.LIV by medium MEDo could have only been assumed, but not
proved (which we instead do in Lemma 4.24).

As for ease of use, the second approach also seems to have an edge. Within
it, if component Po is recursively defined, recourse to delicate fixpoint induction
will only be required to prove the basic assumptions on Po, rather than the full
To. Furthermore, the proof of To with consistency rules is not burdened with
the irrelevant detail possibly added by the definition of Po. In sum, we believe
that in the preferred approach establishing the premises of rule (4-25) is easier;
moreover it is in fact only indispensable, unless component implementation is the
ultimate goal, for non-basic properties, the basic ones being self-evident. The only
price to pay when working with consistency rules is an occasional explicit recourse
to integer/structural induction, which in the other approach is disguised by the
application of the fixpoint rule to fully defined recursive process expressions.

Technical Results

As argued above, we shall need:

Assumption 4.17 Components SENDER, MEDA, MEDp and RECEIVER of
TSP satisfy the basic properties formalized at the end of Section 4.5.3 (refer back to
(4-14) and (4-19) for the paradigms reproduced by the media basic properties). 0

We are now able to formulate the full component specifications Ts, T», TA, TR
referred to in (4-23) and needed for an effective application of inference rule (4-25).

Proposition 4.18 The following sat formulae hold:

SENDER sat r, MEDp sat r, RECEIVER sat TR

with each To (0: = S, P, A, R) defined as the conjunction of assertions 0: ... in
Table 4.1.

Proof. Satisfaction of basic assertions has been assumed. Satisfaction of the re-
maining ones is proved in the rest of this section, except for those whose proof is
straightforward or similar to others provided. 0
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S.PIDEL - Vp E (tr.!.srcp): sdu(p) = (tr.!.snd)[seqno(p)]
S.INLIM - #(tr.!.snd) ~ max(tr.!.endA)+L

S.SDU.LIV - #(tr.!.snd) < max(tr.!.endA)+L::::} "Ix: snd!x ~ Ref
S.ACK*.LIV - Vw E (AendA)*: w ~ Ref
S.PDU.LIV - let h :=max(tdendA) in h < #(tr.!.snd) ::::}

src» !pdu ((tr.!.snd)[h+ I], h+l) ~ Ref

S.1.LIV - let s:= tr.!.snd in let m:= #s, h:= max(tr.!.endA) in
Vu: u = ()V h-em 1\ {u = (srcp!pdu{s[h+l], h+l)}) ::::}
Vw E (AendA)*:

("In: m < n+L::::} "Ix: u·w(endA!n, snd!x} ~ Ref)
1\ (Vr: u·w(endA!r) ~ Ref)
1\ (Vr: h~r<m 1\ max(w.!.endA) ~ r::::}

u·w(endA!r, srcp!pdu{s[r+l], r+l)} ~ Ref)
R.RECOV - "1m: l~m~#{tdrcv)::::} pdu{{tr.!.rcv)[m], m) E (tr.!.endp)

R.ACKLIM - "In: nE (tr .!.srCA) ::::}n ~ #(tr .!.rcv)

R.SDU.LIV - let r:= #(tr.!.rcv) in let u:= trrA~~Jp in
u =F () ::::} rcv!sdu{head{utendp)) ~ Ref

R.PDU·.LIV - Vw E (Aendp)* : w ~ Ref

R.ACK.LIV - last(td{endp,srcA}) E Aendp ::::}srcA!#(trtrcv) ~ Ref

R.1.LIV - "Iq: (endp!q,srcA!#{trtrcv)} ~ Ref
R.2.LIV - let r := #(tr .!.rcv) in tdA~~Jp = () ::::}

Vz: "Iq: 'Vw E (Aendp)*: {(endp!q)wHA~~Jp = ()::::}
w(endp!pdu{z, r+l), rcv!z} ~ Ref

1\ (endp!q}w(endp!pdu{z, r+l), rcv!z) ~ Ref
1\ (endp!q, srcA!r)w(endp!pdu(z, r+l), rcv!z) ~ Ref

a.REL - tr .!.enda ~ tr tsrca
a.LIV - Vd: 3w E Preamblea{tr, d) :Vu ~ w(enda!d): 1.£~ Ref

a.7r.LIV - Vd: 7r( d) ::::}3w E Preamblea (tr, d) :
3w' ~ w: 3d' E {tr .!.srca)U{ d} :

(""7r)(w'tenda) I\7r(d') 1\ w'(enda!d'} ~ Ref
a.t.LIV - Vp: 31.£~ (srca!p): 3q E (tr tsrca)U{p}: u(enda!q) ~ Ref

a.t.7r.LIV - 'Vp: 31.£~ (srca!p): 3q E (tr tsrca)U{p}: u(enda!q) ~ Ref 1\

Vd: 7r{d) ::::}3w E Preamblea{tr·u(enda!q}, d):
3w' ~ w: 3d' E {{tr·u).!.srca)U{d}:

(""7r)(w'tenda) 1\ 7r(d') 1\ u(enda!q}w'(enda!d'} ~ Re!

Table 4.1: Properties of the sender, the receiver and medium Ma.
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It should be noted that all the following results presuppose Assumption 4.17. We
begin with some about the sender:

Lemma 4.19 SENDER sat S.ACK*.LIV, where

S.ACK*.LIV = Vw E (AendA)*: w fI_ Ref

Proof. By structural induction on w.

Basis: SENDER sat () fI_ Ref follows from rule (4-3).

Step: let aEAendA; wemay assume SENDER sat S holds for S = wfl_Ref /\ afl_Ref,
the first conjunct being the induction hypothesis and the second S.ACK.LIV. We
may now apply consistency rule (4-4), with H true, T(t, X) = a fI_ X and y(t) = a
to infer SENDER sat w fI_ Ref + a, i.e., as desired, SENDER sat (a}w fI_ Ref. 0

Lemma 4.20 SENDER sat S.l.LIV, where S.l.LIV is:

let s := tr ..!-snd in let m := is, h := max( tr ..!-endA) in
Vu: u = ()V h-em /\ (u = (srcp!pdu(s[h+1], h+1)}) =>
Vw E (AendA)*:

(Vn: m < n+L => Vx: u·w(endA!n,snd!x) rt Ref)

/\ (Vr: u·w(endA!r) fI_ Ref)
/\ (Vr: h~r<m /\ max(w..!-endA) ~ r =>

u·w(endA!r, srcp!pdu(s[r+l], r+1)) ~ Ref)

Proof. S.l.LIV is easily split into three conjuncts, which are dealt with separately
below. •

1. Lemma 4.19 implies SENDER sat SI, for

The V-consistency rule (4-5) can be applied with H true, S = SI/\ S.SDU.LIV,

and T(t, X) = y fI_ X, to derive:

SENDER sat let m := #(tr..!-snd), h := max(tr..!-endA) in
VwE (AendA)*: Vn: m < max{h, n, max(w..!-endA)}+L =>

Vx: w(endA!n, snd!x) fI_ Ref
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Let S2 be this assertion weakened by replacing "m <max{h, n, max( w.,j..endA)}+L"
with "m < n+L"; then the consequence rule entails SENDER sat S2, which is the

first conjunct of S.l.L/V for u = O.
Now, consistency rule (4-4) is applied with

S = S2 /\ S.PDU.L/V
y(t) = let h := max(ttendA) in (srcp!pdu((ttsnd)[h+1], h+1))
H(t, X) max(ttendA) < #(ttsnd)
T(t, X) = H(t, X) :::} y(t) f/: X.

The result is:

SENDER sat let m:= #(trtsnd), h:= max(trtendA) in h < m:::}

let u := (srcp!pdu({tr tsnd) [h+1J, h+1)) in
Vw E A:ndA:Vn: m < n+L :::}Vx: u·w(endA!n, snd!x) f/: Ref

which completes the proof concerning the first conjunct of S.l.L/V.

2. We omit the straightforward proof that SENDER satisfies the second conjunct

of S.l.L/V.

3. For the third conjunct of S.1.L/V, we shall apply again the V-consistency rule

(4-5), this time with assertion S defined as:

(Vw E (AendA)*: Vr: w(endA!r) f/: Ref) 1\

(let s := tr tsnd, k := max{ tr tendA) in
k < #s :::}srcp!pdu(s[k+1], k+1) f/: Ref)

SENDER satisfies the first conjunct of this S by Lemma 4.19; the second conjunct

is simply S.PDU.L/V. To complete the premises of the said rule, let H be true,

T(t, X) be y f/: X, and:

Y(t) = {w(endA!r) I wE (AendA)*' r ~ max((tw).J..endA)}

So, by the rule, SENDER satisfies the assertion:

Vy E {w(endA!r) I wE (AendA)*' r ~ max((tr·w)tendA)}:
let s := tr tsnd, k := max((tr·y).J..endA) in

k < #s :::}srcp!pdu(s[k+1J, k+1) f/: Ref+y
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This is easily recognized to imply the third conjunct of S.1.LIV for u = O.
The case that u is not 0 is easily catered for by combining the last result with
S.PDU.LIV through a consistency rule. 0

For the receiver, the most interesting derived property is R.2.LIV:

Lemma 4.21 RECEIVER sat R.2.LIV, where:

R.2.LIV = let r:= #(tr.!.rcv) in trrA~:Jp = 0 =>
\lz: \Iq: \lw E (Aendp)*: ((endp!q)wHA~:Jp = 0 =>

w(endp!pdu(z, r+1), rcv!z) ~ Ref
1\ (endp!q)w(endp!pdu(z, r+1), rcv!z) ¢ Ref
1\ (endp!q, srcA!r)w(endp!pdu(z, r+1), rcv!z) ¢ Ref

Proof. (Recall A~:Jp = {endp!q I seqno(q)=r+1}, as defined in (4-24)). We begin

by applying consistency rule (4-5), with S defined as the conjunction of an instance

of R.PDU.LIV and R.SDU.LIV, as follows:

let r := #( tr Jyrev) in
\lw E (Aendp)*: Vz: w(endp!pdu(z, r+l)) ~ Ref

1\ (tdA~:Jp =1= 0 => rcv!sdu(head(trrA~:JpJyendp)) ~ Ref)

To complete the premises of the said rule, let:

Y(t) = let r := #(tJyrcv) in
{w(endp!pdu(z, r+1)) I wE (Aendp)*, w rA~:Jp= O}

H(t, X)

T(t, X)

let r := #(tJyrev) in trA~:Jp = 0
H(t,X) => y¢X.

So, by the rule, RECEIVER satisfies the assertion:

let r := #(tr.!.rev) in rr]A~:Jp = 0 =>
Vy E {w(endp!pdu(z,r+1)) I W E (Aendp)*,wrA~;Jp = O}:

(tr'yHA~:Jp =1= 0 => rcv!sdu(head((tr·YHA~;Jp.!.endp)) ~ Ref+y

In the previous assertion, replacing (tr·y) rA~;Jp by endp!pdu(z, r+l) yields the first

conjunct in R.2.LIV. The other two are easily derived by applying consistency rules

to combine the previous assertion with, respectively, R.PDU.LIV and R.1.L/V. 0
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Finally, we present some derived properties of the media MEDp, MEDA• They

will be referred to a generic MEDo. with a ranging over P, A.

Lemma 4.22 Let 7r be a unary predicate on data. Then MEDo. sat a.7r.LIV,
where

a.7r.LIV Vd: 7r( d) ~ :3w E Preamble; (tr, d) :
:3w' ~ w: :3d' E (tr tsrco.)U{ d} :

('7r)(w'tendo.) A 7r(d') A w'{endo.!d') ¢. Ref

Proof. Note that here predicate ,7r is being element-wise extended to data se-

quences, and therefore (,7r) (0) always holds true. By the consequence rule, it is

enough to infer a.7r.LIV from a.LIV (cf. Table 4.1). Let then 7r(d) hold true and,

by a.LIV, choose wE Preambleo.(tr, d) such that:

(1) Vu ~ w(endo.!d): u ¢. Ref.

If ('7r)(wtendo.), taking w' = wand d' = d yields a.7r.LIV. Otherwise, if 7r holds
on some component of wtendo., there must be w' and d' such that:

(2) w'(enda!d') ~ w, (,7r)(w'tenda), and 7r(d').

With (1) and (by Assumption 4.16) d' E (trtsrco.)U{d}, this ensures that O:.7r.LIV
holds. o

An easy consequence is:

Corollary 4.23 MEDo. sat o:.t.LIV, where

a.t.LIV = Vp::3u ~ (srco.!p)::3q E (trtsrco.)U{p}: u(endo.!q) ¢. Ref

Proof. Let 7r be the identically true predicate. Then O:.7r.LIV with the bound

variables d, w', d' renamed as p, u, q can only be true for instances of u such that

utendo. = 0 (to make ('7r)(utendo.) true). Moreover, since u ~ w for some wE

Preamble.ttr, p), and wtsrco. = p by Assumption 4.16, it follows that u ~ (srco.!p).

Thus a.t.LIV is a consequence of a.7r.LIV, and the corollary follows from Lemma

4.22 by the consequence rule. 0
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We conclude this section with an application of consistency rules to MEDa:

Lemma 4.24 For a unary predicate 7r, MEDa sat a.t.7r.LIV, where

a.t.7r.LIV = Vp: 3u ~ (srca!p): 3q E (tr-!-srca)U{p}: u(enda!q) ~ Ref 1\

Vd: 7r(d) => 3w E Preamblea(tr·u(enda!q), d):
3w' ~ w: 3d' E ((tr·u).!.srca)U{d}:

(.71') (w'-!-enda) 1\ 7r(d') 1\ u(enda!q)w'(enda!d') ¢ Ref

Proof. The proof is an application of the 3-consistency rule (4-6), with S being the
conjunction of: a.t.LIV (with "Vp" dropped and p fixed), o..7r.LIV, and 0 ¢ Ref.
Further, let H be true and:

Yp(t) = {u(enda!q) I u ~ (srca!p), q E (t-!-srca)u{p}}

T(t,X) = 3YEYp(t):y¢X

By the rule it follows that, for the p chosen:

MEDa sat 3y E Yp(tr): 0 ¢ Ref 1\ o..7r.LIV(tr·y, Ref +- y)

where a.nLl Yitr-s), Ref +- y) can be written:

Vd: 7r(d) => 3w E Preamblea(tr·y, d):
3w' ~ w: 3d' E ((tr·y).!.srca)U{d}:

('7l')(w'-!-enda) 1\ 7r(d') 1\ yw'(enda!d') ~ Ref

Hence, recalling the form of Yp() and reintroducing the quantifier, we see that
MEDa satisfies o..t.7r.LIV. 0

4.5.5 System Safety Verification

The 'safety' system properties REL and BUF, and the component properties
whence they follow, only constrain process traces; as a result, they can be ex-
pressed and reasoned about in a subsystem that falls entirely into the original sat
logic of [Hoare, 1985].

No new technique or concept is therefore involved in safety verification. Thus,
and for the sake of brevity, we will omit the relevant proofs, which the interested
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reader can find in [Carchiolo, Faro, & Pappalardo, 1992]. It will suffice here to

mention that, as suggested by the informal reasoning sketched at the end of Sec-

tion 4.5.1, REL can be inferred from S.FIDEL, P.REL and R.RECOV, and BUF
from S.INLIM, A.REL and R.ACKLIM.

The same reasoning should also justify the introduction of two useful safety

properties of PSP, the parallel composition of system components. The first prop-

erty requires the highest ack h received by the sender to be less than the number

of sdus output by the receiver, and the number of sdus accepted by the sender

not to exceed h+L. The second property ensures that any pdu in transit through

MEDp with sequence number n should carry the nth sdu accepted by the sender.

Formally:

Proposition 4.25

PSP sat let m := #(tr~snd), h := max(tr~endA)' r := #(tr~rcv) in
h:S; r 1\ m :S; h+L

PSP sat Vz, n: pdu(z, n) E (tr~srcp) U (tr~endp) =} z = (tr~snd)[n] 0

4.5.6 System Deadlock Freedom Verification

The Hiding Rule Inference

This is step 4 in the checklist of Section 4.5.2. It represents the core of deadlock

freedom verification, being directly involved with properties of external system

behaviour. Our immediate goal is now to establish:

TSP sat INLIV 1\ OUTLIV

where, by (4-22), TSP is PSP\CPA, CPA= {srcp,endp,srcA,endA}, and:

INLIV = let m:= #(tr~snd), r:= #(tr~rcv) in
m < r+L =} snd!x et Ref

OUTLIV _ let m:= #(tr~snd), r:= #(tr~rcv) in
r < m =} rcv!(tr~snd)[r+1] et Ref
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According to the strategy devised in Section 4.3.3, we invoke Proposition 4.13 to
derive TSP sat INLIV and TSP sat OUTLIV from, respectively:

PSP sat let m := #(tr~snd), r:= #(tr~rcv) in
m < r+L => 3w E WI(tr): w(snd!x) ~ Ref

PSP sat let m:= #(tr~snd), r:= #(tr~rcv) in
r < m => 3w E WO(tr): w(rcv!(tr ~snd)[r+1]) ~ Ref

(4-26)

(4-27)

where, for the appropriate s, WI{s), WO{s) must be finite and non-empty sets of
actions over the channels CPA'

Along the lines indicated in Section 4.3.3, we should proceed to the identification
of WIO and WOO. For WIO, we observe that PSP should be able to perform
traces of the following forms:

1. snd!x

2. u(endp!q)wA(endA!n,snd!x) ~ Ref, where u is () or an input to MEDp, and
WA is made of outputs from MED A and perhaps the input of ack n to it.

Let m be the number of sdus accepted by the sender, and h be the highest ack it has
received; it is quite obvious that PSP will not refuse to perform snd!x if m < h+ L;
otherwise, PSP should not refuse a trace of the second form above; this can be
realized through a series of informal arguments that will not be reported here, but
can be recognized in the proof of Lemma 4.28 below. Analogous considerations
apply to the identification of WO() (the relevant informal arguments are reflected
by the proof of Lemma 4.29).

As discussed in Section 4.3.3, the preceding informal analysis suggests stipu-
lating assumptions that are slightly different from the current obligations (4-26)
and (4-27):

Assumption 4.26

PSP sat let m:= #(tr~snd), h:= max(tr~endA)' r:= #(tr~rcv) in
m < h+L V m = h-s-L A h < r => 3w E WI(tr): w(snd!x) ~ Ref
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PSP sat let m:= #(tr~snd), h:= max(tr~endA)' r:= #(tr~rcv) in
h:::;;r < m ::} let x := (tr~snd)[r+ll in
:Jz: (z = x V pdu(z, r+l) E (tr~srcp) U (tr~endp))"
:Jw E WOz(tr): w(rcv!z) rt Ref

where, for the appropriate sand z, Wl(s), WOz(s) are finite, non-empty sets of

actions over the channels CPA. 0

This yields:

Proposition 4.21 Obligations (4-26) and (4-27) can be discharged.

Proof. We provide only the argument for (4-27) (the other being nearly the same).

Together, the assertions of Proposition 4.25 and the second assertion of Assump-

tion 4.26 imply the assertion in (4-27) (with WOO defined as WOx(), for x =
(tr ~snd)[l +#( tr ~rcv)]). Thus, by the consequence rule, (4-27) follows from the

noted proposition and assumption. o

The Parallel Composition Rule Inference

We have thus come to step 6 of the checklist of Section 4.5.2. The following two

lemmata will establish, for the parallel composition PSP, the assertions whose

satisfaction was assumed in the previous step, thus discharging Assumption 4.26.
Note that in fact, compared to the assertions appearing in that assumption, the

assertions 1NL and OUTL respectively employed in the two lemmata have a slightly

different form, in which Wl() and WOz() do not occur; however, 1NL and OUTL
also provide enough information to allow Wl() and WOz() to be defined, if desired

(they were referred to, and constrained, but not defined, in Assumption 4.26).

Lemma 4.28 PSP sat 1NL, where:

1NL = let m := #(tr~snd), h:= max(tr~endA)' r:= #(tr~rcv) in
m < li+L V m = h-s-L 1\ h < r ::} Vx:
3p E {pdu(d, k) IdE (tr~snd), 1:::;; k:::;;m}:
3u:::;; (srcp!p): 3q E (tr~srcp) U {p}:
:3wAE PreambleA(tr rCA, r): :3WA:::;;WA: :3n E (tr ~srCA) U {r}:

(snd!x rt Ref V u(endp!q)wA (endA!n, snd!x) ¢ Ref)
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Proof. We observe first that INL(t, Y) and INL(tr( Cs U Cp U CA U CR), Y) are
equivalent for all t and Y. By the sat rule (4-25) for parallel composition, under
Proposition 4.18, the proof amounts to deriving:

from the assumptions:

and Q ••. (t fCo, Xo) for each assertion a ... in Table 4.1 (a ranges over S, P, A, R).

In the following, let m = #(t.J,snd), h = max(t.J,endA) and r = #(t.J,rcv).

Assume the premise of (1), so that either of its two disjuncts must hold: if m<h+L,
then, for any x, snd!x ¢ Xs by S.SDU.LIV(trCs, Xs) and, for a = P, A, R, 0 ¢ Xo
by (2). This implies snd!x ¢ Xs: Cs IT x; :Cp IT XA: CA IT XR: CR, Le. the first
disjunct of the conclusion of (1).

Suppose now the other disjunct in the premise of (1) holds, Le. m=h+L and h < r.
Since L ~ 1, we know:

(3) h < m.

By A.1I".LIV(trCA, XA) (with 11"(_) being _> h), for d = r, we may choose WA E

PreambleA(trCA, r), W~ ~ WA and n such that:

(4) w~ E BA, w~fsrcA E {O, (srcA!r)} (by Assumption 4.16);

(5) nE (t.J,srcA) U {r}, and n > h so (since m = h+L) m < n+L;

Let now p be pdu((t.J..snd)[h+1], h+1) (subscript h+1 is legal by (3)). Exploiting
P.t.LIV(trCp,Xp), choose u:::; (srcp!p) and q E (t-l-srcp) U {p} such that

(7) u(endp!q) ¢ x-.
We can now establish the second disjunct in the conclusion of (1) (for all x and the
selected instances of existentially quantified variables). I.e., for a = S, P, A, R we
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show wfCC} tJ. XC} where w = u(endp!q)wA(endA!n, snd!x). For this purpose, the
following argument can be arranged (the second column follows from (4), whereas
the third 'tJ.' column is explained by the fourth):

(3,5), S.l.LIV(trCs,Xs)

(7)w fCp (= u(endp!q) )

w fCA (= WA(endA!n) )

w rCR (E {(endp!q), (endp!q, srcA!r)}) tJ. XR R.PDU*.LIV(t fCR,XR)
or R.l.LIV(trCR, XR)

This concludes the proof. o

Lemma 4.29 PSP sat OUTL, where:

OUTL = let m:= #(tr~snd), h := max(tr~endA)' r:= #(tr~rcv) in
h:::; r < m 9 let x:= (tr~snd)[r+l] in
3z: (z = x V pdu(z, r+l) E (tr~srcp) U (tr~endp)) 1\

3wp E Preamblep(tdCp, pdu(x, r+l)): 3w~ :::;ui»:
3WA E PreambleA(trfCA, r): 3WA :::;WA:
let p := pdu((tr ~snd)[h+l1, h+l) in
3u:::; (srcp!p): 3q E (tr~srcp) U {p}:
3vp E Preamblep((tdCp )u(endp!q), pdu(x, r+l)): 3v~ :::;u»:

(rcv!z tJ. Ref V

w~(endp!pdu(z, r+l), rcv!z) tJ. Ref V
u(endp!pdu(z, r+l), rcv!z) V

u(endp!q)wA(endA!r)v~(endp!pdu(z, r+l), rcv!z) tJ. Ref)

Proof. We observe first that OUTL(t, Y) and OUTL(tr( Cs U c; U CA U CR), Y)
are equivalent for all t, Y. By the sat rule (4-25) for parallel composition, under
Proposition 4.18, the proof will consist in deriving:

(1) OUTL(t, Xs: Cs IT x-, Cp IT XA: CA IT XR: CR)

from the assumptions:
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and 0: ... (t rCa, Xo) for each assertion Cl ••• in Table 4.1 (0: ranges over S, P, A, R).

In the following, let:

rn = #(t~snd), h = max(t~endA)

r = #(t~rcv), x = (t~snd)[r+11 (provided r < rn)

and recall (4-24), whereby:

A~~Jp = {endp!q I seqno(q) = r+1}.

To prove (1), we assume its premise:

(3) h ~ r < rn,

The proof continues as a case analysis. In each of the four exhaustive and mutually
exclusive cases A, B.1, B.2.1 and B.2.2 orderly treated below, the corresponding
disjunct in the conclusion of (1) will be shown to hold (for appropriate instances
of existentially quantified variables), by exhibiting a suitable trace w such that
wrCo ~ Xo for 0: = S,P,A,R.

Case A: trA~~Jp =1= (). Let z = sdu(head(trA:~Jp~endp)) (so pdu(z, r+1) E t~endp)
and w = (rcv!z). Then w rCR tt XR by R.SDU.LIV(trCR, XR) and, for 0: =

S, P, A, w rCa = 0 ~ Xo by (2).

Case B: trA~~Jp = O. This case is now further split into the alternatives B.1 and
B.2 (recall h ~ r by (3)).

Case B.1: h = r. By P.n.LIV(trCp,Xp) (with n(_) being seqno(_) = r+1), for
d = pdu(x, r+1), we may choose Wp E Prearnblep(trCp, pdu(x, r+1)), w~ ~ Wp and
z such that:

(4) w~ E Bp, w~ rsrcp E {O, (srcp!pdu(x, r+1))} (by Assumption 4.16);

(5) w~ rA~~Jp = 0, and pdu(z, r+1) E (t~srcp) U {pdu(x, r+1)};

(6) w~(endp!pdu(z, r+1)) tt X»,
Let then w = w~(endp!pdu(z, r+1), rcv!z). By (4), wrCs can be equal to either
() or srcp!pdu(x, r+1); the former trace cannot be in Xs by (2), nor can the latter
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by S.PDU.LIV(tfCs, Xs) (use (3)). Also, w fCp ~ Xp follows from (4), (6), and

(w fCA)=() ~ XA from (2). Finally, from R.2.LIV(tfCR, XR), using (4), (5), it
follows:

wfCR = (w~fendp)(endp!pdu(z, r+1), rcv!z) ~ XR

Case B.2: h < r. By A.7r.LIV(t fCA, XA) (with 7r(_) being _~ r), for d = r, we may

choose WA E PreambleA(tfCA, r), w~ ~ WA and k such that:

(7) w~ E BA, w~ fsrcA E {O, (srcA!r)} (by Assumption 4.16);

(8) k E (t-!.-srcA) U {r}, w~-!.-endA ~ {n I n < r}, and k ~ r (in fact k = rowing

to R.ACKLIM(tfCA,XA));

(9) WA(endA!r) ¢ XA (use k = r).

We shall now apply P.t.7r.LIV(tfCp,Xp), with the quantified variable p instanti-

ated thus:

(10) p = pdu((t-!.-snd)[h+1], h+1) (note that subscript h+1 is legal because, by

(3), h < m=#(t-!.-snd)).

Thanks to P.t.7r.LIV(tfCp, Xp) we can choose u, q such that:

(11) u ~ (srcp!p), q E (t-!.-srcp) U {p}, u(endp!q) ~ X»,

Depending on the sequence number of q, two further alternatives will be considered.

Case B.2.1: seqno(q) = r-l-L Letting z = sdu(q) implies pdu(z, r+1)=q E (t-!.-srcp)
by (11) (q cannot be p since h < r in the present case B.2).

We now let W = u(endp!pdu(z, r+1), rcv!z). Then wfCs is either () or srcp!p; nei-

ther trace can be in Xs: the former by (2), and the latter by S.PDU.LIV(tfCs, Xs)
(using (3)). Moreover, the two relations w f Cp ¢ X p and w f CA = () ~ XA follow

from (11) and (2) respectively. Finally, from R.2.LIV(t fCR, XR), using (11) and

B, it follows: w fCR = (endp!pdu(z, r+1), rcv!z) ¢ XR.

Case B.2.2: seqno(q) =I- r+L Using again P.t.7r.LIV(tfCp, Xp), with 7r(_) being

seqno(_) = r+1 and d instantiated as pdu(x, r+1), we supplement (11) by choosing

Vp E Preamblep((tfCp)u(endp!q),pdu(x, r+1)), v~ ~ Vp and z such that:
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(12) vp E Bp, vp rsrcp E {O, (srcp!pdu(x, r+l))} (by Assumption 4.16);

(13) vp rA~~Jp = 0, and pdu(z, r+l) E (t-J,srcp) U {pdu(x, r+l)};

(14) u(endp!q)vp(endp!pdu(z, r+l)) ~ X»,

Note that according to P.t.7r.LIV(trCp, Xp), (13) should also permit pdu(z, r+l)
to be in u-J,srcp, which is not allowed for by the constraints posed by (1) on z.
However, by (11), the set u..!-srcp is either 0, or {p}, and seqno(p) = h+l by (10);
so pdu(z, r-l-l ) E u..!-srcp would imply h = r, which contradicts the assumption
h < r characterizing case B.2.

We can now let w be u(endp!q)w~(endA!r)vp(endp!pdu(z, r+1), rcv!z), and prove
w rCa ~ Xa for a = S, P, A, R. Note that, in order to evaluate projection on each
Ca, (7), (11) and (12) are exploited.

Recalling u ~ (srcp!p) (11), h ~ r < m (3), max( w~..!-endA) < r (8), we can use
S.1.LIV(trCs, Xs) to establish the ~ relation in:

w rCs E u( w~ rendA)(endA!r){ 0, (srcp!pdu(x, r+l))}, and w rCs ~ Xs.

Conditions (14) and (9) are w rCa ~ Xa for a = P, A.

Finally, R.2.LIV(trCR,XR), using B and (for ((endp!q)(vprendp)HA~~Jp - 0)
B.2.2 and (13), ensures the ~ relation in:

w rCR E (endp!q){ 0, srcA!r}( vp jendp )(endp!pdu(z, r+1), rcv!z), and

wrCR ~ XR 0

4.5.7 Component Implementation and Verification

For the case study chosen, we have thus far accomplished all the steps identified
in the design checklist of Section 4.5.2, except the last. This one will consist in
defining the process expressions SENDER and RECEIVER, and then proving that
they satisfy the relevant basic properties introduced in Section 4.5.3. We shall
thereby discharge Assumption 4.17, the last still active, in so far as it is concerned
with SENDER and RECEIVER (media will not be defined, so their properties
ultimately need to be assumed instead).
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Implementation

SENDER will be defined as an instance of a process constant SENDER(m, h, uq),
controlled by parameters m, the number of sdus accepted, h the highest ack re-
ceived, and uq the sequence of sdus accepted and yet unacknowledged (more pre-
cisely, #uq must be m-h and, for 1~ i~m-h, uq[iJ is the (h+i)th sdu accepted).
SENDER(m, h, uq) may do three things: input an sdu at snd, provided m < h+L,
receive an ack at endA, or (re)transmit a pdu numbered higher than h at src»:

SENDER(m, h, uq) :=

m < h+L ----+ snd?x; SENDER(m+1, h, uq- x)
EB endA?n; SENDER(m, max(n, h), uq[l+max(n, h)-h .. ])
EB h < m ----+ srcp!pdu(uq[l], h+l); SENDER(m, h, uq)

Initially, uq must be 0, and m and h must be 0, so we let:

SENDER = SENDER(O, 0, 0)

As an example of the unavoidable arbitrary choices inherent in implementation,
observe that SENDER( m, h, uq) could just as well be defined to be ready to output,
together with pdu(uq[lJ, h+1), any pdu carrying one of the sdus in uq. Such
a behaviour would still be consistent with S.PDU.LIV and therefore with the
preceding verification, which is based solely (in this respect) on the assumption
that S.PDU.LIV is satisfied by SENDER.

RECEIVER will also be defined as an instance of a parametric process constant,
namely RECEIVER(r, d), controlled by an integer r (counting sdus already output
at rcv) and a sdu d (the next to be output, if any, otherwise the "non-sdu" NIL).
Thus, if d is not NIL, it may be delivered at rcv, the count r is incremented and d
is reset to NIL. When a pdu q arrives, its sdu will be selected for output iff none
is already available and q carries the expected sequence number r+ 1. Finally, the
receiver is always ready to issue ack rat srcA. Again, this implementation choice is
somewhat arbitrary, in that it conveys more detail than specification R.ACK.LIV;
e.g. alternatively, R.ACK.LIV would also let RECEIVER output an ack only in
reply to an incoming pdu.
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Formally, we define:

RECEIVER(r, d) :=

d 0/= NIL -+ rcv!d; RECEIVER(r+1, NIL)
EBendp?q; let e:= if (seqno(q) = r-l-I A d = NIL) then sdu(q) else din

RECEIVER(r, e)
EBsrcA!r; RECEIVER(r, d)

and:

RECEIVER = RECEIVER(O, NIL)

Fixpoint Induction Verification

In accordance with the design checklist of Section 4.5.2, the only obligation left
as regards deadlock freedom verification are the proofs of the basic properties at-
tributed to components SENDER and RECEIVER with Assumption 4.17.

Since these components are recursively defined, the proofs ought to employ fix-
point induction. While the application of this powerful rule is apt to bring about
some complexity, this can be kept to a minimum in the present instance thanks to
the design choice discussed in Section 4.5.4 and formalized with Assumption 4.17.

Thereby, our assumptions about SENDER and RECEIVER were limited to prop-
erties of their traces and one-action refusals; as a result, the induction proofs turn
out to be essentially the same that would be given in the standard CSP sat logic.
For this reason, and for brevity's sake, we will just report the proof of:

RECEIVER sat R.SDU.LIV (4-28)

For this purpose it is convenient to introduce an alternative but obviously equiva-
lent definition of RECEIVER. Our aim is to make the application of the fixpoint
induction rule more straightforward. For n integer and any data d, we define
(recalling NIL is not a sdu):

An,d

RECn,d

{rcv!d Id 0/= NIL} u {endp!q I sdu(q) 0/= NIL} U {srcA!n}

An,d; (REq(n,d,a),g(n,d,a) I a E An,d)
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g(n, d, a)

{ n+1 if d =1= NIL, a = rcv!d
n otherwise

{
NIL if d =1= NIL, a = rcv!d
e if d = NIL, a = endp!pdu(n+1, e)
d otherwise

f(n, d, a)

and the formula

Tn,d = let k := #( tr trcv) in let u := tr rA~~~+1in
if k = 0 A d =1= NIL then rcv!d ¢ Ref
else u =1= 0 =} rcv!sdu(hd(utendp)) ¢ Ref

Clearly, for n = 0 and d = NIL, RECn,d is RECEIVER and Tn,d is R.SDU.LIV.
Therefore, the desired result (4-28) is just a corollary of:

Theorem 4.30 For all integer n and data d: RECn,d sat Tn,d

Proof. An application of the fixpoint induction rule. The basis is:

An,d; (STOP I a E An,d) sat tr = 0 =} d =f. NIL =} rcv!d ¢ Ref

It will be derived from the action sequence rule, which is reproduced here for
convenience:

Pa sat Sa, for a E A
(X E pAct+ A XnA = 0) =} (Va EA: Sa( 0, X -;- a)) =} S( 0, X),

X E pAct+ =} Sa(s, X) =} S( as, X), for a E A
A; PA sat S

Taking Sa = TRUE, the premises are all easy to establish; we just consider the

second, which follows from XnAn,d = 0 =} d =1= NIL =} rcv!d fI. X, whose validity

is an obvious consequence of the way An,d is defined.

In order to carry out the induction step, we assume the induction hypothesis:

RECm,v sat Tm,v for m ~ 0, any data v

and, for given n ~ 0 and data d, we try to show:

An,d; (REQ(n,d,a),9(n,d,a) I a E An,d) sat Tn,d
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This is again a consequence of the action sequence rule, with Sa instantiated as
Tf(n,d,a),g(n,d,a). The first premise of the rule follows from the induction hypothesis.
The second premise follows from:

XnAn,d = 0 => d =1= NIL => rev!d ¢ X,

using the definition of An,d. Finally, the third premise can be established by show-
ing the validity of:

X E pAet+ => T/(n,d,a),g(n,d,a)(S,X) => Tn,d(as,X) for a E An d, (4-29)

The proof continues by a case analysis.

Case 1. If a = rev!d and d =1= NIL, (4-29) becomes: X E pAet+ => Tn+1,NIL(S, X) =>
Tn,d( as, X). This can be seen to hold using the following equivalences:

Tn+1,NIL(S, X) == let k := #(s{.rev) in let u := s rA~;td~+k+l in
u =1= () => rev!sdu(hd( u{.endp)) ¢ X

let h .= 1+ #(s I rev) in let u .= s ~An+h+1 in. + . I endp
U =1= () => rev!sdu(hd(u{.endp)) ¢ X

Case 2. If a = (endp!pdu(n+1, e)), e =1= NIL and d = NIL, (4-29) becomes: X E

pAet+ => Tn,e(s, X) => Tn,d(as, X). To see this holds, note that for #(s{.rev) > 0
both Tn,e(s, X) and Tn,d( as, X) are equivalent to:

let k .= #(s I rev) in let u .= s ~An+k+l in. + . I ffi~

U =1= () => rev!sdu(hd(u{.endp)) tj. X

whereas for #(s{.rev) = 0 they both become rev!e ¢ X

Case 3. In any other case, the goal (4-29) becomes: X E pAet+ => Tn,d(S, X) =>
Tn,d(as, X). This is easy to show if a = sreA!n. If instead a = (endp!pdu(n+l, e))
and d=l=NIL, Tn,d(S, X) and Tn,d(as, X) can be seen to coincide in the two subcases
#(s{.rev) > 0 and #(s{.rev) = o. 0



Chapter 5

Conclusions

5.1 Scope and Results

The standard CSP formalism enjoys several important merits: an intuitively ap-
pealing model, based on a natural and adequate notion of observation, namely that
of failure; a rich set of operators; an elegant fixpoint semantics; and a useful logic
and calculus for reasoning about failures of processes. These techniques have been
successfully employed for the analysis of many interesting systems. However, their
overall practical applicability is diminished by two weaknesses of standard failure
semantics.

The first is the inability to describe systems whose components might choose,
at some stage, to exchange any data out of infinitely many. This must often be
assumed for design and verification purposes (e.g. for the many protocols relying
upon sequence numbers to cope with out-of-sequence received messages). The
problem lies in the definition of the hiding operator in standard failure semantics.
This work has put forward a solution based on an interesting technical result about
infinite sets of sequences.

Another difficulty with standard failure semantics is its treatment of diver-
gence, the phenomenon in which some parts of a system interact by performing an
infinite, uninterrupted sequence of externally invisible actions. Within failure se-
mantics, divergence cannot be abstracted from on the basis of the implicit fairness
assumption that, if there is a choice leading out of divergence, it will eventually
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be made. This 'fair abstraction' is essential for the verification of many important
systems, including communication protocols.

The solution proposed in this thesis is an extended failure semantics which
records refused traces, rather than just actions. Not only is this approach com-
patible with fair abstraction, but it also permits, like ordinary failure semantics,
verification in a compositional calculus with fixpoint induction. Rather interest-
ingly, these results can be obtained outside traditional fixpoint theory, which can-
not be applied in this case. The theory developed is based on the novel notion of
'trace-based' process functions. These can be shown to possess a particular fixpoint
that, unlike the least fixpoint of traditional treatments, is compatible with fair ab-
straction. Moreover, they form a large class, sufficient to give a compositional
denotational semantics to a useful CSP-like process language.

Finally, a logic is proposed in which the properties of a process' extended fail-
ures can be expressed and analyzed; the methods developed are applied to the
verification of two example communication protocols: a toy one and a large case
study inspired by a real transport protocol.

The main results of the thesis have been summarized in the outlines opening
Chapters 2, 3 and 4.

5.2 Related Work and Further Studies

Our extended failures semantics, and the denotational-style solution it provides to
the problem of fair abstraction, would appear to be thoroughly original. Yet, an
interesting analogy can be drawn between our approach and some recent work on
CSP [Barrett, 1991; Mislove, Roscoe, & Schneider, 1994]: both approaches need
to deal with fixpoints of functions over process domains that are not cpos. The
analogy, however, stops here. Indeed the respective objectives are different: ours is
to reconcile fair abstraction with failures denotational semantics, that of the cited
works is to treat unbounded nondeterminism. Also the mathematical techniques
employed differ: our process domain is not a cpo, in that it lacks a bottom, but
does enjoy a strong completeness property (every process set has a least upper
bound); the process domain of [Barrett, 1991] is not complete and some language
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operations are not continuous (the remedy is to justify the denotational semantics
operationally); the domain of [Mislove, Roscoe, & Schneider, 1994], instead, has
a weak completeness property (every set with an upper bound has a least upper
bound). In our theory, unbounded nondeterminism does not represent a problem,
provided the choices it poses are resolved either all internally or all externally; it
remains to be seen whether treating the general case requires an integration with
the techniques cited. A related issue for further study is the extension of our work
to the case of infinite refusal sets.

Another topic that warrants further investigation is the completeness of the sat
calculus with and without the process-oriented consistency rules.
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