
University of Newcastle upon Tyne

Computing Science Department

Automated Test Generation from Algebraic

Specifications

Ph.D. Thesis

by

Andrej Pietschker

August 2001

NEWCASTLE UNIVERSITY LIBRARY
201 21949 9

Paginated
blank pages
are scanned
as found in

original thesis

No information
• • •
IS missing

Abstract

This thesis is a contribution to work on the specification-based testing of computing sys-
tems. The development of computing systems is a challenging task. A great deal of research
has been directed at support for analysis, design and implementation aspects, yielding a
wide range of development techniques. However, the crucial area of system testing remains
relatively under-explored.

Because a project may spend a good part of its budget on testing, even modest improve-
ments to the cost-effectiveness of testing represent substantial improvements in project
budgets. Relatively little literature has been devoted to the entire testing process, includ-
ing specification, generation, execution and validation. Most of the academic literature
seems to assume a revolutionary change of the testing framework. On the contrary in-
dustry follows a more traditional approach consisting of trusted methods and based on
personal experience. There is a need for testing methods that improve the effectiveness of
testing but do so at reasonable cost and which do not require a revolutionary change in
the development technology.

The novel goal of the work described in this thesis is to "lift" traditional testing so that
it takes advantage of system specifications. We provide a framework - hepTEsT- which is
motivated by this goal. To that end, hepTEsT is a framework consisting of a specification
language, a technology for generating tests in accordance with test strategies, a means of
applying the tests to the implementations and support for validation of outcomes against
the specification-based tests.

We will first categorise different testing methodologies and then examine some of the
past and present approaches to test data: we develop only the necessary theoretical foun-
dations for hepSPEc and always consider the requirements of testing. The formalism
hepSPEc for system description is based upon a well-defined algebraic approach. It utilises
a novel approach allowing the description of finite domains in a way suitable for engineer-
ing purposes. The engineers' tasks are to provide an adequate description of the system in

iv Abstract

hepSPEC.
The approach proposed in this thesis is grounded in the traditional approach to testing

where test data is provided to the system under test and the outcome is compared to the
expected outcome. To enhance the capabilities of the framework a general order on test
inputs is proposed to be used in test strategies. Traditional testing strategies requiring an
order on test inputs are introduced and their realisation in hepTEsT discussed as well as a
proposal of new strategies which lend themselves to this particular approach.

The manipulation of the specification yields abstract test cases which are then trans-
formed into test cases suitable for the chosen implementation of the system. This trans-
formation, called test reification, is necessary to bridge the "abstraction gap" between
the abstract specification-derived tests and the concrete implementation on which the test
must run. The transformation is necessary in order for the approach to be practical and
is achieved through homomorphisms which are expressed in specially adapted grammars.
This transformation is also applied to the generated test outcome and is aimed there at
easing test result validation.

The utility of the hepTEsT approach is illustrated by means of a simple example, a
larger case study and one carried out within the aviation industry.

Acknow ledgements

First and foremost, I would like to thank my supervisor Dr John Fitzgerald for his constant
support and constructive advice. I am grateful to Dr Fitzgerald for his comments and
criticisms on the preliminary drafts of the work. Special thanks are extended to Dr Jason
Steggles and Dr Maciej Koutny of the thesis committee, for their useful suggestions and
especially Dr Steggles for his support as my supervisor during the write-up period.

I am grateful to Professor Marie-Claude Gaudel and Dr Bruno Marre from the "Labora-
toire de recherche en informatique" at the University of Paris Sud for the fruitful discussions
and Dr Marre for his patient and continuous help with LoFT.

I would like to thank Torn Brookes of BAE SYSTEMS Avionics and BAE SYSTEMS
Dependable Computing Systems Centre for the greatly appreciated guidance and assistance
in the industrial case study.

I would like also to thank several of my colleagues and staff members of the Centre for
Software Reliability for their prompt help and technical support on many occasions and
for being such a lovely hosts for the time I send in Newcastle. These include Professor
Tom Anderson, Dr Jim Armstrong, Joan Atkinson, Dr Oliver Biberstein, Dr Joseph Chu,
Professor John Dobson, Neil Henderson, Dr Steve Riddle, Dr Amer Saeed, Claire Smith,
and Dr Ros Strens. Also, many thanks to Shirley Craig for her patience and efficient help
in searching out many relevant references for this thesis.

The support and encouragement offered by my parents and my wife during studies are

also greatly acknowledged.

VI Acknow ledgements

Contents

Abstract iii

Acknowledgements v

1 Introduction 9

2.2.2
2.2.3

Classification of Functional Testing Techniques .
White-Box Testing Approach .

15
15
18
19

19
20

21
23
23
24

24

25
28
29

2 Test Case Generation
2.1 Testing Techniques
2.2 Functional Testing

2.2.1 Approaches to Correctness Assurance.

2.2.4 Specification-Based Black-Box Approach
2.3 Test Generation.. . ..

2.3.1 Finite State Machine
2.3.2 Grammars... ..
2.3.3 Model-oriented Specification

2.3.4 Algebraic Specification

2.3.5 Object Oriented Models
2.4 Summary .. .

3 The Rationale behind hepTEST

3.1 Goals of hepTEsT
3.2 Algebraic Specification
3.3 Algebraic Methods for Handling Partiality
3.4 Traditional Domain Testing Strategies

3.5 Objectives of hepTEsT

31
31

34

37
42

46

2 CONTENTS

3.5.1
3.5.2

3.5.3
3.5.4

Test. Select.ion Support. through Partial Order on Terms .

Domain Select.ion through Axioms .
Test Reification

Test Execution and Validation .

50
52

55

4 An Algebraic Specification Formalism - hepSPEC
4.1 Mathematical Notation .

4.2 Signatures...... ..

4.3 Semantics of Specifications
4.4 Hep-specifications...
4.5 Ground-term Algebras

57
57

58
64
68
76

5 Testing Theory - hepTEsT
5.1 Test Data Generat.ion . . .
5.2 Test Data Selection

5.2.1 Order on Test Input.
5.2.2 Domain Select.ion by Axioms.

5.2.3 Testing Strategies

5.3 Generation of Expected Outcome

5.4 Transformation of Test Inputs . .

5.4.1 Syntactic Homomorphism
5.4.2 Grammars as Syntactic Homomorphism
5.4.3 Test Transformation through Reverse Parsing

5.5 Generation of Test Setup

5.6 Transformation of Expected Outcome .

5.7 Test Execution
5.8 Test Result Validation
5.9 Further Testing Strategies

79

81
82
82
88
90
91

92
92
95

100
103
105
106
107
108

6 Case Studies
6.1 Initial Case Study - Tax Example

6.1.1 Specification of the Tax Example
6.1.2 Test Data Generation for Tax Example
6.1.3 Test Dat.a Selection for Tax Example .
6.1.4 Test. Outcome Computation for Tax Example

111
111
111
115
117
118

CONTENTS 3

6.1.5 Test Transformation for Tax Example.
6.1.6 Test Setup Generation for Tax Example
6.1. 7 Test Outcome Transformation for Tax Example
6.1.8 Evaluation of the Tax Study

6.2 Larger Case Study - Name Store Example
6.2.1 Description of Store Example .
6.2.2 Specification of Store Example in hepSPEc
6.2.3 Test Data Generation for Store Example
6.2.4 Test Data Selection for Store Example .
6.2.5 Test Transformation for Store Example.
6.2.6 Test Setup Generation for Store Example.
6.2.7 Test Outcome Transformation for Store Example
6.2.8 Test Execution and Result Validation for Store Example
6.2.9 Evaluation of Store Case Study

6.3 The Industrial-sized Case Study .
6.3.1 Project Description .
6.3.2 Specification of BCS Case Study in hepSPEc .
6.3.3 Test Data Generation for Case Study

Conclusions .

121
123
123
125
126
126
128
131
132
135
137
140
141
147
148
149
150
154
155
156
158
158

6.3.4
6.3.5
6.3.6
6.3.7

Test Data Selection for Case Study
Test Transformation for Case Study
Test Execution and Result Validation for Case Study

7 Conclusions and Further Work
7.1 Contribution of the Thesis ..
7.2 Enhancements and Future Research Directions.

7.2.1 Theoretical Enhancements .
7.2.2 Technical Enhancements .
7.2.3 Impact on other Research Areas .

161
161
164
164
166
167

A Triangle example - specification 169

B Name store example - specification 173

C BCS case study - specification 179

4 CONTENTS

List of Figures

2.1 Test Data Selection in the Testing Process 17
2.2 Testing Approaches to Functional Testing 20
2.3 Integration of Test Generation into the Specification Based Testing Approach 22
2.4 Test Generation and Selection
2.5 Test Hypothesis

26
26

3.1 Traditional Testing Process Augmented by an Abstract System Specification 47
3.2 Alternative to Test Reification 47
3.3 Partial Order for the Domain of the Operator add
3.4 Partitions of the Domain of Operator add

3.5 Partitions of Domain for Operator sub
3.6 Syntactic and Semantic Homomorphisms in Testing
3.7 Reverse Parse Tree Generation.

49

51
52

53
55

4.1 Path2-Algebras A and B 73

4.2 Graph-Algebra A of hepSPEc-specification Graph 77

4.3 Representation of Quotient-Algebra Ale 78

5.1 Traditional Testing Approach 79
5.2 Combining Traditional Testing with hepSPEc- the hepTEsT Approach 80

5.3 Test Inputs of Sort Nat 82

5.4 Partial Order for Terms of Sort Nat 84

5.5 Partial Order on Seq 85

5.6 Partial Order for Test Inputs of sort Seq 87

5.7 Plane of Natural Numbers 87
5.8 Domain Testing and hepSPEc 88
5.9 Domain Derivation from Axioms for Operation add 89

6 LIST OF FIGURES

5.10 Test Input Transformation using a Syntactic Homomorphism .
5.11 Generation of Representation for s(s(O)) .
5.12 Generation of Representation for s(s(O)) with Failures
5.13 Test Setup Generation
5.14 Test Setup Generation for Binary Calculator
5.15 Links between Abstract, Syntactic and Semantic Algebras
5.16 Syntax Testing Approach.

92
101
102
103
104
106

109

6.1 Graph for Tax Example .
6.2 An Implementation of hepTEsT
6.3 The hepTool User Interface ..
6.4 Introducing LoFT into hepTEsT .
6.5 Implementation of Homomorphisms in hepTEsT
6.6 Reverse Parse Tree for Value 0 .
6.7 Reverse Parse Tree for Entire Test Setup .
6.8 Reverse Parse Tree for Expected Outcome
6.9 Test Automation Setup with hepTEsT .
6.10 Menu in System under Test .
6.11 Generation of Test Data for Sort Store . .
6.12 Partial Order for Sort Store with 3 Member Constants
6.13 Partial Order for Pairs of Store and Member
6.14 Domain split for removeFromStore ex, name1)
6.15 Reverse Parse Tree Generation for Concrete Test Input
6.16 Test Setup for Store Example .
6.17 Overview of Base Cartridge System (BCS)
6.18 Graphical User Interface for BCS

112
116
116
117
121
122
124
124
125
127
131
132
133
134
136
140
150
151

List of Examples

3.1 Algebraic Specification Example! of Natural Numbers and Boolean 35
3.2 Algebraic Specification Example! enriched by Less-or-equal and Addition. 36
3.3 Algebraic Specification Example2 enriched by Subtraction using Error Values 38
3.4 Order-sorted Approach to Specifying Division 39
3.5 Algebraic Specification of Subtraction using Operations with Restricted Do-

main Conditions. 41
3.6 Traditional Domain Testing 43
3.7 Algebraic Specification with Explicit Conditional Axioms 50

3.8 Utilizing Grammars to Express Homomorphism 54
4.1 Graph Specification 71

4.2 Path! Specification 72
4.3 Path2 Specification 72

4.4 hepSPEc-specification of Graph 77

5.1 Difference between Immediate Subterm and Predecessor relation 84
5.2 Syntactic Homomorphism i: T(2;, v) ---+ 0 94

5.3 Grammar Productions Generating Binary Representation of Numbers 96
5.4 Definition of Syntactic Homomorphism for Binary Presentation of Natural

Numbers. .. 98

5.5 Grammar Specifying a Homomorphism between Sort Nat and a Concrete
Binary Representation 99

5.6 Partial Syntactic Grammar for a Byte Representation 100
5.7 Use of Auxiliary Sorts and Operations 105

5.8 OFF-point Testing in Syntax Testing 110

6.1 hepSPEc-specification of Basic Sorts for Tax Example 113

6.2 hepSPEc-specification of Tax Example 114
6.3 Result of Converting the Example for Usage in LoFT 119

8

6.4
6.5
6.6
6.7
6.8
6.9

LIST OF EXAMPLES

Domain Descriptions in LoFT for Tax Example
Partial Order for Sort nat in Prolog
Syntactic Homomorphism for Tax Example. . .
Extension for Syntactic Homomorphism for Tax Example .
Top Specification of Store
Simple Specification for Member Names

6.10 Restricted Operations in Store
6.11 Axioms for removeFromStore
6.12 Syntactic Homomorphism for Abstract Tests
6.13 Mapping variants to a single abstract term .
6.14 Parts of the Syntactic Homomorphism for Store Example
6.15 Semantic Homomorphism for Sort Store
6.16 Semantic Homomorphism for Sort Bool .
6.17 Amending hep-specification Nat

6.18 Specifying Single Digit Addition with Carry
6.19 String Arithmetic for Integers Based on Sequences of Digits
6.20 Specification of Waypoints

120
120
122
123
128
129
129
134
135
137
138
140
141
152
152
153
154

Chapter 1

Introduction

This thesis concerns the role of testing in the development of computing systems. In partic-
ular, it addresses the use of system specifications to enhance the process of test derivation,
application and analysis. Its particular contribution is in lifting test development and
application procedures to take advantage of formal system specifications. This chapter
provides the initial motivation for our work. A brief discussion of the industrial costs and
benefits of testing leads to the identification of the main aim for the research reported here.
The structure of the remainder of the thesis is presented.

Industry is looking to constantly improve the quality of its products. This demand
for quality is driven by the competitive nature of the market and, for example in critical
or high-integrity systems, by strict industry standards. The drivers for quality are also
sometimes at odds with the desire to drive down development costs. Testing is an important
factor in the quality assurance process.

We may describe testing simply as an activity consisting of the execution of an exe-
cutable on known inputs and the comparison of the visible behaviour with an expected
outcome. In this sense testing has many facets. For example the validation of executable
models of a system where the comparison is simply with expectation can be testing, but
also the traditional approach where testing is used for system verification where the com-
parison is with a specification. A closer look at the different aspects of testing is provided

at the beginning of Chapter 2.

System or requirements testing is seen as a means of increasing the confidence that a
software product or system accurately realizes customer requirements. In safety-critical
systems, the level of assurance required is particularly stringent. Yet, although proof of
correctness is seen as one means of attaining this, testing is still of importance, especially

10 Introduction

where COTS components and standard operating systems are used. There are high costs
associated with both proof and testing, hence substantial research in the automation of
both activities. Since testing exercises the software developed, rather than subjecting it to
a static analysis as is the case with proof, it is unlikely that proof will replace testing to
any extent in the medium term.

Testing is facing a number of problems. Testing is a labour intensive task. Test cases
have to be designed and implemented, executed and the test results validated. Many
commercial products support automated test execution, but test case creation is rarely
automated. The difficulty in test case creation stems from two sources. First exhaustive
testing is impossible. Dijkstra's (E.W. Dijkstra, 1972, p. 6) famous comment is usually
quoted to support the claim that "Program testing can be used to show the presence of
bugs, but never to show their absence!" This deep insight into the dilemma of testing
has a big impact on test case creation. In the case of automated test creation it means
that not all possible tests could be created. It forces the tester to select test cases which
are likely to expose faults or where successful tests would increase the confidence into the
correctness of the implementation. But to find those relevant tests manually is difficult.
Tedious labour is required to create tests which follow a selected strategy. The complexity
of problems causes complex solutions which in turn require complex analysis to select the
relevant tests.

The other source of problems in test creation is the validity of created tests. When an
executed test case fails, Le. it did not produce the expected result, then there are three
possible causes:

• Implementation is incorrect. This can be verified by analysing the possible causes.
The usually technique is debugging and source code inspection.

• Specification is incorrect. The specification is either contradictory or does not re-
flect customer requirements correctly. This needs to be established by analysing the
specification, e.g., by inspection.

• Test is incorrect. The test case and the system specification are contradictory. This
can be verified by comparing the test case to the system specification.

The situation is problematic because all of these analysis techniques are very laborious and
cost intensive. The first cause can not be eliminated. It is inherent to the testing process
that the presence of bugs is discovered. The second source should have been eliminated
much earlier in the development process. However, it is difficult to point to a test failure

Introd uction 11

source instantly. Therefore it is highly desirable to eliminate possible test failure sources.
Our desire in the work described in this thesis is to eliminate the third cause, i.e. the
possibility to create invalid tests with respect to the specification. The solution can be
seen in a tight coupling of specification and test case creation.

The general aim of the work described here is to exploit specifications in order to yield
practical improvements in the test selection, application and outcome analysis.

Specification-based testing (Poston, 1996) aims to exploit the system specification in
order to generate suitable tests for the implementation. Confidence into the correctness
will be gained from successful tests.

A number of problems must be faced in automatic test generation from system speci-
fications:

• Suitable framework. The selection of the framework within which the tests will be
generated plays a vital role in the success of the automation attempt. Some frame-
works do not cater for developer's needs as the expressiveness is limited, others are
unsuitable for automation (Donat, 1997). Other problems are specific to the under-
lying theory or chosen approach and vary widely, see e.g. (Dick and Faivre, 1993)
or (Carrington and Stocks, 1994). A detailed discussion of these approaches follows
in Chapter 2.3.

• Test selection. There may be an infinitely large space of tests from which a choice
must be made. This makes automation difficult and calls for additional assumptions
that may not be satisfied in the given context. In order to make test selection viable,
a test stmtegy, which defines the relevance of tests, must be proposed. Test strategies
are developed for company wide use or can be specific to an application domain. Some
testing methods impose a selection strategy on the user. Testers are very reluctant
to adopt other strategies mainly because they have a strong believe into those which
were developed for their needs.

• Abstract vs. Concrete Tests. The use of specifications introduces an "abstraction
gap" between the specification-derived tests and the implementation. The result
is that specification-based tests cannot be applied directly to the implementation
because the representation of abstract test values is in general very different from
that needed to drive the implementation. This results in an additional transformation
step which should be closely tied to the formalism used to derive tests. This would
limit the possibility of generating invalid tests. It is important for any specification-

12 Introduction

based approach which aims to generate tests to find a method to bridge this gap
automatically without too much effort .

• Test Result Validation. Test result validation in the traditional approach compares
the actual outcome to the expected outcome. When tests are created manually, the
tester usually provides the expected result, which he derives from his knowledge of
the problem domain. In an automated setting the generation of an expected outcome
is vital to the practicality of the approach. Otherwise the tester is forced to derive
the result manually and the benefits of automatic generation are reduced. This also
has to influence the decision about a suitable framework, because it must allow us to
compute the outcome. This is not possible in all frameworks. Additionally we should
require that the expected outcome is made available in a representation which eases
test result validation. What has been said previously about abstract vs. concrete
tests applies also to the expected outcome.

The specific objectives of the work reported in this thesis are:

1. To develop a framework for specification-based testing that is designed with the
developer's needs in mind, and is suitable for automation and exploits rigour in the
specification language.

2. To show how such a framework can aid test selection and to provide foundational
and practical support for such selection.

3. To provide support within the framework for bridging the abstraction gap between
abstract and concrete tests.

4. To provide automated support within the framework for result validation.

Given our aim of providing a developer-centred framework for specification based test-
ing, we propose to adapt traditional, industrially proven techniques (Beizer, 1995) and aim
to achieve a high degree of automation to improve the cost-effectiveness and reliability of
tests. The traditional approach is "lifted" to the abstract level of the specification, where
we can use formal techniques to specify the properties of the desired system. These proper-
ties are automatically transformed into test cases. This frees testers from the tedious tasks
of selecting and creating test cases manually. Other proposals for automated test case
generation tend to impose a testing strategy on the user. In the spirit of traditional testing
techniques the selection of appropriate test cases, also known as the testing strategy. is

Introduction 13

user-driven in our proposal. The user, or tester in this case, has the task to select the most
appropriate test strategy. He does this using his knowledge about design, implementation
techniques used in this project and his experience in identifying relevant test cases. Our
main goal is to support him in his efforts through a high degree of automation.

This thesis will first introduce some testing techniques and examine past and present
proposals for test case generation. Then we reason about our proposal and introduce
the alternatives and discuss them. The next chapter contains the formal basis of our
specification language and the next introduces our testing approach. We exemplify these
new techniques in two case studies, where one is an industrial project. The thesis concludes
with an assessment of the techniques and proposes for future research.

14 Introduction

Chapter 2

Test Case Generation

This chapter provides a classification of testing, an overview of functional testing technology
and a discussion of previous approaches to automatic test data generation.

2.1 Testing Techniques

Testing has been an important part of the development cycle for decades. Various claims
have been made about testing, but it can be seen as a means of gaining confidence into the
correctness of the system. As correctness has many meanings so testing has many faces.
In order to place the work reported in this thesis into context, we distinguish six:

• Functional Testing. Tests concentrate on establishing that the functionality of a
system has been implemented correctly. These tests usually disregard performance
issues and related requirements. The emphasis lies on correctness. A test oracle
compares expected and actual outcome and yields success or failure. Functional
testing, in particular, testing w.r.t. a specification, is discussed in greater depth in

Section 2.2.

• Regression Testing. Modification of parts of existing systems can have a bigger impact
than desired. Regression tests are performed to confirm that the changes have not

introduced errors into parts of the system formerly considered correct.

• Conformance Testing. Some systems are required to conform to standards. Tests
are produced according to the requirements of the given standard. Test success is

described in or is derived from the standard in question.

16 Test Case Generation

• Usability Testing. This kind of testing is aimed at testing the Human-Computer-
Interface. Commonly used in the presence of graphical user interfaces, tests are per-
formed manually by independent testers and success is assessed according to factors
like ease of use, and system guidance.

• Documentation Testing. Documentation is an important part of the system and
requires testing too. Among the goals of documentation testing are establishing
documentation's correctness, completeness, and usability.

• Load Testing. Typical client/server-applications or volume-critical systems, such as
databases, require tests exercising the transfer rates of the system. Satisfaction is
rated according to the rates achieved or the volume processed.

Despite the different focuses some tasks are common to all these testing approaches - the
general tasks of test selection, test production, application of tests and test assessment.

First appropriate tests have to be generated. This task consists of test selection and test
generation. These two tasks are usually coordinated. Some approaches generate tests and
select the appropriate ones from this set. This method is very expensive, as useless tests
are produced at length, so it is in practice only applicable where generation is automated
(Offutt, 1988). Usually tests will be produced so that they satisfy a selection criterion. A
test selection criterion determines which tests are appropriate. The test generation process
is stopped when the criterion is satisfied. The criterion is what varies from testing approach
to testing approach. Figure 2.1 presents a variety of criteria which might apply.

Tests can be selected so that they cover the source code structurally. Well-known struc-
tural coverage criteria are path and statement coverage (Beizer, 1990). In cases where a
specification is used the testing criterion can be based upon the structure of it. Alterna-
tively the criterion can be based upon a model which is derived from the specification and
describes the functionality or aspects of it. We talk then about specification or functional
coverage. Tests can also be based upon examination of the input domains and partitions.

But such a selection criterion is not always apparent, not talking about formally defined,
even though it indisputably exists. In the case of usability testing, for example, the user
decides on an ad-hoc basis which tests he selects (Beizer, 1990). The selection criterion is
implicit whereas other testing approaches have a well defined test selection criterion, such
as "cover all statements of the source code".

Next the tests have to be applied to the system under test. Running the tests means
loading the system, providing an initial known state and supplying the system with test in-

2.1 Testing Techniques 17

Specificationo
B

-PartitionsI

en
~o
Sio
ll>g.
o
(")
o
~ Test Data

-:I-=- = I

Input Domain

0-" T,,' Execution

L.:.:.___ Software System ---,

under Test L ••
Output Domain

Figure 2.1: Test Data Selection in the Testing Process

18 Test Case Generation

puts. These steps are performed automatically, semi-automatically or in general manually.
Costs, and the intervals at which these tests are run, dictate the choice.

The results of the tests have to be assessed to determine success or failure of a test.
A test is said to have been successful if it produced an outcome in accordance with ex-
pectations, otherwise it failed. A test failure identifies the presence of a bug. Test result
assessment might be done by comparison with an expected result or by evaluation of the
outcome. The evaluation can be machine assisted or can be performed manually. There is
in either way the problem of deciding whether the tests have been successful or failed, this
is referred to as the oracle problem. Some testing methods resolve this problem easily, for
example in load testing the achieved and expected transfer rates are compared, and test
success or failure is derived from that. In functional testing the outcome has to be pre-
dicted for comparison with the actual outcome. Alternatively the outcome of the test can
be assessed by evaluation using a model of the system (Antoy and Hamlet, 1992). Rather
then comparing the test outcome at implementation level, the outcome is transformed into
its equivalent in the model and then proof or model checking technology is used to evaluate
the result. Nevertheless test result validation is not trivial in most approaches.

Functional tests of systems have proved to be a challenge. Automated test generation
is especially interesting, as systems tend to be large and complex and manual production
of appropriate tests becomes less trivial the bigger the system grows. The existence of
formal or semi-formal criteria describing adequacy of a test make automation feasible. For
other testing aspects such as documentation or usability testing which lack such a definite
criterion automation is not applicable.

2.2 Functional Testing

Functional testing is discussed in great detail by Myers (1979), and again by Beizer (1990).
The famous remark by E.W. Dijkstra (1972, page 6): "Program testing can be used to
show the presence of bugs, but never to show their absence!" has been used as an argument
against testing. The key idea in functional testing is, however, that systematic test selec-
tion can increase confidence in the correctness of an implementation rather than provide
complete assurance.

2.2 Functional Testing 19

2.2.1 Approaches to Correctness Assurance

Even in the light of system development with formal methods testing will continue to play
a leading role. Modern systems are constructed using tools, libraries, compilers, and run
on operating systems and utilise hardware. Such system structures form a pyramid and the
specifications cover only the peak of it, not the entire structure. If validation techniques
would be required to show the correctness of the implementation, then these techniques
need to be applied to the entire structure. Because of the complexity of modern systems,
the development environment where many libraries are Components-Of- The-Shelf (COTS),
such validations would be immensely resource and time consuming, if to be successful at
all. In this sense formal methods of verification or validation such as proof cannot ensure
correctness of the implementation without being impractical. Those results are applicable
only to the models or the level of abstraction on which they where carried out. Proof can
increase our confidence into the correctness of our specification, testing into the correctness
of the implementation. Therefore we see these methods as complementary. The goals of
hepTEST, the testing framework developed in this thesis, are concerned with the verification
of systems. We believe that test execution can demonstrate that the system is operationally

correct implemented.

2.2.2 Classification of Functional Testing Techniques

Functional testing techniques are differentiated into two main streams, glass-box and black-
box testing. Glass-box, sometimes referred to as white-box testing, is based on source code.
This includes static analysis, like walk-throughs, and revision (Sommerville, 2001) and dy-
namic testing exploiting the structure of the source code (Myers, 1979) . Static techniques
have their own advantages and disadvantages, but in system testing they are less applicable
than during unit or module testing (Beizer, 1990). The black-box testing approach makes
no use of the source code but uses a different source of description of the implementation.
The black-box approaches differ in the way test cases are selected, and we can distinguish
between nondeterministic and deterministic testing. In the nondeterministic case tests are
selected either randomly or according to a given heuristic. Each time tests are produced a
different test set is obtained, therefore the name nondeterministic. Dyer (1992) discusses
random testing in detail, where heuristics can differ and are usually based on the use of
operations during the lifetime of the implementation. To find faults in the implementa-
tion tests would be chosen emphasising operations that are rarely used in practice, e.g.

20 Test Case Generation

Functional Testing Techniques

Glass-Box Techniques
~

Static Structural

Black-Box Techniques
~

~ Non-detyministic

Functional Structural Statistical

Figure 2.2: Testing Approaches to Functional Testing

setup, initialisation and maintenance. Other heuristics may favour operations that will be
used frequently. In contrast the deterministic approach selects test cases according to a
criterion based on a system's description. This description could be a formal or informal
specification. The selection criterion is then based upon the structure or the functionality
of the system. The selection criterion gives rise to the same test set every time tests are
produced, hence the name deterministic. Figure 2.2 presents an overall picture of testing
approaches. Up to now we discussed glass-box and black-box testing techniques in general,
but they need to be accessed to their use in system testing.

2.2.3 White-Box Testing Approach

The white-box testing approach makes use of the source code to produce tests. The
coverage criteria vary from "all paths" to "all statements". Most of these techniques are
based upon the structure of the source code. The "all statements" criterion requires a test
set ensuring that all statements in the source code are executed at least once during the
execution of the tests.

In the light of modern development techniques, like client/server architecture or event-
driven programming satisfying the selection criteria becomes more of a challenge. The
source code does not contain enough information about the order of execution, in other
words the structure of the code does not reflect the systems architecture. In event-driven
programming, for example, the code consists of small pieces of linear code. The function-
ality is hidden in the operating system referencing these code pieces. An attempt to find
a path in the code may fail if no knowledge about the operating system and its behaviour
is present.

Research by Strooper and Hoffman (1991) into test data generation for C modules
using Prolog has been aimed at finding typical mistakes. The main problem in using the

2.2 Functional Testing 21

source code is that the notion of the statements can only be guessed. Mistakes resulting
from omission cannot be detected by white-box testing techniques. The insufficiency of the
white-box approach in dealing with system tests has been shown by others (Myers, 1979;
Poston, 1996). The main reason is that there is no independent source of the systems
expected behaviour in white-box testing.

To document the requirements independently from the implementation a specification
can be written. Using this document rather than the implementation leads to black-box
testing, where the only source of information used during system testing is its specification.
The name black-box testing stems from the notion that the internal states and behaviour
of the system is hidden and only its interface is visible to the tester.

2.2.4 Specification-Based Black-Box Approach

Black-box testing does not necessarily require a formal specification. Approaches dealing
with heuristics (Ince, 1987) or genetic algorithms (Michael et al., 1997) can generate test
inputs automatically. However, because they do not produce expected outcomes, test
result validation is a problem. The inability to validate test results nearly rules out these
approaches for functional testing. They are applicable to other approaches, where test
result validation does not require an expected outcome, like load testing, or can be used if
a reference system exists, that can produce the expected outcome for test validation.

The specification-based black-box approach can be applied conveniently to systems
which can be abstracted to a function relating inputs to outputs. A formal specification
describing this function is needed if tests are to be generated automatically (Donat, 1997).
We will have to choose one or a combination of theories within which the properties of
the function are stated. The earlier mistakes are discovered the easier they are to fix and
therefore the costs of system development are kept low.

This is the reason why the objectives of testing emphasise early test data generation:
functional tests can be produced right after the requirements have been recorded. If these
requirements are recorded using a formal method then, among other benefits, automatic
test case generation is possible. Figure 2.3 provides an overview of how specification-based
automatic test data generation is integrated into the development process.

22 Test Case Generation

Automatic Test Generation

Specification

Qr
Abstract

Concrete Tests

T~' Rcifi,,"" I-=- _ 1Test Selection

Development

Test Result

Implementation

Test Validator0 -<>_T_es_t_E_x_ec_u_ti_o_n_
- Concrete Tests

Software System

Test Bed

Figure 2.3: Integration of Test Generation into the Specification Based Testing Approach

2.3 Test Generation 23

2.3 Test Generation

This is an overview of existing test generation approaches according to their specification
method. The various approaches differ so much in the way they generate tests, what is
generated or what is used as a basis that we have assessed them using some very general
criteria reflecting the goals of automatic test case generation. Evaluation of each approach

is based on the following criteria:

• Expressiveness of the specification method. This determines the extent to which the
method is widely applicable or weather it is only suited to a specific application area.

• Automation level achievable. Because of the underlying theory there are obstacles
which might hinder the achievement of a higher level of automation.

• Test selection support. From a practical point of view the method should support
various test selection methods. This allows the engineer to select the appropriate

one.

• Test reification implemented. We understand test reification as the process of trans-
forming abstract tests derived from a specification into concrete tests understood by
the system. This point is closely related to the one about automation level. If test
reification is not supported by the method then the level will be lower. Nevertheless
test reification is very important and can be achieved in various ways. This criterion
should assess the way test reification is handled.

2.3.1 Finite State Machine

Finite state machines are well understood and supported. Test generation from descriptions
of finite state machines (Fujiwara et al., 1991), extended finite state machines (Cheng
and Krishnakumar, 1993), X-machines (Ipate and Holcombe, 1998) has been subject of
research for many years. The approaches cover many aspects of test generation from finite
state machines, such as the use of Unique-Input-Output sequences for test validation, and

optimisation of test sets.
Finite state machines and closely related approaches are successfully employed to de-

scribe protocols, hardware and such systems. They are not suitable to describe an entire
software/hardware system if the expressive power of finite states machine is exceeded. Due
to the size of the systems targeted by this work it has to be concluded that finite state

24 Test Case Generation

machine based approaches are insufficient regarding their expressiveness and abstraction.
They also lack the ability to deal with complex data structures in general and have to be
turned down as a basis.

2.3.2 Grammars

Another widely understood formalism is that of context-free grammars. They are more
expressive than finite state machines and can therefore be applied to a greater variety of
problems. Grammars in general have become the formalism in compiler construction. So
unsurprisingly the first work on test data generation from grammars has been targeting
test generation for compiler tests (Purdom, 1972). Many algorithms have been developed
for structural coverage. But it has emerged that the algorithms were optimised for the size
of the test rather than for exposing faults (van Mayrhauser et al., 1994a).

Continued work by Bauer and Finger in (Bauer and Finger, 1979) suggested great
potential. Others followed on like Lindquist and Jenkins in (Lindquist and Jenkins, 1988).
And in the 1990's the work was taken up by Maurer in (Maurer, 1990) and Burgess in
(Burgess, 1993).

These approaches have been mainly limited to parsers and similar systems. The gen-
eral drawback was expressiveness. Using attributed grammars this was overcome but the
development and maintenance has become too difficult (van Mayrhauser et al., 1994a).

2.3.3 Model-oriented Specification

Model-oriented specification languages such as Z and VDM-SL have been successfully
adopted in the industry. Since the early 1990's these formalisms have been a source of
investigations for test generation.

Stocks and Carrington have produced a number of results on test generation from Z
specifications (Stocks and Carrington, 1991, 1993a,b, 1996). They used a formal descrip-
tion of the tests in Z to produce test frames. These test frames contain the information of
how tests are to be produced. A disadvantage is that the description of the system is not
used but the source is an additional formal specification, describing the tests themselves.
That means that maybe two specifications have to be maintained and held consistent. This
disadvantage can turn into an advantage if no formal description of the system exists, be-
cause tests can be generated from an independent specification. The special circumstances
in a specific task will decide what is true.

2.3 Test Generation 25

Dick and Faivre used VDM specification of systems to generate tests for single functions
(Dick and Faivre, 1993). A series of problems was overcome in this research. The main
cause of concern results from the expressive power of model-oriented formalisms. The use
of implicit function definition leads to problems when tests are sequenced and outcomes
computed. Partitioning of input domains is also affected. The approach proposed by Dick
and Faivre (1993) constructs a finite state machine relating preconditions to postconditions.
It became apparent that the construction of these machines will require user interference.

Horcher and Peleska suggested the use of Z as a basis (Horcher and Peleska, 1995).
They overcome the disadvantage of the approach by Stocks and Carrington (1996) by
using the specification of the system. But they too cannot overcome the problems with
implicit function definitions.

Donat (1997) generalised all these approaches considering propositional logic with quan-
tification. He showed that the level of automation achievable is limited by the formalism.
The use of quantifiers allows to generate logical schemata that specify groups of black-box
test cases, not individual test cases.

2.3.4 Algebraic Specification

Algebraic specifications are another formalism which has been considered by researchers for
test generation. Early work started in 1986 by Bouge, Choquet, Fribourg, and Gaudel as
described in (Bouge et al., 1986). This work has been continued over the years by Bernot,
Caudel, and Marre in (Bernot et al., 1991a; Gaudel, 1995) tackling a variety of problems.

Researchers at the "Laboratoire de recherche en informatique" described how to gen-
erate tests automatically from algebraic specifications in 1986 (Bouge, Choquet, Fribourg,
and Gaudel, 1986) and influenced the work reported in this thesis. Figure 2.4 summarises
their general testing approach.

Testing in the sense of the paper by Bouge et al. (1986) means answering the question:
"Does implementation X satisfy axiom Y?" A test case is then a ground equation, where
the variables in the axiom Y are substituted by ground terms. Automation is achieved
through tools finding these substitutions. Systems capable of finding such substitutions
are logical term rewriting systems such as Prolog. There is a connection between algebraic
specifications and logic programming exploited to produce prototype implementations of a
specification (Bouma and Walters, 1989). The same idea is used by Bouge et al. to convert
the specification into a logical program. To generate tests for a particular axiom Y the
process is as follows. The transformation of axiom Y into a Prolog goal is the initial step.

26 Test Case Generation

~>Algebra Implementation

+ Axioms~ {success,failure}

1

Test Set
...._.../

Formalisation Test Selection

1 1
Testing Context Collection of Tests

Figure 2.4: Test Generation and Selection

The resolution algorithm of Prolog will search for all possible solutions. After test case
selection the relevant tests are applied to the implementation X and failure or success is
determined by an oracle.

The first step is to transform the specification into a logical program. Then the axiom
under test is transformed into a goal. The Prolog resolution algorithm returns all possible
substitutions for the unbounded variables in the goal.

From these, in general infinitely many cases, some tests are selected according to hy-
potheses.

Application
of stronger
hypotheses

Reduction of
the test set

Figure 2.5: Test Hypothesis

The idea is to start with weak hypotheses resulting in a huge, maybe even infinite, test
set. By strengthening the hypotheses the test set size is reduced becoming of practical
interest as illustrated in Figure 2.5. The hypotheses may range from an initial hypothesis,
stating the finitely generated condition on the implementation, ranging to the hypothesis,
that the program is correct. In the latter case there is no need to test and the size of the
test set becomes zero. If hypotheses can be assured, say by proof, then the combination

2.3 Test Generation 27

of testing and proof ensures correctness of the implementation w.r.t. the specification. In
practice this may be too expensive or simply impossible for reasons discussed earlier, so
the choice of hypotheses is crucial to the test effort and its result.

Bouge et al. suggest to use the regularity hypothesis. This hypothesis requires a metric
of complexity for each sort and assumes, that if tests with inputs of complexity up to k
are successful, then all inputs would be valid. The engineer would provide a metric for
each sort, such as the term's depth. This can be difficult from time to time, so another
hypothesis called uniformity hypothesis is derived from the assumption, that if one test
from a domain is successful, than all will be.

Hypotheses should be chosen in a way, such that possible, likely faults will be uncovered.
The hypotheses proposed by Bouge et al. are too strong. Traditional testing techniques
require far weaker assumptions. Beizer (1995), driven by practical concerns, suggests for
example to select test covering boundary values and we will follow his ideas.

In the theory of algebraic specification we can derive other equations than those which
are explicitly stated. In the proposal of Bouge et al. these equations are not included in
the test generation. Thus these properties are not tested.

And there are other problems resulting from the idea of testing with the hypothesis that
implementations are finitely generated algebras as each specification may contain auxiliary
sorts or operators. For an implementation to be a finitely generated algebra would mean
that all operators from the specification have to be implemented and become a part of
it. Auxiliary operators and sorts are not an integral part of the problem description, but
are introduced for convenience, for example to state a property. Such auxiliary operators
or sorts will find no expression in the implementation. The generated tests cannot be
executed. To solve this problem Bouge et al. require that the implementation is a finitely
generated algebra. This is a restriction which prohibits the use of auxiliary operators or
sorts or requires their existence in the implementation.

Summarising, it has to be questioned if testing by answering the question "Does the
axiom hold for the implementation?" has any meaning. If we follow the ideas of Bouge
et al. then we need to ensure that the system has implemented the derivation process
correctly. This is a hypothesis which is not supported by any evidence. Moreover it is
difficult to believe. The author is unaware of systems which do implement such logic

features.
The tests derived by Bouge et al. (1986) exercise the system and determine if it does

what it should. Such tests we will call positive tests. The suggestions by Beizer (1995) lead

28 Test Case Generation

to negative tests. Negative tests determine if a system has no additional properties or if it
does not do what it should not. In the case of algebraic specifications we can use initiality
to answer such questions. If an algebra is an initial model of a specification then only their
axioms and those which can be derived hold. In order to generate negative tests we need
to assume that the intention was to develop a system which behaves like an initial model.

Woodward criticises the work of Bouge et al. (1986) in his paper (Woodward, 1993). He

argues that the generated test cases lack the link to the implementation. Understandably
he is suspicious if a formal term or equation is accepted as input by the implementation.
This is a problem that needs to be investigated.

2.3.5 Object Oriented Models

Object oriented models have been the source of recent investigations. With the widespread
use of object oriented technology during analysis, design and implementation phases special
interest has grown to use these models during testing. The aim is to reduce the time needed
to develop testing model and reuse existing documents during testing phases.

For example von Mayrhauser, Mraz, and Walls in (von Mayrhauser et al., 1994a,b)
describe a system called Sleuth. There they use an object model and enrich the specifica-
tion with pre and post-conditions and add a finite state machine system which describes
the interaction between the commands. This approach contains difficulties. Firstly the
specification is constructed using 3 different formalisms. There is no unifying theory which
would allow to use the results from one theory in the others. This brings up the question
if the generated tests are valid. Secondly the specification is very close to the implemen-
tation. The lack of abstraction capabilities makes it very difficult to specify an entire
system. Moreover the specification does not describe a system but a specific installation
of it. Thus tests are answering the question: "Would this installation function correctly?"
and focuses on the installation and not the system. The difficulty is that the new tests
have to be created for each new installation. However the abstraction gap we mentioned
in the discussion about algebraic methods is not present here, because the abstraction is
minimal. This raises the question if these are black-box or white-box testing techniques.

Poston (1994) reports a similar approach. He also has to overcome the lack of semantics
present in an OMT model. He also uses pre and post-conditions and additionally anno-
tates the model with domain information. The result are test cases which do not contain
an expected outcome. The reason is probably the same as in the case of model-oriented
specifications and due to the expressive power of pre- and post-conditions. It is argued that

2.4 Summary 29

the expected outcome is unnecessary and not desired because otherwise the specification
could replace the implementation. This is a difficult argument to believe, because firstly
an executable specification is probably too slow to be a replacement for program code.
Secondly it is too difficult to deem it practical that a huge number of automatically gen-
erated tests has to be assessed manually. This includes analysis, computations and checks
for a huge number of values. Even for trivial applications this seems to be very inefficient.

A similar assessment is provided by Liggesmeyer and Ruppel (1996) where the lack of
clear semantics of object-oriented models is criticised. The authors also argue that testing
object-oriented programs requires new techniques because structural coverage criteria are
not easily applicable to object-oriented software.

2.4 Summary

The variety of existing and newly developed selection criteria calls for support during test
case generation if testing should be practical. The choice of the selection criteria reflects
the testers experience in finding faults. Testers are reluctant to accept methods imposed
upon them by tools. Automation of test generation yields systematically developed test

cases.
We aim to generate system tests utilising the power of a formal system to lift traditional

approaches to testing to a more formal level.

Our first goal is to find a suitable formalism which we can use to describe our system
under test (SUT). It is important to us that the specification can be used to automatically
generate black-box tests for the SUT.

We have surveyed a number of formalisms to look at their advantages and disadvantages.
The degree of automation achievable is determined to a certain degree by the choice of the
underlying theory. Therefore this choice is crucial.

Following our selection criteria we have excluded those formalisms which do not possess
the expressiveness to describe a system in full. The use of techniques based upon finite state
machines has been ruled out for this approach on the basis that the expressive power is
limited. Similar things have to be said about grammars, despite the possibility to increase
expressiveness by using attributed grammars, because software engineering considerations
reveal drawbacks. This practically leaves the choice between model-oriented and algebraic
formalisms. Unfortunately model-oriented specifications have to be dismissed too, this
time because their expressiveness limits the degree of automation achievable.

30 Test Case Generation

The popularity of object-oriented methods could have made them a good choice, un-
fortunately the models lack clear semantics and cannot be used to calculate the outcome.

Algebraic specifications and their use for test case generation are discussed in greater
detail in Section 3.5. The entire Chapter 3 is devoted to algebraic specifications beginning
with an introduction to the theory, discussing problems related to testing from algebraic
specifications and proposing a framework for automated test generation.

Surprisingly, none of the visited methods had implemented test reification. Test reifi-
cation is the link between the abstract model and the systems implementation. Although
some methods allow for a level of abstraction none of these methods provided a solution
of how the generated abstract tests are mapped to concrete tests. This will be a main goal
for this work.

Chapter 3

The Rationale behind hepTEsT

This chapter provides the motivation for the work undertaken by this thesis. In this chapter
we will start by summarising our initial position.

We will motivate the choice of algebraic specification in Section 3.2 and 3.3 and provide
an introduction of the concepts of algebraic specification which are then pinned down
formally in Chapter 4. We will review the traditional testing approach which has been
applied widely in industry in Section 3.4. We will explain in Section 3.5 how our approach
proposes to deal with a variety of problems and how our algebraic specifications can be
used to generate automatically test cases for functional system test. In Chapter 5 we will
go into details which are omitted in this motivating introduction and in Chapter 6 we will
apply the proposed technology to a choice of three case studies.

3.1 Goals of hepTEsT

The driver behind this work - hepTEST - is to assist testers in testing the functionality of

a system.

32 The Rationale behind hepTEsT

white-box techniques.ample that the implemen-

In order to test the
functionality of a system
a tester must create test
cases, apply them, and
validate the outcome. Be-
fore tests can be created
a description of the func-
tionality is required. My-
ers (1979) showed in the
well-known triangle ex-

tation cannot be used as
a description of the func-

Myers Triangle Example
Myers (1979) describes in his book an example to show that
white-box testing alone cannot find all the bugs in a software.
He proposes the task of identifying triangles to illustrate his
claim. A software is expected to classify triangles into isosce-
les, equilateral or scalene. He discusses a possible implemen-
tation and creates tests using white-box and black-box tech-
niques. He continues to show that white-box techniques fail to
establish the incorrectness of the implementation. He shows
that omission as a source for faults cannot be identified by

In Appendix A we provide a formal specification of the triangle
example in our proposed formalism hepSPEc.

tionality for the purpose of testing.

In order to generate test data automatically we need to have a description which can
be manipulated by algorithms in the same sense used by Donat (1997). Donat argues
successfully that the formal description is needed so that it can be transformed algorith-
mically into a set of, as he calls them, test frames. We agree with this observation and
say that a formal system for describing the functionality and automated manipulation is
required in order to automatically generate test data. Donat (1998) has chosen the for-
malism of VDM-SL for his system requirements descriptions. So his approach is hampered
by the inability to derive test sequences automatically and that is why he generates only
test frames which consist of a precondition for the test, a list of stimuli and an expected
response. These test frames need to be instantiated, e.g. variables substituted with actual
test inputs, such that the chosen test inputs satisfy the conditions provided. Due to the
expressiveness of model-oriented specifications this task cannot be automated in general.
There are also other approaches using a model-oriented framework (e.g. Dick and Faivre,
1993; Horcher and Peleska, 1995). As discussed in Chapter 2.3.3 they have problems in

generating test sequences which cannot be overcome in general. Test sequences play a
major role in system tests. To test a particular subfunction of the system under test a
sequence of test data needs to be submitted to the system in order to set a state from which
the sub function in question can be accessed. Test sequences provide the means of reaching
the subfunction through the systems interface. Test sequences are not vital for tests in unit
testing where the tester has access to the functions state through either direct interference

3.1 Goals of hepTEST 33

or by auxiliary procedures. They are usually removed when a system is created and their
absence makes the execution of sequences so important to the system test. For hepTEsT
we have chosen to use algebraic specifications following the results in this research area
(Bouge et al., 1986; Marre, 1995). Algebraic specifications are suitable for deriving test
sequences and to describe systems at an abstract level. This will help the tester to handle
the descriptions even of larger systems. In the remainder of this work we will see from the
results that the choice of algebraic specification was justified.

The objectives of this approach to testing as outlined in Chapter 1 are a high degree
of automation, the use of system descriptions as a basis for test generation and practical
viability of the approach. In our search for solutions we will keep a close eye on practical
aspects of the work. These include, besides applicability to a wide range of problems and
software engineering methodology, the possibility to adapt this approach in different test

environments.
In contrast to the work of Bouge et al. (1986) we do not want to prove the correctness

of the implementation, our goal is to generate test cases systematically and automatically.
The specification is used to derive appropriate tests according to a user given testing
strategy. There is no empirical evidence about the quality of such generated test cases,
this work wants to establish the foundations and make further research possible.

Assisting the tester in automated test case execution is another goal of hepTEsT. Au-
tomated test execution in conjunction with automated test generation could overcome the
problems of frequent changes in the specification during the development process. The
changes would be recorded and the description of the system adjusted accordingly. Tests
can be regenerated and executed automatically, freeing the user from these tasks.

The third major task in testing is test result validation. In this area hepTEsT provides
support by generating an expected outcome. In order to verify test results the generation
of an expected outcome is considered important and becomes another goal in hepTEsT.
Especially in a setting of automated test case generation providing an expected outcome is
crucial for the applicability of the framework. It could be argued that there is little value
in generated tests without a corresponding outcome or some other possibility to validate
the test result like e.g. in Antoy and Hamlet (1992).

Summarising, the goals of hepTEST are:

• automated generation

• of functional tests

34 The Rationale behind hepTEsT

• focusing on the degree of automation

• and the practical applicability of the method.

This chapter is an in-depth discussion of the alternatives and choices made to achieve the
objectives. We will give an introduction to algebraic specifications in so far as is needed to
show the choices available and to explain the reasons for the selections made when choosing
the theory underlying the method. A critical review of the traditional testing approach as
presented by Beizer (1995) is followed by the proposal of hepSPEc (hierarchical equational
partial specification) and hepTEsT, an automatic test case generation framework which
addresses some of the deficiencies identified in earlier work. A comparison with earlier
work on test generation by Bouge et al. (1986) concludes this chapter.

3.2 Algebraic Specification

Before we can discuss the choice of the algebraic framework we have to introduce informally
some of the basic features of algebraic specifications. The precise definitions of hepSPEC,

the proposed specification language, will be given in Chapter 4. Here we need only some
basics to drive the discussion about the rational behind hepTEsT. We will follow the
classical works on algebraic specifications (e.g. Ehrig and Mahr, 1985).

Signature

Let us give a simple example to clarify some terms. We will specify natural numbers and
Booleans. There is the obvious need to name the set of natural numbers, here we call them
Nat and for the set of Boolean values we choose Bool. In general such names are called
sons. We follow the idea of specifying natural numbers by zero and successor. To do so we
select two operators zero and succ. With the operators we associate domains, sequences
of sorts, and ranges, a single sort. In our example the operator zero has the empty set
as its domain and Nat as its range. We call operators with an empty domain constant
operators. Constant operators in our example are also true and false each having Bool
as its range. The operator succ is unary and has Nat as its domain as well as range. The
domain and range associated with an operator are called the operator's arity. Example 3.1
shows the complete specification. The tuple of sets of sorts, operators and their arity make
up a signature. A specification is a signature presented in the way as in Example 3.1

containing all the keywords.

3.2 Algebraic Specification 35

Example1 is
sorts Nat, Bool
oprn

zero: ----+ Nat
succ: Nat ----+ Nat
true: ----+ Bool

false: ----+ Bool
end Example1

Example 3.1: Algebraic Specification Example1 of Natural Numbers and Boolean

We can build terms with the syntactical material presented so far in the usual way. The
arity of an operator determines the number of arguments, and the sorts of the arguments.
With the specification from Example 3.1 we can form, for example, the terms zero or
suce (succ Izero)). We say a term is of sort S to mean that the range of the outermost
operator of the term is of sort S. When we construct terms, we need to ensure that subterms
and domains are of the appropriate sort. For example succ(zero) is a valid term, because
zero's range is Nat and the first argument of succ has to be of sort Nat. The terms
zero (succ (zero)) or zero (succ) are invalid, because they disobey the sort condition.
Terms can include variables as place holders for subterms. We call terms without variables

ground terms.

Enhancement

In practice a project, even a small one, can easily contain 200 sorts, and 500 operators. To
handle such a big number of entities we need to provide construction operations which build
signatures from signatures. In this way we can structure our description and provide better
readability and accessibility. This principle has been discussed in software engineering for
years (Wirth, 1971) and has become a standard way to address this issue.

In the algebraic specification theory larger descriptions are constructed by enhancement
of existing specifications. Let us use Example 3.1 again to clarify this issue. We want to
enhance this signature with two new operators add and leq. Now we need to specify
how to add two natural numbers. This is done by axioms. An axiom can be a simple
eq'Uation, where right-hand-side and left-hand-side are terms and are separated by the
equality symbol. Example 3.2 is the complete specification.

In line 5 we expressed the well-known property 0 + b = b. The axiom in line 6 states
that in order to calculate a' + b we can first calculate a + b and then build the successor of

36 The Rationale behind hepTEsT

! Example2 is Example! with
2 oprn add: Nat Nat - Nat
3 leq: Nat Nat - Bool
4 axioms a, b: Nat
5 add(zero,b) = b
6 add(succ(a),b) = succ(add(a,b»
7 leq(zero,b) = true
8 leq(succ(a),zero) = false
9 leq(succ(a),succ(b» = leq(a,b)
10 end Example2

Example 3.2: Algebraic Specification Example1 enriched by Less-or-equal and Addition

the result, if a' is the successor of a. In other words we defined add recursively. We took
the same approach to define leq, defining leq first for the constant operators and then
through recursion.

Parameterisation

In order to build up a large library of ready-to-use signatures we introduce the concept of
parameters. When writing specifications, we realize that certain parts recur (This is the
same observation which is utilised in object oriented languages like C++ through the use of
templates). In algebraic approaches this is realised by defining parameters for signatures.
These parameters can then be substituted by another signature.

Semantics of Algebraic Specifications

Whereas sorts and operations are the syntactical material, axioms provide the meaning of
the specification.

An algebra is understood as a collection of sets (the so-called carrier sets) and opera-
tions. We assign each sort from our specification a set from the algebra and each operator
an operation. Then we call an algebra a model of the specification if all axioms from the
specification hold for all assignments in the algebra.

1
For example the algebra of natural numbers and Booleans with the usual operations

successor, addition, and less-or-equal is a model for our specification in Example 3.2. This
is not surprising, because it was our intention to specify natural numbers with addition as
well as Booleans.

We can say that the meaning of a specification is its class of models. The axioms

3.3 Algebraic Methods for Handling Partiality 37

restrict the class of algebras which are models and that is how they fulfil their semantic
task.

But we want to restrict the models even further. There is a class of models (called
initial models) which is of particular interest to us. For an initial model of a signature it
is true that every value is represented by at least one term. In other words we can name
any value from the algebra by referring to a term. This is a very important property for
test generation. It means that we can generate an abstract input for any given test.

Other models include loose and final (or terminal) semantics. Loose semantics can be
summarised by saying that a model needs to comply with the stated properties. In general
loose semantics are used when we want to assert a property (Goguen and Diaconescu,
1994) whereas initial semantics are used for defining a structure. Final semantics are more
complicated than initial and need usually more axioms to describe the system (Wirsing,
1990). Furthermore, initial models have exactly those properties which are stated or can
be "computed" from the specification. This means that we do not have properties in our
system which we are unaware of and we can also test this using so-called negative tests.

In Chapter 4 we present the chosen formalism and our own restrictions where we explain
the necessity of initial models for the generation of negative tests. Before that we will go
into the different approaches in handling partiality of functions in algebraic specifications.
In the algebras as presented so far the functions are total, defined for all values of a carrier
set. In practice this is insufficient as described in the following section.

3.3 Algebraic Methods for Handling Partiality

A major drawback of the classical approach to algebraic specifications as presented so
far and in e.g. Ehrig and Mahr (1985) is the lack of sophisticated methods for domain
construction. Although useful in many ways for the task at hand, total algebras are
insufficient because many operators in our daily experience work on restricted domains.
This is a result of the fact that we are dealing always with finite resources. We needed to
find a way of dealing with this problem and look therefore into the various methods for

addressing it.

Total Algebra with Error Values

One approach is to use error values to model partiality (Ehrig and Mahr, 1985). Through
axioms values outside the domain are mapped to error values. Using the existing specifica-

38 The Rationale behind hepTEsT

tion from Example 3.2 we add the operator sub and the axioms describing the properties
of subtraction. The outcome is the specification in Example 3.3. Line 5 expresses the
well-known fact that a - 0 = a. Line 6 tells us how to calculate sub recursively. In Line 7
we deal with the problem that the first argument might be smaller then the second. In
this case we denote this with a special value, an error value, or bottom element ..l. This
augmentation is partly illustrated in Example 3.3.

1 Example3 is Example2 wi th
2 oprn sub: Nat Nat ~ Nat
3
4 axioms a,b: Nat
5 sub(a,zero) = a
6 sub(suce(a),suee(b» = sub(a,b)
7 sub(zero,suec(b» = ..l

8
9 ena Example3

Example 3.3: Algebraic Specification Example2 enriched by Subtraction using Error Values

It is obvious that we would have to add axioms about addition and subtraction with
bottom elements. This may become a problem when the specification is written. In
Example 3.3 we used an existing specification as a basis and included the operator sub.
The definition of the operator sub added a value to the sort Nat, the bottom element ..L.
And this requires axioms defining how the operator add deals with encounters of ..L. This
is not very difficult in this example, we can use the following axioms:

add (..l ,b) = ..L
add (zero,..L) = ..L
add (suee (a) ,..L) = ..L

There is more to be done when we consider the impact upon leq. Is the error value
comparable? Do we need to introduce a new error value? In theory not, but in practice
we need to know exactly what went wrong and error values ought to be distinguishable.
Keeping in mind that we will deal with large specifications we might find this difficult.
The software engineering principle of stepwise construction as proposed by Wirth (1971)
is jeopardised. Each time a specification is enriched the previous definitions need to the
reviewed to ensure completeness with respect to handling the error values. In Chapter 4,
after introducing some necessary definitions, we will provide a formal proof which highlights
the problem.

3.3 Algebraic Methods for Handling Partiality 39

There are other reasons why we refrain from using error values. In Example 3.3 the
partiality of subtraction becomes only apparent from the study of the axioms and our
knowledge about the intentional use of the bottom element 1.. Only studying the axioms
will reveal that the first argument needs to be greater than or equal to the second. The use
of error values hides the limits it models from the user in axioms. Bearing in mind that
we will deal here with very large system descriptions, this can become an issue to software

engineering practice.
For test case generation the use of bottom elements is difficult too. The error value

is for the algorithm indistinguishable from any other value of the domain as both cases
are mixed together (Wirsing, 1990). The directed test generation for negative testing, as
introduced in Section 2.3.4 is therefore impossible. The tester applies negative testing to
verify that the system does not do what it should not. A distinction between correct and
incorrect behaviour is therefore needed. To overcome this problem other approaches using
order sorted algebras have been developed.

Order-Sorted Algebra

Another approach to deal with restricted domains has been developed by Goguen and
Diaconescu (1994). Order-sorted algebras can be use to model partiality. Example 3.4
illustrates how sub-sorts can be used to model restricted domains. In this case we intro-
duced the operator div which takes only elements of sort NZ-Nat as arguments. With the
supplied definitions of zero and succ we can deduce that the intention is to avoid a division
by O. We can compare this approach very well with notations known from mathematics.

1 Example3* is
2 sorts Nat, NZ-Nat
3 subsort NZ-Nat < Nat
4 oprn
5 zero: ~ Nat
6 succ: Nat ~ NZ-Nat
7 div: Nat NZ-Nat ~ Nat
8 end Example3*

Example 3.4: Order-sorted Approach to Specifying Division

There abbreviations like JR+ for positive or JR* = JR \ {O} are commonly used to describe
subsets of real numbers.

In computing, however, we often have to deal with restricted intervals and have diffi-

40 The Rationale behind hepTEsT

culties describing them using sub-sorts. The required restriction for the operator sub from
Example 3.3 cannot be defined by simple sub-sorting. Goguen and Diaconescu (1994) in-
troduce some work on using boolean conditions to describe domain conditions. This might
be a more practical approach. A drawback for test case generation, as we propose it, is the
existence of polymorphism. The OSA approach is especially designed to deal with poly-
morphism. It means that one operator symbol may have different arities. In the context
of test case generation this is not a desired property, because during test generation it
might be unclear which kind of data need to be generated. A good example is the operator
add which is frequently used to denote the addition between naturals, integers, reals and
other kind of numbers. When we specify the operator using polymorphism we might not
care what the actual parameters are when it is used within a particular case, but in test
case generation we ought to know this. It would even influence the test selection process,
because the boundaries of those sorts are different. So we refrained from using OSA for
our purposes.

Operators with Restricted Domains

Wirsing (1990) and Goguen and Diaconescu (1994) point to a third method which provides
a formal approach to partiality first presented by Kaphengst and Reichel (1971) and then
even more detailed by Reichel (1987). In this approach partiality is modelled by operations
with restricted domains. A set of equations is associated with each operator and the
solution of this set is the domain of the operation. Returning to the example with operator
sub we need to ensure that the first argument is less or equal to the second one. Example 3.5
illustrates how the operator sub could be specified using the idea of domain restriction as
proposed by Reichel (1987). The operator leq appears in the domain condition for sub. In
line 3 the domain of sub is restricted by the equation in line 4 following the keyword iff.

It means that, if and only if the domain condition holds, the operation can be applied. The
fact that subtraction on natural numbers is defined only for those pairs (a, b), for which
b :::; a holds, is modelled in a natural and direct way. The partiality of subtraction is not
hidden in the axioms but stated in the definition.

In order to define subtraction correctly we have to introduce conditional equations.
A conditional equation has a premise and a conclusion. A set of equations constitutes
the premise and the conclusion is a simple equation. We use the notation if premise
then conclusion. For convenience we will omit empty premises and the keywords if and
then and write just the conclusion. So simple equations are a special case of conditional

3.3 Algebraic Methods for Handling Partiality 41

1 Example3' is Example2 with
2 oprn leq: Nat Nat ~ Bool
3 sub: a:Nat b:Nat ~ Nat
4 iff leq(b,a) = true
5
6 aeioms a,b: Nat
7 leq(zero,b) = true
8 leq(succ(a),zero) = false
9 leq(succ(a),succ(b)) = leq(a,b)
10
11 if leq(zero,a) = true then sub(a,zero) = a
12 if leq(succ(b),succ(a)) = true
13 then sub(succ(a),succ(b)) = sub(a,b)
14 ena Example3'
Example 3.5: Algebraic Specification of Subtraction using Operations with Restricted
Domain Conditions

equations. In Example 3.5 we write the axiom in line 11 using a conditional equation.
The equation leq (zero, a) = true is the premise and sub(a,zero) = a the conclusion.
The premise ensures that the operator sub is not called outside its defining condition. The
specification of total functions does not require the use of conditional equations (Ehrig
and Mahr, 1985). In the context of operations with restricted domains, as they are used
here, they are essential for the construction of correct specifications. Note, that although
the modelled function sub is partial, the operation sub is total, however, on a restricted

domain.

The theory as presented by Reichel (1987) is far too general for our purposes. Our
main goal is not the construction of a most general theory for partial algebras but the
automated generation of system tests. Reichel (1987) presents a theory which admits
specifications for which we cannot generate tests automatically. We are only interested
in those specifications which have an initial model. Furthermore we required an expected
outcome for each test. This constrains the acceptable range of specifications even further.
In order to achieve this we decided to restrict the operations to primitive recursion because
they are all computable (Peter, 1967). This is a restriction which other authors (Antoy,
1989; Kaphengst, 1981) consider appropriate because engineers rarely use other kinds of
operations. We will follow this suggestion and should this restriction prove to be too
restrictive then we might consider weakening it. All of these considerations lead us to the
theory which forms hepSPEc. The theory is presented formally in Chapter 4.

42 The Rationale behind hepTEsT

Using the description we can generate tests. But the number of tests which could be
generated is usually very large despite the fact that we consider finite domains. Test selec-
tion strategies can be used to selected tests which are considered particularly significant.
It is not trivial to decide which tests are significant for an arbitrary system. Here the
experience of a tester and his or her knowledge about the system are a valuable asset. In
our approach - hepTEsT- we aim to utilise this asset and to use test selection strategies
found in common literature about traditional testing(Myers, 1979; Beizer, 1995). Before we
can apply traditional techniques we need to lift them to the abstract level of hepSPEc. The
next section discusses critically the traditional approach to test selection and introduces
the ideas of hepTEsT.

3.4 Traditional Domain Testing Strategies

The goal of traditional domain testing as described by Beizer (1995) is to find faults in
the domain classification process. It is mainly employed in numerical computation. The
general technique according to Beizer exploits the idea that the program is described by
a classification process and a corresponding treatment, processing, of the input. The
classification can be understood as a case-statement over, in the case of Example 3.6,
numerical inputs. Afterwards the inputs are processed according to the classification.

The tests are selected through boundary analysis. The case statement is analysed and
the boundaries of the input space identified. Two kinds of boundaries can be distinguished,
open and closed ones. This terminology is brought from mathematics where open and
closed boundaries are formally defined. We will give here a rather informal account of this
notion. If a boundary is inclusive, then we call it closed, open otherwise.

The aim of boundary testing is to ensure that the case statement has been implemented
correctly. Therefore, for a closed boundary the value just on, the ON-point and the value
just off the boundary, the OFF-point, are test inputs of particular interest. For an open
boundary the case is just reverse, the value closest to the boundary and the value on the

boundary are of interest with the boundary going just between them.
Some assumptions are made:

• Coincidental correctness does not occur, which means that if the classification process
is incorrect, we can observe an incorrect output. This is justified, because the usual
mistakes include missing terms, mistyped terms, misplaced code, wrong constants.
Beizer on other faults: "That's no bug, that's sabotage (Beizer, 1995, p. 161)".

3.4 Traditional Domain Testing Strategies 43

• Adjacent domains require different processing. In other words if they do not require
different processing then there is no need to distinguish those domains. Domains
for which this is true require further investigation, there might be a mistake in the
specification.

• The input space is continuous and extends to +00 and -00.

• The border between domains is produced by simple predicates. The borders are

linear.

f : lR~ R f (x) = {g (x) = 5(x - 1)2 + 2 if x :::;1,
, h(x)=20(x-l)2+2 ifx>1.

hex)

'------ OFF-point for x :::;1

ON-point for x:::; 1/

/
/

/
/

/
/

x>l

Example 3.6: Traditional Domain Testing

Example 3.6 is provided to illustrate the technique and to clarify the underlying as-
sumptions. For simplicity let us call the processing function in the first case g(x) and the
function in the second case h(x). The domain of f is split by the inequality predicate
x :::;1 into two subdomains, J - 00, 1J and J1, +oo[respectively. The test strategy requires
us to select one test value on the boundary and one off the boundary. The two tests in
this case would be 1 for the ON-point and 1+ E for the OFF-point, because the border of
the first domain is closed. The same values would be selected for the other domain, thus
it is enough to test just these values. This is an result of the improved boundary analysis

44 The Rationale behind hepTEST

technique as presented by Bingchaing Jeng (1994). The tests will be evaluated according
to Table 3.1.

Test Result
Success

Border shift to the right
Border shift to the left
Computation g incorrect
Computation f incorrect

Computation incorrect and Border shift

Result of ON
g(ON)
h(ON)

----,-..,.-:9:...:,..(O--:N)~
g(ON), h(ON)

g(ON)
-~~-_;_-

g(ON), h(ON)

Table 3.1: Error Detection by Domain Testing

Result of OFF
h(OFF)
h(OFF)
g(OFF)

__ h.:_(OF_F,...:...)-.
g(OFF), h(OFF)
g(OF F), h(OFF)

With the help of the table we can determine the test result using the actual outcome.
For example the test would have been successful if the outcome of the ON-point is equal
to g(ON) and h(OFF) is the outcome of the test with the OFF-point. Furthermore the
actual outcome might assist in determining the reason for a test failure, should one occur.
For example is the outcome of the ON-point test neither the result of g(ON) nor h(ON)
then the computation of g(x) is incorrect. This information might help to guide the tester
to the source of the fault.

Even though these tests might be sufficient under the hypotheses, there are some errors
which might go undetected, because the hypotheses do not hold. The following errors
might go undetected:

• Processing error. Suppose that the processing function h(x) should have been 2(x-
1)2 + 2. The programmer made a typing error which went undetected because the
factor did not participate in the computation. Thus we can conclude that coincidental
correctness can not be excluded, the initial assumption does not hold. Some mistakes
are prone to lead to coincidental correctness, and are difficult to reveal by using only
inputs at or close to the boundaries .

• Classification error. If an inappropriate e is chosen then an error in the computation
might lead to the assumption that a test has failed. If we select e to be the machine

precision, then the following computation shows

that we would according to Table 3.1 establish a test failure. A correct implement a-

3.4 Traditional Domain Testing Strategies 45

tion would be rejected, a result which is as undesirable as an incorrect implementation
being accepted. Thus the selection of E matters in practice and is not trivial as sug-
gested by Beizer. It is even platform dependent so test cases have to be produced for
a specific environment. Implementation running on multiple platforms would require
different tests. This can result in high testing costs.

Furthermore the assumption that domains are continuous does not hold. In our exam-
ples in previous sections we used discrete and non-numerical domains, like Booleans. Even
real numbers, as implemented on computers, are discrete. The assumption of continuity
lead to a test case which failed on a correct implementation. All computers as of now have
upper bounds on number representations. It is wrong to assume that the domains can
extend to infinity. An upper or lower bound would give rise to more tests. These can be
crucial as computations can produce overflow or underflow and lead to bugs which might
be difficult to detect otherwise.

Considering what has been said, the following tests should have been chosen:

• For the interval [-MAXREAL, 1] choose {-MAXREAL,MIN,AVERAGE,1,1+J1}

• For the interval]1, +MAXREAL] choose {1+J1,AVERAGE,MAX,MAXREAL}

where J1 is selected to be as small as possible to "pin down" the border, but large enough
to eliminate the risk of incorrectness due to machine precisions. The problems with ma-
chine precision comes into play during both steps, the classification and the processing of
the input. The inputs could be classified wrongly if J1 is eliminated in the calculations
for the classification, leading to an incorrect output, because of wrong processing. But
also elimination of J1 during processing might occur, leading the tester to believe in a test
failure, although the implementation is correct. Therefore selecting J1 can be rather dif-
ficult. The values -MAXREAL and MAXREAL are included to analyse the stability of
the implementation answering the question: "Are these values properly rejected?" The
values MIN and MAX are designed to test the computations on the border of the valid
input domain. They have to be selected assuring that under- / overflow and other numerical
problems are not present. In general MIN and MAX will not coincide with -MAXREAL
and MAXREAL. The function as defined in Example 3.6 could not be implemented using
the standard numerical expression of programming languages like C. A numerical analysis
would show that during computation of f(MAXREAL) an overflow would occur. So the
corrected input domain is a subset which would have to be determined for each problem.
We need to consider average values from the domains as well, in order to have a higher

46 The Rationale behind hepTEsT

confidence in the correctness of the process implementation and we need to consider also
n-dimensional non-numerical inputs.

There is a restriction to linear boundaries. The domains have to be numerical and
the boundaries are described by linear predicates including relations like greater-than or
less-or-equal. We experience many situations where this assumption does not hold.

Nevertheless traditional testing has proven over the years of service in industry that it
does have its value. We will show how the disadvantages can be overcome by abstracting
from the numerical domain and how they can be lifted to the level of abstraction as provided
by hepTEST.

In the following section we will provide an outlook on Chapter 5, in which we will
summarise our proposals for hepTEsT in a more informal manner.

3.5 Objectives of hepTEST

The chosen approach follows the basic ideas proposed by Bouge et al. (1986), concentrating
on overcoming the disadvantages and extending the methodology by lifting traditional
testing techniques to the level of abstract specifications as discussed in the previous section.

Let us start by summarising the black-box functional testing approach. When testing
a product's functionality we have to execute the implementation, to provide inputs, to
register the outcome and to assess test success or failure.

In Figure 3.1 we present the traditional testing process at the bottom of the figure and
our idea of using the abstraction of a formal specification in connection with the traditional
approach. The specification has to describe the system under test adequately. We then
propose to use the specification to automatically derive test inputs. Using those inputs and
the specification we can compute the expected outcome for each test. In Section 3.3 we
discussed the restrictions, like primitive recursion, which we choose to impose on hepSPEC

in order to ensure that the computation can yield a result.

Producing a pair of input and expected outcome at the abstract level is insufficient from
a practical point of view. To use these inputs in testing the concrete implementation of the
system we need to transform the test inputs from the abstract level of the specification to
the concrete level of the implementation. This transformation we will call test reification.
The reified tests are then applied to the implementation and the outcome is recorded. This
leaves as a final step test result validation. Here there are two possible approaches: the
comparison can be done either at the abstract or at the concrete levels. In the first case,

3.5 Objectives of hepTEsT 47

Abstract Level

Specification

~
~--

Test record

Outcome r=--=l
~-

Test reification Test rei fication

Yeso-----------c>0utcome ~o

Software System h_
Q--c>Input

~C

Testing the Implementation

Figure 3.1: Traditional Testing Process Augmented by an Abstract System Specification

Abstract Level

Input Outcome

~

h_

Specification

El
~

retrieve

Input o-~"~'J-:-_;. =-1
Software System -I .

Test record

Testing the Implementation

Figure 3.2: Alternative to Test Reification

48 The Rationale behind hepTEsT

which we call the "reify approach" (Figure 3.1), we apply a transformation to the expected
outcome from the specification and compare it at the concrete level of the implementation
with the actual outcome using a commercial test result validation tool. In the second
case, which we call the "retrieve approach" (Figure 3.2 (Antoy and Hamlet, 1992)), we
transform the actual outcome of the test into its abstract representation and evaluate the
test at the abstract level by comparing the converted value with the abstract outcome from
the specification. One goal of hepTEsT is to be an add-on to the existing test framework.
This means that the changes to the traditional test process should be minimal. A tester
can continue to run the generated tests in the existing environment as usual. The tester
does not have to care about the origin of the test cases. The expected outcome is produced
by hepTEsT in a format that is useful to the tester. Therefore test execution and result
validation become independent of the hepTEsT-tool. On the other hand the approach
proposed in Figure 3.2 has the advantage that we can use the power of a formal system to
compare actual and expected outcome. Details present in the implementation are removed
during retrieval and test result validation means establishing that the equation

actual outcome = expected outcome

holds. We can use a term-rewriting system to verify that the equation holds. This approach
caters for cases where one abstract outcome has many concrete representations.

Our decision is mainly lead by considerations towards the acceptance of the approach
by the testing industry. The "reify" approach has the major advantage that the skills
necessary to create a hepSPEc-specification and using the hepTEsT-tool are only needed
during the initial testing phases. Test execution and result validation is not affected by the
hepTEsT-tool. A test manager may initially choose to purchase test case generation as a
"service" without having the expense of training his engineers in the hepTEsT technology.
This advantage is the reason why we chose ''reify'' over "retrieve". This general approach
is now broken down into specific tasks.

First of all our goal is to provide a formalism that will support our aims of testing. In

particular it has to be an executable specification because otherwise we would not be able
to calculate the outcome at the abstract level. Furthermore, to be of any practical value,
it has to support basic operations for constructing large specifications and also provide a
convenient way to formalise the desired properties. We have chosen an algebraic formalism
and modified it to serve our purposes creating our own specification language hepSPEC.

Now we will address the individual task from the testing process and discuss our ideas

3.5 Objectives of hepTEsT 49

for solutions. The first obstacle is the need for an order on values, as the values may be
not just numbers but complex structures, over which it may be difficult to find an ordering

function.

3.5.1 Test Selection Support through Partial Order on Terms

To support test selection as proposed by Beizer (1995) we need an order on values if we
want to find minimal and maximal values. We could require an ordering operation for each
sort from the user. This operation would become an integral part of the specification. We
will not follow this approach. First, it may be difficult for the user to define a meaningful
partial order for each sort. The user is distracted from analysing the system and the
specification is enriched by operations which are not part of the problem description.
Thus the specification becomes more complicated and difficult to maintain. Secondly, the
ordering operation may be a part of the system and therefore needs to be tested itself. We
cannot use the operation for test derivation as well as test execution.

In the search of a partial order inherent to the specification we consider using the
subterm relation. The subterm relation defines a partial order on terms (see Section 5.2.1).
For example suee (zero) is smaller than suee (succ (zero)) because suee (zero) is a
subterm of suee(succ(zero)). To use the subterm relation has the advantage in that
we gain a partial order for each sort at no cost. Figure 3.3 illustrates the idea for the
operator add. The drawback is that it does not always reflect our notion of an order.

add(zero • zero).r >:
add(succ(zero) • zero) add(zero • succ(zero))

/~/~
add(succ(succ(zero)) • zero) add(succ(zero) • succ(zero» add(zero. succ(succ(zero)))

/ <c >: <:>

The arrows are pointing towards
the bigger element.

••• ••• • •• • ••
Figure 3.3: Partial Order for the Domain of the Operator add

The term succ Czaro) is smaller than the term add Csucc Czero) ,zero) according to the
definition of subterm relation, but both terms denote the value 1 in the algebra of natural
numbers. This is the result of the fact that the operator add does not generate new natural
numbers. We defined the operator through axioms in terms of suee and zero. We can
say that the operators zero and suce generate the natural numbers. We can make use

50 The Rationale behind hepTEsT

of our observation and apply this to specifications. If we distinguish between generators
and defined operations then we can use the subterm relation as the partial order if we
consider only terms built from generators. Terms containing only generators are called
generator terms. This approach excludes terms built from defined operators such as add
and reduces the number of obsolete tests. A drawback is still how axioms between generator
terms should be treated. They too may cause that a value is denoted by more than one
generator term. This in turn would lead to terms which will be considered as test inputs
even though the denoted values are already covered or not relevant according to the testing
strategy. We will discuss this topic in Chapter 4.

3.5.2 Domain Selection through Axioms

Section 2.3.4 opposes the idea of testing axioms on their own, but axioms are important
in our specifications. We argue that axioms split the domains into subdomains. We re-
express the Example 3.2 to emphasise our idea. Consider the specification as written in
Example 3.7.

1 sorts Nat, Bool
2
3 oprn zero: ~ Nat
4
5

succ: Nat ~ Nat
add: Nat Nat ~ Nat

6 true: ~ Bool
7 false: ~ Bool
8 leq: Nat Nat ~ Bool
9
10 axioms a,b,c: Nat
11 if a = zero then add(a,b) = b
12 if a=succ(c) then add(a,b) = succ(add(c,b»
13 if a=zero then leq(a,b) = true
14 if c=succ(a) & b=zero then leq(c,b) = false
15 if c=succ(a) & d=succ(b) then leq(c,d) = leq(a,b)

Example 3.7: Algebraic Specification with Explicit Conditional Axioms

The axioms in lines 11-12 are recorded differently from the Example 3.2 to illustrate
how axioms partition the domain. The domain of the operator add is (Nat, Nat) which
is partitioned by the axioms into ({zero},Nat) and (Nat \ {zero}, Nat). To partition the
domain we view each premise as a case selection. This is how we lift traditional testing

3.5 Objectives of hepTEsT 51

strategies to the level of specifications. Let us compare this domain partitioning technique
with approaches from traditional testing (Beizer, 1990).

To select tests from the domain partitions, we could use a strategy as suggested in
Section 3.4. To establish minimal and maximal values, we use the partial order on terms
as described above, thus we can have more than one minimal or maximal value. There
is no guarantee that minimal or maximal values exist. In our example we have only
minimal values. For the partition ({zero}, Nat) the minimal value is (zero, zero). And
for the domain (Nat \ {zero}, Nat) it is (succ(zero), zero). We illustrate the domain and
partitions in Figure 3.4 and mark the minimal values. Because the partitions are infinite
there are no maximal values.

Minimal value of the subdomain -----.

Minimal value of the subdornain

(1,1)r >. r >.
(2,1) (1,2)r >. r >.

(3,1) (2,2) (1,3)
/,,/,,/"'-.

Figure 3.4: Partitions of the Domain of Operator add

Section 3.4 opposed the use of only minimal and maximal elements. It has been argued
that this strategy exercises only the parts of the system that deal with special cases such
as boundaries. Here we make a similar observation: from the two partitions we chose only
two test cases, extrema. We would need to choose "average" values as well. An "average"
value would be an arbitrary value from the inside of the domain. We can use the partial
order on the domain again to specify that a value from inside the domain should be greater
than the minima and smaller than the maxima, if they exist.

In Example 3.5 we used the auxiliary sort Bool and the operator leq to specify the
domain condition for the operator sub. Auxiliary operators do not need to be part of the
implementation, but they still contribute to the test case selection process. In our example
the tests for the operator sub would be elements of the domain Nat. The domain for sub
is restricted by the condition leq (b , a) = true.

52 The Rationale behind hepTEsT

Minimal value of the subdomain --------,.

(0.2)

/""
1.2) (0.3)

-, / -,
(1 •3)

/""
(0.4)

/""
Figure 3.5: Partitions of Domain for Operator sub

The subdomains in Figure 3.5 show the split of the input domain. We can observe
that the union of the subdomains is a subset of the set of pairs of natural numbers. The
unmarked elements in the figure would be candidates for negative tests. The inputs of
negative tests should be rejected. The remaining subdomains are split according to the
axioms of all the other operations involved in the computation.ln this simple case we would
have to consider the axioms of sub.

The examples have shown the basic principles of using the partial order on terms
to support test selection. In Chapter 6 this technique is presented in a case study and
illustrates the use of partial orders in a larger example.

3.5.3 Test Reification

A criticism of the work carried out by Bouge et al. is that it does not bridge the gap
between the abstract specification and the actual implementation. Woodward (1993) used
this argument to introduce mutation testing to specification testing. He pointed out that
the tests generated by Bouge et al. (1986) cannot be applied to the implementation and
that further work is needed to do so. He argued that the tests are suitable to test the
specification only and proposed in turn to use mutation testing instead.

A key contribution of this thesis is the use of homomorphisms to close the gap. In
hepTEsT two homomorphisms are distinguished, the syntactical and the semantical. The
sorts and the operators from the specification are firstly related to inputs and operations
from the concrete domain of the implementation. Sorts and operators may be implemented
in different ways, regarding to the input and output. This is the reason behind the choice

3.5 Objectives of hepTEsT 53

of two homomorphisms. The homomorphisms synI and synO in Figure 3.6 represent the
link from the abstract operator a to the concrete operation f(7 where f(7 is the operation
from the implementation which has been assigned to the specification operator a.

S*
(7 S----+

synIl 1synO
Iu ----+ Ou

lu

Figure 3.6: Syntactic and Semantic Homomorphisms in Testing

For a given abstract test for the operator a the input S* will be converted into a value
from Iu, the domain of fu. The test is executed and the outcome and expected outcome
are compared. The abstract expected outcome is converted into a value from Ou by the
syntactic homomorphism synO. If the diagram commutes then the test has been successful.

The idea is to represent this homomorphism with grammars, utilising parser techniques
for test case generation. An advantage is that the theoretical basis of algebraic specifica-
tion is closely linked to grammars. Exploiting this means that the underlying theoretical
framework is identical and therefore we can easily prove that the generated tests are logical
consequences. In practice this results in reliable tests. Tests selected from a high level of
abstraction are provably correctly implemented at the concrete level. This gives no rise to
concerns that test reification has introduced errors.

From a practical point of view this is very important. As testing is a means of raising
confidence in the correctness of the implementation, it would be a major concern if tests
failed because they where incorrect. Even the opposite might be suspected: that incorrect
implementations passed tests successfully because of mistakes during the reification process.
This seems to be counter-productive and therefore having the possibility to prove that a
test in question can be derived from the specification within a single calculus cannot be

underrated.
Grammars also have the advantage of being a well-known and well-understood formal-

ism. The ability to specify constructions in an easy, recursive way is important from an
engineering point of view. In the same way we constructed the specification, values from
the concrete domain are translated into abstract terms.

The Example 3.8 represents a grammar which translates numbers in binary represen-

54 The Rationale behind hepTEsT

tation into the abstract terms of the specification in Example 3.5.

1 exp: nat '+' nat MEANS exp = add(nat,natl);
2 I nat '-' nat WHERE leq(natl,nat) = true
3 MEANS exp = sub(nat,natl);

4 nat: digit MEANS nat = digit;
5 nat digit MEANS nat = add(add(natl,natl),digit);

6 digit: '0 ' MEANS digit = zero;
7 I ' 1' MEANS digit = succ(zero);

Example 3.8: Utilizing Grammars to Express Homomorphism

The grammar gives the values of the algebraic specification and concrete representation.
The character '0' is assigned to the value of zero by the production in Line 6. The
semantic value of digit becomes zero. This part of the grammar can be translated into
the following lines from an algebraic specification.

1 sort digit
2 oprn' 0' ---+ digit

3 modify specNat by specDigit according to
4 digi t is Nat
5 '0' is zero

The sort digit was introduced for the nonterminal digit. The operator '0' is derived
from the grammar rule. The nonterminals on the right hand side become the domain of
the operator and the range is the nonterminal on the left hand side. In this example the
domain is empty and the range is digit. The keyword MEANSinitiates a modification of the
original specification called specNat by the new specification specDigi t. The sort digit
is assigned to Nat and the operator' 0' to zero. These transformations into the context of
algebraic specifications can be used to prove the consistency of the test generation process.
The special feature of our algebraic formalism, restricted domains, is catered for by the
grammar using the keyword WHERE.After this keyword the domain restriction follows. In
the context of grammars, this means that the rule can be only applied if the condition
holds. For an example see Line 2 in Example 3.8.

For test reification reversed parser techniques can be applied (Purdom, 1972; Aho
et al., 1985). The Figure 3.7 illustrates how the parse tree can be generated for the

3.5 Objectives of hepTEsT 55

test add Csucc(zero) ,suce (succfzaro) D. The process is in top-down direction. The
nodes are marked with the remaining values to be generated. The leafs of the parse tree
constitute a test at the concrete level. The top node of the tree contains the result of the
test. This result is translated using the synO homomorphism into an expected outcome
in the correct representation.

exp
I

???.,.

nat succ(zero)
I

'+' nat succ(succ(zero))
~

digit succ(zero)
I

digit succ(zero)
I

digit zero
I

'1' '1' '0'
Figure 3.7: Reverse Parse Tree Generation

3.5.4 Test Execution and Validation

The particular abstract test is translated into its concrete representation by using reverse
parser techniques as mentioned in Section 3.5.3. This process can be utilised to serve
another purpose as well. For the test to run the system under test it has to be in a specific
condition which allows the execution to take place. A variety of tasks might be needed
to setup the system, such as initialisation or location of external components. But even
more common, operations from the system need to be executed before a particular test can
be run. If the test contains an operation with a domain restriction, then the previously
executed commands would ensure, that the domain restriction of the operation holds when

its associated command is executed.
It is obvious that test should therefore not only contain the inputs for a single test, but

also all the necessary commands that set the system up. The same technique which is used
for test reification can be used for this purpose. The generation process is not stopped
after a match for the abstract test is found, but continued, generating the entire parse
tree until the start symbol of the grammar is reached and all branches are terminated by

56 The Rationale behind hepTEST

terminal symbols. The test is the sequence of terminals, now containing the setup of the
test, too.

This technique can be extended to serve for test sequencing. Systems can have a long
initialisation phase. To save time tests could be grouped and the generation process would
produce sequences of simple tests.

Validation of tests and the attached problems have been mentioned in Section 3.3. A
solution on the theoretical part was given by restricting the definitions of operations in the
specification to primitive recursion. As a result of research in the area of recursion (Peter,
1967) the comparison of the tests is computable. For validation purposes the generated
tests contain an expected outcome which using the synO homomorphism was translated
into a value from the output domain of the system. Manual validation as well as automatic
can compare the expected and actual outcome which are present in the same format.

All the concepts and techniques described here are formally introduced in Chapters 4
and 5 and are applied to case studies in Chapter 6.

Chapter 4

An Algebraic Specification
Formalism - hepSPEC

In this chapter we describe the hepSPEc-formalism which will allow the user to specify
the functions of the system under test in an implementation-independent way. We are not
concerned with the full theory of algebraic specification as developed in Reichel (1987): our
focus is directed towards test case generation. This is why we present only those parts of
the theory necessary for a sound foundation of hepTEsT. Proofs of theorems are generally

omitted.
First we introduce some basic mathematical notation in Section 4.1 which we need

throughout the remainder of the thesis. Then we present and motivate in the following
sections our choice of algebraic theory focusing on the needs of testing. We introduce in
Section 4.2 the well-known concept of signatures and restrict it to hep-signatures which
build the foundation of hepSPEc. Then we need to explain the meaning of signatures
which we do in Section 4.3 before we present our notion of a specification. We conclude
this chapter with definitions and motivation to consider only a very specific type of model
for hep-specifications. Then we have presented the algebraic theory in the form needed to
build the foundations for our testing approach.

4.1 Mathematical Notation

We often need natural numbers throughout this thesis. A definition is as follows:

Definition 4.1.1 Finite set of natural numbers.
N = {a, 1, ... } is the set of natural numbers. We say for any n EN, [n] = {I, 2, ... ,n} if

58 An Algebraic Specification Formalism - hepSPEC

n > 0 and [OJ= 0. o
Furthermore we have to deal with families of sorts and functions indexed by a set S.

Definition 4.1.2 S -sorted.
For any set S, an S-sorted set A is a family (As I s E S) of sets indexed by S.

For any set S and any s-sorted sets A, B, an S-sorted function f is a family (fs : As -+

Bs) of functions indexed by S. We will write f :A -+ B for short.
An S-indexed system X of variables is a family of sets of variables (X, I s E S) and for

each x E X, x can take on values in As only. 0

4.2 Signatures

An important concept in algebraic specifications is that of signature. The notion of types
has proven useful in programming. It is reflected here in the use of sorts. To identify differ-
ent objects we use different names and call them sorts. In contrast to mathematics where
in most cases a single sort is sufficient, we will be dealing with many-sorted structures.
We define the arity of an operator as a sequence of input sorts and an output sort, as it is
insufficient in the case of many-sorted structures to talk about the number of arguments
only.

Definition 4.2.1 Signature, Sorts, Operators, and Arity.
A signature L: = (S, F, arity) is given by:

(1) a non-empty set S the elements of which are called the sorts of L:.

(2) a set F the elements of which are called the operators or function symbols of L:.

(3) a mapping arity: F -+ S* x S which assigns

• a finite sequence w = (Si liE [n]) of sorts Si of S for every operator f of F
called the input or domain of f (in E) .

• a sort S for every operator f E F, the sort or range or output of f·

We will write f: w -+ S for arity(J) = (w, s). We call the sequence SI," ., Sn, S the arity
of f (in L:) and say f is of sort s. In case n = 0 we will write f :-+ S and call f a constant.

o

4.2 Signatures 59

This definition of a signature follows the standard literature on algebraic specification(e.g.
Ehrig and Mahr, 1985), but we have already emphasised in Chapter 3 that this is insufficient
in our case. The problem is that many operators cannot be defined for the direct product
of sets but only for a subset of it. This means we have to extend this definition of signature
to the notion of hep-signature so we can describe these restrictions in a suitable manner.

Although we have not yet formally defined hep-signatures the idea has been introduced

in Chapter 3.

Rep-signatures differ from signatures firstly in the way the domains of operators are
defined. In the traditional case of signatures domains are direct products of sets. In
Chapter 3 we argued that many operations we use do have restricted domains, namely
subsets of the direct product of their input sets. Hep-signatures cater for these needs by
introducing a novel way to define an operator's domain. A domain is described by a set
of equations also called domain conditions. All values which are solutions of the domain
condition form the domain of the particular operator. The idea of an operation which
cannot be applied on the entire Cartesian product of carrier sets but only to a subset of
this product inherently contains the temptation to call them "partial operations". We will
refrain from this mainly because it induces the idea that the operations may be used on
the entire Cartesian product of carrier sets. Under certain circumstances they may have
the difficulty that the result is unknown, i.e. they do not yield a value. This is not the
case here. An operation can be applied to a value tuple only if this tuple is an element
of its domain. Compared to the classical case of total operations (e.g. Ehrig and Mahr,
1985) where the domain is implicitly constructed as the direct product of its input sets
we give the possibility of explicit domain construction. This is a major difference of the
theory as developed by Reichel (1987) to other algebraic theories. This is why we prefer
to talk about "operators with restricted domains". An operation is total again over its
restricted domain. Later when we describe the semantics in Section 4.3 we will give an
example which stresses both the need for these constructs and their importance.

We need to ensure computability of domain conditions. We will introduce a restriction
for the operators which can be used in a domain condition which is necessary but not

sufficient.

We also need to take into account that the domain condition has to be necessary and
sufficient. The necessity restricts the application of the operation in the desired way. This
means that the value of the operation exists if the input belongs to its domain. In the
context of operations with restricted domains and initiality (a concept to be introduced

60 An Algebraic Specification Formalism - hepSPEC

later) this will not work as expected. Initiality causes an additional effect of minimal
domains so sufficiency of the domain condition is required. Sufficiency in turn means that
the input is an element of the domain if the operation has a value.

For the construction of domain conditions we need equations and henceforth terms.

Definition 4.2.2 ~-term.
Let ~ = (B, F) be a signature. We define inductively for a variable domain X, i.e. a family
(X; I s E B) of disjunct sets of characters - the variables of X must be different from the
operators - and for every sort s E B ~-terms over B of sort S as certain character strings
in the following way:

(1) For every sort S the variable x E X s is a ~- term over X of sort s.

(2) For every constant f: ~ s the character string f is a ~-term over X of sort s.

(3) For every operator f: (Si liE [nD ~ S of ~ and ~-terms ti over X of sort Si, n > 0
the character string

is a ~- term over X of sort S.

(4) An object is ~-term only if it satisfies (1), (2) or (3).

The set of all terms over ~ is denoted by T(~, X), the terms of sort S by T(~, X)s.
Elements of T(~, 0) or T(~) for short are called variable-free or ground terms. 0

Definition 4.2.3 ~-equations.
Let ~ = (B, F) be a signature and X an S-sorted system of variables. We imagine for every
sort S E B a symbol .!... (frequently abbreviated as "=") and consider character strings of
the form

which we call ~-equations or existence equations, where tll t2 are ~-terms of sort s over
X. From here on we understand a domain condition to be a set of ~-equations. 0

We extend the notion of signature as defined in Definition 4.2.1 to reflect the introduc-

tion of domain conditions.

4.2 Signatures 61

Definition 4.2.4 ep-Signature.
An ep-signature ~ = (5, F, arity, dam) is given by:

(1) a set 5 the elements of which are called the sorts of ~.

(2) a set F the elements of which are called the operators or function symbols of ~.

(3) a mapping arity: F ~ 5* x 5 which assigns

• a finite sequence w = (Si liE [n]) of sorts Si of 5 for every operator f of F
called the input or domain of f (in ~).

• a sort s for every operator f E F, the sort or range of f.

(4) a set dom(f) of existence equations for every operator f E F called the domain
condition of f. o

An operator with an empty domain condition specifies a total operation over the full
Cartesian product of the functions domain sorts. The empty domain condition will not be

shown in an ep-signature.
To ensure "good behaviour" (especially the usual notion of sub-algebra has to hold) of

algebras defined by such an ep-signature we have to put a further restriction on the domain
conditions which we discuss in Section 4.4. Furthermore, for test case generation we have
to compute the domain of an operator. Consider the case where an operator f is used
directly or indirectly in its own domain condition. That would lead to the problem that
while computing the domain of f we suddenly face the problem that we need the domain
during this particular computation. This defect can be overcome if only operators which
are already defined can be used in a domain condition. Informally said, we do not permit
the (direct or indirect) use of an operator in its own domain condition. This hierarchy
condition can be syntactically stated as follows.

We define the set of operators ops(t) needed in a term t:

Definition 4.2.5 Operator Hierarchy.

(1) If t = x and x E X then

ops(t) =0

62 An Algebraic Specification Formalism - hepSPEC

(2) If t = f and f a constant then

ops(t) = {f}

aps(t) = U aps(ti) U {f}
iE[n]

(4) The set of operators needed in an equation e of form tl .!.... t2 is

ops(e) = ops(tt} U OPS(t2)'

(5) The set of operators needed in a set E of equations e is

ops(E) =Uaps(e).
eEE o

Definition 4.2.6 Hierarchy condition.
An ep-signature ~ is called hierarchical if the operators f of ~ can be arranged in a
sequence (Ii liE [n]) so that the operators contained in ops(dom(Ji)) precede h in this
sequence. 0

This means that in writing down an ep-signature an operator IIcan be used in the domain
condition of an operator h if, and only if, II appears textually before h. This is the same
type of restriction as usually applied in programming languages: before one can use an
item it has to be declared.

A further restriction on ep-signatures which we will consider is sensibility. Formally:

Definition 4.2.7 Sensible.
A ep-signature is called sensible if it admits at least one ground term for each sort. 0

This is a commonly used condition to ensure sensible models (Wirsing, 1990). From now
on we will consider only sensible ep-signatures, others being of no interest to us. A sort
which does not admit at least one ground term would require user interference during test
case generation giving the user the task to provide a value for this sort. This is against our
goal of high level automation. There are three necessary conditions to ensure sensibility:

4.2 Signatures 63

(1) For each sort s E 8 there must be at least one operator which has s as its sort.

(2) For every argument (if any) of this operator at least one ground term must exist.

(3) For operators with restricted conditions the domain conditions must at least have
one solution consisting of ground terms only.

The first two conditions can be checked syntactically.

An ep-signature E = (8, F, arity, dam) satisfying these restrictions is henceforth called
a hep-signature where hep stands for "hierarchical equationally-partial". The name is used
for historical reasons and has been proposed by Reichel (1987). From now on we will
consider only hep-signatures.

Usually in algebraic specification a signature E = (8, F, arity) is assigned a meaning
by associating a set As with every sort s of 8 (the carrier set of s) and a mapping <p with
every operator f of F compatible to the arity of f. In the case of hep-signatures this
requires more care due to the domain conditions. In Section 4.3 we present the formal
definition of a model of a hep-signature. But in general we are not interested in any given
operation but in operations with certain properties. These properties are stated by axioms
interrelating operators. We will not use equations as axioms as in other styles of algebraic
specification but elementary implications (simplified conditional equations) instead. The
introduction of operations with restricted domains implies that an operator may occur in a
term as defined above if, and only if, its applicability is ensured. By means of conditional
equations we care about the "definedness" of both sides of an equation.

Definition 4.2.8 E-elementary implications.
Let E = (8, F, arity, dam) be a hep-signature and X an S-sorted system of variables.
G -+ tl 4: t2 is called E-elementary implication over X with the finite set G of existence
equations as premises and with tl s t2 as its conclusion. 0

A specification SPC=(E, Ax) is a hep-signature E = (8, F, arity, dam) together with a set
Ax of elementary implications over E serving as axioms. The specification SPC is not
called a hep-specification because we want to put further restrictions on the axioms before
we use that name. If we permit any axioms then it might be that these axioms cause -
unintentionally - additional domain conditions. This would render the process of test data
generation as described in the next chapter considerably more difficult. But to give such
guidelines in a formal manner we need to define what it means to say that an axiom holds.

64 An Algebraic Specification Formalism - hepSPEC

4.3 Semantics of Specifications

In this section we will assign a meaning to signatures. The meaning is traditionally ex-
plained in terms of those algebras satisfying the axioms.

Our axioms are mainly conditional equations which are built from equations and these
in turn are constructed from terms. To satisfy an equation the terms on the right-hand
side and on the left-hand side have to denote the same value. So we have to define exactly
what the value of a term is. At first we have to extend the concept of domain condition
from operators to terms as well. We do this inductively.

Definition 4.3.1 Domain conditions of terms and equations.
Let E = (S, F, arity, dam) be a hep-signature and X an S-sorted system of variables.

(1) If t = x and x E X then

dam(t) = 0

(2) If t = f and f a constant then

dom(t) = dom(f)

dom(t) = U dom(ti) Udom(f)
iE[n]

(4) The domain condition of an equation e = tl s t2 is

dom(e) = dom(td U dom(t2).

(5) The domain condition of an equation set Eis

dom(E) = Udom(e).
eEE o

Definition 4.3.2 E-algebra.
Let E = (S, F) be a signature. A E-algebra A is given by a family (As I S E S) of carrier

4.3 Semantics of Specifications 65

sets As and a family (fA I f E F) of operations fA: def(fA) ---4 As with def(fA) ~ Aw =

(As; x ... x Asn liE [n]) for f: w ---4 s (in 1:). 0

To define what the meaning (i.e. value) of a term is we need the notion of assignment
associating with every variable x a value from some set.

Definition 4.3.3 Assignment.
Let ~ = (8, F) be a signature. We consider an assignment a = (as: X; ---4 As I s E 8) of
X in A for a 1:-algebra A and a variable domain X to be constructed by assigning every
variable x in X of sort s an element as(x) E As of the corresponding carrier set. 0

By means of an assignment we can compute the value of a term.

Definition 4.3.4 Value of a term.
Let ~ = (8, F) be a signature, X an 8-sorted system of variables, A a ~-algebra and a

an assignment.

(1) If t = x and x E X then

(2) If t = f and f a constant then

(3) If t = f(tl, ta, ... , tn), each ti has a value, and the tuple of ti values is an element of

the domain of fA then

o

An assignment is considered a solution of an equation, if both sides of the equation are

defined (have a value) and these values are equal.

Definition 4.3.5 Solution of an equation.
An assignment a of X in A is called a solution in A of the 1:-equation tl ~ t2 if the value
of tl under a exists, if the value of t2 under a exists and if both values are equal. 0

66 An Algebraic Specification Formalism - hepSPEc

We write also (A, a) F (tl :b t2) to denote the fact that a is a solution of tl :b t2 in A.
An assignment 0:: is considered to be a solution of a set of existence equations E if and

only if 0:: is solution for each e E E. The set of all solutions of E will be briefly denoted by

AE·

In the literature this is called weak equality. In contrast strong equality also holds when
both sides are undefined. We use weak equality which allows us to require the defined ness
of t by simply writing down t = t (Wirsing, 1990).

We introduced equations and elementary implications as a means of expressing the
desired properties of the system under test without mentioning how this is achieved. Now
we have developed the theory far enough to state what it means to say that an axiom
holds.

Definition 4.3.6 Satisfying an axiom.
A ~-axiom (conditional equation) G --+ e over a variable domain X holds or is satisfied in
a ~-algebra A if, and only if, every assignment of X in A being a solution of all premises
in G of G --+ e is also a solution of the conclusion of G --+ e. o
Using the above introduced notion of solution set we can reformulate this definition as

Aa ~ Atl~t2' The fact that an axiom G --+ tl :b t2 holds in A is denoted by A F (G --+

tl :b t2), too.

Definition 4.3.7 8-algebm.
Let 8 = (~,Ax) be a hep-signature together with a finite set Ax of axioms. Let A be a
~-algebra. A is called a 8 - algebra if, and only if,

(1) Adom(fA) = Adef(f) for every f E F.

(2) all axioms of Ax hold in A. o
In other words, a ~ - algebra A is a 8 - algebra if the domains of all operations of A
coincide with the solution set of the domain conditions of its corresponding operators and
if (of course) the axioms hold. A is called an interpretation or model of 8. We express
this fact by A FAx (A satisfies Ax). An elementary implication I is said to be a logical
consequence of the axioms if whenever A satisfies the axioms it satisfies I as well. We
write Ax Fl.

An important notion in algebra is the concept of homomorphism. It provides for the
characterisation of "similarly working" algebras in the sense that the operations act in the
same manner. With h a family of mappings (hs : As --+ B, I sE S) between 8-algebras A

4.3 Semantics of Specifications 67

and B this key property is usually expressed as hs(JA(al, ... , an)) = fB(hsl (ad, ...,hsn(an)).
Remember that either side of this equation can be undefined. So we have to paraphrase
this in the following definition.

Definition 4.3.8 E-homomorphism.
Let E = (S, F, arity, dam) be a hep-signature. A homomorphism h: A - B for E-algebras
A, B is a family (hs I s E S) of maps ha: As - B, with the property that for every
operator f: (Si liE [n)) - s of E and every tuple of values a = (aI, ... , an) the following

is valid:

This includes:

o
If additionally

holds then the homomorphism is called closed. A bijective homomorphism, that is a
homomorphism where each hs is bijective, is called isomorphism.

With the help of homomorphisms we are able to further narrow the class of e-algebras
to which we are interested in. Our aim is the automatic generation of test data, i.e. certain
representations of values, for example character strings denoting numbers. Therefore we
need a denotation for every value because we cannot rely on user interference if such a
denotation is not given. Initial algebras provide the vehicle towards this end.

Definition 4.3.9 Initial models.
A e-model A is called an initial e-model if there is exactly one E-homomorphism h: A -

B to any 8-model B. 0

Initial algebras are very interesting to us because they are unique up to isomorphism. We
might say that the behaviour is fixed and the "variable part" is the representation only.
Imagine the algebra Nat of natural numbers with 0, succ and + as operations. The initial
models are different only in the representation of the natural numbers (say as binary,
decimal or Roman digits) but not in the behaviour of the operations. They have two

68 An Algebraic Specification Formalism - hepSPEC

important properties often paraphrased with "no junk - no confusion" (Ehrig and Mahr,
1985; Reichel, 1987). Formally we state for initial algebras:

• Every value is represented by at least one ground-term .

• Different ground terms denote equal values if and only if this equality is a logical
consequence of the axioms.

4.4 Hep-specifications

We can now return to the discussion at the end of the Section 4.2 on hep-signatures where
we told about further restrictions on axioms. We start with restricting the form of axioms.
Up to now any term may be used in an equation. But sometimes it can be very difficult
to understand what an equation means resp. what are the effects of introducing a new
equation on the effects already given equations have. This becomes especially important if
we want to construct specifications in a step-wise manner as we will do later on. Therefore
it seems to be reasonable to use only axioms constructed according to the scheme of
primitive recursion. One might argue that this restriction is too strong. But as Guttag
and Horning (1978) have mentioned: "In programming, the occasions when one has a need
of a non-primitive recursive function seem to be very rare indeed". This argument applies
even more in our context of test data generation because we need a constructive approach.
It is not sufficient here to require the existence of an element. We must give an instruction
how to construct this element explicitly.

Definition 4.4.1 Primitive-recursive axioms.
An axiom Ax is called primitiv - recursive if the equations of the premise and conclusion
of Ax are defined inductively as follows:

(1) h(O, x) = f(x)

(2) h(succ(y),x) = g(x,y,h(y,x))

where 0 stands for any constant function, succ is a successor function III the sense of
structural induction, f and 9 denote already defined functions. 0

Let us now try to order the axioms in the following way. An axiom al is "smaller" than
an axiom a2 if the domain condition of the conclusion of a2 is a consequence of a1 (and
possibly other axioms smaller than a2). Formally we define a stable set of axioms.

4.4 Hep-specifications 69

Definition 4.4.2 Stable set of axioms.
Let e = (~,Ax) be a hep-signature together with a set Ax of axioms. Ax is called stable
if, and only if, Ax can be partially ordered so that for all axioms a: G - tl s t2 E Ax the
following holds: G - dom (tl 4: t2) is a consequence of all those axioms smaller than a. 0

In a slightly loose manner this means: if the premises of an axiom hold then the domain
condition of the conclusion is satisfied, too. There is a further interesting observation on
"practical" algebras, i.e. the opposite may be equally true: If the domain condition of
the conclusion is satisfied then the premises of an axiom hold likewise. This amounts to a
semantic equivalence of premises and domain conditions. We insist in using stable sets of
axioms satisfying this latter condition and define therefore hep-axioms.

Definition 4.4.3 Set of hep-axioms.
Let e = (I:, Ax) be a hep-signature together with a stable set Ax of axioms. Ax is
called a set of hep-axioms if for all axioms a: G - tl 4: t2 E Ax the following holds:
dom (tl s t2) _ G is a consequence of all those axioms smaller than a. 0

Definition 4.4.4 hep-Specijications.
Let e = (~,Ax) be a hep-signature together with a set Ax of hep-axioms. We call e a

hep-specification. o
Up to now we considered specifications as monolithic blocks. In practice specifications
with a large number of sorts and operators become unmanageable. In the same way as
programs are split into modules, we want to split specifications into parts. These parts
become building blocks for larger specifications. Thus we need to provide operations for
constructing specifications out-of other specifications. The need for such operations over
specifications has been stressed in the literature and led to the principle of "stepwise
construction" (Wirth, 1971). But before discussing this in detail let's divide the set of
operators of ~ into generators and manipulators. Take again Nat as an example. We
observe that all values of Nat are constructed by the operations 0 and succ alone. They
serve as generators whereas + might be called a manipulator. This distinction is mainly
for a better comprehensibility but in our context of test data generation it can ease life
considerably. When we talk about domains in the future then it becomes sufficient to

consider generator terms.
We generalise this observation in the following definition.

Definition 4.4.5 Generators and Manipulators.
For a signature ~ = (S, F) we will distinguish operators from F as generators g E G and

70 An Algebraic Specification Formalism - hepSPEc

manipulators m E M with G nM = 0 and F = GUM. G is a set of generators iff the
value of every term can be expressed by a term containing only symbols in G and there
does not exists a proper subset of G which satisfies this property, too. Terms containing
only operators from G are called ground generator terms. o
We write G(8) for the set of generators of 8, M(8) for the set of manipulators and Ax(8)
for the set of axioms. It is important to mention that this distinction reflects the intention
of the designer rather than providing a checkable property. This suggests the idea to
define in a first step all the things we want to work with, i.e. to specify all the sorts and
their generators. In a second step we enhance this specification by defining the operations
realizing the required behaviour, Le. the manipulators without defining new sorts. But
on behalf of initial satisfaction we must take care that no existing objects are identified,
no new objects are created and the domains of existing operations are not changed. To
state these conditions in a precise way we have to define them formally. We start with the
notion of specification enhancement.

Definition 4.4.6 Specification enhancement.
Let 8 = (E, Ax) and 8' = (E', Ax') be two hep-specifications. 8' is an enhancement of 8
if S' ;;2 S, F' ;;2 F and Ax' ;;2 Ax. We write 8' ~ 8. o
Let A be a 8'-algebra. We can define the 8-part of A called 8-reduct.

Definition 4.4.7 8-reduct.
Let 8' be an enhancement of 8. Then we get the 8-reduct A! 8 of a 8'-algebra A by

(1) (A! 8)s = As for s E S(8).

(2) fAte = fA for every operator f E F(8). o
Informally we consider only those carrier sets and operations corresponding to sorts and
operators of 8 and we "forget" all sets and operations which are in 8' but not in S.
The remaining sets and operations must not have changed. In a similar way we can
restrict a S'-homomorphism h' to its corresponding 8-homomorphism h by setting h =
{(hi! 8)8 Is E S(8)}.

We want to extend the concept of initiality from a single specification to specification
enhancements to keep all the properties useful for the automatic generation of test data
and tests. This is achieved with the principle of free extension.

4.4 Hep-specifications 71

Definition 4.4.8 Free extension.
Let e,8' be hep-specifications and e' ~ 8. The e'-algebra B is a free extension of the
e-algebra A if, and only if,

• Bl e = A

• for any e'-algebra D and any e-homomorphism g: A --t D 18 there is exactly one
e'-homomorphism h: B -+ D such that the following diagram commutes

B

1
A=B18 ----+

g: A-D!6

h: B-D

o
The requirement of initiality could be expressed in this context as e' ~ 0, the empty

specification.
In Section 3.3 we argued against using error values to model partiality. Then we

promised to show formally the difficulties arising from using error values. By now we have
presented the definitions necessary to prove our claim. Let us make an excursion.

Graph is definition
sorts Node, Arc
oprn begin(Arc) --t Node

end (Arc) -+ Node
end Graph

Example 4.1: Graph Specification

Consider the specification in Example 4.4. Graph is the base specification. It defines
the sorts Arc and Node and two operations being begin and end.

We can extend Graph to Path1 as shown in Example 4.2. Path1 is a free extension of
Graph. Path1 uses partial functions to monitor the fact, that an arc can only be appended

to a path if the begin of the arc is the end of the path.
Let us consider now another extension of Graph. Example 4.3 provides Path2. Path2

uses error values to monitor the same problem as in Path1.
Then consider the following two Algebras A and B (see Figure 4.1). Algebra A consists

of the nodes 1, 2, 3 and 4 and the arcs a and b. Algebra B consists of the nodes I, II and

III and the arcs et and f3.

72 An Algebraic Specification Formalism - hepSPEC

Path1 is Graph with definition
sorts Path
oprn source(Path) ~ Node

target(Path) ~ Node
nil (Node) ~ Path
append(p:Path, a:Arc
iff target(p) = begin(a» ~ Path

a~ioms a: Node, x: Arc, p,q: Path
source(nil(a» = target(nil(a» = a
if append(p,x) = q
then source(q) = source(p)

if append(p,x) = q
then target(q) = end(x)

end Path1
Example 4.2: Path1 Specification

Path2 is Graph with definition
sorts Path
oprn source(Path) ~ Node

target(Path) ~ Node
nil (Node) ~ Path
append(Path,Arc) ~ Path
errorPath(Node,Node) ~ Path

~ioms a,b: Node, x: Arc, p,q: Path
source(nil(a» = target(nil(a» = a
if q = append(p,x)
then source(q) = source(p)

if q = append(p,x)
then target(q) = end(x)

source(errorPath(a,b» = a
target(errorPath(a,b» = b
append(errorPath(a,b),x) = errorPath(a,end(x)
if target(p) = begin(a) = false
then append(p,a) = errorPath(source(p),end(a»

end Path2
Example 4.3: Path2 Specification

4.4 Hep-specifications 73

A 0
a

0 b0 • 0
1 2 3 4

B 0
a [3.0 10

I II III

Figure 4.1: Path2-Algebras A and B

We could define h : A 1Graph -4 B 1Graph as follows:

h(l) = I h(2) = h(3) = II h(4) = III
h(a) = a h(b) = b

Theorem 4.4.1
Path2 is not a free extension of Graph w.r.t. A 1Graph. o

Proof
Let Band h : A 1Graph -4 B 1 Graph be defined as above. Then we must show that
there does not exist a unique extension of h to a homomorphism h': A -4 B.

Let h' be an arbitrary mapping extending the homomorphism h. For a contradiction
assume that h' is a homomorphism. Then

h'(appendA (appendA (nilA (I), a), b)) = appendB(appendB(nilB(h'(l)), h'(a)), h'(b))

by assumption that h' is a homomorphism,

by definition of h and the fact that h' extends h;

oj; errorPathB(I, III)

by definition of B

= h' (error PathA (1,4))

74 An Algebraic Specification Formalism - hepSPEc

assuming h' is a homomorphism,

by definition of A. Thus the initial assumption that h' is a homomorphism produces a
contradiction.

We have shown that h can not be extended uniquely and by that Path2 is not a free
extension of Graph. 0

Thus our choice considering the important role partiality is playing in this approach
is justified. Nevertheless not every specification enhancement has a free extension. We
consider only consistent enhancements which have a free extension.

Definition 4.4.9 Consistent enhancement.
Let 8, 8' be hep-specifications and 8' ;;;;! 8. 8' is called a consistent enhancement of 8 if,
and only if, for every e'-model B the 8-reduct Bl 8 is a 8-model. If 8' is a consistent
enhancement of 8, then every 8'-model B is a free extension of the 8-reduct of B. 0

Not every enhancement is consistent. Consider for example the specification Nat with
sorts nat, bool and the operators 0: ~ nat, succ: nat ~ nat, true: ~ bool
and false: ~ bool. The initial model A of Nat has the natural numbers {O,1, ... } as
elements for the sort nat and two values say T and F for the sort bool. We enhance Nat to
the specification NatEq by a new function eq: nat, nat ~ bool and the axiom eq ex ,x)
= true. In accordance with initiality a NatEq-model contains new values of sort bool for
all pairs of different natural numbers. So eqA(O,O) would yield T, but eqA(O, 1) denotes a
new value of sort bool. The carrier of bool contains besides T and F infinitely many new
values. Building the Nat-reduct of the NatEq-model shows that the booI-carrier has been
changed. But that means that the Nat-reduct of the NatEq-model is not a Nat-model.

Let us now return to the problem of constructing specifications step-by-step. We start
with the operation join, taking two specifications and combining them into one.

Definition 4.4.10 Join of hep-specifications.
Let 8, 8' be hep-specifications and 8' ~ e. We define the join of e and e' as e I±J e' =
((~ U~/), (Ax U Ax')). 0

Note: Not every join yields a hep-specification. If the sets of sorts, the sets of operators
and the sets of axioms are disjoint then e I±J e' is a hep-specification. But consider two

4.4 Hep-specifications 75

specifications both of which make use of a specification BOOL. If these specifications are
joined then the sort bool exists twice and might even have different axioms. It is impossible
to say if two sets of axioms describe the same property in general. This gives now rise to the
problem which axioms, which operators and which sorts to use for the joined specification.
This problem has two solutions. First there is a possibility that although the same name
has been chosen the meaning is different: the solution is renaming to resolve the ambiguity.
In the case that a specification has been used at different places to denote the same thing
it is sufficient to restrict the use of such specifications. We require that each sort and each
operator are defined only once. This is a condition which can be checked syntactically

again.
A more interesting construction is the enhancement of a given specification by new

operators, i.e. a functional enrichment by introducing new manipulators. Suppose that we
have done the first step and defined some sorts together with their generators. We can now
introduce processing operations (manipulators in our terminology) with an enhancement
by definition. It is important to note that enhancement by definition does not allow for
new sorts. A number of axioms which assign the outcome of the new operations a meaning
in terms of values denoted by generators is required.

Definition 4.4.11 Enhancement by definition.
Let 8,8' be hep-specifications and 8' ~ 8 a consistent enhancement. 8' is an enhancement
by definition of 8 if G(8') = G(8), M(8') ::> M(8) and Ax(8') ::> Ax(8). 0

Remember that nothing already given may be changed. Unfortunately there is no algo-
rithmic procedure to ensure that this requirement is met. In our opinion (considering the
current state of theory) the only way is to use equations as simple as possible so one can
understand what an equation means. This was the main reason to restrict the form of
axioms to the primitive-recursive scheme.

In contrast an enhancement by generation introduces new sorts and henceforth genera-
tors. We require at least one new sort and its generators for an enhancement by generation.
This ensures that the resulting specification is sensible if the original has this property.

Definition 4.4.12 Enhancement by generation.
Let 8, 8' be hep-specifications and 8' ~ 8 a consistent enhancement. 8' is an enhancement
by generation of 8 if G(8') ::> G(8), M(8') = M(8) and Ax(8') :2 Ax(8) and no generator
9 E G(8') - G(8) generates values of any sort sE 8(8). 0

76 An Algebraic Specification Formalism - hepSPEC

We may view enhancements by generation as the construction of building blocks and
enhancements by definition as manipulators of items defined in those building blocks.

4.5 Ground-term Algebras

As already mentioned in Chapter 3 our aim is the automation of the test process. A
specification of the function to be tested must provide for the generation of test data
and the computation of the expected outcome. The only material we can work with to
reach this end are terms of some kind because we must "write down" our test cases. The
concrete form of these terms is not of interest here so we can remain fairly vague. A
suitable candidate for our purpose are therefore the abstract terms we have constructed
in this chapter. Considering the goal of automation we must restrict ourselves to the use
of ground or variable-free terms. The presence of variables in terms would require user
intervention to get a value for these variables. This is clearly something we have to avoid.

We have to define the operations of a over ground terms as fT(q) : Tl X ... x Tn ---+ T;
with Ti sets of ground terms of appropriate sort s.

Definition 4.5.1 a-ground term algebra.
Let a = (S, F, arity, dom) be a hep-signature.

(1) If f is a constant then

(2) If f has the arity SI, S2, ... ,Sn ---+ S, n > 0, every t; is a ground term of sort Si and
the tuple of ti values is an element of the domain of fT(~) then

o

Remember that we do not need an assignment to compute the value of a term thanks to
the absence of variables.

The ground term algebra T(~) for a hep-signature ~ is in general not initial. Consider
as example again the algebra Nat of natural numbers with 0, suee and + as operations.
The operations are defined by the axioms n+O = n, n+suec(m) = succ(n+m). The axioms
identify for example the terms suec(O) and succ(O) +0. But the term algebra contains both

4.5 Ground-term Algebras 77

terms succ (0) and succ (0) +0 which contradicts initiality: The ground term algebra is
not isomorphic to the algebra of natural numbers.

The problem is somewhat different in our context. We subdivided the operators into
generators and manipulators so we have to consider only ground terms consisting exclu-
sively of generators. If axioms interrelating these generators are present then we face the
above mentioned problems. The usual way in algebra to solve this problem is the transi-
tion to quotient algebras by factoring out all terms having the same value on behalf of the
axioms in one equivalence class. Unfortunately this relatively simple approach does not
work in the case of partial algebras as is shown in Reichel (1987, p. 92).

Graph is
sorts Node, Edge
oprn

begin(Edge) -4 Node
end (Edge) -4 Node
combine(Edge x, Edge y) -4 Edge

iff end(x) = begin(y)
ena Graph

Example 4.4: hepSPEc-specification of Graph

Figure 4.2: Graph-Algebra A of hepSPEc-specification Graph

Let us take a closer look at an example to explain the difficulties. We start with
the specification in Example 4.4. We have sorts Node and Edge, the operation begin

78 An Algebraic Specification Formalism - hepSPEC

associating a node with an edge, the operation end associating a node with an edge, too,
and the operation combine computing an edge out of an edge x and an edge y iff the
end of edge x ist the begin of edge y. A model of Graph is the Graph-algebra A given
in Figure 4.2. According to the domain condition the function combine is defined as
combineA(el' e2) = e3' (To avoid confusion: We do not append edge y to edge x making a
path from begin(x) to end(y) but rather compute a "shortcut" between these two nodes.)

combine(e3, e4)
....................

Figure 4.3: Representation of Quotient-Algebra All!

Consider an S-equivalence relation {]= ({]Node,(]Edge) with (]Node{(n3, n4)} and {]Edge =

o induced by an axiom n3 = n4. But now we could combine more edges. The pairs
(e2, e4) and (e3, e4) are additional solutions of the domain condition end(x) = begin(y) of
combine (see Figure 4.3). The problem is there are no equivalence classes in All! denoting
the results of combining (e2' e4) and (e3, e4). This example demonstrates that the usual
elementwise construction of quotient algebras is generally impossible if operations with
restricted domains are present.

Reichel (1987, p. 120) suggests the use of natural homomorphisms to construct quotient-
algebras. But we will not pursue the matter here because another argument in favouring
axiom-less generators is the use of the system LoFT to generate our test cases. As stated in
Bernot et al. (1991b, p. 27) axioms defining a generator are not allowed: The top symbol of
the left-hand side of an equation (or conclusion of a conditional axiom) must be a defined
symbol or manipulator in our terminology.

These difficulties lead us to our decision to forbid axioms identifying generator terms:
We choose the special algebra of ground generator terms or ground term-algebra for short
as the only allowed models for our specifications.

Chapter 5

Testing Theory - hepTEST

In practice testing is achieved by executing a system with test inputs and obs rving th
outcome. The result of such a test is judged as being successful if the expected outcom
was observed otherwise it is said that the test failed. Figure 5.1 illustrates this approa h.

Software System

Input O Outcome
---t:>

Figure 5.1: Traditional Testing Approach

Using the formalism we developed in Chapter 4 we can produce a similar diagram. Th
idea of hepTEST is to combine these two diagrams and to use the testing philosophy devel-
oped for the traditional approach in an automated setting. The result of th combination
is presented in Figure 5.2.

We can split the hepTEsT approach into the following individual tasks:

• Creating the specification

• Test input generation

• Test set selection

• Expected outcome generation

80 Testing Theory - hepTEsT

hep:est

5.1 Test Input
Generation

5.3 Expected
Outcome
Generation

Test Outcome

5.6 Transformation of Expected Test Outcome

Concrete Input O Concrete Outcome
---t:>

System under Test

5.7 Test Execution

Test Bed

Figure 5.2: Combining Traditional Testing with hepSPEc- the hepTEsT Approach

5.1 Test Data Generation 81

• Test input transformation

• Test setup generation

• Test execution

• Test outcome transformation

• Test result validation

The numbers in Figure 5.2 refer to the sections where each of the tasks is individually
discussed.

Creating the specification is the initial step in the hepTEsT-approach. An engineer
has to write the specification defining the properties of the system under test which are of
interest to him. We cannot automate this task as it is obviously the creative element. The
engineer phrases informal requirements formally in the hepSPEc formalism. He can use
a number of techniques to ensure that the specification describes accurately the desired
properties of the system under test (Sommerville, 2001). Here we do not consider any val-
idation techniques and assume that the specification is formally correct and the properties
are defined correctly with respect to the requirements.

In the remainder of this chapter we will discuss each of the remaining tasks in the spirit

of hepTEST.

5.1 Test Data Generation

The first step is the generation of test inputs. Inputs to a hepSPEc operation are terms of
a specific sort. Thus inputs in hepTEsT will be terms. We need to explain how inputs are
created. We saw in Chapter 4 that ground terms denote values. Furthermore all values
have a ground term representing them. This is important to automatic test case generation
as it frees the engineer of having to choose a value during test generation. This notion
gives rise to the idea of using ground terms as input values for testing.

We will define inductively what a test input of sort s is.

Definition 5.1.1 Test input of sort s.
Let E = (S,F,arity,dom) be a hep-signature. Then the sets of strings TI(E)s for every
s E S are called test input of sort s if they satisfy the following conditions:

• JET J(E)s for every J E G(E) with J: ---+ s;

82 Testing Theory - hepTEsT

• if a E G(L:) with rr: 81, ... ,Sn ---+ sand t = t1,t-. with each t, a test input of the
appropriate sort then tJ(t) E TI(L:)s. 0

o
succ(O)

succ(succ(O))

Constant 0 Application
of

Generator suce

Repeated
Application

of
Generator suee

Figure 5.3: Test Inputs of Sort Nat

This definition states that all terms consisting of generators only are test inputs. Figure 5.3
illustrates the generation of test inputs of sort Nat. Starting with a set of constant gen-
erators the set of test inputs is enlarged by applying the suee operation of the elements
of the previous set. The distinction between test inputs of different sorts stems from the
notion that a term is of some sort s. We can say that test inputs of sort s are all ground
generator terms of sort s. It is important to distinguish between test input of different
sorts because we need to supply parameters to an operation of the appropriate sort. The
application of an operation to values of the wrong sort is meaningless in the formalism.

5.2 Test Data Selection

In the following sections we will introduce formally our ideas for an order on test inputs.
We will show some alternatives and discuss their advantages and disadvantages. Then we
want to show the similarity between domain testing and hepSPEc-axioms. We explain our
proposal for using axioms in domain analysis. We conclude the section on test selection by
explaining ideas for support of traditional testing strategies and how they can be applied
within hepTEsT.

5.2.1 Order on Test Input

It seems that the sets of test inputs we can generate using the method above can be very
large and even infinite. If a sort is defined recursively then the set of test inputs could be

5.2 Test Data Selection 83

infinite. There seems to be no way to stop the application of a recursive generator. We
can observe this for example in Figure 5.4 where we could continue applying the operator
suee indefinitely. In this case we would generate infinitely many test inputs. This is
definitely true in the setting of total algebras. However in hepTEsT we are able to restrict
the application of recursive generators. In Chapter 4 we introduced domain restrictions
for operators. We argued that many domains in practice are restricted. We can construct
many examples were the domains seem to be unbounded. If we use for example natural
numbers to describe a requirement of a system then we might encounter upper boundaries.
Credit card numbers can serve as an example. Although is seems that credit card numbers
can be arbitrary long, they are limited by the size of the physical credit card. A requirement
is that the number has to fit on a credit card. Thus although we may use natural numbers
to model credit card numbers the domain is not infinite. Quite on the contrary as it has
an upper limit. The existence of this upper limit is essential to the model of credit card
numbers and should be included into the specification. This is the case for most values in

practice.
We can say that with domain restrictions we gain an upper boundary on domains for

practical applications. Nevertheless the domains can still be very large. For practical
reasons we need to select test inputs. But which ones? Looking back at the definition of
test inputs we can observe that they are not an incoherent mass but have an order imposed

on them.
Here we want to define a relation on ground terms which will prove to be extremely

useful in testing: Ground terms occurring in other ground terms as subterms form a partial
order over the set of all ground terms. Many strategies for test case selection require an
order over values. We can make use of this order which is automatically given by the
principle of term construction and does not need to be defined separately by the user.

Definition 5.2.1 Immediate subterm.
Let ~ = (5, F, arity, dom) be a hep-signature and t = f(to, tl, ... ,tn-l) a term over ~.
Every ti of t is called an immediate sub term of t. We write i; <J t.

With this definition we can formulate an order over terms of a given sort s.

Definition 5.2.2 Order of sort s.

o

8

We define the predecessor relation j of test inputs of sort s as the reflexive, transitive
8

closure of the immediate subterm relation <J restricted to sort s. We will write tl j t2 if
tl is a predecessor test input of t2 in the predecessor relation of sort s. We will omit the s

when it is obvious. o

84 Testing Theory - hepTEST

It is obvious that the predecessor relation for a sort 8 forms a partial order over ground
generator terms of sort 8 as it is reflexive, transitive and antisymmetric.

o

suec(O) at lVat
~ succ (0) ~ suce (succ (0»

suec(suec(O»

Figure 5.4: Partial Order for Terms of Sort Nat

In Figure 5.4 we can see how the test inputs of sort Nat which we generated in Figure 5.3
are ordered using the predecessor relation defined above. The arrows in the figure point
to the predecessor term. We can observe that in this particular case the order is total and
coincides with the familiar relation "less-or-equal" we might have used to order natural
numbers. In Chapter 6 where we present case studies we will give more examples of ordering
test inputs.

It is important to us that only terms of sort 8 are present in this order. When we
select test inputs for an operation we need to be sure that they are of the appropriate sort.
Consider Example 5.1 where we can easily see that 8(8(0)) <l app(empty,8(8(0))) holds

Seq is Nat with generation
sorts Seq

oprn empty ___..Seq
app(Seq,Nat) ___..Seq

ena Seq

Seq
s(s(O)) ~ app(empty,8(S(0)))
8(S(0)) <l app(empty, s(s(O)))

Example 5.1: Difference between Immediate Subterm and Predecessor relation

because s(s(O)) is an immediate subterm of app(empty, s(s(O))). Would we now select
s{s(O)) as a test input where the system expects an input of sort Seq then the system
would reject the input. We end up selecting a term which is a subterm but of the incorrect
sort and create a problem when we try to apply the operation to the generated term of
the inappropriate sort. This is why the definition of a predecessor relation on test input
differs slightly from the definition of term order as used in term rewriting.

We have to look critically at the predecessor relation and discuss if it yields the results
we expect in all of our settings. In Figure 5.5 we have drawn a fraction of the prede-

5.2 Test Data Selection 85

empty

~~
app(empty.O) app(emptY.8(O» app(emptY.8(8(O»)

/

app(app(emptY.8(O»,8(O»

app(app(empty,O),O)

app(app(empty,8(O»,O)

app(app(empty,8(O»,8(8(O»)

Figure 5.5: Partial Order on Seq

cessor relation for sort Seq taken from Example 5.1. The arrows in the figure point to
the immediate sub-term of sort Seq. Because the predecessor relation does not define
a total but only a partial order some terms cannot be compared. For example the term
app(app(empty ,0) ,0) cannot be compared with app (app (empty ,0) ,s(O)) using the pre-
decessor relation. If we encounter elements which we cannot relate to each other during
test case selection, then we have to select both. In testing terms this means that the size of
the test set grows and this might not be desirable. We want to look into another definition
of a partial order which allows us to compare these two elements too. If we write the
sequences like this 00 and 01 then we could argue that the first one is a predecessor of the
second one. This would be the case if we try to find these sequences in a dictionary. There
we would expect to find 00 before 01. However there are other reasons why the predecessor
relation, as we defined it so far, is not practical for our needs.

The definition of the partial order we have used so far is useful for operations which
take a single argument. There are many operations which have more. How do we define
an order for a sequence of arguments? This questions needs answering not only to enlarge
the set of comparable test inputs, as outlined above, but also since it impacts on test cases
for defined operations. In Figure 5.5 we created part of the predecessor relation for sort
Seq. Our specification could include an operation remove(Seq,Nat) -+ Seq which has 2
arguments. How do we select test cases for this operation? A quick fix would be to use

86 Testing Theory - hepTEsT

test inputs and the operation as a term to be ordered. Then remove (app Cempny,0) ,0)
could be considered a test input. Although the term is of sort Seq now, it does not provide
the desired help for test selection. Firstly the term is not a generator term anymore, and
we would need to change some of the previous definitions to reflect this fact. Furthermore
there is another problem with this fix. It does not produce the desired result. None of the
terms starting with remove is related to each other, because none is immediate sub-term
of another. The operation remove is always the outer-most operation of such a term. This
means that we have to select all terms as test cases regardless of the testing strategy. This
contradicts our goals. That is why we decide to use a partial order defined on sequences
of generator terms.

Definition 5.2.3 Partial Order on Test Inputs.
w

For each operation a: w - s we define a relation <l where for two term sequences of the
appropriate sorts the following holds:

w
tll, ... ,tlj, ... , tln <l t21, ... , t2j, ... , t2n

iff for some j El ... n tlj :; t2j and tli = t2i for all i =1= j

As the partial order on test input sequences we define the transitive and reflexive
w

closure of <l which obeys the sorts. We write t1 ~ t2 to denote that term sequence tl is
w

a predecessor of term sequence t2. In the sequel we let tl ~ t2 denote tl ~ t2 when the
tuple of sorts w is clear from the context. 0

Note that we reused the relation symbols but that this time they are used over sequences of
terms. The predecessor relation as defined earlier coincides with the partial order on test
inputs for unary sequences. The order for Seq is illustrated in Figure 5.6 where the arrows
in bold represent the additional members in the relation which now allows us to compare
previously incomparable terms using the newly defined relation over term sequences. For
example the operation app in Example 5.1 takes arguments of sort Seq and Nat and we
use the order over tuples of sort Seq,Nat. The two terms we could not compare before can
now be ordered. The term app(empty ,0) .O~app(empty ,0) ,s(O) because O~s(O) holds.

To better understand the impact of this newly defined partial order consider the case of
a defined operation like add(Nat,Nat)-Nat. We can use the partial order over test input
sequences Nat,Nat to select test cases for this operation. The elements we have to consider
are still ground generator term sequences. Terms with defined operations are not part of

5.2 Test Data Selection 87

empty
_.,'!?' ~""~.'.""-""""""""

........

app(empty, 0) -- app(empty, s(o»-- app'(empty, s (s (0»)
'" ~".

..... .

app(app(empty,O),o):

~/.,/ ,., :
app(app(empty,O).·,s(O»···'

//.,. ~app(a~l(emPty,o) ,s(s(O»)
app(app(empty,s(O) ,0)., .

<.
~\

app(app(empty,s(O»,s(s(O»)

app(app(empty,s(O»,s(O»

Figure 5.6: Partial Order for Test Inputs of sort Seq

/ a-b < MAXINT
Boundary:

o MAXINT

Figure 5.7: Plane of Natural Numbers

88 Testing Theory - hepTEsT

the order and we do not need to build equivalence classes as long as there are no axioms
between generators. The partial order on Nat. Nat conforms nicely with our understanding
of natural numbers. We can arrange the elements in a plane, using a familiar coordinate

Nat,Nat
system as illustrated in Figure 5.7. Then we can observe that pairs tl -< t2 are ordered
according to the Euclidean distance from the point of origin.

5.2.2 Domain Selection by Axioms

In Chapter 3 we discussed the selection strategies in traditional testing approaches as
advocated by Beizer (1995). Our main concern was that the strategy of boundary analysis
was applicable only to rational numbers. Nevertheless it is important to note that the goal
of finding boundaries or minima and maxima should not be restricted to numeric values
only. What is hindering us to use it for arbitrary data structures?

In hepTEsT we can deploy the same technology as used by Beizer in the case of rational
numbers on any kind of data structure. To do that we need an order on the elements of a
data structure. We have shown in the previous section how this is achieved. Furthermore
we need means of identifying relevant domains and boundaries. Beizer's proposed strategy
analyses a case statement to identify domains and sub-domains of operations. In hepTEsT
we use the domains created by the axioms of the operation. An axiom in hepSPEC has the
general form of if ...then ... where the if is omitted when there is no premise.

Beizer's Schema

IINPUT H CLASSIFY f-
DO CASE 2

DO CASE 1 OUTPUT

DO CASE n

Figure 5.8: Domain Testing and hepSPEc

hepSPEC

if PREMISE 1
then DO CASE 1
if PREMISE 2
then DO CASE 2

if PREMISE n
then DO CASE n

5.2 Test Data Selection 89

In Figure 5.8 we compare a schematic representation of domain testing with the ap-
proach in hepTEsT. In contrast to Beizer's approach data structures considered in hepTEST

can be arbitrary. Apart from that we can observe that the structure of a hepSPE sp cifi-
cation corresponds neatly with the schema representing the idea of domain testing. Thus
we have lifted a traditional approach to the abstract level and are able to gen ralis it. In
the same way as the case statement splits the input into sub-domains a set of axioms pIits
the domain of the operation defined by these axioms into sub-domains. We can asso iat
a sub-domain with each axiom. The domain can be made visibl in the test input ord r.

Minimal value of the subdomain ----...

Minimal value of the subdomain

(1.2)

/

Figure 5.9: Domain Derivation from Axioms for Op ration add

Figure 5.9 illustrates these ideas using the axioms for add as an exampl . Th domain
associated with add(a,O)=a contains all test inputs wher th sand argum nt is o. Th
second domain contains all other pairs of natural numbers.

As terms are the basis of tests in hepTEST we have the advantage that w an u
domain testing with arbitrary data types. This is even stronger reinforc d wh n w make

the following observation. We can observe that the domains in hepTEST ar not just t.
With the order on test inputs these domains become partially ordered s ts. W an from
Figure 5.9 how the test inputs in the domains are ord r d. The order on t t inputs mans
that we are not limited to numbers like Beizer when we us domain testing strat gi s. This
makes the hepTEST approach applicable to a wid vari ty of syst ms. This is a cru ial
observation when we decide which testing strategies w can support in h p < ST.

90 Testing Theory - hepTEsT

5.2.3 Testing Strategies

Beizer uses in his example the less-than relation on numbers to identify boundaries. We
can construct an order automatically and can make use of it during test data selection in
a similar way as Beizer does it for numerical values. The partial order over test inputs
becomes the foundation of hepTEsT testing strategies.

The existence of an order over test inputs helps us now to select tests which are relevant
for a particular strategy. We need to remember that testing had a creative element in the
traditional world. The test engineer selects tests which he thinks will expose bugs. In the
hepTEsT approach we rely on the experience of the test engineer. Rather than selecting
individual tests he selects a strategy and the tedious work of creating tests is automated.
Thus the creative element in testing is shifted from selecting individual tests to the task
of finding the appropriate testing strategy.

In functional black-box testing domain testing strategies prevail (Beizer, 1995). Com-
mon to these approaches is that domains and sub-domains are identified. From these
sub-domains test data is selected in a variety of ways. Bouge et al. (1986) uses for example
a randomly selected test from the identified sub-domain. Beizer (1995) advocates the use
of boundary values. All these strategies can be supported in hepTEsT.

Following the ideas in Section 5.2.2 we can create sub-domains. Equivalence partition-
ing selects only a subset of the tests required by a boundary-based testing technology. The
special points at the boundaries of sub-domains are considered relevant test inputs (Beizer,
1995). These special points are called ON-points and OFF-points. We introduced this
technology in Chapter 3.4. In the context of hepTEsT they become even more interesting.
Using the partial order over test inputs we can select the minimal and maximal elements of
the sub-domain. The assumption that an ON-point is the OFF-point of the neighbouring
sub-domain (see Bingchaing Jeng, 1994) does not hold in hepTEsT. This fact is a result
of the existence of domain conditions we introduced in hepSPEc. The operation is not
necessary total, it will in general be partial. In hepTEsT we can select all the interesting
ON-points and OFF-points by sorting the sub-domains according to our partial order and
searching for elements which do not have a predecessor or successor in this partially order
set. Those values are the relevant tests according to the boundary technique.

For example imagine an operation on natural numbers which does one thing for the
numbers between 0 and 5, 10 and 15, and so forth and something else for 6 to 9, 16 to 19
up to 100. The case statement describing such an operation f would look like this:

f(i) = iff 0 ~ i ~ 100

5.3 Generation of Expected Outcome 91

Case i in
[0 5J,[10 15J, ,100: Do easel,
[6 9J,[16 19J, ,[96 ...99J: Do case2;

The relevant tests for case 1 using maximum-minimum strategy would be 0 and 100. The
inputs 6 and 99 are the relevant test inputs for the second case. The equivalence classes
following Beizer (1995) are the intervals separating the processing of i. The sub-domains
are non-continuous in this case, meaning that there are gaps within a sub-domain. If we
use ON-points and OFF-points we get the boundaries of the non-continuous sub-domains.
The inputs are 0, 5, 10, 15, ... 100 for the first sub-domain and 6, 9, ... 99 for the second.

We observe that the value 101 is not included in this strategy. It would have been an
OFF-point according to Beizer, but 101 is not part of the domain of the operation f. A
strategy which does include such a test case is presented later in Section 5.9.

5.3 Generation of Expected Outcome

After the generation of test inputs and the selection of appropriate test sets we can focus
on the generation of an expected test outcome.

Testers usually have to provide an oracle (Beizer, 1995) which will determine the result
of a test run. In Chapter 2 we discussed how other approaches attempt to provide a

solution to this problem.
When we introduced the testing process in Chapter 2.1 we mentioned the, so called,

oracle problem. The oracle problem basically refers to the difficulties in test result vali-
dation. In literature the stack is often used as an example (e.g. Marre, 1995). There it is
made clear that a program implementing a stack and an abstract description of it cannot
be compared and found equal in general. In Marre (1995) a testing context is proposed
in order to soften the problem. The testing context is a sequence of function calls which
separate a complex object, like a stack, into its primitive components which then can be
compared using trusted operations.

In hepTEST a practical view is taken. Because industry has gained experience in testing
for decades and test tools, e.g. Visual Test, can perform test result validation which are
satisfactory in most cases, we believe that for test result validation the generation of an

expected outcome is crucial.
In hepTEST the generation of the expected outcome is possible. To create it we compute

the result of the application of the operation to a selected test input. With the help of

92 Testing Theory - hepTEsT

the axioms in the specification we can determine the result. In order to automate the
task the specification is animated in a tool. There is a variety of possibilities to animate
algebraic specifications (Bouma and Walters, 1989). Usually a term rewriting system is
used to symbolically execute the specification. Such a system has been used here.

In other words the computation of the expected outcome is done by solving the following
equation:

op(testInput) = expectedOutcome

The result will be a ground generator term of the range sort of the operation under test.
We have to note that because we have the possibility to compute the expected outcome

we have an advantage over methods where this computation is impossible or very compli-
cated. Although it is not generally true that a solution of an equation can be computed we
have made sure that it is true for any hepSPEc specification by restricting the operators
to primitive recursion (see Chapter 4).

5.4 Transformation of Test Inputs

The hepTEsT approach differs here from all the other approaches. We provide a mechanism
by which test inputs are transformed into a concrete representation.

5.4.1 Syntactic Homomorphism

Abstract tests computed from specification Concrete tests for driving the implemetation

I

I

I

'- 5(5(0)) LO

new_Hight(mkFlightNo(s(s(O».s(O).s(s(s(O)))).
appendrC.append("U·,cha-ToStr('M'))),
append('L',append('C·.CharToS~('N1)))

,
r

,-'
\

I
Flight: SAl from MUC to NCL

.. - --

.... - ~

Test reification through syntactic homomorphism

Figure 5.10: Test Input Transformation using a Syntactic Homomorphism

Figure 5.10 illustrates the problem and the solution provided in hepTEsT. Test inputs
generated from hepSPEc specifications are terms but the system under test is not capable

5.4 Transformation of Test Inputs 93

of processing these inputs. They have to be transformed into a representation the system
or tester can deal with.

To transform test inputs we use a syntactic homomorphism to convert abstract values
- ground generator terms - into concrete values which the system will process during test
execution. In the spirit of hepTEsT this conversion is automated to avoid the introduction
of errors through manual conversion. The test inputs in hepTEsT are difficult to read for an
engineer. Here it would not matter if we choose infix, postfix or as we did prefix notation.
It is the length of the terms and the possibly deep structure that causes the difficulties in
comprehension. Just imagine the number 100 in Peano notation. Unarguably counting the
s's manually would be error-prone. This is what we want to avoid while remaining within
the formalism of algebraic specification.

To understand the advantages of using a single formalism we have to remember where
test failures could originate. One source are requirements. A mistake in the requirements
- be it omission, incompleteness, misunderstanding - can lead to an incorrect implemen-
tation of the system under test. Another source are bugs in the implementation. A test
would fail because there is a discrepancy between the expected and the actual outcome.
However we should not forget the third source of failure, the test itself. The test could be
wrong in many ways. The inputs could be wrong and thus the expected outcome, but also

the execution sequence might contain faults.
Test failure does not indicate the source of the fault. Finding the source of a fault is a

laborious, time consuming and expensive task. Prevention of faults is therefore vital and
using a single formalism helps us to ease the process of proving that a test is a logical
consequence of a hepSPEc specification. An engineer might not use the proof method on
a daily basis but its existence would make him confident to exclude one source of test

failures.
In this setting we define a homomorphism that will achieve the transformation from

abstract test inputs to concrete values. Formally we can say that our goal is to assign
abstract terms or E-terms to another notation, i. e. we want to define another orthog-
raphy. For that purpose we define another algebra I which contains all the elements of
the concrete representation and associated string operators like concatenation. Then the

homomorphism

syn: T(E) ---+ I

will achieve the necessary transformation.

94 Testing Theory - hepTEST

In the spirit of algebras we can do the following. We can construct an algebra that
describes the concrete representation. It would contain the characters of the concrete rep-
resentation and string operators which combine these elements. Such an algebra contains
a lot of values which could be described as nonsense. For example an algebra of arithmetic
expressions would contain basic elements such as +, -, *, -;.-and a representation for digits.
Then values like 12 + +3 * - * *-;.- are nonsense in the world of arithmetic expressions.
There is a subset of elements which have a meaning in the algebra generated by a hep.SPEc

specification of arithmetic operations. We want to illustrate this key idea. A ~-algebra 0

Specification of ~ ~-algebra 0

~ is sorts B,C,E
oprn f ,t ~ B

0,1 ~ E
+,*(E,E) ~ E
V,A(B,B) ~ B
,(B) ~ B
K(B,E,E) ~ E

ena ~

v:{a,b,c,d,x,y,z}~{E,C,B}
av = bv = cv = dv = E
and xv = yv = zv = B

Carriers:
OE = {a, b.c, d, [,], +,0, 1}+,
OB = {x,y,z,A, V, -', [,j, T, F}+,
Oc = {a,b,c,d,x, y, z, +, 0,1, [,j,IF, THEN, ELSE, -,}+
~-indexed family of operations:

to = T, fO = F,Oo = 0,1° = 1,
(WI, W2)+0 = [WI + W2],

(WI, W2)*0 = WIW2,

(w}, W2)VO = [WI V W2],

(WI, w2)AO = [WI A W2],

w,o = ,[w],
(w}, w2, W3)KO = IF WI THEN W2 ELSE W3·

Example 5.2: Syntactic Homomorphism i: T(~, v) ~ 0

with a different orthography is constructed in Example 5.2. We define the carrier set in 0
for sorts E, B, and C. They are non-empty sets over a given alphabet. We also provide defi-
nitions for string functions in O. For example the string function +0 writes first the symbol
[followed by the argument WI, the symbol +, the second argument and the symbolj. Or
for example KO concatenates strings using the arguments and the symbols IF, THEN,
and ELSE interleaving them in a manner familiar in many programming languages. If we
choose as assignment i E O; the inclusion, then the extended homomorphism

i: T(~,v) ~ 0

associates terms of T(~, v) with terms in mixed-fix notation.
It is important to note that not every string of the carrier in 0 is an image with respect

5.4 Transformation of Test Inputs 95

to the homomorphism i: T(E, v) -+ O. Only those which have a meaning in E are assigned
a value in O.

5.4.2 Grammars as Syntactic Homomorphism

To express the homomorphism we will use the formalism of context-free grammars (Aho
et al., 1985). Context-free grammars are a well-known and well-understood formalism.
Engineers make use of this formalism in the construction of compilers and related systems.
We have used it too. In Example 5.2 we defined the operator KO as

We could have also used the formalism of grammars and written

E -+ IF B THEN E ELSE E

in order to define /'i, instead. Before we get deeper into this discussion we will provide the

necessary definitions.

Definition 5.4.1 Context-free grammar.
A grammar G is a quadruple (N, T, St, R), where:

• T is a set of terminals. The set of terminals is also called the alphabet.

• N is a set of nonterminals. Nonterminals are names that denote sets of strings.

• St is a distinguished nonterminal in N called the start symbol.

• R is the set of productions which determine how terminals and nonterminals can be
combined to form strings. Each production consists of a nonterminal followed by
an arrow (-+) and a string of terminals and nonterminals. The nonterminal on the
left-hand side of a production is called the head, the right-hand side the body of the

production. o
For the remainder of this thesis we will enclose a terminal in square brackets to distinguish

it from nonterminals.
Another concept of grammars which is important to us is the notion of derivations.

Derivation is a possible view of the process by which a grammar defines a language.

96 Testing Theory - hepTEsT

Definition 5.4.2 Derivation.
Let A -7 , be a production of Grammar G and 0: and (3 are arbitrary strings of symbols
from NUT then we call o:A(3 =} 0:,(3 a derivation.

If 0:1 =} 0:2 =} ... =} O:n then we say 0:1 derives O:n and write 0:1 ~ O:n. The relation
~ is the transitive and reflexive closure of =}. If we want to express that a derivation
takes at least one step then we use the symbol ~ (transitive closure). 0

Definition 5.4.3 Language.
Let G be a grammar with start symbol St. Then L(G) - the set of strings of terminals
- is called the language generated by G. A terminal string w is in L(G) if and only if
S ~ wand w is called a sentence of L(G). 0

Parse trees are commonly used to describe the derivation process graphically. We will use
them to illustrate our examples.

We said that a grammar generates a language. In hepTEsT we rephrase this and say
the grammar generates elements of the concrete representation. It becomes obvious that
the elements of the generated language are a subset of the elements of the orthographical
algebra as defined by Reichel (1987). However, unlike in Reichel (1987), in our algebra we
do not generate elements which are syntactically incorrect. Those values are not in the
range of the syntactic homomorphism and therefore we are only reducing the algebra of
the concrete representation. In Section 5.9 we will explain how we can make use of this
fact in other testing strategies.

1 Bin -7 [0]
2 Bin -7 [L]
3 Bin -7 Bin [0]
4 Bin -7 Bin [L]

Example 5.3: Grammar Productions Generating Binary Representation of Numbers

The algebra I of concrete inputs is generated by the grammar. To express the ho-
momorphism h: T(E) -7 I from the abstract representation to the concrete we start by
assigning values from T(E) to the strings in I,

Definition 5.4.4 Syntactic Homomorphism.
Let E be a hep-signature and r a grammar describing the concrete data, then a homomor-
phism

syn: T(E) -7 L(r)

5.4 Transformation of Test Inputs 97

is called a syntactic homomorphism. o
The recursion theorem in Reichel (1987, p. 68) points us to the way how to construct

this homomorphism.

Definition 5.4.5 Recursion theorem.
Let ~ = (S, F, arity, dam) be any hep-signature and X an S-sorted family of variables.
For any E-algebra A and any assignment a = (as: X, ~ Is I S E S) there exists exactly
one ~-homomorphism h: T(E,X) ~ I with h(x) = a(x), i.e., every assignment can be
extended uniquely to a E-homomorphism. 0

As we consider ground-generator term algebras only (X is the empty family) this means
that there is exactly one homomorphism from the algebra of ground-generator terms into
a syntactic algebra I.
It remains to show how such a syntactic algebra I may be defined properly by means

of a grammar r.

(1) At first any sort s of S is assigned a nonterminal of the grammar r.

(2) Every operator f of F is assigned a production Pi of the grammar r in the following

way:

• The left- hand side of Pi is the nonterminal corresponding to the range of t
• The right-hand of Pi is the sequence of nonterminals corresponding to the sorts

Si of 1's input.

• This right-hand sequence of nonterminals is in general interspersed with key-
words or special symbols denoting the operator f in L(r).

(3) The carriers Is of the syntactic algebra I are formed by all terminal strings derivable
in the grammar r from the nonterminal corresponding to the sort S of S.

Let's now demonstrate with an example the definitions and processes just explained. In
Example 5.4 we extend our hep-specification for natural numbers to BinNat. We introduce
4 new operators zero, one, even, and odd. Because this is an enhancement by definition
we need to provide axioms for these operators. The axioms explain themselves. Then
we extend our specification BinNat to build the syntactic homomorphism Syn. First we
assign the sort Nat to a nonterminal Bin as explained above. Then follow the other
operators which we assign grammar productions. The operator zero is assigned to the

98 Testing Theory - hepTEsT

1 BinNat is Nat with definition
2 oprn zero ~ Nat
3 one ~ Nat
4 even Olat) ~ Nat
5 odd (Nat) ~ Nat
6 axioms a:Nat
7 zero = 0
8 one = suee(O)
9 even(a) = add(a,a)
10 odd(a) = s(add(a,a))
11 end BinNat
12
13 Syn is BinNat wi th
14 Nat means Bin
15 zero means Bin ~ [0]
16 one means Bin ~ [L]
17 even means Bin ~ Bin [0]
18 odd means Bin ~ Bin [L]
19 end Syn

Example 5.4: Definition of Syntactic Homomorphism for Binary Presentation of Natural
Numbers

production Bin ~ [0]. We had to ensure that the left-hand side of the production is
the non-terminal assigned to the range of zero which is Nat. The right-hand side of
the production should contain the nonterminals of the domain of zero interspersed with
terminal symbols. The domain of zero is empty and the right-hand side contains therefore
only a terminal. Examine the assignments of even or odd as examples of assignments of
operators with a non-empty domains.

We can observe that in order to write down the homomorphism in the proposed way we
had to extend the original specification Nat to BinNat first. We could not have used Nat as
it has only the operators 0 and suee and our grammar has 4 productions. The extension
to BinNat serves only as a vehicle to express the homomorphism and does not add any
new functionality to our specification. We can omit it and link the grammar directly to
the original specification.

We can do it if we write the grammars in the usual way but add a keyword means

to provide the link to the original specification. This link we call means clause. The
Example 5.5 provides an illustration of how we express the homomorphism with the help of
context-free grammars avoiding the use of additional operators. We can see that the axioms

5.4 'Transformation of Test Inputs 99

1 Bin ---+ [0] means Bin = 0
2 [L] means Bin = s(O)
3 Bin [0] means Bin = add(Bin1,Bin1)
4 Bin [L] means Bin = s(add(Bin1,Bin1));

Example 5.5: Grammar Specifying a Homomorphism between Sort Nat and a Concrete
Binary Representation

we wrote in the BinNat specification have been moved to the corresponding productions of
the grammar. The first production for we associated with the operator zero in BinNat in
Example 5.4 and we provided the axiom zero = o. This axiom is now written behind the
keyword means. To improve readability of grammars we use the nonterminals as variables
in the means clause. To distinguish multiple occurrences of nonterminals we will number
them starting with one as illustrated in the example. So the variable Bin1 refers to the
first occurrence of Bin in the body of the production. The nonterminal in the head of a
production is not numbered. This is a convention to ease reading and writing of means
clauses. The bar (I) is commonly used to denote alternatives in grammars (Aho et al.,
1985) and the semicolon terminates the productions rules for Bin.

In this way we avoid to write unnecessary enhancements and therefore ease the writing

and reading of specifications.

Definition 5.4.6 Syntactic Grammar.
Let G = (N, T, St, R) be a grammar and E = (S, F, arity, dam) a signature of a hep-
specification. Then a syntactic grammar SG = (E, G, Ax) has associated with each pro-
duction a means-clause eq E Ax. A means-clause is an equation eq over the non-terminals
of the rule, where eq uses only operators in E. 0

We have always emphasised the importance of the restrictions of the operators. Syn-
tactic grammars as defined so far are ignoring these restrictions. The language generated
by the grammar contains elements which do not have an abstract complement. We have
already excluded elements of the orthographic algebra as defined by Reichel (1987) (see
Example 5.2). We want to go even further. Following the concept of defining conditions

in hepSPEC we will introduce restrictions on productions.

Definition 5.4.7 Partial Syntactic Grammar.
Let SG = (E, G, Ax) be a syntactic grammar, then a partial syntactic grammar PSG =
(E, G, Ax, cond) has associated a where-clause with each rule. A where-clause contains a
set of equations over the non-terminals of the right-hand side of the rule.

100 Testing Theory - hepTEsT

A production is only available for generation if the associated where-clause is satisfied.

o

1 Bin ---+ [0] means Bin = °
2 [L] means Bin = s (0)
3 Bin [0]
4 where It(O,Binl) = true
5 leq(Binl,127) = true
6 means Bin = add(Binl,Binl)
7 Bin [L]
8 where It(O,Binl) = true
9 leq(Binl,127) = true
10 means Bin = s(add(Binl,Binl»

Example 5.6: Partial Syntactic Grammar for a Byte Representation

In Example 5.6 we extended the grammar by providing where-clauses for grammar
rules. Empty where-clauses were omitted. Now the grammar rules produce 8-bit binary
representations for the natural numbers between 0 and 255 without leading O's. We used
the where-clauses to restrict the application of the grammar rules. In the same way as
the domain conditions work in the case of hep-specifications we created a way to restrict
the language generated by the grammar by using where-clauses. More importantly if the
means-clause contains an operator with a restricted domain then we have the power to
ensure that the operator is used within its domain through an appropriate where-clause.

5.4.3 Test Transformation through Reverse Parsing

In order to automate the task of constructing the concrete input we will use the reverse
parsing algorithm and the method described to calculate the expected outcome.

The process starts with the abstract test input as the semantic value of the root node of
a parse tree. From the productions which would create the root node we select one. This
production contains an action coded in the means clause. We can use it to calculate the
semantic values for each child node. Then we proceed with the child nodes and continue
this process until we reach the leaves of the parse tree. The sequence of terminals is then
the concrete representation of the abstract test input.

Let us use the Example 5.5 again to illustrate the approach. We know that elements of
Nat are represented by elements generated from the nonterminal Bin. So for a given test
input we need to start the generation with the nonterminal Bin. From the grammar in

5.4 Transformation of Test Inputs 101

Example 5.5 we know that Bin can be expanded in 4 ways. We chose one arbitrary. Then
we need to test if this is the right way. Using a term rewriting system we evaluate the
means clause. If we have found a solution, then there are ground terms which need to be
substituted for the nonterminals in the productions body, and we commit to the choice of
this production. Our initial task is then multiplied. We need now to find representations
for a number of test inputs. The procedure is the same as illustrated up to now. If the
generation for all the nonterminals succeeds then we have found the concrete representation.
The sequence of terminals in the parse tree is the concrete representation. Now it could
have happened that the evaluation of the means clause does not yield a solution. Then
another production is selected.

Let us use a concrete example, let us use test input s (s (0)). We illustrate the example

~
Bin s(O) 0

I
L

6 = (Bin\s(s(O)))
production 3: s(s(O)) = add(Binl,Binl)

6 = (Bin\s(s(O)), Bin1\s(0))
production 2: s(O)=s(O)

6 = (Bin\s(s(O)), Bin1\s(0))

Figure 5.11: Generation of Representation for s(s(O))

graphically in Figure 5.11. We start with the nonterminal Bin and select a production from
the alternatives. Imagine we selected the third production (Line 3) then we have to evaluate
the equation s(s(O))=add(a,a). The equation holds if a is s (0). We found a solution and
infer from the body of the production that we first have to generate a representation for
s (0) and append o. So we repeat the process this time for s (0). We select a production,
let us use the second production (Line 2 in Example 5.5). We evaluate the equation s(O) =

s(O) and succeed. We add the terminal L. The process is finished and we have generated
the concrete representation LO for s (s (0)). The tree we generated during the execution of
the algorithm is a top-down created parse tree. Hence the name reverse parsing algorithm

and reverse parse tree.
It is important to see what happens if we choose another production in the first step.

Figure 5.12 shows the reverse parse tree in the initial step of transformation of the term
s(s(O)). Instead of using the third production in the grammar (Line 3 in Example 5.5)
we use this time the production in Line 4. We have to evaluate the means clause, here the

102 Testing Theory - hepTEsT

Bin 8(8(0))
I

production 4: 8(8(0)) =1= 8(add(Binl, BinI))

Bin 8(8(0))

production 1: 8(8(0)) t- 0

Productions 4 and 1
are not used

again in this step

Figure 5.12: Generation of Representation for s(s(O)) with Failures

equation s (s (0)) = s (add Ca , a)). We cannot find a solution so we discard this production
in this step and select another one, say the first production (Line 1 in Example 5.6). Again
we evaluate the means clause s (s (0)) = 0 and fail to find a solution. This production is
discarded in this step, too. This leaves only 2 productions to choose from. We know that
if we choose the third production we will succeed in finding a solution for the means clause
as we showed above. Choosing the third production means that we have to generate a Bin

for the value s (0) as we explained in the previous example. Now all 4 productions for Bin
are available for selection again. The process repeats until we find a production which fits.

It is possible that there is no solution which would yield the semantic values for the
child nodes. Then we discard this production and use another production. If there is no
other production, then we have to backtrack to the higher node.

In our formalism a test engineer will provide a syntactic homomorphism for test inputs
in form of a grammar. This grammar will become an integral part of our specification.
The test reification produces a test in concrete form from an abstract test input. This is
achieved in hepTEsT automatically through an algorithm that reverses the common parsing
technique as described by Aho et al. (1985).

We followed some of the ideas of Bernot et al. (1991a) and a test of an operation is a
pair of test inputs and an expected outcome. This idea was already presented in an earlier
paper by Bouge et al. (1986). Woodward (1993) criticised this approach by comparing a
test input with the actual input an implementation would accept. Then he concluded that
such an approach only generates tests for specification validation purposes. His criticism is
targeted at the fact that an implementation will not accept terms as input which is usually
true. The hepTEsT approach has overcome this problem.

5.5 Generation of Test Setup 103

5.5 Generation of Test Setup

Having used the reverse parsing technique for test input transformation we can extend this
idea to generate the test setup. The test setup includes the operations and their input
values which need to precede the actual test. From a viewpoint of parsing this task can
be expressed as the search for a tree where the test input transformation parse tree is a
sub-tree. Figure 5.13 provides a schematic illustration of this problem. The test setup

test setup

Figure 5.13: Test Setup Generation

generation is terminated once the start symbol of the grammar is reached.
Having expressed the problem of test setup generation in terms of grammars and re-

verse parsing we can explain how the solution in hepTEST is achieved. Let us recall that
we used initially the syntactic homomorphisms to convert abstract test inputs into con-
crete representations. There we had to define a homomorphism between abstract ground
generator terms and strings from a concrete representation. As a result we were able to
convert automatically our abstract test input into a concrete representation. If we now
extend this homomorphism to defined operations then we can generate in the same way

the test setup.
In Figure 5.14 we have drawn a parse tree for a test setup. We assumed that there are

buttons labelled with the terminal symbols. From our testing strategy we had generated
the test input (8 (8 (0)) .8 (0) for the operation add. Then we used the reverse parsing
algorithm to generate the binary representation for s (8 (0» and 8(0). We continued to

104 Testing Theory - hepTEsT

Turn on

~
Bin s(O) 0

I
L

+ Bin s(O)
I
L

Figure 5.14: Test Setup Generation for Binary Calculator

create a reverse parse tree with the following additional productions until we reached the
start symbol.

start ~ [Turn on] Bin [=] means start = Bin;
Bin ~ Bin [+] Bin means Bin = add(Binl,Bin2);

The result is the sequence Turn on L 0 + L = which we can enter into a binary desk
calculator. These are very trivial examples, but in Chapter 6 we apply this technology
to larger and more complex studies. There the power of the technology becomes more
obvious.

Of course not all operations need to be transformed by this extended homomorphism.
Some of the operations are auxiliary. They are only needed to express the defining con-
dition of operators or to conveniently define the properties of another operation. Those
auxiliary operations have no correspondence in the concrete world. We do not provide a
homomorphism for them. Other algebraic methods introduce a hide operator to express
this concept (Wirsing, 1990).

In Example 5.7 we illustrate the use of auxiliary operators. We also show that not only
operators are auxiliary but also auxiliary sorts can be used. We define a sort UniqueSeq
representing sequences of numbers which contains each number only once. Such a sequence
could be used to describe properties of processes and process identifiers in computer op-
erating systems, for example. Here we want to show the use of auxiliary operators. One
of the generators of Unique Seq, append, has a defining condition. We used an operation
makeSet to express the condition. We can interpret it to mean that a number can only
be appended if and only if the set formed from the sequence does not already contain the

5.6 Transformation of Expected Outcome 105

UniqueSeq is Set with generation
sorts UniqueSeq

with definition
oprn makeSet(UniqueSeq) ~ Set

with generation
oprn lambda ~ UniqueSeq

append(s:UniqueSeq,n:Nat
iff in(n,makeSet(s))=false) ~ UniqueSeq

end UniqueSeq

Example 5.7: Use of Auxiliary Sorts and Operations

number. The implementation of UniqueSeq is unlikely to have an equivalent operation for
makeSet. It will probably not create a set at all to ensure the property of uniqueness. In
other words not only will there be no equivalent for makeSet but it is likely that neither
the sort Set nor any operations associated with Set will be present in the implementation
(unless it is needed for some other purpose in the system).

Thus the homomorphism is only defined for a subset of sorts and operators. The other
operators can be called hidden. Here we follow a similar approach to LARCH (Wirsing,
1990). We will content ourself with this idea and omit the development of a fully fledged
theory with hidden operations as we are able to overcome the problem of user intervention.
In general only the tester will know which operations and sorts have an equivalent in the
concrete representation. To enhance the possibilities of specification reuse we omit the
explicit distinction of hidden operators.

5.6 Transformation of Expected Outcome

In a similar way the expected outcome is transformed using a context free grammar. It
might be feasible to use the same homomorphism we used for test input and setup gen-
eration. However such a case would be the exception. In general we will make use of the
same process but a different homomorphism. There is no reason why the inputs and out-
comes - even thought they are of the same sort - will have necessarily the same concrete
representation. It is easy to construct examples where this becomes obvious.

For example imagine a converter from numbers in binary to hexadecimal representation.
There the input and the output obviously differ but they are both of sort Nat.

To distinguish between the homomorphisms we call the one which converts the ex-
pected outcome semantic homomorphism. This homomorphism is also expressed through

106 Testing Theory - hepTEsT

an extended context-free grammar in a similar way as syntactic homomorphism (see Sec-
tion 5.4.2).

We can therefore distinguish three algebras in our context. First there is the abstract
algebra or T(E), then the input algebra I which we link to T(E) through a syntactic ho-
momorphism and third the output algebra 0 which we link to T(E) through a semantic
homomorphism. Figure 5.15 illustrates the links between the algebras. For our specifica-

Sabstract algebra

synr;z_l ~
r.: program "f;\
Vsyntactic algebra Vsemantic algebra

(syn"! 0 sem)(input) = program(input)

Figure 5.15: Links between Abstract, Syntactic and Semantic Algebras

tions it is important that the actual system is described through the concatenation of the
inverse syntactic and semantic homomorphisms. The engineer writing the specification has
the responsibility to ensure that this is true.

In the same fashion in which we generated a test setup we can use the grammar for-
malism to create any necessary context for the expected test outcome. Many of the ideas
presented here will be exemplified in the case studies in Chapter 6.

5.7 Test Execution

The test scripts and outcome scripts need to be executed. This may be done automatically
or manually. If the tests are executed automatically then automated testing software
drives the process. Such software is programmed in a script language. There is no reason
for us not to use this script language as the concrete representation when we specify the
homomorphism.

There is a number of automated testing software available today. They all provide
a script language to drive the software under test. Such software is used by testers to
implement tests which they designed.

5.8 Test Result Validation 107

The hepTEsT approach fits neatly into the ideas of automated test execution.

In other words, all we need to change when we move from manual to automated test
execution is the definition of our syntactical homomorphism. The abstract tests are not
affected by this. Merely their concrete representation will change. Also the effect which we
talked about in the previous section can be used even more elaborately in this setting. The
generation of test setup and sequencing becomes more important, because the launch of
the system under test within the automated test execution bed might be more complicated
than in the manual case.

Why is this an important advantage of hepTEsT in comparison to other testing ap-
proaches? The advantage stems from the fact that hepTEsT does use a homomorphism
to link concrete and abstract test data. To the formal side of hepTEsT the type of test
execution is transparent. Actually hepTEsT does not know if tests are executed manually
or automated. Setting up an automated test environment can be expensive. In the early
stages of software development the system might be unstable, meaning it will fail in a
larger number of tests. If the test execution is performed automatically and the testing
stops after the third test already then the fixing, restarting and repeated failure will slow
down an automated process. Manual testing might be preferred in this case. However later
when bug fixes take place the same abstract tests can be run in an automated environ-
ment. The number of test failures should be small and not contributing to a slowdown of
the testing effort. Because we only change the homomorphism we can be confident that
the same tests are executed and that regression testing will yield a high level of confidence
in the systems correctness.

5.8 Test Result Validation

The contribution of hepTEsT to the test result validation process is significant. Earlier we
argued that an expected outcome is needed in order to establish test success or failure.

We pointed out that many approaches are not capable to produce an expected outcome.
The approaches using object oriented description methods such as UML are not capable
of producing an expected outcome because the descriptions do not contain any semantics.
They usually argue that the expected outcome can be derived from another source. This
source might be a legacy system which is to be replaced by the system under test or some
other kind of model. From a practical point of view it means to rely on the fact that the
legacy system is correct or the the model is adequate and in sync with the specification.

108 Testing Theory - hepTEsT

Nothing of this is generally true.

We also argued that in the case of manual ad-hoc testing the tester usually knows what
to expect as an outcome. This is not longer true in the case of automated test generation.
A tester would need to trace the test input and analyse the effects to determine successfully
the expected outcome. This is a very time consuming and unreliable method.

In hepTEsT we did provide semantics in our specifications. The semantics are formal
and can be manipulated mechanically to compute the expected outcome. We can also
compute the expected outcome for testing sequences and - using the transformation
approach - convert the representation of the expected outcome into a format where the
test result validation is eased.

The syntactic homomorphism can be extended in such a way that not only the expected
outcome is transformed but also the necessary calls and actions to retrieve it are included.
In this way we can support automated test result validation.

5.9 Further Testing Strategies

In Section 5.2.3 we discussed the use of hepTEsT for functional black-box testing where
the domain-based testing strategies dominate. With the ideas presented so far we are able
to provide support in two other areas of testing, namely robustness and syntax testing.

Automated test generation for robustness testing is presented for example by N.P.Kropp
et al. (1998). The goal of robustness testing is to break the software, to stop it from
functioning. Test result validation has to establish if the software under test is still running.
Validation of the outcome is not important. In hepTEST we can define tests for robustness
testing as arbitrary strings of terminals for the syntactic grammar. Formally if G =
(N, T, St, P) is a syntactic grammar then a robustness test t is an element of T+.

Consider again our example of a test setup in Figure 5.14. There robustness tests of
binary numbers and the addition could be strings like +LL+LL+++LOO.

Another testing approach is discussed for example in Beizer (1995) and called syntax

testing. We could argue that the test engineer is aware of the fact that the software or
system is designed and constructed which does not permit or avoids problems associated
with input syntax. Such technology includes parser generators, generated lexical analysers
for example. This technology does the reverse of our syntactic homomorphism. A parser
is constructed to automatically decide if a sequence is a sentence of a given language.
When automated construction tools are used on the project then certain tests can be

5.9 Further Testing Strategies 109

omitted. The testing strategy should concentrated more on the remaining sourc s of bugs.
For reasons of time and space efficiency only context-free grammars are of any practical
importance. This in turn means that the remaining sources of faults are locat d in th
implementation of context-sensitive checks. If we compare this approach to hepTEsT then
we can say that syntactic testing should focus on testing the where-clauses in th syntactic
grammar.

To test the implementation of the where-clauses we can proceed in a similar way as w
introduced for domain testing in Section 5.2.3. Ifwe can identify the domains of rul s, th n
we can use the partial order on test inputs to select specific tests. Using th domain t ting
approach we already have tested a considerable number of values. To b mar sp ifi at
finding faults specific to syntax testing, we would consider to t st if th domain of the
where-clauses are implemented correctly. So the first typ of syntax t ts would b

t E L(G) is a syntactic but not necessarily context-s nsitiv carr et t t.

The second class would be

t E L(G) n L(EG).

Exhaustive test set

Figure 5.16: Syntax Testing Approach

Using the illustration in Figure 5.16 we can compare the potential test s ts of th e
two classes of syntactic tests. We see that the lements of L(EG) might have already
been selected by the domain testing approach. The wher claus implem ntation would
be best tested on the boundaries. The ON-points of th boundari of th wh r laus
where already tests in L(EG) thus OFF-points should b sit d for th nd pproa h.

110 Testing Theory - hepTEsT

Using the partial order we can select tests just outside the boundary of the where-clause.
Formally we say a test input t tests the where-clause eq

t rt solution of eq, ton <J t or t <J ton, ton E solution of eq.

1
2
3
4
5

6

Bin [0]
where It(O,Binl) = true

leq(Bin1,127) = true
means Bin = add(Bin1,Bin1)

Example 5.8: OFF-point Testing in Syntax Testing

Using again Example 5.6 we want to select a syntactic test for testing an OFF-point
for a where-clause. We copied the relevant part of the grammar to Example 5.8. We can
see that the domain of the production rule (in Line 3 and 4) is described by the following
inequality:

0< Bin1 s 127

The tests which would fulfil our requirement for OFF-points are Bin1 = 0 and Bin1 = 128.
This is because 0 <J 8(0) and 8(0) E Solution of eq and 0 ¢ Solution of eq. The same is
true for 128. The number 128 is of course only a short-hand for a term in Peano notation
where the s is repeated 128 times. Thus testing for OFF-points would yield 2 test cases
for this production.

These are only a small number of testing strategies which could be implemented using
the hepTEsT approach. Test engineers would make use of their experience and formulate
their own testing strategies. Our approach is there to help to put testing on a more formal
basis. It does not substitute the creative element of testing. In the next chapter we will
report about two case studies we conducted to assess the feasibility of this approach.

Chapter 6

Case Studies

In this chapter we will demonstrate the practical application of the techniques developed
in the preceding chapters. The first example is a simple and well known one from the
literature. It is used to test our ideas and their implementation. It small and relevant in
our context and therefore ideal for an initial assessment of the proposed technology. This
simple example is followed by a larger case study supplied to us by Dr Jeremy Dick. We
conclude with a report of a real industrial case study in which a development project was
"shadowed" and hepTEsT approach tried out in a "real world" setting. We will report our
experiences and findings.

6.1 Initial Case Study - Tax Example

The first case study has been conducted to assess the validity of our approach to testing.
We also need to examine how the tools implementing the approach might cooperate and
and gain some confidence in their implementations. We choose to use an example from
Belzer (Beizer, 1995) because it is relatively small and we can compare the results with the
results generated manually by Beizer. We will follow the major steps in testing as outlined
in Chapter 5 beginning with modelling of the system under test.

6.1.1 Specification of the Tax Example

The tax example is taken from Beizer (1995) where he demonstrates the technique of
domain analysis. The system is required to calculate the amount of income tax payable
under US law. The tax system is progressive and the percentage increases in steps over

112 Case Studies

the income span. Figure 6.1 gives an indication of how a plotted graph of a function
calclncome Tax could look.

Tax

Income
Figure 6.1: Graph for Tax Example

We can observe that there are bends in the graph at certain points. Beizer points out
that the values where the graph makes those bends are potential test cases and we agree
with that. Our goal therefore is to generate test cases for those and to take surrounding
values into account.

We begin by formalising the system in hepSPEc. Firstly we create some basic sorts
and operators which we will need to describe the properties of the example. Example 6.1
introduces the sorts Bool and Nat and operations to manipulate the elements.

It is important to point out that the operations true and false are the generators for
sort Bool in the same way as sand 0 for Nat. The distinction between defined operators
and generators is important as pointed out in Chapter 4. The generators are constructing
the elements from which we will choose the test inputs.

From the basic specifications we can construct our example description. In Example 6.2
we define an operation calclncomeTax which operates on elements of Nat. This example
is based on the idea that we could represent a money value as a natural number. We did
not follow the exact specification of income tax calculations because we used the Peano
notation for natural numbers and this makes specifying numbers such as 22000 very tedious.

6.1 Initial Case Study - Tax Example 113

1 Bool is generation
2 sorts Bool
3 oprn
4 true ~ Bool
5 false ~ Bool
6 ena Bool
7
8 Nat is Bool with generation
9 sorts Nat

10 oprn 0 ~ Nat
11 s(Nat) ~ Nat
12 with aefinition
13 oprn add(Nat,Nat) ~ Nat
14 mul(Nat,Nat)~ Nat
15 leq(Nat,Nat)~ Bool
16 sub(Nat a,Nat b iff leq(b,a)=true)~ Nat
17 a~ioms a,b:Nat
18 add(a,O)= 0
19 add(a,s(b» = s(add(a,b»
20
21 mul(a,O) = 0
22 mul(a,s(b» = add(a,mul(a,b»
23
24 leq(O,b)= true
25 leq(s(a),O)= false
26 leq(s(a),s(b» = leq(a,b)
27
28 sub(a,O)= a
29 if leq(b,a)=true
30 then sub(s(a),s(b» = sub(a,b)
31 ena Nat

Example 6.1: hepSPEc-specification of Basic Sorts for Tax Example

114 Case Studies

For an initial study this is an accepted restriction. We will discuss ideas to overcome this
problem later in this chapter.

1 Tax is Nat with definition
2 oprn calclncomeTax(Nata
3 iff leq(a,s(s(s(s(s(s(s(s(s(s(s(O»»»»»»=true) ~ Nat
4 axioms income: Nat
5 if leq(O,income)= true
6 leq(income,s(s(O») = true
7 then calclncomeTax(income)= mult(income,s(s(O»)
8
9 if leq(s(s(s(O»),income) = true
10 leq(income,s(s(s(s(s«O»»») = true
11 then calclncomeTax(income)=
12 add(mult(sub(income,s(s(O»),s(s(s(O»»,s(s(s(s(O»»)
13
14 if leq(s(s(s(s(s(s(O»»»,income) = true
15 leq(income,s(s(s(s(s(s(s(s(s(O»»»»» = true
16 then calclncomeTax(income)=
17 add(mult(sub(income,s(s(s(s(s(O»»»,s(s(s(s(O»»),
18 s(s(s(s(s(s(s(s(s(s(s(s(s(O»»»»»»»
19
20 if leq(s(s(s(s(s(s(s(s(s(O»»»»),income) = true
21 leq(income,s(s(s(s(s(s(s(s(s(s(s(O»»»»»» = true
22 then calclncomeTax(income)=
23 add(mult(sub(income,s(s(s(s(s(s(s(s(O»»»,
24 s(s(s(s(s(O»»»,
25 s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
26 s(s(s(s(s(s(s(O»»»»»»»»»»»»»
27 end Tax

Example 6.2: hepSPEc-specification of Tax Example

To be able to write it conveniently and to be able to focus on the task at hand be have
changed the specification slightly. The hepSPEc-specification of calclncomeTaxcan be
given by the following formula:

6.1 Initial Case Study - Tax Example 115

calc!ncomeTax: [0, ... , 11] ~ N

2x if x ~ 2,

calc! neomeTax(x) -
3(x - 2) + 4 if 3 ~ x and x ~ 5,

4(x - 5) + 13 if 6 ~ x and x ~ 8,

5(x - 8) + 25 if 9 ~ x and x ~ 11.

Having formalised the system under test we proceed to the generation steps. In the
remainder of this discussion we will follow the structure of Chapter 5 and show how each
step of the hepTEsT process is applied in practice. The first one concerns the generation

of test data.

6.1.2 Test Data Generation for Tax Example

The operation calclncomeTax describes our entire system. Other operations mentioned
in the specification such as add or mul are regarded as auxiliary. Thus our focus for test
data generation is on calc IncomeTax.

From the specification in Example 6.2 we can see that we need to generate values of
sort Nat. The sort Nat has 2 generator operators sand o. Starting with the operator 0
and repeated application of s we can generate all values of sort Nat.

To automate this task we can use a variety of tools. We could for example write a sim-
ple program which would generate the values. However we chose a more general approach
as illustrated in Figure 6.2 by using a term rewriting system because it fits neatly into
the remaining test data generation process. The implementation is largely based on the
LoFT-tool(Marre, 1995) and uses the underlying Prolog engine from ECLipse (Aggounand
et al., 1999) directly for extensions. We will continue to present this figure and to illus-
trate which parts of the implementation are relevant to a particular test generation step.
Our implementation supporting the hepTEsT approach is called hepTool. The hepTool is
implemented in Java and provides a graphical user interface to the test engineer. A screen
shot of the tool is presented in Figure 6.3.

In this example test input for calclncomeTax generation is trivial. Nevertheless we
need to select test cases from those we can generate because there is an infinite number of
natural numbers.

116 Case Studies

Equivalent
algebraic descripi ion

in

hepSPEC
hepTEST tool

Problem description

stated formally in
LOFT tool

Test data SCI

in correct
representation

Figure 6.2: An Implementation of hepTEST

"flleH1~ •• [a{~,.,.t"'.'.fn.-,,>lit).dlt~*,J ,dIt.~I"'u() .dII~
Ub~

MAl! I~""'"
If Ibl.c. ~ ... -.,.: 0 ", JiIIII. j>It.." 1.....

.~ tu~~~1hI1M -(fit J.t<j~.Jbrn1I.~~j <Q
Iiqof.~~

kh~ ~. III lIet1'"1t,.J.bf!

~II.I "."
rr.fHDl'J" -l> Ih.t.

W_
ri:J,.c:t_Hal· .,.r .,.r .,<111,>11).111',111)) dIIt.II:I"~l,lIIt

'l!iW ~
.lSlU '~....u. n..u-..
• '"~l:II ~ """'-_'"

!JtIm 1I!1' 'M!~....

Figure 6.3: The hepTool User Interface

6.1 Initial Case Study - Tax Example 117

6.1.3 Test Data Selection for Tax Example

In its structure the specification reflects the ideas put forward by Beizer (1995) before
he introduces this example. He considers that a system could be viewed as a huge case
statement, where each of the cases is associated to a process that will operate on the given
data. The derived testing strategy is concerned with finding faults in the implementation of
such a case statement. In this section we will discuss the generation of test cases according

to this particular strategy.
Our foremost goal was to assess the test generation potential with a focus on practical

testing strategies. Thus we used the boundary analysis technique as demonstrated by
Beizer (1995) for this study.

First we have to identify the domains for the system as presented in the Example 6.2
earlier. In this example it is easy to identify the domains as they are given in the description
explicitly. Our goal is to replicate the process automatically.

in

Equivalent
algebraic description

SPECIF (LOFT)

stated formally in

Test selection
strategy

in
Prolog notation

\
hepSPEC

, I ,
I r
t 1 , . IL _j

I.

Problem description

hepTEST 1001

~ ..~~'
\ "t

" ,

Figure 6.4: Introducing LoFT into hepTEsT

We will use the capacities of the LoFT tool to identify the domains (Marre, 1995).
However we need to take some additional steps because LoFT does not handle hepSPEC-
specifications directly. First we transform the hepSPEc description into a specification
which is understood by the LoFT tool. This step is illustrated in Figure 6.4. It shows the
implementation we chose to use and highlights the particular parts of the setup which are

118 Case Studies

used in test generation and selection steps.
We also need to flatten the specification, reorganise and modify it to accommodate

the LoFT tool conventions. This is done automatically by the hepTEST tool. The partial
result of the transformation of Example 6.2 can be seen in Example 6.3.

There are additional operators and axioms to provide support for the operators with
a restricted domain from hepSPEc. We need to guard operations with a restricted do-
main from being applied to erroneous values explained in Chapter 4.4 when we introduced
hep-specifications. So for each occurrence of the operator restricted operator sub and
calclncomeTax in the axioms we add an equation ensuring that the restriction is obeyed.
For example in line 25 we provide the definition for the auxiliary operator def sub which
returns defTrue if the domain restriction of sub holds. This operator is then added to
the conditions in the axioms where sub is used. This information can be extracted during
syntax analysis and is therefore automated.

In the next step we use the LoFT tool to extract the domains for the operation
calclncomeTax. The result are the four domains we expected as Example 6.4 demon-
strates. This is the output we receive from LoFT when we ask for a partitioning of the
domain of calclncomeTax where the variable A and AA represent the input and output
values of calclncomeTax respectively.

Each of the solutions in Example 6.4 represents a sub domain of the operation calcln-
comeTax. As expected the solutions of the equations describing each domain are the values
in the associated intervals. We can observe that there are additional equations e. g. in Line
13. They describe the relation between inputs and output.

From each of these domains we will now select the relevant test cases. We can ask
LoFT to generate a list of all solutions for each domain and then apply a testing strategy
to the list of values. The strategy we program in Prolog and can make use of the partial
order on terms we suggested to use. Example 6.5 shows the partial order implemented in
Prolog. The result is a list with relevant test inputs.

6.1.4 Test Outcome Computation for Tax Example

The selected inputs are used to generate an expected outcome. In our case the computation
of an expected outcome is easy. We took the necessary precautions when we created the
theory in Chapter 4.

With a term rewriting system as an implementation basis we can use its capabilites to
compute the expected outcome for each test. All we need to do is to solve the equation

6.1 Initial Case Study - Tax Example 119

1 SPECIF Tax
2
3 SORTS
4 defBool Nat Bool
5
6 GENERATORS
7 defTrue: -> defBool
8 true: -> Bool
9 0: -> Nat

10 s _ : Nat -> Nat
11 false: -> Bool
12
13 OPERATIONS
14 defsub _ _ : Nat * Nat -> defBool
15 sub _ Nat * Nat -> Nat
16 add _ _ : Nat * Nat -> Nat
17 mul __ : Nat * Nat -> Nat
18 calcincometax _ : Nat -> Nat
19 leq _ _ : Nat * Nat -> Bool
20
21 VARIABLES
22 BNat:Nat, INCOMENat:Nat, ANat:Nat
23
24 AXIOMS
25 Taxi: leq(BNat,ANat) = true
26 => defsub(ANat,BNat) = defTrue
27 Tax2: add(ANat,O) = 0
28 Tax3: add(ANat,s(BNat» = s(add(ANat,BNat»
29 Tax4: mul(ANat,O) = 0
30 Tax5: mul(ANat,s(BNat» = add(ANat,mul(ANat,BNat»
31 Tax6: leq(O,BNat) = true
32 Tax7: leq(s(ANat),O) = false
33 Tax8: leq(s(ANat),s(BNat» = leq(ANat,BNat)
34 Tax9: defsub(ANat,O) = defTrue => sub(ANat,O) = ANat
35 Taxl0: defsub(s(ANat),s(BNat» = defTrue
36 & defsub(ANat,BNat) = defTrue
37 & leq(BNat,ANat) = true => sub(s(ANat),s(BNat» = sub(ANat,BNat)
38

Example 6.3: Result of Converting the Example for Usage in LoFT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

120 Case Studies

FINAL BINDING:
REMAINING CONSTRAINTS = {

leq(A:Nat,s(s(O») = true,
mul(A,s(s(O») = AA:Nat
}

SOLUTION #1, CPUTIME = 10

FINAL BINDING:
REMAINING CONSTRAINTS = {

leq(s(s(O»,A:Nat) = true,
leq(s(s(s(O»),A) = true,
leq(A,s(s(s(s(s(O»»» = true,
sub(A,s(s(O») = _vO:Nat,
mul(_vO,s(s(s(O»» = _vl:Nat,
add(_vl,s(s(s(s(O»») = AA:Nat
}

SOLUTION #2, CPUTIME = 0
18

19 GLOBAL TIME ELAPSED = 29
20 NUMBER OF SOLUTIONS = 4

Example 6.4: Domain Descriptions in LoFT for Tax Example

1 is_of_sort_NAT('O:->Nat').
2 is_of_sort_NAT('s:Nat->Nat'(X»:- is_of_sort_NAT(X).
3
4 im_subterm_of_sort_NAT(X,'s:Nat->Nat'(X»·_ is_of_sort_NAT(X).
5
6 po_on_NAT(X,X):- is_of_sort_NAT(X).
7 po_on_NAT(X,Y):- im_subterm_of_sort_NAT(X,Y).
8 po_on_NAT(X,Y):- X-=Z,im_subterm_of_sort_NAT(Z,Y),po_on_NAT(X,Z).
9

Example 6.5: Partial Order for Sort nat in Prolog

6.1 Initial Case Study - Tax Example 121

function(input)=outcome. We observed when discussing Example 6.4 that thi output
can be computed through the use of LoFT. So we use exactly this approa h and in ist that
the solution is given explicitly rather as an equation system describing th olution.

6.1.5 Test Transformation for Tax Example

The results of the process so far are abstract tests which then n d to be transform d into
actual tests using the syntactic and semantic homomorphisms r p ctiv ly.

We proposed in Section 5.4.2 and Section 5.6 to us grammars 0 xpress ho ho-
momorphisms. Having chosen a Prolog-based impl mentation w not that ant xt-Ir
grammars can be expressed as declarative clause grammars (St rling and Sh piro 19) r
DCGs for short. DCGs are usually build into the Prolog ngin and ECLiPse h th m
too. Figure 6.5 shows an updated view of our tool . tup aft r th introdu tion of D
The DCGs are extracted from the hep-specification.

Equivalent
algebraic description

in
SPECIP (LOPT)

staled formally in hcpTEST tool I.OFT tool

Syntactical
homomorphism
expressed in

DCO's

Problem description

hepSPEC

Figure 6.5: Implementation of Homomorphisms in hep E T

To illustrate how the homomorphisms ar utili ed for th transforma ion w will g
into details for a particular input. The value 0 is th minimum for th fir t d main. h
expected outcome is 0 as well. Exampl 6.6 shows th ynt ti homom rphi m us d in
this example expressed as a grammar. We will tart th g n r tion pro u ing nat th

122 Case Studies

start symbol because nat encodes the transformation of the input data for the operation
calclncomeTax.

1 digi t: [0]
2 means digi t=O
3 I [1]
4 means digit=s(O)

5
6 I [9]
7 means digit=s(s(s(s(s(s(s(s(s(O)))))))));
8
9 nat: digit

10 means nat=digi t
11 I nat digit
12 means nat=add(natl,add(natl,add(natl,add(natl,add(natl,add(natl,
13 add(natl,add(natl,add(natl,add(natl,
14 digit))))))))));

Example 6.6: Syntactic Homomorphism for Tax Example

Now we need to encode the selected abstract test value denoted by the term O. Using
the reverse parsing algorithm as introduced in Chapter 3.5.3 we start with the root nat
and the value O. We have a choice of two rules (Lines 9 and 11) from which we select the
first rule. We evaluate the means clause from this rule which is very simple and tells us
that we need a digit with the value o. In the next iteration we search the grammar for the
rules which encode a digit. There are 10 rules - one for each decimal digit. We select the
first rule and evaluate the means clause, finding that the values match. Thus we generate
the terminal o. The entire parse tree for this example is presented in Figure 6.6.

?

I
"l 0
digit 0

I
o

Figure 6.6: Reverse Parse Tree for Value 0

It is important to distinguish 0 and 0 as they are different. The term 0 denotes a value

6.1 Initial Case Study - Tax Example 123

of sort Nat. The 0 is the terminal from our grammar and is a specific representation of
the value O. This is precisely what makes this approach so valuable as the representation
is defined by the user.

Of course we could have used other rules during the generation of the reverse parse tree.
Let us explore the possibilities by selecting the second rule during the last step. Then we
would evaluate the means clause and realise that 0 is not equal to 8(8(0)). Then hepTEsT
backtracks and uses another rule. Eventually it would generate the parse tree presented in
Figure 6.6.

6.1.6 Test Setup Generation for Tax Example

The parse tree shown in Figure 6.6 is then set into a context. For this system we want
create test scripts of this form:

Test -- begin
Start tax.exe
Enter

We expand our syntactic homomorphism and create a grammar rule like in Example 6.7.
We use the symbol nl to get the desired formatting with new lines.

1 start: [Test -- begin nl Start tax.exe nl Enter] nat [nl]
2 means start=calclncomeTax(nat);

Example 6.7: Extension for Syntactic Homomorphism for Tax Example

Using this homomorphism we can continue to create the test script using the reverse
parsing technology. The goal is to find a tree which has the start symbol as its root and
a branch for nat with the value O. This is achieved in a single step for this particular
example. The complete parse tree is shown in Figure 6.7.

Having created the actual representation for the inputs of the test, we need to do the
same for the expected outcome.

6.1.7 Test Outcome Transformation for Tax Example

A similar process to the one described above is applied to the expected outcome. We know
the outcome is the result of applying the operation calclncomeTax to the input. We can

124 Case Studies

start 0

------ =::::::::::---
Test - begin nl Start tax.exe nl Enter naf 0

digit 0
I
o

Figure 6.7: Reverse Parse Tree for Entire Test Setup

nl

use LoFT to calculate the expected outcome. For the current example the outcome is o.
Again we need to transform the outcome in a similar way as the input this time for the
purpose of test result validation. Here we made the decision to for the outcome the same
representation. We can use the same homomorphism as in Example 6.6. But we will use a
different completion grammar to distinguish the outcome in the script. Following the same
technique we generate the parse tree with the root node outcome as shown in Figure 6.8.

outcome: [Expected outcome:] nat [nl Test -- end]
means outcome=nat;

Expected outcome: "l 0
digit 0

I
o

Figure 6.8: Reverse Parse Tree for Expected Outcome

nl Test - end

The concrete test is then the sequence of leaves of the reverse parse trees.
If we interleave the generation of test inputs and outcomes then our example would

generate the following test:

Test -- begin
Start tax.exe
Enter 0
Expected outcome: 0
Test -- end

6.1 Initial Case Study - Tax Example 125

It is noticeable that the details of the exact structure of the test script ar all sp cifi din th
homomorphisms. In order to accommodate a different language or automat d t sting we
only need to make changes in the definition of the homomorphisms. The w 11und rstood
way of writing and changing of context-free grammars should make it r latively asy for a
user to achieve the desired results.

Equivalent
algebraic description

in
SPEClF (LOFT)

Problem description
Test dats SCI

stated formally in f-c hepTEST 1001 LOFT 1001 f---o In COIYCCI

hcpSPEC rcpresenuuon
Syntectical Vhomomorphism
expressed in

DCG's

Driver for
LOFT loot

Figure 6.9: Test Automation Setup with hepT ST

Figure 6.9 shows the final aspect of our setup, where a driv r fil is onstru t d and
loaded in LoFT. This driver file contains all th information and st ps di u s d arli r
and the result is a set of tests for our system.

6.1.8 Evaluation of the Tax Study

The example is very simple. However we were able to demonstrate the appli ation of a h

step of the test generation process.
Starting with the initial step of specifying the syst m we show d that th sp ification

can be written in a modular way. We can identify components f r r us and th r for
the creation of specifications in the future. However some common approa h s to sp ifying
data types such as natural numbers can lead to difficulties in r al world p ifi ation . W
saw that writing large numbers with using just s and 0 can be very t diou ind d. La r
we will have to think of a way to overcome this diffi ulty for our indu trial as study.

126 Case Studies

We were able to identify the same test cases as Beizer using the same strategy. The
advantage was that we could do it automatically. We did not need to specify an order for
natural numbers. The partial order proposed in Chapter 5.2 has yield the desired results.
An advantage over Beizer's approach has to be the possibility to create the expected
outcome automatically.

Then we continued to show how these abstract tests are matched to concrete tests using
the syntactic and semantic homomorphisms. Furthermore we created an entire test setup
by extending this approach.

It is a pure coincidence that the representation of numbers in this example is the same
for input and outcome. It is easy to construct an example where this is untrue. Consider
an analog to digital converter for example and remember that its functionality is to convert
analog to digital signals. It is assumed that the value only changes its representation. Our
homomorphism for the representation of the outcome would then naturally differ from the
homomorphisms for inputs.

6.2 Larger Case Study - Name Store Example

We have explained the principles of our approach using a small example in the previous
section. Now we set out to verify the approach using a larger case study supplied to us
by Dick (Dick, 2001). This case study will show the details of the steps within hepTEST.
We go on to report on the effectiveness of the technique in a commercial setting in an
industrial case study in Section 6.3.

6.2.1 Description of Store Example

The example is a name store for checking membership of a private club. A clerk checks
names for membership before allowing access to the club. Names have to be entered and

deleted from the store. The name store content is saved from day to day and can be loaded
again. Table 6.1 contains the functional system requirements for our example.

The system under test is started by running run. exe. The text based menu in Fig-
ure 6.10 is provided as a user interface. The user can make entries interactively. Possible
commands are p, I , d, C, q, 1, and s. Some commands require an argument which is
requested by the system and supplied by the user. The command q terminates the session.

6.2 Larger Case Study - Name Store Example 127

No. Description
1 The system shall provide a function that allows the Membership Clerk

to check whether a given name exists in the name store.
2 The system shall provide a function that allows the Membership Clerk

to enter a new name into the name store.
3 The system shall provide a function that allows the Membership Clerk

to remove an existing name from the name store.
4 The system shall provide a function that allows the Membership Clerk

to list all the names in the name store.
5 The system shall retain membership data between sessions.
6 If the Membership Clerk attempts to register an existing member of the

club, a warning will be issued.
7 If the Membership Clerk attempts to remove a name that is not a member

of the club, a warning will be issued.

Table 6.1: Functional system requirements for Store

===========
I MENU
==
I Input Function
--

P PRINTS members names
i INSERT member into store
d DELETE member from store
c CHECKS if member is in store
q QUITS program
1 LOADS data from file
s SAVES data to file

==

**

Figure 6.10: Menu in System under Test

128 Case Studies

6.2.2 Specification of Store Example in hepSPEC

The first step is to create a specification which describes accurately the desired properties
of the system under test.

We developed the previous specification starting from the basic types in a bottom-up
manner. Sometimes it is easier to develop a specification from top. We find the basic

functional system requirements in Table 6.1. Starting with Requirements RI - R5 we
create the specification Store in Example 6.8 and enhance it with more details later on.

1 Store is ...
2 sorts Store
3
4
5
6
7
8
9

oprn
enterlnStore(Store, Member) ~ Store
removeFromStore(Store, Member) ~ Store
inStore(Member, Store) ~ Bool
listMembers(Store) ~ List
10adFromFile(File) ~ Store
saveToFile(Store) ~ File

R2
R3
R1
R4
RS
R5

10 axioms ...
11 end Store

Example 6.8: Top Specification of Store

Example 6.8 shows the initial step of the specification which we will refine to create a
complete hepSPEc-specification of the system. In Line 2 we introduce the sort Store which
will represent a name store. Then we list the operators and signatures of the functions
we need according to the system requirements from Table 6.1. For example the operator
inStore is the function requested by requirement number 1. It will check if a name is
present in the name store. In the signatures of the operators we use other sorts likeMember,
Bool, or List which we have not defined yet. We will use our standard specification for
Bool with the operators true and false. The system requirements do not contain any
specifics regarding names. Normally we would need to clarify a problem like this with a
client. For simplicity we chose to use a fixed number of constants as names for members as
illustrated in Example 6.9. Surely there is an upper limit on the number of member names
which can be entered into this store. The requirements do not provide any information
about this restriction. So we had to do some experiments with the system under test to
revealed this number to be 10. To be able to test if the system forbids us to enter more
than 10 names into a store we need 11 constants. The way how and why these constants
are linked to concrete names is discussed as part of test reification for this example in

6.2 Larger Case Study - Name Store Example 129

1 Member is Bool with generation
2 sorts Member
3 oprn name1 ---t Member
4 name2 ---t Member
5 name3 ---t Member
6
7 name11 ---t Member
8 with definition
9 oprn eqMember(Name,Name) -> Bool
10 aei oms a,b: Member
11 eqMember(a,a) = true
12 if eqMember(a,b) = false
13 then eqMember(b,a) = false
14
15 eqMember(name1,name2) = false
16 eqMember(name1,name3) = false
17
18 end Member

Example 6.9: Simple Specification for Member Names

Section 6.2.5.
We also have to restrict the domains of operations. There is for example an upper limit

of 10 on the number of members the name store can hold as mentioned above. This needs
to be reflected in a domain condition for the operation of entering a new name into the
store. Example 6.10 illustrates restricted operations from our specification. The domain

1 with generation
2 oprn enterlnStore(x:Store,m:Member
3 iff inStore(m,x)=false
4 It(numberOfMembers(x),maxMemberslnThisStore)= true) ---t Store
5
6 with definition
7 oprn removeFromStore(x:Store,m:Member
8 iff inStore(m,x)=true) ---t Store
9 10adFromFile(f:File
10 iff fileExists(f)=true) -+ Store

Example 6.10: Restricted Operations in Store

of enterlnStore has been restricted in such a way that a member can only be entered
if the name is new, that means that it is not already present in the store, and if there is

130 Case Studies

enough room to store a new name (see Lines 3-4). We make use of auxilliary operators
1t and numberOfMembers to define these properties. This satisfies the Requirement R6
indirectly. We expect our system to issue a warning if the domain condition is not satisfied
(see Section 6.2.3 and 6.2.8). The load-from-file operation can only be successful if the file
exists. Therefore a restriction is put on the domain of the loadFromFile operator. We
also do not permit deletion of a member from a store if the name is not already present.
This is reflected in the domain condition for removeFromStore on Line 8. This restriction
is not obvious. The following axiom means that the store does not change if an attempt is
made to remove a name that is not present from the store.

if inStore(m,x)=false then removeFromStore(x,m) =x

But it also means that we would allow this operation and this is contradictory to what the
system description (Requirement R7) in Table 6.1 requires from the store.

We need to provide the semantics for the operations we declared. Here we encounter
difficulties. The difficulty stems from the usage of LoFT as the equation solver. For
example the result of entering names in the store should be independent of the order of
operations. The following axiom describes this property:

if premises ...

then enterlnStore(enterlnStore(x,m),n) =enterlnStore(enterlnStore(x,n),m)

There are more axioms which expose this problem. In Example 6.10 we put a restriction
on the operator enterlnStore in Line 3. The following axiom would have been needed to
describe the semantics of the operation correctly if we had not restricted the operation.

enterlnStore(enterlnStore(x,m),m) =enterlnStore(x,m)

The axiom describes the fact that multiple enter operations do not result in multiple entries
of the same name in the name store.

The difficulty is that LoFT does not permit axioms between generators (see Section
4.5). However enterlnStore is a generator for our sort Store. To overcome this difficulty
we could modify our specification. We could introduce an auxiliary sort, say Sequence,
to model stores and then use defined operations to model the functions from the system
requirements. Equations between defined operations are permitted and we could use the

6.2 Larger Case Study - Name Store Example 131

axiom from above. This resolves the issue but the specification becomes cluttered. We
would have to accept this inconvenience if we want to continue to use LoFT.

However we can also use this restriction imposed by LoFT to our advantage. If we
do not specify the order-independence property then tests will be generated which should
expose this property. Rather than using equivalence classes based on equations between
generators as representatives all tests remain relevant. That means, we would test if the
order of inserts in the name store does not matter as required. This is our chosen approach
in this case. The complete specification can be found in Appendix B.

6.2.3 Test Data Generation for Store Example

The operations Enter, Delete, List, and Check are the core operations of our system. These
operations have been mentioned explicitly in the system requirements. We have to test the
implementation of these operations. The arguments to these operations are pairs (Store,
Member). Our model contains 11 constant members. Elements of sort Store are created
by the generators emptyStore and enterlnStore.

(emptyStore)
emptyStore

enterlnStore(emptyStore,namel)
enterlnStore(emptyStore,name2)
enterlnStore(emptyStore,name3)

Application
of

Generator enterlnStore
Constant emptyStore

emptyStore
enterlnStore(emptyStore,namel)
enterlnStore(emptyStore,name2)
enterlnStore(emptyStore,name3)

enterlnStore(enterlnStore(emptyStore,namel),name2)
enterlnStore(enterlnStore(emptyStore,namel),name3)
enterlnStore(enterlnStore(emptyStore,name2),namel)
enterlnStore(enterlnStore(emptyStore,name2),name3)
enterlnStore(enterlnStore(emptyStore,name3),namel)
enterlnStore(enterlnStore(emptyStore,name3),name2)

Repeated
Application

of
Generator enterlnStore

Figure 6.11: Generation of Test Data for Sort Store

132 Case Studies

Figure 6.11 exemplifies, using 3 member names, how the elements of sort Store are gen-
erated starting with the generator emptyStore and repeated application of enterlnStore.
These elements are the basis for test selection in the next step.

6.2.4 Test Data Selection for Store Example

We will construct the partial order for elements of sort Store which we generated in
Figure 6.11. Figure 6.12 illustrates the partial order resulting from the immediate sub-
term relation over elements of sort Store. The arrows are pointing to the immediate
sub-term element.

e • emptyStore
i • enterlnStore e

nl • namel
~~i(e,nl) i(e,n2) i(e,n3)i(i(.,~ i(i(.,~\.r.\

""'..., \ ""'..,' ~"' " ...'
"""'...,..., ~ """'...,..,~ """' '"

i(i(i(e,nl) ,DJ) ,n2)

n2 • n..e2
n3 • name3

iii (i (e,n2) ,DJ) ,nl)

i(i(i(e,n3),n2),nl)

Figure 6.12: Partial Order for Sort Store with 3 Member Constants

It is worth noting that this order is already the order on test inputs of sort Store. In
contrast to Figure 5.6 in Section 5.2.1, we cannot add relations between elements. Accord-
ing to the partial order over elements of sort Memberall elements are incomparable because
there is no element of sort Memberwhich is an immediate sub-term of another element of
sort Member. If we had chosen to model member names in a different way we could have
generated a more complex order over elements of sort Member and therefore a complex
order over test inputs of sort Store. For example we could have chosen to use constants
for individual characters and to build elements of sort Memberthrough concatenation. This
choice would have lead to a combinatorial explosion of test cases. To avoid this problem
we decided not to include the specifics of names in our theory. The example illustrates
that the way the system under test is modelled has an impact on the test data generated.

6.2 Larger Case Study - Name Store Example 133

The operations for entering and deleting member names take two arguments, a store
and a member name. According to our theory we need to construct a partial order over
pairs (Set, Member). Figure 6.13 illustrates parts of the resulting order. It becomes a

/~
1 (a, Ill) ,Ill 1 (.,112) ,Ill 1 (.,113) ,Ill

i{i{.'~ i{i{.'~~ i{i{.'~""'~

i{i{."""31"~ i{i{....,••31...~{i{,...,•••

i{i{i{....,...,...,...~ i{i{i{.""''''''3~' i{i{i{•••31••' .", ••,

1 (1 (1 (a, Ill) ,113) ,112) ,Ill 1 (1 (1 (.,112) ,113) ,Ill) ,Ill

• • .-ptyStor.
1 • 8IltarIDStor.

III • 11_.1
112 • 11_.2

a ,Ill

a ,112

1 (1 (1 (.,113) ,112) ,Ill) ,Ill

/~
l(a,1l1),1l2 1(.,112),112 1(.,113),112

i{i{.'~ i{i{.'~~ i{i{.'~""~

i{i{ ,••31.~ i{i{....I...I...~{i{ •••31...,...

i{i{i{ I ... , •• 31 / i{i{i{ , ,",,"\ i{i{i{ , ",."

1 (1 (1 (.,111) ,113) ,112) ,112 1 (1 (1 (.,112) ,113) ,111) ,D2

1(1(1(.,113),112),111) ,112

Figure 6.13: Partial Order for Pairs of Store and Member

forest where each element from Member is paired with the tree from Figure 6.12. Visually
we could describe it as shadows of the tree from Figure 6.12 which is repeated for each

element from the set of Members.
Axioms separate this forest into regions which we will use for the purpose of boundary

testing. Let us consider Example 6.11 to illustrate this effect for the removeFromStore
operation. The first axiom selects all elements where we remove the last entered member
name (see Line 1-3). In Figure 6.14 we have marked these elements with a box. The second
axiom contains those elements where the element to be removed was entered sometime

134 Case Studies

1 if inStore(m,x) = false
2 It(numberOfMembers(x),maxMemberslnThisStore) = true
3 then removeFromStore(enterlnStore(x,m),m) = x
4
5 if inStore(m,x) = true
6 It(numberOfMembers(x),maxMemberslnThisStore) = true
7 inStore(n,x) = false
8 eqMember(m,n) = false
9 then removeFromStore(enterlnStore(x,n),m)

10 = enterlnStore(removeFromStore(x,m),n)

Example 6.11: Axioms for removeFromStore

before the last one. The grey marked pairs in Figure 6.14 are not part of the domain of

e - emptyStore
i ~ enterlnStore

n1 ~ namel
n2 = name2
n3 = name3

i (i (e,n1) ,n2) ,n1

Figure 6.14: Domain split for removeFromStore ex, nameL)

the removeFromStore operator because they are not part of the solution of the domain
condition.

From the remaining two valid domain regions we select test cases for positive testing.
The Min-Max strategy as presented in Section 5.2.3 would select all test cases from Fig-
ure 6.14 from the first domain split because these elements are isolated in the partial order.
That means that they are incomparable. From the second domain the remaining elements
in Figure 6.14 are selected.

If we choose to test outside of the restricted domain of removeFromStore, then the
elements neighboring our tests would be selected. From those elements marked grey in
Figure 6.14 we would select all because each one is an immediate sub-term of a selected

6.2 Larger Case Study - Name Store Example 135

positive test.
Using the term rewriting system, mainly based upon LoFT, we can compute the out-

come for each test. We expect that values from outside the domain will generate an error
message. If no error message is generated then we will treat this as a bug.

6.2.5 Test Transformation for Store Example

Up to now we have selected only abstract test cases. We need to create concrete tests for
the implementation under test. To show how tests are transformed, consider the following
abstract test case from the previous section

removeFromStore(enterlnStore(enterlnStore(emptyStore.namel).name2),namel)
= enterlnStore(emptyStore,name2)

This test cannot be applied to the system under test directly. It does not fit the text-based
menu we have seen in Figure 6.10. The following concrete test input is possible, assuming
that a store, containing 9, is present at runtime.

d [Newline]
9 [Newline]

We decided that the abstract member name namel will be represented by the digit 9. From
the description of the system we know that the remove operation is executed by selecting
d from the text menu. Each input is terminated by a newline character.

First we need to define a syntactic homomorphism that denotes a mapping from the
abstract to the concrete test input. The extract from a grammar in Example 6.14 will

1 CommandSeq : CommandSeq Ed] [nl] Name [nl]
2 where inStore(Name.CommandSeql) = true
3 means CommandSeqO = removeFromStore(CommandSeql , Name);
4
5
6 Name: [9]
7 means Name = namel;
8

Example 6.12: Syntactic Homomorphism for Abstract Tests

achieve the necessary transformation in the following way. Starting with the outermost

136 Case Studies

term removeFromStore we select the grammar rule in Line 1 for CommandSeq. Then we
solve the equation based on the means clause in Line 3:

removeFromStore(enterlnStore(enterlnStore(emptyStore,name1),name2),namel)
=removeFromStore(CommandSeql, Name)

Equation solving means using the term-rewrite engine based on LoFT. The result of this
operation is that the equation holds if

CommandSeql =enterlnStore(enterlnStore(emptyStore,namel),name2)
Name = namel

We check that this solution also satisfies the where-clause. In this case it does because
namel is present in the store. Now we can generate the parse node according to the body
of the rule. However two nonterminals remain in this generated tree. One is Name and
the abstract term for it is namel. The grammar rule for Name in Line 6 is applicable. The
means-clause is solved again with the help of LoFT. In this case the solution is trivial and
we do not have to check any where-clause. We can generate the node. If we would have
encountered alternatives, then we would have proceeded as described in Section 5.4.3.

CommandSeq d

I
[nl] [nl]

?

Figure 6.15: Reverse Parse Tree Generation for Concrete Test Input

Figure 6.15 shows the reverse parse tree for this test input. If we consider the sequence
of terminals generated so far then we see that this is d [nl] 9 [nl] as we expected.

We have not explained yet why namel is mapped to the digit 9. There is no reason. We
had to choose 11 concrete representations for the 11 member names in our specification.
Initially we were tempted to use common names like "Smith" or "Miller". However the
requirements contain no information about how names look like. So a good idea was to
generate 11 random strings of characters.

Example 6.13 illustrates another technique we used for names. The system should
not distinguish names which were obviously mistyped. We consider all of the names in

6.2 Larger Case Study - Name Store Example 137

1 Name : [Smith]
2 means Name = name3;
3
4 Name [Smith]
5 means Name = name3;
6
7 Name [Smith]
8 means Name = name3;
9

10 Name : [smith]
11 means Name = name3;
12
13 Name [SMITH]
14 means Name = name3;
15

Example 6.13: Mapping variants to a single abstract term

Example 6.13 to be the abstract name name3. Two questions remain. First how does

the hepTEST tool cope with this mapping? The rules are chosen randomly until we find
a solution. Therefore name3 will be mapped to different names at different places in the
test. Second how does this effect our theory. We could argue that this mapping is not a
homomorphism anymore. These rules seems to be a one-to-many mapping and therefore
not a homomorphism. However this issue is resolved by arguing that it is a mapping from
a value to a set of names, which are all equivalent, making it a homomorphism again.

We have calculated the expected outcome after test case generation and selection steps.
However we cannot assume that whenever the test sequence from Figure 6.15 is executed
the expected outcome is produced. We have to ensure that the abstract argument for store
is actually present at runtime. This is achieved during test setup generation where the
remaining leaf from the tree in Figure 6.15 is substituted by a branch.

6.2.6 Test Setup Generation for Store Example

In the previous section we transformed the abstract test

removeFromStore(enterInStore(enterInStore(emptyStore,name1),name2),namel)
=enterInStore(emptyStore,name2)

into the concrete test

138 Case Studies

d [Newline]
9 [Newline]

and noted that we would have to ensure that the concrete form of the abstract term

enterlnStore(enterlnStore(emptyStore,name1),name2)

is present at runtime. Figure 6.15 shows the reverse parse tree that was created during
test input transformation. The nonterminal representing the setup state has not yet been
substituted by a tree.

1 Sentence: CommandSeq Cs] tsn [q] nL]
2 means Sentence = CommandSeq;
3
4
5 CommandSeq: Cs] [nl]
6 means ComandSeq = emptyStore;
7
8 CommandSeq : CommandSeq [i] [nl] Name [nl]
9 where inStore(Name,CommandSeql) = false
10 It(numberOfMembers(CommandSeql),maxMemberslnThisStore)= true
11 means CommandSeqO = enterlnStore(CommandSeql ,Name);
12
13 CommandSeq : CommandSeq Cd] [nl] Name [nl]
14 where inStore(Name,CommandSeql) = true
15 means CommandSeqO = removeFromStore(CommandSeql ,Name);
16
17
18 Name: [9]
19 means Name = namel;
20
21 Name: [$DFY.x]
22 means Name = name2;
23

Example 6.14: Parts of the Syntactic Homomorphism for Store Example

Example 6.14 shows part of the grammar we use to create the setup. The grammar
is an extension to the grammar in Example 6.12 which we use to convert the abstract
tests into concrete tests. The rule in Lines 8 - 11 links the operator enterlnStore to the
concrete command i and the where clause ensures that we cannot create concrete name
stores which have no equivalent in the abstract world.

6.2 Larger Case Study - Name Store Example 139

To complete the test setup we have to substitute the nonterminal CommandSeqby a tree.
The same principles are applied as in the test transformation step. The node is labeled
which the abstract term

enterlnStore(enterlnStore(emptyStore,namel),name2).

We begin with the outermost term enterlnStore and select the rule from Line 8 from the
grammar in Example 6.14. We have to solve the following equation:

enterlnStore(enterlnStore(emptyStore,namel),name2) =

enterlnStore(CommandSeql ,Name)

A solution to this equation is given by:

CommandSeql =enterlnStore(emptyStore,namel)

Name= name2

This solution also satisfies the where-clause. We can create the tree node and have to
continue the process for the remaining nonterminals. The rule for Name in Lines 24-25 in
Example 6.14 will create the node labelled with name2. And the nonterminal CommandSeq
is substituted by a tree similar to the process described. At the end we need to create
a tree for the node labelled emptySet. The rule in Lines 5-£ from Example 6.14 creates
the command sequence s [nl]. It might be confusing why this is necessary. This initial
save-to-file operation creates an empty store on the hard drive. The existence of an empty
store is a workaround for a bug in the system under test. The program crashes if no file is
present when a load operation is carried out. Other bugs found in the system are discussed
in Section 6.2.8.

The complete tree for the test setup is presented in Figure 6.16. The following sequence
of terminals is created by a walk through the tree and constitutes the concrete test input.

s i 9 i $D~!.x d 9 s q

This tree is completed by the command sequence s q generated by the rule in Lines 1-2
from Example 6.15 to terminate the test. We add a save operation to have a persistent
contents of the store which otherwise would only exist in the memory of the computer.
The q is necessary to avoid a bug which prevents us from executing tests automatically

140 Case Studies

CommandSeq~-----~~~~=~~~~--
d

i ten [nl]

ten Nre [nl]

9

CommandSeq i
/\
s [nl]

[nl] Nre tsn

9

Figure 6.16: Test Setup for Store Example

(Section 6.2.8). We choose to save the store and terminate each test sequence to be able
to execute them automatically in batch mode.

6.2.7 Test Outcome Transformation for Store Example

In the previous section we transformed the left-hand side of the abstract test

removeFromStore(enterlnStore(enterlnStore(emptyStore,namel),name2),namel)
=enterlnStore(emptyStore,name2)

into a concrete test input with test setup. Now we need to transform the right-hand side
of the equation to be able to compare the outcome in the concrete world. Example 6.15

1 Result:
2 means Result = emptyStore;
3
4 Result: Result Name [nl]
5 where inStore(Name,Resultl)= false
6 It(numberOfMembers(Resultl),maxMemberslnThisStore)= true
7 means ResultO = enterlnStore(Resultl,Name);
8

Example 6.15: Semantic Homomorphism for Sort Store

contains part of the grammar that contains the outcome tranformation. The tranformation
process itself does not differ from the transformation of the input. The names in the
store have the same concrete representation as in the input domain. We used the same
nonterminal to denote this fact and use part of the grammar for the input transformation

6.2 Larger Case Study - Name Store Example 141

to transform names in the semantic homomorphism. This is for convenience and to improve
maintainability of the homomorphism. Ifwe change the representation for namel then this
change is present in both homomorphisms. The operator enterlnStore is transformed
differently from the syntactic homomorphism. In the semantic homomorphism it produces
a plain list of names separated by newlines. In the syntactic homomorphism the generation
of a store was done by the command i. Thus it is even in this simple example necessary
to distinguish the input and output transformations.

1 Bool: [YES, name is in store]
2 means Bool = true;
3 Bool: [NO, name is not in store]
4 means Bool = false;
5

Example 6.16: Semantic Homomorphism for Sort Bool

We also have operations which do not have Store as their range. The operator inStore
returns a Boolean value. Example 6.16 shows how such a value can be transformed. The
concrete representation is a message string on the screen.

The transformation of test outcome was not trivial in this case. The difficulties stem
from the fact that the system was not designed with automated testing in mind. The
operations enter, remove, and save modify the content of the inner state of the system
and it is available in a persistent file form only at the end of the test sequence. The
result of other operations like inStore can only be monitored on screen. So we decided
to redirect the output to a file and to use the shell command diff to evaluate the result.
Unfortunately we have now two actual outcomes: the data base file and the screen dump.
However diff does not know which operation will modify which contents. So we generated
both a screen entry and the content of the store file in the expected outcome. A thorough
discussion of the test results can be found in the next section.

6.2.8 Test Execution and Result Validation for Store Example

Our test environment was set up in the following way. Each of the tests was stored in a
separate file. The expected outcome for each test was stored in a file also. The file number
related the test input to the expected outcome. The expected result for tstfile.OOOO!was
stored in outcome.OOOO! for example. This function was integrated into the hepTEsT

system.

142 Case Studies

The tests were run automatically in batch mode. At the start of every run of the system
the internal store is empty. The outcome of each test was stored in a separate file. Before
a diff script was used to compare actual and expected outcome the files where sorted by
sort. This is necessary because we do not know in which order the member names will be
stored in the file. A line documenting the result of the test evaluation is added to a report.

The following errors were detected during the automated test runs.

Bug: Loading membership data base. A crash occurs if there is no membership data
base present. We mentioned this bug and our workaround in Section 6.2.6. The test
was a negative test which violated the domain condition of loadFromFile.

Test input
1

s
q

Expected outcome

ERROR: *

Actual outcome The program crashed and creates a dump.

We used the expected outcome ERROR: * to mark the result of a negative test.

Bug: Program does not terminate on EOF (end oj file).
Executing the test cases in batch mode required the addition of the quit command
to each test script. This was a positive test for the axiom in Example 6.11 on Lines
1-3.

Test input
s
i

Smith
d

Smith
s

Expected outcome An empty output-data file.

6.2 Larger Case Study - Name Store Example 143

Actual outcome Program loops infinitely.

These initial difficulties were overcome by modifying the grammar as discussed in Sec-
tions 6.2.6 and 6.2.7.

Bug: Empty strings are falsely recognised as names. The system reports falsely
that a name of length 0 is already present in the store. When we generated the
random names this was one of the values created. The requirements do not mention
this case.

Test input
s
i

Smith
i

[newline]
d

[newline]
s
q

Expected outcome
Smith

Actual outcome
ERROR: Entry already exists in store

Bug: Inserting, checking, deleting names with special characters.
Member names with German umlaut and other characters such as ' and the paragraph
sign crash the system.

Test input
s
i

o
d

o

144 Case Studies

s
q

Expected outcome An empty output..data file.

Actual outcome System crashed and creates a dump.

Quite a number of tests with special characters were executed. Some, like inserting Muller
(a common German surname) worked while others failed.

Bug: Member names are case-sensitive. We allowed for mistyped names in our syn-
tactic grammar. The system distinguished them. The test was created because the
representatives for name3 were chosen randomly as discussed in Section 6.2.6.

Test input
s
i Smith
d SMITH
s

q

Expected outcome An empty output.data file.

Actual outcome ERROR: Entry not in store

Bug: Inserting members with long names. The system cannot handle long member
names.

Test input
s
i

VeryLongNameWithCharacters0123456789012345678
s
q

Expected outcome
VeryLongNameWithCharacters0123456789012345678

Actual outcome The program crashes and creates a dump.

6.2 Larger Case Study - Name Store Example 145

Bug: Member name not found in store. This bug causes the system not to find a
name which is obviously entered. This test case is a positive border test of the
removeFromStore operation.

Test input
s
i

blARZfJ
i

%5
i

)Q

i

sR
i

4jf"

i

&:yBo
i

dBO
i

lv
i

JK%p9
i

9

d

9

s
q

Expected outcome
blARZfJ
%5
)Q

146 Case Studies

sR
4jf"

&:yBo
elBO
lv
JK%p9

Actual outcome ERROR:Entry not in store

Bug: System crashes during save operation.

Test input
s
i

aRwIPeD
i

S580mLM

i

cwQ
i

4swu

i

CD41Y
i

awu

i

Rq
i

4U

i

Uhdl
i

7H

d

7PlqfXcgLsbqf
s

6.2 Larger Case Study - Name Store Example 147

Expected outcome
aRwIPeD
S580mLM

cwQ
4swu

CD41Y
awu
Rq
4U

Uhdl
7H

Actual outcome System crashes and creates a dump.

We never suspected that this could happen. We relied in our test execution setup that the
save operation would always produce a correct image of the store contents.

All of the tests are reproduceable and can be used for debugging purposes. We can see
that even such a program of moderate complexity can create quite a number of errors.

6.2.9 Evaluation of Store Case Study

We are happy to have received this example. It provided a real challenge where we were
able to demonstrate the usefulness of our approach. On the other hand we gained a deeper
understanding of the limitations of this particular approach.

First, training is required in the hepSPEc formalism like for any other approach based
on a formal system. The creation of a formal specification is an additional step compared
to non-formal approaches. A certain amount of "algebraic" thinking is required to get the
specification right.

Second, hepTEsT is unable to detect errors due to real-time constraints or concurrency.
It is also difficult to generate tests directed explicitly at exposing specific faults, for example,
errors created through memory leakage.

Third, the choice to reify the expected outcome and to use an external validator is an
additional source of errors. It might have been better to include the validation into the for-
mal system by using retrieve instead of reification. However as we discussed in Section 3.5
this would mean that all testers need to receive training in the hepSPEc approach, that

148 Case Studies

the test environment has to be installed on-site. This might limit the acceptance of the
hepTEsT system considerably.

The amount of generated test cases using the Min-Max selection strategy cannot be
reduced if our partial order is fiat as the example of member names showed. All names are
incomparable and so the Min-Max testing strategy will not work. We however retain the
advantage of automated test data generation and test outcome computation.

A serious difficulty is the assessment of test results. It is not an easy task to recognise
that different failures have been caused by a common bug. A good example is the bug with
names containing special characters. There might be hundreds or thousands of tests that
reveal this error. A human tester could do this classification fairly easy by close inspection
of test results in contrast to an automated solution.

Furthermore, for the time being the implementation of hepTEsT is limited by the choice
of LoFT and ECLipse tools needed to compute the tests. Especially the restriction on
axioms between generators hampers the creation of elegant specifications. This might
however be overcome in the future.

Can we find all bugs in this example by using our approach? Definitely not. Those
bugs which are not covered by the specification were not detected. For example a usability
feature like save-before-quit has not been specified and therefore not tested. As a matter
of fact it has not been implemented in the system under test either.

A final remark: the case study confirmed that design for testability is necessary if
automated testing shall become an intrinsic part of the software development process.

We have so far demonstrated the implementation working as expected in the case study.
Now we go on to report a larger industrial-sized case study. We expect to face challenges
when specifying the system, we need to determine if the partial order will yield "good"
test cases for complex data types and see if the homomorphisms are fiexible enough for a
real world setting.

6.3 The Industrial-sized Case Study

Now we set out to demonstrate the potential for automated test data generation with
hepTEsT using an industrial example. The example we chose has been supplied to us as
an industrial case study. It focuses on a software system for setting up cartridges with
information from a database. We call this system basic cartridge setup (BeS).

In Section 6.3.1 we indicate what part of the BCS functionality formed the basis of our

6.3 The Industrial-sized Case Study 149

study. In Section 6.3.2 we introduce some examples from the specification of our BCS.
Then we follow the testing steps and point to success and difficulties experienced during
the case study before we summarise the lessons from the industrial case study.

6.3.1 Project Description

The project we used for the case study is part of a larger software system. An organisation
like the Coast Guard may have the duty to mount a large search and rescue mission, then
they need it to be planned and executed fast, reliable, and organised to achieve the goal
of the mission. Many vehicles such as ships of different size, aircrafts, helicopter but also
vehicles on land may be involved. They need to know precisely where to be and when.
A group of aircrafts may need to scan a marked area and they have to stick to a devised
plan otherwise parts of the area may not be covered. Such strategic missions are planned
well and the mission is divided into smaller parts and assigned to teams using a mission
planning software. Such a mission support system has been created and we looked at a
new software part to enhance the capabilities of this mission control system.

The BCS is a system which interfaces between the Modular Mission Support System
(MMSS) and the Data Transfer Cartridge (DTC) via a Data Transfer Module Interface
(DTMI). The data is transfered from the MMSS where the assigned missions are stored to
the DTC to be used in a vehicle during operation. It does allow a fast and reliable access to
an assignment and transfers data to a cartridge without the need of manual copying. The
important aspect of the BCS is to ensure that data is transfered consistently and that the
different units are converted correctly. The difficulty stems from the fact that cartridges
are specific for each vehicle type and do not necessarily use the same units as the planning
software. Some data present in the planning software cannot be stored into a cartridge
and we need to ensure that this is obeyed. Figure 6.17 presents an overview of the system

setup.
There is a variety of DTC's for different vehicle types. The design team made the

decision to implement a BCS for each DTC as only one vehicle type is likely to be present
at one base. We focussed on one particular implementation of the BCS. The data from the
mission planner is stored in a database. The BCS is accessing this data base and retrieving
the entries for particular assignments. An assignment or mission has an identifier and
contains data about the vehicles involved in that mission. Each vehicle has an identifier,
a route containing information where to go, information about communication frequencies
and other important data. The BCS we looked at was able to store waypoints for the route

150 Case Studies

User

Mission Planner Mission database BCS Carhidge for vehicle

Figure 6.17: Overview of Base Cartridge System (BCS)

information and communication frequencies.
When the user starts the BCS a graphical user interface is displayed (see Figure 6.18).

The user can choose to select a mission, or to exit the program. If he chooses to select a
mission, a window is displayed with the missions found in the database. The user selects
his vehicle from the current mission. Once the selection is completed, the data can be
viewed or loaded to the cartridge (DTC). The transfer of data is bidirectional. However)
in the interest of brevity, we focused on the uploading of data onto the DTC only.

Parts of the specification of our BCS will be presented in the next section. The complete
specification can be found in Appendix C.

6.3.2 Specification of BCS Case Study in hepSPEc

This section covers the aspects of building a model of the system under test. We used our
framework to produce a formal description of the BCS.

First we identify the main data structures. We obviously will have an object repre-
senting the database in MMSS. The database stores items belonging to missions. In each
mission there are several vehicles involved. We have for each vehicle a sequence of way-
points representing the route and a set of communication frequencies. These database
items are extracted for a specific vehicle by the operator. He can then amend the informa-
tion manually. A helicopter pilot might wish to add alternative landing sites for emergency
landings or possible pick-up places for a ground crew. Then these data items are stored
on a DTC.

We will not present each individual data item, but focus on those which yielded inter-

6.3 The Industrial-sized Case Study 5

C Oata loading System n~EJ I

Mimon Mim.ln l/AC 03 $elected

Figure 6.18: Graphi al r Int rfa f r

esting results or overcame initial difficulti .

In our previous example in 8 ction 6.1 w in
numbers. Large numbers w r n ded in thi
3 coordinates, longitude, latitude and high .

n ly ran int diffi ul i
udy

i ud r ng II

numb r whi hto 180 and 90 degrees respectiv ly. So
would allow us to write even larg on onv ni ntly.

We used our own string arithm ti , v ry mu h lik
Example 6.17 shows the introduction of 3 n wop r t r
previous example. A constant 10 repres nting h natur 1numb r 1 i
that using such abbreviations made our sp if ion i r r d , n
The constant is is followed by a division by lOop rator and m dul
are also introduced for the same r asons as th op ra r 10.

Using these new operators w sp cifi d dditi n f r ingl
Example 6.18 shows the sp ification. Th op r tor add.B ak hr
operands and the value of the carry. It is po ibl to wri
digit addition with arry, but w thought it w m r in uitiv hi wc nd r du
size of the specification.

ID h

152 Case Studies

1 Nat is Baal with generation

2
3 with definition
4 oprn
5 10 ~ Nat
6 mod_lO(Nat)~ Nat
7 div_10(Nat)~ Nat
8 axioms m:Nat
9 10 = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(O»)»»»)
10 if It(m,10) = True
11 then mod_10(m) = m
12 if It(m,10) = False
13 then mod_10(m) = mod_10(sub(m,lO»
14 if It(m,10) = True
15 then div_lO(m) = 0
16 if It(m,10) = False
17 then div_10(m) = succ(div_10(sub(m,lO»)
18 end Nat

Example 6.17: Amending hep-specification Nat

1 NatPair is Nat with generation
2 sorts TNatPair
3 oprn mkPair(Nat, Nat) ----+ TNatPair
4 with definition
5 oprn carry(TNatPair) ----+ Nat
6 result(TNatPair) ----+ Nat
7 axioms m,n:Nat
8 carry(mkPair(m,n» = m
9 result(mkPair(m,n» = n

10 with definition
11 oprn add_3(Nat, Nat, Nat) ----+ TNatPair
12 axioms m,n,r,c:Nat
13 if r = add(add(m,n),c)
14 then add_3(m,n,c) = mkPair(div_l0(r), mod_10(r»
15 end NatPair

Example 6.18: Specifying Single Digit Addition with Carry

6.3 The Industrial-sized Case Study 153

Then we introduced Digi tSeq and defined the arithmetic operations for equally long
sequences of digits. Equal length makes it very easy to define the operations, but we
are forced to extend it to unequally long sequences. Example 6.19 shows parts of the
specification. We use a trick which is to normalise the length of digit sequences before

1 IntegerArithmetic is DigitSeq with generation
2 sorts TlntNumber
3 oprn
4 int(s1:TDigitSeq if! lead_O(s1) = False) ~ TlntNumber
5
6
7
8
9
10
11
12
13 axioms sl,s2:TDigitSeq.il:TlntNumber
14 i! lead_OCsl) = False
15 lead_0(s2) = False
16 then i_addCint(s1).int(s2» =
17 int(dplus(l_normalize(s1,s_length(s2»
18 ,l_normalize(s2,s_length(sl»,O»

19

with definition
oprn
i_add(TlntNumber. TIntNumber) ~ TlntNumber
i_mul(TlntNumber. TIntNumber) ~ TlntNumber
i_leq(TlntNumber, TlntNumber) ~ Boo1
i_lt(TlntNumber, TIntNumber) ~ Boo1

Example 6.19: String Arithmetic for Integers Based on Sequences of Digits

we apply the operation dplus from Digi tSeq. We prepend enough zeros to make the two
digit sequences equally long. Now we can use the operations defined in Digi tSeq to define
operations on TlntNumber.

Through step-wise construction we are able to deal with small enough chucks of in-
formation at a time giving us the opportunity to handle them with ease. In Example
6.20 we want to demonstrate how we handle the combination of data types in a new one.
The sort Waypoint has only one generator (mkWaypoint) which combines the information
of several data items into a single object. Then we define a set of getter-operators, e.g.
getWaypointID to retrieve data items from the complex object. We will return to way-
points in the following section to discuss the efficiency of our proposed partial order on
data items.

154 Case Studies

1 Waypoint is WaypointID with Longitude with Latitude
2 with Elevation with generation
3 sorts Waypoint
4 oprn mkWaypoint(WaypointID,Longitude,Latitude,Elevation)
5 ~ Waypoint
6 with definition
7 oprn getWaypointID(Waypoint) ~ WaypointID
8 getWaypointLongitude(Waypoint) ~ Longitude
9 getWaypointLatitude(Waypoint) ~ Latitude

10 getWaypointElevation(Waypoint) ~ Elevation
11

Example 6.20: Specification of Waypoints

6.3.3 Test Data Generation for Case Study

Test input generation is more complicated in this example than in the previous one. The
difficulty arose from the increased number of generators. In the prevoius example we had
only 2 generators. Nevertheless with our tool setup we are able to use the same technology
as presented before to generate tests for the BCS system.

To create a sequence of digits we only need to use sq as an initial generator and keep
appending with the generator app. However before using sq we need to generate an item
of sort Nat. How this is done we showed in Section 6.1.2. Here we have to observe
the restrictions of the generators. For example if we create an item of sort TlntNumber
through int and the generators of TDigi tSeq we need to observe the restrictions on int
(see Example 6.19) as well as those on sq and app. Following this way we create only valid
items for a given sort.

In Chapter 5 we proposed an order on items of the same sort. Using the definition of
waypoints in Example 6.20 we want to show how our decision to use that particular order
influences the ability to minimise test sets. From the definition of Waypoint we see that
it has only one generator. If we would have used the order based only on the generator
for sort Waypoint as we initially proposed in Chapter 5.2 then we would not be able to
choose between values of sort Waypoint. They would be all unique and in no relation to
each other. That in turn means that all of them need to be selected for testing. Using
our more elaborate order based on the structure of the data item using the orders of the
underlying sorts recursively we are able to sort even waypoint values efficiently. A more
general discussion of the testing strategy follows in the next section.

6.3 The Industrial-sized Case Study 155

6.3.4 Test Data Selection for Case Study

hepTEST supports a number of testing strategies. All of these strategies have advantages
and disadvantages and have to be selected to conform to some assumptions about the
software.

For example random testing could be applied when no knowledge about the software
design and implementation exists. The downside is the number of tests generated. Random
generation in hepTEsT will produce a random sequence of simple entities. The simple
entities are derived from the test conversion. Terminals from the grammar are selected
and placed in a random order. Such an approach is meaningful for robustness testing
where the goal is to break the software. No expected test outcome is generated as the tests
can be accessed in a simple manner. If the software is still operational, then the test was
successful otherwise the test failed (N.P.Kropp et al., 1998).

Random generation is a very powerful method, but also requires a lot of resources.
It becomes infeasible in system testing or when the tests are executed manually or test
execution is expensive. To reduce the test set we can apply context-free testing. The term
stems from the test data conversion approach as parts of the conversion are described by
a context-free grammar. This grammar is utilised by hepTEsT to generate tests which
explore the context conditions of the grammar. Such a strategy could be applied to test a
compiler for example (Burgess, 1993; Bauer and Finger, 1979). The context-free grammar
of the language will be used to generate valid sentences. Some of the test inputs should
be rejected by the compiler. These are the sentences which violate the context conditions
of the language. Take for example the very common constraint in programming languages
that a variable needs to be declared before it is used. This constraint is usually implemented
by using look-up tables. The context-free grammar does not contain this constraint, so
tests will be generated which will violate this particular constraint. The advantage of
context-free testing is that the number of tests is reduced. It also focuses more on the
functionality of the system rather than on its robustness. This technique would be applied
when the sequence of operations is under test. The underlying assumption is that some
sort of development technique ensures that context free sequences are recognised correctly
so that the omitted tests from random generation would have passed anyway.

Context-free testing would still create to many tests for our system. Tests would be
included which would not focus at the particularities of the system considered here. The
grammar rules would produce tests which voilate the where-clauses of the grammar. How-
ever in this case study it is important to obey the restrictions because it does not make

156 Case Studies

sense to go 370 degree north for example when 90 degrees north is the limit. and cannot be
exceeded. We want to use boundary analysis to exploit the fad that. we have knowledge
about the behaviour of the system. Using the axioms which define each operation we can
derive domains and sub-domains as presented in Chapter 5.2.2 and shown in the previous
example. From these domains we propose to choose test inputs according to a specific
strategy. Min-Max values is a common strategy for boundary testing. We discussed it in
detail in Chapter 5.2.3.

We could also generate just-out-of-boundary tests following Beizer's proposal using the
partial order on sorts (Beizer, 1995). If the following Prolog query is executed with X
bound to a maximum value then Ywill compute to a.n just-out-of-boundary value.

?- im_subterm_of_sort_NAT(X,Y).

Equally if the query is executed with Y bound to a minimum value then X will compute to
a just-out-of-boundary value should it exist. If Y is a constant generator then there are no
smaller values. The predicate im_subterm_of _sort_* is available for each sort so we are
not restricted to NAT.

In practice, it is up to the engineer to select the strategy believed to be most appro-
priate for each situation. This choice is guided by assumptions on t.he system under test
and its environment. For the case study we can assume that the data base (MMSS) is
implemented correctly as well as the interface provided to us. The data base has been
part of another product and has been used extensively for many years. This should give us
enough confidence to omit tests which exercise the data base outside its boundaries (neg-
ative tests). We can focus our tests on the transformations within the BCS. Choosing the
max-min-average test strategy and passing these tests should give us sufficient confidence
in our system.

6.3.5 Test Transformation for Case Study

For now let us assume that we test operation op and the test we selected is of the form
op (m) = out. This would mean that we have to supply the operation with inputs in the
correct format and apply a transformation to the outcome for test result validation.

We introduced input and outcome transformations for this purpose in Chapter 5. We
want to show now that this technique is applicable in an industrial setting. First we need
to make a decision about our concrete tests. For this case study we choose to use manual
test execution thus our concrete inputs should be human readable. For the purpose of

6.3 The Industrial-sized Case Study 157

testing we were supplied with an module of the cartridge software that would dump into
a plain text file. We were able to use ASCII texts as concrete representations of our tests.

Let us look at a concrete example from our case study. Consider for example that we
need to generate a value for mkLongitude (X,Y) where X,Y is fixed. Here is a part of the
grammar describing the test conversion.

longitude: [longitude:] [W] decimal [deg]
where decimal = ddot(d,f) t 0 < d <= 180 t length(f) <= 3
means longitude = mkLongitude(west,decimal)
[longitude:] [E] decimal [deg]
where decimal = ddot(d,f) & d <= 180 & length(f) <= 3
means longitude = mkLongitude(east,decimal);

Looking at the rules and the means-part in particular we see that if X is west we should
use the first rule. Then having generated the terminals longitude: W we use the value
of Y to generate a decimal before completing the sentence with deg. The same process
is applied to generate a decimal. The result could be longitude: W 10.0 deg. In this
way we build a parse tree from top to bottom until all nonterminals are substituted. The
entries on the leaves comprise the concrete test input.

A similar transformation is applied to the outcome of a test. We could use the same
test convertion but in general data of even the same sort will have a different format in
the range domain. Thus we use the so called semantic homomorphism to produce the test
outcome in the required format for test result evaluation. In this case the data is translated
into a sequence of digits and test validation can be achieved using the Unix diff command
for example. The data which is presented on the screen will be formated for manual test
result evaluation.

Later we could have decided to use automatic test execution tools for regression testing,
then the test convert ions would be transformed so that test inputs are translated into a
sequence of scripting instructions. This way the test execution remains a flexible affair.
The conversion of tests into different formats allows for a smooth transition with little

effort.

In this case study we could have produced SQL statements to create the mission data
base. Unfortunately we did not have access to the internal structure of the data base. Test
execution was affected by this too.

158 Case Studies

6.3.6 Test Execution and Result Validation for Case Study

This case study did execute only a small number of tests.

The main reason for that is that we did not have access to the mission planner software.
The hepTEsT-tool produces test cases in the desired input format and in addition the entire
test setup. Thus the test cases produced contain instructions to the user on how to generate
the desired mission database. We were limited to the tests which we could perform through
the user interface of the BCS. So instead of testing a variety of mission databases we used
a constant database and applied the functions of selection and transfer to that. This
way we could execute only 10% of our generated test cases. This shows that contractual
agreements can influence testing or the other way round. Test planning has to start at
the beginning of the project, but this opens a whole new chapter of dicussions and would
extend the scope of this thesis by far.

However we were able to identify a number of issues, which have been solved in subse-
quent software development stages. One of the problems was that longitude and latitude
were displayed incorrectly. The orientations north/south and east/west were exchanged.
This problem might have been spotted by the testers, but the author himself was in doubt
and had to review this subject before he was sure that a problem was identified. A tester
under pressure might not have been that thorough. And this is the biggest advantage of
having an expected test result present in the same format as the software is producing it.

An other issue was dicovered during conversion of values into different units. Longitude
and latitude can be entered using degrees, degrees and minutes, or degrees, minutes and
seconds. During conversion an error was discovered that resulted in values where there
were 61 seconds in a minute, like in 9°01'60". However we know from the specification that
a minute counts from 0 to 59 seconds only. We were able to discover the fault and provide
a correction before the product was released to a customer.

6.3.7 Conclusions

First it is important to note that tool support became crucial in this case study. Only
owing to the possibility to animate the specification was it possible to create a description
which not only was formal correct but also presented the actual desired properties of the
software. The hepSPEc syntax checker, hepTEsT-tool and LoFT all contributed to the
success.

Some of the requirements needed to be clarified and properties of data investigated.

6.3 The Industrial-sized Case Study 159

These questions contributed to the accuracy of the specification. In general we can claim
that the formalisation of the requirements gave rise to these questions which might have
been overlooked or required further analysis in later stages of the development process

otherwise.
In the area of test generation we were able to demonstrate that hepTEsT is a suitable

approach to generation of system tests. The main improvements over traditional testing

are:

• Systematic generation of test cases following a testing strategy. The hepTEsT ap-
proach used the specification to identify the boundaries vital for the chosen test
strategy. The tests are generated fully automatic thus reducing the costs of test
generation and the testing costs as a whole.

• The generation of an expected outcome eases test result validation. A simple com-
parison can answer the question of test success or failure.

• The existence of expected outcome makes a fully automated test execution and test
result validation possible. This can increase the number of tests applied dramatically
and improve so the confidence into the correctness of the system under test.

The flexibility of the test conversions has proven to be adequate for the needs of this
project. Also the application of boundary testing in the context of complex data types
must be regarded as workable.

Despite the achievements the project clearly identified the need for research in the areas
of flexible test selection policies and their application in the context of hepTEsT.

160 Case Studies

Chapter 7

Conclusions and Further Work

The aim of the work presented in this thesis is to improve the current testing process
through automation. We wanted to introduce systematic test creation to industrial testing.
In this chapter we examine the extent to which this aim has been achieved and suggest
the form and content of future related work. In Section 7.1 we summarise the contribution
of the thesis and analyse the limitations of the proposal. The remainder of this chapter
introduces thoughts on how to redeem these.

7.1 Contribution of the Thesis

The hypothesis underpinning this thesis is that automated generation of software-based
system tests can be used to improve the testing process and cost-effectiveness of test
creation by "lifting" traditional testing methodology to an abstract level. At the abstract
level we can use a formal system to facilitate the automatic computation of test inputs and
expected outcomes. As a result we can use the traditional testing ideas within the higher
level of a formal system for test case generation.

In this thesis the following assertions are made:

• Specifications of system requirements can be exploited for automated test case gen-
eration. Not all specifications lend themselves to a high degree of test automation.
A constructive approach to the definition of system properties is needed. We pro-
posed to make use of a specialised specification language which we called - hepSPEc.
The language hepSPEc is a modular parameterisable algebraic specification language
built on the foundations proposed by Reichel (1987) and modified with automated

162 Conclusions and Further Work

system test generation in mind. Thus it contains certain restrictions, like primitive
recursion which were discussed in detail in Chapter 4.4.

• The need to generate tests automatically leads us to a formal system for mechanical
transformation and computation. We make use of the formal system introduced with
hepSPEc. The mechanisation is based on term rewriting and is achieved through an
adaptation of the LoFT approach reported by Marre (1995).

• The aim was to use traditional strategies at the abstract level of the formal system. In
most traditional strategies test case selection is based upon an order, e.g. minimum
and maximum. We had to find an order which could be created mechanically and so
we used in this thesis the partial order over terms based on the sub-term relation as
the ordering criterion for test strategies on test data.

• Test case generation needs to overcome the "abstraction gap" introduced by the
use of an abstract specification. The tests computed in the abstract formal system
cannot be applied in their abstract form to the implementation. The higher the
level of abstraction in the specification the wider the gap between abstract test and
implementation. We identified this problem and proposed the use of syntactic and
semantic homomorphisms. These homomorphisms are introduced through grammars
and are integrated into the formal framework. This transformation step has been
called test case reification and is automated as well. The tester defines the grammars
and the test reification is integrated into the automated test generation process.

• Test case execution can be supported through these homomorphisms as well. By
changing only the homomorphisms we can support a move from manual to automated
test execution during the development cycle. Because we leave the specification
unchanged the same abstract tests are used to create the concrete tests for automated
execution providing a true regression test.

• Test result validation can be eased if an expected outcome is provided. We proposed
to use the system requirements specification to compute this outcome and to trans-
form it into the desired format for test validation. This frees the tester from the
tasks to provide an expected test outcome manually or to use a different approach
to compute it. With the transformation the possibility is given to adopt the most
applicable tool or method for test result validation. This will remain to be a testers
responsibility.

7.1 Contribution of the Thesis 163

The contribution of the thesis is validated through two examples. One is a simple example
used to illustrate the technology. The other is an industrial case study adopted from the
aviation industry to analyse the practical suitability of the approach.

It is claimed that the work reported here makes the following contributions in the area
of functional system testing:

• The work takes a practical approach to automated system test generation. Tradi-
tional testing methods are "lifted" to an abstract level.

• The work provides a system description language - hepSPEc- which lends itself to
automated test generation. This specification language is based on work by Reichel
(1987) and Kaphengst and Reichel (1971) who proposed a novel approach to domain
specification. This method is very useful for describing finite domains like those we
encountered in our examples. We have adopted and modified this work with special
considerations towards automated system test generation.

• Traditional methods of test selection are supported through a partial order over
terms. This order is used to select test cases.

• Test reification is the mapping from abstract to concrete test cases which is described
with grammars. Because grammars are very closely linked to our specification con-
cept we do not need to switch the formalism during test case generation.

• A variety of execution models like manual, semi-automatic, or automatic can be
supported with relatively little effort through test reification. This has the benefit
that a switch from a manual to an automated or a switch between different tools can
be achieved with more ease.

• Test result validation is supported by our approach through computation of an ex-
pected outcome. The automatic transformation of the abstract outcome into a de-
sired format for use with existing test result validation utilities is achieved again by

grammars.

The fact that all transformations and computations are achieved within the same formal
system has to be an advantage. Not only is analysis easier but also other methods like
proof can be incorporated into this framework.

The proposed system is limited by two factors:

164 Conclusions and Further Work

• The system properties which are testable in this framework. Only systems which can
be described within the limits of our specification language hepSPEC can be tested.
The restrictions of hepSPEc and the difficulty to describe properties relevant in real-
time and reactive systems limit its applicability. This leads to the undesirable case
where certain important properties can not be included in the system test. Although
it might not be possible to describe all systems within a single framework we might
wish to extend the number of possible systems.

• The test strategies implemented by this framework. We implemented only a small
number of strategies for this thesis. In practice more strategies might be used and
the tester may wish to implement his or her own. With the current system a single
strategy is used throughout the entire system. It is not a realistic approach when we
target inhomogeneous systems. When parts of the system are developed in hardware
and in software then this differences should be reflected in the test strategies for the
different parts.

To address this weaknesses and deficiencies in this work we propose enhancements and
further research.

7.2 Enhancements and Future Research Directions

Enhancements to the framework developed in this thesis are considered in two groups. First
enhancements to the theoretical foundations in order to make the approach applicable to
wider classes of computing systems. Secondly the technical enhancements which are aimed
at improving the practicality of the approach. Concluding we provide ideas for future
research.

7.2.1 Theoretical Enhancements

On the theoretical side we restricted the operations to primitive recursion. Our goal was
to ensure computability. Only then we could always provide an expected outcome. This
restriction may prove to be excessive. Kaphengst {1981} pointed to the interesting class
of functions like primitive recursive, which we made use of, and others. These others may
be an interesting alternative and a way to more expressiveness in hepSPEc. New research
needs to be conducted to find ways to weaken it and to retain computability.

7.2 Enhancements and Future Research Directions 165

There are certain concepts which cannot be specified in hepSPEc. For example real-
time constraints are not specifiable in hepSPEc. There are algebraic methods which aim
to include such concepts(Baum et al., 1999; Deutsch and Kaplan, 1992). Enhancements
could investigate if our approach could be extended by those concepts. In addition to
extending the formal specification base one has to investigate what tests could be derived
from such a specification. Two kinds of features make real-time systems especially difficult
to test. Some real-time systems are characterised through response times of operations.
An operation has to return the answer within 2 ms, for example. Other real-time system
operations return different values at different times. One can say that the function has an
additional parameter time which is consulted in the computation of the outcome. These
characteristics are an important part of real-time systems and need to be tested. Kopetz
(1997) refers to the difficulties involved when he talks about the problem of interference
when making observations in real-time systems. He points out that making the observation
itself changes the behaviour of the system under observation. The question to be answered
is: How to derive relevant tests - including the expected outcome - for real-time systems?

A third improvement would be the creation of a test strategy language. A tester
would write a test strategy specification for the system test using this language. It could
allow the tester to provide custom test strategies for different parts of the system. This
should cater for the fact that a system is not built in a homogeneous way but consists
of many components which are to be tested differently. An initial approach is illustrated
in Section 5.9 were we discussed other testing strategies. There we proposed to use the
structure of the specification to generate sub-domains. A test strategy language could name
functions and specify the depth of decomposition. A similar method is proposed by Marre
(1995) within the concept of LoFT. In discussions with Marre it became apparent that
such a technology is not very transparent. It is very difficult for the tester to estimate the
impact of the directives. The same would be true in the context of hepSPEc. Furthermore
this approach takes a very localised view of operations. A fundamental operation is likely
to be used in very different contexts. As indicated above, these contexts might be located
in different parts of the system and could require different treatment. Recent developments
in a very different area might lend us ideas. The primary purpose of XPath (Consortium,
1999) is to address parts of an XML document. In support of this primary purpose, it also
provides basic facilities for manipulation of strings, numbers and booleans. XPath operates
on the abstract, logical structure of an XML document, rather than its surface syntax. In
addition to its use for addressing, XPath is also designed so that it has a natural subset

166 Conclusions and Further Work

that can be used for matching. With the use of XPath constructs we could express the
problem described earlier and it makes XPath a worthwhile candidate for investigations.

7.2.2 Technical Enhancements

Our implementation is based on term-rewriting systems. But with the recent developments
in model-checkers (Somenzi, 1999) and their implementations, e.g. SPIN (Holzmann, 1997),
these could be a basis for implementation. Model-checking relies on the efficiency of the
binary decision diagram (BDD) structure to represent a very large domain space. In con-
trast term-rewriting systems hold only a very small part of the solution space in memory
at a time. The possible advantage of model-checking could be that the domain space is
spanned and could be examined more closely. This would mean that model-checking tech-
nology might provide a means for searching the space of possible tests and implementing
more elaborate test strategies. These test strategies could take advantage of the context
and might use the model as a means of test coverage. It should be investigated whether
these possibilities have any impact on practical test case generation. An implementation
and a comparative study should give the answer to the suitability of model checkers as a

basis for implementation of a test generation engine.
A tool set which allows the creation and animation of very large hepSPEc-specifications

needs to be created. We have already started with the basic components, like basic editor
and syntax checker (Hayes, 1997). For the test creation process we used ECLiPSe (Ag-
gounand et al., 1999), LoFT (Bernot et al., 1991b) and made our own adoptions. But
there is room for major improvements. An initial step into this direction is taken by
Walker (2001), who has created a visual development environment (VDE) for hepSPEC.
This VDE, called Visual hepSPEc, would allow the visual creation of specifications. Fur-
ther projects may follow. This VDE could be enhanced by an intelligent editor using
the ideas by Antoy (1989) for design strategies of algebraic specifications. But also the
connection to term-rewriting needs improvements. A term-rewriting engine that supports
specifically hepSPEc and hepTEsT needs to be developed. The requirements would include

fast animation of hepSPEc specifications and test case generation. The execution speed is
vital if very large specifications are considered.

In specifying the industrial example we found that certain concepts could be formalised
and reused later. This induced the idea of a concept library which is developed for a partic-
ular problem domain in industry. Elements of such a library would be sub-specifications,
meaningful and useful specifications at a granularity which eases reuse. For the defini-

7.2 Enhancements and Future Research Directions 167

tion of those concepts we could borrow some of the ideas in Reichel (1987, Chapter 4.2).
Such a library should ease the creation of hepSPEc-specifications. The manipulation and
construction of libraries should be possible within Visual hepSPEc.

In addition such a library could contain different interchangeable specification mod-
ules for problem groups. Similar to the concept of object-orientation these modules would
have a common interface but could represent different internal aspects. This might im-
prove the execution times during modelling or computation times during expected outcome
generation. It would be the tester's responsibility to choose an adequate description.

A library for test reification would be desirable as well. Such a library would consist
of patterns for manual test execution or test script languages for different commercial
products. This could increase the independence from a particular test execution tool.

Another technical enhancement would be a possibility to visualise the test space. Such
a visualisation component has to deal with very large amounts of data. It also needs to
present it in a manner such that an engineer could use it to access the suitability of a testing
strategy. No steps into this direction have been made yet but ideas could be borrowed from
other sources, e.g. Sanders (1996).

All of these technical enhancements should be combined in an integrated development

environment.

7.2.3 Impact on other Research Areas

This work only provides the frame for future research. Our goal was to provide an enhance-
ment to existing test technologies. Therefore we aimed to build a basis for automated test
generation which follows a pre-selected test strategy. We argued that the test strategy
is best selected by an experienced tester who can use his knowledge to determine which
strategy is most appropriate. FUture research could investigate this closely. Using our
automated test generation approach and different test strategies the effectiveness of a par-
ticular strategy with respect to a class of problems could be measured. This new research
could give rise to new test strategies.

We tried to take a holistic approach and to support most steps of the testing process in
our approach. There are other factors outside of testing which need to be considered as well.
For example in industry requirements traceability has become an important method to
ensure quality of systems (Finkelstein and Stevens, 1997). Requirements are traced through
the entire development cycle and also through testing. Each requirement is associated with
a test set which covers it. It would be desirable that automated test generation is included

168 Conclusions and Further Work

into requirements traceability. But this is not straightforward and would require further
investigations.

Fundamentally testing cannot be seen in isolation. Other methods for quality assurance
exist and future research could seek to answer the question of how these methods could
co-operate more efficiently. In the case of automated test generation in conjunction with
proof the question could be how is a proof affected if test data could be generated to
cover a certain property. In the other it could ask, which tests can be omitted if a certain
property is proven. This opens a whole new chapter in the area of quality assurance.
Our contribution, although small, could be used to verify or assess such propositions.
Using an example with injected faults test could be created automatically based on our
approach using a strategy incorporating proven properties. Measuring the effectiveness of
the strategy in finding faults or indentifying those types of faults which were not found
could help to bring this area of research a step forward.

In this thesis we aimed to show how traditional, industrially accepted testing method-
ologies could be "lifted" to a formal specification level in order to support automated test
generation. We hope that the ideas will help to put automated support for testing on a
more formal basis and will allow it to be used alongside other verification and validation
methods in the future.

Appendix A

Triangle example - specification

BOOL is generation
sorts Bool
oprn true ~ Bool

false ~ Bool

with definition
oprn and(Bool,Bool) ~ Bool

or(Bool,Bool) ~ Bool
not(Bool) ~ Bool

azioms b:Bool
and(false,b) = false
and(true,b) = b
or(true,b) = true

or(false,b) = b
not (true) = false

not (false) = true
end BOOL

SIDE is BOOL with generation
sorts Nat
oprn zero ~ Nat

succ(Nat) ~ Nat

with definition
oprn add (Nat ,Nat) ~ Nat

eq(Nat,Nat) ~ Bool
le(Nat,Nat) ~ Bool

azioms a,b:Nat

170 Triangle example - specification

add(zero,b) = b
add(succ(a),b) = succ(add(a,b»
eq(zero,zero) = true

eq(succ(a),zero) = false
eq(zero,succ(b» = false

eq(succ(a),succ(b» = eq(a,b)
le(zero,zero) = false

le(succ(a),zero) = false
le(zero,succ(b» = true

le(succ(a),succ(b» = le(a,b)
end SIDE

TRIANGLE is SIDE with definition
oprn validTriangle(a,b,c) ~ Bool
a.mioms a,b,c:Nat

validTriangle = and(
and (
le(a,add(b,c»,
le(b,add(c,a»),
le(c,add(a,b»)

with genera.tion
sorts Triangle
oprn scalene ~ Triangle

isosceles ~ Triangle
equilateral ~ Triangle

with definition
oprn triangle(a:Nat,b:Nat,c:Nat

iff validTriangle(a,b,c) = true
) ~ Triangle

azioms a:Nat,b:Nat,c:Nat
if validTriangle(a,b,c) = true

eq(a,b) = false
eq(a,c) = false
eq(b,c) = false

then triangle(a,b,c) = scalene
if validTriangle(a,b,c) = true

or(or(and(eq(a,b),not(eq(a,c»),
and(eq(a,c),not(eq(a,b»»,
and(eq(b,c),not(eq(a,c»» = true

then triangle(a,b,c) = isosceles

Triangle example - specification 171

if validTriangle(a,b,c) = true
eq(a,c) = true
eq(a,b) = true
then triangle(a,b,c) = equilateral

end TRIANGLE

172 Triangle example - specification

Appendix B

Narne store example - specification

Bool is generation
sorts Bool
oprn true - Bool

false - Bool
enci Bool

Nat is Bool with generation
sorts Nat
oprn 0 - Nat

s(Nat) - Nat
with cie!inition
oprn It(Nat,Nat) - Bool

a:z;iomsa,b:Nat
It(a,O) = false
It(O,s(b)) = true
It(s(a),s(b)) = It(a,b)

enci Nat

Member is Bool with generation
sorts Member
oprn

name1 - Member name7 - Member
name2 - Member name8 - Member
name3 - Member name9 - Member
name4 - Member name10 - Member
name5 - Member name 11 - Member
name6 - Member

174 Name store example - specification

with definition
oprn eqMember(Member,Member) ~ Bool

axioms a,b: Member
eqMember(a,a) = true
if eqMember(a,b) = false

then eqMember(b,a) = false

eqMember(namel,name2) = false
eqMember(namel,name3) = false
eqMember(namel,name4) false
eqMember(namel,name5) = false
eqMember(namel,name6) = false
eqMember(namel,name7) = false
eqMember(namel,name8) = false
eqMember(namel,name9) = false
eqMember(namel,namel0) = false
eqMember(namel,namell) = false
eqMember(name3,name4) = false
eqMember(name3,name5) = false
eqMember(name3,name6) = false
eqMember(name3,name7) = false
eqMember(name3,name8) = false
eqMember(name3,name9) = false
eqMember(name3,namel0) = false
eqMember(name3,namell) = false
eqMember(name5,name6) = false
eqMember(name5,name7) = false
eqMember(name5,name8) = false
eqMember(name5,name9) = false
eqMember(name5,namel0) = false
eqMember(name5,namel1) = false
eqMember(name8,name9) = false
eqMember(name8,namel0) = false
eqMember(name8,namell) = false
eqMember(namel0,namell) = false

end Member

Store is Nat with Member with generation
sorts Store
oprn emptyStore ~ Store

eqMember(name2,name3) = false
eqMember(name2,name4) = false
eqMember(name2,name5) = false
eqMember(name2,name6) = false
eqMember(name2,name7) = false
eqMember(name2,name8) = false
eqMember(name2,name9) = false
eqMember(name2,namel0) = false
eqMember(name2,namell) = false
eqMember(name4,name5) = false
eqMember(name4,name6) = false
eqMember(name4,name7) = false
eqMember(name4,name8) = false
eqMember(name4,name9) = false
eqMember(name4,namel0) = false
eqMember(name4,namell) = false
eqMember(name6,name7) = false
eqMember(name6,name8) • false
eqMember(name6,name9) = false
eqMember(name6,namel0) = false
eqMember(name6,namell) = false
eqMember(name7,name8) = false
eqMember(name7,name9) • false
eqMember(name7,namel0) - false
eqMember(name7,namell) - false
eqMember(name9,namel0) - false
eqMember(name9,namel1) - false

Name store example - specification 175

with definition
oprn inStore(Member,Store) ~ Bool

numberOfMembers(Store) ~ Nat
maxMembersInThisStore ~ Nat

with generation
oprn enterInStore(x:Store,m:Member

iff inStore(m,x)=false
It(numberOfMembers(x),maxMembersInThisStore) = true) ~ Store

with definition
oprn removeFromStore(x:Store,m:Member

iff inStore(m,x)=true) ~ Store

axioms x:Store, m,n:Hember
maxMembersInThisStore = s(s(s(s(s(s(s(s(s(s(O»»»»»
II the maximum number of members in THIS store is 10

inStore(m,emptyStore) = false
if inStore(m,x) = false

It(numberOfMembers(x),maxMembersInThisStore) = true
then inStore(m,enterInStore(x,m» = true

if inStore(m,x) = false
It(numberOfMembers(x),maxMembersInThisStore) = true
eqHember(m,n) = false

then inStore(n,enterInStore(x,m» = inStore(n,x)

numberOfHembers(emptyStore) = 0
if inStore(m,x) = false

It(numberOfMembers(x),maxHembersInThisStore) = true
then numberOfMembers(enterInStore(x,m» = s(numberOfMembers(x»

if inStore(m,x) = false
It(numberOfMembers(x),maxMembersInThisStore) = true

then removeFromStore(enterInStore(x,m),m) = x
if inStore(m,x) = true

It(numberOfMembers(x),maxMembersInThisStore) = true
inStore(n,x) = false
eqHember(m,n) = false

then removeFromStore(enterInStore(x,n),m)
= enterInStore(removeFromStore(x,m),n)

176 Name store example - specification

with genera.tion
sorts File, Fld
oprn mkFile(Fld, Store) -+ File

output_data -+ Fld
other_data -+ Fld

with definition
oprn fileExists(File) -+ Bool

saveToFile(Store) -+ File
10adFromFile(f:File

iff fileExists(f)=true) -+ Store

azioms x:Store,fid:Fld
fileExists(mkFile(output_data,x» - true
fileExists(mkFile(other_data,x» = false

saveToFile(x) = mkFile(output_data,x)

if fileExists(mkFile(fid,x» • true
then 10adFromFile(mkFile(fid,x» • x

end Store

Grammar
syn : Sentence;

Sentence : CommandSeq [s] [nl] [q] nl]
means Sentence = CommandSeq;

CommandSeq : [s] [nl]
means ComandSeq - emptyStore;

CommandSeq : CommandSeq [1] [nl] Name [nl]
where inStore(Name,CommandSeql) • false

It(numberOfMembers(CommandSeql).maxMemberaInTh1sStore) • true
means CommandSeqO • enterInStore(CommandSeql ,Name);

CommandSeq : CommandSeq [d] [nl] Name [nl]
where inStore(Name.CommandSeql) - true
means CommandSeqO - removeFromStore(CommandSeql , Name);

Name store example - specification 177

Name : [9]
means Name = namel;

I [$DF'!.x]
means Name = name2;

I [Smith]
means Name = name3;

I [Smith]
means Name = name3;

I [Smith]
means Name = name3;

I [smith]
means Name = name3;

I [SMITH]
means Name = name3;

I [aRwIPeD]
means Name = name4;

I [S580mLM]
means Name = name5;

I [cwQ]
means Name = name6;

I [4swu]
means Name = name7;

I [CD4lY]
means Name = name8;

I [Uhdl]
means Name = name9;

I [VeryLongNameWithCharacters0123456789012345678]
means Name = namel0;

I [&:y80]
means Name = namel1;

Result :
means Result = emptyStore;

Result : Result Name [nl]
where inStore(Name,Resultl) = false

It(numberOfMembers(Resultl),maxMembersInThisStore) = true
means ResultO = enterInStore(Resultl,Name);

178 Name store example - specification

Bool: [YES, name is in store]
means Bo01 = true;

Bool: [NO, name is not in store]
means Bo01 = false;

end Grammar

Appendix C

BCS case study - specification

Bool is generation
sorts Bool
oprn True -+ Bool

False -+ Bool
en" Bool

Nat is Bool with generation
sorts Nat
oprn° -+ Nat
succ(Nat) -+ Nat

with definition
oprn It(Nat,Nat) -+ Bool

leq(Nat,Nat) -+ Bool
add(Nat,Nat) -+ Nat
sub(a:Nat,b:Nat iff leq(b,a) = True) -+ Nat
prev(a:Nat iff It(O,a) = True) -+ Nat

a:z;iomsa,b:Nat
It(O,succ(b» = True
It(a,O) = False
It(succ(a),succ(b» = It(a,b)
leq(O,b) = True
leq(succ(a),O) = False
leq(succ(a),succ(b» = leq(a,b)
add(O,b) = b
add(succ(a),b) = succ(add(a,b»
sub(a,O) = a
if leq(succ(b),succ(a» = True
then sub(succ(a),succ(b» = sub(a,b)

prev(succ(a» = a

180 Bes case study - specification

wi th d.efinition
oprn

10 -+ Nat
mod_10(Nat)-+ Nat
div_10(Nat)-+ Nat
aei oms m:Nat
10 = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(O»)»»»)
if It(m,10) = True
then mod_10(m) = m

if It(m,10) = False
then mod_10(m) = mod_10(sub(m,10»

if It(m,10) = True
then div_10(m) = 0

if It(m,10) = False
then div_10(m) = succ(div_10(sub(m,10»)

end. Nat

NatPair is Nat with generation
sorts TNatPair

oprn mkPair(Nat, Nat) -+ TNatPair

wi th defini t ion
oprn carry(TNatPair) -+ Nat

result(TNatPair) -+ Nat

a:J;iomsm,n:Nat
carry(mkPair(m,n» - m

result(mkPair(m,n» = n

wi th delini tion
oprn add_3(Nat, Nat, Nat) -+ TNatPair

a:J;iomsm,n,r,c:Nat
il r = add(add(m,n),c)
then add_3(m,n,c) • mkPair(div_10(r), mod_i0(r»

end NatPair

DigitSeq is NatPair with generation
sorts TDigitSeq

oprn sq(n:Nat ill It(n,10) • True) -+ TDigitSeq
app(t:TDigitSeq,n:Nat ill It(n,10) • True) -+ TD1g1tSeq

BCS case study - specification 181

with defini t ion
oprn
s_length(TDigitSeq) ~ Nat
prefix(n:Nat,t:TDigitSeq iff It(n,10) = True) ~ TDigitSeq
lead_O(TDigitSeq) ~ Bool

azioms m,n:Nat,t:TDigitSeq
if It(m,10) = True
then s_length(sq(m» = succ(o)

if It(m,10) = True
then s_length(app(t,m» = succ(s_length(t»

if It(m,10) = True It(n,10) = True
then prefix(m,sq(n» = app(sq(m),n)

if It(m,10) = True It(n,10) = True
then prefix(m,app(t,n» = app(prefix(m,t),n)

if It(m,10) = True
then lead_O(sq(m» = False

if It(succ(m),10) = True
then lead_O(prefix(succ(m),t» = False

lead_O(prefix(O,t» = True

with definition
oprn
l_normalize(TDigitSeq, Nat) ~ TDigitSeq

azioms m,n:Nat, t:TDigitSeq
if It(n,10) = True

It(s_length(t),n) = False
then l_normalize(t,n) = t

if It(n,10) = True
It(s_length(t), n) = True
n = succ(m)
then l_normalize(t,n) = prefix(O,l_normalize(t,m»

with definition
oprn dplus(sl:TDigitSeq, s2:TDigitSeq, n:Nat

iff s_length(sl) = s_length(s2» ~ TDigitSeq
s_lt(sl:TDigitSeq, s2:TDigitSeq

iff s_length(sl) = s_length(s2» ~ Bool
s_leq(sl:TDigitSeq, s2:TDigitSeq

iff s_length(sl) = s_length(s2» ~ Bool

182 BCS case study - specification

s_mul(TDigitSeq, TDigitSeq) ~ TDigitSeq
s_add(TDigitSeq, TDigitSeq) ~ TDigitSeq
sprev(sl:TDigitSeq

iff s_lt(l_normalize(sq(O),s_length(sl»,sl) = True)
~ TDigitSeq

trunc_3(TDigitSeq) ~ TDigitSeq

axioms m,n,c:Nat, r:TNatPair, sl,s2,s3:TDigitSeq
if It(m,10) = True

It(n,10) = True
r = add_3(m,n,c)
carry(r) = 0

then dplus(sq(m),sq(n),c) = sq(result(r»

if It(m,10) = True
It(n,10) = True
r = add_3(m,n,c)
leq(carry(r),O) = False

then dplus(sq(m),sq(n),c) = app(sq(carry(r»,result(r»

if It(m,10) = True
It(n,10) = True
r = add_3(m,n,c)
s_length(sl) = s_length(s2)

then dplus(app(sl,m),app(s2,n),c) = app(dplus(sl,s2,carry(r»,result(r»

if It(m,10)=True It(n,10)=True
then s_leq(sq(m),sq(n» = leq(m,n)

if leq(m,n) = False s_length(sl) = s_length(s2)
It(m,10) = True It(n,10) = True

then s_leq(prefix(m,sl),prefix(n,s2» = False
if It(m,n) = True s_length(sl) = s_length(s2)

It(m,10) = True It(n,10) = True
then s_leq(prefix(m,sl),prefix(n,s2» = True

if s_length(sl) = s_length(s2) It(m,10) = True
then s_leq(prefix(m,sl),prefix(m,s2» = s_leq(sl,s2)

if It(m,10)=True It(n,10)=True
then s_lt(sq(m),sq(n» = It(m,n)

if leq(m,n) = False s_length(sl) = s_length(s2)
It(m,10) = True It(n,10) = True

then s_lt(prefix(m,sl),prefix(n,s2» = False

BCS case study - specification 183

if It(m,n) = True s_length(sl) = s_length(s2)
It(m,10) = True leq(n,10) = True

then s_lt(prefix(m,sl),prefix(n,s2» = True
if s_length(sl) = s_length(s2) It(m,10) = True
then s_lt(prefix(m,sl),prefix(m,s2» = s_lt(sl,s2)

if succ(m)=n
then sprev(sq(n» = sq(m)

sprev(app(sq(succ(O»,O»=
sq(succ(succ(succ(succ(succ(succ(succ(succ(succ(O»»)»»)

if succ(m)=n
then sprev(app(sl,n» = app(sl,m)

sprev(app(sl,O» =
app(sprev(sl),succ(succ(succ(succ(succ(succ(succ(succ(succ(O»»»»»

s_add(sl,s2) =
dplus(l_normalize(sl,s_length(s2»,1_normalize(s2,s_length(sl»,O)

s_mul(sl,sq(O» = sq(O)
if sq(succ(n» = s2 It(succ(n),10) = True
then s_mul(sl,s2) = s_add(sl,s_mul(sl,sq(n»)

if app(s3,n) = s2 It(n,10) = True
then s_mul(sl,s2) = s_add(sl,s_mul(sl,sprev(s2»)

if leq(s_length(sl),succ(succ(succ(O»» = True
then trunc_3(sl) = sq(O)

if leq(s_length(app(app(app(sl,m),n),c»,succ(succ(succ(O)») = False
then trunc_3(app(app(app(sl,m),n),c» = si

end DigitSeq

IntegerArithmetic is DigitSeq with generation
sorts TlntNumber

oprn int(sl:TDigitSeq iff lead_O(sl) = False) ~ TlntNumber

with definition
oprn
i_add(TlntNumber, TlntNumber) ~ TlntNumber
i_mul(TlntNumber, TlntNumber) ~ TlntNumber
i_leq(TlntNumber, TlntNumber) ~ Bool
i_lt(TlntNumber, TlntNumber) ~ Bool

184 BCS case study - specification

axioms sl,s2:TDigitSeq,i1:TlntNumber
if lead_O(sl) = False

lead_O(s2) = False
then i_add(int(sl),int(s2» =

int(dplus(1_normalize(sl,s_length(s2»,
1_normalize(s2,s_length(sl»,O»

if lead_O(sl) = False lead_O(s2) = False
then i_mul(int(sl),int(s2» = int(s_mul(sl,s2»

if lead_O(sl) = False
lead_O(s2) = False

then i_leq(int(sl),int(s2» =
s_leq(1_normalize(sl,s_length(s2»,1_normalize(s2,s_length(sl»)

if lead_O(sl) = False
lead_O(s2) = False

then i_lt(int(sl),int(s2» =
s_lt(1_normalize(sl,s_length(s2»,1_normalize(s2,s_length(51»)

end IntegerArithmetic

DecimalArithmetic is DigitSeq with generation
sorts TDecNumber
oprn ddot(sl:TDigitSeq iff lead_O(sl) = False) ~ TDecNumber

with definition
oprn d_add(TDecNumber, TDecNumber) ~ TDecNumber

d_mul(TDecNumber, TDecNumber) ~ TDecNumber
d_leq(TDecNumber, TDecNumber) ~ Bool
d_lt(TDecNumber, TDecNumber) ~ Bool

axioms sl,s2:TDigitSeq,d1:TDecNumber
if lead_O(sl) = False

lead_O(s2) = False
then d_add(ddot(sl),ddot(s2» =

ddot(dplus(1_normalize(sl,s_length(s2»,
1_normalize(s2,s_length(sl»,O»

if lead_O(sl) = False lead_O(s2) = False
then d_mul(ddot(sl),ddot(s2» = ddot(trunc_3(s_mul(sl,s2»)

if lead_O(sl) = False
lead_O(s2) = False

then d_leq(ddot(sl),ddot(s2» =
s_leq(1_normalize(sl,s_length(s2»,1_normalize(s2,s_length(sl»)

BCS case study - specification 185

if lead_O(sl) = False
lead_O(s2) = False

then d_lt(ddot(sl),ddot(s2)) =
s_lt(1_normalize(sl,s_length(s2)),1_normalize(s2,s_length(si)))

end DecimalArithmetic

Char is Bool with generation
sorts Char
oprn ea ~ Char

cb ~ Char
with definition
oprn eqChar(Char ,Char) ~ Bool
azioms c: Char
eqChar(c,c) = True
eqChar(ca,cb) = False eqChar(cb,ca) = False

end Char

String is Char with Nat with generation
sorts String

oprn newString -4 String
appChar(String,Char) ~ String

with definition
oprn strlength(String) -4 Nat

prefixChar(Char,String) -4 String
eqString(String,String) -4 Bool

azioms s,sl:String, c,cl:Char
strlength(newString) = °
strlength(appChar(s,c)) = succ(strlength(s))
prefixChar(c,newString) = appChar(newString,c)
prefixChar(c,appChar(s,cl)) = appChar(prefixChar(c,s),cl)
eqString(newString,newString) = True
eqString(appChar(s,c),appChar(sl,c)) = eqString(s,sl)
if eqChar(c,cl) = False
then eqString(appChar(s,c),appChar(sl,cl)) = False

end String

WaypointID is String with definition
oprn n3 -4 Nat
azioms n3 = succ(succ(succ(O)))

186 BCS case study - specification

with generation
sorts WaypointID
oprn nevWaypointID(s:String

iff leq(strlength(s),n3) = True) -4 WaypointID
end WaypointID

Longitude is DecimalArithmetic with definition
oprn n180_0 -4 TDecNumber

azioms
n180_0 = ddot(app(app(app(app(app(sq(succ(O»,

succ(succ(succ(succ(succ(succ(succ(succ(O»»»»),O),0),0),0»

with generation
sorts Longitude, Direction

oprn nevLongitude(d:Direction,n:TDecNumber
iff d_leq(n,n180_0)= True) -4 Longitude

east -4 Direction
vest -4 Direction

end Longitude

Latitude is DecimalArithmetic with definition
oprn n90_0 -4 TDecNumber

nO_O -4 TDecNumber
azioms

n90_0 = ddot(app(app(app(app(
sq(succ(succ(succ(succ(succ(succ(succ(succ(succ(O»»)»»)

,0),0),0),0»
nO_O = ddot(app(app(app(sq(O),O),O),O»

with generation
sorts Latitude, Hemisphaere

oprn north -4 Hemisphaere
south -4 Hemisphaere
nevLatitude (h:Hemisphaere ,n:TDecNumber

iff d_leq(n,n90_O) = True) -4 Latitude
end Latitude

Elevation is IntegerArithmetic with definition
oprn nl0000 -4 TlntNumber

BCS case study - specification 187

axioms n10000 = int(app(app(app(app(app(
sq(succ(O)),O),O),O),O),O))

with generation
sorts Elevation
oprn nevElevation(n:TlntNumber iff i_leq(n,nl0000)= True) ~ Elevation

end Elevation

Waypoint is WaypointID with Longitude with Latitude
with Elevation with generation

sorts Waypoint

oprn mkWaypoint(WaypointID,Longitude,Latitude,Elevation) ~ Waypoint

with defini tion
oprn getWaypointID(Waypoint) ~ WaypointID

getWaypointLongitude(Waypoint) ~ Longitude
getWaypointLatitude(Waypoint) ~ Latitude
getWaypointElevation(Waypoint) ~ Elevation

axioms vaypointID: WaypointID, longitude: Longitude,
latitude: Latitude, elevation: Elevation

getWaypointID(mkWaypoint (vaypointID, longitude, latitude,ele vation))
= vaypointID

getWaypointLongitude(mkWaypoint(vaypointID,longitude,latitude,elevation))
= longitude

getWaypointLatitude (mkWaypoint(vaypointID, longitude,latit ude,elevation))
= latitude

getWaypointElevation(mkWaypoint(vaypointID,longitude,latitude,elevation))
= elevation

end Waypoint

Description is String with definition
oprn n3 ~ Nat
azioms n3 = succ(succ(succ(O)))

with generation
sorts Description
oprn mkDescription(s:String iff leq(strlength(s),n3) = True)

~ Description
end Description

188 BCS case study - specification

Modulation is generation
sorts Modulation
oprn AM ~ Modulation

FM ~ Modulation
end Modulation

Frequency is DecimalArithmetic with definition
oprn nl000_0 ~ TDecNumber

n6 ~ Nat
~ioms

nl000_0 = ddot(app(app(app(app(app(app(sq(succ(O»,O),O),O),O),O),0»
n6 succ(succ(succ(succ(succ(succ(O»»»

with generation
sorts Frequency

oprn newFrequency(n:TDecNumber iff d_leq(n,nl000_0)= True) ~ Frequency
end Frequency

RadioCode is Description with Modulation with Frequency with generation
sorts RadioCode

oprn mkRadioCode(Description,Modulation,Frequency) ~ RadioCode

with definition
oprn getRadioCodeDescription(RadioCode) ~ Description

getRadioCodeModulation(RadioCode) ~ Modulation
getRadioCodeFrequency(RadioCode) ~ Frequency

~ioms desc: Description, mod: Modulation, freq: Frequency
getRadioCodeDescription(mkRadioCode(desc,mod,freq» = desc
getRadioCodeModulation(mkRadioCode(desc,mod,freq» = mod
getRadioCodeFrequency(mkRadioCode(desc,mod,freq» = freq

end RadioCode

WaypointSeq is Waypoint with generation
sorts WaypointSeq

with definition
oprn lengthOfWaypointSeq(WaypointSeq) ~ Nat

n12 ~ Nat
~ioms
n12 =
succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(O»»»»»»

BCS case study - specification 189

with generation
oprn emptyWaypointSeq ~ WaypointSeq

appendWaypoint(wps:WaypointSeq,wp:Waypoint
iff It(lengthOfWaypointSeq(wps),n12) = True) ~ WaypointSeq

with definition
a.zioms wps,wpsl :WaypointSeq, wp:Waypoint
lengthOfWaypointSeq(emptyWaypointSeq) = 0
if wpsl = appendWaypoint(wps,wp)

then lengthOfWaypointSeq(appendWaypoint(wps,wp))
= succ(lengthOfWaypointSeq(wps))

end WaypointSeq

RadioCodeSeq is RadioCode with generation
sorts RadioCodeSeq

with definition
oprn lengthOfRadioCodeSeq(RadioCodeSeq) ~ Nat

n2 ~ Nat
a.zioms n2 = succ(succ(O))

wi th generation
oprn emptyRadioCodeSeq ~ RadioCodeSeq

addRadioCode(rs:RadioCodeSeq, r: RadioCode
iff It(lengthOfRadioCodeSeq(rs),n2) = True) ~ RadioCodeSeq

with definition
a.zioms rs,rsl: RadioCodeSeq, r: RadioCode

lengthOfRadioCodeSeq(emptyRadioCodeSeq) = 0
if rsl = addRadioCode(rs,r)

then lengthOfRadioCodeSeq(addRadioCode(rs,r))
= succ(lengthOfRadioCodeSeq(rs))

end RadioCodeSeq

Vehicle is String with WaypointSeq
with RadioCodeSeq with generation

sorts Vehicle, Vehicleld
oprn newVehicle(Vehicleld,WaypointSeq,RadioCodeSeq) ~ Vehicle

newVehicleld(s:String
iff It(O,strlength(s)) = True

leq(strlength(s),n3) = True) ~ Vehicleld

with definition
oprn getVehicleld(Vehicle) ~ Vehicleld

eqVehicleld(Vehicleld,Vehicleld) ~ Bool

190 BCS case study - specification

axioms aId:VehicleId,wps:WaypointSeq,rcs:RadioCodeSeq, sl,s2:String
getVehicleId(newVehicle(ald,wps,rcs» = aId
eqVehicleId(newVehicleId(sl),newVehicleId(s2» = eqString(sl,s2)

end Vehicle

Mission is Vehicle
wi th generation
sorts Mission, MissionId
oprn nevMission(MissionId) -4 Mission

mkMissionId(s:String
iff It(O,strlength(s» = True

leq(strlength(s),10)= True) -4 MissionId
wi th defini t ion
oprn numOfVehicles(Mission) -4 Nat

wi th generation
oprn addVehicleMission(m:Mission, a:Vehicle

iff leq(numOfVehicles(m),10) = True) -4 Mission

wi th defini tion
oprn getMissionId(Mission) -4 MissionId

eqMissionId(MissionId,MissionId) -4 Bool
existVehicle(Mission,Vehicleld) -4 Bool

axioms m,ml:Mission, mId,mIdl,mId2:MissionId,sl,s2:String,
ac:Vehicle, aId:VehicleId

getMissionId(nevMission(mId» = mId
eqMissionId(mId,mId) = True
if leq(strlength(sl),10) = True

leq(strlength(s2),10) = True
then eqMissionId(mkMissionId(sl),mkMissionId(s2» = eqString(sl,s2)

numOfVehicles(nevMission(mId» = 0
if ml = addVehicleMission(m,ac)
then numOfVehicles(addVehicleMission(m,ac» = succ(numOfVehicles(m»

existVehicle(nevMission(mId),aId) = False
if getVehicleId(ac) = aId
then existVehicle(addVehicleMission(m,ac),aId) = True

if eqVehicleId(getVehicleId(ac),ald) = False
then existVehicle(addVehicleMission(m,ac),aId) = existVehicle(m,aId)

end Mission

MissionDB is Mission with generation
sorts MissionDB
oprn emptyMissionDB(Nat) -4 MissionDB

BCS case study - specification 191

with definition
oprn numberOfMissions(MissionDB) ~ Nat

maxNumOfMissions(MissionDB) ~ Nat
existMission(MissionDB,Missionld) ~ Bool

with generation
sorts MissionldSeq
oprn insertMission(mdb:MissionDB,m:Mission

iff It(numberOfMissions(mdb),maxNumOfMissions(mdb»= True
existMission(mdb,getMissionld(m» = False

) ~ MissionDB
emptyMissionIdSeq ~ MissionIdSeq
appendMissionId(MissionIdSeq,MissionId) ~ MissionIdSeq

with definition
oprn listMissionIds(MissionDB) ~ MissionIdSeq

getMission(mdb:MissionDB,mld:Missionld
iff existMission(mdb,mId)=True) ~ Mission

axioms n:Nat, mdb:MissionDB, m,ml,m2:Mission, mId:MissionId
existMission(emptyMissionDB(n),mld) = False
if getMissionld(m) = mId

then existMission(insertMission(mdb,m),mId) = True
if eqMissionld(getMissionId(m),mId) = False

then existHission(insertMission(mdb,m),mId) = existMission(mdb,mId)
numberOfMissions(emptyMissionDB(n» = 0
numberOfMissions(insertMission(mdb,m» = succ(numberOfMissions(mdb»
maxNumOfMissions(emptyHissionDB(n» = n
maxNumOfMissions(insertMission(mdb,m» = maxNumOfMissions(mdb)
if getMissionId(m) = mId then getHission(insertMission(mdb,m),mId) = m
if existMission(insertMission(mdb,m),mId) = True

eqHissionId(getMissionId(m),mId)=False
then getMission(insertHission(mdb,m) ,mId) = getMission(mdb,mId)

listMissionIds(emptyMissionDB(n» = emptyMissionldSeq
if It(numberOfMissions(mdb),maxNumOfMissions(mdb»=True

existMission(mdb,getMissionId(m» = False
then listMissionIds(insertHission(mdb,m»

= appendMissionId(listMissionlds(mdb),getMissionId(m»
end MissionDB

Cartridge is String with WaypointSeq with RadioCodeSeq with generation
sorts Cartridge
oprn emptyCartridge ~ Cartridge

mkCartridge(WaypointSeq,RadioCodeSeq) ~ Cartridge
end Cartridge

192 BCS case study - specification

Units is generation
sorts Units,Degree,Height
oprn newUnits(Degree,Height) ~ Units

degree ~ Degree
deg_min ~ Degree
deg_min_sec ~ Degree
ft ~ Height
m ~ Height

with defini tion
oprn getDegree(Units) ~ Degree

getHeight(Units) ~ Height
azioms d:Degree, h:Height, u:Units

getDegree(newUnits(d,h» = d
getHeight(newUnits(d,h» = h

end Units

Datalmage is Units with String with WaypointSeq
with RadioCodeSeq with generation

sorts Datalmage
oprn emptyDatalmage ~ Datalmage

mkDatalmage(WaypointSeq,RadioCodeSeq,Units) ~ Datalmage

with definition
oprn changeUnitsWPS(WaypointSeq,Units) ~ WaypointSeq

changeUnitsWP(Waypoint,Units) ~ Waypoint
changeUnitDegree(TDecNumber,Units) ~ TDecNumber
changeUnitHeight(TlntNumber,Units) ~ TlntNumber

azioms wps:WaypointSeq,rcs:RadioCodeSeq,u:Units,wp:Waypoint,
ident:WaypointID,dir:Direction,hem:Hemisphaere,long,lat,d:TDecNumber,
el,h:TlntNumber,res:TDigitSeq

changeUnitsWPS(emptyWaypointSeq,u) = emptyWaypointSeq
changeUnitsWPS(appendWaypoint(wps,wp),u)

= appendWaypoint(changeUnitsWPS(wps,u),changeUnitsWP(wp,u»

changeUnitsWP(mkWaypoint(ident,newLongitude(dir,long),
newLatitude(hem,lat),newElevation(el»,u)= mkWaypoint(ident,newLongitude(dir,changeUnitDegree(long,u»,

newLatitude(hem,changeUnitDegree(lat,u»,
newElevation(changeUnitHeight(el,u»)

if getHeight(u) = ft
then changeUnitHeight(h,u) = h

BCS case study - specification 193

if getHeight(u) = m
int(res)=i_mu1(h, int (app(app(app(sq(succ(succ(succ(O»»,

succ(succ(O»),
succ(succ(succ(succ(succ(succ(succ(succ(O»»»»),succ(O»»

then changeUnitHeight(h,u) = int(trunc_3(res»

if getDegree(u) = degree
then changeUnitDegree(d,u) = d
if getDegree(u) = deg_min
then changeUnitDegree(d,u) = d
if getDegree(u) = deg_min_sec
then changeUnitDegree(d,u) = d

end Datalmage

BCS is MissionDB with Datalmage with Cartridge
with Units with generation

sorts BCS
oprn mkBCS(MissionDB,Datalmage) ~ BCS

with definition
oprn initBCS(MissionDB) ~ BCS

existMissionlnBCS(BCS,Missionld) ~ Bo01
existVehic1elnBCS(bcs:BCS,mld:Missionld,ald:Vehicleld

iff existMissionlnBCS(bcs,mld) = True
) ~ Bo01

notEmptyDatalmage(BCS) ~ Bo01
chooseMission(bcs:BCS,mld:Missionld,ald:Vehic1eld

iff existMissionlnBCS(bcs,mld)=True
existVehic1elnBCS(bcs,mld,ald)=True

) ~ BCS
vievDatalmage(bcs:BCS,u:Units

iff notEmptyDatalmage(bcs)=True) ~ Datalmage
10adCartridge(bcs:BCS

iff notEmptyDatalmage(bcs)=True) ~ Cartridge
addWaypointToDatalmage(BCS,Waypoint) ~ BCS
addRadioCodeToDatalmage(BCS,RadioCode) ~ BCS

axioms mdb:MissionDB,mld:Missionld,ald:Vehic1eld,dataimage:Datalmage,
wps:WaypointSeq,wp:Waypoint,rcs:RadioCodeSeq,rc:RadioCode,
u,nev_u:Units

initBCS(mdb) = mkBCS(mdb,emptyDatalmage)
existMissionlnBCS(mkBCS(mdb,dataimage),mld) = existMission(mdb,mld)
if existMission(mdb,mld)=True
then existVehic1elnBCS(mkBCS(mdb,dataimage),mld,ald)

194 BCS case study - specification

= existVehicle(getMission(mdb,mId) ,aId)
if existMission(mdb,mId) = True

existVehicle(getMission(mdb,mId),aId) = True
then chooseMission(mkBCS(mdb,dataimage),mId,aId)

= mkBCS(mdb,mkDataImage(wps,rcs,u»
notEmptyDataImage(mkBCS(mdb,emptyDataImage» = False
notEmptyDataImage(mkBCS(mdb,mkDatalmage(wps,rcs,u») = True

viewDatalmage(mkBCS(mdb,mkDatalmage(wps,res,u»,new_u)
= mkDataImage(ehangeUnitsWPS(wps,new_u),res,new_u)

loadCartridge(mkBCS(mdb,mkDataImage(wps,res,u»)
= mkCartridge(wps,res)

addWaypointToDatalmage(mkBCS(mdb,mkDataImage(wps,res,u»,wp)
= mkBCS(mdb,mkDataImage(appendWaypoint(wps,wp),res,u»

addRadioCodeToDatalmage(mkBCS(mdb,mkDatalmage(wps,res,u»,re)
= mkBCS(mdb,mkDataImage(wps,addRadioCode(res,re),u»

end BCS

Bibliography

Abderrahamane Aggounand et al. ECLiPSe User Manual. International Computers Lim-
ited and Imperial College London, release 4.2 edition, 1999.

A. V. Aho, Ravi Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison- Wesley, 1985.

Sergio Antoy. Design strategies for algebraic specifications. Technical Report TR-89-32,
Virginia Polytechnic Inst. and State University, 1989.

Sergio Antoy and Dick Hamlet. Automatically checking an implementation against its
formal specification. In Irvine Software Symposium, pages 29-48, 1992.

J. A. Bauer and A. B. Finger. Test plan generation using formal grammars. In 4th
International Conference on Software Engineering, pages 425-432, Long Beach, Ca.,
USA, 1979. IEEE Computer Society Press.

G. A. Baum, M. F. Frias, and T. S. E. Maibaum. A logic for real-time systems specification,
its algebraic semantics, and equational calculus. Lecture Notes in Computer Science,
1548:91-105, 1999.

B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, 2nd edition,

1990.

Boris Beizer. Black-Box Testing - Techniques for Functional Testing of Software and Sys-
tems. John Wiley & Sons, Inc., 1995.

Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. A formal approach to software
testing. In Proceedings of the Second International Conference on Algebraic Methodology
and Software Technology, pages 163-170, Iowa City, Iowa, 1991a. The University of Iowa,
Department of Computer Science.

196 BIBLIOGRAPHY

Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. Software testing based on formal
specifications: a theory and a tool. Software Engineering Journal, pages 387-405, 1991b.

Elaine J. Weyuker Bingchaing Jeng. A simplified domain-testing strategy. ACM Transac-
tions on Software Engineering and Methodology, 3(3):254-270, 1994.

L. Bouge, N. Choquet, L. Fribourg, and M.-C. Gaudel. Test sets generation from algebraic
specifications using logic programming. Journal of Systems and Software, 6(4):343-360,
1986.

L. Bouma and H. Walters. Implementing Algebraic Specifications. In J. Bergstra, J. Heer-
ing, and P. Klint, editors, Algebraic Specification, chapter 5, pages 199-282. ACM Press,
1989.

C. J. Burgess. Software testing using an automatic generator of test data. In Software
Quality Management, pages 541-556. Elsevier Science Publishers, 1993.

D. Carrington and P. Stocks. A tale of two paradigms: Formal methods and software
testing. In J. P. Bowen and J. A. Hall, editors, Z User Workshop, Cambridge 1994,
Workshops in Computing, pages 51-68. Springer-Verlag, 1994.

K.-T. Cheng and A. S. Krishnakumar. Automatic functional test generation using the
extended finite state machine model. In ACM-SIGDA; IEEE, editor, Proceedings of the
30th ACM/IEEE Design Automation Conference, pages 86-91, Dallas, TX, 1993. ACM
Press.

World Wide Web Consortium. XML Path Language. W3C recommendation, World Wide
Web Consortium, 1999.

G. Deutsch and S. Kaplan. Algebraic semantics of real-time process specifications. In
Maurice Nivat, Charles Rattray, Teodor Rus, and Giuseppe Scollo, editors, Proceedings of
the Second International Conference on Algebraic Methodology and Software Technology,
Workshops in Computing, pages 83-97, London, 1992. Springer Verlag.

Jeremy Dick. Private communication, 2001.

Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test cases from
model-based specifications. In J. C. P. Woodcock and P. G. Larsen, editors, FME'93:
Industrial-Strength Formal Methods, pages 268-284. Formal Methods Europe, Springer-
Verlag, 1993. Lecture Notes in Computer Science 670.

BIBLIOGRAPHY 197

M. Donat. Automating Formal Specification Based Testing. In M. Bidoit and M. Dauchet,
editors, TAPSOFT '97:Theory and Practice of Software Development, 7th International
Joint Conference CAAP /FASE, volume 1214 of Lecture Notes in Computer Science,
pages 833-847, Lille, France, 1997. Springer-Verlag, Berlin.

Michael R. Donat. A Discipline of Specification-Based Test Derivation. PhD thesis, Uni-
versity of British Columbia, 1998.

M. Dyer. The Cleanroom Approach to Quality Software Development. John Wiley & Sons,
New York, 1992.

Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, New York, N.Y., 1985.

E.W. Dijkstra. Notes on Structured Programming. In O.-J. Dahl, E.W. Dijkstra, and
C.A.R. Hoare, editors, Structured Programming. Academic Press, 1972.

A. Finkelstein and R. Stevens. Requirements traceability. In Proceedings: 3rd IEEE Inter-
national Symposium on Requirements Engineering, page 265. IEEE Computer Society
Press, 1997.

S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection
based on finite state models. IEEE Transactions on Software Engineering, 17(6):591-
603, 1991.

Marie-Claude Gaudel. Testing can be formal, too. In Peter D. Mosses, Mogens Nielsen,
and Michael I. Schwartzbach, editors, TAPSOFT '95: Theory and Practice of Software
Development, volume 915 of Lecture Notes in Computer Science, pages 82-96. Springer-
Verlag, 1995.

Joseph Goguen and Razvan Diaconescu. An Oxford survey of order sorted algebra. Math-
ematical Structures in Computer Science, 4:363-392, 1994.

J.v. Guttag and J.J. Horning. The algebraic specification of abstract data types. Acta
Informatica, (10):27-52, 1978.

M. Hayes. Development of a Syntax Analyser for the OBGS Formal Specification Language.
Master's thesis, University of Newcastle upon Tyne, 1997.

198 BIBLIOGRAPHY

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-
ing, 23(5}:279-295, 1997.

Hans-Martin Horcher and Jan Peleska. Using formal specifications to support software.
Software Quality Journal, 4(4}:309-327, 1995.

D. C. Ince. The automatic generation of test data. The Computer Journal, 30(1):63-69,

1987.

F. Ipate and M. Holcombe. A method for refining and testing generalised machine speci-
fications. International journal of computer mathematics., 68(3-4):197-219, 1998.

H. Kaphengst. What is computable for abstract data types? In Ferenc Gecseg, editor,
Proceedings of the 1981 International FCT-Conference on Fundamentals of Computation
Theory, volume 117 of LNCS, pages 173-181, Szeged, Hungary, 1981. Springer.

H. Kaphengst and Horst Reichel. Algebraische algorithentheorie. Technical Report WIB
1, VEB Robotron, Zentrum fiir Forschung und Technik, Dresden, 1971. In German.

Hermann Kopetz. Real- Time Systems, volume 395 of The Kluwer International Series In
Engineering And Computer Science. Kluwer Academic Publishers, Boston, 1997.

Peter Liggesmeyer and Peter Riippel. Die priifung von objektorientierten Systemen. 08-
JECTspektrum, (6}:68-78, 1996.

Timothy E. Lindquist and Joyce R. Jenkins. Test-case generation with IOGen. IEEE
Software, 5(1}:72-79, 1988.

B. Marre. LOFT: A tool for assisting selection of test data sets from algebraic specifications.
Lecture Notes in Computer Science, 915:799--800, 1995.

Peter M. Maurer. Generating test data with enhanced context-free grammars. IEEE
Software, 7(4}:50--55, 1990.

Christoph C. Michael, Gary E. McGraw, Michael A. Schatz, and Curtis C. Walton. Genetic
algorithms for dynamic test data generation. Technical Report RSTR-003-97-11, RST

Corporation, 1997.

Glenford J. Myers. The Art of Software Testing. Wiley - Interscience, New York, 1979.

BIBLIOGRAPHY 199

N.P.Kropp, P.J.Koopman, and D.P.Siewiorek. Automated robustness testing of off-the-
shelf software components. In 28th IEEE Symposium on Fault Tolerant Computing
Systems (FTCS-28). ieee, 1998.

A. J. Offutt. Automatic test data generation. Technical Report SERC-TR-25-P, Software
Engineering Research Centre, 1988.

Rozsa Peter. Recursive Functions. Academic Press, New York and London, 1967.

Robert M. Poston. Automated testing from object models. Communications of the ACM,
37(9):48-58, 1994.

Robert M. Poston. Automating Specification-Based Software Testing. IEEE Computer
Society Press, 1996.

Paul Purdom. A sentence generator for testing parsers. BIT, 12:366-375, 1972.

H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford
University Press, 1987.

Georg Sanders. Visualisierungstechniken fur den Compilerbau. Pirrot Verlag, 66125

Saarbriicken, 1996.

F. Somenzi. Binary decision diagrams. In Manfred Broy and Ralf Steinbriiggen, editors,
Calculational System Design, volume 173 of Series F: Computer and System Sciences,
part 3, pages 303-368. lOS Press, 1999.

Ian Sommerville. Software Engineering. Addison-Wesley, sixth edition, 200l.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mass., 1986.

P. Stocks and D. Carrington. A Framework for Specification-Based Testing. IEEE Trans-
actions on Software Engineering, 22(11):777-793, 1996.

P. Stocks and D. A. Carrington. Deriving software test cases from formal specifications.

In 6th Australian Software Engineering Conference, pages 327-340, 1991.

P. Stocks and D. A. Carrington. Test template framework: A specification-based test-
ing case study. In Proc. International Symposium on Software Testing and Analysis
(ISSTA '93), pages 11-18, 1993a.

200 BIBLIOGRAPHY

P. Stocks and D. A. Carrington. Test templates: A specification-based testing framework.
In Proc. 15th International Conference on Software Engineering, pages 405-414, 1993b.

Paul Strooper and Daniel Hoffman. Prolog testing of C modules. In Kazunori Saraswat,
Vijay; Ueda, editor, Proceedings of the 1991 International Symposium on Logic Program-
ming (ISLP'91), pages 596-610, San Diego, CA, 1991. MIT Press.

A. von Mayrhauser, R. Mraz, and J. Walls. Domain based regression testing. In Proceedings
of the International Conference on Software Maintenance 1994, pages 26-35, 1994a.

A. von Mayrhauser, J. Walls, and R. Mraz. Sleuth: A domain-based testing tool. In Inter-
national Test Conference, pages 840-849, Altoona, Pa., USA, 1994b. IEEE Computer
Society Press.

J. Walker. Visual hepSPEc. Final year project report, Dept of Computing Science, Uni-
versity of Newcastle upon Tyne, 2001.

Martin Wirsing. Algebraic specification. In J. van Leewen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, chapter 13, pages 675-788.
The MIT Press, New York, NY, 1990.

N. Wirth. Program development by stepwise refinement. Communications of the ACM, 14
(4):221-227, 1971.

Martin R. Woodward. Errors in algebraic specifications and an experimental mutation
testing tool. Software Engineering Journal, 8(4):211-224, 1993.

