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Abstract

The results of a numerical investigation of the Bayleigh~Ritz
method for the approximate solution of two-point boundary value
problems in ordinary differential equations are presented.
Theoretical results are developed which indicate that fhe observed
behaviour is typical ¢f the method in more general appiications.

In particular, a number of choices of co—ordinate functions for
certain second order equations are considered. A new glgorithm for
the efficient evaluation of an sstablished sequence of functions
related to the Legendre polynomials is described, and the sequence
is compared in use with a similar sequence related to the Chebyshev
polynomials. Algebraic properties of the Rayleigh--Ritz equatious
for these and other co-ordinate systems are discussed. The
Chebyshev system is shown to lead to equations with convenient
computational and theoretical properties, and the latter are used to
characterize the asymptotic convergence of the approximations for
1inegr equations. These results are subsequently extended to a
certain type of non-linear equation.

An orthonormalization approach to the solution of the Rayleigh-
Ritz equations which has been suggested in the literature is compared
in practice with more usual methods, and it is shown that the
properties of the resulting approximations are not improved. Since
it is known that the method requires more work than established omes
it cannot be recommended.

Quadrature approximations of elemeﬂts of the Rayleigh-Ritz matrices

are investigated, and known results for a restricted class ¢f quadrature



approximation are extended towards the more general case.

In a final chapter extensions of the material of earlier chapters
to partial differential equations are described, and new forms of the
'finite element' and 'extended Kantorovich' methods are proposed. A

summary of the conclusions discerned from the investigation is given.
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Chapter One

Variational Caleculus; Problems and Methods

1.1 A Historical Introduc%ion.

In 1696, at a time when the study of the maxima and minima of
functions of a finite number of variables had already played, as Courant(1l)
s8ays, & decisive role in the development of differential and integral
calculus, John Bernoulli suggested the following problem:

"Among all paths joining the points A and B, find that path along
which a mass particle, subject only to the influence of gravity, will

travel from A to B in the shortest possible time".

A (0,0)

it

Fig.l

B (X,,7,)

This problem, known as the brachistochrone, was novel in that it
involved an infinite number of variables, the position of all points
on the curve AB. The mathematical expression for T, the time taken,

is straightforward and is giveh by
Xo 5
T ‘[ iry dx
28y
0]

The time T is therefore a function of the curve y, which must satisfy

y(0) =0 , y(Xo) = Yo
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Other problems came to be expressed in this form. OUne important
problem which can be so expressed is the determination of the path of
light through a medium. Fermat's principle states that light travels
between two points so that the time taken is a minimum with respect to
times taken on other possible paths. This is clearly closely related
to the brachistochrone, and can be expressed mathematically in the
following manner.

Given two points A(xl,yl) and B(xz,yz), in a medium for which the
velocity of light v at any point (x,y) is given by v = v(x,y),

determine a curve y = y(x) joining A and B such that

is a minimum.

Another class of variational problems which arose were the
isoperimetric problems, of which the classical example is

'Determine the equation of the closed curve of fixed length which
encloseés the maximum area’.

It is straightforward to see that the curve must be convex, and
we may assume that it is symmeiric about some axis, which we shall

assume to be the x axis

y

-




The problem can be expressed

Minimize A = 2 y{x)dx

€=y

subject to Xo

2 X 1+ y'2 dx = L , a constant
0

and y(0) = y(x)) = o0

Notice that in this problem the upper limit X, of each integration is
not fixed, but varies with the curve y, subject to the restriction on
the length of y.

Problems such as these were formulated and solved by such
mathematicians as the Bermoulli's and Euler, using methods which were
specific to the particular problem, and often very ingenious. A
general approach was develcped later by Lagrange, who reduced the
general problem to the solution of a differential equation with
auxiliary conditions, usually two point boundary conditions. The
equivalence of the variational and differential formulations of
particular problems was used by many mathematicians, including Gauss,
to prove the existence of solutions of certain types of differential
equation,

Euler expressed the laws of mechanics in variational terms, and
formulations such as this, including those invoked by Hamilton in the
theory of optics, became popular in the physical sciencea. A simple
example of such a formulation is the principle that the equilibrium
positions of a mechanical system are stationary points of the
expression for the potential ewnergy of the system, and that a position
of stable equilibrium is one which not only is a stationary point of

the potential energy, but also makes that energy a minimum. As a
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particular example, cousider the case of a string of length 1 fixed
at x = 0 and x = i, under the action of an external force f(x) acting
in a directicn perpendicular to the x axis. Then if we let y(x)
dencte the configuration of the string; and assume that y(x) is "small"
for all x, we obtain an expression for the total reduced potential

energy of the system as

1
(

) - | (v @ y(x).2(x) ) dzx (1.1)
0

The position of equilibrium of the string is then obtained by minimizing
I(y) over the set of functions Y = {y(x):y(o) =y(1) =0, y is
continuous in (051)}’0

Integrands of this type, in which we have a combination of
homogeneous quadratic and linear expressions, are very important in the
caloulus of variations; because they occur so frequently in physical
gituations. More examples can be found in Courant (1,p.131-2).

The use of variational formulations of problems te obtain numerical
approximations to their solution stems largely from the work of
Rayleigh (1) and Ritz (1,2). Rayleigh's most important contribution
was the use of particular trial functions for y(x) in integrands related
to (1.1) above to obtain estimates of the frequency of vibrations of
mechanical systems, whilst Ritz provided the systematic approach to the
substitution of trial functions which now forms the basis of the
Rayleigh-Ritz method. Using this systematic approach Ritz was able to
give the first satisfactory explanation of the nodal lines on a
vibrating clamped plate. For an account of the contributions of
Rayleigh and Ritz, and a review of Ritz's work by Rayleigh, see Gould(l).

An imporiant development shortly following the work of Ritz was the

Galerkin method (e.g. Kantorovich and Krylov (1)), derived in 1915.
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Although thig is not a wvariatioual method, and is wider in application
than the Rayleigh-Ritz method, in certain circumstances the two methods
are identical and it is important for this reascn. Kantorovich
proposed a variant cf the Rayieigh-Rit:z metihod, (Kantorovich and Krylov
(1); for recent extensicns see Kerr (1)) as applied to variational
problems in which the Tunction y is a function of more than one
variable. The finite element methed (e.g. Zienkiewicz and Cheung (1)),
is closely related t¢ the Hayleigh-Ritz method, and has a distinguished
practical history. Practical use of the Rayleigh-Ritz method is
particularly important in the works of engineers such as Timoshenko(1)
and Von Karman (Von Karman and Bioct(1l)). During the mid 1930's an
extensive study of existence theory for variational problems was
undertaken by Bliss (1) and co~workers at Chicago.

The development of high-speed computation facilities has
emphagised two of the problems which Courant(2) saw in 1949; the first,
the selection of suitable trial functions for y(x) has been examined by
Mikhlin (Mikhlin {1),(4), Mikhiin and Smclitskiy(l) ), and will concern
us at some length, and the sesond, the problem of error estimates and
bounde has been tackled recently by Ciarlet, Schultz and Varga(l).
These workers, and others have also investigated the use of piecewise
continuous functions as trial functions, and provided a closer
connection between the Rayleigh-Eitz and the finite element method.

This work will also be thorcughly discussed in a later chapter.

1.2 The simplest probiem of variational calculus

The problems of variaticnal calculus which will concern us can be
expressed in general terms as followe:

Let Q be a region of n dimensional space with boundary Sﬂ.



-6 -

Let ¥ = -{y(éi} be a set of functions of points X, x ¢ 4! such that

I(y) = XF(x,y,y“ oo y(k))i&ﬁfz 0oo(lo2)
*L

existe, and assume that there exists at least one y@(é) & Y such that
y,) & L 2 <P

and that there exists an M > - w0 such that
(y) > U1 for all y &Y.

Determine a function y(x) €& Y such that I(y) € I(y) for all y €Y.

Additional conditions, in the form of boundary conditions, are usually

imposed on the set Y. These take the form
k-
&y (x!ysyo eee y( l)) = 0 on %Qi

The set Y must be such that the integral (1.2) exists, and we
give the following specification of the set Y , which is the most

restrictive we shall require

Y= {y(;) 1y & ¢ (L), y satisfies

k-1 -
8, (Xoy5y* voc ¥ )=0Oonm gﬂi}

y € ck-1 (f)L) implies that y has k-1 continuous derivatives in (@]
and that y(k) = gfx is square-summable in (@ I
axic ‘

This problem, the so-caliled ‘simplest problem’ of variational
caiculus, includes most of the problems we have so far encountered.
An exception is the iso—perimetric problem; in which the condition
imposed on the boundary is not a simple closed expression in yQ;)a
We consider only the simplest problem and its multi-dimensional
extensions in the rest of this work.

As has been indicated; even amongst the simplest problems of
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variational calculus there are a number of important divisions. Ve
have already noted the distinction between integrals of combinations
of homogeneous quadratic and linear forms, such as those occurring in
the problem of the vibrating string, and the more general integral of
problems such as the brachistochrone. The former are the most
important, and most tractable problem for the methods of variational
calculus. We shall defer discussion of all but the ‘simple quadratic'
integrals, and some closely related types, until Chapter Six.

Another distinction can be made with regard to the dimension of
the space jﬁl., that is, the dimension of the vector Xx . One
dimensional problems, in which y(x) is a function of a scalar argument,
are an important subset of the set of simple variational problems, and
we shall be primarily concerned with practical problems of this type.
Nonetheless, many results are applicable to the one dimensional and
multi-dimensional cases, and parts of the theory will be developed
without reference to the dimension of the problem.

A third distinction, the distinction of the order of F(x,¥,y'+:-¥<),
which is k, the order of the highest derivative of y(x) occurring in P,

will be of no importance in the subsequent discussion.

1.3 BRelated Problems

Problems which can be expressed in the form of the simplest problem
of the calculus of variations can often be expressed in many other
forms. Perhaps the relationship with certain types of differential
equations is most well know, and for our purposes it is so important
that we devote paragraph 1.4 and subsequent paragraphs to its
discussion. Here we wish to indicate briefly connections with two

other important areas of mathematical study, the fields of dynamic



programming and cptimal control.

In 1921 Hadamard (1) said, discussing the brachistochrone problem

Fig.la

"For the line considered to be the brachistochrone between A and B,
it is neceasary that the whole arc A'B' of this 2ine (see Fig.la) be the
brachistochrone between A' and B'. It is tkis principle which,
applied to the small section Mi-l Mi+1 provides ug with a solution.

It is clear that this is general and that it will recurr in all similar
ricoblems®.

This principle, expressed by Hadamard, has heen taken up recently
a8 the 'Principle of Optimality' of dynamic programming as applied to
discrete cptimization problems (Bellman (1), Bellman and Dreyfus (1))
and extended to continuous problems by Dreyfus (1), A fﬁll discussion
of the connections between dynamic programming and variational calculus
iz given by Dreyfus (1).

The equivalence of certain problems in optimal control and
variational problems is established by Hestenes(l), (see also
Gumowski and Mira (1)). As an example of this equivalence we give
the optimal control formulation of the brachistcchrone. Recall that

as a variaticnal problem we had



Determine y(x) & Y,
5

Y= J (s v € 6H0X) 7(0) = 0, ¥(x,) =y, §

%
<

such that X

o /TR
- 1= d
) £ 1) - ,( \/3-;{5,—- v

Vyey 0
For an optimal control formulation we describe the system
parametrically. Let t, the time, be the independent variable, and let
x(t), y(t) denote the position of the particle at time t. Let u(t) be
the gradient of the curve joining (0,0) and (X,,Y,) (see Fig.1). We
refer to (;)t as the state vector and u(t) as the contrel. x(t),

y(t) satisfy the differential equations of motion
x = J 28y cos u
v = J2& sin u

with the initial conditions (;) = &
tup

Define terminal conditions of the form
fl(x,y,t) = 0, fz(x,yst) = 0
In this case we have
£ (xy5y%) = 2%,
£, (X:yy8) = y-1,
and let t = T, be the first time for which these conditions hold.
Define a criterion function g(x(Ty),y(Ty),Ty). In this case

S(x(To)ﬁ(To)sTo) = Too
Determine the contrcl u{t) such that the criterion function g is

minimized.

1.4 Differential Equations

The work of Euler and Lagrange on the sclution of the problems of
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variational calculus produced a very close inter-relaticrenip between
certain types of differential equation and these precblems. Because of
the wide understanding of the principles of differential sguations, and
methods of deriving their solution, this relationship has provided the
most usual method of solution of variational problems. We now develop
this connection.

Solutions of the problem of determining a minimizing function y{x)
for the integral (1.2) may be considered to be of two types. If y(x)
is such that

I(y) < 1I(y) for all y € Y such that

ly(x) -3 <€ , x €N
and

@ -7l <€,z €0, gk ()
then y(x) is said to afford a minimum of I(y) in a'weak neighbourhood’
of itself, or briefly, to be a 'weak solution' of the problem. If the
conditions (1.3) may be omitted, then y(x) is said to afford a minimun
of I(y) in a 'strong neighbourhoocd' or to be a 'strong solution' of the
problem. It is apparent that any strong solution is also a weak
solution.

The Euler-Lagrange method of solution of a variaticnal problem

exploits & necessary condition for a function y(x) to be a weak solution.

This condition may be stated as

k
g (-1)° i':' (Bp/éy(l)> = 0 0os(1c4)
S=0

where the partial derivatives 8F‘/ Qy(s) are cbtained by considering
F as a function of k+2 independent variables x,y,y® o-o yk N

Derivations of this condition are to be found in many texts on
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Variational Calculus, of which we may mentior Bliss (1), Eisgole (1),
Fox (1) and Bolza (2). The boundary conditions imposed on the

differential equations are the conditions
k=1 \ .
g (7' <o ¥1) = 0 on $114

imposed on the variational problem; tcgether pecssitly with certain
additional boundary conditions, called natural boundary conditions, of
which we shall say more later in this section.

The differential equation (1.4) assumes a simple and important
form when F(x,y,y* oo yk) is a simple quadratic integrand, that is,

whers k

F(xy7,5" o0 ) = <<\ pg(x) (-Gf'; y(X)) 2

dx
8=0
+2£(x).y(x) eee(1:5)
since then we have
k K
kA B .
)t & [F ) a®/ a°
Zl -1)° ozt (g;rt) - 2(—1)5&;;\%(::) = (x))
1=0 8=0
+ 2(x) = 0 coe(1:6)
which is a linear differential equation.
Similarly, if
k
: 8
F(x,3,3" oo ¥°) = g pa(x)(%;; y(1)> ?
s=0 y(x)
+2§ £(x,%)dY  ...(1.7)
0

which is the case in certain physical systems which include a non-linear

forcing term, the differential equation becomes

Kk
g(_l)s ;i‘; (ps(x) %(x))+ t(x,y) = O oee(1.8)
X
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which equation is linear in derivatives of y, although ncie-lirear in y.
Problems of this type are known as mildly-non-linear differential
eguations, and will be discussed in Chapter Four.

The equations (1.6) and (1.8) zan be written in the forms

L(y(x)) + £(x} = 0

and
L(y(x)) + f(x,y) =0

respectively, where L 1is a linear differential operator of crder 2k

k
Ly(x)= g-l)s 'j'i‘; (ps(x) (—g—; y(x) >
8=0

The operator L is not only linear but also, when subject to
certain boundary condition;, self-adjoint. (For definitions and a
discussion of adjoint and self adjoint operators see e.g. Lanczos (2),
p-179 et seq.).

The knowledge that the Buler equation of a simple quadratic
variational problem corresponds to a self adjoint linear differential
equation is perhags more useful when considered in reverse; that to
svery self adjoint differential equation there corresponds a simple
quadratic variational problem which, from the relations above; can be
sasily written down. For example Bolza (refo Collatz ( 1, p.208))has
shown that, in theory at least, any second order (non-singular)
differential equation may be written in self-adjoint form. In practice
the transformation to self-adjoint form may require the solution of a
partial differential equaiion and may not be 80 easily achieved.

However, equations of the form

p(x)y'" + x(x)y* + q(x)y + £(x) = 0

may be expressed as the Euler equation of a simple quadratic variational
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problem by first multiplying throughout by

5(x) - <§ (T)p' () g
ﬁ? X exp r é(@f) dg/)

(o)

when they can be reduced to the form

c%{ (P(X)P(x)é%[ Y(x)x + q(x).ﬁ(x)y(x) + f(x)ép(x) = 0
1

- St L (e g oat) cf - o

8=0
X
provided that the integral S r(M)=p' (M) d?;/ existe.
o p(7)

1.5 The relationship between variational and differential boundary
conditions:

The determination of a particular solution of a differential equation
of order 2k requires, in general, 2k bourndary conditions. The
equivalent variational problem, where one exists, will sometimes require
2k boundary conditions, but sometimes the quadratic and linear forms
cccurring in the variational formulation of the problem ars such that any
function y(x) which minimizes I(y) will automatically satisfy certain
conditions, and the number of conditions which it is necessary to impose
will be less than 2k. Conditions which are automatically required of
a solution by the form of the integral I(y) are said tc be ‘mnatural
conditions® of the variational prbblemo

As an example we take the following problem, discussed by Courant (1),
po139.

Consider a homogeneous string which is elastically tied at both ends

by forces of intensity m, per unit displacement at x=0, and m, per unit



-14 -

displacement at x=<l, and subject to an external force £{i). Determine

the equilibrium position of the system.

\f (x\) ’/‘\\L

By é oy
i 3
x=0 x=1

Ag a differential problem, we have the following equation for u(x),

the equilibrium poeition of the system :-

subject to the boundary conditions

m, u(0) = u*(0) x=0
m, u(l) = ~u'(1) x=1
The total energy of the system is given by
1
{1 fau\? 2
I(u) = {-2- (-&%) + f.u dxl + mu (0)
o +mu(l) L (1.9)

We can consider the function uo which minimizes the functional

I(u) as one member of a class of functions of one parameter é N
ve (x) = u(x) + E.n(zx) , n(x)@o

where h 1is required only to possess sufficient continuity properties
such that I(v, ) is defined. Then the statement I(uo) £ I(va ) for

all functions Ve implies the following condition

dIlv
= 0
dé L-O

We have
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(v, ) = I(u, +€1n)
1

- S{%(uo +v€n)? 4 £.(u, +en) ax +m(a (0)+ €0(0))?

5 +m, (u (1)+£ 8(1))°
and
1
dIg ) = S{uéh“ stmlax + muy (0).k(0) +m u (1).n(1)
d
o

Integrating the first term by parts, and taking minus signe throughout

we obtain

1
é%%gg_l - 5 houl' - £) dx - (mu (1) + u! (1)) .b{1)

€ =0 0 _(mouo(o) - ug(O))oh(O)
= 0

We recall that this condition is satisfied by any function u,
which minimizes I(u) , and that this must be true irrespective of the
function h.(x) , subject only to h(x) #O0 . Selecting in turn
a) h(0) = 1n(1) = 0O
b) h(0) =0, h(1) ¥ O
c) n(0) 0, h(1) =0
we obtain the Buler equation

ul' - £=0 00e(1.10)
with the conditions

u' (1) + mlu(l) =0
eoo{1.11)

Nt e N

u' (0) - mou(O) =0
which must be satisfied by u, o

We have shown that if u  minimizes I(u) then u  must satisfy
the differential conditions (1.10) and (1.11). We have not shown,

however, that for my s By finite, we need not impocse these conditicns on
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the functions with which we attempt to minimize I(u) o wWhilst for m, s

my infinite, ccrresponding to the fixed boundary conditionz
u(@0) = u(1) = 0
this condition must be imposed on trial functions. To do this we ncte

that we implicitly require the potential energy of the system to be finite,
and if m —> 5  then I(u) ~» o for all u not satisfying u(0) =0,
and hence this condition, and similarly the condition u{(1l) = O when

my f$3»oo s have to be imposed.

Given a self adjoint differential equation of order 2k ,

ly=¢

and 2k boundary conditions of the form
gi(x’y’y" ®co yti) = o i n 1 o9 &

there is a simple criterion for determining whether g is a natural or
essential boundary condition for the corresponding variational problem.
If Yy € k -1 then the boundary cordition g; 1is essential,

otherwige it is natural.

1.6 The Ritz and Galerkin methodsg.

The fundamental method for the solution of variaticnal problems
other than that of reduction to the Euler equation, is the method of
minimizing sequences. Let yn(x) be a sequence of functions complete
in the space Y of admissible functions. Then Yo is a minimizing

sequence for the functional I(y) 4if and only if

I(yn+1) < I(yn) for all n

and Lim I(yn) exists, say Lim I(yn) = I,
-5 90 n> w0

Then I, = inf Iy) , yex
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a0 lim Yo = ¥, is the solution of the wariational problem.
n-»ed
The Ritz method is one method of constructing auch a ssguence; there
are many others, examples of which are given in Mikbhlin and Smolitskiy (1)
and Gumowski and Mira (1). The basis of the Ritz metncd is to select
a finite sequence of functions ¢1 ) ¢n(x) which form a basis of a
subsgpace Yn of the space Y of admissible trial functioms; that is,

¢i must satisfy the essential boundary conditions of the problem, and

be sufficiently differentiable for I(¢i) to be defined. Then a trial

Y, = :%; oLy g (x)

i=1

solution

is computed,; where the coefficients C&i are determined from the necesgsary

condition for a minimum of I(yn) in the subspace Y ., i.e.

aI(y,)

4

= 0 , 1x=1-°°on 0ee(1.12)

A sequence of such approximate solutions T constitutes, subject
to certain conditions concerning the convergence of the sequence of
subspaces, and similar problems (see e.g. Hilbert (1)), a minimizing
sequence for the variational problem. More detailed discussions of the
approximation and convergence theory will be given thronghcut this thesis,
particularly in Chapter Two.

In the particular case of simple quadratic prcblems, where

1 k
I(y) = [g p,(x) (-:—i-s y(x)>2 +2f(x)oy(x)} dx
0 8=0

the equations (1.12) assume the particularly simple linear form
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A @'f -+ R = 0 000(1013)
where
A = (a.ij) i, =1 ceom
b = (bi) i =1¢°°*"n
1 k
f e s 8
t d d
a5 " J :E: ps(x) P ¢i(x) Ios ¢j(x) ax
o s=0
cos(1.14)
1
b, = { f(x)o¢i(x) dx
u
o

whilst for mildly non-linear problems with integrands of the form (8)
the equations are

A 2(. + g(%) = 0 oau(lols)

where A = (aij) , iyj =1 cccn is defined by (1.14)

and 1 n
g (%) = f £(x, § o, Bi(x)). 4 (x)  ax
“o jaf

i=1]1 <°°n

The Galerkin method is not a variational methsd; and can be
successfully applied tc many differential equations which will not admit
a variational treatment. Hewever , in the case of differential
problems corresponding to variational problems with integrands of types
(1.5) or (1.7), that is the problems (1.6) or (1.8) the Ritz and Galerkin
methods produce identical systems of linear or mildly non~linear
equations. The Galerkin method can be deacribed as follcws.

Let
G(x,y,y" °°°yt) = 0 in a region fl seo(1.16)

be the given differential equation, with boundary conditions
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8; (xy55y" “ov y*1 =0 on 8il3 oo (1:17)
i=1-7°°°1%
Let Y , the domain of existence of G , be the set of all
functions satisfying(ld?) for which the differentiszl operator
G(x,y,y" yt) is defined. Select in Y a set of n linearly

independent functions ¢1(x) cee ¢n(x) , defining a subspace Y of Y

Define n
In ™ g Xi ¢i(x)
i=1
tc be an approximate solution of (1.16), (1.17) if the residual

t
G(x’yny}’;l ooo yn )

is orthogonal in the scalar product of some space containing Y to

the functions ¢1 9 ¢2 seo ¢n o

Zﬁhe Galerkin method is normally applied in this form., If the
residual is made orthogonal to a set of n 1linearly independen’ functions
HVi(x) s i=1..0m, ﬂVi(x) £ ¢i(x) , the method is referred to as the
‘method of projections’ -~ see Collatz (1)7,

When the Galerkin method is applied to differential equations of the

type of (1.6) the resulting equations are (assuming an integral norm)

L n
-1)"® ~(")d—23 x + x} x)dx 1

j {go(n igl N ACTIRIC N ST

o
whilst for equations of the form (1.8) we have

L 2k n og n .

g [ S § ¥R G v § Y |-

dx

o g=0 i=] i=]

g§x)dx .+(1.19)

If we assume homogeneous boundary conditions

@ y ay
8 = o = 0 oes(1.20)
dx y=0 dx ¥y =1

830,10 lk-l
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then the terms
1
: s d2s
(-1) ;;Es ¢i(x) . ¢j(x) dx

o}

occurring in (1.18) and (1.19) can be expressed as
1

a® a®
[ o g, (x) © e ¢j(x) dx eue(1.21)
)
and the equations (1.18) and (1.19) reduce to the forme given in (1.13)
and (1.15).

If the differential equation does not have boundary conditions of
the form (1.20) then the integration by parts performed to derive (1.21)
produces boundary terms similar to those occurring in the expression
(1.9) of Courant's example (p.l4).

The equivalence of variational problems with certain differential
equations extends in this way to encompass methods which when applied to
these particular problems are equivalent, It is possible, therefcre,
to make theoretical deductions concerning the Ritz method from &
theoretical knowledge of the Galerkin method, whilst properties cf the
Ritz method may {though not necessarily) imply the same properties for
the Galerkin method. It is the case, however, that theoretical study
of the Ritz method has provided more specific thecretical results than
these available for the more general Galerkin method, and so the former
approach has not been necessary. Conversely, the gensrality of the
Galerkin method is such that implications of variational theory have not,

in general, been shown tc hold for all cases of the Galerkin method.
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Chapier Two

Variational Theory for Differential Equations

We are concerned for most of this chapter with variational problems
involving integrands of the type (1.5) and the correspording differential
protlems (1.6). Integrands such as (1.7) and their corresponding

problems, are considered in section 2.8,

2.1 Energy
The physical concgpt of energy, which was useful in Chapter One for

the discussion of Courant's example, can he expressed in abstrac’
mathematical terms. In this section we develop scme cf the theory of
this abstraction, and show how the application of energy principles to
linear differential operators of certain types leads fto a Formal account
of the Rayleigh-Ritz method. Much of the treatment of this sestion will
follow the works of Mikhlin (1,2,3) and Mikhlin and Smolitekiy {1).

Let HE be an arbitrary Hilbert space, with scalar produst (u.v)
and associated norm |lul = (uou)é. Let L be an arbitrary linear
operator scting on H . Then the domain of existence of L , dencted
D(L), the set of all functions u € H such that Iu is defined, satisfles

D(L) €H . D(L) may be strictly within H , for example, let

H = JCZ [0,1] » the set of square integrabls functions

on [0,1] ’
and

2
L - /3

Then D(L) = Jﬁg [0, i] s the set of funci¥ions on [O,iﬂ having

o

square-integrable second derivatives, and clearly

(L) & i2 [d,ﬂ = H.



An cperator L is symmetric if and only if, for any furnctions
u, v € D(L) we have the identity ({u.lv) £ (Lu.v),

A symmetric operator L is positive if and only if, for any
u € D(L), the relation (Lu.u) ¥ 0 holds and (Lu.w) = 0 if u =0,

A symmetric operator L is positive definite if and only if

(Lu.u) 2 Xz “u“ 2 ¥ real const, 8 £0 .

If an operator L is positive or positive definite then (Lu.v)
is a scalar product for certain functions u,v in some space. We
denote {Lu.v) by (uov)L and refer to it as the energy preduct; the
corresponding Hilbert space is demncted by HL and referred to as the
energy space of the operator L. Associated with the energy product

%

is the energy norm Il ull L » defined by I} ol L= (Luou)%' = (o)

If L is a positive definite operator then H, & H, if L 1is
only positive then this need not be so. To investigate this we
consider the case where I is a linear differential operator, since
this is the particular case of interest tc us. The distinction is
maJe in terms of generalizst derivatives of a function, which we mow
introduce. In a sense these generalized derivatives allow the
extension of the method of integration by parts, and as a result of
this the scalar product (uov)L can be applied to functions u,;v which
do not satisfy u,v € D(L) .

Let ) be a finite region of m dimensional space, with boundary
§M and let L) = L) + S{L. By a bounded strip of width &
in {) we mean the set of all points x € {)  euch that for a
particular € > 0 there exists a point X € §Q1 satisfying

“x -X H N < &
where “x - 3| [ denotes some norm in the space AL . Denote by

£, the set of all functions which are k times differemtisble in n
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"

and zero in scme bounded strip of width £ Z 0 in fL o

If ¢ ¢ ;Qk , then for any functicon u & ¢®( §L) we have the relation

L

i1 i

\ K : .k ' 1k
j gy e | F e any
0 o7 ‘ by Ry SXipeee Xig

which we can verify by integration Ly paris.

Now consider a function v & Jin (452 ) » If there exists a
; “

R

function w £ s ( £} ) such that for any § Q-MQ% we have

)

k )
Xv"‘ Q,_J_____,_ d.ﬂ,\}ﬁ, = \¢0W d.ﬂ-k
£hl §xi,u°° ?lk ) e
then we say w is the kth generalized derivabive of v
Note: g f). = . Ny
( d - %xil Sxik)
The kB generalized derivative, z(x) , of the fumction v is
denoted
Sk
e \
@‘ir v xlk

as are the conventional derivatives.

As an example of a positive definite opsrator and its corresponding
energy space we ca.. take the example given above, where the Hilbert
f;‘. d2’2
space H = &, &O,l] and the cperator L = /4x° acts on funwziions
y{x) satisfying the differentiability conditions imposed by L and

y(0) = y(1) = 0 .

Then ‘
H = ‘”Z"z (0,17, o) « e*foal.
1
y 2
(uov)L = v . 2“% dx.
| dx
0O

Clearly (u,v)L ie defined for functions u,v possessing square-summable

$i]~gt generalized derivatives, that is, the energy space HL ig given

b 2
y B o= Wy [0,1}
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+
where wi {ﬂtﬂ is the Sobe¢lev space of functions having il k‘h

~
generalized derivatives which are p-summable in i L , and the functions

themselves are p-summable in {1 . We note that clearly

H = W5 [0,1] ¢ &® - iz 10,1}

and also that

D(L) ¢ H .
The condition D(L) € H; is a necessary condition for an energy space
and the corresponding domain of existence of an aperator; we have for a
positive definite operator L

(L) Q'HL € H.
(HL S H was first proved by Frdedrichs (1)).

To show that these relations need not heold if ‘1L, is only positive,
we consider the following examples of the Laplacian operator in three
dimensions, taken from Mikhlin (3, pp.16 & 17).

Let S(R) denote the sphere

112 + x22 + 132 = R2

and let L be the exterior of S(1). Again we take H = «f'z\'ﬂ L
Let Mc H be the set of functions u in H satiefying
a) u is twice continuously differentiable in RN s(1)

b) u = 0 on S(1)

c) fﬁ%“)o as R —» o°
S(R)

d) u€ x > QD € Iz(ﬂ) , where [\ demotes the thres-
dimensional Laplacian operator.
Then - /\ is positive (but not positive definite) on M , and

80 we have an immer product

3
dq 4
(u,v)_A- Lg éxi & . Bﬂ

i=1

<]
<1

Lol
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and the associated energy space H_ A"

The problem
DNu = l/R4 , u = 0 on S{1)
has the solution
A = YoM -1/R),

¢ ¢d(N)

go that T €& H . o

B # 8 = L),

Furthermore, the problem
Z& u = 1/4 Rf5/2 ln R u=0 on 8S(1)

and therefore

has the solution

21
=R /2 InR, and

egn,, u¢u-L.

The Energy Problem

We consider the linear equation Ly = f .where L. is a positive
operator defined on a Hilbert space H and f 1is defined on an
arbitrary Hilbert space. = Define

I(y) = (Ly.y) - 2(y.1) oo (2.1)

The following theorem is given by Mikhlin and Smolitskiy (1).

Let L be a positive operator. If the equation Ly = f has a
solution then this solution strictly minimizes I(y) .

Conversely, if there exists an element which minimizes I(y) ,

this element satﬁ?ies the equation Ly = f .

Since we have already noted that I(y) is defined for certain
functions for which Ly is not, it is important to clarify the wording
of this theorem. For the case with which we are primarily concerned,

where I is a second order differentiasl operator and y a function of
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one variable, this clarification may be obtainsd from the Dibois~Raymond
lemma or from Hilbert's derivation of the Euler equation (Bslza (2,p.22)),
beth of which show that in this case, even if the function Yo

minimizing I(y) has only a continuous first derivative then i% nust
satisfy the Euler equation Ly = f. Additionally, the Bilbvert derivation
implies the existence of a second derivative of ¥, for all values of X
for which (using the notation of % 1.2, % 1.4)

Ey_% P(x,7,(x)s7,' (x)) £ ©

Mikhlin (3) points out that this result does not extend to multi-
dimensional variational problems. Instead, for these gemeral problems,
we have to assume that yo(_x_) ¢ o(v) , yo(_g) € Hy and it can be
shown (Mikhlin and Smolitskiy (1), p.156) that ong) satisfies an
equation related to the equation Ly = £ , and such golutions are said
to be generalized solutions of Ly = f .

If the operator L is positive, but not positive definite, then
the equation Ly = f has a solution iff the scalar product (y.f) of
I(y) is bounded atove for all ¥y é.HL , since then, by the Reisz
theorem, there exists a function y € H; s.t. (y.£) = (yon)L and
¥, 1s a solution of the minimization problem for I(y) . and a solution

in some sense of the problem Ly = f .

The problems-—~
Given a positive or positive definite operator L , find Yo such

)

that

I(y,) € I(y) = (ILy.y) -2(y.t)

14
yEH
' Jo € HL

is referred to as the energy problem, or sometimes as the ensrgy method.

The phrase ‘'energy problem’ is preferred throughout %this thesis.
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Methods of Solution of the Energy Problem

The methods of minimizing sequences, mentioned in % 1.6, are the
most important methods of solution of the energy problem. We are
concerned with the Rayleigh-Ritz method, and we give now a more formal
description than that of % 1.6.

The Rayleigh~Ritz method produces a sequence of approximate
solutions of the energy problem. The nth Rayleigh~Bitz sapproximation,
denoted by yn(x) , is of the form

x) = S (i

i=l

19 i=1] .. n are linearly independent, and the

constants an(i) are determined from

LS s @) - 0, jete
ﬁ;,(a) o !

the necessary condition for a minimum of the function of the n

where ¢i ¢ H

variables an(i) o
Substituting for I the expreassion (2.1) we have the equations
n
S 88 - (2h) = 0, =1em,
AL
written in matrix form as

Ag, = In 000(202)

where A = {aij . (L¢i'¢d) - (¢io¢j)L R NE 1oo°n'ﬁ
L - {fj . rJ = (f.¢j) s Jj=1l.on }
The functions ¢i are referred to as co-ordinate funciions or

basis functions and the matrix An is the Gtesm matrix of these
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functions in the space HL °

2.2 Theoretical criteria for the selection of co-ordinate systems.

Though the selection of co-ordinate systems is of considerable
importance in the practical computational use of the Rayleigh-Ritz
method, the criteria imposed by the analytic theory are of a simple

nature. It is necessary that the functions @, satisfy the following

fy € H

¢i y i=lo.. o0 form a complete system in HL

¢i are linearly independent for all n , since
otherwise the Gramm matrix An is singular and equations C&Z) Lave no

unique solution.

The particular energy problem with which we are concerned is that
for which the equation
Ly =t
takes the form (from (1.5))

k
S @ L o) -t 2y
8=0

subject to boundary conditions

a7 y(0) = &% y1) = 0, =0, l..k-1

dx ax* 0eol(2:4)
that is, problems for which
1 k 48 2
(y) = [ { b3 pB(X)(—%) - 2 2(x)y | ax
o s.o dx / 000(205)

subject to boundary conditions (2.4)

r r
for which H = {y(x)s ye c¥1T0,1], 4= y(0) =« &=ya)=0 }
dxl' dxr .
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Basis functions in use for prcblems of this type, ana for the
similar prcblem given by (2.7) are of two bread types, distinguished
in terms of the conceps of the ‘suppors’ of a function. A function
@(x) is said to be a global basis function on @091] iff @(x) = 0 at
only a finite number of points on {Ovlia A functicn is said to have
compact support iff there exist iwo nuubers o, B guch that
050‘{'4,8“5 1 and z;ﬂ,=0:7jg%l,or Bmli,‘}r::f.;{o
and @(x) is a glcbal functicn on X@ig ¢l , §(x) 2 O on ‘O,C*) ’
(B,1].

Global basis funciicus have been considered theoretically by
Kantorovich and Krylov (1), Mikhlin (1,2,3), Mikhlin and Smolitskiy (1),
and extensively used in practice. Functions with compact support have
been the underlying basis for finite difference and finite element
metbods, and are considered theoretically in a variational setting in
papers by Ciarlet, Schultz, Vargs, snd cthers. In % 2.3 and % 2.4
we conaider examples of functions with ccmplste and compact support

rerpectively.

2.3 Basis functiona with complete suppory

Co-ordinate systems with tkis property were used for many years
to the exclusion of all others, and as Schultz says, (1,p.303), if it
were not of importance computationally for A to possess certain
features, basis functions of ihie type would élwaya be used. The
most frequently used systems for problem (2.5) are the following

g(x) = = Lot .(2.6)
and
¢i(x) = sin (197 x) 0eo(2:T)
(k=1 in (2.5))

or certain weightings and combinations of these. Important for our
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purposes in this context are the funvtiouns

g.(x) = ex) et/ veo(2.8)
(k=1 in (2.5))
and JuJ
¢i(x) = z?ﬁ sin 11 x 0eo(2.9)

(k=1 in (2.5))

Ciarlet, Schuliz and Varga (1) use the functions

g,(x) = | By, (2t-l)at .+.(2.10)
J

o]

where Pi_l(x) is the Legendre polynomial ¢f degree i-1 on L-1,11,
and we shéll also examine the functions

¢i(x) =~ x(i-x) P, (2x-1) 000f2o11)
and

g,(x) = x(1-x) T, . (2x-1) 000 (2:12)
where Ti_l(x) is the Chebyshev pclynomial of degrees i~1 on Xrl,ilo
These three co-ordinate systems will be shown to possess computationally

convenient propexriies.

2.4 Basis funciions having compact support

The wide variety of piscewise pclyanomial and spline basis funciions
which bave been intrsduced by Ciarlet, Schultz and Varga (1), and their
collaborators may be cousidered as fcllows.

Let ,EN = {x09x1 oo Xy j he a partition of the interval K09i]
such that x = Oy X .= 1 , X

it

A

X ,i=0000N0 Thenthe

1 i+l

approximate solution yn(x) of the equations (2.2), where the basis
¢i(x) , i =1 ooo By is & piecewise polynomial or spline basis defined

on ﬂﬂN , will be a function in the space Qom(‘ifm) of functions q(x)

having the properties q{xz) = v,(x) on each interval Yxi9xi+11 s
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i =0 .. N where vi(x) are poiynomials of degree 2m-1 in X where
x € (xi y xi+1) R oo (2,13).

vi(x) , i=0 ... N are such that q(x)c ¢t fo,il , ¢+ 2 w1, (this

implies continuity properties at the nodes x, of the mesh i N).u,(2014)

vo(o) =0, vN(l) =0 .o (2:15)

The particular type of piecewise polynomial cr spline representavion
for y, ie determined by the continuity properties implied in (2.14).
The following examples are given to indicate the differences. Qther
types may be found in Ciarlet; Schultz, Varga (1) and Schultz and
Varga (1).

Hermite piecewise-continuous polynomials oo (2.16)

At each point X i=0 .. N+l of the partition ‘Yﬁ*ponsider

that there are m interpolation parameters dis , 0% g % n-l y
0%4 SN+l Then in each interval [xigxi+1] there is a unique

interpolating polynomial vi(x) of degree 2m-1 such that

8
d 8 d £
— v.(x,) =4d y = v.(x,,.)=3a, -
dxs ivi i ax® iMi+l $4+1
0%s & k-l

Clearly a function g(x) defined as above i€ terms of these vi(x)
satisfies q(x)€ €71 [0,1], and taking d: = 4y, = 0 we can
satisfy the boundary conditions of the problem, i.e. (2.4). There
remain m(N+2) ~ 2k interpolation parameters to be determined by the

Ritz procedure.

Spline piecewise continuous basis functions 000f2,17)
These are the functions which satisfy (2.13) .. (2.15), with
t = 2m-2 in (2.13). As such they may be considered as Hermite

Piecewise continuous polynomials satisfying additional comtinuity
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requirements so that q(x)¢ sz“Q {0,1] . To do this w=s =¢nsider as

parameters the quantities dos

8 2
y d’N+1 8 =0,1lm] andds;, # =1 ... N.
The values djé, i=l., Ny 8 =1 ... m-1 are then determined in terms

of the parameters so that q(x) , defined by

a(x) = v, (x) ; € xfx
satisfies q(x)e ¢2m-2 YO,I],. There are then n + 2(m-k) parameters,
gince the 2k wvalues d°s= 0, d.;ﬂ = 0, 8 = 0,1 .. k=1 a&re prescribad by
the boundary conditions.

These piecewise continucus basis functions, and others congidered
by Ciarlet, Schultz and Varga (1) are special cases of the Le-spline
functions (not necessarily polynomial functione) defined by Schultz and
Varga (1), and Perrin, Price and Varga (1). The complexity of a
general treatment of such basis functions is such that we avoid a
sumnary of it. In practice only particular cases, such as those given
above, seem useful because of the difficulty of determining the
functions vi(x) in the more gemeral cases. In %2.5, where
convergence results given for the piecewise continuous functicns
defined above can be strengthened for the more general c¢lass of
L-spline functions this is indicated.

In passing we comment that in practice a further distinction
exists between Rayleighqa;tz approximations computed using basis
functions such as (2.6)..(2.12) and those computed using (2.16),

(2.17). That is that the sequence index n of the approximation
n
v, = 2{ an(i) ¢i(x) is determined by the two parameters m and
i=]

N of the respective subspaces, and thus the sequence {yng should

more properly be considered as [ym N} o
3
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Cenvergence of the Rayleigh-Ritz Method

There are two approaches to the convergence problem for the Rayleigh
Ritz method, which may be conceived as the problem of comvergence of the
coefficients of the approximation, and the probiem of convergence of the
function approximation defined by these coefficients and the sequence of

basis functions. We look at each separately.

2.5 The convergence of Rayleigh Ritz coefficients

Not only is it important to discover under what circumstances the
Rayleigh Ritz coefficients converge at all, but also it is convenient tr
have some estimate cf the rate of convergence of the coefficients for
different expansion sets, so as to estimate the number of iterms likely t»o
be required in the expansion of a particular Rayleigh-Hiiz approximation,
and indeed, to determine the computational feasibility of such an
approximation. After some initial convergence results, taken from
Mikhlin (1),(4), we examine the work of Delves and Mead (1),(2) on the
estimation of convergence rates from simple properties cf the Rayleigh-
Ritz matrix. The theorems of Mikhlin rely on concepts which we find it
more convenient to introduce fully in 4 3.1; we briefly indicate them
here.

7]

A sequence of functions { ¢i} ja7 18 minimal in a Hilbert space H

if the space Hk formed by linear combinations of ¢1, ¢2 ves ¢k—l’ ¢k+10no

is a proper suﬁspace of H.
o
A sequence of functions {¢i] j=l is strongly minimal in H if

n
the Gramm matrix A of {-¢i]'i=1 in H is positive definite for all n .

The following results describe the convergence of the sequence of
Rayleigh-Ritz coefficient vector elements gn(i) i=1 .. n, n=l ., ©@

Theorem:



§ [N}
If §-¢i% . - iz minimal in HL , then thers exisgt zcustants o
sS4 g
k=1.. 0 such that

gj;mw a (k) = C"k ko= 1,2 ., O 0vo(2,18)

Under fairly gererai circumstances (Mikhlin (4)§ p.14, p.23) the

limit precess is uriform in k o

Theoren
r ("‘D ] h] k3 I -y
Ir t ¢i} j=1 18 strongly minimal in HL then
1 5 - < 0
o tgﬂh - Iglz

where & is the vector (%, : k=1 ... ® ) defined above and
} 1

We can consider that the constants Oik defined 1in (2.18) are

x(1)

Il [2’

2 L,

generalized Fourier coefficients of y(x) in terms of the ~o--nrdinate

o0
gsystem { g, } s 50 that we may take
w
< ,
y(.x) = J.,,/ X X ¢k kx)

.
-,

k-l
where y wsatisfies Ly = f .

The Rayleigh-Ritz approxiwation given by the solution of equations

(2.2), 1.e. n
a0 = S a0 g ()
k=1
clearly has an error n
£ (1) =y () =y (x) = 5 (- e (1)), ()
1=1
(s ]
+ éj oy ¢i(x)
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Since the wvariational solution yn(x) is dnvariant urder a noen-singular
. C . . . ¢
linear transformation, we may assume that the functions 1-¢i are

ocrthenermal with respect to some szalar produst, so that

o [ Yo
e o <
‘igin(x)” = 5 (et - an(j) ) R CK.i2
™ N
i=l izl

and thus the convergence rate of the variational prceess depends on
the rates at which “‘i - 0 as i=¥9°¢ (Fourier convergenie),

!QLi - an(i)i >0 as a -» U (horizonital convergence)

and lOLi - ai(i)s > 0 as i —* % (diagonal convergence)

Rates of convergence are given by Delves and Mead (1),(2), and these
lead to practical criteria by which co--ordinate systema may be judged,
at least from the viewpoint of analytic computation. The terms
'horizontal' and 'diagonal®’ convergence were introduced by Delves and
Mead and refer to a triangular array of *he coefficients of successive

Rayleigh~Ritz approximations.

al(l) ag(l) a3(1) e . e an(l) “ e °<1
5,(2) a3(2) e emf2)e &,
5G) .. e (3) e o o

"Horizcental®
Convergence

a%x(rx) o s e

"Diagonal"
Convergence \ ggiﬁi:;ence

N
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In certain circumstances not all convergence problems may be present
9 o
in a problem, for example, if the basis funciions g.¢i§ . are

i=1
orthogoral with respect to the energy norm, ithen the mairix An of (2.2)
is diagonal and the solutions of (2.2) are the Fourier scefficients of
yn(x) 3 the herizontal and diagonal convergence problems are not present.
This is a somewhat artificial case, and from a general viewpoint all three
are important. The convergence of Fourier approximaticw may be
determined from the data of the problem, i.e. from the forms of L and

f of the equation Ly = f , and this problem, for one dimensicnal

preblems, has been considered recently by Delves and livad (3).

We concentrate now on information concerning the cowivergence problem
derived from the forms of the matrix An and free terms bn of
equation (2.2).

The important definition is the following

A matrix A is asymptotically diagonal of degree p if for fixed

J and all i

(a0l . sG]l 2 J

IA(i,j)l £ ¢. 7P coo{2619)

where Cj and p are positive constants.

A matrix A is uniformly asymptotically diagcnal of degree p if

(2.19) holds and there exists a constant C ; 0 < C < ¢ guch that
cj<c for all j .
With these definitions, the following results of Delves and Mead (2)

are the most imporiant for our purposes.
Theorem (Delves and Mead (2), Thm. O)

If the operator L : H > H and the sequence {ﬁi} is orthonormal
in H , then the matrix A , aij = (¢i’¢j)L is asymptotically diagonal

of degree p 2 1/2 provided 'A(i,i)l 2C >0 forall i.
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/[Note that A is the infinite matrix formed frem A(1,;) = 849
i, 3=1 ...8/.
We recall the definition of the energy furctional of the prcblem
Ly = £ , that is
(y) = (Qywy) -2(y1f)

Then we have

Theorem (Delves and Mead (2), Thm.5)
Let L be a positive symmetric (Hermitian) operator; and define
yo(x) ’
v (x) ¢ min I(y) = I(y,)

yEHL

Also, let the matrix A : A(i,J) (¢i’¢j)L be uniformly asymptotically

diagonal of degree p > 1/2 , let Aj; =1, and let
lees)) - |(¢i,y)| € xi? , 7Y, K>o
where A and b are the (infinite) matrix and vector of (2.2). Then

if p +2q > 2 +the inequality

Hgn” L £ Xl n2atl X2 ~(p+2q-2)

holds, ( Xl , X2 constants > O )

We note that weaker results applicable to general algebralc
problems in which uniformly asymptotically diagcnal matrices occur are
also given by Delves and Mead (2) .

In the above theorem we have a dependence on the rate at which the
unknown Fourier coefficients decrease. The foilowing theorem provides

an estimate of this rate

Theorem (Delves and Mead (2), Thm.6)
Let A satisfy the conditions of the above theorem, and assume

b(1) = (f;,2) € ei™ r 2z 1,
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Then there exists a constant D such that

IOL(i)‘ < pi™® , & =nmin (p,r)

for all integers 1 .

This theorem describes the Fourier convergence problem cf the
basis functions. Delves and Mead (2) give the fullowing result for

the variational convergence problem.

Theorem (Delves and Mead (2), Thm.7)

With the assumptions of the above theorem
(2pw]l) ~{r— -q"
oL (1) - a (i) < pm (2p l)i (z-1) +D, nY
n 1 2
ialoon

where q' = min (p+r-l, 2p-1, 2p+r-2) and D, 4 D, are constants.

It is clear from the last two theorems that the Fourier ccnvergence
problem is generally dominant. In‘(l), Delves and Mead pursue an
approach which leads not only to estimates of the Fourier convergence
rate but which also may have considerable significance in the
determination of an initial approximation from which equations (202)

may be solved iteratively.

Theorem (Delves and Mead (1), p.212)
Let the matrix A be asymptotically diagonal ¢f degree p , and,

assuming ©¢ (i) # O for any i , let

l°‘(i)| £ py 17 a> 1.

Then the coefficients a'(i) defined by

n

S AL - v v (2.20)
j=1

decrease asymptotically at the same rate as the Fourier ccefficients ©(i)
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provided p> q+l .
If p is sufficiently large, the coefficients
"

a," ¢ A (1,i) a"(i) = b(i) ooe(2021)

also have this property.

These convergence results are important ia praciical computational
terms. We can contrast them with results on the convergence of the
approximation yn(x) and its derivatives to those of the sclution

y(x) ° We continue now to examine results of this type.

2.6 Convergenuce of the Rayleigh-Ritz approximation

The results cf this section are primarily those of Ciarlet, Schultz
and Varga, for basis functions which are trigonometric fumctions, or
polyromials, both continuous and piecewise continuous. A discussion
of the most general result of Rayleigh-Ritz convergence, i.e. Ciarlet,
Schultz and Varga (1), Thm. 4, is deferred until we consider mildly
ron-linear differential problems in % 2.8,

We give first the appropriate theorems for glebal basis functions.

Polynomial functions of degree u satisfying the boundary

conditions given in (2.4) are of the form

K, K [ n-2k ]
x (1-x) a tax +. . e o X ,

so that each polynomial is an element of a subspace P;l cf HL with
dimension n-2k+l . For representations in this space of functions we
quote the following theorem without procf.

Theorem (Ciarlet, Schultz, Varga (1), Thm.5, p.403)

1 y(x) € c* [0,1) and y(x) satisties y\F)(0) = yF)@1) = 0
for r = 0,1 ¢ . k-1 , then there exists a sequence of polynomials of
0
degree n , ‘{pnﬁx)} e with w = max (t,2k-1) such that '3;(x) €.P:

and
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Ir Lt
d X d y 1
ax® n (n-x) V¥ ax’t -k

where 03 (u, ) ) is the modulus of continuity of u defined by

W, §) = max  |y(x) - y(x)|
x,X

Ix—xdl < &

As a consequence of this theorem we can establish the following.

Theorem (Ciarlet, Schultz, Varga (1), Thm.6, p.405)

Let /(x) be the solution of the differential problem (23).
Then YW (x) € ¢*[0,0], $Z2 . Let P (x) be the function in P’
which minimizes the corresponding energy functional (2.5), where n =t .
Then there exists a constant M dependent on t and n such that

Is - v

£ M
oo -
('ﬂ-—k)t ) <

t
i—t—-"’l—/” . veo(2.22)

We remark that, since L”/ is asgumed to be a classical solution of
(2.3) then Y € D(L) and fn € (L) . Thus ?n . the unique minimizing

element of P; for the energy functional I(y) . . (2.5) satisfies
3,) 2 (YY) =2 K9
where § 18 the function which minimizes I(y) over H .

It follows at once that the sequence of Rayleigh-Ritz approximations

Prgy * V= 1,2 ... converges with order at least equal to k , i.e. if
W € ¢* o1, W¢ c**1 0,17 then t -k = k .

These results are proved in Ciarlet, Schultz, Varga (1) for mildly
non-linear problems of the form (1.8) which we shall consider in section
2.8, provided that certain assumptions are made concerning the coefficients

ps(x) y 8=0 . o k ant the right hand side f(x,y). We shall detail



- 41 -

these requirements and their relevance to these theorems in section 2.8.

Weaker results than (2.21) and (2.22) concerning polynomial
spproximation and the Rayleigh~Ritz method are given by Mikhlin (4,p.129),
(5). These results include, however, ccnvergence results for approximation
in more than one dimension as well as convergence in certain Scbolev norms,
including derivatives,giving results comparable to results of a later -
gsection obtained by Ciarlet, Schultz, Varga {p.48).

Results similar %o (2.21), (2.22) can be established when the
approximation iz a trigonometric polymomial if the sclution y(x) is known
to be periodic or if periodic boundary conditions are prescribed.  Such
results are given by Ciarlet, Schultz and Varga (2 ) ; and Birkhoff and

Fix (1),

Convergence theorems of the above types are develcped hy Ciarlet,
Schultz, Varga (1), Shultz and Varga (1), Perrin, Price and Varga (1),
for piecewise continuous basis functions such as (2.16) and (2.17).
The strongest of these results are those developed by Schultz and Varga
(1), using the generality of L~ spline theory; however the following
theorems are of more practical importance and indicate the types of result
which can be derived for specific piecewise continuous bhasis functions

in practical use,

Theorem (Ciarlet, Schultz, Varga (1), Thm.10, pp.409-10).

Let ¥ (x), the solution of (2.3), (2.4) be of class c® Lo,1]

with t2 2m 2 2k , let || be any partition of [0,1], and let q(x)
be the unique function which minimizes I(y) .. (2.5) over the space
H;n( It ) defined by (2.16). Then there exists a constant M ,

———

independent of P s such that

o - Yall, ¢ x |45 ‘/”” (B(TT )™
dx o0
where b( |l ) = max (xi-xi_l) y X el .
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We note the comment in Ciarlet, Schultz, Varga (1) tha* the exponent

of E(”Ff) , 2m-k , is in a sense the best pcssible.
For elements of the space S%fl(lﬁ ) defined bty (2.17) we have

Theorem (Ciarlet, Schultz, Varga (1), Thm.16; p.41€)
: +
Let Y (x), the solution of (2.3),(2.4) be of class C° 0,1} with
., ©0

tZom2 2, let 1{ii iﬁ 4.1 be any sequence of partitions of [0,1) with

lim E(mfrg) =0, and let r,{(x) Dbe the unigue functicn which minimizes
i -

(37) over Sp;%-(Ti) . Then there exists a c¢onstant M , independent of

the sequence _fii s suck that

£ X

—

n( - ()

e Ii - Ty \2m-l-k
S (B( 11.))
dx2m lf/ oo 0 i

Unlike the result above it appears that the expcnent 2m-l-k could

be improved to 2m-k. See Ciarlet, Schultz, Varga (1, p.417).

2.7 Convergence of the Residual

We have seen that the function y(x) which minimizes I(y) =
(Ly,y) - 2(y,£) does not necessarily lie in the domain of existence
D(L), and it is therefore not possible for such functions that the
approximations yn(x) satisfy

lim Lyn(x) = f
n»e

under general assumptions, Under what comditicns this convexgence cancfr
be established is a problem which has been considered by Mikhlin, Vainikko
and.others; see Mikhlin (4, p.108), and Vainikko (1). The following
theorem, from Mikhlin, characterizes the situation for thé Rayleigh-Ritz
method; it is a particular case of the theorem established by Vainikko
for general projection methods (including least squares, Galerkin, and

the method of moments).
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Thecrem (Mikhlin (4,p.109))

Let L and M be positive definite operators defired on a
separable Hilbert space H , satisfying D(L) = D{M). Assume that the
eigen values of M are discrete, and let the correspcnding eigenfunctions
be the sequence {¢i(x)]:l . If this sequence of functions are used

as co~-ordinate functions for the Rayleigh-Ritz method, and
n

Tolx) = 2 a,(1) #,(x)
i=1
is the resulting approximation,; where &, satisties (2.2) then

|HLyn - f!l +» 0 as n ~» oo

The operators L and M are said to be similar: sse 4 3.1.

For the differential equation
4. &y -
L(y) = dx (pl(x) dx ) + po(x)y f 030(2023)

where pl(x) > 0, po(x) 2 0, with the boundary conditions y(0) =0

y(1) = 0, a similar operator is

2
M(Y) = d2
dx

with the same boundary conditions. Thus if the basis

{¢i : g(x) = C, siniﬁx, i=1, ow} 000(2.24)

is used for problem (2.23) then the residual will converge to zerc., The
role of the normalizafion factor Ci with respect to practical computation
will be considered in Chapter Three.

An alternative study of the couvergence of the residual for
projection methods is that given by Kantorovich (1), which is somewhat
less restrictive than the results of Mikhlin, given above,

Let L : D(L) = R(L) , and let D(L) = H, R(L) = H Let

2 °

Hl(n) be a finite dimensional subspace of Hl for esach n . In the



: s s . . IR B o
Rayleigh Ri%z methcd this will he the subspase spanned by iﬁ.% . .

<4 i=]

Agsume that for arbitrary v ¢ H.
s 1
o |
E {v! = inf Vo= oy it
T (n) oY
v ([:, H ;
n Tl

= 0 as n-» o> . (2,25)
Let §\§n) ) >\ én) be the emalleet and larges* aigenvalues of the
n

Gramm'matrix of {¢4E Then 1t can be shown that

iwl 7
IIAyn - f“ - 0 ag n B o0
if
>\ (‘rl) _12*
;?n) En(y) = 0 ag np -y O 0ee(2:26)
7 |
1

The practical limitation of thisg result is ithat the problem of
determining a suitable subepace for which (2.25) holds; the result of
Mikhlin above provides such a subspace in terms of the gigenfunctions of
a similar operator. On %the other hand, these eigenfunctions may not
permit rapid convergence of the Rayleigh--Ritz solution. For example,
the basis (2.24) will nct provide rapidly scnverging approximations to
the solution of (2.23) unless this sclution is pericdic, and a pclynomial
basis would be preferable in the general case., We shall examine the
ugefulness of these respactive criteiria in Chapters Three and Four,

with reference to specific possible co-ordinate gystems.

2.8 Mildly non-iinear differantiszl problems

We consider now differential squations of the form
i L .

< ()8l _d® ! y

ii (-1) B 5PS<1) 3 5} = f(x,y) e00(2.27)

X \ X
8=0

i

subject to
y(0) = y(1} = 0 oo.(2.28)
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A

for which the functioral of the energy rroblem assumes the form

1
k y(x)
- i .5 \\ 2
(y) = 5.1?. Z p(x) | =L+ £(x.M)a7 | dax
uo . 5:7:0 8 \\ dJLs ;
* ' 0

voo(2.29)

The differential problem (2.27) (2.28) will be termed a mildly

non-linear problem, since 3% is linear in derivatives of y but

non-linear in y . The preblems (2.3) and (2.5) are casily seen to be

special cases of (2.27) and {2.25). In order that the problems (2.27)

and (2029) have unique solutions it 1s necessary that we meke explicit

a number of assumptions which have been implicit or urnecessary in our

treatment of linear differential problems. In doing this we are again

following the work of Ciarlet, Schultz and Varga (1), and their

collaborators. We shall nct comment fuxriher om two extenaions of this

work, in which Gladweil (1) considers differential equations of the form

where

k
\ (1)
a8 a®y Ve oo (4
< (* @ § il
ax” dx” / ~.
s=0 1=0
£, (x,y(i)) je the ith derivative cf a furcticn of x ard y\i),

but is independent of any other derivative ¢f y , ¢r ¥ itself, subject

to linear homogeneous essential bourdary comditicns, and non--linear natural

bouniery conditions, and Cilarlet; Schultz an d Varge (5) treat a wider class

of differential equations by the Galerkin method, using monotcne operator

thaory.

Under the following assump%ions it can be ashown that there is a

unique soluticn of the energy problem:~ Minimize (2,21) subject to (2.22),

These are given by Ciarlet, Schuliz and Varga (1, % 8). Ta introduce
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them we must define

k
1 ds Z
Mg L€ el 0o
8=0
1
j (B(x))? ax
0

Under the assumpiions pj(x) e ¢d [0,1] and that there exist

constants ﬁ and K such that

1 k
iuf-l‘_)[O,]] \¢(X)| <€ K [{20 Ps(x) (i’;’; ¢(I))2 +
o

N\ ) 1/2
B (300 s |
oo (2030)
then J\ > = o0 (C,5,V (1, p.396, Lemma 1)).

We require the assumption on f(x,y) that there exists a constant X
such that

£(xu) = £(x,v) > X > - j\« voo{2.31)

U=v

for all x € 10,1)
and - o €u, v £ ° , ufgv.

This condition is implied by

£(x s ¥ >-N veol2,32)
b—f—‘ﬁy >

The condition (2.31) can be replaced in certain circumstances, (see
C.S.V. (1), p.419, 8.3), but only by requiring certain otker;, and very
specific properties of the problem, for example that the solution y of
(2.27), (2.28) is positive in (0,1). Similarly, tke coefficients
ps(x), =0 . . k , may be assumed only piecewise continuous; again
restrictions are implied on the solution. With the conditions (2.30),

(2.31) and provided pj(x) e ¢d [o,1] , Ciarlet, Schultz and Vargas show
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thet the functional I(y) ... (2.29) has a unique mimimum asd that this
ig achieved for the function y = q/(x) where Hﬁ(xﬂ ig a classical
solution of (2.27), (2.28).

The role of the assumptions (2.30) and (2.31) or (2.32) is not

immediately clear. Their importance lies in the prcof <f

¥) £ 1) for all y # W

Letting y(x) = Y(x)+ £(x) we obtain by integrating by parts, and

using the boundary conditions

i) - €3a) = o, J20 o0 kel

1 k
8 2
Iy) = (YY) + /2 go p (x) i—;( £(x) ax
0 1 Y+¢
+ }\ {j f‘(x,””})of(mi) d"’]}dx
o Y

Then using (231) or (2.32) we have

Yt
[y -cap)ay 2 Y80
v 2

and using (2.30)

1 1

k 8 2
X S 2,0 <d—,, <£<x>>> ax >/\§ £ %(x)
5=0 dx
0 0
so that !
y) 2 (YY) + i\—gl }A £°(x) ax
9]

By definition, X > - /\' and hence I( ¥ ) < 1I(y) for all y

for which I(y) is defined and which satisfy the boundary conditions (2.28).
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Under conditions (2.30), (2.31), (2.32) all the thecrems concerning
the convergence of the Rayleigh-Ritz approximation to the soluticn W/(x)
hold. In order to ensure convergence to derivatives of tH}V(x) it is

necessary to replace (2.30) with the stronger assumption

1 : k a8 2 .‘ ] %
S ” 4 X {g p_(x) (—ﬂ) + B<¢<x>>2}dx
dx o) o a=0 dx N

1, 0 |

aitl 4® , 5 3

) e e ]1g (&) - puorla

2 0 8=0
(see Ciarlet, Schultz, Varga (1, P.395)).

We have now outlined the theory of convergerice of Rayleigh-Ritz
approximation for variational problems related tc certain linear and mildly
non-linear problems, when the approxiﬁating funsctions are chosen in s unumber
of ways. Throughout, we have assumed that coefficients in the approximation
are evaluated analytically, and it remains to be seen whether certain
choices of basis function are more expedient when these ccefficients are

evaluated numerically. We look at this problem in Chapter Three.
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Chaptor Three

Numerical Considerations in the Application ~f tke
Rayleigh-~Ritz method to Linear Differential Eguations

Although the convergence results of Chapter Twe, with the excepticn
of those concerning asymptctically diagonal matrices, depend only ou the
choice of the sequence of subspaces in whicbh to cbtain an approximate
solution, and not on the selection of co-ordinate functione forming a
basis for this subspace, the correct choice of the ce~ordinate functions
is essential in order to perform the quleigthitz methcd numerically.
In this chapter we shall use examples to indicate the properties which
it is desirable that a co-ordinate system should possess, Criteria of
this kind are given in many of the works of Mikhlin, particularly (1),
(4)e Many of these criteria are relevant to other function expansion
methods, such as least squares (Andersenn (1), Dshiabkariani (1)), the
method of moments, and Galerkin's method.

Other approaches to the problems arising when the Rayleigh-Ritz
method is applied numerically have been given in the literature.

Delves (1) describes a method in which the effects of rounding errors
in the numerical processes are minimized, whilst Babuska, Prager and

Vitasek (1) report the results of a numerical study in which errors of
a known magnitude are introduced into the Rayleigh-Ritz equations and

the effect on the solution analysed.

3.1 Computational Results for Simple Quadratic Problems.

The variational problems considered in this sestion are of the

form
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1
mn 1) - E (a2 ) + 3, ()50
0 Zf(x)y(x)g'dx ceo{351)

subject to y(0) = y(1) =0 .

For the sequence of co-ordinate functions ‘{¢i} Zml thie leads to
the system of Rayleigh-Ritz equations (2.2)
Ae = b o (3.2)
and the nth Rayleigh~Ritz approximate solution
n
Ya® = S a1) 4, cor(3.3)
i=1

When the Rayleigh-Ritz method is applied numerically, the solution
of equations (3.2) is affected by errors introduced at two stages. First,
numerical representation of the elements of the matrix A~ and vector b,
introduces errors into the values of these elements, and second, nume:ical
methods of solution of the equations, for example Gaussian elimination or
triangular decomposition, introduce further errors. If étn denotes the
matrix of errors in the elements of An s and §n the vecior of oTrcrs

in £, then we can define &' and y(x) in the following manrer.

Let‘gh denote the algebraic solution of the equations

B+ € al =b; + S eoo(304)
and define n
o @ S e, () 4G
i=1

We also define g; ’ in (x) by the following. Let g; denote

the vector solution obtained when equations (304) are golved numerically;

then
(A, + E s+ 8a) = b +& oo (3.5)
where

Sa = al - "
-n -n ﬁn
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n
and ;n(x) = é{ E; (1) ¢i(x) coef2.6)
i=1

We remark that a realistic numerical solution ia of the form (3.6).
The numerical experiments which foliow were performed con an I.B.U.
360/67 using either single word length or double word lsrgth precision.

~

These represent either 7 or 15 significant figures. The gcalar preducts
of An and En were computed using a 20 point: Gaussian guadrature

n
formula, so that for arbitrary {;¢inki=1 , po(x), pl(x),f(x) the

errors n and é% represent guadrature errcrs and rcanding srrors;

b
J\

tais presents no complication. For certain examples, where ¥.¢i§§=l )
p,(x), p,(x), £(x) are polynomials, the quadrature forwilae are exact
for some subsystem {¢i] T_l of the co-ordinate system, and the errors
in these cases are exclusively due to rounding error,

The equations were solved using the method of Gauseian Eliminaticn
with row interchanges, for n = 2,3 ... 20, This dces not take advaniage
of the symmetry of the equations, nor does i} readily admit the addition
of the single row and column which ars introduced in the progreszion from
a Rayleigh-Ritz system of siza n to a system c¢f size n+l . sth these
advantages are obtained if the equations (3.2) are solved ueing triangular
decomposition, and particularly the Cholesky decomposition. More
efficient, but not necessarily more accurate, computation could be
achieved in this way.

The approximation ;n(x) was computed in a straightforward mannsr
from (3.6). No attempts to transform these series into others prior %¢
evaluation of the solution are considered. As an estimate of the L o
error norm of the errcr in y(x) we take the measure

e

n max y(x) - y(x) 0ocl3.7)

131“

H

wheTe X = «h , «z0...k sh = l/k for some k , usually

k=200>
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As simple test examples we consider the following:-

Problem Ll.

1

min  I(y) = 5 {~y'2 - y2 - 2xy-§ dx

0
subject to y(0) = y(1) =0 voo(3.8)
which has the solution
y(x) = sin (x) / sin (1) -x ov.13.9)

The corresponding differential sgquation is
y" +y+x = 0
with the boundary conditions (3.8).
This example is also coﬁsidered by Kantorovich and Krylov (1, p.269).

Problem L2. 1

min  I(y) = j‘ { y'2 + 4y2 + 8 cosh(1) yll dx
0

subject to y(0) = y(1) = O 0o0{3.10)
with the solution

y(x) = cosh (2x-1) - cosh(1)
The corresponding differential equation is

y" = 4y + 4 cosh (1)
subject to (3.10). This example is counsidered by Ciarlet, Schultz and

Varga (1, p.426).

Problem L3. 1
min I(y) = g {.(x+1)y'2 - %ﬁf{%l y° - 2(x+1)? ya}dx
0
subject to y(0) = y(1) = 0 0oo(2o11)
with solution

y(x) = 3.6072 Jl(x) + 0.75195 Yl(x) -1-x
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This example is obtained from the Bessel differential equar. (=
tzz" + tz' + (t2«1)z = 0
with the boundary conditicns

z(l)

by the transformations

1, z(2) = 2

2z = y+t , t = xtl
and division by =x+1 , giving the differential equaticn

(x+1)y" + x(x+2) y + (x+1)2 = 0

x+1
with boundary conditions (3.11). This example, in which the ccefficients
po(x) , pl(x) are not so simple as in problems Ll and L2,is ccnsidered
by Kantorovich and Krylov (1,p.270). EBvaluation of y(x) for this
problem utilizes the values for the Bessel functions Jl(x) and Yl(x)

from the tables of Abramowitz and Stegun (1).

We consider first the solution of these problems in terms c¢f the

basis functions

O
1 Zg ~
= L wool s
{Si 1 421 25 sin (L1 x) (3.12)
and
oD
1 N 1 ,
[Pi ] i=1 x* (1-x) c00l2.13)

Trese functions are used extensively in examples of the application of

the Rayleigh~Ritz method in the literature; see e.g. Mikhlin (4),

Mikblin and Smolitskiy (1), Kantorovich and Krylov (1). In Tablea I and
II we give 5n and the coefficients a (1) for problem Ll and ths
bases {3.12) and (3.13) respectively, for certain adjacent pairs of values
of n., Similar tables for problems L2 and L3 may be found in

Appendix A. In addition, in Table I, the exact values of the Rayleigh-

Ritz coefficients are also given; this is straightforward since the
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matrix A is diagenal for problem Ll and the baeis (3.12).  Alsc given
is the estimate of the maximum error in the Rayleigh-Ritz approximaticn

yn(x) , given by

e = max

a 7, (x) - y{x)
=X,

where the points X, ars those used in the application of (2,7).

More precisely, we have

1
An(i,j) = 2 ‘[ cos 1 1 x cos § N x - 23¥ﬁq; sin 38 x.
0 .
sin jWx dx
1
1 - [} i = J
i { 277 2
0 y 143
and 1 .
b_ (1) = A xeinifx ax = ()Y,
n iTr 2 - 2
1< W
0
80 that
a (i) = "1 1_1 [ ?
1272 -1
and ,
n
~ e
y (x) = 2 2 Y e 1 Wx /(2572 - 1)all)
im]

A number of points of note emerge from Tables I and II., 1In Table I
tle error En decreases smoothly as n increases. Further, the values
of the coefficients aa (1) do not vary greatly with n , and we note
also that the coefficients a; (1) become smaller as i increases, for
fixed n . This apparent convergence, and other features displayed in
this Table are those generally required of a reliable numerical methed.

The situation in Table II is not so encouraging. Here we have a
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polyncomial basis and constant or polynomiel scefficients, ssc ithat the
errors in An and gn are caused only by rounding errcr, and nct by the
generally more severe effects of quadrature approvimation. However, the
coefficients a:(i) do not tend to a limit as either n or i increase,
nor does the error reduce smoothly. This basis has generated a
numerical approximation with few desirable properties. Ouly ore feature
of this Table provides any redemption for this metkhed; all of the
results obtained using the polymomial basis functions (3.13) for

n = 1,2,3,,,20 are more accurate than any of the results uvbtained using
the trigonometric basis (3,12).

It can be seen from the corresponding double precision results for
this problem given as e"( in Tables 1 and II that the above
remarks hold equally in that case.

There is an immediate explanation for the greater accuraszy obtained
with the basis (3.13) rather than that obtained using (3.12). The
solution (3.9) of problem Ll is not periodic, and this i3 reflected in
a slow rate of convergence when the funciion is approximated by periodic
functions.

We must recognise the two important problems illustrated by the
results of Tables I and II. The fundamental aim of cur application
of the Rayleigh-Ritz method is to produce an approximatdoni‘to the
solution of the variational problem; an approximating funciion which
agrees closely with the true solution. It is necessary, however, to
recognise a good approximate solution in some way, and this is generally

achieved by considering successive vectors of coefficients; for axample,

if

an (1) - al' (i)l < E1 1<€i<n .,.(3.14)
and

af, (n+1) < ¢, c+o(3015)
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may be considezred v e a

where € s E

1 2

solution. It is, of course, pcaesible to evaluate successive

are small, then gﬁ+1

approximating functions and compare these, though this represents

a considerable increase in computation. The two problems

therefore are

1. The determination of an approximating subspace in which *he
solution of a wvariational problem may be conveniently and

accurately represented by a small number of basis functions.

2. The determination of a suitable basis for the subspace, for
which conditions (3.14), (3.15) may be expected tc imply +he

accuracy of the approximating function, and vice-versa.

The first of these problems is a convergence problem in
approximation theory whose solution requires an a-priori understanding
of the nature of the solution of the variational problem. Soms
results of this type are given in Chapter Two. A paper cf Delves
and Mead (3, to appear) will consider the a-priori determination
of properties of the solution.

The second problem is referred to as a stability problem,

The irregular behaviour of the coefficients in Table II is causad

by the numerical errors involved in the solution of (3.5). Ths
effecte of such errors in the determination of the ccefficients of

a Rayleigh-Ritz approximation have been considered by Mikhlin (1),(4),
Samokish (1), Andersenn (1), and others; we examine this work in

€ 3.3, after first introducing certain properties of arbitrary sysiems

of functions.
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3,2 A Minimal-Orthonormal Classification of Functicns.

Let H be an arbitrary Hilbert space, and let % ¢ : ¢:i_ £ H ¢
be a firitie or infinite sequence of functions in H . The sequenue
1¢le ig said to be minimal in H if and only i ellmirating cne
element of the sequence reduces the dimension of ihe subspace spanned
by the system, i.e

Let {¢11 = ¢1 ’ ¢2 y ¢3 , « o » o be a sequence in H
and let H_ be the subspace of H spanned by ¢1 . ¢2 C e
¢k-1 9 ¢k+l o » s o The sequence {¢1X ig minimal in H Iff
¢k ¢ I VK.As a consequence of this definiticn we have immediately:-
The sequence of functions {¢1~i is non-minimal in H iff fhere

exists an integer j such that, given ¢ >0 , there exists an

integer N and scalars o4y . . . dJ-l O :}!{“N such that

j+l
N -
¢j - g oty By <7 o.o(3.16)
kel H
k3
where “ ° " " denotes the norm in H .,

Thus any finite sequence of linearly independent functions in H
is minimal in H ; any finite system of linearly dependent functicnus
is non-minimal in H . In particular, in this case we may take ¢ =0
in (3.16). Any infinite sequence of functions orthonormal in H is
minimal in H . An often quoted result (see Mikhlin (4), Kaczmarz
and Steinhous (1)) is the following:- The seguence {xﬂ%}:fo iw
non-minimal j.n °C2 {0,1] o

The sequence {¢i-§ is said to be strongly minimal in H iff the

smallest eigenvalue >\§n) of the Gramm matrix An

An(i’j) = (¢i ’ ¢3)H igj=1 oo

of the sequence {¢i‘2=1 is bounded below by 2 sirictly pcsitive
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constant independent of un ; i.e. there exigts an w f 0 s.1
Ap 22 Y

The sequence {¢i\ is said to be almest orthcnerma: in H iff

e ¢
it is strongly minimal in H and the largest eigenvalue }\én) of the
Gramm matrix An is bounded above by a positive constant irdependent

of n, i.e. there exist real numbers w # O, W # 0 satisfying

w| such that

W2 < )\in) < >\£“) <y o5 (3.17)

lwl <

The sequence {¢i} is orthonormal in H iff w=W a 1 in {3.17).

The following theorem (Andersenn (1), p.134 Thm.3.3) sumnarizes
the relationships between these classes of functions, and condensss
several results of Mikhlin (1), (4).

"Orthonormal systems are almost orthonormal, almost orthonormal
systems are strongly minimal, and sirongly minimal systems are minimal.
At no stage is the converse (necessarily) true".

We have also the following result (Mikhlin, (4), p.6). Le% she
sequence {¢i} be minimal in H . Then there exist scalars

‘xl ’ <L2 e @, ... such that the mequence {@&i ¢i§ is
strongly minimal in H .

In order to pursue Mikhlin's study of the selectiocn ¢of co-crdinate
systems the following theorems are useful. We remark that, when a
sequence of co-ordinate functions {ﬂ&.} are chosen for the solution
of the equation Ly = £ , (where L 1is & positive definite operator)
by the Rayleigh-Ritz method, the resulting matrix A (3.2) is
exactly the Gramm matrix of the subsequence {¢ i} :*1 in the energy

space HL of the operator L .
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Theorem (Mikhlin (4), p.7-8)

Let M and N be positive definite, selt-adjoint cperators in
some Hilbert space H , satisfying Hy S Hy - If {¢i : ¢i € Hy
i=1,2... } is a minimal (strongly minimal) sequence in HN then it
forms a minimal (strongly minimal) sequence in HM .

In particular, if N = I , then Hy = H, and since L is positive
definite, we have Hy < He = H . The result above implies that any
minimal (strongly minimal) sequence in H is minimal (strongly
minimal) in H, .

Definition.
Two positive definite self-ad joint operators M and N are

semi-gimilar iff Hy = H . M and ¥ are gimilar iff D(M) = D(N) .

Similar operators are necessarily semi-similar,

Theorem (Mikhlin,(4), p.ll)

Let {¢i} be a complete, almost orthonormal sequence in HN ’
and let M and N be semi-similar. Then { ¢i} form a complete,

almost orthonormal sequence in HM .

Theorem (Mikhlin & Smolitskiy (1))

et M and N be similar, and assume I(My s Ny)l $nm ||My” 2
Vy € H, , m = const >0. Let £¢i} be the orthonormalized
eigenfunctions of N , assumed complete in HN o Then {ﬂL‘Sare a

complete, almost orthonormal sequence in HM .

3.3 Stability
Loosely speaking, Rayleigh-Ritz computations are stable in some

senge if the differences I'yn(x) - in(x)” and ll'ﬁn - Ex}” or

||yn(x) - ?ﬁ(x)l, and llﬁn - éﬁll are small whenever !lEtlll ’

I'S;J' in (3.4), (3.5) are small. More precisely, we indicate
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the four cases separately, following the definiticns of Mikkiin.

The vector solution of the Rayleigh-Ritz equations (3.2) is
stable with respect to errors in the equations, of the form (3.4),
iff there exist constants p,q,r, independent of n , such that for

all lIE;J' € r and all én the equations (3.4) are solvable and

ley - wll ¢ s llegl + allgl s

Im
The Rayleigh-Ritz approximation yn(x) defined by (3.3) is
stable with respect to errors in equations (3.2) of the form (3.4)

iff there exist constanis P1y G1p7] independent of =n , such that

for all HEn“§ ry, and all §-n
5. - sll £ o 1l E] + o 8,039

The inevitable magnification of the initial errors & , § by
numerical methods of solution is not considered in these definitioms.
We therefore also introduce the following.

The vector solution of the Rayleigh-Ritz equations (3.2) is stable
with respect to errors in the equations of the form (3.5) and errors
introduced by the method of solution iff there exist constants P, Q, R

such that for a1l ||€_ || € B endan s

|2y - 2% ] plle ]|+ o IS0l .20

The Rayleigh Ritz approximation yn(x) is stable with respect to

errors in the equations (3.2) of the form (3.5), and errors introduced
by the method of solution iff there exist constanta P1 ’ Ql ’ Bl such

that, for a1l ||€ || € B emaan §

-v @l € I o I8,
“-"n(x) T (x>|| 2 “En * &n .(3.21)
For brevity we introduce the following terminolegy. We speak of

(3.18) (re-p (3.19) a8 the numerical stability of the Rayleigh-Ritz
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solution vector (resp. the Rayleigh-Ritz approximation) a:d of (3.20)

(resp.(3.21)) as the complete numerical stability of the Rayleigh-Ritz

sclution vector (resp. the Rayleigh-Ritz approximaticn).

As has already been indicated, the requirement that the Rayleigh-
Ritz method be numerically stable in any of the senses (3.18) ... (3.21)
imposes further restrictions on the choice of basis functione.
Mikhlin's criteria for the selection of suitable basgis functions rest
on the following theorems, which summarize results of Mikhlin (4),

Mikhlin and Smolitskiy (1).

Theorem

In order that the Rayleigh-Ritz vector solution and the Rayleigh-
Ritz approximation be numerically stable (in the sense of (3.18),
(3.19)) for the solution of the equation Ly = £ , it is necessary
and sufficient that the co~ordinate system {ﬂ&.} be strongly minimal

in the energy space HL .

Theorem

In order that the Rayleigh-Ritz vector solution and the Rayleigh--
Ritz approximation be completely numerically stable (in the sense of
(3.20), (3.21)) it is necessary and sufficient that the co-ordinate

system { ¢i] be almost orthonormal in the energy space Hp .

We remark here that the requirement that the co-ordirate system
be almost orthonormal in the energy space HL in order to achievs
complete numerical stability is exactly equivalent 4o the conditien
that the Rayleigh-Ritz mairix have bounded condition number. The
mest appropriate condition number K(An) of the symmetric matrix

An is defined by

(n)
K(a) = >\n 000 (3.22)
O |

1
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and the above remark is an easy consequence of the defini:ion of almost
orthonormal systems and the equivalence of the Rayleigh-Ritz matrix
An and the Gramm matrix in HL .

An alternative view of stability problems for & olase of methoeds,
the "abstract Galerkin processes”, which includes the Rayleighk-Ritz
method as a special case, has been presented by Samokish (1). Ve
rely on the expositicn of Mikhlin (4, pp.76-81) fer details ¢f this
work. Although Samokish is regarding a stable process a3 cne in which
small errors in the data and method of solution prcduce small errors in
the results, there is no formal definitiocn of this view. Instead, two
measures of stability are introduced. The first, for the Rayleigh-
Ritz method, reduces to K(An) , defined by (3.22). By considering

the equations

A K = jin 0ee(3.23)

where Bn(i) are arbitrary numbers satisfying

Bn(i)| 1 oo (3.24)

n
se]

3
e

and defining n

ROIEEP QRO AC
i=1

the quantity

max || (x)]|

min Ilzn(x)l,

00e(3.25)

n

is introduced, where the operators 'max' and 'min' act over all vectors
satisfying (3.24). With these measures, Samokish utilizes the following
assumptions. The Rayleigh-Ritz solution vector is completely
numerically stable (3.20) if K(Ah) is bounded independent of n .

The Rayleigh~Ritz approximation is completely numerically stable (3021)



if Fkn is bcunded independent of u .

The definition of }Ln may perhaps seem arbitracy, but it may
be considered in the following manner, The set of all equaticng of
the form (3.23) for all Eq}satisfying (3.24) includes, except for &
scaling factor and the degenerate case Sn = -Qﬁ s all pecsezible right

hand sides of the eguation

= b +&. oo (3.26)

Ay 2y “n " Sn

that is, for any én ¢ "En there exists a scalar k such that
a
t . / = -
e+ §) €8y 5 Bm 4B S Ly
Therefore the set
n
£
2= {z,(x) s 2, = Z/ o (3) By(x) 5 ALy = £,

j=1 \ )
£ s }

contains all possible numerically computed approximaticns %o the

solution En(x) of the equations

A a' = b + ,
n=n -n
each scaled by some factor 1/k . fin is therefore a measure of the

range of norms of functions in Zn , and hence a measure c¢f the range
of norms of functions defined by equations (2.26).

Mikhlin shows that Samokish's definition of complets numerical
stability in terms of the boundedness of K(An) and ﬂln is
equivalent to the criterion of almost-orthonormality imposed by Mikhlin
to achieve (3.20), (3.21). This is achieved by shewing that for the
Rayleigh-Ritz method ffh is bounded independent of =n iff K(Ah) is
bounded.

Samokish provides an additional concept of stability, which he
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termg 'computationally-stable’. The Rayleigh-Ritz sclu*.. . vector
(resp. approximation) is computationally stable if K(An) (resp. ﬁﬁn)
"do not grow too rapidiy". This informal concept makes “the point

that it is not necessary to have a stable method if good approx:.matizis
can be obtained with a small number of ce—ordinate functions. Ve
might prefer to say that such co-ordinate systems are ‘sufficlentiy
stable’.

Criteria which enable it to be asserted that a co-ordinate systsm
is 'sufficiently stable' for a particular problem and particular
accuracy requirements have been given by Mikhlin (4). These relate
to the (impractical) case in which the peturbed Rayleigh~Ritz
equations (3.4) are solved algebraically rather than numerically., If
the co-ordinate sequence {¢1} is not strongly minimal in the emergy
space HL then the corresponding Rayleigh-Ritz method is not

(n)
numerically stable. Assuming that this is the case, and letting ‘%
denote the smallest eigenvalue of the Rayleigh--Ritz matrix, we have

>\(:)~> 0 as n >0 Let En in (3.4) satisfy
Hen“ = B)in) 0< B <1

Then the bounds

le -l = e A EN - NS
1 - B

where C 2 Ily(x)ll ; 1is an upper bound for the energy norm of

y{z), and

a0 - raca]  lss u(nm A

hold.
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Thus, for example, if
(n) l+k)
Ie, )

1

A

!
(&)

\

and H §n“ i o(( )\l(n))%“'k)
then _%

e - sl = ol N e
and

»(n)k)

|y ) -5 ) = o(( AL oo (3.28)

In this case we can see that it is possible to evaluate the right-hand
side of equations (3.5) less accurately than the matrix 4  without
detriment to the order of accuracy of the resulting approximations.

We also note that in the case 0 < k< % (3.27) diverges, whilst
(3.28) converges. This situation, in which the cosfficients c¢f an
approximate solution are unstable although the correeponding functiicn
approximation remains stable (if not convergent) ig well kncwn in
several types of numerical computation, and we have examples of this

for the Rayleigh~Ritz method in Table II and elsewhere.

3.4 Rescaled co—-ordinate systems

It seems surprising that the criteria for the stabilizy of the
Rayleigh-Ritz method should indicate that a rescaling of a co-ordinate

system [¢i} of the form
Yw: ¥ - aw gl

may generate an unstable approximation where {:¢i-§ generates a stable
one. Here the d(i) are scalar functions of i , and we assume

d(i) ¥ 0 , so that the co-ordinate system [Efgl remains complete in
the energy space HL o Mikhlin illustrates this by a theoreiical

discussion (4, p.139) concerning the co-ordinate systems



X
{y!i} = JEn g P (%) dt
o
X
and W’J - f Pi(t) dt

0
a3, 2 .
for problems involving the operator /dx on {-1,1), with boundary
- . P . .t { 7}
conditions y{(-1) = y(1) = 0 . For this operat:x the functious i¢iﬂ
are orthonormal; and consequently gensrate complstely numerically
stable approximations for similar cperators of the foim

p°<x>f_2_ - p(x) 5 y(-1) = y(2) <0
dx

where po(x) 5 Pl(x) >0

The functions [VG_} s on the other hand, are not orthonormal, and

2
in fact for the operator d/dx2 generate the Rayleligh~Ritz matrix Ap o

0 1£3
2i+l imj

N i‘“’looon
An(lyj) = {
Hence the functions {Vyi} are only strongly minimal, and a Rayleigh-
Ritz approximation in terms of these is not completely numerically stable,

in view of the theory.

To consider the practical effects of simple rescaling of the

ce--ordinate system we consider the basis funstions

2} bt . ‘ (
{si 1 sin 1 1T x ooel3.29)
and
a0
2 i+l .
{Pi }1.1 = SiL}.'L ° xl(].-—k) oou(3030)
i

used in the solution of problems L1, L2, L3. (3.29) and (3.30) may be

obtained from the functiomns (3.12), (3.13) by rescaling so that the



maximum value of each basis funciion is unity. Pesultn [, 1hese
caleulations are summarized in Tables IIT and IV, and Tables AV,
A VI, A VII, A VIII of Appendix A.

A comparison of the error En given in Tables I and JII
(Similarly Tables A I, AV and A III, A VII) indicates *hat the
solutions ;n(x) defined in terms of the co~ordinate systems {Si%
and {Si} differ insignificantly. Furthermore, it can be meen from
Table III (similarly A V, A VII) that the coefficients a;;{ﬁ_.) appear
to be stable, and we note also that these coefficients are, ag would
be expected since :Z%? <1, uniformly smaller *han the correspcnding
coefficients in Table I (resp. A I, A III), In fact, if we denote
by ag
J = 1,2, then it is easily verified tha* the coefficients of

4 £ O
(1, {Si:}) the coefficients of the basis fur:tiona [Sg(x)j,

Tables I and III (similarly A I and A V and A III and 4 VII)

satisfy to reasonable numerical accuracy the relation

~
a? (1, {Si}) = }—2_-'_!— a" (i, {sf}) oss(3.31)
For example, Table V lists for comparison the walues of “he left and
right hand sides of relation (3.31) for the coefficients given in
Tables I and III, for n = 8 .

In spite of the remarkable agreement in the acscuwracy of the
solution vectors and the approximate solutions obtained using the
bagis functions {Si]’ and [ S: } » it is easy to show that thess
co-ordinate systems have different theoretical stability propsriies.
If we denote the Rayleigh-Ri%z matrices of size n for the bauis

{Si} and [Sf} by An {Si} and An {Sf} we kave for the problem

L1

a, sl -
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A Comparvizen of the Scluticu Vesteore and ‘he
Apprevimate Scluticns of Problem L1

. i { ot . 2]
using the cc-ordinate systems isi } and {Sif fFor n=28,

Exact

7 . R A A
i) ik af(d, Ksi'i) 35(1v {54 &) 1
a8(i, ESE g}

® 2.847648% -4 2.847872" -4 2.848654'-4
+7.177543'~2 +1.554685" -1 +1.594447° -1 +1.594448°~1
-80272435“~3 ~3.6758907-2 ~3.675552'-2  -3,675340'~2
+2,416202'-3 +1,6104817-2 +1.610239'-2  +1,610235'-2
~1.01430%5"--3 -8.997697"~3 =9.012881'-3  -9,012680'-3
+5.,181345%-4 +5.755877'-3 +5.755014° -3 +5.75419C" -3
-2.995014°~4 ~3.992539° -3 ~3.991965'-3  ~3.991506'-2
+1..884515"-4 +2.930871°-3 +2,930347"-3  +2.930339'--3
~1 02620374 =2.243145"~3 ~20242829°-3  «2.242453'-3

Table V



and

Since theas are diagonal matrizes, their eigenvalues are the

diagcnal elements, and their condition numbers are given by

10
K, (4 {si L)

#

(1 ~ “g“’r‘) / (1 - "c =)

u-

ie. K (& {si“ﬁ) PN A (IR Avis <. (3p32)

and

) e

mETTZ.1) /(0% 0)

i

fo2]
Kn (An L 8 K)

Clearly, from (3.32) the basis {S; ? 18 almcest orthonormal in the
energy space of the operatcr of problem Ll, and thus gererates a
completely numerically steble sequence of Raylelgh-Ritz approximations,
whilst the basis {ﬁf.i is only strongly minimal, and caunnot be
expected to do so, This is no%, however, refilected in the Rayleigh-
Ritz approximaticns obtained using the basis {3;2} o Figs. II and
IIT illustrate the behaviour of the maximum error ;n of the Rayleigh—~
Ritz approximation and the comdition number ¢f the Rayleighb--Ritz matrix
for n= 2... 20 tfor preblem L1 and the basis functiona (:S}} and

fsf} respectively. Similar graphs are given as Figs, A I and A II
in Appendix A for the problem L2, In each cage we plot loglo K and

loglo En against n. The unpredictabis behaviour of en for

larger values of u (u % 12;13) in these graphs is attributed to the

effects of quadrature error. Note also %that *in s the condition number

(n)

A\ (n
of the matrix Ar obtained by evaluating >\§ ) , )\n numerically,

using a Stwrm-~sequence-bisection algorithm, and shown on the graphs

for m > 12 , exhibits irregular behaviour. Forn £ 12 we Lave

K = x
n ° n°
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Similar comparisons 1o those made for the :c.ordivat- sysztems
{Si]'} and [Sf.ﬁ on the basis of Tables I aud LII may be made
for the co-crdinate systems {P;JK and {Pf‘g from Tablies IT and

IV, but it is not possible to make the same deduciious, Firal,
although the values for En shown in Tables 1I and IV are similar
in size, the difference between them is ofter of the same oxrder of
magnitude as the errors themselves. Secondly, the relationship
which existed between the coefficients of Tables T and IIX does not

hold for the coefficients of Tables II and IV; we do not have
+ . ' -
an (1, (Pf] ) = §i+1}i 1 a? (1, {Pf] ) 0oe(3.33)
1 :
i

For example, taking n=8 , 1 = 5 in (3.33) we obtain

1
al (1, {Pi}) = +2.021488

141 |
@)™ "¢y {Pf}) = 40.478731

a8
ii n

The unpredictable behaviour of the srror ;r for the tasis
1 2

i i
respectively. This time this behaviour cann:t be atiributed %o

} and P is shown in Fig.IV and Fig.V

functions {P
quadrature error, since the Gauss formulae used are exact in this
case, However, the Rayleigh~Ritz matrix for thesz problems resembles
the Hilbert matrix, whose instability is well known, For the basis

{ P;‘ 1 and problem Ll the matrix An is given by

L i _ ixje2 $ijti+ g _ IS
A (1,3) —"1—1+j_,1 iv; VY Brer Y T itj+3

The condition number plotted graphically in Figs. III and IV is again
obtained by a Sturm-sequence-bisection algorithm, and foxr such matrices
this procedure is not reliable, so that whilst the smocth beLaviour

exhibited for n € 7 may be indicative of the real situation, one is
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net justified in assuming that the behaviour for larger . g as

shown. In fact, for un = 10 in Fig.III and n « & :in Fug.IV,

the numerical procedure dstermines a small negative elgsuvalius;

since the matrix An is positive definite this i3 ciearly in error.
That the relationship (3033) should not hold for the czefficients

ag(i, {Pin&) and a;(i, {Pf}) need not be surprising; we might

hope that, defining Cy (4, {P4J}) by

n n+l
{ a! (1, {pJ1) ) (0) - 5 cr (4, feit)y « L.i(3.38)
i=1 i=l

[ i.e. for J =1
n n+l
. {nh i

g al (4, {Pi’} ) xi(l-.x) = g Cg (1, }_Pil) x
i=]l i=1

80 that

er (1, {P}}) = &t (1, {2}

cr (k, {Pfﬂ) = ap (k, {Pi]-] )- &y (k-2 @’11% )

k=2,.,.1
er (w1, {2}3) = &t (n, {pl]) ]
we would have
et (k, [Pill) = ¢ (x, {p?]) | 0ee(3.35)

In Table VI we demonstrate the coefficients g(k, { Pil 3) and
Cg(k, {Pf]) , indicating that this is not the case, though clearly,
from Tables II and IV, the polynomials given by the right bhand side

of (3.34) for j = 1,2 , have similar values over the range {0,1] o



A Comparison of the coefficients of the expanded
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polynomials cobtained from the solutions of

problem L1 using the co-c¢rdinate systems $“P1

.‘l ’i

and {P 121 for n«8

cu (1, B )

¢y (1, Pf )

AYe IR ¢ < IR T~ UL | B~ V)

+1.885666'-1
-9.572148'-3
-6.152755"=2
-8.449268° -1
+2.748948" +0
+9,T13144'-1
~7.646923'~1
-2.885118'+0
+6.570082' -1

+1.882863°-1
+8.126348°-4
~1.855731"-1
~1.485677"~1
+6.237728'-1
=1,278051°+C
+1.440501'+0
~8.399349* -1
+1.987547"' -1

Table VI
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We have comsidered numerical examples of thz affec~ . | rescaling
co-ordinate systems on the accuracy of numerically computed Rayleigh-
Ritz approximations. A theoretical discussion of the properties of
such a rescaling, i.e. of considering the relationship beiween the
Rayleigh-Ritz approximations in terms of a system ¢i(x) , and the

system

L’Ji(x) = d(i) ¢i(x) )
rests on the notions of 'cptimally scaled matrices' discussed ty
Bauer (1), Stoer and Witzgall(l), and Van der Siuis (1,2). Denoting

by yn(x) the Rayleigh-Ritz approximatiovs

n n
W@ = S e - M CH AC
~
i=] i=1
we require
A B = By

and

where A~ is the Rayleigh-Ritz matrix (;z!i , B 3)L , 591 % lo.en and

D~ is the diagonal matrix with elements Dn(i,i) = d{1) , Dn(i,j) =0,
i{j « Pre-multiplication by Dn corresponds to a row ascaling of An
and post-multiplication to a column scaling. The latter ia known to

be irrelevant, but the former can affect the order of pivoting in the
numerical solution of the Rayleigh-Ritz equations, and thus the accaracy
of the numerical solution. This is clearly more likely when the off=-
diagonal elements of the matrix are large by comparison wiih the
diagonal elements than when they are small, and this is a property
which distinguishes the polynomial basis from the trigonometric one,

so that the inconsistency of solutions defined in terms of the polynomial

basis used here may be attributed to this effect of rescaling.



We remark here that the property that rescaling has . ..ile
sffect when off-diagenal elements are small is closely anaicgous
t2 the fact that if a matrix is uniformly asymptoticaliy diagonal
ot degree p then pre oxr pist muiluiplicatican by a diagenas matrix
loes not affest this propsr'y (% 2.5, also Delves and Mead (1) ).
A further discussion of the effecte cof pre and post
multiplication ¢f the Rayleigh-Rite matrix by matrices of partisular

type will be considered in % 3.€.

3.5 The use of Chebyshev ard Lezendre Pcelwvromials

The high accuracy displayed when low crder polynomial
approximations are compared with smooth, uncn-pericdic solutions such
as those of problems Ll, L2, L3 suggest, along with the ccuvergernce
properties of polynomial expansions {Mikhlin (4), Ciarlet, Schults,
Varga (1), also % 2.6) that if the condition difficulties
encountered with polynomia. basis funciicus,; such us {Pifi and

{Pf‘} csn be avcided, then pclynomial approximation will have much
to recommend it. A number of alternatives, zll of which display
more satisfactory computational properties, are peaesibla. We

consider in this and subzequent sectione %the co-ordinate systems

{Tchi(x) i Teh,(x) = x(1-x) szl (x) }

i 2 o00(3.36)
[_Lil (x) : L) = x(x) P (0]
i21 oval(3.37)

and

..

{Lf?(x) LZ (x) =~ /21 § P;*(x) }
0

12
* »*
where T, (x) and P (x) dencte respectively the shifted Chebyshev

oo-(3o38)
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and Legendre polynomials defined on the interval ﬁO,l] .

The system (3.38) has been considered by Mikblin (4) asd Ciarlet,
Schultz and Varga (1). No study appears tc have been made of the
systems (3.36) and (3.37), though McDonald (1) considers the use of a
cc-ordinate system involving shifted Chebyshev polyncmials in the
application of the Kantorovich method to certain second order partial
differential equations. We shall consider the Kantecrovich method in
a subseguent chapter, Chebyshev polynomials have been widely used
in other areas of approximation theory; for a general survey see; for
example, Fox and Parker (1).

The most convenient of the above co-ordinate systems is (3.36),
principally because of the simple closed form of the Chebyshev
polynomial. We shall see subsequently that for certain problems the
bases (3.36) and (3.37) generate matrices with an unusual and
convenient splitting properiy; it is trivial to see that for
problems of the form (3.1) in which k=l , pl(x)ul ) po(x)xo , the
functions (3.38) form an orthonormal co-ordinate eystem, and are thus
almost orthonormal for all operators similar to 'd7d12 o

We again solve as test examples the problems Ll, LZ, L3 used
previously, and note here important features of the computations.

The basis (3.36) generates approximate solutions to problems L1
and L2 which converge rapidly to the known solutions as n increases,
until the overriding persistence of numerical error limits the
accuracy at 0(10—7) . The comvergence process can be observed to
continue past this point if the Rayleigh-Ritz equations are
constructed and solved using double precision arithmetiz. This
behaviour is illustrated in Tables VII and VIIT for protlems L1 and

L3 and in Table A VIII of Appendix A for problem L2. An
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important property of the Chebyshev basis {Tchiqﬁ can e
observed in the behaviour of the coefficients al (1) +tabulated in
Table VII, particularly by examining the ccefficients for

n =11, 12, 13, We notice that

-9 . . .
. 10 i=1,3,5,7,9,11
|ann (1) - a"lz(i)I = { e

1070 i=2,4,6,8,1C
and 6
l . 10” 1= 1y3,5:7,9,11
a". (1) - a" (1) = {
12 1 -
0s0(3.39)

We remind outselves of the progress of the Rayieigh-Ritz itsratiom.
In progressing from an approximation in terms of n functions to one
in terms of n+l functions an additional unknown is introduced into

the equations, s0 that the Rayleigh-Ritz system is transformed from

n -n -n
to
A1 Bn = 2nn
where the matrix An+1 satisfies
A (1,3) = A (1,3) 1,j = looen

The relationships (3.39) suggest that the transition from a system of
size n to one of size n+l affects only those elements of the
solution vector whose indices bave the same parity as n+l , and, for
problems Ll and L2 this is indeed the case, though nst for prcblem L3.
This can be shown by considering the elements of An » defined

for variational problems of the form (3.1) by
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1
1 H h
A (i,3) = y {pl(X) B.(x) B.(x) + p_(x) B, (x)f5(x)] ax
n i j o 1
0
In the case in which pl(x) , po(x) are constants, say pl(x)=k1 R

*
po(x)=k° , and ¢i = x(l—x)Ti_l(x) we have

1
A (1,3) = X y {((I»ZX)T (x) +x(1-x)T 1(x))
° (-2t () + x(1-0)T ) ())ax

1 )
+ kg J’\ {xz(l-xz)T:_l(x)T;_al(x)}dx
0

Transforming the integrals to the interval (-1,1), and using the

relationships
1(eM ¢ . +20,+T) 1 odd
dx T, (x) =
(e g+, . w24 1)) i even
(Abremowitz and Stegun (1)) and the property
1
‘Y Ti(x) Tj(x) = 0, i+ odd
-1
we can show that
1
Iluj‘ (1-x) 'ddx-o i+ j odd
~1
1
I, = [ 2x(1-x )('1' j+'1"1‘ ) dx = 0 i+ 3 odd
-1
1
/ 2
I3 - Jﬁ 4x TiTj dx = 0 i+ 3 odd
-1
1
Isj (1-12)2'1‘de = 0 i+3 cdd
4 ity
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and hence that
An(isj) = k(I + I, + 13) + kI
= Q if i+ is odd

The matrix An therefors has the form

a;p O 833 O
0 a22 0 a24
a31 0 533 0
~ O
0 84;
an—? ’ n
0
&, ne2 ¢ ®n,n

with non-gzero entries on the diagonal and alternate sub and super
diagonals, forming a chequerboard pattern. The equations can therefore
be arranged into ftwo jndependent systems of the form
A L )
n o -0
ovs(3.40)

ROIRCIINC

where
Agl) (1,3) = A (211, 2§-1) 4 i3 =1 oes {“*}2]
AgZ) (isj) = An(2192j) 1, =1 oes ‘.n/Q].

D) = agan 20« s s-1 e B

o)1) w s (21) , BB ~py(28) s 1m1 /el

oea{3.41)
and [k] is the integer part of k..
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Thus for linear problems with ccnstant ccefficients, w«d using the
basis [Tchi% s the Rayleigh-Ritz equatione may be considered as two
disjoint systems determining the odd and sven coefficients of the
approximate solution, This preoperty has not been expleited in the
solution of problems discussed in this chapter, but will play a very
important role in the study of mildly non-linear problems which we
undertake in Chapter Four. We give here (Table VIII) numerical
results for problem L3, which does not have constani coerficients and
for which the Rayleigh-Ritz equations do not form disjoint sets.

It will be seen that the property (3.39) which illustrated thie
disjunction for problem Ll does not occur. We remark that the error
En shown in Table VIII is determined by comparison with the given
solution, in which the decimal constants are given only to 5
significant figures; and from tables of the Bessel functions invelved
(Abramowitz and Stegun). It is felt that this accounts, at least in
part, for the rather larger values of En as compared with those
obtained for problem Ll, shown in Table VII,

The basis functions (3.37) display very eimilar properties %o
those cf (3.36), and indeed, the first two co-ordinate functions of
each gystem are identical. The splitting properiy characterized by
(3.40) and (3.41) again holds for problems with constant woefficients,
and the convergence and stability properties of the two co-oxrdinate
systems (3.36) and (3.37) are very similar. Bvidence of this can be
found in Table IX, where the basis (3.37) is used to solve problem L1,
and in Appendix A (Tables A IX and A X ).

Although the modified Legendre basis {Li} compares equally with the
modified Chebyshev basis [Tohiz from the viewpcinta of stability
and convergence, it is felt that the convenience of the simple closed

forms of the Chebyshev functions give them considerable computational
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advantages. The evaluation of the scalar products of th: Rayleigh-
Ritz matrix by a quadrature technique, which we shall examine in
Chapter Five, requires many evaluations of the basis functions and
their derivatives. The Legendre recurrence relation may be applied
to evaluate the functions, but only indirectly to evaluate the
derivatives. This presents a barrier from the viewpoint of computer
time. The basis functions Lf (x) defined in (3.38) can be
evaluated more efficiently, however. Although these functions are
considered theoretically by Ciarlet, Schultz and Varga (1) and
Mikhlin (4), no account of a practical evaluation algorithm appears
to have been given, and we thefefore illustrate some of the
computational properties of this co-ordinate system.

The basis functions are

x
1{?)(x) .Y PP(t)dat , 4=l ...

0
where P; are the shifted Legendre polynomials on the interval \9,1] .
Evaluation of the derivatives Q_.(Liz)(x)) is easily accomplished

dx
using
1 i=0

E% (L§2)(‘)) = P:(t) ={2x-1 1i=1

=((2i-1) . (2x-1) . Py(x)

*
-1 Pi_l(x)), i>1

where the geueral case is the usual recurrence relation for the
shifted Legendre polynomials (e.g. Sansone (1), p.177) and the case

i =0 is given only for use with this recurrence, that is, the

function L£2)(x) -SI P:(t)dt is not one of the basis functiona.
0

Evaluation of the basis functions themselves proceeds from the

relationship for Jacobi polynomials Pt(lq , P )(x) on (-1,1) ,
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ZnS (1-8)" (143)" Pid’ﬁ)(t) at

0

P!(:;-!-l, P+l)(0) _ (l_x)cef.wrl(l*_x)ﬁ-i-lpr(:{l’g.,.l)(x)

(see Abramowitz and Stegun (1), p-775; 22.13,1)

The Legendre polynomials on (-1,1), Pn(x) are a special case of the

Jacobl polynomials given by A = B=o s 80 that

( ,1)

2n S P (t)dt = P, 77'(0) - (1-x2) Pii{l)(x)
0

Considering for the moment the basis {¢i~£ on (~1,1) given by

g, (x) - V24 X P,(4) at
-1

we have
b'd

0
¢i(x)=@(§ P, (t)at + f
0

Pi(t)dt >

- /2 ( p1Y (0) - e 2P0 - i (0)

= /2141 (1-x°) P(l D (x) /24

Transformation of this result to the interval 0% t *1 finally

gives

Liz) (x) = J2i+l.4(t-1) P(1 1)(245 1)/1

and the Jacobi polynomials ZP(1 1)(x) are given by the recurrence

(Abramowitz and Stegun, (1), p.782, 22,7.1)

Pil’l)(x) u (331 x P(l 1)(x) N P§1 1)(Jr‘.) )/a.11
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where
a; = 4i(i+1)(i+2)
83y = 2i(2i+1)(21+2)
20,
8y = 4 (i+2)

and the initial values Pgl’l)(x) =1, Pgl’*)(x) = 2x

The basis functions ng)(x) can therefore be evaluated by the
application of the recurrence relation, and in particular by a variant
of the algorithm described by Clenshaw (1) for the evaluation of
Chebyshev polynomials.

We comment now on the results of the application of the
Rayleigh-Ritz method using this co-ordinate sysiem to the test problems
of this chapter, and in particular consider the stability properties of

the related basis P:(x) to consider the points made by Mikhlin
0
(4, p.138~9). Tables X and XI summarize the application of the two

co-ordinate systems to the problem Ll. Similar results for problem L2
are given in Tables A XI and A XII of Appendix A. It is felt that the
results shown are sufficient to indicate that the basis L§2)(x) and
the basis (2i+1)“'é L§2)(x) bhave similar computational properties,
and that stability considerations are not restrictive when convergence
is rapid. Further, a comparison with the results expreassed in

Table VII indicates that the efrors obtained with the basis functions
x(1-x) T;_l(x) and with (21+41)~% L§2)(x) (1.6, x(x-1) Pﬁiil)*(x) )
are of the same order of magnitude, though the latter are uniformly
smaller. It would seem that these co-ordinate systems may be of some
importance in the approximation of the solution of a given variational
problem whose solution is known not to have special properties (e.g.
which is not periodic or which does not have a discontinuous derivative

of low order).
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3.6 Algebraic Transformations of Co-ordinate Systems

An abstract algebraic formulatiorn of the effentz of ccnsidering
different scalings and combinations cf a particular ser of basis
functions is possible, and we outline this here. Unfortunately, as
we commented in % 3.3, even the simple case of diagonal scaling leads
to inconclusive theoretical discusaions of optiwmal scaling of
matrices. In this section we examine choices c¢f combination matrix
which correspond to improving the minimal-orthoncrmal properties of
the basis. One of these is obtained by the Gramm-Schmidt process,
but we shall show that, for at least some of the purposes for which
we are employing the Rayleigh-Ritz method, this method has
disadvantages.

In the numerical considerations which have cccupied much of this
chapter, we have supposed that in applying the Rayleigh-Ritz method
to the solution of the problem (3.1) with homogeneous boundary
conditions, we select a sequence of co-ordinats functions {.¢;&:Zl
which satisfy the boundary conditions and the additicnal
assumptions of Chapter Twc, and determine ar apprcximaticn ~f the
form (3.3) from the Rayleigh--Ritz equaticns., If we return to the
viewpoint taken in considering convergsuce properties of ihe Rayleigh~
Ritz method in Chapter Two, we see that the selecticn of a sequence
of basis functions {¢i}:il can be seen as the zelection of a

sequence of finite dimensional subspaces tsnzqa

n=1 of the energy

space of the problemy, and then the selection of a basis for this
space. The theoretical convergence properties of the Rayleigh~Ritz
method are independent cf the choice of basis, but not cf the choice
of sequence of subspace. On the cther hand, the numerical properties
of the method are dstermined by the choice of basis func+ions within a

particular subspace,
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Congider the variational problem
min I(Y) = (LY9Y) - 2(f9.'Y)
J
subject to y(0) = y(1) =0
%)

a=1 be a sequence of subspaces of the energy space of
o=

and let tS }
n
L . We assume Sn Lo Sn+1 s 80 that we can concider a sequence of

: n
functions {5251’8 ;21 with the property that the subseguerces {¢;}

i=]1
form a basis for the space Sn for all n . The tasis functions

: N

{¢;§i=1 will be known as the fundamental basis functions for the
space Sn o The Rayleigh-Ritz approximation in Sn s Obtained in

terms of the basis [¢i} will be denoted Iy (x, l¢§ ) and is

defined by a
IR QI NORAC
i=l
where En satisfies
An E,n = _b'n 000(3041)

and A (4,3) = (F;, 1B,) end b (i) = (£,4,)
, 0
Let {W/i} il be another sequence of basis functicns with

n
the property that {}Vi:si-l forms a basis for Sn for all n .

Clearly, we can write

Wi = < cid ¢J- 3 i = loeon
J=1

and extending the usual matrix operator to sequences of functions we

{L}/i} = {¢5.R

where C = (cij) is & matrix with the property that, if C o

denote

denotes the nxn submatrix of ¢ C n(i,;}) =359 1,3=l..0m
then cn is non-singular for all n . In the above C is

clearly lower triangular. Although if C is not of this form



- 98 —

the sequence
¢ u
TANEIEAA
ili=1 n ili=1

does form a basis cf Sn , this relationship does not hold for all
k< n. Interms of the basis {\f/ig we obtain the Rayleigh-

Ritz approximate solution

n
v (YD) - $ o ® V. )
i=1
from the equations
* ‘ *
An ?‘n = Bn 000(3043)

where

n

b ) = (W1 ) ez @)= (W)

The equations (3.42) and (3043) are related by expressing (3.43) as

T
C,4,C, %, = Cpb veo(3.44)
. * T *
since we have A = C A C" and b = C b, . From (3.44)

n
we deduce ™ = (C Tyl g , so that
—n n n

n n
v 6 (WD - { ¢, "l (1,3) &, (1) Y, ()

i=1 =1

. n
and expressing {W }n as C {¢ } we have
SERE TN n 149

v, = {Yh = 5, & D oo (305)

[ﬁé remark here that a formalism of this kind has been used by Reid (1)

in connection with the finite element methqé?.

The equality (3.45) is an idealized relationship attainable only
in analytic computation. In practical application of the Rayleigh-

Ritz method errors are introduced by the numerical processes, and one
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would like a choice of the matxix C (i.e. of the functicns @{) which
would minimize the effect of the numerical errors. In the literature

of linear algebra there have been two approaches *o *his preblem.

d(i) di=j
These correspond to the cases C= ¢,. , C..= )
HOTOH Lo ak
i.ec C 1is diagonal, and C_ A CT = I where I is the identity
n'n n n n

matrix of size n . Both approaches are pleasing, the former for the
simplicity of € , and the latter for the simplicity of solution of
the resulting equations, where the coefficients Sgﬁ are given by

2§n = Cz gn . The suggestion that sush crihenormalization might be
an important tool in cotinection with the Rayleigh--Ritz method was
made by Davis and Rabinowitz (1), but little attention seems to have
been paid to this remark subsequently. There is, however, no need

to exclude more general transformations; for example, the

transformation matrix C of the transformaticn from

{¢i\ =z (1-x)

to
*

x (1-x) T3 (x)

Wi
is not diagonal, and the resulting matrix ¢ ACT is not the identity
matrix.

There are, however, a number of remarks which can be made
concerning the two special cases, which relate pariicularly to the
Mikhlin stability analysis in this chapter. The first comment rests
on a result of Dovbysh (1) (see Mikhlin (4), p.€).

0
Let the sequence {:¢i} i1 be minimal in the appropriate

energy space H; . Then there exist scalars d(i) , i = 1,2...
o0
such that the sequence {V’i] i q/i = d (1) ¢i is

strongly minimal in the energy space HL o
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Clearly, this is a special case of the general transformation in
which € is the diagonal matrix D d,, = d(i) i=1,2... . The
determination of the scalars d(i) rests on the construction of a
sequence of functions ieﬁi € Hy vhich are bi~orthogonal to

(%)

S
{ﬁ.ﬁ , that is, the relation
-

@, , 0,) = Sij

(see Wikhlin (4, Ds3))s If the scalars d(i) are now chosen so

that
o0

S
>

(a(s) )™ “ h‘i\

7 ; D
, S !
(\\
i=1

where X' is an arbitrary non-gzero constant, then the functions

q/i = d(i) §;  will be strongly minimal, and the eigenvaluea

n Cr 2D
>\ i ) of the Gramm matrix of size n of the sequence \\f’iﬂ in

HL will satisfy

(n) > y -
>\i

9] for all n

The determination of the scalars d(i) by this method is not
gtraightforward. For example, one might assume that a variation of
the Gramm-Schmidt procedure for orthogonalizing functions could be

used, but ' this is not so, as we indicate below,

Since the bi-orthogonal sequence of functions Gaj(x) satisfies

ng(x)G,HL, we may write

Qitx) = § oLlik) #, () §e ¥ b

k=1

for scalars ot(j,k) to be determined from the bi~orthogonality condition
e 5
o0 ; %
e
@0, = 5 ol @ f)y =
| Wty Sprnpriges- LR -
e T P T 1'=m1 440 00

—



Even for the single function 691(x) this is an infinite system for
the determination of the scalars o (1,k), and the determination of d(i) is
therefore impractical. In the case of a finite subsequence of functions

{¢i“}n. and a positive definite operator L the smallest eigenvalue of the
i=1

Rayleigh~Ritz matrix is strictly positive, and the construction is unnecessary.

Thus we suggest that the result of Devbysh is here of only theoretical
value, and we remind curselves that the condition that a co-ordinate
system is strongly minimal is insufficient to give complete numerical
stability.

We might, however, use the Gramm-Schmidt algorithm to
orthonormalize the basis functions | ¢i§ with respect to the
scalar product of the ensrgy space HL , or with respect to the
scalar product in an energy space HM , where M and L are similar
operators, in the latter case obtaining a system of functions which
are almost crthenormal in HL o Considering the case cof

orthonormalizing in HL , we seek to define functions

O <<\ €13 ¢J
J=1
satisfying ( MP g9 ky 3)L " 613
This orthonormalizaticon may be performed numerically, and in particular
the Modified Gramm-Schmidt algorithm of Rice (1) is %o be preferred.
In general it will be necessary to approximate the scalar product in

HL by some quadrature rule. The resulting Rayleigh—Ritz matrix in

terms of the bagis [W’ii is then the identity matrix, and the
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coefficients 9% of (3.43) are given trivially by gﬂn(i) - (£, q/i) .
The determination of these coefficients is completely numerically
stable, since the basis i%’i.i is orthoncrmal in Hy .  The
situation is not, however, as convenient as it might seem, if we
wish to evaluate the solution function. the cecmments which follow
no doubt have less relevance if orthonormalizaticn of the basis
functions were utilized in the application c¢f the Rayleigh-Ritz
method to the eigenvalue problem, provided tbat cnly the eigenvalue,
and not the eigenfunction, is required/.

The approximate solution yn(x) is giver by

n
v (x (Y1) - g ) V. .(x) ,

i=1
but where the basis [q/i i has been constructied from {¢i.$ by

numerical orthonormalization, will be evaluated from

n i
s W)= € e £ e g (8
i=1 J=i

In the case that the basis {¢i} - are 'mearly' linearly dependent,
which is the case when the basis is only minimal eor strongly minimal,
at least for large n the orthonormalization coefficients cij may
be large in modulus,; and of alternating sign, and the evaluation of
(3.46) can be severely affected by cancellation arror. We illustrate
vhese points by considering the solution of the test preblems of this
chapter using a sequence of basis funciions iq/i}:ml orthenormal

in HL

application of the Modified Gramm-Schmidt process described by Rice(l).

n
derived from the fundamental basis functions {¢i‘i . oY

In practice this algorithm seems best applied in the following

manner. Let !i ’ XQ be n component vecters and define
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(4,8 = (5 Q. & L)y,
i=1 3=1

=

- é G N CORE. SR EDINC - T WA ¢ W/t )

and

H g&ll i = Xﬁ s Za) 0es(3.48)

The function ¢i(x) is therefore represented by the unit vector

g;' = (0,0y... 0,1,0 ., O)T where the non-zero element occupies the
i¥h position.  The sequence {}+/i‘:-1 can thersfcre be constructed
by applying the Modified Gramm-Schmidt process to the n unit vectors
5;3 sy 1=1...n, 1.0, to the colums of the identity matrix In
using (3.47) and (3.48) to define the scalar product and norm required
by the process. The scalar products (¢i R ¢3)L are evaluated
initially, and these, together with the expressiocns (2.47) and (3.48)
may be evaluated in extended precision arithmetic if necessary.

The results of applying this crthonormalization process to the
solution of problem Ll using the basis ¢i(x) " xi(lwx) as the
fundamental basis are summarized in the style used previously, in
Table XII. We give only the cases n = 2,3,7,8. For n = 11l , the
orthonormalization procedure generates a function HP;O(I) with
'negative' norm, so that the Gramm-Schmidt procedure fails, This may
be attributed to rounding errors in the Gramm--Schmid* process being
magnified because of the near-dependence of the fundamental basis,
since the problem does not occur using double precision arithmetic.
For the results given, the coefficients ag(i) decrease rapidly for

small 1 as would be expected for an orthonormal basis. However,

it will be noticed that this process dces not continue throughout the
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o

” N . . .
vectors &. ag » and later coefficients begin to increase, This

7 .
is again a consequence of the near-dependence of the basis {¢i(x)§o
Additionally, the elements of the matrix C by which the crihoncrmal
basis {quR = C i.¢13 is generated are large in modulus and
have an alternating sign distribution. This can be seen clearly in

Table XIII where C is given for the case n = T . Thus the

computation of

n i
Y (x, { L}L}) = 2 g_l_,r.‘('l) 5\ cij ¢j(x)
i=1 )

is likely to be affected by cancellation error, and it will be noticed
that the results given in Table XII do not improve on those given in
Table II for the simple basis ¢;(x) - xi(l—x) . Similar

conclusions may be drawn from Tables A XIII and A XIV which relate

to the application of this method to the problem L2.

We consider also the orthonormalization of one of the co-ordinate
systems which has previously proved useful in the sclution of these
problems. Tables XIV and XV indicate the results obtained for
problem Ll using orthonormalizing techniques with the fundamental
basis ¢i(x) = x(1-x) T:_l(x) o The situation here is greatly
improved; again the coefficients of the solution vector q&n
decrease rapidly, but furthermore the matrix C has elements which
are not large in magnitude; so that cancellation is not a problem,
as can be verified from the accuracy of the results. Again, the
error of the approximation produced by this orthonormalizing
technique is 1ittle different (though in fact marginrally greater)
than the error obtained by direct application of the fundamental
basis. It is clear that the modified Gramm-Schmidt algorithm

should be regarded as a numerical method for solving the problem
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in terms of the fundamental basis, and not as & methcd of generating
a new basis, In particular we have demonsiratad that the etability
properties of the numerical process are determined by those of the
fundamental basis ¢i(x) and not by those of the numerically

orthonormalized basis 4/1 (x) o

3.7 Linear Differential Equations with Singular Boundary Points.

In this section we demonstrate the application of the Rayleigh-
Ritz method to the solution of two self-adjoint differential
equations with singular points at the boundary of *he region,
corresponding to the equations considered by Mayers (1).

The original equations are

' -y ~x = 0 vee(3.49)
and

Pyt -2y + 322 = 0 eos(3.50)
with boundary conditions

y(©) = y(1) = © oou(3451)

Thase can be written in self adjoint form, so that (3.49) and (3.50)

become )

& (312 %) - 1.0 vee(3.52)
and

?‘% (%) + -i-zy-'-% = 0 000(3053)

respectively, again subject to the boundary conditions (3.51). To
the self adjoint equations (3.52) and (3.53) there correspond the
following variational problems, which we shall refer to as S1 and

82 L]
1

S1 min
y

0

('2+2y) ax

L
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and 1

' 2 2 2
82 min y +T2 y + 3ytdx
vy X

0

again with boundary conditions (3.51). It 1s known that the equations
(3.49) and (3.50), with boundary conditions (3.51) have the exact
sclution

y(x) = % x* log x
(Mayers (1)), and clearly the third derivative of the solution y(x)
is infinite at x = 0. This weak boundary singularity does not
seriously affect the Rayleigh-Ritz procedure used. The scalar products

which are encountered, i.e.

1
j (_1_ af (x)  afi(x) > i voe(3054)

= dx dx

0

and

ax ax ALk - j

1 \
Y <[ggi<x>agglgx) 2 AW ) e
-

i . \ - y 7 . "
are finite in value | for any cc-ordinate system E¢i j satisfying

the boundary conditions and, in the case of (3.54) satisfying

d¢i
dx

=0 for all i eee(3.54") )
x=0

Tableé XVI, XVII, XVIII indicate the results obtained by applying

the bases
¢i(x) = -@ gin 1 ﬁx
il
g,(x) = x*(1-x) .+ (355)
and

gi(x) = x(-x) T, ()

respectivelf‘to the solution of problem S1, whilst similar results

o * Although these bases do not satisfy (3.54'), finite approximations
:;gfhﬂ'?;:init;ai;tegza;: (3.54) are obtained usihk'Guu;aiau'quéardr e, and
‘vhe resulting Rayleigh-Ritz approximations for problem S1 s

tisfy y'.(0) = 0. PEpRe approxima
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for problem S2 are presented as Tables A XV, A XVI, A XVII of
Appendix A.

Similar conclusions may be drawn here as have been indicated
earlier. First, the trigonometric polymomial approximation converges
slowly, since the solution is not periodic. The convergence of the
coefficients of the solution vector is no longer regular. The simple
polynomial basis (3.55) again demonstirates that, whilst it may
produce reasonably accurate solutions, no reliance may te placed on
its convergence, and the situation in which ccefficients of the
solution vector are large in magnitude and alternats in sign again
appears. Finally, the use of the modified Chebyshev basis again
provides approximations which have high accuracy and solution vectors

whose coefficients are stable and which decrease rapidly to zero.

3.8 Summary

A full treatment of the numerical application of the Rayleigh-
Ritz method for linear differential equations requires a discussion
of the error of the approximation. Since the error of the
approximations calculated in this chapter depends on both the
numerical errors in the solution of the Rayleigh-Ritz equations,
and on the quadrature errors in their construction, these
approximations are not covered by the error bounds of Ciarlet,
Schultz and Varga (1) or Gladwell (1), which apply in the case of
analytic computation. We defer a further study of the errors
inherent in our approximation until Chapter Five.

However, it is well known that the error in variational
calculations is often estimated by considering the magnitude and

rate of convergence of the coefficients of the approximate solution.
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We have shown that, whilst accurate solutions may sometimes be obtained
when the coefficients of an approximate sclutior in terms of a
particular basis do not converge to zero, we can place some reliance on
the accuracy of a solution whose coefficients do tend to zero in this
way. As might be expected, we can also comment tha*, uniess a problem
has a solution which is known to be periodic, a co-ordirate system
which consists of trigonometric polynomials has few merits, and that
for solutions which are "smooth' expansions in terms of a polynomial
basis may be very satisfactory. In particular we recommend the

basis

g (x) = x(1-x) 7, ()

as having desirable computational and convergence properties. We
shall see in the next chapter that this alss proves to be the case

for a much wider class of problem than those so far ccnsidered.



Chaptor Four

Numerical Considerationsg in the Application of the

Rayleigh—~Ritz method to Mildly Non-linear Differential Equations

Whilst the linear differential equations and the corresponding
simple quadratic variational problems which we considered in
Chapter Three are sufficient to illustrate a number of important
features of the Rayleigh~Ritz method as a numerical process, most
recent interest in the method has been concerned with the solution
of mildly non-linear differential equations of the form (2.27) which

we restate here for convenience. Solve the differential equation

zi (- l)sd‘s (ps(x) QE% ) = f (x,y) eeo(401)

8=0 dx

subject to the boundary conditions
y(r)(o) == y(r)(l) = o I"—'O e k-"l "‘(4"2)
and certain conditicns on ps(x) and f(x,y) . These last

conditions are, for example, those of Ciarlet, Schultz and Varga (1).

[These have recently been extended by Gladwell (1), who considers the
N . Kl (1) (1)
case in which the right hand side of (4.1) is replaced by ;g; i{x’y )
i=0

(1) ( ))

where y = é—; y(x) and each of the functions f (
dx

rather less restrictive condition§7. Under these conditions the

satisfies

solution of (4.1) minimizes the variational integral

Y o 2ol e an]
I(y) =j‘ {20 pyx) &L - 2“' 2(x, )" | ax
o & 0

subject to (4-2) over the space of functions
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{yﬁ 1 P 0)myF)(1)=0 , 0..x-1, ye & 1{o,1!,

&y ¢ 12 10,11 }

dxk

The Rayleigh-Ritz approximation yn(x) of size n is defined by

n
Yolx) = 2 a, (1), (x) v+(423)
i=1

where ¢i(x) are suitably chosen basis functions and

Aa, = & (2) ... (4.4)
where A (1,)) = (¢i , ¢j)
1
k
= X % Ps(x) iﬁ_-'_l_ d_sgj dx
o &= dx® dx®
1
and &n (an) = gn(an)(i)' I f(x,yn(x)) ¢i(x) ax 1-1...n
0

The matrix A is an (nxn) real symmetric matrix, and is assumed
to be positive definite. That An is positive definite ig implied,
for example, by the conditions of Ciarlet, Schultz and Varga (1). 1In
general, as in Chapter Three, the elements of An and gn(gn) are
replaced by a quadrature approximation, though if the coefficients
P,(x) and the chosen basis {ﬁi(x)} are sufficiently simple, the
matrix elements An(i,,j) may be evaluated analytically. We leave a
full study of the effect of these quadrature errors until Chapter Five,
but remark here that except where explicitly stated, the numerical
results quoted in this chapier have been obtained by applying numerical

quadrature to the evaluation of the elements of An and &y -
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4.1 Detzils of the Application of the Rayleigh-Ritz Meths.i.

In this section we describe the method of solution of problems of
the form (4.1) using Rayleigh-Ritz techniques. We tegin with a
general approach and subsequently describe particsular cases in which
convenient modifications to this approach may be made,

Applied to mildly non-linear differential equations of the form
(4.1) the Rayleigh~Ritz method may be seen to consist of an outer and
an inner iteration. The outer iteration consists of the determination
of a seguence of approximate solutions yn(x) for a sequence of values
of n , where yn(x) is given in terms of a basis §¢i} :=1 and is
defined by (4.3) where the coefficient vector a, is given by (4.4).

This iteration may be terminated when some condition of the form
h (r,(x)y ¥, ,(x)) < 9
where h ( a(x), b(x) ) is generally some norm or seminorm of

a(x) - b(x) . For example, we might have

b (a(x), b(x) ) = max |a(x) - b(x)]
05x%1  ...(4.5)

oxr

r
b (a(x), b(x) ) = g (a(x,) - blx,) )2 e (4.6)
t=1

where 0 % x1< Xy e <'xr.4- 1. (4.5) defines a norm on the function

a(x) ~ b(x) , whilst (4.6) is a seminorm of this functicn., MNore

frequently a relation of the form

| 2 - 2] < € vre(407)

is used, for simplicity. We have seen in Chapter Three that
relationships of the form (4.5) or (4.6) may hold when (4.7) does not,

and in these cases use of (4.7) may require additional computation; in
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general, as we have seen, one prefers to choose a basis fcr which (4.7)
ig true if and only if (4.5) or (4.6) hold.
The inmmer iteration performs the solution of the non-—-linear
(¢)

equations (4.4). That ig, for fixed n and a given(gn we

. T
determine a sequence of vectors gﬁ ) s T = 1,2,0... such that

(x)

lim a
Pl

a
-n
This iterative solution of the non-linear equations is termirated by

a condition of the form

né,(f')~ an(r"l)” < Sn oee(4.8)

- (z)
when we take én = En

A great variety of iterative methods for the solution of nor-
linear equations have been proposed, (see, for example, Ortega and
Rheinboldt (1)), A very simple approach has been taken in the
examples quoted in this chapter, though in certain special cases this
has been modified. We take an initial estimate .gio) of the

g

sclution vevtor and from the sequence of iterates gﬁ ) definad by
{r) (r-1)
Anén = g'n (;a"ﬂ ) r=1,2“ 000(409)

until the condition (4.8) is satisfied. This simple iteration

converges if

n ———

P o, g <1 ee+(4.10)
%01 8, = 8}
where f>(A) is the spectral radius of a matrix A ., Though the
condition (4.10) is stringent, good initial approximation vestors
2’ are generally available from previous outer iterations, In the

-n

examples given the initial estimate
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T T -
égo) - (Enml R 0) u,,(4oxx)

has been used, *heugh a more scpaisticated approach tased cn
extrapclation from the elemsnts of the vester & mighit he used.

In practice, if the coefficients gn(i) are tending rapidly to zero
thare is little ic bo gained by a more elaborate choice than (4.11).

It remains cnly to choose an initial egtimate géo) for the first outer
iteration. In this situation the matrix A is esmall (in cur case
(2x2)) and if necessary the reiation (4.i0) may be direstly checked.

In fact the method has proved very imsensitive fto the cholce of

initial vectors.

A more rapidly couvergent iterative sclution of the equations
(4.4), and more scphisticated techniques of esiimation of .g;’ ray
lead to significantly fewer evaluations of vectors g_n(gzﬂl) i (4.9),
with considerable gains in time where this vector is evaluated by &
quadrature rule.

The relation (4.8) indicates that the termination condition for
the inner iteration may depend on n , the number of basis functiouns
used in the expansion of yn(x) . It is felt that siuce the
principal purpose of the first outer iterations is to provide good
initial ectimates for subsequent iterations the iterative solution of
emall Rayleigh-Ritz systems nsed not be as accurately performed as
that for larger ones. Accordingly, in the results which are given

%ﬁ has cre of the following forms
%!1 = n.f£ 207
or

5. = £ao™

n

where 8. is a small positive constant and typically éﬂu 5 x 10'5 QT

€. 1x107,
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The inner iteration of the applicaticn of the Rayleigh-Ritz method
t5 mildly non~linear problems is modified un certaiu special cases.
These relats tc the case where in (4.1) we have k=1 , pl(y)fl ,

po(x)=0 3 1.e., to differential equations of the form

dzlz -y \
2’ B f(x,y’) oau(4a.&.’-)
dx

and to particular cheizes of the basis funciions ﬁi(x) with whizh
yn(x) is determined.
The simplest case is that in which the basis is given by
X
* -
¢i(x) = J2i+l Y Pi(x)dx i=1520u00s
J
0
*
where Pi(x) are the shifted Legendrs polynomials., In this case the

matrix An hag elements given by

1
B0 = VB VA | R )R] (axe by
)

se that 4 = In ; where In ig the identiity matrix ol ocrder o, s0

that equations (4.4) become

To2a & 2, = &)

and the itsrative scheme (4.9) is reduced to

CI

L., a7 (1) - g ) ()

with again a terminztion conditicn of the form {4.7).
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This very simple Rayleigh-Ritz method has the disadvurtage tuwat
evaluation of %he Ffuncticns ¢i(x) , best achisved from the recirrenis
given in 2 3.4 (p.92) , is very tims consuming. This will te
clear from the subseguent discussion of test exaamples.

The second special cage applies %o preblems of the form (4.12)
when the chosen besis fuacticns are either
g.(x) = x{ix) T, . (x)
i i--1

or

B.(x) = x(-x) B, (%)

where TI(x) are the shifted Tchebyshev polynomials on {Q,f] and

P;_l(x) are the shifted Legeudre polynomials. Ia eitvhexr of these

cases the matrix An aasumes the special form indivated in Chapter Three
in which

a(i,3) - 0 i+j odd.

Hence Ar can be re-ordered so that An is reducible, Let

g
Ail)(igj) = A (21-1,23-1) 1,éa1ﬁoo\&§¢1
and
2 . . 0
Ag )(igg) » An (21,23) Jyd=1... IE]
. 1 2
and define vectors gé ) ’ gﬁ ) y Yy Vg
(1) i = 1 4 I.r.‘fﬂ;]
&, (i) = £, (25-1) T 5
(2) . o q]
& (L) = &, (21) i=1... {2
and
1 = L2 - .Yl‘t:“.
a (1)~ g (2:-1) 1 B



where {xj denotes ‘iateger part of x' . Then

be rewritten

(1) (1)
Ah =73 B gn ‘uﬁqdu)
. (2) o (2) .
o an (ln”\n)

. A . N s C
Starting from glven initial esilmutes ALy Y
may be seolved iteratively by the relations
(1) r (1), r-3 -]
A.;L u - RN _1. . 1- Y
n =m &y (Ln e )
A(Q)"P (2),ur v3~1)
R S Man Iy

. T
where each of the linear uystems of equations for M

by some numerical method, for example by Gausaian Elimination.

reduction to twe connested systems of the form (4.12) provide=

' ¥

e’

e o rmnn
°
0
o~
IS
<
1o
¥ ]
N

eoo(4.14)

4 V.
18 arived

considerable

economy in the solution of the Rayleigh-Ritz equatirus for each wvalie

of n.

4.2 Scme numerical results for mildly non-linear problems

In this sectirm we repcrt certain numerical

the application of variouns choices of polynomial

ce-crdinate systens

g¥xpasriments demonsiraiing

te

the variaticnal soluticn of mildly non-linear differential eguaticns

satisfying the restrictions of Ciarlet, Schuliz and Varga (1).

In

gection 4.4 examples whish d¢ not satisfy thesa conditicng dut which

gatisfy the weaker coniitiocns of Gladwell (1) will be scuaidezad.

The test examples reposrted here ars the following,

Problem N1,

The solutiorn of the differentizl equation



1 .
" on Ry e xe1) #(0) = y(1) - ¢
minimizes the variational integral
1 7 -
r - !
I(y) = Sngd + \ (’ﬁ + X + 1)3 d 7 booax
T J
e 0
stbject to houndary ccnditions y(0) = y{(1) = 0.
The exact sclution is given by
y(x) = 2/(2-x) « x -1

This example is considered by Ciarlet, Schults and Varga (3, p.425).
roblem N2,
The solution of the differential eguation

7" e e g(0) = y(a) a0

minimizes the variational integral

1 /g 3
I(y) = Y {y“ +2J exp ( '7) dﬂ7 j} ax
. I .

subject ¢ y(0) = y(1) = 0 . Thia soluticn i3 given by

y(x) = = In 2 + 2 1n (c sec (c(x-0.5)/2))

where ¢ £ 1.3360557.

This example is considered also by Ciarlet, Schultz and Varga,(l, p.424).

Prohlem N3,

As a third tes’ example we consider the differential equatien
2" = 6xz° 2(0) = z(1) = 1 ove(4015)
examined by Collatz (1, p.201), who shows that the operater T defined

by

T™z) = 2" - 6 x>

is monotone in the rectangle 0% x<1 , 0% z2(x)%1; i.e. if =z
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satisfies T(z) = 0 and wl(x) , w2(x) satisfy
T(wl(x)) <0, T<WE(X)) > 0
then the inequalities
wl(x) < z(x) < wz(x) coo(4.16)
hold. In particular the relation (4u16) is known to hold when
3 4
wl(x) = 1-x+x", wz(x) = 1 - 0.43(x-x") .

The differential equaticn (4.15) is transformed by the substitution

y(x) = z2(x) - 1 to the form

e x(y)? ¥(0) = y(1) = 0 .. (4.17)
Since wl(x) < g(x) < w2(x), y(x) satisfies

x+x & ylx) ¢ -0.43(x-x%)

The solution of (4.17) minimizes the variational integral

- 2 4 2 }
I(y) aJ‘ 42 x( % +1) a4 dx
y o{y L

with boundary conditions y(0) = y(1) = 0 ,

We consider the approximate solution of these problems in terms of
some of the polynomial cc-ordinate systems we have used previously.

The systems used are

g,(x) = x'(1-x) .. (4.18)

gi(x) = x(1-x) 7 ; (x) oo (4.19)

g(x) - /AR f PH(t)at ...(4.20)
0

We do not consider basis functione which may be cbtained from these by

simple diagonal scalings, nor do we consider the co-ordinate syatem



g.(x) = x(1-x) szl(r) i view of its cumbersome coumputasional
properties. Approximaticns yn(x) in terms of each of the systems
(4.18), (4.19), (£.20) for values of n in the range 2 % n %10

are gonsidersd, Numerical results for problems N1 and N2 using the
basis (4.20) have been weported by Ciarlet, Schultz and Varga (1)

for mn = 2,4,6. All vumerical experimenis have besn performed on an
IBM 360/67 cemputer using either single precisicn (8 sig.figs.) or
double precision {15 sig.figs.) arithmetic. A Gauss-Legendre
quadrature formula using 20 points was used to evaluate the elements
of the matrices An and the successive right hand side vectors of
(4.9) or (4.14) respestively, except that, since for each of the test
problems the matrix A~ generated from the basis (4.20) is the
identity matrix In , this was substituted directly.

The results for problem N1 using each ¢f the co-ordinate systems
(4.18), (4.19),(4.20) are given in Tables XIX, XX, XXI respectively,
whilet similar results are given for the prcblems N2, N3 in Appendix B,
It is immediately apparent that *here is nc significant difference
between the accuracies of the approximate solution produced in each
co-ordinate system, The exrrors in the appreximations obtained by
Ciarlet, Szhultz and Varga for this problem are indicated as I in
Table XXI, and we must attribute the minor difference to the use of
different computing facilities.

The situation with respect to the determination of the coefficients
of the approximate solution vector and the progress of the iterative
procadure does, howerar, depend considerably on the choice of co-ordinate
system from (4.18), (4.19), (4.20). It is not useful to compare the
number of iterations performed for very small values of n , since
this depends on the accuracy of the initial estimate gg y but once a

»easorable approxization hae been obtained a comparison can be made.
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We note in particular the poor convergence of the procesa vhen the basis
(4.18) is used; an iteration limit of 20 iterations was imposed on the
solution of the eguations (4.9) or (4.14) at each stage, where tkie was
reashed an * has bean nlacad in the tables for empbasiz. That this
gituation can arigse for the basis (4¢18) is indicative of the poor
convergeuce of the coeffisieuts of the apprevimate solution vector when
this basis is used, which can also e ohserved in the table. The
convergence of thae soluticn vector coefficients and of the iterative
procedure for esack of the co-crdivate syetems (4.19) and (4.20) is goed.
We would emphasizs sgain that sslution in terms of the basis (4.20) is
expensive of computer time because of the difficulty of evaluating the
basis functicus; as an indicatica we point cui that the solutions
quoted in Tables XIX, XX and XXI (including solutions for n = 7,8,9)
were obtained in 124 secs, 173 secs and 300 secs recpectively where the
mark *+ in Table XXI indicates that soluticn of the system of size

n = 10 in terms of the basis (4.20) had not been completed in 300 secs.
Similar timing comparisons 2au be made for prctlems N2 and N3.

We compare briefly new the accuracy and numerical behaviour of
solutions obtained using different precision of arithmetic; specifically
we lock at the sclution of problem N1 in terms of the basis functions
(4.18) and (4.19) using single precision (7 sig.figs.) and double
precision (15 sig.fige.) arithmetic. Table XXII indicates that for
the basis (4.19) the accurasy of the approximate solution is not
seversly affected by a reducticn in the precision of the computations
until the limit of this reduced accuracy is approached (the solution is
of maximum magnituds = 1.1'- 1) and it appears that the iterative
solution of the equations is not adversely affected, though this
behaviour is not continued; the iterative solution of the equations

for n = 9,10 is not achieved using 20 iterations in single precisiocn
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arithmetic. The effect of a reduction in the precision vl the
computation is much mere marked when we consider solution in terms of
iho basis (4.18), as can be seen from the results summarized in

Table XXIII. Although low order sclutious are produced in single
precision arithmetic which agree with those obtained using doubls
precision, the convergeuce of the iteratioun is severely affected, and
the iteration limit of 20 iterations is exceeded on several occasions.
Furthermore, the iterative processes seem unlikely ever tc converge;
in Table XXIV we give the last asix iterates of the process in the case

n=6o

[
We notice that the Zirst and last rows of the Table, 1.6 gé’

and §é20) are identical, and hence that the iteration will continue
to oscillate, so that convergence will not occur.

It appears then that, although the solution of mildly wnon-linear
problems in terms of the basis functions ¢i = xi(lmx) may produce
solutions equally accurate with those obtained using either the basis
functions (4.19) and (4.20), and may be more economical of computer
time, the numerical processes involved are unstable, and may lead to
the non-convergence cf iterative methods of solution. Ve would
therefore recommend that either the basis functions (4.19) or (4,20)
be used for mildiy non-linear problems having solutions which may be
well represented by polynomials, and express & preference on the
grourds of computsational convenience for the basis (4.19)., Furthermore,
we show in the next section that this basis generates matrices An with
a useful theoreiical property governing the convergence of iterative
processes for the sclution of equations. In 4 4.4 we demonsirate that
the numerical comparisons which we have made in this.section remain

valid for a wider class of problems.
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4.3 Iterative Convergence : U.A.D. matrices.

In this section we outline a property of Rayleigh-Ritgz

approximation in terms of the basis

g () = x(2-x) 77y (x)

which helps to justify the use of this basis for the solution of
certain types of variational problem. The initial result is the

following.

Theorem 1
Let B be the matrix with elements

1
2(,9) = | #G0) o

-1
i,j = 1’2000-
If ¢i(x) = (1—x2) Ti~1(x) , then the matrix B is asymptotically

diagonal of degree three (3).

Proof.

The elements of the matrix B are given by

0 i+j odd
B(i+l,j+1) =
r(i,J) i+j even

where
-3 - _1 - _1 - _3

r(i,3) = ~ == === = ot
’ 1432-9  i+§-l 1-3°-1 1-32-9

. 40 (1253 (21%25%-20) + 9(T+3% + T79)

(T732-9) (1932-1) (T-3%-1) (T=3>-9)

, 241253212 + 25% - 10)

(3+3%-9) (T¥3°-1) (3=3%-1) (1-3°-9)
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Heuice 5 _n
B(i+l,3#1) = 0(i“) + 0(i™°) + ¢

aad for sufficiently large 1 , and fixed j ,

B(i+l,i+l) = kii‘?
B{i+l,3+1) = d, 172
fao that
-2
En R Gl
{3(1,2). 8(3,9)} ¥ (0,37 + 0,)0c3% + o))}
2olag] . a7

lic,|. [B¢3,8)] %

Hence the matrix B is asymptotically diagonal of degree 3. In
order that B be uniformly asymptotically diagonal we require that

there exist constants w, W such that

B(i+1l,j+1) < W Vi,j , ify  ...(4.21)
and
B(j+l,j#¢1) = w > 0 \/,j 000(4o22)

Te preve (4.22) we have

B(3#1,541) = 2(3,3) = " —4— T —3— + 43
25°-9 23°-1

+ 442 + _1654(45%5)
(2%-9)(25%-1)  3(25%9)(23%-1)

For J > 2 we have

B(j+1,5+1) 2 4 - —— _ 2 2 16/14

and for Jj = 0,1,2,
B(1,1) = 8/3
B(2,2) = 48/21
B(3,3) = 116/21
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50 that (4.22) holds with w = 16/17 . Clearly (4.21) Lcids in view
of the asymptetic behavieur of A(i,3) , 4 % j 5 80 that the thecrem

ig proved.

Corcllary 1
The Rayleigh~Ritz matrix A for the solution of variational

problems of the form
. ' ,2
min I(y) = y'© o+ 2
N

*
in terms of the basis ¢i(x) = x(l—x)Ti_l(x) is uniformly

f(x,'? )a?% } dx

agymptotically diagonal of degree three.

Proof

The matrix A has elements

1
A(1,3) = g (x) g (x) ax
i J
0
which satisfy
. 1 .
A(L,9) - % B(3,9)
and frow Deives & Mead (2), p.70>, the property that a matrix

te wniformly asymptotically diagonal is invariant under a diagonal

transformation.

Corollary 2
The Rayleigh~Ritz matrices A(l) ’ A(z) defined by
A(l)(i,j) = A(2i~1,2j-1) i,3=1.. i?gl]
o
A(")(i?j) = A(Qi,?j) i,jﬂluo ‘2/2]

ars asympitotically diagonal of degree three.
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Prcof
IA(I)(i,j)I .
a0l B, =
Put k = 2i~-1 , m= 2j-1 -
For fixed m
Lagem) | ., £ ckx7
(| a0k, [a(msm)| )7
from Thecorem 1 and Corollary 1, and hence
_Léiﬁrﬁll_ . £ cx?
( I Ak k)|, A(m,m)l )*
so that
a5l g € 173
a0 1O, )
and similarly for the matrix A(z) .

A(2i-1,2j-1)
A(2i-1,2i-1) A(23-1,23-1)

= C(2i-1)"3

Thus the results of Delves and Mead, given in Chapter Two, are

applicable when the basis ¢i(x) = x(l-x)TI_l(x) is used tc solve

linear differential equations of the particularly simple type

f(x)

y" o=

y(0) = y(1) = 0

Mcre importantly, we consider an extension of the results of Delves

and Mead to the iterative solution of the Rayleigh-Ritz equations (4.4)

oxr (4013), i.e.

bz = & (&)

or
At u gﬁl) (u, » ¥,)
(2)

A - 6P )

where

eoo(4.23)

N
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. . 1
2 (2i-1) = u (1) i=1 .. XP%—J
gn(ei) = :::n(i) ° . . i=1 o in/z]

which determine an approximate solution of the form
n
. (0) = e (i) 4 (x)
i=1
of the differential equation

' o= flxy) : y(0) =y(1) =0 vosl4.24)

where 5§1) s g&‘) are defined in % 4.1. Such results clearly apply
to the solution of differential equations of the form

y" = b{x)y+elx) : y(0)=y(1)=0

provided that the linear term in y is included in the right hand

side vector g of (4.22).

Let the sclution y(x) of (4.24) have a generalized Fourier

expansion in terms of the co-ardinate system { ¢i~& given by

6]

v = 5 A g &
i=]l
Let R, = i:{" : 3 c s.t y(1) < Ci-sl

We can now prove the following.

Theorem 2

Let A Ye a U.A.D. matrix of degree p >1/2, satisfying
IAiiI = 1 and Aij < C(p)i-'P where C(p) is defined by
Delves and Mead (2, Thm.l). Let ‘g(°) be a chosen initial vector
such that g(a°) € R, and define the sequence of vectors g(r)
r=1,2 ... by

AE(I‘) (1“-1)) - 8(1‘-1) ”.(4025)

uﬁ(a
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If g(ra‘l) € R, 5, >0

then a(r) &€ R, for all .r

where t = min (sr s D) .

Proof

For each r we sclve the linear system of equations

pal® o L)

where A 1is a U.A.D. matrix of degree p and g is a vector in Rs .
: = r
Hence by Delves and Mead (2, Thm.6) _rg._(r) € R, vwhere t, = min
r
(p,sr). Hence the sequence of vectors g_(r) are all contained in

R, where 1t = min (tr). Q.E.D.

Corollary

If the iterative solution of (4.25) is convergent then d € Rt .

We note several conzequences of these results. The condition

A(i,1) = 1 does not apply in the cese of the Rayleigh-Ritz matrix
obtained from (4.24) by substitution of an approximation in terms of
the co-ardinate system ¢i(x) a x(l—x)Ti__,_l(x). However, we have shown that
lA:(_i,i)‘ = Ciia for some constant Cj, and it is known (Delves and Mead,
(2,p.’70_})) that the U.A.D. properties of a matrix are invariant under a
diagonal transformation. Thus we can consider a diagonal transformation
by the matrix

D : D(i,1) = (Cy 12)"1

such that  A(i,d) = 1.

A major weakness of Theorem 2 is the assumption

g™y e 2 V=

8p

which appears difficult %o verify. However, we consider the system
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DAz(r) = D&(e(r"l)) vou(4.25)

where A is the Bsyleigh-Ritz matrix for {42.24) with the basis
*
¢i(x) = x(lux)Timl(x)o

Writing DA = A' , Dg = g' we have the system
Ala(r) = g (r-1) oeu(4027)

vhere A' is a U.A.D. matrix of degree 3 with A'(i,i) = 1, and

where g (r-l)e R, provided there exists a constant M s.t
g<r_1)(i) <M \V/ i Hence if A' =satiasfiec the remaining

cordition of Theorem 2, i.e. lA' (1,3)’< c(3)4™P then g(r) defined

by (4.27)satisfy &(r)e R, . The elements g(r—l)(i) are defined

by 1
g™ - Y (s, { 1) g,0) g0
o)
80 that 1 w >
ey K e, L oCDp |
0 2 2)%
j ¢i(x)dx
0
by the Cauchy Inequality. We can now state
Theorem 3.
Let {¢1(x)] be the co-ordinate system
¢i(x) = x(1-x)7 * (x) ees(4.28)
i-1

and define W +to be the set of functions

W= [w(x): £(x,w) £ M, wix)e HL]

and suppose
o0

7)) - g 288 () | 300 é & (1)F, (x)
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satisfy y(r) £ W, r=0,l... y YEW

(r)

where a are the solutions of equations (4.26).  Then 'g(r)é, B

for all 1 .

Procf.
We have establisbed a(r) C R, provided ’g(r*l)(i)‘ < M.
Since, for @,(x) given by (4.28)
1 12
. < -
X ¢i(x)dx =~ const C,

0

then for all w(x) € W JM=CM
such that

g(rml)(i) < ¥,

Since y(r—l)(x) € W, we have a(r) € R,

Corollary.

If the iterative solution of equations (4.27) is convergeut, then

o € R2 o

The results given above indicate the behaviour of the coefficients
of the generalized Fourier expansion of the solution y(x) of problem
(4,23) in terms of the cc-ordinate system (4.28), and also the behaviour
of the successive iterates in an iterative solution of the (1nfinite)
system of equations (4.27). Nothing has been said concerning the
situastion for finite matrices, or concerning the particular iterative
process usmi‘ It would seem probable that results similar to Delves and
Mead (1, Thm., p.212) can be given for particular iterative methods of
solution of a finite system of equations. This result asserts that the

elements of the first iterate '523) of the Gauss-Seidel or Jacobi methods
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of solution of a finite system of equations have the same asymptotic
behavicur as the exact solution of the corresponding infinite systiem
of linear equations provided that the matrix A is sufficiently
asymptotically diagenal ( p large enough).

It is felt that the results of this section account in part for
the high reliability of the variational solutions in terms of the
basis (4.28) quoted in this chapter. It can also be shown that the

Rayleigh-Ritz matrix in texms of the basis

g, (x) = x(1-x) P{_; (x) oo (4.29)

is uniformly asympto“cally diagonal of degree 3 and thus that

Theorem 3 holds in the case of (4.29) as well as in the case of (4.28).
Finally in this section we suggest that the results given here lend
weight to the optimistic comment of Delves and Mead (2, p.25) that

A.D and U.A.D matrices may be of cousiderable importance in

variational calculations.

4.4 Numerical Res:lts for g-bounded problems.

The conditions given by Ciarlet, Schultz and Varga (1), which
apply to the numerical examples considered in % 4.2, have recently
been extended by Gladwell (1), who shows that a wider class of
problems can be solved using the Rayleigh-Ritz method. We consider
now numerical results obtained by the Rayleigh-Ritz method for the
solution of two examples given by Gladwell which satisfy his
conditions but not these of Ciarlet, Schultz and Varga. Additionally
we demonstrate the success of the Rayleigh~Ritz method for certain
particular problems which are not covered by either the requirements

of Gladwell or Ciarlet, Schultz and Vargsa.
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The examples considered are

Problem Ql.
The sclution of the differential equation

2
y =%(y+X+1)3‘;,_-(1L_;y(y~'5:_; +x+ 1)

subject to y(0) = y(1) = 0 is given by
y(x) = 2/(2—1) -x -1,

This solution minimizes the variational integral

J

1
I(y) = X{YQZ—ZY [;(‘%:;5‘<7"§%§+x+1)-
0]
° %(ﬂ-ﬁx+-n3]d7}dx

subject to the boundary conditions y(0) = y(1) = 0.

Problem Q2.

The second problem we consider is similar to that given by
Gladwell (1, p.62). Specifically, we replace the derivative boundary
condition given there, y'(0) = O by the condition y(0)= O . Then,

defining

\ - S(Tay ! Yolx) = cos ( A (1-s%) )

the differential equation

(¢ 3)' = &* = Nex(K(y-x+1) + 1K)y, (x)

)2t eee(4.30)

+ (o) -y +x-1
(K= const , 1 =1, 2, 3... )
with the boundary comditions y(0) = y{1) = O has the solution
y(x) = yo(x)+x—1 o The equation (4,30) has the form of (4.1) but
the right hand side of (4.30) does not satisfy the conditioms of

Ciarlet, Schultz and Varga (1), but in the case K<9%%- it satisfies
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the extended conditicns of Gladwell. We consider the soiution of

this problem for a wumber of values of X , insluding some cases
2 . . o . .

K>e /ﬁ, for which a theoratical jussificaticn of the methed has

ni

not been given. We alsc consider the sase in whioch the exponent

p
(4]
(4]

2i+l cccurring in (4.30) is rerlaced by 2i, for which the problem
again does not satisfy Gladwell's conaitious.

The solution of (4,30) minimizes the variaticnal integral
1

I(y) = 1exy“2 -2
© + (yo(x}m(jlnx+l))2i+1} a% K dx

cos(4.31)

y

L] D (k0 e (- 00y ()

Ty

subject to the boundary conditions y(0)=y(1)-0.

This example is interesting from an additional viewpoint, in
that it is the only example of a mildly ncn--linear equation which we
shall congider fcor which pl(x) # 1 , so that *he elements of the

matrices An are not sc readily evaluated.

We cconsider only solutiom of the prablems Q) and Q2 in terms
of the basis ¢i(x) = x(1~x) T;_l (x) . Solutions of problem Ql are
given in Table XXV, and of prcblem Q2 for the values 1 = 1, K = 0.3
in Table XXVI. Solutions of preblem Q2 fer other values of K and
i are given as Tables BVII, BVIII, BIX in Appendix B. N¢
difficulties are encounteresd and both the solution vectors and the
approximate solutions display stable and corvergent behaviour. For
problem Q2 it can be seen that the convergence of the iterative
gsolution of the equations depends on K and 1 . Specifically, ae
K is increased towards 9%%, or as i decreaces towards zero; more
iterations are required for the determination of each approximate

solution vector 2 - This reflects the behaviour ¢f the integrand
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of the problem ir terms of the criteria giver by Gladwell. TFer
example, if K7>eah then the integrand of (4.21) does not catisfy
these oriteria, and we have no theoretical justification for the use
of the Rayleigh-Ritz methcd. However, we find *hat in this casc the
method proves satisfactory. Table XXVII gives Rayleigh-Ritz
approximations to the solution of problem Q2 for K= 2, i = 1

obtained in terms of the basis ¢i(x) = x(lnx)T;il(X).

If the exponent 2i+l occurring in the right hand side of (4.30)
is replaced by 21 , i = 1,2,3..., then the variational formulation of

this problem:-

Problem Q2'
1 _ y
min X {exy'2 -2 S [)\2e"x(K(°)-x+1)+(1-K)yo(x)
N o 0

+(y o (x)-(7 —x+1))2i] aﬂ dx
subject to y(0) = y(1) =0

also fails to satisfy the criteria of Gladwell (1) for any value ¢f K ,
and again there is no theoretical justification for the use of the
Rayleigh-Ritz method. In the particular case K = 0.5, 1 =1,
however, we demcustrate the success of the method in Table XXVIII in

*
which the basis ¢i(x) = x(lux)Ti_l(x) is used to obtain a sequence of

Rayleigh—~Ritz approximations.

4.5 Conclusions

Numerical results for certain examples of mildly non-linear
differential equations have been presented which show that for suitable
choices of polynomial co--ordinate system accurate solutions can be

obtained in terms of a small number of basis functions
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and *that the ccefficients of such approximaticns display gocd
convergence and stability properties. A theoretical justification
of the convergence rate of the generalized Fourier expansion of the
solution has been given for a particular co-ordinate gystem,
Additionally, in this special case it has been shown that the
Rayleigh-Ritz matrix assumes a special form which permits
decomposition into two matrices of approximately half size; the
consequent gains in the slimination and back-substitution steps of
the solution of equations (4.14) are a factor of 4 and 2 respectively
at each iteration.

We contrast *this situation with the justification of the
admittedly powerful techniques of piecewise polynomial co-ordinate
systems given by Schultz (1, p.303).

“Indeed, were it not for the fact that sparseness (of the
Rayleigh-Ritz matrix) is so important and orthonormalization so
difficult, we would always use polynomial-type subspaces."

We must point out that the above remark was made in the wider
context of ellipti: boundary value problems. Nevertheless, the
impression that orthorormality and/or sparseness are desirable
properties for the application of the Rayleigh-Ritz method to the
one~dimensional problems we kave considered is emphasized by the
use in the papers of Ciarlet, Schultz and Varga (1) of the baeis

X

g.(x) = Vv 21+l J7 P (t) dt v (4.32)

0
which is an orthonormal basis for problems of the form y"= £(x,y).
We feel that it has been demonstrated that this emphesis is in some
ways unnecessary, and that other choices of co-ordinate system may

be equally satisfactery. In particular it has been shown that the
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co—-ordinate systiem

¢i(x) = x(1-x) Tii

(x)

has several useful and impertant theoretical and computational

properties.,

We would also like to point cut the applicaticn of the Rayleigh-
Ritz method to examples of the class of prohblems considered by
Gladwell (1), and the examples which are not included in that theory.
Clearly, further sxtensicr of the assumptions on the form of the
non-linear term f(x,y) of the mildly non-linear differential
equations is possible. The situation in respect of the
application of the Rayleigh-Ritz method to mildly non-linear
differential equations is a familiar one in numerical analysisj
there exist theoretical criteria which guarantee that the method
may be applied with success to certain problems, and there exist
certain other problems to which the methed can be applied but for

which applications there is no theoretical justificatiom.
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Chapier Five

Brrers of quadrature and appreximation

In this chapter we outline and develop & number of results
necessary for a full understanding of %the numerical experimentsz and
results of the previcus chapters. These concern the behaviour and
effect of two kinds of error implicit in the nmamerical solution cof
linear and mildly non-linear differential equations by the application
of the Rayleigh-Ritz method.

First we coneider the errcrs introduced into the Rayleigh~Ritz

process by the approximation of certain integrals which arise, e.g.

k1
M(1,9) = Gy By = £ | 2,00 8000 70 a5 )
g=0 "0
i,j=1. .1

and 1

-~

bn(i) = (f, ¢1) = jl £{x) ¢1(x) ax 0es(5.2)

0 i"‘loon
or

1 n
O R S RO XONACRCR

0 Bl i=1..n

by finite quadrature sums., That is, we take

k m

1
) = 5 S W Gl g g§ )
s=0 =l e e(504)
and my
XOE 2(=2)) ¢, {2 e o(5.5)

t=1 i=1.,.n
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or !n3 n
b)) - NEIEPTSC I SN g.=2))
t=1 J=1

2,63 e

i'—'-laon

where (ﬂﬁl), (1)) , (w(2) 52)) , (w§3), xiB)) are the weights

and abscissae of certain quadrature formulas. Expressions (5.4),
(5«5), (506) indicate that there is no need to use the same
guadrature rule on euch of the many integrands occurring in the
Rayleigh-Ritz method, and much economy might be gained in this way.
The quadrature rule used might be made to depend on i,j,n in each
of (5.1), (5.3), (5.3), and a separate quadrature rule could be
applied to each term in the summation over s in (5.1), and
different rules for each value ¢f r in the iterative evaluation
of (5.3). In fact, in the numerical experiments reported
previously the same quadrature rule has been used to approximate
each of the expressions (5.1), (5.2), (5.3), and the theoretical
aralysis which we give will rely on this assumption.

The second type of errors which we must consider are thcse
most important for an assessment of the Rayleigh-Ritz method.
That is, we seek estimates and/or bounds for the accuracy of

approximate solutions; e.g. relationships of the form

TAN

£ 05xs1 e o(5.7)

7y (x) = y(x)

oxr

7y (%) - y{x) o(n™) + o(w™) eve(5.8)

vhere y(x) 1= the solution of the given differential equation and
y}F (x) a Rayleigh-Ritz approximation dependent on the numher of

bagis functions used, n , and the number of points in the quadrature



ruie, m . We shall see that such results are not readil; uvuilable,

and in general we have only relations of *the form

ih

lyﬂ(}:) - v(x)| € £ cs %1 0o (5.9)

|5, () =y = o)

5.1 Consistsat Quadraturc Schemes.

The application of quadrature schemes *to the evaluation of the
right hand side vectors (5.2) and (5.3) hac becn considered by
Herbeld (1), Herbold, Schultz and Vargs (1), and criteria detsrmiaed
which allow the selection of quadrature rules which preserve the rate
of convergence of the approximate solutions as n  increases, for the
case where the basis functions are plecewise continuocus cn a given
sequence of meshes; such consistent schemes sometimes generate
approximations which coincide with finite difference approximations.
We examine the requirements for consistont gquadrature schemes for
piecewiss approxiwmation so that we can consider their relevance for
global approximations; and comment briefly on a relaticnship with
finite difference methods,

In +his discuzsion of quadrature approximations we use a notatign
similar %o that used by Lyness (2). We denote by QEO[Er(x),a,b]
the guadrature approximation

b Do
[o@ea s e $ v o)
a

t=l
and write Qg [c;(x)] when a = Oy b= 1 . We define the algebraic
)
(trigonometric) degree of Qﬁ [G,a,0]
‘o

Q:o [& (x),a,b] is said to be a quadrature rule of exact
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algebraic (trigonometric) degree m iff
g &

b

y g (x) dx - Q;f’o [ (x),a,8] = © ... (5.10)

a
whenever G (x) is an algebraic (trigonometric) polynomial of degree
< m , but (5.10) doss rot hold if G (x) is an arbitrary polymomial
¢f higher degree,

We use the notation Qmo[G (x),a,b] to denote a gquadrature
approximation of unspecified degree m (m = 0) . No assumption is
made concerning the weights w, or abscissae X, of the quadrature

<

rule, though we shall in general take a = X, £ b, and on occasion

require w, > 0 , With the notation here defined we can write

t
gnm" (1) = q, [e()A0]) = p1)

and
n
by (s 2,) = @ [ S 2,(9) #5008, ()]
3=l

§:En (iyén)

We can then define the Rayleigh-~Ritz solution yn(x) and a

m
quadrature approximated Rayleigh—Ritz solution yro(x) by

) = $ e, (1) 4y (3)
i=1
and
o n
v. (@) = S e (1) 4 ()
i=1

m
where in the linear case 2, and gno satisfy the equations

FRE

and

m m
A a’ = p0°
n o -u -n
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respectively, and in the nor-linear case the gquations

AL B, TR, (g-n)
and
me By o MO
n o= Eﬂ (éﬁ )

The notion c¢f a consisteont quadrature scheme for the application
of the Rayleizh-Ritz methed with piecewiss continuous basig functions
is the Tollowing. Let y{x) be the solution of the given
differential eguation, and assume that in the given aporeximation

subspace we have results of the form

o) -y € x (T cr(501)

where || = 12§§N (xi - xinl) is the usual parameter of a
partition Il and “ ‘“ ¥ is a norm related to *the given problem,
(cf. Ch.Two and Ciarlet, Schultz, Varga (1)). Then the quadrature

scheme Qm is consistent in the given approximation subspace if we
o

have results of the form
Mo < i y-k
lra@ -5 @lly % %, (1)

where k 2V , since then the convergence rate of the true and
calculated quadrature-approximated solutions is governed by

vt - 552 @l € x < >

I
and the convergence rate of (5°11) is preserved.

In the case of piecewise approximation a particular type of
quadrature rule, the ccmposite quadrature rule, 1is important.
Given a gquadrature ruls le [_G‘ »y EJ and a partition
ﬁm(ar-xo( X, & oy <Xy b) the ccrresponding composite rule is

N-1
Q'mo [G(X),&gb,ﬁ] = 2 %1 [G (x)9 xi’xi+l] oo.(5.12)

i=0
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{5 (£), %, Xi+1} i=0. . XN-1 are obtained from

wkere Q' 5

ol

le [G s 2y ﬁ] by 2 linear transformation. Such rules include the
familiar compcsite trapezium and Simpson's rules, and certain other
rules, including some of those considered by Herbold, Schultz and
Varga (1) which are based on interpolation. We say that:-

. o s m ol
A composite guadrature rule Q, {(3(x),a,b,nj is of exazt
0

——

piecewise polyncmial degree m with respect to a partition i1 iff
b
ql:; {G‘ (X),a,b’ .ﬁ] - ‘[G (X)dx = O 090(5913)
(o]
a

for all functions & (x) which are piecewise polynomial functions of
degree k<m on each interval (xi, xi+1) , i = 0..N-1, with possible
disccntinuitiss only at points x, 1=0..N , but (5.13) does not hold
for arbitrary piecewise polynomials of degree k>m .

We summarize results of Herbold, Schultz and Varga (1, Thms. 4,5,
Corollary p.113) on consistent quadrature schemes for mildly non-linear

differential equations.

Theorem

Let C be any collection of quasi-uniform partitions

Il: 0= X< Xy .. <xp. =1, and for each I, let Sn(il) be a

finite dimensional sutspace of HL consisting of polynomial lL~splines

such that v(x) € Sn(TT) implies v(x) 1is a polynomial of degree =zt

most n_ on each subinterval defined by 11, and suppcse there exists

a set of linearly independent functions wj(x) y J = 1leon which form

a basis for S (1i) . Let f£(x,v(x)) satisfy ésf (zyv(x)) is
dx°

continuous in each subinterval of ! for 0 S g % m, , aud let y(x),

the solution of the given equation satisfy y(x) C ghotl lO,l] °

Let QQI {G (x), Xy xi+1,~ﬂ'] be a quadrature rule of polyneomial
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degree at least cne satisfying w, 2 0 and (for each i )
o

X, ..
i g(x,x,1+l,|] Sl‘*t;' (x)ax| < meq”
x, .

”DmOG'”w

."‘Il‘ “‘k‘.‘
and let Q; ¥ [G s O l,ﬁlJ be a quadrature rule of the form (5.12)
0

of piecewise pclynomial degree at least 2no .

Then there exists a positive constant K such that
|29 () ~ g, (0] = x (T)T e (5.14)

whers r = min (mo -n, t k-1 n, - k+1)

>4

an ~
and therefore ihe quadrature scheme Q, ° Ec'(x), 0, 1,1l { is
c

consistent with the appropriate L-spline bound given in % 2.6 if

> o
m2 2 + 2nO ~ 2K .

A number of the conditions of this Theorem may be relaxed when
the given differential equation is linear, The conditions on the
polynomial and plecewise polynomial degrze of the quadrature formula,
which eusure a unijue solution of the non-linear Rayleigh-Ritz
equations, may be dispensed with as may the restriction that the
partitions [T are quagi-uniform. The restriction to sutspaces
consisting of pclynomial L-splines, which is necessary to ensure the

boundedness of derivatives of the quantity

Mg

— {r( w)<w~yn<x>>}
dx

Lo [Xy5%5,1]

fer all 0 £ j SN and arbitrary w € Sn(TT) can also be omitted, so
that the result holds for arbitrary plecewise polynomial subspaces and
arbitrary partitions ‘EE in the linear case.

Herbcld, Schultz and Varga (1) show that if the simple piecewise

linear basis
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Y- f_ S . J
| gu(m xl)/hi 1 s TXS Y cesl(5.15)
w‘f(x) B ‘\ ’ < <
RENRIEE VAN X, 2 X T X
t
~ 0 otherwise

is used to solve the eguation

y" = £lx)

y(0) = y(1) = ¢C
then a suitable consistsnt quadrature is the trapezium rule
approximation to the integrals

X,

S‘ 4

x,
R

Fi41
f(x)wi(x)dx , g f(x)wi(x)dx
Xy

.

an

; -x, | = £ .
If & [xi+1 xi-l h , a constant, this scheme yields the

i

usual finite difference approximation

| 2
Vip = Wyt m B )

to the differential equation y" = f(x) , and the approximation
extends to
Fyop v Ayt Vi ® n? f(xi, yi) voo(5.16)
in tke non-linear case.
For the eguation
y" + ky = £{x) , k = const

and the basis (5.15) the resulting Rayleigh-Ritz equations have the

feorm
Vi g =¥y * V441 Rk - Yi+l
n *g {?1-1 R y £(x)wy (x)dx
%51

aus(5617)
g0 tbat, if the righ% hand side of (5.17) is approximated by Simpson's

Rule, we are led to



2
Fiup = Wy YV 7F ‘;.f(xi-vl’yi-l) + 4t (xg,y) +

4 ~ \‘ T
f(xi'f‘l"fi'f'lll ° “'(/Gla)

instsad of (5.16). + can be shown (Appendix C) that the schemes
(5.16) and (5.18) have local truncation errors of the ferm o v° and
~¢%h2 , and hence thers is ne advantage (and the disadvantage of
additional computatlon) in using (5,18)° That the schemes must have
truncation errors of equal magnitude and opposite sign can easily be
seen, however, directly from the forms of (5.16) and (5.18). Let
zﬂl) be a sclution of (5.16) and 1(2) of (5.18).

Tren the vector y = %(1(1) + x(z)) satisfies the equations

2

- - o . h - 1 - —
yi-—l - zyi + yi+1 - "2" [f(xisyi) + 'g Kf(xi_layi_l)"’ 4f(xi’yi

- 1
* f(xi+1’yi+1)) 1

2

coe(5:19)
and the scheme (5.19) is the well known Mehrstellenverfahren*
which has lecal truncaticn error O(h4) . A full truncation erxcr
analysis of the scheme (5.18) together with numerical examples are
given in Appendix C.

The criteria of ronsistent quadrature schemes are not directly
relevart ic glocbal approximation in view of the different nature of
the basis functions and the different parameterization cf the
approximation suhgpace. An appropriate definition of a consistent
quadraturs schems for glebal approximation might be the following.

Tre gquadrature schemes Qﬁi?i) n=1,2.. form a sequence of
quadrature schemes consistent with the bound

< g™V (% 2.6)

Vo = ¥ !

0

*
See Collatz (1, p.168).
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1f there exists a wonstant Kl such that
I o |
He < K \
= hd n * 9 2(}
RS ilcﬁ 1 +++(5:20)
¥ of

Attempts %o derive characterization theorems for consistent
quadrature schemes of this type have foundered. Much of the prcof
of Herbold, Schuitz =nd Varga (1), Thm.5, remains valid, but certain
auxiliary results from the theory of L-spline approximation are noi
applicable to polynomial approximation, and we are unable to proceed
further along these lines. One useful result which emerges from
this study, however, is the following application of Herbold, Schultz,
Varga (1), Thm.4, (which we state below in an appropriate form) %o

the use of global polynomial approximations.

Thecrem
Given any finite dimensional subsapace Sn of HL , let ¢i(x) 5

i =1..n be a basis of this space, and let Q:: \g (x),O,ll be a
o _

quadrature rule cf pclynomial degree at least zero satisfying
1 .
QZ [yj L¢u,o,1], .8, d&x = O (5.20)
o 1 i i J
° 1€14, j €n

and w, >0 1%t%qg.,
1 o

m
Then there exists a unique approximate solution yno (x) of the

problem
k 8 8
4 d
- S (1) A= (p,x) L) - t(xy)
S:O dx dx

gnbject to ye(O) - ye(l) = 0, s 0..k-1 defined by

T

My ’ Mo,
()= S a5 (1) # ()
=]
where
A am0 a bmo (amo)

o S ¢ - -n
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aad n My
A - (4. ¢5)1. » b, (a,) is defined by (5.10).

Ve deduzs the fullewing.

Corallary.
Let Sn be a finite dimensional subspace of HL consisting of
funstions v(x) vwhich ars polynomials of degree at most n , aud let

{¢4E1 be a basis of this space, Then the abeve resvlt holds if
-l 12k

m
ch ng (x), O,i} is an n+l point Gauss-Legendre quadrature rule.

In coder to 1nvestigate numerically the effect of quadrature
approximations %e¢

1
j\ £y, (x)). g, (x)ax

0]

we consider the differsntial equation

o= (y+x+ 1)3 eve(5.21)

y(0) = y(1) =0
previously ceneidered in Chapter Four, and estimate the constant V of
(5.20) for Gauss-Legendre quadrature approximations uging different
nurbers of points. Equation (5.21) is particularly suited to this
computation since for a given m point Gauss-Legendre quadrature rulie
the elements Anéi,j) isj-l..m are evaluated exactly (except for

2m-1

m m
reunding errers) but the elements bn° (an°) (1) only for i=l,...55=

3
We usa here the basig ¢i(x) = x(Llex) TI~1 (x) .
The known goluticn of (5,21) is given by y(x) = o/(2-x)-x-1 ,
which satiefies y(x) € Ct YO,I] for all + >0 . In this case it is
well known (e.g. Ciarlet, Schultz, Varga (1), p.406) that the classical

Rayleigh--Ritz approximation in terms of a global polynomial basis



- 164 -

converges exponentially to the true solution, i.e. there exists a

constant I* , 0 £ P < 1 such that

1im ( iﬂyn(x) - y(x)l'oo )1/n b P’ for all n
n —>*0

In Figs. VI, VII ws indicate graphically the behavicur of

2 s | e @ -

P
for m = 8, 20 and n = 2... , min (mo-l,IO) by plotting - ln ;:
against m . Notice that m,- 20 generates, except for rounding
error, the classical Rayleigh-Ritz approximation, since all quadratures
are in this case exact, and it is clear from Fig.VI that exponential
convergence is obtained, In the case m= 8 the classical Rayleigh-
Ritz approximation is not generated for n=6, n=T, but it is clear

from Fig.VII that the same exponential convergence prevails.

We consider also the example

y' -exp(y) =0 3 y(0) = y(1) =0

with the known solution

y{x) = ~-In 2 + 2 In c sec (c(x-8)/2)

The classical Rayleigh-Ritz approximation in terms of a polynomial
co-crdinate system is in this case not generated by a Gaussian
quadrature for any value of n . Yet it is clear (Fig.VIII) that

each of the subsequences

B

To4-1 (x) , Y:: (x) y 1=1,2,3
converge exponentially, whilst it is believed that the breakdown of
this in the case y?o (x) is attributable to the approaching limits
of machine accuracy.

We remark that in no case has the determination of a 'quadrature

m v
approximated’ Rayleigh-Ritz solution yn° (x) ne m, of a mildly
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non-linear differential equation prcved successful, and accordingly it
may be that this condition for the uniqueness of a solution given in
the above theorem .1$ mot only sufficient, as proved, but also

necessary.

5.2 General Quadraturs Approximaticn

We have already noted that we must consider not only quadrature
approximations to the elements of the right hand side vectors arising
in the Rayleigh-Ritz method, but also to the elements of the matrix A,

that is, to expressions (f,, #,); where
i J'L

1 x g
G by, - [ S o0 Ty
Jo g=0 dx® dx®
We recall the notation
1 k 'da 2 ¥ .
I(y) = g [g pr,(x)(—%) +2 f r(x,7>d7] ax
‘o - g=0 dx o}
and introduce
m m ,F 8 e
I, ) =g | > p,(x) (-"—f) +2 (r(x,? )a%, 0, 1
° ° s=0 dx 0
m, k 4 2
- 2 " % pg(xy) ;;E + éfi’(x,’?)d";v
J=0 B= I-IJ 0

=%,

These definitions will be of use, in an extended form, in Chapter Six.
mg m
If the expression y_ (x) = :E ano(i) ¢1(x) is substituted above

the necessary conditions for a minimum of the resulting expression, i.e,

m Mo
dImo(yn) = 0

Mo -
da (1)
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generate the equations
mg, mg, My, Mg
b gyt by ()
mo momo
where A (453), b (gn ) (i) are given by expressions of the form
(5.4) and (5.6) respectively. We wish to prove that for a given

' n
subspace Sn of HL spanned by the basis {¢i} there exists a
Ti=1

mg
unique function ¥ (x) such that

Izo(y:"(X)) £ I:;o (y) Vy e s

We prove first a number of auxiliary results. A number of the
assumptions of Ciarlet, Schultz and Varga (1) are given in a discretized
form, We assume there exist constants B y K> 0 independent of n
such that |

2
[ - ol = €] o (£52)

+ s=0

=0, .
Ot B w?]

for all u(x) € S,

and introduce j\fn defined by

Na-me @ [gk ps<x)(£-§)2

&
u sn g=0

u#O 2
/ / Q:O [u(x) ]
and ij - i: b o ‘p\ °

n

000(5022)

We now establish Lemma 1 and Lemma 2, the proofs of which are similar.

Lerma 1

J
Let X > “‘/\‘ o Then
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W iaoT K 2
g Lul = i{% [‘5 ps(x)( ) + ¥ (u(x))? } >J‘t oo e(5.23)
Aol az®

ie a seminorm cn S, provided w, 20 t=0,l.om .

Lemma 2

Let Sn = Pn where Pn N is a subspace of HL congisting of

pclynomials of degree at most n‘. .  Then the expression (5.23)

is & norm on P provided w, >0, t = O,l..m, , and mo> n.

Proof of Lemma 2

We must verify

i) glu] 2 o0 Vaue P
11) g leu] = ¢ glul ¢ = constant
1311) g w] =« 0 i u=z 0

iv) gluw] £ g ful + g[v.]

!
i) follows immediately from the restrictions w, > 0, ¥ >~ A’, and

(5.22), 11) is a consequence of the definition of Qm 1i1) follows

d"u

2
since u€P , uy¥0 is such that( 5> has at most n-s
dx

distinct zeros (s = O,1,.k) and hence w, > 0 m >n  are
sufficient to ensure g ‘_u] >0, uz0 whilst g [u-l =0, u=0

is immediately obviocus. To prove iv), squaring both sides gives
gliww]? € glul?2 + g[W]2 + 2glul.s lv]

which reduces to
k
O:o B§0 ps(x) i"’: -3;1 + X.u(x)oV(x)}

$rn($)

"o ox
g pg(x).
8=0

2 h

(d':> + §+2\..(5.22)

ax
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Defining the wvectors

wr = Wt po(xt)+x, I'=1 eoo m+1
W, = wtps(xt) , T=m+2..R, s2 1
B‘
Ur = 'g""'s’\ I = 1,2 o o R
dx
X=It
B
vr = d: Ir = 1,2 o o R
dx x=x
t

where r = ts + 1, R = (m°+ 1).(x + 1)

(5.24) can be expressed as

( 2{ Vo Up ¥y ) £ < ¥ U )< é; LR )
=l =] r=l

which has the form of a finite Cauchy-Buniakowski inequality (Liusternik

and Sobolev (1)). Hence we may write

Do

"ull - g lu].
X

The proof of Lemma 1 is identical except that iii) is not required, and

for general spaces Sn is not necessarily true.

Corresponding to Ciarlet, Schultz and Varga (1, Lemma 1, p.396) we

have

Lomma 3

Let Sn - Pn o Then

N2k -p

/
which follows from the definition of j\' and since

|

m m
“Il ° < ‘I“IILO where
w 2

Lol -« Be] ?
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Theoremn.
Let af(x,v) X > ""»P\ 0eo{5.25)
) u
4]

and let S = P , let m03> n and w, > 0, t=0, ..m .

n

m

Then there exists a unique function yno(x) which minimizes
Im

m,(y) over P,

Proot. u
m o m n
Imo (un) = !un \ + qho [2 So r(:,} )d.7.]
n=2k+1
where u = 2{ an(i) ¢i(x) £ P

iml

Using (5.25), clearly (e.g. Ciarlet, Schultz, Varga (1), p.396)
mo m 2

o e g [¥2 @]

gl

= un x

Hence, as Iﬁ is a continuous function on the finite dimemsional
o

subspace Pn ; bounded below by O and satisfying

- >
Imo(un) ~ %

lim I; (W) = + &
lufo o o

for any norm Ilu!i on Pn~ s 8ince all norms on this finite
subspace are equivalent, a standard compactness argument shows that

there exists at least one Gn such that

) S - |
n, (un) < Imo (un) for all u€P

To prove that ﬁn is unique, we continue to follow the arguments
m
of Ciarlet, Schultz, Varga((1l), p.398-9). Im(un) is twice

o
differentiable with respect to the elements gn(i)a We have
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m m k P“2k+1 8 8
g, G @ | S a0 § s i th
d an(i) °l ga0 jul ax® ax®

N n
1€, [ Ho € alo AN A
and i 1 & 3i< n2k+l

2 [ .
é Imo(un) m /F s
__° . (x) & g.(x) d
Azn(i)éen(d) g L%O Fe y ;51

2 _,n(l ) By Hy| e (5.26)
1-1

m
We define B (u ) to be the n~2k+l x n-2k+l matrix with clements

2 m
by = é Imo‘ (un) 1,5 = 1., n-2k+l

3 2,(1)d2,(3)

m
and show that B o(un) is uniformly positive definite; i.e. that for

any functions

n-2k+l n-2k+l

Yy = S 8, (1) g, (x) , ¥, = 5 ot (1), (x)

i=] il

€ Py there exists a positive constant ¢ such that

T Mo

T
o B (w) oo =2 col . 0ee(5+27)

n -n

My
But substituting (5.26) and from the definition of “ u" ¥

clearly
T
ST Y
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and since all norms on the finite space Pn are congistent we have
verified that Bmo(gn) is uniformly positive definite.

With this result established the arguments of Ciarlet, Schultz,
Varga (1, p.398-9) follow immediately, so that the uniqueness of

o)
¥, (x) is proved ,

We notice that the restriction (5.20) evident in the Theorem of
Herbold, Schultz and Varga (1) has here not been required, but that the
above Theorem severely restricts the choice of approximation subspace.
It would appear that generalization of the above result to the case of
piecewise polynomial approximation can be readily accomplished; in
this respect we state the following theorem for which the above proof

also holds.

Theorem.

—a

Let ! : 0= x, < x, ooe & Xy = 1 be a partition of {p,l} ’
and let Sn(TT) be a subspace of H oconsisting of functions v(x)
such that v(x) = w,(x) x, ¢ x€x, 0 9 1= 0.0 N1, where wi(x) is
a polynomial of degree n in the interval {xi, xi+£] . Let

le ECS (x); O, lj be a quadrature rule satisfying

r o
q, 1 (), 0, 1] - f‘o v G (8,

>0, %z: (0,1) J=0. .m

!

t

and let Q iﬁ:(x), 0, I,TT] be the corresponding composite
o
quadrature rule of the form (5.12). Then there exists a unique

n, , —
function y_ (x) C Sn( i1 ) which minimizes the expression

k

I () = %, [2 p, (x) (f:; y)z .2 jy £(x, )4y, 0,1, 11

8=0 0
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subject to the conditions

1 1
y (0 =y (1) =0, l=0, 1 . . k-1 .

We remark that the above thecrems do not show that

, (- mg
lim { v,° (®)= y,(2) .
m_-»ad

°

where yr(x) minimizes I(y) 4in the subspaces P, or sn(ia )
My
and so the convergence of - (x) to y(x) where y(x) is the
solution of the given differential equation is not established by these
results.
As an  example using non-Gaussian quadrature we consider the

quadrature approximated Rayleigh-Ritz solutions cbtained in terms of

a global polynomial basis, of the differential equation

y'" = exp (y) 5 y(0) =y(1) =0

cvbtained by minimizing

-y

- ¥
T, (v) =@, |y? 2] em (3) a7
ol % g

over the subspace P_ ., using as a basis the functioms ¢i(x) -
*
x(1-x) kx) The expression
- RN
o ; 1
% lo (] *;—é ¢ (*/m)
o ()
i= 0
U
denotes the trapezium quadrature rule and :1 indicates that first
and last terms in the summation are taken with weight 1/2. In
Table XXIX we list the values of the approximation so produced at the
peints x=3ich i =1,.9 h=0,1 for n=2~7 , and also the
values of the true solution., This approximaiion is_obtninod'ﬁith mog%g1°

éhdrwe'shou}d not be surprised at the low accuracy of these solutions
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even for moderate values of n since the integrand contains polynomials of

high degree. The coefficients of the approximate oxpanéion, displayed in

Table XXX, become increasingly innaccurate as n increases, reflecting the

larger errors in the matrix A and the vectors g (gn). In Table XXXI

we display the coefficients of the approximation obtained with m = 20, and
: ; : - Mo =10 -20 .,

give a comparison of the maximum errors in - 58 (x), denoted e and e, ¢ in

the two cases. It is clear that there is some improvement when m is

increased, though . 20 remains too small.

This example and our earlier use of Gaussian quadrature illustrate
that where we expect the integrands of I(yh) to be smooth functions, as is
the case with a polynomial basis and a differential equation with smooth

coefficients, Gaussian quadrature is, not surprisingly, to be preferred.

5.3 The overall error of Rayleigh-Ritz approximations.

We have seen that the error in a numerical solution of the

differential equation

k
" 2 dS / dS
y= 5 (1) — (p,5 —%) = f(x,y)
dxii\ dx
g=0
yr(o) = yr(l) =0 r = O,l 00 k"l

by the Rayleigh-Ritz method is due to a cumulation of errors from
three sources. These are the error introduced by truncation, that

is by the determination of the nth Rayleigh-Ritz approximation
n
7,0 = 5 g, () 4 ()
i=1
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instead of
o

y@ - § a0

inl
by the effects of quadrature errors in the evaluation of the elements
of the Rayleigh-Ritz equations, and by the effects of rounding errors
and the magnification of both rounding and quadrature errors by the
method of numerical solution of the equations. Error bounds
including the effects of all three of these sources of error do not
appear in the literature. Indeed, the truncation error problem seems
to be the only one for which there is an adequate treatment.

Results concerning the magnitude of H b y'i&o - are typified by
the a-priori and a-posteriori bounds of Ciarlet, Schultz and Varga (1)
(see also Gladwell (1), Schultz (2)). We recall the assumptions of

% 2.6, 1.e. there exist comstants K , P such that either

| 1
Hw(x)“eo £ KX Ié? ps(x)(QEEBZ + P w(x)2} dx eee(5.28)
> 50 dx
or 1 5
”Dlw(x) LD < x[ b{ ps(x)(i-g) +Pw(x)2}u e (5.29)
o
or 1 k ‘
“Dlw(x)l , £ KJO {5\; ps(x)(-::‘s!\ + Bw(x)? }dx e++(5.30)
where 0£1<£k,
. 1 K 2
™ /\ = infyo 50 pa(x)(-:—xf> dx
1
f y(x)? ax
0

and
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_:\':l_f.(xﬁy) 0‘-"-1‘11, l I 2kM

N+t

-
\ = max

‘0 :\’y

M = max !f(x,O)I

Then defining
1

HW”X = L iék pg(x) \i—\ + Xw(x)}

8=0
the a-priori bound (Ciarlet, Schultz, Varga (1), Thm.3, p.403)

”yn—’yllmg K“Y -YH < Clr(x:fs “w-yl

where

C = K(l + m“(vj,\-}xf 0))%

is valid, where we assume only (5.28). If either (5.29) or (5.30)
hold then this a-priori bound can be extended to derivatives of order
up to and including 1 , taking the form

| c

| S o inf ﬂ'-y“w

d
~— (v, - ¥)
dx ' wt S,

If we define the residual YV (x) of a function w(x) , where

w(x) € S by

Y (x) - g (-1)° & Q,(:)Z—Sg-) - £(x,w)
X

8=0

then the a-posteriori bound

lv-sll ¢ x Ju-sl, ﬁj%— @l cee(5.31)

is valid, (Ciarlet, Scultz, Varga (1), Thm.17, p.421).

The bounds of Gladwell (1), p.45, p.55-7, represent extensions of

bounds essentially of the above form to the more general problems
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considered by Gladwell. In the case of non-linear problens of the
type we have considered they reduce to the form of (5.31).

Though Gladwell (1, p.13) states that the determination of the
constant K of the assumptions (5.28), (5.29) or (5.30) is on
occasion possible, these error bounds ought more properly to be
regarded as indicative of the pointwise convergence of the Rayleigh-
Ritz solutions rather than as practical error bounds for general
problams.

Bounds on the effect of the other terms are in general equally
impractical. For example, in the case of consistent gquadrature
schemes for piecewise Rayleigh-Ritz approximation it is not
practical to compute a value for the comstant K of (5.14),
(Herbold, Schultz, Varga, (1) Coreollary, p.ll3) and the determination
of constants P1 ’ Q1 for the definition of stability of Mikhlin
(3.21) is not in practice achieved without numerical computation of
the eigenvalues of the Rayleigh-Ritz matrix by some numerical
process itself subject to error.

Accordingly we believe that the situation is that rigorous
error bounds on practical Rayleigh-Ritz approximations are not
produced by these means. In practice the situation is very similar
to that for many other methods for evaluating series approximations
to the solution of differential equations; for example, the
Chebysbev series direct expansion method (Clenshaw (1 ), Lanczos (3))
and collocation (Clenshaw and Norton (1), Wright (1)). That is, we

obtain an estimate of the reliability of the approximation

y,(x) = é g, (1) §,(x)

by examining the behaviour of the coefficients an(i) for a sequence

of values of n . In practice we must assume that the computed
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values of 5n(i) are the exact Rayleigh-Ritz coefficients s¢ that
careful selection of the basis, so as to minimize the affects of
rounding error, and the quadrature, must be made as discussed above.

From the computed coefficients gn(i) and the assumption

W@ - $ W)

i=l
we can write, in the usual fashion

€, (x) = y(x) - y,(x)

b /
- Z{ (a(1) - a,(1)) #,(x) - Z a(:))¢j(x)
i=] J=n+l

8o that

€ (x)a < gn a0 - a,0)]. |0 5 |a(s)|. g, )

im] J-n+1

Delves and Mead (1) suggest that the second term in this error.
quickly dominates, sc that

‘i;En( )M;< (1+¢) 2

Jun+l

()| - 14,0

where ¢ << 1 . Accordingly, if the differences

la (1) - (x)" i=l,, .,n-1

ré small by comparison with I_a_.n(n)l° ll¢n(x)"°° we can regard

().

NI

as an estimate of H€ !i“uﬂ' As with other series expansions 1t

is more appropriate to consider

2" keo,L,2 !%(“'k)l N ¢n—k(x)| 0



- 184 ~

as an estimate of lIE,n|ins s

If the Rayleigh-Ritz matrix A is uniformly asymptotically
diagonal of degree p = 2 it might be thought that more elaborate
procedures might be used to estimate 'g(j) y J>»n , and hence to

estimate

jéﬂ la(:l)l . “ ¢j(x)“w

either by use of the prediction coefficients defined by Delves and
Mead (1), using (ﬂh , Q) as an initial vector, or by an approach
based on the following remarks. We shall show, however, that the
estimates based on this second approach can be very pessimistic.
Typically, provided that the right hand side vector b or the
sequence b (gﬁr)) satisfy certain conditions, (Delves and Mead (1),

Thm.3, p.l4, also Ch.4, Thm.2, p.139) we have

|gﬁ|<03ﬂ , C>0, 1%q%p
so that »
o . -
S la@| gl <o I8l
J=n+l el T
It “ ¢j “w- K , a constant, then
o (+ 4]
leal $ex S 4 < o 5.3%
Ju=n+l n+l

Hence, provided gq 22 s We have

¢ CK
"E“ “ (n+1)2L

In the case of the application of the basis functions
*
gi(x) = x(1x)1] ;(x) i=1,2 ...

to the problem
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Ly = ] y = f£(x,y)
y(0) = y(1)

we have established (Ch.4, Thm.2, p.184) that provided f(x,y) € M,

a constant, for all y 'near' the solution them p =3, q = 2 .

Noting that K = 1/4, we have
n > “‘v i C 0w 032
Elg‘niﬂm A(n+l) (5 )

If the ceefficient vectors defined by the Rayleigh-Rit2z method,

2, , are such that the elements gn(i) are tending smootkly to zero,

we may estimate C by

2
Cn = n 'a_.n (n) 000(5033)

or more generally by
t 2 l :
Cn = max (n'-l) -a_n(n-l) oos (5034)

015t

where t is some small integer. Substituting from (5.33) and

(5.34) into (5.32) we obtain the estimates of the error bound

[+]
E = ¢,/ 4(ntd)

and

1 t
E - C / 4(n+1)

In Tables XXXII, XXXIII we illustrate the magnitude of these

estimates for the problems

L(y) = y"+y=-x
y(0) = y(1) = 0

and
L(y) = y" = a{yexs1)?

for different values of n , and t = 2 . The measured estimate
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e 5: -
of ﬁ"‘n ima defined by

HEall, # on = mer |3le) - 3ylxy)
where x, = 1/20 ; 1=0. .20 is given for comparison., We

P

observe immediately that the estimates Eﬁ and E;x and particularly
the latter, are very wide bounds, and might well be thought
impractical. The estimate En,’ based on the final coefficient
gn(n), is more satisfactcry, and indeed seems very good in the case
of the non-linear problem (Table XXXIII). We remark that the linear
problem is somewhat exceptional in that its solution is approximated
very well by low order polynomials.

The estimates E: and E: do not seem to be without practical
use, however. A comparison of Tables XXXII and XXXIII reveals that
the magnitudes of these estimates become larger when the error e
becomes larger, that is when numerical and quadrature errors have
gerious effect., This has been observed for a number of test
examples., Accordingly the estimates IEZ and Ez may be of value
in providing a criterion for the automatic termination of the
evaluation of the sequence of Rayleigh-Ritz approximations yn(x) ’
n=1,2,.. .

These methods of estimating the error of the Rayleigh-Ritz
approximation are weak due to the asymptotic nature of U.A.D
properties. Similar remarks apply to other techniques based on
this theory, such as the prediction of the coefficients a(n+l) ,
a(n+2) ... from &, by application of the Gauss—-Seidel or Jacobi
iteration to the infinite Rayleigh-~Ritz matrix, as described by

Delves and Mead((1), p.212).

The determination of readily computable error estimates and bounds
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Errcr Estimates

*
y&ﬁ = =§=X ¢i(x)-x(1~x)'1‘i_1(x)
o] 4 -
n en En En Ln
7 5036%=7 3.1'=7 4.8'-6 5.07--8
(5.18'-11)
8 5.36"=7 5.6%=T 6.,0'--6 6.5'-7
(3.00)'-11
12 5,967 1.3'=5 1.3°-5 1.1'-6
(3.19°-11)
Table XXXII (see Table VII)

Error Estimates

*
y"= Hyexe1)? B, (x)ex(1-2)1,_, (x)
n e E° Eaﬁ E
n n n n
4 1.08'-4 5.4'<3 4.8°-2 1.7'-4
6 3016“-6 300"’4 401"3 5°0"5
10 2,719 3.8'-7 2,0'-5 4.3'-8

Table XXXIII (see Table XX)
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for the Rayleigh~Ritz method is a problem which is not easily resolved.
Accordingly we are of the opinion that the only practical criteria
which can be applied to the determination of a suitable value of n ,
and the corresponding approximate solution yn(x) are those based on
a careful choice of the basis functions @, and the quadrature scheme
used guided by the remarks of Ch's. 3, 4 and 5, and a study of the
convergence of the computed vectors &, and functions yn(x). or

the estimates of H £ n“w the value

- el lal,

seems most satisfactory; it should nevertheless be used with caution.
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Chapter Six

Extensions and Conclusions

In this last chapter we comment on extensions of the principles
and methods of earlier chapters to more general variational problems
than those previously considered here. 1In 4 6.1 we consider an
appreach to the use of the finite element method for general second
order elliptic partial differential equations, and in 4 6.2 present
a natural formulation of an approximate extended Kantorovich method
(Kantorovich and Krylev (1), p.304, Kerr (1), Andersenn (2)),
described with reference to Laplace's equation, but readily extended
to other equations.

We consider briefly the possible application of a Rayleigh-Ritz
method to the "simplest problem" of variational calculus in its
general form, including the class of problems considered by
Allen, (1,2). Finally, in % 6.4 we summarize the conclusions which
may be reached from our numerical investigation of the Rayleigh-Ritz
method emphasizing again many of the results and comments of this

and earlier chapters.

6.1 An approximate finite element methed for elliptic partial
differential equations in two dimensions

We consider in this section the application of & finite element
method involving the use of pieéewise planar functions defined over
triangular elements to second order elliptic partial differential
equations in two dimensions, and suggest an approach which may be
useful when the differential operator involved has coefficients

dependent on the space variables.
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The application of the finite element method in a num. = of forms
and to various problems is described in a vast and expanding literature,
to which we can make only token reference. An important text for many
mechanical and mathematical aspects of the method is that of Kolar,
Kratochvil, Zlamal and Zenicek (1), whilst a mathematical Fformulution
appropriate to this section is given by Birkhoff, Schultz, Varga (1).
Many aspects of the method ﬁre described in conference proceedings
edited by Bramble and Bubbard (1) and Schoenberg (1). An extensive
bibliography on the finite element method and its applications has
recently been compiled by Whiteman (1).

For convenience we consider only positive definite self adjoint

partial differential equations of the form

Lu = -§; (pl(x,y) -%—:) + -%-; (pz(x,y) Qﬁ), £(x,y)

y X €L eeo(6.1)
u = 0 on $Q eeo(6.2)

where O is o bounded region of 32 with bourdary S &) .
Extensions of the proposed scheme to the case Lu = £f(x,y,u) and <o
the case in which L 1is not a self-adjoint operutor, may be made using
a Galerkin formulation.

Corresponding to the equation (6.1) we have the variational

problem

I(uo) < 1(u) = Y El(x,y)&-%)z + pz(x,y)(%)z + 2f(x,y)u]‘ as)
L

with the bourdary conditions (6.2) above, where the functions u(x,y)

satisfy

o) € (2 .
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It is known (e.g. Mikhlin (1,4)) that the function uu;;&y) i3
a weak or generalized solution of equation (6.1).

The finite element method we wish to consider generates
approximations to uo(x,y) in the following manner. A triangulaticn
T is super-imposed on the region,~(7- such that each triangle of T
has at least one vertex in Kﬁl not on S,i).. We do not consider
triangles having any vertex external to ('l . Algorithms for
constructing such triangulations of a given region {). nave been
described by George (1) and Reid (2). We depict such a triangulution

below (Fig. IX)

Fig, IX

For simplicity we now assume that the region JAl is approximated

’ [
by the polygenal region !~1 whose boundary S)gl is described by the
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straight lines commecting 'adjacent' points of the triangu . ..cu T
lying on %-(2: although Reid (2) considers the case in which the
original region {) is retained during the finite element procedure,
and the simplification is not essential to our method. We ncw
suppose that there are k vertices P1 .o Pk. of the triangulation T
internal to ~(«)-.’a.nd_ n - k vertices Pk+1 ‘e Pn lying on S (f .

In the simplest case, which is the one we pursue in detail, we
associate with each intermal vertex Pi y 1 -1 ..k, a function

¢i(x,y) having the properties that

1) ¢i(x,y) is a planar function in each triangle of the
triangulation T

2) Bi(xpyg) = 85y 4 =1y ee sk
where P, = (xj,yj)

3) ¢i(xj’yj) = 0 J = k"’l, ce ¢ n .

Such a function is clearly non-zero only on triangles of T
having P, = (xi,yi) as a vertex. Then an approximation iU,(x,y)

to u_(x,y) of the form
° K

HT(I,Y) = % ;i ¢i(x!y)
i
is determined by the condition

(e S T () j
Q

Phe \ 2

{pl(x,y)@xﬁ)z + pg(x,y)(grj

- 2f(x,y)u,r } a{y

where K

up(zyy) = g a, #,(x,3) .
im

Substituting for uT(x,y) and differentiating with respect to
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a, y1=1.., k , we obtain the equations

Aa = b

where A is the k x k matrix

N
‘ RS AR A
4(1,3) = \ {pl(x’y) ix Ax + p,(x,3) -‘—yi ;—;1 Laat
0 A J
i,j=1 ..k
and b the vector
b(1) = S £(x,y) ¢i(x,y) aN’ o
D" i=1..k%k

We remark briefly that, in view of the form of the functions

.(x,y) the coefficients a(i) satisfy
l —-—
_E._(i) = ET(xi’ yi)

so that the resulting coefficients are the values of the approximate
selution at the vertices of T .
The expression for A(i,j) admits immediate simplification if

the vertices Pi sy P, are not immediate neighbours in T , that is,

J

if no triangle has both Pi and PJ amongst its vertices, for then

by definition of ¢i(x,y) , ¢J(x,y) y we have A(i,j) = 0. In fact,

even if P1 y P, are immediate neighbours in T , only two triangles

J
. have them both as vertices, so that, depicting these two triangles in

Fig. X we can write

A(iyj) = y {p1(193') g?'i' ¢ ¥.1 + P2(X,Y)a¢i A¢ }dﬂ; ..9(6.3)

AY Ay
Ty+T,
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Fig. X

Similarly the region of integration iﬂlf in the definition of
b(i) may be reduced to the region covered by all triangles of T
having Pi as a vertex.

The evaluation of A(i,j) and b(i) is not, however, trivial
unless the coefficient functions pl(x,y) R pz(x,y) are simple,
and in practice the method is often only discussed with reference
to the Laplace and Poisson equations where pl(x,y) = pz(x,y) =1,
Quadrature approximations are often necessary for more general problems,
although little study seems to have been made of them. We can,
however, cite the thesis of Herbold (1), who comsiders quadrature
epproximations to the elements of b for equations of this type.
We now suggest a practical scheme for the case where pl(x,y) ,
pz(x,y) are general functions of x and y which we believe has
some merit. In particglar we show how certain simplifications which
can be applied in the case of Laplace’s equation are also applicable
to the new method, and briefly indicate how the new method may be
applied using basis functions which are, for example, cubic rather

than planar in each element.
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Only one term of (6.3) is considered, since the exp. :.iin moy

Ye formed by summation of similar ternms. We tuke

c(i,3) = Y pl(xay)>¢i 8% ey oo (6.4)
Tl dx A X :

where T, is the triaugle (Pig.X) with vertices (xi?yw), (xj,yi),

(xr,yr). Reid (1) considers that in this triungle we may represent

the planar function ¢i(x,y) by & linear combination of the

Lazrange functions. Extending this, we define these Lagrange

functions on Tl by

lu (xvyyv) = Suv ’ u,v £ di,5,r

and the additional condition that 1u is linear in x and y , and

express pl(x,y) approximately as

p(xy) = i py (xyow,) 1, (xy)

ufi,j,r X,y € Ty

(i.e. p,(x,y) is approximated by its planar interpclant on Tl ).

Then the expression (6.4) may be approximately written as

| v B
c(i,§) = 2 Pl(xu’}’u) S lu(X,y)(-\"'x—i —-'\“‘1 4.t

u=i,j,r Tl

Each of the integral terms is now a triple product of the Lagrange

functions and their derivatives, for we note that

¢i(17Y) = li(x,y) y (x,y)€ Tl

so that

| S—Mi OTAM ol 3y Y,y
J Tl lu(IQY) - el d = XT lu(x,y) 5 " " dil
1
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and the integration on the right is somparctively simpl- - comparison
with our earlier expressions for A(i,j)

George (1), has proposed a further ascheme for the sirplilication
of the evaluation of A(i,j) for Laplace's equation waich io readily

) planc e

i

applisd to our more general problem. In the ( % 5 5
define a canonical triangle T° with vertises (0,0), (1,0), (0,1),
and on this triangle the basis functions ¢ ( N\ ,r) i= 1,2,3
with the properties

1) 12( % ,‘b ) is a planar functicn

o) .
2) 11( g j? —7j) = Sij , i,3=1. .3, where the

triangle T has vertices ( g j,'i)j). Let the linear transformation

(§,%) = 3 ()

be such that (x,y) € Ty 1iff ( g ,’7 ) € 2% and (x,y) € 51 iff
(& ,'7 )& N°

Then s \
> 1. 1. -~ !
. i ¢ U afl
[ e 32057

T,

) 5‘ 7 ) ‘413 Cdet (3) 8 T
0

. ‘iﬁé

where the remaining terms are similar quadratic forms introduced by

the transformation. Thus integrals of the form
1030
\1(g )———Adm
Jo R
may be evaluated once only, and then premultiplied by the appropriate

Jacobian determinant and the value of the coefficient function at

P, , u=1,J,r, before being added in to A(i,3) .
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We remark that the scheme is in reality o« simple quui..iure
approximation of the integrals occurring in the Iinite element
method derived so as to be exact wher the coefficient functions
and the basis functions are piecewise plaaar functicus on T .

In particular it generates the usual planar finite element
approximation to the Laplacian operator since in this case the
coefficient functions are exactly represented by their interpolant
in the planar basis on T . The scheue extends to other finite
element approximations, for example to bi-linear functious defined
over rectangular elements, or to cubic functioms on triangular
elements. In this last case the usual parameterization of the
cubic basis function is in terms of its vulues and those of its

x and y derivatives at the vertices of the triangles togother
with the function value at the centre of the circumscribing circle.
This would lead to approximations of the coefficient functicns
invelving not only pl(xi,yi) , but also

\ l

3 py (x,¥) and %}— pl(x,y)'

(xi’yi) ) (xi,yi)
and a simple quadrature formula involving o+!; values of the
coefficient functions and their derivatives.

Finally in this section we comment that finite element
procedures have often been regarded as variants of a finite
difference procedure, and this view can clearly be applied to
the spproximate finite element method which we have described,
Ncenetheless, the 'finite difference' equations produced by our
finite element method are of non-standard form, even on &

rectangular mesh. For example, considering the use of bi-linear
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furctions on a square mesh, our method generates the same . Giv-standard
finite difference approximation of the Laplacian as the finite element

approximation of Birkhoff, Schultz and Varga (1, 0e253).,

6.2 The Kantorovich and Extended Kantorovich liethods.

In +hig section we comment on some aspects of the 'method of
reduction to ordinary differential equations' proposed by Kantorovich
(see Kantorovich and Krylov (1), p.304-337, and for an example of
its practical application McDonald (1) ), and on an extension of this
method suggested by Kerr (1), and studied in a particular form by
Andersenn (2). Following Kantorovich, we outline the method and its
extension, in relation to their application to Laplace's equation in

two dimensions,

Azu 8211
Lus= + - £ (x) e (6.4)
V52 %,

<

defined on the rectangle {Ll: -a £ X

a, -b% %y £%bp , and

subject to the boundary conditions
u(-‘a) = u(a) = 0 o'v(605)
u(°"b) = u(b) = 0 -00(606)
Extension of the discussion to other differential aquations involving
o positive definite operator L , and to higher dimensions is readily
achieved,
Corresponding to the equation (6.4) witk boundary conditions
(6.5), (6.6) we have the variational principle i~
Let u{x) be a function such that

2 ' 2
1(@) = I(u) =‘ {(%—;—) + \/\—‘3—‘%\) + 21‘(;_()\1\ all
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where we counsider only functions u, u aatisfying the boulary
conditicns (6.5), (6.6) and such that

- . 1 1
w, u ¢ ¢° L0y

P N S|
u, u Q Jﬂ2 K<EL]
The function E(E) is then a weak or generclized solution of (6.4)
with the boundary conditions (6.5), (6.6), from the variational
theory of Chapter Two.

Me Kantorovich method determines a sequence of approximations

to u(x) , of the form

N
W = S & ) O ) o (6.7)
t=1

[} I‘ = 1,20..

where the functions 69 t (x2) are prescribed linsarly independent
functions satisfying (6.6). The functions gt (xl) are determined
so as to satisfy the remaining boundary conditions (6.5) and so that
I(uN) is a minimum of I(u) for all functions u of the form (6.7).

1
We pursue the determination of g, (xl) subsequently.

The extended Kantorovich method determines a sequence of

approximations to u(x) of the form
, N
ngl _ / n r n
U’bf (_x_) - < 8t (xi) Gt (xj) o-o(6a8)
t=1
i 1,23 143

n = 1’2 -oo; N = 1,2 e e

The function 69 2 (x2) is chosen as in the Kantorovich method for

n = 1, and subsequently by the relations

@: () = & (f)

G ) - &)
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The unknown functions gz (xi) are deterriined at each iteriiion as

in the Kantorcvich method, by the requirements that they satisfy the
boundary conditions (6.5) if i =1 or (6.6) if i = 2, and to
ensure that I(u§’i) £ I(u) for all functions u of the form (6.8).
We ncw take i =1 , for convenience. Substituting u§’i for u in

I(u) , we have

n 2
(/¥ n dg, (%))
I(ug’?) g \{5\ G, (=) -—%——1—- +
t=1
N
2 d%;(m“) ° °t (x)) +
t=1 2
N
~N
(). § By (x) & () 1 a0
t=1

Integrating with respect to X, 9 and using the boundary conditions
(6.5) to eliminate terms (see Kantorovich and Krylov (1), p.306-7)

we obtain

I(wh) = 18" (%))

2
] ) P S
L[fhp "‘%;1‘1" r & G el
N
-2 Z F:g: (xl)} dx,
t=l
eee(6.9)

In the case of Laplace's equation, and the torsion equation considered
by Kerr (1), Andersenn (2), the expressions Pt ’ Qt , Ft y
t=1... N, are constants. For more general positive definite

differential equations, these expressions will be functions of X, .
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n

The functional (6.9) may now be minimized over its parameters gt(xl)

n,l

in order to determine up’ (z) v This minimization is achieved by
Kantorovich and Krylov (1), Kerr (1) and Andersenn (2) by solving

analytically the corresponding Euler equations

51(52 () = 0, tel,.. N ...(6.10)

682 (x;)

withh the boundary conditions
g, (-a) = g (a) = 0 t=1...0.

These equations are linear, and for Laplace‘'s equation and the torsion
equation have constant coefficients, so that exact solutions are readily
obtained, particularly for small values of N .

Where these equations do not have this simple form, it will in
general be necessary to solve the differential equation (6.10) or
the corresponding variational problem (6.9) approximately. We can
therefore conceive a number of'approximate extended Kantorovich'
methods., From our viewpecint the approximate solution of the
variational problem (6.9) is an interesting possibility. We assume
that for each t, t=1.,.. N, k independent basis functions
¢t’1(x) voe ¢t,k(xl) are chosen, each satisfying ¢t,r("a) =

¢t r(a) =0, and g: is represented by
¥
k n
n n
gt (xl) = % uk,t(r) ¢t,r (xl)
I=

Substituting in I(g") , and minimizing with respect to the scalar

parameters ol sy t=1c¢ee N yral... k, leads to a linear

t,r
system of Nk algebraic equations, the Rayleigh-Ritz equations for
the minimization of (6.9).

We remark that this algorithm remains untried, It is apparent,
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however, that the careful choice of co—ordinate system i-ﬁti% will
be governed by the same considerations which apply when the Rayleigh-
Ritz method is used in the solution of ordinary differential
equations, together, perhaps, with some additional criteria.
Andersenn (2)'has already pointed out that a careful selection of

the function &)1 (x2) is necessary, even in the simple case N =1 ,
to ensure that the iterative determination of the sequence u? (5)

converges. Further research along these lines is indicated.

6.3 The 'Simplest Problem' of Variational Calculus

Some investigations of a series expansion method for the
determination of approximate solutions of the 'simplest problem' of
variational calculus have been made, which are considered only briefly
here. Amongst such problems are those considered by Allen (1),

which may be stated (see Chapter One) as
Determine y = y(x) 8.t

1
1G) ¢ 1) = | Plxya) ax ee(6211)
0
subject to

y(0) = y(1) = © eee(6.12)

For convenience we do not include the similar boundary conditions

y(0) =, y(1) = P, which are readily reduced to those above. The
functions y(x) are restricted to those for which the integral I(y)
exists and has finite value, To be more specific a knowledge of the
form of F(x,y,y') is required, and we wish to avoid further
agssumption concerning the nature of the integrand. In particular we
do not restrict ourselves to those cases in which F is quadratic, or

'nearly so', in the dependent variables y, y' , since these cases
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correspond to those for which the Rayleigh-Ritz method has been
derived in earlier chapters.

Allen (1), (2), and others have derived methods for this problem
based on finite difference approximations of y'(x) and simple
quadrature approximations of the integral. Allen's methods closely
resemble shooting methods for the solutidn of boundary value problems
in ordinary differential equations., An analysis of theoretical
properties of methods such as these for this 'simplest problem' is
given by Stepleman (1).

We investigate an approach closely analogous to the Rayleigh-Ritz
procedure, If ¢i(x), i =1, 404990 are a chosen set of basis
functions satisfying the boundary conditions (6.12), and forming a
complefe sequence in the appropriate function space, and ¢i(x),

i=1], «soy n are linearly independent for all n , then an

approximation
n
y ) = E ()4 (x)
i=1

might be determined by the minimization of

1 n n
I(yn) = I(g,_n) =X F(x, 2 an(i)¢i(x), é an(i)¢'i(x)) dx
0 i=1 i=l

eee(6.13)
The expreseion (6.13) is a function of the n variables an(i) ,
and minimization with respect to these might be achieved in a number
of ways. Pursuing the analogy with the Rayleigh-Ritz method, the

equations

i
o
[

[}

1, s ’n

) 1te,

are obtained., In the case that F(x,y,y') has the simple form
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considered in earlier chapters these are the usual Rayleigh-Ritz
equations. lore generally, these are non-linear equations and may
have any non-negative number of solutions (as may the original problem).
Though this method introduces nc additional theoretical complexity
to the problem, in practice differentiation of the function I(an)
may be inhibiting, and a more direct approach required, One of the
many algorithms (see Powell (1)) for the minimization of a function
of n variables might be employed. The purpose of this section is
to illustrate that whilst this method is practicable, difficulties
similar to those encountered using the Rayleigh-Ritz method in its
usual form arise, In particular the selection of the co-ordinate
system ¢i(x) again affects the performance of the method, as we
show in a simple example below. The further point, that the
minimization techniques locate local, rather than global minima,

must also be born in mind.

Problem Ml :

Find y(x) S.t
1
I(y) = I(y) = X [Xzy'2 + 12y'2 + 20xy} dx
0

subject tc
y(@) = y1) = 0.
This example has the unique solution
y = X -X
as may be verified from the Euler equation, and for which I(y) = -4/3.
We summarize in Tables XXXIV, XXXV the performance of the Davidon

minimization algorithm (Fletcher-Powell (1)) using the basis functions

gi(x) = x'(1-x)

and

x(1-x) Tijl(x)

¢i(x)
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Convergence of Davidon Minimization, n=2

Problem Ml ¢i(x) = xi(l-x)
Function
Evaluations & (1) % (2) I(yn)
0 ~1,200000 ~0,800000 -1.328000
17 -10133464 “00771484 _10331689
26 -1,137132 ~0,781446 -1.331733
37 -1,077520 ~-0.930959 -1.332415
49 "1 ° 000427 -1 L 038437 "'1 ° 333028
68 -0,995719 ~1,007085 -1.333332
80 —O., 997066 "10003156 -10333332
87 -0.999401 ~0.9994417 -1.333333
96 -1.000484 ~0.999259 -1.333333
108 -0.999828 ~1,000008 -1.333333
EXQ.Ct .
Solution ~-1.000000 -1,000000 -1.333333
Table XXXIV
Convergence of Davidon Minimization, n=2
Problem Ml ¢i(x) - x(l-x)T:_l(x)
Function
Evaluations 8 (1) &, (2) I(yn)
0 -0,600000 -1.400000 ~0.901333
6 ~1,440000 -1.280000 -1.256533
13 ~-1,369822 -0.665295 =1.323521
24 -1.501329 -0.499896 ~1.333332
Exact .
Solution -1.500000 -0.500000 -1,333333

Table XXXV
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with n = 2 , for which the exact solution may be expressed exactly in
terms of either basis. We note the comparatively rapid convergence
of the minimization procedure when the trial function is expressed in
terms of Chebyshev polynomials. This has been observed in this and
other examples, and for larger values of n . In the case of
problem Ml, we can make the following remarks about the convergence

of the Davidon algorithm. For any trial function yn(x) which is

a linear combination of n independent basis functions, the function
I(yn) = I(gn) is a quadratic function of the n parameters gn(i) y
i=1...n. For such functions the Davidon algorithm converges in

n iterations provided that the one-dimensional minimigation problems
occurring in each iteration are solved exactly.. In practice this
will not be the case. From Tables XXXIV, XXXV, where each row except
the first, corresponds to a Davidon iteration, we can see that
convergence requires more than two iterationa. We can attribute the
differing convergence rates to the different accuracies with which the
one-dimensional problems are solved, and the observed superiority of
the Chebyshev expansion in the minimization algorithm may be a function
of parameters of the one~dimensional minimization procedures.

The example considered above is of the simple quadratic type for
which the Rayleigh-Ritz method in its usual form is appropriate. We
experiment further with the following example considered by Allem (2,
Ex. i) for which minimization techniques seem more appropriate.

Problem M2¥*:~ Determine z(x) such that

*hig example is given also by Allen (1, p.208, Ex.iii), where the
expression (1.05 exp(1-4z'))
(1.05 - exp(1-42')).

The latter form appears to be in error since in this case we believe
I(z) may assume arbitrarily large negative values.

is printed



I(z) £ 1(z) = K f(x,242" )dx
‘0
{21
= | 1.05 exp(l-4z')(1-2). o(x) |, e(x) \
JO (1+z2) <\2 2(1-2) =

subject to z(0) = 0.5 , 2(1) = O , where

o(x) = (1 +x exp(-6(x0.4)2))"

This problem arises in the study of the utilization of fuel by a ship,
and its practical significance assures a unique solution (Allen (1)).
To apply our minimization techniques we prefer to utilize thq
transformation

2(x) = y(x) + #(-x)

and write 1

() = 1(y) l 2(x,7,y") dx

1
_g 1.05 exp(3-4y' ) (B{x#1)-y). c(x) (2 el \ N
0o (1+(y-4x1)?) (x+1-2y)

with the homogeneous boundary conditions y(0) = y(1) = O . The

unknown function y(x) is approximated by

.0 = § 8,) Ay

i=1

where ¢i(x) are admissible functions, and the integrand approximated

by a quadrature rule Qm &f, 0, 1] s 80 that the funotion of &
()

I, 0) = T, @) - [£ 0 1]
o o

is minimized.
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We have considered the basis funciions

¢i(x)

xi(1~x)

g, (x)

x(1-x)T;_ (x)

and

sin it x

g, (x)

and have used eight and twelve point Gaussian quadrature schemes.

The resulting functions, Imo(gn) , for various values of n , have
been minimized using the Rosenbrock minimization algorithm
(Rosenbrock (1); see also Palmer (1)) since in this case we prefer
not to differentiate the integrand f(x,y,y') with respect to y

and y' . In Table XXXVI we present typical results of this
procedure for various combinations of n , m_ ~ and the basis ¢i(x).
The minimum value imo and the value of the corresponding function,
z(x) at x = 0.5 are given. Table XXXVII records the progress of"
the procedure in the case n=4 ,m =8, ¢i(x) a x(lfx)T:;l(x) .
The results are given at the end of each iteration of the Rosenbrock
algorithm, N denotes the number of evaluations of the function
Imo(an) which have been performed. The asterisk * indicates that
the step size parameter used in solving the sequence of one-dimensional
minimization problems which occur in each iteration of the Rosenbrock
algorithm was reduced after this point to enable increased accuracy
to be obtained.

We contrast these results with those given by Allen (2), where
the value 2z(0.5) = 002233225 + 10"8 is given. We have applied one
of the second order algorithms (approximation 5) due to Allen (1) to
this problem and obtained the value 2z(0.5) = 0.2281458 with h = 0.1 .
Corresponding to the approximation given by this method we have

obtained an approximation to I(z) by application of Simpson's rule
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to the integration, taking O(h°) approximations to z'(xi) in terms
of z(xi) o The resulting value (h = 0.1) is 1I(z) = 1.752381'+1.

The disparity between our results for this problem and those of
Allen, whilst not of major proportions, is not readily explained. We
might suspect that in using an algebraic or trigonometric representation
for y(x) , we are assuming that y(x) has more continuous derivatives
than is in fact the case, but if this were so then we should not be able
to obtain a smaller value for I(z) than by Allen's methods.
Additionally, the assumption that Allen's methods are second order in
h depends on the requirement that y(x) has at least a Lipschitz
bounded fourth derivative, and since Allen (1) has shown numerically
that O(h2) convergence does occur, low order polynomial approximations
can be justified. We therefore consider that we have shown that the
combination of the techniques of the Rayleigh-Ritz method with those
of numerical minimization algorithms prove a valuable alternative to
‘discrete' methods such as those of Allen, for 'simplest' problems

of the calculus of variations having smooth solutions.

6.4 Conclusions

It has been shown that a user of the Rayleigh-Ritz method for
the numerical solution of two point boundary value problems in
ordinary differential equations is presented with a number of choices
which govern the success or failure of the method as he applies it.
The stages in the application at which these choices must be made can
be summarized as

1) The selection of a sequence of approximating subspaces,
ii) The selection of basis functions for each subspace of the

chosen sequence,
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iii) The evaluation of the elements of the Rayleigh-Ritz equations,

iv) The determination of the solution vector of the Rayleigh-Ritz
equations,

v) The evaluation of the corresponding approximate solution,

vi) The estimation of the error of the approximation,

though we emphasize again that these choices are not independent.
It has been the purpose of this investigation to evaluate criteria
which have been proposed in the literature of the method by which
such a choice may be govermed, and to identify areas in which
previously accepted criteria may be inadequate or too restrictive,
and to suggest, on the basis of numerical and theoretical results,
alternative and, we hope, more suitable criteria which may be
applied,

The investigation has concentrated in parts on ordinary
differential equations of second order, though much of the theory has
been formulated-for equations of arbitrary order, and some of it for
partiazl as well as ordinary differentisl equations. We consider
that second order ordinary differential equations are sufficient to
demonstrate the effects of different choices at each of the six
stages outlined above, at least for ordinary differential equations,
and remark £hat this view seems widely held, for few examples of the
application of the me?hod to equations of higher order appear in the

literature.

The selection of a sequence of subspaces in which to approximate
the solution of the given equation should ideally be determined from
a knowledge of the properties of this solution, for these, and
particularly the degree of continuity of the solution, govern the

rate of convergence of the Rayleigh-Ritz approximations, as is
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indicated by the results of Ciarlet, Schultz, Varga (1), and others,
described in Chapter Two. We have chosen to emphasize in this work
the situation in which the solution can be assumed to be reasonably
smooth, and high accuracy is required, and are thus led to the choice
of subspaces of polynomial functions. We acknowledge that if the
solution is known to have points of irregular behaviour, and
particularly if the solution y(x) only satisfies y(x) € ct Lo,1)
for some % , kg t<£2k , then provided the points at which this
irregular behaviour occurs can be isolated, and included in the mesh
peints of a piecewise approximation, this approximation will in
general be more sgtisfactory than any polynomial approximation.
Equally, if a solution is known to be periodic, it should be
approximated in terms of periodic functions, whether they be

periodic spline functions (Ciarlet, Schultz, Varga (2)) or trigonometric
functions depending on the continuity properties of the solution.

The choice of a sequence of approximating subspaces being made,
we have shown that an appropriate choice of co-ordinate system for
each subspace is still required, and is governed by more stringent
requirements than those of admissibility and independence. However,
we have demonstrated that the criteria proposed by Mikhlin to ensure
complete stability are unnecessarily restrictive for many practical
problems, and have indicated a preference for the informal notion of
'sufficient stability® introduced by Samokish, which requires a choice
o co—ordinate system in which rapid convergence may be expected.
Numerical investigations of co-ordinate systems satisfying these
criteria for second order ordinary differential equations have led
us to derive an efficient evaluation algorithm for the co-ordinate
system of integrated Legendre polynomials, which satisfies Mikhlin's

criteria for these problems and which hae been used by Mikhlin (4)
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and Ciarlet, Schultz and Varga (1), and to a theoretical investigation
of a co-ordinate system which has been shown by experiment to satisfy
the less restrictive conditions of Samokish (1). For this system,
based on Chebyshev polynomiais, we have shown that for a certain
class of problems the Rayleigh-Ritz matrix assumes a particularly
convenient form, and have established that it is uniformly
asymptotically diagonal of degree three, allowing the theorems of
Delves & Mead (2) to be utilized to derive asymptotic convergence
results for the resulting Rayleigh-Ritz approximations to the solution
of linear equations. The results of Delves and Mead have been
extended to apply in the case when this co-ordinate system is used to
solve mildly non-linear equations, allowing asymptotic convergence
results to be deduced for these also. This modified Chebyshev
co-ordinate system has been used to solve successfully a number of
test problems taken from the literature, including problems with a
weak boundary singularity (Mayers (1)) and problems satisfying the
oxtended existence results of Gladwell (1). In this connection the
successful solution of problems to which no known existence results
apply should be mentioned, indicating that further extensions of
the existence theory for the Rayleigh-Ritz method are possible.
We conclude that these modified Chebyshev polymomials represent a
useful alternative co-ordinate system to the integrals of the
Legendre polynomials, for second order ordinary differential
equations having ‘smooth' solutions.

A scheme for the construction of a co-ordinate system based on
the orthonormalization of a prescribed co-ordinate system with
respect to the energy norm of the co—ordinate functions, suggested

by Davis and Rabinowitz (1), has been investigated. If the



orthonormalization could be performed exactly the resulting co-ordinate
system would satigfy the criteria of Mikhlin, and thus be completely
stable. In practice, the orthonormalization of the functions must be
performed numerically, and it has been demonstrated by example that

the stability properties of the resulting co-ordinate system are
identical with those of the original prescribed system, and

theoretical reasons for this have been investigated. It has been
shown that the orthonomalization of the co—-ordinate system corresponds
to a method of solution of the Rayleigh-Ritz equations which is known
to be less economical of computer time than standard methods. Since
the accuracy of the resulting approximation is not increased the
suggestion that orthonormalization of this form could be a powerful
tool in variational calculation has to be rejected.

In the literature of the Rayleigh--Ritz method the effects of the
quadrature approximations which are frequently made in the evaluation
of elements in the Rayleigh-Ritz equations has previously been
neglected, with the exception of the contributions of Herbold (1)
and Herbold, Schultz and Varga (1). We have been able to modify
some of these results, which are applicable when the co-ordinate
system used consists of piecewise polynomials and only the free term
vector is approximated by quadrature, to the case of a polynomial
co~ordinate system., Additionally, extensions to the case in which
quadrature approximations to the elements of both the matrix and
the free term vector have been derived. It has unfortunately not
been possible to extend all the results in this manner, and in

‘particulgr we have been unable to show that the convergence rate
which applies when the sequence of Rayleigh-Ritz approximations is

computed exactly is preserved when quadrature errors are present.
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However, this property has been shown to hold for certain :sst examples
using a polynomial co~ordinate system and particular choices of
quadrature rule.

We have indicated our belief that the error bounds given in the
literature for the Rayleigh-Ritz method are of theoretical rather than
practical significance, and in general are not easily computed.
Accordingly, we express the opinion that simple and previously popular
error estimates based on the magnitude of the coefficients in the
Rayleigh-Ritz expansion have tc be accepted. Estimates developed
from the theory of Delves and Mead (2) are shown to be extremely
pessimistic for a number of test examples. However, the behaviour
of a sequence of these estimates provides a guide to the growth of
rounding error in the Rayleigh-Ritz pracess, and this may have
application in the selection of a particular member of the sequence
of Rayleigh-Ritz approximations as & final solution,

In the last chapter extensions of aspects of the previous work
to partial differential equations are considered. An approximate
finite element method for second order elliptic equations, derived
by applying an extension of the work of Herbold (1) for partial
differential equations analogous to that used in Chapter Five to
extend his work for ordinary differential equations, has been
proposed. This method has a simple form, and in particular is more
easily applied to general operators than standard finite element
techniques. Further investigation of this approach is clearly
necessary, both from a practical and a theoretical aspect, but in
particular it is hoped that unigueness, convergence and consistency
results similar to those of Herbold (1) may also be derived in this

case,



4 unified description of the Kantorovich and 'extend-: Kantorovich'
methods as applied to second order linear partial differential
equations in two dimensions involving a positive definite differential
operator has been presented, and extensions to other equations
involving a positive definite differential operator indicated. An
approximate method which arises in a natural marner from these methods
has been outlined, It has been emphasized that the successful
application of this method rests on the c¢riteria which govern the
application of the Rayleigh-Ritz method to ordinary differential
equations, and the relevance of earlier discussions has thus been
extended to a wider field.

An attempt to extend the Rayleigh-Ritz method to general
formulations of variational problems of the so-called ‘simplest’
type, based on algorithms for the minimization of a function of
n variables, has also been considered. Further research into this
approach is required before its difficulties can bLe isolated, but in
particular the high overnead of quadrature approximation is again a
serious practical disadvantage.

In conclusion we comment on the usefulness of the Rayleigh-Ritz
algorithm for the solution of the problems with which we have been
primarily concerned, two-point bourndary value problems in ordinary
differential equations, in comparison with other algorithms.

Broadly speaking, numerical algorithms for these problems approximate
the solution in one of two ways, either in terms of pivotal values
(values at a sequence of points) or as a series expansion of the
approximate soluticn in terms of prescribed functions, These
clagsifications are not independent, and we have seen that for the

Rayleigh-Ritz method a particular choice of prescribed piecewise
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Polynomial co-ordinate system for a method regarded as beiung of the
gecond type generates an approximation considered to be a classical
example of methods of the first type. Nonetheless, we preserve
elements of this classification in our brief comparison of these
methods.

A choice between type of method must be made on the basis of
required properties of the approximate solution and on the nature
of the problem, and its exact solution. If the value of the
approximate solution may be required at many arbitrary points,
then a series expansion is frequently to be preferred. Further,
we have seen that if the exact solution of a problem is sufficiently
smooth, polynomial expansions are appropriate,and whilst this remark
has been made here in the context of the Rayleigh-Ritz method it
remains largely true for other series expansion methods. Pivotal
methods, whether of the 'shooting' or 'boundary' typse,are well
suited to probleﬁs with solutions which are not known to be smooth,
and these methods, particularly 'shooting' methods are often very
readily applied to very general ordinary differential equations.

Of the methods for the determination of series expansion
approximations to the soclution of ordinary differential equations
we comment only upon the more popular ones. These are the direct
power series expansion method, the method of collocation and the
least squares method in both its continuous and discrete forms,
together with the Rayleigh-Ritz or Galerkin methods.

The direct power series expansion method, usually applied in
terms of Chebyshev series (Lanczos (3)) is regarded as a method
appropriate to the solution of linear equations with particularly

simple coefficients, and is out of place when considered for a
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wider class of problems.

The least squares method may be applied in two forms, corresponding
to the choice of an integral least squares norm, or a discrete semi-norm.
In the former case the resulting least squares equations for the linear
differential equation Ly = f are equivalent to those obtained by
applying the Rayleigh-Ritz method to the differential equation
L*Ly = 1*P where L* denotes the conjugate operator to L (Mikhlin
and Smolitskiy (1), p.226). In view of this similar difficulties
regarding the selection of co-ordinate systems can be encountered in
the least squares method and in the Rayleigh-Ritz method. However,
one of the criteris applied to this selection of the co-ordinate system
in the Rayleigh~Ritz case, that %ZLyn - fﬁ -» 0 as n -» W ,
where “ .II denotes a norm other than the energy norm, does not
apply in the least squares case, where " Lyn - f “ o -» 0 as
n —> 9 from the definition of the least squares approximation.

On the other hand, convergence of the least squares approximation
yn(x) to the true solution y{x) requires more restrictive
differentiability assumptions on the true solution y(x) and on
elements of the co~ordinate system than is the case for Rayleigh-~
Ritz calculations.

The difficulties of numerical quadrature which are apparent in
the evaluation of matrix and vector elements for both the Rayleigh-
Ritz and continuous least squares methods are avoided by the discrete
least squares method and by the collocation method (Wright (1),
Clenshaw and Norton (1)), both of which are powerful algorithms for
the solution of problems of the type we have considered. In
particular there are powerful convergence results for the collocation

method (Karpilovskaja (1)), for linear equations,comparable with the
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results couvergence of the Rayleigh-Ritz method using poiyuaumial
basis functions, given in Chapter Two. These include convergence
results for the derivatives of the approximate solution up to and
including the order of the differential equation. In view of
these results, and the well known observation that the collocation
method is a particular case of the discrete least squares method,
we acknowledge the efficiency of the collocation method for linear
equations. For non~linear equations such resulvs have not been
found in the literature.

We have shown therefore the power of the Rayleigh-Ritz method
for the solution of linear and mildly non-linear boundary value
problems in ordinary differential equations, and extended known
results for this method in a number of directions. Though
extensions of some of these results into the field of partial
differential equations have been outlined, it is clear that further

research in these areas remains to be undertaken.
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Notes on Figures A.I and A.II

The numbered asterisks shown in these figures have the following

significance.

Fig.AOI

¥l  An incorrect large eigenvalue is determined by the

numerical procedure for n = 11 .

*2  An incorrect small eigenvalue is determined by the

numerical procedure for n = 12 .

*3  Incorrect large and small eigenvalues are determined

alternately as n increases.

Fig.A.IT

*1  An incorrect large eigenvalue is determined by the

numerical procedure for n = 13 .

*2  An incorrect small eigenvalue is determined by the

numerical procedure for n = 16 .
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Appendix C

On the Order of the Error of a

New Finite Difference Formula,
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In this Appendix we consider finite difference approximations of

the solution of the ordinary differential equation
y" = f(x’y) ’ X € [0,1] ...(C 101)
With the boundary conditions

y(0) = y(1) = 0

and in particular present a formal analysis of the order of the error
of the new finite difference approximation (5.18) proposed in % 5.1,
together with numerical experiments in its use.

We assume that the equation (C 1.1) is such that a variational

formulation exists (% 2.6), and denoting its solution by y°(x) we

have 1 y
o) < 0 2 .
I(y°) < Ky)ag{y +2X fh;yﬁ}}dx
0 0

Applying the Rayleigh-Ritz method to the determination of an
approximate solution of the variational problem of the form
n
HONEED SR ARARC

iml
where wi(x) are the basis for the subspace of piecewise Hermite
polynomials of degree one on a partition

: = < -
b 0 xo<xl o o » xn+1 1

x;, = ixh , h=1/n#1

leads to the equations (Herbold (1))

- _ 141
Ty =y v T, - X £x,5(x) )y (D)ax ... (6 1.2)

h x

i-1
1-1, o.o,no
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Herbold shows that if the integral of (C 1.2) is expressed as

rxi+1
3 £(x,¥(x)) Wi(x)dx
“im1 x x
v 1 i+l
= j f(x,i(x))wi(x)dx +I f(x,i(x))wi(x)dx
i1 i

and each term approximated by the trapezium rule, then the familiar

second order finite difference formula

s;i_'_l - zyi + yi—l - f(xi’yi) "'(C 1°3)

h2

is deduced, and similarly, that if the integrand r(x,i(x)).wi(x)
is approximated by f(x,i(x)).wi(x) , where F(x,y) is the
quadratic polymomial satisfying

?(xjvij) = f(,xj’yj) ’ J = 1-1’ i’ i":l
and the integration performed, the fourth order Mehrstellenverfarhen
scheme (Collatz (1)) results; i.e.

+

+ + 1 ¥ +
yi.',l - Qyi + yi'-l = 12 (f(xi_llyi_l) + IOf(xi,yi)
2

B + 2(x, 0 08],,))  eee(C 104)

The new scheme may be derived in at least two ways. Trivially,
We may choose to approximate the integral of (C 1.2) by Simpson's Rule
(waich is consistent in the sense of Herbold (1)) to get
~ Fa
yi+l - 2?1 + yi-l = % (f(xi_lily\i_l) + 4f(xi’?i)

?
h + f(xi+1,§;+1)) v..(C 1.5)

Less arbitrarily, we consider the case in which

2(x,y) = ky + g(x,y)
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where k is a constant, including linear equations of this type
automatically. Integrating the right hand side of (C 1.2)
exactly yields

YXi+l y‘i+1

£(x,y).w, (x)ax = (ky + g(x,3))ew (x) ax

J

i1 *i-1

- *i41
= & (yi-l + 4yi + yi+l) + Y g(IQy)dx

X1

The motivation for Simpson's rule approximation of the remaining
integral term is clearly apparent, leading again to (C 1.5).
As indicated in % 5.1, it is clear that this new finite

2 with leading coefficient

difference formula has an error of order h
opposite in sign from that of (C 1.3) from the relation between (C 1.3),
(C 1.4), (C 1.5) and the known orders of accuracy of the established
methods, We present here a verification of this in terms of a formal

error analysis for linear equations of the form
o+ k(x)y + £(x) = 0
and write (C 1.3) and (C 1.5) in the forms

hd 2] v Lo
Vi1 =Wy tT, t Ry O+ 4 =0

h2

and

) Y Py
Vi1 = W + T4 ¢t

h2

1 A A P
g (kg o7y + 4F) + k5 ) =0

To consider the errcrs of these approximations, we write

(¥

(*] ~
g = v(x) -7,

T3

o ~
i =7 (xi) - Yi
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g~ Jaml T ¥t Via )
2

and, as is well known, this results in

o 2j o(23+2)
k.. =-02 b

ph (23 ) |

= -25(y9 ...(C 1,6)

which we take to be the definition of S(y)

A
Similarly, for €1 s We can write

>

1 A A A
250+l E -7 (kg ¥ - R YR Ty)

s (g, -2, +2,0) =0

Assuming yo(lv) to be continuous, we can write

P a L @ o)
22
A /\ N
alL IR ARIER RIS O AR
2

0
+ (fi_1 -2f, + ti+1) + S(ky°+ )
2

h
80 that

- 2s(y + kg & °(iv) - 28(ky°+ £)) = O

~ Expanding ~2S(y) from its definition, we have

l\)

kig'i . 1__ o(iv) 0(h4)

and from (C 1.6)
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. )
o h o{iv) 4
k(‘i = -5 Y + 0(h%)

Thus %he conclusion that the finite difference algorithms (C 1.3),
(c 1.5) have local truncation errors of order h2 with coefficients
equal in magnitude and opposite in sign is verified.

We report briefly numerical results from the application of the

methods considered here to the linear ordinary differential equation

Yy - 2y + 1 = 0
(I+2)2 x+2

with the boundary conditions
y(0) = y(1) = 0

which has the solution

y(x) = -(19(x+2) - 5(x+2)% - 36 ) / 38
x+2

This example is adapted from Collatz (1, p.178). The behaviour of
the error as a function of h is indicated, illustrating the 0(h2)
error behaviour of the new method. In Table C I results for the
finite different approximations (C 1.3), (C 1.4), (C 1.5) for a number
of values of h are given. In Table C II the results of an

application of the Rayleigh-Ritz method in the form of Chapter Three

with the modified Chebyshev basis funotions

Ai(x) = x(1-x) 7,7 (x)

are given for comparison.

The new method cannot be recommended as an alternative to the
established central difference formula (C 1.3), since it requires
three times as many function evaluations. We suggest, however, that
the joint application of methods (C 103); (C 1.5) can be considered

as a useful alternative to the direct application of (C 1.4). No
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A Comparison of the Maximum Error of Three Finite

Difference Formulae as a Function of h .

h=0.1 - h = 0.05 h = 0.025

Method (C 1.3) +2,661'-5 +6.669'-6 +1.669'-6

Method (C 1.5) +1,362'-6 +3.542' =17 +8.967'-8

Method (C 1.4) =2.677"=5 -6.679'-6 ~1.669'-6
Table C I

The Behaviour of the Error of a Polynomial Rayleigh-
Ritz Expansion.

emax 10274"‘"4 10247'—8 10869"‘11

Table C II

additional function evaluations are required, and in the general
case y" = £(x,y) , (C 1.3) and (C 1.5) generate non-linear

algebraic equations of the form

Ay =~ g(y)
with the same matrix A s 80 that the same iteration matrix A may

be used %o solve these equations iteratively. As a result of
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applying the two O(hz) methods jointly one readily obtains the
solutions ¥ , y and y* = (F + §)/2 , for which the relations
yo € Y?ﬁ, §; and &o * y+ hold for sufficiently small h
(neglecting rounding error effects). Thus readily computable
expressions of the nature of asymptotic error bounds are provided

by the joint application of these formulae.



