AN ANALYSIS OF THE STRUCTURE OF

TREES AND GRAPHS

A Thesis
submitted to the
University of Newcastle upon Tyne
for the degree of

Doctor of Philosophy

C. R. Snow

July 1973

Acknowledgements

The author wishes to record his thanks to ail his friends
and colleagues on the staff of the Newcastle University
Computing Laboratory for their help and encouragement during the
preparation of this thesis, and particularytto Professors

E. S. Page and B. Randell.

I am deeply indebted to Dr. H. I. Scoins for his interest
and helpful supervision throughout the period of research, and
for his «critical comments on the various manuscripts of this

thesis.

Thanks are also due to Miss E. D. Barraclough and the
N.U.M.2.C. staff for the provision of computing facilities, and

especially with regard to the production of this thesis.

During the period of research, I was funded from a grant
from the Science Research Council, and later I was employed by

the University of Newcastle upon Tyne.

This thesis 1is concerned with the structure of trees and
linear graphs. In particular an attempt is made to relate the
structure of these objects to the known methods for counting

then.

Although the work described here 1is essentially not
computer oriented, the generation and decomposition of graphs
and trees by computer is in the Dbackground, and so0o a short
section on the computer representation of the various objects is

included.

Trees are analysed bearing in mind the counting methods due
first to Cayley, and a later method using Polya'’s classical
theorem of enumerative combinatorial analysis. Various methods
of representation and generation of trees are presented and

compared.

This thesis then goes on to the substantially more
difficult problem of analysing graphs using similar techniques,
and attempts are made to relate the structure of graphs to the
known techniques for enumerating graphs. This involves a more
detailed study of Polya's theorem and an investigation into the
underlying concepts such as permutation groups as they are
applicable to the case under scrutiny. Representations are

developed to aid these investigations.

In the following section of the work, methods are
investigated for the decomposition of a 1linear graph, and a

nurber of different decompositions or factorisations are looked

at. One such factorisation considered in some detail is the
problem of extracting a spanning tree from a graph, and the ways
in which the remaining graph or co-tree graph may be
manipulated. The complete decomposition of a graph into trees
may be achieved using these methods, and the concept of the
structure tree of the decomposition 1is introduced and its

properties explored.

The techniques described have all been implemented, and a
discussion of the problems of the implementation together with

some estimates of timing requirements is also included.

Chapter I. 1Introduction And DefinitionsS ccccoscccvoccooceoncacal
Chapter II. Computer Representation ccccoccococccocoooeacoccccol5
II.1 Ordered Rooted TreesS .ccccecccavcoccocconocacoaccgnncacoelD
IT.2.1 Weight Representation cccceccvocccooccsoccngocasooocscll
IT.2.2 Height Representation .cgcccoccccvscoconccconcoocea?
II.3 Relationship Between Ordered Rooted And Rooted Trees ..24
IT.4 Rooted And Free TI€ES ccoecsccnccococsoocosoanoncacecoac3]

II.5 Linear GraphsS coccoccecccccccoccocoacocssecacnavogocaconsoa3

Chapter III. Tree IndexXing ccceocccosccecacoogrncococcccocoanaoeldl
III.7 Introduction cocccenecccoccocecocaccanngonoocscecoscocnoced’
IIT.2 Ordered Rooted TreesS ccccoceccoccoccceccanccgnoccs goonlB
III.3 Rooted TIEES cucocrnoccocvonarnonccacocessooeconnscoanaaeali?

ITTI.3.1 Height Representation ccooccccccccoccancecnoacocorocoldl
IIT.3.2 Weight Representation cccccececcococcocccaccorooosd2
ITI. 4 Free TreeS cccocccococceceoacooenoaooonoocnosnscacnnaneeb3
ITI 4.1 Weight Representation ccceccscccacsosccnnocccccoceb3
ITI.4.2 Height Representation ccccccccccoccccaccacccocconce 2

Chapter IV. The Graph Isomorphism Problem ccccvocccoocccocace’B
IV.1 The Problem coccococcceccccgecocgoanssgcengeconoccooscgselB
IV.2 Unger's And Sussenguth’s MethodS ccccecoccccccnccococoaocclB
IV.3 The Classification And Refinement Method ccccccoccooacea8]

IV.3.1 The Refinement Algorithh cccveccocccconcscocconocoaceB3
IV.4 The Automorphism Partitioning cococecceccococoocanvoococacesB8
IV.4.1 The Cycle VeCtOr ccoccccecocoevococacanenooannoceael9
IV.4.2 The Vertex Quotient Graph cccooococcgoqooenceotccneed]l

IV.5.3 The Representative And Re-ordered GraphS .ccocono.100

IV.5 Two Problenms

oqqoocnocqqooqoqooqqqouccqnooooonnqooconn106

Chapter V. GraphsS .cqocececccecaccoanooccasccocogoccnoconcoasec 107

Vel Introduction cccvccocccoccoanocqgecsncoososnccasoocoaoasel107

]

V.2 Relationships Between Node Labels And Line labels107
V.3 The Equivalence Graph .ccecococscccacccoccoaonosoonaccecll2
V.4 Application Of Combinatorial Techniques cceccocccocoaoa 12l
Vol.1 The Sieve A1gorithm .cccconcoccoccocoacocnccaoccoccol27
Vo4.2 The AutomorphiSm GLOUP ccosccocccecccccoocccacocacealll

V.5 Partitions Of Graphs cecogecegeneuceocogcoooougoonogoes 13D
Chapter VI. Factorisation c.ccccececocccoocvoncccorcococonos B
VI.1 General DiSCUSSIiON cvaeocccosasescevacccsecosocaoasaccaone 148
VI.2 MatChings cccqoecocccacococcococoaccoovecaconcaoocancac 149
VI.3 Articulation PointsS (qccccenccccecacccannccaccacccccacs 162
Vi.4 spanning Trees ©esecesoceceeveogugeonoceocasoceangconco 100
VI.H.7 TWwo ALGOTithES ccooceccccococvsvosocoaueoscoonocanocoe 169
VI.4.2 The Structure Tree coceutnecaecccooccccgcncengoncons 18U
Chapter VII. Practical Results And Conclusions ceoogocgconge 192
VITI.1 Generation Of Trees .cccocccncaccacaccaccornooconcoaans 192
VII.1.1 Height Representation ccccccsecccoococoocoaonaccs 192
VII.1.2 Weight Representation ccceccccocccocacccaccconaaocce 19U
VII.2 The Canonical Ordering AlgoTithm ccccccoccccccacccses 196

VII.3 Generation Of GraphsS ccoceccacccncaccccoccccocnononncal197

o

VII.3.1 The Sieve Algorithm ooooqqoqe0°°q99°Q99°99°q0qn"°198
VII.3.2 The Ejuivalence Graph cococecncocecccccconacooocaeoe 198
VII. 3.3 The Partition Method cccceccogmocnoucccaecoonnegac20]
VII. 4 Factorisation ccqccoeecoccececceocccacoconcoconcasaocee02
VII.4. 1 Matchings c.gccosconceccncococvoocnocconoaneocoael03
VITI.4.2 Articulation PointS cecccccegccoccoconoaoancan

cooc20l

VII.4.3 Spanning Tree AlJOrithBS cccgooccncccocooncanceaal05

VII.4.4 Complete Decomposition cccocccococcccccons
VII 4.5 SUMMATY coccoccoacoccoccsnceqooccoancoe

VII.5 ConclusSionNS cccoccooeccovoocoococoasonocoe

References .cuoccocccvovonococnococecoacocooucaongasans

Appendix I. Counting Series For Trees And Graphs
AT.1 Ordered Rooted Trees .cccocccccccccccoccccon
AI.2 Rooted TreeS occcccocceocoooocaqosoascancaanse

AI.3 Rooted Trees Of A Given Height ..ccccoccace

AT .4 Free TreesS ccccccocccccoccvceceooccoocaascogonos

AIos Graphs 000060 OCOO00O000COC0VOCO0OOCO00O0GEC GOV OOKQOCO©HOQ

Appendix II. h-strongly Regular Graphs ccocccocceccs

© Qe

s e

.206
<206
207
-210
217
<217
219
222
<225
<227

0229

1 Introduction And Detinitions.

The subject of Graph Theory £falls naturally intc three

subdivisions. W¥We are discussing here the subject of Graph
Theory in a ‘Ypure™ sense, 1i.e. we are disregarding the
applications to which Graph Theory is a useful aid, in which

case the subject becomes very much more diverse than just the

three subdivisions.

The first subdivision is to do simply with the ability to
rrove (or not prove) thecorems about graphs. This part of the
subject is very closely 1linked to abstract algebra and the
parallels between Graph Theory and Discrete Mathematics may
easily be seen. Secondly, Graph Theory has proved to be a
fruitful field for the “enumerators®. There appears to be an
inexhaustible supply of different types of graph, and these can
all be examined with a view to counting them, and a large number
have in fact been enumerated. Finally, there are many problems
associated with graphs in which it is reguired to find an
"efficient” method ot deciding whether or not a graph possesses
a certain property, or to find some particular property or

subgraph of a graph.

The first subdivision, then, is the province of the pure
mathematician and, more particularly, of the algebraist. The
theorems which are proved or disproved are 1largely of the
existence type, or proving equivalence between properties and so
on. Occasionally the proof of such an existence theorem
contains a construction of the required property or subgraph,

and, even more occasionally, such a construction may be

3]

fefficient?! in some sense.

Secondly, we have a 1large class of enumeration problems
some of which have been solved, and some of which have not.
This area, 1largely of interest to combinatorial analysts, has
made some use of the algorithmic type procedures, but only to
compute the number of graphs of the various types. The third
area 1s studied largely by Computer Scientists. These are the
reople to whom efficiency 1is of prime concern, and to whom a
mere wave of the hand and the remark "there exists ...% is
insufficient. It 1is clear that the last class of problems can
make extensive use of much of the first area, proving theorenms

to enable more efficient alqorithms to be developed.

In this thesis we embrace a little of all three, although
we are largely interested in the second category. We are not
content, however, unlike +the combinatorial analyst, simply to
discover how many there are of any particular species of graph,
but also to ask: How can we produce them all? We examine here
the various combinatorial techniques which have been developed
to count graphs, and try to adapt them so that they illustrate
better the way in which they correspond to the actual objects
which they are counting. In some cases (see Page 1971) there is
a method by which this can be done, particularly if there is a
reasonalbly amenable recurrence relation associated with the
objects concerned, but when techniques such as Polya's theorem
(Polya 1937, de Bruin 1964, Liu 1968) are used to count the

objects it 1is npot at all clear how this problem should be

attacked.

w

Throughout this work, then, we are concerned with an
examination of the structure of countable objects, and in
rarticular with trees and linear graphs, and attempting to
relate the structural properties of these entities to their
combinatorial properties, with the hope that we may be able to
develop general methods for the representation and manipulation

of any objects which are enumerable by current combinatorial

techniques.

The leading work in the tield of graphical enumeration has
been done by Harary in collaboration with a number of others and
a list of some of the solived and unsolved problems in this area
are given in Harary (1960), Harary (1964), etc. The main part
of Harary®s work which is used in this thesis is his exposition
of the method of counting graphs (Harary 1955). Other workers
in the same line aire Nash-Williams and Tutte. A comprehensive
bibliography of the 1literature of enumerative graph theory is
also given by Turner (1969). With regard to the Computer Science
interest in Graph Theory, a paper by Read (1969) gives an
introductory survey of the types of algorithms that are being
developed. The areas of interest here include Shortest Path
Algorithms (see also Pohl 1969), Elementary Cycle Algorithms
{Gotlieb and Corneil 1967, Paton 1969), Clique finding
Algorithms (Augustson and Minker 1970, Mulligan 1972, Mulligan
and Corneil 1972), and perhaps the classic graph problem, the
Graph Isomorphism problem. More recently, a number of uses have
been found for graph theory to describe certain situations which
arise 1in computer science, notable in Assignment problems,

Transportation problems, and also in the theory of programming,

progranm correctness, compiler optimisation and many other
aprlications. The tree also has long been an important tool in
the syntactic analysis of programsming languages and in many

other types of data representation problem (see Knuth 1968) .

The present work contains a mixture of the two approaches
of enumeration and algorithm production. One of the more
interesting problems in computational graph theory is the
rroblem of graph isomorphism. This was the subject of a thesis
by Corneil (1968), in which the problem of an efficient
algorithm for isomorphism of graphs was solved for a restricted
set of graphs. However, the point is made that the smallest
known graph outside this restricted set has 26 nodes. We make
use of Corneil's algorithms in our later work, but since the
size of problem approached becomes unmanageable for qraphs with
considerably less than 26 nodes, we may employ Corneil's

techniques in their simplest form with some confidence.

In this work we also discuss trees, particularly in
chapters II and I1I1, where we try to use the known combinatorial
properties of trees to yenerate all of the trees of a certain
size in some convenient order. Knuth (1968) devotes a
considerable portion of the first volume of his book to the
study of trees and their application to certain aspects of
computer science, such as data structures, parse trees for
compilers, sorting and searching and many other applications.
Other authors have studied the isomorphism problem for trees

(Snow 1966, Meetham 1968) .

With regard to combinatorial problems associated with

trees, the first approaches to the problem seem to have made by
Cayley (1889) who used an empirical method to obtain expressions
for counting sequences for trees. Cayley’s results vwere
confirmed by a different method due to Harary and Prins (1959)
in which they made use of a very powerful combinatorial tool due
to Polya (1937). In <chapter II1 we examine both methods of
counting, but it transpires that the tree indexing problem is
much more amenable to treatment using the Cayley method than by
the Harary and Prins method. Unfortunately, the only known
solution to the graph counting problem is by Harary (1955) and
this makes use of Polya's theorem, which makes the graph
indexing problem correspondingly more complicated. Since the
publication by Polya of his famous theorem, a large number of
combinatorial counting problems in graph theory (and elsewhere)
have now been solved which without the theorem seemed quite

insoluble.

Harary (1967) gives a list of a number of unsolved problems
in graphical enumeration, which he describes as UGEP III

(revised from UGEP 11 (Harary 1964) and UGEP I (Harary (1960)).

In chapters II and TII ve consider trees, their
representation and manipulation, and the ordering of trees using
the counting methods of Cayley. 1In chapter IV we describe the
work of Cormeil on the graph isomorphism problem insofar as it
is relevant to the present work. Chapter IV also contains some
further work beyond that of Corneil which we will make use of in
the following chapter. Chapter V is concerned with our attempts

to use the combinatorial methods developed by Harary and others

to find a method of indexing the set of non-isomorphic grarhs.
one of which is called the Sieve algorithm, and extends the
automorphism partitioning algorithm of Corneil. Chapter VI
contains a description of some methods for finding
decompositions of a qraph, and in particular, some attempts at
extracting a spanning tree of a graph which is "best" in some
labelling-independent sense. The extraction of a spanning tree
is in fact a special case of the factorisation of a graph, and
chapter VI also contains some brief considerations of other
factorisation problems. The final chapter attempts to summarise
the work of the whole thesis, together with a discussion of the
practical aspects concerning some computer programs writtem to

implement the techniques discussed in the earlier chapters.

We conclude this introduction by defining more formally the
terms which will be used (we hope consistently) throughout +this

thesis.

A graph is defined to be a set V of objects, known as

points, nodes or vertices, together with a set E of edges or

lines. The set E consists of pairs of elements from V. A graph

is directed if the nmembers of E are ordered pairs, and
undirected otherwise. Conventionally, a 1line of a directed

¢raph 4is known as an arc. A pair (v,v) € E, where v ¢ V, is

known as a loop.

In an undirected graph, two nodes x,y € V are said to be
adjacent if there is a line (x,y) in E, and if L = (x,y) € E,
the line L is said to incident with x and with y, and x and ¥y

are called the end--points of the line L. The number of nodes to

which a node x is adjacent is called the deqree of x. A graph

A path in an undirected graph 1is a sequence of lines
(Ve s Vi) (Y cVy)y cues (Vy_,sVy) where each pair of adjacent

lines has one end-point in common. A directed path is a path in

a directed graph, in which each 1line is directed, and the
starting node of each line is also the finishing node of the
yreceding line. The length of a path is the number of lines in
the path, and a path is said to pass through a node x if x is an
end-point of at least two of the lines in the path. A path is
unijuely defined by an ordered list of the nodes through which
it passes. 1A path is said to be simple if each line in the path

appears only once in the path, and elementary if each node is

encountered only once. A cycle is an undirected path in which
the starting point and the finishing point coincide, and if the
yath 1is simple or elementary, then so is the cycle (except that

the first node coincides with the last). A directed cycle is

tenerally referred to as a circuit.

Ar undirected yraprh is said to be connected if for every

rair of nodes in the graph there is at least one path joining

them.

In the case of directed graphs, we have several definitions
of connectedness. A <graph is weakly connected if it is

connected when considered as an undirected graph. A graph is

unilaterally connected if for every pair of nodes « and g, there
exists a (directed) path from « to g » or from p toot . A

directed graph is said to be stronuyly connected if there is a

cath from any node to any other node. A graph is disconnected

if the condition for weak connectedness is not satisfied. For a
further discussion of directed graphs, see Harary, Norman and

Cartwright (1965).

A particularly important special case of an undirected
,raph is a tree. A tree is defined as a connected graph which
possesses no cycles. Berge (1958) shows that this definition is
equivalent to a number of other properties by means of the
following theorem:

Theoren.

Let G be a graph of order |V] n> 1. Then any of the
following properties characterises a tree:
(i) G is connected and possesses no cycles.
(ii) G has no cycles and has n-1 lines
(iii) G is connected and has n-1 lines.
(iv) 6 contains no cycles, and if an edge is added which
joins two non-adjacent nodes, one (and only one) cycle is
thereby formed.
(v) G 1is connected, but loses this property if any edgje is
deleted. .

(vi) Every pair of nodes is joined by one and only one path.

We leave the reader to refer to Berge's book {chapter 16)
for the proof of this theorem. The properties given above are
Shown by the theorem to be egquivalent, and therefore any one of

them may be considered as the definition of a tree.

We define a subgraph H of a yraph G to be a subset U of the

set of nodes V, together with all those 1lines of G whose
end-points lie in the set U. We may define a relation P between
ncdes of a graph G such that xPy holds if and only if there
exists a path in G joining the nodes x and y. In the context of
undirected graphs this relation P can easily be shown to be an
equivalence relation, and the nodes of G are divided by P into
eyuivalence classes, where two nodes are in the same eguivalence
class 1if and only if the relation P holds between them. The
sraph G is now partitioned into subgraphs, where each subgraph
is defined by an e uivalence class, and each of these subgraphs
is connected. Furthermore, there are no larger subgraphs which
are still connected. These subgraphs are known as the connected

~omponents of G.

A particular case of a non-directed graph is a forest. A
forest is any graph which has no cycles. By the definition of a
tree, we see that each connected component of a forest 1is a
tree. An analoyous theorem to Berge's theorem can now be proved

for forests.

Theozen.

Let G be a graph of order j|V}] = n > 1. Then any of the
following properties charactarises a forest:
{i) G has no cycles.
(ii) G has p connected components and n-p lines.
(iii) 6 is such that if a line is added which joins
two non-adjacent nodes, either

(a) one and only one cycle is thereby formed,

or

10

{(b) the number of connected components is reduced by
one,
(iv) If any 1line 1is deleted, the number of connected
components is increased by one.

(v) Every pair of nodes is joined by at most one path.

Property (i) is simply the definition of a forest.
(1) ==> (ii): As already observed, the connected components of a
forest are trees. Let the i-th connected component contain n;

nodes. Then we have:

§_Di=n

t=i

Also, since the i-th component is a tree it contains =n; - 1

lines. Thus the whole graph contains

(n.-1) = j;: n; -~ p =n - p lines.
(ii)y ==> (iii)::‘éy the theégém stated earlier, no connected
graph can have less than n-1 lines and in this case it contains
no cycles (i.e. it is a tree). If each connected component
contains n; nodes, it must have at least n; -1 lines. But since
the total number of lines 1is n-p, each component must have

exactly n;-1 lines and therefore G contains no cycles since each

component is a tree.

Now if we add one more line to G, either this 1line joins
two nodes in the same component, in which case G now has exactly
one cycle, since by the previous theorem the component which
Gains the line now contains exactly one cycle, and all the other

Components are unchanged, or else the inserted 1line Jjoins two

11

nodes not in the same component. In this case, a path now
exists which joins a node in one component to a node in another
component and so these two components become a single connected
component in the new graph, so that the number of components is
reduced by one. This new line cannot form a cycle since if this
wvere so, its +two endpoints would be Jjoined by a path not
including the new line contradicting the assumption that the two
roints were in different components.

(1ii) ==> (iv): From the proof of the previous theorem, we have
the fact that if any 1line is deleted from a tree, then the
number of components is increased from one to two. Since each
connected component of a forest is a tree, the deletion of one
line increases the number of components in that subgraph of the
forest containing the endpoints of the line from 1 to 2. The
remaining p-1 components are unaffected. Thus the total number
of components after deletion of the line is p+1.

(iv) ==> (v): Suppose there were two nodes having two distinct
raths joining them. Then it would be possible to delete a 1line
in one of the paths so that the number of components remains the
same. Thus every pair of points must be joined by at most one
rath,

{(v) ==> ({i): If there was a cycle in the graph, there would be
two distinct paths between any pair of nodes in the cycle, thus

there can be no crycles in the graph-

A partial ., raph Q of a yraph G has the same vertex set as

G, but possesses only a subset of the lines of G. A partial
¢raph G is said to span G. A particularly important partial

Graph of a connected graph G is the spanning tree. This is

12

simply any partial graph of G which 1is also a tree. The
analogous concept for a disconnected graph 1is the spanning

forest

©

A partial subgraph is a partial graph of a subgraph.

We will also require some general definitions relating to

trees. A tree will sonmetimes be referred to as a free tree to

tree is a tree in which one (and only one) node has been singled
out as being a reference point for the tree. This node is
called the root of the tree. Rooted trees will be shown in the
diagrams in this thesis as having their root at the bottom of
the picture with all other nodes above the root. It now appears
tc be common practice to draw trees the opposite way with the
root at the top of the diagram. There are two schools of
thought; one which says that trees should look similar to
natural trees, which have their roots in the ground, and another
which considers trees as
being generalisations of
such objects as family
trees. In this work we
subscribe to the former
view, and our
terminology (below, up
left, etc.) reflects

this. Fig._ 1.

The act of drawiny a tree on paper immediately imposes an
ordering on the nodes, i.e. a relationship of "“right" and

"left" on the points in the diagram. An ordered rooted tree

13

takes account of these spatial relationships between nodes. 1In
tig. 1. we see two trees, both rooted, which are different
when considered as ordered rooted trees, but equivalent when
considered as rooted trees, since only the interconnection of

the nodes and the position of the root are significant.

In a rooted tree, we define the height of a node x to be
the length of the path from the node x to the root. The height
of a tree is the maximum height of any point in the tree. 1In
any tree, a node which is only adjacent to one other node in the
tree is called a terminal node (or leaf), all other nodes being

non-terminal nodes. A tree whose root is a terminal node is

Two other special cases of trees are also of interest. We

every non-terminal node has exactly two nodes above it. If the
root 1is a terminal node then the tree comnsists of just this
node. Another way of expressing this is to say that either the
root has degree zero, or the root has degree 2 and all the other
non-terminal nodes have degree 3. A property of these binary
trees is that the number of terminal nodes exceeds the number of

non-terminals by one.
This can be shown as follows:

Let a binary tree with n nodes have t terminal nodes. Now
€ach node except the root has one line below it. Thus the
number of lines in the tree is n-1 (which we knew anyway fronm

node
the definition of a tree). But each non“termina%/has two lines

14

above it. Thus the number of lines is also given by 2(n-t).

Hence

n-1=2¢(n-~-1t) ort

(n + 1) /2
and the number of non-terminals is:

n-(n+ /2= MmMm-"N1H/2=%t - 1.,

Knuth (1968) in his Dbook makes extensive use of a tree

which we here call a bifurcating tree. A bifurcating tree is a

tree 1in which the number of nodes above any node must not be
(reater than twvo. This type of +tree has a number of

applications in the area of sorting and searching.

The definitions given here are those which will be referred
to more commonly in later chapters. In addition, further

definitions which pertain to later work are given when required.

15

II Computer Representation.

It is clear that throughout this work on the manipulation
of trees and linear graphs within a computer, some method must
be used to identify the nodes of the graph. Thus in all our
work whether we be dealing with labelled or unlabelled graphs we
have to attach a 1labelling to any graph for the purposes of
computer representation. The problem then becomes one of trying
to carry out manipulations in a manner which is independent of
any labelling we may impose. The other alternative is to reduce
any graph to some canonical form, and thenm we <can with
confidence use the labelling which is imposed by the canonical

form.

In some previous work (Snowvw 1966) we showed some ways of
representing rooted trees and free trees and then using them to
ascertain whether two free trees were topologically equivalent.

We now describe this work with some extensions.

II.1 Ordered Rooted Trees.

The representation of ordered rooted trees requires that
some notion of T"next to" between nodes must be carried in the
representation. We first make some definitions which are
applicable to ordered rooted trees. A package is a node x
together with all those nodes y such that x is the second node
(Y being the first) in the path from y to the root. The node x
is said to be the packaqge head of the package. Thus, in fig.
1., the nodes x and y; i=1,...,k make up the package whose head

is x. The nodes y; are considered to be ordered within the

16

rackage, and we define the positive neighbour of a node y to be

that node which is encountered next after leaving y as the nodes
in the package are traversed in a clockwise sense about the
package head. In fiq. 1., the node y;,, 1is the positive
neighbour of the node y; for i=1,...,k-1. In this case there is

no positive neighbour for y,. We define a node p to be the

negative neighbour of the node q if and only if g is the
rositive neighbour of p. The up left of a node x is defined to
be that node in the package whose head is x (sometimes referred
to as the package on x) which has no negative neighbour. Again
referring to fiqgq. 1., y; is the negative neighbour of y;,, for
i=1,...,k-1, and the node y, has no negative neighbour and is
therefore the up 1left of x. It is now possible to specify an
ordered rooted tree entirely in terms of the up 1left and the
positive neighbour of each of its nodes. It is also convenient
to make some further
definitions of relatiomns
between the nodes of a
tree. In the path from
a node y to the root of
the tree, the second
node x is called the

below of y-. Thus the

below of y is the head
of the package of which
Y 1is a member (but not

the head). Fig. 1.

Given the two sets of juantities, up left and positive

17

neighbour, it is possible to deduce the values of the below for
each node, but this can involve a considerable amount of
‘searching back?, i.e. Operations of the type: 'find that
element x whose positive neighbour is the element y'. This type
of operation is not an easy one to perform on a computer. It is
therefore convenient to introduce some further information into
the quantities we have already defined. The positive neighbour
vector contains information corresponding to those nodes only
which have a positive neighbour, and those which do not,
effectively have a blank position set aside for then. Suppose
now we introduce a new vector of values called ‘positive or
down', which we will abbreviate to "pord'. This quantity camn be

defined to be:

pord (x) positive neiqghbour (x) if one exists

-below (x) otherwise
The minus sign is simply a marker to tell us that we are to
interpret this value as the ‘'below' of x rather than as the
‘positive neighbour' of x. The operation of finding the below
0of a node in the tree now becomes very much easier and can be
illustrated in terms of the recursive function:

below (x) = if pord (x) <= 0 then - pord (x)

else below (pord (x)).

We have however to be a little careful in considering the
below of the root node. We may adopt any one of a number of
conventions on this, but in this present work it has been found
most convenient to make the definition:

below (root) = root

and this is the only node in the tree for which this is true.

18

Since the root has no positive neighbour, we also have:
pord (root) = - root.
It has also proved necessary to scan through the nodes of tree
in some sort of standard way in order to give a canonical
labelling to an uniabelled ordered rooted tree. This 1labelling
is as follows:
1. Iabel the root as node 1.
2. If a node x has just been given the label i, then the
node to be given the label i+1 is:
{a) up left of (x) if this exists
(b) otherwise the positive successor of x
(pos succ (x)).
3. When the root is reached a second time then the whole
tree has been labelled.
The positive successor function which was used in step 2 of the

above labelling process is defined as:

pos succ (x) = positive neighbour of x if it has one
= pos succ (below (x)) otherwise
= x if x is the root.
Using the tree in fig. 2. as an example, we obtain the

following table:

Node Label 1 2 3) 5 6 7 8 9 10 11 12

Op Left = - 2 1 - q 8 - 12 - 6 -

Positive

Neighbour 3 - - 5 7 9 - - - - - 10

19

Below 5 3 4 6 6 11 6 7 11 9 11 9
Pord 3 -3 -4 5 7 9 -6 -7 -11 -9 ~11 10
Pos Succ 3 5 5 5 7 9 9 9 11 11 11 10

Position In

Canonical 4 6 5 3 7 2 8 9 10 12 1T 1M

Ordering
This ordering, since it 1
makes use of the
positive successor !

relation to such a large

extent should perhaps be

&

called the positive

labelling o Knuth

{1968) calls this method

of +traversing a tree

pre-order. Fig. 2.

These definitions of functions are sufficient to specify a
labelled tree completely, and further, we are able to move both

up and down the tree without difficulty.

In the case of an unlabelled ordered rooted tree, we may
represent this more succinetly. This is clearly because we do
not need to carry the relationship between node labels in our

representation. Two methods of representing an unlabelled tree

20

have been devised, both of which will be discussed in a

different context in chapter III.

In passing it is worth notiny that the two vectors ‘pord"
and Yupl' (up 1left) can be regarded as the defining functions
for a labelled tree. In fact, pord itself «contains some
redundant information in that the below parts of the vector can
(with a certain amount of searching) be deduced from the
positive neighbour parts. However given an 'upl® vector and a
consistent ‘pord' vector we may construct functions to discover
any of the other information which we have discussed. Also, a
change in either the ‘pord' or the ‘upl' vectors would have the
effect of changing the shape of the tree. Note that since
"rord®* contains some redundant information, a change in ‘pord?
or ‘Yupl' may force other changes to be made to these vectors in

order to preserve consistency.

II.2.1 Weight Representation.

Of the two methods of representing an unlabelled tree, the
first is the veight representation.. In both of the following
representations we shall use a vector of small integers to
describe the tree, and in each case we assume that the i-~th
element of the vector corresponds to the i-th node in the

rositive ordering of the nodes of the tree.

The weight representation of a tree was introduced in our
earlier study of trees (Snow 1966) where it was described as the
integer representation. This term could equally well apply to

either of the representations to be described, so that it was

21

thought to be a sensible idea to change the name to weight
representation. For any rooted tree (not necessarily ordered),
each node in the tree is the root of some subtree (if the node
is a terminal node, then the subtree consists only of that node
and if the node is the root of the whole tree, then the subtree
is the whole tree). Let the weight representation of a tree be
a vector w = (w,,¥,,..0,W,) where w; is the number of nodes in
the subtree whose root is the node i. It is clear that since
the nodes are ordered according to the positive ordering of the
nodes, and therefore that node 1 is the root, we have w, = n,
where n is the number of nodes in the complete tree. We may
also make the observation that when labelling a tree using the
rositive ordering, the root of any subtree is labelled before
any of the other nodes in the subtree and also that once the
root of a subtree has been 1labelled, all the nodes in that
subtree are labelled before any further nodes are labelled
outside that subtree. Thus, for any node j in the +tree, the
subtree whose root 1is 7 has a corresponding subvector in the
vector w. This subvector is of length k, where k is the number
of nodes in the subtree on j. Also, by definition, vy = ko
Thus, given a vector w which represents a tree, we may choose
any element L and pick out the subvector W, oW e o0 WiaWhere LK
= k, and this defines a subtree in the tree. Another

interesting property of this vector is as follows:

let p, = w,
y=)
p; = W, * z pj for i >= 2
>
then we have p, + p, + ... + pe = 01, where t is such that pg

does not refer to an element outside the vector W, but peg.

22

would. This is a consejuence of the fact that if the package
whose head is the root contains the root and t other nodes, then
the n -~ 1 npodes in the tree other than the root must all be
contained in the subtrees standing on the t other nodes in this
rackaqge. Since p, = w,, we know that the first such subtree
contains p, nodes, and that the next tree contains p, nodes, and
so on. This relation between members of the vector w also holds
within the subvectors which represent subtrees. The numbers
¢ 1 = 1,c..,k form a composition (or ordered partition) of the
number n - 1. When we turn to the topic of the «canonical
ordering of subtrees within a tree, we shall see that these
sequences of numbers p; will become true partitions of the

number n - 1. This will be dealt with in the following chapter.

1I1.2.2 Beight Representation.

The other representation to be considered here is the
height representation. Again the tree is to be represented as a
sequence or vector of small integers. We have defined the
height of a node x to be the length of the path between x and

the root of the tree. The height representation of a tree is a

vector h = (h, ,h, ,cc-.h,) in which the nodes of the tree are
again labelled by the positive labelling, and the i-th element
of h, h; is the height of the node labelled i. The node 1,
which of course is the root, has height O, and +thus for any
tree, h, = 0. Further, since we label the tree either by moving
up the tree to the next node above, or by moving across (and
possibly down) the tree, we have the relation h; <= h;,+ 1 for i

= 2,000 M.

23

Again we observe that since the positive 1labelling 1labels
all the nodes in a particular subtree before labelling any
subse.juent nodes, certain subseguences represent subtrees within
the tree. Given any node in the tree, say node j, the height of
this node i==§#======ﬁn is given by hj. Now we look along the

vector h until we find another element k such that hk <= hjg

and
kK is the smallest number greater than j for which this is true.
Then the subseguence hjghywooqahhﬂhas all its elements h; > hi,
for i = J*i1,3%¥2,...,k-1. Thus if we consider the vector h' =

(h ~h-

3 3’

h

w—hsrrgo”hhrhj) this is a valid height representation

tor some tree. (This is true since the first element = himhi =
0, and if h;<= h;,+ 1, then h;vﬂ; <= h@fhi + 1). The vector h°
hence represents a tree, and in fact it represents the subtree
which has the node 1labelled j as its root. The following
theorem demonstrates an interesting connection between the

weight and height representation for trees:

Theorem 1.

For any rooted tree with n nodes, the height vector and the

weight vector are related by

" n
;z; h, = ;g; ¥

Consider any node k. £ For each node j which 1lies on the

rath between k.and the root r (including both k and r), the node

k lies in the subtree of which j is the root. Thus the node k

makes a contribution of 1 to each of the terms w; of the vector

¥ for each j in this path. Thus k makes a total contribution of

1h to the sum ‘58 w- , where 1h is the number of nodes in the

j-zl

24

rath k to r. Hence the sum of all the 1y gives the total sum of

the wi's and thus

pIE TR 1
[3] h é’l i
But the number of lines in the path from the node k to the root

is 1, ~ 1 and this is just the height of the node k. Thus

oy

2 h; 2(1l - 1) = Z Hi = n
k=

]

vzt i=

0 and w, = n for all trees with n nodes

]

using the fact that h,
we have
"

i bh{ Z'JQ

=2 i=?

QoEcDo

II.3 Relationship Between Ordered Rooted And Rooted Trees.

As has been pointed out on a number of previous occasions
(Obruca 1966, Snow 1966, Scoins 1967) there is an interesting
connection between the set of ordered rooted trees of n nodes
and the set of strictly ordered rooted binary trees with n
terminal nodes. It can be shown that if a binary tree has n
terminal nodes, then it has n - 1 non-terminal nodes, It may
also be shown that these +two sets of trees have the same
cardinality, i.e. the trees of n nodes are equinumerous with the
gzzgyuith n terminal nodes., It is 1likely therefore that we
could construct a one-one mapping from one set onto the other.
In fact, at least two such mappings exist. We shall describe
one of them, the other being obtained by reading "right" for
"left” and "left™ for "right" in the following description of

the mapping process.

The mapping may be described recursively. Given any

25

ordered rooted tree, we may divide it uniquely into two parts,
each of which is itself an ordered rooted tree. We arbitrarily
decide that this division is carried out by ‘"cutting"™ the
right-most branch at the root. Let this cut be represented by a
non-terminal node of the binary tree. Fig. 3. shovws the tree T
as being composed of two smaller trees T, and T, together with
the line that will be "cut"™ in the decomposition process. The
trees T, and T, are of course ordered rooted trees in their own
right. In the binary tree, we have represented the cut by a
non-—-terminal node, and therefore this node will have two other
nodes above it, by definition of the strictly binary tree. We
now carry out the mapping process recursively on the trees T,
and T, so that T, maps onto the left subtree of the binary tree,
and T, maps onto the

right subtree. If at

arny stage of the

recursion, the tree on

either side of the cut b

is a single node, then

this node maps onto a

terminal node of the

binary tree. Fig._ 3.

Having shown that a mapping from the set of ordered rooted
trees of 1n nodes to the set of binary trees with n terminal
nodes exists, and we may construct the reverse mapping without
difficulty, we can consider the possibility of representing an
ordered rooted tree in terms of a representation of its

Corresponding binary tree. There is a very succinct

26

representation of a binary tree, and it is thought that this
method 1is approaching the minimal representation of an ordered
rooted tree in terms of the information content of the

rerresentation and the computer storage required.

Given a binary tree, we know that each node has only two
nodes above it (or none at all). Let us represent a terminal
node by the symbol *, and each non-terminal node by the ordered
rair (s,,s,) where s, and s, are the representations of the left
and right subtrees respectively on that node. The
representation of the tree, which is taken as the representation
of the root node, then consists of a sequence of opening and
closing brackets and asterisks. Furthermore, since there are n
terminal nodes in the tree, there are n asterisks in the
sequence, and also there are n--1 pairs of opening and closing
brackets corresponding to the non~terminals in the binary tree.
Also we know that within each pair of brackets there are exactly
tvo sub-sequences, which may themselves be bracketed
sub- sequences or simply asterisks. Now since these bracketed
Sub sequences also have this property, we may remove the closing
brackets without any loss of information. This 1is because we
can scan any such bracketed sejuence with its closing brackets
removed from the left, so that each time an opening bracket is
encountered ve know that we must recognise two conmplete
subsequences and then insert the corresponding closing bracket.
The following algorithm will achieve the replacement of closing
brackets.

1. Initialise by setting the input and output string

pointers to the beginning of their respective strings

27

and the stack pointer to the bottom of the stack

2. Get the next character from the input and send it to
the output string. I+ this character is an asterisk
then goto step 3. Otherwise, place a zero on the +top
of the stack and repeat step 2.

3. If the top of the stack is a zero then change it to a
one and return to step 2. Otherwise remove the top
element from the stack and send a closing bracket to
the output string.

b, If the stack is now empty then guit, otherwise return

to step 3.

Let us now replace each opening bracket by a ‘one', and
each asterisk by a vzero'. The representation of +the binary
tree (and therefore of the rooted tree) is now in the form of a
segnence of zeroes and ones called a terminated binary sequence
it.b.s.). This is a sej uence of 2n-1 bits and is therefore very

economical in computer storage space.

These concepts will now be illustrated using an example.
Consider the tree in fig. 2. but regard it now as an unlabelled
ordered rooted tree. It is now labelled using the positive
ordering, and the result
15 shown in fig. 4.
The weight
Trepresentation and the
height representation of

the tree are now shown

in the table below.

28

Node 1 2 3 L 5 6 7 8 9 10 11 12

Label

Weight 12 8 4 1 2 1 1 2 1 3 1 1

Rep.

Height 0 1 2 3 3 4 2 2 3 1 2 2

Rep.

We will now describe the steps of the mapping of the
ordered rooted tree into the corresponding binary tree and then
to the t.bh.s. 1Let us denote the binary tree corresponding to a
tree T by <:> . Thus if T may be decomposed into ~n///h” then
we denote the corresponding decomposition of @ by o
As an example, the steps in the decomposition of the +tree in

tig. 5(3) are given in fig. 5(i)co. (viii).

29

(iv)

{viii)

In the transition from (ii) to (iii)p the left subtree
decomposes into a single node on the Jleft, while the right
subtree has a single node as its right part. The growth of the
binary tree therefore stops along these branches. The tree in
(viii) does in fact possess 12 terminals and 11 non-terminals.
This tree is represented by the following sequence of brackets
and asterisks:
CORCOR(x%) (xx))) %) (%)) ((¥%) %))
which contracts to the t.b.s.:

110111011700 170001001171000

Two comments may be made about this sequence. The first is
that the +t.b.s. Contains one more 'zero' than it does ‘ones’,
and in fact if we start at the beginning of the sequence and

rroceed along counting the numbers of zeroes and ones, the

30

sequence terminates when the number of zeroes exceeds the number
of ones by one. Hence given any seguence of zeroes and ones, we
may pick any member of the sejuence as the starting point and
extract the first subsequence which has this property, and this
represents some ordered rooted tree. An arbitrary binary
segquence can therefore be thought of as representing a forest of
trees, provided that the sequence is terminated when a complete

tree has just been found.

The second observation which may be made about the
t.b.s. is that correspondences may be established between the
zeroes of the sequence and the nodes of the tree, and between
the ones of the seguence and the lines of the tree (and we
notice that there are the correct number of each). If this is
done we see that the zeroes appear in the sequence in the sanme
order as their corresponding nodes appear in the positive

labelling of the tree.

It is clear that some representations will be more useful
in some contexts, where others would be easier to use in other
contexts, The different lexicogréphic orderings of trees
described in chapter III show that a representation which gives
rise to one ordering is most inconvenient when dealing with some
other ordering. In fact, while the t.b.s. representation is by
tar the most compact of those considered here, it also appears
to be the least useful. Procedures have been written to convert
from one representation to another for all the possible
combinations which might be required. Some of these, together

with a fuller discussion of the binary tree and the t.b.s. can

31
be found in Snow (1966).

1.4 Rooted And Free Trees,

Having dealt in some detail with the representation of
ordered rooted trees, we now describe the representation of
unordered rooted trees and free trees. 1In fact, the only way of
those described previously to represent unordered trees is the
‘below' representation, and that can only be applied to labelled
rooted trees. The techniques used to represent and manipulate
unordered rooted trees have in fact been the same as those for
ordered rooted trees, but steps were first takem to ensure that
the ordered rooted tree was some kind of canonical form of the
unordered rooted tree. The first method used was the
representation of a rooted tree by the weight vector. The
canonical form of this representation is obtained by sorting the
subvectors of this vector, as was described in Snow (1966) ., and
which will be discussed in greater detail in chapter 1III. The
same sort of technigque was used to reduce a tree in height
vector representation to canonical form. Again this will be

discussed in the following chapter.

The same points occur in the discussion of the
representation of free trees, where, in addition to the
necessity for finding a canonical form, we have to impose a root
on the tree where it would not otherwise have one. Two methods
of carrying out this operation will also be explained in the

next chapter.

32

The field of representation of trees appears to be
considerably more fruitful than the representation of 1linear
sraphs. However, some of the methods of representing graphs are
discussed here briefly, although in the later work, the
adjacency matrix was used almost exclusively as the internal
representation of a graph. A more convenient method was however
used for input of the graph. Given a linear graph G with n
nodes and m lines in which the nodes are labelled from 1 to n,
and the 1lines are labelled from 1 to m, we may define two
matrices. The first is the adjancency matrix

A = (a%) where ay = 1 if there is a

line from node i to

node j

= 0 otherwise
The graphs dealt with here will in general be undirected, and
will not contain any line from a node to itself. 1In these cases
the adjacency matrix will be symmetric, and all the elements on
the principal diagonal will be zero. K The matrix will be n x n.

The second matrix is called the incidence matrix, and is defined

as

i
=

M= (mq) where n;; if the node i is
an endpoint of the

line j

=0 otherwise

33

Clearly this matrix is n x m. Now in general a graph has
more lines than it has points, i.e. m>n, particularly for large
n, and thus the incidence matrix occupies more space than the
adjacency matrix. Neither matrix is a particularly compact
representation, since there 1is a considerable amount of
reduncancy in both of these representations. The adjacency
matrix is (for our purposes) symmetric, and so could be
compressed into the upper triangle of an n % n array, while the
incidence matrix contains only two non-zero elements per column
(where the columns correspond to the 1line labels). Obruca
{1966) describes a method of storing a graph in (m + n) storage
locations. The method used for the input of a graph to our

rrograms is a very small variation of Obruca's method.

Assume that the nodes are labelled from 1 to n. The graph
may be represented in terms of a vector of length (m + n - 1)
}for undirected graphs; (m + n) locations are required for a
directed graph). For eaéh node i, the vector comnsists of all
the nodes j to which node i is joined, and for which j > i. For
the nodes Jj such that Jj 1is joined to i anmd j < i, an entry
appears in the section of the vector pertaining to the node j.
The 1list for the node i is separated from the list for the node
i + 1 by some marker (such as a zero). Thus the line from i to
7 1is represented by the appearance of the number j in the vector
between the (i-1)-th zero and the i-th zero (assuming that i <
.}« Thus the graph im fig. 6. Would be represented as:

2, 4, 0, 3, 5, 6, 0, 4, 5, 7, 0, O, 6, O, 8, O, 8, 0O,
a vector of 1length 18,

there being 8 nodes and

34

11 lines in the graph.
The order of the

elements within each

l1ist is immaterial. Fig. 6.

It is also interesting to notice that given n, the value of
m may be deduced, since we can look along the seguence until the
(n - 1)-th zero is reached, and then we know that the end of the
vector has been found, and m is the number of non-zero elements
passed. There is never a list for the node 1labelled n since
there there are no nodes 3j for which n < j, so that all the
lines incident to the node n appear earlier in the sequence.
Also, two adjacent zeroes indicate that all the lines incident
to the corresponding node have been listed previously, as for

example the node 4 in fig. 5.

The adjacency matrix of a graph has a further property. .

Let S%) be the (i,j)-th element of the k-th power of the

adjacency matrix A = (a;j)o Then a%? is the number of distinct
raths of length k from node i to node j. This can be shown

using an inductive argument, suppose a%{odoes represent the

number of distinct paths of length k-1 from the node i to the

node j. Then ;3 is obtained by forming the inner product of

LU0 I () {k

the vector (ah Y- T ,cqq,ai”) and the vector (aﬁ ,a“ ,"nn,ans).,

n

This inner product gives. us:

bl
%) -y _ (-
a; = Z ;) ay, = Za;)
b= wdjocent ha 3 . .
Hence we take all the paths of length "1 ¥hich if increased
by one line would reach the node j. Later in the work, we shall

require another matrix S:

35

S = (Si“

the graph between e==tims=gnapk nodes i and j, and this could be

found by determining the smallest k such that a?? is non-zero.

) where Sﬁ is the length of the shortest path in

However, even allowing for the fact that some sophisticated
methods for multiplying matrices could be found for the simple
case when one (at least) of the matrices is purely binary, it is
clear that there are more efficient methods for deriving the

elements of S available.

The whole subject of finding the shortest path between two
nodes of a graph has been studied extensively (see Pohl 1969)
and various algorithms have been developed {e.g. Dijkstra
(1959) and Nicholson (1966)). For finding the elements of the
matrix S, however, Warshall's algorithm (Warshall 1962) is
rrobably the best, since we are concerned with finding the
shortest distance between every pair of nodes. For the case
where we are required to find the shortest distance to every
node from some fixed node r, some method involving the growing
of a spanning tree from r is likely to be the most efficient

(see chapter VvI).

The adjacency matrix representation of a graph proved so
useful for other manipulations in the programs that no other
rerresentation was used, except that the 1list representation
described earlier was more useful for the initial input of the
y,raph. A procedure was written which accepted the graph in the
list representation and output the corresponding adjacency
matrix for use by the rest of the program. Since no space

rroblems were encountered during the work (the limiting factor

36

vas almost invariably computer time!) it wés thought to be
unnecessary to 'pack' the binary adjacency matrix into less than
one matrix element per computer word, but clearly this could
have been done with the consequent reduction in efficiency due

to having to 'unpack' the matrix to inspect an individual itenm.

37

In this chapter an attempt is made +to interpret in a
reaningful way the statement Y, <« . where 7 and T, are trees,
for each type of tree so far considered. This is done by
listing the trees of a particular type, and perhaps of a
rarticular size, in some order. The objective is initially to
construct a mapping I from the set of trees of various classes
to the set of positive integers in such a way that we may define
the relation <« as

<TG = I(%) < I(M)

(and also X, = XL & I(¥) = I(T))
and secondly to construct a straightforward algorithm to find
this mapping I and its inverse for trees of a variety of *sizes’
and types. Since the mapping I is intended to be an isomorphism
between the set of trees and the set of integers between 1 and k
where k is the number of +trees in the set, and since the
relation < is a total ordering over the integers, the relation <
is also to be a total ordering over the set of trees, i.e. for
any two distinct trees %, and < belonging to the set, wve have
either Y <Y, or <, <7
Other desirable properties of the ordering relation < over the
integers are also carried over by the isomorphism. Page (1971)
describes methods of carrying out this process of constructing a
mapping for a wide <class of objects, showing, using mainly

permutations of various types as illustrations, how the

38

recurrence relations which are used to count these objects may
be used to generate these same objects in some order, and also
to give them a wunique index together with an easy method of
napping from an object to its index and back again. In the case
ot trees, the counting methods are more complicated functional
e¢xpressions, whose recurrence relations are deeply buried, and
consequently Page's approach must be considerably extended to
cope with +these more complex situations. The author believes,
however, that since we have a method of counting trees of
various types, and linear graphs for that matter, it should in
principle be possible to create an indexing scheme for all these
objects, by consideration of the method used to count the
obijects. We will show that using different representations,
however, the statement ¥ < ¥, can be made meaningful, although
the ordering of the trees 1is greatly dependent on the

representation employed.

II1.2 Ordered Rocoted Trees.

There are several ways of indexing ordered rooted trees of
which the most obvious is perhaps the numerical ordering of the
corresponding t.b.s. when considering each t.b.s. as a binary
number. This method is not particularly useful since the
t.b.s. is a rather specialised type of binary sequence, and the
numbers produced from the t.b.s.'s do not form a particularly
sensible sequence of numbers. However, as a first step , it
does allow us to attach a meaning to the statement <, < ¥ _when T,

and 7, are rooted trees.

39

A more natural ordering stems from the recursive way the
trees are counted. Consider a typical ordered rooted tree such
as that shown in fig. 1. If this tree has n nodes, then the
tree ¥ has i nodes, and 7, has n-~i nodes for some i, 1 <= i <=
n-1. Then the number of trees with n nodes is the number of
trees ¥, with i nodes x the number of trees 7T, with n-~i nodes,
summed over all possible values of i. Thus, if "), is the number
of trees with n nodes:

D, = VT jx“j.‘-;’ e+, for n >= 2.
From this equation, by multiplying both sides by x", and summing

over all n from 2 to®, we arrive at the gemerating function

torm of the counting series for ordered rooted trees:

T =x+ (Jm o
(-]
where ‘Yy(x) Z "3“ x"

s i

This formula may be considered as a representation of the
fact that an ordered rooted tree either comnsists of a single
node, or it is the combination of two ordered rooted trees.
Thus 73 (x), which may be taken as representing the set of all
ordered rooted trees, is
constructed by taking
the single tree with one
node only (represented
by the term x) or by
taking elements from the
product set (represented
by Jxyx Jx or i

(x) }2). Fige 1.

40

Another approach, leading to the same result, is favoured
by Harary. Here we consider an ordered rooted tree to be a root
node with =zero or more ordered rooted trees as its principal
subtrees. Thus, using the tern 'J(x) once again to represent
the set of ordered rooted trees, we have

M o=x 0+ (xR i3 P
which gives

(x) = x/(1 - "J(x))

Now in the natural ordering of the ordered rooted trees of
n nodes, the first tree is the "join" of the tree with one node
(?1 = 1) and the first tree with n - 1 nodes. The first tree
with n - 1 nodes may be found by the same method, i.e. it is the
"“oin" of the tree with 1 node and the first tree with n - 2
nodes. The method then proceeds recursively until the first
tree of n nodes is found explicitly. In the general «case, to
find the k:-th tree of n nodes, we examine the numbers s;, where

o
s, = zlijjvh_b . until we find that i such that

J‘:l

< k <= s-

N
v-1 [

We then know that the k-th tree decomposes into two parts 7, and

X, wvhere %, contains i nodes and ¥, contains n -~ i nodes. Now
there are 'J; ways of choosing 7%,, and .:’“_;Hays of choosing <X,
giving J,J._.. ways of constructing the tree and we
are looking for the k'-th member of this set, where

k¥ =k - s,_,
Let k be of the form (a-1) J,;+ b, where 0 < b <= "J__., and thus

we now want to look for the a-th tree in the set of trees with
i nodes and the t-th tree in the set of trees with n - i nodes.

We may now deduce these by recursive application of the above

41

method.

Let us clarify this method by reference to an example.
Suppose we are required to find the 70th tree in the set of
ordered rooted trees with 7 nodes. We have therefore k = 70, n
= 7. From the table of the numbers fLF we can see that

s, = 66, s, = 16
and so we know that our tree consists of a subtree of 3 nodes on

the left, and one of 4 nodes on the right. In particular, since

k' =k -s, =70 -~ &6 = 4, ve require the 4th such tree.

Now hj, = 2 and j» = 5, and we may express k' as
(1 “1)3“ + 4, that is, the first tree with 3 nodes on the left,
and the 4th tree with 4 nodes on the right. The first tree of 3
nodes is the composition of the first tree with one node and the
first tree with two nodes. Thus the left part of the required

tree is:

according to the composition rule given in the previous chapter.
Similarly, the 4th tree with 4 nodes is found to be the 1st tree
with 3 nodes composed with with the first (and only) tree with 1
node, this tree is therefore L\/ , and the composition of these

two gives the J0th tree with 7 nodes as: o

The alternative interpretation of the generating function
egquation would presumably give rise to a similar method of
determining the k-th tree, but almost certainly to a different
tree. In fact, since Harary's interpretation is an infinite sunm
of infinite sums, it is not possible to perform this mapping

trom numbers to trees without restricting the scope of the

42

senerating functions.

I11.3 Rooted Trees.

The first approach to the problem of indexing a set of
unordered rooted trees was made through the generation of
ordered rooted trees. By the techniques developed in our
earlier work (Snow 1966) we were able to determine whether two
ordered rooted trees were isomorphic as unordered trees. Thus,
one method of generating all rooted trees would be to generate
all ordered trees in some sequence, and reject those which were
isomorphic to trees already generated when considered as
unordered trees. This was done by reducing each tree as it was
jenerated to a canonical form as described in the aforementioned

earlier work.

This method produced a vast quantity of extra work to be
carried out by the program, since the number of ordered trees is
approximately 22~-7 for n > 4, whereas the number of unordered

trees is only about (2.6)" for large n.

The number of rooted trees can be calculated exactly, and
if we let T, be the number of trees with n nodes, and let

T(x) = Tg + T, x +# T,x2 ¢ Tyx3 + ...,
By the application of Polya¥s theorem (Polya 1937), a «classical
theorem of enumerative combinatorial analysis which has been
explained by a number of authors (de Bruin 1964, Liu 1968,
Riordan 1958), we know that T(x) satisfies the functional
ejuation

o

T(x) = x exp { Ej'r(x") / r }

Y= ¢

43

A more detailed discussion of Polya's theorem will be given
later, together with a discussion of some applications. It was
considered desirable in discussing an ordering relation over a
set of trees, that the structure of the trees themselves should
be reflected in the ordering in some way. Thus, if we have two
trees ¥, and Y , we wish to define index numbers I(<«,) and I(7))
tor < and 7, respectively, such that I(%]) < I(7) if and only
if ¥, €%, ,» where <, < T, also has an intuitively sensible
interpretation with
respect to the structure
of the two trees. So,
by analogy with the
ordering of ordered
rooted trees in the
rrevious section, it was

decided to decompose the

tree T as shown in fiqg.

2. Fig. 2.

A canonical form for ‘¥ was used which was such that if ¥ is
in canonical form, then X, P=% ¥ ..¥=7%, , and the T, are all in
canonical form. £ Now if two trees T and ¥°' are decomposed into
T Coeooosty and 1f,ﬁj,ooc,t;‘respectively” then an ordering on
the set of trees might be:

< T & either "tj4 "clr for some j <= min (k,k")
and TE=‘tC for i = 1,c0a,3-1,
or Ti= ¢ for i = 1,....,k
and k < k¥.

Furthermore, since this ordering is given by a recursive

Ly

definition, we need a starting point for the recursion, and we
choose
Y= . <7T for all trees .

This ordering, which will be referred to as the natural
ordering, does not depend in any way on the number of nodes in
the trees, so that it is meaningful to compare two trees by this
method even if the two trees have different numbers of nodes.
In the examples shown later, the number of nodes in each tree is
the same, although the comparison as defined 1is equally valid

when comparing trees of different sizes.

IXI.3.1 Height Representation.

We may define an ordering on the height representation of a
tree. This is simply the lexicographical ordering of the height
vectors of the trees to be compared. In detail, this ordering

is given by:

Given two trees v and X', with height vectors h =
(h, hyseoc,oh,) and h* = (hf,h¢,c0.,hf), then L <’ if and only
if h < h', where h < h'¥ is defined to mean
hj < hf for some 1 <= j <= n
and h;= h! for i = 1,...,3- 1«
We demonstrate the connection between the natural ordering of
trees and the height representation ordering of a pair of trees

by means of the following theorenm.

Theorem.

The ordering imposed on the set of rooted +trees by their

height representation ordering is the same as that given by the

45

natural ordering.

The proof is by induction on the height of the tree. The
base point for the induction in the definition of the natural
ordering is the trivial tree .= . The height sequence for this
tree is h = (0), whereas any other +tree has at least two
elements in its height vector, the first of which is always

zero. This vector is therefore less than any other valid height

vector, and this is the starting point for the recursion.

Now let us consider two trees < and ' which are
cepresented by the height vectors h = (h,,..<,h,) and h' =
(h:”oat,h;) respectively, and let us suppose that < decomposes

into principal subtrees 7

poeooTy and ? into ¥ l,000, Ty . Let us
also assume that 13* Qf but that %= 1%} for i = 1,...,J~1. Ve
have constructed the height vector in such a way that T =¥
implies that the corresponding vectors are equal, and thus the
sequence formed by concatenating the height vectors of the
subtrees 'rﬂoqqg’{r. is egual to that obtained by concatenating
the height vectors of ?fﬂoqwt%|o But if each element of each of
these sequences is increased by one, and the two sequences are
each prefixed by a zero, then the two new sequences (which are
still egual) are the partial height vectors corresponding to the
root and the subtrees %,,...,Y.

J-l
Now the height sequences for <Tand T’ are not equal, and by the

and 1?7°°qaq34 respectively.

inductive hypothesis, Q}*‘tg if and only if gqf h&; The partial

height vectors h and h' can now be extended by concatenating the

Sequences kq,and g%,in which each element has been increased by

46

one. These new partial segquences h and h' are related by

h < h' & hq, < .}lvxj)
since we know that all the elements of h and h' which precede
the start of gq)and g{yare equal. The remainder of the vectors h
and h' are irrelevant since the result of the comparison is
decided by the first point of difference between the vectors.
Thus, by definition of the natural ordering of trees

Y=< ¥' <> 13“Tj

3
By the inductive hypothesis

't:‘< ‘t: <> -h‘j)< QY\'p
and by the lexicographical ordering of the height sequences

‘}'l(j)< —hzj) & h < hY
Q(»EoDo

In fact the theory of the height representation, and in
rarticular the above theorem, applies to ordered rooted trees.
We introduce it here because this representation is more
appropriate when considering the canonical form to which an

unordered rooted tree is reduced.

We must also consider the meaning of the term ‘canonical
form® with respect to the height representation. The discussion
of the height vector in the previous chapter mentioned that any
subtree corresponded to some subvector of the height vector and
jave the rule for finding such a subvector. 1In particular, the
principal subtrees of a tree are given by the subvectors which
begin with the value 1, and continue until immediately before
the next element whose value is 1. We can therefore isolate the

subvectors which represent the principal subtrees, and by the

47

above theorem, we can order the subvectors lexicographically
within the vector (first ensuring that each subvector is itself
in canonical form) to obtain the canonical form for the height
vector representation, which we see is the same as the canonical

torm used in the natural ordering.

This natural ordering (and hence the height sequence
ordering) works very well for giving a representation to the
intuitive idea of ordering the trees with n nodes, but apart
from storing an ordered list of such trees together with their
respective index numbers, the problem of associating an index
number between 1 and T,, where T, is the number of rooted trees
vith n nodes, with each tree in the set still has no solution.
However, we may now take a closer look at the way in which these

trees are enumerated.

As noted earlier in section III.2, there are at least two
ways to represent an ordered rooted tree and we showed the
tunctional ejuations which indicated these representations. The
second of these represented the view that an ordered rooted tree
can be considered as a root with zero or more ordered rooted
trees above it. Now, following Harary and Prins (1959), we may
take the same point of view with regard to rooted trees, but
with some modification. Suppose our ordered rooted tree has k
subtrees above the root, then the combinations of subtrees may
be taken from the full set of { ij(x)]ho, In the case of rooted
trees, some of these combinations will be equivalent, since
Certain permutations ot this set of k subtrees will not change

the tree. (The selection must also be made from the set

48
{ T(x))t anyway) o . Thus we must take 1into account the
permutations of the subtrees which leave the +tree invariant.
Polya's theorem (1937) shows how to enumerate the ineguivalent
nembers of this set. Without delving too deeply into the result
discovered by Polya, we can state that if there are k subtrees
above the root, then the number of inequivalent rooted trees is

Z (P ,T(x))

where 2 1is the cycle index of the symmetric group Py of
rermutations of k objects, and where T (x) is the counting
series for rooted trees. Thus, since a rooted tree is a root

with zero or more subtrees above it, we have the relation
-]

T(X) =x > Z(PTIX))
R:o
and it can be shown that
o> o
2l2(p, T()) =exp { > TET)/r)
20 b & X}

so that we have
QO

T(x) = x exp { z;: T(x")/r }
=1
We shall discuss Polya's theorem in greater detail, with

particular reference to the counting of linear graphs, in

chapter V.

In this method of counting trees, ve decompose the tree
into subtrees of height at most one less than the height of the
original tree. This immediately suggests that there is a
connection between this counting method and the height sequence
representation. In fact Riordan (1960) used a very similar
argument to the one of Harary and Prins given above to generate

%)

the trees with n nodes and height h. Here we denote by T (x)

the generating function for rooted trees of height at most h. .

49

Riordan shows that the following equation holds:

™(x) = x exp { i 27y /e)
The generating function forigéees of height exactly h is then
given by:

™ - P
By using the work of Riordan we may construct a table of values
such as the one given below, in which we see the numbers of
trees with n nodes and height h, and use it to eliminate the

necessity for gemerating all the trees of a given size in order

to find the k-th (in the height sequence ordering)..

n 1 2 3 g 5 6 7 8
h
1 0 1 1 1 1 1 1 1
2 1 2 L 6 10 14
3 1 3 8 18 38
4 1 L) 13 36
5 1 5 19
6 1 6
7 1

We may now merely dismiss all the trees whose height is less
than the height we are interested in. For instance, suppose we
require the 76th tree in the height ordering of the trees with 8
nodes. We see that there are 53 (=1 + 14 + 38) trees of
height less than or equal to 3, and so we are now looking for
the 23rd tree (23 = 76 - 53) in the sequence of trees with 8

nodes and height 4 (of which there are 36).

Having established that the height of this tree is to be &4,

we may make some remarks about the decomposition of this tree.

50

Since, by our definition of a canonical form for a tree the
first subtree must be the tallest, we know that this subtree
must have height = 3. Let us now consider the decomposition
given by separating this subtree from the rest of the tree. (We
note in passing that this 1is the mirror image of the
decomposition we defined earlier for ordered rooted trees).
Then if this first subtree 7 has n (<) nodes, we deduce that
the residue is a tree in canonical ordering with 8 -~ n (7%) nodes
and height <= 4. Looking at the above table, we see that n (%))
can take the values 4, 5, 6 or 7 in which case the number of
possibilities for ¥, is 1, 3, 8 or 18 respectively. The number
of possibilities for the residue tree in these four cases is
respectively 4 (=1 +2+ 1), 2 (=1+ 1), 1Tand 1. This, as
expected, gives the total number of possibilities for this
decomposition as 1.4 + 3.2 + 8.1 + 18,1 = 36. Unfortunately,
however, the ordering of these trees which is implied by this
method of counting the possibilities does not correspond with
the lexicographical ordering of the height segquences. As an
example, consider the two trees shown in fig. 3. Tree (a) has
first principal subtree which has 5 nodes, in which case it is
included in the second term of the above expression, whereas
tree (b)) has 6 nodes in its first principal subtree
corresponding to the third term of the expression. We would
like therefore tree (a) to precede tree (b) . However their

corresponding height sequences are:

and

51

showing that by the natural ordering, tree (b) precedes tree

{a) .

(&) Fig. 3.)

There are however methods available to generate a complete
list of all the trees of n nodes in the height sequence
ordering. The most straightforward method is as follows:

1. the first tree is represented by a sequence of one zero
followed by n ~ 1 ones.

2, from any tree, we may generate the next tree in the
sequence by increasing the last element in the vector
by one, subject to the constraint that it wmay not
exceed its predecessor in the sequence by more than
one.

3. a check must then be made to ensure that this is a
valid rooted tree (i.e. it is in canonical form). This
is done recursively by comparing each subseguence with
other subsequences at the same level in the same
subtree.

This algorithm was programmed and it indeed generated all the
rooted trees of a given size, but still trees were being
generated and then rejected on the grounds that they were not in
Canonical form. In the case of the algorithm given above, the

number of invalid trees generated was not nearly as high as it

52

had been vwhen all ordered rooted trees were generated and
duplicates were then rejected, but a method was still sought
wvhich would generate all the rooted trees without generating
duplicates. Scoins (1968) produced a recursive algorithm to
solve this problem, which uses the implicit stack created by the
recursion to maintain back pointers to the previous subtree,
which give information about the maximum value that can be taken
by each element in the height vector. This procedure then
yenerates all the trees without duplicates. Although the height
vector representation appears to tie in closely with the
Jenerating functions which we have inspected, the relationship
will never be entirely satisfactory while the generating
functions themselves contain implicit references to the number
of nodes in the ‘tree. By this we mean that the generating
function T(x) is defined to be:
T(x) = T, x + T,x2 + Tyx3 + c.o

where the T; are the numbers of trees with i nodes. We might
hope that the relationship with the generating function methods
of counting trees would be more closely related to a
representation in which more account is taken of the number of
nodes of each subtree, such as the weight representation to be

described in the next section.

I1X.3.2 Weight Representation.

Consider again the functional equation whose solution is
the generating function T (x).
T(x) = X exp { i T(xV)/r }

vz

thus

53

log { T(x) / x 1= > T(x)/r

T4
by expanding the power series and reversing the order of

summation, we have

oo
log { T (x) /x }= 2 ~Ty log (1~ x7)
~ = o3 -T,'
=los{ I - x0) }
o9 _T'v-a
T(x) = X TT (1 - xv) M °“°“°‘?"“f"‘cf_'no(,oq(1)

Y=
This result was however known to Cayley (1889), who derived

it in a more empirical fashion. Cayley reasoned as follows:

Any tree of n nodes can be considered as a root, together
with either one tree with n -~ 1 nodes above it, or two trees,
one with p nodes, and one with n ~ 1 - p nodes above the root,
or three trees with p, ;, and n ~ 1 - p - ¢ nodes respectively
above the root, and so on. Thus:

T, = T, + 2’1.:.‘_?,171 + 'Z. TyT T + coc cvsnveccoons (2)

0‘_1' A

Now each term in 2 Ty T, must have p >= g, and furthermore, if
’%t Wy
P =4q (i.e. only if n - 1 is even) we have the term Tb (TP + 1N

/ 2 instead of TPZQ These restrictions are to avoid getting the
same tree twice, but on one occasion with its branches reversed.
Similarly the terms :E:T*TWT, must have p >= q >= r, and if p

P-v tqv L2 T

= g #ror p# g r we have Tb(Th +.1)/2 T, or Tf Tq (Tq +

/2. Also, if p = 3 = r, then the appropriate term is Ty (Ty
1) TP + 2) / 6. Similar restrictions must be placed on
the +terms containg four or more factors, where if there are k
terms alike, the term T;Lmust be replaced by the number of
k-combinations with repetition. Cayley shows that this method
of counting trees leads directly to the generating function

which satisfies eguation (7).

54

Examination of this generating function suggests that
rartitions are connected with this method of counting trees, and
indeed, each term in the equation (2) may be regarded as being
derived from a partition of n - 1, and thus we can consider the
possibility of ordering the trees according to an ordering of
the partitions of n - 1. Clearly, if the i-th part of a
rarticular partition is p;, then the ordering of subtrees within

a tree is tied to the ordering of the parts p;.

To illustrate Cayley's method of counting trees, suppose we
know the values of T, for n = 1,.5.,6:
T.=1,T=1,T‘=20T“=Q,T{=95T‘=203

b S

we may find the value of T, by writing down all the partitions

of 6:
117111 1 %1 T, (T, +1) (T, +2) (T, +3) (T, +4) (T, +5) = 1
21111 T”‘-l‘.T, (T, +1) (T, +2) (T, +3) = 1
2211 iL‘.T* (T, +1) zll,T‘ (T, +1) = 1
222 31!'13 (T, +1) (T, +2) = 1
3111 T, 3_""1‘ (T, +1) (T, +2) = 2
321 T, T, T, = 2
33 ngx(T1*1) = 3
411 T, LT, (T +1) = 4
4 2 T, Ta = 4
51 T, T, = 9
6 T, = 20
48

Hence T, = 48.

55

We may now use this method of counting trees as the basis
for an ordering of all the trees of n nodes. Let us denote the
set of rooted +trees with n nodes by set(T,). The braces
underneath the sets indicate that the trees included in any
brace correspond to a single part of the partition.

Set (T,) = { o 1}

T, —> partitions of 1 ~-> 1
Hence set (T,) = { I }

4 ~> partitions of 2 -> 1 1
2

set('r,){v }}
]

T, => 11

21

set(TH)={\V Y‘}
A

set (Ty) {v

\}/‘H\{ —

Te => 11111

2111
221

56

Wf V’YG %/ ?\Z/I

TBe trees of 7 nodes and more are ordered similarly.

However it is instructive to see how the partition 3 3 of 6 is
dealt with. The contribution T,T; to the sum T, is in fact
%T‘(I,+1) and not TZ.. Similarly, the corresponding operation in

the tree ordering givesn

if T ->{v

o W

i.e. we have and we ensure that 1'>—‘TL“‘ This extends
naturally to the cases where there are k equal parts in any

partition.

Using the Cayley ordering for the trees with n nodes, we
are able to associate with each number in the set { 1,...,T,, } a
unigque tree, and this tree may be found without reference to the
other trees in the set, but only to the numbers T ,...,T,. We
do however require an ordering of the partitioms of 2,....n, and
also an ordering of the combinations with repetition for many of
these numbers. If all these numbers are available then we can

find the k-th tree in this ordering, whenever 1 <= k <= T,.

57

Define a tree to be of type P, where P is the partition of
the number n - 1, p, ,Pyroc-sPrs, When the tree is of the forn
shown in fig. 4. 1In the figure, the tree %, contains p; nodes,

ter i = 1,...,r.

Now the number of trees of type P may be calculated. Let
this number be T(P). Thus, jiven an ordering for all partitions
of n ~ 1, and a number k, the type of the tree number k in the
set of all trees of n nodes may be found. This is done by
Subtracting T (P) from k for each P in order, until the value of
k becomes negative. When this happens, we deduce that the k-th
tree is of type P' where
pv is the current
rartition in the
ordering. Let k'Y be the
last positive value of k
in the subtraction

process. Then the k-th

tree in the set of n
node trees is the k'—th

tree of type Pv. Fiq._4.

Now to find the k'-th tree of type P', assume that P' is
the partition (PYsPYseco,pl). If we take the case when all the
Py are distinct, we allow the last value in this 1list to vary
most gquickly. In other words, we take the first tree in each of
the sets of trees with p¥ nodes for i = 1,...,r~1, and take each
tree with p} nodes in turn, and when all these trees have been

counted, ve take the second tree with pY%_, nodes and again take

58

all the trees with pl nodes. 1If some of the p% are equal, we
are concerned with ordering the set of combinations with
repetition. The obvious ordering for these 1is simply as

follows:

Suppose we require k-combinations with repetition of the
elements 1,...,n. Then these combinations are to be ordered by
taking the first element as 1 up to n in order, and for each
value of the first element (let it be i), we take the
(k-1)-combinations of the elements 1,...,i. We shall give two

examples of the way a particular tree can be found.

Let us first attempt to find the 27th tree with 8 nodes.
By generating the partitions of 7 and counting the numbers of

trees for each partition we have:

T1T1T11 11 1 .tree
211111 1 tree
22111 1 tree
2221 1 tree
31111 2 trees
3 2.1 1 2 trees
322 2 trees
3 31 3 trees
§ 1 1 1 4 trees
4 2 1 4 trees
4 3 8 trees

As these partitions are generated, the corresponding number of
trees are subtracted from the value 27, and before the 1last

partition (4 3) is generated, the value has been reduced to 6,

59

and thus would go negative on subtraction of the number (8)y of
trees with +this partition. Hence, we now are looking for the
6th tree with partition 4 3. Already part of the weight vector
for the resulting tree can be set up:

W= (B4, 30
where the dashes represent values which have yet +to be
determined. Let the trees with 4 nodes be denoted by the
numbers 1,2,3,4, and the trees with 3 nodes be denoted by the
letters a,b, then the combinations which we can have are (in
order) 1ta, 1b, 2a, 2b, 3a, 3b, d4a, 4b. Now the 6th tree in this
sequence is the tree denoted by 3b, i.e. the 3rd tree in the set
of trees with 4 nodes, and the second tree with 3 nodes. 1In the
same way as before, we may find the find the 3rd tree with 4
nodes by enumerating the partitions of 3:

11 1 tree

21 1 tree

3 2 trees
The third tree in this sequence is then the first tree with
rartition 3, which itself corresponds to the first partition ofv
2, i.e. 1 1. oOur weight vector now becomes:

¥ = (81'u030101r31,—n")

To fill in the last two dashes in this vector, we now
inspect the second tree with 3 nodes, i.e. the tree b above.
This corresponds to the second tree partition of 2 (since the
tirst partition of 2 represents only one tree), and this in turn
makes reference to the first partition of 1. Thus, the weight
vector has the final form:

¥ = (8,4,3,1.1,3,2,1).

60

The other example to be considered is to find a tree from a
larger set of trees. Let us consider the determination of the
121st tree in the set of tree with 12 nodes. By the same
counting process of partitions as before, it is found that the
121st tree with 12 nodes is the 16th tree with partition 4 4 3,
The set of trees with this partition consists of 20 trees, and
we again denote the +trees of 4 nodes by 1,2,3 and 4, and the
trees of 3 nodes by a and b. The 2-combinations of 1,2,3,4, in
order, are:

11, 21, 22,31, 32, 33, 41, 42, 4 3, 414,

But each of these combinations has to be used in conjunction
with the two trees a and b. The final result of picking out the
16th tree in this set gives that the regquired tree is made up of
the trees #4 2 b, i.e. the fourth tree with 4 nodes, the second
tree with four nodes and the second tree with 3 nodes. This
gives rise to the weight vector:
= (12,4,3,2,1,4,2,1,1,3:2,1)-
The two trees generated by this method in the two examples given

are shown in fig. 5.

Fig. 5.

The weight vector referred to here is of course the

61

weight representation which has already been described in
chapter II. Although the weight representation is the most
natural to use when discussing Cayley's ordering of trees, this
ordering unfortunately does not quite correspond exactly with
the 1lexicographical ordering of the weight vectors. This is
because we have considered Cayley's ordering as fixing a
rartition at level 1 of the tree and allowing the partitions at
level 2 to vary through all their possible values. However, by
the strict lexicographical ordering of the weight vectors a
partition at level 2 may have to be fixed while the later parts
of the first 1level partition may have to be changed. We
ililustrate this with an example. Consider the two trees shown

in fig. 6.

)
()

Tree (a) clearly comes before tree (b) in the ordering by weight
vectors, since their respective weight representations are:

(a) 7411121
and:

{b) 7421111
but the first level partition for tree (a) is 4 2 while that for
tree (b) 4dis U4 1 1. The weight representation ordering can of

course be modified by making the comparison of elements of the

62

weight vectors in a slightly different order. For instance, if

we compare the weight vectors of the two trees in fig. 6. ., in a
. . (o (b
term by term fashion, we find that v, < u)’and hence we deduce

that tree (a) comes before (b) in the ordering. If however we

(b) [«

" (@ .
first compare LI and then w,, W _

and on finding both of

) [

the i 1 h © = =
-hese pairs equal we then compare w, , = W = W,

with w‘:) we find
that tree (b) is now less than tree (a). The full algorithm for
scanning the weight vector in this order is:

1. compare the first element of each vector, and if these
are different, the result of the comparison between the
twvo trees is the result of this comparison; otherwise,

2. Set i = 2, and k = w

) N
3. Compare ;? and w?’and if these differ then the result

1 °

is the result of this comparison; otherwise,

. R (G5
4. Set i =1 #+ Wooo

If i <= k then return to step 3;

(o)
5. Set i = smallest value such that w: has not yet been

(o)

considered and set k = w._, ; if there is such an i,

-e

return to step 3; otherwise the algorithm terminates

with the result that the two trees are equal.
Using this alqgorithm, the trees to be compared are examined in
the same way as they are generated in the Cayley ordering, by
looking at the whole partition at one 1level before moving
turther up in the tree structure. The same result could be
achieved by defining the weight vector in such a way that the
nodes are labelled in a different order, viz. by labelling all
the nodes at one level of the tree before labelling the nodes at

any higher 1level. If the weight vector were defined in this

63

way, the lexicographic ordering of the weight vectors woulad
correspond exactly with the Cayley ordering of the trees. The
use of the word 1level is quite consistent since the nodes
corresponding to values within a single partition all have the

same height value.

III.4 Free Trees.

In the two previous sections, we have been able +to order
the correséonding types of tree according to some representation
both of the trees themselves, and of the numbers fL and T,. The
reason why this was possible was that we were able to express
the numbers TL‘and T, in terms of a sum df products of earlier
numbers in the same sequence. That is, we have been able to
show that trees of n nodes could be described in terms of tree
with n - 1 or less nodes. In the following discussion, we have
to modify our method slightly since we have to take account of
subtraction operations which appear in the counting formulae for

free trees.

IIX.4.1 Weight Representation.

The most easily described formula for the generating
tunction for free trees is due to Otter (1948) and is also
referred to by Riordan (7958). If

t(x) = t, x + t,x2 + tyx3 + T x* + .o
vhere t: is the number of free trees with i nodes, then it can
be shown that t (x) satisfies the equation

t(x) = T(x) - i{ T2 (x) - T(x2) }

64

Riordan, in his description of the derivation of this equation,

defines +the centroid of a tree, and this is the same as the

centre of numbe

L]

as defined by Cayley (1889).

Given a free tree, at any point in the +tree we have a
number of 1lines incident to it. Each such line determines a
subtree of the tree, and the number of nodes in each of these
subtrees 1is known as the weight of that subtree. Let the
weights of the subtrees at some node x be a, b, ¢, etc. where a
> b > ¢ > .,. Then a + b+ c + .., = n - 1 where the +tree
contains n nodes. Now if a >-§n, the subtree which corresponds
to the weight a (let us call it B(a)) is said to be predominant.

If a = %n (vhich implies that n is even), then B(a) is said to

be merely dominant, and if a < {n then all the subtrees Bl(a),
B(b), B(c), -.. are said to be subequal.

Theoren,

Given any tree with n nodes, if n is odd then there is one
and only one node for which the subtrees are subequal. If n is
even, then either there is one and only one node for which the
subtrees are subegjual, or else there is no such point, but there
are two adjacent points both of which have a merely dominant

subtree, and all the other nodes have a predominant subtree.

Proof: (cayley)

Clearly, if n is odd +there can be no merely dominant
subtree, since this implies that a = %n for some node, but a

must be an integer. Thus it remains to show that there is one

65

and only one node with all its subtrees subequal.

Starting at any node, the values a, b, ¢, ... may be

calculated for that node. If a < %n, then we have a centre of
number (at least one). Otherwise, move to the adjacent point
in the subtree B(a)- For this node we may now calculate the

quantities a¥, b', ¢, ... and one of these guantities is equal
to 1 +Db +c+ ... Thus a¥ <= a - 1., So we can move about the
tree, each time moving into the predominant subtree, until we
reach a point for which the subtrees are subequal. We now have
to show that there is only one such node. Suppose there are two
such nodes X, and x,. Then x, has subtrees B(a,), B(b,), Blc,),
«.. and x, has subtrees B(a,), B(b,). B(C3)s <cc Now a, < in,
and therefore b, + ¢, + ... > in-1. Now the node x, must be in

one of these subtrees, and hence a, cannot be less than 1 + b, +

€, * .o > Iln, contradicting the assumption that all the
Y

subtrees at x, are subequal. Thus, for n odd, there exists a

unigue point whose subtrees are subequal

For the case where n is even, the argument proceeds exactly
as before, except that there may be a situation when a = in, for
some node. Carry out the process as described above, until a
roint is found whose subtrees are subequal. If, however, a node
is found such that a = %n (and b + ¢ + ... =1in - 1) we now
rroceed to the adjacent point in the subtree B{a). Now we find
a‘, b*, c¥, ... where a¥ = 1 + b + ¢ + ... = %n” i.e. we have
found a pair of adjacent nodes both having merely dominant
subtrees. The proof that these are the only such points

proceeds as before. Q.E.D.

66

Cayley defines the point with all its subtrees subegual to
be the centre of number, or in the case where there are +two
adjacent nodes with merely dominant subtrees these two nodes

together with the line joining them are defined as the bi-centre

io
iHh
i:’

umber. These two nodes are sometimes referred to separately
as the half-centres of number of the tree. Riordan (1966) uses
the terms centroid and bi-centroid for the centre and bi-centre

of number respectively.

In attempting to generate all free trees, we may generate
all rooted trees and reject all those for which the root does
not coincide with the centroid, or with one of the half-centres
of number. In this latter case, we are faced with the problem
of deciding which of the two ways in which a free +tree may be
represented as a rooted tree we should reject. However, by the
theorem, we know that there can be no such trouble as 1long as

the tree has an odd number of nodes.

Returning to Otter’s formula for the number of free trees,
we can expand the formula to obtain an explicit expression for

the number t,, the number of free trees with n nodes.

ta=Ta - { 2. T, - T} /2 (To,= 0 if n is
P%!ﬂ
odd)
= T, - ZTPT‘L if n is odd
r>4
or me Fmm - tmme im,
=T - T T - T T.,-1) if n is even.
P4

This method of counting trees is based on the definition of the
centroid (or centre of number). Suppose now that each tree is

to be considered as two parts, the left-most subtree above the

67

root, and the remainder of the tree, as shown in fig. 7.
Assume that the tree is in canonical form for rooted trees as
¢efined by the Cayley ordering. Then if the number of nodes in
the left-most subtree is

r, and p < n/2, then the

~
Lo
root of the tree is the
centroid. {This follows
Yy
from the definition of
centroid). Now consider
the case when n is odd. Fig. 7.

Then if p is the number of nodes in the left subtree, the
remainder of the tree contains g (= n -~ p) nodes., K Now for the
root of this tree to be the centroid we must have p < n/2 and g
> n/2, i.e. p + ¢ = n and p < g. Henmce if p > g this tree is
excluded from the list of free trees, and so the term -EE?rTW
appears in the counting expression for t,. 1In the case where n
is even a further term comes in to the reckoning. In this case
it is possible for p to be equal to n/2. For this value of p,
the tree has no centroid, but it has a bi-centroid, and a
correction term is required in the expression for t, to ensure
that the same free tree does not get counted twice - when the
root is at each end of the bi-centroid. As we saw when
examining the counting methods for rooted trees, if two parts of
the tree vere of equal weight, the corresponding term in the
counting expression was }T, (Ta,+ 1) and not Tﬁf‘ So in this
case, all the trees which decompose into subtrees such that p =
qQ = n/2 are a set of T2 trees, of which only tfkghu" 1) are

required, i.e. from the set of all T, rooted trees with n nodes

68

we must omit {in addition to those for which p > n/2) {T*(TP -
1Y of the trees where p = n/2. This then accounts for the

appearance of this term in the expression for t, when n is even.

This study of the counting expressions for the t, leads
directly on to a method of generating the free trees with n
nodes in order. If n is odd, we generate all the free trees
trom the set of rooted trees without having to reject any, in
the case where n is even, some of the generated trees will have
to be rejected, but this is only for the trees which have a
bi-centroid, and there is reason to believe that the set of
trees with bi~centroids is relatively small, and less than half
of these have to be discarded. In n is odd then, we know fronm
Cayley®s theorem that each tree has a centroid. Hence the free
trees may be represented by those partitions of n-1 for which
the largest part p, < %no Thus, if only these partitions are
Jenerated, we generate only the free trees. 1In the case where n
is even, ve may again generate the partitions for which p, <
n/2, but we must now go on to look at the partitions which give
i = n/2, and be must be somewhat more careful when 1looking at
the trees to which they correspond. These are the trees with
bi--centroids, and here they must all be generated and any
duplicates must be rejected. Cayley also gives the numbers of
trees with bi-centroids and centroids and from this set of
numbers we see that the set of trees possessing a bi--centroid is
relatively small. (These numbers will be given later in the
Appendix). A second reason why it is relatively inexpensive to
discard some of the trees with bi-centroids is that the method

of deciding whether to throw a tree away is trivial.

69

If a tree has been generated for which p, = n/2, we know

that

k

Z P; = n/2 - 1

‘=3
since this tree is represented by a partition of n - 1. Now the
second level partition in the first subtree may be compared very
easily with the remainder of the whole tree.. Again we
arbitrarily decide that if we have a tree with a bi-centroid we
reject this tree if the first subtree is less (in the sense of

our ordering) than the remainder of the tree.

Two examples will again help to clarify the points made

here.

By 1looking at the sequence of trees of 7 nodes in the
Cayley ordering, we are interested in the +trees whose weight
vector w has the value 3 or less for w,, and we see that there
are 11 of them, exactly the same number as the number of free
trees of 7 nodes. Explicitly these trees are:

71111711

721111711

70

These trees are drawn out in fig. 8.

| 1
w@%@ D Byt ii

We «can also see the relationship between the other trees in the

set of rooted trees with 7 nodes, and the terms in the
expression for tg.
tg =Ty - T, T,~ TgT,~ T, T,
= 48 - 20 x1 -9 x1 -4 x 2 =11
and we can see in the full set of rooted trees the trees whose

first level has p, = 6, 5 and 4 respectively.

The other example illustrates what happens in the case when
the trees have bi-centroids. Here we take the trees with 8
nodes. The trees for which the first level partition has
largest part p equal to 3 are generated as in the previous
example, but we need to look more closely at those trees with

the value 4 as the second element of the weight vectors.

The total number of such trees is 16 = (4)2 = T2, and they

are:

71

8432131 128&

84 321321 *
Of these, those which are marked with an asterisk have the two
parts to be compared equal to each other, and thus they must be
included in the set of free trees. Those that are marked with
an ampersand are those whose first subtree and remainder parts
%, and €, respectively are related by %, ®»* X, . These also have
to be included in the set of free trees. It will be seen that
each tree in the set of those marked with an ampersand has a

dual in the set of those unmarked. Fig.. 9. shows these trees.

72

IIT.4.2 Height Representation.

There is another special point in a free tree which can be
identified. This point is the centre of the tree. From each
node in the tree, there is one and only one path to every other
roint in the tree (by the definition of a tree). Let the
distance between any two nodes be the length of the path joining
those two nodes. The diameter of a tree is defined to be the
yreatest distance between any two nodes in the tree. If the
diameter is even, then there is a node at the mid-point of the
diameter, and this point is called the centre of the tree. If
the diameter of the tree is odd, then there is a middle line in
the path, and this 1line together with its two end-points is

called the bi-centre.

Suppose there are two centres, i.e. there are two distinct
paths each egqual in length to the diameter which have distinct
mid-points x, and x,. Let y, and y, each be an extremity of the
path with mid-points x, and x, respectively, such that the
diameters do not intersect between x, and y, or between x, and
Ya, and let the 1length of each diameter be 2r. Then the
distance from x, to y,, and from x, to v, is r in each case.
But since the tree is connected and x, and =x, are distinct,

there =must be a path of length d (> 0) from x, to x,, and hence

73

the path from y, to y, must pass through x, and «x and its

LS
length 1is equal tor + d + r > 2r, contradicting the statement

that the original ‘*diameters' were of maximum length.

The proof for the uniqueness of the bi-centre is almost

identical.

Q.E.D.

One algorithm for finding the centres or bi-centre of a
tree is to remove all the terminal nodes and the lines to which
they are joined to give a reduced tree. This “stripping?
process may now be repeated on the reduced tree, and so on,
until either one or two nodes remain. In these cases we have
found the centre or bi-centre of the tree respectively. It is
Clear that this alqgorithm will terminate with the correct result
since each iteration removes one line from each end of every
diameter, and that the definition of diameter implies that this
process will take at least as many iterations to remove all the
lines from a diameter as are required to remove all the 1lines
from any other path in the tree. Since a line is removed from
each end of a diameter, the algorithm terminates when the middle

of the diameter is reached.

It is possible to determine whether the root of a rooted
tree coincides with its centre, or with one end of the
bi-centre. This operation again becomes trivial if the tree is
held in its height representation. If, however, free trees are
being generated by finding such trees in the set of rooted
trees, some care must again be taken to ensure that duplicates

are not accepted due to the root being at one end of the

L]

bi~centre. In the canonical form of a tree according to the
height representation, the principal subtrees planted at the
rtoot are ordered by their height. Thus the first two subtrees
are the highest. If in any rooted tree the height of the first
two subtrees are egualy then the root of this tree is at its
centre. If the height of the first two subtrees differ by one
{i.e. the first subtree has height one greater than the second
subtree) then the root is at one end of the bi-centre of the
tree, Let us assume that the tree has the form shown in fig.
10. In this case the root is at one end of the bi-centre, and
we know that the height of the first subtree is one greater than
the height of the second subtree, i.e. h(%) = h(%), where h(7)
is the maximum height of the tree®¥. FKNow if ¥_ = <, then the
same free tree rooted at the other end of its bi-centre would be
identical as a rooted tree. However, if T.# ¥Tp, then rooting
the tree at the opposite end of its bi-centre would give two
distinct rooted trees. Thus, precautions must be taken to
ensure that when a tree
is found whose root is
coincident with one end
of the bi-centre, a
rrevious tree 1is not
being duplicated. This

can be prevented by

checking that Y, >=7 .

Thus, as in the case of the centroid, it is very easy to
decide whether a given rooted tree is also a valid

representation of a free tree, provided that the appropriate

75

representation of the rooted tree is being used.

We are not aware of the existence of any counting methods
for trees with centres and bi--centres analogous to Cayley's work
on the counting of trees with centroids and bi-centroids, but by
observation it appears that the number of trees with bi-centres
is in general much greater than the number of trees with
bi-centroids for free trees with a given number of nodes. This
is obviously true for trees with an odd number of nodes since we
have already seen that there are no trees with bi-centroids,
whereas we <can always
construct at 1least one
tree with a bi-centre
the tree where the

longest path is 3, and

all the nodes are joined © —0
to the same node x .

except one, which is at

a distance 2 from x,

such as for example the

tree in fig. 11. Fig. 11.

We may count the trees which possess a bi-centre by

considering such trees in the following:

Let the tree be decomposable into two trees 7%, and 7Y, as
illustrated in fig. 12. It has already been pointed out that
h (%) = h(%). and that ¢ ,*e¥. Now consider the tree shown in

tig. 12. This tree has

76

one more node than the
tree shown in fig. 10.,
but we may still impose
the same conditions on Y. g1
the two component trees
T and 7% . Thus, these
trees may be counted

using the formula:

XZ T T Fig._ 12. .

k‘o 0 'V\

Where T, 1s taken to mean the number of trees with n nodes and
height k. Clearly, the only tree with height 0 is the trivial
tree with one node, and so T,, = 0 for all n > 1. Similarly
there are no trees for which h > n-1, and so T,,, = 0 for h>= n.
This formula is not entirely satisfactory, since the condition
that the left subtree of the root must be greater than the right
subtree should strictly refer to the height representation
ordering, whereas the i > j which appears in the inner summation
actually refers to the number of nodes in the two subtrees.
However, this formula does give us the number of trees with n

nodes which possess a bi--centre.

We made reference earlier to the fact that the number of
trees with a bi-centroid was given by the formula:

{ ']‘,‘,‘(T..,‘_** N

and so we are able to draw up the following table:

77

n) 6 8 10 12 14 i6

no. of trees |1 3 11 51 274 1541 9497

with bi-centre

no. of trees |1 3 10 45 210 1176 3670

with a bimcenFroid

From this we see that for n >= 8 the number of trees with a
bi-centre is greater than the number of trees with a
bi-centroid, which together with the fact that there are no
trees with an odd number of nodes which have a bi-centroid,
leads us to the conclusion that the method of generating free
trees using the weight representation is the more efficient to
use, since the number of extra comparisons required to ascertain
whether a bi-central tree has been previously generated is
Clearly greater than the number of comparisons of bi-centroidal

trees,

78

1V The Graph Isomorphism Problem.

This chapter describes the graph isomorphism problem, and
reviews some of the approaches to its solution. The main
approach which was taken in this work turned out to be very
similar to the work of Corneil, and consequently many of the
results quoted here are to be found in Corneil (1968) and

Corneil and Gotlieb (1970).

The main problem in finding whether two graphs are
isomorphic is concerned with distinguishing between nodes of an
unlabelled graph which appear to be similar, or to establish

that the two nodes are in fact completely indistinguishable.

Given two graphs G and G', with sets of nodes V and V'
respectively, a one-one mapping ¢ from V onto V' (i.e. & is a
bijection) is called an isomorphism if for any pair of nodes x,

and x, in 6, (%, ,x,) is a line in G if and omnly if (ex, ,¢x,) is

a

a line in G¥. If an isomorphism exists between G and G' then

the two graphs are said to be isomorphic.

IV.2 Onger's And Sussenquth's Methods.

Most graph isomorphism testing algorithms attempt to set up
correspondences between the nodes of the two graphs in terms of
sets. Two sets of nodes are considered to be eguivalent at some
level, and then more graph attributes are applied in an attempt

to reduce the size of the corresponding sets. A solution is

79

tound when each set contains just one node, and this corresponds
to a set containing a single node of the other graph. These
methods are described by Unger (1964) and also by Sussenguth
(1965) in which the problem is made slightly simpler by the
introduction of attributes taken from the application which is
being described by the graph, rather than using purely graph
attributes. The nodes of the graph are divided into subsets
according to some property which must be dinvariant under
isomorphism. More and more properties are then introduced to
try to reduce the size of the sets. The final objective is that
each set should contain only one node, and an isomorphism is
determined between the graphs by the set correspondences.
Because Sussenquth's method is taken from a chemical problen,

one of the properties which can be made use of is the fact that

b (=)

|
the nodes correspond to i (0) — 2(0) 3y §(e) 7(=) — 3w
Chemical elements, and "

4()
thus the nodes were <t
\ » H)

initially 1labelled (or o (W)= b ()= d () elo) 3¢ .
at least coloured). - Fig. 1. #(o)

To describe this method in greater detail, the steps will
be explained with reference to an example.,, 6 Given the two
Chemical structures shown in fig. 1., is there a mapping from
one to the other wvhich preserves adjacency? In this case, we can
see by inspection that the two graphs are in fact isomorphic,
but we will illustrate that the action of Sussenguth’s algorithm
qives an isomrphism. First of all, we know that atoms of a
certain type must be carried into atoms of the same type,

i.e. we have a partial labelling of the nodes. In fig. 1., the

80

node label is given first for each node, followed in brackets by

the chemical element which is

‘colouring' of the node.

held at the node, that is, the

Thus we have the set correspondences:

{1,6,8) <m>
{2,4} <>
{3,5} <>
{7} <-=>

fa,c,h}
{g.f}
{dre}

{b}

We know that any isomorphism carries the elements of one set

into elements of the corresponding set. We also know that since

some nodes are the endpoints of double links and some of single

links, thus making use of another

be considered as a colouring of

more correspondences:
{1,2,3,5,6,7.8} <=2
{3,4,5.7} ==>

Now combining these two groups of

{1,6,8]} <D
(2} <>
{4} <oeeD
{73 <-=>
{3,5) <>

chemical property (which may

the lines), we can set up some

fa,b,c,d,e,g,h}
{b,d,e,f}
correspondences we have:
{fa,c,h}

{al

{f}

{b}

{d,e}

Now whenever a correspondence is set up where there is only one

node in each set, we may introduce the sets of nodes which are

.oined to that node. Thus from {2} <--> {g} we have:

{1,3} <-=>
and from {4} <--> {f} we have

{3} <=

fe,h}

{e}

81

and from {7} <~--> §b} we have
f5.81 <> f{a,d}

¥e may now deduce a full set of correspondences:

{1} <--> {h} {5} <> {d}
{2} <=-> {q] {6} <> {c}
(3} <=-> fe) {7} <> {b}
{4} <> [£} {8} <--> {a}

This example shows how the algorithm operates, but the two
iraphs are particularly simple in structure and the alqgorithm is
able to form a full set of correspondences. We also notice that
these graphs are trees, and we have shown (Snow 1966) that we

are able to demonstrate isomorphisms in the general case between

trees.

In a more complicated example, particularly without the
assistance of the chemical attributes which Sussenquth employs,
there may come a time during the operation of the algorithm that
the partitioningy of the nodes 1into subsets ceases without
Setting up the correspondences between single nodes. In this
Situation we can take one of two courses of action. The first
is to find a further criterion by which the nodes may be
rartitioned into sets. The other is to try an assignment. This
is done by taking one node from each of two corresponding sets.
¥e now assume that these two nodes do correspond, i.e. that we
¢an find an isomorphism in which these two nodes are mapped onto
one another, and attempt to make the algorithm match up the rest
°f the nodes. If this succeeds, then an isomorphism has been

determined, but if it fails then this assignment is rejected,

82

and another tried. The criterion for the non-existence of an
isomorphism between the two graphs is that the cardinality of
any pair of corresponding sets is not the same, and if this
should happen, we have first to see if we have made any
assignments, and if so break them, and if no assignments have
been made, or if there are no more assignments which can be
made, we conclude that the graphs are non—isomorphic.
Sussenguth goes on to show hov the same method can be used to
Solve the subgraph isomorphism problem, i.e. to determine
whether a given graph is a subgraph of another given graph.

This problen is inherently more difficult since the
correspondences between sets are defined by set inclusion rather

than by set ejuality.

Corneil {1968) in his introductory chapter gives a
Comprehensive l1ist ot the sorts of criteria which might be
arplied to a graph to partition the nodes into sets, and which
are invariant under isomxphisnm. Thus wusing the method of
Sussenquth, we can probably show fairly quickly that two graphs
are non-isomorphic, if that is true, but we may have to apply
Dore and more criteria in order to determine an isomrphism if
one exists. 1t is felt that using the assignment technique it
could be possible to pertorm a iot of operations on a lot of

different assignments before an isomorphism is found.

IV.3 The Classification And Refinement Method.

]

Later in the same work, Corneil tries to develop a single

algorithm which when applied in a number of ways will partition

83

the nodes into sets, and seeks to prove that if this algorithnm
tails to discriminate Dbetween two nodes then these nodes are
entirely equivalent to each other. Hence if we are forming set
correspondences between nodes of two graphs, and Corneil‘'s
algorithm produces corresponding sets which have more than one
node each, then any assigynment made between elements of these
Corresponding sets auntomatically must succeed. With the aid of
@ single conjecture, Corneil is able to show that his algorithm

does in fact find what are defined as transitive subgraphs.

The approach made here is to wuse algorithms similar to
those described by Corneil, but with the objective of reducing a
single graph to a canonical form. This canonical form is
intended to be independent of the original labelling of the
Graph, and hence is invariant under isomorphism. Thus, to show
that two graphs are either isomorphic or non—-isomorphic, we
compare the canonical forms of the two graphs, and if they are
the same, then we know that the graphs are isomorphic, otherwise
they are non-isomorphic. On the other hand, Cormneil, like Unger
and Sussenguth, operates on the two graphs under test
sinmultaneously, and it at any stage they are found to have
different characteristics, the algorithm terminates immediately

with the result that the graphs are not isomorphic.

i¥.3.1 The Refinement Algorithm.

The basic technique used both by Corneil and ourselves is
similar to a node classification algorithm given by Read and

Parris (1966). This algorithm begins with the assumption that

84

the nodes of a graph can be classified in some way (we shall

return

1.

to this later). The alqorithm then proceeds:

Place all the nodes with the same classification in the
same class. Suppose this places the nodes in k
‘equivalence? classes V, tVaovoacaVy where an
Vequivalence' class 1is intended to imply that we have
so far found no labelling independent criterion by
which we can distinguish between nodes within the
class.

For each node x, form a list of numbers (a, ;a, vcccp@y},
where a; is the number of nodes in the class V; which
are ad jacent to x.

Within each <class V;, sort the nodes into order
according to their corresponding list. If for some
pair of nodes x and x¥, we have lists (@, ,8, pcc-z3,)
and (af(agynﬂC£a;)r we say that (a, .2, cc0.8y) <

® i
(al 2@,

yo(qya;) it
a; < a% for some i, and

v

a. = a% for j = T,c00,i-1c

9
J J
Now refine the classification as follows:
If two nodes vwere previously in the same class, and
have the same list, then they remain in the same class,
otherwise the nodes are put into different classes.
Repeat steps 2 to 4 until either each <class contains

exactly one node, or until an iteration of the

algorithm fails to increase the number of classes.

It is clear that the algorithm will always terminate since

either

the n nodes of the graph will be completely classified

85

into n classes, or else the classes will remain exactly the same
through a whole cycle of the algorithm. Because the sorting of
lists takes place only within classes, if two nodes are in
different classes at any time, they can never subsequently be

ylaced in the same class by the algoritham.

This procedure, however, depends on the assumption that we
are able to give an initial classification to the set of nodes.
This does not present a great deal of difficulty however, since
if we begin by placing all the nodes in the same class, during
the first iteration the nodes would become classified by their
degrees. (This is because the 1list for each node x would
consist of one element only, a,, where:

a, = the number of nodes in the set V, to which x
is joined. In this case V; is of course the set of all the

nodes in the graph, so that a, is precisely the degree of x).

Consider thé algorithme at work on the graph in fig. 2. The
initjal classification
rlaces all the nodes in
the same class Vo The
lists for each node

consist of one element

only:
1 —=> (1)
2 --> (2)
3 --> (2)
4 --> (4) Figo. 2.

5 ~=> (2)

86

6 ~-> (2)
7 —~=> (4)
8 -~> (3)
9 —-> (3)

10 ==> (2)

We may now re-classify the nodes according to these lists,

and we obtain:

class Y - {1,4,7}
class II - {8,9}
class III - {2,3,5,6,10}

The second iteration of the algorithm now refines this

Classification by the following lists:

class node list
1 1 (2,1, 1)
4 (2,0,2)
7 {2,1,1)
II 8 (1.1,
9 (1, 1. 1)
III 2 (1.0,1)
3 {(1,0,1)
5 (1,0, 1)
6 (1,0,1)
10 (0,2,0)

Re-ordering the nodes according to these lists, re-partitioning
the set, and forming the new lists, we have:
I 1 (4,1,1,1,0)
7 {(1,1,1,1,0)

1 4 (2,9,0,2,0)

87

I11 8 (1,06,1,0,1)
9 (1,0,1,0,1)
IV 2 (1,0,0,1,0)
3 (0,1,0,1,0)
S (0,1,0,1,0)
6 1,0,0,1,0)
v 10 (0,0,2,0,0)

One more iteration gives:

I 1 (1,1,1,1,0,0)
1 (1,1,1,1,0,0)
ke 4 (2,0,0,0,2,0)
III 8 1,9,1,0,0, 1)
9 (4,0,1,0,0,1)
v 2 (1,0,0,0,%,0)
6 (1,0,0,0,1,0)
v 3 (0,1,0,1,0,0)
s (0,1,0,1,0,0)
VI 10 (0,0,2,0,0,0)

Since within each class, each node has the same 1list, the
algorithm terminates. The partitioning of the nodes which has
now been formed will be known as the final partitioning..
Corneil*s term for this algorithm is the Terminal Connection
Partitioning Algorithm, and Read calls it the Refinement
Algorithm. We prefer to reserve the word "terminal" for certain
nodes in trees, and thus wvwe shall refer to the final
rartitioning, and use Read’s term of refinement algorithnm. The

rartitioning given by the algorithm in this example displays the

Symmetries in the graph which are apparent by inspection of the

88

¢graph as shown in fig. 2., that is, the graph is symmetric

about a line passing through nodes 4 and 10.

«

The graph shown in

fig. 3. demonstrates

that this algorithm does § ¢

not however classify the

nodes completely into Lh&‘_“l ¢

8 7
sets of entirely
egyuivalent nodes. Fig. 3.

The algorithm begins by placing the nodes in the same
ciass, and after one iteration, the nodes are classified by
their degrees. However the degree of each node is equal to 3,
and so the algorithm would terminate immediately after the
completion of the second iteration. It is clear that there are
differences between the nodés” since while nodes 1 and S5 have
cycles of 1length 3 passing through them, the nodes 3 and 7 do
not. Thus we can illustrate that the algorithm as it stands

cannot always distinguish between non-equivalent nodes.

IV.4 Th

,.“

Automorphism Partitioning.

We shall now introduce some more definitions which will be
required in the following discussions. A one-one mapping & from
the set V of nodes of a graph G onto itself is said to be an
automorphism if x, ,x, ¢ V and (x,,x,) is a line in G if and only
if (¢x, ,¢%,) is also a line in G, i.e. o’ is an isomorphism of G

onto jtself.. In fact, an automorphism is simply a relabelling

of the graph in such a way that the graph remains unchanged

89

under the relabelling. A transitive graph is a graph G such
that for any pair of nodes x and y in G there exists an
automorphism ¢ such that &x = y. A transitive subqraph H of a
graph G is a subgraph of G such that for any pair of nodes x and

Y in H, there exists an automorphism & of G such that ox = Y-

It is not difficult to show that all the automorphisms of a
“raph form an algebraic group, and this will be referred to as

the automorphism qroup of the graph. We may make the remark

that in a large number of cases (especially for large graphs)
the automorphism qroup will consist of the identity automorphism

only.

We know by definition that if there exists a mapping in the
automorrhism group which maps a node x onto a node y, then x and
Y are in the same transitive subgraph. We can show then that
the automorphism group divides the set of vertices of G into a
number of equivalence classes, or 1in other words, defines a
partition of the nodes of the graph into subsets. The
Partitioning induced by the automorphism group is known as the
automorphism partitioning. The objective of this section is
therefore to describe algorithms which find the automorphiém

partitioning of a graph.

Now by +the final partitioning as given by the refinement
algorithm, we might hope that the graph given in fig. 3. is a
transitive graph, but as has been explained previously, this is

unfortunately not so. In explaining why this graph 1is not

90

transitive, e.g. why the nodes 1 and 3 are different, the next
step is immediately suggested. This is the notion of the cycle

vector for each node. TFor each node x, the length of the cycles
passing through x may be calculated. Let {y;} be the set of all
nodes in the graph which are adjacent to x. We then take each
pair of nodes Yi o Y5 {i #) from this set and calculate the
length of the shortest path from y; to Y; which does not pass
through x. If this distance is p, then the length of the cycle
through x is p+2. TIf the degree of x is d(x), then there are 3

d(x) x(d (x) - 1) such pairs of nodes (y;pyj), and the same number

of distances p. The lengths of the cycles (the values p + 2)

are put into the vector ¢ = (Cy 1Cy00corCy) where k = .%d(x)
(d(x) -~ 1), and where it is arranged that c¢; <= c¢;,, for i =
T copgk-1 We must also aqree that if there are two nodes y:,

such that there is no path joining them which does not pass
through x, i.e. if x is an articulation point, then the length
of the corresponding cycle is arbitrarily large. The vector ¢
is the cycle vector for the node x. Now this vector may be used
as a further discriminator between nodes -- two nodes being in

the same class if and only if they have the same cycle vector.

The operation of finding the shortest distance between two
nodes is not a trivial one, and this must be done several times
for each node in the graph. Thus the computation involved in
finding the cycle vector for each node is guite lengthy. Having
tound this vector for each node, the classification refinement
algorithm may be used to try to re-classify the nodes into

Smaller classes.

91

A computationally more convenient method of discriminating

betveen the nodes of a reqular gyraph is to use the vertex

.uotient graph as defined by Corneil. We must however define a

,uotient graph first.

Given a graph, we may apply the node classification
algorithm until the final partitioning is found. The guotient

craph for this partitioning is then defined as:

Each class of the partitioning is represented by a node in
the quotient graph. 1In the oriqginal graph, if a node in class
1 is joined to k nodes in class j» then we have a directed arc
of weight k from node i to node j in the quotient graph. Since
nodes of the graph may be joined to other nodes in the same
Class, loops (i.e. arcs from a node to itself) are permitted to
appear in the quotient graph. We define the adjacency matrix of
a weighted directed graph to be:

A= fa;)
where ay = 0 if node i is not joined to node j, and otherwise
it is the weight of the arc which goes from i to j. Thus it is
Clear that if the classification algorithm is allowed to form
its lists in the iteration after the final classification is
found, then these lists form the rows of the adjacency. matrix

tor the quotient graph.

In the example given in fig. 2., the corresponding quotient
graph has 6 nodes, representing the classes I, If,..., VI. Node

! (node 4 in the original graph) has two connections to each of

92

the nodes I {nodes 1 and 7) and V (nodes 3 and §). Thus the
.uotient graph has a directed line of weight 2 from ITto I and
from ITto V. 1If we represent the weight of an arc in a
particular direction by that number of arrow-heads on the line
in that direction, the lines starting at node II are shown in
fig. 4. The process may then be continued to find the complete

quotient graph, and this is shown in fig. 5.

Fig. 4. Fig. 5.

Since we have assumed that the quotient graph is formed from the
tinal partitioning, we know that the lists corresponding to each
node in any class are the same, and also we know that these
lists are of 1length k, where k is the number of classes, and
thus we may take the lists as the rows of a square matrix, and
this matrix can be seen to be the adjacency matrix for the
quotient graph. In the example given above, we obtain the

matrixs

93

4 14 1 1 0 0)

L o © 0 2 0
1 o 1 0 g |
1 0 0 0 1 O

0 1+ o 1 0 O

0 0 2 0 O &

For any node x of a graph, the nodes of the graph may be
partitioned into two classes, {x} and V - {x}, where V is the
set of nodes in the graph. The final connection partitioning
algorithm may now be applied to this partitioning, and the final
rartitioning vhich the algorithm gives is called the final
vertex partitioning of the graph with respect to the node x.
The final vertex partitioninj with respect to x may now be used

to determine the vertex quotient graph with respect to x.

We will now illustrate the formation of the vertex quotient
qraph for the node 1 of the graph shown in fig. 3. It will be
Tecalled that this graph is regular of degree 3, and that the
Connection partitioning algorithm was unable to‘revclassify the
nodes because of its reqgularity. We now show the formation of
the vertex yuotient graph for node 1 of this graph, and quote

the corresponding results for the other nodes.

The initial partitioning into classes {x} and V - {x}
jives:-
I ‘ 1}
11 : f2.3,4,5,6,7,8}

First iteration gives:

I 1 {0, 3

I

Second iteration:
I

II

IIY

Third iteration:
I

II

IIT

Iv

Fourth apd final iteration:

I

11

7

1

2

(1.2)
0.3)
{0,3)
(1,2)
(0,3)
(0, 3)

(1,2)

(0,3,0)
(1,1, 1)
(1:.0,2)
(1,1, 1)
(0,1,2)
(0,1,2)
(0,1,2)

(0011’2)

(0,2,1.0)
{(1,1,0,M)
(1,1,0,1)
(1,0.,0,2)
(0,1,0,2)
(0,0,1,2)
(0,0,1,2)
(0,1,0,2)

(0,2,1,0,0)

(101000100)

94

95

8 (1,1,0,1,0)
11T 5 (1,0,0,0,2)
v 3 (0,1,0,1,1)

7 (0,1,0,1,1)
v 4 (0,0,1,1, 1)

6 (0,0,1,1,1)

This is the final vertex partitioning with respect to the node
1, and the corresponding vertex quotient graph is shown in
tig. 6., for which the adijacency matrix is:

fo 2 1 0 0
1 1 0 1 0
1 0 0 0 2

0 1 0o 1 1

0 0 1 1 1j

This graph turns -out to be the vertex guotient graph of
node 5 as well as for node 1. By applying the vertex
partitioning algorithm to each node in turn we discover that the
vertex gquotient graph for the nodes 3 and 7 is as shown in
fig. 7., and the graph for nodes 2, 4, 6 and 8 is as shown in

fiqg. 8.

T

96

Fig. 8.

The adjacency matrices for these two graphs are respectively:
o 1 2 0 O
1 0 0 2 0
1 0 0 1 1

o 1 1 0 1

W0 0 1 1 1
and:

?o 0\

oy
-
-
o
(=]
c

o o 0o 1 0 1 0 1

\ 0 0 0 0 1 1 1 0/

In the case of the last four nodes, the number of classes
in the final partitioning is equal to the number of nodes in the
original graph, and the resultant vertex guotient graph is

Simply a permutation of the nodes of the original graph-.

A further interpretation of the vertex quotient graph is

the consideration that if two nodes are mapped into the sanme
i

97

node of the vertex quotient graph with respect to some node x,
then these two nodes are not only symmetric with respect to the
whole graph, but also are symmetric with respect to the node x

within the graph.

We may now make use of the vertex quotient graphs to impose
a further partitioning on the nodes of the original graph. Thus
two nodes are put into the same class if and only if they give
rise to the same vertex gquotient graph. 1In effect, we are
‘colouring' the nodes according to their vertex quotient graphs.
We may compare the adijacency matrices of any two such vertex
Cuotient graphs on an element by element basis, comparing the
members of the first row before proceeding to compare elements
in the second row, and so on, until the two matrices differ, and
the result of the element by element comparison is then taken as

being the result of the comparison of the matrices.

Returning to the example, we may now partition the nodes of

the graph as:

I - {1,5}
II - {3,7}
I1I . {2,4,6,8}

A further attempt is made to refine this classification, which

in this case has no further effect on the partitioning.

We now consider the construction of the cycle vector for
the nodes of the same graph. For the node 1, the possible pairs
of nodes from the set of nodes adjacent to node 1 are:

(2.8), (2,5) and (5,8)

We then remove node 1 from the graph and look for the shortest

98

distance between each pair of nodes in the reduced graph.

Clearly these distances are:

d(2,8) = 1
d{2,5) = 3
a(5,8) = 3
and so the cycle vector for the node 1 is (3,5,5)« The cycle

vector for node 5 4is also (3,5,5) and the nodes 3 and 7 have
cycle vector (4,4,5). The cycle vector for the remaining nodes,
2, 4, 6 and 8 is (3,4,5) . Hence, using the cycle vector as a

discriminator, we obtain the classification:

b - {2,4,6,8}
11 - {1,5}
IIT - {3,7}

We see from this that apart from the order of the classes, the
rartitioning given by the cycle vectors of the nodes is the same
as that given by the vertex quotient graphs. In all the
examples that have been considered, this has been found to be
true, although we have so far been unable to show that it is
generally true. The partitioning of the nodes by their vertex
guotient graphs is then used as the initial classification of
the nodes prior to the refinement of this classification to find

a final partitioning.

We may therefore attempt to partition the nodes of a
reqular graph using either the vertex quotient graph method or
the method of the cycle vectors. As was pointed out previcusly,
the calculation ot the cycle vector for any particular novde is a
complex procedure, especially when the shortest path between a

number of pairs of nodes is required. Thus it was decided to

99

use the method of the vertex quotient graphs as described by
Corneil, and the conjecture has been made that if the nodes of a
yraph are partitioned according to their vertex guotient graphs,
then the nodes of each class form a transitive subgraph provided
the graph does not have the property of 2-strong regularity,
where 2-strong regularity is an extension of the concept of
reqularity. Corneil shows that it is possible to extend the
notion of regularity indefinitely, and suggests that if a graph
is h-strongly regular, then an "h-th order" extension of the
vertex quotient graph can be used to distinguish between nodes
which would appear to be identical using any lower order vertex
quotient graph. At the present time the smallest known
non-transitive 2-strongly regular graph has 26 nodes.. A full
definition of a 2-stronqly regular graph is given in Appendix

11,

An extension of the final vertex partitioning for a given
node will now be considered. We assume that some partitioning
for the nodes of the graph G has already been found. For each
class defined by this partitioning, we would like to test the
corresponding subgraph for tramsitivity., In the class wunder
consideration, we select one node and set this in a class by
itself, still preserving the remaining classification. Thus if
the final partitioning has k classes, the new classification
tormed has k + 1 classes. The final partitioning algorithm may
novw be applied to this new classification to form a new final
partitioning and its associated quotient graph. This may be
thought of as the vertex quotient graph of the node singled out

with respect to the original partitioning. This process takes

100

rlace for each node in the class and this set of nodes may now

be partitioned according to the quotient graphs thus formed.

Any class which has more than one node in it should have
this test for transitivity applied to it, and if any class is
found not to be transitive the whole process must be repeated in
case the new partitioning formed by sub-dividing an intransitive
sabgraph causes a previously tested subgraph to reveal another
subgraph which is not transitive. When a pass has been made
through all the classes of the graph and no refinement of the
classification has been made, then (subject to the conjecture
Given above) we know that the classes represent transitive
subgraphs, i.e. each node in the class may be considered
entirely equivalent to each other node in the same class. This
tinal partitioning also gives rise to the final quotient graph

tor the graph G.

Throughout this discussion on the formation of gquotient
graphs, we may be sure that the labelling of the nodes of the
Luotient graph is completely independent of the labelling of the
original graph, since the order of the nodes is determined only
by the 1lexicographic ordering of certain vectors, and the
elements of these vectors are also independent of the original
labelling of the graph. Thus wvwe are quite Jjustified in
considering the identity of yuotient graphs as being synonymous

With the isomorphism of quotient graphs.

IV 4.3 The Representative And Re-ordered Graphs.

For each class which is represented by a single node of the

101

final quotient graph, every node within the class has the same
vertex quotient graph with respect to the final partitioning.
This 4is clearly true, otherwise a further refinement would be
possible. We may now present a graph, which 1is defined by

Corneil to be the representative graph Gy of the graph G.

The representative graph Gg of the graph G is defined as
the final quotient graph of G, in which each node is labelled by
the vertex quotient graph which is common to all the nodes of G
which are in the class corresponding to that node of Gy. It is
clear, but proved formally by Corneil, that if two graphs G, and
G, have representative graphs dﬁ and dy respectively, thenz

G, T g => d =cy

This implication is perhaps more useful in its negated converse

form:

6, * ¢y = ¢, ¥o6,
Thus, in the full graph isomorphism algorithm, if two graphs are
found to have different representative graphs, then they cannot
possibly be isomorphic. It follows from the conjecture made
earlier that if this conjecture is true, then the converse of
the above result alsoc holds, i.e.:

W _ W ~
Gg = Gg =» G, = G,

If this conjecture could be proved, then the graph
isomorphism problem would be solved, but since this is subject
to conjecture, a further step mnmust be taken. The final
rartitioning which is used to construct the final quotient graph
is taken and the first class which contains more than one node

is subdivided by setting one of the nodes in a class by itself.

02

It is immaterial which node is chosen for this, since they are
all considered to be equivalent. The refinement algorithm is
then applied to this mnew partitioning. it the result of
partitioning this set as much as possible is that the
classification now has n classes (where n is the number of nodes
in the original graph) then the algorithm terminates, otherwise
the first class which contains more than one node 1is again
sub-divided, and the procedure repeated. . When the
classification does finally consist of just n classes, we form a
quotient graph based on this partitioning, and we know that in
this graph, each node represents a single node of the original
graph. This graph is therefore simply a .pernutation graph of
the original graph. This graph, which is called the re-ordered
raph G, of the graph G, is clearly isomorphic to G. Thus, if
two graphs G, and G, produce the re-ordered graphs G? and df

respectively, we have:

W (2 -

6. TG, = G, £6

2

Once again, Corneil conjectures that the converse is true,

namely:

o

@

n
[

I}

Corneil uses these results to check the graphs for
isomorphism and throughout his algorithm he is able to compare
the progress of the graphs being checked, so that if at any
stage the two graphs are seen to behave differently, the
deduction can immediately be made that the two graphs are not
isomorphic. In a later piece of work, Corneil (1971) uses
essentially the same algorithm to compute the automorphism

partitioning for a graph, this time operating on only one graph

103

to find its automorphism partitioning. In this work, we require
a canonical form for the graph, and we have re-programmed the
algorithms described here, taking the conjectures on trust, and
using the permutation induced by the re- ordered graph as being
the permtutation which produces the canonical labelling for the

craph.

We conclude this chapter by demonstrating the algorithm at

work on the graph shown im fig. 3.

We have already seen that the graph is regular of degree 3.
The vertex guotient graph for each node is then computed, and
these have already been illustrated in figs., K 6, 7, and 8. We

begin then with the initial partitioning:

I - {1.5}
11 - 13,7}
IIT - {2,4,6,8}

We now illustrate how the vertex ;uotient graph is formed for
node 1 with respect to this partitioning. Firstly, the node 1

is separated from the rest of its <class, giving the

partitioning:
1 - {1}
II = {5}
IIT - {3,7}
Iv - {f2,4,6,81}

Refinement of this partitioning then gives the classification:
I - {1}
IT - {51}

IIT - 13,7}

o4

IV - {2,8}

v {u,6}
and this turns out to be the final partitioning. The
corresponding vertex quotient graph is shown in fig. 9. The

other node in the class with node 1, node 5, also has the same
vertex guotient graph. The nodes 3 and 7 have the same vertex
quotient graph as each other, and this is shown in fiq. 10. The
8 node graph in fig. 11. is the vertex quotient graph for each
of the nodes 2, 4, 6, and 8. Since none of these classes in the
original partitioning can be further refined by consideration of
these vertex gquotient graphs we conclude that the three classes
each represent a transitive subgraph. Hence, the graphs shown
in fig. 9, 10 and 11 are the labels of nodes I, II and III

respectively of the representativé graph which is shown in

fig. 12.

105

We now proceed to the formation of the re-ordered graph.
The first class which possesses more than one node is class I,
and so this class is sub-divided into the two classes {1} and

{5}. The refinement alqorithm then produces the following

partitioning:
I - {1}
IT . {5}
111 - (3,7}
IV - {2.8])
v - {4,6]

Class III now is the first class which may be sub-divided and if

this is done and the final partitioning is again found, ve have:

1 - {1}
11 - {5}
111 - {3}
v - {7}
v - {2}
VI - {8}
VII - (4}
VIIT - {6}

Now we have essentially defined a permutation of the nodes of
the original graph, and by the conjectures put forward
previously we believe that this 1labelling dis invariant under
isomorphism. . In chapter V we go on to make use of the

Ccanonical labelling defined by these techniques.

106

IV.5 Two Prodlems.

Following on from the definitions wmade in this section, a
number of interesting questions are raised. = Since it is
conjectured that two identical representative graphs imply that
the graphs they represent are isomorphic to one another, it must
certainly be possible to reconstruct the original graph (with a
possibly different labelling of the nodes) from the
representative graph. Actually, this is done when the
re-ordered graph is formed, but the refinements which take place
during the formation of this graph implicitly use the adjacency
relationships of the original graph. The question of finding an
algorithm to build a graph given only its representative graph

is then raised.

In the spirit of Ulam's conjecture (1960) that a graph G is
uniquely reconstructable from the set of n subgraphs G - {x} for
each node x in G, we pose two further problems:

(a) is it possible to reconstruct a graph G of n nodes
uniquely given only its n vertex quotient graphs, and:

(b) is it possible to reconstruct a graph G of n nodes

uniquely from its n cycle vectors. .

If we were able to prove the statement made earlier that
partitioning the nodes by cycle vector or by vertex quotient
graph gives the same partitioning, then the problems (a) and (b)
are equivalent. However, for the moment, we must leave them as

oren guestions. .

107

V.1 Introduction.

We set out in this chapter to construct a correspondence
between the set of non-isomorphic graphs of n nodes, and the
integers 1,...,9., where g, is the number of such graphs. One
method for counting the non-isomorphic graphs is using Polya's
theorem, and it was hoped that this study would lead to a method
whereby any objects which <can be enumerated by using Polya‘s
theorem may also be systematically generated using this

technique.

However we were only able to reach a partial solution to
this problem, in which, as we shall show, we are able to set up
a2 systematically ordered list of the graphs of order n, but not
the 1-1 correspondence with their counting numbers at which we
were aiming. That is, we were unable to construct a mapping
which would take a graph into its index number and vice versa.

In fact a number of different lists were formed.

V.2 Relationships Between Node Labels And Line Labels.

We now consider a graph to be a collection of n points, and
we may label them in any one of n! ways. For this set of n
roints, we have n (n-1) /2 positions where a line may be placed,
i.e. there are n(n-1) /2 possible ways of choosing two points
{an unordered pair) from a set of n. Now we may label these
line positions according to some rule (we shall discuss some

ways of labelling the line positions 1later), and clearly any

108

rermutation of the nodes gives rise to exactly one permutation
of the line positions. Thus we may define an isomorphism
between the symmetric qroup of order n (i.e. the group of all
rermutations of n objects) and a certain subgroup of the

rermutations of order n(n-1)/2.

Consider now a labelled graph. As we have already noted,
we may define a labelling of the line positions. A bitstring
may now be used to specify this labelled graph, in which a ‘one?
indicates the presence of a line in the corresponding line
position, and a 'zero' bit indicates the absence of a line. VNow
Clearly application of one of the permutations in this subgroup
of order n(n-1)/2 (which we will denote by L(P,)) will permute
the bits within the bitstring, forming a new bitstring. If one
bitstring ®« may be permuted into another bitstring p using one
of these permutations, then we say that the bitstrings & and £
are egquivalent. It is «clear that if two Dbitstrings are
eJuivalent, then the two graphs which they represent are also
isomorphic, since the permutation of the bits which carries
bitstring e into bitstringfﬁ (i.e. a permutation of the 1line
positions) is induced by a permutation of the points, and this

is precisely the definition of isomorphism between graphs.

The use of the word W"equivalent" between bitstrings is
Justified since it is easy to show that the relation
o(slg &> there exists a permutation in L (P,)
mapping « into p |
is an egquivalence relation bearing in wmind that L (B) is a

¢roup. . Thus the set of all bitstrings is partitioned by this

109

e ;uivalence relation into ejuivalence classes, each class being
a set of labelled graphs which are isomorphic to one another

when considered as unlabelled graphs.

We now describe the mappings from the point pairs to the
lines. Two such mappings were considered, and in fact it did

not seem to make much difference which one vas used.

The first mapping was simply to take the point pairs in
lexicographic order, and then number the elements of the 1list

thus obtained., Hence, for n = 4, we have:

line point--pair
1 -2

2 1 -3

3 i -4

4 2~ 3

5 2 -4

6 3 -4

This mapping has the virtue of being very simple to

implement and to understand.

Let us now consider the effect on the line positions of a
graph when the nodes are permuted by the cyclic permutation.
Under this permutation of the nodes, we discover that the 1lines
are also permuted cyclically, though not in a single cycle, but
in a number of cycles. To give an example of this, consider the
complete graph of 5 nodes shown in fig. 1. If we now 1let the
nodes 1,...,5 be permuted cyclically, we see that the pair (1,2)

is mapped into the pair (2,3), (2,3) into (3,4), and so on, and

110

also that (1,3) is mapped into (2,4) etc. 1In fact, as we would
expect, if we apply this cyclic permutation 5 times, the graph
returns to its original labelling, and in doing so the point
rairs (or lines) have jgone through a complete cycle of length 5.
However there are 10 lines, which means that the lines must be
such that they can be partitioned into two distinct sets each of

which contains 5 lines. These two sets consist of the set of
\

lines which form the /////;7R§:\\\h

reriphery of the g 2

diagram, and the set of

lines on the interior of

w

the figure. Fig. 1.

In general, for odd values of 1n, the 1lines partition
themselves into (n-1)/2 sets (or cycles) each of length n. For
even values of n, however, this does not happen, since the 1line
.0ining opposite points of the graph will, after only n/2
applications of the cyclic permutation, finds itself in its
original position (though in the reverse sense). By opposite
roints we mean points i, j such that]i-jlI = n/2, and which
therefore appear diametrically opposite one another if the graph
is drawn with the nodes numbered consecutively around the
periphery of the diagqram. The same action as for the case where
n is odd takes place for every other line of the graph.. Thus
the 1lines of a graph with an even number of nodes fall into
n/2:-1 cycles of length n and one cycle of length n/2. The
second mapping of point pairs into an index number is by this
rartitioning , and within each cycle, by the value of the first

node. Thus for n = 4 and n = 5 we have:

111

n = y n=>5

line point-pair line point-pair

1 1 -2 1 1 - 2

2 2 - 3 2 2 -3

3 4 3 3 -4

4 4 - 1 4 4 - 5

5 1 3 5 5 -1

6 2 - 4 6 1 -3

7 2 - 4

8 3 -5

9 | 4 - 1

10 5= 2

These two mappings may be described in terms of fairly
simple functions:
Mapping 1.
line(i,j) = if i>j then line(j,i)
else (i--1) (2n-t)/2 + j ~ i..
Mapping 2.

line (i, j)

if i-3j>n/2 (mod n) then line(j,i)
else (j-i-Nn + i. (mod n)
vhere in each case Yline(i,j)* is the line label for the 1line

~oining the points i and j.

In this discussion we have considered the effect of the
c¢yclic permutation of the nodes upon the lines of the complete
graph. It would, however, have been egually valid to consider a
qeneral labelled graph of n nodes, and to observe the effect on

the line positions under a cyclic permutation of the nodes.

112

¥.3 The Equivalence Graph.

The problem of finding a representative of each equivalence
class in the set of all graphs may now be couched in terms of a

yraphical model.

Consider the set of all bitstrings of length m = n(n-1)/2,
and let each such bitstring be represented by a node in the
sraph model. Then a directed line is inserted in this graph
from the node &« to the node /3 if and only if Dbitstring /@ is
obtainable from bitstring &« under the operation of permuting the
bits in & by one of the permutations in L(P,). Let us define

this graph to be the equivalence graph for the graphs of order

N,

Now since for any pair of ejuivalent bitstrings there is a
permutation mapping one into the other, the resulting
ejuivalence graph is a collection of connected components, each
of which is a complete directed graph. We may also remark that
the graph may be considered to be undirected, since whenever a
line from node & to node p exists, the inverse permutation is
represented by a line from node p to node £. If we now take omne
node only from each of these connected components, this set of
nodes will represent the set of inequivalent bitstrings, and

hence we have obtained the set of non-isomoxphic graphs.

In order to reduce the number of permutations which have to
be examined, we require a set of permutations which generate the
whole group. In terms of the ejuivalence graph model, this is

the same as removing lines from the graph but without

113

disconnecting any of the connected components. We know however,
tfrom Ledermann (1961) that the two permutations:

(23 ... n 1 and (2 1 3 4 .., n)
will generate the whole of the group of all permutations of
order n. This means that the graph does not lose any
connectivity by removing all the lines except those representing

these two permutations.

Let us now consider the action of these two permutations in
a slightly different 1ight. Suppose we have a set S of n
objects, and that the objects of S are to be permuted by the two
rermutations given, the cyclic permutation, and the
transposition of the first two elements. Now consider a graph
in which the nodes represent the n! ways of ordering the
elements of S, and in which we have two types or ‘colours' of
line. A *'blue' line from node « to node p if ordering g is
obtained from ordering & by application of the first of our two
rermutations (the cyclic permutation), and a "red® line from ¥
to S if ordering 8 is mapped into ordering § on applying the
transposing permutation. The graph thus formed 1is highly
symmetric, and it contains (n-1)! cycles of length n containing
only ‘blue' lines. These cycles are not connected to one
another, each one corresponding to n applications of the cyclic
rermutation. The graph also contains a number of cycles
Ccontaining alternately ‘red‘ and ‘blue’ lines. These cycles are
of length 2(n-1), which may be seen by considering the action of
applying the cyclic permutation followed immediately by the
transposition. This results in the first element remaining in

its original position, with all the other elements being

114

rermuted one place cyclically. Thus, n-1 such pairs of
permutations will form a N 1
AN) ’
cycle consisting of n-1% | & { TTT77"
“blue' 1lines and n-1
‘red* 1lines. Fiq. 2. ' ‘] : 3
' 3

'

i

'

shovs this graph for the)
'
1

case when n = 4. The ‘§
p .

"blue? lines in fig.

2. are shown as solid S ey

\
lines and the f‘reds ¥’ : »

lines are dotted. . Fig. 2.

The general problem of scanning all possible results of
applying any permutation to some object or set of objects is
then a problem of finding a Hamiltonian path - through a graph
such as the one in fiq. 2., It is not difficult to find a
Hamiltonian path through this graph when the graph is considered
as undirected, but we must bear in mind that although the ‘red®
lines are essentially non-—-directed, the cycles of 'blue’ lines
are directed so that the cycle is traversed in either the
ciockwise or the anti clockwise sense;, In the diagram in fig.
2., this is seen to be true except that the outside cycle is in
the opposite sense from all the other cycles. This however
appears quite consistent when we consider projecting this
diagram onto the surface of a sphere, and then observe the
diagram from outside (or inside) the sphere. The cycles then
are all in the same sense. It appears not to be possible to
traverse this diagram, taking due account of the directions on

the 1lines, so that each point is passed once and once only. It

is possible however to find a Hamiltonian cycle if we allow a

movement along a line in the 'wrong' direction just twice. This

is shown in fig. 3.

A graph such as the one in fig. 2. shows the
interconnection of the objects when subject to the permutations
which we have been considering. However, if we consider a graph
of n nodes as a bitstring as described earlier, we may apply the
permutations to this bitstring and we do not necessarily obtain
a different bitstring. Thus, for any given bitstring, we may
construct a graph such as the permutation graph shown, but in
wvhich some of the nodes coincide with each other. This is
because n! is an upper bound on the number of distinct labelled,
but isomorphic, graphs of n nodes, whereas in general there
would be less than this number. Let us show this final point
with respect to an example. Referring forward to list TII which
shows the equivalence relations between the graphs of order 4,
consider those graphs in the class containing graph 1.
Corresponding to each of these graphs is a node in the 'reduced’
equivalence graph, and from each such node there are two lines,
a ‘red’ one and a 'blue' one, and some of these lines may be
loops. . The result of this is the graph shown in fig. 4. We
also observe that a surijective mapping is defined from the set
of nodes in the permutation graph shown in fig. 2., onto the
set of nodes in the equi&alence graph shown in fig. 4., and
that this graph is one of the components of‘the whole ‘pruned®
equivalence graph. This component corresponds to the graphs of

order 4 with just one line.

- e -~ e - -

- e ey A - - - -

Thus we may consider attempting to find all the
non—-isomorphic graphs by examining the connected components of
this graph. A common method of finding the connected components
of a graph is by finding a spranning forest for the graph. If
such a spanning forest can be found, then the roots of the trees
in the forest can be taken as the representatives of the various

connnec ted components.

A method was devised to carry out essentially these
operations which discovered all the non-isomorphic graphs of n
nodes. The method involved, however, inspecting each of the 2"
possible bitstrings (where m = n{n-1)/2), but it was only
necessary to look at two permutations, and not the full
symmetric group. 1In common with a number of connected component
tinding algorithms, we begin by assuming that each node is in a
component Dby itself, and joining components together as soon as
a link is discovered between them. Let us denote the tvwo
permutations

(234 ... n1)y and (2 1 3 4 ... n)

by A and B respectively. Then we observe that permutation A

%returns any bitstring to itself after at most 1n applications.
ESililarly B can only te applied once, since two successive
%applications will clearly give the original bistring once more.
iTn terms of the graph, there are cycles of length at most n,
irepresenting successive applications of permutation A, and lines
representing the permutation B which have a line in the opposite
direction joining the same nodes, representing a second
application of the permutation B. It may be that for some
nodes, the original bitstring will re-appear after less than n
'hpplications of permutation A, in which case it is not necessary

to apply this permutation any further to this node.

The following algorithm finds the subsets of equivalent
bitstrings for a given n, and the non-equivalent bitstrings are
:ound by taking one representative of each =subset. Each
?bitstring belongs dynamically to a subset (represented by a
tree) which includes its known equivalences. The algorithm
gradually merges the subsets leaving finally a collection of
gtrees each of which represents a subset of equivalent
g&itstrings, such that two bitstrings appear in the same tree if
and only if they are equivalent. The roots of these trees nmay
then be taken as the non-equivalent bitstrings.

1. Yake each node in the equivalence graph the root of a

(trivial) spanning tree by setting below(i) = i for i

Opcoopg2™-1. Thus each bitstring is in its own subset.
2. For each node i, taken in order, which is currently the

root of a spanning tree, apply the permutation A n-1

times or until the bitstring i reappears whichever |is

sooner. For each bitstring 3 (except i) so

118

constructed, set below(j) = 1. On completion of this
step, the distinct trees include those nodes which can
ke transformed into each other using only (possibly
repeated applications of) the permutation A. €Each tree
now contains at most n nodes.

For each bitstring i in order, apply permutation B once
to ottain bitstring j. If i = j, then the permutation
E has had no effect so ignore this case. If i > j, we
may again disregarad the case, since wvwe should
previously have found j such that an application of B
gave the bitstring i. If i < j, then we have
discovered a possible link between two of the trees
established in step 2. e must first ensure, however,
that i and j are in distinct trees, and this may be
achieved by inspecting the roots of the trees
containing i and j. (The root of the tree containing
node i may be obtained by applying the function root (i)

which is defined by

root (i) = if below (i) = i then i else
root (below(i))).
If root (i) = root(j), then the nodes i and j§ are
already in the same tree, and so we disregard this case
also. TIf root(i) # root(j), then ve need to 1link
together the (distinct) trees containg i and j, ang
this may be achieved by setting belovw (root(j)) = i,
A representative of each subset of equivalent
titstrings is now found by taking the roots of the

trees we have formed, and these bitstrings represent

119

the non-isomorphic graphs of n nodes.

We observe that the action of this algorithm does not give
rise tc real spanning trees for the equivalence graph, but we
may be sure that two nodes are put into the same tree if and
only if they are in the same component of the equivalence graph.

The trees formed are "reachability trees" for the equivalence

graph.

An example will help to «clarify the action of this
algorithm. Assume that n = 4. Then the number of possible line
positiors is 6, ang there are 2% = 64 possible bitstrings. We
will denote these by the numbers 0,...,63. The twc permutations
are:

A - {2 3 4 1y
B - (213 4
“n this example we use the second mapping from points to lines
and so the permutations A ang B correspond to the permutations
(2 24165 and (15 3 6 2 4)

of the line positions respectively.

Step 2 of the algorithnm, having set all the nodes to be in
separate connected components, is to apply permutation A 3
times, Or wuntil the original bitstring re--appears. When this
operaticn is complete the nodes are grouped as shown in list 1I.
List I1 shows the 1links that are established by step 3, the
isolated nodes representing the cases where the rermutation B
had no effect, and the lines showing the cases where B applied
to i gives j and j > i. List III shows the trees as they have

been transformed by the operation of setting below (root (j)) = i,

119a

where i and j are linked in list YT and are at that moment in
different trees. We note in passing that the trees (in list I)
with rcots 3 and 17 become joined by virtue of the link 3 - 17
in list YT, and we subsequently discover that there is another
link {from 6 to 20) in list IY which would have connected these
twc trees, but by the time this link was discovered, the two
trees had already becen amalgamated. The roots of the trees in
list IYII are then taken as the bitstring representations of the
non-isomorphic graphs with % nodes, and these graphs are shown

in fig. 5.

0
2
1 4
8
6
3 12
9
5~——10
14
7 13
11
15
16=——32

/311
17&~——20

38
19 28
41
21—
uy
22 25
35
46
23 - 29
43
26—37
39
27 30 .
45
3] 47

List I

48
50
49 52
56
54
51 60
57
53«——58
62
55 61
59
63

120

2——16
317
4
5
6——20
7—21
g———32
9——33

10——u8

11——19

12——36

13———37

14——52
15—53
18
19
22
23
24 ——34
25=——35
26==—50
27~—51
28——38
29——39
30——>51

31—=55

40

41

42—-56

43——57

iy

45

4660

47——61

58

59

62

63

122

0 15———53——58
2 16—32 8
1 4 19 28
8 41
6 4y
/12 6 22<25
9 18 24 35
34 33
17 20 46 39
40 23/29 27/30
\u3 45 54
5 ———10——48 51 60
57
14
7/13 26 37 /lﬂ
50 31 462
11——19 52 \55 61
56 | \59
21—y
63
List III..
The Isomorphic Subsets of all Graphs of 4 Nodes., The trees

indicate the division of the 64 possibilities into 11 disjoint

sSubsets.

123

o o O——0 O
o] o o o o

0 1 3
O————20 OO Q=0
Lo ——

5 7 15

o]

o Lo —

19 22 23

31 63
Fig. 5. .

This algorithm represents a naive approach to the problenm
of generating all the graphs of a given number of nodes., In the
Temaining part of this chapter we attempt to improve on this
hethod. Clearly this algorithm implies the inspection of most
(if not all) of the bitstrings in the full set of 2" (where m =

n(n-1)/2). In what follows, we attempt to use certain

124

combinatorial techniques to reduce the number of bitstrings

which need to be examined.

V.4 Application Of Combinatorial Technigques. .

Harary (1955) shows the method by which we may use Polya‘'s
theorem to enumerate the equivalence classes, and hence we can
Calculate the number of non-isomorphic graphs of n nodes. We
will paraphrase the arguments used, and show how Polya's theorenm
operates in the counting of graphs. The explanation given by

Liu (1968) of Polya‘s theory of counting is used extensively.

In fact, the important part of Polya‘’s theory is the use of
Burnside’s theoream which is/%tneral result for enumerating the
number of egquivalence classes into which a given set S is
divided by a permutation group G of permutations operating on S.
To reiterate, two members « and p of a set S are said to be
ejuivalent if and only if there exists a permutation g € G such
that g(«) =-. Then Burnside’s theorem states:

Theoren,

- et

The number of equivalence classes into which S is divided

by the group G is

2 CY

G| 9¢€ 4

where Y(g) 4is the number of elements of S which are invariant
under the permutation g. 6 (i.e. the number of elements s € S

Such that g(s) = s).

125

Proof:

Denote by 1(5) the number of permutations in G which leave

the element s invariant. Then clearly

Z e = Z w9

€ S 9ed
since these are both expressions for the total number of

invariances over all permutations g and all elements s.

Now let {«d,p,...,%4} be the members of S which lie in one
equivalence class. Then for any pair of elements «, f3 (say) ,
the number of permutations carrying « into p is n) - This can
be shown by demonstrating that if g, is a permutation taking «
into P (and there must be at least one since « and F are in the
Same equivalence class), then

(a) any permutation taking « into g8 is of the form gxg;
where di is one of the permutations leaving &
invariant,

and
(b) for two distinct g;, g; which leave o invariant, g,g;

and g,gy are distinct permutations taking « intog.

Now any permutation in G must either leave o invariant, or
else it must take & into one of the other elements in the
equivalence class. Thus the permutations of G can be classified

into those that map o into itself, those that map o into P” etc. .

Since the number of permutatibns in each class is ?(a)” the
total number of permutations in G is

G = 1(¢) x no. of elements in the
eiu;volcncc class.

126

or

i) = b Gf

no. of elements in eguiv. class
and since this is independent of & , this must also be the

expression for (B o Q(X)p etc., and hence

om—

2. (9 = 16l

all § o
¢(\"us‘-l- class

Now summing both sides of this equation over all the

ejuivalence classes, we have

;gk(s) = 1G] x no. of equiv. classes
B4 q. dul
and slnc the left hand side is simply a summation over all s
S, we have

no. of equiv. classes = _‘_Zvl(s) = ‘L‘ Z}"(g)o
- Gl &

QchDo 1

We have already described the way in which the relevant
Permutation group for graphs is constructed from the symmetric
group of order n. It is convenient however to divide the set of
gdraphs with n nodes into subsets of the graphs with n nodes and
P 1lines, for p = 0,1,2,...,n(n-1)/2., Thus, for the purposes of
applying Burnside's theorem to this case we have S being the set
of bitstrings of length n(n-1)/2 which contain exactly p ‘one®

bits., 1In addition we have 1G} = ni.

Making use of the theorem of Burnside, and particularly of

the proof, we have, for any given equivalence class consisting

127

of the elements o, Bo ccon X,
) = nlp) = l§) = ... =9(K)

and since 1(() + T‘P) + oo+ n(k) = n! ve know that n! must be
divisible by y(«) . Furthermore, if we can find the permutations

which leave « invariant, and we can find one permutation mapping

o into f#. then we can find all the permutations mapping & into gt

by forming the product g,q; for each g; € H, (wvhere H is the

group of permutations leaving &« invariant). Regarding this fronm

the other point of view, we can take any graph, and provided we
can find its automorphism group, we can find all the graphs to

which it is isomorphic by taking each permutation in the set G -

H,and permuting the graph using this permutation. ‘He can then
find all the permutations which produce the same graph simply by
multiplying this permutation by all the permutations in Hg.
When this has been performed ni/q(¢) times we knowv that all the

Graphs in the egquivalence class containing the graph o have been
accounted for, and so any graph which does not belong to this

set is a new non-isomorphic graph.

V<4.1 The Sieve Alqorithm.

A full set of graphs with n nodes and p lines is obviously
obtainable by placing the p lines in all possible combinations
in the (2) line positions, and hence a complete list of all the
combinations of p objects from (;) can be taken as the set of
all graphs with n nodes and p lines.. The problem of finding the
non-isomorphic members of this set can now be tackled.. The
9eneral approach is to lay out the the combinations in a list,

and by stages to delete those which are isomorphic to a

128

combination already considered. Thus the method is similar in
broad outline to the method of finding prime numbers known as
the Sieve of Eratosthanes, in which all numbers are laid out in
a list, and as soon as a prime is discovered, the list is passed
over once deleting all those numbers which are multiples of that
prime. When this can no longer be done, all those numbers in

the list which have not been deleted are prime numbers.

We therefore present an algorithm for finding the
non-isomorphic graphs with n nodes and p lines, which will be
referred to as the Sieve algorithm.

1. Set up a bit map for the ((i))combinationso

2. Set up a bit map for the n! permutations.

3. Look for the first ‘set? bit in the map for the
combinations. If there are none, them we have found
all the graphs. Otherwise store this graph (as graph
‘o' say) and Yunset? its bit.

4. Find all the permutations under which graph « is
invariant (i.e. its automorphism group - c.f. chapter
IV) and ‘unset’ the bits in the permutation bit map
corresponding to these permutations.

5. Find the first permutation whose bit is ‘set®, If
there are none, then go to step 2, otherwise let this
permutation be q,.

6. Apply the permutation g, to the graph « and ‘unset' the
bit of the resulting graph in the graph bit map.

7. Form the permutation g,gq; for each g; ¢ H, and ‘unset!
the corresponding bits in the permutation bit map.

8. Return to step 5.

129

A few comments on the representations of the various
objects used must now be given. Since both the graphs (which
are mapped onto the combinations of p lines chosen from a set of

(:)) and the permutations are to have bit maps associated with
them, it is obviously necessary that both the combinations and
the permutations should be readily representable as integers,
and more precisely as consecutive integers. That is, for both
the combinations and the permutations, it is important that the
conversion fronm a combination or permutation to its
corresponding integer in some ordering, and vice versa, can be
achieved quickly. In the case of permutations, the most
convenient method appeared to be a slight variation of the
method of Lehmer (1964), and this method gives the permutations

in lexicographic order.

In this method, it turns out that it is more convenient to
consider the permutations of 0,1,c..,n~1 rather than of
1,2,c.,,n and that the permutations be numbered from 0 up to
n!-1 instead of 1 to n! The method itself is based on the fact
that any number in the range O0,...,n!-1 can be expressed
uniquely in the form:

a,.,(n-1)f + a_ . (n-2)! + ... + a, 1! + a0

where 0 < a. € i for each i.

.

The mapping from the integer k to the k~th permutation in
lexicographic order is then constructed by forming the a; 's for
k. From these we can construct the permutation by noticing that
the i-th position is occupied by the a;-th element of those

remaining at that stage. We can see this rather better by

130

considering an example. Suppose we wish to find the 63rd
permutation of the numbers 0,1,2,3,4, (remembering that (0 1 2 3
4) is the 0O-th). The first step is to put 63 in the form
2.8y + 2,31 ¢+ 1,21 + 1,17 + 0.0¢

l.e.. a, = 2 ay, =2a, = 1a = 1a, =0 (Notice that a, is
always zero, by the condition on the a;). The first position in
the permutation is therefore occupied by the element 2, and the
second position contains the element 2 in the set 0, 1, 3, 4
i.e. 3. Element 1 of of the set 0,1,4 occupies the next
position, and element 1 of the set 0, 4 is the next member of
the permutation. The last position is of course filled by the
only remaining element, in this case 0, and this is a reflection
of the fact that the value of a, is always zero. Thus the 63rd

rermutation of the numbers 0 to 4 is

(23140

The reverse mapping is obtained simply by reversing the
Process completely, reconstructing the a;‘’s from the permutation
and then wmultiplying out the ‘polynomial® to arrive at the

integer k.

Similarly a mapping from the set of integers 1uv°ﬂﬂ(:) to

the set of lexicographically ordered combinations of k objects

from a set of n can also be constructed.

With regard to the multiplication of the permutations, it
is clear that the most efficient method of achieving this is to
Store the multiplication table of the permutation group, but
this is obviously impractical since its space reguirement is for

(nf)2 elements. Thus the multiplication must be carried out

131

directly, but this can be done reasonably efficiently provided
the mapping from permutation to integer and vice versa is

efficient.

The remaining part of the algorithm which needs to be
described in more detail is given as step 4 - finding the group
of permutations under which the graph is invariant. We now
describe an extension of Corneil's algorithm for finding the
automorphism partitioning of a graph (Cormeil 1972) to display
the automorphism group. The algorithm for obtaining the
automorphism partitioning has already been described in the
irevious chapter, and we present here the extension required to

senerate the automorphism group.

V.B.2 The Automorphism Group.

Suppose we have a raph whose automorphism partitioning has
been found using the partitioning algorithm. Then we have the
nodes grouped together in a number of disjoint sets. These sets
were used to form the re ordered graph of the previous chapter,
by selecting one node from any set containing more than one
node, and placing this node in a class by itself. This new
jartitioning was then refined using the partitioning algorithm.
Now the conjecture is that in the automorphism partitioning, for
any pair of nodes within a class, there exists an automorphism
mapping one of these nodes into the other. Thus there are |V, |
ways of choosing an element from V;, assuming that V; is the
tirst set for which IV;1 > 1. The refinement then takes place,

having made one such choice, and the process is repeated. The

132

total number of automorphisms in the automorphism group 1is the
rroduct of the number of ways in which a choice may be made
whenever a choice is to be mnade. Hence, 1if H 1is the
automorphism group:

PHE = V01w 1V % eve . x 1V, |

where Vi is the set of nodes, which after j-1 assignments and
the corresponding refinements of the partitioning, has IV;j] > 1

rut |V ﬁ' = 1 for k < 1i.

The actual
rermutations which make

ap the automorphism & O ob

yroup can of course be
found by actually making
all the various
assignments vhich are
available at each stage,
and then carrying out

the refinement. Fig. 6.

An example will show more clearly how this method works.
Consider the gqraph of four nodes shown in fig.. 6. The
automorphism partitioning is:

I- {a,b,c,d}
Making the first assignment, we have a choice of four nodes, so
we choose one of them, say a-. After applying the final
connection partitioning algorithm, the partitioning is:

I - {a}

II - {b}

133

IIT - {c,d}

It is apparent that if we now make an assigment to resolve
the difficulty of set IXII having two nodes, we must make a
choice between these two nodes., Since (by conjecture at least)
the partitioning would have the same form whichever of the four
nodes a, b, ¢, @ were chosen for the first assignment, we know
that there would always have been a further choice between two
nodes to be made. Thus the total number of nodes in the

automorphism group is 8 (= 4 X 2).

To continue with the example, the second assignment

(together with what amounts to a trivial refinement) we have:

I - fa}
II o {b}
TiT - {c}
Iv - {d}

This 1is the result of choosing c¢ for the set III, but we
could equally well have chosen d, in which case the partitioning

which results would be:

I - {a}
I1 - {b}
11T - {a}
Iv - {c}

Thus we have formed two permutations under which the graph is

invariant and these are:
(a b c d)
a bcd

and:

(a bcd >
abdc

We may now write down the six remaining permutations which

result when the other three choices are made at the first

134

stage

together with the two choices at the second stage in each case:

Changing

G

b

C

the

¢

d
b a‘>

notation slightly,

so that the nodes a,

and d are replaced by the nodes 1, 2, 3 and U4 respectively,

denoting a

length n

permutation of n numbers 1,2,..

b, ¢C

and

.s0 by a vector of

(pl "pl.l""“ﬂph)

135

where p; is the value of the i-th element after the permutation

has been applied, we may write dowm the permutations under which

this graph is invariant as:

i

£

g

This collection

o

f

can

(1 2 4)
(1 2 4 3)
2 1 4)
(2 1 3)
(34 12
(3 4 1)
% 3 1 2)
(4 321)
permutations

easily be shown to be a

5roup with the following multiplication table:

i a b c d e f g
i i a b c¢c 4 e £ g
a a i c b e a4 g £
b b ¢ i a £ g 4 e
c c b a i g £ e d
d a4 £f e g i b a c¢
e e g d £ a ¢ i b
£ f d g e b i ¢ a
g g e £ 4 c¢c a b i

V.5 Partitions Of Graphs.

Throughout this chapter we have been concerned with making

a selection of objects (in this case graphs) from a larger set

of objects such that we have exactly one representative of each

136

ejuivalence class in the set under some definition of
equivalence. To achieve this we require that the set of objects
from which the choice is made should contain at least one member
of each eguivalence class. TIdeally, of course, the set fronm
wvhich we make the selection would consist of exactly the set of
non--equivalent objects, in which case the selection mechanisnm

required is the trivial one of selecting each object in the set.

Although this was our original aim, we have not been able
to achieve this goal, and so we have taken as our starting set
the set of all bitstrings of length n(n-1)/2. This corresponds
to saying that we can take the set of all 1labelled graphs and
deduce those that are non-isomorphic when considered as
unlabelled graphs. We have implicitly recognised however that

no graph with n nodes can be isomorphic to a graph with n,

[}
nodes if n, # n,. The length of the bitstring is then a partial
specification on the set of graphs, knowing that all isomorphs

must have the same partial specification.

We may now consider the possibility of carrying out a
similar process on a set of graphs with a more precise partial
specification. This stems from the fact that if two graphs are
isomorphic, and & is the mapping which takes the nodes of one
graph onto the nodes of the other, ¢x = y implies that the
degree of x is equal to the degree of y. This is true for all
nodes x in the first graph, and so the degree sequences of two
isomorphic graphs must be identical, where we define the degree

Sequence of a graph to be a vector

d = (4,,4; 550 ,da)

137

where d; 1is the degree of the node i (in some labelling) and

such that 4; 2 d;

el

for i = 1,c..,0~1. This is also known as
the partition of the graph. Two graphs cannot be isomorphic if
they have different degree seyuences. However, it is not true
that tvo graphs with the same partition are necessarily
isomorphic, as can be seen by the example given in figq. 7.
These two graphs both '

have 5 nodes, and both
have degree sequence
(322 2 1), but the two
5raphs are clearly not 3 -

isomorphic, since for (o)

instance the node of

degree 3 is adjacent to & (b) 3
the node of deqree 1 in

raph {a) , which is not

true in graph (b). Fig. 7.

In the earlier section concerning the Sieve algorithm, the
total number of qraphs which needed to be considered was nixg,,
where g, is the number of non-isomorphic graphs with n nodes.
In fact, this was done by finding a graph topologically distinct
from any graph previously examined, and then inspecting each of
the n! permutations of the labels. An alternative viewpoint is
to consider generating all the labelled graphs, and then
discarding all those which are not already in canonical form.
By this means we would retain only the graphs in canonical fornm,
So that if two graphs in the set are isomorphic, then they are

also identical, in which case the problem of removing duplicates

138

is made correspondingly easier.

If we could then generate only the set of graphs which are
in canonical form aliready, the starting set of graphs would also
be much smaller. As a first step towards this, we observe that
the algorithm for reducing any graph to its canonical form
begins by «classifying the nodes of the graph by degree. Thus,
in the canonical labelling, we know that if node i has degree
d; then dj b dj“ for j = 1,.c.,n~1. This is of course simply
the condition on the deqree sequence of a graph, so that we may
consider attempting to generate the set of all non-isomorphic
Graphs by examining only those labelled graphs whose labelling
¢ives rise to a valid partition for the graph. We also notice
that only a restricted number of the n! possible labellings of a

yraph give rise to a valid deqree sequence for the graph.

We could contemplate generating the set of all graphs by
the following algorithm:
1. Generate all degqree seyuences.
2. For each degree sequence, generate a set of graphs
which must necessarily contain at least one instance of
each non-~isomorphic graph with that partition.

3. Eliminate duplicates from this set.

Harary (1968) gquotes two theorems which give necessary and
sufficient conditions for a partition to be the degree sequence
of some graph, and we will make use of both of these in the
course of implementing this algorithm. The first theorem, due

to Erdos and Gallai (1960) states:

139

Theorem

A partition (4,,d,;cc.,d,) of a number 2m is the degree

sequence of some graph if and only if:

"

iai <r@-1) + > min (r,d;)

LYl

tor each r, 1 £ r £ n.

We will not give the proof for this theorem, since the
statement of the theorem is sufficient to suggest an algorithm

for generating all the deqree sequences for graphs of n nodes.

We begin by observing that the partition (n-1,n-1,...,,n-1)
is valid (and corresponds to the complete graph). The algorithm
then uses each degree sequence to generate the next one, the
terminating condition being that the elements of the partition
are all zero, which may be recognised by the appearance of a
zero as the first element of the partition. For each iteration
of the main loop, the steps are as follows:

1. Find the smallest j s.t. d; can be reduced without
destroying the ordered nature of the partition (d; 2
d;.s for i=1,...,n-1)

2. Red uce dj by one.

3. Reconstruct the elements d;4, ,d;-3 +---.,d, making sure
that the partition always satisfies the condition of
the theorenm.

4, check that the final sequence is a partition of an even
number. , If so, then this sequence 1is the required

partition otherwise repeat the steps 1 to 4.

1o

Step 4 is regquired since it is possible to construct a
partition of an odd number such that all the conditions (except
the evenness condition) are satisfied, but such a partition is
not a valid degree sequence, since

:i d; = twice the number of 1lines in the graph.
(This is eAZily seen since each 1line in the graph makes a

contribution of 1 to the degree of each of its endpoints, and

hence a contribution of 2 to the total sum).

The second theorem which Harary quotes concerning the
rartition of a graph is due to Hakimi (1962):

Theoren

A partition
d = (du Vd:" ceepdy)
of an even number 2m is a valid degree sequence for some graph
if and only if the partition
dv = (3,71, Vpewand, Tedy o e o)

is also a valid degree sequence for some graph.

For this theorem we give the proof, as we shall require

some of the techniques used in the proof later on.

If d' is valid, then clearly so is 4 since from a graph
with partition d' we may construct a nev graph with partition d
by adding a new node, and joining it to the first 4 nodes of

the original graph, where d, is the degree of the new node.

Now suppose that G is a graph with degree sequence d. If

141

there is a point in G of degree d, which is joined to nodes of
degree dl,oo,,daﬂﬂ then the removal of this node will give a
graph with partition dY. 1If there is no such point, then we
nust show that from the graph G we may construct a graph G°' with
the same partition which does have such a point. Now in G, node
i has degree d4; for i= 1,...,n, and d;, 2 d;, for i =
tp<e.,n-1. In particular node 1 has the largest degree. Now in
the graph we may find points i and j such that d; > dj and such
that line (1,j) is in G but line (1,i) is not. . (I£f this were
not so, then we would have the situation above, where node 1 is
‘oined to i for i = 2,...,d,+1). But since d; > d;, there must
a2 node k such that (i,kX) is in G but (j,k) is not. If we now
remove the 1lines (1,j) and (i,k) and replace them by the lines
(1,1) and (j,k), the new graph has the same partition d, but the
sum of the degrees of the nodes adjacent to node 1 has increased
by 1. It is now possible to repeat this process until

eventually we acquire a graph with the desired property.

Q. E. D,

The proof of this theorem highlights two facts:

(a) We have an algorithm for generating one graph with a
given partition

and

(b) Any graph having a particular degree sequence can be
transformed into a graph with the same degree sequence, but
with the property that the node 1 is joined to the nodes 2,
3,cc0,d, #+1, and that the degree sequence ordering 1is

maintained.

i42

Now fact (a) indicates the algorithm to be used to generate
a graph with the given partition. The method is simply to join
node 1 to each of the nodes 2, 3,...,d4, +1, and then construct a

gqraph with partition (d1w1,d3~1,nqoadd'.—1rda'; rocepd,) on the

.

nodes 2,...,0.

Fact (b) suggests that since it possible to transform any
graph with this partition into this "standard" form, then it is
also possible to generate any graph with this degree seguence
from the ®standard" graph by an appropriate sequence of
operations of the type given in the proof of the theorem. Thus,
in order to generate the set of all possible graphs with a given
degree sequence, we must use the algorithm suggested above to
tind one such graph, and then define the set of all
transformations which are the inverses of the transformations
used in the proof of Hakimi's theorem. Naturally, in carrying
out these transformations the graphs produced will not all be
distinct, but we may either leave the problem of sifting out the
duplicates to the third step of the gemeralised algorithm, or we

may sift out the duplicates as we proceed.

The algorithm for finding one graph with the given
partition simply joins node 1 to node i and subtracts one from
d;, for i = 2,3,...,4,+1. The remaining nodes are then
re--ordered so that the new partition is still ordered correctly.
During this operation, the node labels, which were originally 1,
2,000,n in that order, are carried with the new degree values in
the re-ordering process., 6 When this has been done, the algorithm

) repeated on
is /the nodes 2,..,.,n (re-ordered) according to the revised

143

degree sequence.

Let us now demonstrate this with an example in which the
number n of nodes is 6, and the degree sequence
d = (4 43322

this graph will have 9 lines since the sum of the d; is 18.

The first step is to join node 1 to each of the nodes 2, 3,
4 and 5. The degree sejuence which results, after re-ordering,
is (3 22 2 1 and the new ordering of the nodes is (2 3 4 6 5).
If the procedure is repeated, the node 2 is joined to nodes 3,4
and 6, leaving a partition of (1 1 1 1) and po further
re-ordering is '
necessary. The next ¢ \\\\\\ %L
Step Jjoins nodes 3 and

4, and the final step

ioins nodes 5 and 6. $ ////// 3
The final graph is then o7
given in fig. 8, Fig. 8.

The second algorithm, that which constructs every graph
With the given partition, is somewhat more complicated. Its
action is to reverse the process which was described in the
proof of Hakimi's theorem. In fact, it 1is more complex than
Hakimi®s construction, since in that case the problem was to
move towards a form of the graph which was in some sense
optimal. This constructive method moved through a series of
Steps to achieve its goal. Fow for any graph obtained during
this iterative process, there are possibly many graphs for which

one step of the iteration would give this graph, and in

144

reversing the process, we are faced with the problem of

identifying al) graphs for which this would be true.

We begin by defining a class of graphs, which will
eventually contain all the graphs we are seeking. TInitially, it
contains only one graph, the graph constructed by the previous
algorithm. The algorithm then applies a series of
transformations to each graph in the class in turn, and each
time a nev graph is found, the class is enlarged to include this
Graph. It turns out also to be a convenient stage at which to
check for duplications. A new graph is only inserted in the
Class if it is not already contained in the class. The way this
is checked is to use Corneil's algorithm (see previous chapter)
to reduce each graph to its canonical form (as defined
rreviously) before attempting to place the graph in the class.
We recall that we conjectured (following Corneil) that two
“raphs are isomorphic if and only if their respective canonical
forms are identical. Thus each graph is put into its canonical
form, compared with each graph already in the class, and if it
is dif ferent from each one, then the class is enlarged to
include this new graph, which itself now becomes eligible to be

transformed.

The transformation algorithm is as follows:

1. Assume that the initial graph is in canonical form as
defined in the previous chapter. In particular this
implies that d4; 2 dj for i < j.

2. For each node i in the graph, find nodes j, k, 1 in

the graph such that i < j < k, i < 1 and such that the

145

lines (i, j) and (k,1) are in the graph, and the 1lines
{i,k) and (j,1) are not.

3. Remove the 1lines (i,3j) (k,1), replacing them with the
lines (i, k) and {j,1l). This step should be repeated
for each 4-tuple satisfying the conditions in step 2.

4. Each graph produced in step 3 is put into canonical
form, and compared with each graph in the class. If it
is found to be there already, then it is discarded,
otherwise it is added to the class.

5. If there are no more graphs in the <class to be
"developed™, then the algorithm terminates; otherwise
the next graph 1is chosen from the class and the

algorithm is restarted at step 2.

The conditions on the nodes i, j, k and 1 as shown in step
2 are explained in the tollowing way:

(a) We need to consider all nodes i in the graph, rather
than just node 1 as required by Bakimi'’s proof, because this
interchange of lines may need to be done at a different
stage of the process of deciding whether a partition is a
valid degree seguence. Hakimi’s proof implicitly takes
account of this by the fact that his argument is recursive.
{(b) Jj, k and 1 are all greater than i, since for each i we
are essentially concerned with the subgraph defined by the
nodes i, i+1,..,,n.
(c) The condition j < k stems from the fact that we know
that d; 2 dy when j < k, and we certainly want to ensure
that this is so, since 4.

4
the transformation in Hakimi's theorem, and we wish to

< d, is the condition required for

146

construct the reverse transformation.

By examination of several examples, it is clear that this
algorithm produces the same graphs a number of times over, and
that the amount of work reguired in sifting out the duplicate
yraphs 1is more than we would wish. It is also regrettable that
some partitiomns, for which there is only one graph, will cause
this algorithm to look in vain for others. ©Cne solution would
be to make use of some work of Parthasarathy (1968) which shows
how to determine the number of non-isomorphic graphs with a
jiven partition. If these numbers vwere also computed, then it
would be necessary to invoke the above algorithm only when a
rartition is seen to have more than one graph associated with
it. It would also be possible, and perhaps desirable, to know
in advance the number of graphs which any partition will yield,
so the algorithm can be stopped as soon as this number of

distinct graphs have been generated.

We conclude this chapter with an example of this algorithm
at work. In fig. 9., we show the graph of fig. 8. labelled
as graph A, being a graph with partition 4 4 332 2).,
Alongside we give 8 permissible U4-tuples, and the graphs which
are obtained by the application of the transformation defined by
each 4-tuple. This is done for each graph 1in the class, and
each time a new graph is discovered, its canonical form is
jlaced in the class. The graphs A, B, C, D and E are indeed the
canonical forms of the 5 graphs with this partition (see Harary

1968 Appendix 1).

Q t.’hc
/\ 12 s =B
6 o L QBQ{ - &
V 4 6 S —C
1 ¥ 62 —A
2356 —¢
2 4 56 —c
3 bS - D
A
4
\ “'.\""‘
3 > i2395 =B
| 7
Gtﬂ Y b o~ 2
% /[/]
§ k3 § ‘M/,//l
B < ‘e
(:‘l(N X3
! 136 = C ! 163 —c
1$62 =D i$ b3 =D
G o a VSeu € ¢ -’
2463 = € gL o€
[4
3geu = 2354 —>C
g O 3 3
\ s
D
—_— "
by

p=i—Sh A

147

148

1 General Discussion.

In chapter III, we dealt at some length with the problem of
ordering and indexing trees of various kinds, and to this end, a
number of ways were discussed for the decomposition of trees
into smaller trees. In some sense this may be described as a
tactorisation of a tree. This decomposition or factorisation of
a tree is a wuseful tool in the derivation of recurrence
relations for counting trees. It was considered a natural
extension of this to attempt to use the same technique, i.e.
decomposition, to study the ordering of graphs. From the
rrevious section, we see that we can in fact generate graphs in
some way by use of the Polya theorem approach, with its
associated study of permutation groups and similar combinatorial

techniques.

However, factorisation of a graph is a subject of study in
its own riqht and we now discuss some of the concepts involved

in the factorisation of a linear graph.

A factor of a graph is defined to be any subset of the
lines of a graph such that each node is incident to at least one
line in the subset. Thus, any partial graph of a graph is a
tactor. An n~factor is a factor in which each node is incident
to exactly n lines in the factor. Certain particular cases of
factors are of interest. A 2-factor is a factor in which each

node is incident to just two lines - i.e. it consists of a set

of disjoint cycles where each node lies on one of the cycles.

149

If a 2-factor consists of just one cycle or component, it is
said to be a Hamiltonian cycle. The problem of finding a cycle
which passes through each node of a graph once and once only is
known as Hamilton's problem, and it can be seen immediately that
this is precisely the problem of finding a 2-factor with Jjust
one component. No efficient algorithm is yet known for finding
2 Hamiltonian cycle of a graph, or even of deciding whether one
exists, although several theorems have been proved stating
necessary conditions for the existence of such a cycle (see for
instance, Harary 1968). Certain heuristic methods can however
be used, but these essentially take heuristic ’short cuts'® in an
algorithm for solving the problem by exhaustive search. Berge
(1958) describes a method due to Fortet (1959) for solving the

froblem for a directed jraph, but similar techniques do not lend

themselves easily to the solution of the undirected case.

Another type of factorisation which is of interest is the
1-factor. This is closely related to the subject of matching in
a general graph, and in fact, a perfect matching is a

1 factorisation of the graph.

Berge (1958) defines a matching M of a graph G to be any

Ssubset of the 1lines of in which no tvwo members of M are

@Q

incident to the same node of G. A maximal matching is a
matching M, for which
IM 2 |M] for any matching M of G,

ol

vhere |M| denotes the number of lines in the matching M. A

150

matching M, of a graph G is said to be perfect if each node of G

is an endpoint of one of the lines of M.

Clearly if G possesses a perfect wmatching, then n, the
number of nodes in G, must be even, and if M is a perfect
matching of G, then (M} = n/2. If a graph has a perfect
matching, then we may attempt to find this matching which covers
the graph by using a backtracking technique.. This can in fact
be done recursively by selecting any line of the graph, removing
this line, its two endpoints and all the lines incident to these
endpoints. We may then examine this reduced graph for a perfect
matching. If it has one, the matching for the whole graph is
the matching for the reduced graph together with the line which
was removed initially trom the whole (graph. If the reduced
fraph has no perfect matching, then we replace the line which
vas removed initially and try to remove a different 1line from
the original graph. 1In fact, since each node must be incident
to one line of the matching for the graph to possess a perfect
matching, it is only necessary to try those lines which are
incident to one node. If none of these yield a solution, then
we know that this node cannot be covered by a matching line and

therefore no matching found by this method could be a perfect

matching.

For a large graph, however, this backtracking method will
be extremely inefficient, because of the amount of searching
which may be required. Given a graph G with a matching M, a
node x is said to be covered by the matching if a line belonging

to the matching M is incident to x. The graph G is said to be

covered by M if each node in G is covered by M. Any node not
covered by a matching M is said to be exposed. An alternating

iath of a graph with respect to a matching M is a path

X, :X30¢v0,Xp in G in which if line x; , X; is not in M, then the

‘
line X, X:,, 1is in M. Thus an alternating path is a sejuence of
lines in the graph which are alternately in M and not in M.
There 1is no requirement that this path should be of odd or even
iength, nor do we reguire that the first line should be in M or
not. However, as can be seen from the following theorem due to
Berge (1958), an alternating path of odd length joining two

exposed nodes is of particular interest.

Theorenm

A matching M of a graph G is maximal if and only if no two

distinct exposed nodes are joined by an alternating path.

This is not Berge's proof, but a slightly simpler proof due

to Edmonds (1965) .

Assume we have two exposed nodes x, and x, which are joined
by an alternating path P. Since x, and x, are exposed, the
first and 1last 1lines in the path must be non-matching lines
fi-e. lines not in M). Thus P consists of an odd number of
lines and contains one more non-matching line than it does
matching lines. If a new matching is now constructed which
consists of the non-matching lines of P together with the lines
of M which are not in P, this is clearly a matching M"Y for which

InNY)] = (M1 + 1

Thus M is not maximal.

152

Now assume that M is not maximal, i.e. there exists a
matching M' such that
IMY) > M} + 1
¥e have to show that there exists an alternating path which

ioins two nodes which are exposed relative to M.

Consider a graph G' which has the same vertex set as G, and
wvhose lines are the lines of G which are in either the matching
M or the matching MY but not both. No node x € G’ has degree
dreater than 2 since at most one line in M and one line in M' is
incident to x. The connected components of G' are therefore:

(a) isolated nodes,

{b) alternating cycles relative to M (and to M7)
or

(c) alternating paths.
(@ and (b) have either no lines or an egual number of lines
from M and M*. Therefore at least one of the components of type
(c) must contain more lines of MY than it does of M, by the
assumption that JM'| > |Mj. The first and last lines of such a
path must be in M' and thus the endpoints of +this path are
exposed with respect to M.

Q-E-D. .

This theorem gives the clue to a better method of finding a
rerfect matching of a graph. In fact, the backtrack procedure
described earlier will find a perfect matching if there is one
(albeit rather inefficiently), but says nothing about the

matching that is produced if no perfect matching exists.

The method suggested by Berge's theorem is to search for an
alternating path between any two exposed nodes. If no such path
is found for any pair of exposed nodes then we know (by the
theorem) that the matching we have is maximal (and therefore

perfect if a perfect matching exists).

This jdea has been modified and developed into a working
algorithm by Edmonds (1965) and later Witzgall and Zahn (1965)
added a further modification. The algorithm 1is basically a
rrocedure for growing a certain type of tree from an exposed
node in such a way that it at any stage a terminal node of the
tree is adjacent to another exposed node, then we have an

alternating path from that exposed node to the root of the tree.

Edmonds defines this particular type of tree which he calls

an alternating tree. An alternating tree is a tree in which the

nodes are divided into two classes called inner and outer nodes.
Fach line in an alternating tree joins an inner node to an outer
node, and all the inner nodes have exactly two (outer) ncodes
adjacent to them. If there are m inner nodes in an alternating
tree, then the tree has 2m lines in it. It follows therefore
that the total number of nodes in the tree is 2m+1, and that the
number‘of outer nodes is m+1. Thus there is one more outer node

in an alternating tree than there are inner nodes.

Although we have defined an alternating tree in general
terms, we now go on to describe how we are going to wuse the
notion of an alternating tree to help to find alternating paths

within a graph on which a matching is defined.

154

Given a graph G together with a. matching M on the graph, we
may consider an alternating tree of which one of the outer nodes
is designated as the root of the tree. Now let us grow an
alternating tree on the graph G so that the root of the tree is
an exposed node of G with respect to M, and that every inner
node is Jjoined to one of its neighbours by a line in M. Since
the root is an exposed node, i.e. it is incident to no lines of
M, each inner node which is adjacent to the root is Jjoined to
its other neighbour by a matching line. This then defines how
the matching lines are to be inserted into the tree. It is
clear that in a tree of this sort, only the root can be an
exposed node of G, since if one of the outer nodes is found to
be an exposed node of G, we have found an alternating path to
the root, and the matching M of G may be enlarged as described
1n the proof of the theorem. Edmonds describes such a tree as a
Planted tree, but in view of our previous use of this term, it

was felt that the term matching tree would be more appropriate.

The growing of a matching tree within a graph G from an
exposed node r with respect to a matching M is in fact a way of
finding all the alternating paths from r, and as soon as one of
these alternating paths meets another exposed node, we have what

is known as an augmenting path for the matching M in G.

In a matching tree rooted at a point r, all the outer nodes
Correspond to nodes which may be reached in the tree from r by
an alternating path of even length.,6 Similarly, the inner nodes
are those nodes for which no alternating path of even length

from r exists, but only a path of o0dd length. We therefore

155

prefer to rename the outer and inner nodes of the matching tree

as even and odd nodes respectively.

Let us clarify these points using an example. Consider the
¢raph shown in fig. 1. This graph has associated with it a
matching and the lines in the matching are marked in the figure.
Node 1 is an exposed node with respect to this matching and so
we may look for an augmenting path from node 1 to another
e€xrosed node in the graph. We therefore grow an alternating
tree from node 1 as shown in fig. 2. Now in this tree, nodes
1, 5, 11, 16, 3, 8, 14 and 9 are even nodes, and 2, 12, 15, 4,
6, 13 and 10 are odd nodes. Now node 8 is adjacent to node 7
which is also an exposed node. Thus we have found an augmenting
path

(1,2,5.6,8,7)
and this in turp allows us to increase the matching by removing
the lines (2,5) and (6,8) from the matching and replacing thenm
with the lines (1,2), (5,6) and (7,8). We also observe that if
this change is made to the matching, the new matching is now

rerfect.

156

The object of Edmonds® algorithm is to find all those nodes
¥ in G with the matching M such that there is an alternating
rath of even length from some exposed node r. From this we may
either find an augmenting path and hence increase the matching,
or establish that there is no such path, and hence that the
matching is already maximal. A detailed description of Edmonds’

algorithm follows.

Starting at the root, we search for any point x which is
not exposed, and which is adjacent to the root r. (If there 1is
a2 node y, adjacent to r, which is exposed, we may immediately
put the line (y,r) into the matching). The node x is then put
into the tree, and becomes an odd node. The node z such that
(x,2) € B is also put into the tree and z is an even node. All
the even nodes in the tree are then developed in this way. For
a2 typical even node p being developed, we find a node x adjacent
to p. We now have four cases to consider:

(1) x is an exposed node. In this case, an alternating
path from x through p to r has been found, and the
appropriate changes may be made to the matching.

(ii) x is not exposed, and has not previously been put into
the tree. We now take the step described earlier,
calling x an odd node, and z (where (x,z) € M) an even
node.

(iii) x is in the tree already and is an odd node. No
action is taken in this case.

(iv) x is already in the tree and x is an even node. This
is the most interesting case, since this defines a

cycle of odd length in the graph. We know that p and x

157

both have even length paths to r. Define the node b to
be that node which is common to both the path from p to
r and the path from x to r, and such that the path from
b to r is of maximum length. This 1is the point at
which the two paths from x to r and from p to r meet,
and it may indeed be the root. Now b is an even node,
since either it is the root itself, which is even by
definition, or else it has three lines incident to it,
the 1lines in the paths from b to the root, p and x
respectively. Thus since odd nodes have exactly two
lines incident to them we conclude that b must be an
even node. Thus by discovering a line from p to x, we
have established an o0dd cycle in the graph consisting
of the two paths b to p and b to x, both of which are
of odd length, and the line (p,x). Edmonds calls this

odd cycle a blossonm.

If a blossom has been found in a graph, we may
consider any node c¢ within the blossom. If c is an
even node in the path from p to b, then c is even with
respect to the root. If ¢ is odd in the path from p to
b, since we have an odd cycle passing through p, b, x
and c, there is an even length path ¢ to p to x to b.
Thus ¢ is again even with respect to the root by virtue
of this path through x. Hence within a blossom, every
node can be considered to be even. Thus the tree
growing can be continued now considering the blossom as
a single even vertex (called a pseudo:vertex by

Edmonds) .

158

Witzgall and Zahn (1965) describe a very slight variation
of Edmonds® algorithm in which the action taken on recognising a
blossom is a little different. In this method, a tree (which

may be called the even path tree) is built in which

li

below (i) 3j
if and only if there exists a node k with the 1lines (i,k) and
(k,j) in G, such that (i, k) € M and (k,3j) f M. The step taken
when an x is found not in the alternating tree is as before, and
has the effect of adding the node z to the even path tree so
that

below({z) = p
If an 0dd cycle is encountered in which p and x are the extremes
of two even paths, and the line (x,p) is found to be in G, the
algorithm of Witzgall and Zahn then chains down the path from p
to the root, adding the odd vertices in this path to the even
path tree as %aboves' of x, and chains down the path from x to
the root, adding the odd vertices in this path to the tree as
‘aboves® of p. If in the chaining down process two adjacent
even nodes are found, then this implies that an odd cycle
involving these two nodes has previously been found, and so the
chaining process stops. If the node b is the point at which the
paths p to r amd x to r meet as defined before, the chaining
process also stops when b is reached, since any point below b is

not in the o0dd cycle.

The alqgorithm stops if all the even nodes are found to be
in state (iii), i.e. all their neighbours are odd nodes (except

tor members of a blossom). Edmonds calls an alternating tree

159

with this property a Hungarian tree. This may occur before all
the nodes of G have been examined. This is overcome by removing
the Hungarian tree, together with all the lines incident to
nodes in the Hungarian tree, from the graph G. The algorithm is
then repeated on the reduced graph. Edmonds and Witzgall and

Zahn present proofs that their respective algorithms end with

maximal matchings.

The following example shows the operation of the algorithm.
Consider the graph shown in fig. 3., in which the wmatching
lines have been marked. ¥We see that node I is an exposed node
in the graph. 1In fact it is the only exposed node in the graph,
but this does not affect
the performance of the
algorithm. Thus I
becomes the root of the
alternating tree. We
tirst grow towards N.
(The stages in the

development of the +tree

are illustrated in figq.

4) . Fig. 3. .

160

C(even)
B (odd) C Ceven)
A (cvc.n) B(odd) S
, & Medd)
A (even) Aleven)
NCead) / \ TTTe-. €leven)
~{odd) N(cdd)
o
T ((\ltn) © T (even) I(CV&"\) I(cvt'\)

(a) (b) (c) (d)

((ABcde)Fc N even) (& CBE)FG) eves)

F (odd) tlevewd
ABCIE) (ewen
() ¢ A‘ G (evlun)
N{add) N(oddt) & p(odd)
Nipdd)
Tlever)
{g)

I(cvlcv\) I(cv&n)
(e) (£)
Fig. 8.
Fig. 4. (a) -- (c) show how the normal growth of the tree takes

place, and a further extemnsion occurs in (d). Two even nodes (A
and D) are now found to be adjacent. This blossom can now be
contracted into the pseudo-vertex (ABCDE). In (e) another
growth takes place and again two even nodes (G and the
pseudo-~vertex (ABCDE)) are found to be adjacent. The blossoa
again shrinks into a new pseudo-vertex ((ABCDE)FG). This
pseudo-vertex cannot now be developed any further, and so (f)
shows that further development of I is the only chance of
qrowing the tree any more. In (g) one further step has been
taken, and this tree is in fact Hungarian. If we now remove
this tree from the original graph we obtain the subgraph which
is shown in fig. 5. This subgraph possesses a perfect matching

already, and hence we conclude that there is no alternating path

161

between any pair of exposed nodes, and that the matching as
shown in fig. 3. is maximal. This description only discusses

the final stage of the

algorithm; previous Kk
stages have already

tound augmenting paths M -

and modified the]

matching accordingly. ! Fig. 3.

A slight extension to Edmonds® algorithm has also been
considered. This is to qrow alternating trees from each of the
exposed nodes of the qraph. The conditions under which the
"join"™ of two trees occurs determines whether an alternating

rath between the roots of any two trees exists.

Briefly, we label all the exposed nodes as even nodes, and
grow alternating trees for each one as described earlier., The
action to be taken in each of the possible cases is as before,
except in case (iv), when two even nodes are to be joined. (If
we previously asked the question ‘was a particular node in the
tree?' we must now ask Vis the node in any tree?'). In case
(iv) however we have to subdivide this occurrence into two
further parts - when the two even nodes are in the same tree,
and when they are in different trees. If the two even nodes are
in the same tree, then they must be treated in the same way as
before, namely, the process of reducing a blossom to a
pseudo-vertex must be carried out. If the two even nodes are in
different trees, we have then found an augmenting path between

the roots of the two trees. This is of course the even 1length

162

rath from each root, together with the line between the two even
nodes which are +the growing points. This extension to the
method of Edmonds is probably only a marginal improvement over

the original algorithm, if any.

V1.3 Articulation Points.

The study of factorisation or decomposition of graphs would
not be complete without a mention of articulation points. We
make one remark about articulation points in connection with the
study of matchings. A node x of the graph G is said to be an

articulation point of G if the subgraph G - {x} is not

connected, although G is connected. Berge (1958) states and
proves the following theorem, which we give here without proof.

Theorem

A node x is an articulation point of a connected graph G,
if and only if there exist two nodes pand q in G such that

every path from p to y passes through x. .

Let x be an articulation point of the graph G, and let
GnnGl,ooo,Gr be the connected components of the graph G - {x}.
We define p to be the order of the articulation point x (and we
hote that p 2 2 by definition of an articulation point). The
subgraphs G; v {x} for i = 1,2,...,p are called blocks. It can

be seen that G has a perfect matching if and only if G: o {x}

J
has a perfect matching for some j, and G; (i # 3j) all have
rerfect matchings. A necessary condition for a graph G to

rossess a perfect matching is that |G| is even, and therefore we

haves

163

Theorem

If G is a connected graph, and x is an articulation point
of order p which divides G into blocks G; v {x} for i =
1,¢-.,p, then a necessary condition for G to have a perfect
matching is

IGS! is odd for some j,
and

1Gy] is even for all i # j.

Thus, if a graph can be found to possess articulation
points, then our backtracking algorithm for finding a perfect
matching wmay be simplified by associating each articulation
Foint with a particular block (according to the rule given in
the above theorem), and then looking for perfect matchings in
each of the resulting subgraphs separately. It is clear,
hovever, that Edmonds’ algorithm is much more efficient than the
backtracking algorithm, and will cope with articulation points
without further modification, as indeed the example shown

earlier demonstrates.

Articulation points are useful in other cases of graph
Ranipulation, and so it is perhaps worth discussing a method of

tinding the articulation points of a graph.

We stated, without proof, a theorem of Berge, which gave a
necessary and sufficient condition that a point x should be an

articulation point. Let a spanning tree for a graph G be a tree

with the vertex set of G. In other words, a spanning tree is a

tree which covers the nodes of G. In any tree, there is exactly

164

one path between any two nodes of the tree, and if the tree is a
spanning tree, then there is exactly one path in the tree
between any two nodes of the graph. Now if a node x is an
articulation point, then, by the theorem gquoted above, there
exist two nodes p and , such that every path from p to g passes
through x, and in particular the path in the spanning tree
passes through x. This implies that if a node y € G is a
terminal node in any spanning tree of G, then y cannot be an
articulation point of G. In particular, if we are able to grow
a planted spanning tree (planted tree as defined in chapter I

not Edmonds?' definition) from y which covers G, then y cannot be
an articulation point of G. To find the articulation points of
a graph G then we may attempt to grow a planted spanning tree
from each point of G, and those nodes for which we do not
succeed are taken to be the articulation points of the graph.
It is also true that for any tree that is grown, all the
terminal nodes as well as the root can be marked as
non-articulation points, so it is not necessary to grow planted
Spanning trees from every node in the graph. It is necessary,
though, to grow a tree from each node which subsequently turns

out to be an articulation point. .

It was felt that if some control were exercised over the
way in which the tree was grown, it ought to be possible to
reduce the number of points from which trees had to be grown.
This could be done by attempting to grow a ‘bushy® tree, i.e. a
tree with as many terminals as possible. However, it turned out
that if a tree~growing algorithm was used which tried to do

this, nearly all the eliminatable nodes were eliminated in the

165

tirst few trees, and all the subsequent trees had roughly the

same set of nodes as their terminal nodes.

A slight extension to this algorithm can be wused to find
the articulation points of a graph, and at the same time find
the order of the articulation point. (We may perhaps consider a
non-articulation point as an articulation point with order 1),
Suppose we are trying to find the order of a point x. We
construct a spanning tree whose root is x, and in which all the
nodes adjacent to node x are inserted at level 1. These nodes
are then labelled from 1 to d(x), indicating that at this stage
of growing the tree, the node x appears to be an articulation
point of order d{(x). As each node in the spanning tree is
developed we have two cases to consider. Suppose we are
developing node i, and we find that node i is adjacent to node
7 in the graph. Let the label of node i be 1(i). Now either:

(i) j is not in the tree. In this case, place j in the tree
(by setting below({j) = i or some other means) and set
1(3) = 1(1).

{ii) j is in the tree. This means that we have found a
connection between the block containing 1 and the
block containing j. If 1(i) = 1(j) then do nothing;
otherwise set the labels of all the nodes whose labels
are either 1 (i) or 1(j) to be equal to the smaller of

1(i) and 1 (j)-.

When all the nodes have been developed in this way, we have
in fact inspected all the lines in the graph, and the number of

distinct labels on the nodes adjacent to x is the order of the

166

node X. If this number 1is greater than 1, then x is an

articulation point ot this order.

VI.4 Spanning Trees.

We have briefly touched on the subject of growing spanning
trees of various sorts for a given graph. This section is
devoted to an examination of the spanning trees of a graph, and

various ways of finding a spanning tree.

Obruca (1966) makes extensive use of the spanning tree in
the various techniques he develops, but in his case most of the
graphs are cost associated, and the extraction of a particular

Spanning tree is correspondingly easier.

In chapter III, we described various methods of indexing a
tree., and in each case vwe éonsidered the tree as being a
composition of two or more parts, usvally smaller trees. Our
tirst approaches to the problem of indexing linear graphs were
based on attempts to decompose a graph in a similar fashion. To
take an example of this, we defined the natural ordering for
trees as T < T', in terms of the ordering of the components T,
and TY , where the tree T is considered to be decomposable as
shown in fig. 6. If a
comparison between T

i
and T} failed to

discriminate between the

two trees, then the two

sSubtrees T; and TY were

examined, and so on. Fiq. 6.

167

In Snow and Scoins (1969) we outlined a similar technique
for indexing graphs. It was pointed out in that paper that a
large part of the problem was the difficulty of decomposing the
craph uniquely. The work of Corneil, as described in chapter
Iv, has now removed this difficulty (subject to the conjectures
qiven in that chapter), and so the problem of deciding the truth
or falsity of the statement G € G*' is now theoretically solved.
For instance, the two grarhs could be reduced to their
respective canonical forms, and a straighforward comparison of
these graphs such as the comparison of their adjacency matrices
would give the required result. We have however developed a

number of techniques for the practical decomposition of graphs.

The first problem which was mentioned in Snow and Scoins
{1969) was that of finding the centre of a graph. However,
those nodes which map onto node I of the representative graph
may be considered to be the centres of the graph, and since we
know that these nodes form a transitive subgraph, any one of
these may be taken as the {(unique) centre of the graph. The
degree partitioning was used as the basis for all the
rartitionings in the formation of the representative graph, and
therefore the use of the Cayley ordering is suggested for
deciding which spanning tree is to be regarded as the ‘'best!
Spanning tree for a particular graph. Spanning trees of a graph
are essentially free trees, and it is therefore necessary to
take some point in the tree as the root.. A better choice is to
choose the root of the spanning tree by virtue of its status in

the graph rather than by virtue of its status in the tree

168

(although we would hope that they are connected when we come to
create the tree). Since we already know that the representative
¢raph and the re ordered graph are invariant under isomorphism,
any algorithm will suffice to produce a unique spanning tree for
a graph provided it is based on the labelling of the re ordered
yraph. We have, however, made an attempt to find an ‘'optimal?
spanning tree for a graph, where optimal was taken to be a
variety of properties, but mainly the property of ‘coming
earliest in the natural ordering of trees’. As we saw in
chapter III, we can equate the ordering which we have called the
natural ordering with the ordering defined by the
lexicographical ordering of the height vectors, and it is with
this in mind that we attempt to find the 'optimal® spanning tree

for a graph.

Given any graph, we may compute from its adjacency matrix,

another matrix, the shortest distance matrix
S = (@)

where dﬂ is the length of the shortest path in the graph from
node i to node j. Further, we define (following Obruca 1966) a
mushrooming spanning tree as any sSpanning tree in which the
length of the path from any node x to the root of the tree is
the same as the length ot the shortest path within the graph
between the same two nodes. Now since the height vector of a
tree is simply an ordered list of the distances from the root to
each node of the tree, it |is clear that the height
representation of any mushrooming spanning tree will be simply a

re-ordering of the elements of the row in the shortest distance

matrix corresponding to the root. Although we have been unable

169

to prove the statement, it seems intuitively reasonable that if
the optimal spanning tree is defined in terms of the natural
ordering of the trees, and therefore of the height
representation, then the optimal spanning tree will be a
mushrooming one. The trees which come first in the natural
ordering are those with the smaller numbers in their
Corresponding height vectors, and the mushrooming tree is also
an attempt to keep the height vector values as small as

possible.

VI.4.1 Two Algorithms.

Two main algorithms were used in an attempt to discover the
optimal spanning tree for a graph, and certain variations were
also incorporated in certain cases. Unfortunately it was not
Jenerally possible to determine whether a tree was in fact the
optimal spanning tree when either algorithm had discovered it.
The two algorithms are slightly different in approach; the first
being an iterative method, known as the Improvement Algorithm,

and the second being a more direct method.

The Improvement Algorithm begins by taking any mushrooming
tree of the graph. This may be constructed in a number of ways,
of which the simplest is to grow from the root all the nodes at
a distance 1 from the root. Then from each of these nodes are
qrown all the nodes at a distance 1 away which have not already
been put into the tree. This process is repeated, building up
the tree by "levels', and a mushrooming tree certainly results.

Clearly the tree which results is, however, highly dependent on

170

the original labelling of the graph.

Given any spanning tree of a graph, we define the graph
which results when all the spanning tree lines are removed to be
the co:-tree. It is obviously possible to create a list of the

lines in the co-tree. The algorithm now proceeds as follows:

Consider any line in the co-tree which joins the nodes x
and y. Since the spanning tree is mushrooming, we know that for
any such nodes, th(x) - h{(y)! € 1. This is because if two nodes
are joined in a graph, there exists a path from some point r to
X which passes through y, and y is the last node on this path
before reaching x, thus d(r,y) < d(c.x) + 1. Now if a spanning
tree exists which does not contain the line (x,y), then both the
rath from r (the root of the tree) to x through y, and the path

from r through x to y must exist. Thus d(r,y) -~ 1 < d({r,x) <

d(r,y) + 1, and d(r,x) - 1 < d(r,y) <€ d(r,x) + 1.

The improvement algorithm attempts to replace lines in the
Spanning tree by lines from the co-tree to see whether a better
tree 1is formed. This is done by successively trying each
Co tree line and removing one of the lines in the spanning tree.
If at any stage an improvement is made, then this is adopted as
the new spanning tree and the algorithm restarted. When each
line in the co--tree has been tried, and no improvement has been
made, then the algorithm terminates. This method may be thought
of as a kind of *hill-climbing® technique in which the step
length is one line. There is clearly a great danger of a ‘local
optimum? being found which can only be overcome by replacing two

or more lines in the tree simultaneously. This is an obvious

171

extension which could be made to the algorithm.

In fact, this particular method in which the spanning tree
is changed as soon as an improvement is made is only one of a
number of possibilities. An alternative strategy would be to
make all permissible changes to the tree, and select that which
ives the greatest improvement. This means that the method

wvould be a sort of 'steepest ascent’ method.

Apart from the extension mentioned above, there are other
extensions which may also be considered. For any spanning tree,
wve may form a certain number of different spanning trees
depending on the lines in the <co-tree., The algorithm above
takes the first of these to be found which is an improved tree,
and the previous tree is immediately discarded. The alternative
method is to take all the trees given by substitution of one
line and choosing the best of them. We may however consider
each of these trees which represents an improvement, developing
each in turn, and seeing which one leads to the best tree by a

sequence of one line replacements.

Such a process could be restricted so +that each step
torward 1leads to an improved tree, or perhaps so that each step
torward leads either to an improved tree or an equivalent tree.
In the 1imit, the method could develop every nev tree that was
found, in which case the algorithm would generate all the
mushrooming trees which span the graph. These last methods are

Clearly using a backtrack type algorithm.

Since the algorithm as it stands begins with a mushrooming

172

spanning tree, and stays within the set of mushrooming trees, we
may make some remarks about the choice of lines to be inserted
into or removed from the current best spanning tree. First,
assume that we have a line (x,y) in the co-tree. Suppose that
within the spanning tree h(x) = h{y), i.e. in the graph d(x,r)
= d(y,r) vwhere r is the root of the tree (and perhaps the centre
ot the graph). Then this 1line need not be considered as a
candidate for inclusion since if it were put into the tree,
either h'(x) = h'(y) + 1 or h¥(y) = h?(x) + 1 (where h' (x) is
the height of the point x in the new tree). This therefore
contradicts the assumption that the tree is mushrooming. We now
know that the only lines which we need to consider inserting are
those for which |h(x) - h{(y)] = 1. We may assume, without loss
of generality, that d(r,x) + 1 = d(r,y)-. Thus we have the
situation as shown in fig. 7. Now by inserting a single line
in a tree, we create one simple cycle. It is now necessary to
remove one line from this cycle in order to make this graph into
a tree again. The proposition is that the only line which may
be removed so that the mushrooming property is preserved is the
line (y,z), where z = below(y). For consider the removal of any
other linme in the path from y to the root. Then the node z
would be connected to the root only by a path passing through ¥y
and x (in that order). In the mushrooming tree, since z =
below(y), we have h(z) = h{y) - 1. However, in the new tree,
the path from z to the root is through y, and therefore h(z) >
h(y). Hence the mushrooming property is destroyed. Similarly
we can argue that no line in the path from x to the root may be

rtemoved and the tree remain mushrooming. The task of testing

173

co tree 1lines to see whether their inclusion in the tree would
make an improvement is
now considerably eased,
since only a subset of
the co-tree 1lines need
be tested, and when one

such line is inserted,

there is only one line ‘

which may be removed. Figo._ 7.

The second algorithm, which attempts to find the best
spanning tree directly, is based on some of the work on

ma tchings described earlier.

Although initially we had hoped that this algorithm would
indeed find the best spanning tree directly, it was found that
this goal could not be achieved, and so it was decided that this
alqorithm would be suitable for finding a "near optimal® tree

upon which the improvement algorithm could operate.

Using this technique, an attempt is made to distribute the
nodes of height p + 1 as evenly as possible among the nodes of
height p. We are growing the tree by stages, increasing the
height at each stage, where at the p-th stage we have a
partially constructed tree of maximum height p, and a collection

of nodes to be attached at height p + 1.

Suppose we have grown a spanning tree up to and including
height p. The next step is to attach all those nodes which are

at a distance p+1 from the root. Thus a bi-partite graph B may

174

be defined in which the two sets of nodes are respectively the
set of nodes at height p (already in the tree) and the set of
nodes at a distance p+1 from the root. Let these two sets be 5
and Sp. respectively. Now if x ¢ S, and y € S,,, . there is a
line in B if and only if there is a 1line (x,y) in G. The
¢eneral method adopted to distribute the nodes of height p+1 as
evenly as possible amonqgst the nodes of height p is to assign
ore node from S;, to each node in Sp, as far as this is
yossible, and when this has been done, all the assigned nodes
are removed from Sp,: and the process repeated. Thus we allow
each node at level p to acquire at most one node from the set of
nodes at level p+1 before any node is allowed to acquire a

second node fronm Spaie

It is obviously desirable to assign as many nodes from Sy,
to nodes from Sp as possible, subject to the restriction that no
more than one level pt+1 node is to be assigned to any level p
node at each step, and this problem is then simply the problen

of finding a maximal matching on the bi-partite graph B.

In section V1.2 we described Edmonds® algorithm for finding
a maximal matching on a general graph. However, we may simplify
this algorithm when looking for a maximal matching on a
bi- partite graph by observing that in a bi-partite graph every
cycle is of even length. Thus in the description of the actions
to be taken when growing an alternating tree from an exposed
node, cases (i), (ii) and (iii) are exactly as before, but case
(iv) cannot occur, since this would imply the presence of an odd

Cycle in the graph, which is impossible in a bi--partite graph.

175

Thus we may find a maximal matching on B by growing an
alternating tree from each exposed node in S and altering the

ma tching until it is maximal.

Having found a maximal matching on B, we now attach these
nodes in Sy, to their corresponding nodes in Sy, so that if x ¢
Sp and m(x) is that node in Sp++ Such that (x,m(x)) is a line in
the matching, the spanning tree of G is enlarged by setting

below{m(x)) = Xx
and the node m(x) and all its incident lines are deleted from
the graph B. When this has been done for each 1line in the
matching, a newvw maximal matching is found on the reduced graph
B'* and more nodes can then be inserted into the spanning tree.
This process is continued until all the elements of Sp+1 have

been placed in the spanning tree.

In passing, we observe that the method of growing an
alternating tree on a bi-partite graph may be used to prove by a
qraph theoretic method a theorem due to Philip Hall (1935) known

as the theorem of Distinct Representatives.

Assume we have a set of objects S, and n subsets §5; (i =
17.<<,n) of S. We assume that the union of the subsets S; 1is
the whole set S. Then we have a set of distinct representatives

if one element a; e S, can be found for each i, such that a; =

ay if and only if i = 3j. The element a; may be said to
represent the subset S;. Then Hall’s theorem states:
Theorem

The subsets S. i = 1,c¢c.,n of a set S possess a set of

176

distinct representatives if and only if each set of k of the

subsets has at least k distinct elements.

Now 1let each subset S; be represented by a node x ¢ X in a
bi-partite graph B, and let each element in S be represented by
a node y e Y of B. Then the lines of B represent the set
inclusion of the elements of S in the subsets Sy, 1i.e. B
contains the 1line (x,y) if and only if the element of S
represented by y is contained in the subset of S represented by
X Now for any subset A of nodes of X, let I'(A) be the set of
nodes y which are adijacent to at least one node in A. Then vwe
may restate the theorem of Hall as:

Theore

For a bi-partite qraph B, there exists a matching which

covers X if and only if for any subset A € X

IT) 1 2 13

Clearly if we have a matching M which covers X, then for
any subset A of X, I"(A) must contain at least those points ye Y

such that (x,y) € M for each x € A. Hence {T'(A)] 2 jAj{.

Now suppose |T°(A)] 2 |A] for each subset A & X, and suppose
that we have a matching M which does not cover X. Then there is
a4 node r € X which is exposed with respect to M. Now construct
an alternating tree as follows. Let r be the root of the tree
and join to r all those nodes in Y which are adjacent to r.
(There must be at least one since ITT({rhH1l 2 I1{r}) = 7). If any

of these nodes are exposed, then we may immediately increase the

177

matching by including the 1line 3joining r to ‘this node.
Otherwise, include in the alternating tree those nodes y; ¢ Y
which are adjacent to r, and the nodes of x which are joined to
the y; by a matching line. We may continue adding y nodes and
their matched x nodes to the tree until either:

(i) wvwe include an unmatched y node in the tree; this now
gives an augmenting path from r to this unmatched y
node, and the matching may be enlarged by one 1line as
before.

(ii) no new nodes can be included in the tree. In this
case, ve have some number of y nodes in the tree and
for each of these there 1is a matching x node. The
total set of x nodes in the tree is therefore the set
of the matching nodes together with the node r. Thus
the set of x nodes in the tree has one more element
than the set of y nodes and hence the assumption that

iIT(A)1 2 |2} is contradicted for this subset A of X..

If case (i) occurs, the process is then repeated until all
the nodes of X are matched. Thus if |T(A)4} 2)A) for every
subset A € X we can construct a matching which covers X.

Q-E.D.

Since the method of qrowing the spanning tree for a graph
expands the tree level by level, and makes no reference to the
previous structure of the tree, it is clear that
counter-examples can be constructed to disprove the conjecture
that trees constructed py this method are optimal spanning

trees, but in many cases this does seem to be true, and in the

178

Cases where it is not, it appears that the tree constructed by
this method is VvYclose' to the optimum in some sense. Thus it
would seem to be a jood starting tree from which to apply the
improvement algoritha. It 1is also possible to modify the
algorithm to take account of the counter-examples which have
been found, but unless a general method can be found which can
be proved to work, it is felt that piecemeal alterations will
only push the point of failure of the algorithm back, rather

than eliminate it altogether.

In the final section of Snow and Scoins (71969) a rather
different approach to the problem of the optimal spanning tree
was hinted at. It was observed that if the best spanning tree
is a mushrooming tree, then its height vector is simply a
re-ordering of any vector representing the distances from the
toot of the tree to every other node in the graph, i.e. the
appropriate row of the shortest distance matrix S. Now clearly
it is possible to take such a vector and rearrange it in such a
way that it is bound to be optimal. It is not themn certain
however that this re-ordered vector represents a spanning tree
ot the graph. Thus it should be possible to move from the
optimal re-ordering of this vector until a vector is found for
which a corresponding tree does exist as a spanning tree. In
this way we could be sure that the tree found was in fact
optimal. In a way, this is rather like the dual approach to a
linear programming problem in which we either start with a
teasible solution and try to make it optimal also, or else we
begin with a solution

which is constrained to

179

be optimal, but which
lies outside the
teasible region, and
¢radually change the

solution until it is

also feasible.

We shall show an example of a graph with these ‘three
methods operating upon it. The graph to be considered is shown
in fig. 8. Let us assume that the initial mushrooming spanning
tree is that shown in fig. 9(a). This is clearly a function of
both the labelling of the graph, and the algorithm used to
construct the tree. For the purposes of this example, any
nushrooming spanning tree would be suitable and the tree in fig.
Y9(a) is just one of these. The height vector representation of
this tree is:

0123312321721 11
and the 1labelling of the +tree is shown in the diagram. The
lines in the co-tree are:

1 -2,1- 11, 1~ 12, 2 -3, 3 -~ 4, 4 - 5,

6 -9, 7- 8, 7-9,8~-9,8- 14, 13 - 14,

180

Of these only four lines, 1 - 12, 7 - 9, 8 - 9 and 13 - 14
satisfy the requirement that h(x) = h(y) + 7., By trying to
insert the line 1 - 12 into the tree we find that the line to be
removed is 11 - 12. If this is done the tree which results has
the same height vector as the original tree, and therefore the
previous spanning tree is retained.. The next co-tree line which
can be tried is the line 7 - 9. If this is done the line to be
removed is 6 - 7, and the resulting tree is shown in fig. 9(b).
This tree has height vector :
012323123121 11

which 1is 1less than the previous height vector according to our
earlier definitions. The list of lines in the co-tree is now

recomputed, and in fact 1t is the same list as before except

thatthe line 7 - 9 is replaced by the line 6 - 7. The whole
list is scanned again and now we see that the line 1 -- 12 can be
inserted to make an improvement. This time the line 11 -- 12 is

to be removed, and if this is done, the resulting tree is as
shown in fig. 9(c) and this tree has height vector

01232123123111

181

This turns out to be the final tree, as each of the new co-tree

lines are tried but without any improvement in +the spanning

tree,

In the example shown here, it is relatively easy to verify
by inspection that no better spanning tree can be found.
Fowever we are unable +to say that this algorithm will always
produce an optiral spanning tree, unless the algorithm is
extended to produce all spanning trees of the graph and select

the best,

Let us now consider the action of the matching algorithm on
the same graph. We have assumed in the previous example that
node 10 is to be reqarded as the centre, since it has degree 6,
which is greater than the degree of any other node in the graph.
Thus the partitioning algorithm will put node 10 into <class I,
and the centre of the gqraph may be selected on this basis. Now
there are 6 nodes adjacent to node 10 and they are nodes 1, 2,
3, 4, 5 and 11. These nodes can be attached immediately to node
10 which has already been designated as the root of the spanning
tree. We can now look at the sets of nodes at a distance 2 from

node 10, which are connected to nodes at a distance 1.

1 - {12,13}
2 - ¥4

3 - #

4 - V.4

5 - {6}

1 - {9,12}

These connectivity relations are displayed by the

182

bi-partite graph in figq. 10. and we see that a maximal
matching may be found containing the lines (1,12), (5,6) and
(11,9). The nodes 12, 6 and 9 are then attached to the spanning

tree and removed from the bi-partite graph. A maxinal matching

on the reduced
bi-partite graph 3 Y a 6
-3 <o
contains the one 1line
{1.13) and so the node
13 is inserted in the
. . o o o
sSpanning tree with node X . 3 - " <
T as its below. Fig. 10. .

At the second level the growing points are the nodes 12, 13, 6

and 9, and the corresponding sets of the level 3 nodes are:

12 - {14}
13 - {14}
6 - {7.8}
9 - {7.,8}

Node 14 is attached to
node 12, 7 to 6, and 8
to 9, and the final tree
is as shown in fig. 11.
it will be observed that
this tree has the same
height seguence as the
tree shown in fig. 9 (c)

although the labelling

1s different.

Finally we examine the row of the matrix S which

183

Corresponds to the node 10. This is:

11111233201223
The optimum way in which this can be arranged into a valid
height sequence is:

0612312312312 11
but unfortunately this cannot be fitted to any spanning tree of
the graph. This sejuence may be constructed by distributing the
€lements with value p+1 evenly amongst the elements with value p
consistent with the sequence remaining a valid height segquence.
The problem comes when we attempt to discover whether a
particular sequence has a corresponding spanning tree in the
graph. This can be achieved by considering all possible
assignments of nodes at a particular distance from the root to
the elements of the vector with that value. However, this could
involve a considerable amount of work, and thus it cannot be
Cconsidered as a practical method. This optimal seqguence can
however be thought of as a T'lower bound® on the possible
Spanning trees, and as such may be used to restrict the
Searching done by the improvement algorithm. The next smallest
vVector which can be constructed from the tenth row of the
Shortest distance matrix is:

012321231231 11
¥hich is the same as the height vector for each of the two
Previous optimum trees., It is now a matter of making an
assignment to the values in this height vector so that it
Tepresents a real spanning tree in the graph. In fact we have
already seen that there are at least two trees which satisfy

these requirements.

184

¥1.4.2 The Structure Tree.

A rooted tree may be considered as a representation of a
hierarchy. It is therefore not surprising that the
decomposition operations discussed earlier in this thesis should
display an hierarchical or recursive structure. By contrast, a
graph is essentially non-hierarchical and non-recursive in the
Tepresentations so far considered. This section is intended to
investigate the possibiliities of representing a graph by some
hierarchical structure. The general approach 1is to decompose
the graph (which we assume to be connected) by some convenient
Tule, and continue the decomposition recursively on the
Component parts. The representation takes the form of a tree in
Vhich each node is labelled to indicate the exact form of the

decomposi tion.

The decomposition operation is the operation of removing a
Spanning tree as described in the previous sections, and this
Spanning tree will then be used as the label representing the
decomposition. The comnnected components of the co-tree are each
treated as a separate connected graph and are decomposed
similarly. In fact, the methods of extracting the optimal
Spanning tree described here ensure that the co-tree is
aiseonnected, since all the lines from the root are put into the
Spanning tree, and the root itself is left as an isolated node
in the co-tree. This gives rise to the concept of a structure
tree for a graph. The graph is decomposed into a spanning tree
and a Co-tree. The root of the structure tree represents this

deComposition, and the spanning tree which is extracted is used

185

as the label for the root of the structure tree. The root of
the structure +tree has m nodes above it, where m is the number
of connected components in the co-tree. If any component is an
isolated point, the corresponding node of the structure tree is
not developed, otherwise this node is the root of the structure
tree for this component. Thus we arrive at a structure tree in
which each internal node is labelled with a spanning tree, and
each terminal node represents a single node of the original

qraph.

An example will help to show how the structure tree is
formed. By some means, we find the centre of the graph, and
then some algorithm such as one of the algorithms described
earlier is applied to find a spanning tree. Let us consider the
decomposition of the graph G shown in fig. 12, and the first
Spanning tree is illustrated in fig., 13. Let us refer to this
tree as the tree T, and let the co-tree be the graph C as shown
in fig.14. The tree T now labels the structure tree, and since
C has two connected components, there are two nodes in the
structure tree above the root. The node 3 of the original graph
is an isolated node in C, and therefore it requires no further
decomposition. Hence it also corresponds to a terminal node in
the structure tree. The other connected component of the
co-tree C can now be decomposed in the same way, and the
resultant spanning tree T, , and the co-tree C, are shown in
figs. 15 and 16 respectively. C, now consists of 5 connected
components, of which 3 are single nodes, and the other <iwo are
each trees with one line and two nodes. The structure tree S is

now of the form shown in fig. 18, where the internal nodes are

labelled with the tree
T, T,. Ty and T, , where
these Jatter two are
shown in fig. 17, and
the terminal nodes of S
are labelled with the
node labels of the

original graph G.

©7

186

187

v 1
Tl 2 18 3
Fig._ 17. Fig, 18,

Thus we completely represent the process of decomposing a
<raph by its correspondiny structure tree. Having decomposed a
graph into its structure tree, we would 1like to make this
rrocess reversible, i.e. from the structure tree with its node
labels can we reconstruct the original graph? Clearly this can
be done if the node labels of the graph are kept 1in each
Spanning tree as well as at the terminals of the struciture tree.
The guestion then 1is:y How much of this information can be
discarded such that the reconstruction can be done unambiguously
and successfully? This is still an open question, but we may
make some observations which allow us to reduce the ambiguities
which are present with the information which is available.
Firstly, since the extraction of the spanning tree implies that
all the lines incident to the root of the spanning tree are put
into the spanning tree, we know that there must be at least one
isolated node at each level of the structure tree, and the root
of +the spanning tree which labels each non-terminal node of the
Structure tree corresponds to one of the isolated points of the

co-tree associated with that spanning tree.

188

The second observation which can be made is to do with the
points which may legitimately be joined. Consider the graph 6
Shown earlier, in which an attempt is made to reconstruct the
traph corresponding to the spanning tree T and its associated
co-tree, Now by the way in which it was constructed we know
that T, is mushrooming with respect to the graph which it spans,
and the two lines that form T, and Ty join nodes x and y for
which }h (x) - h, (y)) £ 1 where h, (x) is the height of the node
X in the tree T,. However, even after applying this restriction
on the graph we still have a choice of how to compose this graph
With the tree T and we conclude that the structure tree alone
is not sufficient to specify a graph completely, but some
further information must also be carried. As has been pointed
out previously, to carry the node labels of the graph is clearly
sufficient, but considerably more than is necessary. Thus some
intermediate quantity of information must be carried, but it is

not immediately clear how much.

Some remarks may be made about the structure tree however

1. The total number of terminal nodes in the structure
tree is equal to the number of nodes in the graph.

2. The number of lines in the graph is also represented in
the structure tree. By remark 1, we know that the
number of nodes in a tree which labels a node x of the
structure tree is n(x), where n(x) 1is the number of
terminals of the structure tree which are contained in
the subtree whose root is x. Thus the number of 1lines
in the tree which 1labels x is n(x) -~ 1. Hence, the

graph which is represented by this subtree of the

189

structure tree 1s composed of the graphs represented by
the principal subtrees standing on x, and the tree
which labels x. Thus if yi (1 = 1,c...,k) are the nodes
above x, and w(x) is the number of lines in the graph

represented by the subtree standing on x, we have
&

2. Wiy + on(x) -1

.
(5 3)

W {X)

We also have
(Y

}E: n{y:)

Le

and for each terminal node t in the structure tree,

n {x)

n{t)y = 1, wit) = 0
Thus we may evaluate n(x) and w(x) for each node x in
the structure tree, and the number of nodes and 1lines
of the decomposed graph are given by n(r) and w(r)
respectively where r is the root of the structure tree

of the decomposition.

It is clear from the fact that any spanning tree of a graph
with n nodes has n-—-1 lines, and from the way in which the
structure tree is built, that the more lines there are in any
subgraph, the taller will be the corresponding portion of the
structure tree. For instance, if the graph to be decomposed has
only n~1 lines (the minimum number which it can have without
becoming disconnected) it is itself its own spanning tree, and
so the structure tree is the tree of height 1 with n+1 nodes,
the root being labelled with the spanning tree which is the
whole graph. On the other hand, if we Jlook at the structure
tree for the complete graph of order n, we see that the only
mushrooming spanning tree of this graph is the tree of height 1

with n nodes, and the co-tree consists of the root of this

190

spanning tree as an isolated node, together with the complete
4raph of order n-1. Hence the structure tree would be as shown
in fig. 19, vwhere the

T;, are the 1labels of Tas

the non-terminal nodes !

and the label T;, is the \

L
tree of height 1 with i
nodes. The structure L
tree in this case has
T;‘
height =n-1. Fig. 19.

By application of the tformula for the number of lines in the

4yraph corresponding to this tree we have:

w(r) w(ur(r)) + n - 1
= wf{ar (ur {x))) *+ ¢n - 1) - 1 + n - 1

= w(ur (ur(r))) + {(n - 2) + (n - 1)

= 1T+ 2% ... *+ (n~2)y* (n- 1

= n{n - 1)/2
which is indeed the number of lines in the complete graph of n
nodes. . (In the formula we denote the non-terminal node above

and to the right of node i by ur(i))..

This observation suggests that we may be abie to use the
notion of the structure tree to investigate graphs for highly
connected regions and in particular to 1look for complete
subgraphs sometimes known as <c¢liques., Such an investigation

deserves separate study, and is outside the scope of the present

work.

191

A complete study of the properties of the structure tree
has not been attempted, but it is felt that it is at least a
possibility for further work in the study of representations of
graphs, which field currently lacks a truly recursive and
hierarchical representation. A further advantage which may
tesult from such a study is the ability to apply our techniques
tor describing trees in a labelling independent way to the more

general problem of the description of an unlabelled graph.

192

In the preceding sections we have discussed methods which
are applicable to certain problems connected with the generation
or the decomposition of trees and graphs. All of the algorithms
described previously have been coded in the Algol W 1language
(see Wirth and Hoare 1966) for the IBM 360/67 computer. In the
following sections we describe some of the practical details of
the coding and give some indication of the size of problem that
may reasonably be tackled using these techniques.

VII.] Generation Of Trees.

Under this heading we describe the two methods of ordering
the set of trees as described in chapter IITI. In particular we
discuss the methods based on the two main representations

employed. .

VII.1.1 Height Representation.

As was pointed out earlier, the height representation did
not allow us to solve the problem of finding the k-th tree in
this set without storing the whole table of numbers of trees by
height and number of nodes as given by Riordamn (1960) (see also
Appendix 1I). However, a program was written which successfully
Jenerated the whole sequence of trees of a particular size by
generating each tree from its predecessor, the first being
supplied explicitly.,K The first program written to perform this
task took a very simplified view, by taking the first tree,

i.e. the tree with height sequence

193

011 ¢oc 1

and successively attempting to increase each element in turn,

beginning with the last element, subject to the constraint that

no element may exceed its predecessor by more than one, and

subject also to the constraint that the whole sequence must be a

valid height sequence. This, like the method described in Snow

(1966) , was inefficient in the sense that a number of complete

Sequences were generated and subsequently rejected. Thus the

time required to generate all the rooted trees was more nearly
related to the number of ordered rooted trees than to the number

of unordered rooted trees.

In Scoins (1968) , however, a very elegant recursive method
of producing the 1list of all rooted trees of n nodes is
presented. The heart of thls method is a recursive procedure

which determines the upper limit of any element in the height

vector by keeping a record of the element with which the current

element

is to be compared.
each element indicating the

value of that element if

conditions of the canonical

takes the

responsibility

ointers upon which this method relies.

it is possible to generate the

trees with a

given

without either generating any sequences which have

to

ensure the validity of any sequence produced.

method, the time

Thus a backward pointer is kept for.
subtree and the node which limit the

the sequence is to satisfy the

ordering. The Algol stack mechanism
for maintaining the list of backward

By keeping such a stack

height vectors of all rooted
number of nodes without duplications, and
subsequently

be rejected or requiring any complicated checking process to

Thus using this

taken to generate all the trees is much more

194

closely related to the number of rooted trees, i.e. the time

taken per tree is more nearly constant.

VII. 1.2 Weight Representation,

A program was written to discover the k~-th tree with n
nodes for any n, and any k, 1 2 k 2 T. 1in the Cayley (weight
representation) ordering, but since to some extent this involved
counting wup through the trees with partitions less than the
partition of the k~-th, it is not a fair comparison to generate
the k~th tree for each k = 1,...,T,, and compare this method with
a technique in which each tree is generated from its
predecessor. This is because in generating the (k+1)-th tree, a
large amount of work already done in finding the k-—th tree is
repeated. However this method, it is claimed, has a different
function from that of generating all trees of a certain size and

1s therefore to be considered on its own merits.

We recall that the weight representation uses the number of
nodes in a subtree (or the ‘weight? of a subtree) to describe
the node at the root of each subtree, and that for a tree with n
nodes, the weights of the nodes adjacent to the root form a

partition of n-1. This was discussed in section III.3.2

The program discovers first the partitiom ot the k--th tree,
by inspecting each partition in turn and asking how many trees
there are with this partition, and subtracting this value from
k. When the value of k finally becomes negative we know that
the current partition is the ©partition corresponding to the

required tree, and that we regquire the k'-th +tree with this

195

yartition, where k' is the last value taken by k before becoming
negative. The next step 1is to set wup a vector kd({i) i =
1p00c,p where p is the number of parts in the partition for the
required tree, and where kd (i) is the index number of the tree
0f size part(i). This tree may then be found recursively for
each i, and the weight representations of these trees may be
inserted into the appropriate positions in the weight vector to
chtain a complete representation of the k-th tree with n nodes

in the Cayley ordering.

The problem of generating all trees in the Cayley ordering,
disregarding the problem of generating the k-—-th tree, is
somewhat more akin to the problem of generating the last (T,- th)
Such tree by the method described above. This is because it was
tound necessary to ‘Ycount through? all the other trees in the
set in order to find the last, and the action of actually
Jenerating them on the way past is a relatively small amount of

additional work.

The comments made here about the amount of work reguired by
these various methods are summarised in table I, in which
programs A, B and C are respectively Scoins' method for
generating trees by height sejuence, the method which finds the
k~th tree for k = 1,...,T., and the method which generates the
Tw-th tree, but is extended to display the other trees
Yincidentally"®. The programs were all written in Algol W and

the figures are seconds of 360/67 CPU time.

196

n Prog.A Prog.B Prog.C
5 0.05 0.10 0.04
6 0-.10 0.31 0.12
7 0.23 1.13 0.40
8 0.53 .11 1.03
9 1.39 15.52 2,76
10 3.81 60.76 7.65
Table I.

{42
(o]
H
{a7]
o
o]
Ps
i
e}
2
bt
i
o
H
'.J.
‘-’-
=2
=
o

VII.2 The Canonica

Some indication of the time reguirements for Corneilfs
algorithm as described in <chapter IV are given in the final
chapter of Cormneil’s thesis (Corneil 1968) , in which he <claims
that the isomorphism algorithm which he describes has a running
time proportional to n* where n is the number of nodes in the
qraphs, and k is related to the highest 1level of strong

reqularity of any subgraph in the graphs, and that if the graphs

are no more than 2-strongly regular, then k = 5. This is a
significant improvement over previous graph isomorphism
algorithms, for which the worst case running time would

apparently be proportional to ni! for a pair of n node graphs.
Corneil deals in some detail with the establishment of timing
estimates for all his algorithms and examines the performance of
his isomorphism algorithm on a series of special classes of
graphs, such as polyqons and generalisations of polygons. He

also shows that his estimated results agree very closely with

197

the observed timings. Another observation made by Corneil is
that his observed results suggest that most pairs of graphs can
be tested for isomorphism in a time considerably less than the

upper bound of nS, and in general the time required is

proportional to about n3.

The whole of Corneil®s algorithm has been re coded in Algol
¥ and tested on a number of +trial graphs. It has not been
rossible to perform a satisfactory series of tests on the
performance of this algorithm, since this should be done by
qenerating a large number of random graphs with n nodes and
taking the average time for the execution of this algorithm for
various values of n. The disadvantage of this method is a lack
of understanding of what is meant by randomness imn graphs. A
very crude method would be to generate random upper triangular
binary matrices with various controllable parameters, such as
the number of nodes n, and the density (the proportion of ‘onesV
in the wmatrix). This method, however, does not allow any
control over the structural properties of the graph. We are
unable even to guarantee connectedness (or otherwise) of the
¢raphs produced by this method. The algorithm was howvever
tested on a sample of graphs of various sizes and all that can
be said is that our observations agreed to a significant extent

with those of Corneil and with his theoretical predictions.

The algorithms developed to generate graphs, discussed in

Chapter V, were somewhat disappointing in their performance, in

198

the sense that the generation of any qraphs with more than about
8 nodes seemed to be quite impractical by these methods.
However, it must be pointed out that this is at least in part
due to the explosion of the number of graphs to be generated. A
more meaningful measure would perhaps be the rate of generation
ot the graphs, that is, the time per graph taken by a particular

algorithm.

VII. 3.1 The Sieve Alqorithm.

In spite of the fact that the sieve algorithm was able to
use the canonical ordering algorithm to determine the
automorphism partitioning and hence the automorphism group, it
still turned out to be necessary to obtain every permutation in
the set of n! for each distinct graph generated. Thus it was
hecessary to generate a total of n¥xg, permutations, where g, is
the number of graphs with n nodes. This method could only be
Justified if the cost of applying a particular permutation to a
graph is significantly more than the cost of multiplying
permutations. This is clearly not true in the representations
which have been chosen here, and we conclude by saying that nt!
operations (in this case permutation multiplications) per graph
is unacceptably high. Beside this figure, the additional
requirement of (say) nS for discovering the automorphism group
of each graph may be reqarded as negligible.

VII.3.2 The Equivalence Graph.

Before we discuss the efficiency or otherwise of the

199
equivalence graph method of

generating
nodes,

all the
appropriate to digress a little,

asymptotic behaviour of the sequence g, for n

graphs of n
it is

and look at the

= 1, 2,

From the work ot Harary

(1955) and also Davis (1953) we
have an expression for ga:

d(x)
g. = J,L! 2. 2

. reP,
where d (a) is given by

d=) = > pu [[k/2] % kipe- DY+
> Py Pu (hok)
hah
where (h,k) is the

highest common factor of h and k, and the
cycle class of the permutation X is

given by (PvoPrvooeciPn)e
The minimum value of d(x) is taken for any cyclic permutation,
wvhere the cycle class is (0,0,...,.,1). In this case,

d(x) = [n/2]
Thus, g. is a sum of n' terms each of which is not 1less than
L, Eniad
2 /nt!. Hence
nfa)
dn 2 2
Similarly, the 1largest value of d(» appears when W is the
identity permutation, whose cycle class is (n,0,...,0). In this
case
df<y = n(n-1)/2
Thus, by a similar argument to that given above,
n(n-n"&
Jun < 2
This is in fact only a confirmation of the fact that there
are fewer unlabelled graphs than

there are labelled graphs,
which, as ve saw in chapter V, can be represented by the set of
bitstrings of length n (n-1)/2.

200

It 1is clear, however, that the number of graphs is related

in some way to 2k where
n/2 < x € n(n-1)/2

The number of nodes in the eguivalence graph is 2"‘(“"Hl and
the number of connected components is g, which is proportional
to some power of 2. It is therefore clear that while the size
of the equivalence graph is growing faster with n than is the
number of connected components, the difference in rates of
qrowth is not as marked in this case as it was in the case of
the sieve algorithm. As for the program to find these graphs,
it was felt that the number of permutation applications required
to establish the connectivity of the equivalence graph was a
fair measure of the work required to obtain the set of graphs.
It was observed in the examples tried that the number of such
applications required appeared to be approximately proportional

to the number of nodes in the equivalence graph, the constant of

proportionality being about 1.4§.

The 1largest value of n for which graphs were actually
senerated was 6. There were two reasons why no more were
attempted.

(a) this took 90 secs. of CPU time, and it was estimated
that n = 7 would require 90 minutes.

(b) the space requirement for representing the equivalence
graph wvas causing a problem, since the graph for m = 7

wvould have 221 podes.

201

In this section there are two distinct aspects to consider.
Firstly, it is necessary to generate all the qgqraphical
rartitions of length n, and secondly, the set of graphs with
this partition has to be completely generated. The algorithams

under discussion here are described in section V.5.

As regards the set of graphical partitions, it is expected
that the time taken to generate a single partition from its
rredecessor would be proportional to n. 1In fact, the algorithm,
in broad outline, scans along a partition lcoking for an element
to reduce, and havinyg found one, it moves back to the beginning
of the partition recomputing all the earlier elements. Thus we
may expect to have +to recompute on average one half of the
elements at each stage. 1In any case the recomputation required
is proportional to n. Actually, as table II shows, the time
required per sejuence seems to be proportional to some power of
n which is slightly greater than omne. This can perhaps be
explained by observing that the algorithm actually generates
some partitions of odd numbers which satisfy the criteria, and
these of course have to be discarded as non-graphical. In terms
of feasibility, however, we see that we can generate all the
craphical partitions of length 9 in only 30 secs, and thus it is

,uite practicable to generate these and possibly also those of

length 10 and 11.

202

n no. of time time/seq
sequences (secs) (ms/seq)

4 11 0.06 5.45

5 31 0.16 5.16

6 102 0.53 5.20

7 342 1.86 5.44

8 1223 T.42 6.07

9 4450 34,78 7.82

Table IT.

The creation of an initial graph with a given partition is
trivial, particularly it the adjacency matrix is wused to
represent the graph. The generation of all graphs with a given
partition is however a completely unknown quantity as far as any
analytic treatment is concerned. All that is possible at

Present is to quote some experimental observations.

We saw in the example at the end of chapter V that there
were a total of 18 different U4-tuples to be inspected, whereas
the number of graphs which were actually produced was 5, and one

of these was found directly.

e NN 4

We present here some general remarks Telated to the
performance of the various factorisation techniques described in
the preceding chapter. As in section VII.2, these technigues

are highly dependent upon the actual structure of the graph, and

203

it is therefore necessary to perform a series of tests, applying
the algorithes to a large number of randomly generated graphs.
Agqain we must remark that the subject of randomness in graphs is
not well understood, and thus such tests are of limited value

only.

VII. 4.1 Matchings.

Edmonds suggests that his method operated in time
yroportional to n* for finding a maximal matching on a graph of
n nodes. His argument was based on some very generaliseq

. . opevation
Statements about the maximum number of times a partlcular/can be
carried out, and how many operations are involved in these
operations. Now while Edmonds' estimate is only presented as an
upper bound on the method, we claim that it is far from being a
precise upper bound. For instance, Edmonds remarks that the
matching can be found by growing an alternating tree from at
most 1n points, and the alternating tree algorithm requires tinme
proportional to n3 to find an augmenting path and amend the
matching. Apart from the trivial observation that only n/2
trees are required, since each improvement in the matching
includes two further nodes, we also observe that in at least one
case, and except for very special graphs in other cases as well,
the operation of finding an augmenting path is simply that of
finding a node adjacent to the root of the alternating tree,
which is an order n operation at most. This case arises when
the matching is empty, i.e. when the first alternating tree is

being grown.

204

The method of backtracking to find a perfect matching, in
common with most backtrack type alqorithms can be unpredictable
with reqgard to 1its re_ uirements. In the best possible
situation, as would be the case in (say) the complete graph, a
rerfect matching can be found in as few as n/2 attempts (where
an attempt is to be thought of as removing a 1line and its
end-points from the graph), whereas in general it would be more
¢ifficult than this. In the worst case, and this includes all
those cases vhere the algorithm fails to find a perfect
matching, the work done will be nearer n! than n. This method,
as was noted earlier, also has the disadvantage of failing
completely when no perfect matching exists, while on the other
hand, EFdmonds' algorithm will always find a maximal matching,

whether this is perfect or not.

VII.4.2 Articulation Points.

The most efficient spanning tree finding algortihm will in
theory operate in time proportional to m, the number of lines in
the graph, but in practice this is probably more like n2 for
most implementable algorithms. This we will use as the starting

point for our discussions.

The articulation point algorithm as described in the
preceding chapter will reguire an amount of work proportional to
n?, vwvhere ¥ is the work required to find a spanning tree in a
graph. This is an upper bound, since we need to grow at most
one spanning tree for each node. We notice in passing that the

operation of growing a planted spanning tree is no different

205

from growing any other type of spanning tree. The slight saving
to be made by marking all the terminal nodes of any spanning
tree, so that no spanning tree is reguired from these nodes,
will only make a difference of an approximately constant factor
in the time of operation of the algorithm. This factor appears
to be around 2/3, but is of course dependent on the actual graph

being considered.

VII.4.3 Spanning Tree Algorithms.

The time % to grow a spanning tree on a graph is of course
the time required to grow a labelling dependent tree, and the
algorithas described in section VI.U require more operations
than those required for any spanning tree. 1In the first place,
a mushrooming tree requires more work than a general tree. With
regard to the improvement algorithm, although the number éf
choices of lines which are candidates for insertion is much
smaller than the total number of lines in the co--tree, and once
a choice has been made, the line to be removed from the tree is
completely determined, there seems to be no way of predicting
the number of iterations which may be carried out by the

algorithm.

The matching method for comnstructing the first mushrooming
spanning tree is of course trading time to set up this tree for
{hopefully) a saving in +the number of iterations of the
improvement algorithm. £ No detailed comparisons have been
carried out, but preliminary observations suggest that a small

amount can be saved by combining these two algorithms. Some

206

more concrete results on the extraction of spanning trees from a

gqraph are reported in Chase (1970).

VII.U.4 Complete Decomposition.

The complete decomposition of a graph, and the construction
of a structure tree is simply a repeated application of the
Spanning tree algorithms described earlier. One decomposition
is required for each internal node of the structure tree, and
the number of these is related in some way to m, the number of
lines in the original gqraph. A first estimate ot the work
required to perform the complete decomposition of a graph would

then be m?.

VII-4.5 Summary.

The somewhat imprecise remarks made above about the
performance of the algorithms described under the general title
of Factorisation are included to illustrate two main facts.

(i) Considerably more effort is required to understand more
fully what is meant by ‘randomness® in graphs, and the
‘expected’ performance of an algorithm operating on a
‘typical® graph. .

(ii) A1l of these algorithms work in time proportional to
some power of n, where this power 1is fairly small.
This means that, in general, the amount of time
required by any of these algorithms will not be
embarrassingly qreat, and that any graph which can be

fitted the main store of a nmodern computer can be

207

processed in a reasonable time. This is in contrast to
the methods (such as those described in chapter V)
where the number of entities (e.qg. graphs) is
exploding as n increases, and although the objects may
be quite small in themselves, the number of them, and
hence the time reyuired to generate them all, is

increasing in an unmanageable way.

2 Conclusions.

In this final section we attempt to make some remarks about
what has been achieved in the work, and to drav together all the
final remarks which can be made about the work as a whole. In
addition we wish to point to further problems and investigations
along the same lines which we feel it would be profitable and

interesting to pursue.

In the tree section there is not a great deal to say.
Clearly we have not exhausted the possibilities for representing
trees, but ve have been successful in that the two
representations on which vwe have Dbeen concentrating our
attentions have both yielded reasonably satisfactory methods of
generating trees, the second of which - the weight
representation -~ relates this generation very closely to one

method of counting trees.

It is unfortunate, but seemingly unavoidable, that the two
representations are to some extent in conflict. The natural
ordering of the trees, as displayed by the height

representation, is more closely related to the structure of the

208

tree thanm 1is the weight representation, but the weight
representation 1is bound to be more related to the counting

Sequences because these latter are always expressed in terms of

numbers of nodes. A radically different approach to the
counting problenm could perhaps reconcile these two
representations.

With regard to the graph isomorphism problem, we raised two
ijtestions related in detail to the work of that chapter, namely,
the reconstruction of a qraph given only its cycle vectors or
its vertex quotient graphs. A more general problem might be
attacked using some modifications of specific techniques used in
this work, and that is the subgraph isomorphism problem. Given
two graphs A and B, is the grarh A isomorphic to any subgraph of
B? This problem seems to be inherently more difficult than the
straight isomorphism problem, since the implied (or explicit)
Set equality relations between nodes are now set inclusion
relations, and whereas in the isomorphism problem corresponding
nodes were required (for example) to have equal deqrees, the
relation between deqrees of corresponding nodes are now
inequalities. Whether the methods of partitionings and
refinements of partitionings, and the quotient graph notion will
Generalise to the subgraph isomorphism case is still an open

(and this author believes, interesting) gquestion.

The graph indexing problem was not solved completely to our
satisfaction, in the sense that it is felt that a more efficient
method should be possible. However we have made some progress

in this field by the comparison of the two methods presented,

209

and also the algorithms in connection with the generation of
sraphs by partition. It 1is felt +that further study of the
representation of graphs would help in the search for a more
efficient method of generating all graphs, and we might further
hope that the problem ot generating any objects which may be
Counted using Polya's theorem. This implies, incidentally, that

qraphs with a given partition may also be generated.

The section on factorisation shows a number of methods for
extracting a spanning tree from a graph which in some sense may
be regarded as ‘Yoptimal' or ‘near optimal'. We feel however
that there are many other algorithms which would give similar
results, but which may have the added advantage of making a
proof of optimality possible. We also feel that the properties
of the structure tree have not been fully explored, especially
with regard to the problem of finding cliques in a graph. It
also seems possible that the discovery of ‘near—-cliques' i.e.
subgraphs which are nearly but not entirely complete, could be
effected using the idea ot the structure tree. This may lead to
A new way of defining and discovering clusters in a graph, which
could have applications in a number of fields, two such being

information retrieval and linguistic analysis.

210

Augustson J.G. and Minker J. (1970) An Analysis of some Graph

Theoretic Cluster Techniques. J.A.C.M. 17 pp571 -~ 588

Berge C. (1958) The Theorv of Graphs. Dunod Paris (Tr. by A&

Doig Methuen London 1962)

Busacker R.G. and Saaty T.L. (1965) Finite Graphs and Networks:

An Introduction with Applications. McGraw-Hill New York

Cayley A. (1889) Collected Mathematics Papers, Cambridge 3

p242, 9 pu27, 11 p365

Chase S. (1970) Analysis of Algorithms for Finding All Spanning
Trees of a Graph. IBM Research Report RC3190 Yorktown

Heights, New York.

Corneil D.G. (1968) Graph Isomorphism. Ph.D. Thesis,

University of Toronto.

Corneil D.G. . (1972) Algorithm to Find the Automorphisnm

Partitioning of a Graph. B.I.T.. 12 ppl6t - 171

Corneil D.G. and Gotlieb C.C. (1970) An Efficient Algorithm for

Graph Isomorphism. J.A.C.H. 17 pp 51 - b4

Davis R.L. (1953) The Number ot Structures of Finite Relations.

211

Proc. Amer. Math. Soc. 4 ppi486 - 495

de Bruin N.G. (1964) Polya’s Theory of Counting. in Applied

Combinatorial Mathematics (E.F.Beckenbach ed) Wiley New

York

Dijkstra E.W. (1959) A Note on Two Problems in Connection with

Graphs. Num. Math 1 pp269 - 271

Edmonds J. (1965) Paths, Trees and Flowers. Canad. J. Math.

17 ppll9 - 467

Erdos P. and Gallai T. 6 (1960) Graphs with Prescribed Degrees of

Vertices. Math., Lapok 11 pp264 - 274

Fortet R. (1959) Lfalgebre de Boole et ses Applications en
Recherche Operationelle. . Mimeograph, Societe de

Mathematigues Appliquees

Gotlieb C.C. and Corneil D.G. (1967) Algorithms for Finding a
Fundamental Set of Cycles for an Undirected Linear Graph.

C.A.C.M. 10 pp780 -- 783
Hakimi S. {1962) On the Realizability of a Set of Integers as
Degrees of the Vertices of a Graph. Jd.. SIAM Appl.

Math. 10 ppl496 - 506

Hall P. (1935) On Representatives of Subsets. J. Lond. Math.

212

Soc. 10 pp26 - 30

Harary F. (1955) The Number of Linear, Directed, Rooted and

Connected Graphs. Trans. Amer. Math. Soc. 78 pplli5 -

463

Harary F. (1960) Unsolved Problems in the Enumeration of
Graphs. Pubi. Math. Inst. Hungar. Acad., Sci. §
pp63 - 95

Harary F. (1964) Combinatorial Problems in Graphical
Enumeration. in Applied Combinatorial Mathematics

(E.F.Beckenbach ed) Wiley New York

Harary F. (1967) Unsolved Problems in Graphical Enumeration

ITI. in Graph Theory and Theoretical Physics (F.Harary

ed) Academic Press New York

Harary F. (1968) The Theory of Graphs.

Addison--Wesley, New

York

Harary F., ©Norman R.Z. and Cartwright D. (1965) Structural

Wiley, New York

Harary F. and Prims G. £ (1959) The Number of Homeomorphically

Irreducible Trees and Other Species. Acta Math. 101

ppl4t - 162

213

Knuth D.E. (1968) The Art of Computer Programming: Volume I.

Addison-Wesley, New York

Ledermann W. (1961) An Introduction to the Theory of Finite

Groups. Oliver and Boyd, Edinburgh

Lehmer D. H. (1964) The Machine Tools of Combinatorics, in
Applied Combinatorial Mathematics (E.F.Beckenbach ed)

Wiley New York

Liu C.L. (1968) An Introduction to Combinatorial Mathematics,

McGraw-Hill New York

Meetham A.B. (1968) Partial Isomorhisms in Graphs and Strucural
Similarities in Tree-like Organic Molecules. Proc. IFIP

Congress, Edinburqgh ppa108 -~ A110

Mulligan G.D. (1972) Algorithms for Finding Cliques of a Graph.
Technical Report TR41, University of Toronto Computing

Centre

Mulligan G.D. and Corneil D. G-« (1972) Corrections to
Bierstone’s Algorithm for Generating Cliques. J.A.C.M.

19 pp244 - 247

Nicholson T. (1966) Finding the Shortest Route between Two

Points in a Network. Comp.. J.. 9 pp275 - 280

214

Obruca A.K. (1966) The Representation and Manipulation of Trees
and Linear Graphs within a Computer and Some
Applications. Ph.D. Thesis, University of Newcastle

upon Tyne

Otter R. {(1948) The Number of Trees. Ann. of Math. 49 pp583 -

599
Page E.S. (1971) Systematic Generation of Ordered Seguences
using Recurrence Relations., Comp. J. 14 pp150 -~ 153

Parthasarathy K.B. (1968) Fnumeration of Graphs with Given

Partition. Canad. J. Math. 20 pp40 - 47

Paton K. (1969) An Algorithm for Finding a Fundamental Set of

Cycles of a Graph. C.A.C.M. 12 pp514 - 518

Pohl I. (1969) Bi-directional and Heuristic Search in Path
Problems. SLAC--104, Stanford Linear Accelerator Center,

Stanford, California

Polya G. (1937) Kombinatorische Anzahlbestimmungen fur Gruppen,

Graphen und Chemische Verbindungen. Acta Math. 68 pp145
254

Read R.C.. (1969) Teaching Graph Theory to a Computer., in

Recent Progress in Combinatorics (W.Tutte ed) Acadenic

Press, New York

215

®ead R.C. and Parris k. {(1966) Graph Isomorphism and the Coding
of Graphs. UWI/CC3Y Research Report, University of west

Indies

kiordan J. {1960) The Number of Trees by Height and Diameter.

BN J. Res. bDev 4 vr473 - 478

5coins H.I. (1967) linear oraphs and Trees. In Machine

Intelligence 1 (N.L.Collins and D.Michie eds) ppi - 15

Scoins H.I. (1968) Placing Trees in Lexicographical Order. In

Machine Intelligence 3 (D.Michie ed) pph3 - 60

Snow C.R. (1966) An Investijation into the Eguivalence of Free

Trees. M.Sc. Dissertation, University of Newcastle upon

Tyne
Snow C.B. and Scoins B.L.. (1969) Towards the Unique
Decomposition of Graphs. in Machine Intelligence 4

(B.Meltzer and D.Michie eds) ppl5 - 55

Sussenguth E.H. {1965) A Graph-theoretic Algorithm for Matching

Chemical Structures. J. Chem. Doc. 5 pp36 - 43

Turner J. (1969) Keyword Indexed Bibliography of Graph Theory.
in Proof Techniyues in Graph Theory (F.Harary ed)

Academic Press, New York

216

Ulam S.H. (1960) A Collection of Mathematical Problems Wiley

(Interscience) New York

Unger S.H. (1964) GIT - a Heuristic Program for Testing Pairs

of Directed Line Grarhs for Isomorhism. C.3A.C.M. 7 pp26
- 34

Warshall S. (1962) A Theorem on Boolean Matrices. J.A.C.M. 9

ppl1l - 12

Wirth N. and Hoare C.A.R.. {1966) A Contribution to the

Development of Algol. C.A.C.M. 9 ppl13 - 432

Witzgall C. and Zahn C.T. (1965) Modification of Edmonds?
Maximum Matching Algorithm. J. Res. Nat. Bur. Stds.

69B p9

217

Appendix I. Counting Series For Trees And Graphs.

In this appendix, we give the methods by which the various
numbers which have been used in this work may be computed, and

the numbers themselves are also presented.

Al:.1 Ordered Rooted Trees.

The method by which the number of ordered rooted trees of n
nodes may be computed 1is suggested in chapter III. By
considering an ordered rooted tree as being composed of two
parts, one with i nodes, and the other with n—-i nodes, we have
the recurrence relation

(1) olzoooqovocqoooc\v“=Zj;'\jn_; DZZ
where 'jkis the number of ordered rooted trees with n nodes. If
ve also define

Y, =

we may deduce the generating function equation

x) =x + (] x))2

I

where

1
™
d
b
5

'j(x)

It is equation (1), however, which is used to compute the

values of jhv and these values are given in Table I for n =

14/00‘2172“"

n "j"
1 1
2 1
3 2
gy)
5 14
6 42
7 132
8 429
9 1430
10 4862
11 16796
12 58786
13 208012
14 782900
15 26744480
16 9694845
17 35357670
i8 129644790
19 477638700
20 1767263190
21 6564120820
22 24466267020
23 91482563640
24 343059613650

218

219

R1. 2 Rooted Trees.

It was demonstrated in chapter III that of the two methods
tor counting unordered rooted trees discussed, each was
cerivable from the other by a suitable piece of algebra on the

<enerating function ejuations.

The Cayley method of «counting trees was the simpler to
implement, but it involved jenerating all the partitions of n-~1

(for the number T of trees with n nodes). If it is only

[,
required to find the values of T, for n = 1,2, etc., a method

using Harary and Prins equation is more convenient. Harary and

Prins showed that if

[- -
T (x) = D T, x"

w4

where T, is the number of trees with n nodes, then

T (x) = x exp { i T (x) / r}

2y
Now let
A{x) = Ti{x) / X
and
= b
B(x) = 2 T(x") /¢
where v
A{x) = a, + a,x + a,x2 + ...
and
B(x) = b, + b,x + b,x2 + ..,
then
A(x) = exp { B(x) }

Pifferentiating with respect to x, we have

A¥ {x} = exp { B(x) } B (x)

A(x) B' (x)

This immediately leads

2
a, + 2a,x + 3a,x? +

or

na, =
(2) ceecvoececonceeccd, =
Now we also have

B (x)
1.e,

0o

Z

N=O
and thus

b,, =

Thus replacing k+1 by p,
(3)

ccoocencocecooaND =

by

Equations (2) and (3), t

T, =

are sufficient to calculate all the a's,

(a +a\x + a;xz + ot,q)

<

(b, + 2b,x + 3b3x2 + coo)

agnb,

2 ib; ah-i

R

= i T(x")/r =

+ a, (n"‘})b“_‘ + oo + a b

L2]

o
2. Xann)

=i Y= v
00 @0 k
box" = > x7 E ax
v=t1 Y kh=-o

NI
v{Re)z
vy, h)@

and multiplying by n, we have

2. o = 2. P2y,

vh=w oft dulasst
AT P oo w

ogether with the relation

L]

b's and T's.

numbers are given in Table II.

220

These

n Tn
1 1
2 1
3 2
4 4
5 9
6 20
7 L8
8 115
9 286
10 719
1 1842
12 4766
13 12486
14 32973
15 87811
16 235381
17 634847
18 1721159
19 4688676
20 12826228
21 35221832
22 97055181
23 268282855
24 743724984
25 2067174645
26 5759636510
27 16083734329

221

222

A similar technij ue may be used to compute the number of
trees with n nodes and height h. Riordan (1960) shows that
™ = xexp i S ™ xmy/r)
where T(® (x) is the generating functir;‘rx for the numbers of trees
with maximum height h. The generating function for trees with
height exactly h is therefore

T&%x) - T“‘*x)

If we now define

W = ™ s ox

and
(= w
Mx = > ™a™ s«
)
by analogous manipulation to that used previously, we have

nat’°= zz ié*’ﬁ““)

< n-e

e
and
W) _ (»)
nb" - Z\ PaP"'
afe da ot
X
Now by choosing suitabie boundary conditions, namely
(> .
w = 1 for all n 2 2
and
&
at = for all h 2 1
we may compute the values of é:’o These numbers for n =

Tyoecgs20 and h = 0,.,,,19 are given in Table III.

223

1 2 3 4 5 6 7

h
0 1 0 0 0 0 0 0
1 0 1] 1 1 1 1
2 0 0 1 2 4 6 10
3 0 0 0 1 3 8 18
4 0 0 0 0 1 4 13
5 0 0 0 0 0 1 5
6 0 0 0 0 0 0 3
8 9 10 11 12 13 14

h
0 0 0 0 0 0 0 0
1 1 i 1 1 1 1 1
2 14 21 29 41 55 76 100
3 38 76 147 277 509 924 1648
4 36 93 225 528 1198 2666 5815
5 19 61 180 498 1323 3405 8557
6 6 26 9y 308 941 2744 7722
7 1 7 34 136 487 1615 5079
8 0 1 8 43 188 728 2593
9 0 0 1 9 53 251 1043
10 0 0 0 1 10 64 326
11 0 0 0 0 1 1 76
2 0 0 0 0 0 1 12
13 0 0 0 0 0 0 1

Table IIT.

S —— T v

15 16 17 18 19 20

h
0 0 0 0 0 0 0
i 1 1. 1 1 1 1
2 134 175 230 296 384 489
3 2912 5088 8823 15170 25935 44042
4 12517 26587 55933 116564 241151 495417
5 21103 51248 122898 291579 685562 1599209
6 21166 56809 149971 390517 1005491 2564164
7 15349 45009 128899 362266 1002681 2740448
8 8706 27961 86802 262348 776126 2256418
9 3961 14102 47816 156129 494769 1530583
10 1445 5819 21858 77878 266265 880883
11 414 1948 8282 32695 121963 1435168
12 89 516 2567 11481 47481 184903
13 13 103 633 3318 15564 67249
14 1 14 118 766 4218 20697
15 0 1 15 134 916 5285
16 0 0 1 16 151 1084
17 0 0 0 1 17 169
18 0 0 0 0 1 18
19 0 0 0 0 0 1

Table III. {cont)

224

Al.4 Free Trees. .

225

Table IV gives the number of free trees with n nodes for n

= 1,...,27, and these are computed directly from the values of

T, (given in Table II) using Otter's formula:
t(x) = T(x) - 4{ T(x)2 ~ T(x?)
where t(x) = t,x + t,x2 + ... is the generating
free trees, from which we obtain:
to= T. - $2. TT, v AT.

b2
13

P.q-u

where T,, is considered to be zero when n is odd.

}

function for

n ta
1 1
2 1
3 1
1} 2
5 3
6 6
7 11
8 23
9 47
10 106
11 235
12 551
13 1301
14 3159
15 7741
16 19320
17 48629
18 123867
19 317955
20 823065
21 2144505
22 5623756
23 14828074
24 39299897
25 104636890
26 279793450
27 751065460

Table IV,

226

227

AI.> Graphs.
In Harary (1955) we learn how to count the graphs with n
nodes and m lines. This method, however, involves the

yeneration of all the cycle classes of permutations in the
symmetric group of order n, which implies the generation of all
the partitions of n. A program was written to obtain these
values, but the method was extremely time consuming, and so no
values were obtained for n > 7. The values which were computed
are given in Table V. A slightly quicker method for computing
the total number of graphs of n nodes is based on the method of

Davis (1953).

5 6
m

0 1 1
1 1 1
2 2 2 2
3 3 4 5
4 2 6 9
5 6 15
6 6 21
7 4 24
8 2 24
9 1 21
10 1 15
11 9
12 5
13 5
14 1
15

228

229

In chapter IV it was pointed out that Corneil®s aljorithnm
only works in tim proportional to nS provided the qraph under
consideration does not contain a particular type of subgraph.
The condition on this subgraph is that it should not be

2-strongly regular.

A 2-strongly regular graph (2-SR) is a graph G = (V,E) in

which

(a) for any two nodes x,y € v, s.t. (x,y) € E,

I{viv e Vv, (x,v) e E, (y.v) € E}|

Ph
I{vIv eV, (x.v) ¢ B, (y,v) ¢ E}| = p.

VIV € V. (x,v) ¢ E, (y.v) ¢ E}| = p&
(a) for any two nodes x,y € Vv, s.t. (x,y) ¢ E,
I{viveV, (x,v) € E, (y,v) € E}| = p&
Ii{viv €V, (x,v) € E, (y.v) ¢ BE}} = Pio
I{viv € ¥, (x,v) ¢ E, (y,v) ¢ E}| = p&

vhere pz are constants for a particular graph.

It can be seen that this concept is an extension to two
nodes, taking into account the two cases where the nodes are
“oined and not joined, of the concept of reqularity, which could
be restated as

for any node x,

1]
=

I{viv €e vV, (x,v) € E}|

]
et

I{viv € Vv, (x,v) ¢ E}I (= n - k)

From this definition of 2-strong regularity we can see
(1) G is reqular with degree k

(ii) kX =1+ py * Pro

230

(iii) k = puw * Pl

(iv) n=24+p, * 2pe * Poo

(v) n=2+p, +2p;, * Pee
For the graph in
tig. 1., we have

n= 10, k = 3 1

bh = 0, pl = 2 ; .
I)v‘o = 4, P?o =1
‘e r Pee ? o 3
This graph, however, is ‘ ©
also transitive (see

- e
chapter IV for the
definition of < Y
transitive). Fig._ 1.

Corneil shows that in a 2-SR graph, each node has the same
vertex gquotient gqraph, and gives an example of a 2-SR graph
which is not transitive. This graph has 26 nodes, and 1is the

smallest known non-transitive 2-strongly regular graph. .

In order to distinguish between nodes of a 2-SR graph, the
2~vertex quotient graph is defined. A partitioning of the nodes
of the graph into the sets {x}, {y}, V-{x,y)} for some pair of:
nodes x and Y, gives a starting partitioning of the nodes for
the refinement algorithm. The final partitioning given by the
algorithm defines a quotient graph which 1is known as the
2-vertex quotient graph for the nodes x and y, and this graph is
called Q.4y. Thus for any node x, we have a set or family of

2-vertex quotient graphs Q., for all y € V-{x}.

231

The idea of 2-strong reqgularity may be extended to 3-strong

regularity.

A graph G = (V,E) is 3-strongly regular if:
(a) for all x,y,z e Vv, s.t. (x,¥) ¢ B, (y.,2) € E, (2,x) € E,
I{viv e V., (v,x) ¢ E, (V,Y) € E, (v,2) € E}| = p},

(1]

Pue

i

i{vive Vv, (v,x) €E, (v,y) € E, (v,2) ¢ E}|
I{viv € V,(v,x) € E, (v,y) ¢ E, (v,2) 4 E}| = pi
1{viv € V, (v,x) ¢ E, (v,y) ¢ E, (v,2) 4 E}] = po&
(a) for all x,y,z € V, s.t.. (x,¥) €« E, (¥,2) € E, (z,X) 4= E,
I{viv € V,(v,x) € E, (v,y) € E, (v,z) € E} = pu
I{viv e V,(v,x) € E, (v,y) € E, (v,2) ¢ E}} = piid

no

Pe

I{vVIiv € V, (v,x) € E, (v,7) ¢ E, (v,2z) € E]}|

1

I{VIV & V,(v.x) ¢ E, (v,7) ¢ E, (v,2) ¢ E}| = pi&d

tto

Poie

I{viv eV, (v,x) § E, (v,y) € E, (v,2) ¢ E}|

He

1{vivev,(v,x) ¢ E, (v,y) ¢ E, (v,2) ¢ E}| = Posw
(@) for all x,y,z ¢V, s.t.. (x,y) € E, (y,2) ¢ E, (z,x) ¢ E,

I{viv € ¥, (v,x) ¢ E, (v,y) € E, (v,2) & E}| = pW¥¥

190

1{viv e V,(v,x) € E, (Vv,Y) E, (v,z) ¢ E}I = piic

100

€

€
i{viv €V, (v,x) ¢ B, (v,y) 4 E, (v,2) € E}| = D
1{ViVv € V, (v,x) € E, (v,y) ¢ E, (v,z) ¢ E}| = pi&%
I{vive v, (v,x) ¢ E, (v,y) ¢ E, (v,z) € E}| = pt
i{vivevVv,(v,x) ¢ E, (v,y) ¢ E, (v,2) ¢ E}| = ped

(a) for all x,¥,2 € V, s.t. (x,Y) ¢ E, (y,2) ¢ E, (z,x) ¢ E,

i{vive V,(v,x) € E, (Vv,Yy) €E, (v,z) € E}} = p%°
I{viv e V,(v,x) € E, (V,Y) € E, (v,2) ¢ E}} = pS
[{VIv € V, (v,X) € E, (v,¥) ¢ E, (v,2) ¢ E}] = pi32

1{viv € V, (v,x) ¢ E, (v,Y) € E, (v,z) £ E}) Pees

232

The property of h-strong reqularity can be defined, but in
order to do so, it is necessary to specify all non-isomorphic
graphs of order h. An h-vertex quotient graph is found in the
obvious way by distinguishing h vertices at the start of the
partitioning algorithm. A family of h-vertex quotient graphs
for a given node x is the set of all h-vertex guotient graphs

for which x is one of the distinguished nodes.

The determination of h-strongly regular graphs or subgraphs
makes the full graph isomorphism algorithm less efficient, as it
increases the power of n to which the time taken by the

algorithm is proportional.

