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This thesis is concerned with the structure of trees and
linear graphs.
structure of
them.

In particular an attempt is made to relate the
these objects to the known methods for counting

Although the work described here is essentially not
computer oriented, the generation and decomposition of graphs
and trees by computer is in the backgroundo and so a short
section on the computer representation of the various objects is
included.

Trees are analysed bearing in mind the counting methods due
first to CayleY8 and a later method using Polya~s classical

theorem of enumerative combinatorial analysis., Various methods
of representation and generation of trees are presented and
compared.

This thesis then goes on to the substantially more
difficult problem of analysing graphs using similar techniques,

and attempts are made to relate the structure of graphs to the
known techniques for enumerating graphs. This involves a more
detailed study of PolyaWs theorem and an investigation into the
underlying concepts such as permutation groups as they are
applicable to the case under scrutiny. Representations are
developed to aid these investigations.

In the following section of the workc methods are
investigated for the decomposition of a linear graph, and a
number of different decompositions or factorisations are looked



ato One such factorisation considered in some detail is the
problem of extracting a spanning tree from a grapho and the ways
in which the remaining graph or co-tree graph may be
manipulatedo The complete decomposition of a graph into trees
may be achieved using these methodso and the concept of the
structure tree of the decomposition is introduced and its
properties explored.

The techniques described have all been implementedp and a
discussion of the problems of the implementation together with
some estimates of timing reguirements is also includedo
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The subject of Graph Theorv~~ falls naturally into three
subdivisionso We are discussing here the subject of Graph
Theory in a "pure" sense, i.oe. we are disregarding the
applica tions to which Graph Theory is a useful ai d, in which
case the subject becomes very much more diverse than just the
three subdivisions~

The first subdivision is to do simply with the ability to
trove ~r not prove) theorems about graphs. This part of the
subject is very closely linked to abstract algebra and the
parallels between Gra~h Theory and Discrete Mathematics may
easily be seen c- Secondlyo Graph Theory has proved to be a
fruitful field for the "enumerators". There appears to be an
inexhaustible supply of different types of graphr and these can
all be examined with a view to counting themv and a large number
have in fact been enumerated, FinallYr there are many problems
associated with graphs in which it is required to find an
"efficient" method of deciding whether or not a graph possesses

a certain propertYr or to find some particular property or
subgraph of a grapha

The first subdivision, then" is the province of the pure
mathematician and, more particularlYr of the algebraist. The
theorems which are proved or disproved are largely of the
existence typeo or proving equivalence between properties and so
on. Occasionally the proof of such an existence theorem
contains a construction of the required property or subgraphc
andu even more occasionally. such a construction may be
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gefficient' in some sense~

Secondly{ we have a large class of enumeration problems
some of which have been solved, and some of which have note
This areao largely of interest to combinatorial analystsc has
made some use of the al00rithmic type procedures~ but only to
compute the number of graphs of the various types. The third
area is studied largely by Computer Scientists. These are the
people to whom efficiency is of prime concerne and to whom a
mere wave of the hand and the remark "there exists "is
insufficiento It is clear that the last class of problems can
make extensive use of much of the first arear proving theorems
to enable more efficient alqorithms to be developed,

In this thesis we embrace a little of all three. although
we are largely interested in the second category. We are not
content, howeverg unlike the combinatorial analyst. simply to
discover how many there are of any particular species of graph.
but also to ask: How can we produce them all? We examine here
the various combinatorial techniques which have been developed
to count graphs, and try to adapt them so that they illustrate
better the way in which they correspond to the actual objects
which they are counting, In some cases (see Page 1971) there is
a method by which this can be done, particularly if there is a
reasonably amenable recurrence relation associated with the
objects concerned6 but when techniques such as PolyaVs theorem
{Polya 19370 de Bruin 1964. Liu 1968\ are used to count the
objects it is Dot at all clear how this problem should be
attacked.
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Throughout this work, then~ we are concerned with an
examination of the structure of countable objects. and in
j-a rtLcuIar with trees and linear graphs Q and attempting to
relate the structural properties of these entities to their
combinatorial propertiesr wj.ththe hope that we may be able to
develop general methods for the representation and manipulation
of any objects which are enumerable by current combinatorial
technigues~

The leading work in the field of graphical enumera t.i.onhas

been done by Harary in collaboration with a number of others and

a list of some of the solved and unsolved problems in this area

are given in Harary (1Y60)t. Harary (1964)" etc, The main part

of Harary's work which is used in this thesis is his exposition
of the method of counting graphs (Harary 1955). other workers
in the same line are Nas~-Williams and Tutte~ A comprehensive

bibliography of the literature of enumerative graph theory is
also given by Turner(1969)o with regard to the Computer Science

interest in Graph TheorYr a paper by Read (1969) gives an

introductory survey of the types of algorithms that are being
developed. The areas of interest here include Shortest Path
Algorithms (see also Pohl 1969)p Elementary Cycle Algorithms
(Gotlieb and Corneil 1967p Paton 1969)0 Clique finding
Algorithms (Augustson and Minker 1970. Mulligan 1972{. Mulligan
and Corneil 1972) 8 and perhaps the classic graph problem" the
Graph Isomorphism problem. More recentlyv a number of uses have
been found for graph theory to describe certain situations which
arise in computer sciencep notable in Assignment problems.
Transportation problems. and also in the theory of programming.
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program correctnessc compiler optimisation and many other
applications~ The tree also has long been an important tool in
the syntactic analysis of programming languages and in many
other types of data representation problem (see Knuth 1968).

The present work contains a mixture of the two approaches
of enumeration and aLqori,tbm production, One of the more
interesting problems in computational graph theory is the
rroblem of graph isomorphism. This was the subject of a thesis
by Corneil (196B) 8 in which the problem of an efficient
algorithm for isomorphism of graphs was solved for a restricted
set of graphs. Howeverc the point is made that the smallest
known graph outside this restricted set has 26 nodes. We make
use of Corneil's algorithms in our later workr but since the
size of problem approached becomes unmanageable for graphs with
considerably less than 26 nodesn we may employ Corneil~s

techniques in their simplest form with some confidence.

In this work we also discuss treesp particularly in
chapters II and 1110 where we try to use the known combinatorial,

properties of trees to generate all of the trees of a certain
size in some convenient ordero Knuth (1968) devotes a
considerable portion of the first volume of his book to the
study of trees and their application to certain aspects of
computer scienceo such as
compilerse sorting and

data structures. parse trees for
searching and many other applications,

Other authors have studied the isomorphism problem for trees
(Snow 1966 I lIIeetham'j 968) ,

with regard to combinatorial problems associated with
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treesB the first approaches to the problem seem to have made by
Cayley (1889) who used an empirical method to obtain expressions
for counting sequences for treeso CayleyVs results were
confirmed by a different method due to Harary and Prins (1959)
in which they made use of a very powerful combinatorial tool due
to Polya (1937). In chapter III we examine both methods of
counting, but it transpires that the tree indexing problem is
much more amenable to treatment using the Cayley method than by
the Harary and Prins method. Unfortunately. the only known
solution to the graph counting problem is by Harary (195~) and
this makes use of Polya's theorem. which makes the graph
indexing problem correspondingly more complicated" Since the
publication by Polya of his famous theoremu a large number of
combinatorial counting problems in graph theory (and else~here)
have now been solved which without the theorem seemed quite
insoluble.

Harary (1967) gives a list of a number of unsolved problems
in graphical enumeration, which he describes as UGEP III

(revised from UGEP II (Harary 1964) and UGEP I (Barary (1960».

In chapters II and III we consider their
representation and manipulationu and the ordering of trees using
the counting methods of Cayley. In chapter IV we describe the
work of Corneil on the graph isomorphism problem insofar as it
is relevant to the present work. Chapter IV also contains some
further work beyond that of corneil which we will make use of in
the following chapterv Chapter V is concerned with our attempts
to use the combinatorial methods developed by Harary and others
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to find a method of indexing the set of non isomorphic graphs,
one of which is called the Sieve algorithmo and extends the
autamar phism partitioni.oq algorithm of CorneiL Chapter VI
contains a description of some methods for finding
decompositions of a qraphl and in particular. some attempts at
extracting a spanning tree of a graph which is "best" in some
labelling-independent sense. The extraction of a spanning tree
is in fact a special case of the factorisation of a graph. and
chapter VI also contains some brief considerations of other
factorisation problemsc The final chapter attempts to summarise
the work of the whole thesis6 together with a discussion of the
rractical aspects concerning some computer programs written to
implement the techniques discussed in the earlier chaptersc

We conclude this introduction by defining more formally the
terms which will be used (we hope consistently) throughout this

thesis"

A g£~E!! is defined to be a set V of objec ts, known as

£Qigi~n ~QQ~ or y.~£~~~~~u toqether with a set E of ~gg~§ or
li!!~2" The set E consists of pairs of elements from V, A graph
is gi£~!:ed if the members of E are ordered pairs r and
.I!!!Q!£~£t~gotherwise, Conventionally, a line of a directed
qraph is known as an ~££. A pair (vrv) ~ Et where v ~ Vo is
known as a logE.

In an undirected graph. two nodes xc, ~ V are said to be
~Qj~£~~! if there is a line (xoy) in Er and if L = (xcy) ~ Er

the line L is said to i.n.~.i.qgJ:!! with x and with ']"and x and y

are called the ~nQ=RQint§ of the line La The number of nodes to
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which a node x is adjacent is called the Q~"<l£~~of x . A graph
whose nodes are all of the same degree is said to be ~~q~l~~.

A £~tl! in an undirected graph is a sequence of lines

o " f) "
where each pair of adjacent

lines has one end-point .in common. A Q~re£i~g £!-!ih is a path in
a directed graphg in which each line is directedg and the
starting node of each line is also the finishing node of the
preceding line. The length of a path is the number of lines in
the path8 and a path is said to pass through a node x if x is an
end-point of at least two of the lines in the pathn A path is
uni~uely defined by an ordered list of the nodes through which

it passes. A path is said to be §i!El~ if each line in the path
appears only once in the path ...and ~1~~~!!1!!£Yif each node is
encountered only once. A £Y~l~ is an undirected path in which
the starting point and the finishing point coincidee and if the

~ath is simple or elementarYn then so is the cycle (except that
the first node coincides with the last). A directed cycle is
(;enerally referred to as a ci~£~i!:0

An undirected :;raph is said to be ££!!n~£.tg~ if for every
[air of nodes in the graph there is at least one path joining
them.

In the case of directed graphsg we have several definitions
of connectedness.
connected when considered as an undirected graph. A graph is
~!!!1~t~I~!lY£Q~~£~~~ if for every pair of nodes ~ and~ n there
exists a (directed) path from 0(. to (!. (I or from ~ to cz. A

directed graph is said to be §!£Q!!~!Y £2!!!!g£!gg if there is a
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~ath from any node to any other node. A graph is Qi§£Qn~~£i~Q
if the condition for weak connectedness is not satisfied. For a
further discussion of directed graphs~ see Hararyo Norman and

Cartwright (1965).

A particularly important special case of an undirected
~raph is a tree. A i~g!is defined as a connected graph which
possesses no cycles. Berge (1958) shows that this definition is
equivalent to a number of other properties by means of the
following theorem:

!h!Qr~!!L:.

Let G be a graph of order IVI = n > 1. Then any of the
following properties characterises a tree~

(i) G is connected and possesses no cycles.
(ii) G has no cycles and has n-1 lines
(iii) G is connected and has n-1 lines.
(iv) G contains no cycles, and if an edge is added which

joins two non-adjacent nodes8 one (and only one) cycle is
thereby formed.
(v) G is connected, but loses this property if any edJe is
deleted. ,
(vi) Every pair of nodes is joined by one and only one path.

We leave the reader to refer to BergeVs book (chapter 16)
for the proof of this theorem. The properties given above are
shown by the theorem to be equivalent8 and therefore anyone of
them may be considered as the definition of a tree.

We define a 2y~g~~£h H of a ~raph G to be a subset U of the



9

set of nodes V. together with all those lines of G whose
end-points lie in the set u. We may define a relation P between
nodes of a graph G such that xPy holds if and only if there
exists a path in G joining the nodes x and y. In the context of
undirected graphs this relation P can easily be shown to be an
e~uivalence relation. and the nodes of G are divided by Pinto
eSuivalence classes. where two nodes are in the same equivalence
class if and only if the relation P holds between them. The
~raph G is now partitioned into subgraphsp where each subgraph
is defined by an eAuivalence class, and each of these subgraphs
is conn~ted. Furthermorer there are no larger subgraphs which

are still connected. These subgraphs are known as the £Qgg~£1~~

£2~EQg~nt~ of G.

A particular case of a non-directed graph is a forest. A
tQ~~2~ is any graph which has no cycles. By the definition of a
treeu we see that each connected component of a forest is a
tree. An analogous theorem to Berge~s theorem can now be proved
for forests.

~h~Q~~~~

Let G be a graph of order IVI = n >,. Then any of the
following properties charactarises a forest~

(i) G has no cycles.
(ii) G has p connected components and n-p lines.
(iii) G i~ such tl\~t if a line is added which joins
two non-adjacent nodesu either

(a) one and only one cycle is thereby formed,
or
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(b) the number of connected components is reduced by

one.
(iv) If any line is deleted, the number of connected

components is increased by oneD
(v) Every pair of nodes is joined by at most one path<

Property (i) is simply the definition of a forest.
(i) ==) (ii): As already observed, the connected components of a
forest are trees. Let the i-th connected component contain n~

nodes. Then we have;± n~
i:i

Also, since the i-th component is a tree
= n

it contains 1

lines. Thus the whole gratJht: (n,: -1) =... , - p = n - p lines •

(ii) ==) (iii): By the theorem stated earlieru no connected
~raph can have less than n-1 lines and in this case it contains

no cycles (L,e D it is a tree) o If each connected component
contains n, nodes, it must have at least n~-1 lines. But since
the total number of lines is n-P6 each component must have
exactly nt-1 lines and therefore G contains no cycles since each
component is a treeo

Now if we add one more line to G, either this line joins
two nodes in the same component, in which case G now has exactly
one cycle. since by the previous theorem the component which
sains the line now contains exactly one cycleD and all the other
components are unchangedQ or else the inserted line joins two
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nodes not in the same componentc In this caser a path now
exists which joins a node in one component to a node in another
component and so these two components become a single connected
component in the new graph, so that the number of components is
reduced by one. This new line cannot form a cycle since if this
were so, its two endpoints would be joined by a path not
including the new line contradicting the assumption that the two
points were in different components.
(iii) ==> (iv): From the proof of the previous theoremp we have
the fact that if an~ line is deleted from a treeD then the
number of components is increased from one to two. Since each
connected component of a forest is a tree, the deletion of one
line increases the number of components in that subgraph of the
forest containin0 the endpoints of the line from 1 to 2. The
remaining p-1 components are unaffected" Thus the total number
of components after deletion of the line is p+1..

fiv) ==> (v): Suppose there were two nodes having two distinct

~aths joining them. Then it would be possible to delete a line
in one of the paths so that the number of components remains the
same"
path.
(v) ==) (i): If there was a cycle in the graph~ there would be

Thus every pair of points must be joined by at most one

two distinct paths between any pair of nodes in the cycler thus
there can be no c]cles in the :~raFho

A E~£ii~l~~£h Q of a ~raph G has the same vertex set as
G, but possesses anI] a subset of the lines of GG A partial
sraph G is said to §E!!Q.G., A

~jraph of a connected sraph
particularly important
G is the §£~~~ing ~~ggc

partial
This is
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simply any partial graph of G which is also a tree. The
analogous concept for a disconnected graph is the §£~nning
~Qt~~!. A £~~!i~1~~Qg~~E~ is a partial graph of a subgraph.

trees"
We will also require some general definitions relating to

A tree will sometimes be referred to as a !~~~i£~~ to
emph cl. S ise the fact that it has no special properties, A £Q.9.i~Q

1£~~is a tree in which one (and only one) node has been singled
out as being a reference point for the tree. This node is
called the tQQ! of the tree. Rooted trees will be shown in the
diagrams in this thesis as having their root at the bottom of
the picture with all other nodes above the roota It now appears
to be common practice to draw trees the opposite way with the
root at the top of the diasram. There are two schools of

thought; one which says that trees should look similar to
natural trees, which have their roots in the ground~ and another
which considers trees as
being generalisations of
such objects as family

terminology (below" up
left" etc,) reflects
this < ~~g.~_l_';,.

trees, In this work we
subscribe to the former
view" and our

The act of drawin~ a tree on paper immediately imposes an
ordering on the nodesv i.e. a
"left" on the points in the diagram.

relationship of "right" and
An Q£g~g ~QQteQ i~~~



13

takes account of these spatial relationships between nodes. In
fig. 1. we see two trees. both rooted. which are different
when considered as orderec rooted treeso but equivalent when
considered as rooted trees, since only the interconnection of
the nodes and the position of the root are significant.

In a rooted tree Ii we define the J!~i.gh!.of S !!2g~ x to be
the length of the path from the node x to the root. The h~igh!.
2K ~ tr~~ is the maximum height of any point in the tree , In
any tree, a node which is only adjacent to one other node in the

tree is called a !.~£mi.!!!!1node (or l~~K ), all other nodes being
:r!Q!!::.l~~.I!i!!~!nodes. A tree whose root is a terminal node is
called a E!an!~~ tree.

Two other special cases of trees are also of interest. We

define a ( ~!~i£11Y ) hin~!Y!f~~ to be a (rooted) tree in which
every non-terminal node has exactly two nodes above ito If the
root is a terminal node then the tree consists of just this

node. Another way of expressing this is to say that either the
root has degree zeroc or the root has degree 2 and all the other
non-terminal nodes have degree 3. A property of these binary
trees is that the number of terminal nodes exceeds the number of
non-terminals by one.

This can be shown as follows:

Let a binary tree with n nodes have t terminal nodes. Now
each node except the root has one line below Lt , Thus the
number of lines in the tree is n--1 (which we knew anyway from

Y\o6c,

the definition of a tree>Q But each non-terminal/has two lines
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above it. Thus the number of lines is also given by 2 (n··t).
Hence

n - 1 = 2 (n .-t) art = (n + 1)/2

and the number of non-terminals is:
n - (n + 1)/2 = (n - 1) /2 = t - 1c

Knuth (1968) in his book makes extensive use of a tree
which we here call a bifurcating tree. A bi!~f~ti~3 1£~~is a
tree in which the number of nodes above any node must not be
~reater than two. This type of tree has a number of
applications in the area of sorting and searching~

The definitions given here are those which will be referred
to more commonly in later chapters. In addition6 further
cefinitions which pertain to later work are given when required.
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It is clear that throuqhout this work on the manipulation
of trees and linear graphs within a computer. some method must
be used to identify the nodes of the graph. Thus in all our
work whether we be dealing with labelled or unlabelled graphs we
have to attach a labelling to any graph for the purposes of
computer representationc The problem then becomes one of trying
to carry out manipulations in a manner which is independent of
any labelling we may impose. The other alternative is to reduce
any graph to some canonical form, and then we can with
confidence use the labelling which is imposed by the canonical
form.

In some previous work (Snow 1966) we showed some ways of
representing rooted trees and free trees and then using them to
ascertain whether two free trees were topologically equivalent<

We now describe this work with some extensions.

11.1 Ordered Rooted Trees •....---- ------ ------ ~-.-~.--~.~

The representation of ordered rooted trees requires that
some notion of "next to" between nodes must be carried in the
representation. We first make some definitions which are
applicable to ordered rooted trees. A E~~~~g~ is a node x
together with all those nodes y such that x is the second node
(y being the first) in the path from y to the root. The node x
is said to be the Eac~~g~ hg~Q of the package. Thus 6 in fig c

100 the nodes x and n i=1uooook make up the package whose head
is x. The nodes y~ are considered to be ordered within the
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rackageo and we define the EQ§itiY~ n~i_q.h~Q~£of a node y to be
that node which is encountered next after leaving y as the nodes
in the package are traversed in a clockwise sense about the
package head~ In figo 10" the node y i..1 is the positive
neighbour of the node ~ for i=1.o~.ok-1o In this case there is
no positive neighbour for Ike We define a node p to be the
n~g~ti~~ neighbQ~£ of the node g if and only if g is the
rositive neighbour of po The gE 1~f1of a node x is defined to
be that node in the package whose head is x (sometimes referred
to as the package on x) which has no negative neighbour. Again
referring to fig. 1~o Y. is the negative neighbour of y~., for
i=1c .006k-1 D and the node YI has no negative neighbour and is

therefore the up left of xo It is now possible to specify an
ordered rooted tree entirely in terms of the up left and the
positive neighbour of each of its nodes. It is also convenient
to make some further
definitions of relations
between the nodes of a

tree" In the path from
a node y to the root of
the tree" the second
node x is called the
12g!Q~of Yo Thus the
below of y is the head
of the package of which
y is a member (but not
the head) 0

x

Given the two sets of juantitieso up left and positive
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neighbour, it is possible to deduce the values of the below for
each node, but this can involve a considerable amount of
\searchin~ back~~ i~ec Operations of the type~ ufind that
element x whose positive neighbour is the element Y'~ This type
of operation is not an easy one to perform on a computero It is
therefore convenient to introduce some further information into
the quantities we have already definedo The positive neighbour
vector contains information corresponding to those nodes only
which have a positive neighbourc and those which do noto

effectively have a blank position set aside for them" Suppose
now we introduce a new vector of values called ~positive or
down'p which we will abbreviate to vpordvo This quantity can be
defined to be:

pard (x) = positive neighbour (x)
= +beLo s (x)

if one exists
otherwise

The minus sign is simply a marker to tell us that we are to
interpret this value as the 'below' of x rather than as the

~positive neighbour' of x" The operation of finding the below

of a node in the tree now becomes very much easier and can be
illustrated in terms of the recursive function:

below ~) = if pord (x) (= 0 then - pord (x)
else below (pord (x»"

We have however to be a little careful in considering the
below of the root nodeo We may adopt anyone of a number of
conventions on thisp but in this present work it has been found
most convenient to make the definition~

below (root) = root
and this is the only node in the tree for which this is true<
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since the root has no positive neighbourv we also have:
pord (root) = ~ root ,

It has also proved necessary to scan through the nodes of tree
in some sort of standard way in order to give a canonical
labelling to an unlabelled ordered rooted tree. This labelling
is as follows:

1<, Label the root as node 10

2, If a node x has just been given the label io then the
node to be given the label i-t 1 is:

(a) up left of (x) if this exists
(b) otherwise the positive successor of x

(pos succ (x) ) ,

When the root is reached a second time then the3, whole
tree has been labelledo

The positive successor function which was used in step 2 of the

above labelling process is defined as:

= pas succ (below (x) )
if it has one
otherwise

if x is the rooto
20 as an exampleo we obtain the

pas succ (x) = positive neighbour of x

= x

Using the tree in figo
following table:

Node Label 1 2 3 4 5 6 7 8 9 10 11 12

Up Left _. - 2 1 -..• 4 8 -. 12 - 6 --

Positive
Neighbour 3 - ",-" .. 5 7 9 - _-. .~ _ .. .~ 10
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Below 4 3 4 6 6 11 6 7 11 9 11 9

Pard 3 -3 -·4 5 -, 9 -6 -7 -·11 -9 -·11 10

Pas Succ 3 5 :, 5 7 9 9 9 11 11 11 10

Position In
Canonical 4 6 5 3 7 2 8 9 10 12 1 11

Ordering

This orderingr since it
makes use of the

of traversing a tree

10

positive successor
relation to such a large
extent should perhaps be
called the pp-§-i:t:iy.~

Knuth
(1968) calls this method

These definitions of functions are sufficient to specify a
labelled tree completelYF and further6 we are able to move both
up and down the tree without difficulty.

In the case of an unlabelled ordered rooted treep we may
represent this more succ.htd:ly0 This is clearly beca use we do
not need to carry the relationship between node labels in our
representation. Two methods of representing an unlabelled tree
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have been devisedp both of which will be discussed in a
different context in chapter III~

In passing it is worth notiny that the two vectors ~pord~

and 'u~l' (up left) can be regarded as the defining functions
for a labelled tree. In fact, pord itself contains some
redundant information in that the below parts of the vector can
(with a certain amount of searching) be deduced from the
positive neighbour partsr However given an ~upl~ vector and a
consistent 'pardi vector we may construct functions to discover
any of the other information which we have discussed. Alsop a
change in either the 'pord~ or the jupl' ve~tors would have the
effect of changing the shape of the tree. Note that since
vpord' contains some redundant informationv a change in upordv

or ~upl' may force other changes to be made to these vectors in

order to preserve consistency.

Of the two methods of representing an unlabelled treee the
first is the weight representation ...In both of the following
representations we shall use a vector of small integers to
describe the treee and in each case we assume that the i-th
element of the vector corresponds to the i~th node in the
positive ordering of the nodes of the tree.

The weight representation of a tree was introduced in our
earlier study of trees (Snow 1966) where it was described as the
integer representation. This term could equally well apply to
either of the representations to be describedu so that it was
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thought to be a sensible idea to change the name to weight
representationn For any rooted tree (not necessarily ordered) c

each node in the tree is the root of some subtree (if the node
is a terminal nodeo then the subtree consists only of that node
and if the node is the root of the whole tree, then the subtree
is the whole tree) n Let the ~gig~1 ~~£Egsen1~1~Q~ of a tree be

the subtree whose root is the node io. It is clear that since
the nodes are ordered according to the positive ordering of the
nodes. and therefore that node 1 is the rooto we have VI = nr
where n is the number of nodes in the complete tree. We may
also make the observation that when labelling a tree using the

positive ordering, the root of any subtree is labelled before
any of the other nodes in the subtree and also that once the
root of a subtree has been labelledo all the nodes in that
subtree are labelled before any further nodes are labelled
outside that subtree. Thus, for any node j in the treec the
subtree whose root is i has a corresponding subvector in the

vector~. This subvector is of length ko where k is the number
of nodes in the subtree on j. Alsop by definitiono vJ = k.
Thuse given a vector ~ which represents a treep we may choose
any element Wj I' and pick out the subvector Vj l' w~.,c< "n 0 wj~~vhere w,i

kr and this defines a subtree in the tree. Another
interesting property of this vector is as follows:

let P D = w'lL

p~ = W· + f: Pj for i >= 2..
j:al

then ve have PI + P1 + () c. 0(1 + Pt = n' 111 where t is such that Pt
does not refer to an element outside the vector ~n but PC+I
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would. This is a conse1uence of the fact that if the package

whose head is the root contains the root and t other nodes" then

the n 1 nodes in the tree other than the root must all be

contained in the subtrees standing on the t other nodes in this

package n Since p~ = w~e we know that the first such subtree

contains PI nodesD and that the next tree contains p~ nodeso and

so on. This relation between members of the vector ~ also holds

within the subvectors which represent subtrees" The numbers

r~ i = 1poo.uk form a composition (or ordered partition) of the

number n -,. When we turn to the topic of the canonical

ordering of subtrees within a treeo we shall see that these

sequences of numbers p~ will become true partitions of the

number n -,. This will be dealt with in the following chaptern

The other representation to be considered here is the

height representatione Again the tree is to be represented as a

sequence or vector of small integers. We have defined the

height of a node x to be the length of the path between x and

the root of the tree. The ~e!ghi ~~E£g~gnt~tiQ~ of a tree is a

in which the nodes of the tree are

again labelled by the positive labelling. and the i-th element

of .ho h·.. is the height of the node labelled in The node 10

which of course is the rooto has height Ov and thus for any

treeo hi = O. FurtherD since we label the tree either by moving

up the tree to the next node aboveo or by moving across (and

possibly down) the tree, we have the relation h~ (= h~,+ 1 for i
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Again we observe that since the positive labelling labels
all the nodes in a particular subtree before labelling any
subsejuent nodeso certain sUbsequences represent subtrees within
the treem Given any node in the treeq say node jq the height of
this node is given by h~. Now we look along the
vector l! until we find another element k such that hk <= hj" and
k is the smallest number greater than j for which this is true.
Then the subsequence hlc~~p~.'8h~~has all its elements h~ > hin

Thus if we consider the vector hU =
(h~·~h~uh.r,-hjr r ~. oh".:-hj)this is a valid height representation
for some tree. It'hisis true since the first element = h- .oh·=l& , J

Or. and if h~<= h~.I+ 10 then h~'h~ <= h~...-h.i.. 1). The vector hi

hence represents a treee and in fact it represents the subtree
which has the node labelled j as its root. The following
theorem demonstrates an interesting connection between the
weight and height representation for trees~

For any rooted tree with n nodes8 the height vector and the
weight vector are related by

consider any node kc For each node j which lies on the
path between k and the root r (including both k and r) 0 the node
k lies in the subtree of which j is the root •. Thus the node k
makes a contribution of 1 to each of the terms Wj of the vector
! for each j in this path. Thus k makes a total contribution of
I Q to the sum

.....? wi c where 1.. is the number of nodes in the
J·el ..
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path k to r. Hence the sum of all the l~ gives the total sum of
the wi W s and thus

t: 11&
It:,

= t: W·, J
,j~1

the path from the node k to the rootBut the number of lines in
is Ib - 1 and this is just the height of..

= L (l~ _, 1) =
~:I= 0 and w, = n for

the node k , Thus...
L w' 0> n
j=. I

all trees with n nodesusing the fact that hi
we have

=

As has been pointed out on a number of previous occasions
(Obruca 19660 Snow 19660 Scoins 1967) there is an interesting
connection between the set of ordered rooted trees of n nodes

and the set of strictly ordered rooted binary trees with n
terminal nodes. It can be shown that if a binary tree has n

terminal nodes, then it has n 1 non-terminal nodes. It may
also be shown that these two sets of trees have the same
cardinality. i.e. the trees of n nodes are equinumerous with the
Il,inary
~rees with n terminal nodeso It is likely therefore that we
could construct a one-one mapping from one set onto the other.
In fact. at least two such mappings exist. We shall describe
one of themw the other being obtained by reading "right" for
"left" and "left" for "right" in the following description of
the mapping process •.

The mapping may be described recursively. Given any
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ordered rooted tree6 we may divide it uniquely into two partsc

each of which is itself an ordered rooted tree. We arbitrarily
decide that this division is carried out by "cutting" the
right-most branch at the root. Let this cut be represented by a
non-terminal node of the binary tree. Fig. 3. shows the tree T
as being composed of two smaller trees TI and T~ together with
the line that will be "cut" in the decomposition process. The
trees T. and T~ are of course ordered rooted trees in their own
riqht< In the binary tree~ we have represented the cut by a
non" terminal node f' and therefore this node will have two other
nodes above it, by definition of the strictly binary tree. We
now carry out

and T a. so thatTI

the mapping process recursively on the trees T,
maps onto the left subtree of the binary treec

and Ta.

riqht
maps

subtree.
onto the

If at
theany stage of

recursiong the tree on
either side of the cut

is a single noden then
this node maps onto a
terminal node of the
binary tree c,

Having shown that a mapping from the set of ordered rooted
t£ees of n nodes to the set of binary trees with D terminal
nodes existsc and we may construct the reverse mapping without
difficulty, we can consider the possibility of representing an
ordered rooted tree in terms of a representation of its
Corr'esponding binary tree" There is a very succinct
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representation of a binary tree, and it is thought that this
method is approaching the minimal representation of an ordered
rooted tree in terms of the information content of the
representation and the computer storage required ..

Given a binary treell we know that each node has only two
nodes above it (or none at all)c Let us represent a terminal
node by the sYllbol *u and each non-terminal node by the ordered
ra Lr (s,Usl..) where s. and SL are the representations of the left
and right subtrees respectively on that node .. The
representation of the treeo which is taken as the representation
of the root noden then consists of a sequence of opening and
closing brackets and asterisks. Further_oree since there are n
terminal nodes in the tree~ there are n asterisks in the

sequence. and also there are n-·'pairs of opening and closing
brackets corresponding to the non-terminals in the binary tree.

Also we know that within each pair of brackets there are exactly
two s ub+se que nce s , which may themselves be bracketed
sub-sequences or simply asterisks. Now since these bracketed
sub sequences also have this propertyu we may remove the closing
brackets without any loss of informationu This is because we
can scan any such bracketed se~uence with its closing brackets
removed frollthe left. so that each time an opening bracket is
encountered we know that we must recognise two complete
subsequences and then insert the corresponding closing bracket ..
The following algorithm will achieve the replacement of closing
brackets.

1. Initialise by setting the input and output string
pointers to the beginning of their respective strings
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and the stack pointer to the bottom of the stack

2. Get the next character from the input and send it to

the output strinq, It this character is an asterisk

then goto step 3. otherwise. place a zero on the top

of the stack and repeat step 2.

3, If the t.op of the stack is a zero then change it to a

one and return to step 2~ otherwise remove the top

element from the stack and send a closing bracket to

the output strin0c

4. If the stack is now empty then guitc otherwise return

to step 3,

Let us now replace each opening bracket by a 'onevr and

each asterisk by a ~zeroV< The representation of the binary

tree (and therefore of the rooted tree) is now in the form of a

sequence of zeroes and ones called a terminated binary sequence

This is a seluence of 20' 1 bits and is therefore very

economical in computer storage space.

These concepts will now be illustrated usi.nq an exanp Le ,

Consider the tree in fi~l' 2. but regard it now as an unlabelled

ordered rooted treen It is now using the positive

I'he weiqhl.

Y
'III'1.

..

ordering. and the result

1·,-
, '" shown in f1(1",

representation and the
height representation of

the tree are now shown

in the table below.
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Node 1 2 3 4 5 6 7 8 9 10 11 12

Label

Weight 12 8 4 1 2 1 1 2 1 3 1 1

Re p ,

Height 0 1 2 3 3 4 2 2 3 1 2 2

Re p ,

We will now describe the steps of the mapping of the
ordered rooted tree into the corresponding binary tree and then
to the t.~rSo. Let us denote the binary tree corresponding to a
tree T by 0 0 Thus if T may be decomposed into
we denote the corresponding decomposition of ~

/j'~
T./ (1 then

~Y~~

As an exampleD the steps in the decomposition of the tree in
fig, 5(i) are given in figo 5(i)«,~ (viii),
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(i v)

(viii)

Ei:.9.o._2~
In the transition from (ii) ~o (iii)r the left subtree
decomposes into a single node on the 1efto while the right
subtree has a single node as its right part. The growth of the
binary tree therefore stops along these branchesm The tree in

(viii) does in fact possess 12 terminals and 11 non-terminals.
This tree is represented by the following sequence of brackets
and asterisks:

«*{«(*((**) C**»l*) (**») ({**)*»

which contracts to the tobo~o~
110 111 0 11 00 1 000 1 00 11 00 0

Two comments may be made about this sequence. The first is
that the tob~so Contains one more ~zerot than it does 'onesvo

and in fact if ve start at the beginning of the sequence and
proceed along counting the numbers of zeroes and oneso the
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sequence terminates when the number of zeroes exceeds the number
of ones by one. Hence given any sequence of zeroes and ones. we
may pick any member of the sejuence as the starting point and
extract the first subsequence which has this property" and this
~epresents some ordered rooted tree, An arbitrary binary
seguence can therefore be thought of as representing a forest of
treeso provided that the sequence is terminated when a complete
tree has just been found.

The second observation which may be made about the
t.b.s. is that correspondences may be established between the
zeroes of the sequence and the nodes of the tree. and between
the ones of the seguence and the lines of the tree (and we
notice that there are the correct number of each). If this is
done we see that the zeroes appear in the sequence in the same
order as their corresponding nodes appear in the positive
labelling of the tree.

It is clear that some representations will be more useful
in some contexts~ where others would be easier to use in other
contexts. The different lexicographic orderings of trees
described in chapter III show that a representation which gives
rise to one ordering is most inconvenient when dealing with some
other ordering. In facto while the tob.s. representation is by
tar the most compact of those considered hereg it also appears
to be the least useful. Procedures have been written to convert
from one representation to another for all the possible
combinations which might be requiredo Some of these~ together
with a fuller discussion of the binary tree and the t.b.s. can
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be found in Snow (1966) c

Having dealt in some detail with the representation of

ordered rooted trees6 we now describe the representation of

unordered rooted trees and free trees. In facto the only way of

t.hose described previously to represent unordered trees is the

~beloww representatione and that can only be applied to labelled

rooted treeso The techniques used to represent and manipulate

unordered rooted trees have in fact been the same as those for

ordered rooted trees6 but steps were first taken to ensure that

the ordered rooted tree was some kind of canonical form of the

unordered rooted treeo The first method used was the

representation of a rooted tree by the weight vector~ The

canonical form of this representation is obtained by sorting the

subvectors of this vector, as was described in Snow (1966) c and

which will be discussed in greater detail in chapter III. The

same sort of technique was used to reduce· a tree in height

vector representation to canonical form. Again this will be

discussed in the following chapter.

The same

representa tion

points

of free

occur

trees(!

in the discussion of

wherep in addition to

the

the

necessity for finding a canonical forme we have to impose a root

on the tree where it would not otherwise have one. Two methods

of carrying out this operation will also be explained in the

next chapter.
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The field of representation of trees appears to be
considerably more fruitful than the representation of linear
jraphs. Howevero some of the methods of representing graphs are
discussed here brieflY6 although in the later workr the
adjacency matrix was used almost exclusively as the internal
representation of a graph~ A more convenient method was however
used for input of the graph~ Given a linear graph G with n
nodes and m lines in which the nodes are labelled from 1 to nu
and the lines are labelled from 1 to m, we may define two
matrices~

A

The first is the adjancency matrix

= (a-- where a-. = 1 if there is a"J "J
line from node i to
node j

= 0 otherwise
The graphs dealt with here will in general be undirected. and
will not contain any line from a node to itselfo In these cases
the ad jacency IDatrix will be symmetricl, and all the elements on
the principal diagonal will be zero; . The matrix will be n " n .

The second matrix is called the incidence matrixc and is defined
as

where m·· = 1\J if the node i is
an endpoint of the
line j

= 0 otherwise
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Clearly this matrix is n ~ m~ Now in general a graph has
more lines than it has points6 ioeo m>n, particularly for large
no and thus the incidence matrix occupies more space than the
adjacency matrixo Neither matrix is a particularly compact
represent.ation, since there is a considerable amount of
reduncancy in both of these representationso The adj.a.c ency
matrix is (for our purposes) symmetricw and so could be
compressed into the upper triangle of an n ~ n arrayu while the
incidence matrix contains only two non-zero elements per column
(where the columns correspond to the line labels). Obruca
(1966) describes a method of storing a graph in (m + n) storage
locations. The method used for the input of a graph to our
programs is a very small variation of Obruca's method~

Assume that the nodes are labelled from 1 to n. The graph
may be represented in terms of a vector of length (m + n 1)
(for undirected graphs; (m + n) locations are required for a
directed graph) 0 For each node i, the vector consists of all
the nodes j to which node i is joined, and for which j > i. For
the nodes j such that j is joined to i and j < i, an entry
appears in the section of the vector pertaining to the node jo
The list for the node i is separated from the list for the node
i { 1 by some marker (such as a zero)o Thus the line from i to

is represented by the appearance of the number j in the vector
between the (i·-1)-th zero and the i-th zero (assuming that i <
:) c- Thus the graph in f Lq , 6. would be represented a s ;

2, 4, Ou 3, 5, 60 Ou 40 5, 7, 0, 0, 6g 00 811 0(1 au Ou

a vector of length 18"
there being 8 nodes and
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The order of the
rt:s?~
~ a

l .,
Kig.!._.§.!.

11 lines in the grapho

elements within each
list is immaterial.

It is also interesting to notice that given no the value of
m may be deducedc since we can look along the sequence until the
(n ._ 1) -th zero is reached, and then we know that the end of the
vector has been found, and m is the number of non-zero elements
passedc There is never a list for the node labelled n since
there there are no nodes j for which n < jo so that all the
lines incident to the node n appear earlier in the sequence.,
Alsoo two adjacent zeroes indicate that all the lines incident
to the corresponding node have been listed previously! as for
example the node 4 in fig. 5.

Let
The adjacency matrix of

a~) be the (i,j)-th element
a graph has a further property •.

the k-th power of the
adjacency matrix A = (a~j). Then

of
lil.)
a',~J is the number of distinct

paths of length k from node i to node jo This can be shown
using an inductive argument, suppose a~;')does represent

'J
distinct paths of length k-1 from the node i to

the
number of the

the vector
is obtained by forming the inner product ofnode j 0

and the vector
This inner product gives us:

(II.) ~ <. ••) "" (11..1)
a. = ~ a'~ a~· = L.... a)

'') L. .. 1 ~_,L.
,... ' ~.i ..., .....r~ ..take all the paths of length K - 1 which if increasedHence we

by one line would reach the node jc Later in the worko we shall
require another matrix s:
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5 = (s,',) where s.. is the length of the shortest path in.~
the graph between nodes i and jo and this could be
found by determining the smallest k such that lit.) isa v non+z e r o ,

'1
Howevere even allowing for the fact that some sophisticated
methods for multiplying matrices could be found for the simple
case when one (at least) of the matrices is purely binaryc it is
clear that there are more efficient methods for deriving the
elements of S available.

The whole subject of finding the shortest path between two
nodes of a graph has been studied extensively (see Pohl 1969)
and various algorithms have been developed (e"g~ Dijkstra

(1959) and Nicholson (1966))< For finding the elements of the
matrix So howeveru Warshall-s algorithm (Warshall 1962) is
rrobably the beste since we are concerned with finding the
shortest distance between every pair of nodes" For the case

where we are required to find the shortest distance to every
node from so.e fixed node re some method involving the growing
of a spanning tree from r is likely to be the most efficient

(see chapter VI) <>

The adjacency matrix representation of a graph proved so
useful for other manipulations in the programs that no other
representation was usedq except that the list representation
described earlier was more useful for the initial input of the
~raph. A procedure was written which accepted the graph in the
list representation and output the corresponding adjacency
matrix for use by the rest of the program" Since no space
problems were encountered during the work (the limiting factor
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was almost invariably computer time!) it was thought to be
unnecessary to ipackv the binary adjacency matrix into less than
one matrix element per computer wordQ but clearly this could
have been done with the conseguent reduction in efficiency due
to having to lunpacki the matrix to inspect an individual iteme
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In this chapter an attempt is made to interpret in a
meaning ful way the statement 't' I ~ "t'., where 'r. and
for each type of tree so far consideredo
listing the trees of a particular type, and

't'.. are trees 6

This is done by
perhaps of a

particular sLze, in some order, The objective is initially to
construct a mapping I from the set of trees of various classes
to the set of positive integers in such a way that we may define
the relation ~ as

"'!, -<",
(and also
secondly

¢:::> I (-t;) < I ('t"~)

~, = 't", C::!:> I ( 'l;') = I ("'t"",) )

to construct a straightforward algorithm to findand

this mapping I and its inverse for trees of a variety of 'sizes'
and typeso Since the mapping I is intended to be an isomorphism
between the set of trees and the set of integers between 1 and k

where k is the number of trees in the setu and since the
relation < is a total ordering over the integerso the relation <
is also to be a total ordering over the set of treesu ioeo for
any two distinct trees
either ~, .( '"'loo

.-r. and ""...belonging to the set ..

or "'.....-< 1:',

we have

Other desirable properties of the ordering relation < over the
integers are also carried over by the isomorphismo Page (1911)
describes methods of carrying out this process of constructing a
mapping for a wide class of objects, showingo using mainly
permutations of various types as illustrations.. how the
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recurrence relations which are used to count these objects may
be used to generate these same objects in some orderc and also
to give them a unique index together with an easy method of
mapping from an object to its index and back again" In the case
of trees. the counting methods are more complicated functional
~xpressions, whose recurrence relations are deeply huried, and
consequently Page1s approach must be considerably extended to
cope with these more complex situationso The author believesg

however, that since we have a method of counting trees of
various typesg and linear graphs for that matter. it should in
principle be possihle to create an indexing scheme for all these
objectsp by consideration of the method used to count the
objects~ We will show that using different representationso

however8 the statement ~.~ ~~ can be made meaningfulu although
the ordering of the trees is greatly dependent on the

representation employedc

IlL 2 Ordered Rooted Treeso._------ ------ --"'---- ------- .._--

There are several ways of indexing ordered rooted trees of
which the most obvious is perhaps the numerical ordering of the
corresponding tobos..when considering each toposo as a binary
number. This method is not particularly useful since the
t.b.s. is a rather specialised type of binary sequencec and the
numbers produced from the top.s.'s do not form a particularly
sensible sequence of numberso However, as a first step u it
does allow us to attach a meaning to the statement "'.0( '1:'... when ~
and 'l"", are rooted trees.
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A more natural ordering stems from the recursive way the

trees are counted~ Consider a typical ordered rooted tree such

as that shown in fig. 1. If this tree has n nodes. then the

tree 7, has i nodes , and 1"'~ has n+L nodes for some it' 1 <= i <=
n'-1, Then the number of trees with n nodes is the number of

trees "t, with i nodes " the number of trees 1:'J. with n-d. nodes~
summed over all possible values of 10 Thusv if J...is the number
of trees with n nodes:

'j .. -: j,. J"'~I-+ j~...j~-~ .. .,. .. ':l",_, "';\I for n )= 2,

From this eguation, by multiplying both sides by Xho and summing

over all n from 2 to~o we arrive at the generating function

form of the counting series for ordered rooted trees:

j (x) = x + [ 1(x) JZ

where ~(x) = ~ ~ ....x"
...... 1

This formula may be considered as a representation of the

tact that an ordered rooted tree either consists of a single

nodev or it is the combination of two ordered rooted trees.

Thus j (x), which may be taken as representing the set of all

ordered rooted treesu is

constructed by taking

the single tree with one

by the term x) or by

node only (represented

taking elements from the

product set (represented

by 1(x»)t ~ (x) or f j

(X) }2 i . !'.lli.~l~
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Another approachp leading to the same result. is favoured

by Harary. Here we consider an ordered rooted tree to be a root

node with zero or more ordered rooted trees as its principal

su btrees , Thus, using the tera j (x) once again to represent

the set of ordered rooted treesg we have

J(X)=X (1+J(x) +{J(x) }2+{'j(x) p+.no

which gives

J(X) = x/(1 - J(x})

Now in the natural ordering of the ordered rooted trees of

n nodes, the first tree is the "join" of the tree with one node

'1. = 1) and the first tree with n -~ 1 nodes. The first tree

with n - 1 nodes may be found by the same methode i~ea it is the

"join" of the tree with 1 node and the first tree with n 2

nodes. The method then proceeds recursively until the first

tree of n nodes is found explicitly. In the general caseD to

find the k··th
s. = ~j . ..., .
~ j~. J ""-J

S~_I

tree of n nodeso we examine the numbers S~g where

r until we find that i such that

< k <= s·
'"

We then know that the k-th tree decomposes into two parts ~I and

'T... where ~.contains i nodes and ."t'" contains n ~ i nodes. Now

there are "j, ways of choosing 'Y" and "j..._~ways of 'Y~..
(jiving -:1;. J",-~ ways of constructing the tree and we

are looking for the k'-th member of this set, where

k' = k ._ s·.-.
Let k be of the form (a-1) 'j . + b, where 0 < b <= j",_~ w and thus..-.
we now want to look for the a-th tree in the set of trees with

i nodes and the b-th tree in the set of trees with n - i nodes~

We may now deduce these by recursive application of the above
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methodo

Let us clarify this method by reference to an exampleo
Suppose we are required to find the '70th tree in the set of

ordered rooted trees with 7 nodeso We have therefore k - 100 n
= 70 From the table of the numbers ":J.. 11 we can see that

S3 = 66 t! s... = 16

and so we know that our tree consists of a subtree of 3 nodes on
the left, and one of 4 nodes on the righto In particularr since
k' = k - SI = 10 - 46 = 40 we require the 4th such tree,

Now ~3 = 2 and 1...= 51! and we may express k~ as
(1 '-1) 1. + 4t' that is, the first tree with 3 nodes on the Lef t ,
and the 4th tree with 4 nodes on the righto The first tree of 3
nodes is the composition of the first tree with one node and the
first tree with two nodes, Thus the left part of the required
tree is: )
according to the composition rule given in the previous chapter.

with 3 nodes composed with with the
node, this tree is therefore V
two gives the 70th tree with 7 nodes as:

c and the composition

V
of these

The alternative interpretation of the generating function
equation would presumably give rise to a similar method of
determining the k-th treet'but almost certainly to a different
treeo In fact, since Harary1s interpretation is an infinite sum
of infinite sumso it is not possible to perform this mapping
from numbers to trees without restricting the scope of the
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'Jenerating functions"

The first approach to the problem of indexing a set of

unordered rooted trees was made through the generation of

ordered rooted treeso By the techniques developed in our

earlier work (Snow 1966) we were able to determine whether two

ordered rooted trees were isomorphic as unordered trees,

one method of generating all rooted trees would be to generate

all ordered trees in some sequencer and reject those which were

isomorphic to trees already generated when considered as

unordered treeso This was done by reducing each tree as it was

~enerated to a canonical form as described in the aforementioned

earlier work"

This method produced a vast quantity of extra work to be

carried out by the programp since the number of ordered trees is

approximately 22~-7 for n > 4, whereas the number of unordered

trees is only about (206),,, for large no

The nu.ber of rooted trees can be calculated exactlyu and

if we let T~ be the number of trees with n nodesu and let

By the application of Polya~s theorem (Polya 1937) D a classical

theorem of enumerative combinatorial analysis which has been

explained by a number of authors (de Bruin 19640 Liu 1968c

Riordan 1958) D we know that T{x) satisfies the functional
ey'uation

GO

T (x) = x exp I 2:: T (x ....) / r }
'to: I
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A more detailed discussion of Polyais theorem will be given
laterq together with a discussion of some applications~ It was
considered desirable in discussing an ordering relation over a
set of trees, that the structure of the trees themselves should
be reflected in the ordering in some way~ Thus, if we have two
trees "'(I and =., we wish to define index numbers I ('l',) and I ("l"~)

for 't, and '1'". respectively c such that I (-t:) < I ("'(J if and only
if 't, -< "C", 1I where 't'. -< 't'"" also has an intuitively sensible
interpreta tion with
respect to the structure
of the two trees. So,
by analogy with the
ordering of ordered
rooted trees in the
previous sectionp it was
decided to decompose the
tree 1:' as shown in figo

A canonical form for~ was used which was such that if ~ is

canonical formo
in canonical f ora, then 1"(. )-:'t' ..~s" G 0 'r: "t~ v and the ,( are all in

Now if two trees ~ and ~c are decomposed into

the set of trees might be~
~, T~l' 0 o 08 't'L and "{Ii 6 "l" , 0" c ,'rV respectively Q then an ordering on

Jr; • ~ At'

"t:..( 1:" <.;:::::!> either "(..("C' for some j <= min (kokV)
J J

and -(.:.:"(.'for i = 1,ooo(lj--1o. '"
or 1:l= t1 for i = 1,,,,, '0 , k

and k < kW"

Further_oreo since this ordering is given by a recursive
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definition, we need a starting point for the recursion, and we
choose

~ = 0 -(= '"C for all trees 1:' 0. -
This ordering, which will be referred to as the natural
orderin,], does not depend in any way on the number of nodes in
the trees, so that it is meaningful to compare two trees by this
method even if the two trees have different numbers of nodes.
In the examples shown later, the number of nodes in each tree is
the sameu although the comparison as defined is equally valid
when comparing trees of different sizes.

We may define an ordering on the height representation of a
tree. This is simply the lexicographical ordering of the height
vectors of the trees to be comparedo In detailu this ordering
is given by:

Given two trees "'(and "t' e with height vectors !! =
(h,oh ... o ooo,h...) and!!' = (h.~,h!",o./Jh:)/I then 1: -< 'tv if and only
if h < hlu where B ( hi is defined to mean

h' < h' for some 1 (= j <= nJ ,

and h~= h! for i = lcooooj-lu
We demonstrate the connection between the natural ordering of
trees and the height representation ordering of a pair of trees
by means of the following theoremo

The ordering imposed on the set of rooted trees by their
height representation ordering is the same as that given by the
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natural orderingfi

The proof is by induction on the height of the treen The
base point for the induction in the definition of the natural
ordering is the trivial tree '~o= ~ The height sequence for this
tree is h = (O)e whereas any other tree has at least two
elements in its height vector, the first of which is always
zero< This vector is therefore less than any other valid height
vector, and this is the starting point for the recursionc

Now let us consider two trees ~ and -::,ij which are

(h:u 0 c , ,h~) respectively c and let us suppose that tt decomposes
into principal subtrees 'T,,,,,. o 0 "tIL and a{w into '1:',~0 coo o~\t' Let us
also assume that 't.t-: 1:'.~ but that 1:'.= 't.u for i = 1"o<,"o)'-LJ ~ ~, • '. We

have constructed the heiqht vector in.such a way that
implies that the corresponding vectors are equalu and thus the
sequence formed by concatenating the height vectors of the

subtrees ~,oo~co~j_' is equal to that obtained by concatenating
the height vectors of 't7 [100 ''J'ti_,o But if each element of each of
these sequences is increased by onen and the two sequences are
each prefixed by a zeroo then the two new seguences (which are
still egual) are the partial height vectors corresponding to the
root and the subtrees "r, {! 0006 ''t'j_I respecti vely 0

Now the height sequences for ~and~ij are not equalv and by the
inductive hypothesise 't'j"( 'tl if and only if hq\< h~o The partial
height vectors hand h' can now be extended by concatenating the
sequences hq> and h~) in which each element has been increased by
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one. These new partial sequences h and hi are related by

.h < h~ t=> !!(i' < h;>
since we know that all the elements of h and hi which precede

start of ~) and h~iare equal.The remainder of the vectors h

and hi are irrelevant since the result of the comparison is

the

decided by the first point of difference between the vectors.
Thusr by definition of the natural ordering of trees

By the inductive hypothesis

"". <. "'C.11 <=> ~,,)< h;p
.. J ;a

and by the lexicographical ordering of the height sequences

In fact the theory of the height representationo and in
rarticular the above theoremo applies to ordered rooted trees.
We introduce it here because this representation is more
appropriate when considering the canonical form to which an

unordered rooted tree is reducedo

We must also consider the meaning of the term Qcanonical
form i with respect to the height representation. The discussion
of the height vector in the previous chapter mentioned that any
subtree corresponded to some subvector of the height vector and
~ave the rule for finding such a subvector. In particularu the
principal subtrees of a tree are given by the subvectors which
begin with the value 10 and continue until immediately before
the next element whose value is 1n We can therefore isolate the
subvectors which represent the principal subtreeso and by the
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above theorea, we can order the subvectors lexicographically
within the vector (first ensuring that each subvector is itself
in canonical form) to obtain the canonical form for the height
vector representationo which we see is the same as the canonical
form used in the natural ordering.

This natural ordering (and hence the height sequence
ordering) works very well for giving a representation to the
intuitive idea of ordering the trees with n nodes. but apart
from storing an ordered list of such trees together with their
respective index numbersl the problem of associating an index
number between 1 and T~r where T~ is the number of rooted trees
with n nodeso with each tree in the set still has no solutiono
Howeverp we may now take a closer look at the way in which these
trees are enumerated.

As noted earlier in section 111.2u there are at least two
ways to represent an ordered rooted tree and we showed the
functional eluations which indicated these representations. The

second of these represented the view that an ordered rooted tree
can be considered as a root with zero or more ordered rooted
trees above Lt , Nowil following Harary and Prins (1959) II we may
take the same point of view with regard to rooted trees. but
with some modification. Suppose our ordered rooted tree has k

subtrees above the root" then the combinations of subtrees may
be taken from the full set of { j (x) -} , In the case of rooted
treese some of these combinations will be equivalent{ since
certain per.utations of this set of k subtrees will not change
the tree, (The selection must also be made from the set
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anyway) c Thus we must take into account the
permutations of the subtrees which leave the tree invariant.
Polyais theorem (1937) shows how to enumerate the inequivalent
members of this sete. without delving too deeply into the result
discovered by Polyar we can state that if there are k subtrees
above the roote then the number of inequivalent rooted trees is

Z (P~ ..,T (x) )

where Z is the cycle index of the symmetric group p~ of
rermutations of k objects. and where T (x) is the counting

series for rooted trees. Thus..,since a rooted tree is a root
with zero or more subtrees above it. we have the relation

T (x) = x
It, ..

and it can be shown that-LZ(Pk6 T(x).,.0
so that we have

GO

= exp { L T (XT) /s: ]
..".

00

T(x) = x exp I La T{xT)/r }
"'-':0

We shall discuss Polya~s theorem in greater detailn with
particular reference to the counting of linear graphs, in
chapter Vo

In this method of counting trees.., we decompose the tree
into subtrees of height at most one less than the height of the
original t ree, This immediately suggests that there is a
connection between this counting method and the height sequence
representationo In fact Riordan (1960) used a very similar
argument to the one of Harary and Prins given above to generate
the trees with n nodes and height he Here we denote by T l"-) (x)
the generating function for rooted trees of height at most h.



49

Riordan shows that the following equation holds:
_l&.) ~ t~-I)..,.
T (x) = x exp { ~ T (x) Ir }

The generating function for trees of height exactly h is then
given b y.~

By using the work of Riordan we may construct a table of values
such as the one given belowe in which we see the numbers of
trees with n nodes and height ho and use it to eliminate the
necessity for generating all the trees of a given size in order
to find the k-th (in the height sequence ordering) a .

n 1 2 3 4 5 6 7 8

h

1 0 1 1 1 1 1 1 1

2 1 2 4 6 10 14

3 1 3 8 18 38

4 1 4 13 36

5 1 5 19

6 1 6

7 1

We may now merely dismiss all the trees whose height is less
than the height we are interested inc For instanceo suppose we
require the 76th tree in the height ordering of the trees with 8
nodesD We see that there are 53 ( = 1 + 14 + 38) trees of
height less than or equal to 3, and so we are now looking for
the 23rd tree (23 = 76 - 53) in the sequence of trees with 8
nodes and height 4 (of which there are 36) c

Having established that the height of this tree is to be 40

we may make some remarks about the decomposition of this treeD
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Sincer by our definition of a canonical form for a tree the
first subtree must be the tallest. we know that this subtree
must have height = 3r Let us now consider the decomposition
given by separating this subtree from the rest of the tree. (We
note in passing that this is the mirror image of the
decomposition we defined earlier for ordered rooted trees) 0

Then if this first subtree "'(I has n ('r.) nodes c we deduce that
the residue is a tree in canonical ordering with 8 ."n (--r;) nodes
and height <= 4 r Lookiny at the above t.a bLe, we see that n (~)
can take the values 4c Se 6 or 7 in which case the number of
j10ssibilities for '"t: is 10 3c 8 or 18 respectively" The number
of possibilities for the residue tree in these four cases is

respectively 4 (= 1 + 2 + 1)" 2 (= 1 + 1)" 1 and 1" Thiso as
expectedg gives the total number of possibilities for this
decomposition as 1,Q -} 3,2 + 8c1 + 18,,1 = 36" Unfortunatelyc

however, the ordering of these trees which is implied by this
method of countin] the possibilities does not correspond with
the lexicographical ordering of the height sequences" As an

exampler consider the two trees shown in figo 30 Tree (a) has ~
first principal subtree which has 5 nodesv in which case it is
included in the second term of the above expressiono whereas
tree ( b) has 6 nodes in its first princi.pal subtree
corresponding to the third term of the expression" We would
like therefore tree Ca) to precede tree (b)<. However their
corresponding height sequences are:

0 1 2 3 4 3 1 2

and
0 1 2 3 4 2 3 1
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showing that by the natural ordering v tree (b) precedes tree
(a) 0

There are however methods available to generate a complete
list of all the trees of n nodes in the height sequence
orderingo The most straightforward method is as follows~

,. the first tree is represented by a sequence of one zero

followed by n - 1 ones.
20 from any treen we may generate the next tree in the

sequence by increasing the last element in the vector

by one8 subject to the constraint that it may not
exceed its predecessor in the sequence by more than

oneo
3< a check must then be made to ensure that this is a

valid rooted tree (io~o it is in canonical form). This
is done recursively by comparing each subsequence with
other subsequences at the same level in the same
sub t re e ,

This algorithm was programmed and it indeed generated all the
rooted trees of a given sizeo but still trees were being
~enerated and then rejected on the grounds that they were not in
canonical form. In the case of the algorithm given abover the
number of invalid trees generated was not nearly as high as it
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had been when all ordered rooted trees were generated and
duplicates were then rejectedr but a method was still sought
which would generate all the rooted trees without generating
duplicates. Scoins (1968) produced a recursive algorithm to
solve this problem, which uses the implicit stack created by the
recursion to maintain back pointers to the previous subtreec

which give information about the maximum value that can be taken
by each element in the hei~ht vector. This procedure then
senerates all the trees without duplicates. Although the height
vector representation appears to tie in closely with the
~enerating functions which we have inspected v the relationship
will never be entirely satisfactory while the generating
functions themselves contain implicit references to the number
of nodes in the tree~ By this we mean that the generating
function T(x) is defined to be~

T(x) - Tax" Ttx2 ..T1x3 .. "00

where the T~ are the numbers of trees with i nodes., We might
hope that the relationship with the generating function methods

of counting trees would be more closely related to a

representation in which more account is taken of the number of
nodes of each subtreec such as the weight representation to be
described in the next section.

Consider again the functional equation whose solution is
the generating function T(x).

T(x) = x exp { ~ T(xY')/r J
.... "-1

thus
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-log [ T(x) / x ) = 2: T(xr)/r
by expanding the power series and reversing the order of
summation, we have

DO

log [ T (x) / x ) = ~"I"~'
.,"T.,.log (1 <-. X )

= 10:] I
-T..,.

(1,' x") }

T (x) = x fr Cl (l o Cl 0 o (. (l r. n c:' ~.) ~,' V c. .o ~ ,( 1)

This result was however known to Cayley (1889)c who derived
it in a more empirical fashion, Cayley reasoned as follows~

Any tree of n nodes can be considered as a root, together
with either one tree with n - 1 nodes above it, or two trees,
one with p nodes8 and one with n - 1 - p nodes above the rooto

or three trees with p, ;, and n - 1 - P ~ g nodes respectively
above the rooto and so OD" Thus:

T" = T"_I + >"" T., T_ + E Tt- T. TV' + <>" ~ "" 0 c ~""., o J2)~ .._, -,. "~."~".I to

Now eac h term in 2: Tt T,_ must have p >= go and furthermore v if
~..t{.~"'-j

r ::;g (Leo only if n _. 1 is even) we have the term T~ ( T~ + 1)

/ 2 instead of Tr20 These restrictions are to avoid getting the

same tree twicee but on one occasion with its branches reversed"
Similarly the terms L T~T, T,. must have p

p.. '\..,Y~"-'
P ~ g = r we have T~{Tp + 1)/2 Tv

>= 9 >= r, and if p
:= 9 ~ r or or T~ +

Alsoe if p = 1 = r8 then the appropriate term is T~ { T~
+ 1 T~ + 2 } / 60 Similar restrictions must be placed on
the terms containg four or more factors. where if there are k

k.terms alikeo the term T~ must be replaced by the number of
k+coabLnations with repetition" Cayley shows that this method
of counting trees leads directly to the generating function
which satisfies equation (1) c
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Examination of this generating function suggests that
partitions are connected with this method of counting treeso and
indeede each term in the equation (2) may be regarded as being
derived fro. a partition of n - 10 and thus we can consider the
possibility of ordering the trees according to an ordering of
the partitions of n Clearlyo if the i-th part of a
particular partition is p~~ then the ordering of subtrees within
a tree is tied to the ordering of the parts p~ 0

To illustrate Cayley~s method of counting treesu suppose we
know the values of Tn for n = 1oo~~o6:

we may find the value of T, by writing down all the partitions
of 6:
1 1 1 1 1 1 .L T, (T, +1) (T. +2) (T, +3) (T, +4) (T. +5) = 1Co!
2 1 1 1 1 T:.,l.T, (T. +1) (T, +2) (T, +3) = 1

4.
2 2 1 1 t~T~ (T~ .. 1) tt T~ (T,. + 1) = 1

2 2 2 t~T:.. (T~ +1) (TL +2) = 1

3 1 1 1 T) f~T, (T. +1) (T, +2) = 2

3 2 1 T) T~ T. = 2

3 3 1. TJ (T1 .. 1) = 3
J.~

4 1 1 T i.T, (T. +1) = 4.. 1.
4 2 T~T\,. = 4

5 1 T,T, = 9

6 T" = 20

.,."._----
48

Hence T, = 480.
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We may now use this method of counting trees as the basis
for an ordering of all the trees of n nodesc Let us denote the
set of rooted trees with n nodes by set{T~)~ The braces
underneath the sets indicate that the trees included in any
brace correspond to a single part of the partitiono
Set (TI ) = { ~ 1

T3, .,,) partitions of 1 ~-) 1

Hence set ( T'1. ) = { 1 J

Tl ._) partitions of 2 -) 1 1

) 1

1

set ( T) ) { V
T~ ...> 1 1 1

2 1

3

set ( TAt ) = !'J/V Y......
T~ ~.> 1 1 1 1

2 1 1

2 2

2 1 1 1

221
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311

3 2

}

similarlyo

However it is instructive to see how the partition 3 3 of 6 is

dealt witho The contribution TJ T.l to the"sum T..,is in fact

-i T\ (T)+ 1) and not Tf c Similarly 1/ the corresponding operation in

the tree ordering gives~

if T -> IV { ) I
~ T, (T, +1) -> i'(}'\y~J

i.e. we have ~ and we ensure that 't;.>~ 'l.'L. This extends

naturally to the cases where there are k equal parts in any

par t.Lt Lon ,

Using the Cayley ordering for the trees with n nodeso we

are able to associate with each number in the set { 18 00", a T ~ J a

unique treeu and this tree may be found without reference to the

other trees in the set. but only to the numbers T,VD.OoT~" We

do however require an ordering of the partitions of 2o"aDcno and

also an ordering of the combinations with repetition for many of

these numberso If all these numbers are available then we can

find the k-th tree in this orderingw whenever 1 <= k <= T~.
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Define a tree to be of type Po where P is the partition of
the number n ..1{'P. I P\'l' 0 o.C p.,..8 when the tree is of the form
shown in fig. 4~ In the figure, the tree ~. contains p~ nodes,
for i == 1,oeo,re

Now the number of trees of type P may be calculated •. Let
this number be T{P) e. Thus, Jiven an ordering for all partitions
of n - 10 and a number k, the type of the tree number k in the
set of all trees of n nodes may be founde This is done by
subtracting T(P) from k for each P in orderg until the value of
k becomes negative, When this happenso we deduce that the k~th
tree is of type pi where
P~ is the current
rartition in the

process. Then the k·-th

ordering. Let k~ be the
last positive value of k

in the subtraction

tree in the set of n

node trees is the k~-th
tree of type P'•.

Now to find the k~-th tree of type pgu assume that pw is
the partition (PI~,P~80.~CP':'). If we take the case when all the
r: are distinct, we allow the last value in this list to vary
most quicklyo In other words, we take the first tree in each of
the sets of trees with p? nodes for i = 1r.~oor-1u and take each
tree with p~ nodes in turn, and when all these trees have been
counted, we take the second tree with P~.I nodes and again take
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all the trees with P~ nodesn If some of the p~ are equalo we
are concerned with ordering the set of combinations with
repetitionn
follows:

The obvious ordering for these is simply as

Suppose we require k+conb Lnat.Lons with repetition of the
elements 1pooonno Then these combinations are to be ordered by
taking the first element as 1 up to n in ordero and for each
value of the first element (let it be i), we take the
(k-l)-combinations of the elements 10o~qoio We shall give two
examples of the way a particular tree can be foundo

Let us first attempt to find the 27th tree with 8 nodeso
By generating the partitions of ., and counting the numbers of
trees for each partition we have:

1 1 1 1 1 1 1 1 tree

2 1 1 1 1 1 1 tree

2 2 1 1 1 1 tree

2 2 2 1 1 tree

3 1 1 1 1 2 trees

3 2 1 1 2 trees
3 2 2 2 trees
3 3 1 3 trees
4 1 1 1 4 trees
4 2 1 4 trees
4 3 8 trees

As these partitions are generatede the corresponding number of
trees are subtracted from the value 27, and before the last
partition (4 3) is generated, the value has been reduced to 6e
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and thus would go negative on subtraction of the number (8) of
trees with this partition. Hence. we now are looking for the
6th tree with partition 4 30 Already part of the weight vector
for the resulting tree can be set up:

w = (8u4u' .'-0"031/-0'»

dashes represent values which
Let the trees with 4 nodes be

where the have yet to be
thedetermined. denoted by

numbers 1,2t3c4o and the trees with 3 nodes be denoted by the
letters a,b. then the combinations which we can have are (in
order) 'la, 'lh , 2ac Zb, 3aD 3b. 4a, 4bo Now the 6th tree in this
sequence is the tree denoted by 3b. i.e..the 3rd tree in the set
of trees with 4 nodeso and the second tree with 3 nodes. In the
same way as beforer we may find the find the 3rd tree with 4
nodes by enumerating the partitions of 3~

.1 1 1 1 tree
2 1 1 tree
3 2 trees

The third tree in this sequence is then the first tree with

partition 30 which itself corresponds to the first partition of
2~ i~eQ 1 1.. Our weight vector now becomes:

.~ = (8 t: 4 "3 ~1 D 1 I' 3 I - 0 -. )

To fill in the last two dashes in this vector" we now
inspect the second tree with 3 nodesv i.e. ,the tree b above.
This corresponds to the second tree partition of 2 (since the
first partition of 2 represents only one tree), and this in turn
makes reference to the first partition of 10 Thuso the weight
vector has the final form~

~ = (Bu403r1c''t3,;2.,1).
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The other example to be considered is to find a tree from a
larger set of trees" Let us consider the determination of the
121st tree in the set of tree with 12 nodes" By the same
counting process of partitions as before, it is found that the
121st tree with 12 nodes is the 16th tree with partition 4 4 3.
The set of trees with this partition consists of 20 trees" and
we again denote the trees of 4 nodes by 102.3 and 40 and the
trees of 3 nodes by a and b. The 2-combinations of 1v2,3.4v in
order6 are:

1 1, 2 1 0 2 2p 3 1{' 3 28 3 36 4 1" 4 2/' 4 30 4 4,.

But each of these combinations has to be used in conjunction
\liththe two trees a and ba The final result of picking out the
16th tree in this set gives that the required tree is made up of
the trees 4 2 b, Le. the fourth tree with 4 nodes, the second
tree with four nodes and the second tree with 3 nodes. This

gives rise to the weight vector~

! = (12040362010402010103.,201) 0

The two trees generated by this method in the two examples given

are shown in fig. 5.

The weight vector referred to here is of course the
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weight representation which has already been described in
chapter lIe Although the weight representation is the most
natural to use when discussing CayleyVs ordering of trees6 this
ordering unfortunately does not quite correspond exactly with
the lexicographical ordering of the weight vectorso This is
because we have considered Cayley~s ordering as fixing a
partition at level 1 of the tree and allowing the partitions at
level 2 to vary through all their possible values. However. by
the strict lexicographical ordering of the weight vectors a
partition at level 2 may have to be fixed while the later parts
of the first level partition may have to be changed. We
illustrate this with an example. Consider the two trees shown

in fig. 6.

F~g~_Q~

Tree (a) clearly comes before tree (b) in the ordering by weight
vectors v since their respective weight representations are~

(a) 7 4 1 1 1 2 1

and~

(b) 7 4 2 1 1 1 1
but the first level partition for tree (a) is 4 2 while that for
tree (b) is 4 1'. The weight representation ordering can of
course be modified by making the comparison of elements of the
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weight vectors in a slightly different order" For instanceu if
we compare the weight.vectors of the two trees in fig" 6,.,in a
term by

(Q.l (10)term fashiono we find that w~ < 'Ill and hence we deduce
that tree (a) comes before (b) in the orderingo If however we

(...., lit). (pjfirst compare 'II I If 'II. and then wa 6

~)
these pairs equal we then compare V~ .... ~ =

w~and on finding both of~
<'0.) \"'~ l'-lw1....= w,-with Wc. we find

that tree (b) is now less than tree (a)" The full algorithm for
scanning the weight vector in this order is~

1, compare the first element of each vector, and if these

are differentu the result of the comparison between the
two trees is the result of this comparison; otherwi.se"

2 " Set i = 2 o and k = W I 0

Compare and wl.'~)and if these differ then the result~

is the result of this comparison; otherwiseu

Set i :: i lo.)
+ w. c..

If i <= k then return to step 3;
(Ao)

Set i = smallest value such that w. has not yet been,
considered and set ("')k = w~_. ; if there is such an iv

return to step 3; otherwise the algorithm terminates
with the result that the two trees are equalo

Using this algorithmD the trees to be compared are examined in
the same way as they are generated in the Cayley orderingo by
looking at the whole partition at one level before moving
further up in the tree structureo The same result could be
achieved by defining the weight vector in such a way that the
nodes are labelled in a different ordero vizn by labelling all
the nodes at one level of the tree before labelling tbe nodes at
any higher level., If the weight vector were defined in this
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wayo the lexicographic ordering of the weight vectors would
correspond exactly with the Cayley ordering of the treeso The
use of the word level is quite consistent since the nodes
corresponding to values within a single partition all have the
same height valueo

In the two previous sections, we have been able to order
the corresponding types of tree according to some representation
both of the trees themselves, and of the numbers "l", and T..o The
reason why this was possible was that we were able to express
the numbers 1", and To.in terms of a sum of products of earlier
numbers in the same sequence" That iSQ we have been able to
show that trees of n nodes could be described in terms of tree
with n -,1 or less nodes. In the following dLsc ussdon, we have
to modify our method slightll since we have to take account of
subtraction operations which appear in the counting formulae for
free trees"

The most easily described formula for the generating
function for free trees is due to otter (1948) and is also
referred to by Riordan· (1958)0, If

where
t(x) = tax + t&X2 + tix3 + t~x· + OQ~

is the number of free trees with i nodese then it can
be shown that t(x) satisfies the equation

t(x) = T{x)." -if T2(x) ~ T(x2) }
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Riordan, in his description of the derivation of this eguationp

defines the £~~!£oiQ of a treeo and this is the same as the
£~~i£~of n~!Q~£as defined by Cayley (1889) 0

Given a free tree, at any point in the tree we have a
number of lines incident to ito Each such line determines a
subtree of the treeD and the number of nodes in each of these
subtrees is known as the weight of that subtreeo Let the
weights of the subtrees at some node x be av be c. etc. where a
)= b >= c >= n ~ • Then at b + c + = n - ·1 where the tree
contains n nodes n Now if a > ~ n, the subtree which corresponds
to the weight a (let us call it B (a}) is said to be P'£~do.~.!!!~l!£.
If a = In (which implies that n is even) c then B(a) is said to

~
be !~£~!! .g.QJ!i!!~.l!1Dand if a < t n then all the subtrees B (a)r

B (b){I B (c)8 roo are said to be §!!J2ggy~!.

Given any tree with n nodes, if n is odd then there is one
and only one node for which the subtrees are subegualn If n is
evenr then either there is one and only one node for which the
subtrees are sube~ualD or else there is no such point. but there
are two adjacent points both of which have a merely dominant
subtreeo and all the other nodes have a predominant subtree .

.~£22.t;,. (cayley)

Clearlyo if n is odd there can be no merely dominant
subtree, since this implies that a = in for some nodeo but a
must be an integer. Thus it remains to show that there is one
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and only one node with all its subtrees subequal~

Starting at any node, the values a , be ClOP" may be
caLc uLated for that node, If a < ~ n c then we have a centre of

number (at least one)" otherwisee move to the adjacent point

in the subtree B(a). For this node we may now calculate the
(,uantities a i I b i 8 c~ r V" 0 and one of these quantities is equal
to 1 + b + c + Thus a~ <= a - 10 So we can move about the
tree, each time moving into the predominant subtreeu until we
reach a point for which the subtrees are subequalo We now have
to show that there is only one such node" Suppose there are two
such nodes x. and x~0 Then x. has subtrees B (a,)0 B (b,)r B (Cl) 0

and x2 has subtrees B(aa,)uB(b1)c B(cl,)u <.~" Now a, < tno
and therefore bl + c, + UOo > j. n-L

1
Now the node Xl must be in

one of these subtreesu and hence a~ cannot be less than 1 + bl +

C
I

+ > !ne contradicting the assumption that all the
1.

subtrees at xl.are aubequa'l, Thuse for n odd e there exists a
unique point whose subtrees are subequal

For the case where n is even, the argument proceeds exactly
as before6 except that there may be a situation when a = ~nn for
some node 0 Carry out the process as described above, until a
Faint is found whose subtrees are subegual. r e , howevero a node
is found such that a = in (and b + c + c 0 0 = in 1) we now

). 1-

proceed to the adjacent point in the subtree B (a)0 Now we find
aij b 1/ 6 C I I Cl ~ ~ where a~ = 1 + b + c + " 0 0 = tno L~" we have0

found a pair of adjacent nodes both having merely dominant
subtrees. The proof that these are the only such points
proceeds as before.
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Cayley defines the point with all its subtrees subequal to
be the £~~~~~ Q1 nQ~bg£D or in the case where there are two
adjacent nodes with merely dominant subtrees these two nodes
together with the line joining them are defined as the Q;i::£~!l~!:~
of ~~!£~~ These two nodes are sometimes referred to separately

uses
the terms ceA!!!:Q.igand .11i:.:£~n..t£Q.!g for the centre and bi·~centre
of number respectively"

In attempting to generate all free treesu we may generate
all rooted trees and reject all those for which the root does
not coincide with the centroid, or with one of the half~centres
of numbero In this latter case8 we are faced with the problem
of deciding which of the two ways in which a free tree may be
represented as a rooted tree we should rejecto Howevero by the
theoremu we know that there can be no such trouble as long as

the tree has an odd number of nodeso

Returning to Otter~s formula for the number of free trees~

we can expand the formula to obtain an explicit expression for
the number t"D the number of free trees with n nodes"

t.. = Tn - I L T~~ - T",~} / 2
fo+C\. ~ ...

(T..b.= 0 if n is
odd)

or
= T - 2: T T if n is odd.. ">'j," '\
= T..- ~ TL. ~ -- .1. T2, + J. T~ r -,. ~ "B \... .. ,).

">i\.
= T 1:T~T,_ t T..tJT..,,,,-1) if n is even,

,,>C\..of counting trees is based on the definition of theThis method
centroid (or centre of number}o Suppose now that each tree is
to be considered as two partso the left-most subtree above the
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rooto and the remainder of the tree, as shown in figo 7v

Assume that the tree is in canonical form for rooted trees as
defined by the Cayley ordering< Then if the number of nodes in

the left-most subtree is

centroid" (This follows

Fr and p < n/2l' then the
root of the tree is the

from the definition of
centroid)" Now consider
the case when n is odd.
Then if p is the number of nodes in the left subtreer the
remainder of the tree contains 9 (= n - p) nodeso Now for the
root of this tree to be the centroid we must have p < n/2 and q
) n/2u ioe< p + q = nand p < qv Hence if p > q this tree is
excluded from the list of free trees e and so the term - ET~~,.~
appears in the counting expression for t~. In the case where n
is even a further term comes in to the reckoning. In this case
it is possible for p to be equal to n/2" For this value of Po

the tree has no centroid8 but it has a bi-centroid. and a
correction term is required in the expression for tn to ensure
that the same free tree does not get counted twice -,when the
root is at each end of the bi-centroid. As we saw when
examining the counting methods for rooted treesp if two parts of
the tree were of equal weight I' the correspondLnq term in the
counting expression was tT~,~(T"J~+ 1 and not T2

'

0..... So in this
caseo all the trees which decompose into subtrees such that p =
q := n/2 are a set of T!,..trees c of which only ~ ~JT~,...+ 1) are..
required. i~e. from the set of all T~ rooted trees with n nodes
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we must omit (in addition to those for which p > n/2)
1) of the trees where p = n/20 This then accounts for the
appearance of this term in the expression for t~ when n is even.

This study of the countin~ expressions for the t~ leads
directly on to a method of generating the free trees with n
nodes in ordera If n is odd6 we generate all the free trees
from the set of rooted trees without having to reject any. in
the case where n is even. some of the generated trees will have
to be rejectedc but this is only for the trees which have a
bi-centroid. and there is reason to believe that the set of
trees with bi-centroids is relatively small. and less than half
of these have to be discarded. In n is odd then. we know from
CayleyVs theorem that each tree has a centroido Hence the free
trees may be represented by those partitions of n-1 for which
the largest part Po < \. ne Thus/Jif only these partitions are
'1enerated. we generate only the free trees. In the case where n
is even, we may again generate the partitions for which P. <

n/2o but we must now go on to look at the partitions which give
r, = n/20 and be must be somewhat more careful when looking at
the trees to which they correspondo These are the trees with
bi.vcent roLds, and here they must all be generated and any
duplicates must be rejectedo Cayley also gives the numbers of
trees with bi-centroids and centroids and from this set of
numbers we see that the set of trees possessing a bi··centroid is
relati vely small. (These numbers will be given later in the
Appendix) 0 A second reason why it is relatively inexpensive to
discard some of the trees with bi-centroids is that the method
of deciding whether to throw a tree away is trivial •.
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If a tree has been generated for which p, = n/21J we know
that

It
L P' = n/2 1,:~

since this tree is represented by a partition of n -. 10 Now the
second level partition in the first subtree may be compared very
easily with the remainder of the whole tree~. Again we
arbitrarily decide that if we have a tree with a bi-centroid we
reject this tree if the first subtree is less (in the sense of
our ordering) than the remainder of the tree~

Two examples will again help to clarify the points made

By looking at the seguence of trees of 7 nodes in the
Cayley or d e r Ln q , we are interested in the trees whose weight
vector !! has the value 3 or less for w~ Q and we see that there
are 11 of themo exactly the same number as the number of free
trees of 7 nodes" Explicitly these trees are:

7 1 1 1 1 1 1

7 2 1 , , 1 1

7 2 1 2 1 1 1

7 2 1 2 1 2 1

7 3 1 1 1 1 1

7 3 2 1 1 1 1

7 3 1 1 2 1 1

7 3 2 1 2 1 1

7 3 1 1 3 1 1

7 3 2 1 3 1 1

7 3 2 1 3 2 1
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These trees are drawn out in fig~ 80

We can also see the relationship between the other trees in the
set of rooted trees with 7 nodes, and the terms in the
expression for t~v

t..,= T."._Tt.T,~ T(Tl~ T...Tl
= 48 ~ 20 )( 1 - 9 " 1 - 4 )( 2 = 11

and we can see in the full set of rooted trees the trees whose
first level has Pi ~ 60 5 and 4 respectively~

The other example illustrates what happens in the case when
the trees have bi-·centroids~. Here we take the trees with 8
nodeso The trees for which the first level partition has
largest part p equal to 3 are generated as in the previous
exampleu but we need to look more closely at those trees with
the value 4 as the second element of the weight vectors,

The total number of such trees is 16 :: (4) 2 = T~l7and they
are:

8 4 1 1 1 1 1 1 *
8 4 2 1 1 1 1 1 &

8 4 3 1 1 1 1 1 &

8 4 3 2 1 1 1 1 &

8 4 1 1 1 2 1 1



71

8 4 2 1 1 2 1 1 *
8 4 3 1 1 2 1 1 &

8 4 3 2 2 1 1 &

8 4 1 1 3 1 1

8 4 1 1 1 3 2 1

8 4 2 1 1 3 1 1

8 4 2 1 1 3 2 1

8 4 3 1 1 3 1 1 *
8 4 3 1 1 3 2 1

8 q 3 2 1 3 1 1 &

8 4 3 2 1 3 2 1 *
Of these, those which are marked with an asterisk have the two
parts to be compared egual to each other u and thus they must be
included in the set of free trees. Those that are marked with
an ampersand are those whose first subtree aDd remainder parts

"t', and -t~ respectively are related by 't,)o" 't~~ These also have
to be included in the set of free trees. It will be seen that
each tree in the set of those marked with an ampersand has a

dual in the set of those unmarked •. Figo. 9Q shows these trees.

~w ~

'\Y'J Xl0

Fi_g.!:..~~
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There is another special point in a free tree which can be
identifiedo This point is the centre of the treeo From each
node in the treeo there is one and only one path to every other
point in the tree (by the definition of a tree) D Let the
distance between any two nodes be the length of the path joining
those two nodeso The ~i~~~t~£of a tree is defined to be the
sreatest distance between any two nodes in the treeD If the
diameter is eveno then there is a node at the mid~point of the
diameter, and this point is called the £~1~~ of the treeo If
the diameter of the tree is odde then there is a middle line in
the path, and this line together with its two end'-points is

called the hi=£~!!~o

The centre or hi-centre of a tree is uniguea

Suppose there are two centrese i.ea there are two distinct
paths each equal in length to the diameter which have distinct
mid-points x, and x). Let y, and y~ each be an extremity of the
path with mid-points x, and x~ respectivelyo such that the
diameters do not intersect between x, and y, or between x~ and
y~u and let the length of each diameter be 2rD Then the
distance from x, to y, e and from x~ to y, is r in each caseo
But since the tree is connected and x, and x~ are distinct,
there must be a path of length d (> 0) from x, to x~o and hence
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the path from y, to y~ must pass through XI and x~ and its
length is equal to r + d + r > 2r~ contradicting the statement
that the original 'diameters' were of maximum length.

The proof for the uniqueness of the hi-centre is almost
identical~

One algorithm for finding the centres or hi-centre of a
tree is to remove all the terminal nodes and the lines to which
they are joined to give a reduced tree~ This VstrippingV

process may now be repeated on the reduced treen and so onn

until either one or two nodes remaino In these cases we have
found the centre or b~-centre of the tree respectively. It is
clear that this algorithm will terminate with the correct result
since each iteration removes one line from each end of every
diameter, and that the definition of diameter implies that this
process will take at least as many iterations to remove all the
lines from a diameter as are required to remove all the lines

from any other path in the tree., Since a line is removed from
each end of a diametern the algorithm terminates when the middle
of the dia.eter is reached.

It is possible to determine whether the root of a rooted
tree coincides with its centreo or with one end of the
bi"centrec This operation again becomes trivial if the tree is
held in its height representation. Ifn howeverr free trees are
being generated by finding such trees in the set of rooted
treese some care must again be taken to ensure that duplicates
are not accepted due to the root being at one end of the
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bi~centre. In the canonical form of a tree according to the
height representation~ the principal subtrees planted at the
root are ordered by their height. Thus the first two subtrees
are the highesto If in any rooted tree the height of the first
two subtrees are e~ual, then the root of this tree is at its
centre. If the height of the first two subtrees differ by one
(i.e. the first subtree has height one greater than the second
subtree) then the root is at one end of the bi-centre of the
tree. Let us assume that the tree has the form shown in fig.
10. In this case the root is at one end of the bi~centreo and
we know that the height of the first subtree is one greater than
tbe height of the second subt.r'ee, L~o h('tJ = h('t'4.)owhere h('t')
is the maxillullheiqht of the tree"¥n Now if "(e>- = "t'feo then the
same free tree rooted at the other end of its bi~centre would be
identical as a rooted tree 0 However 0 if "t'...1 '!'.o then rooting
the tree at the opposite end of its bi-centre would give two
aistinct rooted trees. Thusw precautions must be taken to
ensure that when a tree

is found whose root is
coincident with one end
of the bi·-centreo a

previous tree is not
being duplicatedu This
can be prevented by

checking that ~..>:: "r~.

Thus, as in the case of the centroidv it is very easy to
decide whether a given rooted tree is also a valid
representation of a free tree6 provided that the appropriate
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representation of the rooted tree is being usedc

We are not aware of the existence of any counting methods
for trees with centres and bi-centres analogous to Cayley~s work
all the counting of trees with centroids and bi·-centroidsu but by
observation it appears that the number of trees with bi·centres
is in general much greater than the number of trees with
bi·-centroids for free trees with a given number of nodes, This
is obviously true for trees with an odd number of nodes since we
have already seen that there are no trees with bi-'centroidsp

whereas we can always
cunstruct at least one

tree with a bi-centre
the tree where the
longest path is 3B and
all the nodes are joined
to the same node x
except one8 which is at

a distance 2 from XF

such as for example the
tree in figo

We may count the trees which possess a bi-centre by
considering such trees in the following:

Let the tree be decomposable into two trees ~. and ~~ as
illustrated in figo 120. It has already been pointed out that
h (f( ...) = h ("(..> r and that 't'.,.)-~ ~t.o Now consider the tree shown in

12~ This tree has
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one more node than the
tree shown in fig. 10.n

trees may be counted

but we may still impose
tbe same conditions on
the two component trees
't;. and 11.. Thus€ tbese

using the formula~t:E. T;L, T·...""0 ~~J J• +.1"'"Where T"L,as taken to mean the number of trees with n nodes and
height h. Clearlyu the only tree with height 0 is the trivial
tree with one nodeo and so T~o = 0 for all n > 10 Similarly
there are no trees for which h > n-1n and so T~~ = 0 for h>= ne
This formula is not entirely satisfactoryo since the condition
that the left subtree of the root must be greater than the right
subtree should strictly refer to the height representation
ordering, whereas the i > j which appears in the inner summation
actually refers to the number of nodes in the two subtreeso

Howevero this formula does give us the number of trees with n
nodes which possess a b~-centre.

We made reference earlier to the fact that the number of
trees with a bi-centroid was given by the formula:

t T..,,,(T..h.+ 1)

and so we are able to draw up the following table~
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n 4 6 8 10 12 14 16

no" of trees 1 3 11 51 274 1541 9497

with bi-centre

no< of trees 1 3 10 45 210 1176 3670

with a bi~cenfroid
From this we see that for n >= 8 the number of trees with a
bi-centre is greater than the number of trees with a
bi-centroidQ which together with the fact that there are no
trees with an odd number of nodes which have a bi~centroidc
leads us to the conclusion that the method of generating free
trees using the weight representation is the more efficient to
useo since the number of extra comparisons reguired to ascertain
whether a bi-central tree has been previously generated is
clearly greater than the number of comparisons of bi-centroidal
trees.
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This chapter describes the graph isomorphism problemu and
reviews some of the approaches to its solutiono The main
approach which was taken in this work turned out to be very
similar to the work of Cornei16 and consequently many of the
results quoted here are to be found in Corneil (1968) and

Corneil and Gotlieb (1970)0

The .ain problem in finding whether two graphs are
isomorphic is concerned with distinguishing between nodes of an
unlabelled graph which appear to be similarc or to establish
that the two nodes are in fact completely indistinguishableo

Given two graphs G and G~r with sets of nodes V and V'
respectively 11 a one-one mapping tf' from V onto V ~ {iee0 (J' is a
bijection) is called an !§Q~Q£Ehi§~if for any pair of nodes XI

and xa.in Go (XI 8 x1.)is a line in G if and only if (crx,0 cfx,,)is
a line in Gte If an isomorphism exists between G and G' then

the two graphs are said to be i§Q~Q~Ehi£o

Most graph isomorphism testing algorithms attempt to set up
correspondences between the nodes of the two graphs in terms of
sets.. Two sets of nodes are considered to be equivalent at some
levelN and then more graph attributes are applied in an attempt
to reduce the size of the corresponding setso A solution is
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found when each set contains just one nodee and this co~responds
to a set containing a single node of the other g~aph. These
methods are described by Unger (1964) and also by Sussenguth
(1965) in which the p~oblem is made slightly simple~ by the
int~oduction of attributes taken from the application which is

a t t r Lbute s ,

being described by the graph, rathe~ than using purely graph
The nodes of the graph a~e divided into subsets

isomo~phis.<
acco~ding to some p~ope~t1 which must be inva~iant unde~

Mo~e and more properties are then introduced to
t~y to reduce the size of the sets. The final objective is that
each set should contain only one node, and an isomorphism is
determined between the graphs by the set correspondences.
Because SussenguthWs method is taken from a chemical problemr

the nodes correspond to
chemical elementse and
thus the nodes were
initially labelled (or
at least coloured) •

To describe this method in greater detailo the steps will
be explained with reference to an example., Given the two
chemical structures shown in figc. 106 is there a mapping from
one to the other which preserves adjacency? In this caseD we can
see by inspection that the two graphs are in fact isomorphicp

but we will illustrate that the action of SussenguthVs algorithm
gives an isomrphism. First of all, we know that atoms of a
certain type must be carried into atoms of the same typen

i.e. we have a partial labelling of the nodes. In fig. 1.0 the
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node label is given first for each nodeg followed in brackets by
the chemical element which is held at the node, that iso the
~colouring' of the node.

Thus we have the set correspondences:
{1,688}

{2,,4}

{3 ..S}

{7 }

<.,-) [aocph}
<--) (gof)
<_._-) [doe}
<--) Cb}

We know that any isomorphism carries the elements of one set
into elements of the corresponding seto We also know that since
some nodes are the endpoints of double links and some of single
links, thus making use of another chemical property (which may
be considered as a colouring of the lines) 0 we can set up s01le
more correspondences~

{1021'3cSo6/T7c8J

{3,4.5,7}

<.._) [aobocudoeogohJ
<_.".) {budoeuf}

Nov combining these two groups of correspondences we have~

[1e6,8J <~..) {a"coh}
{2 } <--) {g}

(4 J <.,,~) {fJ
{7 } <--) Cb}
{ 3G S} <.,.~) {doe}

Now whenever a correspondence is set up where there is only one
node in each sete we may introduce the sets of nodes which are
.oLned to that node , . Thus from {2 J <-'-) (g) we have:

<---) {e,h}
and froa (4J <--> {f} we have

(3 1
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and frail{7} <.... ) IbJ we have
( ... ) {aed)

~e may now deduce a full set of correspondences~

f 1 1 (--) (h J { ~) ( ....> { d}

f 2 } (-_.) {g 1 I6 J (._-) {c}

f 3 } (--_.) [e} f 7 } (._) [b }

{ 4 J ( ....) ff) f 8} (._--) { a}

This example shows how the algorithm operates[ but the two
'iraphsare particularly simple in structure and the algorithm i.s
able to form a full set of correspondences. We also notice that
these graphs are treesr and we have shown (Snow 1966) that we

are able to demonstrate isomorphisms in the general case between
trees,

In a more complicated examplec particularly without the
assistance of the chemical attributes which Sussenquth employsr
there may come a time during the operation of the algorithm that
the partitionin~ of the nodes into subsets ceases without

setting up the correspondences between single nodeso In this
situation we can take one of two courses of actionc The first
is to find a further criterion by which the nodes may be
~artitioned into setsa The other is to try an assignment. This
is done by taking one node from each of two corresponding sets.
We now assume that these two nodes do carre spond u i. ~0 that we
can find an isomorphism in which these two nodes are mapped onto
one a n o t.he r , and attempt to make the algorithm match up the rest
of the nodes. If this succeedsr then an isomorphism has been
determined~ but if it fails then this assignment is rejected.
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and another tried c The criterion for the non-vex Ls tence of an
isomorphism between the two graphs is that the cardinality of
any pair of corresponding sets is not the same, and if this
should happenF we have first to see if we have made any
assignmentso and if so break them8 and if no assignments have
been madew or if there are no more assignments which can be
made" we conclude that the graphs are non~isomorphic,
Sussenguth goes on to show how the same method can be used to
solve the subgraph isomorphism problemv ioe, ,to determine
whether a given graph is a subgraph of another given graph,
This problem is inherently more difficult since the
correspondences between sets are defined by set inclusion rather
than by set equaId t y ,

Corneil (1968) in his introductory chapter gives a
comprehensive list of the sorts of criteria which might be

applied to a graph to partition the nodes into setse and which
are invariant under isomrphismo Thus using the method of
Sussenguth, we can probably show fairly quickly that two graphs
are non-isomorphicr if that is truer but we may have to apply
more and .ore criteria in order to determine an isomrphism if
one existsa It is felt that using the assignment technique it
could be possible to pertorm a lot of operations on a lot of
different assignments before an isomorphism is found.

Later in the same work" corneil tries to develop a single
algorithm which when applied in a number of ways will partition
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the nodes into setsp and seeks to prove that if this alqorithm
fails to discriminate between two nodes then these nodes are
entirely equivalent to each other. Hence if we are forming set
correspondences between nodes of two qraphs , and cornetl i s
algorithm produces corresponding sets which have more than one
node each, then any assignment made between elements of these
corresponding sets automatically must succeed" With the aid of
a single conjecturec Corneil is able to show that his algorithm
does in fact find what are defined as transitive subgraphs~

The approach made here is to use algorithms similar to
those described by Corneile but with the objective of reducing a
single graph to a canonical form. This canonical form is
intended to be independent of the original labelling of the
sraph. and hence is in~ariant under isomorphism. Thusv to show
that two graphs are either isomorphic or non"isomorphicl' we
compare the canonical forms of the two graphs" and if they are
the same. then we know that the graphs are isomorphicc otherwise

l::.heyare non··isomorphico On the other hand, corned l., like Unger
and Sussengutho operates on the two graphs under test
simultaneously,. and if at any stage they are found to have
different characteristics. the algorithm terminates immediately
with the result that the graphs are not isomorphic.

The basic technique used both by Corneil and ourselves is
similar to a node classification algorithm given by Read and
Parris (1966). This algorithm begins with the assumption that
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the nodes of a graph can be classified in some way (we shall
return to this later) c The algorithm then proceeds~

'0 Place all the nodes with the same classification in the

salle class" Suppose this places the nodes in k
iequivalence ~ classes where an
'equivalence' class is intended to imply that we have
so far found no labelling independent criterion by
which we can distinguish between nodes within the
c.l a s s ,

Z; For each node If> form a list of numbers (a,aaa I' <" '. "a",)~
where a. is the number of nodes in the class V·• which

are adjacent to x,
3. Within each class VLc sort the nodes into order

according to their corresponding list" If for some

pair of nodes x ana x Wo we have lists (a,l' a3,C " " c ca...)

and <

(tv i) Lfa I f! a a. U c. < <! ca.... 1

aL < a~ for some i. and
a· = aL for J" - ~ 1"-1J J 4. - 1,,0"</0 c

40 Now refine the classification as follows~
If two nodes were previously in the same classe and
have .the same list" then they remain in the same class tr

otherwise the nodes are put into different classes.
5" Repeat steps 2 to 4 until either each class contains

exactly one nodee or until an iteration of the
algorithm fails to increase the number of classes,

It is clear that the algorithm will always terminate since
either the n nodes of the graph will be cOllpletely classified
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into n classesD or else the classes will remain exactly the same
through a whole cycle of the algorithm. Because the sorting of
lists takes place only within classesp if two nodes are in
different classes at any timeD they can never subsequently be
Flaced in the same class by the algorithm.

This procedure~ howeverp depends on the assumption that we
are able to give an initial classification to the set of nodes.
This does not present a great deal of difficulty howeverr since
if we begin by placing all the nodes in the same classo during
the first iteration the nodes would become classified by their
degrees. (This is because the list for each node x would
consist of one element onlyo alo where:

a. = the number of nodes in the set Vh to which x
is joined. In this case V~ is of course the set of all the
nodes in the graph~ so that ao is precisely the degree of x).

initial classification

Consider the algorithm at work on the graph in fig. 2. The

places all the nodes in
the same class VG o The
lists for each node
consist of one element
only:

1 -~-> ( 4)

2 ---> (2 )

3 --> ( 2)

4 ~-> (4 ) I!~_~.!:.
5 -_.> (2 )
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6 -_.) (2 )

7 .-,_.) (4)

8 ---) (3 )

9 .-.~) (3)

10 -,-) (2 )

We may now
and we obtain~

re·-classify the nodes according to these lists"

class 1
class II

class III

{1,,4u7}

{809]

{2u305u6o10J

The second iteration of the algorithm now
classification by the following lists~

refines this

class node list
I 1 (2£,181)

4 (2 .o,1)
7 (201,1)

II 8 (1['161)

9 Pu1,,1)
III 2 (1tOg1)

3 (lo0 ..1)

5 (loO,.,.1)

6 (1,,0,,1)

10 (00 '1,"" 0)

Re-~ordering the nodes according to these listso re-partitioning
the sete and forming the new listsu we have~

I ,
1

+

(1 c 1 , 1 o ,1cO)

(101u1o1eO)

(1.00 ..0II 1a 0)n
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8 (11'01'1£,0,,1)

9 (10081,,081)

2 (1.0 ..001 ..0)

3 (Ol' 11'0ll 00)

5 (Oc18°/,100)

6 (1rO ..0l'11,0)

10 (OcO,,2cOoO)V

One more iteration gives~
I

U

III

IV

V

VI

1.,
q.

8

9

'1,
3

S

10

(1oL101cOoO)

(101u101£,0(,0)

(~ 0..00° l' 2.0 0)

(1uO.,100l,01!1)

(1// c. 1 e ° DOD 1)

(1l,0,,01,Ou100)

(1/10800001(10)

(Oo100e1oOcO)

(Ou111001o0pO)

(OoOG200tlOoO)

Since within each classo each node has the same listo the
algorithm terminates, The partitioning of the nodes which has
now been formed viII be known as the t~A~! p.~~li1!Qn!ngo.
Corneil's term for this algorithm is the Terminal Connection
Partitioning Algorithmo and Read calls it the Refinement

nodes in
Algorithm. We prefer to reserve the word "terminal" for certain

treeso and thus we shall refer to the final
partitioning" and use Read's term of refinement algorithm~ The
partitioning given by the algorithm in this example displays the
symmetries in the graph which are apparent by inspection of the
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graph as shown in fig, 20u that iso the graph is symmetric
about a line passing through nodes 4 and 100

The graph shown in
fig. 3. demonstrates
that this algorithm does
not however classify the
nodes completely into

of entirelysets

equivalent nodeso

The algorithm begins by placing the nodes in the same
classq and after one iterationu the nodes are classified by
their degrees .. However the degree of each node is equal to 3L

and so the algorithm would terminate i~mediatelJ after the
completion of the second iterationo It is clear that there are
differences between the nodeso since while nodes 1 and 5 have
cycles of length 3 passing through them, the nodes 3 and 7 do
not. Thus we can illustrate that the algorithm as it stands

cannot always distinguish between non-equivalent nodeso

We shall now introduce some more definitions which will be
required in the following discussionso A one-one mapping ~ from
the set V of nodes of a graph G onto itself is said to be an
~!!.!Q.m..Q~.Ehi.§~if x, o][:L, te V and (x,o][;a.) is a line in G if and only
if (~x,,~x2) is also a line in G, ioeo ~is an isomorphism of G
onto itselfo. In facte an autoaorphism is simply a relabelling
of the graph in such a way that the graph remains unchanged
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under the relabelling" A !E!B§i.:ti~~g~~J?h is a graph G such
that for any pair of nodes x and y in G there exists an
automorphism d such that dx = y, A t~an§iti~~ §~Rg~~P-~ H of a
graph G is a subgraph of G such that for any pair of nodes x and
'j in Ho there exists an automorphism t1 of G such that dx = Yo

It is not difficult to show that all the automorphisms of a
';raph form an algebraic qroup, and this will be referred to as
the ~.!!10,!Q£E.hi§~g,£ol!J2of the graph< We may make the remark
that in a large number of cases (especially for large graphs)
the automorphism group will consist of the identity automor.phism
onlyo

We know by definition that if there exists a mapping in the
automorphism group which maps a node x onto a node Yt then x and
yare in the same transitive subgraphu We can show then that
the automorphism group divides the set of vertices of G into a
number of equivalence classes. or in other wordsc defines a
partition of the nodes of the graph into subsets" The

partitioning induced by the automorphism group is known as the

~.!t~2'!Q.t.Eh!§.! .E!lr.t!tiQ!l~ng0 The objective of this section is
ther.eforeto describe algorithms which find the automorphism
partitioning of a graphu

Now by the final partitioning as given by the refinement
algorithmQ ve might hope that the graph given in fig. 3. is a
transitive grapho but as has been explained previouslYn this is

unfortunately not so. In explaining why this graph is not
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transitive~ e.gm why the noaes 1 and 3 are differentu the next
step is immediately suggested.. This is the notion of the £Y£!!
y~£tq~ for each node. For each node x. the length of the cycles
passing through x may be calculated~. Let {Yt] be the set of all
nodes in the graph whi.chare adjacent to x , We then take each
pair of nodes Yt c Yj (i 1= j) from this set and calculate the
length of the shortest path from y~ to y. which does not passJ

through x, If this distance is p~ then the length of the cycle
through x is p+2r If the degree of x is d(x) v then there are {
a (x))((d(x) _.1) such pairs of nodes (Y .. c Yj ) t: and the same number
of distances p~ The lengths of the cycles (the values p + 2)

are put into the vector c = (cnoClvoaorC,,)where k == ~d(x)
(d(x) ."1) 0 and where it is arranged that c. <= c...; for i =

1 r : " o 0 k --1 . We must also agree that if there are two nodes y~,

such that there is no path joining them which does not pass

thr.ough x, ioeo if x is an articulation pointr then the length
of the corresponding cycle is arbitrarily largeo The vector c
is the cycle vector for the node xo Now this vector may be used
as a further discriminator between nodes .-two nodes being in
the same class if and only if they have the same cycle vector.,

The operation of finding the shortest distance between two
nodes is not a trivial onel' and this must be done several times
for each node in the graph. Thus the computation involved in
finding the cycle vector for each node is quite lengthy. Having
found this vector for each node, the classification refinement
algorith. may be used to try to re-classify the nodes into
smaller classes. _
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A computationally more convenient method of discriminating
bet~een the nodes of a regular graph is to use the vertex

~uotient graph as defined by Corneil. We must however define a
~uotient graph first.

Given a graphr we may apply the node classification
algorithm until the tinal partitioning is foundo The quotient
':raphfor this partitioning is then defined as e

Each class of the partitioning is represented by a node in

the quotient grapho In the original grapho if a node in class

.i is joined to k nodes in class j8 then we have a directed arc

of weight k from node i to node j in the quotient grapho, Since

nodes of the graph .ay be joined to other nodes in the same

class. loops (iDe. arcs from a node to itself) are permitted to

appear in the quotient qrapho We define the adjacency matrix of

a weighted directed graph to be~

A = (a")~J .

where a ~j = 0 if node i is not joined to node jo and otherwise

it is the weight of the arc which goes from i to jo Thus it is
clear that if the classification a190rithm is allowed to form
its lists in the iteration after the final classification is

founde then these lists form the rows of the adjacency. matrix
for the quotient graph •.

In the example given in figo ,200 the corresponding quotient
graph has 6 nodes. representing the classes 10 II.ooc• VI. Node
n (node 4 in the original graph) has two connections to each of
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the nodes I (nodes 1 and '7) and V (nodes 3 and ~), Thus the
;uotient graph has a directed line of weight 2 from re to 1 and
from lIto V< If we represent the weight of an arc in a
particular direction by that number of arrow-heads on the line
in that directionu the lines starting at node II are shown in
fig. 4. The process may then be continued to find the complete
quotient qraph, and this is shown in fig" 5"

y

r

y

Ki5L.. .. ~."-

Since we have assumed that the quotient graph is formed from the
final partitioning8 we know that the lists corresponding to each
node in any class are the same. and also we know that these

lists are of length k[ where k is the number of classeso and
thus we may take the lists as the rows of a square matrixn and
this matrix can be seen to be the adjacency matrix for the
quotient grapha In the example given above. we obtain the
matrix:
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11 1 1 0 0

1..0002.0

1 0 1 0 0 1

1 000 1 0
o 1 0 1 0 0

o 020 0 0

For any node x of a ~raph6 the nodes of the graph may be
partitioned into two classes" {x} and V - {x}u where V is the
set of nodes in the graph. The final connection partitioning
algorithm may now be applied to this partitioninYr and the final
partitioning which the algorithm gives is called the final
vertex partitioning of the graph with respect to the node x.
The final vertex partitioninJ with respect to x may now be used
to determine the vertex quotient graph wi.threspect to x.

We will now illustrate the formaiion of the vertex quotient
graph for the node 1 of the graph shown in fig~ 3•. It will be
recalled that this graph is regular of degree 30 and that the

connection partitioning algorithm was unable to re-classify the
nodes because of its re~;u.larity, We nov show the formation of
the vertex ~uotient graph for node 1 of this graph, and quote
the corresponding results for the other nodes.

The initial partitioning into classes {xl and V [x}
;i ve s :

I

II

r 'I 1

f:2 3,4,5,,6/7, 8}

First iteration gives~
I (0. 3)
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II 2 (1 a 2)

3 (0 c 3)

4 (003)

5 (1t,2)

6 (0 o3)

7 (0 t 3)

8 (102)

Second iteration:
I 1 (003,,0)

II 2 (101o1)

5 (1,,002)

8 (10101)

III 3 (00102)

4 (01'102)

6 (00102)

7 (00'1,,2)

Third i tera tion:
I 1 (0"2,, 1eO)

II 2 (101,,001)

8 (11710001)

III 5 (1eO ...002)

IV 3 (Oo1,,0,,2)

4 (OeOn102)

6 (Ou001e2)

7 (001,,002)

Fourth and final iteration::
I 1 (Og21'1"OgO)

II 2 (1171,,00100)
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v

8 (1f/1uOo1 .. 0)

5 (1 o 0 11 00 0 (1 2)

3 (0[100h101)

7 (Oo1uOc101)

4 (000 B 10 1 0 1)

6 (000,,1,,1,,1)

III
IV

This is the final vertex partitioning with respect to the node
1~ and the corresponding vertex quotient graph is shown in
fig. 6., for which the adjacency matrix is:

o 2 1 0 0

11010

1 0 0 0 2
o 1 0 1 1

o 1 1 1

This graph turns out to be the vertex guotient graph of
node 5 as well as for node 1~. By applying the vertex
partitioning algorithm to each node in turn we discover that the

vertex quotient graph for the nodes 3 and 7 is as shown in
figo 7~, and the graph for nodes 2e 4" 6 and 8 is as shown in
f Lq , 8~

I
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rig~_§~
The adjacency matrices for these two graphs are respectively~

0 1 2 0 0

1 0 0 2 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 1

and:

0 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

1 1 0 0 0 1 0 0

1 0 0 0 1 0 1 0

0 1 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 0 1 0 1 0 1

0 0 0 0 1 1 1 0

In the case of the last four nodesu the number of classes
in the final partitioning is equal to the number of nodes in the
original grapho and the resultant vertex quotient graph is
simply a per.utation of the nodes of the original graph.

A further interpretation of the vertex quotient graph is
the consideration that if two nodes are mapped into the same

i
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node of the vertex quotient graph with respect to some node Xv

then these two nodes are not only symmetric with respect to the
whole grapho but also are symmetric with respect to the node x
within the grapho

We may now make use of the vertex quotient graphs to impose
a further partitioning on the nodes of the original graphc Thus
two nodes are put into the salleclass if and only if they give
rise to the same vertex quotient graph~ In effecto we are
'colouring' the nodes according to their vertex quotient graphso
We may compare the adjacency matrices of any two such vertex
suotient graphs on an element by element basiso comparing the
members of the first row before proceeding to compare elements
in the second rowo and so one until the two matrices differv and
the result of the element by element comparison is then taken as
being the result of the comparison of the matriceso

Returning -tothe exampleD we may now partition the nodes of
the graph as::

I

II
rrr

{ 105 J
{307 }

{2e4,608]

A further attempt is made to refine this classification, which
in this case has no further effect on the partitioning~

We now consider the construction of the cycle vector for
-thenodes of the same 9raph~ For the node 1 (J the possible pairs
of nodes ~rom the set of nodes adjacent to node 1 are:

(2e8) 0 (205) and (5e8)

We then r-e.ove node 1 from the graph and look for the shortest
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distance between each pai.r of nodes

Clearly these distances a re ;

d (2,8) = 1

d (2,5) = 3

d(5,8) = 3

a.ndso the cycle vector for the node 1 is

in the reduced graph.

The cycle
vector for node 5 is also (3d505) and the nodes 3 and.7 have
cycle vector (40405)0 The cycle vector for the remaining nodesv

28 40 6 and 8 is (304o5) < Hence, using the cycle vector as a

discriminator, we obtain the classification:
I

II

III

[204,6u8)

{ lD5}

{ 30" }

We see from this that apart from the order of the classesc the
partitioning given by the cycle vectors of the nodes is the same

as that given by the vertex quotient graphs. In all the

examples that have been consideredo this has been found to be
true. although we have so far been unable to show that it is

generally trueo The partitioning of the nodes by their vertex
quotient graphs is then used as the initial classification of
the nodes prior to the refinement of this classification to find
a final partitioningo

We may therefore attempt to partition the nodes of a
reqular graph using either the vertex quotient graph method or
the method of the cycle vectors. As was pointed out previously,
the calculation at the cycle vector for any particular node is a
complex proceduret especially when the shortest path between a
number of pairs of nodes is required. Thus it was decided to
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use the method of the vertex quotient graphs as described by
Corneilo and the conjecture has been made that if the nodes of a
'iraphare partitioned according to their vertex quotient graphso
then the nodes of each class form a transitive subgraph provided
the graph does not have the property of 2"strong r'equLarLty ,

where 2-strong regularity is an extension of the concept of
regUlarity. Corneil shows that it is possible to extend the
notion of regularity indefinitelyo and suggests that if a graph
is h-strongly regUlar, then an "h-th order" extension of the
vertex quotient graph can be used to distinguish between nodes
which would appear to be identical using any lower order vertex
quotient graph" At the present time the smallest known
non-transitive 2-strongly regular graph has 26 nodes. A full
definition of a ~·strongly regular graph is given in Appendix
II.

An extension of the final vertex partitioning for a given
node will nov be considered. We assume that some partitioning
for the nodes of the graph G has already been found. For each

class defined by this partitioningo ve vould like to test the
corresponding subgraph for transitivity.. In the class under
consideration~ we select one node and set this in a class by
itselfu still preserving the remaining classificationo Thus if
the final partitioning has k classesv the new classification
tormed has k + 1 classes. The final pa~titioning algorithm may
now be applied to this new classification to form a new final
partitioning and its associated quotient graph. This may be
thought of as the vertex quotient graph of the node singled out
with respect to the original partitioningn This process takes
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place for each node in the class and this set of nodes may now
be partitioned according to the guotient graphs thus formed,

Any class which has more than one node in it should have
this test for transitivity applied to itu and if any class is
found not to be transitive the whole process must be repeated in
case the new partitioning formed by sub-dividing an intransitive
sub~raph causes a previously tested subgraph to reveal another
subgraph which is not transitive~ When a pass has been made
through all the classes of the graph and no refinement of the
classification has been madel' then (subject to the conjecture
~~iven above) we know that the classes represent transitive
subgraphs, L,e, each node in the class may be considered
entirely equivalent to each other node in the same classo This
final partitioning also gives rise to the final quotient graph
for the graph Go

Throughout this discussion on the formation of quotient
graphsg we may be sure that the labelling of the nodes of the
\..uotient graph is completely independent of the labelling of the
original graph, since the order of the nodes is determined only
by the lexicographic ordering of certain vectorsv and the
elements of these vectors are also independent of the original
labelling of the graphn Thus we are guite justified in
considering the identity of ~uotient graphs as being synonymous
with the isoaorphisa of quotient graphs.

For each class which is represented by a single node of the
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final quotient grapho every node within the class has the same
vertex quotient graph with respect to the final partitioning"
This is clearly trueo otherwise a further refinement would be
possibleo We may now present a graphc which is defined by

Corneil to be the !:!!.E;r:!!S~.n.:t~_tJ:.!~~1~~P.!! G.. of the graph G"

The representative graph G~ of the graph G is defined as
the final quotient graph of GB in which each node is labelled by
the vertex quotient graph which is common to all the nodes of G

which are in the class corresponding to that node of G~, It is
clearQ hut proved formally by Corneila that if two graphs Ga and
G h t t· h G(I) and Gh,' t· 1 then1. ave represena 1ve ~1raps t t respec ave Yo ;;

G - -- .J..) == G\l'
I = G~ ~ G~ R

This implication is perhaps more useful in its negated converse
form~

G~ t G{~ :;> G I '1 G~

Thuso in the full graph isomorphism algorithmo if two graphs are
found to have different representative graphsp then they cannot

possibly he isomorphic" It follows from the conjecture made
earlier that if this coniectore is trueo then the converse of

the above result also holdso i090:
GUo) '=+
R

If this conjecture could be provedo then the graph
isomorphism problem would be solvedo but since this is subject
to conjectureo a further step must be takeno The final
partitioning which is used to construct the final quotient graph
is taken and the first class which contains more than one node
is subdivided by setting one of the nodes in a class by itselfo
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It is immaterial which node is chosen for th Ls , since they are

all considered to be e qu i v a.l errt , The refinement algorithm is

then applied to this Dew partitioning. If the result of

partitioning this set as much as possible is that the

classification now has n classes (where n is the number of nodes
~n the original graph) then the algorithm terminateso otherwise
the first class which contains more than one node is again
sub·~di'Videdo and the procedure repeated~ When the

classification does finally consist of just n classeso we form a

suotient graph based on this partitioningo and we know that in
this graphu each node represents a single node of the original
qrapho This graph is therefore simply a permutation graph of
the original qraph, This qraph, which is called the r.~~9_rg_~£gQ.

~~!ehG~ of the graph Go is clearly isomorphic to Go Thus{, if

two graphs and ll) _11,)produce the re-ordered graphs Gy and ~

respecti'Velyc we have~

G~ == G~ ~ G1 ~ Gl-

Once againo Corneil conjectures that the converse is trueo

namely:
G"> -.,.

Corneil uses these results to check the graphs for
isomorphism and throughout his algorithm he is able to compare
the progress of the graphs being checkedo so that if at any
stage the two graphs are seen to behave differentlyc the
deduction can immediately be made that the two graphs are not
isomorphic" In a later piece of worko Corneil ( 19F1) uses
essentially the same algorithm to compute the automorphism
partitioning for a graphv this time operating on only one graph
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to find its automorphism partitioning. In this workr we reguire
a canonical form for the graph8 and we have re-programmed the
algorithas described hereQ taking the conjectures on trust{ and
using the permutation induced by the re-ordered graph as being
the permtutation which produces the canonical labelling for the
sraph.

We conclude this chapter by demonstrating the algorithm at
work on the graph shown iD fiq~ 3.

ie have already seen that the graph is regular of degree 3"

The vertex quotient graph for each node is then computedu and
these have already been illustrated in figs•. 6r 7, and 8~ We
begin then with the initial partitioning~

I {1r5]

II [3u7J

III

We now illustrate how the vertex 1uotient graph is formed for
node 1 with respect to this partitioningo Firstlyo the node 1

is separated from the rest of its classQ giving the
partitioning ~

I ( 1 J
II

III
IV

{ 5}

( a, 7)
{2114n608}

Refinement of this part.Lt.LonLnq then gives the classification:;
I

II

III

{ 1]

(5 }
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V

and this turns out to be the final partitioning~. The

104

corresponding vertex quotient graph is shown in fig~ 9. The
other node in the class with node 1,.node Se also has the same
vertex quotient grapho The nodes 3 and 7 have the same vertex
quotient graph as each other" and this is shown in fig L' 100 The
8 node graph in fig,.110 is the vertex quotient graph for each
of the nodes 2e 4 li 6e and 8 r- Since none of these cLasses in the
original partitioning can be further refined by consideration of
these vertex quotient graphs we conclude that the three classes
each represent a transitive subgrapho Henceo the graphs shown
in fig< 9u 10 and 11 are the labels of nodes ID II and III
respectively of the representative graph which is shown in
fig c 12.

K.:;Sl~_2.~

Ii
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We now proceed to the formation of the r~-ordered grapho
The first class which possesses more than one node is class 10

and so this class is sub~'divided into the two classes {1} and
f5}o The refinement algorithm then produces the following
partitioning:

I

II
III
IV
V

r 1}
f. 5 1

{3 t 7 }

{ 2 .a J

[4p6}

Class III now is the first class which may be sub~divided and if
this is done and the final partitioning is again foundo we have~

I [ 1 }

II f 5}

III [ 3}

IV [7 J
V f 2}

VI [8 }

VII f q }

VIII { 6}

Now we have essentially defined a permutation of the nodes of
the original graph8 and by the conjectures put forward
previously we believe that this labelling is invariant under
isomorphismv In chapter V we go on to make use of the
canonical labelling defined by these techniquesv <
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JY~~T~Q g~obl~~~~
Following on from the definitions made in this sectionp a

number of interesting questions are raised~. Since it is
conjectured that two identical representative graphs imply that
the graphs they represent are isomorphic to one anothero it must
certainly be possible to reconstruct the original graph (with a
possibly different labelling of the nodes) from the
representative graph~ Actuallyo this is done when the
re-ordered graph is formede but the refinements which take place
during the formation of this graph implicitly use the adjacency
relationships of the original graph. The question of finding an
algorithm to build a graph given only its representative graph
is then raised.

In the spirit of Ulam~s conjecture (1960) that a graph G is
uniquely reconstructable from the set of n subgraphs G - {x} for
each node x in Gp,we pose two further problems:.

(a) is it possible to reconstruct a graph G of n nodes
uniquely given only its n vertex quotient graphso and~

(b) is it possible to reconstruct a graph G of n nodes
uniquely from its n cycle vectors.

If we vere able to prove the statement made earlier that
partitioning the nodes by cycle vector or by vertex quotient
graph gives the same partitioning6 then the problems (a) and (b)
are equivalent~ Howevero for the moment. ve must leave them as
open questions~ .
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We set out in this chapter to construct a correspondence
between the set of non=Ls oeorphLc graphs of n nodes, and the
integers 1Q.a.eg~c where g~ is the number of such graphs •. One
method for counting the non-isomorphic graphs is using Polya's
theoremo and it was hoped that this study would lead to a method
whereby any objects which can be enumerated by using Polyais
theorem may also be systematically generated
technique.

using this

However we were only able to reach a partial solution to
this problemu in whichq as we shall showo we are able to set up
a systematically ordered list of the graphs of order no but not
the 1-1 correspondence with their counting numbers at which we
were aiming~ That iso we were unable to construct a mapping
which would take a graph into its index number and vice versa,
In fact a number of different lists were formed~

We now consider a graph to be a collection of n pointso and
we may label them in anyone of n¥ ways. For this set of n
pointso we have n{n-l)/2 positions where a line may be placed.
Le, there are n(n-1)/2 possible ways of choosing two points
(an unordered pair) from a set of n. Now we may label tbese
line positions according to some rule (we shall discuss some
ways of labelling the line positions later) 0 and clearly any
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rermutation of the nodes gives rise to exactly one permutation
of the line positions~ Thus we may define an isomorphism
between the symmetric group of order n (iD~. the group of all
permutations of n objects) and a certain subgroup of the
permutations of order n(n··1)/2,.

Consider now a labelled graph. As we have already notedv

we may define a labelling of the line positions~. A bitstring
may now be used to specify this labelled grapho in which a ioneV

1ndicates the presence of a line in the corresponding line
position, and a VzeroV bit indicates the absence of a line~ Now
clearly application of one of the permutations in this subgroup
of order n(n~1)/2 (which we will denote by L{Pn) ) will permute
the bits within the bitstringn forming a new bitstring". If one
bitstring 01. may be permuted into another bitstring f3 using one
of these perautat Lona , then we say t.hat the bitstrings Q{ and ~
are equivalent. It is clear that if two bitstrings are
equivalent, then the two graphs which they represent are also
isomorphice since the permutation of the bits which carries

bitstring ~ into bitstrinq f (i"e. a per.mutation of the line
positions) is induced by a permutation of the pointsc and this
is precisely the definition of isomorphism between graphs"

The use of the word ~equivalentn between bitstrings is
justified since it is easy to show that the relation

there exists a permutation in L(P~)
mapping « into "
is an eguivalence relation bearing in mind that L (Ph) is a
group., Thus the set of all bitstrings is partitioned by this
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e~uivalence relation into eluivalence classes. each class being
a set of labelled graphs which are isomorphic to one another
when considered as unlabelled graphs~

We now describe the mappings from the point pairs to the

linesa Two such mappings were consideredg and in fact it did
not seem to make much difference which one was usedo

The first mapping was simply to take the point pairs in
lexicographic order. and then number the elements of the list

thus obtainedo, Hence. for n = 4" we have~
line point··pair
1 1

_,
2

2 1 ._ 3

3 1 .~ 4

4 2 ,.." 3

5 2 - 4

6 3 .- 4

This mapping has the virtue of being very simple to

implement and to understando

Let us now consider the effect on the line positions of a
qraph when the nodes are permuted by the cyclic permutationo
Under this permutation of the nodeso we discover that the lines
are also permuted cyclicallyo though not in a single cyclen but
in a number of cycleso To give an example of thisc consider the
complete graph of 5 nodes shown in figo 10 If we now let the
nodes lnoa~o5 be permuted cyclicallyo we see that the pair (102)

is mapped into the pair (203) I! (203) into (304) /1 and so on" and
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also that (1t3) is mapped into (284) etc. In facto as we would
expecte if we apply this cyclic permutation 5 tiaeso the graph
returns to its original labelling~ and in doing so the point
pairs (or lines) have gone through a complete cycle of length 5"

However there are 10 lines, which means that the lines must be
such that they can be partitioned into two distinct sets each of
which contains 5 lines. These two sets consist of the set of

Ilines which form the
reriphery of the
diagram, and the set of
lines on the interior of
the fig ure0

In general, for odd values of Dp the lines partition
themselves into (n"l)12 sets (or cycles) each of length no For
even values of nv howeverc this does not happeno since the line
;oining opposite points of the graph willa after only n/2

applications of the cyclic permutation, finds itself in its
original position (thouqh in the reverse sense)< By opposite

points we mean points iri such that li-jl = n/2e and which
therefore appear diametrically opposite one another if the graph
is drawn with the nodes nu.bered consecutively around the
periphery of the diagram" The same action as for the case where
n is odd takes place for every other line of the graphr Thus
the lines of a graph with an even number of nodes fall into
n/2··1cycles of length n and one cycle of length n/20 The
second mapping of point pairs into an index number is by this
partitioning 0 and within each cycler by the value of the first
node" Thus for n = 4 and n = 5 we have~



n = 4 n = 5

line point--pair line point~pair
1 1 ~ 2 1 1 .~ 2

1. 2 0- 3 2 2 - 3

3 3 .. 4 3 3 - 4

4 4 - 1 4 4 .~ 5

5 1 .. 3 5 5 """ 1

6 2 -- 4 6 1 ~ 3

7 2 ~ 4

8 3 - 5

9 4 ~ 1

10 5 ~ 2
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These two mappinqs may be described in terms of fairly
simple functions~

Mapping 1c

line(i,j) = if i>i then line(jr,i)
else (i"l) (2n..,i)/2+ j .-L, _

Mapping 2.,

line(iuj) = if i--j>n/2 (mod n) then line (jui)
else (j~ i-l) n + L (.-od. n)

where in each case Wline(iui)1 is the line label for the line
~oining the points i and j~

In this discussion we have considered the effect of the
cyclic permutation of the nodes upon the lines of the complete
qraphc It wouldo however" have been egually valid to consider a
general labelled graph of n nodesu and to observe the effect on
the line positions under a cyclic permutation of the nodeso
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The problem of findinc;a representa tive of each egui valence
class in the set of all graphs may now be couched in terms of a
\jraphical modeL

Consider the set of all bitstrings of length m = n(n~1)/2u
and let each such bitstring be represented by a node in the
:;raph modeL Then a directed line is inserted in this graph
from the node lit to the node f!' it and only if bitstring fti is
obtainable from bitstring ~ under the operation of permuting the
bits in ~ by one of the permutations in L(P~). Let us define

this graph to be the gg!ti.V:~.~~nQ~ .q!:~.E!lfor the 9raphs of order

Now since for any pair of e~uivalent bitstrings there is a
permutation mapping one into the the resulting

eluivalence graph is a collection of connected componentsu each
of which is a complete directed graph., We may also remark that
the graph may be considered to be undirectedu since whenever a
line from node ~ to node ~ exists8 the inverse permutation is
represented by a line from node ~ to node ~~ If we now take one
node only from each of these connected componentsc this set of
nodes will represent the set of inequivalent bitstrings. and
hence we have obtained the set of non-isomorphic graphs.

In order to reduce the number of permutations which have to
be examinedo we require a set of permutations which generate the
whole groupo In terms of the e~uivalence graph modelo this is
the salle as removing lines from the graph but without
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disconnecting any of the connected components. We know however,
from Ledermann (1961) that the two permutations~

(2 3 n 1) and (2 1 3 4 "., n)

will generate the whole of the group of all permutations of
order n, This means that the graph does not lose any
connectivity by removinq all the lines except those representing
these two permutations.

Let us now consider the action of these two permutations in
a slightly different light. Suppose we have a set S of n
objects, and that the objects of S are to be permuted by the two
rer'Mutations given" the cyclic perllutation c and the
transposition of the first two elements. Now consider a graph
in which the nodes represent the nY ways of ordering the
elements of S~ and in which we have two types or ~colours~ of
line, A v bluew line from node Of to node p if ordering (3 is
obtained from ordering ~ by application of the first of our two
permutations (the cyclic permutation)u and a ~redi line from ~

to S if ordering 8 is mapped into ordering S on applying the
transposing perll~tationo The graph thus formed is highly
symmetricu and it contains (n-·l)!cycles of length n containing
only iblue' lineso These cycles are not connected to one
anotheru each one corresponding to n applications of the cyclic
permutation. The graph also contains a number of cycles
containing alternately ~red' and iblueijlines~ These cycles are
of length 2(n-1) r which may be seen by considering the action of
applying the cyclic permutation followed immediately by the
transposition~ This results in the first element remaining in
its original positionr with all the other elements being
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permutations will form a
rermuted one place cyclically~

cycle consisting of n+ l

'blueu lines and n··1
~r:edw Li.ne s , Fig. 2,

shows this graph for the
case when n = 4., The
wbluev lines in fig,
Lo are shown as solid
lines and the Vred~
:linesare dotted "

Thus. n-1 such pairs of

The general problem of scanning all possible results of
applying any permutation to some object or set of objects is

such as the one in fi9<
then a problem of finding a Hamiltonian path through a graph

2. It is not difficult to find a

Hamiltonian path through this grapb when the graph is considered
as undirectede but we must bear in mind that although the ired'
lines are essentially non·-directed. the cycles of ~bluev lines
are directed so that the cycle is traversed in either the
clockwise or the anti'clockwise sense", In the diagram in fig"
20 (I this is seen· to be true except that the outside cycle is in
the opposite sense from all the other cycles. This however
appears guite consistent when we consider projecting this
diagram onto the surface of a sphereD and then observe the
diagram from outside (or inside) the sphere.. The cycles then
are all in the same sense. It appears not to be possible to
traverse this diagram~ takin~ due account of the directions on
the lines, so that each point is passed once and once only. It
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is possible however to find a Hamiltonian cycle if we allow a
movement along a line in the 'wrongi direction just twice. This
is shown in fig. 3.

A graph such as the one in figo shows the

interconnection of the objects when subject to the permutations
which we have been considering. However, if we consider a graph
of n nodes as a bitstring as described earlier~ we may apply the
permutations to this bitstring and we do not necessarily obtain
a different bitstring. Thus, for any given bitstringc we may
construct a graph such as the permutation graph shownu but in
which some of the nodes coincide with each othero, This is
because n! is an upper bound on the number of distinct labelledo

but isomorphic, graphs of n nodes6 whereas in general there
would be less than this number. Let us show this final point
with respect to an example. Referring forward to list III which
shows the equivalence relations between the graphs of order 4,
consider those graphs in the class containing graph

Corresponding to each of these graphs is a node in the ~reducedv

equivalence graph, and from each such node there are two linesl
a ~redllone and a 'biue~ one, and some of these lines may be
loops. The result of tnLs is the.graph shown in figo 4. We

also observe tha·ta surjective mapping is defined from the set

of nodes in the permutation graph shown in fig. 2<>0 onto the

set of nodes in the eguivalence graph shown in figo 4.(. and
that this graph is one of the components of the whole gprunedll

equivalence graph. This component corresponds to the graphs of
order 4 with just one linee
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Thus we may consider attempting to find theall
non-isomorphic graphs by examining the connected components of
this grapho A common method of finding the connected components
of a graph is by finding a spanning forest for the graph. If
such a spanning forest can be foundo then the roots of the trees

connnected componentso
in the forest can be taken as the representatives of the various

A method was devised to carry out essentially these
operations which discovered all the non~isomorphic graphs of n
nodeso The method involved, howevern inspecting each of the 2''''
possible bitstrings (where m = n (n'''1}/2) , but it was only
necessary to look at tva permutationso and not the full
symmetric group. In common with a number of connected component
finding algorithmsr we begin by assuming that each node is in a
component by itselfp and joining components together as soon as

Let us denote the two
permuta tions
a link is discovered between them.

(2 3 4 c <, c n 1) and (2 1 3 4 .<>, n)
by A and B respectively., Then ve observe that permutation A
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lreturns any bitstring to itself after at most n applications.~~
'';;.

~i.ilarly B can only te applied oncep since two successive

f~pplications will clearly give the original bistring once more.

'Tn terms of the graph~ there are cycles of length at most n,

representing successive applications of permutation A, and lines

representing the permutation E which have a line in the opposite

direction joining the same nodes, representing a second
application of the permutation B. It may be that for some

Dodes, the original bitstring will re-appear after less than n

applications of permutation A~ in which case it is not necessary

to apply this permutation any further to this node.

The following algorithm finds the subsets of equivalent

bitstrings for a given nu and the non-equivalent titstrings are

10und by taking one representative of each subset. Each
bltstring belongs dynamically to a sUbset (represented by a

tree) which includes its known equivalences. The algorithm

~radually merges the subsets leaving finally a collection of

each of which represents a subset of equivalent
~
'bltstringsg such that two bitstrings appear in the same tree if

end only if they are equivalent. The roots of these trees may

then be taken as the non-equivalent bitstrings.

1. ~ake each node in the equivalence graph the root of a

(trivial) spanning tree by setting below (i) = i for i =
0" , 0 c Q 2""-·1• Thus each bitstring is in its own subset 0

2. for each node i, taken in order, which is currently the

root of a spanning tree, apply the permutation A n-1

times or until the bitstring i reappears whichever is

sooner. For each bitstring j (except i) so
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constructed, set below(j) = i. On completion of this
stepu the distinct trees include those nodes which can
te transformed into each other using only (possibly
repeated applications of) the permutation A. Each tree

now contains at most n nodes •.
3. For each bitstring i in orderv apply per.utation B once

to obtain bitstring j. If i = j, then the permutation
E has had no effect so ignore this case. If i > j, we
may again disregard the case, since we should

previously have found j such that an application of B
gave the bitstring i. If i < j, then we have
discovered a possible link between two of the trees
established in step 2. We must first ensure, howeverg

that i and j are in distinct trees, and this may be
achieved by inspecting the roots of the trees
containing i and j. (The root of the tree containing

node i may be obtained by applying the function root (i)

which is defined by

root (i) = if below (i) = i then i else

root (below (i» r •
If root (i) = root(j} p then the nodes i and j are
already in the same treev and so we disregard this case
also•. If root(i} # root(j), then we need to link
together the (distinct) trees containg i and j, and
this may be achieved by setting below (root(j» = i.

4. A representative of each subset of equivalent

titstrings is now found by taking the roots of the
trees we have formed, and these bitstrings represent
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the non-isomorphic graphs of n nodes.

We observe that the action of this algorithm does not give

rise to real spanning trees for the equivalence graphp but we

.ay be ~ure that two nodes are put into the same tree if and

only if they are in the same component of the equivalence graph.

The trees formed are "reachability trees" for the equivalence
graph 0

An example will help to clarify the action of this

algorithm" Assume that n = 4< Then the number of possible line

positions is 60 and there are 26 = 64 possible bitstrings. We
will denote th·ese by th b s 0 63e num er ~'.'6 • The two permutations
are~

A .. (2 3 4 1)

B ._ (2 1 J 4)

~n this example we use the second mapping from points to lines

and so the permutations A and B correspond to the permutations

(2 3 4 1 6 5) and (1 5 3 6 2 4)

of the line positions respectively.

Step 2 of the algorithm, having set all the nodes to be in
separate connected components~ is to apply permutation A 3

times" or until the original bitstring re-appearso When this

operation is complete the nodes are grouped as shown in list ID
List II shows the links that are established by step 3, the

isolated nodes representing the cases where the permutation B

had no effect, and the lines showing the cases where B applied

to i gives j and j > io List III shows the trees as they have

been transformed by the operation of setting below(root(j» = i,
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where i ana j are linked in list IT and are at that moment in

different tre8Sc We note in passing that the trees (in list I)

with rcots 3 and 17 become joined by virtue of the link 3 - 17

in list II, and we subsequently discover that there is another

link (from 6 to 20) in list IT which would have connected these

twc treesf but by the time this link was discovered. the two

trees had already been amalgamated. The roots of the trees in

list III are then taken as the bitstring representations of the

non-isomorphic graphs with 4 nodes. and these graphs are shown

in figo 5,
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indicate the division of the 64 possibilities into 11 disjoint
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0 0 0 0 0

I0 0 0 0 0

0 1 3

0---0 u0---0

5 7 15

SJ
19 22 23

31 63

This algorithm represents a naive approach to the prob~em
of generating all the graphs of a given number of nodeso, In the
remaining part of this chapter we attempt to improve on this
methodo Clearly this algorithm implies the inspection of most
(if ....not all) of the bitstrings in the full set of 2 (where m =
0(n--1)/2 )0 In what followso we atte.pt to use certain
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combinatorial techniques to reduce the number of bitstrings
which need to be examinedo

Harary (1955) shows the method by which we may use PolyaVs
theorem to enumerate the equivalence classeso and hence we can
calculate the number of non-isomorphic graphs of n nodes. We
will paraphrase the arguments usedu and show how PolyaQs theorem
operates in the counting of graphs~ The explanation given by
Liu (1968) of PolyaVs theory of counting is used extensively.

In factv the important part of PolyaVs theory is the use of
a

Burnside's theorem which is/~eneral result for enumerating the
number of equivalence classes into which a given set S is

divided by a permutation group G of permutations operating on So

To reiterateu two members « and ~ of a set S are said to be
equivalent if and only if there exists a permutation 9 ~ G such
that g (tt) = ~o. Then Burnsideus theorem states:
Iheoremo-------

The number of equivalence classes into which S is divided
by the group G is

i-\(;\ ,
where ~(g) is the number of elements of S which are invariant
under the permutation ga, (ioeo, the number of elements s ~ S
such that g(s) = ~.
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Denote by l{S) the number of permutations in G which leave
the element s invariant~ Then clearly

since these
LuS
both

L ~~J
~~Ci

expressions for the total number ofare
invariances over all permutations 9 and all elements so

Now let {~q~,ccooKl be the members of S which lie in one
equivalence c.l.aas , Then for any pair of elements ol. I' (3 (say)o

the number of permutations carrying ~ into ~ is ~(~)c This can
be shown by demonstrating that if g~ is a permutation taking ~
into (l (and there must be at least one since ()/.and p are in the

same equivalence class)o then
{a} any permutation taking'" into P is of the form g)l.g~

where gL is one of the permutations leaving ~

Lnva rd an t ,

and

(b) for two distinct g., <J. which leave ()(invariant 0 g,..g.:
o • ,

and g..gl are distinct permutations taking « into ~ 0

Now any per.utation in G must either leave ~ invariant, or
else it must take ~ into one of the other elements in the
equivalence classo Thus the permutations of G can be classified
into those that map « into itself, those that map « into ~u etco

Since the number of permutations in each class is Z(<<) u the
total number of permutations in G is

G = 1. (0() lr noo of elements in the
e'l. .. ~,,~le"c. c.J~ss.
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or

'1. (~) =
noo of elements in equivo class

and since this is independent of It l' this must also be the

expression for '(~)6~(~r etco, and hence

L ,,<s) = lGl
co.(t I ..;..
",I.I.~'(~S

Now summing both sides of this equation over all the
eguivalence classesu we have

.Lw,. ~~~) = IG! le no. of equiv , classes
. c43u . ~. c.IuSs~nce the left hand side is simply a summation over all sand

So we have

noo of equivo classes = -'L tt(S) =
\(\1 SE;S

We have already described the way in which the relevant
permutation group for graphs is constructed from the symmetric
group of order n~ It is convenient however to divide the set of
graphs with n nodes into subsets of the graphs with n nodes and
P Lines, for p = Oo11/2poc~pn(n-1)/2o, Thuse for the purposes of
applying Burnside's theorem to this case we have S being the set
of bitstrings of length n{n-l)/2 which contain exactly p 'one'
bitso In addition we have IGI = n!o,

Making use of the theorem of Burnsideo and particularly of
the proof, we have6 for any given equivalence class consisting
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of the elements "-0 (J 0 000 I! I( 8

= 1t-o
and since 'l (4() + '1.(~) .. 0 c ~ .. 't(t<.) = nI we know that n!must be
divisible by t(,,)0 Furthermoreg if we can find the permutations
which leave ~ invariant~ and we can find one permutation mapping

ol into ~ p then we can find all the permutations mapping tJi into fl
by forming the product g~g. for each g~ ~ II. (where ~ is the
group of permutations leaving « invariant) 0 Regarding this from
the other point of viewg we can take any grapho and provided we
can find its automorphism group, we can find all the graphs to
which it is isomorphic by taking each permutation in the set G ~

H~and permuting the graph using this permutationo We can then
find all the permutations which produce the same graph simply by
multiplying this permutation by all the permutations in H.o
When this has been performed n!/~(<<) times we know that all the
sraphs in the equivalence class containing the graph ~ have been
accounted forI! and so any graph which does not belong to this
set is a new non-isomorphic grapho

A full set of graphs with n nodes and p lines is obviously
obtainable by placing the p lines in all possible combinations
in the (~) line positionsp and hence a complete list of all the
combinations of p objects from (;) can be taken as the set of
all graphs with n nodes and p linese. The problem of finding the
non-isomorphic me.bers of this set can now be tackledo The
general approach is to layout the the combinations in a listo
and by stages to delete those which are isomorphic to a
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combination already considered" Thus the method is similar in
broad outline to the method of finding prime numbers known as
the Sieve of Eratosthanesn in which all numbers are laid out in
a list, and as soon as a prime is discoveredo the list is passed
over once deleting all those numbers which are multiples of that
primeo When this can no longer be donee all those numbers in
the list which have not been deleted are prime numbers.

We therefore present an algorithm for finding the
non-isomorphic graphs with n nodes and p lineso which will be
referred to as the Sieve algorithm.

1 . ((~») b i ." Set up a bi,t map for the ~ com anat~ons.
2. set up a bit map for the n! permutations.
3. Look for the first ~setW bit in the map for the

combinations. If there are none, then we have found
all the graphs" otherwise store this graph (as graph
W~l say) and ~unseti its bit.

40 Find all the permutations under which graph et. is
invariant (i.eo its automorphism group - cof. chapter
IV) and ~unset~ the bits in the permutation bit map

corresponding to these permutations •.
Find the first permutation whose bit is Uset'o If
there are none~ then go to step 2u otherwise let this
permutation be g~o

6. Apply the permutation g~ to the graph ~ and 'unset' the
bit of the resulting graph in the graph bit map.

70 Form the permutation g...g, for each gL E BoO(and ~unset'
the corresponding bits in the permutation bitmap,

80 Return to step 5.



129

A few comments on the representations of the various
objects used must now be given, since both the graphs (which
are mapped onto the combinations of p lines chosen from a set of

(~) ) and the permotations are to have bit maps associated with
them. it is obviously necessary that both the combinations and
the permutations should be readily representable as integers,
and more precisely as consecutive integersv That is. for both
the combinations and the permutationso it is important that the
conversion from a combination or permutation to its
corresponding integer in some orderingo and vice versa. can be
achieved quickly< In the case of permutations, the most
convenient method appeared to be a slight variation of the
method of Lehmer (1964)0 and this method gives the permutations
in lexicographic ordero

In this methodu it turns out that it is more convenient to
consider the permotations of O.1o.~oon-1 rather than of

1p2uco~on and that the permutations be numbered from 0 up to

n!~1 instead of 1 to n! The method itself is based on the fact
that any number in the range 0QO. q un1-1 can be expressed
uniquely in the form:

a,,_,(n'~1)i+ a.._~(n-2)X + oqo + a. 11 + aerOX
where 0 ~ a~ ~ i for each i.

The mapping from the integer k to the k-·th permutation in
lexicographic order is then constructed by forming the a~ Vs for
k., From these we can construct the permutation by noticing that
the i-th position is occupied by the a~-th element of those
remaining at that stage. We can see this rather better by
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considering an exampleD Suppose we wish to find the 63rd
permutation of the numbers 0,102q3{/4o (remembering that (0 1 2 3
4) is the O-th) 0 The first step is to put 63 in the form

2c4! + 2031 + L2~ + L1~ + OoO~

Le" = 2 = 2 a~ = 1 a, = 1 a~ = 0 (Notice that ao is
always zero, hy the condition on the a.) 0 The first position in
the perautation is therefore occupied by the element 20 and the
second position contains the element 2 in the set Ou 1" 30 4

Le. 30 Element 1 of of the set o u 1 o 4 occupies the next
positionq and element 1 of the set Du 4 is the next member of
the permutation •. The last position is of course filled by the
only remaining elemento in this case 00 and this is a reflection
of the fact that the value of ao is always zero. Thus the 63rd
permutation of the numbers 0 to 4 is

(2 3 1 4 0)

The reverse mapping is obtained simply by reversing the
process co.pletelY6 reconstructing the at~s from the permutation
and then multiplying out the ~polynomial~ to arrive at the
integer L

Similarly a mapping from the set of integers 10" 0" n (~) to
the set of lexicographically ordered combinations of k objects
from a set of n can also be constructed"

With regard to the multiplication of the permutationsy it
is clear that the most efficient method of achieving this is to
store the multiplication table of the permutation groupo but
this is obviously impractical since its space requirement is for
(n~)2 elementso Thus the multiplication must he carried out
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directlyo but this can be done reasonably efficiently provided
the mapping from permutation to integer and vice versa is
efficient~

The remaining part of the algorithm which needs to be
described in more detail is given as step 4 ..- finding the group
ot permutations under which the 0raph is invarianto We now
describe an extension of Corneilus algorithm for finding the
automorphism partitionin1 of a graph (Corneil 1971) to display
the automorphism group. The algorithm for obtaining the
automorphism partitioning has already been described in the
rrevious chaptero and we present here the extension required to
,;;eneratethe automorphism qroup,

Suppose we have a 'lraph whose automorphism partiti.oning has
been found using the partitioning algorithm" Then we have the
nodes grouped together in a number of disjoint setso These sets

were used to form the re-ordered graph of the previous chapterr
by selecting one node from any set containing more than one
node. and placing this node in a class by itselfn This new
l~rtitioning was then refined using the partitioning algorithm.
Now the conjecture is that in the automorphism partitioningc for
any pair of nodes within a classo there exists an automorphism
mapping one of these nodes into the other. Thus there are IV~I
ways of choosing an element from V~o assuming that V~ is the
first set for which !V~l >,. The refinement then takes place.
having made one such choicee and the process is repeated. The
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total number of automorphisms in the automorphism group is the
froduct of the number of ways in which a choice may be made
whenever a choice is to be made. Hencec if H is the
automorphism group:

where s :.~ is the set of nodeso which after j-1 assignments and
the corresponding refinements of the partitioning. has IV~ I > 1

but 1V\tjl = 1 for k< L

The actual
rermuta tions which make
up the automorphism ~ c;O"-------<OO b

qroup can of course be
found by actually making

d 0-------(:1 C

all the various
assignments which are
available at each stageo
and then carrying out
the refinement.

An example will show more clearly how this method works.
Consider the graph of four nodes shown in fig~ The
automorphism partitioning is~

Making the first assignment6 we have a choice of four nodes. so
we choose one of theme say a. After applying the final
connection partitioning algorithm6 the partitioning is!

I {a}

{b}II
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III

It is apparent that if we now make an assigment to resolve

the difficulty of set III having two nodeso we must make a

choice between these two nodes~, Since (by conjecture at least)

the partitioning would have the same form whichever of the four

nodes an bg c, d were chosen for the first assignment~ we know

that there would always have been a further choice between two

nodes to be madeo Thus the total number of nodes in the

automorphism group is 8 (= 4 X 2)c

To continue with the example, the second assignment

(together with what amounts to a trivial refinement) we have:

I

II

{a}

{b J

{cl

{d}

III

IV

This is the result of choosing c for the set 1110 but we

could equally well have

which results would be:

I

II

III

IV

chosen du in which case the partitioning

{a ]

{b}

[ d}

(c}

Thus we have formed two permutations under which the graph is

invariant and these are;,

(
a b Cd)
abc d

and ~
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b Cd)
b d c

We may now write down the six remaining permutations which
result when the other three choices are made at the first stage
together with the two choices at the second stage in each case~

b c

a c

b c cd)
a d

d a

b c

Changing the notation slightlyo so that the nodes a f/ b , c
and d are replaced by the nodes 1, 2w 3 and 4 respectivelYb and
denoting a permutation of n numbers 1v2v'''',on by a vector of
length D
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(pI P Pa. 6 0 0 0 0 p" )
where P. is the value of the i-th element after the permutation

has been a pp.Li.e d , we may write dowm the permutations under which

this graph is invariant a ss

i (1 2 3 4)

a (1 2 4 3)

b (2 1 3 4)
c (2 1 4 3)

d (3 4 1 2)

e (3 4 2 1)

f (4 3 1 2)

9 (4 3 1. 1)

This collection of permutations can easily be shown to be a

';;roupwith the followinq multiplication table ~

i a b c d e f 9

i i a b c d e f g

a a i c b e a 9 f

b b c i a f 9 d e

c c b a i 9 f e d

d d f e 9 i b a c

e e g a f a c i b

f f a g e b i c a

g 9 e f d c a b i

Throughout this chapter we have been concerned with making
a selection of objects (in this case graphs) from a larger set

of objects such that we have exactly one representative of each
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e'~iuivalence class in the set under some definition of
equivalence~ To achieve this we require that the set of objects
from which the choice is made should contain at least one member
of each eguivalence classu IdeallYe of coursee the set from
which we make the selection would consist of exactly the set of
non-equivalent objectsg in which case the selection mechanism
required is the trivial one of selecting each object in the set.

Although this was our original aim, we have not been able
to achieve this goalu and so we have taken as our starting set
the set of all bitstrings of length n(n-1)/20 This corresponds
to saying that we can take the set of all labelled graphs and
deduce those that are non~isomorphic when considered as
unlabelled graphs, We have implicitly recognised however that
no graph with n. nodes can be isomorphic to a graph with n~
nodes if n. I n~o The length of the bitstring is then a partial
specification on the set of graphse knowing that all isomorphs
must have the same partial s~ecificationo

We may now consider the possibility of carrying out a
similar process on a set of graphs with a more precise partial
specificationu This stems from the fact that if two graphs are
isomorphico and d is the mapping which takes the nodes of one
graph onto the nodes of the otheru ~x = y implies that the
degree of x is equal to the degree of Yu This is true for all
nodes x in the first graphe and so the degree sequences of two
isomorphic graphs must be identicalo where we define the Q~g~~

§~g~~~£~ of a graph to be a vector
g = (d I lJ da. 00 u 0. 0 d..)
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where d' is the degree of the node i (in some labelling) andL

such that d· ~ d~..., for i = 1,,000.n-10 This is also known as~

the £~rt!!!2!! of the grapho Two graphs cannot be isomorphic if
they have different degree seyuenceso . However" it is not true
that two graphs with the same partition are necessarily
isomorphic" as can be seen by the example given in fig, 7.
These two graphs both

have degree sequence
have 5 nodeso and both

(3 2 2 2 1L, but the two
graphs are clearly not
isomorphic" since for to.)
instance the node of
degree 3 is adjacent to
the node of degree 1 in
~lraph (a), which is not
true in graph [b) 0

In the earlier section concerning the Sieve algorithm6 the

total nu.ber of graphs which needed to be considered was n~xg"O
where g~ is the number of non-isomorphic graphs with n nodes.
In fact, this was done by finding a graph topologically distinct
from any graph previously examinedo and then inspecting each of
the n1 permutations of the labelso An alternative viewpoint is
to consider generating all the labelled graphso and then
discarding all those which are not already in canonical forme
By this means we would retain only the graphs in canonical formp

so that if two graphs in the set are isomorphicn then they are
also identical" in which case the problem of removing duplicates
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is made correspondingly easiero

If we could then generate only the set of graphs which are
in canonical form alreadyc the starting set of graphs would also
be much smallero As a first step towards thisc we observe that
the algorithm for reducinq any graph to its canonical form
begins by classifying the nodes of the graph by degreeo Thuso

in the canonical labelling~ we know that if node i has degree
d·

L then d· > d·J - Jt", This is of course simply
the condition on the degree sequence of a graph. so that we may
consider attempting to generate the set of all non-isomorphic
graphs by examining only those labelled graphs whose labelling
~ives rise to a valid partition for the graph. We also notice
that only a restricted number of the n~ possible labellings of a
graph give rise to a valid degree sequence for the graph.

We could contemplate generating the set of all graphs by
the following algorithm~

1. Generate all degree se~uences.
2. For each degree sequence. generate a set of graphs

which must necessarily contain at least one instance of
each non-isomorphic graph with that partition~

3" Eliminate duplicates from this set.

Harary (1968) quotes two theorems which give necessary and
sufficient conditions for a partition to be the degree sequence
of some graph, and we will make use of both of these in the
course of implementing this algorithm. The first theoremu due
to Erdos and Gallai (1960) states:
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A partition (d.pdl,CcCoC od,,)of a number 2m is the degree
sequence of some graph if and onll if:

d· ~ r (r"1) ..
"

min

for each r, 1 ~ r ~ n~ .

We will not give the proof for this theoremo since the
statement of the theorem is sufficient to suggest an algorithm
for generating all the degree sequences for graphs of n nodes.

We begin by observing that the partition (n-1,n-1rnaqun-1)
is valid (and corresponds to the complete graph) 0 The algorithm
then uses each degree sequence to generate the next one, the
terminating condition being that the elements of the partition
are all zeroo which may be recognised by the appearance of a
zero as the first element of the partitiono For each iteration

of the main loopu the steps are as follows:

Find the smallest j sote d·J can be reduced without

destroying the ordered nature of the partition Cd; ~

20 Reduce dj by one.
Reconstruct the elements dj~ ydJ-J.v 000 od. making sure
that the partition always satisfies the condition of
the theorem 0

4. check that the final sequence is a partition of an even
numbero If sOo then this sequence is the required
partition otherwise repeat the steps 1 to 40
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Step 4 is required since it is possible to construct a
partition of an odd number such that all the conditions (except
the evenness condition) are satisfied6 but such a partition is

not a valid degree sequencen since
~ d. = twice the number of lines in the grapho

(This is easily seen since each line in the graph makes a
contribution of 1 to the degree of each of its endpoints. and
hence a contribution of 2 to the total sum) 0

The second theorem which Harary quotes concerning the
partition of a graph is due to Hakimi (1962):

A partition

f! = (d. vd1{,,~rcd ...)

of an even number 2m is a valid degree sequence for some graph

if and only if the partition
(d'l. -1 o d1 ,. 10<> ~ " 0 d.. .,.1 u d_ +lU ~ c 0 Cld.. )"'.+' ,

is also a valid degree seguence for some graph"

For this theorem we give the proofo as we shall require
some of the techniques used in the proof later on"

If g' is valide then clearly so is £ since from a graph
with partition g' we may construct a new graph with partition £
by adding a new nodee and joining it to the first d, nodes of
the original graphu where d. is the degree of the new node"

Now suppose that G is a graph with degree seguence du If
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there is a point in G of degree d, which is joined to nodes of
degree dl.e c 0 • cd..." then the removal of this node win give a....
graph with partition g~o If there is no such pointe then we
must show that from the graph G we may construct a graph GW with
the same partition which does have such a pointm Now in Go node
i has degree d.

I.
for i = and d ~ ~ d ~.t for i =

1o.~"on-l0 In particular noue 1 has the largest de9ree~ Now in
the graph we may find points i and j such that d~ > dj and such
that line (ll,j) is in G but line (1('i)is no t , (If this were

not so, then we would have the situation aboveo where node 1 is
~oined to i for i; 20, aocd.+1). But since d~ > ~ 0 there must
a node k such that (i6k) is in G but (jok) is noto If we now

remove the lines (1ui) and (iok) and replace them by the lines
(1 c i) and Uo k); the new qraph has the same partition QIl but the
sum of the degrees of the nodes adjacent to node 1 has increased
by 10 It is now possible to repeat this process until
eventually we acquire a graph with the desir.ed propertyo

The proof of this theorem highlights two facts:
(a) We have an algorithm for generating one graph with a
given partition
and
(b) Any graph having a particular degree sequence can be
transfor.ed into a graph with the same degree sequencep but
with the property that the node 1 is joined to the nodes 2,
3o.~.,d, +1. and that the degree sequence ordering is
maint ained.
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Now fact (a) indicates the algorithm to be used to generate
a graph with the given partitiono The method is simply to join
node 1 to each of the nodes 20 3, ••• ud, +1. and then construct a

~;raph with partition {dt.<>16dl·>1ro~.odd.•1 -1cdCll,.~rooood ••.) on the
nodes 2woooun.

Fact (b) suggests that since it possible to transform any
graph with this partition into this "standard" formo then it is
also possible to generate any graph with this degree sequence
from the "standard" graph by an appropriate sequence of
operations of the type given in the proof of the theorem. Thus.
in order to generate the set of all possible graphs with a given
degree sequence. we must use the algorithm suggested above to
tind one such graphl and then define the set of all
transformations which are the inverses of the transformations
used in the proof of Hakimi~s theorem. Naturallyc in carrying

out these transformations the graphs produced will not all be
distinctt but we may either leave the problem of sifting out the
duplica tes to the third step of the generalised aLqorLt.ha , or we

may sift out the duplicates as we proceed.

The algorithm for finding one graph with the given
partition simply joins node 1 to node i and subtracts one from

d~ u for i = 263 B o 0 00 d,...10 The remaining nodes are then
:ce"ordered so that the new partition is still ordered correctly"
During this opexa t.Lon , the node LabeLs, which were originally 1/1

200000n in that order. are carried with the new degree values in
the re-ordering process", When this has been doneo the algorithm

/."'. fe~te~ onis/the nodes 20000/ln (re-ordered) according to the revised



143

degree sequenceo

Let us now demonstrate this with an example in which the
number n of nodes is 6t and the degree sequence

~ = (4 4 3 3 2 2)

this graph will have 9 lines since the sum of the d~ is 18~

The first step is to ~oin node 1 to each of the nodes 2(, 3c..
4 and 5" The degree se'luence which results" after re-ordering (/
is (3 2 2 2 1) and the new ordering of the nodes is (2 3 4 6 5) 0

If the procedure is repeated8 the node 2 is joined to nodes 3('4

and 6e leaving a partition of (1 1 1 1) and no further
:re'~ordering is
necessaryo The next
step joins nodes 3 and
4p and the final step
joins nodes 5 and 6.
The final graph is then
given in figo 8a

The second algorithmo that which constructs every graph
with the given partLt Lon, is somewhat more complicated 0 Its
action is to reverse the process which was described in the
proof of Hakimivs theoremo In facto ~t is more complex than
Hakimiis constructiono since in that case the problem was to
move towards a form of the graph which was in some sense
optLaa L, This constructive method moved through a series of
steps to achieve its goalo Now for any graph obtained during
this iterative process8 there are possibly many graphs for which
one step of the iteration would give this grapho and in
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reversing the processn we are faced with the problem of
identifying ~1!graphs for which this would be true~

We begin by defining a class of grapbs, which will
eventually contain all the graphs we are seeking. Initiallyc it
contains only one graphc the graph constructed by the previous
algorithm. The algorithm then applies a series of
transforllations to each graph in the class in turnu and each
time a new graph is found, the class is enlarged to include this
(;raph. It turns out also to be a convenient stage at which to
check for duplicationso A new graph is only inserted in the
class if it is not already contained in the classo The way ~his
is checked is to use Corneilvs algorithm (see previous chapter)
to reduce each graph to its canonical form (as defined
previously) before attempting to place the graph in the class.
We recall that we conjectured (following Corneil) that two
~raphs are isomorphic if and only if their respective canonical
forms are identical, Thus each graph is put into its canonical
£01:110 compared with each graph already in the cLaas, and if it
is different from each one~ then the class is enlarged to
include this new graphl which itself now becomes eligible to be
transformed.

The transformation algorithm is as follovs~
1. Assume that the initial graph is in canonical form as

defined in the previous chapter .. In particular this
implies that d· ~ d· for i < j.~ J

2,. For each node i in the graph r find nodes j. ko I in
the graph such that i < j < kg i < 1 and such that the
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lines (iei) and (kol) are in the grapho and the lines
(i,k) and (jpl) are not,

3.. Remove the lines (i6 j) (ko I)6 replacing them with the
lines (iek) and (j.l)v This step should be repeated
for each 4·-tuple satisfying the conditions in step 2,

40 Each graph produced in step 3 is put into canonical
forme and compared with each graph in the class. If it
is found to be there alreadyo then it is discardedr
otherwise it is added to the class.

50 If there are no more graphs in the class to be
"developed"w then the algorithm terminates; otherwise
the next graph is chosen from the class and the
algorithm is restarted at step 20

The conditions on the nodes io ju k and 1 as shown in step
2 are explained in the tollowing way~

(a) ie need to consider all nodes i in the graph. rather
than just node 1 as required by Hakimius proof, because this
interchange of lines may need to be done at a different
stage of the process of deciding whether a partition is a
Valid degree sequence. HakimiVs proof implicitly takes
account of this by the fact that his argument is recursive.
(b) je k and 1 are all greater than io since for each i we
are essentially concerned with the subgraph defined by the

(C) The condition j < k stems from the fact that we know
that dj ~ db when j < kc and we certainly want to ensure
that this is sou since dj < dllis the condition required for
the transformation in Hakimivs theoremu and we wish to
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construct the reverse transforma tion..

By examination of several examplesc it is clear that this
algorithm produces the same graphs a number of times overr and
that the amount of work re~uired in sifting out the duplicate
graphs is more than we would wish. It is also regrettable that
some partitionso for which there is only one grapho will cause
this algorithm to look in vain for others. One solution would
be to make use of some work of Parthasarathy (1968) which shows
how to deterlline the number of non·..isomorphic graphs with a
liven partition. If these numbers were also computedc then it
would be necessary to invoke the above algorithm only when a
:;:artitionis seen to have more than one graph associated with
it. It would also be possible6 and perhaps desirable6 to know
in advance the number of graphs which any partition will yieldr
so the algorithm can be stopped as soon as this number of

distinct graphs have been generated.

We conclude this chapter with an example of this algorithm
at work. In figo 900 we show the graph of figo 8. labelled
as graph A, being a graph with pa rtition (4 4 3 3 2 2)" ,

Alongside we give 8 permissible 4-·tuplesg and the graphs which
are obtained by the application of the transformation defined by
each 4-tuple •. This is done for each graph in the classy and
each tille a new graph is discovered" its canonical form is
;laced in the class. The (]raphs A8 Bp et D and E are indeed the
canonical forms of the" 'Jraj,hswith this partition (see Haca.cy
1968 Appendix 1),
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In chapter lIIe we dealt at some length with the problem of
ordering and indexing trees of various kinds, and to this endc a
number of ways were discussed for the decomposition of trees
into smaller trees, In some sense this may be described as a
factorisation of a treeo This decomposition or factorisation of
a tree is a useful tool in the derivation of recurrence
relations for counting treeso It was considered a natural
extension of this to attempt to use the
decompositione to study the ordering

same technigueo ip~.
of qraphs, From the

;Tevious aect.Lon, we see that we can in fact generate graphs in
some way by use of the Polya theorem approachu with its
associated study of permutation groups and similar combinatorial
techniques.

Howeverc factorisation of a graph is a subject of study in
its own right and we now discuss some of the concepts involved
in the factorisation of a linear grapho

A !~£!9r of a graph is defined to be any subset of the
lines of a graph such that each node is incident to at least one
line in the subset~ Thusn any partial graph of a graph is a
fact or, An !t:iac!2!:is a factor in which each node is incident
to exactly n lines in the factorp certain particular cases of
factors are of interest. A 2-factor is a factor in which each
node is incident to just two lines - i.~" it consists of a set
of disjoint cycles where each node lies on one of the cycles.
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If a 2-factor consists of just one cycle or componentc it is
said to be a ff~~i11~~i~g £y~1~v The problem of finding a cycle
which passes through each node of a graph once and once only is
known as Haa.i.Lton v s probLem, and it can be seen immediately that
this is precisely the problem of finding a 2-factor with just
one component. No efficient algorithm is yet known for finding
a Hamiltonian cycle of a graph~ or even of deciding whether one
exists, although several theorems have been proved stating
necessary conditions for the existence of such a cycle (see for
Ln s t anc e, Harary 1968).. Certain heuristic methods can however
be used, but these essentially take heuristic ~short cut.sv in an
algorithm for solving the problem by exhaustive searcho Berge
(1958) describes a method due to Fortet (1959) for solving the
rroblem for a direct.ed Jraph, but similar techniques do not lend
themselves easily to the solution of the undirected case.

Another type of factorisation which is of interest is the
1-factora This is closely related to the subject of matching in

a general graphr, and in factu a perfect matching is a
1·factorisation of the qraph.

Berge (1958) defines a mat£~ing M of a graph G to be any
subset of the lines of G in which no two members of M are
incident to the same node of Go A !I!!!.!A.!!~!!!!!i£!!.igg_ is a
matching M~ for which

IM~I ~ IMI for any matching K of Go

where IMI denotes the number o£ lines in the matching M~ A
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matching M8 of a graph G is said to be p~~!~£~ if each node of G
is an endpoint of one of the lines of Mo

Clearly if G possesses a
number of nodes in Go must

perfect matchingr then the

be evenr and if M is a perfect
a graph has a perfectmatching of Go then IMI If

matchingu then we may attempt to find this matching which covers
the graph by using a backtracking techniguea This can in fact
be done recursively by selecting any line of the grapho removing
this lineD its two endpoints and all the lines incident to these
endpoints. We may then examine this reduced graph for a perfect
matching. If it has one, the matching for the whole graph is
the matching for the reduced graph together. with the line which
was removed initially from the whole graph. If the reduced
~raph has no perfect matching8 then we replace the line which
was removed initially and try to remove a different line from
the original graph. In facte since each node must be incident
to one line of the matching for the graph to possess a perfect
matchingu it is only necessary to try those lines which are

incident to one node. If none of these yield a solution. then
we know that this node cannot be covered by a matching line and
therefore no matching found by this method could be a perfect
matching.

For a large graph, howevere this backtracking method will
be extremely inefficient! because of the amount of searching
which may be requiredn Given a graph G with a matching Me a
node x is said to be £Q~~K~Q by the matching if a line belonging
to the matching M is incident to xo The graph G is said to be
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covered by M if each node in G is covered by Me Any node not
covered by a matching M is said to be !'!YQse!l"
1~1h of a graph with respect to a matching M is a path
x, t Xl,l C.e eXit in G in which if line X"_I x, is not in Mo then the
line xi,x ':.1 is in PIc Thus an alternating path is a seque nee of
lines in the graph which are alternately in M and not in Mc

There is no requirement that this path should be of odd or even
length, nor do we require that the first line should be in M or
not, However, as can be seen from the following theorem due to
Berge (1958)r an alternating path of odd length joining two
exposed nodes is of particular interest~
~r.h~Q!:~!!

A matching M of a graph G is maximal if and only if no two
distinct exposed nodes are joined by an alternating path~
RIQQ.t;,.

This is not Bergeis proofo but a slightly simpler proof due
to Edmond s (1965) c.

Assume we have two exposed nodes Xi and x1 which are joined
by an alternating path P; Since x I and x1. are exposed N the
first and last lines in the path must be non··matching lines
(Lee lines not in M)e Thus P consists of an odd number of
lines and contains one more non-matching line than it does
matching linese If a new matching is now constructed which
consists of the non-matching lines of P together with the lines
of M which are not in Pg this is clearly a matching M' for which

pp I ::: IMJ + 1

Thus M is not maximal,
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Now assume that M is not aaxd.aal., L;e~
matching M' such that

1M', ~ 1M! + 1

We have to show that there exists an alternating path which

there exists a

:oins two nodes which are exposed relative to M~

Consider a graph G¥ which has the same vertex set as Gc and
whose lines are the lines of G which are in either the matching
M or the matching MW but not both~ No node x € G~ has degree
greater than 2 since at most one line in M and one line in M~ is
incident to x~ The connected components of Gij are therefore~

(a) isolated nodese

Ib) alternating cycles relative to H (and to MU)
or

(c) alternating paths.
(a) and (b) have either no lines or an equal number of lines
from M and M'. Therefore at least one of the components of type
(C) must contain more lines of M' than it does of Mc by the

assumption that IMW! > IMI. The first and last lines of such a
path must be in M' and thus the endpoints of this path are
exposed with respect to M.

This theorem gives the clue to a better method of finding a
perfect matching of a graph. In factu the backtrack procedure
described earlier will find a perfect matching if there is one
(albeit rather inefficiently}u but says nothing about the
matching that is produced if no perfect matching exists.
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The method suggested by BergeWs theorem is to search for an
alternating path between any two exposed nodes"
is found for any pair of exposed nodes then we
theorem) that the matching we have is maximal
perfect if a perfect matching exists)G

If no such path
know (by the
(and therefore

This idea has been modified and developed into a working
algorithm by Edmonds (1965) and later witzgall and Zahn (1965)
added a further modificationo The algorithm is basically a
procedure for growing a certain type of tree from an exposed
node in such a way that if at any stage a terminal node of the
tree is adjacent to another exposed nodee then we have an
alternating path from that exposed node to the root of the tree,

Edmonds defines this particular type of tree which he calls
an alternating tree, An ~l.tern~tip_qlI~~ is a tree in which the
nodes are divided into two classes called i!!!!~! and Q!Lt~£ nodes"
Each line in an alternating tree joins an inner node to an outer
nodee and all the inner nodes have exactly two (outer) nodes
adjacent to them" If there are m inner nodes in an alternating
tree. then the tree has 2m lines in ito It follows therefore
that the total number of nodes in the tree is 2m+1o and that the
number of outer nodes is m+10 Thus there is one more outer node
in an alternating tree than there are inner nodes"

Although we have defined an alternating tree in general
-terms" we now go on to describe how we are going to use the
notion of an alternating tree to help to find alternating paths
within a graph on which a matchin~ is defined.
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Given a graph G together with a matching M on the grapho we
may consider an alternating tree of which one of the outer nodes
is designated as the root of the treeo Now let us grow an
alternating tree on the graph G so that the root of the tree is
an exposed node of G with respect to Ho and that every inner
node is joined to one of its neighbours by a line in M, since
the root is an exposed noder i.eo it is incident to no lines of
M. each inner node which is adjacent to the root is joined to
its other neighbour by a matching line. This then de£ines how
the matching lines are to be inserted into the tree" It is
clear that in a tree of this sarto only the root can be an
exposed node of Gl' since if one of the outer nodes is found to
be an exposed node of Gr we have found an alternating path to
the r oo+, and the matching M of G may be enlarged as described
in the proof of the theorem~ Edmonds describes such a tree as a

.r:l!!.l!.t~Q tree L but in view of our previous use of this term o it
was felt that the term ~~!£hing!,~~would be more appropriate.

The growing of a matching tree within a graph G from an
exposed node r with respect to a matching H is in fact a way of
finding all the alternating paths from re and as soon as one of
these alternating paths meets another exposed noden we have what
is known as an ~.~SL!!~!!!:in.gp.~!:h for the matching M in G,

In a matchin9 tree rooted at a point ru all the outer nodes
correspond to nodes which may be reached in the tree from r by
an alternating path of even lengtho. Similarly. the inner nodes
are those nodes for which no alternating path of even length
from r existse but only a path of odd lengtho We therefore
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prefer to rename the outer and inner nodes of the matching tree
as ~~~n and 2££ nodes respectively.

Let us clarify these points using an example. Consider the
';raphshown in f Lq , 10 This graph has associated with it a
matching and the lines in the matching are marked in the figure.
Node 1 is an exposed node with respect to this matching and so
~e may look for an augmenting path from node 1 to another
exposed node in the graph. We therefore grow an alternating
tree from node 1 as shown in fig. 2. Now in this treec nodes
1, 56 11" 16, 30 8(, 14 and 9 are even nodes, and 20 120 151J 40

6~ 13 and 10 are odd nodes. Now node 8 is adjacent to node 7
which is also an exposed node. Thus we have found an augmenting
path

(1,,2uSl,6,,8l'7)

and this in turn allows us to increase the matching by removing
the lines (205) and (6c8) from the matching and replacing them
with the lines (102) 0 (5l.6) and (7178). We also observe that if
this change is made to the matchingu the new matching is now
;)erfect ,
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The object of Edmonds~ algorithm is to find all those nodes
x in G with the matching E such that there is an alternating
rath of even length from some exposed node ro From this we may
either find an augmentins path and hence increase the matchingy

or establish that there is no such pathp and hence that the
matching is already maximalc A detailed description of Edmondsv

algorithm follows~ .

Starting at the rootr we search for any point x which is
not exposed, and which is adjacent to the root r. (If there is
a node y. adjacent to re which is exposed. we may immediately
2ut the line (y,r) into the matching). The node x is then put
into the tree~ and becomes an odd node. The node z such that
(xyz) E l! is also put into the tree and z is an even node, All
the even nodes in the tree are then developed in this wayu For
a typical even node p being developed, we find a node x adjacent
to p. We now have four cases to consider:

(i) x is an exposed node" In this easel! an alternating
path from x through p to r has been foundo and the
appropriate changes may be made to the matchingo

(ii) x is not exposedc and has not previously been put into
the tree, We now take the step described earlier.
calling x an odd nodec and z (where (XIZ) C M) an even
node.

(iii) x is in the tree already and is an odd node. No
action is taken in this case"

(iv) x is already in the tree and x is an even nodeu This
is the most interesting case. since this defines a
cycle of odd length in the graph. We know that p and x
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both have even length paths to L Define the node b to
be that node which is common to both the path from p to
r and the path from x to rw and such that the path from
b to r is of maximum lengtha This is the point at
which the two paths from x to r and from p to r meet.
and it may indeed be the rooto Now b is an even nodeo

since either it is the root itself 0 which is even by
definitionn or else it has three lines incident to itp

the lines in the paths from b to the r oo t , p and x

respectivelyo Thus since odd nodes have exactly two
lines incident to them we conclude that b must be an
even nodeo Thus by discovering a line from p to Xc we
have established an odd cycle in the graph consisting
of the two paths b to p and b to Xu both of which are
of odd length. and the line (Pwx). Edmonds calls this

odd cycle a Q1Q§AQ~o

If a blossom has been found in a grapho we may
consider any node c within the blossomo If c is an

even node in the path from p to bu then c is even with
respect to the root , If c is odd in the path froll p to
bq since we have an odd cycle passing through Pr bn X

and Co there is an even length path c to p to x to b.
Thus c is again even with respect to the root by virtue
of this path through x, Hence within a blossoml/ every
node can be considered to be even a Thus the t.ree
growing can be continued now considering the blossom as
a single even vertex
Edmonds) 0
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Witzgall and Zahn (1965) describe a very slight variation
ot Edmondsw algorithm in which the action taken on recognising a
blossom is a little differento In this methodw a tree (which

may be called the gveg R~1h i~e~
below(i) = j

if and only if there exists a node k with the lines (ivk) and
(k,j) in G, such that (ie k) f£ M and (k•.j) / M 0 The step taken

is built in which

when an x is found not in the alternating tree is as beforer and
has the effect of adding the node z to the even path tree so
that

below{z) = p
If an odd cycle is encountered in which p and x are the extremes
of two even paths, and the line (XII p) is found to be in G 6 the
algori thm of witzgall and Zahn then chains down the path from p
to the rootw adding the odd vertices in this path to the even
path tree as ~abovas" of x, and chains down the path from x to
the rootw adding the odd vertices in this path to the tree as
wabovesv of po If in the chaining down process two adjacent

even nodes are foundn then this implies that an odd cycle
involving these two nodes has previously been foundo and so the
chaining process stops 0 If the node b is the point at which the
paths p to r and x to r meet as defined before v the chaininq
process also stops when b is reachede since any point below b is
not in the odd cycleo "

The algorithm stops if all the even nodes are found to be
in state (iii), iv~o all their neighbours are odd nodes (except
for members of a blossom). Edmonds calls an alternating tree
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with this property a Bu~g~±~~~ ~~~~c This may occur before all
the nodes of G have been examinedo This is overcome by removing
the Hungarian treer together with all the lines incident to
nodes in the Hungarian treee from the graph Go The algorithm is
then repeated on the reduced ']raph< Edmonds and Witzgall and
Zahn present proofs that their respective algorithms end with
maximal matchLnqs,

Consider the graph shown in figo
The following example shows the operation of the algorithm"

300 in which the matching
lines have been markedn We see that node I is an exposed node
in the grapho In fact it is the only exposed node in the graphq

but this does not affect
the performance of the
algorithmo Thus I

becomes the root of the A

alternating t r ee, We
first grow towards No

(The stages in the c,

development of the tree
are illustrated in fig"
4) 0
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Fig 0 4" (a) -. (c) show how the normal growth of the tree takes

place, and a further extension occurs in (d)o Two even nodes CA
and D) are now found to be adjacento. This blossom can now be
contracted into the pseudo+ver+ex (ABCDE) 0 In (e) another

growth takes place and again two even nodes (G and the

pseudo-'vertex (ABCDE) ) are found to be adjacento The blossom

again shrinks into a new pseudo-vertex ((ABCDE) FG)" This
pseudo-·vertex cannot now be developed any further n and so (f)
shows that further development of 1 is the only chanGe of
growing the tree any more" In (g) one further step has been
taken, and this tree is in fact Hungariano If we now remove
·this tree from the original graph we obtain the subqraph which
is shown in fig" 50. This subgraph possesses a perfect matching
already, and hence we conclude that there is no alternating path
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between any pair of exposed nodes6 and that the matching as
shown in figo 3< is maximalc This description only discusses
the final stage of the
algorithm; previous
stages have already
found augmenting paths
and modified the
matching accordinglyo Pi c 5.~-g--,.-~-

A slight extension to Edmonds~ algorithm has also been
consideredo This is to grow alternating trees from each of the
exposed nodes of the graph. The conditions under which the

"loin" of two trees occurs determines whether an alternating
rath between the roots of any two trees exists.

BrieflY6 we label all the exposed nodes as even nodesp and
grow alternating trees for each one as described earlier, The
action to be taken in each of the possible cases is as beforeo

except in case (iv)p when two even nodes are to be joined o (If

we previously asked the question Wwas a particular node in the
tree'?W we must now ask ~is the node in any tree?W)" In case
(iv) however we have to subdivide this occu~rence into two
fUrther parts - when the two even nodes are in the same tree,
and when they are in different treesc If the two even nodes are
in the same treep then they must be treated in the same way as
beforep namelyo the process of reducing a blossom to a
pseudo-vertex must be carried outu If the two even nodes are in
different treeso we have then found an augmenting path between
the roots of the two trees" This is of course the even length
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[ath from each rooto together with the line between the two even
nodes which are the growing points, This extension to the
method of Edmonds is probably only a marginal improvement over
the original algorithm6 if any.

The study of factorisation or decomposition of graphs would
not be complete without a mention of articulation points. We
make one remark about articulation points in connection with the
study of aa tc hLnq s , A node x of the graph G is said to be an
~£1!9!lati.Q'!!.Eoi.!!! of G if the subgraph G f x } is not
connected, although G is connected •. Berge ( 1958) states and
proves the following theorem! which we give here without proof 0

:thgQgU!

A node x is an articulation point of a connected graph Gp

if and only if there exist two nodes p and g in G such that
every path from p to ~ passes through Xn ,

Let x be an articulation point of the graph Go and let
Gn.G~8 •••• G~ be the connected components of the graph G { x } •

We define p to be the Q~~~£ of the articulation point x (and we
note that p ~ 2 by definition of an articulation point). The
subgraphs Go. '" {x} for i = 102(oo~op are called Q!o~~§" It can
be seen that G has a perfect matching if and only if Gj U {x}

has a perfect matching for some j, and G·.. (i j) all have
perfect matchings. A necessary condition for a graph G to
possess a perfect matching is that IGI is even. and therefore we
have~



163

of
If G is a connected graphc and x is an

order p which divides G into blocks
articula tion point

G: u {x} for i =
1pO<08P, then a necessary condition for G to have a perfect
matching is

and

IGtl is even for all i # j~

Thus, if a graph can be found to possess articulation
pointsu then our backtracking algorithm for finding a perfect
matching may be simplified by associating each articulation

faint with a particular block (according to the rule given in
the above theorem)p and then looking for perfect matchings in
each of the resulting subgraphs separately". It is clearp

howeverQ that Edmondsi algorithm is much more efficient than the
backtracking algorithmo and will cope with articulation points
without further modificatione as indeed the example shown
earlier demonstra teso

Articulation points are useful in other cases of graph
manipulationQ and so it is perhaps worth discussing a method of
finding the articulation points of a grapho

We statedo without proofo a theorem of Bergen which gave a
necessary and sufficient condition that a point x should be an
articulation point, Let a ~E~~n~ng!£~~for a graph G be a tree
with the vertex set of G, In other wordso a spanning tree is a
tree which covers the nodes of Go In any treeu there is exactly
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one path between any two nodes of the treeq and if the tree is a
spanning treeD then there is exactly one path in the tree
between any two nodes of the graph. Now if a node x is an
articulation poLnt , t hen, by the theorem quoted above, there
exist two nodes p and ~ such that every path from p to g passes
through X6 and in particular the path in the spanning tree
passes through x. This implies that if a node y ~ G is a
terminal node in any spannin~ tree of Go then y cannot be an
articulation point of G. In particularc if we are able to grow

a planted spanning tree (planted tree as defined in chapter I
not Edmonds' definition) from y which covers Gp then y cannot be
an articulation point of G, To find the artiCUlation points of
a graph G then we may attempt to grow a planted spanning tree
from each point of Gr and those nodes for which we do not
succeed are taken to be the artiCUlation points of the graph.
It is also true that for any tree that is grown I' all the
terminal nodes as well as the root can be marked as
non"'articulation pointsu so it is not necessary to grow planted

spanning trees from every node in the grapho It is necessarYr
thoughu to grow a tree from each node which subsequently turns

out to be an articulation pointQ ,

It was felt that if some control were exercised over the
way in which the tree was grownu it ought to be possible to
reduce the number of points from which trees had to be grown.
This could be done by attempting to grow a Vbushy~ treeu i.~. a
tree with as many terminals as possible. Howeverq it turned out
that if a tree-growing algorithm was used which tried to do
thisu nearly all the eliminatable nodes were eliminated in the
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first few treesp and all the subseguent trees had roughly the
same set of nodes as their terminal nodeso

A slight extension to this algorithm can be used to find
the articulation points of a graph. and at the same time find
the order of the articulation pointo (We may perhaps consider a
nonO"articulation point as an articulation point with order 1)0

Suppose we are trying to find the order of a point xo We
construct a spanning tree whose root is Xp and in which all the
nodes adjacent to node x are inserted at level'o These nodes
are then labelled from 1 to d(x)o indicating that at this stage
of growing the treer the node x appears to be an articulation
roint of order d(x) 0 As each node in the spanning tree is
developed we have two cases to consider. Suppose we are
developing node i8 and we find that node i is adjacent to node
~ in the graph. Let the label of node i be l(i) 0 Now either~

(i) j is not in the tree. In this case. place j in the tree
(by setting below(j) = i or some other.means) and set

l(j) = I (i) o

(ii) j is in the tree. This means that we have found a
connection between the block containing i and the
block containing io If lei) = l{j) then do nothing;
otherwise set the labels of all the nodes whose labels
are either l(i) or l(j) to be egual to the smaller of
1(L) and 1tj) c

When all the nodes have been developed in this waYr we have
in fact inspected all the lines in the grapho and the number of
distinct labels on the nodes adjacent to x is the order of the



166

node xo If this number is greater than 1r then x is an
articulation point of this order.

We have briefly touched on the subject of growing spanning
trees of various sorts for a given graphc This section is
devoted to an examination of the spanning trees of a graphc and
various ways of finding a spanning tree.

Obruca (1966) makes extensive use of the spanning tree in
the various techniques he develops v but in his case most of the
~raphs are cost associated, and the extraction of a particular
spanning tree is correspondingly easier •.

In chapter III~ we described various methods of indexing a
tree, and in each case we considered the tree as being a
composition of two or more partsv usually smaller trees. Our
iirst approaches to the problem of indexing linear graphs were
based on attempts to decompose a graph in a similar fashion •. To
take an example of this, we defined the natural ordering for
t~ees as T < T~c in terms of the ordering of the components T.
and T: ' where the tree T is considered to be decomposable as
shown in fig, 6. If a

and failed to
comparison between T,

discriminate between the
two treest'then the two
subtrees T2,and T~ were
exaadned, and so on, g!g.".~.§~
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In Snow and Scolns (1969) we outlined a similar technique
for indexing graphso It was pointed out in that paper that a
large part of the problem was the difficulty of decomposing the
';raphuniguely < The work of Cornei L, as described in chapter
IV. has now removed this difficulty (subject to the conjectures
'1'iven in that chapter) r and so the problem of deciding the truth
or falsity of the statement G < G' is now theoretically solved~
For Lnst anoe, the two graphs could be reduced to their
respective canonical formsr and a straighforward comparison of
these graphs such as the comparison of their adjacency matrices
would give the required resulto We have however developed a

number of technigues for the practical decomposition of gr.aphs"

The first problem which was mentioned in Snow and Scoins
(1969) was that of finding the centre of a graph. Howeverr
those nodes which map onto node I of the representative graph
may be considered to be the centres of the grapho and since we
know that these nodes form a transitive subgrapho anyone of

these may be taken as the (unique) centre of the qraph, The
degr.ee partitioning was used as the basis for all the
rartitionings in the formation of the representative graphe and
therefore the use of the Cayley ordering is suggested for
deciding which spanning tree is to be regarded as the ~best'
spanning tree for a particular graph •. Spanning trees of a graph
are essentially free treeso and it is therefore necessary to
take SOle point in the tree as the rooto. A better choice is to
choose the root of the spanning tree by virtue of its status in
the graph rather than by virtue of its status in the tree
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(although we would hope that they are connected when we come to
create the tree), since we already know that the representative
~jraphand the re'ordered qraph are invaria nt under isomorphism D

any algorithm will suffice to produce a unique spanning tree for
a graph provided it is based on the labelling of the re·ordered
~;raph, We haven hovever, made an attempt to find an "opt.LaaL ~
spanning tree for a graph, where optimal was taken to be a
variety of propertiesu but mainly the property of ~coming
earliest in the natural ordering of treesVc As we saw in

chapter 1110 we can equate the ordering which we have called the
natural ordering with the ordering defined by the

lexicographical ordering of the height vectorsn and it is with
this in mind that we attempt to find the VoptimalV spanning tree

for a qraph,

Given any qraphu we may compute from its adjacency matrix.

another matrix6 the shortest distance matrix

where
S = fd ~j )

is the length of the shortest path in the graph from

node i to node jn Furtherp we define (following Obruca 1966) a

m~§h~QQ~ing §~~n~~ng 1r~~ as any spanning tree in which the
length of the path from any node x to the root of the tree is
the same as the length ot the shortest path within the graph
between the saae two nodes. Now since the height vector of a
tree is simply an ordered list of the distances from the root to
each node of the treee it is clear that the height
representation of any mushrooming spanning tree will be simply a
re-ordering of the elements of the row in the shortest distance
matrix corresponding to the root. Although we have been unable
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to prove the statement, it seems intuitively reasonable that if
the optimal s pan n Ln q tree is defined in terms of the natural
ordering of the trees(! and therefore of the height
representationp then the optimal spanning tree will be a
mushrooming one , The trees which come first in the natural
ordering are those with the smaller numbers i.n their
corresponding height vectorsn and the mushrooming tree is also
an attempt to keep the height vector values as small as
possible~

Two main algorithms were used in an attempt to discover the
optimal spanning tree for a graph, and certain variations were
also incorporated in certain cases. Unfortuna tely it was not
0enerally possible to determine whether a tree was in fact the
optimal spanning tree when either algorithm had discovered ito
The two algorithms are slightly different in approach; the first
being an iterative methode known as the Improvement Algorithm.

and the second being a more direct methodo

The I.provement Algorithm begins by taking any mushrooming
tree of the graph. This may be constructed in a number of waysr
of which the simplest is to grow from the root all the nodes at
a distance 1 from the roota Then from each of these nodes are
grown all the nodes at a distance 1 away which have not already
been put into the treeo This process is repeatedv building up
the tree by v levelsw r and a mushrooming tree certainly results,
Clearly the tree which results is, however. highly dependent on
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the original labelling of the grapho

Given any spanning tree of a graphp we define the graph
which results when all the spanning tree lines are removed to be

the £2~tr~~. It is obviously possible to create a list of the
lines in the co-tree. The algorithm now proceeds as follows:

Consider any line in the co-tree which joins the nodes x
and yo Since the spanning tree is mushrooming v we know that for
any such nodes, Ih (x) ..h (y) I ~ L This is because if two nodes

are joined in a qraph, there exists a pa th from some point r to
x which passes through Ye and y is the last node on this path
before reaching x, thus d (rl'Y)~ d (rex) + 10 Now if a spanning
tree exists which does not contain the line (x,y) II then both the
path from r (the root of the tree) to x through Yv and the path
from r through x to y must exist. Thus d (rpy) ..1 ~ d (rex) ~

c. (rlly) + 1" and d (rox) --1 $ d (ruY) ~ d (rex) + 1.

The improvement algorithm attempts to replace lines in the
spanning tree by lines from the co-tree to see whether a better
tree is formedo This is done by successively trying each
co tree line and removing one of the lines in the spanning tree.
If at any stage an improvement is madec then this is adopted as
the new spanning tree and the algori thllrestarted" When each
line in the co--tree has been triedu and no improvement has been
madell then the algorithm terminateso This method may be thought
of as a kind of whil~·climbing' technique in which the step
length is one line~ There is clearly a great danger of a vloeal
optimullV being found which can only be overcome by replacing two
or more lines in the tree simultaneously, This is an obvious
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extension which could be made to the algorithm"

In factp this particular method in which the spanning tree
is changed as soon as an improvement is made is only one of a
number of possibilities,. An alternative strategy would be to
make all permissible chan~es to the tree,.and select that which
..Lves the greatest improvemento This means that the method
would be a sort of isteepest ascent~ method.

Apart from the extension mentioned abovev there are other
extensions which may also be consideredo For any spanning treen

we may form a certain number of different spanning trees
depending on the lines in the co-treen. The algorithm above
takes the first of these to be found which is an improved treeu

and the previous tree is immediately discarded, The alternative
method is to take all the trees given by substitution of one
line and choosing the best of them, We may however consider
each of these trees which represents an improvementp developing
each in turn~ and seeing which one leads to the best tree by a

sequence of one line replacementso

Such a process could be restricted so that each step
forward leads to an improved tree. or perhaps so that each step
forward leads either to an improved tree or an egui valent tree.
In the limitp the method could develop every new tree that was
found. in which case the algorithm would generate all the
mushrooming trees which span the graph" These last methods are
clearly using a backtrack type algorithm"

Since the algorithm as it stands begins with a mushrooming
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spanning treen and stays within the set of mushrooming treesc we
may make some remarks about the choice of lines to be inserted
into or removed from the current best spanning treeu First.
assume that we have a line (x.y) in the co-treeu Suppose that
within the spanning tree h(x) = hey) 6 iceo in the graph d(xor)
= d(10r) where r is the root of the tree (and perhaps the centre
of the graph) 0 Then this line need not be considered as a
candidate for inclusion since if it were put into the treee
eat her h' (x) = h~{y) .t- 1 or hiey) = hV(x) + 1 (where hU(x) is

the height of the point X in the new tree)o This therefore
contradicts the assumption that the tree is mushroomingo We now
know that the only lines which we need to consider inserting are
those for which Ihex) - hey) I = 10 We may assume, without loss
ofgeneralitYnthatd(rex) +1 = o(r['y), Thus we have the
situation as shown in fig•. 7. Now by inserting a single line
in a treer we create one simple cycleo It is now necessary to
remove one line from this cycle in order to make this graph into
a tree again. The proposition is that the only line which may
be removed so that the mnshrooming property is preserved is the
line (Yoz)6 where z = below(y) 0 For consider the removal of any
other line in the path from y to the rooto Then the node z
would be connected to the root only by a path passing through y
and x (in that order) u In the mushrooming tree. since z -
below(y), we have h(z) = h(y) - 1. Howeverv in the new tree,
the path from z to the root is through Yu and therefore h(z) >
h(y) u Hence the mushrooming property is destroyedo Similarly
we can argue that no line in the path from x to the root may be
removed and the tree remain mushrooming. The task of testing
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co tree lines to see whether their inclusion in the tree would
make an improvement is
now considerably easedo

since only a subset of
the co-tree lines need
be tested, and when one
such line is insertedc

there is only one line
which may be removedo

The second algorithmr which attempts to find the best
spanning tree directlYr is based on some of the work on
matchings described earlier~

Although initially ve had hoped that this algorithm would
indeed find the best spanning tree directlyv it was found that
this goal could not be achieved I' and so it was decided that this
algorithm would be suitable for finding a 'near optimalQ tree
Upon which the improvement algorithm could operateo

Using this technique~ an attempt is made to distribute the
nodes of height p + 1 as evenly as possible among the nodes of
height po We are groving the tree by stagesu increasing the
height at each st.a qe, where at the p,th stage ve have a
partially constructed tree of maximum height Pe and a collection
of nodes to be attached at height p + 1.

Suppose we have grown a spanning tree up to and including
height po The next step is to attach all those nodes which are
at a distance p+1 from the rooto Thus a hi-partite graph B may
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be defined in which the two sets of nodes are respectively the
set of nodes at height p (already in the tree) and the set of
nodes at a distance p+l from the root. Let these two sets be s~

and Sr.' respec ti.veLy, Now if x ~ Sp and y ~ St+\ {, there 1S a
line in B if and only if there is a line (xcy) in G. The
<;eneral method adopted to distribute the nodes of height p.1 as
evenly as possible amon~st the nodes of height p is to assign
one node from S~..., to each node in S~u as far as this is

the assigned nodes:ossibleo and when this has been donee all
are removed from Sp~1 and the process repeated. Thus we allow
each node at level p to acsuire at most one node from the set of
nodes at level p+l before any node is allowed to acquire a

second node from Sp~l~

It is obviously desirable to assign as many nodes from S p~1

to nodes from S~ as possibler subject to the restriction that no
more than one level p+1 node is to be assigned to any level p
node at each stePe and this problem is then simply the problem
of finding a maximal matching on the hi-partite graph Bn

In section 1102 we described Edmondsw algorithm for finding
a maximal matching on a general qraph, Howeveru we may simplify
this algorithm when looking for a maximal matching on a
bi-partite graph by observing that in a bi-partite graph every
cycle is of even length. Thus in the description of the actions
to be taken when growing an alternating tree from an exposed
node. cases (i)e (ii) and (iii) are exactly as before [but case
(iv) cannot occur6 since this would imply the presence of an odd
cycle in the grapho which is impossible in a bi'partite graph.
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Thus we may find a maximal matching on B by growing an
alternating tree from each exposed node in S and altering the
rna tching until it is maximal.

Having found a maximal matching on Bp we now attach these

nodes in S" ..., to their corresponding nodes in S tot' so that if x ~
S .. and II. (x) is that node in S,"+I such that (xom (x) is a line in
the matchingr the spanning tree of G is enlarged by setting

below (m (x) = x
and the node m{x) and all its incident lines are deleted from
the graph B. When this has been done for each line in the
matching6 a new maximal matchin9 is found on the reduced graph
B~ and more nodes can then be inserted into the spanning treec
This process is continued until all the elements of Sp~i have
been placed in the spanning tree~

In passinge we observe that the method of growing an
alternating tree on a bi'partite graph may be used to prove by a
graph theoretic method a theorem due to Philip Hall (1935) known

as the theorem of Distinct Representatives.

Assume we have a set of objects Sf' and n subsets s~ (i =
1on",un) of S. We assume that the union of the subsets S·.. is
the whole set S•. Then ve have a set of distinct representatives
if one element a~ c S~ can be found for each in such that at =
aj if and only if i The element a·"

may be said to
represent the subset S&" Then Hall" s theorem states~
~hgQ£~~

The subsets i = 1q<~.on of a set S possess a set of



176

distinct representatives if and only if each set of k of the
subsets has at least k distinct elementso

No~ let each subset Si be represented by a node x ~ X in a
hi-partite graph Biland let each element in S be represented by
a node y ~ Y of B< Then the lines of B represent the set
inclusion of the elements of S in the subsets S~o i.eo B
contains the line if and only if the element of S

represented by Y is contained in the subset of S represented by
x, Now for any subset A of nodes of Xv let rCA) be the set of
nodes y which are adjacent to at least one node in A.
may restate the theorem of Hall as~

Zh~QK~!

Then we

For a bi-partite graph B~ there exists a matching which
covers X if and only if for any subset A ~ X

Ir(A) I ~ lAI

Clearly if we have a matching ft which covers XQ then for
any suhset A of Xc rCA) must contain at least those points y ~ Y
such that (xu y) E ~ for each x E A~ Hence Ir(A)! ~ iA10

Now suppose ,rCA), ~ IAI for each subset A ~ Xp and suppose
that we have a matching" which does not cover X. Then there is
a node rex which is exposed with respect to ~~ Now construct
an alternating tree as follows. Let r be the root of the tree
and join to r all those nodes in Y which are adjacent to r.
(There must be at leas·tone since Ir({r}) I ~ I{rll = 1)0 If any
of these nodes are exposed~ then we may immediately increase the
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matching by including the line joining r to this noder
Otherwise, include in the alternating tree those nodes y~ ~ y

which are adjacent to rr and the nodes of x which are joined to
the y~ by a matching line~ We may continue adding y nodes and
their matched x nodes to the tree until either~

(i) we include an unmatched y node in the tree; this now
gives an augmenting path from r to this unmatched y
nodev and the matching may be enlarged by one line as
before.

(ii) no new nodes can be included in the tree, In this
casec we have some number of y nodes in the tree and
for each of these there is a matching x node. The
total set of x nodes in the tree is therefore the set
of the matching nodes together with the node ro Thus
the set of x nodes in the tree has one more element
than the set of y nodes and hence the assumption that

InA) I ~ IAl is contradicted for this subset A of X.

If case (i) occurs. the process is then repeated until all

the nodes of X are matched. Thus if IrCA) I ~ IAI for every
subset A ~ X we can construct a matching which covers Xo

Q" 1::. n,

since the method of qrowing the spanning tree tor a graph
expands the tree level by levele and makes no reference to the
previous structure of the treeo it is clear that
counter-examples can be constructed to disprove the conjecture
that trees constructed by this method are optimal spanning
treesp but in many cases this does seem to be truer and in the
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cases where it is notp it appears that the tree constructed by

this method is ~close~ to the optimum in some senseQ Thus it
would seem to be a ~ood starting tree from which to apply the
improvement algorithm. It is also possible to modify the
algorithm to take account of the counter-examples which have
been founde but unless a general method can be found which can
be proved to workp it is felt that piecemeal alterations will
only push the point of failure of the algorithm backl rather
than eliminate it altogether.

In the final section of Snow and Scoins (1969) a rather
different approach to the problem of the optimal spanning tree
was hinted at. It was observed that if the best spanning tree
is a mushrooming treer then its height vector is simply a
re·-ordering of any vector representing the distances from the
root of the tree to every other node in the grapht i.eo the
appropriate row of the shortest distance matrix So Now clearly
it is possible to take such a vector and rearrange it in such a
way that it is bound to be optimaL It is not then certain
however that this re--ordered vector represents a spanning tree
of the grapho Thus it should be possible to move from the
optimal re-ordering of this vector until a vector is found for
which a corresponding tree does exist as a spanning tree. In
this way we could be sure that the tree found was in fact
optimalo In a vaYn this ~s rather like the dual approach to a
linear programming problem in which we either start with a
feasible solution and try to make it optimal also( or else we
begin with a solution
which is constrained to
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be optimal, but which
lies outside the
feasible regionp and ,...
qradually change the
solution until it is
also feasible.

We shall show an example of a graph with these three
methods operating upon it~ The graph to be considered is shown
in fig. 8. Let us assume that the initial mushrooming spanning
tree is that shown in fig~ 9{a). This is clearly a function of
both the labelling of the graphe and the algorithm used to
construct the tree. For the purposes of this examplec any
mushrooming spanning tree would be suitable and the tree in fig.
9(a) is just one of these,
this tree is::

o 1 233 1 232 121 1 1

The height vector representation of

and the labelling of the tree is shown in the diagram, The
lines in the co-tree are:

1 " 2 0 1 'I 1 (I 1 - 12 II 2 ~. 3 p 3 ~. 4 0 4 .. 5 t'

6 .. 9" 7 88 7 .. 90 8 .-. 90 8 14" 13 ~> 14,
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,0
(a)

10

(b) (c)

Of these only four lines, 1 - 128 7 - 90 8 9 and 13 14

satisfy the requirement that hex) = h(y) + 1~. By trying to
insert the line 1 - 12 into the tree we find that the line to be
removed is 11 - 12. If this is done the tree which results has
the same height vector as the original tree" and therefore the
previous spanning tree is retained~. The next co-tree line which
can be tried is the line "7 • 9~ If this is done the line to be
removed is 6 - 7" and the resulting tree is shown in fig~. 9{b) c

This tree has height vector ~

o 1 2 3 2 3 1.2 3 1 2 1 1 1
which is less than the previous height vector according to our
earlier definitions. The list of lines in the co-tree is now
recomputed, and in fact it is the same list as before except
thatthe line 7 - 9 is replaced by the line 6 The whole
list is scanned again and now we see that the line 1 .. 12 can be
inserted to make an improvement. This time the line 11 .. 12 is
to be removedu and if this is done. the resulting tree is as
shown in figo 9(c) and this tree has height vector

o 1 232 123 123 1 1 1
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This turns out to be the final tree, as each of the new co-tree
lines are tried but without any improvement in the spanning
treeo

In the example shown herer it is relatively easy to verify
by inspection that no better spanning tree can be found,
However we are unable to say that this algorithm will always
rroduce an optimal spanning treen unless the algorithm is
extended to produce ~11spanning trees of the graph and select
the best,

Let us now consider the action of the matching algorithm on
the same graphc. We have assumed in the previous example that
node 10 is to be regarded as the centreu since it has degree 60

which is greater than the de~ree of any other node in the graphc
Thus the partitioning algorithm will put node 10 into class Ie

and the centre of the graph may be selected on this basis. Now
there are 6 nodes adjacent to node 10 and they are nodes 16 20

36 40 5 and 110 These nodes can be attached immediately to node
10 which has already been designated as the root of the spanning
tree~ We can now look at the sets of nodes at a distance 2 from
node 10u which are connected to nodes at a distance 1,

1 [12013}

2 Z
3 .RI

4 e:
5 [ 6 }

11 {9u12}

These connectivity relations are displayed by the
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bi-partite graph in figo 100 and ve see that a maximal
matching may be found containing the lines (1&12)e (506) and
(11r9). The nodes 12e 6 and 9 are then attached to the spanning
tree and removed from the bi-partite graphv A maximal matching
on the reduced
bi-'partite graph
contains the one line
(lc13) and so the node
13 is inserted in the
spanning tree vith node 0 0 0

'.a,.. 1 .... 01

1 as its below. ri!h_~_lQ.'l...
At the second level the graving points are the nodes 128 130 6

and 9w and the corresponding sets of the level 3 nodes are:;
12 { 14 )

13 ( 14 )

6 [7oB}

9 {7oB)

Node 14 is attached to
node 12e 7 to 60 and 8

to 9t" and the final tree ,~
is as shovn in fig. 1L

It will be observed that
this tree has the same
height seguence as the
tree shown in figQ 9 (c)
although the labelling '+

Gois dLf f e ce n t , r.ig_~_._11~..

Finally we examine the row of the matrix S which
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corresponds to the node 10. This is~
1 1 1 1 1 2 3 3 2 0 1 2 2 3

The optimum way in which this can be arranged into a valid
height sequence is~

0 1 2 3 1 2 3 1 2 3 1 2 1 1

but unfortunately this cannot be fitted to any spanning tree of
the graph. This seJuence may be constructed by distributing the
elements with value p+1 evenly amongst the elements with value p
consistent with the sequence remaining a valid height seguencen
The problem comes when we attempt to discover whether a
particular sequence has a corresponding spanning tree in the
graph. This can be achieved by considering all possible
assignments of nodes at a particular distance from the root to
the elements of the vector with that value. Howevero this could
inVOlve a considerable amount of workv and thus it cannot be

This optimal sequence canconsidered as a practical method.
however be thought of as a 'lower boundu on the possible
spanning trees8 and as such may be used to restrict the
searching done by the improvement algorithm. The next smallest
vector which can be constructed from the tenth row of the
shortest distance matrix is:.

o 1 232 123 123 1 1 1
which is the same as the height vector for each of the two
previous optimum trees~ It is now a matter of making an
assignment to the values in this height vector so that it

represents a real spanninq tree in the graph" In fact we have
already seen that there are at least two trees which satisfy
these requirements.
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A rooted tree may be considered as a representation of a
hierarchyo It is therefore not surprising that the
decomposition operations discussed earlier in this thesis should
display an hierarchical or recursive structureo By contrastp a
graph is essentially nono~hierarchical and non=r ecursIve in the
representations so far consideredo This section is intended to
investigate the possibilities of representing a graph by some
hierarchical structureo The general approach is to decompose
the graph (which we assume to be connected) by some convenient
ruleo and continue the decomposition recursively on the
component parts. The representation takes the form of a tree in
Which each node is labelled to indicate the exact form of the
decomposit.Lon ,

The decomposition operation is the operation of removing a

spanning tree as described in the previous sectionsv and this
Spanning tree will then be used as the label representing the
decomposition. The connected components of the co~tree are each
treated as a separate connected graph and are decomposed
similarly. In factQ the methods of extracting the optimal
spanning tree described here ensure that the co--tree is
disconnected. since all the lines from the root are put into the
spanning treee and the root itself is left as an isolated node
in the co--treeo This gives rise to the concept of a _§..t!:.l!£!:.!!!:g
~~~ for a graph. The graph is decomposed into a spanning tree
and a c~-treeo The root of the structure tree represents this
decompOsition. and the spanning tree which is extracted is used
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as the label for the root of the structure tree, The root of
the structure tree has m nodes above itv where m is the number
of connected components in the co-tree~ If any component is an
isolated point~ the corresponding node of the structure tree is
not developedo otherwise this node is the root of the structure
tree for this component~ Thus we arrive at a structure tree in
which each internal node is labelled with a spanning tree" and
each terminal node represents a single node of the ori9inal
qraphu

An example will help to show how the structure tree is
formedo By some means. we find the centre of the graphv and
then some algorithm such as one of the algorithms described
earlier is applied to find a spanning tree. Let us consider the
decomposition of the graph G shown in fig. 120 and the first
spanning tree is illustrated in fig•. 13. Let us refer to this
tree as the tree Tp and let the co-tree be the graph C as shown
in figol~. The tree T now labels the structure treep and since
C has two connected componentse there are two nodes in the
structure tree above the rooto The node 3 of the original graph
is an isola ted node in Cc and therefore it requires no further
decomposi tLon, Hence it also corresponds to a terminal node in
the structure treeo The other connected component of the
co+t r-e e C can now be decomposed in the same waYn and the
resultant spanning tree T, (j and the coo-tree Cl are shown in

15 and 16 respectively< C, now consists of 5 connected
components6 of which 3 are single nodesr and the other two are
each trees with one line and two nodes. The structure tree S is
now of the form shown in figa lap where the internal nodes are
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labelled with the tree

Ta T. T.. and T~ 6 .here '1l'

these latter two are

shown in figo 17..,. ana

the terminal noJ.es of S

are labelled with the ,
node labels of the

original graph Go f!g~,_11~

""
s' 1

3
Fig~_1.1~ !':ig~_.1~~

10

[1
..,

4p r0

< 01

I f
Fig~_l2.~ !':ig~~J.E?~
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'r
[ 1: 11

1.

E!g_:: __17.lC.

Thus we completely represent the process of decomposing a
~;raphby its correspondiny structure tree, Having decomposed a
sraph into its structure tree~ we would like to make this
process reversible6 i.e. from the structure tree with its node
labels can we reconstruct the original graph? Clearly this can
be done if the node labels of the graph are kept in each
spanning tree as well as at the terminals of the structure tree"
The guestion then is: How much of this information can be

discarded such that the reconstruction can be done unambiguously

and successfully? This is stiLl an open questd.on, but we may
make some observations which allow us to reduce the ambiguities
which are present with the information which is available"
Firstly. since the extraction of the spanning tree implies that
all the 1il1es incident to the root of the spanning tree are put
int.o the spanning tree. we know that there must be at least one
isolated node at each level of the structure tree. and the root
of the spanning tree which labels each non-terminal node of the
structure tree corresponds to one of the isolated points of the
co+t ree associated with that spanning tree c,



188

The second observation which can be made is to do with the
points which may legitimately be joined. Consider the graph G
shown earlier, in which an attempt is made to reconstruct the
~raph corresponding to the spanning tree T and its associated
co·treeo Now by the way in which it was constructed we know
that T. is mushrooming with respect to the graph which it spans"
and the two lines that form T~ and T} join nodes x and y for
which Ih ,(x) ~ h, (y), ~ 1 where h, (x) is the height of the node
x in the tree T.. However. even after applying this restriction
on the graph we still have a choice of how to compose this graph
with the tree T and we conclude that the str.ucture tree alone
is not sufficient to specify a graph
further information must also be carried.

completelyp but some
As has been pointed

out previouslYr to carry the node labels of the graph is clearly
sufficient~ but considerably more than is necessary. Thus some
intermediate quantity of information must be carried, but it is
not immediately clear how much"

Some remarks may be made about the strueture tree however
1. The total number of terminal nodes in the structure

tree is equal to the number of nodes in the graph"
2" The number of lines in the graph is also represented in

the structure tree. By remark 10 we know that the
number of nodes in a tree which labels a node x of the
structure tree is n(x)6 where nex) is the number of
terminals of the structure tree which are contained in
the subtree whose root is x. Thus the number of lines
in the tree which labels x is n{x) 1. Hence [l the
graph which is represented by this subtree of the



189

structure tree is composed of the graphs represented by
the principal subtrees standing on Xr and the tree
which labels x 0 Thus it 1~ (i::: 1. 0 ~ 0 0 k) are the nodes
ahove Xc and wex) is the number of lines in the graph
represented by the subtree standing on X6 we have± w(Yd + n t x) - 1w ( x) :::

.:...
We also have

n (x) :::
It.L n (y; )

~7:'
and for each terminal node t in the structure tree I'

n (t) ::.:'I t: wet) :-"00

Thus we may evaluate n(x) and w(x) for each node x in
the structure tree, and the number of nodes and lines
of the decomposed qraph are given by n er) and w (r)
respectively where r is the root of the structure tree

of the decomposition.

It is clear from the fact that any spanning tree of a graph
with n nodes has n..1 lines, and from the way in which the

structure tree is bui Lt, that the more lines there are in any
subgraph, the taller will be the corresponding portion of the
structure treeo For instance, if the graph to be decomposed has
only n-1 lines (the minimum number which it can have without
becoming disconnected) it is itself its own spanning tree o and
so the structure tree i.sthe tree of height 1 with n+1 nodes,
the root being labelled with the spanning tree which is the
whole graph. On the other hand, if we look at the structure
tree for the complete graph of order ne we see that the only
mushrooming spanning tree of this graph is the tree of height 1
with n nodes, and the co-tree consists of the root of this
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spanning tree as an isolated nodew together with the complete
jraph of order n-1" Hence the structure tree would be as shown

The structure

in fig. 19, where the

Tlo are the labels of
the non-terminal nodes
and the label T.., is the
tree of height 1 with i

tree in this case has

By application of the formula for the number of lines in the
qraph corresponding to this tree we have~

w (r) = w (ur (r») + n 1

= w (ur (u r (r)») .~ (n - 1) --1 + n - 1

= w (ur(ur(r)»).. (n - 2) + (n < 1)

= 1 + 2 .; "c <. + (n _. 2) + (n .> 1)

= n (n ~. 1)/2

which is indeed the number of lines in the complete graph of n
nod e s. (In the formula we denote the non-terminal node above
and to the right of node i by ur(i)o

This observation sU9~.ieststhat we may be able to use the
notion of the structure tree to investigate graphs for highly
connected regions and in particular to look for complete
subgraphs sometimes known as £lig~~§". Such an investigation
deserves separate st.udy , and is outside the scope of the present
work,
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A complete study of the properties of the structure tree
has not been attempted. but it is felt that it is at least a
possibility for further work in the study of representations of
qraphs, which field currently lacks a truly recursive and
hierarchical representation" A further advantage which may
result from such a study is the ability to apply our techniques
for describing trees in a labelling independent way to the more
general problem of the description of an unlabelled graph"
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In the precedin:l sections we have discussed methods which
are applicable to certain problems connected with the generation
or the decomposition of trees and graphs. All of the algorithms
described previously have been coded in the Algol W language
(see Wirth and Hoare 1966) for the IBM 360/67 computer. In the
following sections we describe some of the practical details of
the coding and give some indication of the size of problem that
may reasonably be tackled using these technigues.

Under this heading we describe the two methods of ordering
the set of trees as described in chapter IIIv In particular we
discuss the methods based on the two main representations
employed. ,

As was pointed out earlier" the heigh t representation did
not allow us to solve the problem of finding the k-th tree in
this set without storing the whole table of numbers of trees by
height and number of nodes as given by Riordan (1960) (see also
Appendix I) 0 However" a program was written which successfully
generated the whole sequence of trees of a particular size by
generating each tree from its predecessoro the first being
supplied explicitly., The first program written to perform this
task took a very simplified viewv by taking the first treev

Le" the tree with height sequence
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o 1 1 one 1

and successively attempting to increase each element in t urn,
beginning with the last elemento subject to the constraint that
no element may exceed its predecessor by more than oner and
subject also to the constraint that the whole sequence must be a
valid height sequence" This, like the method described in Snow
(1966)u was inefficient in the sense that a number of complete
sequences were generated and subsequently rejectede. Thus the
time required to generate all the rooted trees was more nearly
related to the number of ordered rooted trees than to the number

of unordered rooted trees"

In Scoins (1968)0 howevero a very elegant recursive method
of producing the list of all rooted trees of n nodes is
presented. The heart of this method is a recursive procedure
which determines the upper limit of any element in the height
vector by keeping a record of the element with which the current

element is to be compared. Thus a backward pointer is kept for

each element indicating the subtree and the node which limit the
value of that element if the sequence is to satisfy the
conditions of the canonical ordering" The Algol stack mechanism
takes the responsibility for maintaining the list of backward
pointers upon which this method relies" By keeping such a stack
it is possible to generate the height vectors of all rooted
trees with a given number of nodes without duplications, and
without either generating any sequences which have subseguently
to be rejected or requiring any complicated checking process to
ensure the validity of any sequence producedn Thus using this
methode the time taken to generate all the trees is much more
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closely related to the number of rooted treesp i.e.
t.akenper tree is more riearLy constant"

the time

A program was written to discover the k,th tree with n
nodes for any nr and any ko 1 ~ k ~ T~ in the Cayley (weight
r:epresentation) orne rLn.r [ but since to some extent this involved
counting up through the trees with partitions less t.hanthe
partition of the k~thc it is not a fair comparison to generate
the k-th tree for each k ::= l~G.<cT", and compare this method with
a technigue in which each tree is generated from its
predecessor. This is because in generating the (t+1) th treec a
large amount of work already done in finding the k..th tree is
repeated. However this methode it is claimed. has a different
function from that of generating all trees of a certain size and
is therefore to be considered on its own merits.

We recall that the weight representation uses the number of
nodes in a subtree (or the VweightV of a subtree) to describe
the node at the root of each subtreeo and that for a tree with n
nodes. the weights of the nodes adjacent to the root form a
partition of n-l. This was discussed in section 11103.2

The program discovers first the partition of the k·-th tree II

by inspecting each partition in turn and asking how many trees
there are with this partition. and subtracting this value from
k. When the value of k finally becomes negative we know that
the current partition is the partition corresponding to the
required tree u and that we rer]uire the k v . th tree with this
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j.artLt.Lon, where kllis the last value taken by k before becoming
negative, The next step is to set up a vector kd(i) i =

In •• cop where p is the number of parts in the partition for the
required treep and where kd{i) is the index number of the tree
of size part(i). This tree may then be found recursively for
each ie and the weight representations of these trees may be
inserted into the appropriate positions in the weight vector to
obtain a complete representation of the k<>thtree with n nodes
in the Cayley orderiny.

The problem of generating all trees in the Cayley orderingr
disregarding the problem of generating the k~·th t.ree, is

somewhat more akin to the problem of generating the last (Th-th)
such tree by the method described above. This is because it was
found necessary to wcount through 1/ all the other trees i.nthe
set in order to find the lastc and the action of actually
generating them on the way past is a relatively small amount of
additional work.

The comments made here about the amount of work required by
these various methods are summarised in table Iv in which
programs An Band C are respectively Scoinsu method for
generating trees by height se~uenceo the method which finds the
k-th tree for k = 180.~oT~p and the method which generates the
T~' th treen but is extended to display the other trees
~incidentally' 0 The programs were all written in Algol Wand
the figures are seconds of 360/67 CPU time.
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n I ProgoA ProgoS progoC

5 0005 0010 0,,04

6 0010 0031 0,,12

7 0,,23 1,13 0040

8 0<~3 4011 'I"03
9 1039 15052 2076

10 :3081 60"76 7 ,,65

Some indication of the time requirements for Corneil~s
algorithm as described in chapter IV are given in the final
chapter of Corneil~s thesis (Corneil 1968), in which he claims
lhat the isomorphism algorithm which he describes has a running

time proportional to n' where n is the number of nodes in the
graphso and k is related to the highest level of strong
regularity of any subgraph in the qrapha, and that if the graphs
are no more than 2'~stron9ly regularv then k = 50 This is a

significant improvement over previous graph isomorphism

algorithms, for which the worst case running time would
apparently be proportional to ni for a pair of n node graphso
Corneil deals in some detail with the establishment of timing
estimates for all his algorithms and examines the performance of
his isomorphism algorithm on a series of special classes of
qraphs, such as polygons and generalisations of polygons 0 He
also shows that his estimated results agree ~ery closely with
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the observed timings. Another observation made by Corneil is
that his observed results suggest that most pairs of graphs can
be tested for isomorphism in a time considerably less than the
upper bound of n5r and in general the time required is
proportional to about n3~

The whole of Corneilus algorithm has been recoded in Algol
Wand tested on a number of trial graphsc It has not been
rossible to perfarm a satisfactory series of tests on the
performance of this algorithmr since this should be done by

generating a large number of random graphs with n nodes and
taking the average time for the execution of this algorithm for
various values of nD The disadvantage of this method is a lack
of understanding of what is meant by randomness in graphso A
very crude method would be to generate random upper triangular
binary matrices with various controllable parametersr such as
the number of nodes nr and the density (the proportion of cones~

in the matrix). This methode howeveru does not allow any
control over the structural properties of the graph. We are
unable even to guarantee connectedness (or otherwise) of the
~raphs produced by this method. The algorithm was however
tested on a sample of graphs of various sizes and all that can
be said is that our observations agreed to a significant extent
with those of Corneil and with his theoretical predictions,

The algorithms developed to generate graphs. discussed in
chapter V. were somewhat disappointing in their performancer in
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the sense that the generation of any graphs with more than about
8 nodes seemed to be quite impractical by these methods"
However, it must be pointed out that this is at least in part

due to the explosion of the number of graphs to be generated~ A
more meaningful measure would perhaps be the rate of generation
ot the graphs. that isp the time per graph taken by a particular
algorithllo

In spite of the fact that the sieve algorithm was able to
use the canonical ordering algorithm to determine the
automorphism partitioning and hence the automorphism grouPe it
still turned out to be necessary to obtain every permutation in
the set of n! for each distinct graph generated~. Thus it was
necessary to generate a total of n~.g~ permutations. where 9A is
the number of graphs with n nodes. This method could only be
justified if the cost of applying a particular permutation to a
graph is significantly more than the cost of mUltiplying
permutations. This is clearly not true in the representations
which have been chosen herep and we conclude by saying that nl
operations (in this case permutation multiplications) per graph
is unacceptably high. Beside this figureo the additional
requirement of (say) nS for discovering the automorphism group
of each graph may be regarded as negligible.

Before we discuss the efficiency or otherwise of the
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equivalence graph method of genera ting all the graphs of n

nodeso it is appropriate to digress a little~ and look at the

asymptotic behaviour of the se~uence g~ for n = 1c 2.

From the work at Harary (1955) and also Davis (1953) we

have an expression for 4ft:

..1 L 2,Hx>
If\1 ~c: ....

g.. =
where d~) is given by

d (;r;:) - ~ PII. {[ k/2] + k (p~ ,1) ) +

where (h , k) is

L p._ PIL (huk)
\,..cd.

highest common factor of hand k, and thethe

cycle class of the permutation x is given by {PI (J PL.Q 0 o " I. P..) o

The minimum value of a (Je) is taken for any cyclic permutation o

where the cycle class is (OoOyoo~e1)o In this ca se ,

cl (~) == [n/2 J

Thusr gR is a sum of n~ terms each of which is not less than
[ ...h.l

2 Into Hence

Similarlyo the largest value of a{~ appears when ~ is the

identity pe rau tatLon , whose cycle class is (n[lOq"9000)0 In this

case

1husu by a similar argument to that given aboveo..(..- .,'~
g"" s 2

This is in fact only a confirmation of the fact that there

are fewer unlabelled graphs than there are labelled graphsu

whichp as we saw in chapter Ve can be represented by the set of
bitstrings of length n (n·-1)/20
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It is clear6 howeverr that the number of graphs is related
in some way to 2~ where

n/2 ~ k ~ n(n-l)/2

2 '" ('" - I) I'LThe number of nodes in the e(luivalence graph is and
the number of connected components is gh which is proportional
to some power of 2a It is therefore clear that while the size
of the equivalence graph is growing faster with n than is the
number of connected componentsp the difference in rates of
qrowth is not as marked in this case as it was in the case of
the sieve algorithm. As for the program to find these graphs,
it was felt that the number of permutation applications required
to establish the connectivity of the equivalence graph was a
fair measure of the work required to obtain the set of graphsQ
It was observed in the examrles tried that the number of such
applications required a~peared to be approximately proportional
to the number of nodes in the equivalence graphc the constant of

proportionality being about lD~~

The largest value of n for which graphs were actually
~enerated was 60 There were two reasons why no more were
attempted 0

(a) this took 90 secsa of CPU timep and it was estimated
that n = 7 would require 90 minutesa

(b) the space reguirement for representing the eguivalence
graph was causing a problem, since the graph for n = 7
would have 221 nodes.
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In this section there are two distinct aspects to considero
FirstlYe it is necessary to generate all the graphical
[artitions of length no and secondly. the set of graphs with
this partition has to be completely generated. The algorithms
under discussion here are described in section V~5.

As regards the set of graphical partitionsp it is expected
that the time taken to generate a single partition from i t.S

predecessor would be proportional to no In factp the algorithm,
in broad outlineo scans along a partition looking for an element

to reduce8 and haviny found onen it moves back to the beginning
of the partition recomputin9 all the earlier elements" Thus we
may expect to have to recompute on average one half of the
elements at each stage~ In any case the recomputation required
is proportional t.o n, Actually~ as t.ableII shows, the time
required per seguence seems to be proportional to some power of

n which is slightly greater than onee This can perhaps be
explained by observin q that the algorithm actually generates
some partitions of 2~~ numbers which satisfy the criteriap and
these of course have to be discarded as non-graphicaL In terms
of feasibility" however, we see that we can generate all the
graphical partitions of length 9 in only 30 secso and thus it is
..uite practicable to generate these and possibly also those of
length 10 and 110
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n no, of time time/seq

sequences (secs) (ms/seq)

4 11 0006 5045

5 31 0016 5016

6 102 0053 5020

7 342 1086 5044

8 1223 7042 6007

9 44S0 34078 7<82

The creation of an initial graph with a given partition is

trivial, particularly if the adjacency ma trix is used to

represent the grapho The generation of all graphs with a given

partition is however a completely unknown quantity as far as any

analytic treatment is concernedo All tha t is possible at

present is to quote some experimental observa t.Lon s,

We saw in the example at the end of chapter V that there

were a total of 18 different 4~tuples to be inspectedp whereas

the number of graphs which were actually produced was 5. and one

of these was found directly.

We present here some general remarks related to the

performance of the various factorisation techniques described in
the preceding chaptero As in section Vllo2e these techniques
are highly dependent upon the actual structure of the graphr and
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it is therefore necessary to perform a series of testsF applying
the algorithms to a large number of randomly generated graphs.
A~lainwe must remark that the subject of randomness in graphs is
not well understoodp and thus such tests are of limited value
only c.

Edmonds sugyests that his method operated in time
rroportional to n. for finding a maximal matching on a graph of
n node.s, His argument was based on some very generalised

o~V'&ti ..."statements about the maximum number of times a particular/can be
carried OUtD and how many operations are involved in these
operationso Now while Edmonds~ estimate is only presented as an
upper bound on the methodl we claim that it is far from being a
precise upper bound~ For instanceu Edmonds remarks that the
matching can be found by growing an alternating tree from at

most n points, and the alternating tree algorithm requires time
proportional to n3 to find an augmenting path and amend the
aa tch Ln q, Apart from the trivial observation that only n/2
trees are requiredr since each improvement in the matching
includes two further nodese we also observe that in at least ODe
case, and except for very special graphs in other cases as wellu

the operation of finding an au~menting path is simply that of
finding a node adjacent to the root of the alternating treeD
which is an order n operation at most.. This case arises when
the matching is empty. i.ee when the first alternating tree is
being qrovn,
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The method of backtracking to find a perfect matchingp in
common with most backtrack type algorithms can be unpredictable
with regard to its re~uirements, In the best possible
situation, as would be the case in (say) the complete graphp a
r-erfect matching can be found in as few as n/2 attempts (where
an attempt is to be thouqht of as removing a line and its
end-points from the graph)c whereas in general it would be more
difficult than thiso In the worst caseo and this includes all
those cases where the algorithm fails to find a perfect
matching, the work done will be nearer n~ than no This method,
as was noted earlier" also has the disadvantage of failing
completely when no perfect matching exists, while on the other
bandr Edmonds' algorithm will always find a maximal matching.
whether this is perfect OJ:' not ,.

Yl1.!.2 Articulation Points.- -_ ~___________ _ __ ,_ ~L.~~

The most efficient spanning tree finding algortihm will in
theory operate in time proportional to mu the number of lines in
the graph, but in practice this is probably more like nZ for
most implementable algorithmso This we will use as the starting
point for our discussions.

The articulation point algorithm as described in the
preceding chapter will reyuire an amount of work proportional to
n"tt where ~ is the work required to find a spanning ·treein a
graph. This is an upper bound. since we need to grow at most
one spanning tree for each node. We notice in passing that the
operat.ion of growing a planted spanning tree is no d.ifferent
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from growing any other type of spanning treeo The slight saving
to be made by marking all the terminal nodes of any spanning
t.r ee, so that no spanning tree is required from these nodes,
will only make a difference of an approximately constant factor
in the time of operation of the algorithm. This factor appears
to be around 2/3. but is of course dependent on the actual graph
being considered.

The time ~ to grow a spanning tree on a graph is of course
the time required to grow a labelling dependent treep and the
algorit.has described in section VI. 4 require more operations
than those required for any spanning tree. In the first placer
a mushrooming tree requires more work than a general tree. with
regard to the improvement algorithmc although the number of
choices of lines which are candidates for insertion is much

smaller than the total number of lines in the co··tree0 and once
a choice has been madep the line to be removed from the tree is
completely determined, there seems to be no way of predicting
the number of iterations which may be carried out by the
algorithmo

The matching method for constructing the first mushrooming
spanning tree is of course trading time to set up this tree for
(hopefully) a saving in the number of iterations of the
improvement algorithm. No detailed comparisons have been
carried outo but preliminary observations suggest that a small
amount can be saved by combining these two algorithms,.. Some
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more concrete results on the extraction of spanning trees from a
graph are reported in Chase (1970)~

The complete decomposition of a graphc and the construction
of a structure tree is simply a repeated application of the
spanning tree algorithms described earliero One decomposition
~s required for each internal node of the structure treer and
the number of these is related in some way to mr the number of
lines in the original grapho A first estimate of the work
required to perform the complete decomposition of a graph would
then be .'t'o

The somewhat imprecise remarks made above about the
performance of the algorithms described under the general title
of Factorisation are included to illustrate two main facts~.

(i) Considerably more effort is required to understand more
fully what is meant by vrandomnessu in graphsr, and the
Wexpected~ performance of an algorithm operating on a
'typical' grapho.

(ii) All of these algorithms vork in time proportional to
some pover of no where this power is fairly smalla
This means thatc in
required by any of
embarrassingly great8

generalr the amount of time
these algorithms will not be
and that any graph which can be

fitted the main store of a modern computer can be
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processed in a reasonable timen This is in contrast to
the methods (such as those described in chapter V)
where the number of entities (eog. graphs) is

explodin 9 as n inereases, and aI though the objects may
be quite small in themselvesu the number of them[ and
hence the time resuirect to generate them all~ is
increasing in an unmanageable way,.

In this final section we attempt to make some remarks about
what has been achieved in the worko and to draw together all the
final remarks whicb can be made about the work as a wholeo In
addition we wish to point to further problems and investigations
along tbe same lines which we feel it would be profitable and
interesting to pursue ,

In the tree section there is not a great deal to say..

Clearly we have not exhausted the possibilities for representing
trees, but we have been successful in that the two
representations on which we have been concentrating our
attentions have both yielded reasonably satisfactory methods of
generating trees. the second of which the weight
representation relates this generation very closely to one
method of counting trees,

It is unfortunater but seemingly unavoidableu that the two

the t.re e s , as displayed by
The natural

the height
representa tions
ordering of

are to some extent in conflict.

representation, is more closely related to the structure of the
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tree than is the weight representation I' but the weight
representation is bound to be more related to the counting
sequences because these latter are always expressed in terms of
numbers of nodesc A radically different approach to the
counting problem could perhaps reconcile these two
representations.

with regard to the graph isomorphism problem. we raised two
-iue stLons related in detail to the work of that chapter c namely"
the reconstruction of a qraph given only its cycle vectors or
its vertex quotient graphs. A more general problem might be
attacked using some modifications of specific techniques used in
this work, and that is the subgraph isomorphism problemn Given
two graphs A and Be is the graph A isomorphic to any subgraph of
B? This problem seems to be inherently more difficult than the
straight isomorphism problem. since the implied (or explicit)
set equality relations between nodes are now set inclusion

relations, and whereas in the isomorphism problem corresponding
nodes were required (for example) to have equal degreesc the
relation between de']rees of corresponding nodes are now
inequalitiesu Whether the methods of partitionings and
refinements of paztLt.LonLnqs, and the quotient graph not.Lon will
seneralise to the sl.lbgraph isomorphism case is s·tillan open
(and this author believesc interesting) questionc

The graph indexing problem was not solved completely to our
satisfaction, in the sense that it is felt that a more efficient
method should be possible" However we have made some progress
in this field by the comparison of the two methods presentedu
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and also the algorithms in connection with the generation of
~;raphs by parti ti cn, It is felt that further study of the
representation of graphs would help in the search for a more
efficient method of generating all graphs" and we migh t further
hope that the problem at qeneratLnq any objects which may be
counted using Polya~s theorem, This impliesr incidentallyc that
qraphs with a given partition may also be generated~

The section on factorisation shows a number of methods for
extracting a spanning tree from a graph which in some sense may
be regarded as ~optimal~ or ~near optimal~o We feel however
that there are many other algorithms which would give similar

results, but which may have the added advantage of making a
proof of optimality possible. We also feel that the properties
of the structure tree have not been fully explored, especially
with regard to the problem of finding cliques in a grapho It
also seems possible that the discovery of ~near·'"cliguesVioeo
subgra phs which are nearly but not entirely complete l' could be
effected using the idea ot the structure treeo This may lead to
a new way of defining and discovering clusters in a graphu which
could have applications in a number of fieldsc two such being
informa tion retrieval and linguistic anaLy si s,



210

Augustson J.G. and Minker J< (1970) An Analysis of some Graph
Theoretic Cluster Techniques. J<>~DCn~D 17 ppS71 ~> 588

Berge C (1958) ~h~ %~~QLY. Qf Q!:~£~2~. Dunod Paris (Tr,.by An
Doig Methuen London 1962)

Busacker R.Goand Saaty T.L.

Cayley AD (1889) Collected Mathematics Papersc Cambridge 1

p242, ~ p427, 11 pJ6~

Chase S. (1970) Analysis of Algorithms for Finding All Spanning
Trees of a Graph. IBM Research Report RC3190 Yorktown

Heightso New Yorke

Corneil DoG. (196B) ~!:!!ph PhoD. Thesis,
University of Toronto~

Corneil DoGe (1972) Algorithm to Find the Automorphism
Partitioning of a Graph. Bo~oT< l£_ pp161 . 171

Corneil DoG. and Gotlieb c..c. ('19'/0) An Efficient Algorithm for
Graph Isomorphism, .LA. c.». 17 pp 51 64

(1953) The Number ot Structures of Finite Relations.



211

Proc. Amer. Math. Soc. 4 pp486 - 495

de Bruin N.G. (1964) Polyais Theory of Counting. in !2Rl~~~
£2mbi~atQ~i~! ~~t~~~~ti£~ (E.~~Beckenbach ~~) Wiley New
York

Dijkstra Eoij. (1959) A Note on Two Problems in Connection with
Graphs. Num., Math 1 pp269 - 271

Edmonds J. (1965) Pathsv Trees and Plowers. Canada J. Math.

11 pp449 - 467

Erdos Po and Gallai To
Vertices. Math"

(1960) Graphs with Prescribed Degrees of
Lapok 11 pp264 ~ 274

Fortet R. (1959) Valgebre de
Recherche Operationelleo

Matheaatigues Appliguees

Boole et ses
Mimeographc

Applications en
Societe de

Gotlieb C.C. and Corneil DuG. (1967) Algorithms for Finding a
Fundamental Set of Cycles for an undirected Linear Graph.
C 0 A0 C <> It 0 1.Q pp780 '.- 783

Hakimi s. (1962) On the Realizability of a set of Integers as
Degrees of the Vertices of a Graph. J. SIAK Appl"
Ma tho lQ pp496 --506

Hall Po (1935) On Representatives of Subsets. .lo Lond, Math.



212

Soc.. IQ pp26 _. 30

Harary F. (1955) The Number of Linearg Directedp Rooted and

Connected srapb s , Trans~ Amer. Math •. Soc, 1~ pp445 .-

463

Ha r a r y Fa (1960) Onsol ved Pro blems in the Enumeration of

Graphs. PubL Math, Inst. Hunqa r , Acado, ScL 5

pp63 .- 95

Harary F. (1964 ) Combinator ial Problems in Graphical

Enumeration. in

(E.~oBeckenbach ~Q) Wiley New York

Harary Po

III.

(1967) Unsolved Problems in Graphical Enumeration

in g~~2.h !!!~Q!:y' ~!!.g '!:h~2!:~t~£~1 ghx§i£§ (r'" Harary

~Q) Academic Press New York

Har a r y F0 ( 1968) ~!!~ Ih~Q!:Y 2.t. ~};:!!.Eh§.~

York

Addison"Wesley g New

Harary Fa, Norman R~~o and Cartwright Do

~Qdel§~ anln1rq~uct~Q~ iQ thg Ih~Q£Y~f ~i~~ct~~ ~s.~Rh§~
Wiley, New York

Harary Fo and Prins Go (1959) The Number of Homeollorphically

Irreducible Trees and other Specieso Acta Math, 1~1
pp 141 - 162



213

Knuth D.E.
Addison~WesleYe New York

Ledermann Wc

~~ou£~~ Oliver and Boyd, Edinburgh

Lehmer D,H. (1964) The Machine Tools of Combinatorics. in

!J2.E1i&Q £Q!J1!!H!~.Q.!A~1 ~~!:!!g!l!~J:!£~(E, f. aeckenbach ~£)

Wiley New York

liu CoL.

McGraw-Hill New York

Meetham A. R~ (1968) Partial Isomorhisms in Graphs and Strucural
Similarities in Tree-like Organic Molecules. Proc. IFIP

Congress, Edinburgh ppA108 - A110

Mulligan GoDo (1972) Algorithms for Finding Cliques of a Graph.
Technical Report TRijl, University of Toronto Computing
Centre

Mulligan GoDo and Corneil (1972) Corrections to
BierstoneWs Algorithm for Generating Cligues~ J~A<C:~M"
J2 pp244 - 247

Nicholson T. (1966) Finding the Shortest Route between Two
Points in a Network~ Compo. Jo. ~ pp275 ~ 280



214

obruca AeK. (1966) The Representation and Manipulation of Trees
and Linear
Applications.
upon Tyne

Graphs within a Computer and Some
PhoD~ Thesis, University of Newcastle

Otter R.
599

(1948) The Number of Trees~ Anne of Ma t.h , ~2 pp583 .,

Page E.S.. (1971) Systematic Generation of Ordered Seguences
Comp" Jo J~ pp150 . 153using Recurrence Relations.

Parthasarathy K.a". (1968) Enumeration of Graphs with Given
Partition. Canada J" Math. .fQ pp40 _.47

Paton Kfi (1969) An Alqorithm for Finding a Fundamental Set of

Cycles of a Graph. C.A.C.M. 1~pp514 - 518

Pohl I. (1969) Bi~directional and Heuristic Search in Path
Problellls. SLAC--104c Stanford Linear Accelerator Center"
Stanford, California

Polya G. (1937) Kombinatorische Anzahlbestimmungen fur Gruppen,
Graphen und Chemische Verbindungen. Acta Math, §~ pp145
-- 254

Read R.C•. {1969} Teaching Graph Theory to a Computerfi. in
R~ceB~ g{Qg~~ss ~n ~o~~~g~1Q~!£~ (W.Tutte ~~) Academic
Press" New York



215

Bead R.C. and Parris N. (1960) Graph Isomorphism and the Coding

of Graphs. UWI/CCl Research Reportc Universit: of West

Indies

R.ionJan J~ (1960) The Number of Trees by Height and Diameter.

IBM .i , Res. Dev 4 pr:47i 478

Scoins H~Io (1967) Linear Graphs and Trees.

I!t!~lliq~!l£'~1 (N,1. ..Co11ins and DoKichie ~g_~) pp1 '0 15

Scoins Hel" (1968) Placin~ Trees in Lexicographical Order. In

Snow C, s, (1966) An InvestiJation into the E~uivalence of Free

Trees. M.Se. Dissertationc University of Newcastle upon

Tyne

Snow Scoins (1969) Towards the Unique

Decomposi tion of G::caohs o..
(B.Keltzer and D.Michie !~§)pp45 - 55

Sussenguth Eo H, (1965) A Graph-theoretic Algorithm for Matching

Chemical structures. J. Chem. Doco ~ pp36 - 41

'l'urner J ~ (1969) Keyword Indexed Bibliography of Graph Theory.

i n E~Q! X~£h !!i~.LUf:.~ i.!! ~!:~E!! ~h~..2.r..Y (:F'.> IIa t:a r:Y ~9:)
Academic Pressc New York



216

Ula. S~H.
(Interscience) New York

Unger SoH. (1964) GIT - a Heuristic Program for Testing Pairs
of Directed Line Graphs for Isomorhismc ColoCo". 7 pp26
- 34

Warshall So (1962) A Theorem on Boolean Matri.ces, J" AoC"s. 9

pp11 - 12

(1966) A Contribution to the
Development of Algol. CoA.C.". 9 pp413 - 432

Witzgall Cc and Zahn CoT. (1965) Modification of Edmondso

Maximum Matching Algorithm. J. Res. Nato Bur.

§'2~ p9

Stds.



217

In this appendix6 we give the methods by which the various
numbers which have been used in this work may be computed, and
the numbers themselves are also presented.

The method by which the number of ordered rooted trees of n
nodes may be computed is suggested in chapter IlIa By
considering an ordered rooted tree as being composed of two
parts, one with i nodes~ and the other with n~i nodes6 we have

the recurrence relation ..-,
(1) o 0 n • a q • 00 • o. 0 a 0 ":1....= L J~"3 ..._.: n ~ 2

t ••

where j",is the number of ordered rooted trees with n nodes. If
we also define

j = 1
j

we may deduce the generating function equation

j (x) == x + {J (x) J2
where

1(x) =
",-w,

It is equation (1)0 however, which is used to compute the
values of j ..fI and these values are given in Table I for n =
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n J..
1 1
2 1
3 2
4 5
5 14
6 42
7 132
8 429
9 1430

10 4862
11 16796
12 58786
13 208012
14 742900
15 2674440
16 9694845
17 35357670
18 129644790
19 477638700
20 1767263190
21 6564120420
22 24466267020
23 91482563640
24 343059613650
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It was demonstrated in chapter III that of the two methods
fox' counting unordered rooted trees discussedc each was
(~erivable from the other by a suitable piece of algebra on the
';enerating function e,;,uationsr

The Cayley method of counting trees was the simpler to
implement,. but it involved (Jenerating a11 the partitions of n -·1

(tor the number T~ of trees with n nodes)" If it is only
required to find the values of T~ for n = lp26 etcoo a method
using Harary and Prins equation is more convenient. Harary and
Prins shoved that if

0/1

T (x) ::: L T", x'"
....:.,

where T~ is the number of trees vith n nodeso then
T (x) = x exp f ~ T (xV') / r}

Now let

A(x) - T(x) / x
and

where

QP

B (x) = La T ex"') / r
., Cl

A(x) = a.." a,x + a~x2 + o~o

and

then

A (x) = exp I B (x) }
Differentiating with respect to x, we have

A~ (x) = exp { B(x) J BQ (x )

::: A (x ) B v ex)
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This immediately leads to
a I + 2a~x + 3a~x 2 + o c < = (a0 + a \x + aa X 2 + o ~ ~ )

or

na~ - a.onb" + a. (n-1)b,,_,+ u,,"

(_2) <:>"OCl()O~C::CO~<!c)C'lOna""

Now we also have

~

~
B (x) = T(x"')/r = L ~ A (x'")... -:., 't':. I ..,.

.L eo - ()Q -2: b",x" 2: V' L le:r
= x a",x

.. =0 .,:, ..,.
"'''0and thus

b~ = /_: a~/r
,.(It. ....)= ...
V~I.Ie.~~

Thus replacing k+1 by Po and multiplying by nu we have
(3 ) 2: nat'-,=

.,~,...
"'.~~I

.2: pa,,_1
ott ~i..,..~
~ ...., \0\

Equations (2) and (3)p together with the relation

T ... = a ..._1

are sUfficient to calculate all the also bUs and T's.
numbers are given in Table II"

These
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n T",

1 1
2 1
3 2
4 4
5 9
6 20
7 48
8 115
9 286

10 719
11 1842
12 4766
13 12486
14 32973
15 87811
16 235381
17 634847
18 1721159
19 4688676
20 12826228
21 35221832
22 97055181
23 268282855
24 743724984
25 2067174645
26 5759636510
27 16083734329
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A similar technilue may be used to compute the number of
trees with n nodes and height be Riorda n (1960) shows that

.f"...I)(X) c» Tt")(x") /r= x exp { L. 1
where T(")(x)

v,.,
is the generating function for the numbers of trees

with maximum height h< The generating function for trees with
height exactly h is therefore

.f~(X) _. ~_I'X)

If we now define

and

Bl"'>{x) = t.. .f~)(x"") / r
'Y'~I

by analogous manipulation to that used previously v we bave
~+I) ~. bU.' (1..1)na.. = L... 1. \ a",,_ ..

~ Co'and

nb(.~)=
t\

Now by choosing suitable boundary conditionso namely

for all n z 2
and

for all h ~ 1

we may compu te the values of These numbers for n =
10ee<620 and h = Onc~ 0019 are given in Table 111<
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n 1 2 "3 4 5 6 7

h

0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1

2 0 0 1 2 4 6 10

11 0 0 0 1 3 8 18
4 0 0 0 0 1 4 13
5 0 0 0 0 0 1 5
6 0 0 0 0 0 0 "1

n 8 9 10 11 12 13 14
h

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1
2 14 21 29 41 55 76 100
3 38 76 147 277 509 924 1648
4 36 93 22S 528 1198 2666 5815
5 19 61 180 498 1323 3405 8557
6 6 26 94 308 941 2744 7722

7 1 7 34 136 487 1615 5079
8 0 1 8 43 188 728 2593
9 0 0 1 9 53 251 1043

10 0 0 0 1 10 64 326
11 0 0 0 0 1 11 76

12 0 0 0 0 0 1 12

1"3 0 0 0 0 0 0 1



224

n 15 16 17 18 19 20

h

0 0 0 0 0 0 0

1 1 1 1 1 1 1
2 134 175 230 296 384 489

3 2912 5088 8823 15170 25935 44042

4 12517 26587 55933 116564 241151 495417

5 21103 51248 122898 291579 685562 1599209
6 21166 56809 149971 390517 1005491 2564164

7 15349 45009 128899 362266 1002681 2740448
8 8706 27961 86802 262348 776126 2256418
9 3961 14102 47816 156129 494769 1530583

10 1445 5819 21858 77878 266265 880883
11 414 1948 8282 32695 121963 435168
12 89 516 2567 11481 47481 184903
13 13 103 633 3318 15564 67249
14 1 14 118 766 4218 20697
15 0 1 15 134 916 5285
16 0 0 1 16 151 1084
17 0 0 0 1 17 169
18 0 0 0 0 1 18

19 0 0 0 0 0 1
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Table IV gives the nu.ber of free trees with n nodes for n

1,<~o,27, and these are computed directly fro. the values of

Tn (given in Table II) using otter's formula:
t (x) = T (x) -.! { T (x) 2 -- T (X2)

1
}

is the genera ting function for

free trees, from which we obtain:
!'4Vt" = T.. - 6 L. T.. T~ + t T "/~"~I1. .1

1''"\.....
where T..,...is considered to be zero when n is odd,
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n t~
1 1
2 1
3 1
4 2
5 3
6 6
7 11
8 23
9 47

10 106
11 235
12 551
13 1301
14 3159
15 7741
16 19320
17 48629
18 123867
19 317955
20 823065
21 2144505
22 5623756
23 14828074
24 39299897
25 104636890
26 279793450
27 751065460



227

In Harary ( 1955)
nodes and m lines<

we learn how to count the graphs with n
This methodu however, involves the

~eneration of all the cycle classes of permutations in the
symmetric group of order n~ which implies the generation of all
the partitions of n. A program was written to obtain these
values, but the method was extremely time consuming, and so no
values were obtained for n > 7. The values which were computed
are given in Table v. A slightly quicker method for computing
the total number of graphs of n nodes is based on the method of
Davis (1953)0
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n 1 2 3 4 5 6

m

0 1 1 1 1 1 1

, , , 1 1 1

2 1 2 2 2

3 1 3 4 5

4 2 6 9

5 1 6 15

6 1 6 21

7 4 24

8 2 24
9 1 21

10 1 15
11 9

12 5
13 2
14 1

15 1
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In chapter IV it vas pointed out that Corneil's alJorith~
only works in time proportional to nS provided the ~raph under
consideration does not contain a rarticular type of subgraph.
The condition on this sub]raph is that it should not be
2--strongly regularo

(VrE) in
which

(a) for any two nodes x,y E V, Sot~
I {vI v € V, (x;v) E E, (y,v) ~ Ell = P~.
t{ v [v t V, (x e v ) t: EIr (y, v) f E }I = P':'
t{ v I v ~ V" (x,v) + Eo (y c v) f El! == p.!o

(a) f or any two nodes x,y Eo Vg Soto (x , y) t Eg
I{v Iv £ Vg (xt' v) E: Ell (Yu v) E. E }I = P:-:
t{v Iv E. Vo (x c v) ~ E" (Ye v) • Ell = p;:'

I (VI v E: Vo ex II v) t Ee (y Q v) f Ell = P:'
where It are constants for a particular graphoP':i

It can be seen that this concept is an extension to two
nodes, taking into account the two cases where the nodes are
~oined and not joinedg of the concept of regularitYIJ which could
be restated as

for any node Xc

t{ vt v £-: VC' (x I' v) E: E} I = k

I (vI v " Vu (xu v) f Ell = 1 (= n _. k)

From this definition of 2~'strong regularity ve can see
(i) G is regular with degree k

(i i) k = 1 + p!. + P :0



230

(iii) k 0» + 0= P.. PI.
• I ,

(Lv) n = 2 + POI + 2PI. + POG

(v) n = 2 + p~ + 2p~0I + p;.

For the graph in
fig. 10 II we have
n = 100 k = 3
, 0, , 2P.. = P.• =
I 4, u 1}loo = p" =
0 2, P:' 31',. = =

This graph, however"
also transitive

definition of

is
(see

chapter IV for the

transitive) 0

Corneil shows that in a 2-SR graph, each node has the same
vertex quotient grapho and gives an example of a 2-SR graph
which is not transitiveo This graph has 26 nodes8 and is the
smallest known non-transitive 2-strongly regular graphc

In order to distinguish between nodes of a 2-SR graphc the
2-vertex quotient graph is definedo A partitioning of the nodes
of the graph into the sets {xJu ly)o V-[xoy} for some pair of
nodes x and y, gives a starting partitioning of the nodes for
the refinement algorithmc The final partitioning given by the
algorithm defines a quotient graph which is known as the
2-vertex ~uotient graph for the nodes x and y, and this graph is
called Q_jC Thus for any node Xo we have a set or family of
2.-vertex quotient graphs Q-3 for all y E V-{x}c
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regularity.

The idea of 2-strong regularity may be extended to 3-strong

(a) for all xcY,z £ Vu s,t.

A graph G = (VoE) is 3·'strongly regular if:

I{vlv e VC'(VeX) '" E, (VI'Y) ~ Eo (VI/z) ~ Ell = p:',',
J{V1V ~ VI' (VoX) e E, (veY) ~ E, (v,z) ;. EJI = p~:~
J{vlv ~ s , (VeX) ~ E, (VeY)

I{vlv ~ V,(vl,x) • E, (VoY)

+- Eo (v,z) 4. E II =
;. Eo (v,z) i Ell =

P"',."
p!:!o

(a) for all xlly,2 ( V, sc,to, (x,y) e Eo (y,z) tE; El' {zox} <1= E"

J{ V J v E:. V If (v l' x) ~ E" (v, y) t£. Eo (v , z) ~ E J I = P:!~

J[vlv E: Vo (vrx) £. E, (veY) E: EQ (v,z) 4: El! = P~I:

I { v I v e: V, (V o x) £0 E u

(v , z ) E:- E 11 = pliO
(OG

"QP'OO

I{vlv Eo Vu (VIOX) t Eo (voY) E;. EQ (voz) ~ Ell = P~I':.

Ifv)v" s , (vex) t E" (v,y) ~ EQ (v,z) <I El! = p~

(a) for all x,y,z ~V, seL, (x,y) ~ s, (y,z) f El' (z,x) +- E/1

J[Vlv ~ Vu (vox) ~ E,

I{Vlv ~ V" (v"x) ~ Eo

(V u y) E- Eo

(voy) ~ Eq

(v, z) 4= E} I

(VeZ) f Ell 100= puo

I{V!v ~ s , (V,x) ~ E .. (V"y) et E. (v,z) ~ Ell = p::~
l{Vlv E; Vc (vox) ~ E" (VoY) 4 EQ (v,z) 4. Ell = p:~
J[ V) v ~ V/1 (VeX) +- Eo Cv 0 y) fE, (V, z) It E II = P::.'

I{vlV E- Vo (v"x) t E, (V,y) (V,Z) fEll 1.00= poo..:»

(xoY) 4= Eo (y ..z) ¢ E, (z"x) ~ Eo

I{vlv ~ Vu (vlOx) i: E, (v,y) ~ El' (v,z) ~ Ell::;: pi,7'

I{v) V f:; V 0 [v If X) ~ ED

J{VJV f Vu (VeX) ~ E,

I{ v Iv {: V u (V 0 X) 4 Eo

(V, z) f E 11

(V, z) + E 11

(v,z) fEll

(V,y) f Eo

(VeY) f E,
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The property of h-strong regularity can be definedu but in
order to do so, it is necessary to specify all nono-isomorphic
graphs of order h. An ~-vertex quotient graph is found in the
obvious way by distinguishing h vertices at the start of the
partitioning algorithm. A family of h-vertex quotient graphs
for a given node x is the set of all h-vertex quotient graphs
for which x is one of the distinguished nodes.

The determination of h-strongly regular graphs or subgraphs
makes the full graph isomorphism algorithm less efficient. as it
increases the power of n to which the time taken by the
algorithm is proportional.


