UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF COMPUTING SCIENCE

CONTRACT REPRESENTATION FOR VALIDATION AND RUN TIME MONITORING

Ph.D. THESIS

By

Ellis Solaiman

NEWCASTLE UPON TYNE
MARCH 2004

NEWCASTLE UNIVERSITY LIBRARY
201 29300 9

TN~es1ss L5

Paginated
blank pages
are scanned
as found in

original thesis

No information
IS missing

Table of Contents

Acknowledgements. ... Vil
ADSEFACE. .. i X
1 THIFOAUCHION ...ttt s ettt st eea e e e 1
1.1 IMOUIVALION ...ttt ctvee et eeetee et e e e e eteeeeate e e ebeessenar e s staeesseneeessereeeseneeeeeneeens 1
1.2 Research Backgroundcccoiiiiiininine e 2
1.3 Research Issues and Definitionscccooveuveriiiiiiiie e 3
1.3.1 Contracts, and X-CONTIACES.....c.vvviiiiieeiiiiiiiierttreeeeeeeeeeeeessresesreerenreeesesss 3
1.3.2 Contract validation.......c.ooevveeeiiiiiii e 4
1.3.3 Internal and External business processes.........ccvoviviviveeeeriieiineeierenn. 4
1.34 Contract representation using finite state machines (FSMs) 5
1.3.5 Run Time Requirementscocoeeeveiieeninniniieiecieee e 6

1.4 Research tasks and ObJECtIVESccoueiuiviiiiiiiiiiecce e 6
1.5 TRESIS OVEIVIEW .ottt e e e e e e e s e s se e e seeeaaeeeessnannans 7

2 Analysis of Related Work...................occooooiiiiiiiniiiniiiiioneeseee s 9
2.1 Open Distributed Programming Reference Modelccocoevvivicnnnnnnn. 9
2.2 CrOSSFIOW .t ee e e e aenaa 11
2.2.1 CrosSFIOW ArchiteCturecooovieiiiiiiiiie e, 13
2.2.2 CONLEACE CrEALION ..vvviieeviiireie ittt e e e eerreee e e e eeeereeessesnereseeseas 13
223 Contract ENACIMENT.....cvvi ettt e e s e reeesetee s e 14

2.3 The COYOTE Project....ccieciiiiiiiniieniiiieiitnieeie et 14
24 Work at Qeensland UnivVerSitycoccvveeieniiieieceriieeceeeeee e 16
2.5 Work at University of St. Gallen ..o 19
2.5.1 Electronic Market Reference Model (EM-RM).........cccoovevvecvennnnnnn. 20
2.5.2 The Business Media Frameworkcococoovviiviiiiene e, 21
2.5.3 Secure Contract Container SECO ...oovvviivicviiiiiiicee e 23

2.6 Electronic Commerce Development and Execution Environment (EDEE) 25
2.7 Law Governed INETACIONoovvviviieivieeiieee et eeeve e s srevees 26
2.8 INEEEPIOCS vvviieriie ittt ettt ettt e e e e st e e e b bt e e natbe s erateseat e e eee e 28
2.9 COSMOS et ser e e et e s s aar e e s s et st ee e s reeeeeaeens 29
2,10 Trade INtErMEdIAri€s vvveierieiciieecrieririeeetre e eestreeerree st era e e sbaeee e e eeneees 31
2,11 Legal contracts as PrOCESSEScirruriririiimiiiiiriiececciee e e 31
2,12 Event-Trigger-RUlescccooiiriiniiniiniiiinecreer e, 32
2.13 Ponder Policy Specification Languagec.ccccccoevciinninceiennenennne, 34
2.14 E-Commerce FramewWOrKSc.oovvviniviionieinreeeciiieeteeeeeiteeeseeeeeeeeeeereaes e 39
2141 €DXIML it a s 39
2142 BizZTalKuueiioiiioiice ettt 39
2.14.3 WED SEIVICES vviiiiitriiiee ettt ettt ettt st e e e eeeaes 39
2,144 GRID ..ottt et 40
2,145 €CO FramewWorK.......ooooovieueeeieeeeee et 41
215 DHSCUSSION 1.ttt ettt ettt ettt et et e e e s et e en et e e e ene e e enenanean 41

3 Electronic Contracts as Finite State Machinescococoeeeveveeeeeeinn, 45
3.1 Contracts and X-COontractSvovveievieiiieeieeeeeeeeeeteeee e eeeeere et e eess e eenens 45
3.1.1 Rights and obligations..........cc.ccecviirneirnciiniee e, 46

Table of Contents

3.2 Finite State Machines........c.coueveevrneeiniciieninenenesesenee e 47
3.3 Representing Contracts as Finite State Machmes .. 48
3.3.1 Mapping Contract Clauses into FSMS.......cccccvvivvciiininnniciccceninns 49
332 Description of a simple contract using FSMs.........ccococcenvininninnnnens 50
3.4 Monitoring and enforcement of X-CoONtractsccccovvvivvvresenciniiiiinnnnnnes 53
3.4.1 Invocation of rights and obligationsc..cccvvveeivniiiiiiincninicnns 53
342 Description, monitoring and enforcement of an x-contract................. 55
343 Ready to fill in, sign and enact X-contracts........c...cceceevinvniiivucivinenuenns 57
3.5 SUMMALY ettt et e 59
4 Validation of Electronic CORtracts..................c..oocueveuiiniiivuiiniiiinieenieinenenienennes 61
4.1 A Verification Language - Promela..........ccccovinniiiiininiinnn, 61
42 A Verification System - SPin.......ccccccvmiiniiiinininninininiien, 63
4.3 XSPIN ettt s e s 64
4.4 The Spin SIMUlator ... 65
4.5 The Spin Validator..........ccceceeuvviniinminiiiniiniees e 66
4.6 Correctness REQUIrEMENLSccoceueiiviiiiiniiininiiiiice e 68
4.6.1 Assertions and system INVariants..........c.ccoceevevenenninniininononeeenn. 68
4.6.2 DeadlocKS......ceirvriririeieinerere st 69
4.6.3 Progress cycles and livelocks. ..., 69
4.6.4 Temporal Claims.......cccoovrineinciii s 69
4.6.5 Safety and liveness properties..........ccoevvevievievienerininenenniininienen 70
4.6.6 Cost of correctness reqUIremMentsc.cocvevvevvenniniinnnienieenieneene 70
4.7 Basic Verification of X-CONtractscocvvirviviniiiiniininininnnecrenenene 71
4.7.1 Contract before removal of ambiguitiesccocccvvvivininiiienieenne. 72
472 Contract after removal of ambiguitiesccccecerrirverniniinininiiiininns 81
4.8 Correctness requirements and Contracts, Discussioncceveveinnrenennen. 85
4,9 Common COrrectness reqUIrEMENES.......ccccevererererrinieiiinmsnessesiseneeessesnnes 91
v LV 11111 11V | 2RI URRO 94
5 Validation of Electronic Contracts: Examplescccooereevnrvnveunne. 95
5.1 Contract for the supply of electronic goods........ccoceniivininiininininiiiiiinens 95
5.1.1 The CONIACt......coveeeeriieiieeneeceeer e 96
5.1.2 Split of rights and obligations...........ccccocvivivniiininiin, 97
5.13 The finite state machines (The x-contract model)ccocevvrviircunnni 99
5.14 The Verification model..........ccccvevivivieiniiiinciinnicnieneeenns 101
5.1.5 X-contract verificationcccoveverinininninncn, 106
52 Example of a contract for renting Cars..........c.ccoovvuvrenvenininensesenenieienne 113
5.2.1 Car Rental Contract..........coveeveeninieeiiicinnininenieieeese s 113
522 Parties’ rights and obligations...........cecevevevinenriniiiniiiciciinenne, 115
523 The finite state Machinescccoevvivivininennininii, 117
52.4 The Promela Model: ..o, 119
5.2.5 X-contract Verificationcoccevverveenreneeeninnnincnnine 123
5.3 Playing a game oVer a NetWOrK........ccccvilivinirinninieenininienie s 129
5.3.1 Rules of the game..........cccooiiiiviiiiiiiiiinie e 130
5.3.2 Players’ rights and obligations.........c.ccccovviiiininincninininicee. 130
533 The finite state MAChiNe........cocecerirveiriininiiniiii e, 132
534 Games’ FSMs in Promela...........ccccocovivinnniininnnineninns 133
535 Game model verification...........coceeeveviniininininininnnn, 141

5.4 SUMMALY ..coviiniiiiiiiiiiiiiet st sne e 144

Table of Contents iii

6

7

Middleware Support for X-Contract Implementationc..cccoouoee.. 145
6.1 Overview of B2BObjects middlewarecocoovviiiiiniiinniiiiin, 145
6.2 B2BODbJects APL....ccioiiiiiiiiii e 147
6.3 X-Contract Implementation with B2BObjects..........cccoooviiiiiin 149
6.4 Purchaser/Supplier Example.........cooiiniiiinniii 151

6.4.1 Implementation of Supplier/Purchaser Example ... 153
6.5 SUIMIMATY <.....vovieveeiieienitee ettt a e ene s 159

Summary and Future Work...............ccovevieiiiiiiiiiiiiiiiie, 161
7.1 Contract Modelling with Finite State Machines (Chapter 3)..................... 161
7.2 Validation of electronic contracts (Chapter 4)........coeccvvvveerrcieeniveneencneene 161
7.3 Modelling and Verifying the Correctness of Contracts; Examples (Chapter 5)

.. 163
7.4 Middleware Support for X-Contract Implementation (Chapter 6) 164
7.5 FOr FULUTE WOTK .vviiie ittt et 164

REfCPEICES ... 167

Fig 2.1
Fig2.2
Fig 2.3
Fig2.4
Fig2.5
Fig2.6
Fig 2.7
Fig 2.8
Fig2.9
Fig 2.10
Fig 2.11
Fig 2.12
Fig 2.13
Fig2.14
Fig 3.1
Fig3.2

Fig 3.3

Fig 3.4
Fig 3.5
Fig 3.6

Fig 4.1
Fig 4.2
Fig4.3
Fig4.4
Fig 4.5
Fig 4.6
Fig 4.7
Fig 4.8
Fig 4.9
Fig4.10
Fig 4.11

Fig4.12
Fig4.13
Fig 4.14
Fig 4.15
Fig 4.16
Fig5.3
Fig54
Fig 5.5
Fig 5.6

Fig 5.7
Fig 5.8

List of Figures

RM-ODP Viewpoints [RM-ODP]cccooviiiiiiiiiiiiiiec e 10
A meta model for the ODP enterprise viewpoint language..............cco........ 10
CrossFlow Contract structure in EER notation [KGVO00].........c...ccoeuee. 11
The CrossFIow Architecture......c..coocviivieniinniiicieireeer e 13
Contract structure and content [GMOO]...........ccccoovviiiiniiiiic e, 17
A UML model of a contract [GMOO]ccovveeveiiiiirieiiiiiieee e, 18
Electronic Market Reference Model [LRO98].........cccocvveviiiiiiiiiiicee 21
Business Media Framework [RSKO9].....oooviiiiiiiie e 21
Contracting framework for the contracting services. [RSK99]................... 22
Structure of the SeCo container [GSGO0]ocvvviviviviiiiieeee e, 23
Contracting process [GSGO0].......cooviiiiiiiniiiiicneeeesec e 24
SeCo Container ArchiteCtUrecovuviivieiieiiennie ettt 25
Interaction of agents in LGl 27
COSMOS contract model [GBWOS8].....c..ooviiieiiie e, 30
Abstraction of the main elements of a contract.c..cccoevveiveeiiiieenennnnn, 46
Mapping of events, conditions and operations of a contract into a FSM

SEALE 1vvevivreetieeeseeseesnee st e et eete ettt e bt e st e bt e et e e e ae et be e eabeeeatee e tteenteesaesanees 50
Example contract between a Purchaser and a_Supplier for the purchase of
BOOUS 1ttt ee 51
FSM Representation of an ambiguous contract for the_purchase of goods.52
Interaction of two FSMs by means of rights and obligations...................... 53
FSM Representation of an unambiguous contract for the_purchase of goods

... 56
The Graphical user interface XSpinccccccccvmeeiiinniiniececce e, 64
The XSpin simulator interface.......oooveiiiiiieiniiiiirceeeeece s 65
The Spin validator interfaceocoovvivieiiiiiiiice s 67
Contract for the purchase of goods between a purchaser and a supplier.....72
FSM Representation of an ambiguous contract for the_purchase of goods. 73
Message SeqUENCe Chart.........ooevieiiiiiii e 77
SIMUIALION OUEPUL c..ovviiiiiiccieieieee e e 77
Verification OQUIPUL.....ccoviviiiiiieiiiiit et 78
Suggested actions for detected €rror.. ..o 79
Simulation output of erroneous path ..., 79
FSM Representation of an unambiguous x-contract for the_purchase of
ZOOUS ¢ttt s 82
Verification output for the corrected verification model............ccoceceenn. 84
Verification Output for detection of non-progress cyclescocerueunnn.e. 86
Verification output for detection of livelock (non-accept cycles)............... 88
Simulation output for path with livelock.............ccooiii 88
The LTL Managerc.cccovveviiiieiiiiiecieieict et 91
Selection of general safety requirements for verification............c....c....... 107
Verification output for general safety properties.........c.ccccvvvrccnvininnennee, 107
Verification of assertion Claims........cccccoevveviniiiiiieniinnie e 108
Message sequence chart, and Simulation_output of path with assertion

A To) P14 To) RO SO OO OO OO USU RO 109
Verifier detects LIVEIOCK .o.vveeiiiiiiiiiiccecccee e 111
Path through which Livelock was detectedcccoconiniiiiiiiiiiienn, 112

List Of Figures

Fig 5.9
Fig 5.10
Fig 5.11
Fig 5.12
Fig 5.13
Fig 5.14
Fig 5.15
Fig 5.16
Fig 5.17
Fig 5.18
Fig 6.1
Fig 6.2
Fig 6.3
Fig 6.4
Fig 6.5
Fig 6.6
Fig 6.7

Owner’s Finite state Machines........c.ccccocvvereererieveniinieceeecieeee e 117
Renter’s finite state Machineccccecevveevveecerereceeceseeeee e 118
Safety error in the verification model...........cccoeveveeveniecieeieceieeree 124
Verification output after checking general safety requirements............... 125
Simulation output through path where safety violation is detected.......... 126
Verification options set to detect livelockcccvvvevvvvreririevereeiieeen, 128
General safety error detected in Game modelcccecveveneniiiinccnnnnnenn 141
Simulation output of path in which error is detected..........c.ccccverirenenennne 141
Simulation of second problem in game model...........cccooeveerierecerenreienenne. 142
Detection of unreachable code by the Spin validator.ccoeeverrennee.. 144
B2Bobject INteractionsceceeveerverireinieienienierennrenessesesessesseseessseseeseenes 146
B2BObjects AP ...ttt 147
Collection of non-repudiable digital evidence with B2Bobjects............... 150
Contract clauses after removal of ambiguitiescocceceeveveevieneenrenrennenn. 151
Corrected Purchaser and Supplier FMSS......c.cccoovevnninnnieieninincnennennns 152
Simple Example of a Contract EQItor...........ccceveceieenninnnecctnennnieennene 157
Sample implementation of an X-CoNtract..........cccceevevrevererrerrereseeresereennns 158

Acknowledgements

I am very grateful for all the support and encouragement that I have received during my
research. I would like in particular to thank my Supervisor Professor Santosh Shrivastava for
helping me decide which research topic to pursue and to proof-read this thesis and other
papers. His experience and guidance have been invaluable. I also would like to give special
thanks to Dr Carlos Molina-Jimenez for his huge contributions. His help and enthusiasm were
a major motivating factor on the way to completing this work.

Many thanks also go to Richard Achmatowicz for his constant willingness to lend his
support, which greatly accelerated my understanding of Spin and protocol validation.

Thanks go to Stuart Wheater for his help and suggestions, and Nick Cook for the
development of the B2BObjects Middleware.

I would like to give thanks to various people within the department for their friendship
Jonathan Burton especially when I started this work, Kamal Zamli for his humour, Jonathan
Halliday, Doug Palmer, and Dimane Mpoeleng.

An essential contributing factor to this research was the support of my family, which I
received in abundance from my parents Michael and Linda, my sister Amanda (Mandy), and
my two brothers Samy and Barry.

During my time at Newcastle I have met some fantastic people who have simply been
great friends; Victoria Tsismenaki (Vicky), Yaroslav Segal-Namir (Yarik), Daniel Sokolov ,
Martin Shaw, Mathew Dean, Angelique Anthian, Anna Maria Arango, James Renwick, Izara
Khumium, Leonardo Bello, Joao de Silva, Franchesca Venezia, Mudassa Naqvi, Dimitiris,

Craig Rose. Many thanks to you all.

This research has been funded by the UK Engineering and Physical Sciences Research
Council (EPSRC).

Vii

Blank Page

Abstract

Organisations are increasingly using the Internet to offer their own services and to utilise the
services of others. This naturally leads to resource sharing across organisational boundaries.
Nevertheless, organisations will require their interactions with other organisations to be
strictly controlled. In the paper-based world, business interactions, information exchange and
sharing have been conducted under the control of contracts that the organisations sign. The
world of electronic business needs to emulate electronic equivalents of the contract based
business management practices.

This thesis examines how a ‘conventional’ contract can be converted into its
electronic equivalent and how it can be used for controlling business interactions taking place
through computer messages. To implement a contract electronically, a conventional text
contract needs to be described in a mathematically precise notation so that the description can
be subjected to rigorous analysis and freed from the ambiguities that the original human-
oriented text is likely to contain. Furthermore, a suitable run time infrastructure is required for
monitoring the executable version of the contract.

To address these issues, this thesis describes how standard conventional contracts can
be converted into Finite State Machines (FSMs). It is illustrated how to map the rights and
obligations extracted from the clauses of the contract into the states, transition and output
functions, and input and output symbols of a FSM.

The thesis then goes on to develop a list of correctness properties that a typical
executable business contract should satisfy. A contract model should be validated against
safety properties, which specify situations that the contract must not get into (such as
deadlocks, unreachable statesetc), and liveness properties, which detail qualities that
would be desirable for the contract to contain (responsiveness, accessibilityetc). The FSM
description can then be subjected to model checking. This is demonstrated with the aid of
examples using the Promela language and the Spin validator.

Subsequently, the FSM representation can be used to ensure that the clauses
stipulated in the contract are observed when the contract is executed. The requirements of a
suitable run time infrastructure for monitoring contract compliance are discussed and a

prototype middleware implementation is presented.

ix

Chapter One

Introduction

1.1 Motivation

Over the past decade, increasing use of the Internet for commercial purposes has led what has
become commonly known as electronic commerce (or e-commerce), to changing much of the
traditional ways through which we conduct business. The key appealing qualities that are
driving the Internet (and mainly the World Wide Web) to developing into the major business
medium that it is increasingly becoming, and at such rapidity, are its simplicity of application,
its global reach, and the speed at which it allows its users to interact. These factors are
enabling business transactions to be performed at a higher efficiency rate than ever before,
thus reducing the costs and efforts involved, and therefore improving organisations’ business
goals and aspirations.

The Internet, an application of computer and networking technologies, has itself
become a technology on top of which applications are being constantly developed in order to
enable and improve the ability of businesses to utilize the benefits which it promises.

As organisations increasingly use the Internet for their dealings, they will require
their Internet business interactions with other organisations to be strictly monitored and
controlled. The precondition of business interactions is a requirement of guarded trust
between all business partners [GJS99]. In the paper-based world of commerce, to realize this
vital precondition, business interactions, information exchange and sharing have been
conducted under the control of contracts that organisations sign.

The world of electronic business needs to emulate electronic equivalents of the
contract based business management practices. Internet applications should give different
businesses entities, the possibility to make use of contracts electronically in a similar way that
contracts are used conventionally.

There have been a number of attempts by different research groups at creating such
applications, but tools and technologies for electronic management of contracts so far are not

yet well developed.

Chapter 1

1.2 Research Background

Initially, and until recent times, businesses that engaged in e-commerce conducted business
interactions electronically solely over closed networks by means of Electronic Data
Interchange (EDI) technology [SO1]. Electronic Data Interchange defines a standard format
for exchanging business data, which was developed by the Data Interchange Standards
Association. It was first developed for US shipping and transportation industries in late
1970’s, to reduce the burden of paperwork, a significant factor in cost during business
transactions [EDIO3].

In the early 1990’s specialists identified EDI with electronic contracting, considering
it as a term that solely refers to electronic transactions and contracts [AS03], and even as a
shorthand acronym for electronic contracting [BP98].

An EDI message contains a string of data elements, each of which represents a
singular fact, such as a price, product model number, and so forth, separated by delimiters.
The entire string is called a data segment. One or more data segments framed by a header and
trailer form a transaction set, which is the EDI unit of transmission (equivalent to a message).
A transaction set often consists of what would usually be contained in a typical business
document or form [SCIO03]. Traditional applications of EDI are purchase orders, bills,
invoices, shipping orders and payments.

Today, two sets of standards governing the format of EDI are being used in the world.
The first standard was developed by the UN; the WPFITP UN/EDIFACT syntax rules. The
second was created by ASC X12 in the USA. Thus, while ASC X12 standards dominate in the
USA, the UN/EDIFACT standards are more widely used elsewhere. The disparity between
these standards is considered as a main obstacle for development of international EDI and has
led to ongoing efforts (not yet successful) to harmonize the two sets of standards [S02].

With the development of the Internet, new concepts such as closed and open
electronic contracting have acquired general acceptance. Closed electronic contracting can be
defined as the use of EDI to expedite contracting among parties that already have a trading
relationship established. Open electronic contracting allows the formation of contracts among
parties with no prior trading relationships and is sometimes known as “arm‘s length”
transactions [S02].

To facilitate contracting over the Internet, the .international EDI community since
1995 has been developing Open-EDI, which is considered as a neutral framework for the
future architecture of EDI on the Internet. It is proposed that Open-EDI will enable
organizations to establish short-term relationships quickly and cost effectively. It will provide
the opportunity to lower significantly the barriers to electronic data exchange by introducing

standard business scenarios and the necessary services to support them [OEDI]. In principle,

Introduction 3

once a business scenario is agreed upon, and implementations conform to the Open-EDI
standards, there will be no need for prior agreement among trading partners, other than the
decision to engage into the Open-EDI transaction in compliance with the business scenario.
The field of application of Open-EDI will be the electronic processing of business
transactions among autonomous multiple organizations within and across public, private,
industrial, or geographic sectors. It will include business transactions that involve multiple
data types such as numbers, characters, images and sound.

In addition to the EDI community, since the mid 1990’s, electronic contracting has
been the focus of many research groups and projects within business and academia, to name a
few of these: Qeensland University [MB95], LGI [MUO00], CrossFlow[CF00], COSMOS
[CO99], and others. All of which have, and are contributing using different methods to enable
business partners control their interactions by means of electronic contracts. Despite these
concrete efforts, there are numerous unresolved issues that must be addressed if electronic

contracting (e-contracting) is to be truly realised.

1.3 Research Issues and Definitions

1.3.1 Contracts, and x-contracts

We define a conventional contract as a document that stipulates that its signatories (two or
more) agree to observe the clauses stipulated in the document. An electronic contract, or as
we term it in this thesis; an “executable contract (x-contract)”, is the electronic version of a
conventional contract and consists of one or more executable files complemented with zero or
more ancillary files (text, graphics, images, etc.), that can be enacted to enforce what the
English text contract stipulates [MSSWO03*]. Each entry in a contract is called a term or a
clause. The clauses of a contract stipulate how the signing parties are expected to behave. In
other words, they list the rights and obligations of each signing party. A right is an action
that a signing entity can exercise if it wishes to. For example, a contract might stipulate that
Alice, as a manager of enterprise E1, has the right to send an offer to sell to Bob, the manager
of enterprise E2. Because this is a right, it is up to Alice to send or not to send the offer to Bob;
Bob need not be disappointed if he does not receive the offer. Similarly, an obligation is
defined as a duty that an entity is expected to perform. A failure to perform such a duty means
a breach of the contract. For example, a contract might stipulate that upon receiving an offer
to sell from Alice, Bob has the obligation to reply to her with an Offerdccepted or
OlfferRejected message.

Chapter 1

Hard-copy paper based contracts have been used for a long time we know therefore
how to write (for example in English), interpret and execute a conventional contract.
Unfortunately, contracts in the electronic world are not yet well understood. In particular,
converting a conventional contract into an executable contract is not a trivial process.

This thesis examines how relevant parts of a conventional contract can be converted
into its electronic equivalent and how it can be used for controlling business interactions
taking place between computers connected over the Internet.

In our work, contracts are conceptually located between the interacting parties and are

meant to drive the execution of inter-enterprise business processes.

1.3.2 Contract validation

We identify a crucial difference between conventional contracts, and x-contracts. A
conventional contract is human oriented. Thus, it is likely to contain ambiguities in the text
that are detected and interpreted by humans when the contract is performed; whereas an x-
contract is computer oriented; consequently, it tolerates no inconsistencies. Therefore, to
implement a contract electronically, a conventional text contract needs to be described in a
mathematically precise notation so that the description can be subjected to precise analysis

and freed from the ambiguities that the original human-oriented text is likely to contain.

1.3.3 Internal and External business processes

An organization’s business processes can be divided into two broad categories: the business
processes that are internal to the organization, and the exfernal contract management
processes that involve interactions with trading partners (a business process whether internal
or external, is defined as a set of organized activities aiming at reaching a common business
goal [R98].).

There has been and still is a great deal of research into the automation of an
organisation’s internal processes. A variety of computer systems for automating the task of
scheduling and executing application have been developed. These systems are known as
workflow management systems and the applications are called workflows. Research into the
automation of an organisation’s external processes however, has been fairly recent in
comparison. _

This thesis addresses the issue of facilitating the control and monitoring of an
organisation’s external processes,. through the specification, validation, and monitoring of
electronic contracts.

In our business model [MSSWO03] enterprises that engage in contractual relationships

are autonomous and wish to remain autonomous after signing a contract. Thus a signing

Introduction 5

enterprise has its own resources and local policies. In our view each contracting enterprise is a
black box where private business processes represented as finite state machines, workflows or
similar automaton, run. A private business process interacts with its external environment
through the contract from time to time to influence the course of the shared business process.
Thus, a contract is a mechanism that is conceptually located in the middle of the interacting
enterprises to intercept all the contractual operations that the parties try to perform.
Intercepted operations are accepted or rejected in accordance with the contract clauses and
role players’ authentication.
From this perspective, we can identify two fairly independent sources of contract

inconsistencies:

e Internal enterprise policies conflicting with contractual clauses.

e Inconsistencies in the clauses of the contract.
It is our view that these two issues should be treated separately rather than encumbering a
contract model with excessive notation (details, concepts and information) that might be
extremely difficult to validate. Such a separation is not considered in the work of most
research groups. In this Thesis we address only the second issue, that is, we are concerned

only with the cooperative behaviour of business enterprises and not their internal structure.

1.3.4 Contract representation using finite state machines (FSMs)

To address the issues that we have raised in the previous sections of this chapter, this thesis
proposes that contracts be converted into finite state machines (FSMs). We have found that a
finite state machine is a simple yet expressive model for describing, validating and
implementing x-contracts. We will describe how standard conventional contracts can be
translated into Finite State Machines (FSMs), and illustrate how to map the rights and
obligations extracted from the clauses of a contract into the states, transition and output
functions, and input and output symbols of a FSM. We develop and suggest a list of
correctness properties that a typical electronic business contract should satisfy, and
demonstrate a verification process through which a FSM representation of a contract can be
validated for correctness with respect to the correctness properties that we suggest. Finally,
we demonstrate how a validated FSM can be used to ensure that the clauses in a contract are

observed when the contract is executed.

Chapter 1

1.3.5 Run Time Requirements

The mere fact that organisations require the use of contracts to regulate their interactions with
each other, leads us to the assumption that they do not completely trust each other. So an
important requirement from the middleware that will facilitate these interactions is that it
should enable regulated interactions (as encoded in the x-contract) between two or more
mutually suspicious but autonomous organizations. It is clearly not possible to prevent
organisations from misbehaving and attempting to cheat on their agreed contractual
relationships. The best that can be achieved is to ensure that all contractual interactions
between such organisations are funnelled through (a centralised or distributed) contract
management system and that either (a) all other non-contractual interactions are disallowed,
or (b) the contract management system is at least capable of monitoring and signalling the
signatories of the contract as to when the contract is being violated, or ideally (c) both a, and b.

The safety properties of the middleware must ensure that local policies of an
organization are not compromised despite failures and/or misbehavior by other parties; whilst
the liveness properties should ensure that if all the parties are correct (not misbehaving), then
agreed interactions would take place despite a bounded number of temporary network and
computer related failures. Also because we are dealing with contracts, for the purposes of
proof and legality the middleware must have means for collecting non-repudiable evidence of
the actions of parties that interact with each other.

In this thesis, the requirements of a suitable run time infrastructure for monitoring

contract compliance are discussed and a prototype middleware implementation is presented.

1.4 Research tasks and objectives

We take as an input an existing conventional text based business contract. The reason we say
“existing” is because we do not investigate within this thesis how to negotiate contracts over
the Internet, we assume that a contract has already been negotiated, and that it already exists.
Using it we show how a contract can be segmented into the basic rights and obligations that
form it. We go on to demonstrate a method by which these extracted rights and obligations
can be used as the parameters of mathematical models. The mathematical models we use for
this process are finite state machines.)

Once the contract has been converted into finite state machines, we need to make sure
that the FSM model of the contract is not ambiguous. This means that we need to make sure
that the FSM representation of the contract has been designed accurately, and that it performs

the operations that the contract is expected to perform, and does not perform (or detects and

Introduction 7

signals) operations that the contract is not expected to perform. This interpretation of
ambiguity however is too vague.

Our next task therefore will be to define a set of standard correctness requirements
that can be used by the x-contract model designer as a guide for removing any ambiguity
within the x-contract model. The tool that we use and propose for this process is the model
checker Spin [SP03].

We next show how a correct (free from ambiguity) FSM contract model, can be
coded into the x-contract. The programming language we use for this purpose is JAVA. The
JAVA FSM contract (or the x-contract) therefore will be used for the purpose of monitoring
the interactions between the signatories to the contract. We discuss further the requirements
(discussed in Section 1.3.5) of the middleware service on top of which the x-contract is to be
implemented, and propose B2BObjects (developed at Newcastle University) [CSW02] as an
appropriate middleware service that serves these requirements.

We finally demonstrate how the x-contract and the middleware can be used together
to facilitate the electronic contracting process. We demonstrate these operations with the aid

of a number of examples.

1.5 Thesis Overview

In Chapter 2, we present and discuss the research relevant to ours that has been
conducted in the area of electronic contracts.

In Chapter 3, we define finite state machines, and take a look at some of their
applications. We demonstrate how they can be used to represent conventional contracts, and
how they can be used for monitoring and enforcing the clauses within a contract.

The verification of the correctness of protocols and how it relates to the validation of
x-contracts is discussed in Chapter 4. We present and describe the model checker Spin that
can be used for removing the ambiguities within contracts. Also in Chapter 4 we suggest a set
of correctness requirements against which the correction of a contract can be validated, and
introduce the concepts of safety and liveness requirements. In Chapter 5, we present a number
of different examples of contracts to demonstrate the contract conversion and verification
process.

The requirements from a suitable middleware service for the implementation of x-
contracts are discussed in Chapter 6. In this chapter we propose the use of B2BObjects as a
middleware service and use it for implementing x-contracts. Finally in Chapter 7, we close

with some conclusions.

Blank Page

Chapter Two

Analysis of Related Work

In this Chapter, we present work that is relevant to our research work conducted by various
academic, and industry based research groups in the area of electronic contracting. We
analyse different works while focusing mainly on efforts in contract representation, contract
validation, contract monitoring, and electronic contract implementation.

We begin our discussion with the Reference Model of Open Distributed Processing
(RM-ODP). 1t is a joint effort between the ISO (International Standards Organisation), and
the ITU (International Telecommunication Union). This work is born from recognising a
requirement of a coordinating framework for the standardisation of Open Distributed
Processing [RM-ODP].

The CrossFlow project is presented next. Central to its architecture are contracts,
which are used to connect the work flow management systems (WFMS) of different
cooperating organisations within a virtual environment, resulting in a Cross Organisational
WFMS. Next we Continue with industry based research; we take a look at IBM’s COYOTE
project. After this we analyse the work done at a number of universities including Milosovic
et al at Queensland University, and Naftaly Minsky et al at Rutgers University.

We examine different approaches while keeping in mind the contract implementation

requirements, and the goals that we outlined in Section 1.4.

2.1 Open Distributed Programming Reference Model

ODP describes systems that support heterogeneous distributed processing both within and
between organisations through the use of a common interaction model. The Reference Model
prescribes a framework using five “viewpoints” (abstractions); enterprise, information,
computational, engineering, and technology.

A set of concepts, structures, and rules is given for each of the viewpoints, providing
a language for specifying ODP systems in that viewpoint [RM-ODP]. It is hoped that using
each of the five viewpoint languages, a large and complex specification of an ODP system
can be separated into manageable pieces, each focused on the issues relevant to different
members of a development team. Fig 2.1, shows how the RM-ODP viewpoints can be related

to the software engineering process [RM-ODP].

Chapter 2

Enterprise .
Requirement

/ \ Analysis
/P o i c y\

Information Computational Functional
\ \\ / Y Y Specification
v
Engineering Design
Technology

Fig 2.1. RM-ODP Viewpoints [RM-ODP]

The enterprise viewpoint language incorporates concepts such as policies and roles within a
community. Policies are defined in terms of, Objects (bank managers, customers, money,
bank accounts, etc), communities (grouping of objects formed to meet an objective. The
objective is expressed as a contract, which specifies how the objective can be met), and roles

of objects expressed in terms of policies (permission, obligation, and prohibition).

Poicy 1ot 1| pokeyRue |

| WM ;

! - — f P I e l
B T
K
{

L

CommuntyTame RolsRetgtionship ErampaseAction l
L4 1

AR e
ArtefactRols
EnlompriosPolicy | + .o o o[_Ererprisericna | %
1. prinapaty PripoiRoke

L | \
eoei:maei ‘mmnflms & WNks W

1

o]

Fig.2.2. A meta model for the ODP enterprise viewpoint language [SD00]

Policies constrain the behaviour of enterprise objects that fulfil actor roles in communities and
are designed to meet the objective of the community. Policy specifications define what
behaviour is allowed or not allowed and often contain prescriptions of what to do when a rule

is violated.

Analysis of Related Work 11

The ODP enterprise language is really a set of abstract concepts rather than a
language that can be used to specify enterprise policies and roles. Recently, there have been a
number of attempts to define precise languages that implement the abstract concepts of the
enterprise language. These approaches concentrate on using UML to graphically depict the
static structure of the enterprise viewpoint language as exemplified by [SD00] (see figure 2.2),

as well as languages to express policies based on those UML models.

2.2 CrossFlow

The CrossFlow project [CF00] aims at developing concepts and information technology for
advanced workflow support in virtual organizations that are dynamically formed by contract
based service trading [KGV00].

Contracts are used in CrossFlow for flexible service outsourcing, in which a service
provider organization performs a service on behalf of a service consumer organization.
Contracts are the basis for finding suitable partners, establishing business relationships,
connecting work flow management systems (WFMS) of different kinds, controlling
outsourced workflows, and sharing abstractions of workflow specifications between partners.
Contracts in CrossFlow, define all data, process elements and enactment conditions relevant

to the co-operation through the outsourced workflow process on an abstract level.

Contract

Concept
Nalural la
Enactment clause Usage clause descrip?ﬁ;:aga Process madel
L]
- (L1
(0N} refers to _) refers 1o
{0.N) QM) {ON)
consisis of
refers 1o
7 (1)
{0.N)

(0.M) O.N)

refers 1o Process slament

(0.N) (0.M)

refers 1o

Fig 2.3. CrossFlow Contract structure in EER notation [KGV00]

Chapter 2

The establishment of virtual enterprises with the help of contracts is discussed in [HLGGO00].
Contracts are established automatically by CrossFlow contract manager modules without
human interaction. Negotiation of contracts is not required in the context of the project and
thus not covered by the approach. The approach is based on standard form contracts that
describe standardized services in the context of specific markets.

The data structure of the CrossFlow contract model in EER (Extended Entity
Relationship) notation can be seen in figure 2.3. In the figure rectangles describe elements,
and diamonds describe the type of relationship between the elements. Details on reading EER
notation can be found in [EER]. The model consists of five main elements:

1. The Concept Model establishes the terminology of the contract. The concepts of
the contract are defined as a list of parameters that can have complex structures. The
parameters are defined with their name, type and description. The concept model consists of
three parts. General parameters describe attributes that are applicable to contracts in general.
This part standardizes contracts by ensuring that parameters used in any service always have
the same name and structure, like CONSUMER, PROVIDER, and SERVICENAME. Having
this part makes it easier to search for a contract on generally accepted terms. Service specific
parameters apply to specific service types. Parameters like DELIVERY ADDRESS,
PACKAGEWEIGHT, etc. are only applicable to transport services. The consumer should
specify the values of these parameters in the contract, so the provider process can read them
from the contract and start the workflow instance. Process variables are dynamic parameters
used for exchanging information during the service execution.

2. The Process Model describes the internal structure of the workflow process
implementing the service. The process is composed of process elements, e.g. the individual
activities and transitions. The process needs to be specified in a way that allows the provider
to map it to its actual process and allows the consumer to understand the sequence of events
and make decisions based on this knowledge.

3. The Enactment Model. The enactment clauses in the contract define additional
enactment requirements on top of basic workflow processing defined in the workflow
definition. Enactment clauses can be related to enactment performance monitoring, cross-
organizational process control, advanced transaction management, automatic remuneration,
etc.

4. The Usage Model defines how contracts are used for service outsourcing. These
definitions are related to the concept of Partially Filled Contracts as explained below.

5. The Natural Language Description is a piece of text that is not meant for electronic
interpretation, but for human reading. This text can be used to describe the service in an

understandable way and to refer to the legal context of the transaction.

Analysis of Related Work 13

To enable the use of standard contracts, the CrossFlow approach has defined the concept of
Partially Filled Contracts (PFCs). PFCs are contract templates of which the service specific
fields are partially filled by a service consumer. On the basis of the PFC, a business
agreement is reached between service provider and consumer for the enactment of multiple
services. Each service is specified by completing the PFC to a complete filled contract. A life

cycle model has been defined relating various kinds of templates, PFCs and actual contracts.

2.2.1 CrossFlow Architecture

The CrossFlow architecture [CFO0] supports both contract creation and contract (service)
enactment. The architecture is based on commercial workflow management system
technology, shielded from the CrossFlow technology by an interface layer. In the project,

IBM’s MQSeries workflow product is used [MQ].

» Trader |«

E 4 abe b or e 40de e o0 Hemi SN mimsasas RSt Rsasesesernsasmsase Contmt +
& o
i) ()
g g
= -
= &
i :
(&) O
Interface Layer J L Intetface Layer —I
Workflow Workflow
Ianagem ent Management
System System
i Service Consumer | . Service Provider

Fig.2.4. The CrossFlow Architecture

2.2.2 Contract Creation

When a service provider wants to advertise a service it can perform on another organization’s
behalf, it uses its contract manager to send a contract template to a trader. When a service

consumer wants to outsource the enactment of a service, it uses a contract template to search

Chapter 2

for service providers via a trader. When a match between consumer’s requirements and

provider’s offer is found, an electronic contract can be made by filling in the template.

2.2.3 Contract Enactment

Based on specifications in the contract, a dynamic contract and service enactment architecture
is set up. The symmetrical architecture contains proxy gateways that control all
communication and support services for advanced cooperation functionality. After contract
completion, the dynamically created modules can be disposed of.

An XML based contract language has been developed for the CrossFlow project. The
language can be used to define contracts that are suitable for supporting fully automated
outsourcing transactions. Using the language, it is hoped that all aspects of the interaction can
be defined in a structured manner, enabling the co-operation infrastructure to set up and
manage the outsourcing environment. A prototype of the cooperation infrastructure is under
development. In the future, the model and language will be refined and extended, based on the
experience with CrossFlow user scenarios. A CrossFlow prototype is to be implemented as
proof of concept. Contract enactment mechanisms are yet to be developed further. Tools are
still to be developed to edit and create contracts, validate them, and present contracts in a

readable form. Therefore CrossFlow remains largely in the concept phase.

2.3 The COYOTE Project

Work at the IBM T.J. Watson Research Center, has resulted in the COYOTE (Cover
YOurself Transaction Environment) project (See [DDNS98]); this paper uses as an example a
complex, mixed B2B (Business to Business) and B2C (Business to Customer) case. The
example illustrates the situation of a customer who purchases full fare on an Airline company
thus receiving a discount at a specific Hotel and Car rental company. This situation involves
close relations between the companies for this B2C case.

The process of electronic trade is described as a distributed, long running application,
spanning multiple autonomous business organizations. The goal of the COYOTE project is to
provide an application development and execution environment for electronic business
applications. The approach makes a clear separation of internal and external business
processes within an organization. The rules of external interaction and externally visible states
are defined as a service contract. Service contracts act both as a guideline for interaction
across businesses and also as an enforcement mechanism for guaranteeing proper interaction.
It is a high-level description of the interaction between two or more contracting parties. The

contract contains two kinds of information. The first kind is a machine-readable description of

Analysis of Related Work 15

the computer-to-computer interactions between the parties that supports the overall
application. It concerns those aspects of the application that each party must agree with and
which are enforceable by the COYOTE system. The second is the usual human-readable legal
language that is part of any business-to-business contract and includes those aspects of the
agreement, which must be enforced by the person to person contact.

The project is concerned with the machine-readable section. The contract is written in
XML. After reaching an agreement by all parties, the XML contract can then be turned into a
code. This code is called a service-contract object (SCO) and resides at each of the parties. It
provides interfaces to the application programs of the parties. Each party communicates via
the SCO of the other party. The service contract defines the properties of each party that must
be made visible to the other parties to the contract. These properties include:

Identification: The identification section assigns a name to the contract and provides

the names of each of the parties to the contract.

Overall properties: The overall properties are attributes of the contract that apply to

the contract as a whole and all instantiations of it.

Communication: These properties provide the information necessary for each party

to communicate with all the others.

Security/Authentication: The following levels of security are provided: non-

repudiation, authentication, encryption, and none.

Role: The contract can be formulated in terms of generic roles.

Actions: An action is a specific request which a party, acting as a client, can issue to

a party acting as a server. Possible actions could be “reserve a hotel”, “purchase”, etc.

Constraints and sequencing rules: Constraints are various conditions, which must

be satisfied for individual actions. For example, the action “reserve a hotel” might be

accompanied by a rule stating the latest time to cancel the reservation. Sequencing

rules state the allowed order of actions at a given party. For example, a “cancel

reservation” action cannot be invoked until the “reserve a hotel” action has been

invoked.

State transition logic: When an action is performed, the state associated with the

action (and hence the state of the contract) changes. The contract defines additional

changes of variables and parameters, which take place following the completion or

failure of an action.

Compensation rules: These properties state any conditions relating to the

cancellation of previously invoked actions.

Error handling: These properties contain error conditions and methods to be called

when they occur.

Chapter 2

Legal aspects: These properties contain conditions, which are typically defined in a

legal contract such as handling of disputes and other exceptional conditions.

These properties provide the structure of the service contract. This structure is comparable
with the structure of the SeCo Container (Section 2.5). For example, the legal terms in the
SeCo Container are identical to the legal aspects; the agents to the identity, etc.

A specific aspect of this project is support for error handling. The approach in this
project is process oriented and the contracts must support the different processes that result
from the activities of the companies. Thus the additional properties that are needed are state
transition logic, actions and error handling.

Due to the diversity in the business processes, the many possible actions and
responses from the parties in a business transaction, this paper considers the use of Petri Net
like definitions of the business processes as inappropriate. This view contradicts [LS98] and
[RL98], where Petri Nets are used for process modelling. COYOTE has not addressed the

issue of validation of contracts.

2.4 Work at Qeensland University

The idea of monitoring and enforcement of policies specifically for electronic contracts has
been discussed by Milosovic et al [GM00] {MMO1] [MB95]. In [MB95], “A possible
sequence of contract operations” is proposed. The sequence includes the “Establishment
Phase” where the parties negotiate the terms of the contract and sign it, and the “Performance
Phase”, where the contract is monitored and enforced.

Contract monitoring, is defined as the process of observing the activities of a
company and tracking these activities not to violate the contract. Monitoring can be
performed by the parties or by a third party acting on behalf of one or all the parties. This
process can be performed continuously during the contract execution or can occur from time
to time. In case that one of the parties breaks the contract conditions, contract enforcement
can take place.

In [MAQO96], the focus is mainly on the security requirements for open distributed
systems for contracts. Special attention is paid to the competence element. This is essentially
the issue of determining if a given person has the aythority to establish a contract. The
proposal is to base competence on a notion of roles, which reflect the structure of a company,
e.g. presidents, managers, and administrators. As is common practice, a person can proceed
with a request if the permission is obtained from some collections of the superiors such as 3

managers or 2 state managers, or simply the permission of the president. Digital signatures

Analysis of Related Work 17

and roles are used to implement competence that can be verified by people within a company
and by those negotiating with the company.

The paper [GMO00] aims at the specification and implementation of business contracts
needed for Business-to-Business (B2B) electronic commerce. In this approach, valid business
contract must contain four elements; agreement, consideration, capacity, legal purpose. These
elements result in clauses that cover items like; parties, definition and interpretation of terms,
jurisdiction, etc. (see figure 2.5). In the appendix of [GMO00] an example of such a contract is
listed. We actually borrow this contract and modify it to adapt it to our particular needs as one

of our examples in Chapter 5.

Parties
Agreement Definition and interpretation of terms
Consideration N jurisdiction N
Competence ——/ Duration and territory \‘—‘/ Contract
Legal purpose Consideration

Obligation (including terms and conditions)

Fig.2.5. Contract structure and content [GM00]

In this work, a contract can be provided by one of the parties (e.g. the seller), a third party or a
commercial organization that will provides general-purpose contracts for different business
scenarios.

Also in [GMO0], the authors pay particular attention to the benefits of using standard
contracts, a concept that is also important in our work. A standard contract template can be
provided by one of the parties (e.g. the seller), a third party or a commercial organization that
will be providing general-purpose contracts for different business scenarios.

A number of basic roles are needed to support typical operations associated with
contract establishment. The Contract Repository (CR) is needed to store standard form
contracts and standard contract clauses. The Notary is used to store signed instances of
standard form contracts, which can be used later as evidence of agreement in contract
monitoring and enforcement activities. The Contract Validator (CV) performs the contract
validity checking procedures relating to the legality of the contract. The Contract Monitor
(CM) is used for monitoring the contract. The CM has three major roles: to monitor the party
activities, to record and measure actions and performance, to deal with non-performance
parties. In case of improper behaviour the CM informs the Contract Enforcer (CE) component.
The Contract Enforcer (CE), upon being signalled by the CM, performs enforcing actions
such as sending a message to various parties informing them of the violation and possibly

preventing further access to the system by non-conforming parties. The Contract Negotiator

Chapter 2

(CN) is an optional role that can be used to mediate the negotiation of contracts in the
contractual phase.
The Contract Monitor has the central component CMM (Contract Monitor Manager),

which receives policy statements of the form:

<policy> :: = <variable declaration>

when <condition>
<action>
must [not] occur where <condition>
otherwise <trigger action>;

<action> :: = action(<action_name>, <actor>,
<audience>,<time>,<body>)

<trigger action> ::= trigger_action(<action name>,
<audience>,<body>)

Upon receiving a policy statement, it is analysed by the CMM, and the CE is

signalled if a violation is detected.

| Busiress Contract Specincation |
| 1

/U 1§ ey -
B s {\! based on

Contract Body [Digital Signature Section | [Enforcment Policy Specification |
f fie b » i
O Y VR P Y

Y r)
i 'k
1 ek

Preamble Approval Section \
L R W B 0 S T TN |
%‘ VTR [
L.

Clauae aréup I\

1.

denved from \ RuleSpecification
o |

ol

2.n an
+ovher +authority
Farty Approval attacted to | ¥ML-DSiy
BT | IR

Fig.2.6. A UML model of a contract [GMO00]

Based on this analysis the authors define a contract model. The contract model contains the
following elements: a preamble that outlines the parties involved in the contract and the
nature of the consideration; a clause element, which is a list of contract clauses, clustered in
logical groups; an approval section that enumerates who from each party approved the
contract; a digital signature section, with digital signatures from the appropriate parties listed
in the approval section; a section containing a list of policy specifications stating contract

enforcement rules according to the agreed contract clauses.

Analysis of Related Work 19

Contractual terms and conditions are modelled as policies. This is influenced by the
Event-Condition-Action (ECA) paradigm from active databases, and the ODP language.
Policies are embedded in the XML structure.

Validation of the correctness of contracts has been identified as crucial by Milocevic
et al in [GMO00], and [MDO02], where a contract is informally defined as a set of policy
statements that specify constraints in terms of permissions, prohibitions and obligations for
roles involved in the contract. A role (precisely, a role player) is an entity (for example a
human being, machine, program, etc.) that can perform an action. Formally, each policy
statement is specified in deontic logic constraints [MMO1]. Thus each deontic constraint
precisely defines the permissions, prohibitions, obligations, actions, and temporal and non-
temporal conditions that a role needs to fulfil to satisfy an expected behaviour.

For example, a constraint can formally specify that, “Bob is obliged to deliver a box
of chocolates to Alice’s desk every weekday except on Wednesdays for three years, between
9 and 9:15 am, commencing on the 1% of Jan 2004”. The expressiveness of deontic notation
allows the contract designer to verify temporal and deontic inconsistencies in the contract.
The authors of this approach argue that it is possible to build verification software to visually
show that, Bob’s obligations do not overlap or conflict. Such verification mechanisms would
easily detect a conflicting situation where Bob has to deliver a box of chocolates to Alice’s
desk and to Claire’s who works miles away from Alice’s desk. Similarly, the verifier would
detect that Bob is not obliged and prohibited to deliver chocolates to Alice during the same
period of time.

There are similarities between this research and ours in the focus on the use of
standard contracts, the validation of the correctness of contracts prior to implementation, and
in the monitoring of the x-contract at execution time. However whereas we focus only on the
validation of the contract specified business to business interactions, Milocevic et al also
include in their validation process the checking of the consistency of contract specified
interactions with the internal processes of the signing entities. We consider this to be too
ambitious. Also it is not very clear in this work if the collection of non-repudiable evidence is

possible without involving trusted third parties.

2.5 Work at University of St. Gallen

A number of papers on electronic contracting have been written by two main research groups
at the University of St Gallen. The main contributions of these papers are the Electronic
Market Reference Model, the Business Media Framework, and the Secure Contract Container

(SeCo).

Chapter 2
2.5.1 Electronic Market Reference Model (EM-RM)

EM-RM is a model developed over a series of papers, which discuss a number of issues
relevant to electronic contracting. In [LR97] non-repudiation within electronic contracting is
the main topic. It addresses the issue of trust between parties by introducing trust centers -
institutional instruments to support confidentiality and non-repudiation.

Trust Centers are independent third parties, in which a high extent of confidentiality
is put. According to [FHK95] the term Trust Center aggregates trusted Third Parties (TTP)
and Personal Trust Centers (PTC). "4 Trusted Third Party is an impartial organization
delivering business confidence through commercial and technical security features, to an
electronic transaction. It supplies technically and legally reliable means of carrying out,
Jacilitating, producing independent evidence about and/or arbitrating on an electronic
transaction. As services are provided and underwritten by technical, legal financial and/or
structural means.” [LR97].

The idea of trust centres is gaining popularity [KBCS00], and is considered by many
researchers and developers as one of the most probable solutions for the legal issue problems
and the lack of trust between parties.

[LRP97] and [LR97] describe a Model for Permanent IT-Support. By Permanent IT-
support it is meant continuous and time-independent information technology support
throughout all phases of an electronic commerce transaction. The suggested model consists of
a business layer, a services layer, and a technical layer.

In [LS98], [RA98] and [LR98], the model is developed, and the three layers are
modified, and they become 4 so called “views”. (See figure 2.7). To summarize, [LR98]
proposes an Electronic Market Reference Model (EM-RM), which consists of two
dimensions. The horizontal dimension contains the three phases of an electronic market
transaction (Information phase, Agreement phase, and Settlement phase), whereas the vertical
dimension is built of four views. The four views can be grouped into two main blocks of
which the upper two views (Business and Transaction View) focus on organizational aspects,
whilst the lower two views (Services and Infrastructure View) depict technological aspects.

Within the agreement phase, an electronic contracting tool, which includes functions
for the purpose of negotiation of traditional trade via new electronic means, is suggested. The
contracting tool in figure 2.7 is a framework for other individual contract negotiation
supporting tools. Goal and content of the settlement phase are mainly the booking, payment,
and delivery of ordered goods and services. In the agreement phase; negotiated, and in the
settlement phase; concluded contracts, provide the basis and specification for these goals. The
paper does not mention how these goals are to be arrived at from the contract, or whether the

interactions between the parties are subsequently monitored to ensure the achievement of

Analysis of Related Work

21

these goals during the settlement phase. Also no attention is paid to the technologies that

need to be involved in the construction of an electronic market.

Informaticn g Agreement — Settlement
Phase Phase e Phase
| B"J‘g’zss Business Modal
- : 8.9. processes af " T €.9. processes of
2 cﬁ'ﬁ; :r needs identfication, A’?{“’ f:;fr':: I::"sgif;ﬁ iz::n:-n payment and
§ g search for suppliers d) aning receipt of goods
c&> ; 8.g. processes of it &.g. processas of
E Afdsnlrlms offr corgidarations. Agc:emjef: Negc»h;atmn producton and
of Saller seanch for buysrs Agresmant Signing debivery
Services Mediating Elecionic | Elecironie - Computer
Wiews I Frocluet Catalog *_ Contracling Tool ¥ Nlegrated Logishics
'"f'asi'g:ft”e I ’ Communications Infrastructure
1 1
Markst Transadtion t

Fig.2.7. Electronic Market Reference Model [LR98]

2.5.2 The Business Media Framework

[RSK99] proposes a solution for the management of business transactions, considering

contracts as the key information object of all legally relevant actions in a business transaction.

A contracting framework is presented.

Community
View

Implementation
View

Transaction
View

Infrastructure
View

Bsi_hééé 5mﬁ1u1)lty (ﬁoiéé Pftoo! .,
o et umosts | | '

‘ Processes

v 1CT and‘Transaction Inffastru&ﬁré "

Settlement

Knowledge

Intention

Settlement

Contract

Fig.2.8. Business Media Framework [RSK99]

Four layers are identified in the BMF (Figure 2.8):

Chapter 2

Community View: The interested business community is described and structured on
this layer.

Implementation View: On this layer the roles, protocols and processes that have been
identified in the Community View are based on the underlying generic services of the
Transaction View.

Transaction View: This layer contains the generic market services (i.e. services,
which can be used for any marketplace and are necessary to complete a Customer Buying
Cycle). The generic market services identified are: The information service, intention service,
contracting service, and settlement services (payment and delivery).

Infrastructure View: This layer contains communication, transaction, and

transportation infrastructure, for the implementation of the generic services.

The transaction view contains several services, the most important of which from our point of
view are the contracting services. However the contracting services suggested are based on
the work done by Milocevic et al in [GMO0O0], which we discuss in Section 2.4. The authors
have used the defined BMF with the roles defined in [GMO0] in order to build a Contracting
Framework for the contracting services (see figure 2.9). This framework is a combination of

the two models.

Community
View

Qusinas ommunity‘(Rol‘es. ‘Prtbc‘él‘)l X

Implementation
View

Transaction
View

Infrastructure
View

Fig.2.9. Contracting framework for the contracting services. [RSK99]

[GSGO00] investigates the technological aspect as well as the legal aspect of Electronic
Contracts. It focuses on contracts that involve two parties. The two roles in a contract are:

An offeror - the person who makes an offer.

Analysis of Related Work 23

An offeree - the person who receives an offer.

2.5.3 Secure Contract Container SeCo

To support electronic transactions in a way similar to conventional transactions, electronic
contracts are required. To serve this purpose the authors of [GSGO0] introduce a “Secure

Contract Container”.

Fig.2.10. Structure of the SeCo container [GSG00]

A SeCo container comprises two parts: a contract section and an administrative section. The
contract section is separated into a content section and a signature block. The content section
contains all data that is relevant for the contract and that the contracting parties have to agree

on. It includes:

- The product or service descriptions with agreed upon quality or specifications of all products
and services the customer intends to purchase.

- The identification and address data of the contracting parties (mandatory), as well as other
involved market agents such as an arbitrator, a recipient other than the customer, or a notary
(optional). This sub-section is referred to as “Agents” (see figure 2.10).

- The legal terms of the contract as well as the arbitration code.

- The delivery and payment conditions together with the communication protocols applied in

the integration of payment and logistics services (i.e. SET).

Chapter 2

The contract content section in the SeCo Container serves the same purpose as the Concept
Model in the CrossFlow contract model [KGV00].

The signature block holds the digital signatures signing the content section.
Furthermore, the signature block contains the corresponding X509 certificates that hold the
public keys of the signers (X509 is a standard for digital certificates). The log section logs the
events that occur during the contracting process, as well as any relevant information that
arises during the fulfilment of the contract. The status section holds information about the
current state of the SeCo Container. It can be used as a quick reference for queries for the
status of a contract. A container can hold more than one contract section, resulting from the
process of negotiation, but at any given time, there is only one valid contract section. The
most recent contract section represents the current state of the contracting process. This

allows tracking of the historical evolution of the contract.

Contract template> Instance of o@ Contra> Attached documents

Fig.2.11. Contracting process [GSG00]

The software architecture for the SeCo Container is described in [GSS00]. The SeCo
Container architecture is built of logic, information, and communication layers (see figure
2.12)

On the Logic Layer, the logic of the business transaction is designed, managed, and
performed. The logic layer can manage the monitoring of the contracting process through
checking critical dates and values, and through performing actions like reminding of the
outstanding signing of the contract or the non-performance of the delivery. The logic layer
has a secure access to the information structured on the information layer.

The Information Layer provides data storage and contains the contract information.
The data of the information layer contains a structured and an unstructured part. In the
structured part all the information that is subject to further processing in the contracting or
settlement phase is stored. The structured part is divided into four blocks:

(1) Who block- The involved parties are described.

(2) What block- Product or service object of the ¢ontract is specified.

(3) How block- The settlement conditions of the transactions i.e. the enactment

clauses.

(4) Legal block- The legal circumstances, under which the parties came to a mutual

agreement.

Analysis of Related Work 25

In the unstructured part of the information layer, documents that are collected throughout a
market transaction could be added. In order to have a document history it is proposed to
generate a new document for each step of the contracting process. This new document inherits

certain attributes either from the container settings or from already existing documents.

Community

Implementation
View

Transaction

vi Contracts
lew L s v 1 4
Infrastructure

View

Knowledge Intention Contract Settlement

Fig. 2.12. SeCo Container Architecture

The Communication Layer includes all protocols necessary for the communication with the
generic market services and the contracting parties.

To summarise, The SeCo container is able to collect and contain all the information
that is necessary to enforce a contract in front of an arbitrating court (Information Layer). It
contains the logic rules about the obligations that have to be fulfilled and about the security of
its own state (Logic Layer). The authors do not however discuss whether there is a
verification process in which an electronic contract is checked for correctness before
implementation. Also there aren’t any examples or details on the implementation of SeCo

beyond the Architecture descriptions above.

2.6 Electronic Commerce Development and Execution
Environment (EDEE)

Another research work of relevance to ours is the EDEE system. EDEE provides a framework
for representing, storing and enforcing business contracts [AEBO1].

In EDEE a contract is informally conceived as a set of provisions. In legal parlance, a
provision is an arrangement in a legal document, thus in EDEE a provision specifies an

obligation, prohibition, privilege or power (a privilege or power is equivalent to a right in our

Chapter 2

work). An example of a provision is “Alice is obliged to pay Bob 20 cents before 1* Jan
2004”. Central to EDEE is the concept of occurrence. An occurrence is a time-delimited
relationship between entities. It can be regarded as a participant-occurrence-role triple that
contain the name of the participants of the occurrence, the name of the occurrence and the
name of the roles involved in the occurrence. An example of an occurrence that involves
Alice (the payer) and Bob (the payee) is “Alice is paying Bob 20 cents on 31* Dec 2003.”
The formal specification of a contract in EDEE is obtained by translating the set of informal
provisions derived from the clauses of the contract into a set of formal occurrences. Another
basic concept in EDEE is query. A query is a request for items satisfying certain criteria (for
example, “Payments performed by Alice before 31* Dec 2003”). At implementation level, the
occurrences representing the contract provisions are stored together with queries and new
occurrences in an occurrence store in SQL views.

Business operations invoked by the contractual parties are seen as occurrences
intercepted and passed through the occurrence store where they are analysed to see if they
satisfy the contractual occurrences associated with the operations. EDEE has been provided
with some means for detecting contract inconsistencies. To detect overlap between queries (a
set of occurrences being both prohibited and permitted, a set of occurrences being obliged and
prohibited, etc.) the authors of EDEE rely on a locally implemented coverage-checking

algorithms.

2.7 Law Governed Interaction

Electronic contracts have been studied by Naftaly Minsky, and his research group in a
number of papers under the concept of Law Governed Interaction (LGI) [XMNU00] [UMO00]
[MMUO1] [SXMO01] [MUO1].

The LGI mechanism is a message exchange software layer that allows a group of
distributed agents to interact over a communication medium (see figure 2.13), honouring a set
of previously agreed upon rules. An agent is an entity, for example, a computer program, with
means for sending and receiving messages. As the term agent suggests, agents act on behalf
of their enterprises. In the LGI paradigm, a business to business interaction involves a set of
private laws and one interaction law: the private laws are internal to each enterprise and
regulate the activities of the agents while operating as representatives of their enterprises
whereas the interaction law is public to the members of the group and regulates the
interactions between the enterprises. It is worth mentioning that the interaction law is actually
the business contract that the agents are expected to honour when they interact with each

other on behalf of their enterprises.

Analysis of Related Work 27

A law can be regarded as a set of rules. An example of a rule contained in a private
law would be “Agent E; can place purchase orders without the approval of the manager only
for purchases not exceeding 5000 pounds.”

Laws are enforced by controllers which are trusted entities conceptually placed
between each agent and the communication medium. Thus the private law L, to be honoured
by agent X is enforced by controller C, while the private law L, to be honoured by agent Y is
enforced by controller Cy. The law L, that regulates the interaction between agent X and Y is
enforced by a mediator controller C,, which is conceived as working on behalf of a mediator
agent that bridges the interactions between agents X and Y. Every controller stores its law
(formally represented as Prolog-like terms) and the current control state of its agent. When an
event occurs (for example, “purchase order received”) the controller performs the
corresponding operations stipulated in the laws (for instance, “send acknowledgement to
business partner”, “notify the local manager”, etc.) to honour the private law, the interaction

law, or both, and computes the new control state [MUOT].

CSy

imported deliver
e -Q

Agenty

CSx

Communication
Network

: : sent

Agent x

Lp Lq

Controller x Controller y

Fig.2.13. Interaction of agents in LGI

The LGI approach is similar to ours in that it suggests a separation of business to
business laws from internal-to-enterprises ones. Likewise, the job of the mediator controller
closely resembles the job of the FSMs of our approach. To the best of our knowledge, the LGI
group has no reported results about validation of the laws or about how the controllers collect
non-repudiable evidence of the operations performed by their agents.

Also what is not clear, is the implementation of the mediator controller Cxy that
regulates the contract law Lxy. We will assume that the mediator agent that Cxy works for is

a trusted third party that enforces Lxy.

Chapter 2

2.8 InterProcs

Ronald M. Lee at the Erasmus University in Rotterdam in [L98] presents a design and pilot
implementation of a system, supporting electronic contracting, called InterProcs. A key
deliverable of this project is a model expert system for producing trade scenarios customized
to a particular situation, yet making use of stored knowledge and experience on their design
and legal controls. This is a generalization of the Open-EDI approach used in [L.S98], where
only standard trade scenarios are used. The project aims to provide an artificially intelligent
framework for constructing trade scenarios. For this reason, the authors aim not only to
understand the sequencing of document flows, but to understand why these documents are
sent, and what the purpose of these documents is, i.e. their legal effects. The formal
representation of the trade scenarios should be:

- Procedurally representable.

-Computable thus allowing fully automated computer-to-computer transactions.

- Customizable — parties should be able to customize the generic trade scenarios for

their specific needs.

- Expressing not only document flows but the legal effects as well.

- With familiar end-user interface for the contracting parties as well as for possible

third parties.

- Reusable — the composition of trade scenarios should make use of reusable

constituent parts.

The technology approach in this project is based on artificial intelligence (Al) techniques.
Like other expert systems, this should involve an inference engine and a knowledge base.
However, unlike other expert systems, which usually only provide advice, this project also
involves a transaction system, which is able to execute the trade scenarios automatically.

A key objective for the design of trade scenarios is the inclusion of appropriate
documentary controls, e.g. protecting against fraud, accident or misinterpretation, and
providing appropriate evidence of the contract status, should the contract come into dispute
and go to court. These controls may be either detective, recognizing when something has gone
wrong, or preventative, in avoiding the error in the first place. Two additional open challenges
are listed:

revisability - while a given contract is being,‘executed’, it should be capable of

revision (due to possible constraints previously set in the contract clauses).

evolvablility - the knowledge base of trade scenarios should be able to evolve, based
on learning and experience from past modeling.
The contracting process in this paper is divided into three main phases: shopping, negotiation

and performance. Though the terminology is different the three phases can be easily mapped

Analysis of Related Work 29

to information, agreement, settlement i.e. the phases discussed in the research of St. Galen
University. A basic issue for this project is how electronic trade scenarios should be
represented from the modeller’s perspective, and from a computation perspective. In this
paper Document Petri Nets (DPN’s) are considered (see [LS98]) to be the most appropriate
representation for capturing the temporal/dynamic aspects of electronic trade scenarios,
offering both a graphical representation and a formal basis for the verification of various
properties.

In order to make the scenarios adaptable, scenario components are broken down into
reusable component parts, which can be flexibly reassembled to meet the needs of a wide
variety of situations. The contract reusability is an issue in many approaches e.g. [MB98,
GMO00, KGVO00]. The idea to identify reusable components in contracts is appealing but, as it
can be observed from this survey, no significant progress has been made. The reason for this
is the huge diversity in the contracts and their clauses. Some preliminary work on this topic

has been done at Twene University (CrossFlow Project) as well.

2.9 COSMOS

The COSMOS (Common Open Service Market for SMEs) [CSP99] project is presented in
[GBW98]. The project aim is an Internet-based electronic contracting service that facilitates
business transaction processes. The e-contracts are considered as a solution for reducing the
high transaction costs in the standard contractual process. Three groups of transaction costs
are described; information costs, negotiation costs, and execution costs.

The COSMOS project aims at providing an infrastructure that allows the integration
of all phases of e-contracting, based on object-oriented Internet technology. The project’s goal
is to establish a technology to create complex contracts in an easy way and to support their
semi-automated filling in. Further on, COSMOS aims at supporting the negotiation and
execution phases by letting the constructed contract actively influence the processing of itself.
Due to the integrated, semi-automated construction of the contract, the COSMOS system
should be able to consistently include execution definitions that can automatically drive the
contract’s fulfilment. This approach resembles the CrossFlow work [KGV00], where the
workflow definition and the enactment clauses in the contract have this function.

The COSMOS electronic commerce architecture is composed of an online catalogue,
brokers, contract negotiation support, signing support, and contract execution support. The
project uses the CORBA Business Objects Architecture (BOA). Voyager, a Java-based ORB
that provides mobility of objects and is compatible with CORBA, is chosen as

Chapter 2

implementation platform for COSMOS. Further on, a Contract Object Model is described (see

figure 2.14). The contract model distinguishes several parts:

The Who part: Parties, Persons, and Signatures are related to the participants of the

contract.

The What part is the subject of the contract. It covers all obligations of the involved

parties. An important feature of the obligation is a list of QoS attributes.

The How part defines execution details for the obligations: when and which services
to be delivered; what is the deadline; which clause will apply when a party does not
observe its obligation. This part is used to derive a workflow that defines causal

relationships, data transfers, delays and deadlines, and the final termination of the

execution phase.

The Legal clauses form the fourth part of a contract.

Compound Contract

|

|

Phase [L Notarization
Oueant S
1 Sgeue
&
.
e
|
1
\I What \‘ Legal
1 1 1
Fixation Subject Para, he
[| 1 [| L | []
1O 1 . 1 4 1
d - . i ;
2 1 1
Signature Person Role Teceher Activity Performance Clause
Onle Name wi. Type Sender léentticaton identlzaso Tope
Locatisn Addrest I Eallor Pariod Puirt in Time Identlicaton
Relegyen i Predln P Fostenrdlion
1 Fufthet Arbites 1
12 . Interneal Clause
Prowy L v Ted
Qo$
Names
B Payment Velue
Amourt Speviicaten Externdl Clause
Autho Curenty o k|
Catedcale Mehicd of Paymiart
Shgnanore Good
1
Natural Parson
Dase of Birty

Fig.2.14. COSMOS contract model [GBW98]

Once a contract has been filled and signed, it becomes executable. The information gathered
within the contract during contract filling phases directly allows deriving a workflow to
execute a contract. Thus, a graphical representation of a workflow based on Petri-nets can be
generated from the contract. The workflow can be used only as a Petri-net interpreter that has
adapters to different workflow environments. For companies not having established their own

internal workflow system, COSMOS additionally includes a self-installing workflow

environment.

Analysis of Related Work 31

According to this paper, the attempt to cover the full semantics of a contract by
building a “contracting expert system“ is considered a dead end, since the expert system

overhead i.e. the complexity of the system is expected to be too high.

2.10 Trade intermediaries

In [YAW98] the authors discuss the role of the trade intermediaries (e.g. retailers) in
electronic commerce. The need for a trade intermediary is often dismissed in the direct
supplier to consumer electronic commerce transaction model. For example, an e-commerce
system has little need for distributional intermediaries.

The problem of electronic markets that is depicted in this paper is the uncertainty
about product quality. One of the primary reasons why a market fails is the asymmetric
information: what a seller knows is different from what a buyer knows. The authors suggest
electronic commerce intermediaries to act as quality guarantors but without incurring high
transaction costs. The paper answers to the problem of how to keep the costs low for
intermediaries when the quality cannot be observed as in the physical world. A possible
solution is a just-in-time purchasing system. The key element of this system is the open-ended
contract with suppliers whose deliveries are not inspected. The contract can be terminated if
the intermediary encounters many instances of low quality.

The reward for high quality is the continued business relationship with the
manufacturer. The rest of the paper discusses the role of micro-payments in the electronic

commerce, which is mostly relevant to B2C transactions.

2.11 Legal contracts as processes

Work that considers state representation of contracts is introduced in [DDMO01] and [D00]. In
[D00] an informal schematic notation for electronic contracts is introduced. It can be used to
summarize the structure of agreements as collections of interrelated obligations. However it
seems as though formal semantics had not been developed for the notation. In [DO00], the
authors present a simple architecture for an e-market where a controller agent is used to
undertake the resolution of possible disputes between parties to an agreement. The controller
may hold a representation of a contract in a model language, which implicitly defines state
spaces. Also the representation is accessible to each party so that each party knows what it is

supposed to do, and what to expect from its counter party.

Chapter 2

The controller in this architecture acts as a judge, using information from the contract,
and other sources such as advisors for the resolution of disputes. This is a different line of
research to ours, as we concentrate explicitly on using Finite State Machines to represent
contracts, and enforce them. Any disputes that arise in our case are not currently addressed by

our research.

2.12 Event-Trigger-Rules

Work done at the University of Florida proposes an approach, called the Event-Trigger-Rule
(ETR) paradigm, which is motivated by the need for rule based processing capabilities in the
distributed environment of electronic commerce enterprises [SLO1].

The ETR paradigm is a generalisation of the ECA (Event Condition Action) approach
where the event specification and conditions and actions of the rule are specified as separate
entities. Specifying a trigger then associates the event and rule together into a policy. This is
in contrast to the ECA rule specification approach, where the event specification, associated
conditions and actions be combined into a single rule.

In the ETR approach, events can be classified into 3 types — method associated events,

explicit events and timer events. Method events are associated with a particular method
invocation and can be raised either before, after or on-commit of the method. This distinction
is referred to as the coupling mode of the event.
Each of these coupling modes raises synchronous events that will cause a rule to be evaluated
before execution of the program continues. Additional coupling modes are instead-of (raises a
synchronous event that allows the rule to replace the method invocation) and decoupled
(raises an asynchronous event).

Explicit events are those raised by the application during execution and timer events
are those associated with a particular time of interest. Next is a method associated event
specification. Specification of a method associated event:

IN InventoryManager

EVENT update_quantity _event(String item, int quantity)
TYPE METHOD

COUPLING_MODE BEFORE

OPERATION UpdateQuantity(String item, int quantity)

A rule specifies some operations that should be perfomied if certain conditions apply. The
conditional part of an ETR rule is defined as a guarded expression, where the guard is used to
control evaluation of the conditional expression. This allows the entire rule to be skipped if
any part of the guard expression evaluated to false, thus avoiding potential exception

conditions (e.g. if required variables are not initialised).

Analysis of Related Work 33

Additionally, the rule specifies an action block (cf. a ‘then’ block) and an alternative action
block (cf. an ‘else’ block). The complete syntax of a rule specification can be seen here:
Syntax of the rule specification:

RULE rule_name(parameter list)

[RETURNS return type]

[DESCRIPTION description_text]

[TYPE DYNAMIC/STATIC]

[STATE ACTIVE/SUSPENDED]

[RULEVAR rule variable declarations]

[CONDITION guarded expression]

[ACTION operation block]

[ALTACTION operation block]

[EXCEPTION exception and handling block]

When specifying a rule, it is possible to define local variables using the RULEVAR clause
and also handle errors using the EXCEPTION clause. The STATE clause specifies if the rule
will be active or suspended after its definition. A suspended rule will not be triggered until it
is made active. The specification syntax also provides optimisation hints to the runtime
environment using the TYPE clause. A dynamic rule can be changed at runtime whereas a
static rule is less likely to be changed. This information is used when generating the runtime
representation of the rule to provide optimal performance. The final component of the ETR
approach is the trigger. Triggers are used to specify which event(s) causes the processing of a
particular rule. Syntax of the trigger specification:

TRIGGER trigger name(parameter lis)
TRIGGEREVENT set of event connected by OR

[EVENTHISTORY event expression]
RULESTRUC set of rules

[RETURNS return_type. rule_in RULESTRUC]

The TRIGGEREVENT clause is used to specify the set of events, combined using an OR
connective, that will cause the rule(s) specified in RULESTRUC to be evaluated. The event
specification can be augmented using the EVENTHISTORY clause to define other event
expressions that need to have occurred prior to the one defined in the TRIGGEREVENT
clause. When specifying the rules to be triggered in the RULESTRUC clause, it is possible to
combine several rules using one of 4 constructs: sequential (rules are triggered one after the
other), parallel (rules are triggered concurrently), AND-synchronised (all members of a set of
rules must complete evaluation before another, specified, rule is triggered), and OR-
synchronised (any two members of a set of rules must complete evaluation before another,
specified, rule is triggered).

The literature that discusses the ETR approach presents many applications of this
technique. These include the development of a knowledge management network [L0OO] and in

a dynamic business process management service described in [SLOT].

Chapter 2

Based on its similarity to the ECA rule approaches like PDL (Policy Description
Language) [LN99], it is easy to see how the ETR approach could be used to specify
obligation policies in a distributed system. However, because of the manner in which events
are defined and the ability to associate them to method invocations, it is also possible to
specify authorisation policies, albeit less succinctly, using this notation. Additionally, by
separating the event specifications from the rules, the ETR approach allows the user to reuse
the events in multiple triggers and thus associate them with different rules as necessary.
Despite the ability to specify different types of policy, and reuse parts of the specification in
multiple rules, this approach does not support other useful features like policy extension
(defining policies that inherit features from some parent policy) or policy groupings

(organising policies that relate to the same activity together).

2.13 Ponder Policy Specification Language

Of relevance to contract monitoring and enforcement is the Ponder Policy Specification
Language [DDLS01]. Ponder is an object-oriented declarative language for specifying
management and security policies for distributed systems or contractual service level
agreements between business partners. It can specify, monitor and enforce what actions
(operations on objects) are permitted within a system, who can invoke the actions and under
which conditions. It specifies policies in terms of obligations, permissions and prohibitions
and provides means for defining roles and relationships. Ponder comes with a toolkit for
editing, compiling and managing policies, that can be downloaded from its Web page at the
Department of Computer Science of the Imperial College in London [P02].

To detect and prevent policy conflicts such as conflict for a given resource or
overlapping of duties, Ponder’s notation permits the specification of semantic constraints that
limit the applicability of a given policy in accordance with the person playing the role, time,
or state of the system.

Key concepts of the language include domains to group the object to which policies
apply, roles to group policies relating to a position in an organisation [LS97], relationships to
define interactions between roles and management structures to define a configuration of roles

and relationships pertaining to an organisational unit such as a department.

Ponder Domains:
Domains provide a means of grouping objects to which policies apply and can be used to
partition the objects in a large system according to geographical boundaries, object type,

responsibility and authority or for the convenience of human managers. Membership of a

Analysis of Related Work 35

domain is explicit and not defined in terms of a predicate on object attributes. A domain does
not encapsulate the objects it contains but merely holds references to objects. A domain is
thus very similar in concept to a file system directory but may hold references to any type of
object, including a person. A domain, which is a member of another domain, is called a sub-
domain of the parent domain. A sub-domain is not a subset of the parent domain, in that an
object included in a sub-domain is not a direct member of the parent domain, but is an
indirect member, c.f.,, a file in a sub-directory is not a direct member of a parent directory. An
object or sub-domain may be a member of multiple parent domains i.e. domains can overlap.
An advantage of specifying policy scope in terms of domains is that objects can be added and

removed from the domains to which policies apply without having to change the policies.

Ponder primitive policies:
Authorisation policies define what activities a member of the subject domain can perform on
the set of objects in the target domain. These are essentially access control policies, to protect
resources and services from unauthorized access. A positive authorisation policy defines the
actions that subjects are permitted to perform on target objects. A negative authorisation
policy specifies the actions that subjects are forbidden to perform on target objects.

The language provides reuse by supporting the definition of policy types to which any
policy element can be passed as a formal parameter. Multiple instances can then be created
and tailored for the specific environment by passing actual parameters as shown in the

following example:

type auth+ PolicyOpsT (subject s, target < PolicyT> t)

action load(), remove(), enable(), disable() ;

}
inst auth+ switchPolicyOps=PolicyOpsT(/NetworkAdmins, Nregion/switches);

inst auth+ routersPolicyOps=PolicyOpsT(/QoSAdmins, /Nregion/routers);
Which means that the two policy instances created from a PolicyOpsT type allow members of
/NetworkAdmins and /QoSAdmins (subjects) to load, remove, enable or disable objects of
type PolicyT within the /Nregion/switches and /Nregion/routers domains (targets)
respectively.

Policies can also be declared directly without using a type as shown in the negative
authorisation policy next, which indicates the use of a time-based constraint to limit the
applicability of the policy:

inst auth— /negativeAuth/testRouters {
subject /testEngineers/trainee ;

action performance_test() ;

target <routerT> /routers ;

when time.between (09007, “17007)

}

Chapter 2

Specifies; trainee test engineers are forbidden to perform performance tests on routers
between the hours of 0900 and 1700. The policy is stored within the /negativeAuth domain.

Ponder also supports a number of other basic policies for specifying security policy:
Information filtering policy can be used to transform input or output parameters in an
interaction. For example, a location service might only permit access to detailed location
information, such as a person is in a specific room, to users within the department. External
users can only determine whether a person is at work or not. Delegation policy permits
subjects to grant privileges, which they possess (due to an existing authorisation policy), to
grantees to perform an action on their behalf e.g., passing read rights to a printer spooler in
order to print a file. Refrain policies, define the actions that subjects must refrain from
performing (must not perform) on target objects even though they may actually be permitted
to perform the action. Refrain policies act as restraints on the actions that subjects perform
and are implemented by subjects. See [DD01] for more details and examples of these policies.

Obligation policies are event-triggered condition-action rules, and define the activities
subjects (human or automated manager components) must perform on objects in the target
domain.

Events can be simple, i.e. an internal timer event, or an external event notified by
monitoring service components e.g. a temperature exceeding a threshold or a component

failing. Composite events can be specified using event composition operators.

inst oblig loginFailure {

on 3*loginfail(userid) ;

subject s = /NRegion/SecAdmin ;

target <userT> t = /NRegion/users ~ {userid} ;
do t.disable() -> s.log(userid) ;

}

This policy is triggered by 3 consecutive loginfail events with the same userid. The NRegion
security administrator (SecAdmin) disables the user with userid in the /NRegion/users domain
and then logs the failed userid by means of a local operation performed in the SecAdmin
object. The ‘->’ operator is used to separate a sequence of actions in an obligation policy.
Names are assigned to both the subject and the target. They can then be reused within the
policy. In this example we use them to prefix the actions in order to indicate whether the

action is on the interface of the target or local to the subject.

Analysis of Related Work 37

Ponder Composite policies:

Ponder composite policies facilitate policy management in large, complex enterprises. They
provide the ability to group policies and structure them to reflect organisational structure,
preserve the natural way system administrators operate or simply provide reusability of

common definitions. This simplifies the task of policy administrators.

Conflict analysis

In [DBSL02], Damianou et al discuss the issue of conflict resolution within policies. This is
of relevance to our efforts outlined in this thesis on validation of rights and obligations for the
purpose of removing ambiguities within contracts.

[DBSLO02], discusses different types of conflicts and presents strategies for resolving
them. A classification of policy conflicts is presented in [LS99], which discussed both
modality conflicts and application specific conflicts. Modality conflicts can be categorised
into three distinct types:

Authorisation conflicts arise when a positive and a negative authorisation policy is

defined for the overlapping subjects, targets and actions.

Obligation conflicts arise when one policy obliges a subject to perform a given

action whilst at the same time another policy forbids the action from being performed.

In the context of Ponder, this situation would arise if an obligation and a refrain

policy were defined on overlapping subjects and targets with identical actions.

Unauthorised obligation conflicts arises when a subject is obliged to perform an

action that it does not have the authorisation to do. In a system with a default negative

authorisation policy in which actions have to be explicitly authorised, this could occur

if an obligation policy is defined without an associated authorisation policy.

Application specific conflicts are those that arise because of constraints defined for the
particular application in which the policies are being used. For example, a system that
enforces the principle of separation of duties would define a conflict if the same person who
submits an expense report is also allowed to approve it.

[JS97] identifies that conflicts can be either static or dynamic. The distinction is that
analysing the syntax of a policy statement can identify static conflicts. These conflicts will
occur irrespective of the state of the system enforcing the policies — this is often the case for
simple modality conflicts. Dynamic conflicts are those that occur at run-time and arise
because a particular state of the system results in a conflict. These are harder to detect in

advance given that it is necessary to analyse the system in all possible states to do so.

Chapter 2

[S97] proposes that a conflict, once detected could be handled in one of three ways.
The most obvious and simplest one is for the system to declare an error condition whenever a
conflict arises. However, this solution is not particularly interesting since it does not allow for
the system to automatically recover from the conflicting scenario. Other solutions are to allow
the positive policy to override; or to let the negative policy override. The latter strategy is
adopting an approach of ‘do no harm’, based on the assumption that the negative policy (i.e.
the one that prevents an action being performed) has a more benign effect on the system than
its conflicting counterpart. As would be expected, the positive policy override strategy is the
exact converse of the negative override approach described.

In addition to the negative and positive override strategies mentioned above, [LS99]
also identifies some alternatives. One approach suggested is to assign explicit priorities to
every policy. This way when a conflict arises, the agent enforcing the policy could simply
compare the priority values and enforce the policy that has the highest priority. However, this
approach could easily lead to inconsistent behaviour of the system if, as is common in
distributed systems, multiple people are responsible for defining policies and assigning their
priorities. Other strategies suggested include giving priority to the policy that is ‘closest’ to
the managed object; or using the specificity of the policy definition to determine the priority.

Work done by Chomicki and Lobo [CL00] describes how conflicts can arise between
ECA rules and action constraints defined in the policy Description Language (PDL). Here, a
policy monitor is defined to detect conflicts between the ECA rules and any action constraints.
In order to resolve the conflict, the monitor will either choose to ignore certain events, thus
preventing the ECA rule from activating and causing the conflict; or will cancel any actions
that are specified in an action constraint. The latter scenario is an example of a negative
policy override strategy.

Progress has been made in dealing with policy conflicts within ponder, however
significant challenges remain to be addressed [DBSLO02]. In particular, how can one detect
conflicts when arbitrary conditions restrict the applicability of the policies? Sometimes, it is
possible to compare restrictions placed by the constraints. For example, it is possible to detect
if two time intervals overlap or if the policies apply when subjects are in different states e.g.,
active or standby. However, the problem remains unsolved in the general case. Other
challenges concern the different levels of abstraction at which policy is specified. Also
Conflicts between organisational goals will inevitably lead to conflicts between the policies
derived from these goals. Some policies will trigger complex management procedures, which
require the execution of vactions that may be specified as part of different policies. This

renders the task of ensuring the consistency of policy specification much more complex.

Analysis of Related Work 39

2.14 E-Commerce Frameworks

Here we list a number of e-commerce frameworks, which contain elements such as modelling
methods, supporting tools, standards, software and system architectures etc. They are
regarded important to e-contracting because they each include contracting as one of their

major modules.

2.14.1 ebXML

The United Nations body for Trade Facilitation and Electronic Business (UN/CEFACT) and
the Organization for the Advancement of Structured Information Standards (OASIS), have
joined forces to initiate a worldwide project to standardize XML business specifications.
UN/CEFACT and OASIS have established the Electronic Business XML initiative to develop
a technical framework that will enable XML to be utilized in a consistent manner for the
exchange of all electronic business data. Industry groups currently working on XML
specifications have been invited to participate in the 18-month project. A primary objective of
ebXML is to lower the barrier of entry to electronic business in order to facilitate trade,
particularly with respect to small- and medium-sized enterprises (SMEs) and developing
nations. The first ebXML Initiative Technical Specifications has been released for public
comment. The ebXML Requirements Specification defines specific technical infrastructure

requirements [AGO1]. More information can be found at [EBXML], [UNCE], and [OASIS].

2.14.2 BizTalk

BizTalk is an industry initiative started by Microsoft and supported by a wide range of
organizations, from technology vendors like SAP, CommerceOne, and Ariba to technology
users like BASDA. It includes a design framework for implementing an XML schema and a
set of XML tags used in messages sent between applications. It assumes that applications are
distinct entities, and application integration takes place using a loosely coupled approach to
pass messages. The two applications simply need to be able to format, transmit, receive and
process a standardized XML message. Through the BizTalk web site one can locate, manage,
learn, share information about and publish XML, XSL and information models and business

processes supported by applications that support the BizTalk Framework [B1Z].

2.14.3 Web Services

A Web service is an interface that describes a collection of operations that are network
accessible through standardized XML messaging. A Web service is described using a
standard, formal XML notion, called its service description that provides all of the details

necessary to interact with the service, including message formats (that detail the operations),

Chapter 2

transport protocols, and location. Web service descriptions are expressed in the Web Services
Definition Language or WSDL.

Web Services Technology, built upon existing and emerging standards such as HTTP
(Hyper Text Transfer Protocol), XML (Extensible Markup Language), SOAP (Simple Object
Access Protocol), WSDL (Web Services definition Language), and UDDI (Universal
Description Discovery and Integration), is speeding the development of Business to Business
(B2B) applications, and thus accelerating the expansion of the Internet. [GGKS02].

Web services technologies provide a programming model that accelerates application
integration inside and outside the enterprise. Because Web services are easily applied as a
wrapping technology around existing applications and IT assets, new solutions can be
deployed quickly and recomposed to address new opportunities.

As adoption of Web services accelerates, the numbers of services will increase,
fostering development of more dynamic models of just-in-time application and business
integration over the Internet.

Currently Web Services only provide for simple communication between computer
software, they do not support business interactions. Efforts are underway to enable such
interactions however. BPML (Business Process Execution Language) [BPML] is a notion for
specifying business process behaviour based on web services.

Processes in BPML export and import functionality by using web services interfaces
exclusively. BPEL4WS (Business Process Execution Language for Web Services) provides a
language for the formal specification of business processes and business interaction protocols.
By doing so, it extends the Web Services interaction model and enables it to support business
transactions. BPEL4WS defines an interoperable integration model that should facilitate the
expansion of automated process integration in both the intra-corporate and the business-to-
business spaces [BPML].

Related references: [PROT] [SOAP] [WSDL] [IBMW].

2.14.4 GRID

Grid computing is an evolving area of computing, where standards and technology are still
being developed to enable this new paradigm. It is a form of distributed computing that
involves coordinating and sharing computing, application, data, storage, or network resources
across dynamic and geographically dispersed organizations. Grid technologies promise to
change the way organizations tackle complex computational problems [GRID].

Research and development efforts within the Grid community have produced
protocols, services, and tools that address the challenges that arise when we seek to build
scalable Virtual Organisations. These technologies include security solutions that support

management of credentials and policies when computations span multiple institutions;

Analysis of Related Work 41

resource management protocols and services that support secure remote access to computing
and data resources and the co allocation of multiple resources; information query protocols
and services that provide configuration and status information about resources, organizations,
and services; and data management services that locate and transport datasets between storage
systems and applications [FKTO1].

OGSA (Open Grid Services Architecture) [OGSA], is an alignment of Grid
technologies, and Web Services technologies. This architecture is still evolving and uses Web
Services Description Language (WSDL) to achieve self-describing, discoverable services and
interoperable protocols, with extensions to support multiple coordinated interfaces and change
management. The aim is a standards-based distributed service system that supports the
creation of the sophisticated distributed services required in modern enterprise and inter-

organisational computing environments [FKNTO02].

2.14.5 eCo Framework

The eCo framework is a CommerceNet project that focuses on the integration of three e-
commerce services. These services are: an integration of multiple database types with
multiple data constructs and data libraries; trusted open registries; and agent mediated buying.
The intent is that these core services will provide interoperability between many commerce

services and will serve as a foundation to operate web based trading communities [ECO].

2.15 Discussion

Electronic contracts have drawn the interest of many research groups and projects such as
ODP-RM, CrossFlow, COYOTE, Queensland University, LGI, InterPocs, COSMSOS, TINA,
Ponder.. etc.

Of the projects discussed in the previous sections, those that have mainly drawn our
attention are Milosovic et al’s research on electronic contracting (Section 2.4), and Naftaly
Minsky’s Law Governed Interaction (Section 2.7). Specifically of interest to us are the
software tool Milosovic proposes for the contract validation process, and more elaborative
details on the operation of the mediator controller Cxy in Minsky’s LGI infrastructure.

For the purpose of modelling business transactions that are derived from contracts,
none of the approaches above use finite state machines, some such as InterPocs and
COSMOS make use of Petri-nets, however the majority of them rely on elaborate logical
notations that include temporal constraints and role players in their parameters. The
expectation is that these notations should be able to specify arbitrarily complex business

contracts and detect all kind of inconsistencies during the contract validation process. In most

Chapter 2

of the works above (Queensland, St Gallen, Ponder...etc), the contract infrastructure is
intended to be embedded within the infrastructure of the organisation. The expectation is that
the executable contract will not only be able to monitor and enforce the agreement between
the parties, but also will be able to take into account the organisations’ internal policies, trying
to ensure they do not conflict with the clauses of the contract.

This generality is certainly desirable; however, because of the complexity of the
problem it might be rather ambitious. We believe that a modular approach is more realistic for
detecting contract conflicts and ambiguities. For that to be possible, we need to be able to
identify and isolate the different sources of possible inconsistencies in business contracts.

In our model, we make a clear distinction between an organisation’s internal policies,
and the external policies that it may have signed on within the context of a contract. From this
perspective, we can identify two fairly independent sources of contract inconsistencies:

o Internal enterprise policies conflicting with contractual clauses.

* Inconsistencies in the clauses of the contract.

It is our view that these two issues should be treated separately rather than encumbering a
contract model with excessive notation (details, concepts and information) that might be
extremely difficult to validate. Such a separation is not considered in the work discussed
above. In this thesis we address only the second issue, that is, we are concerned only with the
cooperative behaviour of business enterprises and not their internal structure.

In our business model each contracting enterprise has the privilege and responsibility
of verifying that its internal policies do not conflict with the clauses of the contract. Similarly,
each enterprise exercises its independence to choose the roles players that would invoke
operations on the contract and provide them with a proper contract role player certificate (a
cryptographic key for example). Consequently, it is the responsibility of each enterprise to
prevent inconsistencies with role players such as duty overlapping, duty separation, etc.

We intentionally leave the notion of role players out of our discussion. However, we
assume they are authenticated by the contract management system before they are allowed to
perform operations of the FSMs. It can be argued that our FSM model lacks expressiveness in
comparison with the related works discussed above. However we do gain in simplicity.
Thanks to this simplicity we can use standard of-the-shelf model checkers like Spin [SP03] to
validate general safety and liveness properties of contracts, relatively easily.

In our work, contracts are conceptually located between the interacting parties and are
meant to drive the execution of inter-enterprise business processes.

Business processes vary in complexity from rather small such as the purchase of a
book to the rather complex such as the booking of a package holiday that could involve any

number of organizations, which have many agreements between them

Analysis of Related Work 43

We assume that a complex business process can always be decomposed into two or
more business processes of lower complexity that perform specific and individual activities.
This decomposition can be conducted several times until the complexity of the resulting sub-
processes is manageable [MSS03].

This decomposition approach is of great relevance for the implementation of x-
contracts. With x-contracts the interaction between the business partners can be thought as
taking place through individual sub-processes that are regulated by individual sub-contracts.
Naturally, each sub-contract contains only the rights and obligations to regulate the activities
involved by the particular sub-process. For example, two business partners might have a
contract that contains two sub-contracts: one for processing purchase orders for perishable
goods and a different sub-contract for tinned food. To execute a complete business contract a
parent contract is given the information and the power to create, coordinate and terminate one
or more instances of the same or different sub-contracts as needed. When an instance of a
sub-process is instantiated or terminated by the business partners, its corresponding electronic
sub-contract is instantiated or terminated by the parent contract.

An x-contract will in many cases, be simple enough so that it involves only one main
process, i.e. only one sub-contract will exists, so in fact the contract and its sub-contract will
be the same. In this thesis we are concerned with the execution of sub-contracts only, whether
this means the execution and monitoring of single process “simple” contracts, or whether it
means executing and monitoring individual processes within a bigger and more complex
contract that includes more than one sub-contract. We can briefly mention that within
“complex” contracts, the parent contract can be realised as a workflow script that manages the
set of sub-x-contracts that represent the set of sub-contracts that compose the whole contract.
In the rest of this thesis we refer to our sub-processes, sub-contracts, and sub-x-contracts

simply as processes, contracts, and x-contracts, respectively.

Blank Page

Chapter Three

Electronic Contracts as Finite State
Machines

In this chapter, we show how contracts can be converted into executable electronic contracts
through a process in which finite state machines are used to describe, monitor, and enforce the
clauses stipulated within a contract.

We first describe the meaning of x-contracts, and show how the clauses that form a
contract can be split into rights and obligations.

After this, we introduce finite state machines and illustrate how x-contracts, like
communication protocols, can be abstracted by finite state machines, and importantly we look
at how a finite state machine can express the rights and obligations of an x-contract. We
illustrate our ideas with the aid of a simple example of an ambiguous contract. We show how
the ambiguous contract is modelled into finite state machines. Finally after ambiguities are
removed from the finite state machine contract model, we look at how finite state machines
can be used to actively monitor and enforce the clauses of the contract.

As shown in Chapter 4, one of the major advantages of using FSMs is the facilities

they offer to analyse the correctness properties of contracts using validation tools such as Spin.

3.1 Contracts and X-Contracts

A contract can be defined as a paper document that stipulates that the signatories (two or
more) agree to observe the clauses stipulated in the document. Each entry in the document is
called a term or a clause.

An x-contract is an executable electronic version of a conventional contract. It is an
electronic document that monitors that the signing entities observe clauses stipulated in the
document.

As can be seen from the definitions of conventional and electronic contracts, the main
idea behind conventional and electronic contracts is the same: the two of them regulate the
interaction between two or more trading parties. However, in spite of the close similarities,
there is a crucial difference between the two kinds of contract. A conventional contract is
human oriented, whereas an x-contract is computer-oriented. Consequently, the former

tolerates ambiguities, the latter does not.

45

Chapter 3

3.1.1 Rights and obligations

The clauses of a contract stipulate how the signing parties are expected to behave. In other
words, they list the rights and obligations of each signing party. It should be possible to
precisely extract a set of rights and a set of obligations from the clauses of a given contract.

Therefore, a contract with two contracting parties can be represented as shown in figure 3.1.

AGREEMENT

ME1 ME1 ME1L ME2 ME2 ME2
R={RM RMEI | RMO RME2 RMED RMEZy

ME1 ME1 ME1 ME2 ME2 ME2
O ={OM", 01,0V OME2 oM OME2)

E-signatures

Manager E1
Alice

Manager E2
Bob

E1,E2—Enterprises, R—Right, O,—Obligation
ME1—Manager of E1, ME2—Manager of E2

Fig. 3.1. Abstraction of the main elements of a contract.

For the sake of simplicity, we will discuss an example with only two contracting parties.

However, all our concepts, and models, can be generalised to ” 22 parties as long as n is
finite.

Let us assume that in figure 3.1, E1 is managed by Alice and that E1 is interested in
purchasing some items from E2. Similarly, Bob is the manager of E2 which is an enterprise
interested in supplying items to E1. The contract shown in this figure has been signed by
Alice as the manager of enterprise E1 after agreeing with Bob that she will observe m
rights, R = {R}**',R;"" ..., R,*'} and p obligations, O = (0,04 ,..,0%"}. On the other
hand, Bob signed that he, as the manager of enterprise E2, would observe n rights,

R={RM?* RV . RM?} and q obligations, O = {O}**?,0,"*,..., 0)**}.

We define a right as an authorization to do something. Because it is only an
authorization, a right may or may not be exercised. In the context of the execution of an x-
contract, a right is an authorization to perform an operation that will affect the behaviour of

the execution of the x-contract. For example, the signed contract of figure 3.1 can stipulate

Electronic Contracts as Finite State Machines 47

that Alice, as a manager of E1, has the right to send an offer to sell to Bob, the manager of E2.
Because this is a right, it is up to Alice to send or not to send the offer to Bob; Bob will not be
disappointed if he does not receive the offer.

An obligation can be defined as a duty that must be performed. In the context of the
execution of an x-contract, an obligation is a duty to perform an operation that will affect the
behaviour of the execution of the x-contract. A failure to perform such a duty means a breach
of the x-contract. For example, the text of the x-contract shown in figure 3.1 might stipulate
that upon receiving an offer to sell from Alice, Bob has the obligation to reply to her with an
OfferAccepted or OfferRejected message.

The execution of a right or an obligation such as SendOfferAccepted or SendOfferRejected
will, at a lower level of abstraction, demand access to one or more objects such as files,
databases and printers. A question that arises here is whether Alice and Bob have the right to
access the objects affected by their operations. This is an issue of authentication and can be
left out of the discussion while we talk at the level of rights and obligations, and will be
discussed in detail in Chapter 6. At this level we can assume that the persons that execute the
x-contract are granted permission to access the objects they need.

Note that in our x-contract each right and obligation is given a name; naming rights and
obligations is crucial in our understanding of x-contracts. Being able to name each right and
obligation individually means that we can identify, and monitor each of them at run-time, that

is, when the contract is enacted.

3.2 Finite State Machines

A Finite State Machine (FSM) is a widely used and well known model for protocol
specification. Since its introduction in the 1950s it has been used for modelling a great
number of systems. Its analytical power and the ease with which the model can be loaded into
a computer and manipulated automatically with the help of software tools makes this method
attractive for modelling protocols. Similarly, the graphical nature of this model makes it easy
to read and understand the different stages that the protocol goes through during its execution.

Formally, a finite state machine M is defined as the quintuple [S,/,Z,5,1],
where S ={s,,8,,..,8,,}, { ={ij,iy,ni, }and Z={z,,z,,....z }are finite nonempty sets

of states, input symbols and output symbols, respectively. §:Sx7— S is the transition
function and A : S x I — Z is the output function.

Informally, M describes an abstract system that stays in a given state until it receives
an external stimulus. When such stimulus is received, the system reacts by doing something

(for example, sending an output signal) and then moves to a different state. Note that do

Chapter 3

something might mean do nothing in some circumstances and that the new state is not
necessarily different from the previous. The behaviour of this abstract system is deterministic.

The quintuple [S,7,Z,8,A] unambiguously defines what to do and where to go next.

Because of their high level of abstraction, FSMs are used to describe and model a
great variety of systems. In particular, the computer science community has gained a great
deal of experience in the use of FSMs for describing communication protocols, and built
several tools for validating such protocols. For example, Spin [SP03], and LTSA [LTSA99]

are well known protocol validators.

3.3 Representing Contracts as Finite State Machines

We have introduced communication protocols into the discussion about x-contracts for a valid
reason; we argue that from the point of view of the interaction and synchronisation between
the parties involved, x-contracts are equivalent to communication protocols. We claim that x-
contracts, as communication protocols, can be precisely abstracted by FSMs. The advantage
of looking at contracts as FSMs is that we can put into practice all the existing machinery that
was originally developed for studying communication protocols. For instance, we can resort
to Spin to validate an x-contract before converting it into the actual computer program that
will enact it. The goal of a validation process is to analyze what is known as the correctness
properties of the system. In other words, the essence of the validation is to discover, at an
early stage, whether the execution of an x-contract takes the contracting parties into
unacceptable situations. Among other things, validating the FSM model of an x-contract
should reveal the existence of states (conditions in the x-contract) that are not reachable, that
is, states for which there is no path from the initial state. If one of these unreachable states
represents the receipt of the goods the situation would be unacceptable and the contract would
need to be re-written. In the same order, the validator should show that at some point, the two
contracting parties reach a final state (contract deal for example) instead of being left in a
transient state for ever. To mention another example, the validation should reveal whether the
contract allows purchasers to receive goods before paying for them. FSM and contract
validation will be looked at in more detail in the next chapter.

A question that naturally arises at this point is how the rights and obligations of a

>

contract can be expressed in a FSM.

Electronic Contracts as Finite State Machines 49

3.3.1 Mapping Contract Clauses into FSMs

At the level of rights and obligations an x-contract is often more easily understood as a set of
FSMs, one for each contracting party. So, from our example in figure 3.1, we have one FSM
for the purchaser and one FSM for the supplier, FSMp, FSM; respectively.

The physical location of each FSM is irrelevant to the functionality of the contract
and is decided at the time of implementation. For the moment let us assume that FSMp is
located within Alice’s enterprise and FSM is located within Bob’s enterprise. To enact the x-
contract these two FSMs must share a common communication channel to interact with each
other, that is, the output of FSMpis somehow connected to the input of FSM, and vice versa.
We will now discuss how the rights and obligations stipulated in an x-contract can be mapped
into the FSMs.

It is easy to reason about the operations of an x-contract, with the following general

syntax in mind:

if event, ¢ condition, = lrue

perform operation; and switch to state,
else if event; & condition, = true

perform operation; and switch o state,

else if event, & condition;= true
perform operation,, and swilch to state,,

This syntax expresses the idea that, at some point an x-contract can be at any of n possible
conditions (condition;, condition,,...,condition,). If the x-contract is in a given condition, (for
example, WaitingForOffer), there is a finite and well defined set of events (event,,
event, , ...,event,) that can affect the future behaviour of the contract. The occurrence of
event; determines what objects (variables, files, database, etc.) within the system change their
values, that is, the event determines to which new condition the systems switches. Similarly,
there is a finite and well defined set of operations (operation; , operation, ,..., operation,,) that
can be executed when the system is in condition,. The event; determines the operation to be
executed.

Bearing in mind the discussion in Section 3.2, we argue that in terms of FSMs, the set
of conditions of the general syntax presented above can be mapped into the set S of states of a
FSM. Similarly, the set of events can be mapped into the set I of input symbols of the FSM. In
the same order, the set of operations can be mapped into the set Z of output symbols of the
FSM. Finally, we can map the set of switches to the next condition into the transitional
function 8, and the set of switches to the next output into the function A. It is important to bear
in mind that the operation donothing is a valid operation. In this discussion we represent it

with the symbol €. To summarize:

Chapter 3

Conditions are mapped into S states.
Events are mapped into I inputs.
Operations are mapped into Z outputs.
Thus, in terms of FSMs, we can express the above syntax as shown in figure 3.2, where e and

o stand for event and operation, respectively.

3.3.2 Description of a simple contract using FSMs

To show what rights and obligations look like, we will discuss a very simple example of a

contract (See figure3.3) for offering and purchasing goods remotely, for example, over the

Internet.

Fig. 3.2. Mapping of events, conditions and operations of a contract into a FSM state

Electronic Contracts as Finite State Machines 51

This deed of agreement is entered into as of the effective date identified below.

Between

[Name] of [Address] (To be known as the (Supplier)), and [Name] of [Address] (To be knows as the
(Purchaser)).

Whereas

(Supplier) desires to enter into an agreement to supply (Purchaser) with [ltem].

Now it is hereby agreed that (Supplier) and (Purchaser) shall enter into an agreement subject to the following
terms and conditions:

1. Definitions and Interpretations

1.1 Price, Dollars or $ is a reference to the currency of the [Country].

1.2 All information (purchase order, payment, notifications, etc.), is to be sent electronically.

1.3 This agreement is governed by [Country] law and the parties hereby agree to submit to the jurisdiction of
the Courts of the [Country] with respect to this agreement.

2. Offer

2.1 The supplier may use his discretion to send offers to the purchaser.

2.3 The purchaser is entitled to accept or reject the offer, but he shall notify his decision to the supplier.

3. Co ent and p
3.1 The contract shall start immediately upon signature.

3.2 The purchaser and the supplier shall terminate the x-contract immediately after reaching a deal for buying
an item.

4. Disputes

4.1 (Supplier) and (Purchaser) shall attempt to settle all disputes, claims or controversies arising under or in
connection with the agreement through consultation and negotiations in good faith and a spirit of mutual
cooperation.

4.2(Supplier) and (Purchaser) shall provide electronic evidences about breaches of the e-contract.

4.3 This method of determination of any dispute is without prejudice to the right of any party to have the matter
judicially determined by a [Country] Court of competent jurisdiction.

5 Amendment

5.1 This agreement may only be amended in writing signed by or on behalf of both parties.

E-SIGNATURES

In witness whereof (Supplier) and (Purchaser) have caused this agreement to be entered into by their duly
authorized representatives as of the effective date written below.

Effective date of this agreement: [day] of [month] [year]

loti

[E-signature] [E-signature]

[Person] [Person]

[Role] [Role]
E-address for Notices:

[E-address] [E-address]

Fig.3.3. Example contract between a Purchaser and a
Supplier for the purchase of goods

As an attentive reader will notice, the contract has serious ambiguities; this will be discussed
in Section 3.4.2. The contract which is signed by a purchaser and a supplier contains, among

other data, the following clauses:

1 Offer

1.1 The supplier may use his discretion to send offers to the
purchaser.

1.2 The purchaser is entitled to accept or reject the offer, but he shall
notify his decision to the supplier.

2 Commencement and completion

2.1 The contract shall start immediately upon signature.

2.2 The purchaser and the supplier shall terminate the x-contract
immediately after reaching a deal for buying an item.

From this English text contract clause we can extract the sets of rights and obligations for the

purchaser and the supplier and express them in terms of operations for FSMs:

Chapter 3

Purchaser’s rights:

R’ : Accept offers.

R; : Reject offers.
Purchaser’s obligations:

0/ : Start the x-contract.

07 :Reply to offers.

0 : Terminate the x-contract.
Supplier’s rights:

R’ : Send offers.

Supplier’s obligations:

0; : Start the x-contract.

0; :Terminate the x-contract.

To be consistent with the notation in figure 3.1 we now specify the sets of rights and
obligations: R={R,",R,,R’}and O ={0/,0/,0!,0°,05} . We show how the sets

R and O are mapped into FSMs in figure 3.4.

Purchaser Supplier

x-contract signed x-contract signed

TP e e 9
O, Start x-contract O Start x-contract

Waiting
for offer

&
Offer received ‘
€

Deciding
to buy
R’ Offer accepted

rSend accepted, P End x-contract
0, g

Offer rejected
> Send rejected Offer rejected receiy Offer edited
B Rl“ Send offer

€

Waiting
for
response

Offer accepted received
OS End x-contract
2

Fig. 3.4. FSM Representation of an ambiguous contract for the
purchase of goods
As can be appreciated from figure 3.4, we have used, two FSMs to precisely describe the
English text contract of our example. The elements of the sets of rights and obligations are
also shown in the figure. However, as they are, the two FSMs of figure 3.4 only describe the

behaviour of the two contracting parties; they do not monitor or enforce it.

Electronic Contracts as Finite State Machines 53

3.4 Monitoring and enforcement of x-contracts

During the execution of an x-contract, rights and obligations are triggered by local and remote
events. In this section we will show how two FSMs trigger rights and obligations on each

other.

3.4.1 Invocation of rights and obligations

To reason about how the contractual rights and obligations can be monitored and enforced by
a FSM, it is useful to look at the rights and obligations a contracting party has at a given state
of the execution of the x-contract. In terms of FSMs, this is equivalent to looking at the set of
operations that can be executed when the FSM of the contractual party is at state,. It is useful
to classify this set into two subsets: the subset of operations the owner of the FSM has the
right to perform and the subset of operations that person has the obligation to perform,
{0,,0,5...,0,,} and {0,,,,,0,,.5,.--,0,, }, respectively.

To illustrate how the rights and obligations are triggered we will examine figure 3.5.
This figure shows a snapshot of the two FSMs that model an x-contract for the purchase and
supply of e-goods.

Let us say, the execution of the x-contract at the purchaser’s side, is at state state,. As

can be seen from the figure, the rights and obligations the purchaser has when his FSM is at

state, can be mapped into the sets {0,,05,...,0,,}and {0, 30,42 5+,0 }, respectively.

purchaser’s rights supplier's obligations

f—H

Supplier

Purchaser

Ty ei/E

purchaser’s obligations supplier§ rights

Fig. 3.5. Interaction of two FSMs by means of rights and obligations

Executing an operation from the subset {0,,0,,...,0, } means exercising a right given by the

x-contract. Since each operation o, is paired to an event e,, the operation 0, can be executed

Chapter 3

only after the occurrence of e¢,. How does event e, occur? Event e, can be triggered

internally within the purchaser’s enterprise or externally, say for example, within the
supplier’s enterprise. Since the execution of operation o, is optional, the event of e, might be
deliberately triggered by the purchaser (for example, “I wish to send a purchase order”). Also,
it can be the result of an unavoidable situation within the purchaser’s enterprise and coded in

the FSM (for example, the mainframe computer has crashed) or it can be triggered by a

message received from the supplier (for example, “would you like to buy this item?”).

Executing an operation o,,,; from subset {o,,,,,0 O p} means complying with

m+1° Y m+29"

the contractual obligations the purchaser has when his FSM is at state;. As with the rightful
operations, the obligatory operations are paired to events which are triggered internally, or
externally.

It is important to understand that exercising a right at one side of the contract might or

might not have an effect at the other side. This depends on what the text of the contract

stipulates. The execution of operation o, at the purchaser’s side might trigger a right, an

obligation, or nothing at the supplier’s side. By nothing we mean that the supplier’s is not

notified about the execution of the operation 0, at the purchaser’s side.

Similarly, the execution of an obligatory operation o,, from the subset
{0,14150msg 50050 » } might trigger a right, an obligation or nothing at the supplier’s side.

The dashed line pointing from the pair e, /o0, at the supplier’s side to the pair
e, /o ,at the purchaser’s side implies that at state the supplier has the right to execute the
operation 0,. The English text of the contract stipulates that the purchaser (being at stateg) has
the obligation to execute operation 0, as a response.

Similarly, the dashed line pointing from e, /0, to e, /0, shows that at state, the
purchaser has the right to execute the operation o0,,. As a response to this operation, the
supplier has the obligation to execute the operation o,. The dashed line from e, /0, to e,/ &

shows that the purchaser’s has the right to execute the operation o,. However, the execution

of such operation demands nothing at the supplier’s side.
To show how these ideas can be used in practiée, we will apply them now to the

example of an x-contract discussed in Section 3.3.2.

Electronic Contracts as Finite State Machines 59

3.4.2 Description, monitoring and enforcement of an x-contract

In practice, it is likely that contracts will be written by lawyers and then passed on to technical
people to convert the original English text into a computer program that will monitor and
enforce what the contract stipulates.

From our own experience we have learnt that the first difficulty the technical person
faces in this situation is the ambiguities that the English text contract is likely to have. The
standard contract discussed in this section is not an exception. Although it looks correct at
first glance, it has a serious ambiguity. The contract text does not specify the time for sending
the offer. Neither does it specify the time for sending the notification about rejecting or
accepting the offer. These two omissions render the English text contract difficult to convert
into a useful x-contract. It is true that the x-contract can still be implemented and enacted but
the purchaser’s FSM will hang silently until the supplier decides to send an offer. If for some
reason the supplier forgets to send his offer, the two FSMs will hang silently forever or until
the purchaser or the supplier use another channel (a telephone, for example) to investigate the
problem. Telephone calls are intensively used for clarifying situations in conventional
business, however, in x-contracts they are not acceptable because they are exactly what x-
contracts are meant to prevent.

To be consistent with our arguments we show the English text of the example clauses

discussed in Section 3.3.2 after editing them to correct the ambiguities that were present:

1 Offer

1.1 The supplier may use his discretion to send offers to the purchaser,

1.2 If no offer is sent within seven days after the signature of the x-contract, or after
the latest rejected offer, the x-contract shall be terminated.

1.3 The purchaser is entitled to accept or reject the offer, but he shall notify his
decision to the supplier within five days after the receipt of the offer,

2 Commencement and completion

2.1 The contract shall start immediately upon signature.

2.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

Like in section 3.3.2, from the English text contract clause we will extract the sets of
rights and obligations for the purchaser and the supplier and express them in terms of

operations for FSMs.

Chapter 3

Purchaser’s rights:

R : Accept offers.

R : Reject offers.

Purchaser’s obligations:

O/ : Start the x-contract.

0; :Respond within 5 days after receipt of an offer.
o : Terminate the x-contract.

Supplier’s rights:

R : Send offers within 7 days after start of the x-contract.
Supplier’s obligations:

O : Start the x-contract.

0; : Terminate the x-contract.

Apart from minor changes, the rights and obligations look the same as the ones listed

in Section 3.3.2 . For example 02') must happen within 5 days, and this will be reflected in
the FSMs. An interesting right is R, because it is a right but also there is an obligation to

perform it within a time limit.

Once again as in Section 3.3.2 we show how the sets of Rights and Obligations are

mapped into FSMs in figure. 3.6.

x-contract signed

x-contract signed
()]" Start x-contract

()," Start x-contract

Waiting
for offer

; erminate x-contract

A

Editing

7 ;
R, Offer rejected offer

ke - 7 day timeout
O, Send rejected

Offer edited
R Send offer
y

Offer rejecteg received
4

Waiting
for
response

Deciding
to buy

» ;
R Offer accepted Offer accepted recei
()2" Send accepted, Eid x-contract End x-contrg ()2" Termihgge x-contract

Fig. 3.6. FSM Representation of an unambiguous contract for the
purchase of goods

We have to admit that though the FSM model we present for this rather simple x-contract
looks correct at first glance, we do not guarantee it is completely free from inconsistencies.
We argue that it is too adventurous to claim that the electronic representation of a contract is
free of inconsistencies before the model that describes it is validated using formal tools such
as the Spin validator (see Chapter 4).

What can be done if the validator discovers that the model of an x-contract contains

some inconsistencies? We have found out that this situation is rather common with existing

Electronic Contracts as Finite State Machines 57

standard contracts. We strongly argue that the existence of inconsistencies in a standard
English text contract is going to be the normal rather than exceptional.

Because of this, we believe that, except for the fairly well standardized contracts (see
Section 3.4.3) the conversion of a contract into an x-contract is an interactive process. The
interaction involves the lawyer and the technical person in charge for the implementation of

the x-contract:

1. The lawyer edits the English text contract.

2. The technical person converts the contract into a formal model and validates it.

3. If inconsistencies are discovered in the contract, the technical person goes back to the
lawyer (point 1) to request him to correct the English text, taking care that the main
purpose of the contract is not changed.

4. If the validator indicates that the model is free from inconsistencies and the lawyer is
satisfied with the last version of the English text contract, the technical person
proceeds to convert the model into the actual program that will enact the x-contract.

5. Once the English text contract and the x-contract are ready, the contracting parties

can sign and enact it.

In Chapter 5, we present an example of a contract that we have converted from English text
into FSMs. It is a contract for the purchase and supply of e-goods and is inspired in an
example for the purchase and supply of goods published in {[GM00]. We changed the original
text to make it more illustrative in terms of essential x-contract interactions. Most importantly,
we changed the original text to eliminate several ambiguities that prevented the contract from

being described with FSMs.

3.4.3 Ready to fill in, signh and enact x-contracts

The manual conversion process discussed in Section 3.4.2 from the English text contract to
the electronic contract is not the best solution.

The ideal scenario would be one where an English text contract can be converted by a
lawyer into an x-contract that monitors and enforces an agreement, without the intervention of
a technical person. Yet this is currently unrealistic, if this were possible then we would not
need programming for any applications. Automation of the contract conversion process with
current technology however, can be achieved for standard contracts.

In the business world, there is a family of applications where the contracting parties
resort to fairly standardized contract templates which are offered ready to be filled in and

signed. Examples of these templates are tenant agreements. These contract templates can be

Chapter 3

bought at the stationery. They are offered on the take-it-or-leave-it basis since the clauses of
the contract are not negotiable. The contracting parties can negotiate the data to be written in
the blanks, but nothing else.

We believe that for this family of applications it is possible to offer (possibly in return
for a fee) ready to fill in and sign x-contracts. We can think of a Web place where standard
English text templates are stored together with their inconsistencies-free x-contracts. The
contracting parties can then remotely fill in the template that suit their requirements, sign it,

pay for the service and enact the x-contract.
The steps that would be required to enable this can be summarized as follows:

Defining Standard contracts

1. Lawyers compile and edit a number of standard contracts used frequently as
"standard" between certain entities.

2. The technical person converts each of the standard contracts into FSMs and
validates them.

3. If inconsistencies are discovered in a standard contract, the technical person
reviews the contract with the relevant lawyer, and the English text is corrected.

4, If the validation process indicates that the FSM representing the contract is free
from inconsistencies, and the lawyer is satisfied with the standard contract, the

standard contract is added to the standard contract data base with its FSM.

Agreement phase

1. The trading partners use a contract editor to access the data base and choose a
standard contract relevant to them.

2. They fill in the relevant data (deadlines, prices, etc.)

3. Once satisfied they both electronically sign the contact.

Enactment phase

1. Both parties take the signed contract FSM and "plug it in" the contract monitoring
system.

2. The contract monitoring system uses the FSM ;:ode (which is the x-contract code)

to monitor and enforce the contract agreements between the parties.

Electronic Contracts as Finite State Machines 59

3.5 Summary

Before attempting to implement an x-contract electronically; the clauses within the original
conventional text contract must precisely abstracted and the parties’ rights and obligation
must be mapped into computer code convertible mathematical notation, also the ambiguities
that exist within the original conventional text contract must be detected and removed.

To specify party interaction related rights and obligations, we propose the use of
finite state machines. Thanks to their graphic nature, finite state machines are easy to read. On
the other hand the mathematical theory behind them makes them useful for ensuring the
correct operation of an x-contract.

In this chapter we described and proposed a method by which contracts’ rights and
obligations can be mapped into FSMs. The important issue of validation of the correctness of
the FSM contract model resulting from the conversion process is discussed in depth in the

next chapter.

Blank Page

Chapter Four

Validation of Electronic Contracts

Even for the simplest communication systems, it is difficult to design correct protocols, and
even more difficult is the task of validating the correctness of a protocol’s procedure rules, i.e.
correctness of the logic that describes the interaction between processes.

Because of this, the use of verification languages to write the procedures rules and
software tools to verify the correctness of the resulting code -called the validation model-
have been widely used for validating the correctness of protocol implementation.

In the previous chapter, we argued that from the point of view of the interaction and
synchronisation between the parties involved, x-contracts are equivalent to communication
protocols. Therefore, as is the case with communication protocols, designing a correct model
of an x-contract that is free from inconsistencies is going to be very difficult. Such a model
can be written in finite state machine or other formal notation with means for validating the
correctness of communication protocols.

In this chapter, we illustrate how verification systems and verification languages can
be utilized to simplify the process of designing x-contracts. By putting into practice existing
machinery that was originally developed for validating communication protocols, we hope to

exemplify one of the important benefits of employing FSMs for the design of x-contracts.

4.1 A Verification Language - Promela

So far one of the most successful software tools used to trace logical design errors in
distributed systems and in particular in communication protocols is Spin (Simple Promela
INterpreter). Spin is a generic verification system that accepts design specifications written in
the verification modelling language called Promela (PROcess MEta Language). In this
section, we will discuss this modelling language and leave the discussion of Spin until Section
4.2.

Promela is Spin’s input language and provides a vehicle for making abstractions of
protocols so that details that are unrelated to the communication processes are suppressed. A
Promela program consists of processes, message channels and variables. The state of the
whole system depends on the state of these three components.

A validation model is a piece of code that describes the procedure rules, i.e. the

interaction between processes. Having the code and a simulator to execute it, the verification

61

Chapter 4

of the completeness of the protocol and its logical consistency (free from deadlocks for
example) is achievable and furthermore, the implementation of the system follows from
converting the Promela code to a high-level one, C or C++ for example. The difference
between a Promela version of the protocol and the final high-level language implementation
is that the former deliberately abstracts from issues of protocol design, such as message
format, neither does it say how a message is to be transmitted, encoded, decoded, stored, etc.
Moreover, it does not deal with details irrelevant to processes’ interaction such as encryption
and decryption of messages and implementation of timers.

The syntax of Promela is described by Holzmann in the appendix C of his book
[H91]. However, to help the reader understand our Promela code, we introduce the basic

Promela statements and their semantics here.

executability In Promela the execution of a statement is conditional on its executability, i.e.,
at a given moment of time a statement is either executable or blocked depending on the state
of a variable or channel. Executability is the basic means of synchronization; hence, as shown
below in send/receive statements, input and output through a channel allows the
communication between two processes and synchronization as well. For example, the
statement “if (@ == b) a = a+l fi”, either increments the value of g, or blocks until the
condition “a == b", holds.

send The syntax of the send statement is

channel ! var

where channel is the name of a channel and var is a variable that holds a message.

receive The syntax of the receive statement is
channel ? var

where channel is the name of a channel and var is a variable that contains a message.

separators <> and ; are separators.

skip is a null statement. It is always executable and its execution has no effect. It is normally
used to satisfy syntax requirements.

goto The goto statement works as the infamous goto of high level languages, it transfers
control to any labelled statement. Like the skip statement, goto is always executable. As
Promela pays no attention to the problem of programming techniques it lacks most of the

constructs for writing a well-structured code, as a result goto is intensively used.

Validation of Electronic Contracts 63

If-fi selection A selection statement begins with if and ends with the keyboard fi and contains
a list of one or more options. Every option begins with the flag :: followed by a Boolean
expression called a guard. An option can be executed only if its guard is executable. Only one
option from the list is executed. If more than one guard is executable, one of them is selected
at random and the corresponding option is executed. If all guards are unexecutable, the
process blocks until at least one of them becomes executable. In the following example the
variable counter is either incremented or decremented depending on the value of a and b

if

:: (a==b) > counter = counter +1

1 (al=b) 2 counter = counter -1

fi

do-od repetition This statements works in a similar way as the if-fi one, but it is repeated
until a break statement is encountered or an unconditional goto jump is performed. In the
example shown the program loops until either the variable counter is decremented to zero
(loop stopped with the break statement) or until for some mysterious reason, the counter
decrements to below zero (loop ended using a goto jump to a label we give the name “Error”
for example).

do

:: (counter <) 2 goto Error

:: (counter==0) > break

:: (counter > 0) 2 counter = counter - 1
od

timeout This statement represents a condition that eventually becomes true if and only if no

other statement in the block of commands is executable.

4.2 A Verification System - Spin

Spin is a generic validation system that supports the design and verification of asynchronous
process systems [H97]. Spin verification models are focused on proving the correctness of
process interactions, and they attempt to abstract as much as possible from internal sequential
computations. It was developed at Bell Labs in 1980, its source code written in ANSI
standard C, and can be easily downloaded from the Internet [SP03] and compiled for UNIX,
Linux, and Windows platforms.

Spin accepts design specifications written in the verification language Promela (see
Section 4.1), and it accepts correctness claims specified in the syntax of standard Linear

Temporal Logic (LTL) [LTL].

Chapter 4

The Spin package consists of two independent tools a “Simulator” and a “Validator”
that are meant to be used at different stages of the protocol validation process.

Spin and its commands, can be executed directly from the command line, however it
is probably more useful to use the features of the graphical user interface XSpin. The “Basic

Spin Manual” [H97], is a very useful document about how to run Spin from the command line.

4.3 XSpin

The easiest way to get started with Spin is to run the graphical interface Xspin, see figure 4.1.
The graphical interface runs independently from Spin itself, and helps to invoke the proper
Spin commands based on menu selections. Xspin runs Spin in the background to obtain the
desired output, and wherever possible it will attempt to generate a graphical representation of
such output. Xspin knows when and how to compile promela code for the model checkers that
Spin can generate, and it knows when and how to execute it, so there is less commands that
the model designer needs to remember.
More details and tutorials on running Spin using XSpin can be found at [SP03].

The Help menu option (see figure 4.1), provides very good explanations of the many
capabilities of XSpin. Also our examples in this chapter and next will be described in

sufficient detail, so that the reader gets a good idea of XSpin’s functionality.

Y SPIN CONTROL 4.0.1 -- 10 January 2003 . e
File.. | Edit.. | Run.. | Help SPIN DESIGN VERIFICATION Line#:[1 Find:|

e

Run Syntax Check
Run Slicing Algorithm

Set Simulation Parameters..

{ Re jRun Simutation

Set Verification Parameters..

{Re)Run Venfication

LTL Property manager..

View Spin Automaton for each Proctype..

Fig.4.1. The Graphical user interface XSpin

Validation of Electronic Contracts 65

4.4 The Spin Simulator

As it names implies, the simulator can simulate the execution of a validation program (a
model in Spin jargon) written in Promela. It simulates Promela code by interpreting its
statements on-the-fly. To do its job the simulator performs a single-pass verification
procedure making effort to save memory and CPU resources; it tries to store in memory just
enough information to complete the verification process and to verify the correctness of the
requirements but for the smallest possible fragment of the whole behaviour of the system. For
example, if at a given point during the simulation process the simulator is faced with more
than one executable statement (a nondeterministic choice), it selects just one. This means the
simulator does not perform any exhaustive reachability analysis but goes only through a
single sequence of reachable states in the system, which is chosen depending on the value of
the seed the random number generator is initialized with, if no seed value is specified, the

simulator chooses one randomly [H91].

%¢ Simulation Dptions _ (0] x|
r Display Mode l Simulation Style
W MSC Panel - with: # Random (using seed)

& Step Number Labels SeedValus ﬁ_u_.,,w,

.~ Source Text Labels
4 Nommal Spacing
.~ Condensed Spacing
_| Time Sequence Panel - with:
& Interleaved Steps l a Full Queus
.+ One Window per Process
One Trace per Process

«.~ Guided {using pan.trail)
Steps Skipped0
.- Interactive

@ Blocks New Msgs

.~ Loses New Msgs

i

| Data Values Panel

W Track Buffered Channels | Hide Queues in MSC
M Track Global Variables Queue nr:|
| Track Local Variables RS
: : o Queue nr.|
_| Display vars marked ‘show’ in MSC
| Execution Bar Panel Quevenr.|

Help | cancel | start]

Fig.4.2. The XSpin simulator interface

The advantage of using the simulator at an early stage of the system design is that it can
immediately tell the system designer about simple inconsistencies in his protocol, such as
deadlocks, and unspecified receptions. It is fast and does not demand a great deal of computer

resources since it does not need to construct a global state for the system. Because of this,

Chapter 4

systems of arbitrary size can be easily simulated. However, since it runs a random simulation
only, the absence of errors reported by the simulator does not necessarily mean that the
system is error-free. The accurate verification of a system is performed by the Spin validator.
The simulator is simply executed using Xspin, by selecting the RUN menu option, and
then Set Simulation Parameters, where the designer can specify different options to inform
the simulator to output to the screen; what messages are sent or received and by which
processes, what line of the code is executed, the value of local and global variables, the value

of the seed for the random number generator, and so on. See figure 4.2.

4.5 The Spin Validator

The job of the Spin validator is to validate the correctness requirements (also called
correctness criteria and properties) of Promela code given at its input.

Spin belongs to the category of protocol verification systems that are based on the analysis of
the reachability of system states. Before going further in our discussion let us define what a
state is in Spin.

In Spin, a state is completely defined by all control flow points of running processes,
all values of local and global variables, and the contents of all local and global channels.

A reachability analysis algorithm tries to generate and inspect all the states of the
system that are reachable from the initial state; this means that the algorithm will construct all
possible execution sequences from the initial state to the final state (possibly more than one).
In other words and assuming that the system we are analysing is non-deterministic (i.e. its
Promela code contains guarded “::” commands), the algorithm must explore all possible

paths. For example, if the validator is faced with the following code:

if

:: (a > 0) D statementl
:: (a=0) > statement2
:: (a < 0) P statement3

fi
Spin has to explore three possible sequences after reading the value of variable a: The first
execution sequence considers that a > 0 and statement! is executed; the second execution
sequence considers that a = 0 and statememt2 is executed; for the third execution sequence,
the validator assumes a < 0 and executes statement3.

It is worth noﬁng that for a validation to be possible, the Promela specification of the
system must restrict the number of processes, flow control point, variables, channels, and
slots of channels to a finite number so that the number of states of the system remains finite

and the system can be analysed exhaustively by enumerating its reachable states.

Validation of Electronic Contracts 67

Depending on the size of the system, the generation and analysis of all possible states
can be computationally unfeasible. Most of the time the designer of a large system (more than
1075 reachable system states) is faced with the state space explosion problem. To understand
this, we will briefly discuss how Spin works.

A system is represented in a Promela model as a set of processes. Spin translates each
process into a finite state automaton. Next, the asynchronous interleaving product of automata
is computed and translated into an automaton. This automaton represents the global system
behaviour and is called the state space of the system or the global reachability graph.

A correctness requirement of a system is expressed in a formal notation called Linear
Temporal Logic (LTL for short). LTL can be translated into what is known as the Buchi
automaton.

To perform verification, Spin computes the synchronous product of the Buchi
automaton and the automaton that represents the global system behaviour. The result of this
computation is another Buchi automaton and is used by Spin to see what language it accepts.
If such a language is empty, this means that the correctness requirements expressed in the

LTL formula are not satisfied by the system.

% Basic Verification Options

=101x]

| Search Mode
& Exhaustive

s~ Supertrace/Bitstate
+.~ Hash-Compact

l Correctness Properties
& Safety (state properties)
_| Assertions
M Invalid Endstates

.- Liveness (cycles/sequences) | & Full Queue
.- Non-Progress Cycles ¥ Blocks New Msgs
..~ Acceptance Cycles . Loses New Msgs

_| With Weak Faimess [Add Never Claim from File] I

_J Apply Never Claim (If Present) | porify an LTL Property]]

rt Unreachable Code
M Repo [Set Advanced Options] |

| Check xrfxs Assertions

Help | Cancel I Run I

Fig.4.3 The Spin validator interface

Something to keep in mind during validation is to tell whether the language accepted by the
Buchi automaton is empty or not. Spin has to generate and verify all possible sequences of
states of the automaton; this can become prohibitively expensive since in the worse case, the
state space of the system has the size of the Cartesian product of all its components: control

flow points, processes, local and global variables, and channels.

Chapter 4

Once the system is written in Promela code and passed through the simulator, the
designer is encouraged to validate it using XSpin.

The Basic Verification Options menu in figure 4.3, presents the user with a number of
options that comprise the most common correctness requirements that the user might need to

perform his verification. Correctness requirements are the subject of the next section.

4.6 Correctness Requirements

A crucial decision the designer of a protocol or a FSM model of an x-contract, has to make, is
what correctness requirements (absence of deadlocks, mutual exclusion, temporal claims, etc.)
to check his system on. This is extremely important not only because this will guarantee that
the system is free of a particular kind of error, but also because the inclusion or exclusion of
one of these requirements can have significant impact on the number of total states of the
system and for instance on RAM memory and CPU time demand to validate them.

Although the correctness requirements that are usually validated in protocols are
well-known, the list of correctness requirements the protocol designer tests his/her protocol
on, depends on two factors: the particular characteristics of the system, and the stage of
development. The termination correctness requirement for example, can be important for one
protocol but not required for other. Similarly, temporal claims are not normally tested in early
stages of development, but at the final stages, when the protocol is free of the basic errors.

Promela provides well defined means of expressing different correctness criteria:
namely, the designer can include in his Promela specification statements to prompt the Spin
validator to check for the following correctness criteria of his system: assertions, system

invariants, deadlocks, non-progress cycles, livelocks, and temporal claims.

4.6.1 Assertions and system invariants

An assertion is often expressed as a boolean condition inserted somewhere in the Promela
code. It has the form of assertion(bool-condition) and is expected to be true whenever a
process reaches a given state. The assert statement has no effect if the boolean condition
holds true; conversely, it generates an error message if the boolean condition becomes false.
If the designer wants a boolean condition to remai;1 true in all reachable system states
he/she can express this as a system invariant. A system invariant is just a generalization of an
assertion, it has the same form, assertion(bool-condition), and is placed in a separate process
that runs concurrently with the one the designer wants to validate; the assert statement is

executed precisely once for every state of the system.

Validation of Electronic Contracts 69

4.6.2 Deadlocks

Since Spin expects only systems with a finite number of states, it expects that the system
under validation either terminates after a finite number of state transitions or it goes back to a
previously visited state (a loop). Both alternatives are considered a valid end to a process.
Although the second alternative is not the final state of the system, it is considered and called
a proper end state in Spin. If the system does not match this correctness criterion it is said to
have a deadlock. In Promela, a proper end state is identified by a three-character prefix end-
state label which has the form of endsomething, where something is any sequence of
characters accepted by Promela in names used as identifiers. Example of end-state labels are:

end, endcycle, end0, end!, and so on.

4.6.3 Progress cycles and livelocks

In Promela (and other programming languages) infinite cycles are considered correct
behaviour for a process as long as the process goes through the states the designer expects. To
express that a process cannot cycle infinitely without visiting certain states, Promela provides
the statement progresssomething to mark such states. States marked by such labels are called
progress-states since the system must go through them to make any progress. An execution
sequence that violates this claim is called a non-progress cycle.

To express that it is incorrect to cycle infinitely through a given state, Promela
provides the statement acceptsomething to mark the state. Such state is called an acceptance-
state. The name is a bit misleading and comes from the fact that a sequence of statements that
contains acceptance-state labels is named an acceptance cycle. What we are saying here is
that we want a system without any acceptance cycles. The job of Spin is to detect these
acceptance cycles if there are any in the system.

As before something is any sequences of characters accepted by Promela in names
used as identifiers. For example, progress-svr, progressClt, accept0, acceptl, etc.

Acceptance cycles are also known as livelock since a process that goes infinitely often
through states marked by acceptance labels is still doing something but trapped in a loop. It

cannot escape from there and go through the states the designer wants it to go through.

4.6.4 Temporal claims

In some cases it is necessary to express that a state in which a certain condition is true cannot
be followed by a state in which that condition or a different one is false. For example, the

designer might want to express that if it is true that a channel with a single slot is full, it

Chapter 4

cannot remain full after reading a message from it. In Spin these correctness requirements are

called temporal claims, and in Promela are expressed with the help of the statement:
never{Prom_statementl, Prom_statement2, Prom_statement3, ...}

Each Prom statement is a Promela statement that contains the details of the claim; for

example; assertions, progress-states, and acceptance-states labels.

4.6.5 Safety and liveness properties

In protocol validation, properties are grouped into two major classes: safety properties and
liveness properties. Informally, a safety property states that nothing bad ever happens. Let us
take a lift as an example. A safety property will state that if the lift is travelling or stopped
between two levels its door will never open. On the other hand, a simple liveness property
states that something good will eventually happen. Again, let us take a lift as an example. A
simple liveness property will state that if a user has arrived at the intended floor, the doors
will eventually open. In other words, the passenger will eventually terminate his journey.

Another way of explaining safety and liveness properties is by saying that a safety
property states what we do not want the system to do. Conversely, a liveness property states
what we want the system to do.

These two concepts have been widely used in the literature devoted to correctness of
concurrent programs since they were introduced by Lamport [L77].

In Spin the concept of safety properties is used to group together assertions and
system invariants, deadlocks, and unspecified receptions. On the other hand, non-progress
cycles, livelocks, and temporal claims fall in the class of liveness properties.

As explained in Section 4.6, the designer can use Spin directives to instruct the
validator to validate the properties he is interested in. It is a well-known fact that it is always
simpler specifying what we do not want from a system than specifying what we want, thus, it
makes sense to begin the validation of a protocol by validating safety properties first and
leave liveness properties for the last stages of the validation.

The reader interested in more details about safety and liveness properties is

encouraged to refer to [H91] where these concepts are studied in depth.

4.6.6 Cost of correctness requirements

v

We have just discussed what correctness criteria can be specified in Promela to be validated
by Spin, the order in which we introduced them reflects the level of sophistication in the
validation and at the same time the cost of performing the validation in terms of RAM

memory and CPU time demands.

Validation of Electronic Contracts 71

Holzmann reports [H91] that it is comparatively cheap to validate assertions and
absence of deadlocks. The computational cost for this is linear in the number of reachable
states (R) of the system both in RAM memory space and CPU time. To check on progress
cycles and livelocks can be twice as hard in terms of CPU time but there is not a noticeable
increase in RAM memory requirements. The most expensive correctness criterion to validate
is temporal claims. Compared to assertions and absence of deadlocks validation, the cost can
be 2N times as hard, where N is the number of reachable states in the sequence of statements
contained in the claim:

never{Prom_statementl, Prom_statement2, Prom_statement3, ...}

It is important and helpful to notice that Spin/XSpin allow us to validate these correctness
criteria separately (see Section 4.6), for example check the system for non-progress cycles
only, or for acceptance cycles only so that the simpler requirements do not contribute to the
cost of the more sophisticated ones.

The selection of the correctness criteria to validate in each run is made with the help
of XSpin options: For example, the designer can select the Safety (state properties) option, to
indicate that he/she is interested only in validating safety properties. The definition of safety
is explained in Section 4.6.5. Similarly, checking the option Non-Progress Cycles indicates
that the designer wants to check on non-progress cycles (figure 4.3)...etc.

Once the required correctness requirements are selected, the user can simply select

the Run option to begin the validation.

4.7 Basic Verification of x-contracts

In the first three sections of this chapter, we presented the reader with a brief introduction to
the verification language Promela, the verification system Spin, and to the requirements that
the verification system will need to check for correctness in order to verify the accuracy and
correctness of a protocol. But how do we make use of such verification tools for specifically
verifying the correctness of a FiSM representation of an x-contract? To answer this, we shall
reintroduce the example presented in Chapter 3. The example was a contract for the supply of
e-goods between a Supplier and a Purchaser.

Firstly in Section 4.7.1, we will present the contract in its initial ambiguous state,
extract from its clauses the sets of rights and obligations of the contracting parties, and map
them into finite state machines. We will then attempt to verify the correctness of the FSMs by
creating a verification model using Promela, and then using Spin to verify the correctness of

the model against some correctness requirements. In Section 4.7.2, we will present the

Chapter 4

rewritten contract after taking care to eliminate any ambiguities that we discovered (if any)
using Spin. And as in Section 4.7.3 we will extract the rights and obligations, map them into
FSMs, create the verification model, and validate its correctness against the same correctness

requirements.

4.7.1 Contract before removal of ambiguities

This deed of agreement is entered into as of the effective date identified below.

Between

[Name] of [Address] (To be known as the (Supplier)), and [Name] of [Address] (To be knows as the
(Purchaser)).

Whereas

(Supplier) desires to enter into an agreement to supply (Purchaser) with [ltem].

Now it is hereby agreed that (Supplier) and (Purchaser) shall enter into an agreement subject to the following
terms and conditions:

1. Definitions and Interpretations

1.1 Price, Dollars or $ is a reference to the currency of the [Country].

1.2 All information (purchase order, payment, notifications, etc.), is to be sent electronically.

1.3 This agreement is governed by [Country] law and the parties hereby agree to submit to the jurisdiction of
the Courts of the [Country] with respect to this agreement.

2. Offer

2.1 The supplier may use his discretion to send offers to the purchaser.

2.3 The purchaser is entitled to accept or reject the offer, but he shall notify his decision to the supplier.

3.C t and pletion

3.1 The contract shall start immediately upon signature.

3.2 The purchaser and the supplier shall terminate the x-contract immediately after reaching a deal for buying
an item.

4. Disputes

4.1 (Supplier) and (Purchaser) shall attempt to settle all disputes, claims or controversies arising under or in
connection with the agreement through consultation and negotiations in good faith and a spirit of mutual
cooperation.

4.2(Supplier) and (Purchaser) shall provide electronic evidences about breaches of the e-contract.

4.3 This method of determination of any dispute is without prejudice to the right of any party to have the matter
Jjudicially determined by a [Country] Court of competent jurisdiction.

5 Amendment

5.1 This agreement may only be amended in writing signed by or on behalf of both parties.

E-SIGNATURES

In witness whereof (Supplier) and (Purchaser) have caused this agreement to be entered into by their duly
authorized representatives as of the effective date written below.

Effective date of this agreement: [day] of [month] [year]

[E-signature] [E-signature]

[Person] [Person]

[Role] [Role]
E-address for Notices:

[E-address] [E-address]

Fig.4.4. Contract for the purchase of goods between a purchaser and a supplier

The example in figure 4.4 is a contract signed between a Purchaser, and a Supplier. The
contract in its original state, before removing any ambiguities can be abstracted by the

following clauses:

1 Offer

1.1 The supplier may use his discretion to send offers to the
purchaser.

1.2 The purchaser is entitled to accept or reject the offer, but he shall
notify his decision to the supplier.

2 Commencement and completion

2.1 The contract shall start inmediately upon signature.

2.2 The purchaser and the supplier shall terminate the x-contract
immediately after reaching a deal for buying an item.

Validation of Electronic Contracts 73

The rest of the clauses in the contract (figure 4.4) have been left out because we are only

concerned with the clauses required for controlling and monitoring the interactions between

the parties.

Rights and Obligations:

From this English text contract we can extract the sets of rights and obligations for the

Purchaser and the Supplier.

Purchaser’s rights:

R’ : Accept offers.

R} : Reject offers.
Purchaser’s obligations:

0! : Start the x-contract.

o} : Reply to offers.

0! : Terminate the x-contract.
Supplier’s rights:

R; : Send offers.

Supplier’s obligations:

o : Start the x-contract.

0; : Terminate the x-contract.

After extracting the sets of rights and obligations, we can represent them in Finite

State Machines as shown in figure 4.5.

Purchaser Supplier

z-contract signed x-contract signed

O Start x-contract

0]" Start x-contract
Offer rejected

Waiting
for offer
h” Send rejected Offer rejected receiyed

&
Offer received)
€

Deciding
to buy
A
R Offer accepted

Ol’Send accepted, o’ End x-contract
2 3

Offer edited
— Ri" Send offer

€

Waiting
for
response

Offer accepted received
O End x-contract

Fig.4.5 FSM Representation of an ambiguous contract for the
purchase of goods.

Chapter 4

Our next task is to represent the FSM in figure 4.5 in the modeling language —Promela- that is

the input language of the verifier Spin. The complete verification model is presented next:

[*Verification Model for the Contract Finite State Machines*/

Q0T=LION G O EI e

B RO B BN D)D) m— = = e e e e = = = O

/*in their initial ambiguous state*/

#define
#define OA 1 /*Offer accepted */
#define OR 0 /*Offer rejected*/

mtype = {Offer, Response}
chan S2P = [1] of {mtype, int};
chan P2S = [1] of {mtype, byte};

proctype Supplier() /***Suppliers FSM***/

MA 20 /*Maximum acceptable offer*/

proctype Purchaser() /***Purchasers FSM***/

int offerValue; int offerValue;
byte responseValue; /*OA or OR*/ PurEContractSigned:
SupEContractSigned: WaitingForOffer:
EditingOffer: S2P ? Offer(offerValue) ->
if DecidingToBuy:
:: offerValue = 30; /* An offer that is too high > MA*/ if

. offerValue = 20; /* < MA */
. offerValue = 10; /* < MA */

::(offerValue>MA)-> P2S!Response(OR);
goto WaitingForOffer;

fi; :: else -> P2S | Response (OA); goto Deal;
if fi;
:: S2P!0ffer(offerValue) -> goto WaitingForResults; Deal:
:: skip /*Taking into account the possiblity that*/ printf("\n\n Purchaser: Deal\n\n");
fi; /*the supplier might not send anything */ end:
WaitingForResults: printf("\n\n Purchaser: End\n\n");
P2S ? Response(responseValue);
if e
:: (responseValue == OR) -> goto EditingOffer; !
:: (responseValue == OA) -> goto Deal; { 8
it run Supplier();
15eal: run Purchaser();
printf("\n\n Supplier: Deal \n\n"); }

end:
printf("\n\n Supplier: End \n\n");

/*Verification Model for the Contract Finite State Machines*/
/*in their initial ambiguous state*/

#define MA 20 /*Maximum acceptable offer*/
#define OA 1 /*Offer accepted */
#define OR 0 /*Offer rejected*/

mtype = {Offer, Response}

. chan S2P = [1] of {mtype, int};
. chan P2S =[1] of {mtype, byte};

. [***Suppliers FSM***/

. proctype Supplier()
A

. int offerValue;
. byte responseValue; /*OA or OR*/

. SupEContractSigned:

. EditingOffer: /*under this label/state, we must take into account*/

/*All possible actions that the supplier coould take*/

if

. offerValue = 30; /* An offer that is too high > MA*/

Validation of Electronic Contracts

26. :: offerValue = 20; /* <MA */

27. :: offerValue = 10; /* <MA */

28. fi;

29,

30.

31.if

32. :: S2P!Offer(offerValue) -> goto WaitingForResults;
33. :: skip /*Taking into account the possiblity that*/
34. fi; /*the supplier might not send anything */
35.

36. WaitingForResults:

37. P2S ? Response(response Value);

38.

39. if

40. :: (responseValue == OR) -> goto EditingOffer;
41. :: (responseValue == OA) -> goto Deal,
42. /*:: else -> printf("\n\n Error\n\n");*/

43. fi;

44,

45, Deal:

46. printf("\n\n Supplier: Deal \n\n");

47.

48. end:

49, printf("\n\n Supplier: End \n\n");

50.

51.}

52.

53. /***Purchasers FSM***/

54. proctype Purchaser()

55. ¢

56. int offerValue;

57. PurEContractSigned:

58.

59. WaitingForOffer:

60. S2P ? Offer(offerValue) ->

61.

62. DecidingToBuy:

63.

64. if

65. ::(offerValue>MA)-> P2S!Response(OR); goto WaitingForOffer;
66. :: else -> P2S ! Response (OA); goto Deal;
67. fi,

68.

69. Deal:

70. printf("\n\n Purchaser: Deal\n\n");

71.

72. end:

73. printf("\n\n Purchaser: End\n\n");

74.}

75.

76. init

77. ¢

78. run Supplier();

79. run Purchaser();

80. }

75

Chapter 4

To clarify the conversion process from an FSM to its Promela verification model, we
suggest that every state in the FSM has an address label in the verification model.

In this code, there are two asynchronously executing processes, a Purchaser, and a
Supplier. There are two message types (mtype) exchanged between the two processes, the
“Offer” made by the Supplier, and the “Response” to the Offer made by the Purchaser. In
order to exchange these messages, we have two message channels, S2P (Supplier to
Purchaser), and P2S (Purchaser to Supplier).

Note that we make the assumption that acceptance or rejection of an offer is based
only on the price offered.

The process begins with the Purchaser waiting for an Offer message with an
offerValue from the Supplier. Under the address label EditingOffer, the Supplier’s offerValue
is chosen randomly in a “if ... fi;” structure. The offerValue is then either sent or not sent
(randomly) through the S2P channel. The Supplier now waits for a response to his/her offer,
while the Purchaser makes a decision on whether to accept it or reject it based simply on the
price offered. If the price is satisfactory, the Purchaser sends an OA (Offer Accepted)
message to the Supplier, the Supplier receives this, and they both go into the end “Deal” state.
If however, the price offered by the Supplier is too high (greater than MA), then the Purchaser
sends an OR (Offer Rejected) message, and they both go back to the beginning of the process.

The Supplier can then make another offer, and so on.

Simulation Run

The “Run Syntax Check” option from the “Run” menu, in the Spin validator, checks the model
for syntax errors. After doing this, we can use Spin for one or more simulation runs before
running the validator. As we point out in Section 4.4, the simulator performs a single pass
verification procedure. The advantage of using the simulator at an early stage of our design is
that it can immediately tell us about simple inconsistencies in our design, such as deadlocks,
and unspecified receptions. The simulator is useful also as it provides us with the opportunity
to simulate a number of runs before implementation of the design.

Figure 4.6, shows the sequence chart of a random simulation run. And figure 4.7
shows the detailed simulation output. The simulator will repeat a random run precisely if the
seed value for the random number generator is kept the same (see figure 4.2). In this case the
seed value is “1”. The chart in figure 4.6 shows messages being passed between the

Purchaser and the Supplier in a single simulation run.

Validation of Electronic Contracts

¥ Message Sequence Chart
Supplier:
5
1o
3
)
2'Res se, 1
o
L
17
Einit::0
17
Ml 8 ey

Fig.4.6 Message sequence chart

77

Three processes are created during the simulation; the Supplier process, the Purchaser

process, and the init process. The init process, instantiates the Supplier and Purchaser

processes.

.\fSimuIation Output

=101x

a0 proc - (:root:) creates proc 0 (:init:)
1= proc 0 (:init:) creates proc 1 (Supplier)
1 proc 0 (:init:) line 78 "pan_in" (state 1) [(run Supplier())]
2t proc 1 (Supplier) line 25 "pan_in" (state 4) [offerValue = 20]
a; proc 0 (:init:) creates proc 2 (Purchaser)
3: proc 0 (:init:) line 79 "pan_in" (state 2) (run Purchaser())]
4: proc 1 (Supplier) line 31 "pan_in" (state 5) [.(qgoto)]
5: proc 1 (Supplier) line 32 "pan_in" (state -) [values: 1!0ffer,20]
5. proc 1 (Supplier) line 31 "pan_in’ (state 9) [S2PI0ffer, offerValue]
6: proc 2 (Purchaser) line 60 "pan_in" (state -) [values: 170ffer 20]
6: proc 2 (Purchaser) line 60 “pan_in" (state 1) [S2P?70ffer, offerifalue]
0z proc 2 EPurc?gse;’)llme 334 "Pﬁn?in“((state 8) [else]
8: proc 1 (Supplier) line "pan_in" (state 7) oto Waitin
9: proc 2 (Purchaser) line 66 "pan_in" (state -) 3alues: 2!33232?2:“%}:3]
9 proc 2 (Purchaser) line 66 "pan_in" (state 6) P2SIResponse, 1] ’
10: proc 1 (Supplier) line 37 "pan_in" (state -) [values: 27Response, 1]
| 10: proc 1 (Supplier) line 37 "pan_in" (state 11) P2S?Response, reapo;zseValue]
1L: proc 2 (Purchaser) line 66 "pan_in" (state 7) [goto Deal]
18+ proc 1 (Supplier) line 39 "pan_in" (state 16) ((responsevalue==1))]
13: proc 1 (Supplier) line 41 “"pan_in" (state 15) goto Deal]
Supplier: Deai. ifolibe) 18 a5) ! T
14 roc upplier) line "pan_in" (state 18) [printf(’ o 2
Purchasgr: Degl() al i i P ("\\n\\n Supplier: Deal \\n\\n’)]
: roc Purchaser) line "pan_in" (state 10) rintf(’ ;
Deal\\n\gn')] [printf (*\\n\\n Purchaser:
Supplier: End !))
16: proc 1 (Supplier) line 49 "pan_in® (state 19) [printf(’\\n\\n Supplier: End \\m\\n')]
Purchaser: Eng (" y i ¥ ' ¢ o ’
17: roc Purchaser) line "pan_in" (state ; Y })
17 groc 2 (Purchaser) terminates) [printf (*\\n\\n Purchaser: End\\n\\n’)]
17: proc 1 (Supplier) terminates
LT proc 0 (:init:) terminates
‘‘‘‘‘ 3 processes created
£
Single Step Suspend Save in: Jsim.out Clear J e J

Figure 4.7. Simulation output

The number that is shown in the square boxes is a simulation step number that matches the

numbers in the left margin of the Simulation Output panel (See figure 4.7). The arrows show

the messages being passed between the Supplier and the Purchaser. So the top arrow shows

Chapter 4

that for this random simulation, the Supplier is sending the Purchaser a price offer of “20”.

“l”

And the bottom arrow shows the Purchaser accepting the offer by sending “1”, i.e. “True”.

Figure 4.7, shows the simulation in detail, including not only messages passed, but
every step of the simulation process.

As we can see from figure 4.6, and 4.7, there are 17 steps in total. And the simulation
run ends with the “Deal” state for both the Supplier and the Purchaser processes.

The simulation shows that the validation model is free from errors for the routes that
the simulator chose to go through. We can force Spin to go through different simulation paths

by simply choosing a different seed in “choose simulation parameters”, under the Run menu

option, see figures 4.1 and 4.2.

Validation:

After one or more simulation runs, the next step is to use the Spin validator to validate the
correctness of our model against some correctness requirements. We will perform an
exhaustive verification run to prove some basic properties, such as absence of deadlocks,
unreachable code and states, unspecified receptions, etc. Results of this verification run are

presented next in figure 4.8.

5(Yerification Output s “ ‘ .-_LDJBSJ

_% pan: invalid endstate (at depth 11)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates

(not selected)
{disabled by -A flag)
{disabled by -DSAFETY)

C k! e I

State-vector 44 byte, depth reached 23, errors: 1
25 states, stored
1 states, matched
26 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolwved)
(max size 2°19 states)

2.622 memory usage (Mbyte)

= 0.00user 0.0lsystem 0:00.04elapsed 23%CPU (Davgtext+Oavgdata Omaxresident)k
/ Dinputs+Ooutputs (1l6major+608minor)pagefaults Oswaps

Save in: 1E:| Clear [Close |

Fig.4.8. Verification Output

The section “Full statespace search for” illustrates the correctness requirements against

which the verification process was performed. A correctness requirement will be followed by

Validation of Electronic Contracts 79

a “+“ sign or a “-” sign, indicating whether the correctness requirement was, selected, or not
selected respectively. Selection is done when inserting the verification option, see figure 4.3.
The first line in figure 4.8 indicates that Spin has detected an error in our verification
model. “invalid endstate (at depth 11)”. And the fourth line tells us that the verification
process was stopped. We now need to find out the cause of the error detected. This can be a
tedious process if we are to check every line of the Promela code, and especially if the
verification model was one representing finite state machines of many states, and/or much
greater complexity. Fortunately XSpin saves the path through which the verifier detects the
error. See Figure 4.9. And we can use the simulator to go through the path through which the
verifier detected the “invalid endstate” error, by choosing the “Run Guided Simulation”

option.

¥¢ Suggested Action =10 x|

Optionally, repeat the run with a different search depth to find a shorter path to
the error.

Or, perform a GUIDED simulation to retrace the error found in this run, and skip the
first series of steps if the eror was found at a depth greater than about 100
steps).

Setup Guided Simulation.. | Run Guided Simulation.. | Close \

Fig 4.9 Suggested actions for detected error

Figure 4.10, shows the Simulation output of the path through which the error was detected.

¥¢ Simulation Output e it Eix]
PZ preparing trail, please wait...done i
1% proc O (:inlts) llr@ 78 "pan_in" (state 1) [(run Supplier())]
21 proc 1 (Supplier) line 26 "pan in" (state 1) [offerValue = 30]
3: proc 0 {(:init:) line 79 "pan_in" (state 2) [{run Purchaser())]
4: proc 1 (Supplier) line 32 "pan_ in" (state -) [values: 1!0ffer, 30]
4. proc 1 (supplier) line 32 "pan_in" (state 6) [S2Pl0ffer, offervalue]
5. proc 2 (Purchaser) l;ne 60 "pan_in" (state -) [values: 1?70ffer, 30]
5. proc 2 (Purchaser) line 60 "pan_in" (state 1) [S2P?0ffer, offerValue]
6: proc 2 (Purchaser) line 65 "pan_in" (state 2) [((offerValue>20))]
7: proc 2 (Purchaser) line 65 "pan_in" (state -) [values: 2!Response, 0]
7: proc 2 (Purchaser) line 65 "pan_in" (state 3) [P2S!Response, 0]
8: proc 1 (Supplier) line 37 "pan_in" (state -) [values: 2?Response, (]
g: proc 1 (Supplier) line 37 "pan_in" (state 11)

[P2S?Response,response?alue]' .
9. proc 1 (Supplier) line 40 "pan in' (state 12) [((responsevValue==0))]
10: proc 1 (Supplier) line 27 "pan_in" (state 2) [offerValue = 20]

14 proc 1 (Supplier) line 33 "pan_in" (state 8) [(1)]

spin: trail ends after 12 steps

#processes: 3

125 proc 2 (Purchaser) line 60 "pan_in" (state 1)
192. proc 1 (Supplier) line 37 "pan_in" (state 11)
12 proc 0 (:init:) line 80 "pan_in" (state 3)

3 processes created
_ | Exit-Status 0

A
Single Step SuspendJ Save in:] | Gear' Cancel

Fig.4.10 Simulation output of erroneous path

Chapter 4

Bearing in mind that in Promela syntax, “!” means “send”, and “?” means “receive”. Figure
4.10 shows us that the simulator goes through the following steps:
1. Process init runs the Supplier process.

2. Supplier chooses to offer the Purchaser a price = 30.

3. Process init runs the Purchaser process.

4. Supplier sends the offer value of 30 to the Purchaser.

5. Purchaser receives the offered value.

6. Purchaser detects that the value of 30 is greater than 20.

7. Purchaser sends the response value “0” False = rejected.

8. Supplier receives the response.

9. Supplier detects that the response is a reject.

10. Supplier chooses to offer the Purchaser a price = 20.

After this, the Supplier is supposed to send his/her offer to the Purchaser, but the
Simulator doesn’t show this happening. A closer look at step 11 in figure 4.10 shows us that

the trail ended after the simulator went through line 33 of the Promela code:

31 if

32 :: S2P!0ffer(offerValue) -> goto WaitingForResults;
33 :: skip /*Accounting for the possibility that*/

34 fi; /*the supplier might not send anything */

This line was inserted to take into account that the Supplier might choose not to send the offer
for whatever reason.

The simulation output in figure 4.10 then detects problems in lines 60, and 37:

59 WaitingForOffer:
60 S2P ? Offer(offerValue) ->

36 WaitingForResults:
37 P2S ? Response(responseValue);

No offerValue was received by the Purchaser process, and subsequently, no responseValue
was received by the Supplier process. And the finite state machines of the Supplier and the
Purchaser will hang.

This is an example of a simple verification model. An attentive reader may have
predicted this ambiguity in the finite state machines without having to resort to a verification
language such as Spin. However, as more and more complex finite state machine
representations of contracts are designed, this will become more difficult, and this example

illustrates the benefits of resorting to such verification languages.

Validation of Electronic Contracts 81

Now that we have detected the problem we will attempt to remedy it next.

4.7.2 Contract after removal of ambiguities

The contract in its initial state is ambiguous because it does not give the parties to the contract,
time constraints within which to perform some operations, such as sending messages. This
could lead to undesirable situations where one of the parties is waiting indefinitely for a

message to arrive. Therefore, the contract after removing the detected ambiguities has the

following clauses:

1 Offer

1.1 The supplier may use his discretion to send offers to the purchaser.

1.2 If no offer is sent within seven days after the signature of the x-contract, or after
the latest rejected offer, the x-contract shall be terminated.,

1.3 The purchaser is entitled to accept or reject the offer, but he shall notify his
decision to the supplier within five days after the receipt of the offer.

2 Commencement and completion

2.1 The contract shall start immediately upon signature.

2.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

As the reader will notice, we have inserted time limits in the form of days, in which the
Purchaser and the Supplier must carry out some tasks. An offer must be made within 7 days,
and notification of acceptance or rejection of an offer, must take place within 5 days.

We extracted the sets of rights and obligations for the Purchaser and Supplier, and

mapped them into a FSM for each of the signatories to the contract, see figure 4.11.

Rights and Obligations:

Purchaser’s rights:

R’ : Accept offers.

R: : Reject offers.

Purchaser’s obligations:

o/ : Start the x-contract.

o! :Respond within 5 days after receipt of an offer.
o/ : Terminate the x-contract.

Supplier’s rights:

R} :Send offers within 7 days after start of the x-contract.
Supplier’s obligations:

o : Start the x-contract.

0! : Terminate the x-contract.

Chapter 4

x-contract signed x-contract signed
 start x-contract (f Start x-contract

Editing
offer

Offer edited

R Send offer

End x-cont; @ Tenmie x-contract

Fig. 4.11. FSM Representation of an unambiguous x-contract for the
purchase of goods

Offer rejecteqf received

In order to check the FSMs in figure 4.11 for correctness, we will convert them into the
verification language Promela. The above FSMs are basically modifications of the FSMs of
the ambiguous contract of Section 4.7.1. To translate these modifications into Promela, we
will make use of the Promela “timeout” statement.

This statement allows a process to abort waiting for a condition that can no longer
become true, for example an input from an empty channel. We will add clarification to the
code, by illustrating which states in the FSMs are reflected in Promela. We next present the

Promela code for the corrected FSM’s in figure 4.11:

. *Verification Model for the Finite State Machines*/
. /*after making corrections and removal of ambiguities*/

1
2
3.
4. #define MA 20 /*Maximum acceptable offer*/
5. #define OA 1 /*Offer accepted */

6. #define OR 0 /*Offer rejected*/

7

8

9

. mtype = {Offer, Response}

10. chan S2P = [1] of {mtype, int};
11. chan P2S =[1] of {mtype, byte};

13. /***Suppliers FSM***/
14. proctype Supplier()
{
17. int offerValue;
18. byte responseValue; /*OA or OR*/
20. SupEContractSigned:

22. EditingOffer: /*under this label/state, we must take into account*/
/*All possible actions that the supplier could take*/

Validation of Electronic Contracts

23,
24,
25.
26.
27.

if

:: offerValue = 30; /* An offer that is too high > MA*/
. offerValue = 20; /* <MA */

:: offerValue = 10; /* < MA */

fi;

28.

29.
30.
31.
32.

if

:: S2P!Offer(offerValue) -> goto WaitingForResults;
. skip; /*Taking into account the possiblity that*/

fi; /*the supplier might not send anything */

33.

34

35

36.
37.
38.
39.

WaitingForResults:

if
:: P2S ? Response(response Value);

fi;

40.

41.
42.
43.
44.
45.

if

:: (response Value == OR) -> goto EditingOffer;
:: (responseValue == OA) -> goto Deal;

/*:: else -> printf("\n\n Error\n\n");*/

fi;

46.

47.
48.
59.

Deal:
printf("\n\n Supplier: Deal \n\n");

goto end;

60.

61.
62.
63.

Dispute:
printf("\n\n Dispute!\n\n");
goto end;

64.

65.
66.

67

68.

end:
printf("\n\n Supplier: End \n\n");

}

69.

70.
71.

/***Purchasers FSM***/
proctype Purchaser()

72. ¢

73.
74.

int offerValue;
PurEContractSigned:

75.

76.

WaitingForOffer:

77.

78.
79.
80.
81.

if

::S2P ? Offer(offerValue)
::timeout -> goto end

fi

82.

83.

DecidingToBuy:

84.

85.

86

87.

if
. (offerValue>MA)-> P2S!Response(OR); goto WaitingForOffer;
. else -> P2S ! Response (OA); goto Deal;

:: timeout -> goto Dispute; /*if no response is received after 5 days*/

83

Chapter 4

88.
89.
90.
911’
92.
93
94.
95.
96.
97.
98.
99,

The Promela code presented here is essentially the same code as in the previous section, but
with inserted timeout constraints. This should correct the ambiguities that we detected in

Section 4.7.1, and indeed this is verified after we run the Spin verifier once more, see figure

fi;

Deal:

printf("\n\n Purchaser: Deal\n\n");

end:

printf("\n\n Purchaser: End\n\n");

}

init

{

run Supplier();
100. run Purchaser();
101. }

4.12.

model with respect to the correctness requirements chosen (Invalid Endstates, Unreachable
Code). The model can be checked against many correctness requirements as the designer
deems necessary. For example, the verification model can be modified to explicitly state that
the price offered by the Supplier has not been accepted by the Purchaser if the price exceeds
an agreed price P. We can then insert assertions (Section 4.6.1) in relevant sections of the

verification model to ensure that the Supplier does not make an offer > P in the form;

Figure 4.12 shows that Spin did not detect any inaccuracies with the verification

assert(offerValue<=P) .

|| Oinputs+0outputs (11l4major+608minor)pagefaults Oswaps

¢ Verification Output ’ e i =181x]
tE‘(Spin Version 4.0.1 -- 7 January 2003)

+ Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks

- (not selected)
invalid endstates +

(disabled by -A flag)
(disabled by -DSAFETY)

State-vector 44 byte, depth reached 23, errors: 0
70 states, stored
10 states, matched
80 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)
(max size 2~19 states)

2.622 memory usage (Mbyte)

unreached in proctype Supplier
(0 of 27 states)
unreached in proctype Purchaser
(0 of 16 states)
unreached in proctype :init:
(0 of 3 states)
0.00user 0.0lsystem 0:00.04elapsed 20%CPU (Davgtext+Oavgdata Omaxresident)k

Save in: J /homefpg/ngd’ Clear Close

Fig.4.12 Verification output for the corrected verification model

Validation of Electronic Contracts 85
4.8 Correctness requirements and Contracts, Discussion

In the previous section, we presented a contract, and illustrated how a verification tool can be
utilized; to simulate possible interactions between the parties to the contract; and to verify the
correctness of the FSM representation of the contract against some correctness requirements.

As we stated in Section 4.6 the choice of correctness requirements to verify any
protocol is important. This applies also for the application of electronic contracts.

Consequently, what we wish to identify, is what correctness requirements may be
required for the verification and the implementation of x-contracts. This will be investigated
in depth in this section.

We can identify a number of correctness requirements that an x-contract must adhere
to in order for it to be free of ambiguities, and therefore implementable, we can summarise

these as follows:

(A) An x-contract must have clear end states. The person/s responsible eventually for

implementing an x-contract must have a contract that explicitly defines what the valid end
states are. That is what are the acceptable situations (triggered perhaps by Rights and/or
Obligations) under which an x-contract may be terminated.
Definition of proper end states for x-contracts is necessary. This is to prevent deadlock, a
situation where an execution sequence terminates at an unexpected “improper” end state.
Under the Promela modelling language, the definition of a proper end state is as follows:
Every process that was instantiated has either terminated or has reached a state marked as a
proper end-state (See Section 4.6.2).

Notice that the proctypes for the Purchaser and the Supplier, in the validation models
in Section 4.7.2 finish with “end” states. The Spin Validator implicitly detects any improper
end-states.

Task/Requirement Summary: Identify all end states that are valid states for

termination of the x-contract

(B) The x-contract may need to specify some essential “progress” states that the
parties must go through during infinitely cycling transactions. l.e. the verification model of
the x-contract, cannot infinitely cycle through states that are not labelled “progress-states”.
For example for the contract clause: Before the Supplier despatches the goods, he/she must
receive the payment. This makes the “payment” state essential for the progress of the x-
contract, and the verification model of the x-contract must not infinitely cycle through other

states without going through the “payment” state.

Chapter 4

We can express this in Promela by preceding the “progress™ state with the label
progress. In Promela, the execution sequences that violate this correctness claim are called
non-progress cycles. The Spin verifier will when requested detect non-progress cycles.

Task/Requirement Summary: Identify all states within infinite cycles that are
essential for the progress of the x-contract.

Example: In the x-contract of Section 4.7.2 we want to ensure that the Purchaser
does not accept or reject an offer before an offer is actually made by the Supplier. The
“receipt of an offer” qualifies as a progress state because (a) The Purchaser must rely on its
occurrence to be able to make a decision, and (b) because this state can and should occur,
infinitely often, if the Supplier continues to make offers (The repeated occurrence of this as
we know means that the Supplier is repeatedly making unacceptable offers).

Verification:

We can modify the Promela code of Section 4.7.2 as follows:

WaitingForOffer:

if

::S2P ? Offer(offerValue);

progressOnOffer: skip

::timeout -> goto end

fi;

We have inserted the progress label progressOnOffer just after waiting for the receipt of the
offer state S2P ? Offer(offerValue) . Now after running the Syntax check, we can set the
verification parameters to detect non progress cycles, see figure 4.3, and then click on the Run

button. The results are presented in figure 4.13.

> Verification Output

I (spin Version 4.0.1 -- 7 January 2003)
+ Partial Order Reduction

Full statespace search for:

never-claim +

assertion violations + (if within scope of claim)
non-progress cycles + (fairness disabled)
invalid endstates - (disabled by never-claim)

State-vector 48 byte, depth reached 53, errors: 0
140 states, stored (208 wisited)
166 states, matched
374 transitions (= wisited+matched)
0 atomic steps
hash conflicts: 0 (resolwved)
(max size 2719 states)

2.622 memory usage (Mbyte)

0.00user 0.0lsystem 0:00.0lelapsed 83%CPU (Davgtext+Oavgdata Omaxresident)k
Oinputs+0outputs (115major+609minor)pagefaults Oswaps

Savein: | /home/pg/n9’ Cleari Close

Fig.4.13 Verification Output for detection of non-progress cycles

~

Validation of Electronic Contracts 87

If we compare figure 4.13 with figure 4.12, we notice under the “Full statespace search for”
section that the safety requirement “invalid endstates” has been switched of for the purpose of
this verification run, and we are checking for the “non-progress cycles” requirement.

The results show that there are “0” errors, so we can be sure that the “receipt of an

offer” state is indeed a progress state as we require.

(C) The x-contract may need to specify situations or actions by the signatories of the
contract that may not be executed infinitely often.

In the example presented in Section 4.7.2 a situation may occur where the Supplier
can infinitely make the same unacceptable offer of Price>20. This reoccurring situation in
Promela terms is what is known as Livelock, see Section 4.6.3, and this property, can be
expressed using acceptance-state labels. An acceptance state label is any label starting with
the character sequence “accept”.

Task/Requirement summary: ldentify states that must not be repeated infinitely
often.

Example: let us take the situation we just presented: In our example of Section 4.7.2,
we would not desire a situation where the supplier infinitely often makes undesirable offers.
Therefore the state at which the Supplier is making unacceptable offers qualifies as an
acceptance state.

Verification: We can modify the Promela code of Section 4.7.2 as follows:

EditingOffer: /*under this label/state, we must take into account*/

/*All possible actions that the supplier could take*/
if

:: offerValue = 30;

acceptOfferTooHigh: skip /* An offer that is too high > MA*/

.- offerValue = 20; /* <MA */

- offerValue = 10; /* <MA */

fi;

We have inserted the accept label acceptOfferTooHigh just after the Supplier edits an offer
offerValue = 30. By inserting this label, we are telling the Spin verifier that we would not like
the possibility to arise where the supplier may infinitely make an offer that is too high. After
running the Syntax checker, we can set the verification parameters to detect non acceptance

cycles, see figure 4.3, and then click on the Run button. The results are presented in figure

4.14.

Chapter 4

¢ Verification Output

| pan: acceptance cycle (at depth 3)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
acceptance cycles
invalid endstates

(not selected)

(fairness disabled)

+
o
+
State-vector 44 byte, depth reached 26, errors: 1
72 states, stored (81 visited)
8 states, matched
89 transitions (= visited+matched)
0 atomic steps
hash conflicts: 0 (resolwed)
(max size 2719 states)
2.622 memory usage (Mbyte)

0.00user 0.02system 0:00.0lelapsed 166%CPU (Davgtext+Oavgdata Omaxresident)k
Oinputs+Doutputs (117major+608minor)pagefaults Oswaps

Savein: | /home/pg/ng” Clear Close

Fig.4.14 Verification output for detection of livelock (non-accept cycles)

sl

The output results tell us that the process was not completed, and that the search was stopped
at an error. As in Section 4.7.2, we will use Spin to trace the source of the error. Whenever
Spin detects a correctness requirement violation, the window in figure 4.9 will always appear,
and we can run a guided simulation through the route in which Spin detected the error. We
know in this case where the error is, because we only have one accept label. Using the
simulator is useful in complex x-contracts where we want to detect the source of an error
between many accept labels. Going back to our example, after running the guided simulation,

we can see the simulation output results in figure 4.15.

¢ Simulati

done

£ preparing trail, please wait...

proc 0 (:init:) line 92 "pan_in" (state 1) (run Supplier())]
2 proc 0 (:init:) line 93 "pan_in" (state 2) (run Purchaser())]
3 proc 1 (Supplier) line 25 "pan_in" (state 1) [offerValue = 30]
<<<<<START OF CYCLE>>>>>
4: proc 1 (Supplier) line 26 "pan_: 1n" (state 2) (al]
8 proc 1 (Supplier) line 32 "pan_in" (state -) [values: 1l0ffer, 30]
L proc 1 (Supplier) line 32 “pan_ in" (state 7) [S2Ploffer, offervValue]
6: proc 2 (Purchaser) line 71 pan_ln" (state -) [values: 170ffer, 30]
6: proc 2 (Purchaser) line 71 "pan.in" (state 1) [S2P?0ffer, offerValue]
T proc 2 (Purchaser) line 72 "pan_in" (state 2) [(1)]
8: proc 2 (Purchaser) line 79 "pan_in" (state 7) [((offerValue>20))]
9. proc 2 (Purchaser) line 79 "pan in" (state -) [values: 2!Response, 0]
9: proc 2 (Purchaser) line 79 "pan_in" (state 8) P2S|Response, 0]
10: proc 1 (Supplier) line 39 "pan_m" (state - values: 27Response, 0]
10: proc 1 (Supplier) line 39 "pan_m“ (state 12) [P2S5?Response, responseValue]
11; proc 1 (Supplier) line 44 "pan_in" (state 17) [((responseValue==0))]
12: proc 1 (Supplier) line 25 "pan_in" (state 1) offerValue = 30]
spin: trail ends after 13 steps
#processes: 3
13 proc 2 (Purchaser) line 70 "pan_in" (state 5)
13 proc 1 (Supplier) line 26 "pan_ in" (state 2)
13 proc 0 (:init:) line 94 "pan_in" (state 3)
3 processes created
Exit-Status 0
Single Step | Suspend | Savein: | simout Cear | Cancel |

Fig.4.15 Simulation output for path with livelock

Validation of Electronic Contracts 89

As we can see, the trail ends after the Supplier makes an offer = 30, where we placed the
acceptOfferTooHigh label in the Promela verification model.

We now know that we have an undesirable situation where the Supplier can make
unacceptable offers infinitely. The contract does not deal with this situation either because: (1)
for some reason the signatories have agreed to allow this. (2) They have simply omitted to
explicitly insert detail that they may for a conventional contract (non x-contract) have taken
for granted.

As the second possibility is the most probable, the following clause will have to be
modified:

If no offer is sent within seven days dfier the signature of the x-contract, or after the

latest rejected offer, the x-contract shall be terminated.

There are many solutions; one would be to limit the Supplier to N<=10 offers (for

example). And the verification model will be modified accordingly.

(D) Transactions between parties to a contract may need to run in a certain sequence,
and/or under certain conditions, depending on the specific requirements of the signatories.

An x-contract must define when each of the Rights and Obligations can be performed.
Examples; an x-contract must define if payment for the goods is to be made before or after
delivery of the goods; the FSM of an x-contract cannot reach a state where a complaint about
the quality of the goods is sent before reaching the state where the goods are delivered. Some
situations such as the later may seem obvious and may not be scrutinised in conventional
contracts, but they must be clearly stated if a contract is to be enforced electronically.

Validation of this correctness requirement using Promela can be achieved through the
use of “temporal claims” (Section 4.6.4). Temporal requirements can be very complex. They
can even expand to include non-progress, and non-acceptance correctness requirements.

Task/Requirement summary: Identify the required sequencing of events/states for
the correct performance of the contract, and identify the conditions (if any) under which this
sequencing must occur.

Example: Let us take the correctness requirement that a complaint about the quality
of the goods must not be sent by the Purchaser before the goods are received from the

Supplier. We can present a verification model to express possible scenarios:

Chapter 4

/* Goods complaint example
%

*/

bool placeOrder = false ;
bool complaintRecd = false ;
bool orderRecd = false ;

active proctype OrderPlacement()

// place an order
placeOrder = true ;

// Premature complaint randomly sent or not

// sent to the Supplier

if

:: complaintRecd = true ; //complaint received by Supplier
:: skip ;

fi;

// receive order
orderRecd = true ;

// a complaint was made
if
:: complaintRecd = true ;
. skip ;
fi

}

Using XSpin, verification of temporal claims is done using the Linear Temporal Logic
(LTL) Manager. See figure 4.16. We shall use the LTL Manager to check if sending a
complaint before receiving the goods is a possible scenario of the above verification model.

So looking at our verification model, we are claiming the following:
[] (placeOrder -> !complaintRecd U orderRecd) meaning;:

It is invariantly true that following the placement of an order a complaint should NOT be
received before the order is received. After this formula is entered into the LTL Manager we
first generate the “Never Claim” by clicking the “Generate” button. After this, we can Run the

verification, See figure 4.16.

Validation of Electronic Contracts 91

¥ Linear Time Temporal Logic Formulae

Formula: I[] (placeOrder -> | complaintRecd U orderRecd) | Load... |

operators: | | < | U | ->|and| or | not

lProperty holds for: @ All Executions (desired behavior) . - No Executions (error behavior)

Notes [file home/pgMm9721392/docsphd/orders.pr.it]:
. Use Load to open a file or a template.

4 P

Symbol Definitions:

. #define placeOrder placeOrder
#define complaintRecd complaintRecd
#define orderRecd orderRecd

LA

Never Claim: Generate |
P STS— |

<

£ 78
* Formula As Typed: [] (placeOrder -> | complaintR
J + The Never Claim Below Corresponds SR, W GRRed
+ To The Negated Formula | ([] (placeOrder -> | complaintRecd U
orderRecd))
+ (formalizing violations of the original)
| ol

/
verification Result: not valid Run Verification

* Full statespace search for:
never-claim

assertion violations
J acceptance cycles
| invalid endstates

(if within scope of claim)
(fgurneas disaEled)
(disabled by never-claim)

(e L e 2

/ State-vector 16 byte, depth reached 7, errors: 1

Close Save As.. J

Fig.4.16 The LTL Manager

As we can see, and as expected, the verifier detects that our claim with respect to the above
verification model is false. Again and as with previous examples, we get the window in figure
4.9 giving us the choice of a simulation through the erroneous path.

If we comment out/remove the section that gives the Purchaser the option to complain

before receiving the order, the above Verification result becomes “Valid”.

4.9 Common correctness requirements

Knowing the correctness requirements of an x-contract at design time is crucial as an x-
contract can be proven correct only with respect to a specific list of correctness requirements.
The parts of a contract that more likely contain logical inconsistencies vary from contract to
contract. On the other hand, it is sensible to think, that different contract users would be
interested in being assured of the correctness of different parts of a given contract. Because of
this, it is too ambitious to intend to identify a complete list of correctness requirements for

business contracts.

Chapter 4

However, it is possible to provide a list of fairly standard correctness requirements
and to generalise them [SMS]. Hopefully, this generalisation will help designers of x-
contracts reason about correctness requirements of x-contracts in terms of conventional and
well understood terminology such as correct termination, deadlocks, etc.

Based on our experiences with x-contract validation, and based on the examples and
discussions of this Chapter, we next present a list of contract correctness requirements that the
designer can use as a guide during the process of converting a contract to its executable
version. In the following list CR stands for correctness requirement:

CRI1: Correct commencement: An x-contract should start its execution in a well-defined
initial state on a specific date or when something happens. This correctness requirement is a
special case and cannot be guaranteed by the x-contract itself but by the human being or
system (software or hardware) that triggers the execution of the x-contract.

CR2: Correct termination: An x-contract should reach a well-defined termination state on
a specific date or when something happens. For example, the x-contract terminates on the 31%
of Dec 2005 or the x-contract terminates when the purchaser delivers 500 cars.

CR3: Reachability: Each and every state within an x-contract should be reachable, i.e.
executable at least in one of the execution paths of the x-contract.

CR4: Freedom from deadlocks: An x-contract should never enter a situation in which no
further progress is possible. For example, an x-contract should not make a supplier wait for a
payment before sending an item to the purchaser while the purchaser is waiting for the item
before sending the payment to the supplier.

CRS: Partial correctness: If an x-contract begins its execution with a precondition true
then, the x-contract will never terminate with the precondition false, regardless of the path
followed by the x-contract from the initial to its final state. For example, if the amount of
money borrowed by a customer from a bank is Debtr= 0 at the beginning of the x-contract, the
x-contract cannot be closed unless Debt=0.

CR6: Invariant: If an x-contract begins its execution with a precondition true then, the
precondition should remain true for the whole duration of the contract. A slight variation of
this correctness requirement would be a requirement that the precondition remains true only
or at least during certain parts of the execution of the x-contract. To mention an example we
can think that an x-contract between a banker and a customer stipulates that the amount of
money borrowed by the customer should never exceed the customer’s credit limit.

CR7: Occurrence or accessibility: A given activity should be performed by an x-contract
at least once no matter what execution path the x-contract performs. A slight variation of this
requirement is one that demands that a certain activity should be performed infinitely often.
For example, an x-contract between a bank and a customer should guarantee that the customer

will receive bank statements at least once a month.

Validation of Electronic Contracts 93

CRS: Precedence: An x-contract can perform a certain activity only if a given condition is
satisfied. For example, the lend period of a book in the possession of a student should not be
extended unless the waiting list for the book is empty.

CR9: Absence of livelocks: The execution of an x-contract should not loop infinitely
through a sequence of steps that has been identified as undesirable, presumably because the
sequence produces undesirable output or no output at all. For example, an x-contract between
an auctioneer and a group of bidders should not allow one of the bidders to place his bids
infinitely often and leave the rest of the bidders bid-starving. This correctness requirement is
also known as fairness or absence of individual starvation.

CR10: Responsiveness: The request for a service will be answered before a finite amount
of time. For example, an x-contract should guarantee that a buyer responds to every offer
from a client in less than five days.

CR11: Absence of unsolicited responses: An x-contract should not allow a contractual
party to send unsolicited responses. For example, an x-contract between a banker and a
customer should not allow the banker to send unsolicited advertisement to the customer.

On the ground of our own experience with x-contract validation we argue that most,
if not all, correctness requirements of traditional business contracts can be readily expressed
either as safety or liveness properties. With the intention of giving the designer of an
electronic contract some guidance about the kind of correctness requirement he/she is faced
with, we will classify into safety and liveness properties the list of typical correctness
requirements of electronic business contracts provided above:

e Safety properties: reachability, partial correctness, invariant, deadlocks, precedence,

absence of unsolicited responses.

e Liveness properties: correct termination, occurrence, livelocks, responsiveness.

We further categorize Safety properties into, general safety properties that must hold
true for any x-contract (CR3: Reachability, CR4: Freedom from deadlocks, CR11: Absence of
unsolicited responses), and specific safety properties that must hold true only if so required by
the contracting parties for the specific requirements of a certain x-contract (CR5: Partial
correctness, CR6: Invariant, and CR8: Precedence).

Running the Spin validator under its default settings will check for general safety
properties. Validation of the remaining specific safety properties can be done by inserting
“Assertions” within the Promela code.

We are aware that it has been shown that not all correctness requirements can be
readily classified as either safety or liveness property [NC00]. Contracting parties may desire
complex correctness requirements that are a combination of a number of the above

requirements. Fortunately, it has been formally proven that any correctness property can be

Chapter 4

represented as the intersection of a safety property and a liveness property [AS85]. The idea
behind our approach is that a complex correctness requirement demanded by a signing party
can always be expressed as a combination of a number of the basic correctness requirements

listed in Section 4.9.

4.10 Summary

It is crucial that we identify and eliminate the ambiguities that exist within the clauses of a
text contract before it can be implemented electronically.

In this chapter, we have introduced the protocol modelling language Promela, and the
protocol verification tool Spin. We have analysed with the aid of simple examples the
correctness properties that must be satisfied for a contract to be correct. Based on our analysis
we have developed a list of correctness requirements that we suggest that x-contract designers
use during the contract validation process.

In the next chapter, we will test a number of example x-contracts for correctness

claims that cover the above correctness requirements in more depth.

Chapter Five

Validation of Electronic Contracts: Examples

We present three different examples of text based documents (contracts) containing rules that
govern the interaction between different parties. Through these examples, we demonstrate
ideas developed in Chapter 3, and Chapter 4.

Our aim is to convert the text based contracts into executable contract models through
a process that removes the ambiguities that may exist in the original text contracts. This is to
facilitate the correct implementation of the x-contracts at run time.

There are many examples, where the interaction between two or more parties, over a
network, calls for a set of rules that can be implemented to police this interaction.

In cases where the rules of interaction need to be negotiated and agreed upon by the
interacting parties, the rules constitute “contract clauses”, which will combine to form a
contract that the parties must sign. This case will be the bases for our first and second
examples.

There are cases however where the interaction between the parties is governed by
rules that are already in place. The parties need only to understand them and agree upon them
before the interaction can begin. Our third example reflects this case. We present the scenario
where two or more parties are involved in a game that is played over the Internet. We use our

third example to demonstrate interactions that involve more than two parties.

5.1 Contract for the supply of electronic goods

Our first example is a contract for the purchase and supply of e-goods. The contract we
present is inspired from a contract in a paper written by GoodChild et al [GM00].

Our goal is to convert the contract into an x-contract model, and detect and eliminate
ambiguities that may hinder the correct electronic implementation of the x-contract.

We will first present the original text contract in full. After that we will extract the
sets of rights and obligations for each of the signatories to the contract, and map them into
finite state machines for the Purchaser and for the Supplier. The FSM’s are used to model the
contract. This model is then converted into the Promela verification language. Finally we will
use the Spin verifier to verify the correctness of the x-contract against the correctness

requirements discussed in Chapter 4.

95

Chapter 5

5.1.1 The Contract

This Deed of Agreement 1is entered into as of the Effective Date
identified below.

BETWEEN
[Name] AND: [Name]
of [Address] of [Address]
(To be known as the (Supplier)) (To be known as the (Purchaser))

WHEREAS (Supplier) desires to enter into an agreement to supply
(Purchaser) with [Item] (To be known as {(e-goods) in this Agreement).
NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser) shall enter
into an agreement subject to the following terms and conditions:

1. Definitions and Interpretations

1.1 Price, Dollars or $ is a reference to the currency of the
[Countryl].

1.2 All information (purchase order, payment, notifications, etc.),
is to be sent electronically.

1.3 This agreement is governed by [Country] law and the parties
hereby agree to submit to the Jjurisdiction of the Courts of the
[Country] with respect to this agreement.

2. Commencement and Completion

2.1 The commencement date is scheduled as {date].

2.2 The completion date is scheduled as [date].

2.3 The schedule may be modified by agreement as defined in Section
9

3. Purchase Orders

3.1 The (Purchaser) shall follow the (Supplier) price lists.

3.2 The (Purchaser) shall present (Supplier) with a purchase order
for the provision of (E-goods) within 7 days of the commencement
date.

3.3 The (Supplier) shall notify the (Purchaser) of acceptance or
rejection of the purchase order within 7 days after the receipt of
the purchase order.

3.4 If the purchase order is rejected, the (Purchaser) shall correct
the purchase order within 14 days after the receipt of the
notification.

4. Delivery

4.1 The delivery of the (e-goods) 1is the responsibility of the
(Purchaser). The (Supplier) shall keep the E-good available for
downloading at the specified e-address for at least 14 days after
sending notification of acceptance of payment. The (Purchaser) shall
download the (e-goods) within this period of time.

5. Payment .

5.1 The payment shall be sent in full to the (Supplier) within 7 days
after receiving a notification of acceptance of the purchase order.
5.2 The (Supplier) shall notify the (Purchaser) of acceptance or
rejection of the payment within 7 days after the receipt of the

payment.

6. E-goods rejection

Validation of Electronic Contracts. Examples 97

6.1 If the (e-goods) do not comply with the order or the (Supplier)
does not comply with any of the conditions, then the (Purchaser) is,
at his/her sole discretion, entitled to reject the (e-goods).

6.2 The (Purchaser) shall either (a) notify the (Supplier), of
acceptance of the (e-goods), within 7 days after receiving them, or
{b) return the (e-goods) to the (Supplier), within 7 days after
receiving them.

7. Replacement and refund

7.1 The (Supplier) may use his/her discretion to replace the (e-
goods) according to the invoice or refund any monies paid.

7.2 The (Supplier) shall either (a) notify the (Purchaser) of refusal
to replace or refund, within 14 days after the receipt of the
rejected (E-goods), or (b) replace or refund any monies paid, within
14 days after the receipt of the rejected (e-goods).

7.3 In the case of a dispute in which the (Supplier) refuses to
provide a requested replacement or refund by the (Purchaser) within
14 days of the (Purchaser) returning rejected (e-goods), then the
Purchaser shall terminate the contract.

8. Termination

8.1 If (Purchaser) or (Supplier), fail to carry out any of their
obligations and duties under this agreement, the offended party shall
terminate the contract.

9. Disputes

9.1 (Supplier) and (Purchaser) shall attempt to settle all disputes,
claims or controversies arising under or in connection with the
agreement through consultation and negotiations in good faith and a
spirit of mutual cooperation.

9.2 (Supplier) and (Purchaser) shall provide electronic evidences
about breaches of the x-contract.

9.3 This method of determination of any dispute is without prejudice
to the right of any party to have the matter judicially determined by
a [Country] Court of competent jurisdiction.

10. Amendment
10.1 This agreement may only be amended in writing signed by or on
behalf of both parties.

E-SIGNATURES

In witness whereof (Supplier) and (Purchaser) have caused this
agreement to be entered into by their duly authorized representatives
as of the effective date written below.

Effective date of this agreement: [day] of [month] [year)

[E~signature] [E-signature]
%giiz?n] [Person])
[Role]
E-address for Notices:
[E-address] [E-address]

5.1.2 Split of rights and obligations

Before describing the x-contract in FSM notation, it is advisable to extract, from the English

text, the purchaser’s and supplier’s Rights (R) and Obligations (O).

Chapter 5

Supplier’s obligations

O01: Notify Purchaser of acceptance or rejection of Purchase order within 7 days after receipt of
purchase order.

002: Notify Purchaser of acceptance or rejection of the payment within 7 days of the Supplier
receiving it.

003: Place e-goods at e-address for 14 days after sending a notification of acceptance of payment.

004: Either (a) Notify the Purchaser of rejection of a remedy request within 14 days after receipt of the
rejected e-goods, or (b) provide a remedy within 14 days after receipt the rejected e-goods.

005: Provide electronic evidences of breach of the x-contract.

006: Terminate the x-contract if the Purchaser is in breach of contract.

Supplier’s rights

RO1: Reject or accept a purchase order.

RO2: Reject or accept a payment.

RO3: Either (a) Refuse to remedy within 14 days after receipt of the rejected e-goods, or (b) Accept to
remedy within 14 days after receipt the rejected e-goods.

R04: Amend contract but only in agreement with the Purchaser.

Purchaser’s obligations

0O01: Follow the supplier’s price lists.

002: Present a purchase order within 7 days of the commencement date.

003: Correct a Purchase order within 14 days after receipt of a notification of the first rejection of the
Purchase order.

004: Send full payment within 7 days after receiving notification of acceptance of purchase order.

005: Download the e-good/s within 14 days after the receipt of the acceptance of the payment.

006: Send acceptance or rejection of e-goods within 7 days of receiving them.

007: Provide electronic evidences of breach of x-contract.

008: Terminate the x-contract if either (a) The Supplier is in breach of contract, or (b) In the case of a

dispute where the Supplier does not provide replacement or remedy for rejected e-goods.

Purchaser’s rights
RO1: Reject e-goods that fail to match the description/requirement.

R0O2: Amend contract but only in agreement with the supplier.

>

Next we map the Rights and Obligation above into 2 finite state machines, one for the

Purchaser, and one for the Supplier.

Validation of Electronic Contracts: Examples

5.1.3 The finite state machines (The x-contract model)

Supplier

Contract commencement date

PO not received within 7 days of
comn, ement date

Set 7 days PO waiting timer

Waiting for
Purchase
Order

006 TArminate x-contract

PO not rifceived within 14 days g#irst rejection PO received

Switch of PO waiting timer

006 Ferminate x-cont
001 Serjd PO rejected

Checking
correctness
of PO

ROI PO accepted
—————————
001 Send PO accepted to
purchaser & set 7 day payment
timer

Waiting for
payment

déys of PO acceptance

006 Terminate x-contract

Pavment received
————
&

Checking
Payment
corl S

RO2 Payment rejected

ment rejected to

006 Terminate x-contract RO2 Payment accepted

—————————————
002 Send payment accepted to
purchaser & 003 place e-goods at e-
address for 14 days & set 14 day

download timer

Waiting for
e-goods to
be
downloaded

Goods not downlgaded wirfun [o

6 Ternunate x-contract
Goods downloaded v r#1in 14 daays

Set a 7 day goods response timer

Unsatisfactory Goods retumed

Waiting for
goods
acceptance
response

Considering
reasons for
reiection

No response redeived within
7 days of goeds being
downlopded

RO3 Accept to remed

004 Send remedy. fte X-contract

RQ3 Refuse to remedy

y purchaser of
refusal Yogemedy

Abort
Contract

Fig. 5.1. Supplier’s FSM.

Chapter 5

Purchaser

Contract commencement date

£
Editing of
PO

PO rejected received

PO Edited

PO re-edited 002 Play

e PO & Scr PQ response timer

A 10 7 days

003 PO corr

& Sct PO resy
fmer o 7 deys

008 Terminate e-confyact
PO accepted receiveh
£ A 4
Calculation
of payment

Payment calculated

(J04 Send payment & Set 7 day s pavinent
response titer

Waiting for
payment
7 day timeout response Payment rejected received
00§ Terminate e-contract 008 Terminate e-contract
Payment accepted recqived
Set 14 day goods plu."L'muli imer
Collecting
e-goods 14 daty timeont
008 Terminarog-contract
Goods available
0035 Download e-goods
v within {4 dayy

Checking

RO1 Goods rejected goods

006 Send reje

cted &

Goods accepted

e
Waiting for

remedy 008 Notify supplier of acceptance

[N
ch\'ledy Ureguest avcepted receivy
N within 4 days

[
Remetly “request M
receiyed within 14

[N

'.
008 Tegminate e-contract A
. ~
‘\ 14 day timeout A
\ o
.) ~ .
hS 008 Tehginate e-contract N
Seo S
S~ - ~
- - ~
Abort

Contract

Fig. 5.2. Purchaser’s FSM.

In figure.5.1 and figure 5.2, PO stands for Purchase Order.

Validation of Electronic Contracts: Examples 101

5.1.4 The Verification model

Our next task is to represent the FSMs in figures 5.1 and 5.2, in the modeling language —
Promela- that is the input language of the verifier Spin. The complete verification model is

presented next:

1 /* X-contract model for the purchase and supply of e-goods
2 * .
3 *

4 * Programme created using XSPIN for simulation and

5 * verification of FSM correctness.

6 *

7 * AUTHOR: Ellis Solaiman

8 * University Of Newcastle Upon Tyne

9 * Date of Creation 12 December 2002

10 ~* Last Update 18 July 2003

11 *

12 */

13

14 //Definition of constants
15 #define Terminated 5

17 #define Yes 1
18 #define No O

20 #define Good 1
21 #define Bad O

23 #define Accept 1
24 #define Reject O
25 #define SReject 2 /*this for a second reject*/

27 #define correct 1
28 #define incorrect 0O

30 #define Available 1
31 #define NotAvailable 0

32
33 // Messages that will be passed between the purchaser and
supplier

34 // PO is the Purchase Order

35 mtype = {PO, Payment, Download, Response, GoodsPlaced,
Remedy,Goods,Check,Rrequest}

36

37 // Channels of communication

38 chan P2S=[1] of {mtype, byte}; // channel purchaser to supplier
39 chan S2P=[1] of {mtype, byte}; // channel supplier to purchaser
40

41 byte goodsPlaced = No; // Have the goods been placed for
download?

42 byte downloadInTime = No; // Have the goods been downloaded in
time?

43

44

45 /**x%%* SUPPLIER FSM ok ok kkk [/

46 proctype Supplier({)

47 {

Chapter 5

48 int poval; //Good PO or Bad PO

49 byte payVal = Bad;

50 byte remedyChoice;

51 byte goods;

52

53

54 /*** Waiting for Purchase Order **x*/
55 WaitingforPO:

56

57 if //This if fi statement deals with both the 7 day and 14 day
timer*/

58 ::P2S ? PO(poVal)

59 ::timeout -> goto Terminate

60 fi;

61

62 /*** Checking correctness of PO ***/

63 CheckPO:

64

65 if

66 ::if

67 :: (poVal==Good)-> S2P ! Response (Accept); goto
WaitingforPayment

68 :: (povVal==Bad)-> S2P ! Response (Reject); goto WaitingforPO
69 fi;

70 :: skip; //The Supplier fails/forgets to send a response in
time

71 :: goto Terminate; //Supplier aborts x-contract

72 fi;

73

74 /*** Waiting for Payment ***/
75 WaitingforPayment:

76

77 if

78 ::P2S ? Payment (payVal)

79 ::timeout -> goto Terminate //Payment not received in time
80 fi;

81

82 /***Checking Payment Correctness***/

83 CheckingPayment:

84

85 if

86 ::1if

87 :: (payVal == Bad)-> S2P ! Response(Reject); goto Terminate;
88 :: (payVal == Good)-> S2P ! Response (Accept); goto PlaceGoods;
89 fi;

90 :: goto Terminate; // Supplier aborts contract

91 :: skip; //Supplier forgets to respond

92 fi;

93

94 /*** Place goods to be downloaded ***/

95 PlaceGoods:

96 if //Safety claim 1: Payment must be correct
before delivery N

97 :: goodsPlaced = Yes; assert (payVal == Good);

98 :: goodsPlaced = No;

99 fi;

100

101 /*** Waiting for e-goods to be downloaded ***/
102 WaitingforDownload:

103

104 if

Validation of Electronic Contracts: Examples 103

105 :: (downloadInTime==Yes) //goods downloaded in time
106 ::(downloadInTime==No)-> goto Terminate;

107 fi;

108

109 /*** Purchasers Response to the Goods ***/

110 GoodsResponse:

111

112 //Safety claim 2: Asserting that the Supplier does
113 //not proceed if the goods are not downloaded in time
114 assert (downloadInTime == Yes);

115

116 if

117 ::P2S ? Goods(goods) // Complaint made, and goods returned in
time

118 ::timeout ->goto end; // No complaint made within the time limit
119 fi;

120

121

122 if

123 :: (goods == Good) -> goto end;

124 :: (goods == Bad) -> goto RemedyConsider;

125 fi;

126

127 /*** Considering reasons for rejection of goods ***/
128 RemedyConsider:

129

130 if

131 :: remedyChoice=Yes;

132 :: remedyChoice=No;

133 fi;

134

135 S2P!Remedy{remedyChoice);

136 goto end;

137

138 /*** Abort x-contract ***/

139 Terminate:

140

141 printf ("\n\nUnsatisfactory Termination\n\n");

142 goto fin;

143

144 /*** Deal reached ***/

145 end:

146

147 //Safety claim 3: The following must hold true if a deal is to be
reached

148 assert (povVal == Good);

149 assert(payVal == Good);

150 assert (downloadInTime == Yes);

151

152 printf("\n\nSupplier in Deal state\n\n");

153

154

155 /*** End of x-contract ***/

156 fin:

157 printf("\n\nEnd\n\n”);

158

159 }

160

161

162

163

Chapter 5

164 /***x** PURCHASER FSM * ok kkkok [

165

166 proctype Purchaser ()

167 {

168

169 int poVal; // Purchase Order sent
170 byte responseVal; // Response received
171 int poResponse;

172 byte pVal; // Payment sent correct or incorrect
173 byte goods; // Bcceptable or non-acceptable Goods
174 byte remedy; // acceptable or non-acceptable remedy
175

176

177 /*** Placement of Purchase Order***/
178 PlacementOfPO:

179

180 if

181 :: poval
182 :: poval
183 fi;

184

185 /*** Send the PO ***/

186 if

187 ::P2S ! PO(poVal);

188 ::goto Abort; //modeling the possibility that Purchaser might not
send a PO

189 fi;

190

191 /*** Waiting for the Supplier's Response to PO ***/

192 WaitingResponse:

193

194 if

195 ::S2P ? Response (poResponse);

196 ::timeout -> goto Abort; // Response not received in time

197 fi;

198

199

200 if

201 ::(poResponse =
202 ::(poResponse =
203 :: (poResponse =
204 fi;

205

206

207 /*** Make payment ***/
208 PlacePayment:

209

210 if

211 :: pVal
payment

212 :: pVal
213 fi;

214 N

215 if

216 :: P2S ! Payment (pVal) ->

217 :: skip: // Purchaser fails/forgets to make payment
218 :: goto Abort; // Purchaser aborts x-contract

219 fi;

220

221

222 /*** Waiting for Payment response * ok k[

Good; // Randomly choose between sending a good PO
Bad; // and a Bad PO

Accept) -> goto PlacePayment // PO accepted
Reject) —-> goto PlacementOfPO // PO not accepted
SReject) -> goto Abort; // Final reject

i

correct; // Randomly choose between sending a correct

]

incorrect; // and an incorrect payment

Validation of Electronic Contracts: Examples 105

223 if

224 ::82P ? Response(responseVal) ->

225 if

226 :: (responseVal == Accept) -> goto CheckGoodsAvailability;
227 :: (responseVal == Reject) -> goto Abort;

228 fi;

229 ::timeout -> goto Abort;

230 fi;

231

232

233 /*** Check that goods are available for download ***/
234 CheckGoodsAvailability:

235

236 if

237 ::(goodsPlaced == Yes)->

238 ::(goodsPlaced == No) -> goto Abort; //Goods not available for 14
days after making payment*/

239 fi;

240

241

242 if // Random if/fi statement

243 ::downloadInTime = Yes

244 ::downloadInTime = No

245 fi;

246

247

248 /x***Check goods****/

249 CheckGoods: /*added*/

250

251 if // Goods accepted or not accepted

252 :: goods = Bad;

253 :: goods = Good;

254 fi;

255

256 if

257 :: (goods == Bad) -> P25 ! Goods(Reject); goto WaitforRemedy
258 :: (goods == Good) -> P2S ! Goods(Accept); goto end

259 fi;

260

261

262 /*** Wait for remedy ***/

263 WaitforRemedy:

264

265 1f

266 ::52P ? Remedy(remedy) -> assert(remedy==Yes);goto end;// Safety
claim 4

267 ::timeout -> goto Abort; // Remedy not recieved in time
268 fi;

269

270

271 /*** Abort x-contract ***/

272 Abort:

273

274 printf ("\n\nUnsatifactory Termination\n\n");

275 goto fin;

276

277 /*** Deal state ***/

278 end:

279 //Safety claim 4: The following must hold true if a deal is to be

reached
280 assert (goodsPlaced == Yes);

Chapter 5

281

282 printf("\n\nPurchaser in Deal State\n\n");
283

284

285 /********End X._contract***********/

286 fin:

287 printf ("\n\nEnd\n\n");

288

289 }

290

291

292 /******Initiate purchasers and suppliers processesg****x**%%x/
293 init

294 {

295 run Purchaser():

296 run Supplier():

297 1}

5.1.5 X-contract verification

General Safety properties

CR3: Reachability, CR4: Freedom from deadlocks, and CR11: Absence of unsolicited
responses are the general safety properties against which any contract must be validated. It is
crucial that the general safety requirements are passed by the x-contract model. This proves
that the FSMs will execute correctly, and that they are correct entities, in that both of the
FSMs for each of the signatories, can deal with any interactions that are passed between them
including non expected ones (CR11), can deal with possible situations where messages are
not being passed where they should be (CR4), and that all states and code within the FSMs
are reachable at least in one of the many possible paths through the FSMs. Other correctness
requirements whether specific safety properties, or liveness properties, will be tested for in the
following sections, to verify whether the FSMs perform operations desired by the signatories.

We will therefore begin by validating the model against the general correctness
requirements.

Figure 5.3 shows the general verification options being selected. We can now run the
verifier. Spin initially detected a number of Deadlock violations in which both of the FSMs in
different scenarios were trapped in certain states. This is because the contract did not have
time limits in which some messages had to be passed between the FSMs. The contract and the
FSMs were modified (the modifications have been inserted the FSMs using italics for text and
dashed lines for the FSM state transition arrows), and we run the Spin verifier again. The
results are presented in figure 5.4. As can be seen, the verifier detects no errors, so the model
is correct with respect to the general safety correctness requirements CR3, CR4, CRI11.

Therefore our model is implementable as an x-contract. However the signatories may wish to

Validation of Electronic Contracts: Examples 107

test the model for specific safety requirements before being confident of the correctness of the

X-contract.

¥¢ Basic Yerification Dptions

| Search Mode
€ Exhaustive

-~ Supertrace/Bitstate
-~ Hash-Compact

| Correctness Properties
& Safety (state properties)
_| Assertions
M Invalid Endstates

.- Liveness (cycles/sequences) l A Full Queue
. Non-Progress Cycles 4 Blocks New Msgs
.~ Acceptance Cycles - Loses New Msgs

LWt Yerks Faimass [Add Never Claim from File]

|
[Verify an LTL Property] |
[Set Advanced Options] t

|

_| Apply Hever Claim (If Present)
B Report Unreachable Code

_| Check xrixs Assertions

Help | Cancel [Run

Fig.5.3. Selection of general safety requirements for verification

}(Veriﬁcation Output

=10/

I (Spin Version 4.0.1 -- 7 January 2003)
+ Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates

(not selected)
(d;sabled by -a flag)
{disabled by -DSAFETY)

+ 111

State-vector 52 byte, depth reached 40, errors: 0
295 states, stored
47 states, matched
342 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolwved)
(max size 2~19 states)

2.622 memory usage (Mbyte)

unreached in proctype Supplier
(0 of 70 states)
) unreached in proctype Purchaser
(0 of 74 states)
unreached in proctype :init:
4 (0 of 3 states)

Save in: H l Clear | Close [

Fig.5.4. Verification output for general safety properties

Chapter 5

Specific Safety properties
The specific safety requirements discussed in the previous chapter are: CRS5: Partial
correctness, CR6: Invariant, and CR8: Precedence. The signatories to the contract have

requested to test the x-contract model against the following requirements:

1. Delivery of the Goods cannot occur before receipt of correct payment for the goods.

2. The Supplier will not proceed with any transactions if the goods are not downloaded within

14 days of receipt of payment.

3. The Supplier will not go to a deal state if: A correct purchaser order (PO) has not been

received, a correct payment has not been received, and if the Goods are not downloaded in

time.

4. The Purchaser will not go to a deal state if: The goods can not be downloaded for 14 days

after making a correct payment, and if a requested remedy has been refused by the supplier.
All correctness requirements are precedence requirements (CR8). We will test for

these by placing assert statements in relevant sections of the Promela code. The reader can

see these in lines: 96, 114, 147, 266 and 280 of the Promela code listed in Section 5.1.4. Next

we will initiate the verifier, and check the assertions option under safety (state properties),

see figure 5.3. Results from the verification can be seen in figure 5.5.

E pan: assertion violated (remedy==1) (at depth 36)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003)
Warning: Search not completed
+ Partial Order Reduction

¥¢ ¥erification Output

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates

(not selected)

*

(disabled by -DSAFETY)
(disabled by -E flag)

/|State-vector 52 byte, depth reached 42, errors: 1

Fig.5.5. Verification of assertion claims

Figure 5.5 shows that the verifier encountered an assertion error, assert(remedy ==1). This
tells us that the Purchaser’s FSM can in some situations reach a deal even if a requested
remedy was not granted by the Supplier, and therefore the verification model fails the above
requirement 4. We can run the simulator through the erroneous path, the simulation output,

and the message sequence chart are presented in figure 5.6.

Validation of Electronic Contracts: Examples 109

\\"Slmulatiun Output ;J_I;IJ}J
”: 21 proc 1 (Purchaser) line 252 “pan_in" (state 51) [goods = 0]
22: proc 1 (Purchaser) line 257 "pan_in" (state 55) [((goods==0))]
23: proc 2 (Supplier) line 105 "pan_in" (state 40) [((downloadInTime==1))]
24: proc 2 (Supplier) line 114 “"pan_in" (state 45) [assert((downloadInTime==1))]
25 proc 1 (Purchaser) line 257 “pan_in" (state -) [values: 1!Goods, 0]
25: proc 1 (Purchaser) line 257 "pan in" (state 56) [P2S!Goods, 0]
26: proc 2 (Supplier) line 117 "pan_in" (state -) [values: 1?Goods, 0]
26: proc 2 (Supplier) line 117 "pan_in" (state 46) [P2S?Goods, goods]
27: proc 2 (Supplier) line 124 “"pan_in" (state 53) [((goods==0))]
28: proc 2 (Supplier) line 132 "pan_in" (state 58) [remedyChoice = 0]
29: proc 2 (Supplier) line 135 “pan_in" (state -) [values: 2!Remedy,0]
29: proc 2 (Supplier) line 135 "pan_in" (state 61) [S2P!Remedy, remedyChoice]
30: proc 2 (Supplier) line 148 “pan_in" (state 65) [assert((poVal==1))]
31 proc 2 (Supplier) line 149 "pan_in" (state 66) [assert((payVal==1))]
i 32: proc 2 (Supplier) line 150 "pan_in" (state 67) [assert((downloadInTime==1))]
sonsd1 Sugplier in Deal state
(| 33: proc 2 (Supplier) line 152 "pan_in" (state 68) [printf (’\\n\\nSupplier in
Deal state\\n\\n’)]
 {|End
34: proc 2 (Supplier) line 157 "pan_in" (state 69) [printf(’\\n\\nEnd\\n\\n’)]
| 35: proc 2 terminates
| 36: proc 1 (Purchaser) line 266 "pan_in" (state -) [values: 27?Remedy, 0]
| 36: proc 1 (Purchaser) line 266 "pan_in" (state 63) [S2P?Remedy, remedy]

spin: line 266 "pan_in", Error: assertlon violated
spin: text of failed assertion: assert((remedy==1))
#processes: 2

3 proc 1 (Purchaser) line 266 "pan_in" (state 64)
3T proc 0 (:init:) line 297 "pan_in“ (state 3)
3 processes created
Exit-Status 0

et 7

Single Step | Suspend f Savein: | sim.out Cear | Cancel |

Fig. 5.6. Message sequence chart, and Simulation
output of path with assertion violation

&G"?

We remind the reader that in figure 5.6 means send, and “?” means receive. The message
sequence chart (on the left) shows the Purchaser process reaching a “waiting” state indicating
a problem, and the simulation output clearly detects an assertion violation at step 37,
indicating a problem in line 266 of the Promela code.

The problem occurred because the Promela model takes or does not take the
Purchasers FSM to the deal state, based only on whether the Purchaser receives a remedy
message or not, and omits to test the contents of the message, if it is received.

Therefore the Promela code after the WaitforRemedy state in the Promela code must

be modified by inserting additional code (lines 270 — 273) as follows:

262 /*** Wait for remedy ***/

263 WaitforRemedy:

264

2656, 1F

266 ::S2P ? Remedy(remedy) ->

267 ::timeout -> goto Abort; // Remedy not recieved in time

268 fi;

269

e i

271 :: (remedy == Yes) -> assert (remedy end ;//Sa

No) -> goto Abort

Meaning that if a remedy request has been accepted (remedy == Yes) then end the
contract satisfactorily, and if a remedy request has been rejected, then abort the contract.
The relevant section (Section 7, Replacement and refund) of the original contract,

states in section 7.2:

Chapter 5

The (Supplier) shall either (a) notify the (Purchaser) of refusal to replace or refund, within 14
days after the receipt of the rejected (E-goods), or (b) replace or refund any monies paid,

within 14 days after the receipt of the rejected (E-goods).

However it does not state actions (contract termination for example) that the
Purchaser may take if a remedy is refused. The contract may implicitly allow for such actions,
but it remains up to the lawyers and the signatories to the contract whether the contents of the
contract should be modified to cater for this, or whether it is sufficient to modify the x-
contract. In this case will assume that the signatories have made the decision to add the

following clause to the contract:

7.3 In the case of a dispute in which the (Supplier) refuses to
provide a requested replacement or refund by the (Purchaser) within
14 days of the (Purchaser) returning rejected (E-goods), then the

Purchaser may terminate the contract.

The reason for this is that Section 8 of the contract allows for termination only in the
case where the opposite party fails to perform a duty or an obligation, and does not allow for
termination in the case of a dispute based on non obligatory actions. Therefore, the new
clause 7.3 allows the Purchaser to terminate the contract in a special situation in which the
parties disagree over replacement of rejected goods or refund.

After this modification, the validator detected a second assertion violation

“assert(payVal == 1);” at line 97, caused by the skip, statement in line 91:

91 :: skip; //Supplier forgets to respond

This statement was inserted within the Supplier’s FSM by the model designer, in
order to test the ability of Purchaser’s FSM to deal with a scenario that involves the Supplier
forgetting to check the payment, and as a consequence forgetting to respond to the purchaser
with acceptance or rejection of the payment. However, once this ability was established, the
skip statement should have been removed, as it remains incorrect for the Supplier’s FSM to
allow him the possibility of not checking the correctness of the payment, and not responding
to the Purchaser, even if the Purchaser’s FSM can deal with this scenario. Therefore line 91
can simply be deleted. Also similar skip statements used for testing and forgotten throughout
the Promela model must be removed.

After modifying the code, there are no safety violations.

Validation of Electronic Contracts: Examples 111

Liveness properties:

The liveness properties that an x-contract model can be tested for are: CR2: Correct
termination, CR7: Occurrence, CR9: Absence of Livelocks, and CR10 Responsiveness.

(Chapter 4, Section 4.9).

The signatories would like to test the FSMs, for the following liveness correctness

requirement:

The purchaser may not infinitely often submit incorrect purchaser orders.

This requirement is a requirement for absence of Livelock. We can test for this by inserting an

accept label in the relevant section of the code as follows:

178 PlacementOfPO:
179

180 L

181 :: poVal
182 +: poVal
183 £17

184

Good;
Bad; acceptBadOffer: skip

Il

We will now run the validator after checking the “Acceptance cycles” option under

“Liveness” in figure (BasicVerificationoptions).

%¢ verification Dutput e ey -0l %]

pan: acceptance cycle (at depth 2)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003)
Warning: Search not completed

+ Partial Order Reduction

never-claim
assertion violations
acceptance cycles
invalid endstates

_J Full statespace search for:
o (not selected)

(fairness disabled)

+ 4+ + 1

k) State-vector 52 byte, depth reached 42, errors: 1

Fig.5.7. Verifier detects Livelock

As we can see, figure 5.7, shows that there is indeed livelock. This tells us that it is possible
the model will, through at least one sequence of execution, loop infinitely through states that
allow the purchaser to submit incorrect purchase orders. We can run the simulator through the
path in which the problem was detected (figure 5.8). From the simulator we realise that the
problem is a programming error, caused by a presumption on the designers part that the

“timeout” statement in the following code segment is sufficient to model the timeout

Chapter 5

complexities required in the contract text. What is missing is a variable (poTimer) to model

the 14 day time limit in which the purchaser must submit a correct purchase order:

55 /*** Waiting for Purchase Order ***/
56 WaitingforPO:

57

58 if //This if fi statement deals with both the 7 day and 14 day
timer

59 ::P2S ? PO(poVal)

60 ::timeout -> goto Terminate

61 £i;

62

63 /*** Checking correctness of PO ***/
64 CheckPO:

65
66 if
Gf BNt
68 :: (poVal==Good)-> S2P ! Response (Accept); goto
WaitingforPayment
69 :: (poVal==Bad) ->
70 if
VAl 22 (poTimer == 14) -> S2P ! Response (Reject),; goto
Terminate
12 :: (poTimer < 14) -> SZP ! Response (Rej 5) 2 wpOTimer++4 ;
goto WaitingforPO
73 ity
74 £
75 :: goto Terminate; //Supplier aborts x-contract
ST iy
¥¢ Simulation Output I =10 x|
[:'preparing trail, please wait...done
ol proc 0 (:init:) line 300 "pan_in" (state 1) [{run Purchaser())]
2 proc 0 (:init:) line 301 "pan_in" (state 2) [(run Supplier())]

<<<<<START OF CYCLE>>>>>

3 proc 1 (Purchaser) line 182 "pan_in" (state 2) [poVal = 0]

4: proc 1 (Purchaser) line 183 "pan_in" (state 3) [(1)]

5: proc 1 (Purchaser) line 188 "pan_in" (state -) [values: 1!P0, 0]

5: proc 1 (Purchaser) line 188 "pan_in" (state 6) [P2S!P0, poVal]

6: proc 2 (Supplier) line 58 "pan_in" (state -) [values: 17P0, 0]

6: proc 2 (Supplier) line 58 "pan_in" (state 1) [P257P0, poVal]

T proc 2 (Supplier) line 68 "pan_in" (state 9) [((poVal==0))]

8: proc 2 (Supplier) line 68 "pan_in" (state -) [values: 2IResponse, 0]

8: proc 2 (Supplier) line 68 "pan_in" (state 10) [S2P!Response, 0]

9: proc 1 (Purchaser) line 196 "pan_in" (state -) [values: 27Response, 0]

9: proc 1 (Purchaser) line 196 "pan_in" (state 10) [S2P?Response, poResponse]
10: proc 1 (Purchaser) line 203 "pan_in" (state 17) [((poResponse==0))]

spin: trail ends after 11 steps
#processes: 3
proc 2 (Supplier) line 57 "pan_in" (state 4)
11: proc 1 (Purchaser) line 180 "pan_in" (state 4)
2l proc 0 (:init:) line 302 "pan_in" (state 3)
3 processes created
Exit-Status 0

7

Single Step | Suspend ‘ Savein: | sim.out Clear __f:_a_ncel

Fig.5.8 Path through which Livelock was detected

After making the modifications to the code, the Spin validator detects no Livelock errors. This
example shows how Spin can be useful in detecting programming errors, which if left

unchecked could lead to problems at the time of implementation.

Validation of Electronic Contracts: Examples 113

After testing the x-contract model against safety, and liveness correctness

requirements, and correcting detected errors, the x-contract is ready for implementation.

5.2 Example of a contract for renting cars

In this Section, we present an example of a contract between a customer to be known as the
Renter, and an international car rental company to be known as the Owner. The contract was
chosen as an example of agreements that involve the provision of a service rather than the
purchase and supply of goods. It is also an example that demonstrates extreme ambiguities
and interpretation problems that may face a designer while constructing the x-contract model.
As with the example in Section 5.1, this contract could be perceived to be of a B2B (Business
to Business) or a B2C (Business to Customer) nature. The contact, which was taken from

[LFK] is presented next.

5,2.1 Car Rental Contract

This Agreement is made and entered in this (1) day of
(2) + 19_(3)_, between (4) » of
(5) ’
hereinafter called "Owner", and (6) , of
(7) + hereinafter called "Renter".
Vehicle

The vehicle which the Owner hereby agrees to rent is:

(8) (9) (10)
(11) (12) (13)
Mileage at beginning of rental period: (14)

The Owner represents that to the best of his knowledge and belief
that said vehicle is in sound and safe condition and free of any
known faults or defects which would affect its safe operation under
normal use.

Rental Period

The Owner agrees to rent the above-described vehicle to the Renter
for a period of (15) beginning at (16) M. on

(17) and ending at (16) M. on (18)

The Renter agrees ({a) that the rented vehicle shall not be used to
carry passengers or property for hire; (b) that the rented vehicle
shall not be used to carry passengers other than in the interior or
cab of the vehicle; (c) that the rented vehicle shall not be used to
carry passengers in excess of the capacity thereof; (d) not to use
the vehicle to push, propel or two another vehicle, trailer or any
other thing without the written permission of the owner; (e) not to
use the vehicle for any race or competition; (f) not to use the

Chapter 5

vehicle for any illegal purpose; (g) not to operate the vehicle in a
negligent manner; (h) not to permit the vehicle to be operated by any
other person without the written permission of the owner; and (i) not
to carry passengers, property or materials in excess of the rated
weight carrying capacity of the vehicle.

Insurance

The Renter hereby agrees that he shall fully indemnify the Owner for
any and all loss of or damage to the vehicle or equipment during the
term of this Agreement whether caused by collision, fire, flood,
vandalism, theft or any other cause, except that which shall be
determined to be caused by a fault or defect of the vehicle or
equipment.

Rental Rate

The Renter hereby agrees to pay the Owner at the rate of $ (19)
per (20) for the use of said vehicle. All fuel used shall be
paid for by the Renter.

Deposit

The Renter further agrees to make a deposit of § (21) with the
Owner, said deposit to be used, in the event of loss of or damage to
the vehicle or equipment during the term of this Agreement, to defray
fully or partially the cost of necessary repairs or replacement. In
the absence of damage or loss, said deposit shall be credited toward
payment of the rental fee and any excess shall be returned to the
Renter.

Return of Vehicle to Owner

The Renter hereby agrees to return said vehicle to the Owner at
(22) no later than (23)

IN WITNESS WHEREOF, the parties hereto hereby execute this
Agreement on the date first above written.

(24)

(25)

Our aim is to eliminate any ambiguities that could exist is the contract so that it could be
implemented electronically.

To achieve this, we will follow our familiarized sequence of steps. First we will
extract the sets of rights and obligations from the contract, and then map them into finite state
machines for the Renter and the Owner. After this we will code the finite state machines as a
Promela verification model, and check it for ambiguities against the set of correctness

requirements we conceived in Section 4.9.

Validation of Electronic Contracts: Examples 115

One immediately noticeable ambiguity in the car rental contract is that if one of the
parties fails to perform one or more obligations, the text of the contract does not specify what
action the opposing party may take. This is an obvious ambiguity that was detected through
manual inspection without requiring the Spin validator, and it can be fixed by adding
additional clauses similar to the termination and dispute clauses in the contract in Section
5.1.1. We will presume that the signatories and their legal advisors have agreed to this, and

we will proceed with adding the clauses:

Additional contract clauses:

Termination

If (Owner) or (Renter), fail to carry out any of their obligations
and. duties .under this agreement, the offended party may issue a
notice specifying the breach and terminate the contract.

Disputes

(Owner) and (Renter) shall attempt to settle all disputes, claims or
controversies arising under or in connection with the agreement
through consultation and negotiations in good faith and a spirit of
mutual cooperation.

(Owner) and (Renter) shall provide electronic evidences about
breaches of the contract.

This method of determination of any dispute is without prejudice to

the right of any party to have the matter judicially determined by
a [Country] Court of competent jurisdiction.

We will next extract the rights and Obligations from the text of the contract as well as the text

of the additional clauses.

5.2.2 Parties’ rights and obligations

Owners Obligations

0O1: Provide vehicle for period ‘p’.

002: Provide vehicle in acceptable condition.

003: Return the deposit if vehicle is returned in acceptable condition.
004: Settle all disputes.

005: Provide electronic evidences about breaches of the contract.

Owners Rights

ORI1: Terminate x-contract, if the Renter is in breach of the contract

Renter’s Obligations
RO1: Make deposit.
RO2: Make payments on time.

RO3: Follow vehicle use agreements (“a’ to ‘v’).

Chapter 5

RO4: Pay for vehicle fuel.
ROS: Return vehicle at date ‘d’.
RO6: Pay for damages.

RO7: Settle all disputes.

RO8: Provide electronic evidences about breaches of the contract.

Renter’s Rights

RR1: Terminate the x-contract, if the Owner is in breach of the contract.

Our next task is to map the above rights and obligations into FSMs for the Owner and the

Renter.

Validation of Electronic Contracts: Examples

52.3 The finite state machines

Owner

Contract commencement date

Waiting for
Deposit

Deposit received
Q1 Provide Vehicle

Check for
Vehicle use
breach

No breach detected
£

Rent peripd not at end

Waiting for
payment

ot received

‘|'erminate x-coniract

Check
Vehicle rent
period

Rent period over
£

Waiting for
vehicle

Vehicle received on time

£

Vehicle in acceptable condition
€

Breach detected

Send ™ Breach
clogled=-mEssane

Asses
Breaches

Wait for
Remedy

Remedy\not received

R1 Termipate x-contract

Fig.5.9. Owner’s Finite state machines

117

Chapter 5

Renter

Contract commencement date
01 Provide deposit

Waiting for
Vehicle

Vehicle not received Vehicle received

RR1!: Terminate x-gontract €

Checking
vehicle
condition

Vehiclen bag condition Vehicle in acceptable condition

hate x-contract 4

Payment
time

Payment due
02 Make payment

Checking
vehicle rent
oeriod

Rent period at end
05 Return vehicle on time

Waiting for
breach
response

¢
No responsg received in ti

RRI Terminate x-contract QK response received

g’Tesponse received

Fig.5.10. Renter’s finite state machine

Validation of Electronic Contracts: Examples 119

5.2.4 The Promela Model:

Below is the Promela verification model of the finite state machines presented in Section

5.2.3.

1 /* Verification model of an x-contract between a car owner and
a renter

2 *

3 * Programme created using XSPIN for simulation and
verification of FSM

4 * correctness

5 *

6 * AUTHOR: Ellis Solaiman

7 * University Of Newcastle Upon Tyne

8 * Date of Creation May 10 2003

9 * Last Update July 22 2003

10 *

11 */

12

13 // Constant definitions

14

15 #define Yes 1

16 #define No O

17

18 #define Good 1

19 #define Bad O

20

21 #define Accept 1

22 #define Reject O

23

24 #define Over 1

25 #define NotOver 0

26

27 #define RentTime 5

28

29 //Messages that will be passed between Owner and the Rente
30 mtype = {Deposit, Payment, Response, Remedy, Breach} :
31

32 chan R20=[1] of {mtype, byte}; // channel Renter to Owner
33 chan O2R=[1] of {mtype, byte}; // channel Owner to Renter

34
35 byte provideVehicle = Noj;

36

37 J*xkxkx Owner FSM **xxx*/
38

39 proctype Owner ()

40 |

41 int depositVal;

42 byte paymentGood;

43 Dpyte vehicleBreach;
44 byte returnedInTime;
45 byte condition;

46 byte remedy = Good;
47 byte rentPeriod;

48 int time = 0;

49

50 /*** Waiting for deposit reciept ***/
51 WaitingforDeposit:
52

Chapter 5

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

if

::R20 ? Deposit(depositVal) -> //Deposit received

::timeout -> goto Dispute //timeout assuption by the designer
fi;

// Random if/fi structure
if
provideVehicle
provideVehicle
fi;

Yes; assert(depositvVal==Good);
No; goto end;

/*** Check for vehicle use breach ***/
CheckVehicleBreach:

if
vehicleBreach = Yes; goto WaitingforPayment;
vehicleBreach = No; goto WaitingforPayment;

fi; // A breach or non- breach is recorded and we carry on

/*** Waiting for rent payment ***/
WaitingforPayment:

if

::R20 ? Payment (paymentGood) ->

::timeout -> goto Dispute; // Assumption on the designers part
fi;

if

:: (paymentGood==Yes) -> goto RentPeriod;

:: (paymentGood==No) -> goto RentPeriod;
fi; // Payment is recorded and we carry on

/*** Check vehicle rent period ***/

RentPeriod:
if

(time == RentTime); goto WaitingforVehicle;

(time != RentTime); time++; goto CheckVehicleBreach;
fi;

/*** Waiting for Vehicle to be returned ***/
WaitingforVehicle:

if

::returnedInTime Yes; goto CheckVehicle;
::returnedInTime = No; goto CheckVehicle;
£i; :

/*** Check Vehicle for damage ***/

CheckVehicle:

if

::condition = Good; goto AssessBreaches;.
::condition = Bad; goto AssessBreaches;
fi;

/*** Assess any breaches relating to rental of vehicle ***/
AssessBreaches:

if

Validation of Electronic Contracts: Examples 121

113 0 |
(vehicleBreach==Yes) | | (paymentGood==No) | | (returnedInTime==No) | | (condi
tion==Bad)) ->

114 O2R ! Breach (Yes); goto RemedyRequest;

115 :: else -> O2R ! Breach(No); goto ContractOver

116 fi;

117

118 /*** Breach detected and remedy requested ***/
119 RemedyRequest:

120

121 if

122 ::R20 ? Remedy(remedy) ->

123 ::timeout -> goto Dispute

124 fi;

125

126 // Check remedy correctness

127 if

128 :: remedy == Good -> goto ContractOver
129 :: remedy == Bad -> goto Dispute
130 fi;

131

132 /*** Dispute state. Owner not happy about something *=**/
133 Dispute:

134

135 printf("\n\nDispute\n\n");

136 goto end;

137

138 /*** Contract ends satisfactorily **x/
139 ContractOver:

140 assert (remedy == Good);

141 printf ("\n\nContract Over\n\n");
142

143 /*** End ***/

144 end:

145 printf("\n\n End \n\n");

146

147 '}

148

149

150

151

152

153 /****** Renter FSM ******/

154 proctype Renter ()

155 {

156

157 byte paymentVal;

158 byte rentPeriod;

159 byte response;

160 byte depositVal;

161 byte condition;

162 byte paymentDue;

163 int time = 0;

164

165

166 /*** Provide Deposit ***/

167 if

168 :: R20 ! Deposit(depositval) ->

169 :: skip; goto End; // Modelling possible system failure
170 fi; // or failure by the Renter to make the

deposit

Chapter 5

171

172 /*** Waiting for Vehicle ***/

173 WaitforVehicle:

174

175 if

176 :: (provideVehicle == Yes); goto CheckVehicleCondition;
177 :: (provideVehicle == No); goto Dispute;

178 fi;

179

180 /***Check the vehicle condition***/

181 CheckVehicleCondition:

182

183 if

184 ::condition = Good -> goto PaymentTime;

185 ::condition Bad -> goto Dispute;

186 fi;

187

188 /*** If it is due, pay the car rent *okk [

189 PaymentTime:

190

191 if

192 :: paymentDue Yes ->

193 :: paymentDue = No -> goto PaymentTime;

194 fi;

195

196 if

197 :: paymentVal Good;

198 :: paymentVal = Bad;

199 fi;

200

201 if

202 :: R20 ! Payment(paymentVal) ->

203 :: skip; -> goto End // Renter does not pay for some reason.
204 fi; // Maybe he runs of with the car!
205

206 /***Check vehicle rent period***/

207 RentPeriod:

208

209 if

210 :: (time == RentTime) ->

211 :: {time != RentTime) -> time++; goto PaymentTime;
212 fi;

213

214 //Return vehicle

215 goto WaitingBreachResponse;

216

217

218 /***Waiting for any complaints from the Owner***/
219 WaitingBreachResponse:

220

221 if

222 ::02R ? Breach{response) ->

223 ::timeout; ,

224 fi;
225

226 1if
227 :: (response
228 :: (response =
229 fi;
230

231 //Car owner requests remedy

il
I

Yes) ->
No) -> goto ContractOver

Validation of Electronic Contracts: Examples 123

232

233 if

234 :: R20 ! Remedy {Good)-> goto ContractOver
235 :: R20 ! Remedy (Bad) -> goto ContractOver
236 fi;

237

238 /*** Contract Over ***/

239 ContractOver:

240 assert (condition == Good);

241 printf ("\n\n Contract Over\n\n");

242 goto End;

243

244 /*** Dispute state. Renter not happy with something***/
245 Dispute:

246 printf ("\n\n Dispute \n\n");

247

248 /*** End state ***/

249 End:

250 printf("\nEnd\n");

251

252 }

253

254 /*xxxxx*x Tnitiate Owner's and Renter's FSM **x#*x*/
255 init

256 {

257 run Owner{);

258 run Renter();

259 1}

52.5 X-contract verification

General Safety properties

After checking the Promela model for any syntax errors, we will first begin checking the
correctness of the model with respect to the general correctness requirements.

Figure 5.11 shows the path in the verification model through which the Spin validator
detected an ambiguity.

The reason for the sequence of events in the simulation is that throughout the model,
we initially assumed that the Renter and the Owner may make mistakes in assessing whether
the car rent period is over. So in figure 5.11, Spin simulates the possibility that the Renter
assumes the rental period to be over, in the mean time the owner assumes that the rent period
is not over - which one of the two assessments is correct does not matter for the purpose of
validation-. This results in the Owner not receiving an expected payment, and he terminates
the x-contract and goes to a dispute state. Meanwhile the Renter assuming there are no more
rent payments to be made, returns the car, and moves on to the state waiting for the breach
assessment from the owner, which will not be received because the Owner has already
terminated the x-contract (Entering the dispute state), and is not sending any more messages
within the confines of the x-contract. So we have deadlock because the Renter’s FSM is

waiting indefinitely, for a message which the Owner’s FSM is not going to send. This could

Chapter 5

be avoided for example by the Owner’s FSM sending a payment reminder before terminating

the x-contract.

> Simulation Output Lo L AEL“J
A 1 proc 0 (:init:) line 248 "pan :m" (state 1) (run Clwner (OBD]
2 proc 0 (:init:) line 249 "pan_in" (state 2) (run Renter ())]
B proc 2 (Renter) line 163 "pan_in" (state -) values: 1l!Deposit, 0]
3 proc 2 (Renter) line 163 "pan_in" (state 1) R20!Deposit, deposit¥al]
4: proc 1 (Owner) line 51 "pan_ in" (state -) wvalues: 17?Deposit, 0]
4: proc 1 (Owner) line 51 "pan in" (state 1) R207Deposit, depositVal]
B proc 1 (Owner) line 57 "pan_in" (state 6) provideVehicle = 1]
6: proc 1 (Owner) line 65 "pan_in" (state 11) vehicleBreach = 1]
T2 proc 2 (Renter) line 171 "pan_in" (state 6) ((provideVehicle==1))]
8: proc 2 (Renter) line 179 "pan_in" (state 12) condition = 1]
9: proc 2 (Renter) line 187 "pan_in" (state 18) paymentDue = 1]
10: proc 2 (Renter) line 192 “pan_in" (state 23) paymentVal = 1]
11 proc 2 (Renter) line 197 "pan_in" (state -) wvalues: 1l!Payment, 1]
11 proc 2 (Renter) line 197 "pan_in" (state 27) R20!Payment, payment¥al]
12 proc 2 (Renter) line 205 "pan_in" (state 32) rentPeriod = 1]
135 proc 1 (Owner) line 73 "pan_in" (state -) wvalues: 17Payment, 1]
13; proc 1 (Owner) line 73 "pan_in" (state 17)
[R207Payment, paymentGood]
14: proc 1 (Owner) line 78 "pan_in" (state 22) ((paymentGood==1))]
15 proc 1 (Owner) line 87 "pan_in" (state 30) rentPeriod = 0]
16; proc 1 (Owner) line 65 "pan_in" (state 11) wvehicleBreach = 1]
L proc 1 (Owner) line 74 "pan_in" (state 18) (timeout)]
Dispute
18;: proc 1 (Owner) line 132 "pan_in" (state 65)
[pr;ntf(N\ \nDispute\hni\\n’)]
proc 1 (Owner) line 141 "pan_in" (state 68) [printf (* \\n\\n End
\\n\\n’) |
spin: trail ends after 20 steps
#processes
proc 2 (Renter) line 216 "pan_in" (state 38)
20 proc 1 (Owner) line 143 "pan_in" (state 69)
20: proc 0 (:init:) line 250 "pan_in" (state 3)
3 processes created
| Exit-Status 0

Single Step l Suspend ! Save in: “ l Clearl Cancel

Fig .5.11 Safety error in the verification model

However this is not required within the text of the contract, and is not requested by the
signatories, and therefore we have not coded a payment reminder into the x-contract model.
The signatories have agreed instead to solve the deadlock possibility by assuming time
conflicts between them regarding the rental period is not required, so this assumption is
removed from the code by synchronising both their finite state machines using a timer, see
lines 27, 89, 90, 209, and 210.

Even after synchronising both FSMs there may still arise the possibility that the
Renter will wait endlessly for a breach response, so the signatories also agreed to give the
Owner a time limit within which to send a breach complaint. If the breach complaint is not
received within this time limit, the Renter himself goes to a dispute state. This is achieved by

adding line 222, which is enacted if the Renter does not receive a response in line 221:

218 WaitingBreachResponse:

219

22001 F

221 ::02R ? Breach(response) ->
222 ::timeout -> goto Dispute;
2235

224

Validation of Electronic Contracts: Examples 125

As a result of this, the initial contract as well as the x-contract model is amended by

adding a clause to remove this ambiguity:

Remedy

The Owner hereby agrees that he shall notify the Renter of any Remedy

requests within a period after the return of the vehicle that does

not exceed number of agreed time units.

Also the Renter’s finite state machine is modified, see dashed arrow in figure (Renter FSM).
After making the changes, we once again run the modified Promela model through

the Spin verifier against the general safety requirements, and it does not detect any errors this

time. See figure 5.12.

5(yerification Dutput

Al (Spin Version 4.0.1 -- 7 January 2003)
+ Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates

(not selected)
(disabled by -a flag)
(disabled by -DSAFETY)

+ 11

State-vector 60 byte, depth reached 67, errors: 0
886 states, stored
274 states, matched
1160 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)
(max size 2719 states)

2 622 memory usage (Mbyte)

unreached in proctype Owner
(0 of 70 states)

. unreached in proctype Renter
i {0 of 58 states)

' unreached in proctype :init:
7 {0 of 3 states)

Save in: HTT Clear | Close ’

Fig.5.12. Verification output after checking general safety requirements

Specific Safety properties

After ensuring the correctness of the model with respect to the general safety properties, we
can begin checking it against any specific safety requirements that the signatories would like

to test the model for. The parties have expressed the following requirements from the model:

1. The Owner would like to ensure that the x-contract will not allow the system go into a
satisfactory situation before it has checked that the renter has remedied any breaches of the

contract.

Chapter 5

2. The Owner would like to ensure that the vehicle is not provided before a correct deposit is

received.

2. The Renter would like to ensure that he will not receive a vehicle in a bad condition.

As we did in Section 5.1.5, we will check for these requirements by inserting assert

statements in the relevant points of the Promela model:

For the first safety requirement:

138 /*** Contract ends satisfacterily *¥**/

139 ContractOver:

140 assert (remedy == Good) ;

141 printf ("\n\nContract

Over\n\n") ;

For the second safety requirmnent:

58 // Random if/fi structure

591 Gt

60 provideVehicle = Yes; assert (depositVal==Good) ;
[l provideVehicle = No; goto end;

628 - Eaiz

For the third safety requirement:

238
239
240
241
242

ContractOver:

goto End;

Next, we setup the validator to check for assertions, and it detects a violation (assertion
violation (depositVal == 1)). Through the route in which the violation was detected, figure
5.13, we realise that the Promela model does not check the deposit when it is received. This is

because the text contract does not actually specify this as a requirement so the model designer

/*** Contract Over **x/

assert (condition == Good);
printf ("\n\n Contract Over\n\n");

did not specify the requirement within the x-contract model either.

¢ Simulation Output

4| S K proc 0 (:init:) line
2 proc 0 (:init:) line
3 proc 2 (Renter) line
3 proc 2 (Renter) line
4: proc 2 (Renter) line
Dispute
5: proc 2 (Renter) line
End
6: proc 2 (Renter) line

7: proc 2 terminates

proc 1 (Owner) line

8: proc 1 (Owner) line

9: proc 1 (Owner) line
spin: line

#processes: 2

10: proc 1 (Owner) line
10: proc 0 (:init}:) line
“7|3 processes created
/|Ex1t-Status 0

o Breer 0]

=10l x|

ositVal]
e==0))]

[printf (*\\n\\n Dispute \\n\\n’)]

257 "pan_in" (state 1)

258 "pan_in" (state 2) [(run Renter())]

168 "pan_in" (state -) [values: 1!Deposit,0]
168 "pan_in" (state 1) [R20!Deposit, de;

177 "pan_in" (state 8) [((provideVehic

246 "pan_in" (state 57)

250 "pan_in" (state 58) [printf (* \\nEnd\\n’)]

54 “pan_in" (state -)
54 "pan_in" (state 1)
60 "pan_in" (state 6)

60 "pan_in", Error: assertion violated
spin: text of failed assertion: assert((depositVal==1))

60 "pan_in" (state 7)
259 "pan_in" (state 3)

[values: 17Deposit,0]
[R207Deposit, depositVal]
[provideVehicle

= 1]

Single Step ‘ Suspend I

Save in: sim.out

_EEEJ Cancel

Fig.5.13. Simulation output through path where safety violation is detected

Validation of Electronic Contracts: Examples 127

As the signatories have specified a correct deposit as a requirement, the Promela

model is subsequently modified:

50 /*** Waiting for deposit reciept ***/
51 WaitingforDeposit:

52

53 if

54 ::R20 ? Deposit(depositVal) -> //Deposit received

55 ::timeout -> goto Dispute //timeout assuption by the designer
56 fi;

57

58 1if

59 ::(depositVal == Good) ->

60 ::(depositvVal == Bad) -> goto end

61 fi;

As can be seen in line 60, it was decided that if an incorrect deposit is received, then
the contract would simply end, without the need to go to a dispute state. It was also decided

that no changes to the original text contract are required.

Liveness properties

The parties have requested to test the x-contract model for the following liveness

requirements:

1. The Renter makes correct Rent payments at the required time, otherwise the Owner's FSM
does not proceed, and goes to a dispute state.
2. The x-contract does not get into a situation where the Renter must make rent payments
infinitely.

Liveness requirement 1 can be defined as of type CR10 (Responsiveness). We will
test for this by defining the variable pay/nTime, and asserting that payInTime, and

paymentGood, are always True when in the “Check vehicle rent period” state:

91 /*** Check vehicle rent period ***/
92 RentPeriod:
93 assert (payInTime == Yes && paymentGood == Yes);

The validator detects no error, therefore requirement 1 is valid.

Requirement 2 tests for livelock (CR 9). We want to test that neither of the FSMs loops
infinitely through a sequence of steps that involves the Renter having to infinitely pay
(monthly for example) rent for the car, meaning that a rented car cannot be rented for ever.

To test for this requirement, we will insert an accept labels in both FSMs as

follows:

Chapter 5

7'9
80

WaitingforPayment:
acceptNotWaitPay:

195 PaymentTime:
196 acceptNotPay:

Inserting the accept labels

after

the

WaitingforPayment, and the

PaymentTime statesSpin states tells the verifier to detect whether the x-contract model

allows a hypothetical scenario where any of these two states could be executed infinitely. We

next set the Basic verification options of the Spin validator to detect livelocks. See figure

(Livelock).

Y¢ Basic Yerification Options

=10 x|

l Caorrectness Propetties

. Safety (state properties)

_| Assertions
_| Invalid Endstates

Liveness (cycles/sequences) l

.~ Mon-Progress Cycles

& Exhaustive
- Supertrace/Bitstate

e

- Hash- Compact

Search Made

% Blocks New Msgs

A Full Queue

% Acceptance Cycles

_| With Weak Faimess
_| Apply Never Claim (If Present)
_| Report Unreachable Code

..~ Loses New Msgs

[Add Never Claim from File]

_| Check xrfxs Assertions

[Set Advanced Options]

|
[Verify an LTL Property] |
|
|

Help \ Cancel | Run

Fig.5.14. Verification options set to detect livelock

We run the verifier, and no violations are detected. This is because we had inserted a

RentTime limit into the model:

91 /*** Check vehicle rent period ***/

92 RentPeriod:

93 assert(payInTime == Yes && paymentGood == Yes);
94 if

95 (time == RentTime); goto WaitingforVehicle;
96 (time != RentTime); time++; goto CheckVehicleBreach;
OFAS e

212 /***Check vehicle rent period***/

213 RentPeriod:

214

2151 F

216 (time == RentTime) ->

Validation of Electronic Contracts: Examples 129

217 :: (time != RentTime) -> time++; goto PaymentTime;
218 fi;

After verifying the correctness of the model with respect to the safety and liveness

requirements, we can proceed with implementing the x-contract.

5.3 Playing a game over a network

Turn based Games played between two or more players over a network, can serve as good
examples of applications which contain rules that govern the interaction between parties.
Applications with such rules require validation for correctness before they can be
implemented. Examples of games that can be played remotely are; Chess, Ticktacktoe,
Monopoly, Poker...etc.

Two or more players before starting a game will be familiar with the set of conditions
under which the game must be played. Conditions or rules can be seen as the “contract
clauses” that the players must agree to before beginning.

Games vary in the number of players allowed to participate from a minimum of two,
going anything up to 6 or more. Generally online games, have a familiar pattern of
communication based on each player waiting for their turn to arrive, making judgements
based on the game status, and eventually doing something. Throughout the game the players
will observe other player’s actions to ensure that everyone attends to the game conditions.

In this section, we present a possible finite state machine representation of some turn
based games played over a network. The finite state machine should be detailed and
unambiguous to facilitate the interaction between the players in an orderly and lawful manner.
We will begin therefore by formulating the general set of rules or “contract clauses” that the
players must adhere to during game play.

A helpful reminder would be that all applications from business contracts to games
are to be implemented in a decentralised distributed fashion, with the help of a suitable
middleware service such as B2BObjects. Therefore the traditional method of running games
from a dedicated central server is not applicable for our implementation. Each of the
participants in the game will have a copy of the state of the game as well as the rules of the
game in the form of identical object copies. Every player will attempt to make changes to the
state of the game by interfacing with his/her local object copy, and transmitting the attempted
changes to the other player’s object copies. Only when all players accept the attempted

change to the game status, will every player’s object copy be modified.

Chapter 5

5.3.1 Rules of the game

This is a game of “chance” between “3 players” to be known as: “Player1”, “Player2”, and

“Player3”. Following the beginning of the game, the players will adhere to the following rules:

1. A player p must make an “action” within 2 minutes of receiving the
“turn” or they will be declared “defeated”.

2. The turn will not be with more than one player at any one time.

3. The player with the “turn” must send his/her chosen action to all
players.

4. Upon receipt of an action from the “turn” player, the receiving
player must send an “action accepted” or “action rejected” message to
the turn player.

5. If the turn player receives an “action rejected” message from the
other players then he/she must make another action within 2 minutes
of receiving the rejecting message.

6. If the turn player p receives an “action accepted” message from
the other players, then the turn player must send the “turn” to the
next player p+1.

7. If the turn player sends an action that is judged by the other
players to be a “winning action” then the game ends, and the turn
player that performed the action is declared winner of the game.

8. A player may resign from the game only when he/she has the turn.

5.3.2 Players’ rights and obligations

There are two possible methods that we can choose from in order to convert the rules in
Section 5.3.1 into an x-contract. We could either split the contract into rights and obligations
for the turn player, and rights and obligations for the non-turn players, so each player will
have two finite state machines that his/her system switches between based on whether the
player has the turn or not. Or we can simply extract rights and obligations for each player that
represent the game rules as a whole, so each player will only have one FSM. To demonstrate

the turn being passed between the players, we have chosen to implement the second approach.

Players’ Obligations X
PO1: A player must make an “action” within 2 minutes of receiving the “turn”.
PO2: Turn player must send chosen action to all players.

PO3: Non-turn players must send Action response to “turn” player.

PO4: Turn player must make an action within 2 minutes of receiving a rejection message.

Validation of Electronic Contracts: Examples 131

POS5: Turn player must send the turn to the next player after receiving an action accept message from

all the other players.

Players’ Rights
PRI: Resign from the game (only when the player has the turn)

Chapter 5

5.3.3 The finite state machine

Figure 5.14 shows a FSM which models the general game interaction pattern. The figure

shows the FSM for just one player. The FSM will be the same for all the players.

GLme begins

4

Correct action message

Checking
“Turn” status

Send “Turn” to next player

“Turn” Received

Tum Elsewhere

Set 2 minute tinfer

Deciding on
action

Waiting for
action from
“Turn” player

Make faction

Send pction tg all players

Action receiyed in time
Incorrect actig

message recgived

Incorrect actiof received

Switch of 2 mynute timer

Send incorred§ action message to

“Turn” playex & Set 2 minute Correct actiop received

Waiting for
response

Checking
action

Resigr| from game

Winning action received
Send resign frojn game message to
all players & sdnd “Turn” to next

“Turn” player wins Send

End game

participation in
game

Fig. 5.14. FSM for a player particif)ating
in a turn based game

Validation of Electronic Contracts: Examples 133

5.3.4 Games’ FSMs in Promela

We will simulate a game between 3 players. As the finite state machine for each player will

be the same, the Promela model will have virtually identical procedures for each of the

players:

1 /* Verification model of a game played between 3 players
2 * Programme created using XSPIN for simulation and
verification of FSM

3 * correctness

4 *

5 * AUTHOR: Ellis Solaiman

6 * University Of Newcastle Upon Tyne

7 * Date of Creation May 10 2003

8 * Last Update July 24 2003

9 *

10 */

11

12 #define ON 1
13 #define OFF O
14

15 #define Good 1
16 #define Bad O
17

18 #define Yes 1
19 #define No O
20

21 #define True 1
22 #define False O

23

24 #define Win 10
25

26 #define Resign 5
27

28 mtype = {Action, ActionA, ActionB, ActionC, Turn Response
Responsel, ResponseB, ResponseC} ' ,
29

30 chan P2P[4] = [1) of {mtype, int};

31

32 int turn = 1; // Turn begins with first player

33 byte player[4];

34 byte turnDecided = Yes;

35

36

37

38

39

40

41

42 /****** FSM of first player XA Kk ok [

43 proctype PlayerAf)

44 |

45 int id = 1;
46 player(l]
47

48 int action;

49 int response[3];//2 players respond

o~

ON;

Chapter 5

50 response[0] = 0;

51

52

53 /*** Is it my turn? ***x/
54 CheckingTurnStatus:

55

56 do // Loop untill the turn has been decided.
57 :: (turnDecided == Yes) ->

58 if

59 :: (turn == id) -> goto DecidingOnAction;
60 :: (turn != id) -> goto WaitingForAction;
61 fi; break;

62 :: (turnDecided == No);

63 od;

64

65

66

67 /*** It is my turn. Deciding on action ***/

68 DecidingOnAction:

69

70 turnDecided = No;

71 //Randomly simulate one of the following actions
72 if

73 :: action = Good;

74 :: action = Bad;

75 :: action = Win;

76 :: action = Resign -> goto EndParticipation

77 fi;

78

79 if //If other players have left the game, then end the game.
80 :: (player[2] != ON && player[3]!= ON) -> goto EndParticipation;
8l :: else ->

82 fi;

83

84 // Randomly send action or end participation in game
85 if
86 :: if

87 :: (player[2] == ON) -> P2P[id] ! ActionB(action);
88 :: else ->
89 fi;

90

91 if

92 :: (player (3]
93 i else ->

94 fi;

95 ::skip -> goto EndParticipation;

96 fi;

97

98

99 //Waiting for response to action from other participants

100 WaitForResponse:

101

102 if //First check that the player (P2) I am waiting a response
from is playing

ON) -> P2P[id] ! ActionC(action);:

103 :: (player[2] == ON) -> P2P[2] ? ResponseB(response[l]) ->

104 :: else ->

105 fi;

106

107 if //Check that the player (P3) I am waiting a response from is
playing

108 :: (player[3] == ON) -> P2P[3] ? ResponseC(responsel2]) ->

Validation of Electronic Contracts: Examples 135

109 :: else —>

110 fi;

111

112 4if

113 :: ((player(2] == ON) && (response{l] == Bad)) -> goto
DecidingOnAction;

114 :: ((player[3] == ON) && (response[2] == Bad)) -> goto
DecidingOnAction;

115 :: else ->

116 fi;

117

118 if // if accepted action was a winning one

119 :: (action == Win) -> goto End

120 :: else ->

121 fi;

122

123 if // If we reach here then the move was judged by the players to
be good

124 :: (player[2] == ON) -> turn = 2; turnDecided = Yes; goto
CheckingTurnStatus

125 :: else if

126 it (player{3] == ON) -> turn = 3; turnDecided = Yes;
goto CheckingTurnStatus

127 i1 else -> printf ("\n\n Unexpected Event\n\n");

128 fi;

129 fi;

130

131

132

133

134//*** It 1s not my turn, Waiting for action from player with turn
* ok ok

135 WaitingForAction:

136

137 if

138 :: (player{turn] == ON) ->

139 if

140 i1 P2P{turn] ? ActionA(action) ->

141 :: timeout -> player[turn] = OFF ->

142 if

143 i (turn == 2) -> turn=3: . _ .
CheckingTurnStatus 3 turnDecided = Yes; goto
144 :: (turn == 3) -> turn=1; : - .
CheckingTurnStatus turnDecided = Yes; goto
145 £i;

146 fi;

147 :: else —> goto CheckingTurnStatus;

148 fi;

149

150 CheckingAction:

151

152 if

153 ::(action == Good) =-> P2P[id] !

CheckingTurnStatus Ll ResponseA (Good) -> goto
154 ::(action == Win) =-> P2P[id] ! Respo B

155 ::(action == Bad) -> P2P[id] ! Resgogzgigggg?)_>>ggggo End
WaitingForAction

156 fi;

157

158 EndParticipation:
159 printf("\n\nPlayerA Resigned\n\n");

Chapter 5

160

161 End:

162 printf ("\n\nPlayerA Game Ended\n\n");
163

164 }

165

166

167

168

169

170

171

172 /****x** FPSM of second player *****x/
173 proctype PlayerB()

174 {

175 int id = 2
176 player|[2]

177

178 int action;

179 int response[3]};//2 players respond
180 response[0] = 0;

181

182 /*** Is it my turn? ***/

183 CheckingTurnStatus:

It~

ON;

184

185 do // Loop untill the turn has been decided.
186 :: (turnDecided == Yes) ->

187 if

188 :: (turn == id) -> goto DecidingOnAction;
189 :: (turn != id) -> goto WaitingForAction;
190 fi; break;

191 :: (turnDecided == No)

192 od;

193

194

195 /*** It is my turn. Deciding on action ***/

196 DecidingOnAction:

197

198 turnDecided = No;

199 //Randomly simulate one of the following actions
200 if

201 :: action = Good;

202 :: action = Bad;

203 :: action = Win;

204 :: action = Resign ~-> goto EndParticipation

205 fi;

206

207

208 if //If other players have left the game, then end the game.
209 :: (player[l] != ON && player[3]!= ON) -> goto EndParticipation;
210 :: else ->

211 fi;

212 ,

213 // Randomly send action or end participation in game
214 if

215 :: if

216 :: (player[l] == ON) -> P2P{id] ! ActionA(action);
217 :: else —->

218 fi;

219

220 if

Validation of Electronic Contracts: Examples 137

221 :: (player[3] == ON) -> P2P[id] ! ActionC(action);
222 i else ->
223 fi;
224 ::skip -> goto EndParticipation;
225 fi;
226
227
228 //Waiting for response to action from oth i ci
er parti
229 WaitForResponse: P cipants
230
231 if //First check that the player (Pl) I am waiting a response
from is playing

ggi ;; é?izyfi[l] == ON) -> P2P[l] ? ResponseA(response[l]) ->
234 fi;

235

236 if //Check that the player (P3) I am waiting a response from is
playing

gg; ;; ;?izyfi[3] ON) -> P2P{3] ? ResponseC(response[2]) ->
239 fi;

240

241

242 1if

243 :: {{(player[l] == ON) && L

DecidingOnAction;) (response[1l] == Bad)) -> goto

244 :: ((player[3] == ON) && L

DecidingOnAction; ! (response[2] == Bad)) -> goto

245 :: else ->

246 fi;

247

248

249 if // if accepted action was a winning one

250 :: (action == Win) -> goto End

251 :: else ->

252 fi;

253

254

255 if // If we reach here th :
be good en the move was judged by the players to

256 :: (player[3] == ON) -> turn = 3; t .
; D = .

CheckingTurnStatus urnDecided = Yes; goto
257 :: else if
258 :: (player([l] == ON) -> turn = ;

= 1; = .
goto CheckingTurnStatus turnDecided Yes;
259 :: else -> printf ("\n\n Unex .
260 fi; pected Event\n\n");
261 fi;
262
263
264

265 /*** It is not my turn, Waiti i i
2 y r Walting for action from player with turn

266 WaitingForAction:

267

268 if

269 :: (player[turn] == ON) ->

270 if

271 :: P2P[turn] ? ActionB(action) ->
272 :: timeout -> player[turn] = OFF ->

273 if

Chapter 5

274 (turn == 1) -> turn=2; turnDecided = Yes; goto
CheckingTurnStatus

275 (turn == 3) -> turn=1; turnDecided = Yes; goto
CheckingTurnStatus

276 fi;

277 fi;

278 else -> goto CheckingTurnStatus;

279 fi;

280

281

282 CheckingAction:

283

284 if

285 ::(action == Good) -> P2P[id] ! ResponseB(Good) -> goto
CheckingTurnStatus

286 ::(action == Win) -> P2P[id] ! ResponseB(Good) -> goto End
287 ::(action == Bad) -> P2P[id] ! ResponseB(Bad) -> goto
WaitingForAction

288 fi;

289

290

291

292

293

294 EndParticipation:

295 printf ("\n\nPlayerB Resigned\n\n");

296

297 End:

298 printf("\n\nPlayerB Game Ended\n\n");

299

300 }

301

302

303

304

305 /***x*x PSM of third player *****x/

306 proctype PlayerC()

307 {

308 int id = 3;

309 player[3] = ON;

310

311 int action;

312 int response[3):;//2 players respond

313 response[0] = 0;

314

315 /*** Is it my turn? ***/

316 CheckingTurnStatus:

317

318 do // Loop untill the turn has been decided.
319 (turnDecided == Yes) ->

320 if

321 (turn == id) -> goto DecidingOnAction;
322 (turn != id) -> goto WaitingForAction;
323 fi; break;

324 (turnDecided == No)

325 od;

326

327

328 /*** It is my turn. Deciding on action ***/
329 DecidingOnAction:

330

Validation of Electronic Contracts: Examples 139

331 turnDecided = No;
332 //Randomly simulate one of the following actions

333 if

334 :: action = Good;

335 :: action = Bad;

336 :: action = Win;

337 :: action = Resign -> goto EndParticipation

338 fi:

339

340 if //If other players have left the game, then end the game.

341 :: (player[l] != ON && player([2]!= ON) -> goto EndParticipation;
342 :: else —-> ’
343 fi;

344

345 // Randomly send action or end participation in game
346 if

347 :: if

348 :: (player{l] == ON) -> P2P{id] ! ActionA(action);
349 1 else ->

350 fi;

351

352 if

353 :: (player[2] == ON) -> P2P[id] ! ActionB(action);
354 :: else ->

355 fi;

356 ::skip -> goto EndParticipation;

357 fi;

358

359

360 //Waiting for response to action from .
other rt
361 WaitForResponse: participants
362
363 if //First check that the player (P1) I am waiting a response
from is playing

364 :: (player[l] == ON) -> P2P{1] ? Res _
365 :: else -> ponseA(response(l]) ->
366 fi;

367

368 if //Check that the player (P3) I am waiting a response from is
playing

gsg ;; é?izyfi[z] ON) -> P2P[2] ? ResponseB(response[2]) ->
371 fi;

372

373

374 if

375 :: ((player([l] == ON) && (r -
DecidingOnAction; (response[1}] == Bad)) -> goto
376 :: ((player[2] == ON) && (re L
DecidingOnAction; (response[2] == Bad)) -> goto
377 :: else —>

378 fi;

379

380

381 if // if accepted action was a winning one

382 :: {action == Win) -> goto End

383 :: else ->

384 fi;

385

386

Chapter 5

387 if // If we reach here then the move was judged by the players to
be good

388 :: (player[l] == ON) -> turn = 1; turnDecided = Yes; goto
CheckingTurnStatus

389 :: else if

390 :: (player[2] == ON) -> turn = 2; turnDecided = Yes;
goto CheckingTurnStatus

391 :: else -> printf("\n\n Unexpected Event\n\n");

392 fi;

393 fi;

394

395

396 /*** It is not my turn, Waiting for action from player with turn
***/

397 WaitingForAction:

398

399 if

400 :: (player([turn] == ON) ->

401 if

402 :: P2P[turn] ? ActionC(action) =->
403 :: timeout -> player(turn] = OFF ->
404 if

405 :: (turn == 1) -> turn=2; turnDecided
CheckingTurnStatus

406 :: (turn == 2) -> turn=3; turnDecided
CheckingTurnStatus

407 fi;

408 fi;

409 :: else -> goto CheckingTurnStatus;

410 fi;

411

412

413 CheckingAction:

414

415 if

416 ::(action == Good) -> P2P[id] ! ResponseC(Good) -> goto
CheckingTurnStatus

417 ::(action == Win) -> P2P[id] ! ResponseC(Good) -> goto End
418 ::(action == Bad) -> P2P[id] ! ResponseC(Bad) -> goto
WaitingForAction

419 fi;

420

421

422

423

424

425 EndParticipation:

426 printf("\n\nPlayerC Resigned\n\n");

427

428 End:

429 printf("\n\nPlayerC Game Ended\n\n");

430

431 } .

432

433

434

435 init

436 {

437

438 run PlayerA();

439 run PlayerB();

Yes; goto

[

Yes; goto

Validation of Electronic Contracts: Examples 141

440 run PlayerC();
441
442 }

5.3.5 Game model verification

Because this is a game of rules that we are imposing on players who wish to play it, we will
suffice with checking that the model is correct with respect to the general safety properties,
i.e., CR3: Reachability, CR4: Freedom from deadlocks, and CR11: Absence of unsolicited
responses.

We set the verifier to detect general safety properties, and run it. The verifier signals

that it has detected an error (figure 5.15).

%(verification Output : e 1ol x|

| pan: invalid endstate (at depth 145)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks

- (not selected)
invalid endstates +

(disabled by -a flag)
(disabled by -DSAFETY)

j Sstate-vector 144 byte, depth reached 193, errors: 1

Fig.5.15. General safety error detected in Game model

To discover the source of the error, we will run the Spin simulator through the path in

which the error was detected. The results are presented in figure 5.16.

%¢ simulation Dutput

=101x|

: 78: proc 3 (PlayerC) line 417 "pan in" (state 109 rintf (’ layerC
""|game Ended\\n\\n’) | i (o hieate
| 79: proc 3 terminates
80: proc 1 (Playera) l}ne 60 "pan_in" (state 6) [{{turn!=1d))]
81: proc 2 (PlayerB) line 268 "pan_in" (state 83) [(timeout)]
82: proc 2 (PlayerB) line 268 "pan_in" (state 84) [player[turn] = 0]
83: proc 2 (PlayerB) line 271 "pan_in" (state 89) [((turn==3))]
| 84: proc 2 (PlayerB) line 271 "pan_in" (state 90) [turn = 1]
85: proc 2 (PlayerB) line 271 "pan_in" (state 91) [turnDecided = 1]
86: proc 2 (PlayerB) line 184 "pan_in" (state 3) [((turnDecided==1))]
87: proc 2 (PlayerB) line 187 "pan_in" (state 6) [((turn!=1d))]
| 88: proc 1 (Playerd) line 141 "pan_in" (state 83) [(timeout)]
/| 89 proc 1 (Playerd) line 141 ‘pan_in" (state 84) [player[turn] = 0]

wl__“ﬂ"n._ l Save in:] sim.out ClearJ Cancel

Fig.5.16. Simulation output of path in which error is detected

In the simulated route, the turn is passed to player C, who decides to abruptly leave the game
without informing the other players. (steps 78, and 79 in figure 5.16).
Players A and B in the mean time are still waiting for an action from player C.

Player B first detects that no action is forthcoming, and assigns the player with the turn player

Chapter 5

C = OFF (step 82), and gives the turn (A global variable in our model) to player A (step 84).
Following this, player A also detects that no action is forthcoming from player C. But because
the global variable “turn” has been set by player B to equal “1”, (i.e. turn = player A), player
A unknowingly switches himself off! (step 89). This problem is an example of Spin’s ability
to detect programming mistakes, and can be corrected by both players checking if the player

with the turn is “ON” before proceeding with waiting for an action:

136 /*** It is not my turn, Waiting for action from player with turn
***/

137 WaitingForAction:

1:38
139 if
140 :: (player[turn] == ON) ->
141 if
142 :: P2P[turn] ? ActionA(action) ->
143 :: timeout -> player[turn] = OFF ->
144 if
145 :: (turn == 2) -> turn=3; turnDecided = Yes; goto
CheckingTurnStatus
146 :: (turn == 3) -> turn=1; turnDecided = Yes; goto
CheckingTurnStatus
147 £i;
148 £iy
149 :: else -> goto CheckingTurnStatus;
150 k4 ;
Previously, line 140, and its counterparts in the FSMs of the other players did not
exist.

After making this modification, we again run the Spin validator to check for general
safety errors, and it detects another error. We can see this in the message sequence chart and

the simulation output of figure 5.17.

¢ Simulation Output = i IDl_ﬁ

41191 proc 2 (PlayerB) line 289 "pan_in" (state -) [values: 3!ResponseB, 0]
11191 proc 2 (PlayerB) line 289 "pan_in" (state 109) [P2P[id]!ResponseB, 0]
192: proc 2 (PlayerB) line 271 "pan_in" (state 82) [((player[turn]==1))]
8193 proc 1 (Playerd) line 157 "pan_in" (state -) [values: 2!Responsea, 0]
193: proc 1 (Playera) line 157 “pan_in" (state 109) [P2P[id]!Responsea, 0]
194; proc 3 (PlayerC) line 366 "pan_in" (state -) [values: 27Responsea, 0]
3 (PlayerC) line 366 "pan_in" (state 43)

194: pro
[P2P[1]7ResponseA responae[l]]
195 proc 3 (PlayerC) line 369 "pan_in" (state 45) [((response[l]x:ﬂ))]
196 proc 3 (PlayerC) line 333 "pan_in" (state 15) [turnDecided = 0]
/£|197: proc 3 (PlayerC) line 336 "pan din" (state 16) [action = 1]

Single Step | Suspend | savein: | simout _ Qear | cancel |

o]

Fig.5.17. Simulation of second problem in game model

As can be seen at steps 181, and 187 of the message sequence chart in figure 5.17, when it is

his turn, player C sends a bad action (knowingly or not knowingly) to players A, and B.

Validation of Electronic Contracts: Examples 143

Player B at step 191, and Player A at step 193 of the simulation send player C an error
message. However, Player A’s response is received first, and player C goes back to the
“Deciding on action state”, and resigns from the game (step 202). Player B’s response
remains in a queue. It now becomes player A’s turn. He makes his move, and waits for a
response from player B, but instead receives player B’s response to player C’s move at step
187! This is an error caused by a mistake in the configuration of the message channels in the
Promela code. In order to simplify the code, we setup 3 response channels, ResponseA,
ResponseB, and ResponseC to be used respectively by each of the players in order that they
can respond to the “turn” player’s action. A more accurate modelling would be to setup
channels as such: ResponseAB, ResponseAC, ResponseBA, ResponseBC ... etc. However
this would needlessly complicate the model, and a better solution would be to ensure that the

“turn” player does not move to another state before receiving all incoming responses:

99 //Waiting for response to action from other participants

100 WaitForResponse:

101

102 if //First check that the player (P2) I am waiting a response
from is playing

103 :: (player[2] == ON) -> P2P[2] ? ResponseB{response[l]) ->

104 :: else ->

105 fi;

106

107 if //Check that the player (P3) I am waiting a response from is

playing

108 :: (player(3] == ON) =~> P2P[3] ? ResponseC{response[2]) ->

109 :: else ->

110 fi;

111

112 if

113 :: ((player{2] == ON) && (response[l] == Bad)) -> goto
DecidingOnAction;

114 :: ((player[3] == ON) && (response(2] == Bad)) -> goto
DecidingOnAction;

115 :: else ->

116 fi:

The above code is the corrected version, whereas previously the response
comparisons made in lines 113 and 114, were placed under lines 103 and 108 respectively.
We must continue running the validator as long as it detects problems, and once again

Spin detects errors, but this time they are of a different nature. The validator has detected code

that is unreachable (CR3). See figure 5.18.

Chapter 5

><Veriﬁcation Output - e =101 x|

T2 v

. unreached in proctype Playerh
line 127, state 74, "printf(’\n\n Unexpected Eventi\n\n’)"
(1 of 112 states)

- unreached in proctype PlayerB
line 259, state 74, "printf(’‘n\n Unexpected Eventinin’)"
(1 of 112 states)

unreached in proctype PlayerC
line 391, state 74, "printf{’‘n\n Unexpected Eventinin’)"
(1 of 112 states)

unreached in proctype :init:
/ (0 of 4 states)

Fig.5.18. Detection of unreachable code by the Spin validator.

Fortunately, this is code we inserted only to help us with the modelling process, and is not
required for the game model or the implementation. We can therefore delete or comment out
the code signalled as unreachable by the Spin verifier. This is a good example of Spin’s
ability to detect code and states that may not have been integrated correctly during the coding
of a FSM. We comment out the unreachable code (lines 127, 259, and 391), run the verifier
one more time for general safety properties, and it signals that the model is correct for these
properties.

As mentioned earlier, we are not required to check the model for other correctness

properties. The FSM model can now be implemented.

5.4 Summary

The focus of Chapter 4 and of this Chapter has been on the identification of a process that we
can implement in order to test contracts for errors and ambiguities, and in order to remove
these errors and ambiguities if any are detected.

We have identified a set of safety and liveness contract correctness requirements, and
using these we have shown through examples and with the Spin model checker how
inconsistencies can be detected and removed from contracts. Once a contract has been
freed of errors, our next task is to create and implement the x-contract. This is the topic of

Chapter 6.

Chapter Six

Middleware Support for X-Contract
Implementation

In this chapter, we investigate what middleware services are required to support a contract
management system that guarantees that the rights and obligations stipulated in a contract are
monitored and enforced. We are assuming that the organizations involved might not trust each
other, so an important requirement from the middleware which will facilitate the contractual
interactions between the parties is that it should enable regulated transactions (as encoded in
the x-contract) between two or more mutually suspicious but autonomous organizations.

It is clearly not possible to prevent organisations from misbehaving and attempting to
cheat on their agreed contractual relationships. The best that can be achieved is to ensure that
all contractual interactions between such organisations are funnelled through (a centralised or
distributed) contract management system and that either (a) all other non-contractual
interactions are disallowed, or (b) the contract management system is at least capable of
monitoring and signalling the signatories of the contract as to when the contract is being
violated, or ideally (¢) both a, and b.

The safety properties of the x-contract implementation must ensure that local policies
of an organization are not compromised despite failures and/or misbehavior by other parties;
whilst the liveness properties should ensure that if all the parties are correct (not misbehaving),
then agreed interactions would take place despite a bounded number of temporary network
and computer related failures. Also because we are dealing with contracts, for the purposes of
proof and legality the middleware must have means for collecting non-repudiable evidence of
the actions of parties that interact with each other.

For non-repudiable information sharing we propose to use the B2BObject middleware

developed at the University of Newcastle upon Tyne [CSW02].

6.1 Overview of B2BObjects middleware

B2Bobjects middleware service collects non-repudiable evidence for information sharing
between parties that do not necessarily trust each other. Once deployed, each party holds a
local copy of shared information encapsulated in objects. Access to and update of this
information is subject to non-repudiable validation by each party. It is assumed that each

organization has a local set of policies for information sharing that is consistent with the

145

Chapter 6

overall information sharing agreement between the organizations (this agreement will be
encoded in the x-contract). B2BObjects provides for the safety and liveness properties
discussed at the beginning of this chapter. The safety property of B2BObjects ensures that
local policies of an organization are not compromised despite failures and/or misbehaviour by
other parties; whilst the liveness property ensures that if all the parties are performing their
actions correctly as stipulated within a contract, then agreed interactions would take place
despite a bounded number of temporary network and computer related failures.

Essentially, B2BObjects resembles a transactional object replica management system
where each organization has a local copy of the object(s) to be shared. Any local updates to
the copy by an organization (“proposed state changes” by the organization) are propagated to
all the other organizations holding copies in order for them to perform local validation; a
proposal comprises the new state and the proposer’s signature on that state. Each recipient
produces a response comprising a signed receipt and a signed decision on the (local) validity
of the state change. All parties receive each response and a new state is valid if the collective
decision is unanimous agreement to the change. The signing of evidence generated during
state validation binds the evidence to the relevant key-holder. Evidence is stored
systematically in local non-repudiation logs. For protocol details, see [CSW02].

State changes are subject to a locally evaluated validation process. State validation is
application-specific and may be arbitrarily complex (and may involve back-end processes at
each organisation).

Figure 6.1, presents four enterprises (E1, E2, E3, E4), sharing a state through three
B2BObjects (A, B, and C). As shown in the figure, the logical view of shared objects in a
virtual space (a) is realised by the regulated coordination of actions on object replicas held at

each organisation (b).

(a) LOGICAL VIEW (b) PHYSICAL REALIZATION

it Organization O Application ® B2BObject .~ Invocation Coordination

gy
fond Virtual space

Fig.6.1. B2Bobject Interactions

Middleware Support for X-Contract Implementation 147

6.2 B2BObjects API

The primary B2BObjects API classes are B2BObject — the application-specific
augmentation of a local object, and B2BObjectController — the local interface to
configuration, initiation, and control of information sharing. The interfaces to these classes
and the relationship between them and the B2BCoordinator package are shown in Figure 6.2.
The coordinator package manages inter-organisational connection to and communication
between objects, and implements coordination protocols. It also provides state checkpointing,

certificate management and non-repudiation services.

ApplicationObject «LNERT TG A ANERCE ACEs
B2ZBObject B2BObjectController
et Attribub Gl — -
sEREALErATut et) rembtlontrollar () sconnset (1
+ I e iy +oOnneat O +digoormect ()
""""" d Al sConnsat () +BYROlnar |)
1 +eyneCoerd) sRltter (1
+gubBtata) +Rxamine i)
+gubtlpdats () +Overwrita i)
svalidatslonnect () +updatad)
+validatsdisoonneot |l +leans)
swalidatastate () +validztionRenponss ()
svalidateUpdat il (7'5
sapplystata]l
B2BOblectimpl | | ipniptpaate (1 |
e ! Aok ()
»gatkttljltuLa\:‘ +eonralallback () :
a:atkttntuta\:\ ‘;5 |
QP 3 Srivas b e SN ATE A o e =) |

3 | A=t R e i
!
Q{BZBOD}ectcontrollerlmpl |
T

FPRCKAD. l

BZBCoordinator

nfer-enterpiise coond. QO
ot gt & nonrapadvation [BRRECoordinatoriuencts

state che tng

!
[“ (A} --3{e]]

gﬁ&@bﬁl’tl![lﬂt‘:ﬁrLucﬂl

AlmpEmEnls B Alscomponent of B Adepandson B A exports "Inkrfacs”

Fig.6.2. B2BObjects API

The B2BObject interface is implemented by the application programmer. The programmer
decides whether to produce a new application object that implements both the B2BObject
interface and the application logic, or to extend an existing application object, or to wrap the
object with an implementation of the B2BObject interface. For example, the

ApplicationObject operation:

setAttribute (AType a) ;

shown in figure 6.2, has a corresponding B2BObjectImpl wrapper operation that could be

implemented as follows:

setAttribute (AType a)

// start of state access
controller.enter () ;

// indicate overwriting object state

Chapter 6

controller.overwrite () ;

// set the attribute
appObject.setAttribute(a) ;
// end of state access
controller.leave();

Similarly, the B2BObjectimpl getAttribute wrapper is:

AType getAttribute() ({

// start of state access
controller.enter () ;

// indicate reading object state
controller.examine () ;

// get the attribute

AType attr = appObject.getAttribute();
// end of state access
controller.leave() ;

return attr;

Given knowledge of an application object’s state access operations, the wrapper methods of a
B2BObjectimpl class could be generated automatically. As indicated, the
B2BObjectControlier enter and leave operations are used to demarcate the scope of access to
object state. These calls may be nested provided that a leave is invoked for each enter.
Nesting allows the application programmer to “roll-up” a series of state changes into a single
coordination event. If overwrite has been called within the current state change scope (as in
the setAttribute example), then state coordination is initiated at invocation of the final leave,
as we describe now.

The controller obtains a copy of the object’s state (using the B2BObject getState
operation) and passes that state to the coordinator for propagation to remote parties for state

validation. B2BCoordinatorLocal provides the following propagation interface:

public interface B2BCoordinatorlocal {
public void propagateConnect (String
coordAlias) ;

public void propagateDisconnect (String
subjectAlias) ;

public void propagateNewState (
NewStateRequest stateRequest);

A call to propagateNewState results in state validation at the remote parties via invocation of
validateState on their copy of the shared object. The B2BObjectController
validationResponse communicates the result of this applicafion-speciﬁc validation. It can be
invoked synchronously or asynchronously as a callback on the local controiler. If a proposed
change is accepted by all parties, an applyState call on each replica installs the newly
validated state. Thus the leave operation implicitly invokes the state coordination protocol, via

the local coordinator, and the validation, or otherwise, of a state change proposal. If a

Middleware Support for X-Contract Implementation 149

proposed change is invalidated, the proposer’s coordinator will rollback their local object
state using a call to applyState with the previously agreed state. A similar process to that
outlined applies to update, as opposed to overwrite, of object state.

In this case, the B2BObjectController update operation is used to indicate the type of
state coordination required. The examine operation indicates that object state will be read but
not written in the current scope. Together with enter and leave, the three access type
indication operations (examine, overwrite and update) can be used as hooks for concurrency
control mechanisms and transactional access to objects.

The implementation of the B2BObjectController is provided as part of the
middleware. Together, B2BObject and B2BObjectController provide connection management;
state change scoping and access type indication; and upcalls for application-level validation.
connect and disconnect operations initiate connection to and disconnection from the set of
objects being coordinated (leading to initiation of connection and disconnection protocols via
the B2BCoordinatorLocal propagation interface). validateConnect and validateDisconnect
allow application-specific validation of connection and disconnection requests.

The semantics of connect, disconnect and leave vary with the communication mode.
In synchronous mode, they block until the relevant coordination process completes (an
exception is raised if validation fails). In asynchronous mode, they return immediately and
completion is signalled by the coordinator through invocation of coordCallback. In deferred
synchronous mode they return immediately and a blocking call to coordCommit can be used
to wait for completion. coordCallback is also used by the coordinator to communicate
protocol progress information to the application.

The B2BCoordinatorLocal interface is independent of both the communication mode
and the coordination protocols executed between coordinators through their
B2BCoordinatorRemote interface. Implementations of these interfaces are part of the

B2BCoordinator package provided by the middleware.

6.3 X-Contract Implementation with B2BObjects

With this background, we can begin with hinting at the overall implementation of x-contracts
using the B2BObjects middleware. The implementation of an x-contract that involves a
purchaser and a supplier is shown in figure 6.3. Each party maintains a copy of the contract
object, encoded as one or more B2BObjects (B2Bobj); operations on these objects are
controlled by the contract FSMs. The dashed line that goes from the supplier to the purchaser
shows what happens when the supplier sends an offer. When the offer is ready, the supplier

invokes a send operation, and the supplier's FSM switches to its Waiting for response state

Chapter 6

and makes a SendOffer call to the local copy of a shared B2Bobj (that implements the
operation). The local B2Bobj collects, and signs, evidence of the operation and requests
coordination of the proposed update to its state with the purchaser's B2Bobj.

The purchaser's B2Bobj verifies the evidence provided and makes an up-call to the
purchaser's FSM to validate the B2Bobj operation. Upon receiving the up-call, the purchaser's
FSM switches to the Deciding to buy state.

The dashed line from the purchaser's FSM to the supplier's FSM shows how the
purchaser's response is transmitted to the supplier. The B2BObjects middleware ensures that
all operations performed by the purchaser and the supplier are recorded and are non-
repudiable. Thanks to this facility the purchaser of the example of Fig 6.3, can provide
evidence, at a court for example, that he sent his payment within 7 days after receiving a
notification of acceptance of his purchase order, even if the supplier denies receiving the
payment. One of the major advantages of B2BObjects is that it ensures this without the need

of involving centralized trusted third parties.

Purchaser’s FSM Supplier’s FSM
X-contractSigned X'?f_n_t_'fft_s_'g?_e_(‘j
€) €
~ Waiting for -
offer
OfferRcvd OfferRejected OfferReady RejectedRcvd
g7 SendRejected SendOffer £

Deciding to
e buy i

OfferAccepted AcceptedRcvd

LSSt Ll LU A

SendAccepted _v (1)
Preparing
payment

€

Purchaser’s copy | Supplier's copy
- of B2Bobj 2 of B2Bobj
- B2Bob] s

Fig.6.3. Collection of non-repudiable digital evidence with B2Bobjects

Contract management must be made part of the business processes of the organizations

involved. An organization’s business processes can be divided into two broad categories. (a)

Middleware Support for X-Contract Implementation 1554

The business processes that are internal to the organization, and (b) the contract management
processes, that involve interactions with trading partners.

In our contract model enterprises that engage in contractual relationships are
autonomous and wish to remain autonomous after signing a contract. Thus a signing
enterprise has its own resources and local policies. In our view each contracting enterprise is a
black box where private business processes represented as finite state machines, workflows or
similar automaton, run.

A private business process interacts with its external environment through the
contract from time to time to influence the course of the shared business process.

Thus, a contract is a mechanism that is conceptually located in the middle of the
interacting enterprises to intercept all the contractual operations that the parties try to perform.

Intercepted operations are accepted or rejected in accordance with the contract clauses.

6.4 Purchaser/Supplier Example

In this section, we continue with the implementation of the Purchaser/Supplier contract
example that we presented in Chapters 3, and 4.

To remind the reader, we first began in Chapter 3, with presenting a contract between
a Purchaser and a Supplier in which the Supplier is entitled to make price offers for a certain

commodity he wishes to sell. The Purchaser in turn is entitled to reject or accept these offers.

1. Offer

1.1 The supplier may use his discretion to send offers to the purchaser.

1.2 Ifno offer is sent within seven days after the signature of the x-contract, or after
the latest rejected offer, the x-contract shall be terminated.

1.3 The purchaser is entitled to accept or reject the offer; but he shall notify his

decision to the supplier within five days after the receipt of the offer.
2 Commencement and completion

2.1 The contract shall start immediately upon signature.

2.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

Fig. 6.4. Contract clauses after removal of ambiguities

From the contract, we extracted the rights and obligations of each of the contract signatories,
and mapped them into FSMs. In Chapter 4, we used the Spin model checker to validate the
correctness of the contract FSMs with respect to a number of safety and liveness contract

correctness requirements. During the validation process, inconsistencies were found within

Chapter 6

the contract. These were corrected, and the essential contract clauses are now as presented in

figure 6.4. Also the corrected FSMs are in figure 6.5.

x-contract signed x-contract signed
q" Start x-contract q Start x-contract

g Offer rejected

O Send rejected Offeredited

R Send offer

Deciding
tobuy

Offer accepted received” S day timeout

End x-con;/ p q‘ Tcnmi te x-contract

Fig.6.5. Corrected Purchaser and Supplier FMSs

q‘Send accepted, End x-contract

Our next and final task is to implement the contract in figure 6.4, and its resulting finite state
machines in figure 6.5, using the B2BObjects middleware service, and thus creating the x-
contract.

As we mentioned in Section 3.4.3, the optimum contract implementation scenario
would be one in which the signatories to a contract, and/or their lawyers, can convert a
contract into an x-contract that monitors and enforces the agreement without requiring the
expertise of a technical person. This however is not possible with current technology, and
each newly agreed contract will require the involvement of computing personnel with
experience in the area of x-contract validation and implementation.

This ideal scenario however can be achieved in the business world of standard
contracts (Section 3.4.3). X-contract computing experts will initially be involved in the
process of validating and creating standard x-contracts to implement the original standard
contracts. Once the standard x-contracts have been created, they can be stored together with
their standard contracts on a web space to be accessed by interested clients, and they will not
require the involvement of technical persons because the inconsistency free x-contract would
have already been created.

For our example, we will take the view that the contract above is required for use as a
standard contract. The main text of the contract will remain the same for various clients who
wish to use the contract, however specific details (such as: The date the contract will be
implemented, and the maximum allowable number of days until the supplier makes an offer,

etc.) will be determined as required by the clients signing the contract.

Middleware Support for X-Contract Implementation 153

6.4.1 Implementation of Supplier/Purchaser Example

Our objective is to convert the FSMs in Fig 6.5, to a Java representation of the FSMs
that can be interpreted an executed as an x-contract by the B2BObjects middleware.

B2BObjects implementation relies on operations performed on the shared information
encapsulated within local object replicas. Within the context of x-contracts, these operations
are aimed to progress the state of the object replicas in consistency with the requirements of
the signed contract. This progress or update of the state of an object by one of the parties is
subject to non-repudiable validation by each party. We must first begin with identifying the
object(s) within the contract in Fig 2.4 on which we will require to perform the operations that
will update the state of the x-contract. It is clear from the FSMs in Fig 6.5, that all operations
are related to the offer being made by the supplier. And remembering the B2BObjects API
description in Section 6.2, we can proceed with creating a B2BOffer object. We have chosen
to extend an existing application object (AbstractB2BObject) that implements the B2BObject
interface. We present the B2BOffer Class next:

1 import java.util.Date;

2

3 import uk.ac.ncl.b2bobj.AbstractB2BObject;

4 import uk.ac.ncl.b2bobj.B2BException;

5 import uk.ac.ncl.b2bobj.B2BInvalidatedException;
6 import uk.ac.ncl.b2bobj.B2BObjectController;

-

8 public class B2BOffer extends AbstractB2BObject ({
9

10 public B2BOffer (Date contractDate, B2BObjectController ctrlr)
11 throws B2BException ({

12 offer = new Offer(contractDate);

13 setController (ctrlr);

14 }

15

16 public void setPrice (double price) throws B2BException,
17 B2BInvalidatedException {

18 ctrlr.enter();

19 ctrlr.overwrite();

20 offer.setPrice(price);

21 ctrlr.leave();

22 }

23

24 public void accept () throws B2BException,
BR2BInvalidatedException ({

25 ctrlr.enter();

26 ctrlr.overwrite () ;

27 offer.accept () ;

28 ctrlr.leave();

29 }

30

31 public void reject() throws B2BException,
BR2BInvalidatedException {

32 ctrlr.enter();

33 ctrlr.overwrite();

Chapter 6

34 offer.reject();

35 ctrlr.leave();

36 }

37

38

39 public Date getContractDate() throws B2BException,
40 B2BInvalidatedException ({

41 ctrlr.enter();

42 ctrlr.examine () :;

43 Date cdate = offer.getContractDate();

44 ctrlr.leavel();

45

416 return cdate;

47 }

48

49 public Date getOfferDate{) throws B2BException,
B2BInvalidatedException {

50 ctrlr.enter();

51 ctrlr.examine();

52 Date odate = offer.getOfferDate():

53 ctrlr.leave();

54

55 return odate;

56 }

57

58 public double getPrice() throws B2BException,
B2BInvalidatedException {

59 ctrlr.enter();

60 ctrlr.examine () ;

61 double price = offer.getPrice():;

62 ctrlr.leave():

63

64 return price;

65 }

66

67 public Date getResponseDate() throws B2BException,
68 B2BInvalidatedException {

69 ctrlr.enter():

70 ctrlr.examine();

71 Date rdate = offer.getResponseDate():;

72 ctrlr.leave({);

73

74 return rdate;

75 }

76

77 public boolean isAccepted() throws B2BException,
B2BInvalidatedException {

78 ctrlr.enter();

79 ctrlr.examine () ;

80 boolean accept = offer.isAccepted():

81 ctrlr.leave():;

82

83 return accept:)

84 }

85

86 /**

87 * @see B2BObject#applyState

88 */

89 public void applyState(Object state) throws B2BException {
90 this.offer = (Offer) state;

91 }

Middleware Support for X-Contract Implementation 155

92

93 /x*

94 * @see B2BObject#getState

95 */

96 public Object getState() throws B2BException ({
97 return offer;

98 }

99

100 private Offer offer;

101 }

The various operations on the B2BOffer object are encapsulated within this Class, for
example accepting and rejecting an offer (lines 24, 31), or getting the offered price (58) by the
Purchaser, or the Supplier making an offer in the setPrice method (line 16). Also this Class
contains methods to apply a new state to the object, and to get the latest state of the object (87,
96).

Once we have determined the details of the OfferObject, all that remains is to convert
the FSM diagrams in Fig 6.5, into Java code that will perform the operations in OfferObject at
the right time. We will suffice here with showing the constructors and the runContract
methods for both the purchaser and the supplier Classes that contain the FSMs. The FSM for

the Purchaser begins in line 64, and for the Supplier begins in line 65.

Purchaser Class

50 public Purchaser (Date contractDate, PurchaserStateMachine
psm,

51 boolean verbose) throws Exception {

52 this.psm = psm;

53 this.verbose = verbose;

54

55 B2BObjectController ctrlr = new B2BObjectControllerImpl (

56 ./etc/purchaser.properties");

57

58 offer = new B2BOffer (contractDate, ctrlr);

59

60 ctrlr.addB2BValidationlistener ((B2BValidationListener)

psm) ;

61 ctrlr.addB2BEventlListener ((B2BEventListener) this);

62 }

63

64 public void runContract() throws Exception ({

65 boolean tryAgain = true;

66

67 while (tryAgain) ({

68 psm.waitForOffer () ;

69

70 printContract () ;

71

7 tryAgain = false;

73

74 if (psm.getState() ==

Chapter 6

75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66

PurchaserStateMachine.DECIDING TO BUY) {
BufferedReader console = new BufferedReader (

new InputStreamReader (System.in)):;
System.out.print ("Offer price is: "
+ offer.getPrice()
+ " accept it (y/n)? ");

String ans = console.readLine();

try {
if (ans.tolLowerCase().equals{("y")) {
offer.accept ()
psm.setState (PurchaserStateMachine.DEAL) ;
} else {
offer.reject():
psm.setState(

PurchaserStateMachine.WAITING FOR_OFFER) ;

tryAgain = true;
}
} catch (B2BInvalidatedException e) {
psm.setState (PurchaserStateMachine .END) ;
} catch (Exception e) {
e.printStackTrace();
throw e;

}

printContract();

}

System.out.println("contract terminating ...");
offer.getController () .disconnect();
System.exit (0);

Supplier Class

public Supplier (Date contractDate, SupplierStateMachine ssm,

}

boolean verbose) throws Exception {
this.ssm = ssm;
this.verbose = verbose;

B2BObjectController ctrlr = new B2BObjectControllerImpl (
./etc/supplier.properties™);

offer = new B2BOffer (contractDate, ctrlr);
ctrlr.addB2BValidationListener ((B2BValidationListener)

ssm) ;
ctrlr.addB2BEventListener ((B2BEventListener) this);

public void runContract() throws Exception {

waitForMemberJoin();

Middleware Support for X-Contract Implementation 157

67

68 while (ssm.getState() ==
SupplierStateMachine.EDITING OFFER) {

69 printContract ().

70 BufferedReader console = new BufferedReader (

7l new InputStreamReader (System.in));

T, System.out.print ("Enter offer price: ");

73 String price = console.readLine();

74

75 ssm.setResponseDeadline () ;

76

17 BEy

78 offer.setPrice (Double.parseDouble (price)):;

79 ssm.waitForResponse (true);

80 } catch (B2BInvalidatedException e) {

81 ssm.setState (SupplierStateMachine.DISPUTE) ;

82 } catch (Exception e) {

83 e.printStackTrace () ;

84 throw e;

85 }

86

87 printContract () ;

88 }

89

90 System.out.println("coentract terminating ...");

91 offer.getController () .disconnect () ;

92 System.exit (0) ;

93

94 }

95

Once the three main classes (B2BOffer, Purchaser, and Supplier) and any other support
Classes have been compiled, we can proceed with the implementation.

As we stated earlier, we are assuming that our contract is intended for use as a
standard contract therefore we have included some additional Classes that create a simple
interface which can be used to tailor certain contract data to the requirements of the contract

signatories. The interface can be seen in Fig 6.6.

¢ Contract Editor ‘ !EE

Ll Ll il
Supplier to be known as: Eﬁﬁg__—_—~.ﬁ__~_-' Purchaser to be known as: [Nick |
Contract Comencement date dd/mm/yy: @ @ @
Name of Item being traded: [e_—gEJ—ds———
Days to submit offer: [7 | Days to respond to offer: [5_|

Enter Contract Datal Save
Edit Contract Data | open

Fig 6.6, Simple Example of a Contract Editor

Chapter 6

While the structure of an x-contract cannot be safely modified without the knowledge of
lawyers and technical experts, at least the contract parties can set the data that makes up the x-
contract without requiring the intervention of these experts. An x-contract editor such as
the one in Fig 6.6, can be used to store and access numerous contracts with their ready made
x-contracts. Once the data has been entered, the contract can be saved, and then loaded and

implemented at the agreed time by the signatories. See Fig 6.7.

4 linux.cs - default - SSH Secure Shell g@@
| File Edit View Window Help
|HBR SE BEE A SD S

J‘ &) Quick Connect] Profiles ‘

i linux.cs - default - SSH Secure Shell @@@
File Edit Yiew Window Help

B &R 58 Be

[

|

‘ &) Quick Connect] Profiles |

; A
Opening Contract data ... Opening Contract Data A
Done. Done.
prace; EDITING QPSR State: DECIDING_TO_BUY
concract daces ll/f5/03 42: 00 AX contract date: 11/25/03 12:00 AN
el L R offer date: 11/25/03 3:11 PN
responsc date: ou response date: null
price: -1.0 q
price: 100.0
accepted: false
. accepted: false
oaas Cadaferaiild Ml Offer price is: 100.0 accept it (y/n)? n
State: EDITING_OFFER E ' 4
= State: WAITING_FOR_OFFER

contract date: 11/25/03 12:00 AM
offer date: 1125703 311 PM
response date: 11/25/03 3:11 PM

contract date: 11/25/03 12:00 AN
offer date: 11/25/03 3:11 PM

price: 100.0 response date: 11/25/03 3:11 PM

accepted: false price: 100.0
State: EDITING_OFFER accepted: false

contract date: 11/25/03 12:00 AN State: DECIDING_TO_BUY

offer date: 11/25/03 3:11 PM contract date: 11/25/03 12:00 AM

response date: 11/25/03 3:11 PN offer date: 11/25/03 3:11 PH

price: 100.0 response date: null

accepted: false price: 80.0
Enter offer price: 80 accepted: false

Offer price is: 80.0 accept it (y/n)? y

State: DEAL State: DEAL

contract date: 11/25/03 12:00 AM | contract date: 11/25/03 12:00 AM

offer date: 11/25/03 3:11 PM offer date: 11/25/03 3:11 PM

response date: 11/25/03 3:11 PM response date: 11/25/03 3:11 PM

price: 80.0 price: 80.0 3

accepted: true E accepted: true A
contract terminating ... G contract terminating ... v
Connected to linux.cs [SSHZ - aest: Connected to linux.cs SSH2 - aes128 -

Fig 6.7 Sample implementation of an x-contract

Figure 6.7, shows a possible sequence of events during implementation of the x-contract in
Fig 6.4. The states through which the parties pass are clearly labelled as are the dates at
which these states occurred. In this implementation, the parties begin with loading the
contract data that was saved when editing the contract data (Fig 6.6). The Supplier now
begins at the EDITING-OFFER state and sends the purchaser a price offer of 100. At the
DECIDING _TO BUY state, the purchaser rejects the supplier’s initial offer and his response
is sent to the Supplier. The Supplier modifies his offer which is subsequently accepted by the
Purchaser, and they both go to the DEAL state.

All of these transactions between the two parties are attempts at updating the data

within OfferObject of which each of the signatories has an identical copy. An update however

Middleware Support for X-Contract Implementation 159

does not occur unless all parties agree to that update, or the update does not contradict the
terms of the contract. This example shows how in some cases the opposing party may veto the
B2BObject update (for example the Purchaser disagrees with an offer being made), and in
other cases the x-contract itself will refuse an object update, for example if the purchaser

responds after an agreed time limit has passed.

6.5 Summary

We have presented middleware that addresses the requirement for dependable information
sharing between organisations. The middleware presents the abstraction of shared state and
regulates updates to that state. Safety is guaranteed even in the presence of misbehaving
parties. If all parties behave correctly, liveness is guaranteed despite a bounded number of
temporary failures. The middleware presents a familiar programming abstraction to the
application programmer and frees them to concentrate on the business logic of applications.
B2BObjects is used to regulate the interaction between the contracting parties and to collect
non-repudiable evidence of each of their actions. Using B2BObjects, x-contracts can be
monitored and enforced without requiring the involvement of independent trusted third parties.

A question that we do not cover and which requires further research is the issue of
access control. A contract management system and its resources must be protected from
unauthorised access, disclosure, modification or destruction of its services and its information.
This can only be accomplished by ensuring, among other things, that the identification and
authentication of the legitimate users of system services and their encapsulated resources are
securely verified. Therefore a topic for further research is the development of a contract
management system that implements Role-based Access Control (RBAC) architecture
[FSGO1]. The basic concept of RBAC is that entities (users, machines, services, etc.) in each
enterprise of a VE (Virtual Environment) are assigned to roles, permissions are assigned to
roles, and entities acquire permissions by being members of roles. An RBAC model
architecture such as the one developed by OASIS [BMY01] [YMB02] for example, could be

a promising approach to achieve the requirements of security and trust within the context of

access control.

Chapter Seven

Summary and Future Work

This thesis has proposed an approach for electronically executable contract (x-contract)
representation, validation, implementation, and monitoring. It has employed the use of finite
state machines for the modelling process, and thus benefiting from the employment of the
widely used Spin model validation tool, for the validation of the correctness and consistency
of contracts.

For the x-contract verification process, this thesis proposes a list of contract
correctness requirements, and for the contract implementation phase, we suggest the use of
the novel B2BObjects middleware service that provides for the requirements of safety,

liveness, and non-repudiation.

7.1 Contract Modelling with Finite State Machines (Chapter
3)

Before attempting to implement an x-contract electronically; the clauses within the original
conventional text contract must be precisely abstracted and the parties’ rights and obligation
must be mapped into computer code convertible mathematical notation, also the ambiguities
that exist within the original conventional text contract must be detected and removed.

To specify party interaction related rights and obligations, we propose the use of
finite state machines. Thanks to their graphic nature, finite state machines are easy to read. On
the other hand the mathematical theory behind them makes them useful for ensuring the
correct operation of an x-contract.

In this chapter we described and proposed a method by which contracts’ rights and

obligations can be mapped into FSMs.

7.2 Validation of electronic contracts (Chapter 4)

It is crucial that we identify and eliminate the ambiguities that exist within the clauses of a
text contract before it can be implemented electronically.

In this chapter, we have introduced the protocol modelling language Promela, and the
protocol verification tool Spin. We have analysed with the aid of simple examples the

correctness properties that must be satisfied for a contract to be correct.

161

Chapter 7

Based on our analysis we have developed a list of correctness requirements that we

suggest that x-contract designers use during the contract validation process:

CR1: Correct commencement: An x-contract should start its execution in a well-defined
initial state on a specific date or when something happens.

CR2: Correct termination: An x-contract should reach a well-defined termination state
on a specific date or when something happens.

CR3: Reachability: Each and every state within an x-contract should be reachable, i.e.
executable at least in one of the execution paths of the x-contract.

CR4: Freedom from deadlocks: An x-contract should never enter a situation in which no
further progress is possible.

CRS: Partial correctness: If an x-contract begins its execution with a precondition true
then, the x-contract will never terminate with the precondition false, regardless of the path
followed by the x-contract from the initial to its final state

CR6: Invariant: If an x-contract begins its execution with a precondition true then, the
precondition should remain true for the whole duration of the contract.

CR7: Occurrence or accessibility: A given activity should be performed by an x-contract
at least once no matter what execution path the x-contract performs.

CRS: Precedence: An x-contract can perform a certain activity only if a given condition is
satisfied.

CR9: Absence of livelocks: The execution of an x-contract should not loop infinitely
through a sequence of steps that has been identified as undesirable, presumably because the
sequence produces undesirable output or no output at all.

CR10: Responsiveness: The request for a service will be answered before a finite amount
of time.

CR11: Absence of unsolicited responses: An x-contract should not allow a contractual
party to send unsolicited responses.

These correctness requirements are split into safety and liveness properties, and we

summarize them as:

o Safety properties: reachability, partial correctness, invariant, deadlocks, precedence,
absence of unsolicited responses. ,

e Liveness properties: correct termination, occurrence, livelocks, responsiveness.

We further categorize Safety properties into, general safety properties that must hold true for
any x-contract (CR3: Reachability, CR4: Freedom from deadlocks, CR11: Absence of

unsolicited responses), and specific safety properties that must hold true only if so required by

Summary and Future Work 163

the contracting parties for the specific requirements of a certain x-contract (CRS5: Partial
correctness, CR6: Invariant, and CR8: Precedence).

Contracting parties may desire complex correctness requirements that are a
combination of a number of the above requirements. Fortunately, it has been formally proven
that any correctness property can be represented as the intersection of a safety property and a

liveness property [AS85].

7.3 Modelling and Verifying the Correctness of Contracts;
Examples (Chapter 5)

We present three different examples of text based documents (contracts) containing rules that
govern the interaction between different parties. Through these examples, we demonstrate the
ideas of contract representation with finite state machines, and contract validation with Spin,
developed in Chapter 3, and Chapter 4.

In this chapter, we convert the text based contracts into executable contract models
through a process that removes the ambiguities that may exist in the original text contracts.
This is to facilitate the correct implementation of the x-contracts at run time.

There are many examples, where the interaction between two or more parties, over a
network, calls for a set of rules that can be implemented to police this interaction.

In cases where the rules of interaction need to be negotiated and agreed upon by the
interacting parties, the rules constitute contract clauses, which will combine to form a contract
that the parties must sign. This is the bases for the first and second examples.

There are cases however where the interaction between the parties is governed by
rules that are already in place. The parties need only to understand them and agree upon them
before the interaction can begin. Our third example reflects this case. We present the scenario
where two or more parties are involved in a game that is played over the Internet.

In our three examples, we carefully use the safety and liveness contract correctness
requirements proposed in Chapter 4 to detect and remove ambiguities that are present within
the clauses of the original contracts. General safety properties are properties that must be
checked for in any contract for it to be free from ambiguities. Specific safety properties and
liveness properties are properties that are checked for within a contract only if so required by
the contracting parties.

After ambiguities are detected and removed from a contract model, it can be

converted into program code for implementation.

Chapter 7

7.4 Middleware Support for X-Contract Implementation
(Chapter 6)

In this chapter, we present the B2BObjects middleware service that addresses the requirement
for dependable information sharing between organisations. The middleware presents the
abstraction of shared state and regulates updates to that state.

Safety is guaranteed even in the presence of misbehaving parties. If all parties behave
correctly, liveness is guaranteed despite a bounded number of temporary failures. The
middleware presents a familiar programming abstraction to the application programmer and
frees them to concentrate on the business logic of applications. B2BObjects is used to regulate
the interaction between the contracting parties and to collect non-repudiable evidence of each
of their actions. Using B2BObjects, x-contracts can be monitored and enforced without

requiring the involvement of independent trusted third parties.

7.5 For Future Work

We believe that the principles and techniques developed in this thesis represent logical steps
which when applied correctly will lead to the execution of free from ambiguity correct(ed)
executable contracts that are capable of monitoring the interactions stipulated within the
clauses of the contract.

Future work for the time being will concentrate on the application and testing of the
ideas within this thesis at an industry level.

Our work is currently based on the implementation of agreed and fixed contracts, and
takes no account of the possibility that the clients may wish to make changes to its content
and therefore to the content of the x-contract during execution time. This work therefore
needs to be progressed further as it is not yet clear how our contract management model can
be deployed dynamically and made to respond to changes.

Another area needing further work (mentioned in Section 6.5) is integration of
advanced RBAC techniques, such as developed in OASIS [BMYO01] that provide extended
notions of appointments, for delegation of role-playing, and of multiple, mutually aware
domains for mobile roles, that can be re-located and still able to communicate without
confusion.

The availability of a contract management service creates a safe and secure way for
organisations to form Virtual Organisations (VOs) that provide new composite services (CSs).
Clearly there needs to be a common standard between organisations for specifying, publishing,
finding and composing CSs. Indeed, emerging Web services standards such as SOAP, UDDI,
WSDL etc, as well as grid related work on Open grid Services (OGSA) are steps in this

Summary and Future Work 165

direction. Unfortunately, they do not yet fully address issues of services that can be made
available, scalable and adaptive.

Some of these issues are being addressed by several industry led efforts at developing
standards for specifying, composing and coordinating the execution of CSs. These include
ebXML/OASIS [EBXML], Web services architecture work at W3C [WSA], and Rosettanet
[RIF0O]. In any case, certain basic facilities for contract representation and monitoring will be

required. The work presented here provides a sound foundation for future developments.

Blank Page

[AEBO1]

[AGO1]

[AS85]

[AS03]

[BIZ]

[BMYO1]

[BP98]

[BPML]
[CF00]

[CLOO]

[CO99]

[CSP99]

[CSW02]

[D98]

References

Abrahams A.S., Eyers D.M., and Bacon J.M. Mechanical Consistency
Analysis for Business Contracts and Policies. Proc 5th International
Conference on Electronic Commerce Research (ICECRS), Montreal, Canada,
23-27 October 2002. Society 2001.

Angelov S, Grefen P. B2B eContract Handling-A Survey of Projects, papers,
and Standards. University of Twene, The Netherlands. 2001.

Alpern B, Schneider F.B, Defining liveness, Information Processing
Letters,Vol. 21, N. 4, Oct, 1985.

A Survey of Legal Issues Relating to the Security of Electronic Information.
hitp://canada.justice.gc.cafen/ps/ec/summary.htinl. Department of Justice,
Canada. 2003.

http//www.biztalk.org

Bacon J, Moody K, and Yao W, Access Control and Trust in the use of
Widely Distributed Services, IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001), November 2001,
Heidelberg,, Lecture Notes in Computer Science. VOL. 2218, pp. 300-315.

Baum M S, Perritt H H Jr. Electronic contracting, publishing, and EDI law.
Wiley Law Publication: 6-7. 1998.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

CrossFlow Project. http://www.crossflow.org/. 2000.

Chomicki J, Lobo J. A4 Logic Programming Approach to Conflict Resolution
in Policy Management. Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR2000), Breckenridge,
Colorado, USA, Morgan Kaufmann. 2000.

COSMOS Project.

http://vsys-www.informatik.uni-hamburg.de/projects/cosmos/index.phtml.
1999,

COSMOS Project.

http://vsys-www.informatik uni-hamburg.de/projects/cosmos/index.phtml.
1999,

Cook N, Shrivastava S.K, and Wheater S.M, Distributed Object
Middleware to Support Dependable Information Sharing between
Organisations, Proc. IEEE Int. Conf. on Dependable Systems. and Networks
(DSN-2002), Bethesda USA, June 2002.

Daoud F, 4 Business Contracting Model for TINA Architecture, Electronic
Markets, International Journal of Electronic Markets, Vol.8 No.3 1998,
University of St.Gallen, Switzerland.

167

http://canada.jLlstice.gc.ca/en/ps/ec/slImmarv.html.
http://wwvv.biztalk.org
http://www-I06.ibm.com/deve
http://www.crossflow.org/.
http://vsys-www.informatik.lIni-ham

[DO0]

[DBSLO02]

[DDO1]

[DDLS01]

[DDMO1]

[DDNS98]

[ECO]

[EDIO03]

[EBXML]

[EER]

[FHK95]

[FKNTO2]

[FKTO1]

[FSGO1]

[GBW9S]

Daskalopulu A. Modelling Legal Contracts as Processes. Legal Information
Systems Applications, 11th International Conference and Workshop on
Database and Expert Systems Applications, IEEE C. S. Press, pp. 1074-1079,
2000.

Damianou N, Bandara A.K, Sloman M, and Lupu E.C. 4 Survey of Policy
Specification Approaches. Department of Computing Imperial College. April
2002.

Damianou N, Dulay N.The Ponder Policy Specification Language. Policy
2001: Workshop on Policies for Distributed Systems and Networks, Bristol,
UK, Springer-Verlag. 2001.

Damianou N, Dulay N, Lupu E, Sloman M. The Ponder Policy Specification
Language. In Proc. Int. Workshop on Policies for Distributed Systems and
Networks (POLICY), Bristol, UK, Springer-Verlag LNCS 1995, Jan. 2001.

Daskalopulu A, Dimitrakos T, and Maibaum T, E-Contract Fulfilment and
Agents’ Attitudes. Proceedings of ERCIM WG E-Commerce Workshop on
The Role of Trust in e Business, Zurich, October, 2001.

Dan A, Dias D, Nguyen T, Sachs M, Shaikh H, King R, Duri S. The Coyote
Project: Framework for Multi-party E-Commerce, Proceedings of the 7th
Delos Workshop on Electronic Commerce, Crete, Greece, Sept. 21-23, 1998.

http://eco.commerce.net

What is EDI?
http://www.x12.0org/x12org/about/index.html?whatis.html. 2003.

http://www.ebxml.org

http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter2/node .html

Fox D, Horster P, Kraaibeek P. Grundiiberlegungen zu Trust
Centern. In: Horster, P. (Ed.): Trust Center; DuD; 1995.

Foster I, Kesselman C, Nick J, Tuecke S, The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration.
Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.

Foster, 1., Kesselman, C. and Tuecke, S. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International Journal of High
Performance Computing Applications, 15 (3). 200-222. 2001.
www.globus.org/research/papers/anatomy.pdf.

Ferraiolo D.F, Sandhu R, Gavrila S, Kuhn D.i{, and Chandramouli R,
Proposed NIST standard for Role-Based Access Control, ACM transactions
on Information and System Security, Vol. 4, No. 3, Aug. 2001.

Griffel F, Boger M, Weinreich H, Lamersdorf W, Merz M, Electronic
Contracting with COSMOS - How to Establish, Negotiate and Execute

http://eco.commerce.net
http://www.xI2.orglxI2org/about/index.html?whatis.html.
http://www.ebxml.org
http://www.cs.sfll.ca/CC/354/zaiane/material/notes/Chapter2/nodel.html
http://www.gl

References 169

Electronic Contracts on the Internet, Proceedings from 2nd Int. Enterprise
Distributed Object Computing Workshop (EDOC '98), 1998.

[GGKS02] Gotschalk K, Graham S, Kreger H, and Snell J. Introduction to Web
Services Architecture. 2002. IBM Software Group. IBM Systems Journal,
vol. 41, No. 2, pp. 170-177, 2002.

[GJS99] Gisler M, Johri Y, Schopp B. Requirements on Secure Electronic
Contracts. University of St. Gallen Switzerland. 1999.

[GMO00] Goodchild A, Herring C, and Milosevic Z. Business Contracts for B2B.
Proceedings of the CAISE*00 Workshop on Infrastructure for Dynamic
Business-to-Business Service Qutsourcing, Stockholm, June 5-6,2000.

[GRID] www.grid.org
[GSGO00] Gisler M, Stanoevska-Slabeva K, Greunz M, Legal Aspects of Electronic

Contracts, Infrastructures for Dynamic Business-to-Business Service
Outsourcing (IDSO'00), Stockholm, June 5-6, 2000.

[GSS00] Greunz M, Schopp B, Stanoevska-Slabeva K, Supporting Market
Transactions through XML Contracting Container, Proceedings of the Sixth
Americas Conference on Information Systems (AMCISS 2000), Long Beach,
CA USA, 10-13 August, 2000.

[HO1] Holzmann G.J. Design and Validation of Computer Protocols. Prentice Hall,
512 pgs. 1991.

[H97] Holzmann G.J. Basic Spin Manual.
hittp://spinroot.com/spin/Man/Manual.html. 1997.

[HLGGO0] Hoffner Y, Ludwig H, Gilcti C, Grefen P. Architecture for Cross-
Organisational Business Processes, Proceedings 2nd International Workshop
on Advanced Issues of Ecommerce and Web-Based Information Systems,
Milpitas, CA, USA, 2000, pp. 2-11.

[IBMW] hitp://www.ibm.com/software/solutions/webservices/resources.html

[1SO9%9] ISO/IEC. Information Technology - Open Distributed Processing Reference
Model - Enterprise Viewpoint. 1999.

[JS97] Jajodia S, Samarati P. 4 Logical Language for Expressing Authorisations.
IEEE Symposium on Security and Privacy, Oakland, USA, IEEE. 1997.

[KBCS00] Keen P, Balance C, Chan S, Schrump S, Electronic Commerce Relationships:
Trust by Design, Prentice Hall PTR, 2000.

[KGV00] Koetsier M, Grefen P, Vonk J. Contracts for Cross-Organizational Workflow
Management, Proceedings 1Ist International Conference on Electronic

Commerce and Web Technologies, London, UK, 2000, pp. 110-121.

[L77] Lamport L, Proving the correctness of multiprocess programs.

http://www.grid.org
http://spinroot.com/spin/Man/Manllal.html.
http://www.ibm.com/sot1ware/sollitions/webservices/resourccs.html

[L98]

[L00]

[LFK]

[LN99]

[LTL]

[LR97]

[LR98]

[LRP97]

[LS97]

[LS98]

[LS99]

[LTSA99]

[MAO96]

[MB95]

March 1977. IEEE Transactions on Software Engineering, SE-3(2).

Lee R.M, Towards Open Electronic Contracting, Electronic Markets,
International Journal of Electronic Markets, Vol.8 No.3 1998, University of
St. Gallen, Switzerland.

LEE M. Event and Rule Services for Achieving a Web-based Knowledge
Network. Computer and Information Science and Engineering, University of
Florida. 2000.

http://www.legal-forms-kit.com/

Lobo J R, Naqvi B S. 4 Policy Description Language. 1999. A4AI,
Orlando, Florida.

http://www .time-rover.com/ftp/tl.pdf

Lindemann M.A, Runge A. Non-Repudiation within the Electronic
Contracting Phase of Electronic Commerce Transactions. Conference
Proceedings of the First Overcoming Barriers to Electronic Commerce
Conference OBEC'97, Malaga, Spain, April 1997.

Lindemann M, Runge A. Electronic Contracting within the Reference Model
for Electronic Markets, Proceedings of the 6th European Conference on
Information Systems ECIS '98, Aix-en-Provence, France, June 4-6, 1998.

Lindemann M.A, Runge A, Permanent IT-Support in Electronic Commerce
Transactions, Electronic Market Architectures, International Journal of
Electronic Markets ,Vol. 7, No. 1, 1997.

Lpupu, E. C, and Sloman M.S. Towards a Role Based Framework for
Distributed Systems Management. Journal of Network and Systems
Management 5(1): 5-30. 1997.

Lindemann M, Schmid B.F. Elements of a Reference Model for Electronic
Markets, Proceedings of the 31st Annual Hawaii International Conference on
Systems Science HICCS'98, Vol. IV, pp. 193-201, Hawaii, January 6-9, 1998.

Lupu E. C, and Sloman M.S. Conflicts in Policy-Based Distributed Systems
Management. In IEEE Transactions on Software Engineering - Special Issue
on Inconsistency Management 25(6): 852-869. 1999.

Labelled Transition System Analyser.
http://www.doc.ic.ac.uk/~inm/book/ltsa/L. TSA html. 1999.

Milosevic Z, Arnold D, O’Connor L. Inter-enterprise Contract Architecture
for Open Distributed Systems: Security ’Requirements. WET ICE’96
Workshop on Enterprise Security, Stanford, USA, June 1996.

Milosevic Z, Bond A. Electronic Commerce on the Internet: What is Still
Missing? Proc. 5th Conf. of the Internet Society, pp.245-254, Honolulu, June
1995.

http://www.legal-forms-kit.com/
http://www.time-rover.com/ftp/tl.pdf
http://www.doc.ic.ac.ukHnm/book/ltsaiLTSA.html.

References

[MDO02]

[MMO1]

[MMUO1]

[MQ]

[MSS03*]

[MSSW03*]

[MU00]

[MUO1]

[NC00]

[OASIS]

[OEDI]

[P02]
[PROT]

[R98]

[RA98]

171

Milosevic Z, Dromey R G. On Expressing and Monitoring Behaviour in
Contracts. In proceedings of the 6th International Enterprise Distributed
Object Computing Conference (EDOC2000), Lausanne, Switzerland, Sep.
17-20, 2002.

Marjanovic O, and Milosevic Z. Towards Formal Modelling of e-Contracts.
Proceedings of the Fifth IEEE International Enterprise Distributed Object
Computing Conference, Seattle, Washington, September 04-07, 2001.

Minsky N, Minsky Y, and Ungureanu V, Safe Tuplespace-Based
Coordination in Multi Agent Systems, in the Journal of Applied Artificial
Intelligence (AAI), January 2001 (Vol 15, No. 1, pages: 11-33).

MQSeries workflow.
http://www-3.ibm.com/software/integration/wmaqwt/.

Molina-Jimenez C, Shrivastava S, Solaiman E, and Warne J. Run-time
Monitoring and Enforcement of Electronic Contracts. Submitted to ECRA
(Electronic Commerce Research and Applications) for publication.

Molina-Jimenez C, Shrivastava S, Solaiman E, and Warne J. Contract
Representation for Run-time Monitoring and Enforcement. Proc. IEEE Int.
Conf. on E-Commerce (CEC-2003), Newport Beach, California, June 2003.

Minsky N, Ungureanu V. Law-Governed Interaction: A Coordination &
Control Mechanism for Heterogeneous Distributed Systems. ACM
Transactions on Software Engineering and Methodology (TOSEM), (Vol 9,
No 3, pages: 273-305). July 2000.

Minsky N.H, Ungureanu V. Scalable Regulation of Inter-enterprise
Electronic Commerce, In Proceedings of the Second Ineternational
Workshop, WELCOM 2001 Heidelberg, Germany, November 2001. Lecture
Notes in Computer Science, Vol. 2232, Springer.

Naumovich G, Clarke L.A, Classifying Properties: An Alternative to the
Safety-Liveness Classification, In Proceedings of the Eighth International
Symposium on the Fundations of Software Engineering, Nov. 2000.

http://www.oasis-open.org

Open EDI. hup://www.curidis.nl/weboutline/Web.OpenEDLhtm]. Erasmus
University, Netherlands.

Ponder: A Policy Language for Distributed Systems Management
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml. 2002,
http://www.w3.org/Protocols/

Ranno F. A Language and Toolkit for the Specification, Execution and
Monitoring of Dependable Distributed Applications. PhD Thesis. The
University of Newcastle upon Tyne. 1998.

Runge A, The Need for Supporting Electronic Commerce with Electronic
Contracting, Proceedings of the Conference on Information Systems and
Technology (INFORMS), Montreal, Canada, April 1998.

http://www-J.ibm.com/so
http://www.oasis-open.org
http://www.euridis.nllweboutline/Web.OpenEDI.html.
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtmi.
http://www.w3.org/Protocols/

[RL98]

[RM-ODP]

[RSKS99]

[SO1]

[S02]

[SCIO03]

[SD00]

[SLO1]

[SOAP]

[SMS*]

[SP03]

[SXMO1]

[TINAO2]

[UMO0O0]

[UNCE]

[WSDL]

Ronald M. Lee. Towards Open Electronic Contracting, Electronic Markets.
International Journal of Electronic Markets, Vol.8 No.3 1998, University of
St. Gallen, Switzerland.

http://www.dstc.edu.au/Research/Projects/ODP/ref_model.html

Runge A, Schopp B, Stanoevska-Slabeva K, The Management of Business
Transactions through Electronic Contracts, Proceedings for the of the 10®
International Workshop on Database and Expert Systems Applications
(DEXA'99), Florence, September 1999.

Sookman B. Computer, Internet and Electronic Commerce Law, Carswell
Thomson Publishing, 2001: 10-1.

Sakharuk D. History of Electronic Contracting.
http://www.kentlaw.edu/classes/rwarner/legalaspects ukraine/contracting/co
mmentary/history/history electronic_contracting.htm. 2002,

SearchCIO.com Definitions
http://searchcio.techtarget.com/sDefinition/0,,sid19 £¢i213925,00.html. 2003.

Steen M W A, Derrick J. ODP Enterprise Viewpoint Specification. Computer
Standards and Interfaces 22: 65-189. 2000.

Stanley Y W, LAM H, Minsoo L, Bai S, Shen Z. An Information
Infrastructure and E-services for Supporting Internet-based Scalable E-
business Enterprises. 5th 1EEE Annual Enterprise Distributed Object
Conference (EDOC2001), Seattle, WA, IEEE Computer Society. 2001.

http://www.w3.0org/TR/SOAP/

Solaiman E, Molina-Jimenez C, Shrivastava S, Model Checking Correctness
Properties of Electronic Contracts. International Conference on Service
Oriented Computing (ICSOC03), Trento, Italy, December 2003.

Spin. http://spinroot.com/spin/whatispin.html. 2003.

Serban C, Xuhui A, and Minsky N, Establishing Enterprise Communities, In
Proc. of the 5th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2001), Seattle Washington, September 2001.

Telecommunications Information Networking Architecture consortium.
http://www.tinac.com. 2002.

Ungureanu V, and Minsky N, Establishing Business Rules for Inter-
Enterprise Electronic Commerce, In Proc. of the 14th International
Symposium on DIStributed Computing (DISC 2000), LNCS, No. 1914,
pages 179-193, Springer-Verlag, October 2000, Toledo Spain

http://www.uncefact.org

http://fwww.w3.org/TR/wsdl

http://www.dstc.edu.aulResearch/Projects/ODP/ref_model.htmI
http://searchcio.techtarget.com/sDefinition/O,,sid
http://www.w3.org/TR/SOAP/
http://spinroot.com/spin/whatispin.html.
http://www.tinac.com.

References 173

[XMNUO00] Xuhui A, Minsky N, Nguyen T, Ungureanu V, Law-Governed Communities
Over the Internet. In Proc. of Coordination' 2000: Fourth International
Conference on Coordination Models and Languages, LNCS, No. 1906, pages
133-147, Springer-Verlag, September 2000, Limassol Cyprus.

[YAW98] Soon-Yong Choi, Dale O. Stahl, and Andrew B. Whinston, Intermediation,
Contracts and Micropayments in Electronic Commerce, Electronic Markets,
International Journal of Electronic Markets, Vol.8 No.l 1998, University of
St. Gallen, Switzerlan.

[YMBO02] Yao W, Moody K, and Bacon J, 4 Model of OASIS Role-Based

Access Control and its Support for Active Security, ACM Trans. On
Information and System Security, 5, 4, November 2002.

Note: References with the star [*] sign, are own publications.

