
UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF COMPUTING SCIENCE

CONTRACT REPRESENTATION FOR VALIDATION AND RUN TIME MONITORING

Ph.D. THESIS

By

Ellis Solaiman

NEWCASTLE UPON TYNE
MARCH2004

NEWCASTLE UNIVERSITV LIBRARY
201 29900 9

Paginated
blank pages
are scanned
as found in

original thesis

No information
• • •
IS missing

Table of Contents

Acknowledgements vii

Abstract ix

1 Introduction I
1.1 Motivation I
1.2 Research Background 2
1.3 Research Issues and Definitions 3

1.3.1 Contracts, and x-contracts 3
1.3.2 Contract validation 4
1.3.3 Internal and External business processes .4
1.3A Contract representation using finite state machines (FSMs) 5
1.3.5 Run Time Requirements 6

lA Research tasks and objectives 6
1.5 Thesis Overview 7

2 Analysis of Related Work 9
2.1 Open Distributed Programming Reference Model 9
2.2 CrossFlow II

2.2.1 CrossFlow Architecture 13
2.2.2 Contract Creation 13
2.2.3 Contract Enactment. 14

2.3 The COYOTE Project.. 14
204 Work at Qeensland University 16
2.5 Work at University of St. Gallen 19

2.5.1 Electronic Market Reference Model (EM-RM) 20
2.5.2 The Business Media Framework 21
2.5.3 Secure Contract Container SeCo 23

2.6 Electronic Commerce Development and Execution Environment (EDEE) 25
2.7 Law Governed Interaction 26
2.8 InterProcs 28
2.9 COSMOS 29
2.10 Trade intermediaries 31
2.11 Legal contracts as processes 31
2.12 Event- Trigger-Rules 32
2.13 Ponder Pol icy Specification Language 34
2.14 E-Commerce Frameworks 39

2.14.1 ebXML 39
2.14.2 BizTalk 39
2.14.3 Web Services 39
2.14.4 GRID 40
2.14.5 eCo Framework 41

2.15 Discussion 41

3 Electronic Contracts as Finite State Machines .45
3.1 Contracts and X-Contracts .45

3.1. I Rights and obi igations .46

Table of Contents

3.2 Finite State Machines , 47
3.3 Representing Contracts as Finite State Machines .48

3.3.1 Mapping Contract Clauses into FSMs .49
3.3.2 Description of a simple contract using FSMs 50

3.4 Monitoring and enforcement of x-contracts 53
3.4.1 Invocation of rights and obligations 53
3.4.2 Description, monitoring and enforcement of an x-contract.. 55
3.4.3 Ready to fill in, sign and enact x-contracts 57

3.5 Summary 59

4 Validation of Electronic Contracts 61
4.1 A Verification Language - Promela 61
4.2 A Verification System - Spin 63
4.3 XSpin 64
4.4 The Spin Simulator 65
4.5 The Spin Validator 66
4.6 Correctness Requirements 68

4.6.1 Assertions and system invariants 68
4.6.2 Deadlocks 69
4.6.3 Progress cycles and livelocks 69
4.6.4 Temporal claims 69
4.6.5 Safety and liveness properties 70
4.6.6 Cost of correctness requirements 70

4.7 Basic Verification of x-contracts 71
4.7.1 Contract before removal of ambiguities 72
4.7.2 Contract after removal of ambiguities 81

4.8 Correctness requirements and Contracts, Discussion 85
4.9 Common correctness requirements 91
4.10 Summary 94

5 Validation 0/ Electronic Contracts: Examples 95
5.1 Contract for the supply of electronic goods 95

5.1.1 The Contract. 96
5.1.2 Split of rights and obligations 97
5.1.3 The finite state machines (The x-contract model) 99
5.1.4 The Verification model 101
5.1.5 X-contract verification 106

5.2 Example ofa contract for renting cars 113
5.2.1 Car Rental Contract 113
5.2.2 Parties' rights and obligations 115
5.2.3 The finite state machines 117
5.2.4 The Promela Model: 119
5.2.5 X-contract verification 123

5.3 Playing a game over a network : 129
5.3.1 Rules of the game 130
5.3.2 Players' rights and obligations 130
5.3.3 The finite state machine 132
5.3.4 Games' FSMs in Promela 133
5.3.5 Game model verification 141

5.4 Summary 144

Table of Contents III

6 Middleware Support for X-Contract Implementation 145
6.1 Overview of B2BObjects middleware 145
6.2 B2BObjects API 147
6.3 X-Contract Implementation with B2BObjects 149
6.4 Purchaser/Supplier Example 151

6.4.1 Implementation of Supplier/Purchaser Example 153
6.5 Summary 159

7 Summary and Future Work 161
7.1 Contract Modelling with Finite State Machines (Chapter 3) 161
7.2 Validation of electronic contracts (Chapter 4) 161
7.3 Modelling and Verifying the Correctness of Contracts; Examples (Chapter 5)

.. 163
7.4 Middleware Support for X-Contract Implementation (Chapter 6) 164
7.5 For Future Work 164

References 167

Fig 2.1
Fig 2.2
Fig 2.3
Fig 2.4
Fig 2.5
Fig2.6
Fig 2.7
Fig 2.8
Fig 2.9
Fig 2.10
Fig 2.11
Fig 2.12
Fig2.13
Fig2.14
Fig 3.1
Fig 3.2

Fig 3.3

Fig 3.4
Fig 3.5
Fig 3.6

Fig4.1
Fig 4.2
Fig 4.3
Fig 4.4
Fig 4.5
Fig 4.6
Fig 4.7
Fig 4.8
Fig 4.9
Fig4.10
Fig 4.11

Fig 4.12
Fig 4.13
Fig4.14
Fig 4.15
Fig 4.16
Fig 5.3
Fig 5.4
Fig 5.5
Fig 5.6

Fig 5.7
Fig 5.8

List of Figures

RM-ODP Viewpoints [RM-ODP] 10
A meta model for the ODP enterprise viewpoint language IO
CrossFlow Contract structure in EER notation [KGVOO] II
The CrossFlow Architecture 13
Contract structure and content [GMOO] 17
A UML model of a contract [GMOO] 18
Electronic Market Reference Model [LR98] 21
Business Media Framework [RSK99] 21
Contracting framework for the contracting services. [RSK99] 22
Structure of the SeCo container [GSGOO] 23
Contracting process [GSGOO] 24
SeCo Container Architecture 25
Interaction of agents in LGI 27
COSMOS contract model [GBW98] 30
Abstraction of the main elements of a contract. .46
Mapping of events, conditions and operations of a contract into a FSM
state 50

Example contract between a Purchaser and a_Supplier for the purchase of
goods 51

FSM Representation of an ambiguous contract for thepurchase of goods. 52
Interaction of two FSMs by means of rights and obligations 53
FSM Representation of an unambiguous contract for thepurchase of goods
... 56

The Graphical user interface XSpin 64
The XSpin simulator interface 65
The Spin validator interface 67
Contract for the purchase of goods between a purchaser and a supplier 72
FSM Representation of an ambiguous contract for thepurchase of goods. 73
Message sequence chart 77
Simulation output 77
Verification Output 78
Suggested actions for detected error. 79
Simulation output of erroneous path 79
FSM Representation of an unambiguous x-contract for thepurchase of
goods 82

Verification output for the corrected verification model.. 84
Verification Output for detection of non-progress cycles 86
Verification output for detection of Iivelock (non-accept cycles) 88
Simulation output for path with livelock 88
The LTL Manager 91
Selection of general safety requirements for verification 107
Verification output for general safety properties 107
Verification of assertion claims 108
Message sequence chart, and Simulation_output of path with assertion
violation 109
Verifier detects Livelock 111
Path through which Livelock was detected 112

v

List Of Figures

Fig 5.9
Fig 5.10
Fig 5.11
Fig5.12
Fig 5.13
Fig 5.14
Fig 5.15
Fig 5.16
Fig 5.17
Fig 5.18
Fig 6.1
Fig 6.2
Fig 6.3
Fig 6.4
Fig 6.5
Fig 6.6
Fig 6.7

Owner's Finite state machines 117
Renter's finite state machine 118
Safety error in the verification model.. 124
Verification output after checking general safety requirements 125
Simulation output through path where safety violation is detected 126
Verification options set to detect livelock 128
General safety error detected in Game model 141
Simulation output of path in which error is detected 141
Simulation of second problem in game model 142
Detection of unreachable code by the Spin validator 144
B2Bobject Interactions 146
B2BObjects API 147
Collection of non-repudiable digital evidence with B2Bobjects 150
Contract clauses after removal of ambiguities 151
Corrected Purchaser and Supplier FMSs 152
Simple Example of a Contract Editor 157
Sample implementation of an x-contract.. 158

Acknowledgements

I am very grateful for all the support and encouragement that I have received during my

research. I would like in particular to thank my Supervisor Professor Santosh Shrivastava for

helping me decide which research topic to pursue and to proof-read this thesis and other

papers. His experience and guidance have been invaluable. I also would like to give special

thanks to Dr Carlos Molina-Jimenez for his huge contributions. His help and enthusiasm were

a major motivating factor on the way to completing this work.

Many thanks also go to Richard Achmatowicz for his constant willingness to lend his

support, which greatly accelerated my understanding of Spin and protocol validation.

Thanks go to Stuart Wheater for his help and suggestions, and Nick Cook for the

development of the B2BObjects Middleware.

I would like to give thanks to various people within the department for their friendship

Jonathan Burton especially when I started this work, Kamal Zamli for his humour, Jonathan

Halliday, Doug Palmer, and Dimane Mpoeleng.

An essential contributing factor to this research was the support of my family, which I

received in abundance from my parents Michael and Linda, my sister Amanda (Mandy), and

my two brothers Samy and Barry.

During my time at Newcastle I have met some fantastic people who have simply been

great friends; Victoria Tsismenaki (Vicky), Yaroslav Segal-Namir (Yarik), Daniel Sokolov ,

Martin Shaw, Mathew Dean, Angelique Anthian, Anna Maria Arango, James Renwick, Izara

Khumium, Leonardo Bello, Joao de Silva, Franchesca Venezia, Mudassa Naqvi, Dimitiris,

Craig Rose. Many thanks to you all.

This research has been funded by the UK Engineering and Physical Sciences Research
Council (EPSRC).

Vll

Blank Page

Abstract

Organisations are increasingly using the Internet to offer their own services and to utilise the

services of others. This naturally leads to resource sharing across organisational boundaries.

Nevertheless, organisations will require their interactions with other organisations to be

strictly controlled. In the paper-based world, business interactions, information exchange and

sharing have been conducted under the control of contracts that the organisations sign. The

world of electronic business needs to emulate electronic equivalents of the contract based

business management practices.

This thesis examines how a 'conventional' contract can be converted into its

electronic equivalent and how it can be used for controlling business interactions taking place

through computer messages. To implement a contract electronically, a conventional text

contract needs to be described in a mathematically precise notation so that the description can

be subjected to rigorous analysis and freed from the ambiguities that the original human-

oriented text is likely to contain. Furthermore, a suitable run time infrastructure is required for

monitoring the executable version of the contract.

To address these issues, this thesis describes how standard conventional contracts can

be converted into Finite State Machines (FSMs). It is illustrated how to map the rights and

obligations extracted from the clauses of the contract into the states, transition and output

functions, and input and output symbols of a FSM.

The thesis then goes on to develop a list of correctness properties that a typical

executable business contract should satisfy. A contract model should be validated against

safety properties, which specify situations that the contract must not get into (such as

deadlocks, unreachable states etc), and liveness properties, which detail qualities that

would be desirable for the contract to contain (responsiveness, accessibility etc). The FSM

description can then be subjected to model checking. This is demonstrated with the aid of

examples using the Promela language and the Spin validator.

Subsequently, the FSM representation can be used to ensure that the clauses

stipulated in the contract are observed when the contract is executed. The requirements of a

suitable run time infrastructure for monitoring contract compliance are discussed and a

prototype middleware implementation is presented.

IX

Chapter One

Introduction

1. 1 Motivation

Over the past decade, increasing use of the Internet for commercial purposes has led what has

become commonly known as electronic commerce (or e-commerce), to changing much of the

traditional ways through which we conduct business. The key appealing qualities that are

driving the Internet (and mainly the World Wide Web) to developing into the major business

medium that it is increasingly becoming, and at such rapidity, are its simplicity of application,

its global reach, and the speed at which it allows its users to interact. These factors are

enabling business transactions to be performed at a higher efficiency rate than ever before,

thus reducing the costs and efforts involved, and therefore improving organisations' business

goals and aspirations.

The Internet, an application of computer and networking technologies, has itself

become a technology on top of which applications are being constantly developed in order to

enable and improve the ability of businesses to utilize the benefits which it promises.

As organisations increasingly use the Internet for their dealings, they will require

their Internet business interactions with other organisations to be strictly monitored and

controlled. The precondition of business interactions is a requirement of guarded trust

between all business partners [GJS99]. In the paper-based world of commerce, to realize this

vital precondition, business interactions, information exchange and sharing have been

conducted under the control of contracts that organisations sign.

The world of electronic business needs to emulate electronic equivalents of the

contract based business management practices. Internet applications should give different

businesses entities, the possibility to make use of contracts electronically in a similar way that

contracts are used conventionally.

There have been a number of attempts by different research groups at creating such

applications, but tools and technologies for electronic management of contracts so far are not

yet well developed.

Chapter 1

1.2 Research Background

Initially, and until recent times, businesses that engaged in e-commerce conducted business

interactions electronically solely over closed networks by means of Electronic Data

Interchange (EDI) technology [SOl]. Electronic Data Interchange defines a standard format

for exchanging business data, which was developed by the Data Interchange Standards

Association. It was first developed for US shipping and transportation industries in late

1970's, to reduce the burden of paperwork, a significant factor in cost during business

transactions [EDI03].

In the early 1990' s specialists identified EDI with electronic contracting, considering

it as a term that solely refers to electronic transactions and contracts [AS03], and even as a

shorthand acronym for electronic contracting [BP98].

An EDI message contains a string of data elements, each of which represents a

singular fact, such as a price, product model number, and so forth, separated by delimiters.

The entire string is called a data segment. One or more data segments framed by a header and

trailer form a transaction set, which is the EDI unit of transmission (equivalent to a message).

A transaction set often consists of what would usually be contained in a typical business

document or form [SCI003]. Traditional applications of EDI are purchase orders, bills,

invoices, shipping orders and payments.

Today, two sets of standards governing the format ofEDI are being used in the world.

The first standard was developed by the UN; the WPFITP UN/EDIFACT syntax rules. The

second was created by ASC X12 in the USA. Thus, while ASC X12 standards dominate in the

USA, the UNIEDIFACT standards are more widely used elsewhere. The disparity between

these standards is considered as a main obstacle for development of international EDI and has

led to ongoing efforts (not yet successful) to harmonize the two sets of standards [S02].

With the development of the Internet, new concepts such as closed and open

electronic contracting have acquired general acceptance. Closed electronic contracting can be

defined as the use of EDI to expedite contracting among parties that already have a trading

relationship established. Open electronic contracting allows the formation of contracts among

parties with no prior trading relationships and is sometimes known as "arm's length"

transactions [S02].

To facilitate contracting over the Internet, the .international EDI community since

1995 has been developing Open-EDI, which is considered as a neutral framework for the

future architecture of EDI on the Internet. It is proposed that Open-EDI will enable

organizations to establish short-term relationships quickly and cost effectively. It will provide

the opportunity to lower significantly the barriers to electronic data exchange by introducing

standard business scenarios and the necessary services to support them [OEDI]. In principle,

Introduction 3

once a business scenano is agreed upon, and implementations conform to the Open-ED!

standards, there will be no need for prior agreement among trading partners, other than the

decision to engage into the Open-EDI transaction in compliance with the business scenario.

The field of application of Open-EDI will be the electronic processing of business

transactions among autonomous multiple organizations within and across public, private,

industrial, or geographic sectors. It will include business transactions that involve multiple

data types such as numbers, characters, images and sound.

In addition to the EDI community, since the mid 1990's, electronic contracting has

been the focus of many research groups and projects within business and academia, to name a

few of these: Qeensland University [MB95], LGI [MUOO], CrossFlow[CFOO], COSMOS

[C099], and others. All of which have, and are contributing using different methods to enable

business partners control their interactions by means of electronic contracts. Despite these

concrete efforts, there are numerous unresolved issues that must be addressed if electronic

contracting (e-contracting) is to be truly realised.

1.3 Research Issues and Definitions

1.3.1 Contracts, and x-contracts

We define a conventional contract as a document that stipulates that its signatories (two or

more) agree to observe the clauses stipulated in the document. An electronic contract, or as

we term it in this thesis; an "executable contract (x-contract) ". is the electronic version of a

conventional contract and consists of one or more executable files complemented with zero or

more ancillary files (text, graphics, images, etc.), that can be enacted to enforce what the

English text contract stipulates [MSSW03*]. Each entry in a contract is called a term or a

clause. The clauses of a contract stipulate how the signing parties are expected to behave. In

other words, they list the rights and obligations of each signing party. A right is an action

that a signing entity can exercise if it wishes to. For example, a contract might stipulate that

Alice, as a manager of enterprise El, has the right to send an offer to sell to Bob, the manager

of enterprise E2. Because this is a right, it is up to Alice to send or not to send the offer to Bob;

Bob need not be disappointed if he does not receive the offer. Similarly, an obligation is

defined as a duty that an entity is expected to perform. A failure to perform such a duty means

a breach of the contract. For example, a contract might stipulate that upon receiving an offer

to sell from Alice, Bob has the obligation to reply to her with an OjJerAccepted or

OfferRejected message.

Chapter J

Hard-copy paper based contracts have been used for a long time we know therefore

how to write (for example in English), interpret and execute a conventional contract.

Unfortunately, contracts in the electronic world are not yet well understood. In particular,

converting a conventional contract into an executable contract is not a trivial process.

This thesis examines how relevant parts of a conventional contract can be converted

into its electronic equivalent and how it can be used for controlling business interactions

taking place between computers connected over the Internet.

In our work, contracts are conceptually located between the interacting parties and are

meant to drive the execution of inter-enterprise business processes.

1.3.2 Contract validation

We identify a crucial difference between conventional contracts, and x-contracts. A

conventional contract is human oriented. Thus, it is likely to contain ambiguities in the text

that are detected and interpreted by humans when the contract is performed; whereas an x-

contract is computer oriented; consequently, it tolerates no inconsistencies. Therefore, to

implement a contract electronically, a conventional text contract needs to be described in a

mathematically precise notation so that the description can be subjected to precise analysis

and freed from the ambiguities that the original human-oriented text is likely to contain.

1.3.3 Internal and External business processes

An organization's business processes can be divided into two broad categories: the business

processes that are internal to the organization, and the external contract management

processes that involve interactions with trading partners (a business process whether internal

or external, is defined as a set of organized activities aiming at reaching a common business

goal [R98].).

There has been and still is a great deal of research into the automation of an

organisation's internal processes. A variety of computer systems for automating the task of

scheduling and executing application have been developed. These systems are known as

workflow management systems and the applications are called workflows. Research into the

automation of an organisation's external processes however, has been fairly recent in

comparison.

This thesis addresses the issue of facilitating the control and monitoring of an

organisation's external processes, through the specification, validation, and monitoring of

electronic contracts.

In our business model [MSSW03] enterprises that engage in contractual relationships

are autonomous and wish to remain autonomous after signing a contract. Thus a signing

Introduction 5

enterprise has its own resources and local policies. In our view each contracting enterprise is a

black box where private business processes represented as finite state machines, workflows or

similar automaton, run. A private business process interacts with its external environment

through the contract from time to time to influence the course of the shared business process.

Thus, a contract is a mechanism that is conceptually located in the middle of the interacting

enterprises to intercept all the contractual operations that the parties try to perform.

Intercepted operations are accepted or rejected in accordance with the contract clauses and

role players' authentication.

From this perspective, we can identify two fairly independent sources of contract

inconsistencies:

• Internal enterprise policies conflicting with contractual clauses.

• Inconsistencies in the clauses of the contract.

It is our view that these two issues should be treated separately rather than encumbering a

contract model with excessive notation (details, concepts and information) that might be

extremely difficult to validate. Such a separation is not considered in the work of most

research groups. In this Thesis we address only the second issue, that is, we are concerned

only with the cooperative behaviour of business enterprises and not their internal structure.

1.3.4 Contract representation using finite state machines (FSMs)

To address the issues that we have raised in the previous sections of this chapter, this thesis

proposes that contracts be converted into finite state machines (FSMs). We have found that a

finite state machine is a simple yet expressive model for describing, validating and

implementing x-contracts. We will describe how standard conventional contracts can be

translated into Finite State Machines (FSMs), and illustrate how to map the rights and

obligations extracted from the clauses of a contract into the states, transition and output

functions, and input and output symbols of a FSM. We develop and suggest a list of

correctness properties that a typical electronic business contract should satisfy, and

demonstrate a verification process through which a FSM representation of a contract can be

validated for correctness with respect to the correctness properties that we suggest. Finally,

we demonstrate how a validated FSM can be used to ensure that the clauses in a contract are

observed when the contract is executed.

Chapter 1

1.3.5 Run Time Requirements

The mere fact that organisations require the use of contracts to regulate their interactions with

each other, leads us to the assumption that they do not completely trust each other. So an

important requirement from the middleware that will facilitate these interactions is that it

should enable regulated interactions (as encoded in the x-contract) between two or more

mutually suspicious but autonomous organizations. It is clearly not possible to prevent

organisations from misbehaving and attempting to cheat on their agreed contractual

relationships. The best that can be achieved is to ensure that all contractual interactions

between such organisations are funnelled through (a centralised or distributed) contract

management system and that either (a) all other non-contractual interactions are disallowed,

or (b) the contract management system is at least capable of monitoring and signalling the

signatories of the contract as to when the contract is being violated, or ideally (c) both a, and b.

The safety properties of the middleware must ensure that local policies of an

organization are not compromised despite failures and/or misbehavior by other parties; whilst

the liveness properties should ensure that if all the parties are correct (not misbehaving), then

agreed interactions would take place despite a bounded number of temporary network and

computer related failures. Also because we are dealing with contracts, for the purposes of

proof and legality the middleware must have means for collecting non-repudiable evidence of

the actions of parties that interact with each other.

In this thesis, the requirements of a suitable run time infrastructure for monitoring

contract compliance are discussed and a prototype middleware implementation is presented.

1.4 Research tasks and objectives

We take as an input an existing conventional text based business contract. The reason we say

"existing" is because we do not investigate within this thesis how to negotiate contracts over

the Internet, we assume that a contract has already been negotiated, and that it already exists.

Using it we show how a contract can be segmented into the basic rights and obligations that

form it. We go on to demonstrate a method by which these extracted rights and obligations

can be used as the parameters of mathematical models. The mathematical models we use for

this process are finite state machines.

Once the contract has been converted into finite state machines, we need to make sure

that the FSM model of the contract is not ambiguous. This means that we need to make sure

that the FSM representation of the contract has been designed accurately, and that it performs

the operations that the contract is expected to perform, and does not perform (or detects and

Introduction 7

signals) operations that the contract is not expected to perform. This interpretation of

ambiguity however is too vague.

Our next task therefore will be to define a set of standard correctness requirements

that can be used by the x-contract model designer as a guide for removing any ambiguity

within the x-contract model. The tool that we use and propose for this process is the model

checker Spin [SP03].

We next show how a correct (free from ambiguity) FSM contract model, can be

coded into the x-contract. The programming language we use for this purpose is lA VA. The

lA VA FSM contract (or the x-contract) therefore will be used for the purpose of monitoring

the interactions between the signatories to the contract. We discuss further the requirements

(discussed in Section 1.3 .5) of the middleware service on top of which the x-contract is to be

implemented, and propose B2BObjects (developed at Newcastle University) [CSW02] as an

appropriate middleware service that serves these requirements.

We finally demonstrate how the x-contract and the middleware can be used together

to facilitate the electronic contracting process. We demonstrate these operations with the aid

of a number of examples.

1.5 Thesis Overview

In Chapter 2, we present and discuss the research relevant to ours that has been

conducted in the area of electronic contracts.

In Chapter 3, we define finite state machines, and take a look at some of their

applications. We demonstrate how they can be used to represent conventional contracts, and

how they can be used for monitoring and enforcing the clauses within a contract.

The verification of the correctness of protocols and how it relates to the validation of

x-contracts is discussed in Chapter 4. We present and describe the model checker Spin that

can be used for removing the ambiguities within contracts. Also in Chapter 4 we suggest a set

of correctness requirements against which the correction of a contract can be validated, and

introduce the concepts of safety and liveness requirements. In Chapter 5, we present a number

of different examples of contracts to demonstrate the contract conversion and verification

process.

The requirements from a suitable middleware service for the implementation of x-

contracts are discussed in Chapter 6. In this chapter we propose the use of B2BObjects as a

middleware service and use it for implementing x-contracts. Finally in Chapter 7, we close

with some conclusions.

Blank Page

Chapter Two

Analysis of Related Work

In this Chapter, we present work that is relevant to our research work conducted by various

academic, and industry based research groups in the area of electronic contracting. We

analyse different works while focusing mainly on efforts in contract representation, contract

validation, contract monitoring, and electronic contract implementation.

We begin our discussion with the Reference Model of Open Distributed Processing

(RM-ODP). It is a joint effort between the ISO (International Standards Organisation), and

the ITU (International Telecommunication Union). This work is born from recognising a

requirement of a coordinating framework for the standardisation of Open Distributed

Processing [RM-ODP].

The CrossFlow project is presented next. Central to its architecture are contracts,

which are used to connect the work flow management systems (WFMS) of different

cooperating organisations within a virtual environment, resulting in a Cross Organisational

WFMS. Next we Continue with industry based research; we take a look at IBM's COYOTE

project. After this we analyse the work done at a number of universities including Milosovic

et al at Queensland University, and Naftaly Minsky et al at Rutgers University.

We examine different approaches while keeping in mind the contract implementation

requirements, and the goals that we outlined in Section 1.4.

2.1 Open Distributed Programming Reference Model

ODP describes systems that support heterogeneous distributed processing both within and

between organisations through the use of a common interaction model. The Reference Model

prescribes a framework using five "viewpoints" (abstractions); enterprise, information,

computational, engineering, and technology.

A set of concepts, structures, and rules is given for each of the viewpoints, providing

a language for specifying ODP systems in that viewpoint [RM-ODP]. It is hoped that using

each of the five viewpoint languages, a large and complex specification of an ODP system

can be separated into manageable pieces, each focused on the issues relevant to different

members of a development team. Fig 2.1, shows how the RM-ODP viewpoints can be related

to the software engineering process [RM-ODP].

9

Chapter 2

Enterprise
Requirement
Analysis

Computational Functional
Specification--~~------~------r-------~----~'-----------

Information

Design

Technology

Fig 2.1. RM-ODP Viewpoints [RM-ODP]

The enterprise viewpoint language incorporates concepts such as policies and roles within a

community. Policies are defined in terms of; Objects (bank managers, customers, money,

bank accounts, etc), communities (grouping of objects formed to meet an objective. The

objective is expressed as a contract, which specifies how the objective can be met), and roles

of objects expressed in terms of policies (permission, obligation, and prohibition).

Fig.2.2. A meta model for the ODP enterprise ~iewpoint language [SDOO]

Policies constrain the behaviour of enterprise objects that fulfil actor roles in communities and

are designed to meet the objective of the community. Policy specifications define what

behaviour is allowed or not allowed and often contain prescriptions of what to do when a rule

is violated.

Analysis of Related Work 11

The ODP enterprise language is really a set of abstract concepts rather than a

language that can be used to specify enterprise policies and roles. Recently, there have been a

number of attempts to define precise languages that implement the abstract concepts of the

enterprise language. These approaches concentrate on using UML to graphically depict the

static structure of the enterprise viewpoint language as exemplified by [SDOO] (see figure 2.2),

as well as languages to express policies based on those UML models.

2.2 CrossFlow

The CrossFlow project [CFOO] aims at developing concepts and information technology for

advanced workflow support in virtual organizations that are dynamically formed by contract

based service trading [KGYOO].

Contracts are used in CrossFlow for flexible service outsourcing, in which a service

provider organization performs a service on behalf of a service consumer organization.

Contracts are the basis for finding suitable partners, establishing business relationships,

connecting work flow management systems (WFMS) of different kinds, controlling

outsourced workflows, and sharing abstractions of workflow specifications between partners.

Contracts in CrossFlow, define all data, process elements and enactment conditions relevant

to the co-operation through the outsourced workflow process on an abstract level.

(1,1)

<>lD,N) (O.N)

Usage claus"E nactment clau se

Contract

Concept

'-- 100NI---<8>-IO.MI------- __~

(1.1) (1,1)

Na Iu ral langusg6
description Pro:€6S model

(O,N)
>--04---l ProC66S element

Fig 2.3. Cross Flow Contract structure in EER notation [KGVOO]

Chapter 2

The establishment of virtual enterprises with the help of contracts is discussed in [HLGGOO].

Contracts are established automatically by CrossFlow contract manager modules without

human interaction. Negotiation of contracts is not required in the context of the project and

thus not covered by the approach. The approach is based on standard form contracts that

describe standardized services in the context of specific markets.

The data structure of the CrossFlow contract model in EER (Extended Entity

Relationship) notation can be seen in figure 2.3. In the figure rectangles describe elements,

and diamonds describe the type of relationship between the elements. Details on reading EER

notation can be found in [EER]. The model consists of five main elements:

1. The Concept Model establishes the terminology of the contract. The concepts of

the contract are defined as a list of parameters that can have complex structures. The

parameters are defined with their name, type and description. The concept model consists of

three parts. General parameters describe attributes that are applicable to contracts in general.

This part standardizes contracts by ensuring that parameters used in any service always have

the same name and structure, like CONSUMER, PROVIDER, and SERVICENAME. Having

this part makes it easier to search for a contract on generally accepted terms. Service specific

parameters apply to specific service types. Parameters like DELIVERY ADDRESS,

PACKAGEWEIGHT, etc. are only applicable to transport services. The consumer should

specify the values of these parameters in the contract, so the provider process can read them

from the contract and start the workflow instance. Process variables are dynamic parameters

used for exchanging information during the service execution.

2. The Process Model describes the internal structure of the workflow process

implementing the service. The process is composed of process elements, e.g. the individual

activities and transitions. The process needs to be specified in a way that allows the provider

to map it to its actual process and allows the consumer to understand the sequence of events

and make decisions based on this knowledge.

3. The Enactment Model. The enactment clauses in the contract define additional

enactment requirements on top of basic workflow processing defined in the workflow

definition. Enactment clauses can be related to enactment performance monitoring, cross-

organizational process control, advanced transaction management, automatic remuneration,

etc.

4. The Usage Model defines how contracts are used for service outsourcing. These

definitions are related to the concept of Partially Filled Contracts as explained below.

S. The Natural Language Description is a piece of text that is not meant for electronic

interpretation, but for human reading. This text can be used to describe the service in an

understandable way and to refer to the legal context of the transaction.

Analysis of Related Work 13

To enable the use of standard contracts, the CrossFlow approach has defined the concept of

Partially Filled Contracts (PFCs). PFCs are contract templates of which the service specific

fields are partially filled by a service consumer. On the basis of the PFC, a business

agreement is reached between service provider and consumer for the enactment of multiple

services. Each service is specified by completing the PFC to a complete filled contract. A life

cycle model has been defined relating various kinds of templates, PFCs and actual contracts.

2.2.1 CrossFlow Architecture

The CrossFlow architecture [CFOO] supports both contract creation and contract (service)

enactment. The architecture is based on commercial workflow management system

technology, shielded from the CrossFlow technology by an interface layer. In the project,

mM's MQSeries workflow product is used [MQ].

Trader

.......-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.~c.,_-,---C_on--:=trac~t---,I..·
,.....

"', -. ~.~
·t. • .••• " .•••• ,, .

Interface Layer I Interf ace Layer

Workflow
Management

System

Workflow
Management

System

Service Consum er Service Provider
, •.•.•.•.•.• '•.• , ,•.•.•.• "11""""""""" """",·tI ..:

. .
", ,•.•.•.•.• , ,•.•.•.•.• ,.,.'.'.'.'.'.""11"",:

Fig.2.4. The CrossFlow Architecture

2.2.2 Contract Creation

When a service provider wants to advertise a service it can perform on another organization's

behalf, it uses its contract manager to send a contract template to a trader. When a service

consumer wants to outsource the enactment of a service, it uses a contract template to search

Chapter 2

for service providers via a trader. When a match between consumer's requirements and

provider's offer is found, an electronic contract can be made by filling in the template.

2.2.3 Contract Enactment

Based on specifications in the contract, a dynamic contract and service enactment architecture

is set up. The symmetrical architecture contains proxy gateways that control all

communication and support services for advanced cooperation functionality. After contract

completion, the dynamically created modules can be disposed of.

An XML based contract language has been developed for the CrossFlow project. The

language can be used to define contracts that are suitable for supporting fully automated

outsourcing transactions. Using the language, it is hoped that all aspects of the interaction can

be defined in a structured manner, enabling the co-operation infrastructure to set up and

manage the outsourcing environment. A prototype of the cooperation infrastructure is under

development. In the future, the model and language will be refined and extended, based on the

experience with CrossFlow user scenarios. A CrossFlow prototype is to be implemented as

proof of concept. Contract enactment mechanisms are yet to be developed further. Tools are

still to be developed to edit and create contracts, validate them, and present contracts in a

readable form. Therefore CrossFlow remains largely in the concept phase.

2.3 The COYOTE Project

Work at the IBM T.J. Watson Research Center, has resulted in the COYOTE (Cover

YOurself Transaction Environment) project (See [DDNS98]); this paper uses as an example a

complex, mixed B2B (Business to Business) and B2C (Business to Customer) case. The

example illustrates the situation of a customer who purchases full fare on an Airline company

thus receiving a discount at a specific Hotel and Car rental company. This situation involves

close relations between the companies for this B2C case.

The process of electronic trade is described as a distributed, long running application,

spanning multiple autonomous business organizations. The goal of the COYOTE project is to

provide an application development and execution environment for electronic business

applications. The approach makes a clear separation, of internal and external business

processes within an organization. The rules of external interaction and externally visible states

are defined as a service contract. Service contracts act both as a guideline for interaction

across businesses and also as an enforcement mechanism for guaranteeing proper interaction.

It is a high-level description of the interaction between two or more contracting parties. The

contract contains two kinds of information. The first kind is a machine-readable description of

Analysis of Related Work 15

the computer-to-computer interactions between the parties that supports the overall

application. It concerns those aspects of the application that each party must agree with and

which are enforceable by the COYOTE system. The second is the usual human-readable legal

language that is part of any business-to-business contract and includes those aspects of the

agreement, which must be enforced by the person to person contact.

The project is concerned with the machine-readable section. The contract is written in

XML. After reaching an agreement by all parties, the XML contract can then be turned into a

code. This code is called a service-contract object (SCO) and resides at each of the parties. It

provides interfaces to the application programs of the parties. Each party communicates via

the SCO of the other party. The service contract defines the properties of each party that must

be made visible to the other parties to the contract. These properties include:

Identification: The identification section assigns a name to the contract and provides

the names of each of the parties to the contract.

Overall properties: The overall properties are attributes of the contract that apply to

the contract as a whole and all instantiations of it.

Communication: These properties provide the information necessary for each party

to communicate with all the others.

Security/Authentication: The following levels of security are provided: non-

repudiation, authentication, encryption, and none.

Role: The contract can be formulated in terms of generic roles.

Actions: An action is a specific request which a party, acting as a client, can issue to

a party acting as a server. Possible actions could be "reserve a hotel", "purchase", etc.

Constraints and sequencing rules: Constraints are various conditions, which must

be satisfied for individual actions. For example, the action "reserve a hotel" might be

accompanied by a rule stating the latest time to cancel the reservation. Sequencing

rules state the allowed order of actions at a given party. For example, a "cancel

reservation" action cannot be invoked until the "reserve a hotel" action has been

invoked.

State transition logic: When an action is performed, the state associated with the

action (and hence the state of the contract) changes. The contract defines additional

changes of variables and parameters, which take place following the completion or

failure of an action.

Compensation rules: These properties state any conditions relating to the

cancellation of previously invoked actions.

Error handling: These properties contain error conditions and methods to be called

when they occur.

Chapter 2

Legal aspects: These properties contain conditions, which are typically defined in a

legal contract such as handling of disputes and other exceptional conditions.

These properties provide the structure of the service contract. This structure is comparable

with the structure of the SeCo Container (Section 2.5). For example, the legal terms in the

SeCo Container are identical to the legal aspects; the agents to the identity, etc.

A specific aspect of this project is support for error handling. The approach in this

project is process oriented and the contracts must support the different processes that result

from the activities of the companies. Thus the additional properties that are needed are state

transition logic, actions and error handling.

Due to the diversity in the business processes, the many possible actions and

responses from the parties in a business transaction, this paper considers the use of Petri Net

like definitions of the business processes as inappropriate. This view contradicts [LS98] and

[RL98], where Petri Nets are used for process modelling. COYOTE has not addressed the

issue of validation of contracts.

2.4 Work at Qeens/and University

The idea of monitoring and enforcement of policies specifically for electronic contracts has

been discussed by Milosovic et al [GMOO] [MMOI] [MB95]. In [MB95], "A possible

sequence of contract operations" is proposed. The sequence includes the "Establishment

Phase" where the parties negotiate the terms of the contract and sign it, and the "Performance

Phase", where the contract is monitored and enforced.

Contract monitoring, is defined as the process of observing the activities of a

company and tracking these activities not to violate the contract. Monitoring can be

performed by the parties or by a third party acting on behalf of one or all the parties. This

process can be performed continuously during the contract execution or can occur from time

to time. In case that one of the parties breaks the contract conditions, contract enforcement

can take place.

In [MA096], the focus is mainly on the security requirements for open distributed

systems for contracts. Special attention is paid to the competence element. This is essentially

the issue of determining if a given person has the authority to establish a contract. The

proposal is to base competence on a notion of roles, which reflect the structure of a company,

e.g. presidents, managers, and administrators. As is common practice, a person can proceed

with a request if the permission is obtained from some collections of the superiors such as 3

managers or 2 state managers, or simply the permission of the president. Digital signatures

Analysis of Related Work 17

and roles are used to implement competence that can be verified by people within a company

and by those negotiating with the company.

The paper [GMOO]aims at the specification and implementation of business contracts

needed for Business-to-Business (B2B) electronic commerce. In this approach, valid business

contract must contain four elements; agreement, consideration, capacity, legal purpose. These

elements result in clauses that cover items Iike; parties, definition and interpretation of terms,

jurisdiction, etc. (see figure 2.5). In the appendix of [GMOO]an example of such a contract is

listed. We actually borrow this contract and modify it to adapt it to our particular needs as one

of our examples in Chapter 5.

Agreement
Consideration
Competence
Legal purpose

Parties
Definition and interpretation of terms
Jurisdiction
Duration and territory
Consideration
Obligation (including terms and conditions)

["··································1

! Contract
L J

Fig.2.S. Contract structure and content [GMOO]

In this work, a contract can be provided by one of the parties (e.g. the seller), a third party or a

commercial organization that will provides general-purpose contracts for different business

scenarios.

Also in [GMOO],the authors pay particular attention to the benefits of using standard

contracts, a concept that is also important in our work. A standard contract template can be

provided by one of the parties (e.g. the seller), a third party or a commercial organization that

will be providing general-purpose contracts for different business scenarios.

A number of basic roles are needed to support typical operations associated with

contract establishment. The Contract Repository (CR) is needed to store standard form

contracts and standard contract clauses. The Notary is used to store signed instances of

standard form contracts, which can be used later as evidence of agreement in contract

monitoring and enforcement activities. The Contract Validator (CV) performs the contract

validity checking procedures relating to the legality of the contract. The Contract Monitor

(CM) is used for monitoring the contract. The CM has three major roles: to monitor the party

activities, to record and measure actions and performance, to deal with non-performance

parties. In case of improper behaviour the CM informs the Contract Enforcer (CE) component.

The Contract Enforcer (CE), upon being signalled by the CM, performs enforcing actions

such as sending a message to various parties informing them of the violation and possibly

preventing further access to the system by non-conforming parties. The Contract Negotiator

Chapter 2

(CN) is an optional role that can be used to mediate the negotiation of contracts in the

contractual phase.

The Contract Monitor has the central component CMM (Contract Monitor Manager),

which receives policy statements of the form:

<policy> :: = <variable_declaration>
when <condition>

<action>
must [not] occur where <condition>
otherwise <trigger_action>;

<action> .: = actiont <actionjtame>, <actor>,
<audience>, <time>, <body»

<trigger_action> ::= trigger ocuontcaction _name>,
<audience>, <body»

Upon receiving a policy statement, it is analysed by the CMM, and the CE is

signalled if a violation is detected.

"-
based 01)

den'veri from
1.,"

2..11 2..11
~ +ovner +authcrit.v ~~-------c:=J attrtleato I XML-DSg I

{n

Fig.2.6. A UML model of a contract [GMOO]

Based on this analysis the authors define a contract model. The contract model contains the

following elements: a preamble that outlines the parties involved in the contract and the

nature of the consideration; a clause element, which is a list of contract clauses, clustered in

logical groups; an approval section that enumerates who from each party approved the

contract; a digital signature section, with digital signatures from the appropriate parties listed

in the approval section; a section containing a list of policy specifications stating contract

enforcement rules according to the agreed contract clauses.

Analysis of Related Work 19

Contractual terms and conditions are modelled as policies. This is influenced by the

Event-Condition-Action (ECA) paradigm from active databases, and the ODP language.

Policies are embedded in the XML structure.

Validation of the correctness of contracts has been identified as crucial by Milocevic

et al in [GMOO], and [MD02], where a contract is informally defined as a set of policy

statements that specify constraints in terms of permissions, prohibitions and obligations for

roles involved in the contract. A role (precisely, a role player) is an entity (for example a

human being, machine, program, etc.) that can perform an action. Formally, each policy

statement is specified in deontic logic constraints [MMO 1]. Thus each deontic constraint

precisely defines the permissions, prohibitions, obligations, actions, and temporal and non-

temporal conditions that a role needs to fulfil to satisfy an expected behaviour.

For example, a constraint can formally specify that, "Bob is obliged to deliver a box

of chocolates to Alice's desk every weekday except on Wednesdays for three years, between

9 and 9: 15 am, commencing on the 1si of Jan 2004". The expressiveness of deontic notation

allows the contract designer to verify temporal and deontic inconsistencies in the contract.

The authors of this approach argue that it is possible to build verification software to visually

show that, Bob's obligations do not overlap or conflict. Such verification mechanisms would

easily detect a conflicting situation where Bob has to deliver a box of chocolates to Alice's

desk and to Claire's who works miles away from Alice's desk. Similarly, the verifier would

detect that Bob is not obliged and prohibited to deliver chocolates to Alice during the same

period of time.

There are similarities between this research and ours in the focus on the use of

standard contracts, the validation of the correctness of contracts prior to implementation, and

in the monitoring of the x-contract at execution time. However whereas we focus only on the

validation of the contract specified business to business interactions, Milocevic et al also

include in their validation process the checking of the consistency of contract specified

interactions with the internal processes of the signing entities. We consider this to be too

ambitious. Also it is not very clear in this work if the collection of non-repudiable evidence is

possible without involving trusted third parties.

2.5 Work at University of St. Gallen

A number of papers on electronic contracting have been written by two main research groups

at the University of St Gallen. The main contributions of these papers are the Electronic

Market Reference Model, the Business Media Framework, and the Secure Contract Container

(SeCo).

Chapter 2

2.5.1 Electronic Market Reference Model (EM-RM)

EM-RM is a model developed over a series of papers, which discuss a number of issues

relevant to electronic contracting. In [LR97] non-repudiation within electronic contracting is

the main topic. It addresses the issue of trust between parties by introducing trust centers -

institutional instruments to support confidentiality and non-repudiation.

Trust Centers are independent third parties, in which a high extent of confidentiality

is put. According to [FHK95] the term Trust Center aggregates trusted Third Parties (TTP)

and Personal Trust Centers (PTC). ''A Trusted Third Party is an impartial organization

delivering business confidence through commercial and technical security features, to an

electronic transaction. It supplies technically and legally reliable means of carrying out,

facilitating, producing independent evidence about and/or arbitrating on an electronic

transaction. As services are provided and underwritten by technical, legal financial and/or

structural means. " [LR97].

The idea of trust centres is gaining popularity [KBCSOO],and is considered by many

researchers and developers as one of the most probable solutions for the legal issue problems

and the lack of trust between parties.

[LRP97] and [LR97] describe a Model for Permanent IT-Support. By Permanent IT-

support it is meant continuous and time-independent information technology support

throughout all phases of an electronic commerce transaction. The suggested model consists of

a business layer, a services layer, and a technical layer.

In [LS98], [RA98] and [LR98], the model is developed, and the three layers are

modified, and they become 4 so called "views". (See figure 2.7). To summarize, [LR98]

proposes an Electronic Market Reference Model (EM-RM), which consists of two

dimensions. The horizontal dimension contains the three phases of an electronic market

transaction (Information phase, Agreement phase, and Settlement phase), whereas the vertical

dimension is built of four views. The four views can be grouped into two main blocks of

which the upper two views (Business and Transaction View) focus on organizational aspects,

whilst the lower two views (Services and Infrastructure View) depict technological aspects.

Within the agreement phase, an electronic contracting tool, which includes functions

for the purpose of negotiation of traditional trade via new electronic means, is suggested. The

contracting tool in figure 2.7 is a framework for other individual contract negotiation

supporting tools. Goal and content of the settlement phase are mainly the booking, payment,

and delivery of ordered goods and services. In the agreement phase; negotiated, and in the

settlement phase; concluded contracts, provide the basis and specification for these goals. The

paper does not mention how these goals are to be arrived at from the contract, or whether the

interactions between the parties are subsequently monitored to ensure the achievement of

Analysis of Related Work 21

these goals during the settlement phase. Also no attention is paid to the technologies that

need to be involved in the construction of an electronic market.

Actions
of Buyer

cE.o ~B 1----1
e AdDns
I- of Seller

Settlement
Phase

Informatioo
Phase

Agreement
Phase

Business Model

s.g. p·roca!ux..sof
needs idsnii'ic:srron:.
sSl'IfCiI' for SupptiSfSI

Agreement N.:;gotiatiol1
Agrooro"nt 8i.gI1il1.g

.Agr<'ement N!lgotiatiol1
AYFoolnent 8ignin.g

Markel TralSadion

Fig.2.7. Electronic Market Reference Model [LR98]

2.5.2 The Business Media Framework

[RSK99] proposes a solution for the management of business transactions, considering

contracts as the key information object of all legally relevant actions in a business transaction.

A contracting framework is presented.

COnllnUn'il:'1
View

Imp:lQmentati:on
VIew

Transaction
Vi:ew

Infrastructure
View

Knowlooge Intention SettlementContrac1

Fig.2.8. Business Media Framework [RSK99]

Four layers are identified in the BMF (Figure 2.8):

Chapter 2

Community View: The interested business community is described and structured on

this layer.

Implementation View: On this layer the roles, protocols and processes that have been

identified in the Community View are based on the underlying generic services of the

Transaction View.

Transaction View: This layer contains the generic market services (i.e. services,

which can be used for any marketplace and are necessary to complete a Customer Buying

Cycle). The generic market services identified are: The information service, intention service,

contracting service, and settlement services (payment and delivery).

Infrastructure View: This layer contains communication, transaction, and

transportation infrastructure, for the implementation of the generic services.

The transaction view contains several services, the most important of which from our point of

view are the contracting services. However the contracting services suggested are based on

the work done by Milocevic et al in [GMOO], which we discuss in Section 2.4. The authors

have used the defined BMF with the roles defined in [GMOO] in order to build a Contracting

Framework for the contracting services (see figure 2.9). This framework is a combination of

the two models.

Community
View

lrn plernentation
Vi'

Transaction
Vi'

Infras tru ctu re,
Vie'll

Fig.2.9. Contracting framework for the contracting services. [RSK99]

[GSGOO] investigates the technological aspect as well as the legal aspect of Electronic

Contracts. It focuses on contracts that involve two parties. The two roles in a contract are:

An offeror - the person who makes an offer.

Analysis of Related Work 23

An offeree - the person who receives an offer.

2.5.3 Secure Contract Container SeCo

To support electronic transactions in a way similar to conventional transactions, electronic

contracts are required. To serve this purpose the authors of [GSGOO] introduce a "Secure

Contract Container".

Contract

Content

Product Description

Agents

Legal Terms

Conditions

'I Signature Block

1 Log Entries

·1 Status Info

Fig.2.IO. Structure of the SeCo container [GSGOO]

A SeCo container comprises two parts: a contract section and an administrative section. The

contract section is separated into a content section and a signature block. The content section

contains all data that is relevant for the contract and that the contracting parties have to agree

on. It includes:

- The product or service descriptions with agreed upon quality or specifications of all products

and services the customer intends to purchase.

- The identification and address data of the contracting parties (mandatory), as well as other

involved market agents such as an arbitrator, a recipient other than the customer, or a notary

(optional). This sub-section is referred to as "Agents" (see figure 2.10).

- The legal terms of the contract as well as the arbitration code.

- The delivery and payment conditions together with the communication protocols applied in

the integration of payment and logistics services (i.e. SET).

Chapter 2

The contract content section in the SeCo Container serves the same purpose as the Concept

Model in the CrossFlow contract model [KGVOO].

The signature block holds the digital signatures signing the content section.

Furthermore, the signature block contains the corresponding X509 certificates that hold the

public keys of the signers (X509 is a standard for digital certificates). The log section logs the

events that occur during the contracting process, as well as any relevant information that

arises during the fulfilment of the contract. The status section holds information about the

current state of the SeCo Container. It can be used as a quick reference for queries for the

status of a contract. A container can hold more than one contract section, resulting from the

process of negotiation, but at any given time, there is only one valid contract section. The

most recent contract section represents the current state of the contracting process. This

allows tracking of the historical evolution of the contract.

Contract template Attached documents

Fig.2.1l. Contracting process [GSGOO)

The software architecture for the SeCo Container is described in [GSSOO]. The SeCo

Container architecture is built of logic, information, and communication layers (see figure

2.12)

On the Logic Layer, the logic of the business transaction is designed, managed, and

performed. The logic layer can manage the monitoring of the contracting process through

checking critical dates and values, and through performing actions like reminding of the

outstanding signing of the contract or the non-performance of the delivery. The logic layer

has a secure access to the information structured on the information layer.

The Information Layer provides data storage and contains the contract information.

The data of the information layer contains a structured and an unstructured part. In the

structured part all the information that is subject to further processing in the contracting or

settlement phase is stored. The structured part is divided into four blocks:

(I) Who block- The involved parties are described.

(2) What block- Product or service object of the contract is specified.

(3) How block- The settlement conditions of the transactions i.e. the enactment

clauses.

(4) Legal block- the legal circumstances, under which the parties came to a mutual

agreement.

Analysis of Related Work 25

In the unstructured part of the information layer, documents that are collected throughout a

market transaction could be added. In order to have a document history it is proposed to

generate a new document for each step of the contracting process. This new document inherits

certain attributes either from the container settings or from already existing documents.

Community

Inlpl~m!.ltltotiQn
ViQ\!l

Transaction
View

Iinfraslnlcfure
Vi!QW

SeCo Container

KII o\!lledge InI~nti Oil Contract SQttlem~nt

Fig. 2.12. SeCo Container Architecture

The Communication Layer includes all protocols necessary for the communication with the

generic market services and the contracting parties.

To summarise, The SeCo container is able to collect and contain all the information

that is necessary to enforce a contract in front of an arbitrating court (Information Layer). It

contains the logic rules about the obligations that have to be fulfilled and about the security of

its own state (Logic Layer). The authors do not however discuss whether there is a

verification process in which an electronic contract is checked for correctness before

implementation. Also there aren't any examples or details on the implementation of SeCo

beyond the Architecture descriptions above.

2.6 Electronic Commerce Development and Execution
Environment (EDEE)

Another research work of relevance to ours is the EDEE system. EDEE provides a framework

for representing, storing and enforcing business contracts [AEBO 1].

In EDEE a contract is informally conceived as a set of provisions. In legal parlance, a

provision is an arrangement in a legal document, thus in EDEE a provision specifies an

obligation, prohibition, privilege or power (a privilege or power is equivalent to a right in our

Chapter 2

work). An example of a provision is "Alice is obliged to pay Bob 20 cents before 1si Jan

2004". Central to EDEE is the concept of occurrence. An occurrence is a time-delimited

relationship between entities. It can be regarded as a participant-occurrence-role triple that

contain the name of the participants of the occurrence, the name of the occurrence and the

name of the roles involved in the occurrence. An example of an occurrence that involves

Alice (the payer) and Bob (the payee) is "Alice is paying Bob 20 cents on 31si Dec 2003."

The formal specification of a contract in EDEE is obtained by translating the set of informal

provisions derived from the clauses of the contract into a set of formal occurrences. Another

basic concept in EDEE is query. A query is a request for items satisfying certain criteria (for

example, "Payments performed by Alice before 31si Dec 2003"). At implementation level, the

occurrences representing the contract provisions are stored together with queries and new

occurrences in an occurrence store in SQL views.

Business operations invoked by the contractual parties are seen as occurrences

intercepted and passed through the occurrence store where they are analysed to see if they

satisfy the contractual occurrences associated with the operations. EDEE has been provided

with some means for detecting contract inconsistencies. To detect overlap between queries (a

set of occurrences being both prohibited and permitted, a set of occurrences being obliged and

prohibited, etc.) the authors of EDEE rely on a locally implemented coverage-checking

algorithms.

2.7 Law Governed Interaction

Electronic contracts have been studied by Naftaly Minsky, and his research group in a

number of papers under the concept of Law Governed Interaction (LGI) [XMNUOO] [UMOO]

[MMU01] [SXM01] [MU01].

The LGI mechanism is a message exchange software layer that allows a group of

distributed agents to interact over a communication medium (see figure 2.13), honouring a set

of previously agreed upon rules. An agent is an entity, for example, a computer program, with

means for sending and receiving messages. As the term agent suggests, agents act on behalf

of their enterprises. In the LGI paradigm, a business to business interaction involves a set of

private laws and one interaction law: the private laws are internal to each enterprise and.
regulate the activities of the agents while operating as representatives of their enterprises

whereas the interaction law is public to the members of the group and regulates the

interactions between the enterprises. It is worth mentioning that the interaction law is actually

the business contract that the agents are expected to honour when they interact with each

other on behalf of their enterprises.

Analysis of Related Work 27

A law can be regarded as a set of rules. An example of a rule contained in a private

law would be "Agent E, can place purchase orders without the approval of the manager only

for purchases not exceeding 5000 pounds."

Laws are enforced by controllers which are trusted entities conceptually placed

between each agent and the communication medium. Thus the private law L, to be honoured

by agent X is enforced by controller Cx while the private law L, to be honoured by agent Y is

enforced by controller Cy. The law Lxythat regulates the interaction between agent X and Y is

enforced by a mediator controller Cxywhich is conceived as working on behalf of a mediator

agent that bridges the interactions between agents X and Y. Every controller stores its law

(formally represented as Prolog-like terms) and the current control state of its agent. When an

event occurs (for example, "purchase order received") the controller performs the

corresponding operations stipulated in the laws (for instance, "send acknowledgement to

business partner", "notify the local manager", etc.) to honour the private law, the interaction

law, or both, and computes the new control state [MUOl).

exportsent imported

CSx CSy

deliver
Communication

Network

Agent x
Lp Lq

Agent y

Controller x Controller y

Fig.2.13. Interaction of agents in LGI

The LGI approach is similar to ours in that it suggests a separation of business to

business laws from internal-to-enterprises ones. Likewise, the job of the mediator controller

closely resembles the job of the FSMs of our approach. To the best of our knowledge, the LGI

group has no reported results about validation of the laws or about how the controllers collect

non-repudiable evidence of the operations performed by their agents.

Also what is not clear, is the implementation of the mediator controller Cxy that

regulates the contract law Lxy. We will assume that the mediator agent that Cxy works for is

a trusted third party that enforces Lxy.

Chapter 2

2.8 interProcs

Ronald M. Lee at the Erasmus University in Rotterdam in [L98] presents a design and pilot

implementation of a system, supporting electronic contracting, called InterProcs. A key

deliverable of this project is a model expert system for producing trade scenarios customized

to a particular situation, yet making use of stored knowledge and experience on their design

and legal controls. This is a generalization of the Open-EDI approach used in [LS98], where

only standard trade scenarios are used. The project aims to provide an artificially intelligent

framework for constructing trade scenarios. For this reason, the authors aim not only to

understand the sequencing of document flows, but to understand why these documents are

sent, and what the purpose of these documents is, Le. their legal effects. The formal

representation of the trade scenarios should be:

- Procedurally representable.

-Computable thus allowing fully automated computer-to-computer transactions.

- Customizable - parties should be able to customize the generic trade scenarios for

their specific needs.

- Expressing not only document flows but the legal effects as well.

- With familiar end-user interface for the contracting parties as well as for possible

third parties.

- Reusable - the composition of trade scenarios should make use of reusable

constituent parts.

The technology approach in this project is based on artificial intelligence (AI) techniques.

Like other expert systems, this should involve an inference engine and a knowledge base.

However, unlike other expert systems, which usually only provide advice, this project also

involves a transaction system, which is able to execute the trade scenarios automatically.

A key objective for the design of trade scenarios is the inclusion of appropriate

documentary controls, e.g. protecting against fraud, accident or misinterpretation, and

providing appropriate evidence of the contract status, should the contract come into dispute

and go to court. These controls may be either detective, recognizing when something has gone

wrong, or preventative, in avoiding the error in the first place. Two additional open challenges

are listed:

revisability - while a given contract is being .'executed', it should be capable of

revision (due to possible constraints previously set in the contract clauses).

evolvablility - the knowledge base of trade scenarios should be able to evolve, based

on learning and experience from past modeling.

The contracting process in this paper is divided into three main phases: shopping, negotiation

and performance. Though the terminology is different the three phases can be easily mapped

Analysis of Related Work 29

to information, agreement, settlement i.e. the phases discussed in the research of St. Galen

University. A basic issue for this project is how electronic trade scenarios should be

represented from the modeller's perspective, and from a computation perspective. In this

paper Document Petri Nets (DPN's) are considered (see [LS98]) to be the most appropriate

representation for capturing the temporal/dynamic aspects of electronic trade scenarios,

offering both a graphical representation and a formal basis for the verification of various

properties.

In order to make the scenarios adaptable, scenario components are broken down into

reusable component parts, which can be flexibly reassembled to meet the needs of a wide

variety of situations. The contract reusability is an issue in many approaches e.g. [MB98,

GMOO,KGVOO].The idea to identify reusable components in contracts is appealing but, as it

can be observed from this survey, no significant progress has been made. The reason for this

is the huge diversity in the contracts and their clauses. Some preliminary work on this topic

has been done at Twene University (Cross Flow Project) as well.

2.9 COSMOS

The COSMOS (Common Open Service Market for SMEs) [CSP99] project is presented in

[GBW98]. The project aim is an Internet-based electronic contracting service that facilitates

business transaction processes. The e-contracts are considered as a solution for reducing the

high transaction costs in the standard contractual process. Three groups of transaction costs

are described; information costs, negotiation costs, and execution costs.

The COSMOS project aims at providing an infrastructure that allows the integration

of all phases ofe-contracting, based on object-oriented Internet technology. The project's goal

is to establish a technology to create complex contracts in an easy way and to support their

semi-automated filling in. Further on, COSMOS aims at supporting the negotiation and

execution phases by letting the constructed contract actively influence the processing of itself.

Due to the integrated, semi-automated construction of the contract, the COSMOS system

should be able to consistently include execution definitions that can automatically drive the

contract's fulfilment. This approach resembles the CrossFlow work [KGVOO], where the

workflow definition and the enactment clauses in the contract have this function.

The COSMOS electronic commerce architecture is composed of an online catalogue,

brokers, contract negotiation support, signing support, and contract execution support. The

project uses the CORBA Business Objects Architecture (BOA). Voyager, a Java-based ORB

that provides mobility of objects and is compatible with CORBA, is chosen as

Chapter 2

implementation platform for COSMOS. Further on, a Contract Object Model is described (see

figure 2.14). The contract model distinguishes several parts:

The Who part: Parties, Persons, and Signatures are related to the participants of the

contract.

The What part is the subject of the contract. It covers all obligations of the involved

parties. An important feature of the obligation is a list ofQoS attributes.

The How part defines execution details for the obligations: when and which services

to be delivered; what is the deadline; which clause will apply when a party does not

observe its obligation. This part is used to derive a workflow that defines causal

relationships, data transfers, delays and deadlines, and the final termination of the

execution phase.

The Legal clauses form the fourth part of a contract.

Ext.,.,,1 Clau,"
(lclelaxe

Fig.2.14. COSMOS contract model [GBW98]

Once a contract has been filled and signed, it becomes executable. The information gathered

within the contract during contract filling phases directly allows deriving a workflow to

execute a contract. Thus, a graphical representation of a workflow based on Petri-nets can be

generated from the contract. The workflow can be used only as a Petri-net interpreter that has

adapters to different workflow environments. For companies not having established their own

internal workflow system, COSMOS additionally includes a self-installing workflow

environment.

Analysis of Related Work 31

According to this paper, the attempt to cover the full semantics of a contract by

building a "contracting expert system" is considered a dead end, since the expert system

overhead i.e. the complexity of the system is expected to be too high.

2.10 Trade intermediaries

In [VA W98] the authors discuss the role of the trade intermediaries (e.g. retailers) in

electronic commerce. The need for a trade intermediary is often dismissed in the direct

supplier to consumer electronic commerce transaction model. For example, an e-commerce

system has little need for distributional intermediaries.

The problem of electronic markets that is depicted in this paper is the uncertainty

about product quality. One of the primary reasons why a market fails is the asymmetric

information: what a seller knows is different from what a buyer knows. The authors suggest

electronic commerce intermediaries to act as quality guarantors but without incurring high

transaction costs. The paper answers to the problem of how to keep the costs low for

intermediaries when the quality cannot be observed as in the physical world. A possible

solution is ajust-in-time purchasing system. The key element of this system is the open-ended

contract with suppliers whose deliveries are not inspected. The contract can be terminated if

the intermediary encounters many instances of low quality.

The reward for high quality is the continued business relationship with the

manufacturer. The rest of the paper discusses the role of micro-payments in the electronic

commerce, which is mostly relevant to B2C transactions.

2. 11 Legal contracts as processes

Work that considers state representation of contracts is introduced in [00M01] and [000]. In

[000] an informal schematic notation for electronic contracts is introduced. It can be used to

summarize the structure of agreements as collections of interrelated obligations. However it

seems as though formal semantics had not been developed for the notation. In [000], the

authors present a simple architecture for an e-market where a controller agent is used to

undertake the resolution of possible disputes between parties to an agreement. The controller

may hold a representation of a contract in a model language, which implicitly defines state

spaces. Also the representation is accessible to each party so that each party knows what it is

supposed to do, and what to expect from its counter party.

Chapter 2

The controller in this architecture acts as a judge, using information from the contract,

and other sources such as advisors for the resolution of disputes. This is a different line of

research to ours, as we concentrate explicitly on using Finite State Machines to represent

contracts, and enforce them. Any disputes that arise in our case are not currently addressed by

our research.

2.12 Event- Trigger-Rules

Work done at the University of Florida proposes an approach, called the Event- Trigger-Rule

(ETR) paradigm, which is motivated by the need for rule based processing capabilities in the

distributed environment of electronic commerce enterprises [SLOI].

The ETR paradigm is a generalisation of the ECA (Event Condition Action) approach

where the event specification and conditions and actions of the rule are specified as separate

entities. Specifying a trigger then associates the event and rule together into a policy. This is

in contrast to the ECA rule specification approach, where the event specification, associated

conditions and actions be combined into a single rule.

In the ETR approach, events can be classified into 3 types - method associated events,

explicit events and timer events. Method events are associated with a particular method

invocation and can be raised either before, after or on-commit of the method. This distinction

is referred to as the coupling mode of the event.

Each of these coupling modes raises synchronous events that will cause a rule to be evaluated

before execution of the program continues. Additional coupling modes are instead-of (raises a

synchronous event that allows the rule to replace the method invocation) and decoupled

(raises an asynchronous event).

Explicit events are those raised by the application during execution and timer events

are those associated with a particular time of interest. Next is a method associated event

specification. Specification of a method associated event:

IN InventoryManager
EVENT update_quantity _event(String item, int quantity)
TYPE METHOD
COUPLING MODE BEFORE
OPERATION UpdateQuantity(String item, int quantity)

A rule specifies some operations that should be performed if certain conditions apply. The

conditional part of an ETR rule is defined as a guarded expression, where the guard is used to

control evaluation of the conditional expression. This allows the entire rule to be skipped if

any part of the guard expression evaluated to false, thus avoiding potential exception

conditions (e.g. if required variables are not initialised).

Analysis of Related Work 33

Additionally, the rule specifies an action block (cf. a 'then' block) and an alternative action

block (cf. an 'else' block). The complete syntax of a rule specification can be seen here:

Syntax of the rule specification:

RULE rule_name(parameter list)
[RETURNS return_type}
[DESCRIPTION description_text}
[TYPE DYNAMIc/STATIC}
[STATE ACTIVE/SUSPENDED}
[RULEVAR rule variable declarations}
[CONDITION guarded expression}
[ACTION operation block}
[ALTACTION operation block}
[EXCEPTION exception and handling block}

When specifying a rule, it is possible to define local variables using the RULEV AR clause

and also handle errors using the EXCEPTION clause. The STATE clause specifies if the rule

will be active or suspended after its definition. A suspended rule will not be triggered until it

is made active. The specification syntax also provides optimisation hints to the runtime

environment using the TYPE clause. A dynamic rule can be changed at runtime whereas a

static rule is less likely to be changed. This information is used when generating the runtime

representation of the rule to provide optimal performance. The final component of the ETR

approach is the trigger. Triggers are used to specify which event(s) causes the processing of a

particular rule. Syntax of the trigger specification:

TRIGGER trigger _name(parameter list)
TRIGGEREVENTset of event connected by OR
[EVENTHISTORY event expression}
RULESTRUC set of rules
[RETURNS return_type. rule_in_RULE:STRUC}

The TRIGGEREVENT clause is used to specify the set of events, combined using an OR

connective, that will cause the rule(s) specified in RULESTRUC to be evaluated. The event

specification can be augmented using the EVENTHISTORY clause to define other event

expressions that need to have occurred prior to the one defined in the TRIGGEREVENT

clause. When specifying the rules to be triggered in the RULESTRUC clause, it is possible to

combine several rules using one of 4 constructs: sequential (rules are triggered one after the

other), parallel (rules are triggered concurrently), AND-synchronised (all members of a set of

rules must complete evaluation before another, specified, rule is triggered), and OR-

synchronised (any two members of a set of rules must complete evaluation before another,

specified, rule is triggered).

The literature that discusses the ETR approach presents many applications of this

technique. These include the development of a knowledge management network [LOO] and in

a dynamic business process management service described in [SLO I].

Chapter 2

Based on its similarity to the ECA rule approaches like PDL (Policy Description

Language) [LN99], it is easy to see how the ETR approach could be used to specify

obligation policies in a distributed system. However, because of the manner in which events

are defined and the ability to associate them to method invocations, it is also possible to

specify authorisation policies, albeit less succinctly, using this notation. Additionally, by

separating the event specifications from the rules, the ETR approach allows the user to reuse

the events in multiple triggers and thus associate them with different rules as necessary.

Despite the ability to specify different types of policy, and reuse parts of the specification in

multiple rules, this approach does not support other useful features like policy extension

(defining policies that inherit features from some parent policy) or policy groupings

(organising policies that relate to the same activity together).

2.13 Ponder Policy Specification Language

Of relevance to contract monitoring and enforcement is the Ponder Policy Specification

Language [DDLSOl]. Ponder is an object-oriented declarative language for specifying

management and security policies for distributed systems or contractual service level

agreements between business partners. It can specify, monitor and enforce what actions

(operations on objects) are permitted within a system, who can invoke the actions and under

which conditions. It specifies policies in terms of obligations, permissions and prohibitions

and provides means for defining roles and relationships. Ponder comes with a toolkit for

editing, compiling and managing policies, that can be downloaded from its Web page at the

Department of Computer Science of the Imperial College in London [P02].

To detect and prevent policy conflicts such as conflict for a given resource or

overlapping of duties, Ponder's notation permits the specification of semantic constraints that

limit the applicability of a given policy in accordance with the person playing the role, time,

or state of the system.

Key concepts of the language include domains to group the object to which policies

apply, roles to group policies relating to a position in an organisation [LS97], relationships to

define interactions between roles and management structures to define a configuration of roles

and relationships pertaining to an organisational unit such as a department.

Ponder Domains:

Domains provide a means of grouping objects to which policies apply and can be used to

partition the objects in a large system according to geographical boundaries, object type,

responsibility and authority or for the convenience of human managers. Membership of a

Analysis of Related Work 35

domain is explicit and not defined in terms of a predicate on object attributes. A domain does

not encapsulate the objects it contains but merely holds references to objects. A domain is

thus very similar in concept to a file system directory but may hold references to any type of

object, including a person. A domain, which is a member of another domain, is called a sub-

domain of the parent domain. A sub-domain is not a subset of the parent domain, in that an

object included in a sub-domain is not a direct member of the parent domain, but is an

indirect member, c.f., a file in a sub-directory is not a direct member of a parent directory. An

object or sub-domain may be a member of multiple parent domains i.e. domains can overlap.

An advantage of specifying policy scope in terms of domains is that objects can be added and

removed from the domains to which policies apply without having to change the policies.

Ponder primitive policies:

Authorisation policies define what activities a member of the subject domain can perform on

the set of objects in the target domain. These are essentially access control policies, to protect

resources and services from unauthorized access. A positive authorisation policy defines the

actions that subjects are permitted to perform on target objects. A negative authorisation

policy specifies the actions that subjects are forbidden to perform on target objects.

The language provides reuse by supporting the definition of policy types to which any

policy element can be passed as a formal parameter. Multiple instances can then be created

and tailored for the specific environment by passing actual parameters as shown in the

following example:

type auth+ PolicyOpsT (subject s, target < PolicyT> t)
{
action loadr), removet), enablet), disablet) ;
}
inst auth+ switchPolicyOps=PolicyOpsT(iNetworkAdmins, Nregion/switches);
inst auth+ routersPolicyOps=PolicyOpsT(lQoSAdmins, iNregion/routers);

Which means that the two policy instances created from a PolicyOpsT type allow members of

INetworkAdmins and IQoSAdmins (subjects) to load, remove, enable or disable objects of

type PolicyT within the INregion/switches and INregion/routers domains (targets)

respectively.

Policies can also be declared directly without using a type as shown in the negative

authorisation policy next, which indicates the use of a time-based constraint to limit the

applicability of the policy:

inst auth- InegativeAuth/testRouters {
subject ItestEngineers/trainee ;
action performance _tesu) ;
target <routerT> lrouters ;
when time.between ("0900", "1700")
}

Chapter 2

Specifies; trainee test engineers are forbidden to perform performance tests on routers

between the hours of 0900 and 1700. The policy is stored within the InegativeAuth domain.

Ponder also supports a number of other basic policies for specifying security policy:

Information filtering policy can be used to transform input or output parameters in an

interaction. For example, a location service might only permit access to detailed location

information, such as a person is in a specific room, to users within the department. External

users can only determine whether a person is at work or not. Delegation policy permits

subjects to grant privileges, which they possess (due to an existing authorisation policy), to

grantees to perform an action on their behalf e.g., passing read rights to a printer spooler in

order to print a file. Refrain policies, define the actions that subjects must refrain from

performing (must not perform) on target objects even though they may actually be permitted

to perform the action. Refrain policies act as restraints on the actions that subjects perform

and are implemented by subjects. See [0001] for more details and examples of these policies.

Obligation policies are event-triggered condition-action rules, and define the activities

subjects (human or automated manager components) must perform on objects in the target

domain.

Events can be simple, i.e. an internal timer event, or an external event notified by

monitoring service components e.g. a temperature exceeding a threshold or a component

failing. Composite events can be specified using event composition operators.

inst oblig loginfailure {
on 3*loginfail(userid) ;
subject s = lNRegioniSecAdmin ;
target <userT> t = lNRegion/users /\ {userid} ;
do t.disableO -> s.log(userid) ;
}

This policy is triggered by 3 consecutive loginfail events with the same userid. The NRegion

security administrator (SecAdmin) disables the user with userid in the INRegion/users domain

and then logs the failed userid by means of a local operation performed in the SecAdmin

object. The '->' operator is used to separate a sequence of actions in an obligation policy.

Names are assigned to both the subject and the target. They can then be reused within the

policy. In this example we use them to prefix the actions in order to indicate whether the

action is on the interface of the target or local to the subject.

Analysis of Related Work 37

Ponder Composite policies:

Ponder composite policies facilitate policy management in large, complex enterprises. They

provide the ability to group policies and structure them to reflect organisational structure,

preserve the natural way system administrators operate or simply provide reusability of

common definitions. This simplifies the task of policy administrators.

Conflict analysis

In [DBSL02], Damianou et al discuss the issue of conflict resolution within policies. This is

of relevance to our efforts outlined in this thesis on validation of rights and obligations for the

purpose of removing ambiguities within contracts.

[DBSL02], discusses different types of conflicts and presents strategies for resolving

them. A classification of policy conflicts is presented in [LS99], which discussed both

modality conflicts and application specific conflicts. Modality conflicts can be categorised

into three distinct types:

Authorisation conflicts arise when a positive and a negative authorisation policy is

defined for the overlapping subjects, targets and actions.

Obligation conflicts arise when one policy obliges a subject to perform a given

action whilst at the same time another policy forbids the action from being performed.

In the context of Ponder, this situation would arise if an obligation and a refrain

policy were defined on overlapping subjects and targets with identical actions.

Unauthorised obligation conflicts arises when a subject is obliged to perform an

action that it does not have the authorisation to do. In a system with a default negative

authorisation policy in which actions have to be explicitly authorised, this could occur

if an obligation policy is defined without an associated authorisation policy.

Application specific conflicts are those that arise because of constraints defined for the

particular application in which the policies are being used. For example, a system that

enforces the principle of separation of duties would define a conflict if the same person who

submits an expense report is also allowed to approve it.

[JS97] identifies that conflicts can be either static or dynamic. The distinction is that

analysing the syntax of a policy statement can identify static conflicts. These conflicts will

occur irrespective of the state of the system enforcing the policies - this is often the case for

simple modality conflicts. Dynamic conflicts are those that occur at run-time and arise

because a particular state of the system results in a conflict. These are harder to detect in

advance given that it is necessary to analyse the system in all possible states to do so.

Chapter 2

[S97] proposes that a conflict, once detected could be handled in one of three ways.

The most obvious and simplest one is for the system to declare an error condition whenever a

conflict arises. However, this solution is not particularly interesting since it does not allow for

the system to automatically recover from the conflicting scenario. Other solutions are to allow

the positive policy to override; or to let the negative policy override. The latter strategy is

adopting an approach of 'do no harm', based on the assumption that the negative policy (Le.

the one that prevents an action being performed) has a more benign effect on the system than

its conflicting counterpart. As would be expected, the positive policy override strategy is the

exact converse of the negative override approach described.

In addition to the negative and positive override strategies mentioned above, [LS99]

also identifies some alternatives. One approach suggested is to assign explicit priorities to

every policy. This way when a conflict arises, the agent enforcing the policy could simply

compare the priority values and enforce the policy that has the highest priority. However, this

approach could easily lead to inconsistent behaviour of the system if, as is common in

distributed systems, multiple people are responsible for defining policies and assigning their

priorities. Other strategies suggested include giving priority to the policy that is 'closest' to

the managed object; or using the specificity of the policy definition to determine the priority.

Work done by Chomicki and Lobo [CLOO]describes how conflicts can arise between

ECA rules and action constraints defined in the policy Description Language (PDL). Here, a

policy monitor is defined to detect conflicts between the ECA rules and any action constraints.

In order to resolve the conflict, the monitor will either choose to ignore certain events, thus

preventing the ECA rule from activating and causing the conflict; or will cancel any actions

that are specified in an action constraint. The latter scenario is an example of a negative

policy override strategy.

Progress has been made in dealing with policy conflicts within ponder, however

significant challenges remain to be addressed [DBSL02]. In particular, how can one detect

conflicts when arbitrary conditions restrict the applicability of the policies? Sometimes, it is

possible to compare restrictions placed by the constraints. For example, it is possible to detect

if two time intervals overlap or if the policies apply when subjects are in different states e.g.,

active or standby. However, the problem remains unsolved in the general case. Other

challenges concern the different levels of abstraction at which policy is specified. Also

Conflicts between organisational goals will inevitably lead to conflicts between the policies

derived from these goals. Some policies will trigger complex management procedures, which

require the execution of actions that may be specified as part of different policies. This

renders the task of ensuring the consistency of policy specification much more complex.

Analysis of Related Work 39

2.14 E-Commerce Frameworks

Here we list a number of e-comrnerce frameworks, which contain elements such as modelling

methods, supporting tools, standards, software and system architectures etc. They are

regarded important to e-contracting because they each include contracting as one of their

major modules.

2.14.1 ebXML

The United Nations body for Trade Facilitation and Electronic Business (UN/CEFACT) and

the Organization for the Advancement of Structured Information Standards (OASIS), have

joined forces to initiate a worldwide project to standardize XML business specifications.

UN/CEFACT and OASIS have established the Electronic Business XML initiative to develop

a technical framework that will enable XML to be utilized in a consistent manner for the

exchange of all electronic business data. Industry groups currently working on XML

specifications have been invited to participate in the 18-month project. A primary objective of

ebXML is to lower the barrier of entry to electronic business in order to facilitate trade,

particularly with respect to small- and medium-sized enterprises (SMEs) and developing

nations. The first ebXML Initiative Technical Specifications has been released for public

comment. The ebXML Requirements Specification defines specific technical infrastructure

requirements [AGOI]. More information can be found at [EBXML], [UNCE], and [OASIS].

2.14.2 BizTalk

BizTalk is an industry initiative started by Microsoft and supported by a wide range of

organizations, from technology vendors like SAP, CommerceOne, and Ariba to technology

users like BASDA. It includes a design framework for implementing an XML schema and a

set of XML tags used in messages sent between applications. It assumes that applications are

distinct entities, and application integration takes place using a loosely coupled approach to

pass messages. The two applications simply need to be able to format, transmit, receive and

process a standardized XML message. Through the BizTalk web site one can locate, manage,

learn, share information about and publish XML, XSL and information models and business

processes supported by applications that support the BizTalk Framework [BIZ].

2.14.3 Web Services

A Web service is an interface that describes a collection of operations that are network

accessible through standardized XML messaging. A Web service is described using a

standard, formal XML notion, called its service description that provides all of the details

necessary to interact with the service, including message formats (that detail the operations),

Chapter 2

transport protocols, and location. Web service descriptions are expressed in the Web Services

Definition Language or WSDL.

Web Services Technology, built upon existing and emerging standards such as HTTP

(Hyper Text Transfer Protocol), XML (Extensible Markup Language), SOAP (Simple Object

Access Protocol), WSDL (Web Services definition Language), and UDDI (Universal

Description Discovery and Integration), is speeding the development of Business to Business

(B2B) applications, and thus accelerating the expansion of the Internet. [GGKS02].

Web services technologies provide a programming model that accelerates application

integration inside and outside the enterprise. Because Web services are easily applied as a

wrapping technology around existing applications and IT assets, new solutions can be

deployed quickly and recomposed to address new opportunities.

As adoption of Web services accelerates, the numbers of services will increase,

fostering development of more dynamic models of just-in-time application and business

integration over the Internet.

Currently Web Services only provide for simple communication between computer

software, they do not support business interactions. Efforts are underway to enable such

interactions however. BPML (Business Process Execution Language) [BPML] is a notion for

specifying business process behaviour based on web services.

Processes in BPML export and import functionality by using web services interfaces

exclusively. BPEL4WS (Business Process Execution Language for Web Services) provides a

language for the formal specification of business processes and business interaction protocols.

By doing so, it extends the Web Services interaction model and enables it to support business

transactions. BPEL4WS defines an interoperable integration model that should facilitate the

expansion of automated process integration in both the intra-corporate and the business-to-

business spaces [BPML].

Related references: [PROT] [SOAP] [WSDL] [IBMW].

2.14.4 GRID

Grid computing is an evolving area of computing, where standards and technology are still

being developed to enable this new paradigm. It is a form of distributed computing that

involves coordinating and sharing computing, application, data, storage, or network resources

across dynamic and geographically dispersed organizations. Grid technologies promise to

change the way organizations tackle complex computational problems [GRID].

Research and development efforts within the Grid community have produced

protocols, services, and tools that address the challenges that arise when we seek to build

scalable Virtual Organisations. These technologies include security solutions that support

management of credentials and policies when computations span multiple institutions;

Analysis of Related Work 41

resource management protocols and services that support secure remote access to computing

and data resources and the co allocation of multiple resources; information query protocols

and services that provide configuration and status information about resources, organizations,

and services; and data management services that locate and transport datasets between storage

systems and applications [FKTO I].

OGSA (Open Grid Services Architecture) [OGSA], is an alignment of Grid

technologies, and Web Services technologies. This architecture is still evolving and uses Web

Services Description Language (WSDL) to achieve self-describing, discoverable services and

interoperable protocols, with extensions to support multiple coordinated interfaces and change

management. The aim is a standards-based distributed service system that supports the

creation of the sophisticated distributed services required in modern enterprise and inter-

organisational computing environments [FKNT02].

2.14.5 eCo Framework

The eCo framework is a CommerceNet project that focuses on the integration of three e-

commerce services. These services are: an integration of multiple database types with

multiple data constructs and data libraries; trusted open registries; and agent mediated buying.

The intent is that these core services will provide interoperability between many commerce

services and will serve as a foundation to operate web based trading communities [ECO].

2.15 Discussion

Electronic contracts have drawn the interest of many research groups and projects such as

ODP-RM, CrossFlow, COYOTE, Queensland University, LGI, InterPocs, COSMSOS, TINA,

Ponder ... etc.

Of the projects discussed in the previous sections, those that have mainly drawn our

attention are Milosovic et ai's research on electronic contracting (Section 2.4), and Naftaly

Minsky's Law Governed Interaction (Section 2.7). Specifically of interest to us are the

software tool Milosovic proposes for the contract validation process, and more elaborative

details on the operation of the mediator controller Cxy in Minsky's LGI infrastructure.

For the purpose of modelling business transactions that are derived from contracts,

none of the approaches above use finite state machines, some such as InterPocs and

COSMOS make use of Petri-nets, however the majority of them rely on elaborate logical

notations that include temporal constraints and role players in their parameters. The

expectation is that these notations should be able to specify arbitrarily complex business

contracts and detect all kind of inconsistencies during the contract validation process. In most

Chapter 2

of the works above (Queensland, St Gallen, Ponder ... etc), the contract infrastructure is

intended to be embedded within the infrastructure of the organisation. The expectation is that

the executable contract will not only be able to monitor and enforce the agreement between

the parties, but also will be able to take into account the organisations' internal policies, trying

to ensure they do not contlict with the clauses of the contract.

This generality is certainly desirable; however, because of the complexity of the

problem it might be rather ambitious. We believe that a modular approach is more realistic for

detecting contract contlicts and ambiguities. For that to be possible, we need to be able to

identify and isolate the different sources of possible inconsistencies in business contracts.

In our model, we make a clear distinction between an organisation's internal policies,

and the external policies that it may have signed on within the context of a contract. From this

perspective, we can identify two fairly independent sources of contract inconsistencies:

• Internal enterprise policies contlicting with contractual clauses.

• Inconsistencies in the clauses of the contract.

It is our view that these two issues should be treated separately rather than encumbering a

contract model with excessive notation (details, concepts and information) that might be

extremely difficult to validate. Such a separation is not considered in the work discussed

above. In this thesis we address only the second issue, that is, we are concerned only with the

cooperative behaviour of business enterprises and not their internal structure.

In our business model each contracting enterprise has the privilege and responsibility

of verifying that its internal policies do not contlict with the clauses of the contract. Similarly,

each enterprise exercises its independence to choose the roles players that would invoke

operations on the contract and provide them with a proper contract role player certificate (a

cryptographic key for example). Consequently, it is the responsibility of each enterprise to

prevent inconsistencies with role players such as duty overlapping, duty separation, etc.

We intentionally leave the notion of role players out of our discussion. However, we

assume they are authenticated by the contract management system before they are allowed to

perform operations of the FSMs. It can be argued that our FSM model lacks expressiveness in

comparison with the related works discussed above. However we do gain in simplicity.

Thanks to this simplicity we can use standard of-the-shelf model checkers like Spin [SP03] to

validate general safety and liveness properties of contracts, relatively easily.

In our work, contracts are conceptually located between the interacting parties and are

meant to drive the execution of inter-enterprise business processes.

Business processes vary in complexity from rather small such as the purchase of a

book to the rather complex such as the booking of a package holiday that could involve any

number of organizations, which have many agreements between them

Analysis of Related Work 43

We assume that a complex business process can always be decomposed into two or

more business processes of lower complexity that perform specific and individual activities.

This decomposition can be conducted several times until the complexity of the resulting sub-

processes is manageable [MSS03].

This decomposition approach is of great relevance for the implementation of x-

contracts. With x-contracts the interaction between the business partners can be thought as

taking place through individual sub-processes that are regulated by individual sub-contracts.

Naturally, each sub-contract contains only the rights and obligations to regulate the activities

involved by the particular sub-process. For example, two business partners might have a

contract that contains two sub-contracts: one for processing purchase orders for perishable

goods and a different sub-contract for tinned food. To execute a complete business contract a

parent contract is given the information and the power to create, coordinate and terminate one

or more instances of the same or different sub-contracts as needed. When an instance of a

sub-process is instantiated or terminated by the business partners, its corresponding electronic

sub-contract is instantiated or terminated by the parent contract.

An x-contract will in many cases, be simple enough so that it involves only one main

process, i.e. only one sub-contract will exists, so in fact the contract and its sub-contract will

be the same. In this thesis we are concerned with the execution of sub-contracts only, whether

this means the execution and monitoring of single process "simple" contracts, or whether it

means executing and monitoring individual processes within a bigger and more complex

contract that includes more than one sub-contract. We can briefly mention that within

"complex" contracts, the parent contract can be realised as a workflow script that manages the

set of sub-x-contracts that represent the set of sub-contracts that compose the whole contract.

In the rest of this thesis we refer to our sub-processes, sub-contracts, and sub-x-contracts

simply as processes, contracts, and x-contracts, respectively.

Blank Page

Chapter Three

Electronic Contracts as Finite State
Machines

In this chapter, we show how contracts can be converted into executable electronic contracts

through a process in which finite state machines are used to describe, monitor, and enforce the

clauses stipulated within a contract.

We first describe the meaning of x-contracts, and show how the clauses that form a

contract can be split into rights and obligations.

After this, we introduce finite state machines and illustrate how x-contracts, like

communication protocols, can be abstracted by finite state machines, and importantly we look

at how a finite state machine can express the rights and obligations of an x-contract. We

illustrate our ideas with the aid of a simple example of an ambiguous contract. We show how

the ambiguous contract is modelled into finite state machines. Finally after ambiguities are

removed from the finite state machine contract model, we look at how finite state machines

can be used to actively monitor and enforce the clauses of the contract.

As shown in Chapter 4, one of the major advantages of using FSMs is the facilities

they offer to analyse the correctness properties of contracts using validation tools such as Spin.

3. 1 Contracts and X-Contracts

A contract can be defined as a paper document that stipulates that the signatories (two or

more) agree to observe the clauses stipulated in the document. Each entry in the document is

called a term or a clause.

An x-contract is an executable electronic version of a conventional contract. It is an

electronic document that monitors that the signing entities observe clauses stipulated in the

document.

As can be seen from the definitions of conventional and electronic contracts, the main

idea behind conventional and electronic contracts is the same: the two of them regulate the

interaction between two or more trading parties. However, in spite of the close similarities,

there is a crucial difference between the two kinds of contract. A conventional contract is

human oriented, whereas an x-contract is computer-oriented. Consequently, the former

tolerates ambiguities, the latter does not.

45

Chapter 3

3.1.1 Rights and obligations

The clauses of a contract stipulate how the signing parties are expected to behave. In other

words, they list the rights and obligations of each signing party. It should be possible to

precisely extract a set of rights and a set of obligations from the clauses of a given contract.

Therefore, a contract with two contracting parties can be represented as shown in figure 3.1.

E-signatures

AGREEMENT

R = {RMEI RMEI RMEI RME2 RME2 RME2}
1 , 2 , ••• , m , 1 , 2 ,,,., n

O = {OMEI OMEI OMEI OME2 OME2 OME2}
1 , 2 ,,,., P , 1 , 2 ,,,., q

EI,E2-Enterprises, R,-Right, O;-Obligation
MEl-Manager orEI, ME2-Manager orE2

Fig. 3.1. Abstraction of the main elements of a contract.

For the sake of simplicity, we will discuss an example with only two contracting parties.

However, all our concepts, and models, can be generalised to n ~ 2 parties as long as n is

finite.

Let us assume that in figure 3.1, El is managed by Alice and that El is interested in

purchasing some items from E2. Similarly, Bob is the manager of E2 which is an enterprise

interested in supplying items to El. The contract shown in this figure has been signed by

Alice as the manager of enterprise El after agreeing with Bob that she will observe m

rights R = {RME1 RMEI RMEl} and p obligations 0 - {OMEI OMEI OMEI} On the other, I' 2 , ••• , m ' - I , 2 , ••• , P •

hand, Bob signed that he, as the manager of enterprise E2, would observe n rights,

R {RME2 RME2 RME2} d bl" 0 {OME2 OME2 OME2}= 1 , 2 ,,,., n an q 0 igations, = 1 , 2 ,,,., q •

We define a right as an authorization to do something. Because it is only an

authorization, a right mayor may not be exercised. In the context of the execution of an x-

contract, a right is an authorization to perform an operation that will affect the behaviour of

the execution of the x-contract. For example, the signed contract of figure 3.1 can stipulate

Electronic Contracts as Finite State Machines 47

that Alice, as a manager of El, has the right to send an offer to sell to Bob, the manager of E2.

Because this is a right, it is up to Alice to send or not to send the offer to Bob; Bob will not be

disappointed ifhe does not receive the offer.

An obligation can be defined as a duty that must be performed. In the context of the

execution of an x-contract, an obligation is a duty to perform an operation that will affect the

behaviour of the execution of the x-contract. A failure to perform such a duty means a breach

of the x-contract. For example, the text of the x-contract shown in figure 3.1 might stipulate

that upon receiving an offer to sell from Alice, Bob has the obligation to reply to her with an

OfferAccepted or OfferRejected message.

The execution of a right or an obligation such as SendOfferAccepted or SendOfferRejected

will, at a lower level of abstraction, demand access to one or more objects such as files,

databases and printers. A question that arises here is whether Alice and Bob have the right to

access the objects affected by their operations. This is an issue of authentication and can be

left out of the discussion while we talk at the level of rights and obligations, and will be

discussed in detail in Chapter 6. At this level we can assume that the persons that execute the

x-contract are granted permission to access the objects they need.

Note that in our x-contract each right and obligation is given a name; naming rights and

obligations is crucial in our understanding of x-contracts, Being able to name each right and

obligation individually means that we can identify, and monitor each of them at run-time, that

is, when the contract is enacted.

3.2 Finite State Machines

A Finite State Machine (FSM) is a widely used and well known model for protocol

specification. Since its introduction in the 1950s it has been used for modelling a great

number of systems. Its analytical power and the ease with which the model can be loaded into

a computer and manipulated automatically with the help of software tools makes this method

attractive for modelling protocols. Similarly, the graphical nature of this model makes it easy

to read and understand the different stages that the protocol goes through during its execution.

Formally, a finite state machine M is defined as the quintuple [S,1,Z,8,A] ,

of states, input symbols and output symbols, respectively. cS: S x I ~ S is the transition

function and A :S x I ~ Z is the output function.

Informally, M describes an abstract system that stays in a given state until it receives

an external stimulus. When such stimulus is received, the system reacts by doing something

(for example, sending an output signal) and then moves to a different state. Note that do

Chapter 3

something might mean do nothing in some circumstances and that the new state is not

necessarily different from the previous. The behaviour of this abstract system is deterministic.

The quintuple [S,1,Z,6,,1,] unambiguously defines what to do and where to go next.

Because of their high level of abstraction, FSMs are used to describe and model a

great variety of systems. In particular, the computer science community has gained a great

deal of experience in the use of FSMs for describing communication protocols, and built

several tools for validating such protocols. For example, Spin [SP03], and LTSA [LTSA99]

are well known protocol validators.

3.3 Representing Contracts as Finite State Machines

We have introduced communication protocols into the discussion about x-contracts for a valid

reason: we argue that from the point of view of the interaction and synchronisation between

the parties involved, x-contracts are equivalent to communication protocols. We claim that x-

contracts, as communication protocols, can be precisely abstracted by FSMs. The advantage

of looking at contracts as FSMs is that we can put into practice all the existing machinery that

was originally developed for studying communication protocols. For instance, we can resort

to Spin to validate an x-contract before converting it into the actual computer program that

will enact it. The goal of a validation process is to analyze what is known as the correctness

properties of the system. In other words, the essence of the validation is to discover, at an

early stage, whether the execution of an x-contract takes the contracting parties into

unacceptable situations. Among other things, validating the FSM model of an x-contract

should reveal the existence of states (conditions in the x-contract) that are not reachable, that

is, states for which there is no path from the initial state. If one of these unreachable states

represents the receipt of the goods the situation would be unacceptable and the contract would

need to be re-written. In the same order, the validator should show that at some point, the two

contracting parties reach a final state (contract deal for example) instead of being left in a

transient state for ever. To mention another example, the validation should reveal whether the

contract allows purchasers to receive goods before paying for them. FSM and contract

validation will be looked at in more detail in the next chapter.

A question that naturally arises at this point is how the rights and obligations of a

contract can be expressed in a FSM.

Electronic Contracts as Finite State Machines 49

3.3.1 Mapping Contract Clauses into FSMs

At the level of rights and obligations an x-contract is often more easily understood as a set of

FSMs, one for each contracting party. So, from our example in figure 3.1, we have one FSM

for the purchaser and one FSM for the supplier, FSMp, FSMs respectively.

The physical location of each FSM is irrelevant to the functionality of the contract

and is decided at the time of implementation. For the moment let us assume that FSMp is

located within Alice's enterprise and FSMs is located within Bob's enterprise. To enact the x-

contract these two FSMs must share a common communication channel to interact with each

other, that is, the output of FSMp is somehow connected to the input of FSMs and vice versa.

We will now discuss how the rights and obligations stipulated in an x-contract can be mapped

into the FSMs.

It is easy to reason about the operations of an x-contract, with the following general

syntax in mind:

if event, & condition" c true
perform operation, and switch to state,
else if event, & conditions= true
perform operation, and switch to state,

else if event.; & conditions= true
perform operation; and switch to state;

This syntax expresses the idea that, at some point an x-contract can be at any of n possible

conditions (condition., conditions,condition.), If the x-contract is in a given condition, (for

example, WaitingForO/Jer), there is a finite and well defined set of events (event.,

event, , ... ,eventm) that can affect the future behaviour of the contract. The occurrence of

event, determines what objects (variables, files, database, etc.) within the system change their

values, that is, the event determines to which new condition the systems switches. Similarly,

there is a finite and well defined set of operations (operation, , operation, , ... , operatiou..) that

can be executed when the system is in condition., The event, determines the operation to be

executed.

Bearing in mind the discussion in Section 3.2, we argue that in terms of FSMs, the set

of conditions of the general syntax presented above can be mapped into the set S of states of a

FSM. Similarly, the set of events can be mapped into the set I of input symbols of the FSM. In

the same order, the set of operations can be mapped into the set Z of output symbols of the

FSM. Finally, we can map the set of switches to the next condition into the transitional

function 8, and the set of switches to the next output into the function A. It is important to bear

in mind that the operation donothing is a valid operation. In this discussion we represent it

with the symbol E. To summarize:

Chapter 3

Conditions are mapped into S states.

Events are mapped into I inputs.

Operations are mapped into Z outputs.

Thus, in terms of FSMs, we can express the above syntax as shown in figure 3.2, where e and

o stand for event and operation, respectively.

3.3.2 Description of a simple contract using FSMs

To show what rights and obligations look like, we will discuss a very simple example of a

contract (See figure3.3) for offering and purchasing goods remotely, for example, over the

Internet.

Fig. 3.2. Mapping of events, conditions and operations of a contract into a FSM state

Electronic Contracts as Finite State Machines 51

This deed of agreement is entered into as of the effective date identified below.
Between
[Name] of [Address] (To be known as the (Supplier}), and [Name] of [Address] (To be knows as the
(Purchaser}).
Whereas
(Supplier) desires to enter into an agreement to supply (Purchaser) with [Item].
Now it is hereby agreed that (Supplier) and (Purchaser) shall enter into an agreement subject to the following
terms and conditions:
1. Definitions and Interpretations
1.1 Price, Dollars or $ is a reference to the currency of the [Country].
1.2 All information (purchase order, payment, notifications. etc.), is to be sent electronically.
1.3 This agreement is governed by [Country] law and the parties hereby agree to submit to the jurisdiction of
the Courts of the [Country] with respect to this agreement.
2. Offer
2.1 The supplier may use his discretion to send offers to the purchaser.
2.3 The purchaser is entitled to accept or reject the offer, but he shall notify his decision to the supplier.
3. Commencement and completion
3.1 The contract shall start immediately upon signature.
3.2 The purchaser and the supplier shall terminate the x-contract immediately after reaching a deal for buying
an item.
4. Disputes
4. 1 (Supplier) and (Purchaser) shall attempt to settle all disputes, claims or controversies arising under or in
connection with the agreement through consultation and negotiations in good faith and a spirit of mutual
cooperation.
4.2(Supplier} and (Purchaser) shall provide electronic evidences about breaches of the e-contract.
4.3 This method of determination of any dispute is without prejudice to the right of any party to have the matter
judicially determined by a [Country] Court of competent jurisdiction.
5Amendment
5.1 This agreement may only be amended in writing signed by or on behalf of both parties.
E-SIGNATURES
In witness whereof (Supplier) and (Purchaser) have caused this agreement to be entered into by their duly
authorized representatives as of the effective date written below.
Effective date of this agreement: [day] of [month] [year]

[E-signature] [E-signature]
[Person] [Person]
[Role] [Role]

E-address for Notices:
[E-address] [E-address]

Fig.3.3. Example contract between a Purchaser and a
Supplier for the purchase of goods

As an attentive reader will notice, the contract has serious ambiguities; this will be discussed

in Section 3.4.2. The contract which is signed by a purchaser and a supplier contains, among

other data, the following clauses:

1 Offer
1.1 The supplier may use his discretion to send offers to the
purchaser.
1.2 The purchaser is entitled to accept or reject the offer, but he shall
notify his decision to the supplier.
zcommencement and completion
2.1 The contract shall start immediately upon signature.
2.2 The purchaser and the supplier shall terminate the x-contract
immediately after reaching a deal for buying an item.

From this Engl ish text contract clause we can extract the sets of rights and obligations for the

purchaser and the supplier and express them in terms of operations for FSMs:

Chapter 3

Purchaser's rights:
R,' : Accept offers.
Ri :Reject offers.
Purchaser's obligations:
0,' : Start the x-contract,
0; :Reply to offers.
0; :Terminate the x-contract.
Supplier's rights:
Rt : Send offers.
Supplier's obligations:
o; : Start the x-contract.
0: : Terminate the x-contract.

To be consistent with the notation in figure 3.1 we now specify the sets of rights and

obligations: R = {Rt ,R; ,Rl
s} and 0 = io; ,0; ,0: ,01S,O;·}. We show how the sets

Rand 0 are mapped into FSMs in figure 3.4.

Purchaser Supplier
x-contract signed x-contract signed

ot Start x-contract

Fig. 3.4. FSM Representation of an ambiguous contract for the
purchase of goods

As can be appreciated from figure 3.4, we have used, two FSMs to precisely describe the

English text contract of our example. The elements of the sets of rights and obligations are

also shown in the figure. However, as they are, the two FSMs of figure 3.4 only describe the

behaviour of the two contracting parties; they do not monitor or enforce it.

Electronic Contracts as Finite State Machines 53

3.4 Monitoring and enforcement of x-contracts

During the execution of an x-contract, rights and obligations are triggered by local and remote

events. In this section we will show how two FSMs trigger rights and obligations on each

other.

3.4.1 Invocation of rights and obligations

To reason about how the contractual rights and obligations can be monitored and enforced by

a FSM, it is useful to look at the rights and obligations a contracting party has at a given state

of the execution of the x-contract. In terms of FSMs, this is equivalent to looking at the set of

operations that can be executed when the FSM of the contractual party is at state., It is useful

to classify this set into two subsets: the subset of operations the owner of the FSM has the

right to perform and the subset of operations that person has the obligation to perform,

{0,,02, ... ,om} and {om+"Om+2""'Op}' respectively.

To illustrate how the rights and obligations are triggered we will examine figure 3.5.

This figure shows a snapshot of the two FSMs that model an x-contract for the purchase and

supply of e-goods.

Let us say, the execution of the x-contract at the purchaser's side, is at state state., As

can be seen from the figure, the rights and obligations the purchaser has when his FSM is at

state, can be mapped into the sets {o" °2"", Om} and {Om+" 0m+2 , ... ,°p}, respectively.

supplier's obligations

~
Purchaser Supplier

state1

purchaser's obligations sU~Plier%righ:s

Fig. 3.5. Interaction of two FSMs by means of rights and obligations

Executing an operation from the subset {0,,02,···,om}means exercising a right given by the

x-contract. Since each operation 0, is paired to an event e" the operation 0, can be executed

Chapter 3

only after the occurrence of e., How does event e; occur? Event e, can be triggered

internally within the purchaser's enterprise or externally, say for example, within the

supplier's enterprise. Since the execution of operation 0; is optional, the event of e; might be

deliberately triggered by the purchaser (for example, "I wish to send a purchase order"). Also,

it can be the result of an unavoidable situation within the purchaser's enterprise and coded in

the FSM (for example, the mainframe computer has crashed) or it can be triggered by a

message received from the supplier (for example, "would you like to buy this item? "),

Executing an operation 0m+; from subset {om+pOm+2'''''Op} means complying with

the contractual obligations the purchaser has when his FSM is at state., As with the rightful

operations, the obligatory operations are paired to events which are triggered internally, or

externally.

It is important to understand that exercising a right at one side of the contract might or

might not have an effect at the other side. This depends on what the text of the contract

stipulates. The execution of operation 0; at the purchaser's side might trigger a right, an

obligation, or nothing at the supplier's side. By nothing we mean that the supplier's is not

notified about the execution of the operation 0; at the purchaser's side.

Similarly, the execution of an obligatory operation 0m+; from the subset

{O m+1 ,0 m+2'''., 0 p } might trigger a right, an obligation or nothing at the supplier's side.

The dashed line pointing from the pair el /01 at the supplier's side to the pair

ep /0 p at the purchaser's side implies that at states the supplier has the right to execute the

operation 01, The English text of the contract stipulates that the purchaser (being at stateq) has

the obligation to execute operation 0p as a response.

Similarly, the dashed line pointing from em / Om to ez / Oz shows that at state, the

purchaser has the right to execute the operation om' As a response to this operation, the

supplier has the obligation to execute the operation Oz. The dashed line from el /01 to el /8

shows that the purchaser's has the right to execute the operation 01, However, the execution

of such operation demands nothing at the supplier's side.

To show how these ideas can be used in practice, we will apply them now to the

example of an x-contract discussed in Section 3.3.2.

Electronic Contracts as Finite State Machines 55

3.4.2 Description, monitoring and enforcement of an x-contract

In practice, it is likely that contracts will be written by lawyers and then passed on to technical

people to convert the original English text into a computer program that will monitor and

enforce what the contract stipulates.

From our own experience we have learnt that the first difficulty the technical person

faces in this situation is the ambiguities that the English text contract is likely to have. The

standard contract discussed in this section is not an exception. Although it looks correct at

first glance, it has a serious ambiguity. The contract text does not specify the time for sending

the offer. Neither does it specify the time for sending the notification about rejecting or

accepting the offer. These two omissions render the English text contract difficult to convert

into a useful x-contract. It is true that the x-contract can still be implemented and enacted but

the purchaser's FSM will hang silently until the supplier decides to send an offer. If for some

reason the supplier forgets to send his offer, the two FSMs will hang silently forever or until

the purchaser or the supplier use another channel (a telephone, for example) to investigate the

problem. Telephone calls are intensively used for clarifying situations in conventional

business, however, in x-contracts they are not acceptable because they are exactly what x-

contracts are meant to prevent.

To be consistent with our arguments we show the English text of the example clauses

discussed in Section 3.3.2 after editing them to correct the ambiguities that were present:

1 Offer
, 1.1 The supplier may use his discretion to send offers to the purchaser.

1.2 If no offer is sent within seven days after the signature of the x-contract, or after
the latest rejected offer, the x-contract shall be terminated.

I 1.3 The purchaser is entitled to accept or reject the offer, but he shall notify his
decision to the supplier within five days after the receipt of the offer.
2 Commencement and completion
2.1 The contract shall start immediately upon signature.
2.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

Like in section 3.3.2, from the English text contract clause we will extract the sets of

rights and obligations for the purchaser and the supplier and express them in terms of

operations for FSMs.

Chapter 3

Purchaser's rights:
R; :Accept offers.
R;' : Reject offers.
Purchaser's obligations:
0; : Start the x-contract.
0; : Respond within 5 days after receipt of an offer.
0; : Terminate the x-contract.
Supplier's rights:
Ri' : Send offers within 7 days after start of the x-contract.
Supplier's obligations:
a,s : Start the x-contract.
0;' : Terminate the x-contract,

Apart from minor changes, the rights and obligations look the same as the ones listed

in Section 3.3.2 . For example 0; must happen within 5 days, and this will be reflected in

the FSMs. An interesting right is Rt because it is a right but also there is an obligation to

perform it within a time limit.

Once again as in Section 3.3.2 we show how the sets of Rights and Obligations are

mapped into FSMs in figure. 3.6.

x~contract signed
d. Start x-contract,

Fig. 3.6. FSM Representation of an unambiguous contract for the
purchase of goods

We have to admit that though the FSM model we present for this rather simple x-contract

looks correct at first glance, we do not guarantee it is completely free from inconsistencies.

We argue that it is too adventurous to claim that the electronic representation of a contract is

free of inconsistencies before the model that describes it is validated using formal tools such

as the Spin validator (see Chapter 4).

What can be done if the validator discovers that the model of an x-contract contains

some inconsistencies? We have found out that this situation is rather common with existing

Electronic Contracts as Finite State Machines 57

standard contracts. We strongly argue that the existence of inconsistencies in a standard

English text contract is going to be the normal rather than exceptional.

Because of this, we believe that, except for the fairly well standardized contracts (see

Section 3.4.3) the conversion of a contract into an x-contract is an interactive process. The

interaction involves the lawyer and the technical person in charge for the implementation of

the x-contract:

1. The lawyer edits the English text contract.

2. The technical person converts the contract into a formal model and validates it.

3. If inconsistencies are discovered in the contract, the technical person goes back to the

lawyer (point 1) to request him to correct the English text, taking care that the main

purpose of the contract is not changed.

4. If the validator indicates that the model is free from inconsistencies and the lawyer is

satisfied with the last version of the English text contract, the technical person

proceeds to convert the model into the actual program that will enact the x-contract.

5. Once the English text contract and the x-contract are ready, the contracting parties

can sign and enact it.

In Chapter 5, we present an example of a contract that we have converted from English text

into FSMs. It is a contract for the purchase and supply of e-goods and is inspired in an

example for the purchase and supply of goods published in [GMOO]. We changed the original

text to make it more illustrative in terms of essential x-contract interactions. Most importantly,

we changed the original text to eliminate several ambiguities that prevented the contract from

being described with FSMs.

3.4.3 Ready to fill in, sign and enact x-contracts

The manual conversion process discussed in Section 3.4.2 from the English text contract to

the electronic contract is not the best solution.

The ideal scenario would be one where an English text contract can be converted by a

lawyer into an x-contract that monitors and enforces an agreement, without the intervention of

a technical person. Yet this is currently unrealistic, if this were possible then we would not

need programming for any applications. Automation of the contract conversion process with

current technology however, can be achieved for standard contracts.

In the business world, there is a family of applications where the contracting parties

resort to fairly standardized contract templates which are offered ready to be filled in and

signed. Examples of these templates are tenant agreements. These contract templates can be

Chapter 3

bought at the stationery. They are offered on the take-it-or-leave-it basis since the clauses of

the contract are not negotiable. The contracting parties can negotiate the data to be written in

the blanks, but nothing else.

We believe that for this family of applications it is possible to offer (possibly in return

for a fee) ready to fill in and sign x-contracts. We can think of a Web place where standard

English text templates are stored together with their inconsistencies-free x-contracts. The

contracting parties can then remotely fill in the template that suit their requirements, sign it,

pay for the service and enact the x-contract.

The steps that would be required to enable this can be summarized as follows:

Defining Standard contracts

1. Lawyers compile and edit a number of standard contracts used frequently as

"standard" between certain entities.

2. The technical person converts each of the standard contracts into FSMs and

validates them.

3. If inconsistencies are discovered in a standard contract, the technical person

reviews the contract with the relevant lawyer, and the English text is corrected.

4. If the validation process indicates that the FSM representing the contract is free

from inconsistencies, and the lawyer is satisfied with the standard contract, the

standard contract is added to the standard contract data base with its FSM.

Agreement phase

1. The trading partners use a contract editor to access the data base and choose a

standard contract relevant to them.

2. They fill in the relevant data (deadlines, prices, etc.)

3. Once satisfied they both electronically sign the contact.

Enactment phase

1. Both parties take the signed contract FSM and "plug it in" the contract monitoring

system.

2. The contract monitoring system uses the FSM code (which is the x-contract code)

to monitor and enforce the contract agreements between the parties.

Electronic Contracts as Finite State Machines 59

3.5 Summary

Before attempting to implement an x-contract electronically; the clauses within the original

conventional text contract must precisely abstracted and the parties' rights and obligation

must be mapped into computer code convertible mathematical notation, also the ambiguities

that exist within the original conventional text contract must be detected and removed.

To specify party interaction related rights and obligations, we propose the use of

finite state machines. Thanks to their graphic nature, finite state machines are easy to read. On

the other hand the mathematical theory behind them makes them useful for ensuring the

correct operation of an x-contract,

In this chapter we described and proposed a method by which contracts' rights and

obligations can be mapped into FSMs. The important issue of validation of the correctness of

the FSM contract model resulting from the conversion process is discussed in depth in the

next chapter.

Blank Page

Chapter Four

Validation of Electronic Contracts

Even for the simplest communication systems, it is difficult to design correct protocols, and

even more difficult is the task of validating the correctness ofa protocol's procedure rules, i.e.

correctness of the logic that describes the interaction between processes.

Because of this, the use of verification languages to write the procedures rules and

software tools to verify the correctness of the resulting code -called the validation model-

have been widely used for validating the correctness of protocol implementation.

In the previous chapter, we argued that from the point of view of the interaction and

synchronisation between the parties involved, x-contracts are equivalent to communication

protocols. Therefore, as is the case with communication protocols, designing a correct model

of an x-contract that is free from inconsistencies is going to be very difficult. Such a model

can be written in finite state machine or other formal notation with means for validating the

correctness of communication protocols.

In this chapter, we illustrate how verification systems and verification languages can

be utilized to simplify the process of designing x-contracts, By putting into practice existing

machinery that was originally developed for validating communication protocols, we hope to

exemplify one of the important benefits of employing FSMs for the design of x-contracts.

4. 1 A Verification Language - Promela

So far one of the most successful software tools used to trace logical design errors in

distributed systems and in particular in communication protocols is Spin (Simple Promela

INterpreter). Spin is a generic verification system that accepts design specifications written in

the verification modelling language called Promela (PROcess MEta Language). In this

section, we will discuss this modelling language and leave the discussion of Spin until Section

4.2.

Promela is Spin's input language and provides a vehicle for making abstractions of

protocols so that details that are unrelated to the communication processes are suppressed. A

Promela program consists of processes, message channels and variables. The state of the

whole system depends on the state of these three components.

A validation model is a piece of code that describes the procedure rules, i.e. the

interaction between processes. Having the code and a simulator to execute it, the verification

61

Chapter 4

of the completeness of the protocol and its logical consistency (free from deadlocks for

example) is achievable and furthermore, the implementation of the system follows from

converting the Promela code to a high-level one, C or C++ for example. The difference

between a Promela version of the protocol and the final high-level language implementation

is that the former deliberately abstracts from issues of protocol design, such as message

format, neither does it say how a message is to be transmitted, encoded, decoded, stored, etc.

Moreover, it does not deal with details irrelevant to processes' interaction such as encryption

and decryption of messages and implementation of timers.

The syntax of Promela is described by Holzmann in the appendix C of his book

[H91]. However, to help the reader understand our Promela code, we introduce the basic

Promela statements and their semantics here.

executability In Promela the execution of a statement is conditional on its executability, i.e.,

at a given moment of time a statement is either executable or blocked depending on the state

of a variable or channel. Executability is the basic means of synchronization; hence, as shown

below in send/receive statements, input and output through a channel allows the

communication between two processes and synchronization as well. For example, the

statement "if (a = b) a = a+1 fi'', either increments the value of a, or blocks until the

condition "a == b ", holds.

send The syntax of the send statement is

channel! var

where channel is the name of a channel and var is a variable that holds a message.

receive The syntax of the receive statement is

channel? var

where channel is the name of a channel and var is a variable that contains a message.

separators 7 and; are separators.

skip is a null statement. It is always executable and its execution has no effect. It is normally

used to satisfy syntax requirements.

goto The goto statement works as the infamous goto of high level languages, it transfers

control to any labelled statement. Like the skip statement, goto is always executable. As

Promela pays no attention to the problem of programming techniques it lacks most of the

constructs for writing a well-structured code, as a result goto is intensively used.

Validation of Electronic Contracts 63

If-fi selection A selection statement begins with if and ends with the keyboard fi and contains

a list of one or more options. Every option begins with the flag :: followed by a Boolean

expression called a guard. An option can be executed only if its guard is executable. Only one

option from the list is executed. If more than one guard is executable, one of them is selected

at random and the corresponding option is executed. If all guards are unexecutable, the

process blocks until at least one of them becomes executable. In the following example the

variable counter is either incremented or decremented depending on the value of a and b

if
:: (a== b) -7 counter = counter +1

:: (a l= b) -7 counter = counter-I

fi

do-od repetition This statements works in a similar way as the if-fi one, but it is repeated

until a break statement is encountered or an unconditional goto jump is performed. In the

example shown the program loops until either the variable counter is decremented to zero

(loop stopped with the break statement) or until for some mysterious reason, the counter

decrements to below zero (loop ended using a goto jump to a label we give the name "Error"

for example).

do
:: (counter < 0) -7 goto Error
:: (counter==O) -7 break
:: (counter> 0) -7 counter = counter - 1
od

timeout This statement represents a condition that eventually becomes true if and only if no

other statement in the block of commands is executable.

4.2 A Verification System - Spin

Spin is a generic validation system that supports the design and verification of asynchronous

process systems [H97]. Spin verification models are focused on proving the correctness of

process interactions, and they attempt to abstract as much as possible from internal sequential

computations. It was developed at Bell Labs in 1980, its source code written in ANSI

standard C, and can be easily downloaded from the Internet [SP03] and compiled for UNIX,

Linux, and Windows platforms.

Spin accepts design specifications written in the verification language Promela (see

Section 4.1), and it accepts correctness claims specified in the syntax of standard Linear

Temporal Logic (L TL) [LTL].

Chapter 4

The Spin package consists of two independent tools a "Simulator" and a "Validator"

that are meant to be used at different stages of the protocol validation process.

Spin and its commands, can be executed directly from the command line, however it

is probably more useful to use the features of the graphical user interface XSpin. The "Basic

Spin Manual" [H97], is a very useful document about how to run Spin from the command line.

4.3 XSpin

The easiest way to get started with Spin is to run the graphical interface Xspin, see figure 4.1.

The graphical interface runs independently from Spin itself, and helps to invoke the proper

Spin commands based on menu selections. Xspin runs Spin in the background to obtain the

desired output, and wherever possible it will attempt to generate a graphical representation of

such output. Xspin knows when and how to compile promela code for the model checkers that

Spin can generate, and it knows when and how to execute it, so there is less commands that

the model designer needs to remember.

More details and tutorials on running Spin using XSpin can be found at [SP03].

The Help menu option (see figure 4.1), provides very good explanations of the many

capabilities of XSpin. Also our examples in this chapter and next will be described in

sufficient detail, so that the reader gets a good idea of XSpin 's functionality.

><SPIN CONTROL4.0.1 -- 10 January 2003 '" "3 W!f'"

SPIN DESIGN VERIFICATION

I

~J~~I~ HeipJ

Run Syntax OIeck

Run Slicing Algorithm

Set Simulation Parameters ..

(Re)Run Simulation

Set Verification Parameters ..

(Re)RIIIl Vmifh::atjon

lTl Property manager ••

View Spin Automaton for each Proctype .•

SPIll LOG I
spm Ver810n 4 0 1 -- 7 J~nu~ry 2003 ,

Xspm Ver510n 4 0 1 -- 10 .January 2003 II

TclTk Vernon 8 3/8 3
~-- - - -- - -- - - ---

Fig.4.1. The Graphical user interface XSpin

Validation of Electronic Contracts

4.4 The Spin Simulator

65

As it names implies, the simulator can simulate the execution of a validation program (a

model in Spin jargon) written in Promela. It simulates Promela code by interpreting its

statements on-the-fly. To do its job the simulator performs a single-pass verification

procedure making effort to save memory and CPU resources; it tries to store in memory just

enough information to complete the verification process and to verify the correctness of the

requirements but for the smallest possible fragment of the whole behaviour of the system. For

example, if at a given point during the simulation process the simulator is faced with more

than one executable statement (a nondeterministic choice), it selects just one. This means the

simulator does not perform any exhaustive reachability analysis but goes only through a

single sequence of reachable states in the system, which is chosen depending on the value of

the seed the random number generator is initialized with, if no seed value is specified, the

simulator chooses one randomly [H91].

The advantage of using the simulator at an early stage of the system design is that it can

immediately tell the system designer about simple inconsistencies in his protocol, such as

deadlocks, and unspecified receptions. It is fast and does not demand a great deal of computer

resources since it does not need to construct a global state for the system. Because of this,

><"5imulation Options :':'~'~'~

Display Mode

! • MSC Panel - with:

! • Step Number labels

Simulation Style

Random (using seed)

Seed Value I'
Guided (using pan.trail)

Steps Skipped 10
'.,/ Interactive

Source Text labels

Nomlal Spacing

Condensed Spacing•
Time Sequence Panel - with:

• Intet1eaved Steps A Full Queue

Blocks New Msgs

Loses New Msgs

One Window per Process

, "-/ One Trace per Process

I, '. Data Values Panel
• Track Buffered Olannels

•
Hide Queues in MSC

Queue nr:

.J

.J

Track Global Variables

Track Local Variables
Queue nr: I

Display vars marked 'show' in MSC

'u Execution Bar Panel Queue nr:

Help I Cancel Start

Fig.4.2. The XSpin simulator interface

Chapter 4

systems of arbitrary size can be easily simulated. However, since it runs a random simulation

only, the absence of errors reported by the simulator does not necessarily mean that the

system is error-free. The accurate verification of a system is performed by the Spin validator.

The simulator is simply executed usingXspin, by selecting the RUN menu option, and

then Set Simulation Parameters, where the designer can specify different options to inform

the simulator to output to the screen; what messages are sent or received and by which

processes, what line of the code is executed, the value of local and global variables, the value

of the seed for the random number generator, and so on. See figure 4.2.

4.5 The Spin Validator

The job of the Spin validator is to validate the correctness requirements (also called

correctness criteria and properties) of Promela code given at its input.

Spin belongs to the category of protocol verification systems that are based on the analysis of

the reachability of system states. Before going further in our discussion let us define what a

state is in Spin.

In Spin, a state is completely defined by all control flow points of running processes,

all values of local and global variables, and the contents of all local and global channels.

A reachability analysis algorithm tries to generate and inspect all the states of the

system that are reachable from the initial state; this means that the algorithm will construct all

possible execution sequences from the initial state to the final state (possibly more than one).

In other words and assuming that the system we are analysing is non-deterministic (Le. its

Promela code contains guarded "::" commands), the algorithm must explore all possible

paths. For example, if the validator is faced with the following code:

if
:: (a> 0) ~statementl
:: (a= 0) ~statement2
:: (a< 0) ~statement3
fi

Spin has to explore three possible sequences after reading the value of variable a: The first

execution sequence considers that a > 0 and statement1 is executed; the second execution

sequence considers that a = 0 and statememt2 is executed; for the third execution sequence,

the validator assumes a < 0 and executes statement3.

It is worth noting that for a validation to be possible, the Promela specification of the

system must restrict the number of processes, flow control point, variables, channels, and

slots of channels to a finite number so that the number of states of the system remains finite

and the system can be analysed exhaustively by enumerating its reachable states.

Validation of Electronic Contracts 67

Depending on the size of the system, the generation and analysis of all possible states

can be computationally unfeasible. Most of the time the designer of a large system (more than

1Q/'5 reachable system states) is faced with the state space explosion problem. To understand

this, we will briefly discuss how Spin works.

A system is represented in a Promela model as a set of processes. Spin translates each

process into a finite state automaton. Next, the asynchronous interleaving product of automata

is computed and translated into an automaton. This automaton represents the global system

behaviour and is called the state space of the system or the global reachability graph.

A correctness requirement of a system is expressed in a formal notation called Linear

Temporal Logic (L TL for short). LTL can be translated into what is known as the Buchi

automaton.

To perform verification, Spin computes the synchronous product of the Buchi

automaton and the automaton that represents the global system behaviour. The result of this

computation is another Buchi automaton and is used by Spin to see what language it accepts.

If such a language is empty, this means that the correctness requirements expressed in the

LTL formula are not satisfied by the system.

xBasic Verification Options ' ,1·111

Correctness Properties

• Safety (state properties)

:J Assertions

• Invalid Endstates

"'./ Uveness (cycles/sequences)

'v' Non- Progress cycles

'v' Acceptance cycles

cJ With Weak Fairness

cJ Apply Never aaim (If Present)

Exhaustive

v Supertrace/Bitstate

'.J Hash- Compact

A Full Queue

• Blocks New Msgs

,./ loses New Msgs

(Add Never aaim from File]

(Verify an LTL Property]

(Set Advanced Options]
cJ Oleck xrlxs Assertions

Help I cancel Run

Fig.4.3 The Spin validator interface

Something to keep in mind during validation is to tell whether the language accepted by the

Buchi automaton is empty or not. Spin has to generate and verify all possible sequences of

states of the automaton; this can become prohibitively expensive since in the worse case, the

state space of the system has the size of the Cartesian product of all its components: control

flow points, processes, local and global variables, and channels.

Chapter 4

Once the system is written in Promela code and passed through the simulator, the

designer is encouraged to validate it using XSpin.

The Basic Verification Options menu in figure 4.3, presents the user with a number of

options that comprise the most common correctness requirements that the user might need to

perform his verification. Correctness requirements are the subject of the next section.

4.6 Correctness Requirements

A crucial decision the designer of a protocol or a FSM model of an x-contract, has to make, is

what correctness requirements (absence of deadlocks, mutual exclusion, temporal claims, etc.)

to check his system on. This is extremely important not only because this will guarantee that

the system is free of a particular kind of error, but also because the inclusion or exclusion of

one of these requirements can have significant impact on the number of total states of the

system and for instance on RAM memory and CPU time demand to validate them.

Although the correctness requirements that are usually validated in protocols are

well-known, the list of correctness requirements the protocol designer tests his/her protocol

on, depends on two factors: the particular characteristics of the system, and the stage of

development. The termination correctness requirement for example, can be important for one

protocol but not required for other. Similarly, temporal claims are not normally tested in early

stages of development, but at the final stages, when the protocol is free of the basic errors.

Promela provides well defined means of expressing different correctness criteria:

namely, the designer can include in his Promela specification statements to prompt the Spin

validator to check for the following correctness criteria of his system: assertions, system

invariants, deadlocks, non-progress cycles, livelocks, and temporal claims.

4.6.1 Assertions and system invariants

An assertion is often expressed as a boolean condition inserted somewhere in the Promela

code. It has the form of assertiontbool-condition) and is expected to be true whenever a

process reaches a given state. The assert statement has no effect if the boolean condition

holds true; conversely, it generates an error message if the boolean condition becomes false ..
If the designer wants a boolean condition to remain true in all reachable system states

he/she can express this as a system invariant. A system invariant is just a generalization of an

assertion, it has the same form, assertion(bool-condition}, and is placed in a separate process

that runs concurrently with the one the designer wants to validate; the assert statement is

executed precisely once for every state of the system.

Validation of Electronic Contracts 69

4.6.2 Deadlocks

Since Spin expects only systems with a finite number of states, it expects that the system

under validation either terminates after a finite number of state transitions or it goes back to a

previously visited state (a loop). Both alternatives are considered a valid end to a process.

Although the second alternative is not the final state of the system, it is considered and called

a proper end state in Spin. If the system does not match this correctness criterion it is said to

have a deadlock. In Promela, a proper end state is identified by a three-character prefix end-

state label which has the form of endsomething, where something is any sequence of

characters accepted by Promela in names used as identifiers. Example of end-state labels are:

end, endcycle, endO, end], and so on.

4.6.3 Progress cycles and livelocks

In Promela (and other programming languages) infinite cycles are considered correct

behaviour for a process as long as the process goes through the states the designer expects. To

express that a process cannot cycle infinitely without visiting certain states, Promela provides

the statement progresssomething to mark such states. States marked by such labels are called

progress-states since the system must go through them to make any progress. An execution

sequence that violates this claim is called a non-progress cycle.

To express that it is incorrect to cycle infinitely through a given state, Promela

provides the statement acceptsomething to mark the state. Such state is called an acceptance-

state. The name is a bit misleading and comes from the fact that a sequence of statements that

contains acceptance-state labels is named an acceptance cycle. What we are saying here is

that we want a system without any acceptance cycles. The job of Spin is to detect these

acceptance cycles if there are any in the system.

As before something is any sequences of characters accepted by Promela in names

used as identifiers. For example, progress-svr, progress CIt, acceptO, accept], etc.

Acceptance cycles are also known as livelock since a process that goes infinitely often

through states marked by acceptance labels is still doing something but trapped in a loop. It

cannot escape from there and go through the states the designer wants it to go through.

4.6.4 Temporal claims

In some cases it is necessary to express that a state in which a certain condition is true cannot

be followed by a state in which that condition or a different one is false. For example, the

designer might want to express that if it is true that a channel with a single slot is full, it

Chapter 4

cannot remain full after reading a message from it. In Spin these correctness requirements are

called temporal claims, and in Promela are expressed with the help of the statement:

never{Prom _statement 1, Prom_statement2, Prom_statement3, ...}

Each Prom statement is a Promela statement that contains the details of the claim; for

example; assertions, progress-states, and acceptance-states labels.

4.6.5 Safety and liveness properties

In protocol validation, properties are grouped into two major classes: safety properties and

liveness properties. Informally, a safety property states that nothing bad ever happens. Let us

take a lift as an example. A safety property will state that if the lift is travelling or stopped

between two levels its door will never open. On the other hand, a simple liveness property

states that something good will eventually happen. Again, let us take a lift as an example. A

simple liveness property will state that if a user has arrived at the intended floor, the doors

will eventually open. In other words, the passenger will eventually terminate his journey.

Another way of explaining safety and liveness properties is by saying that a safety

property states what we do not want the system to do. Conversely, a liveness property states

what we want the system to do.

These two concepts have been widely used in the literature devoted to correctness of

concurrent programs since they were introduced by Lamport [L77].

In Spin the concept of safety properties is used to group together assertions and

system invariants, deadlocks, and unspecified receptions. On the other hand, non-progress

cycles, livelocks, and temporal claims fall in the class of liveness properties.

As explained in Section 4.6, the designer can use Spin directives to instruct the

validator to validate the properties he is interested in. It is a well-known fact that it is always

simpler specifying what we do not want from a system than specifying what we want, thus, it

makes sense to begin the validation of a protocol by validating safety properties first and

leave liveness properties for the last stages of the validation.

The reader interested in more details about safety and liveness properties is

encouraged to refer to [H91] where these concepts are studied in depth.

4.6.6 Cost of correctness requirements

We have just discussed what correctness criteria can be specified in Promela to be validated

by Spin, the order in which we introduced them reflects the level of sophistication in the

validation and at the same time the cost of performing the validation in terms of RAM

memory and CPU time demands.

Validation of Electronic Contracts 71

Holzmann reports [H9I] that it is comparatively cheap to validate assertions and

absence of deadlocks. The computational cost for this is linear in the number of reachable

states (R) of the system both in RAM memory space and CPU time. To check on progress

cycles and livelocks can be twice as hard in terms of CPU time but there is not a noticeable

increase in RAM memory requirements. The most expensive correctness criterion to validate

is temporal claims. Compared to assertions and absence of deadlocks validation, the cost can

be 2N times as hard, where N is the number of reachable states in the sequence of statements

contained in the claim:

never{Prom _statement 1, Prom _statement2, Prom _statement3, ...}

It is important and helpful to notice that Spin/XSpin allow us to validate these correctness

criteria separately (see Section 4.6), for example check the system for non-progress cycles

only, or for acceptance cycles only so that the simpler requirements do not contribute to the

cost of the more sophisticated ones.

The selection of the correctness criteria to validate in each run is made with the help

of XSpin options: For example, the designer can select the Safety (state properties) option, to

indicate that he/she is interested only in validating safety properties. The definition of safety

is explained in Section 4.6.5. Similarly, checking the option Non-Progress Cycles indicates

that the designer wants to check on non-progress cycles (figure 4.3) ... etc.

Once the required correctness requirements are selected, the user can simply select

the Run option to begin the validation.

4.7 Basic Verification of x-contracts

In the first three sections of this chapter, we presented the reader with a brief introduction to

the verification language Promela, the verification system Spin, and to the requirements that

the verification system will need to check for correctness in order to verify the accuracy and

correctness of a protocol. But how do we make use of such verification tools for specifically

verifying the correctness of a FSM representation of an x-contract? To answer this, we shall

reintroduce the example presented in Chapter 3. The example was a contract for the supply of

e-goods between a Supplier and a Purchaser.

Firstly in Section 4.7.1, we will present the contract in its initial ambiguous state,

extract from its clauses the sets of rights and obligations of the contracting parties, and map

them into finite state machines. We will then attempt to verify the correctness of the FSMs by

creating a verification model using Promela, and then using Spin to verify the correctness of

the model against some correctness requirements. In Section 4.7.2, we will present the

Chapter 4

rewritten contract after taking care to eliminate any ambiguities that we discovered (if any)

using Spin. And as in Section 4.7.3 we will extract the rights and obligations, map them into

FSMs, create the verification model, and validate its correctness against the same correctness

requirements.

4.7.1 Contract before removal of ambiguities

This deed of agreement is entered into as of the effective date identified below.
Between
{Name] of {Address] (To be known as the (Supplier)), and {Name] of {Address] (To be knows as the
(Purchaser)).
Whereas
(Supplier) desires to enter into an agreement to supply (Purchaser) with {Item].
Now it is hereby agreed that (Supplier) and (Purchaser) shall enter into an agreement subject to the following
terms and conditions:
1. Definitions and Interpretations
1.1 Price, Dollars or $ is a reference to the currency of the {Country].
1.2 All information (purchase order, payment, notifications, etc.), is to be sent electronically.
1.3 This agreement is governed by {Country] law and the parties hereby agree to submit to the jurisdiction of
the Courts of the (Country] with respect to this agreement.
2. Offer
2. 1 The supplier may use his discretion to send offers to the purchaser.
2.3 The purchaser is entitled to accept or reject the offer, but he shall notify his decision to the supplier.
3. Commencement and completion
3.1 The contract shall start immediately upon signature.
3.2 The purchaser and the supplier shall terminate the x-contract immediately after reaching a deal for buying
an item.
4. Disputes
4.1 (Supplier) and (Purchaser) shall attempt to settle all disputes, claims or controversies arising under or in
connection with the agreement through consuiietion and negotiations in good faith and a spirit of mutual
cooperation.
4.2(Supplier) and (Purchaser) shall provide electronic evidences about breaches of the e-contract.
4.3 This method of determination of any dispute is without prejudice to the right of any party to have the matter
judicially determined by a {Country] Court of competent jurisdiction.
5Amendment
5.1 This agreement may only be amended in writing signed by or on behalf of both parties.
E-S/GNATURES
In witness whereof (Supplier) and (Purchaser) have caused this agreement to be entered into by their duly
authorized representatives as of the effective date written below.
Effective date of this agreement: {day] of {month] {year]

{E-signature] {E-signature]
{Person] {Person]
{Role] {Role]

E-address for Notices:
{E-address] {E-address]

Fig.4.4. Contract for the purchase of goods between a purchaser and a supplier

The example in figure 4.4 is a contract signed between a Purchaser, and a Supplier. The

contract in its original state, before removing any ambiguities can be abstracted by the

following clauses:

10ffer
1.1 The supplier may use his discretion to send offers to the
purchaser.
1.2 The purchaser is entitled to accept or reject the offer, but he shall
notify his decision to the supplier.
2 Commencement and completion
2.1 The contract shall start immediately upon signature.
2.2 The purchaser and the supplier shall terminate the x-contract
immediately after reaching a deal for buying an item.

Validation of Electronic Contracts 73

The rest of the clauses in the contract (figure 4.4) have been left out because we are only

concerned with the clauses required for controlling and monitoring the interactions between

the parties.

Rights and Obligations:

From this English text contract we can extract the sets of rights and obligations for the

Purchaser and the Supplier.

Purchaser's rights:
R{' : Accept offers.
Ri' : Reject offers.
Purchaser's obligations:
0,1' : Start the x-contract.
Or : Reply to offers.
0; :Terminate the x-contract,
Supplier's rights:
Ri' : Send offers.
Supplier's obligations:
D,s : Start the x-contract,
o; :Terminate the x-contract,

After extracting the sets of rights and obligations, we can represent them in Finite

State Machines as shown in figure 4.5.

Purchaser Supplier
x-contract signed x-contract signed

0," Start x-contract

OlTer rejected
P Send rejected
2

Fig.4.5 FSM Representation of an ambiguous contract for the
purchase of goods.

Chapter 4

Our next task is to represent the FSM in figure 4.5 in the modeling language -Promela- that is

the input language of the verifier Spin. The complete verification model is presented next:

{'Verification Model for the Contract Finite State Machines"
{'in their initial ambiguous state"

#define MA 20 "Maximum acceptable offer"
#define OA 1 {'Offer accepted "
#define OR 0 "Offer rejected"

mtype = {Offer, Response}
chan S2P = [1) of {mtype, int};
chan P2S = [1) of {mtype, byte};

proctype SupplierO r"Suppliers FSM''',
{
int offerValue;
byte responseValue; ,'OA or OW,
SupEContractSigned:
EditingOffer:

if
:: offerValue = 30; t: An offer that is too high> MA"
:: offerValue = 20; t" < MA "
:: offerValue = 10; l" < MA "

proctype Purchasen) r"Purchasers FSM''',
{
int offerValue;
PurEContractSigned:
WaitingForOffer:
S2P ? Offer(offerValue)->
DecidingToBuy:
if

fi;
if

::(offerValue>MA)-> P2S!Response(OR);
goto WaitingForOffer;

:: else -> P2S ! Response (OA); goto Deal;

:: S2P!Offer(offerValue) -> goto WaitingForResults;
:: skip "Taking into account the possiblity that',

fi; rthe supplier might not send anything "
WaitingForResults:
P2S ? Response(responseValue);
if

fi;
Deal:
printf("lnln Purchaser: Deallnln");
end:
printf("lnln Purchaser: Endlnln");
}

:: (responseValue == OR) -> goto EditingOffer;
:: (responseValue == OA) -> goto Deal;

init
{
run Suppliert);
run Purchasert);
}

Deal:
printf("lnln Supplier: Deal Inln");
end:
printf("lnln Supplier: End Inln");
}

1. /*Verification Model for the Contract Finite State Machines*/
2.
3.
4.
5.
6.

/*in their initial ambiguous state*/

#define MA 20 /*Maximum acceptable offer*/
1 /*Offer accepted */
o /*Offer rejected*/

#define OA
#define OR

7.
8. mtype = {Offer, Response}
9.
10. chan S2P = [1] of {mtype, int};
11. chan P2S = [1] of {mtype, byte};
12.
13. /***Suppliers FSM***/
14. proctype Suppliert)
15. {
16.
17. int offerValue;
18. byte responseValue; /*OA or OR*/
19.
20. SupEContractSigned:
21.
22. EditingOffer: /*under this label/state, we must take into account*/
23. /*All possible actions that the supplier coould take*/
24. if
25. :: offerValue = 30; /* An offer that is too high> MA */

Validation of Electronic Contracts 75

26. :: offerValue = 20; /* < MA */
27. :: offerValue = 10; /* < MA */
28. fi;
29.
30.
31. if
32. :: S2P!Offer(offerValue) -> goto WaitingForResults;
33. :: skip /*Taking into account the possiblity that*/
34. fi; /*the supplier might not send anything */
35.
36. WaitingForResults:
37. P2S? Response(responseValue);
38.
39. if
40. :: (responseValue == OR) -> goto EditingOffer;
41. :: (responseValue == OA) -> goto Deal;
42. /*:: else -> printf("\n\n Error\n\n");*/
43. fi;
44.
45. Deal:
46. printf("\n\n Supplier: Deal \n\n");
47.
48. end:
49. printf("\n\n Supplier: End \n\n");
50.
51. }
52.
53. /***Purchasers FSM***/
54. proctype Purchasert)
55. {
56. int offerValue;
57. PurEContractSigned:
58.
59. WaitingForOffer:
60. S2P? Offer(offerValue)->
61.
62. DecidingToBuy:
63.
64. if
65. ::(offerValue>MA)-> P2S!Response(OR); goto WaitingForOffer;
66. :: else -> P2S ! Response (OA); goto Deal;
67. fi;
68.
69. Deal:
70. printf("\n\n Purchaser: Deal\n\n");
71.
72. end:
73. printf("\n\n Purchaser: End\n\n");
74. }
75.
76. init
77. {
78. run Suppliert);
79. run Purchasert);
80. }

Chapter 4

To clarify the conversion process from an FSM to its Promela verification model, we

suggest that every state in the FSMhas an address label in the verification model.

In this code, there are two asynchronously executing processes, a Purchaser, and a

Supplier. There are two message types (mtype) exchanged between the two processes, the

"Offer" made by the Supplier, and the "Response" to the Offer made by the Purchaser. In

order to exchange these messages, we have two message channels, S2P (Supplier to

Purchaser), and P2S (Purchaser to Supplier).

Note that we make the assumption that acceptance or rejection of an offer is based

only on the price offered.

The process begins with the Purchaser waiting for an Offer message with an

offerValue from the Supplier. Under the address label EditingOffer, the Supplier's offerValue

is chosen randomly in a "if ...fi;" structure. The offer Value is then either sent or not sent

(randomly) through the S2P channel. The Supplier now waits for a response to his/her offer,

while the Purchaser makes a decision on whether to accept it or reject it based simply on the

price offered. If the price is satisfactory, the Purchaser sends an OA (Offer Accepted)

message to the Supplier, the Supplier receives this, and they both go into the end "Dear' state.

If however, the price offered by the Supplier is too high (greater than MA), then the Purchaser

sends an OR (Offer Rejected) message, and they both go back to the beginning of the process.

The Supplier can then make another offer, and so on.

Simulation Run

The "Run Syntax Check" option from the "Run" menu, in the Spin validator, checks the model

for syntax errors. After doing this, we can use Spin for one or more simulation runs before

running the validator. As we point out in Section 4.4, the simulator performs a single pass

verification procedure. The advantage of using the simulator at an early stage of our design is

that it can immediately tell us about simple inconsistencies in our design, such as deadlocks,

and unspecified receptions. The simulator is useful also as it provides us with the opportunity

to simulate a number of runs before implementation of the design.

Figure 4.6, shows the sequence chart of a random simulation run. And figure 4.7

shows the detailed simulation output. The simulator will repeat a random run precisely if the

seed value for the random number generator is kept the same (see figure 4.2). In this case the

seed value is "1". The chart in figure 4.6 shows messages being passed between the

Purchaser and the Supplier in a single simulation run.

Validation of Electronic Contracts

Fig.4.6 Message sequence chart

77

Three processes are created during the simulation; the Supplier process, the Purchaser

process, and the init process. The init process, instantiates the Supplier and Purchaser

processes.

I

'n" 0 proe - (:root:) creates proc 0 (:init:)

i",

:', -ill: proc 0 (: init:) creates proc 1 (Supplier)
1 proc 0 (:init:) line 78 "pan_in" (state 1) [(run SupplierO)]
2: proc 1 (supplier) line 25 "pan_in" (state 4) [offerValue = 20]

'1,','lli 3: proc 0 (:init:) creates proc 2 (Purchaser)
3: proc 0 (:init:) line 79 "pan_in" (state 2)
4: proc 1 (Supplier) line 31 "pan_in" (state 5)

I , 5: proc 1 (Supplier) line 32 "pan_m" (state -):"""I I 5· proe 1 (Supplier) line 31 "pan_in" (state 9)
6: proe 2 (Purchaser) line 60 "pan_m" (state -)I 6: proc 2 (Purchaser) line 60 "pan_in" (state 1)

ill 7: proc 2 (Purchaser) line 64 "pan_in" (state 8)
1",,',,' I 8: proc 1 (Supplier) line 32 "pan_in" (state 7)
, 9: proe 2 (Purchaser) line 66 "pan_in" (state -),I, 9: proc 2 (Purchaser) line 66 "pan_in" (state 6)
II I' 10: proc 1 (Supplier) line 37 "pan_in" (state -)
'I 10 proc 1 (Supplier) line 37 "pan_in" (state 11)

1""

'I, I 11: proc 2 (Purchaser) line 66 "pan_in" (state 7)
12 proG 1 (Supplier) line 39 "pan_in" (state 16)II i 13 proc 1 (Supplier) Li.ne 41 "pan_m" (state 15)

','I. I Supplier: Deal
u I 14 proe 1 (Supplier) line 46 "pan_in" (state 18) [printf('\\n\\n Supplier: Deal \\n\\n') I
11' Purchaser; Deal
j 15. proc 2 (Purchaser) line 70 "pan_in" (state 10) [printf('\\n\\n Purchaser:
II Deal\\n\\n') I
II Supplier: End
'i 16 proc 1 (Supplier) line 49 "pan_in" (state 19) [printf('\\n\\n Supplier: End \\n\\n') I

.
i.1 Purchaser: End
: 17: proc 2 (Purchaser) line. 73 "pan_in" (state 11)
j' 17: proc 2 (Purchaser) t.erru.na te s
i! 17: proG 1 (Suppher) t.e rnn.nat.e s
i i 17 proc 0 (:init.) termmatesil~~3 processes created

it~~~~I~Sbl~J_~~~_I'.~~.~J

[(run Purchaser 0) Ir. (goto) I
[values: I' Offer. 201
[S2P10ffer,offerValuel
[values: 1?Offer,201
[S2P?Offer,offerValuel
[else I
[goto WaitingForResultsl
[values: 2!Response,11
[P2S!Reeponse, II
[values: 2?Response,1]
[P2S?Response,responseValuel
[goto Deal]
[«(responseValue==l»]
[goto Deal]

[printf('\\n\\n Purchaser: End\\n\\n')I

Save in: sim.out

Figure 4.7. Simulation output

The number that is shown in the square boxes is a simulation step number that matches the

numbers in the left margin of the Simulation Output panel (See figure 4.7). The arrows show

the messages being passed between the Supplier and the Purchaser. So the top arrow shows

Cancel I

Chapter 4

that for this random simulation, the Supplier is sending the Purchaser a price offer of "20".

And the bottom arrow shows the Purchaser accepting the offer by sending "1 ", i.e. "True".

Figure 4.7, shows the simulation in detail, including not only messages passed, but

every step of the simulation process.

As we can see from figure 4.6, and 4.7, there are 17 steps in total. And the simulation

run ends with the "Deal" state for both the Supplier and the Purchaser processes.

The simulation shows that the validation model is free from errors for the routes that

the simulator chose to go through. We can force Spin to go through different simulation paths

by simply choosing a different seed in "choose simulation parameters", under the Run menu

option, see figures 4.1 and 4.2.

Validation:

After one or more simulation runs, the next step is to use the Spin validator to validate the

correctness of our model against some correctness requirements. We will perform an

exhaustive verification run to prove some basic properties, such as absence of deadlocks,

unreachable code and states, unspecified receptions, etc. Results of this verification run are

presented next in figure 4.8.

><:"Yerification Output . ~:,'.'

Save in: III Qear

~ pan: invalid ends tate (at depth 11)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003)
Warning: Search not completed

+ Partial Order Reduction

2.622 memory usage (Mbyte)
O.OOuser O.Olsystem O:OO.04elapsed 23%CPU (Oavgtext+Oavgdata Omaxresident)k

I A Oinputs+Ooutputs (116major+608minor)pagefaults Oswaps

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates

- (not selected)
- (disabled by -A flag)
- (disabled by -DSAFETY)
+

State-vector 44 byte, depth reached 23, errors: 1
25 states, stored
1 states, matched

26 transitions (; stored+matched)o atomic steps
hash conflicts: 0 (resolved)
(max size 2A19 states)

Qose

Fig.4.8. Verification Output

The section "Full statespace search for" illustrates the correctness requirements against

which the verification process was performed. A correctness requirement will be followed by

Validation of Electronic Contracts

a "+" sign or a "_,, sign, indicating whether the correctness requirement was, selected, or not

selected respectively. Selection is done when inserting the verification option, see figure 4.3.

The first line in figure 4.8 indicates that Spin has detected an error in our verification

model. "invalid ends tate (at depth 11)". And the fourth line tells us that the verification

process was stopped. We now need to find out the cause of the error detected. This can be a

tedious process if we are to check every line of the Promela code, and especially if the

verification model was one representing finite state machines of many states, and/or much

greater complexity. Fortunately XSpin saves the path through which the verifier detects the

error. See Figure 4.9. And we can use the simulator to go through the path through which the

verifier detected the "invalid endstate" error, by choosing the "Run Guided Simulation"

option.

><'Suggested Action .'~: ., _IDI~
Optionally, repeat the run with a different search depth to find a shorter path to
the error.

Or, perfonn a GUIDED simulation to retrace the error found in this run, and skip the
first series of steps if the error was found at a depth greater than about 100
steps).

Setup Guided Simulation .. I Run Guided Simulation.. aose

Fig 4.9 Suggested actions for detected error

Figure 4.10, shows the Simulation output of the path through which the error was detected.

>('Simulation output . .' ;"}*'
I
, I \ preparing traiL please wait ... done .
I 1: proe 0 (: imt:) Lirie 78 "pan_m" (state 1)
I 2: proe 1 (Supplier) line 26 "pan_in" (state 1)

3: proe 0 (:init:) line 79 "pan_in" (state 2)
4: proe 1 (Supplier) line 32 "pan_in" (state -)
4: proe 1 (Supplier) line 32 "pan_in" (state 6)
5: proc 2 (Purchaser) Li.ne 60 "pan_in" (state -)
5: proc 2 (Purchaser) line 60 "pan_in" (state 1)
6: proc 2 (Purchaser) line 65 "pan_in" (state 2)
7: proc 2 (Purchaser) line 65 "pan_in" (state -)
7: proc 2 (Purchaser) line 65 "pan_in" (state 3)
8: proc 1 (Supplier) line 37 "pan_in" (state -)
8: proc 1 (Supplier) line 37 "pan_in" (state 11)

[P2S?Response, responseValuel
9: proc 1 (Supplier) line
10: proc 1 (Supplier) line
11: proc 1 (Supplier) line

spin: trail ends after 12 steps
#processes: 3
12: proc 2 (Purchaser) line 60 "pan_in" (state 1)
12: proc 1 (Supplier) line 37 "pan_in" (state 11)
12: proe 0 (: init:) line 80 "pan_in" (state 3)

3 processes created
Exit-Status 0

[(run Supplier())]
[offerValue = 301
[(run Purchaser())I
[values: 1iOffer,30]
[S2PiOffer,offerValuel
[values: 170ffer,30]
[S2P?Offer,offerValue]
[«offerValue>20))I
[values: 2iResponse,01
[P2SiResponse, 0I
[values: 27Response,OI

40 "pan_in" (state 12) [((responseValue==O)) I
27 "pan_in" (state 2) [offerValue = 201
33 "pan_in" (state 8) [(1)]

I Single Step Ic_~uspend Save in: I aearJ cancel
1-

Fig.4.10 Simulation output of erroneous path

79

Chapter 4

Bearing in mind that in Promela syntax, "!" means "send", and "?" means "receive". Figure

4.10 shows us that the simulator goes through the following steps:

1. Process init runs the Supplier process.

2. Supplier chooses to offer the Purchaser a price = 30.

3. Process init runs the Purchaser process.

4. Supplier sends the offer value of 30 to the Purchaser.

5. Purchaser receives the offered value.

6. Purchaser detects that the value of 30 is greater than 20.

7. Purchaser sends the response value "0" False = rejected.

8. Supplier receives the response.

9. Supplier detects that the response is a reject.

10. Supplier chooses to offer the Purchaser a price = 20.

After this, the Supplier is supposed to send hislher offer to the Purchaser, but the

Simulator doesn't show this happening. A closer look at step 11 in figure 4.10 shows us that

the trail ended after the simulator went through line 33 of the Promela code:

31 if
32 :: S2P!Offer(offerValue) -> goto WaitingForResults;
33 :: skip /*Accounting for the possibility that*/
34 fi; /*the supplier might not send anything */

This line was inserted to take into account that the Supplier might choose not to send the offer

for whatever reason.

The simulation output in figure 4.10 then detects problems in lines 60, and 37:

59 WaitingForOffer:
60 S2P ? Offer(offerValue) ->

36 WaitingForResults:
37 P2S? Response(responseValue);

No offerValue was received by the Purchaser process, and subsequently, no response Value

was received by the Supplier process. And the finite state machines of the Supplier and the

Purchaser will hang.

This is an example of a simple verification model. An attentive reader may have

predicted this ambiguity in the finite state machines without having to resort to a verification

language such as Spin. However, as more and more complex finite state machine

representations of contracts are designed, this will become more difficult, and this example

illustrates the benefits of resorting to such verification languages.

Validation of Electronic Contracts 81

Now that we have detected the problem we will attempt to remedy it next.

4.7.2 Contract after removal of ambiguities

The contract in its initial state is ambiguous because it does not give the parties to the contract,

time constraints within which to perform some operations, such as sending messages. This

could lead to undesirable situations where one of the parties is waiting indefinitely for a

message to arrive. Therefore, the contract after removing the detected ambiguities has the

following clauses:

1 Offer
1.1 The supplier may use his discretion to send offers to the purchaser.
1.2 If no offer is sent within seven days after the signature of the x-contract, or after
the latest rejected offer, the x-contract shall be terminated.
1.3 The purchaser is entitled to accept or reject the offer, but he shall notify his
decision to the supplier within five days after the receipt of the offer.
2 Commencement and completion
2.1 The contract shall start immediately upon signature.
2.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

As the reader will notice, we have inserted time limits in the form of days, in which the

Purchaser and the Supplier must carry out some tasks. An offer must be made within 7 days,

and notification of acceptance or rejection of an offer, must take place within 5 days.

We extracted the sets of rights and obligations for the Purchaser and Supplier, and

mapped them into a FSM for each of the signatories to the contract, see figure 4.11.

Rights and Obligations:

Purchaser's rights:
Ri' : Accept offers.
R;' : Reject offers.
Purchaser's obligations:
a," : Start the x-contract.
a;' : Respond within 5 days after receipt of an offer.
a; :Terminate the x-contract.
Supplier's rights:
n; : Send offers within 7 days after start of the x-contract.
Supplier's obligations:
ai :Start the x-contract.
a; :Terminate the x-contract.

Chapter 4

x-conlJ3C1signed
q" Start x-conlract

x-conlracl signedet Start x-contraet

Fig. 4.11. FSM Representation of an unambiguous x-contract for the
purchase of goods

In order to check the FSMs in figure 4.11 for correctness, we will convert them into the

verification language Prome/a. The above FSMs are basically modifications of the FSMs of

the ambiguous contract of Section 4.7.1. To translate these modifications into Prome/a, we

will make use of the Prome/a "timeout" statement.

This statement allows a process to abort waiting for a condition that can no longer

become true, for example an input from an empty channel. We will add clarification to the

code, by illustrating which states in the FSMs are reflected in Promela. We next present the

Promela code for the corrected FSM's in figure 4.11:

1. *Verification Model for the Finite State Machines*/
2. /*after making corrections and removal of ambiguities*/
3.
4. #define MA 20 /*Maximum acceptable offer*/
5. #define OA 1 /*Offer accepted */
6. #define OR 0 /*Offer rejected*/
7.
8. mtype = {Offer, Response}
9.
10. chan S2P = [1] of {mtype, int};
11. chan P2S = [1] of {mtype, byte};
12.
13. /***Suppliers FSM***/
14. proctype Suppliert)
15. {
16.
17. int offerValue;
18. byte responseValue; /*OA or OR*/
19.
20. SupEContractSigned:
21.
22. EditingOffer: /*under this label/state, we must take into account*/

/*All possible actions that the supplier could take* /

Validation of Electronic Contracts 83

23. if
24. :: offerValue = 30; /* An offer that is too high> MA */
25. :: offerValue = 20; /* < MA */
26. :: offerValue = 10; /* < MA */
27. fi;
28.
29. if
30. :: S2P!Offer(offerValue) -> goto WaitingForResults;
31. :: skip; /*Taking into account the possiblity that*/
32. fi; /*the supplier might not send anything */
33.
34. WaitingForResults:
35
36. if
37. :: P2S ? Response(responseValue);
38. :: timeout -> goto Dispute; /*ifno response is received after 5 days*/
39. fi;
40.
41. if
42. :: (responseValue == OR) -> goto EditingOffer;
43. :: (responseValue == OA) -> goto Deal;
44. /*:: else -> printf("\n\n Error\n\n");*/
45. fi;
46.
47. Deal:
48. printf("\n\n Supplier: Deal \n\n");
59. goto end;
60.
61. Dispute:
62. printf("\n\n Dispute! !\n\n");
63. goto end;
64.
65. end:
66. printf("\n\n Supplier: End \n\n");
67
68. }
69.
70. /***Purchasers FSM***/
71. proctype Purchasert)
72. {
73. int offerValue;
74. PurEContractSigned:
75.
76. WaitingForOffer:
77.
78. if
79. ::S2P ? Offer(offer Val ue)
80. ::timeout -> goto end
81. fi;
82.
83. DecidingToBuy:
84.
85. if
86. ::(offerValue>MA)-> P2S!Response(OR); goto WaitingForOffer;
87. :: else -> P2S ! Response (OA); go to Deal;

Chapter 4

88. fi;
89.
90. Deal:
91. printf("\n\n Purchaser: Deal\n\n");
92.
93. end:
94. printf("\n\n Purchaser: End\n\n");
95. }
96.
97. init
98. {
99. run Suppliert);
100. run Purchasen);
101. }

The Promela code presented here is essentially the same code as in the previous section, but

with inserted timeout constraints. This should correct the ambiguities that we detected in

Section 4.7.1, and indeed this is verified after we run the Spin verifier once more, see figure

4.12.

Figure 4.12 shows that Spin did not detect any inaccuracies with the verification

model with respect to the correctness requirements chosen (Invalid Endstates, Unreachable

Code). The model can be checked against many correctness requirements as the designer

deems necessary. For example, the verification model can be modified to explicitly state that

the price offered by the Supplier has not been accepted by the Purchaser if the price exceeds

an agreed price P. We can then insert assertions (Section 4.6.1) in relevant sections of the

verification model to ensure that the Supplier does not make an offer> P in the form;

assert(offerValue<=P) .

c.... (Spin Version 4.0.1 -- 7 January 2003)
+ Partial Order Reduction

> Verification Output ',f'~ .

Full et.at.e epace search for:
neve r- claim
assertion violations
cycle checks
invalid endstates

- (not selected)
- (disabled by -A flag)
- (disabled by -DSII.l'ETY)

State-vector 44 byte. depth reached 23. e r r or s : 0
70 states, stored
10 states, matched
80 t.r ans i tions (= s t.or ed-mat.ched)
o atomic s t.ep s

hash conflicts: 0 (r eeo Ive d)
(max size 2'19 states)

2.622 memory ueaqe (Mbyte)

unreached in proctype Supplier
(0 of 27 states)

unreached in proctype Purchaser
(0 of 16 e tat.ee)

unreached in proctype :init·
(0 of 3 st.atee)

1J.00user O.Olsy.tem 0: 00. 04elap.ed 20%CPU(Oavgtext+Oavgdata Omaxre.ident)k
Ilanput.s-Doutput.s (1l4major+608minor)pagefault. Oswaps

Fig.4.12 Verification output for the corrected verification model

Validation of Electronic Contracts 85

4.8 Correctness requirements and Contracts, Discussion

In the previous section, we presented a contract, and illustrated how a verification tool can be

utilized; to simulate possible interactions between the parties to the contract; and to verify the

correctness of the FSM representation of the contract against some correctness requirements.

As we stated in Section 4.6 the choice of correctness requirements to verify any

protocol is important. This applies also for the application of electronic contracts.

Consequently, what we wish to identify, is what correctness requirements may be

required for the verification and the implementation of x-contracts. This will be investigated

in depth in this section.

We can identify a number of correctness requirements that an x-contract must adhere

to in order for it to be free of ambiguities, and therefore implementable, we can summarise

these as follows:

(A) An x-contract must have clear end states. The person/s responsible eventually for

implementing an x-contract must have a contract that explicitly defines what the valid end

states are. That is what are the acceptable situations (triggered perhaps by Rights and/or

Obligations) under which an x-contract may be terminated.

Definition of proper end states for x-contracts is necessary. This is to prevent deadlock, a

situation where an execution sequence terminates at an unexpected "improper" end state.

Under the Promela modelling language, the definition of a proper end state is as follows:

Every process that was instantiated has either terminated or has reached a state marked as a

proper end-state (See Section 4.6.2).

Notice that the proctypes for the Purchaser and the Supplier, in the validation models

in Section 4.7.2 finish with "end" states. The Spin Validator implicitly detects any improper

end-states.

Task/Requirement Summary: Identify all end states that are valid states for

termination of the x-contract

(B) The x-contract may need to specify some essential "progress" states that the

parties must go through during infinitely cycling transactions. I.e. the verification model of

the x-contract, cannot infinitely cycle through states that are not labelled "progress-states".

For example for the contract clause: Before the Supplier despatches the goods, he/she must

receive the payment. This makes the "payment" state essential for the progress of the x-

contract, and the verification model of the x-contract must not infinitely cycle through other

states without going through the "payment" state.

Chapter 4

We can express this in Promela by preceding the "progress" state with the label

progress. In Promela, the execution sequences that violate this correctness claim are called

non-progress cycles. The Spin verifier will when requested detect non-progress cycles.

Task/Requirement Summary: Identify all states within infinite cycles that are

essential for the progress of the x-contract.

Example: In the x-contract of Section 4.7.2 we want to ensure that the Purchaser

does not accept or reject an offer before an offer is actually made by the Supplier. The

"receipt of an offer" qualifies as a progress state because (a) The Purchaser must rely on its

occurrence to be able to make a decision, and (b) because this state can and should occur,

infinitely often, if the Supplier continues to make offers (The repeated occurrence of this as

we know means that the Supplier is repeatedly making unacceptable offers).

Verification:

We can modify the Promela code of Section 4.7.2 as follows:

WaitingForOffer:

if

::S2P? Offer(offerValue);

progressOnOffer: skip

::timeout -> goto end

fi;

We have inserted the progress label progress OnOffer just after waiting for the receipt of the

offer state S2P ? Offer(offerValue) . Now after running the Syntax check, we can set the

verification parameters to detect non progress cycles, see figure 4.3, and then click on the Run

button. The results are presented in figure 4.13.

>< Verification Output ;" ,,' ,~i'j.ri\;~¥t~"""'lliJjflll
c 'l(*~" cl.i''''N-",;t ~ iJW

Full statespace search for:
never-claim
assertion violations
non-progress cycles
invalid endstates

+
+ (if within scope of claim)
+ (fairness disabled)
- (disabled by never-claim)

-i (Spin Version 4. O.1 -- 7 January 2003)
+ Partial Order Reduction

State-vector 48 byte, depth reached 53, errors: 0
140 states, stored (208 visited)
166 states, matched
374 transitions (= visited+matched)

o atomic steps
hash conflicts: 0 (resolved)
(max size 2A19 states)
2.622 memory usage (Mbyte)
O.OOuser O.Olsystem O:OO.Olelapsed 83%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (115major+609minor)pagefaults Oswaps

A ~~~~~~ ~ __ ~

Fig.4.13 Verification Output for detection of non-progress cycles

Validation of Electronic Contracts 87

If we compare figure 4.13 with figure 4.12, we notice under the "Full statespace search for"

section that the safety requirement "invalid endstates" has been switched of for the purpose of

this verification run, and we are checking for the "non-progress cycles" requirement.

The results show that there are "0" errors, so we can be sure that the "receipt of an

offer" state is indeed a progress state as we require.

(C) The x-contract may need to specify situations or actions by the signatories of the

contract that may not be executed infinitely often.

In the example presented in Section 4.7.2 a situation may occur where the Supplier

can infinitely make the same unacceptable offer of Price>20. This reoccurring situation in

Promela terms is what is known as Livelock, see Section 4.6.3, and this property, can be

expressed using acceptance-state labels. An acceptance state label is any label starting with

the character sequence "accept".

Task/Requirement summary: Identify states that must not be repeated infinitely

often.

Example: let us take the situation we just presented: In our example of Section 4.7.2,

we would not desire a situation where the supplier infinitely often makes undesirable offers.

Therefore the state at which the Supplier is making unacceptable offers qualifies as an

acceptance state.

Verification: We can modify the Promela code of Section 4.7.2 as follows:

EditingOffer: /*under this label/state, we must take into account*/

/*All possible actions that the supplier could take*/

if

:: offerValue = 30;

acceptOfferTooHigh: skip /* An offer that is too high> MA*/

:: offerValue = 20; /* <MA */

:: offerValue = 10; /* <MA */

fi;

We have inserted the accept label acceptOfferTooHigh just after the Supplier edits an offer

offer Value = 30. By inserting this label, we are telling the Spin verifier that we would not like

the possibility to arise where the supplier may infinitely make an offer that is too high. After

running the Syntax checker, we can set the verification parameters to detect non acceptance

cycles, see figure 4.3, and then click on the Run button. The results are presented in figure

4.14.

Chapter 4

Cl pan: acceptance cycle (at depth 3)
pan: wrote pan_in. trail
(Spin Ver3ion 4.0.1 -- 7 January 2003)
Warning: Search not completed

+ Partial Order Reduction
Full 3tate3pace 3earch for:

never-claim
a33ertion violation3
acceptance cycle3
invalid endstates

- (not selected)
+
+ (fairness disabled)
+

State-vector 44 byte, depth reached 26, errors: 1
72 3tates, stored (81 visited)
8 states, matched

89 transitions (= visited+matched)
o atomic steps

hash conflicts: 0 (re30lved)
(max size 2A19 states)

2.622 memory u3age (Mbyte)
O.OOuser O.023Y3tem O:OO.Olelapsed 166%CPU (Oavgtext+Oavgdata Omaxre3ident)k
Oinput3+00utput3 (117major+608minor)pagefault3 03wapsA ~ ~~ __ ~ __ ~

Save in: I/home/pg/ng· . Oear loose I

Fig.4.14 Verification output for detection of live lock (non-accept cycles)

The output results tell us that the process was not completed, and that the search was stopped

at an error. As in Section 4.7.2, we will use Spin to trace the source of the error. Whenever

Spin detects a correctness requirement violation, the window in figure 4.9 will always appear,

and we can run a guided simulation through the route in which Spin detected the error. We

know in this case where the error is, because we only have one accept label. Using the

simulator is useful in complex x-contracts where we want to detect the source of an error

between many accept labels. Going back to our example, after running the guided simulation,

we can see the simulation output results in figure 4.15.

I .J' preparing trail, please wait ... done
1: proc 0 (:init:) line 92 "pan_in" (state 1)
2: proc 0 (:init:) line 93 "pan_in" (state 2)
3: proc 1 (Supplier) line 25 "pan_in" (state 1)

«<<<STIIRT OF CYCLE»»>
4: proc 1 (Supplier) line 26 "pan_in" (state 2)
5: proc 1 (Supplier) line 32 "pan_in" (state -)
5: proc 1 (Supplier) line 32 "pan_in" (state 7)
6: proc 2 (Purchaser) line 71 "pan_in" (state -)
6: proc 2 (Purchaser) line 71 "pan.o.in" (state 1)
7: proc 2 (Purchaser) line 72 "pan_in" (state 2)
8: proc 2 (Purchaser) line 79 "pan_in" (state 7)
9: proc 2 (Purchaser) line 79 "pan_in" (state -)
9: proc 2 (Purchaser) line 79 "pan_in" (state 8)
10: proc 1 (Supplier) line 39 "pan_in" (state -)
10: proc 1 (Supplier) line 39 "pan_in" (state 12)
11: proc 1 (Supplier) line 44 "pan_in" (state 17)
12: proc 1 (Supplier) line 25 "pan_in" (state 1)
spin: trail ends after 13 steps
#processes: 3
13: proc 2 (Purchaser) line 70 "pan_in" (state 5)
13: proc 1 (Supplier) line 26 "pan_in" (state 2)
13: proc 0 (:init:) line 94 "pan_in" (state 3)

3 pr cce eee e created
Exi t-Statu9 0

[(run Supplier ()))
[(run Purchaser ()))
[offerValue = 30)

[(1))
[values: l' Offer, 30)
[S2P' Offer. offerValue)
[values: 1?Offer, 30)
[S2P70ffer, offerValue)
[(1))
[((offerValue>20)))
[values: 2 lRespcns e, 0)
[P2SiResloonse, 0)
[values: 2?Response,O)
[P2S7Response, responseValue)
[«re9ponseValue==0)))
[offerValue = 30)

Save in: I sim.oul ae~ CancelSuspend I
Fig.4.15 Simulation output for path with livelock

Validation of Electronic Contracts 89

As we can see, the trail ends after the Supplier makes an offer = 30, where we placed the

acceptOfferTooHigh label in the Promela verification model.

We now know that we have an undesirable situation where the Supplier can make

unacceptable offers infinitely. The contract does not deal with this situation either because: (I)

for some reason the signatories have agreed to allow this. (2) They have simply omitted to

explicitly insert detail that they may for a conventional contract (non x-contract) have taken

for granted.

As the second possibility is the most probable, the following clause will have to be

modified:

If no offer is sent within seven days after the signature of the x-contract, or after the

latest rejected offer, the x-contract shall be terminated.

There are many solutions; one would be to limit the Supplier to N<=10 offers (for

example). And the verification model will be modified accordingly.

(D) Transactions between parties to a contract may need to run in a certain sequence,

and/or under certain conditions, depending on the specific requirements of the signatories.

An x-contract must define when each of the Rights and Obligations can be performed.

Examples; an x-contract must define if payment for the goods is to be made before or after

delivery of the goods; the FSM of an x-contract cannot reach a state where a complaint about

the quality of the goods is sent before reaching the state where the goods are delivered. Some

situations such as the later may seem obvious and may not be scrutinised in conventional

contracts, but they must be clearly stated if a contract is to be enforced electronically.

Validation of this correctness requirement using Promela can be achieved through the

use of "temporal claims" (Section 4.6.4). Temporal requirements can be very complex. They

can even expand to include non-progress, and non-acceptance correctness requirements.

Task/Requirement summary: Identify the required sequencing of events/states for

the correct performance of the contract, and identify the conditions (if any) under which this

sequencing must occur.

Example: Let us take the correctness requirement that a complaint about the quality

of the goods must not be sent by the Purchaser before the goods are received from the

Supplier. We can present a verification model to express possible scenarios:

Chapter 4

1* Goods complaint example
*
*1

booI placeOrder = false;
bool complaintRecd = false;
bool orderRecd = false;

active proctype OrderPlacementO
{
II place an order
placeOrder = true;

II Premature complaint randomly sent or not
II sent to the Supplier

if
:: complaintRecd = true; Ilcomplaint received by Supplier
:: skip;
fi;

II receive order
orderRecd = true;

II a complaint was made
if
:: complaintRecd = true;
:: skip;
fi

}

UsingXSpin, verification of temporal claims is done using the Linear Temporal Logic

(LTL) Manager. See figure 4.16. We shall use the LTL Manager to check if sending a

complaint before receiving the goods is a possible scenario of the above verification model.

So looking at our verification model, we are claiming the following:

[] (placeOrder -> !complaintRecd U orderRecd) meaning:

It is invariantly true that following the placement of an order a complaint should NOT be

received before the order is received. After this formula is entered into the LTL Manager we

first generate the "Never Claim" by clicking the "Generate" button. After this, we can Run the

verification, See figure 4.16.

Validation of Electronic Contracts 91

placeOrder
complaintRecd
orderRecd

:Never aaim: Generate

/*
* Formula As Typed: I] (placeOrder -) ! complaintRecd U orderRecd)
* The Never Claim Below Corresponds
* To The Negated Formula I(I] (placeOrder -) ! complaintRecd U

orderRecd»
* (formalizing violations of the original)
*/v ~

Verification Result: not valid

'-1 ~ull statespace search for:
never-cla~m
assertion violations
acceptance cycles
invalid endstates

Run Verification

+
+ (if within scope of claim)
+ (fairness disabled)
- (disabled by never-claim)

reached 7, errors: 1
aose I Save As ..

Fig.4.16 The LTL Manager

As we can see, and as expected, the verifier detects that our claim with respect to the above

verification model is false. Again and as with previous examples, we get the window in figure

4.9 giving us the choice of a simulation through the erroneous path.

If we comment out/remove the section that gives the Purchaser the option to complain

before receiving the order, the above Verification result becomes "Valid".

4.9 Common correctness requirements

Knowing the correctness requirements of an x-contract at design time is crucial as an x-

contract can be proven correct only with respect to a specific list of correctness requirements.

The parts of a contract that more likely contain logical inconsistencies vary from contract to

contract. On the other hand, it is sensible to think, that different contract users would be

interested in being assured of the correctness of different parts of a given contract. Because of

this, it is too ambitious to intend to identify a complete list of correctness requirements for

business contracts.

Chapter 4

However, it is possible to provide a list of fairly standard correctness requirements

and to generalise them [SMS]. Hopefully, this generalisation will help designers of x-

contracts reason about correctness requirements of x-contracts in terms of conventional and

well understood terminology such as correct termination, deadlocks, etc.

Based on our experiences with x-contract validation, and based on the examples and

discussions of this Chapter, we next present a list of contract correctness requirements that the

designer can use as a guide during the process of converting a contract to its executable

version. In the following list CR stands for correctness requirement:

CRt: Correct commencement: An x-contract should start its execution in a well-defined

initial state on a specific date or when something happens. This correctness requirement is a

special case and cannot be guaranteed by the x-contract itself but by the human being or

system (software or hardware) that triggers the execution of the x-contract.

CR2: Correct termination: An x-contract should reach a well-defined termination state on

a specific date or when something happens. For example, the x-contract terminates on the 31st

of Dec 2005 or the x-contract terminates when the purchaser delivers 500 cars.

CR3: Reachability: Each and every state within an x-contract should be reachable, Le.

executable at least in one of the execution paths of the x-contract.

CR4: Freedom from deadlocks: An x-contract should never enter a situation in which no

further progress is possible. For example, an x-contract should not make a supplier wait for a

payment before sending an item to the purchaser while the purchaser is waiting for the item

before sending the payment to the supplier.

CR5: Partial correctness: If an x-contract begins its execution with a precondition true

then, the x-contract will never terminate with the precondition false, regardless of the path

followed by the x-contract from the initial to its final state. For example, if the amount of

money borrowed by a customer from a bank is Debt= 0 at the beginning of the x-contract, the

x-contract cannot be closed unless Debt=O.

CR6: Invariant: If an x-contract begins its execution with a precondition true then, the

precondition should remain true for the whole duration of the contract. A slight variation of

this correctness requirement would be a requirement that the precondition remains true only

or at least during certain parts of the execution of the x-contract. To mention an example we

can think that an x-contract between a banker and a customer stipulates that the amount of

money borrowed by the customer should never exceed the customer's credit limit.

CR7: Occurrence or accessibility: A given activity should be performed by an x-contract

at least once no matter what execution path the x-contract performs. A slight variation of this

requirement is one that demands that a certain activity should be performed infinitely often.

For example, an x-contract between a bank and a customer should guarantee that the customer

will receive bank statements at least once a month.

Validation of Electronic Contracts 93

CR8: Precedence: An x-contract can perform a certain activity only if a given condition is

satisfied. For example, the lend period of a book in the possession of a student should not be

extended unless the waiting list for the book is empty.

CR9: Absence of livelocks: The execution of an x-contract should not loop infinitely

through a sequence of steps that has been identified as undesirable, presumably because the

sequence produces undesirable output or no output at all. For example, an x-contract between

an auctioneer and a group of bidders should not allow one of the bidders to place his bids

infinitely often and leave the rest of the bidders bid-starving. This correctness requirement is

also known as fairness or absence of individual starvation.

CRIO: Responsiveness: The request for a service will be answered before a finite amount

of time. For example, an x-contract should guarantee that a buyer responds to every offer

from a client in less than five days.

CRll: Absence of unsolicited responses: An x-contract should not allow a contractual

party to send unsolicited responses. For example, an x-contract between a banker and a

customer should not allow the banker to send unsolicited advertisement to the customer.

On the ground of our own experience with x-contract validation we argue that most,

if not all, correctness requirements of traditional business contracts can be readily expressed

either as safety or liveness properties. With the intention of giving the designer of an

electronic contract some guidance about the kind of correctness requirement he/she is faced

with, we will classify into safety and liveness properties the list of typical correctness

requirements of electronic business contracts provided above:

• Safety properties: reachability, partial correctness, invariant, deadlocks, precedence,

absence of unsolicited responses.

• Liveness properties: correct termination, occurrence, livelocks, responsiveness.

We further categorize Safety properties into, general safety properties that must hold

true for any x-contract (CR3: Reachability, CR4: Freedom from deadlocks, CR!!: Absence of

unsolicited responses), and specific safety properties that must hold true only if so required by

the contracting parties for the specific requirements of a certain x-contract (CR5: Partial

correctness, CR6: Invariant, and CR8: Precedence).

Running the Spin validator under its default settings will check for general safety

properties. Validation of the remaining specific safety properties can be done by inserting

"Assertions" within the Promela code.

We are aware that it has been shown that not all correctness requirements can be

readily classified as either safety or liveness property [NCOO]. Contracting parties may desire

complex correctness requirements that are a combination of a number of the above

requirements. Fortunately, it has been formally proven that any correctness property can be

Chapter 4

represented as the intersection of a safety property and a liveness property [AS85]. The idea

behind our approach is that a complex correctness requirement demanded by a signing party

can always be expressed as a combination of a number of the basic correctness requirements

listed in Section 4.9.

4.10 Summary

It is crucial that we identify and eliminate the ambiguities that exist within the clauses of a

text contract before it can be implemented electronically.

In this chapter, we have introduced the protocol modelling language Promela, and the

protocol verification tool Spin. We have analysed with the aid of simple examples the

correctness properties that must be satisfied for a contract to be correct. Based on our analysis

we have developed a list of correctness requirements that we suggest that x-contract designers

use during the contract validation process.

In the next chapter, we will test a number of example x-contracts for correctness

claims that cover the above correctness requirements in more depth.

Chapter Five

Validation of Electronic Contracts: Examples

We present three different examples of text based documents (contracts) containing rules that

govern the interaction between different parties. Through these examples, we demonstrate

ideas developed in Chapter 3, and Chapter 4.

Our aim is to convert the text based contracts into executable contract models through

a process that removes the ambiguities that may exist in the original text contracts. This is to

facilitate the correct implementation of the x-contracts at run time.

There are many examples, where the interaction between two or more parties, over a

network, calls for a set of rules that can be implemented to police this interaction.

In cases where the rules of interaction need to be negotiated and agreed upon by the

interacting parties, the rules constitute "contract clauses", which will combine to form a

contract that the parties must sign. This case will be the bases for our first and second

examples.

There are cases however where the interaction between the parties is governed by

rules that are already in place. The parties need only to understand them and agree upon them

before the interaction can begin. Our third example reflects this case. We present the scenario

where two or more parties are involved in a game that is played over the Internet. We use our

third example to demonstrate interactions that involve more than two parties.

5. 1 Contract for the supply of electronic goods

Our first example is a contract for the purchase and supply of e-goods. The contract we

present is inspired from a contract in a paper written by GoodChild et al [GMOO].

Our goal is to convert the contract into an x-contract model, and detect and eliminate

ambiguities that may hinder the correct electronic implementation of the x-contract.

We will first present the original text contract in full. After that we will extract the

sets of rights and obligations for each of the signatories to the contract, and map them into

finite state machines for the Purchaser and for the Supplier. The FSM's are used to model the

contract. This model is then converted into the Promela verification language. Finally we will

use the Spin verifier to verify the correctness of the x-contract against the correctness

requirements discussed in Chapter 4.

95

Chapter 5

5.1.1 The Contract

This Deed of Agreement is entered into as of the Effective Date
identified below.

BETWEEN
[Name]

of [Address]
(To be known as the (Supplier))

AND: [Name]
of [Address]

(To be known as the (Purchaser))

WHEREAS (Supplier) desires to enter into an agreement to supply
(Purchaser) with [Item] (To be known as (e-goods) in this Agreement) .
NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser) shall enter
into an agreement subject to the following terms and conditions:

1. Definitions and Interpretations
1.1 Price, Dollars or $ is a reference to the currency of the
[Country] .
1.2 All information (purchase order, payment, notifications, etc.),
is to be sent electronically.
1.3 This agreement is governed by [Country] law and the parties
hereby agree to submit to the jurisdiction of the Courts of the
[Country] with respect to this agreement.

2. Commencement and Completion
2.1 The commencement date is scheduled as [date].
2.2 The completion date is scheduled as [date].
2.3 The schedule may be modified by agreement as defined in Section
9.

3. Purchase Orders
3.1 The (Purchaser) shall follow the (Supplier) price lists.
3.2 The (Purchaser) shall present (Supplier) with a purchase order
for the provision of (E-goods) within 7 days of the commencement
date.
3.3 The (Supplier) shall notify the (Purchaser) of acceptance or
rejection of the purchase order within 7 days after the receipt of
the purchase order.
3.4 If the purchase order is rejected, the (Purchaser) shall correct
the purchase order within 14 days after the receipt of the
notification.

4. Delivery
4.1 The delivery of the (e-goods) is the responsibility of the
(Purchaser). The (Supplier) shall keep the E-good available for
downloading at the specified e-address for at least 14 days after
sending notification of acceptance of payment. The (Purchaser) shall
download the (e-goods) within this period of time.

5. Payment
5.1 The payment shall be sent in full to the (Supplier) within 7 days
after receiving a notification of acceptance of the purchase order.
5.2 The (Supplier) shall notify the (Purchaser) of acceptance or
rejection of the payment within 7 days after the receipt of the
payment.

6. E-goods rejection

Validation of Electronic Contracts: Examples 97

6.1 If the (e-goods) do not comply with the order or the (Supplier)
does not comply with any of the conditions, then the (Purchaser) is,
at his/her sole discretion, entitled to reject the (e-goods).
6.2 The (Purchaser) shall either (a) notify the (Supplier), of
acceptance of the (e-goods), within 7 days after receiving them, or
(b) return the (e-goods) to the (Supplier), within 7 days after
receiving them.

7. Replacement and refund
7.1 The (Supplier) may use his/her discretion to replace the (e-
goods) according to the invoice or refund any monies paid.
7.2 The (Supplier) shall either (a) notify the (Purchaser) of refusal
to replace or refund, within 14 days after the receipt of the
rejected (E-goods), or (b) replace or refund any monies paid, within
14 days after the receipt of the rejected (e-goods).
7.3 In the case of a dispute in which the (Supplier) refuses to
provide a requested replacement or refund by the (Purchaser) within
14 days of the (Purchaser) returning rejected (e-goods), then the
Purchaser shall terminate the contract.

B. Termination
8.1 If (Purchaser) or (Supplier), fail to carry out any of their
obligations and duties under this agreement, the offended party shall
terminate the contract.

9. Disputes
9.1 (Supplier) and (Purchaser) shall attempt to settle all disputes,
claims or controversies arising under or in connection with the
agreement through consultation and negotiations in good faith and a
spirit of mutual cooperation.
9.2(Supplier) and (Purchaser) shall provide electronic evidences
about breaches of the x-contract.
9.3 This method of determination of any dispute is without prejudice
to the right of any party to have the matter judicially determined by
a [Country] Court of competent jurisdiction.

10. Amendmen t
10.1 This agreement may only be amended in writing signed by or on
behalf of both parties.

E-SIGNATURES
In witness whereof (Supplier) and (Purchaser) have caused this
agreement to be entered into by their duly authorized representatives
as of the effective date written below.

Effective date of this agreement: [day] of [month] [year]

[E-signature]
[Person]
[Role]

E-address for Notices:
[E-address]

[E-signature]
[Person]
[Role]

[E-address]

5.1.2 Split of rights and obligations

Before describing the x-contract in FSM notation, it is advisable to extract, from the English

text, the purchaser's and supplier's Rights (R) and Obligations (0).

Chapter 5

Supplier's obligations

001: Notify Purchaser of acceptance or rejection of Purchase order within 7 days after receipt of

purchase order.

002: Notify Purchaser of acceptance or rejection of the payment within 7 days of the Supplier

receiving it.

003: Place e-goods at e-address for 14 days after sending a notification of acceptance of payment.

004: Either (a) Notify the Purchaser of rejection of a remedy request within 14 days after receipt of the

rejected e-goods, or (b) provide a remedy within 14 days after receipt the rejected e-goods.

005: Provide electronic evidences of breach of the x-contract.

006: Terminate the x-contract if the Purchaser is in breach of contract.

Supplier's rights
RO1: Reject or accept a purchase order.

R02: Reject or accept a payment.

R03: Either (a) Refuse to remedy within 14 days after receipt of the rejected e-goods, or (b) Accept to

remedy within 14 days after receipt the rejected e-goods.

R04: Amend contract but only in agreement with the Purchaser.

Purchaser's obligations
001: Follow the supplier's price lists.

002: Present a purchase order within 7 days of the commencement date.

003: Correct a Purchase order within 14 days after receipt of a notification of the first rejection of the

Purchase order.

004: Send full payment within 7 days after receiving notification of acceptance of purchase order.

005: Download the e-good/s within 14 days after the receipt of the acceptance of the payment.

006: Send acceptance or rejection of e-goods within 7 days of receiving them.

007: Provide electronic evidences of breach of x-contract.

008: Terminate the x-contract if either (a) The Supplier is in breach of contract, or (b) In the case of a

dispute where the Supplier does not provide replacement or remedy for rejected e-goods.

Purchaser's rights
RO1: Reject e-goods that fail to match the description/requirement.

R02: Amend contract but only in agreement with the supplier.

Next we map the Rights and Obligation above into 2 finite state machines, one for the

Purchaser, and one for the Supplier.

Validation of Electronic Contracts: Examples 99

5.1.3 The finite state machines (The x-contract model)

Supplier

RO I PO accepted

001 Send PO accepted to
purchaser & set 7 day payment

timer

Fig. 5.1. Supplier's FSM.

Chapter 5

Purchaser

008 Terminate e-contract

Goods available

005 Download e-goods
within 14 dqV.l'

Fig. 5.2. Purchaser's FSM.

In figure.5.1 and figure 5.2, PO stands for Purchase Order.

Validation of Electronic Contracts: Examples 101

5.1.4 The Verification model

Our next task is to represent the FSMs in figures 5.1 and 5.2, in the modeling language -

Promela- that is the input language of the verifier Spin. The complete verification model is

presented next:

1 1* X-contract model for the purchase and supply of e-goods.
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *
10 *
11 *
12 *1
13

Programme created using XSPIN for simulation and
verification of FSM correctness.

AUTHOR: Ellis Solaiman
University Of Newcastle Upon Tyne
Date of Creation 12 December 2002
Last Update 18 July 2003

14 IIDefinition of constants
15 #define Terminated 5
16
17 #define Yes 1
18 #define No 0
19
20 #define Good 1
21 #define Bad 0
22
23 #define Accept 1
24 #define Reject 0
25 #define SReject 2 I*this for a second reject*1
26
27 #define correct 1
28 #define incorrect 0
29
30 #define Available 1
31 #define NotAvailable 0
32
33 II Messages that will be passed between the purchaser and
supplier
34 II PO is the Purchase Order
35 mtype = {PO, Payment, Download, Response, GoodsPlaced,
Remedy,Goods,Check,Rrequest)
36
37 II Channels of communication
38 chan P2S=[1] of {mtype, byte); II channel purchaser to supplier
39 chan S2P=[1] of {mtype, byte); II channel supplier to purchaser
40
41 byte goodsP1aced = No; II Have the goods been placed for
download?
42 byte downloadlnTime = No; II Have the goods been downloaded in
time?
43
44
45 1****** SUPPLIER FSM ******1
46 proctype Supplier()
47 {

Chapter 5

48
49
50
51
52
53
54
55
56
57

poVal; //Good PO or Bad PO
payVal = Bad;
remedyChoice;
goods;

int
byte
byte
byte

/*** Waiting for Purchase Order ***/
WaitingforPO:

if //This if fi statement deals with both the 7 day and 14 day
timer*/
58 ::P2S? PO(poVal)
59 ::timeout -> goto
60 fi;
61
62
63

Terminate

/*** Checking correctness of PO ***/
CheckPO:

64
65 if
66 ::if
67 ::(poVal==Good)-> S2P ! Response(Accept); goto
WaitingforPayment
68 ::(poVal==Bad)-> S2P ! Response(Reject); goto WaitingforPO
69 fi;
70 .. skip; //The Supplier fails/forgets to send a response in
time
71 .. goto Terminate; //Supplier aborts x-contract
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

fi;

/*** Waiting for Payment ***/
WaitingforPayment:

if
::P2S ? Payment (payVal)
::timeout -> goto Terminate //Payment not received in time
fi;

/***Checking Payment Correctness***/
CheckingPayment:

if
::if

::(payVal
::(payVal

Bad)-> S2P ! Response(Reject); goto Terminate;
Good)-> S2P ! Response(Accept); goto PlaceGoods;

fi;
:: goto Terminate; // Supplier aborts contract
:: skip; //Supplier forgets to respond
fi;

/*** Place goods to be downloaded ***/
PlaceGoods:
if //Safety claim 1: Payment must be correct

before delivery
97 goods PIaced
98 .. goods Placed
99 fi;
100
101 /*** Waiting for e-goods to be downloaded ***/
102 WaitingforDownload:
103

Yes; assert (payVal Good) ;
No;

104 if

Validation of Electronic Contracts: Examples

105 ::(downloadInTime==Yes) Ilgoods downloaded in time
106 ::(downloadInTime==No)-> goto Terminate;
107 fi;
108
109 1*** Purchasers Response to the Goods ***1
110 GoodsResponse:
111
112 IISafety claim 2: Asserting that the Supplier does
113 Iinot proceed if the goods are not downloaded in time
114 assert (downloadInTime == Yes);
115
116 if
117 ::P2S ? Goods (goods) II Complaint made, and goods returned in
time
118 ::timeout ->goto end; II No complaint made within the time limit
119 fi;
120
121
122 if
123
124

(goods
(goods

Good) -> goto end;
Bad) -> goto RemedyConsider;

125 fi;
126
127 1*** Considering reasons for rejection of goods ***1
128 RemedyConsider:
129
130 if
131 remedyChoice=Yes;
132 remedyChoice=No;
133 fi;
134
135 S2P!Remedy(remedyChoice);
136 goto end;
137
138 1*** Abort x-contract ***1
139 Terminate:
140
141 printf("\n\nOnsatisfactory Termination\n\n");
142 goto fin;
143
144 1*** Deal reached ***1
145 end:
146
147 IISafety claim 3: The following must hold true if a deal is to be
reached
148 assert(poVal == Good);
149 assert(payVal == Good);
150 assert(downloadInTime == Yes);
151
152 printf("\n\nSupplier in Deal state\n\n");
153
154
155 1*** End of x-contract ***1
156 fin:
157 printf("\n\nEnd\n\n");
158
159
160
161
162
163

103

Chapter 5

164 1****** PURCHASER FSM ******1
165
166
167
168
169
170
171
172
173
174
175
176

proctype Purchaser()
{

int poVal;
byte responseVal;
int poResponse;
byte pVal;
byte goods;
byte remedy;

II Purchase Order sent
II Response received

II Payment sent correct or incorrect
II Acceptable or non-acceptable Goods
II acceptable or non-acceptable remedy

177 1*** Placement of Purchase Order***1
178 PlacementOfPO:
179
180 if
181 .. poVal
182 .. poVal
183 fi;
184
185 1*** Send the PO ***1
186 if
187 ::P2S ! PO(poVal);
188 ::goto Abort; Ilmodeling the possibility that Purchaser might not
send a PO
189 fi;
190
191 1*** Waiting for the Supplier's Response to PO ***1
192 WaitingResponse:
193

Good; II Randomly choose between sending a good PO
Bad; II and a Bad PO

194
195
196
197
198
199
200 if
201
202
203
204
205
206
207 1*** Make payment ***1
208 PlacePayment:
209
210 if
211 .. pVal
payment
212 :: pVal
213 fi;
214
215 if

if
::S2P ? Response(poResponse);
::timeout -> goto Abort; II Response not received in time
fi;

::(poResponse
::(poResponse
::(poResponse
fi;

Accept) -> goto PlacePayment II PO accepted
Reject) -> goto PlacementOfPO II PO not accepted
SReject) -> goto Abort; II Final reject

correct; II Randomly choose between sending a correct

incorrect; II and an incorrect payment

216 .. P2S ! Payment (pVal) ->
217 .. skip; II Purchaser failslforgets to make payment
218 .. goto Abort; II Purchaser aborts x-contract
219 fi;
220
221
222 1*** Waiting for Payment response ***1

Validation of Electronic Contracts: Examples 105

goods
goods

fi;

if
.. (goods

(goods
fi;

Bad) -> P2S ! Goods (Reject) ; goto WaitforRemedy
Good) -> P2S ! Goods(Accept); goto end

262 1*** Wait for remedy ***1
263 WaitforRemedy:
264
265 if
266 ::S2P ? Remedy (remedy) -> assert(remedy==Yes);goto end;11 Safety
claim 4
267 ::timeout -> goto Abort; II Remedy not recieved in time
268 fi;
269
270
271 1*** Abort x-contract ***1
272 Abort:
273
274 printf("\n\nUnsatifactory Termination\n\n");
275 goto fin;
276
277 1*** Deal state ***/
278 end:
279 IISafety claim 4: The following must hold true if a deal is to be
reached
280 assert (goodsPlaced == Yes);

Chapter 5

281
282 printf("\n\nPurchaser in Deal State\n\n");
283
284
285 /********End x-contract***********/
286 fin:
287 printf("\n\nEnd\n\n");
288
289
290
291
292 /******Initiate purchasers and suppliers processes**********/
293 init
294
295 run Purchaser();
296 run Supplier();
297

5.1.5 X-contract verification

General Safety properties

CR3: Reachability, CR4: Freedom from deadlocks, and CRII: Absence of unsolicited

responses are the general safety properties against which any contract must be validated. It is

crucial that the general safety requirements are passed by the x-contract model. This proves

that the FSMs will execute correctly, and that they are correct entities, in that both of the

FSMs for each of the signatories, can deal with any interactions that are passed between them

including non expected ones (CRII), can deal with possible situations where messages are

not being passed where they should be (CR4), and that all states and code within the FSMs

are reachable at least in one of the many possible paths through the FSMs. Other correctness

requirements whether specific safety properties, or liveness properties, will be tested for in the

following sections, to verify whether the FSMs perform operations desired by the signatories.

We will therefore begin by validating the model against the general correctness

requirements.

Figure 5.3 shows the general verification options being selected. We can now run the

verifier. Spin initially detected a number of Deadlock violations in which both of the FSMs in

different scenarios were trapped in certain states. This is because the contract did not have

time limits in which some messages had to be passed between the FSMs. The contract and the.
FSMs were modified (the modifications have been inserted the FSMs using italics for text and

dashed lines for the FSM state transition arrows), and we run the Spin verifier again. The

results are presented in figure 5.4. As can be seen, the verifier detects no errors, so the model

is correct with respect to the general safety correctness requirements CR3, CR4, CRIl.

Therefore our model is implementable as an x-contract. However the signatories may wish to

Validation of Electronic Contracts: Examples 107

test the model for specific safety requirements before being confident of the correctness of the

x-contract.

><Oasic Verification Options i" '~"

• Exhaustive

V' Supertrace/Bitstate

'v' Hash - Compact

Safety (state properties)

Assertions

• Invalid Endstates

v uveness (cycles/sequences)

V' Non- Progress cycles

V' Acceptance cycles

..J With Weak Fairness

Apply Never aaim (If Present)

• Report Unreachable Code

..J Oleck xrlXs Assertions

A Full Queue

• Blocks New Msgs

',./ Loses New Msgs

[Add Never aaim from File]

[Verify an LTl Property]

[Set Advanced Options]

Help 1 Cancel 'I ~

Fig.5.3. Selection of general safety requirements for verification

><Veriflcation Output . ~!1lj,_

(Spin Version 4.0.1 -- 7 January 2003)
+ Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates +

- (not selected)
- (disabled by -A flag)

(disabled by -DSAFETY)

State-vector 52 byte, depth reached 40, errors: 0
295 states, stored
47 states, matched

342 transitions (: stored+matched)
o atomic steps

'hash conflicts: 0 (resolved)
(max size 2A19 states)
2,622 memory usage (Mbyte)
unreached in proctype Supplier

(0 of 70 states)
unreached in proctype Purchaser

(0 of 74 states)
unreached in proctype :init:

. ul (0 of 3 states)
Ii Save in: /1 aear / aose

Fig.5.4. Verification output for general safety properties

Chapter 5

Specific Safety properties

The specific safety requirements discussed in the previous chapter are: eR5: Partial

correctness, eR6: Invariant, and eRS: Precedence. The signatories to the contract have

requested to test the x-contract model against the following requirements:

1. Delivery of the Goods cannot occur before receipt of correct payment for the goods.

2. The Supplier will not proceed with any transactions if the goods are not downloaded within

14 days of receipt of payment.

3. The Supplier will not go to a deal state if: A correct purchaser order (PO) has not been

received, a correct payment has not been received, and if the Goods are not downloaded in

time.

4. The Purchaser will not go to a deal state if: The goods can not be downloaded for 14 days

after making a correct payment, and if a requested remedy has been refused by the supplier.

All correctness requirements are precedence requirements (eRS). We will test for

these by placing assert statements in relevant sections of the Promela code. The reader can

see these in lines: 96,114,147,266 and 2S0 of the Promela code listed in Section 5.1.4. Next

we will initiate the verifier, and check the assertions option under safety (state properties),

see figure 5.3. Results from the verification can be seen in figure 5.5.

><Verification Output . ,@.~'

_i pan: assertion violated (remedy==l) (at depth 36).J pan: wrote pan_in. trail
! (Spin Version 4.0.1 -- 7 January 2003)

Warning: Search not completed
• + Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates

- (not selected)
+
- (disabled by -DSAFETY)

(disabled by -E flag)
reached 42, errors: 1

Fig.5.5. Verification of assertion claims

Figure 5.5 shows that the verifier encountered an assertion error, assert(remedy ==1). This

telIs us that the Purchaser's FSM can in some situations reach a deal even if a requested

remedy was not granted by the Supplier, and therefore the-verification model fails the above

requirement 4. We can run the simulator through the erroneous path, the simulation output,

and the message sequence chart are presented in figure 5.6.

Validation of Electronic Contracts: Examples 109

~.(Simulation Output ~, ,tU'

21: pr uc (Purchaser) line 252 "panj i.n'' (state 51) [goods"" 0)
22: pr oc (Pur-chaser) line 257 "pan_in" (et.ate 55) [«good:;l •• O»]
23: pr oc (Supplier) line 105 "pan_in" (state 40) I (f dovnl.oad'ln'I'anee e l.) I
24· pr oc (Supplier) line 114 "pan_in" (state 45) (assert«downloadlnTime::l» I
25: pr cc (Pur chaeer) line 251 "pM_in" (e t at.e -) [veduee : l!Goods,O]
25 pr oc (Pur cheaer) line 257 "pan in" (state 56) [P2S!Goods,0]
26: pr oc (Supplier) line 117 "pan_in" (state -) [vedue e : l?Goods.O]
26: pr oc (Suppl~er) line 117 "pan_in" (ate.te 46) IP2S?Goods, goods)
27, proe (Suppher) line 124 "pan_in" (et.ate 53) [((good ••• O» J
28: proc (Supplier) line 132 "pan_in" (state 58) [r enedyeho i.ce .. 0]
29: proc (Supplier) line 135 "pan_inH (state -) {values: 2!Remedy,0]
29· proc (Supplier) line 135 "p enjin" (state 61) [S2PIRemedy, remedyChoice]
30: pr cc (Supplier) line 148 "p anj i.n" (state 65) [as ee r t.Ifpova Le e l.j)]
31· proc (Supplier) line 149 "panj i.n" (state 66) [assert((payVal",,.1»]
32· pr oc (Supplier) line 150 "pan_in" (state 67) [aeeer tf (dovnl.oadrnr'i.nee e I) J

Supplier in Deal e t.at.e
33, proe 2 (Supplier) line 152 "pan_in" (et.ate 68) [printf (' \ \n\\nSupplier in

Deal .tate\ \n\ \n') J

End
34, proe 2 (Supplier) line 157 "pan_in" (at.ate 69) [printf (' \ \n\\nEnd\ \n\ \n') J
35: proc 2 terminates
36: pr oc 1 (Purchaser) l~ne 266 "pan_in" (state -) {values: 2?Remedy, OJ
36· proc 1 (Pur chaeer) Lane 266 "p anj i.n'' (state 63) IS2P?Remedy. r exedy]

spin: line 266 "pan_1nl<, Er r cr : aaeer ta on violated
spin: text of failed assertion: aeaer t t (r enedyee L)
spr cceeeee . 2

II 37: proc 1 (Pl.:'-rchMer) line 266 "p~ in" (e tate 64)
I 37: proc 0 (:lnit:) Lane 297 "pan_lo7."" (~tate 3)

3 proce~ses createdI ,,_ Exit-Status 0

II ,Al---'""7'---,-----------~-----"""'t'---11
I ",~~~~.!J~_~~~_j Save in~ sim.out ~J ~

Fig. 5.6. Message sequence chart, and Simulation
output of path with assertion violation

We remind the reader that in figure 5,6 "!" means send, and "?" means receive. The message

sequence chart (on the left) shows the Purchaser process reaching a "waiting" state indicating

a problem, and the simulation output clearly detects an assertion violation at step 37,

indicating a problem in line 266 of the Promela code,

The problem occurred because the Promela model takes or does not take the

Purchasers FSM to the deal state, based only on whether the Purchaser receives a remedy

message or not, and omits to test the contents of the message, if it is received,

Therefore the Promela code after the WaitforRemedy state in the Promela code must

be modified by inserting additional code (lines 270 - 273) as follows:

262 1*** Wait for remedy ***1
263 WaitforRemedy:
264
265 if
266 ::S2P ? Remedy (remedy) ->
267 ::timeout -> goto Abort; II Remedy not recieved in time
268 fi;
269
270 if
2'7] (remedy Yes) -> assert (rem(3cly~'~Yes); qoto end; / /Safet:y

cIa.i.m 4
2'72
2'73 fi;

(remedy No)-> qoto Ahort

Meaning that if a remedy request has been accepted (remedy == Yes) then end the

contract satisfactorily, and if a remedy request has been rejected, then abort the contract.

The relevant section (Section 7, Replacement and refund) of the original contract,

states in section 7.2:

Chapter 5

The (Supplier) shall either (a) notify the (Purchaser) of refusal to replace or refund, within 14

days after the receipt of the rejected (E-goods), or (b) replace or refund any monies paid,

within 14 days after the receipt ofthe rejected (E-goods).

However it does not state actions (contract termination for example) that the

Purchaser may take if a remedy is refused. The contract may implicitly allow for such actions,

but it remains up to the lawyers and the signatories to the contract whether the contents of the

contract should be modified to cater for this, or whether it is sufficient to modify the x-

contract. In this case will assume that the signatories have made the decision to add the

following clause to the contract:

7. .3 In the case o.t a di.sput:e In whIch the (Supp.l..i.er) r eiuses to

p rovide a requested rep Lecement: or reEutid by the (Purchaser) within

14 days at' the (Purchaser) returnInq rejecteci (E'qoocis), then the

Purchaser may tenn.i.nate the contract.

The reason for this is that Section 8 of the contract allows for termination only in the

case where the opposite party fails to perform a duty or an obligation, and does not allow for

termination in the case of a dispute based on non obligatory actions. Therefore, the new

clause 7.3 allows the Purchaser to terminate the contract in a special situation in which the

parties disagree over replacement of rejected goods or refund.

After this modification, the validator detected a second assertion violation

"asserttpayl/al == 1);" at line 97, caused by the skip; statement in line 91:

91 :: skip; //Supp1ier forgets to respond

This statement was inserted within the Supplier's FSM by the model designer, in

order to test the ability of Purchaser's FSM to deal with a scenario that involves the Supplier

forgetting to check the payment, and as a consequence forgetting to respond to the purchaser

with acceptance or rejection of the payment. However, once this ability was established, the

skip statement should have been removed, as it remains incorrect for the Supplier's FSM to

allow him the possibility of not checking the correctness of the payment, and not responding

to the Purchaser, even if the Purchaser's FSM can deal with this scenario. Therefore line 91

can simply be deleted. Also similar skip statements used for testing and forgotten throughout

the Promela model must be removed.

After modifying the code, there are no safety violations.

Validation of Electronic Contracts: Examples 111

Liveness properties:

The liveness properties that an x-contract model can be tested for are: CR2: Correct

termination, CR7: Occurrence, CR9: Absence of Livelocks, and CRIO Responsiveness.

(Chapter 4, Section 4.9).

The signatories would like to test the FSMs, for the following Iiveness correctness

requirement:

The purchaser may not infinitely often submit incorrect purchaser orders.

This requirement is a requirement for absence of Livelock. We can test for this by inserting an

accept label in the relevant section of the code as follows:

178 PlacementOfPO:
179
180 if
181
182
183 fi;
184

poVal
poVal

Good;
Bad; acceptBadOffer: skip

We will now run the validator after checking the "Acceptance cycles" option under

"Liveness" in figure (BasicYerificationoptions).

'pan: acceptance cycle (at depth 2)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003)
Warning: Search not completed

+ Partial Order Reduction
Full statespace search for.

never-claim
assertion violations
acceptance cycles
invalid endstates

- (not selected)
+
+ (fairness disabled)
+

th reached 42, errors: 1

Fig.5. 7. Verifier detects Livelock

As we can see, figure 5.7, shows that there is indeed livelock. This tells us that it is possible

the model will, through at least one sequence of execution, loop infinitely through states that

allow the purchaser to submit incorrect purchase orders. We can run the simulator through the

path in which the problem was detected (figure 5.8). From the simulator we realise that the

problem is a programming error, caused by a presumption on the designers part that the

"timeout" statement in the following code segment is sufficient to model the timeout

Chapter 5

complexities required in the contract text. What is missing is a variable (poTimer) to model

the 14 day time limit in which the purchaser must submit a correct purchase order:

55 /*** Waiting for Purchase Order ***/
56 WaitingforPO:
57
58 if //This if fi statement deals with both the 7 day and 14 day

timer
59 ::P2S ? PO(poVal)
60 : :timeout -> goto Terminate
61 fi;
62
63 /*** Checking correctness of PO ***/
64 CheckPO:
65
66 if
67
68

if
:: (poVal==Good)-> S2P Response(Accept); goto
WaitingforPayment

69 (poVal==Bad)->
70 if
71 (po TimeI' == 14» 82 P

Tennina te
(po'Ti.me): « .14) -» 82P
goto WaitingforPO

Response (Reject); qot.o

72 Response(Reject); poTImer++;

73 fi;
74 fi;
75 goto Terminate;
76 fi;

//Supplier aborts x-contract

:J preparing trail, please wait. . done
1: proc 0 (: ini t.:) line 300 "pan_in" (state 1) [(run Purchaser 0) J
2: proc 0 (: ini t:) line 301 "pan_in" (state 2) [(run Supplier 0) I

««<START OF CYCLE»»>
3: proc 1 (Purchaser) line 182 "pan_in" (state 2) [poVal = OJ
4: proc 1 (Purchaser) line 183 "pan_in" (state 3) [(1) J
5: proc 1 (Purchaser) line 188 "pan_in" (state -) [values: 1 !PO, OJ
5: proc 1 (Purchaser) line 188 "pan_in" (state 6) [P2S! PO,poValJ
6: proc 2 (Supplier) line 58 "pan_in" (state -) [values: 1?PO, OJ
6: proc 2 (Supplier) line 58 "pan_in" (state 1) [P2S?PO, poValJ
7: proc 2 (Supplier) line 68 "pan_in" (state 9) [«poVal==O)) J
8: proc 2 (Supplier) line 68 "pan_in" (state -) [values: 2!Response, OJ
8: proc 2 (Supplier) line 68 "pan_in" (state 10) [S2P! Response, 0 J
9: proc 1 (Purchaser) line 196 "pan_in" (state -) [values: 2?Response, OJ
9: proc 1 (Purchaser) line 196 "pan_in" (state 10) [S2P?Response, poResponseJ

10: proc 1 (Purchaser) line 203 "pan_in" (state 17) [«poResponse==O)) J
spin: trail ends after 11 steps
#processes: 3
11: proc 2 (Supplier) line 57 "pan_in" (state 4)
11: proc 1 (Purchaser) line 180 "pan_in" (state 4)
11: proc 0 (: init:) line 302 "pan_in" (state 3)

3 processes created
Exit-Status 0

><Simulation Output - , " Ii,.:!r j -

n~ ~ ~ ~ ~ ~
Single Step 1 sus!e~ Save in: '1 sim.out aear 1 Cancet 1

Fig.5.8 Path through which Livelock was detected

After making the modifications to the code, the Spin validator detects no Livelock errors. This

example shows how Spin can be useful in detecting programming errors, which if left

unchecked could lead to problems at the time of implementation.

Validation of Electronic Contracts: Examples I 13

After testing the x-contract model against safety, and liveness correctness

requirements, and correcting detected errors, the x-contract is ready for implementation.

5.2 Example of a contract for renting cars

In this Section, we present an example of a contract between a customer to be known as the

Renter, and an international car rental company to be known as the Owner. The contract was

chosen as an example of agreements that involve the provision of a service rather than the

purchase and supply of goods. It is also an example that demonstrates extreme ambiguities

and interpretation problems that may face a designer while constructing the x-contract model.

As with the example in Section 5.1, this contract could be perceived to be of a B2B (Business

to Business) or a B2C (Business to Customer) nature. The contact, which was taken from

[LFK] is presented next.

5.2.1 Car Rental Contract

This Agreement is made and entered in this (1) day of
(2) , 19 (3) , between (4) , of

---- (5)
--------c:------

hereinafter called "Owner", and _--,- (6) -:-:-'of
__________ (7) , hereinafter called "Renter".

Vehicle

The vehicle which the Owner hereby agrees to rent is:

(8) (9) _ ___ (10) _

(11) (12) _ ______ (13) _

Mileage at beginning of rental period: (14)

The Owner represents that to the best of his knowledge and belief
that said vehicle is in sound and safe condition and free of any
known faults or defects which would affect its safe operation under
normal use.

Rental Period

The Owner agrees to rent the above-described vehicle to the Renter
for a period of (15) beginning at (16) M. on

(17) and ending at (16)_M. on - (18)
------- --------

The Renter agrees (a) that the rented vehicle shall not be used to
carry passengers or property for hire; (b) that the rented vehicle
shall not be used to carry passengers other than in the interior or
cab of the vehicle; (c) that the rented vehicle shall not be used to
carry passengers in excess of the capacity thereof; (d) not to use
the vehicle to push, propel or two another vehicle, trailer or any
other thing without the written permission of the owner; (e) not to
use the vehicle for any race or competition; (f) not to use the

Chapter 5

vehicle for any illegal purpose; (g) not to operate the vehicle in a
negligent manner; (h) not to permit the vehicle to be operated by any
other person without the written permission of the owner; and (i) not
to carry passengers, property or materials in excess of the rated
weight carrying capacity of the vehicle.

Insurance

The Renter hereby agrees that he shall fully indemnify the Owner for
any and all loss of or damage to the vehicle or equipment during the
term of this Agreement whether caused by collision, fire, flood,
vandalism, theft or any other cause, except that which shall be
determined to be caused by a fault or defect of the vehicle or
equipment.

Rental Rate

The Renter hereby agrees to pay the Owner at the rate of $ (19)
per (20) for the use of said vehicle. All fuel used shall be
paid for by the Renter.

Deposit

The Renter further agrees to make a deposit of $ (21) with the
Owner, said deposit to be used, in the event of loss of or damage to
the vehicle or equipment during the term of this Agreement, to defray
fully or partially the cost of necessary repairs or replacement. In
the absence of damage or loss, said deposit shall be credited toward
payment of the rental fee and any excess shall be returned to the
Renter.

Return of Vehicle to Owner

The Renter hereby agrees to return said vehicle to the Owner at
(22) no later than (23)---------- -------------

IN WITNESS WHEREOF, the parties hereto hereby execute this

Agreement on the date first above written.

____________ (24) _

____________ (25) _

Our aim is to eliminate any ambiguities that could exist is the contract so that it could be

implemented electronically.

To achieve this, we will follow our familiarized, sequence of steps. First we will

extract the sets of rights and obligations from the contract, and then map them into finite state

machines for the Renter and the Owner. After this we will code the finite state machines as a

Promela verification model, and check it for ambiguities against the set of correctness

requirements we conceived in Section 4.9.

Validation of Electronic Contracts: Examples 115

One immediately noticeable ambiguity in the car rental contract is that if one of the

parties fails to perform one or more obligations, the text of the contract does not specify what

action the opposing party may take. This is an obvious ambiguity that was detected through

manual inspection without requiring the Spin validator, and it can be fixed by adding

additional clauses similar to the termination and dispute clauses in the contract in Section

5.1.1. We will presume that the signatories and their legal advisors have agreed to this, and

we will proceed with adding the clauses:

Additional contract clauses:
Termination
If (Owner) or (Renter), fail to carry out any of their obligations
and duties under this agreement, the offended party may issue a
notice specifying the breach and terminate the contract.

Disputes
(Owner) and (Renter) shall attempt to settle all disputes, claims or
controversies arising under or in connection with the agreement
through consultation and negotiations in good faith and a spirit of
mutual cooperation.
(Owner) and (Renter) shall provide electronic evidences about
breaches of the contract.
This method of determination of any dispute is without prejudice to
the right of any party to have the matter judicially determined by
a [Country] Court of competent jurisdiction.

We will next extract the rights and Obligations from the text of the contract as well as the text

of the additional clauses.

5.2.2 Parties' rights and obligations

Owners Obligations

001: Provide vehicle for period 'p'.

002: Provide vehicle in acceptable condition.

003: Return the deposit if vehicle is returned in acceptable condition.

004: Settle all disputes.

005: Provide electronic evidences about breaches of the contract.

Owners Rights

OR 1: Terminate x-contract, if the Renter is in breach of the contract.

Renter's Obligations

RO 1: Make deposit.

R02: Make payments on time.

R03: Follow vehicle use agreements ('a' to "i').

Chapter 5

R04: Pay for vehicle fuel.

R05: Return vehicle at date 'd'.

R06: Pay for damages.

R07: Settle all disputes.

R08: Provide electronic evidences about breaches of the contract.

Renter's Rights

RRl: Terminate the x-contract, if the Owner is in breach of the contract.

Our next task is to map the above rights and obligations into FSMs for the Owner and the

Renter.

Validation of Electronic Contracts: Examples

5.2.3 The finite state machines

Owner

Contract commencement date

Fig.5.9. Owner's Finite state machines

117

Chapter 5

Renter

Contract commencement date

01 Provide deposit

Fig.S.lO. Renter's finite state machine

Validation of Electronic Contracts: Examples 119

5.2.4 The Promela Model:

Below is the Promela verification model of the finite state machines presented in Section

5.2.3.

1 1* Verification model of an x-contract between a car owner and
a renter
2 *
3 * Programme created using XSPIN for simulation and
verification of FSM
4 * correctness
5 *
6 * AUTHOR: Ellis Solaiman
7 * University Of Newcastle
8 * Date of Creation May
9 * Last Update July

Upon Tyne
10 2003
22 2003

10 *
11 *1
12
13 II Constant definitions
14
15 #define Yes 1
16 #define No 0
17
18
19
20
21
22
23
24
25
26
27
28
29 IIMessages that will be passed between Owner and the Renter
30 mtype = {Deposit, Payment, Response, Remedy, Breach}
31
32 chan R20=[1] of {mtype, byte}; II channel Renter to Owner
33 chan 02R=[1] of {mtype, byte}; II channel Owner to Renter
34
35 byte provideVehicle = No;
36
37 1****** Owner FSM ******1
38
39 proctype Owner()
40 {
41 int depositVal;
42 byte paymentGood;
43 byte vehicleBreach;
44 byte returnedlnTime;
45 byte condition;
46 byte remedy = Good;
47 byte rentPeriod;
48 int time = 0;

#define Good 1
#define Bad 0

#define Accept 1
#define Reject 0

#define Over 1
#define NotOver 0

#define RentTime 5

49
50 1*** Waiting for deposit reciept ***1
51 WaitingforDeposit:
52

Chapter 5

53 if
54 ::R20? Deposit (depositVal) -> IIDeposit received
55 ::timeout -> goto Dispute Iitimeout assuption by the designer
56 fi;
57
58 II Random iflfi structure
59 if
60
61

provideVehicle
provideVehicle

Yes; assert(depositVal==Good);
No; goto end;

62 fi;
63
64 1*** Check for vehicle use breach ***1
65 CheckVehicleBreach:
66
67 if
68 .. vehicleBreach = Yes; goto WaitingforPayment;
69 vehicleBreach = No; goto WaitingforPayment;
70 fi; II A breach or non- breach is recorded and we carryon
71
72 1*** Waiting for rent payment ***1
73 WaitingforPayment:
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

if
::R20? Payment (paymentGood) ->
::timeout -> goto Dispute; II Assumption on the designers part
fi;

if
::(paymentGood==Yes) -> goto RentPeriod;
::(paymentGood==No) -> goto RentPeriod;
fi; II Payment is recorded and we carryon

1*** Check vehicle rent period ***1
RentPeriod:

if
(time
(time

RentTime); goto WaitingforVehicle;
!= RentTime); time++; goto CheckVehicleBreach;

fi;

1*** Waiting for Vehicle to be returned ***1
WaitingforVehicle:

if
97 ::returnedlnTime
98 ::returnedlnTime
99 fi;

Yes; goto CheckVehic1e;
No; goto CheckVehicle;

100
101
102
103
104 if
105
106

1*** Check Vehicle for damage ***1
CheckVehicle:

::condition Good; goto AssessBreaches;.
Bad; goto AssessBreaches;::condition

107 fi;
108
109 1*** Assess any breaches relating to rental of vehicle ***1
110 AssessBreaches:
111
112 if

Validation of Electronic Contracts: Examples 121

113 ::
(vehicleBreach==Yes) II(paymentGood==No) II(returnedlnTime==No) II(condi
tion==Bad)) ->
114 02R! Breach (Yes); goto RemedyRequest;
115 :: else -> 02R ! Breach(No); goto ContractOver
116 fi;
117
118 1*** Breach detected and remedy requested ***1
119 RemedyRequest:
120
121 if
122 ::R20 ? Remedy (remedy) ->
123 ::timeout -> goto Dispute
124 fi;
125
126 II Check remedy correctness
127 if
128
129

remedy
remedy

Good -> goto ContractOver
Bad -> goto Dispute

130 fi;
131
132 1*** Dispute state. Owner not happy about something ***1
133 Dispute:
134
135 printf("\n\nDispute\n\n");
136 goto end;
137
138 1*** Contract ends satisfactorily ***1
139 ContractOver:
140 assert (remedy == Good);
141 printf("\n\nContract Over\n\n");
142
143 1*** End ***1
144 end:
145 printf(II\n\n End \n\n");
146
147
148
149
150
151
152
153 1****** Renter FSM ******1
154 proctype Renter()
155 {
156
157 byte paymentVal;
158 byte rent Period;
159 byte response;
160 byte depositVal;
161 byte condition;
162 byte paymentDue;
163 int time = 0;
164
165
166 1*** Provide Deposit ***1
167 if
168 :: R20 ! Deposit (depositVal) ->
169 :: skip; goto End; II Modelling possible system failure
170 fi; II or failure by the Renter to make the
deposit

Chapter 5

171
172 1*** Waiting for Vehicle ***1
173 WaitforVehic1e:
174
175 if
176 .. (provideVehic1e

.. (provideVehicle
Yes); goto CheckVehicleCondition;
No); goto Dispute;177

178
179
180
181
182

fi;

1***Check the vehicle condition***1
CheckVehicleCondition:

183 if
184
185
186
187
188
189

::condi tion Good -> goto PaymentTime;
Bad -> goto Dispute;::condi tion

fi;

1*** If it is due, pay the car rent ***1
PaymentTime:

190
191 if
192 .. payment Due
193 .. paymentDue
194 fi;
195
196 if
197 .. paymentVal Good;
198 .. paymentVal Bad;
199 fi;
200
201 if
202 .. R20 ! Payment (paymentVal) ->
203 .. skip; -> goto End II Renter does not pay for some reason.
204 fi; II Maybe he runs of with the car!
205
206 1***Check vehicle rent period***1
207 RentPeriod:
208
209 if
210 .. (time RentTime)->
211 .. (time != RentTime) -> time++; goto PaymentTime;
212 fi;
213

Yes ->
No -> goto PaymentTime;

214 IIReturn vehicle
215 goto WaitingBreachResponse;
216
217
218 /***Waiting for any complaints from the Owner***1
219 WaitingBreachResponse:
220
221 if
222 ::02R ? Breach(response) ->
223 ::timeout;
224 fi;
225
226 if
227 .. (response
228 .. (response
229 fi;
230

Yes) ->
No) -> goto ContractOver

231 I/Car owner requests remedy

Validation of Electronic Contracts: Examples 123

232
233 if
234 R20
235 R20
236 fi;
237
238 /*** Contract Over ***/
239 ContractOver:
240 assert (condition == Good);
241 printf("\n\n Contract Over\n\n");
242 goto End;

Remedy (Good)-> goto ContractOver
Remedy (Bad) -> goto ContractOver

243
244 /*** Dispute state. Renter not happy with something***/
245 Dispute:
246 printf(II\n\n Dispute \n\n");
247
248 /*** End state ***/
249 End:
250 printf("\nEnd\n");
251
252
253
254 /****** Initiate Owner's and Renter's FSM ******/
255 init
256
257 run Owner();
258 run Renter();
259

5.2.5 X-contract verification

General Safety properties

After checking the Promela model for any syntax errors, we will first begin checking the

correctness of the model with respect to the general correctness requirements.

Figure 5.11 shows the path in the verification model through which the Spin validator

detected an ambiguity.

The reason for the sequence of events in the simulation is that throughout the model,

we initially assumed that the Renter and the Owner may make mistakes in assessing whether

the car rent period is over. So in figure 5.11, Spin simulates the possibility that the Renter

assumes the rental period to be over, in the mean time the owner assumes that the rent period

is not over - which one of the two assessments is correct does not matter for the purpose of

validation-. This results in the Owner not receiving an expected payment, and he terminates

the x-contract and goes to a dispute state. Meanwhile the Renter assuming there are no more

rent payments to be made, returns the car, and moves on to the state waiting for the breach

assessment from the owner, which will not be received because the Owner has already

terminated the x-contract (Entering the dispute state), and is not sending any more messages

within the confines of the x-contract, So we have deadlock because the Renter's FSM is

waiting indefinitely, for a message which the Owner's FSM is not going to send. This could

Chapter 5

be avoided for example by the Owner's FSM sending a- payment reminder before terminating

the x-contract.

><,Simulation output '10 iJif~

Dispute
18, proc 1 (Owner) line 132 "pan_in" (state 65)
[printf('\\n\\nDispute\\n\\n')]
End
19, pr oc 1 (Owner) line 141 "pan_in" (state 68)

\\n\\n')]
spin, trail ends after 20 steps
#processes: 3
20, proc 2 (Renter) line 216 "pan_in" (state 38)
20, proc 1 (Owner) line 143 "pan_in" (state 69)
20, proc 0 (, ini t) line 250 "pan_in" (state 3)

3 processes created
Exi t-Status 0

I _Js~in-g~le~S~te-p--J'~s~u-s-~-~-d~.J'-------------~;-~----~~~~~~'--=--~'-~can~-c-e~l-1

1, pr-oc 0 Co init:) line 248 "pan_in" (state 1) [(run Owner ())]
2, p:coc 0 (, .i.rri t.:) line 249 "pan_in" (state 2) [(run Renter())]
3, proc 2 (Renter) line 163 "pan_in" (state -) [values: l!Deposit,O]
3, pr-cc 2 (Renter) line 163 "pan_in" (state 1) [R20IDeposit,depositVal]
4, proc 1 (Owner) line 51 "pan_in" (state -) [values: 1?Deposi t., 0]
4, proc 1 (Owner) line 51 "pan_in" (state 1) [R20?Deposit,depositVal]
5, prDc 1 (Owner) line 57 "pan_in" (state 6) [provideVehicle = 1]
6, proc 1 (Owner) line 65 "pan_in" (state 11) [vehicleBreach = 1]
7, proc 2 (Renter) line 171 "pan_in" (state 6) [«provideVehicle==l))]
8, proc 2 (Renter) line 179 "pan_in" (state 12) [condition = 1]
9, proc 2 (Renter) line 187 "pan_in" (state 18) [paymentDue = 1]

10, proc 2 (Renter) line 192 "pan_in" (state 23) [paymentVal = 1]
1L proc 2 (Renter) line 197 "pan_in" (state -) [values: l!Payment,l]
1L proc 2 (Renter) line 197 "pan_in" (state 27) [R20IPayment, paymentVal]
12, proc 2 (Renter) line 205 "pan_in" (state 32) [r errt.s e r i.od = 1]
13, proc 1 (Owner) line 73 "pan_in" (state -) [values, l?Payment,l]
13, proc 1 (Owner) line 73 "pan_in" (state 17)
[R20?Payment,paymentGood]
14, prDc 1 (Owner) line 78 "pan_in" (state 22) [«paymentGood==l))]
15, pr-DC 1 (Owner) line 87 "pan_in" (state 30) [rentPeriod = 0]
16, proc 1 (Owner) line 65 "pan_in" (state 11) [vehicleBreach = 1]
17, pr-oc 1 (Owner) line 74 "pan_in" (state 18) [(timeout)]

[printf('\\n\\n End

Fig .5.11 Safety error in the verification model

However this is not required within the text of the contract, and is not requested by the

signatories, and therefore we have not coded a payment reminder into the x-contract model.

The signatories have agreed instead to solve the deadlock possibility by assuming time

conflicts between them regarding the rental period is not required, so this assumption is

removed from the code by synchronising both their finite state machines using a timer, see

lines 27, 89, 90, 209, and 210.

Even after synchronising both FSMs there may still arise the possibility that the

Renter will wait endlessly for a breach response, so the signatories also agreed to give the

Owner a time limit within which to send a breach complaint. If the breach complaint is not

received within this time limit, the Renter himself goes to a dispute state. This is achieved by

adding line 222, which is enacted if the Renter does not receive a response in line 221:

218 WaitingBreachResponse:
219
220 if
221 ::02R ? Breach(response) ->
222 ::tirneout -> goto Dispute;
223 fi;
224

Validation of Electronic Contracts: Examples 125

As a result of this, the initial contract as well as the x-contract model is amended by

adding a clause to remove this ambiguity:

Remedy

The Owner hereby agrees that he shall notify the Renter of any Remedy
requests within a period after the return of the vehicle that does
not exceed number of agreed time units.

Also the Renter's finite state machine is modified, see dashed arrow in figure (Renter FSM).

After making the changes, we once again run the modified Promela model through

the Spin verifier against the general safety requirements, and it does not detect any errors this

time. See figure 5.12.

<Verification Output ,~~j,~;'
I \, (Spin Version 4.0. 1 -- 7 January 2003)
- + Partial Order Reduction

Full statespace search for:
never-claim
assertion violations
cycle checks
invalid endstates

- (not selected)
- (disabled by -A flag)

(disabled by -DSAFETY)
+

State-vector 60 byte, depth reached 67, errors: 0
886 states, stored
274 states, matched

1160 transitions (= stored+matched)
o atomic steps

hash conflicts: 0 (resolved)
(max size 2A19 states)
2.622 memory usage (Mbyte)
unreached in proctype Owner

(0 of 70 states)
unreached in proctype Renter

(0 of 58 states)
unreached in proctype :init:

1b (0 of 3 states)

Save in: II aear I ause

Fig.5.12. Verification output after checking general safety requirements

Specific Safety properties

After ensuring the correctness of the model with respect to the general safety properties, we

can begin checking it against any specific safety requirements that the signatories would like

to test the model for. The parties have expressed the following requirements from the model:

1. The Owner would like to ensure that the x-contract will not allow the system go into a

satisfactory situation before it has checked that the renter has remedied any breaches of the

contract.

Chapter 5

2. The Owner would like to ensure that the vehicle is not provided before a correct deposit is

received.

2. The Renter would like to ensure that he will not receive a vehicle in a bad condition.

As we did in Section 5.1.5, we will check for these requirements by inserting assert

statements in the relevant points of the Promela model:

For the first safety requirement:

138 1*** Contract ends satisfactorily ***1
139 ContractOver:
140 assert (remedy == Good);
141 printf("\n\nContract Over\n\n");

For the second safety requirmnent:

58 II Random if/fi structure
59 if
60 provideVehicle
61 provideVehicle
62 fi;

Yes; assert (depositVal==Good) ;
No; goto end;

For the third safety requirement:

238 1*** Contract Over ***1
239 ContractOver:
240 assert (condition == Good);
241 printf("\n\n Contract Over\n\n");
242 goto End;

Next, we setup the validator to check for assertions, and it detects a violation (assertion

violation (depositVal == 1)). Through the route in which the violation was detected, figure

5.13, we realise that the Promela model does not check the deposit when it is received. This is

because the text contract does not actually specify this as a requirement so the model designer

did not specify the requirement within the x-contract model either.

><Simulation Output , ; ;,;tsi"
1: proc
2: proc
3: proc
3: proc
4: proc

Dispute
5: proc

End
6: proc (Renter) line 250 "pan_in" (state 56)
7: proc 2 terminates
6: proc 1 (Owner) line 54 "pan_in" (state -)
6: proc 1 (Owner) line 54 "pan_in" (e tat.e 1)
9: proc 1 (Owner) line 60 "pan_in" (state 6)

spin: line 60 "pan in", Error: assertion violated
span: text of failea assertion: assert((depositVal··1»
#p:roces~e8: 2
10: proc 1 (Owner) line 60 "pan_in" (state 7)
10: proc 0 (: initj:) line 259 "pan_in" (state 3)

3 processes created
Ll Exit-Status 0

[values: l?Deposit,OI
[R207Deposit,depositVall
[pro~ideVehicle = 11

0 (:init:) line 257 "pan_in" (state 1)
0 (:init:) line 256 "pan_in" (s t.at.e 2)
2 (Renter) line 168 "pan_in" (state -)
2 (Renter) line 168 "pan_in" (state 1)
2 (Renter) line 177 "pan_in" (state 8)

(Renter) line 246 "pan_in" (state 57)

[(run Owner (»]
[(run Renter 0)]
[values: l!Deposit,O]
[R20IDeposit,depositVall
[((provideVehicle==O» 1

[printf('\\n\\n Dispute \\n\\n')]

[printf (' \ \nEnd\ \n')]

Single Step I Suspend Save in: I sim.out

Fig.5.13. Simulation output through path where safety violation is detected

cancel

Validation of Electronic Contracts: Examples 127

As the signatories have specified a correct deposit as a requirement, the Promela

model is subsequently modified:

50 /*** Waiting for deposit reciept ***/
51 WaitingforDeposit:
52
53 if
54 ::R20 ? Deposit (depositVal) -> //Deposit received
55 ::timeout -> goto Dispute //timeout assuption by the designer
56 fi;
57
58 if
59 ::(depositVal
60 ::(depositVal

Good) ->
Bad) -> goto end

61 fi;

As can be seen in line 60, it was decided that if an incorrect deposit is received, then

the contract would simply end, without the need to go to a dispute state. It was also decided

that no changes to the original text contract are required.

Liveness properties

The parties have requested to test the x-contract model for the following liveness

requirements:

1. The Renter makes correct Rent payments at the required time, otherwise the Owner's FSM

does not proceed, and goes to a dispute state.

2. The x-contract does not get into a situation where the Renter must make rent payments

infinitely.

Liveness requirement I can be defined as of type CRIO (Responsiveness). We will

test for this by defining the variable payln'Fime, and asserting that payln'Iime, and

paymentGood, are always True when in the "Check vehicle rent period" state:

91 /*** Check vehicle rent period ***/
92 RentPeriod:
93 assert(payInTime == Yes && paymentGood == Yes);

The validator detects no error, therefore requirement I is valid.

Requirement 2 tests for livelock (CR 9). We want to test that neither of the FSMs loops

infinitely through a sequence of steps that involves the Renter having to infinitely pay

(monthly for example) rent for the car, meaning that a rented car cannot be rented for ever.

To test for this requirement, we will insert an accept labels in both FSMs as

follows:

Chapter 5

79 WaitingforPayment:
80 acceptNotWaitPay:

195 PaymentTime:
196 acceptNotPay:

Inserting the accept labels after the Wai t.Lnq f o r Pe yme n t., and the

Payme n t Li.rae statesSpin states tells the verifier to detect whether the x-contract model

allows a hypothetical scenario where any of these two states could be executed infinitely. We

next set the Basic verification options of the Spin validator to detect livelocks. See figure

(Livelock).

>< Basic Verification Options ""~ r

Correctness Properties

Safety (state properties)

_j Assertions

_j Invalid Endstates

• Uveness (cycles/sequences)

'V' Non- Progress cycles

• Acceptance cycles

_j With Weak Fairness

_j lipply Never aaim (If Present)

_j Report Unreachable Code

_j Oleck xr/)(s Assertions

Exhaustive

"/ Supertrace/Bitstate

'v' Hash- Compact

A Full Queue

• Blocks New Msgs

'/ loses New Msgs

[Add Never aaim from File]

[Verify an l Tl Property]

[Set Advanced Options]

Help II' Canc~1 I~
Fig.5.14. Verification options set to detect Iivelock

We run the verifier, and no violations are detected. This is because we had inserted a

RentTime limit into the model:

91 /*** Check vehicle rent period ***/
92 RentPeriod:
93 assert (paylnTime == Yes && paymentGood == Yes);
94 if
95 :: (time RentTime); goto WaitingforVehicle;
96 :: (time != RentTime); time++; goto CheckVehicleBreach;
97 fi;

212 /***Check vehicle rent period***/
213 RentPeriod:
214
215 if
216 (time RentTime) ->

-------, .._---

Validation of Electronic Contracts: Examples 129

217 :: (time != RentTime) -> time++; goto PaymentTime;
218 fi;

After verifying the correctness of the model with respect to the safety and liveness

requirements, we can proceed with implementing the x-contract.

5.3 Playing a game over a network

Turn based Games played between two or more players over a network, can serve as good

examples of applications which contain rules that govern the interaction between parties.

Applications with such rules require validation for correctness before they can be

implemented. Examples of games that can be played remotely are; Chess, Ticktacktoe,

Monopoly, Poker ... etc.

Two or more players before starting a game will be familiar with the set of conditions

under which the game must be played. Conditions or rules can be seen as the "contract

clauses" that the players must agree to before beginning.

Games vary in the number of players allowed to participate from a minimum of two,

going anything up to 6 or more. Generally online games, have a familiar pattern of

communication based on each player waiting for their turn to arrive, making judgements

based on the game status, and eventually doing something. Throughout the game the players

will observe other player's actions to ensure that everyone attends to the game conditions.

In this section, we present a possible finite state machine representation of some turn

based games played over a network. The finite state machine should be detailed and

unambiguous to facilitate the interaction between the players in an orderly and lawful manner.

We will begin therefore by formulating the general set of rules or "contract clauses" that the

players must adhere to during game play.

A helpful reminder would be that all applications from business contracts to games

are to be implemented in a decentralised distributed fashion, with the help of a suitable

middleware service such as 8280bjects. Therefore the traditional method of running games

from a dedicated central server is not applicable for our implementation. Each of the

participants in the game will have a copy of the state of the game as well as the rules of the

game in the form of identical object copies. Every player will attempt to make changes to the

state of the game by interfacing with his/her local object copy, and transmitting the attempted

changes to the other player's object copies. Only when all players accept the attempted

change to the game status, will every player's object copy be modified.

Chapter 5

5.3.1 Rules of the game

This is a game of "chance" between "3 players" to be known as: "Playerl", "Player2", and

"Player3". Following the beginning of the game, the players will adhere to the following rules:

1. A player p must make an "action" within 2 minutes of receiving the
"turn" or they will be declared "defeated".
2. The turn will not be with more than one player at anyone time.
3. The player with the "turn" must send his/her chosen action to all
players.
4. Upon receipt of an action from the "turn" player, the receiving
player must send an "action accepted" or "action rejected" message to
the turn player.
5. If the turn player receives an "action rejected" message from the
other players then he/she must make another action within 2 minutes
of receiving the rejecting message.
6. If the turn player p receives an "action accepted" message from
the other players, then the turn player must send the "turn" to the
next player p+l.

7. If the turn player sends an action that is judged by the other
players to be a "winning action" then the game ends, and the turn
player that performed the action is declared winner of the game.
S. A player may resign from the game only when he/she has the turn.

5.3.2 Players' rights and obligations

There are two possible methods that we can choose from in order to convert the rules in

Section 5.3.1 into an x-contract, We could either split the contract into rights and obligations

for the tum player, and rights and obligations for the non-tum players, so each player will

have two finite state machines that hislher system switches between based on whether the

player has the tum or not. Or we can simply extract rights and obligations for each player that

represent the game rules as a whole, so each player will only have one FSM. To demonstrate

the tum being passed between the players, we have chosen to implement the second approach.

Players' Obligations

POI: A player must make an "action" within 2 minutes of receiving the "tum".

P02: Tum player must send chosen action to all players.

P03: Non-tum players must send Action response to "tum" player.

P04: Tum player must make an action within 2 minutes of receiving a rejection message.

Validation of Electronic Contracts: Examples 131

P05: Turn player must send the turn to the next player after receiving an action accept message from

all the other players.

Players' Rights

PRl: Resign from the game (only when the player has the turn)

Chapter 5

5.3.3 The finite state machine

Figure 5.14 shows a FSM which models the general game interaction pattern. The figure

shows the FSM for just one player. The FSM will be the same for all the players.

me begins

Correct action message

"Turn" Received

,
Fig. 5.14. FSM for a player participating

in a turn based game

Validation of Electronic Contracts: Examples 133

5.3.4 Games' FSMs in Promela

We will simulate a game between 3 players. As the finite state machine for each player will

be the same, the Promela model will have virtually identical procedures for each of the

players:

1 1* Verification model of a game played between 3 players
2 * Programme created using XSPIN for simulation and
verification of FSM
3 * correctness
4 *
5 * AUTHOR: Ellis Solaiman
6 * University Of Newcastle Upon Tyne
7 * Date of Creation May 10 2003
8 * Last Update July 24 2003
9 *
10 *1
11
12 #define ON 1
13 #define OFF 0
14
15 #define Good 1
16 #define Sad 0
17
18 #define Yes 1
19 #define No 0
20
21 #define True 1
22 #define False 0
23
24 #define Win 10
25
26 #define Resign 5
27
28 mtype = {Action, ActionA, ActionS,
ResponseA, ResponseS, ResponseC)
29
30
31
32
33
34
35
36
37
38
39
40
41

ActionC, Turn, Response,

chan P2P[4] = [1] of {mtype, inti;

int turn = 1; II Turn begins with first player
byte player[4];
byte turnDecided = Yes;

42 1****** FSM of first player ******1
43 proctype PlayerA()
44 {
45 int id = 1;
46 player[l] = ON;
47
48 int action;
49 int response[3];112 players respond

Chapter 5

50 response[O] 0;
51
52
53 1*** Is it my turn? ***1
54 CheckingTurnStatus:
55
56 do II Loop untill the turn has been decided.
57 (turnDecided == Yes) ->
58 if
59 :: (turn == id) -> goto DecidingOnAction;
60 :: (turn != id) -> goto WaitingForAction;
61 fi; break;
62 .. (turnDecided == No);
63 od;
64
65
66
67
68
69
70
71
72
73

1*** It is my turn. Deciding on action ***1
DecidingOnAction:

turnDecided = No;
IIRandomly simulate one of the following actions
if

action Good;
Bad;74 action

75 .. action
76 action

Win;
Resign -> goto EndParticipation

77 fi;
78
79 if IIIf other players have left the game, then end the game.
80 (player[2]!= ON && player[3]!= ON) -> goto EndParticipation;
81 .. else ->
82 fi;
83
84 II Randomly send action or end participation in game
85 if
86 .. if
87
88
89
90
91
92
93

.. (player [2]

.. else ->
fi;

ON) -> P2P [id] ActionB(action);

if
(player[3]

.. else ->
ON) -> P2P [id] ActionC(action) ;

94 fi;
95 ::skip -> goto EndParticipation;
96 fi;
97
98
99 IIWaiting for response to action from other participants
100 WaitForResponse:
101
102 if IIFirst check that the player (P2) I am waiting a response
from is playing
103 :: (player[2]
104 :: else ->
105 fi;
106
107 if IICheck that the player (P3) I am waiting a response from is
playing
108 :: (player[3] == ON) -> P2P[3] ? ResponseC(response[2]) ->

ON) -> P2P[2] ? ResponseB(response[l]) ->

Validation of Electronic Contracts: Examples 135

109 :: else ->
110 fi;
111
112 if
113 ((player [2]
DecidingOnAction;
114 :: ((player[3]
DecidingOnAction;
115 :: else ->
116 fi;
117
118 if II if accepted action was a winning one
119 .. (action == Win) -> goto End

ON) && (response[l] Bad)) -> goto

ON) && (response[2] Bad)) -> goto

120 .. else ->
121 fi;
122
123 if II If we reach here then the move was judged by the players to
be good
124 :: (player[2] == ON) -> turn = 2; turnDecided = Yes; goto
CheckingTurnStatus
125 :: else if
126 (player[3] == ON) -> turn = 3; turnDecided = Yes;
goto CheckingTurnStatus
127 else -> printf("\n\n Unexpected Event\n\n");
128 fi;
129 fi;
130
131
132
133
134 1*** It is not my turn, Waiting for action from player with turn
***1
135 WaitingForAction:
136
137 if
138 ..
139
140
141
142
143

(player[turn] == ON) ->
if

P2P[turn] ? ActionA(action) _>
.. timeout -> player[turn] = OFF _>

if

CheckingTurnStatus
144 .. (turn == 3) -> turn=l; turnDecided
CheckingTurnStatus
145 fi;
146 fi;
147 .. else -> goto CheckingTurnStatus;
148 fi;

(turn == 2) -> turn=3; turnDecided Yes; goto

Yes; goto

149
150 CheckingAction:
151
152 if
153 ::(action == Good) -> P2P[id]
CheckingTurnStatus
154 ::(action == Win) -> P2P[id]
155 ::(action == Bad) -> P2P[id]
WaitingForAction
156 fi;

! ResponseA(Good) -> goto

ResponseA(Good) -> goto End
ResponseA(Bad) -> goto

157
158 EndParticipation:
159 printf("\n\nPlayerA Resigned\n\n");

Chapter 5

160
161 End:
162 printf("\n\nPlayerA Game Ended\n\n");
163
164
165
166
167
168
169
170
171
172 1****** FSM of second player ******1
173 proctype PlayerB()
174 {
175 int id = 2;
176 player[2] = ON;
177
178 int action;
179 int response[3];112 players respond
180 response[O] = 0;
181
182 1*** Is it my turn? ***1
183 CheckingTurnStatus:
184
185 do II Loop untill the turn has been decided.
186 .. (turnDecided == Yes) ->
187 if
188 :: (turn == id) -> goto DecidingOnAction;
189 :: (turn != id) -> goto WaitingForAction;
190 fi; break;
191 (turnDecided == No)
192 od;
193
194
195 1*** It is my turn. Deciding on action ***1
196 DecidingOnAction:
197
198 turnDecided = No;
199 IIRandomly simulate one of the following actions
200 if
201 .. action
202 .. action
203 action
204 .. action
205 fi;
206
207
208 if IIIf other players have left the game, then end the game.
209 .. (player[l] != ON && player[3]!= ON) -> goto EndParticipation;

Good;
Bad;
Win;
Resign -> goto EndParticipation

210 else->
211 fi;
212
213 II Randomly send action or end participation in game
214 if
215 .. if
216 .. (player[l]
217 else ->
218 fi;
219
220 if

ON) -> P2P [id] ActionA(action);

Validation of Electronic Contracts: Examples 137

221 (p1ayer[3] ON) -> P2P [id] ActionC(action) ;
222 else ->
223 fi;
224 ::skip -> goto EndParticipation;
225 fi;
226
227
228 IIWaiting for response to action from other participants
229 WaitForResponse:
230
231 if IIFirst check that the player (P1) I am waiting a response
from is playing
232 (player[l]
233 :: else ->

ON) -> P2P[1] ? ResponseA(response[l]) ->

234 fi;
235
236 if IICheck that the player (P3) I am waiting a response from is
playing
237 .. (player[3] == ON) -> P2P[3] ? ResponseC(response[2]) ->
238 :: else ->
239 fi;
240
241
242 if
243 ((player[l]
DecidingOnAction;
244 :: ((player [3]
DecidingOnAction;
245 :: else ->

ON) && (response[l] Bad)) -> goto

ON) && (response[2] Bad)) -> goto

246 fi;
247
248
249 if II if accepted action was a winning one
250 (action == Win) -> goto End
251 else->
252 fi;
253
254
255 if II If we reach here then the move was judged by the players to
be good
256 :: (player[3] == ON) -> turn = 3; turnDecided = Yes; goto
CheckingTurnStatus
257 :: else if
258 (player[l] == ON) -> turn = 1; turnDecided = Yes;

CheckingTurnStatus
else -> printf("\n\n Unexpected Event\n\n");

goto
259
260
261
262
263
264
265 1*** It is not my turn, Waiting for action from player with turn

fi;
fi;

***1
266 WaitingForAction:
267
268 if
269 (player [turn] == ON) ->
270 if
271 P2P[turn] ? ActionB(action) ->
272 .. timeout -> player[turn] = OFF ->
273 if

Chapter 5

274 :: (turn == 1) -> turn=2; turnDecided
CheckingTurnStatus
275 :: (turn == 3) -> turn=1; turnDecided
CheckingTurnStatus
276 fi;
277 fi;
278 else -> goto CheckingTurnStatus;
279 fi;
280
281
282 CheckingAction:

Yes; goto

Yes; goto

283
284 if
285 ::(action == Good) -> P2P [id] ! ResponseB (Good) -> goto
CheckingTurnStatus
286 ::(action == Win) -> P2P[id]
287 ::(action == Bad) -> P2P[id]

ResponseB(Good) -> goto End
ResponseB(Bad) -> goto

WaitingForAction
288 fi;
289
290
291
292
293
294 EndParticipation:
295 printf("\n\nP1ayerB Resigned\n\n");
296
297 End:
298 printf("\n\nPlayerB Game Ended\n\n");
299
300
301
302
303
304
305 1****** FSM of third player ******1
306 proctype PlayerC()
307 {
308 int id = 3;
309 player[3] = ON;
310
311 int action;
312 int response[3];112 players respond
313 response[O] = 0;
314
315 1*** Is it my turn? ***1
316 CheckingTurnStatus:
317
318 do II Loop until1 the turn has been decided.
319 (turnDecided == Yes) ->
320 if
321 :: (turn == id) -> goto DecidingOnAction;
322 :: (turn != id) -> goto WaitingForAction;

fi; break;
(turnDecided == No)

323
324 ..
325 od;
326
327
328 1*** It is my turn. Deciding on action ***1
329 DecidingOnAction:
330

Validation of Electronic Contracts: Examples 139

331 turnDecided = No;
332 IIRandomly simulate one of the following actions
333 if
334
335
336
337

action
action
action
action

Good;
Bad;
Win;
Resign -> goto EndParticipation

338 fi;
339
340 if IIIf other
341 ., (player[l]
342 else->
343 fi;
344
345 II Randomly send action or end participation in game

players have left the game, then end the game.
!= ON && player[2]!= ON) -> goto EndParticipation;

346 if
347 if
348
349
350
351
352
353

(player[l]
else ->

ON) -> P2P[id] ActionA(action);

fi;

if
(player[2] ON) -> P2P[id] ActionB(action);

354 else ->
355 fi;
356 ::skip -> goto EndParticipation;
357 fi;
358
359
360 IIWaiting for response to action from other participants
361 WaitForResponse:
362
363 if IIFirst check that the player (PI) I am waiting a response
from is playing
364 .. (player[l] ON) -> P2P[1] ? ResponseA(response[l]) ->
365 :: else ->
366 fi;
367
368 if IICheck that the player (P3) I am waiting a response from is
playing
369 .. (player[2] == ON) -> P2P[2] ? ResponseB(response[2]) ->
370 :: else ->
371 fi;
372
373
374 if
375 .. ((player[l]
DecidingOnAction;
376 :: ((player[2]
DecidingOnAction;
377 :: else ->

ON) && (response[l] Bad)) -> goto

ON) && (response[2] Bad)) -> goto

378 fi;
379
380
381 if II if accepted action was a winning one
382 ., (action == Win) -> goto End
383 ., else ->
384 fi;
385
386

Chapter 5

387 if // If we reach here then the move was judged by the players to
be good
388 :: (player[l] == ON) -> turn = 1; turnDecided = Yes; goto
CheckingTurnStatus
389 :: else if
390 :: (player[2] == ON) -> turn = 2; turnDecided = Yes;
goto CheckingTurnStatus
391 else -> printf("\n\n Unexpected Event\n\n");
392 fi;
393 fi;
394
395
396 /*** It is not my turn, Waiting for action from player with turn
***/
397 WaitingForAction:
398
399 if
400
401
402

.. (player[turn] == ON) ->
if

P2P[turn] ? ActionC(action) ->
403 .. timeout -> player[turn] = OFF ->
404 if
405 :: (turn == 1) -> turn=2; turnDecided
CheckingTurnStatus
406 :: (turn==2) ->turn=3; turnDecided
CheckingTurnStatus
407 fi;
408 fi;
409 .. else -> goto CheckingTurnStatus;
410 fi;

Yes; goto

Yes; goto

411
412
413 CheckingAction:
414
415 if
416 ::(action == Good) -> P2P [id] ! ResponseC (Good) -> goto
CheckingTurnStatus
417 ::(action == Win) -> P2P[id]
418 ::(action == Bad) -> P2P[id]

ResponseC(Good) -> goto End
ResponseC(Bad) -> goto

WaitingForAction
419 fi;
420
421
422
423
424
425 EndParticipation:
426 printf("\n\nPlayerC Resigned\n\n");
427
428 End:
429 printf("\n\nPlayerC Game Ended\n\n");
430
431
432
433
434
435 init
436
437
438 run PlayerA();
439 run PlayerB();

Validation of Electronic Contracts: Examples 141

440 run PlayerC();
441
442

5.3.5 Game model verification

Because this is a game of rules that we are imposing on players who wish to play it, we will

suffice with checking that the model is correct with respect to the general safety properties,

i.e., CR3: Reachability, CR4: Freedom from deadlocks, and CRll: Absence of unsolicited

responses.

We set the verifier to detect general safety properties, and run it. The verifier signals

that it has detected an error (figure 5.15).

rrr -- _.-
i
I~Ipan mval1d endstate (at depth 145)

I
,j pan wrote pan rn t r ai l,

(Sp1n VerS10n 4 0 1 -- 7 January 2003)
Warn1ng Search not completed

II + Par t.i aL Order Reducti.on

, Full statespace search for

I
never=c Lai.n - (not selected)
assert10n v10lat10ns - (d1sabled by -A flag)
cycle checks - (disahLed by -DSAFETY)I invalid endstates +

I :11 State-vector 144 byte, depth reached 193, errors' 1

Fig.S.lS. General safety error detected in Game model

To discover the source of the error, we will run the Spin simulator through the path in

which the error was detected. The results are presented in figure 5.16.

\ 78. proc 3 (PlayerC) line 417 lipan_in" (state 109) [printf('\\n\\nPlayerC
GameEnded\\n\\n') II
79: proc 3 terminates
80: proc 1 (PlayerA) line 60 "pan_in" (state 6) [«turn!=id)) I
81: proc 2 (PlayerB) line 268 lipan_in" (state 83) [(timeout) I
82: proc 2 (PlayerB) line 268 "pan_in" (state 84) [player [t.urn] = 01
83: proc 2 (PlayerB) line 271 "pan_in" (state 89) [«turn==3)) I
84: proc 2 (PlayerB) line 271 "pan_in" (state 90) [tum = 11
85: proc 2 (PlayerB) line 271 "pan_in" (state 91) [turnDecided = 11
86 proc 2 (PlayerB) line 184 "pan_in" (state 3) [«turnDecided==l))I
87: proc 2 (PlayerB) line 187 "pan_in" (state 6) [«turn! =id)) I
88: proc 1 (PlayerA) line 141 lipan inti (state 83) [(timeout) I

"A 89: proc 1 (PlayerA) line 141 "pan-in" (state 84) [player [turn] 01

Single step I~ Save in: I sirn.out aear Cancel

Fig.S.l6. Simulation output of path in which error is detected

In the simulated route, the turn is passed to player C, who decides to abruptly leave the game

without informing the other players. (steps 78, and 79 in figure 5.16).

Players A and B in the mean time are still waiting for an action from player C.

Player B first detects that no action is forthcoming, and assigns the player with the turn player

Chapter 5

C = OFF (step 82), and gives the turn (A global variable in our model) to player A (step 84).

Following this, player A also detects that no action is forthcoming from player C. But because

the global variable "turn" has been set by player B to equal "1 ", (i.e. turn = player A), player

A unknowingly switches himself off! (step 89). This problem is an example of Spin's ability

to detect programming mistakes, and can be corrected by both players checking if the player

with the turn is "ON" before proceeding with waiting for an action:

136 /*** It is not my turn, Waiting for action from player with turn
***/
137 WaitingForAction:
138
139 if
140 (player [turn] == ON) ->
141 if
142 P2P[turn] ? ActionA(action) ->
143 timeout -> player[turn] = OFF ->
144 if
145 (turn == 2) -> turn=3; turnDecided Yes; goto
CheckingTurnStatus
146 (turn == 3) -> turn=l; turnDecided
CheckingTurnStatus
147 fi;
148 fi;
149 else -> goto CheckingTurnStatus;
150 fi;

Yes; goto

Previously, line 140, and its counterparts in the FSMs of the other players did not

exist.

After making this modification, we again run the Spin validator to check for general

safety errors, and it detects another error. We can see this in the message sequence chart and

the simulation output of figure 5.17.

'>.,: Simulation Output ' f~ 'U, ~

i"lJ '191: proc (PlayerB) line 289 "pan_in"
191: proc (PlayerB) line 289 "pan_in"

~ 192: proc (PlayerB) line 271 "pan_in"
:1193: pr oc (Playerll) line 157 "pan_in"
193: proc (Playerll) line 157 "pan_in"
194: proc (PlayerC) line 366 "pan_in"
194: pr oc 3 (PlayerC) line 366 "pan_in"

I~ IP2P11J?Responsell, response 11JJ
1195: proc 3 (PlayerC) li.ne 369 "pan_in" (state 45) 1((responseI1J==0»JJ 196: proc 3 (PlayerC) line 333 "pan_in" (state 15) IturnDecided = OJ
li, 197: proc 3 (PlayerC) Line 336 "pan dn" (et.at;e 16) Jaction = 1J

[va'lue e : 3 lxeeponeea. OJ
IP2Pl,dJ IResponseB, 0J
I ((player Iturn] ==1» J
[va l.ue a: 2!ResponseA,O]
IP2PlidJ IResponsell, OJ
[vaIuee : 2?Re.ponsell, OJ

(a t.at.e -)
(et.at.e 109)
(state 82)
(state -)
(state 109)
(et.at.e -)
(state 43)

f~slngle Srep I~sus~~_ndJ Save In: J simout I~I ae~' cance~

Fig.5.l7. Simulation of second problem in game model

As can be seen at steps 181, and 187 of the message sequence chart in figure 5.17, when it is

his turn, player C sends a bad action (knowingly or not knowingly) to players A, and B.

Validation of Electronic Contracts: Examples 143

Player B at step 191, and Player A at step 193 of the simulation send player C an error

message. However, Player A's response is received first, and player C goes back to the

"Deciding on action state", and resigns from the game (step 202). Player B's response

remains in a queue. It now becomes player A's turn. He makes his move, and waits for a

response from player B, but instead receives player B's response to player C's move at step

187! This is an error caused by a mistake in the configuration of the message channels in the

Promela code. In order to simplify the code, we setup 3 response channels, ResponseA,

ResponseB, and ResponseC to be used respectively by each of the players in order that they

can respond to the "turn" player's action. A more accurate modelling would be to setup

channels as such: ResponseAB, ResponseAC, ResponseBA, ResponseBC ... etc. However

this would needlessly complicate the model, and a better solution would be to ensure that the

"turn" player does not move to another state before receiving all incoming responses:

99 //Waiting for response to action from other participants
100 WaitForResponse:
101
102 if //First check that the player (P2) I am waiting a response

from is playing
(player[2] == ON) -> P2P[2] ? ResponseB(response[l]) ->
else ->

103
104 ..
105 fi;
106
107 if //Check that the player (P3) I am waiting a response from is

playing
108 ., (player[3] == ON) -> P2P[3] ? ResponseC(response[2]) ->
109 else->
110 fi;
111
112 if
113 ((player[2] ON) && (response[l] == Bad)) -> goto

DecidingOnAction;
ON) && (response[2] == Bad)) -> goto

DecidingOnAction;
114 ((player [3]

115 else->
116 fi;

The above code is the corrected version, whereas previously the response

comparisons made in lines 113 and 114, were placed under lines 103 and 108 respectively.

We must continue running the validator as long as it detects problems, and once again

Spin detects errors, but this time they are of a different nature. The validator has detected code

that is unreachable (CR3). See figure 5.18.

Chapter 5

>(,Verification Output "?~.
~

-" ""--"

{,I unreached in proctype PlayerA
line 127, state 74, "printf (' \n\n Unexpected Event\n\n')"
(1 of 112 states)

unreached in proctype PlayerB
line 259, state 74, "printf (' \n\n Unexpected Event\n\n')"
(1 of 112 states)

unreached in proctype PlayerC

J line 391, state 74, "printf(,\n\n Unexpected Event\n\n')"
(1 of 112 states)

unreached in proctype :init:
"il (0 of 4 states)

Fig.S.18. Detection of unreachable code by the Spin validator.

Fortunately, this is code we inserted only to help us with the modelling process, and is not

required for the game model or the implementation. We can therefore delete or comment out

the code signalled as unreachable by the Spin verifier. This is a good example of Spin's

ability to detect code and states that may not have been integrated correctly during the coding

of a FSM. We comment out the unreachable code (lines 127,259, and 391), run the verifier

one more time for general safety properties, and it signals that the model is correct for these

properties.

As mentioned earlier, we are not required to check the model for other correctness

properties. The FSM model can now be implemented.

5.4 Summary

The focus of Chapter 4 and of this Chapter has been on the identification of a process that we

can implement in order to test contracts for errors and ambiguities, and in order to remove

these errors and ambiguities if any are detected.

We have identified a set of safety and liveness contract correctness requirements, and

using these we have shown through examples and with the Spin model checker how

inconsistencies can be detected and removed from contracts. Once a contract has been

freed of errors, our next task is to create and implement the x-contract, This is the topic of

Chapter 6.

Chapter Six

Middleware Support for X-Contract
Implementation

In this chapter, we investigate what middleware services are required to support a contract

management system that guarantees that the rights and obligations stipulated in a contract are

monitored and enforced. We are assuming that the organizations involved might not trust each

other, so an important requirement from the middleware which will facilitate the contractual

interactions between the parties is that it should enable regulated transactions (as encoded in

the x-contract) between two or more mutually suspicious but autonomous organizations.

It is clearly not possible to prevent organisations from misbehaving and attempting to

cheat on their agreed contractual relationships. The best that can be achieved is to ensure that

all contractual interactions between such organisations are funnelled through (a centralised or

distributed) contract management system and that either (a) all other non-contractual

interactions are disallowed, or (b) the contract management system is at least capable of

monitoring and signalling the signatories of the contract as to when the contract is being

violated, or ideally (c) both a, and b.

The safety properties of the x-contract implementation must ensure that local policies

of an organization are not compromised despite failures and/or misbehavior by other parties;

whilst the liveness properties should ensure that if all the parties are correct (not misbehaving),

then agreed interactions would take place despite a bounded number of temporary network

and computer related failures. Also because we are dealing with contracts, for the purposes of

proof and legality the middleware must have means for collecting non-repudiable evidence of

the actions of parties that interact with each other.

For non-repudiable information sharing we propose to use the 8280bject middleware

developed at the University of Newcastle upon Tyne [CSW02].

6.1 Overview of B2BObjects middleware

8280bjects middleware service collects non-repudiable evidence for information sharing

between parties that do not necessarily trust each other. Once deployed, each party holds a

local copy of shared information encapsulated in objects. Access to and update of this

information is subject to non-repudiable validation by each party. It is assumed that each

organization has a local set of policies for information sharing that is consistent with the

145

Chapter 6

overall information sharing agreement between the organizations (this agreement will be

encoded in the x-contract). B2BObjects provides for the safety and liveness properties

discussed at the beginning of this chapter. The safety property of B2BObjects ensures that

local policies of an organization are not compromised despite failures and/or misbehaviour by

other parties; whilst the liveness property ensures that if all the parties are performing their

actions correctly as stipulated within a contract, then agreed interactions would take place

despite a bounded number of temporary network and computer related failures.

Essentially, B2BObjects resembles a transactional object replica management system

where each organization has a local copy of the object(s) to be shared. Any local updates to

the copy by an organization ("proposed state changes" by the organization) are propagated to

all the other organizations holding copies in order for them to perform local validation; a

proposal comprises the new state and the proposer's signature on that state. Each recipient

produces a response comprising a signed receipt and a signed decision on the (local) validity

of the state change. All parties receive each response and a new state is valid ifthe collective

decision is unanimous agreement to the change. The signing of evidence generated during

state validation binds the evidence to the relevant key-holder. Evidence is stored

systematically in local non-repudiation logs. For protocol details, see [CSW02].

State changes are subject to a locally evaluated validation process. State validation is

application-specific and may be arbitrarily complex (and may involve back-end processes at

each organisation).

Figure 6.1, presents four enterprises (El, E2, E3, E4), sharing a state through three

B2BObjects (A, B, and C). As shown in the figure, the logical view of shared objects in a

virtual space (a) is realised by the regulated coordination of actions on object replicas held at

each organisation (b).

(a) LOGICAL VIEW (b) PHYSICAL REALIZATION

~--~-----------------------:
I I
I I

! El
I

i~~---------C?------------i
I Q
I

E2E2

I
I
I
I
I----------------~

r_-_"_"_-J Organization 0 Application 0 B2BObjcci / Invocation +------+ Coordination

r::::::J Virtual space

Fig.6.1. B2Bobject Interactions

Middleware Support for X-Contract Implementation 147

6.2 B2BObjects API

The primary B2BObjects API classes are B2BObject - the application-specific

augmentation of a local object, and B2BObjectController - the local interface to

configuration, initiation, and control of information sharing. The interfaces to these classes

and the relationship between them and the B2BCoordinator package are shown in Figure 6.2.

The coordinator package manages inter-organisational connection to and communication

between objects, and implements coordination protocols. It also provides state checkpointing,

certificate management and non-repudiation services.

Vz,IQ"t.At t:r:-11:mt,,,,,, (,
..,ta;:gt.A:t t:r.:-l11ut;."", r t
.............. r,

L

A;pplllcatlollObJOct _.:tlU::.,..r:r;;&..:~~
82BObJect

.int~~.;,jcg.
B2BObJectContrOl'lef

..U:::CO.noM:ct. [1
",diacrAmQc't (~
-+eovtl.oC::..:ud. (~
"Qnt4;;l:lt'~l
..HOIy.iilming Ll
+o~l:..-wrLtg ~~
+uF<1"t g0
.. lw;:ll,rQot,]
+v;I.l1f.:1;;jt.iOnP.....,Ilpi:j.ll~,.. r ~

~

+'I1IOjt.C'ontrollQ"r c:!
.-:x:umiOl.;:!tO
+d1.&;[:::Clnn~t \ ~
+ft}'llcCbc:l.r-d < J
+-ggt.St,>ol.t""" ~ J
'ggttJpct"t" 0
+v.;;r;l.id;;l.t.;".._"'\:tn:n:gct I, 't
+Y .. Lid,;;;tt..m1.r.;conn.~t.;;)
+v,,",l..idil,t<M8t.w.itg (>
+v...Ljcl.;l.tUpdl .. t:.Q [~
+wtpplyS t.ilt Q \ j
',"pplyU}XIatg U
+'o:'.!nr.dCi1,l,L~cr. (~~gtrtAt t rU:ut...., \ >

"_oQ'tA"t t r:t...bu t~.:~
........ ····0
L

iB2BObjectlmpi

- Lf
r------------
I

L B2BOI)Jectcontrolle~llllp:l1

r-------------------J

I
I

S,:J~1·ct1n.;a.torLOc;&.1 82llCoo.rCUQ;l,tQrRguot.;;;o..

0---~ ~ 0---~ ~
A IIllP~:f1)!'fltSB A IScOInp::nsnl.Cl B A dOf)Sm15en B A exports 'InEl1'~"

Fig.6.2. B2BObjects API

The B2BObject interface is implemented by the application programmer. The programmer

decides whether to produce a new application object that implements both the B2BObject

interface and the application logic, or to extend an existing application object, or to wrap the

object with an implementation of the B2BObject interface. For example, the

ApplicationObject operation:

setAttribute(AType a);

shown in figure 6.2, has a corresponding B2BObjectImpi wrapper operation that could be

implemented as follows:

setAttribute(AType a)
II start of state access
controller.enter() ;
II indicate overwriting object state

Chapter 6

controller.overwrite();
II set the attribute
appObject.setAttribute(a) ;
II end of state access
controller.leave() ;
}

Similarly, the B2BObjectlmpi getAt tribute wrapper is:

AType getAttribute() {
II start of state access
controller.enter() ;
II indicate reading object state
controller.examine() ;
II get the attribute
AType attr = appObject.getAttribute();
II end of state access
controller.leave() ;
return attr;
}

Given knowledge of an application object's state access operations, the wrapper methods of a

B2BObjectImpi class could be generated automatically. As indicated, the

B2BObjectController enter and leave operations are used to demarcate the scope of access to

object state. These calls may be nested provided that a leave is invoked for each enter.

Nesting allows the application programmer to "roll-up" a series of state changes into a single

coordination event. If overwrite has been called within the current state change scope (as in

the setAttribute example), then state coordination is initiated at invocation of the final leave,

as we describe now.

The controller obtains a copy of the object's state (using the B2BObject getState

operation) and passes that state to the coordinator for propagation to remote parties for state

validation. B2BCoordinatorLocai provides the following propagation interface:

public interface B2BCoordinatorLocal {
public void propagateConnect(String
coordAlias) ;
public void propagateDisconnect(String
subjectAlias) ;
public void propagateNewState(
NewStateRequest stateRequest);

A call to propagateNewState results in state validation at the remote parties via invocation of

validateState on their copy of the shared object. The B2BObjectControl/er.
validationResponse communicates the result of this application-specific validation. It can be

invoked synchronously or asynchronously as a callback on the local controller. If a proposed

change is accepted by all parties, an applyState call on each replica installs the newly

validated state. Thus the leave operation implicitly invokes the state coordination protocol, via

the local coordinator, and the validation, or otherwise, of a state change proposal. If a

Middleware Supportfor X-Contract Implementation 149

proposed change is invalidated, the proposer's coordinator will rollback their local object

state using a call to applyState with the previously agreed state. A similar process to that

outlined applies to update, as opposed to overwrite, of object state.

In this case, the B2BObjectController update operation is used to indicate the type of

state coordination required. The examine operation indicates that object state will be read but

not written in the current scope. Together with enter and leave, the three access type

indication operations (examine, overwrite and update) can be used as hooks for concurrency

control mechanisms and transactional access to objects.

The implementation of the B2BObjectController is provided as part of the

middleware. Together, B2BObject and B2BObjectController provide connection management;

state change scoping and access type indication; and upcalls for application-level validation.

connect and disconnect operations initiate connection to and disconnection from the set of

objects being coordinated (leading to initiation of connection and disconnection protocols via

the B2BCoordinatorLocai propagation interface). validateConnect and validateDisconnect

allow application-specific validation of connection and disconnection requests.

The semantics of connect, disconnect and leave vary with the communication mode.

In synchronous mode, they block until the relevant coordination process completes (an

exception is raised if validation fails). In asynchronous mode, they return immediately and

completion is signalled by the coordinator through invocation of coordCallback. In deferred

synchronous mode they return immediately and a blocking call to coordCommit can be used

to wait for completion. coordCallback is also used by the coordinator to communicate

protocol progress information to the application.

The B2BCoordinatorLocai interface is independent of both the communication mode

and the coordination protocols executed between coordinators through their

B2BCoordinatorRemote interface. Implementations of these interfaces are part of the

B2BCoordinator package provided by the middleware.

6.3 X-Contract Implementation with B2BObjects

With this background, we can begin with hinting at the overall implementation of x-contracts

using the B2BObjects middleware. The implementation of an x-contract that involves a

purchaser and a supplier is shown in figure 6.3. Each party maintains a copy of the contract

object, encoded as one or more B2BObjects (B2Bobj); operations on these objects are

controlled by the contract FSMs. The dashed line that goes from the supplier to the purchaser

shows what happens when the supplier sends an offer. When the offer is ready, the supplier

invokes a send operation, and the supplier's FSM switches to its Waiting for response state

Chapter 6

and makes a SendOjJer call to the local copy of a shared B2Bobj (that implements the

operation). The local B2Bobj collects, and signs, evidence of the operation and requests

coordination of the proposed update to its state with the purchaser's B2Bobj.

The purchaser's B2Bobj verifies the evidence provided and makes an up-call to the

purchaser's FSM to validate the B2Bobj operation. Upon receiving the up-call, the purchaser's

FSM switches to the Deciding to buy state.

The dashed line from the purchaser's FSM to the supplier's FSM shows how the

purchaser's response is transmitted to the supplier. The B2BObjects middleware ensures that

all operations performed by the purchaser and the supplier are recorded and are non-

repudiable. Thanks to this facility the purchaser of the example of Fig 6.3, can provide

evidence, at a court for example, that he sent his payment within 7 days after receiving a

notification of acceptance of his purchase order, even if the supplier denies receiving the

payment. One of the major advantages of B2BObjects is that it ensures this without the need

of involving centralized trusted third parties.

Purchaser's FSM

X-contractSigned

Supplier's FSM

X-contractSigned

££

OfferRcvd OfferRejected OfferReady RejectedRcvd

A
£ £

OfferAccePted

£

1. ,-"_..,_ " , (2)

Purchaser's copy
of B2Bobj

B2Bobj

Fig.6.3. Collection of non-repudiable digital evidence with B2Bobjects

Contract management must be made part of the business processes of the organizations

involved. An organization's business processes can be divided into two broad categories. (a)

Middleware Support for X-Contract Implementation 151

The business processes that are internal to the organization, and (b) the contract management

processes, that involve interactions with trading partners.

In our contract model enterprises that engage In contractual relationships are

autonomous and wish to remain autonomous after signing a contract. Thus a signing

enterprise has its own resources and local policies. In our view each contracting enterprise is a

black box where private business processes represented as finite state machines, workflows or

similar automaton, run.

A private business process interacts with its external environment through the

contract from time to time to influence the course of the shared business process.

Thus, a contract is a mechanism that is conceptually located in the middle of the

interacting enterprises to intercept all the contractual operations that the parties try to perform.

Intercepted operations are accepted or rejected in accordance with the contract clauses.

6.4 Purchaser/Supplier Example

In this section, we continue with the implementation of the Purchaser/Supplier contract

example that we presented in Chapters 3, and 4.

To remind the reader, we first began in Chapter 3, with presenting a contract between

a Purchaser and a Supplier in which the Supplier is entitled to make price offers for a certain

commodity he wishes to sell. The Purchaser in turn is entitled to reject or accept these offers.

1 Offer
1.1 The supplier may use his discretion to send offers to the purchaser.
1.21f no offer is sent within seven days after the signature of the x-contract, or after
the latest rejected offer, the x-contract shall be terminated.

I 1.3 The purchaser is entitled to accept or reject the offer, but he shall notify his
decision to the supplier within five days after the receipt of the offer.
2 Commencement and completion
2.1 The contract shall start immediately upon signature.
2.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

Fig. 6.4. Contract clauses after removal of ambiguities

From the contract, we extracted the rights and obligations of each of the contract signatories,

and mapped them into FSMs. In Chapter 4, we used the Spin model checker to validate the

correctness of the contract FSMs with respect to a number of safety and liveness contract

correctness requirements. During the validation process, inconsistencies were found within

Chapter 6

the contract. These were corrected, and the essential contract clauses are now as presented in

figure 6.4. Also the corrected FSMs are in figure 6.5.

x-contract signeder Start x-contract

Fig.6.5. Corrected Purchaser and Supplier FMSs

Our next and final task is to implement the contract in figure 6.4, and its resulting finite state

machines in figure 6.5, using the B2BObjects middleware service, and thus creating the x-

contract.

As we mentioned in Section 3.4.3, the optimum contract implementation scenario

would be one in which the signatories to a contract, and/or their lawyers, can convert a

contract into an x-contract that monitors and enforces the agreement without requiring the

expertise of a technical person. This however is not possible with current technology, and

each newly agreed contract will require the involvement of computing personnel with

experience in the area of x-contract validation and implementation.

This ideal scenario however can be achieved in the business world of standard

contracts (Section 3.4.3). X-contract computing experts will initially be involved in the

process of validating and creating standard x-contracts to implement the original standard

contracts. Once the standard x-contracts have been created, they can be stored together with

their standard contracts on a web space to be accessed by interested clients, and they will not

require the involvement of technical persons because the inconsistency free x-contract would

have already been created.

For our example, we will take the view that the contract above is required for use as a

standard contract. The main text of the contract will remain 'the same for various clients who

wish to use the contract, however specific details (such as: The date the contract will be

implemented, and the maximum allowable number of days until the supplier makes an offer,

etc.) will be determined as required by the clients signing the contract.

Middleware Support jar X-Contract Implementation 153

6.4.1 Implementation of Supplier/Purchaser Example

Our objective is to convert the FSMs in Fig 6.5, to a Java representation of the FSMs

that can be interpreted an executed as an x-contract by the B2BObjects middleware.

B2BObjects implementation relies on operations performed on the shared information

encapsulated within local object replicas. Within the context of x-contracts, these operations

are aimed to progress the state of the object replicas in consistency with the requirements of

the signed contract. This progress or update of the state of an object by one of the parties is

subject to non-repudiable validation by each party. We must first begin with identifying the

object(s) within the contract in Fig 2.4 on which we will require to perform the operations that

will update the state of the x-contract. It is clear from the FSMs in Fig 6.5, that all operations

are related to the offer being made by the supplier. And remembering the B2BObjects API

description in Section 6.2, we can proceed with creating a B2BOffer object. We have chosen

to extend an existing application object (AbstractB2BObject) that implements the B2BObject

interface. We present the B2BOffer Class next:

1 import java.util.Date;
2
3 import uk.ac.ncl.b2bobj.AbstractB2BObject;
4 import uk.ac.ncl.b2bobj.B2BException;
5 import uk.ac.ncl.b2bobj.B2BlnvalidatedException;
6 import uk.ac.ncl.b2bobj.B2BObjectController;
7
8 public class B2BOffer extends AbstractB2BObject
9
10 public B2BOffer(Date contractDate, B2BObjectController ctrlr)
11 throws B2BException {
12 offer = new Offer(contractDate);
13 setController(ctrlr);
14
15
16 public void setPrice(double price) throws B2BException,
17 B2BlnvalidatedException {
18 ctrlr.enter();
19 ctrlr.overwrite();
20 offer.setPrice(price);
21 ctrlr.leave();
22
23
24 public void accept() throws B2BException,
B2BlnvalidatedException {
25 ctrlr.enter();
26
27
28
29
30
31 public void reject() throws B2BException,
B2BlnvalidatedException {
32 ctrlr.enter();
33 ctrlr.overwrite();

ctrlr.overwrite();
offer.accept() ;
ctrlr.leave() ;

Chapter 6

34 offer.reject();
35 ctrlr.leave();
36
37
38
39 public Date getContractDate() throws B2BException,
40 B2BlnvalidatedException {
41 ctrlr.enter();
42 ctrlr.exarnine();
43 Date cdate = offer.getContractDate();
44 ctrlr.leave();
45
46 return cdate;
47
48
49 public Date getOfferDate() throws B2BException,
B2BlnvalidatedException {
50 ctrlr.enter();
51 ctrlr.exarnine();
52 Date odate = offer.getOfferDate();
53 ctrlr.leave();
54
55 return odate;
56
57
58 public double getPrice() throws B2BException,
B2BlnvalidatedException {
59 ctrlr.enter();
60 ctrlr.exarnine();
61 double price = offer.getPrice();
62 ctrlr.leave();
63
64 return price;
65
66
67 public Date getResponseDate() throws B2BException,
68 B2BlnvalidatedException
69 ctrlr.enter();
70 ctrlr.exarnine();
71 Date rdate = offer.getResponseDate();
72 ctrlr.leave();
73
74
75
76
77 public boolean isAccepted()
B2BlnvalidatedException {
78 ctrlr.enter();
79 ctrlr.exarnine();
80 boolean accept
81 ctrlr.leave();
82
83
84
85
86
87
88
89
90
91

return rdate;

throws B2BException,

offer.isAccepted();

return accept;

/**
* @see B2BObject#applyState
*/

public void applyState(Object state)
this.offer = (Offer) state;

throws B2BException {

Middleware Support for X-Contract Implementation 155

92
93 /**
94 * @see B2BObject#getState
95 */
96 public Object getState() throws B2BException {
97 return offer;
98
99
100 private Offer offer;
101

The various operations on the 8280ffer object are encapsulated within this Class, for

example accepting and rejecting an offer (lines 24, 31), or getting the offered price (58) by the

Purchaser, or the Supplier making an offer in the setPrice method (line 16). Also this Class

contains methods to apply a new state to the object, and to get the latest state of the object (87,

96).

Once we have determined the details of the OfferObject, all that remains is to convert

the FSM diagrams in Fig 6.5, into Java code that will perform the operations in OfferObject at

the right time. We will suffice here with showing the constructors and the runContract

methods for both the purchaser and the supplier Classes that contain the FSMs. The FSM for

the Purchaser begins in line 64, and for the Supplier begins in line 65.

Purchaser Class

50 public Purchaser(Date contractDate, PurchaserStateMachine
psm,

51 boolean verbose) throws Exception (
52 this.psm = psm;
53 this.verbose = verbose;
54
55 B2BObjectController ctrlr = new B2BObjectControllerlmpl(
56 ./etc/purchaser.properties");
57
58 offer = new B2BOffer(contractDate, ctrlr);
59
60 ctrlr.addB2BValidationListener((B2BValidationListener)

psm);
61 ctrlr.addB2BEventListener((B2BEventListener) this);
62
63
64 public void runContract() throws Exception (
65 boolean tryAgain true;
66
67 while (tryAgain)
68 psm.waitForOffer();
69
70 printContract();
71
72 tryAgain = false;
73
74 if (psm.getState()

Chapter 6

75
76

PurchaserStateMachine.DECIDING_TO_BUY) {
BufferedReader console = new BufferedReader(

77
78
79
80
81
82
83
84
85
86
87
88
89
90

new InputStreamReader(System.in));
System.out.print("Offer price is: "

+ offer.getPrice()
+ " accept it (y/n)? ") ;

String ans console.readLine();

try
if (ans.toLowerCase ().equals ("y")) {

offer.accept();
psm.setState(PurchaserStateMachine.DEAL);

else {
offer.reject() ;
psm.setState(

PurchaserStateMachine.WAITING FOR_OFFER);
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

tryAgain = true;

catch (B2BlnvalidatedException e) {
psm.setState(PurchaserStateMachine.END);

catch (Exception e) {
e.printStackTrace();
throw e;

printContract();

System.out.println("contract terminating ...");
offer.getController() .disconnect();
System. exit (0);

Supplier Class

51 public Supplier(Date contractDate, SupplierStateMachine ssm,
52 boolean verbose) throws Exception {
53 this.ssm = ssm;
54 this.verbose = verbose;
55
56 B2BObjectController ctrlr = new B2BObjectControllerlmpl(
57 ./etc/supplier.properties");
58
59 offer = new B2BOffer(contractDate, ctrlr);
60
61 ctrlr.addB2BValidationListener((B2BValidationListener)

ssm) ;
62 ctrlr.addB2BEventListener((B2BEventListener) this);
63
64
65 public void runContract() throws Exception {
66 waitForMemberJoin();

Middleware Support for X-Contract Implementation 157

67
68 while (ssm.getState() ==

SupplierStateMachine.EDITING_OFFER)
printContract() ;
BufferedReader console = new BufferedReader(
new InputStreamReader(System.in));
System.out.print("Enter offer price: ");
String price = console.readLine();

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

ssm.setResponseDeadline() ;

try
offer.setPrice(Double.parseDouble(price));
ssm.waitForResponse(true);

catch (B2BlnvalidatedException e)
ssm.setState(SupplierStateMachine.DISPUTE);

catch (Exception e) {
e.printStackTrace();
throw e;

printContract();

System.out.println("contract terminating ... ");
offer.getController() .disconnect();
System.exit(O) ;

Once the three main classes (B2BOffer, Purchaser, and Supplier) and any other support

Classes have been compiled, we can proceed with the implementation.

As we stated earlier, we are assuming that our contract is intended for use as a

standard contract therefore we have included some additional Classes that create a simple

interface which can be used to tailor certain contract data to the requirements of the contract

signatories. The interface can be seen in Fig 6.6.

Save

[ElliS __j Purchaser to be known as: [Nc_::ic:::Ckc:__ ----'

Contract Comencement date dd/mm/yy: Iilllilllill
Name of Item being traded: [.::..e-_,Qc::0_::_Od;;;_;S,-- __ -,

Days to submit offer. [7 I Days to respond to offer. ID

open

Fig 6.6, Simple Example of a Contract Editor

Chapter 6

While the structure of an x-contract cannot be safely modified without the knowledge of

lawyers and technical experts, at least the contract parties can set the data that makes up the x-

contract without requiring the intervention of these experts. An x-contract editor such as

the one in Fig 6.6, can be used to store and access numerous contracts with their ready made

x-contracts. Once the data has been entered, the contract can be saved, and then loaded and

implemented at the agreed time by the signatories. See Fig 6.7.

State: EDITING_OFfER
cont.r act; date: 11/25/03 12: 00 AM
offe< date: null
response date: null
pr i ce : -1. 0
accepted: false

Enr.er offer: price: 100
State: EDITING_OFfER

cont.r ac t; date: 11/25/03 12: 00 AM
or r er date: 11/25/03 3: 11 PM
<esponse date: 11/25/03 3:11 PM
price: 100.0
accepted: fa13e

EDITING_OFfERState:
cont.rac t date: 11/25/03 12:00 AM
offe< date: 11/25/03 3: 11 PM
r esp onae date: 11/25/03 3: 11 PM
p r i c e ; 100.0
accepted: false

Enter offe< pz Lce : 80

State: DEAL
cont.r act; date: 11/25/03 12:00 AM
offe< date: 11/25/03 3:11 PM
<esponse date: 11/25/03 3:11 PM
p r i ce : 80.0
accepted: true

contract terminating •..

to linux.cs

Fig 6.7 Sample implementation of an x-contract

to linux.cs

I-------:i,
Opening Contract Data
Done.

Figure 6.7, shows a possible sequence of events during implementation of the x-contract in

Fig 6.4. The states through which the parties pass are clearly labelled as are the dates at

which these states occurred. In this implementation, the parties begin with loading the

contract data that was saved when editing the contract data (Fig 6.6). The Supplier now

begins at the EDITING-OFFER state and sends the purchaser a price offer of 100. At the

DECIDING_TO_BUY state, the purchaser rejects the supplier's initial offer and his response

is sent to the Supplier. The Supplier modifies his offer which is subsequently accepted by the

Purchaser, and they both go to the DEAL state.

All of these transactions between the two parties are attempts at updating the data

within OfferObject of which each of the signatories has an identical copy. An update however

State: DECIDING_Ta_BUY
contr act; date: 11/25/03 12: 00 AM
offer date: 11/25/03 3: 11 PM
response date: null
price: 100. 0
accepted: false

Offer price is: 100. 0 accept it (y/n)? n
Sta te : WAITING_FOR_OFFER

contract date:
offer date:

11/25/03 12: 00 AM
11125/03 3: 11 PM
11/25/03 3: 11 PM
100. 0

response date:
price:
accepted: false

DECIDING_Ta_BUYState:
contract date: 11/25/03 12: 00 AM
offer date: 11/25/03 3: 11 PM
response date: null
price: 80. 0
accepted: false

Offer price is: 80.0 accept it (y/n)? y
State: DEAL
contract date:
offer date:

11/25/03 12: 00 AM
11/25/03 3: 11 PM
11/25/03 3: 11 PM
80. 0

response date:
price:
accepted: true

contract term.inating ...

Middleware Support for X-Contract Implementation 159

does not occur unless all parties agree to that update, or the update does not contradict the

terms of the contract. This example shows how in some cases the opposing party may veto the

B2BObject update (for example the Purchaser disagrees with an offer being made), and in

other cases the x-contract itself will refuse an object update, for example if the purchaser

responds after an agreed time limit has passed.

6.5 Summary

We have presented middleware that addresses the requirement for dependable information

sharing between organisations. The middleware presents the abstraction of shared state and

regulates updates to that state. Safety is guaranteed even in the presence of misbehaving

parties. If all parties behave correctly, liveness is guaranteed despite a bounded number of

temporary failures. The middleware presents a familiar programming abstraction to the

application programmer and frees them to concentrate on the business logic of applications.

B2BObjects is used to regulate the interaction between the contracting parties and to collect

non-repudiable evidence of each of their actions. Using B2BObjects, x-contracts can be

monitored and enforced without requiring the involvement of independent trusted third parties.

A question that we do not cover and which requires further research is the issue of

access control. A contract management system and its resources must be protected from

unauthorised access, disclosure, modification or destruction of its services and its information.

This can only be accomplished by ensuring, among other things, that the identification and

authentication of the legitimate users of system services and their encapsulated resources are

securely verified. Therefore a topic for further research is the development of a contract

management system that implements Role-based Access Control (RBAC) architecture

[FSGOl). The basic concept of RBAC is that entities (users, machines, services, etc.) in each

enterprise of a VE (Virtual Environment) are assigned to roles, permissions are assigned to

roles, and entities acquire permissions by being members of roles. An RBAC model

architecture such as the one developed by OASIS [BMYO I) [YMB02) for example, could be

a promising approach to achieve the requirements of security and trust within the context of

access control.

Chapter Seven

Summary and Future Work

This thesis has proposed an approach for electronically executable contract (x-contract)

representation, validation, implementation, and monitoring. It has employed the use of finite

state machines for the modelling process, and thus benefiting from the employment of the

widely used Spin model validation tool, for the validation of the correctness and consistency

of contracts.

For the x-contract verification process, this thesis proposes a list of contract

correctness requirements, and for the contract implementation phase, we suggest the use of

the novel B2BObjects middleware service that provides for the requirements of safety,

liveness, and non-repudiation.

7. 1 Contract Modelling with Finite State Machines (Chapter
3)

Before attempting to implement an x-contract electronically; the clauses within the original

conventional text contract must be precisely abstracted and the parties' rights and obligation

must be mapped into computer code convertible mathematical notation, also the ambiguities

that exist within the original conventional text contract must be detected and removed.

To specify party interaction related rights and obligations, we propose the use of

finite state machines. Thanks to their graphic nature, finite state machines are easy to read. On

the other hand the mathematical theory behind them makes them useful for ensuring the

correct operation of an x-contract.

In this chapter we described and proposed a method by which contracts' rights and

obligations can be mapped into FSMs.

7.2 Validation of electronic contracts (Chapter 4)

It is crucial that we identify and eliminate the ambiguities that exist within the clauses of a

text contract before it can be implemented electronically.

In this chapter, we have introduced the protocol modelling language Promela, and the

protocol verification tool Spin. We have analysed with the aid of simple examples the

correctness properties that must be satisfied for a contract to be correct.

161

Chapter 7

Based on our analysis we have developed a list of correctness requirements that we

suggest that x-contract designers use during the contract validation process:

CRI: Correct commencement: An x-contract should start its execution in a well-defined

initial state on a specific date or when something happens.

CR2: Correct termination: An x-contract should reach a well-defined termination state

on a specific date or when something happens.

CR3: Reachability: Each and every state within an x-contract should be reachable, i.e.

executable at least in one of the execution paths of the x-contract.

CR4: Freedom from deadlocks: An x-contract should never enter a situation in which no

further progress is possible.

CR5: Partial correctness: If an x-contract begins its execution with a precondition true

then, the x-contract will never terminate with the precondition false, regardless of the path

followed by the x-contract from the initial to its final state

CR6: Invariant: If an x-contract begins its execution with a precondition true then, the

precondition should remain true for the whole duration of the contract.

CR7: Occurrence or accessibility: A given activity should be performed by an x-contract

at least once no matter what execution path the x-contract performs.

CR8: Precedence: An x-contract can perform a certain activity only if a given condition is

satisfied.

CR9: Absence of Iivelocks: The execution of an x-contract should not loop infinitely

through a sequence of steps that has been identified as undesirable, presumably because the

sequence produces undesirable output or no output at all.

CRIO: Responsiveness: The request for a service will be answered before a finite amount

of time.

CRll: Absence of unsolicited responses: An x-contract should not allow a contractual

party to send unsolicited responses.

These correctness requirements are split into safety and liveness properties, and we

summarize them as:

• Safety properties: reachability, partial correctness, invariant, deadlocks, precedence,

absence of unsolicited responses.

• Liveness properties: correct termination, occurrence, live locks, responsiveness.

We further categorize Safety properties into, general safety properties that must hold true for

any x-contract (CR3: Reachability, CR4: Freedom from deadlocks, CRII: Absence of

unsolicited responses), and specific safety properties that must hold true only if so required by

Summary and Future Work 163

the contracting parties for the specific requirements of a certain x-contract (CR5: Partial

correctness, CR6: Invariant, and CR8: Precedence).

Contracting parties may desire complex correctness requirements that are a

combination of a number of the above requirements. Fortunately, it has been formally proven

that any correctness property can be represented as the intersection of a safety property and a

liveness property [AS85].

7.3 Mode/ling and Verifying the Correctness of Contracts;
Examp/es (Chapter 5)

We present three different examples of text based documents (contracts) containing rules that

govern the interaction between different parties. Through these examples, we demonstrate the

ideas of contract representation with finite state machines, and contract validation with Spin,

developed in Chapter 3, and Chapter 4.

In this chapter, we convert the text based contracts into executable contract models

through a process that removes the ambiguities that may exist in the original text contracts.

This is to facilitate the correct implementation of the x-contracts at run time.

There are many examples, where the interaction between two or more parties, over a

network, calls for a set of rules that can be implemented to police this interaction.

In cases where the rules of interaction need to be negotiated and agreed upon by the

interacting parties, the rules constitute contract clauses, which will combine to form a contract

that the parties must sign. This is the bases for the first and second examples.

There are cases however where the interaction between the parties is governed by

rules that are already in place. The parties need only to understand them and agree upon them

before the interaction can begin. Our third example reflects this case. We present the scenario

where two or more parties are involved in a game that is played over the Internet.

In our three examples, we carefully use the safety and liveness contract correctness

requirements proposed in Chapter 4 to detect and remove ambiguities that are present within

the clauses of the original contracts. General safety properties are properties that must be

checked for in any contract for it to be free from ambiguities. Specific safety properties and

liveness properties are properties that are checked for within a contract only if so required by

the contracting parties.

After ambiguities are detected and removed from a contract model, it can be

converted into program code for implementation.

Chapter 7

7.4 Middleware Support for X-Contract Implementation
(Chapter6)

In this chapter, we present the B2BObjects middleware service that addresses the requirement

for dependable information sharing between organisations. The middleware presents the

abstraction of shared state and regulates updates to that state.

Safety is guaranteed even in the presence of misbehaving parties. If all parties behave

correctly, liveness is guaranteed despite a bounded number of temporary failures. The

middleware presents a familiar programming abstraction to the application programmer and

frees them to concentrate on the business logic of applications. B2BObjects is used to regulate

the interaction between the contracting parties and to collect non-repudiable evidence of each

of their actions. Using B2BObjects, x-contracts can be monitored and enforced without

requiring the involvement of independent trusted third parties.

7.5 For Future Work

We believe that the principles and techniques developed in this thesis represent logical steps

which when applied correctly will lead to the execution of free from ambiguity correct(ed)

executable contracts that are capable of monitoring the interactions stipulated within the

clauses of the contract.

Future work for the time being will concentrate on the application and testing of the

ideas within this thesis at an industry level.

Our work is currently based on the implementation of agreed and fixed contracts, and

takes no account of the possibility that the clients may wish to make changes to its content

and therefore to the content of the x-contract during execution time. This work therefore

needs to be progressed further as it is not yet clear how our contract management model can

be deployed dynamically and made to respond to changes.

Another area needing further work (mentioned in Section 6.5) is integration of

advanced RBAC techniques, such as developed in OASIS [BMYOl] that provide extended

notions of appointments, for delegation of role-playing, and of multiple, mutually aware

domains for mobile roles, that can be re-located and still able to communicate without

confusion.

The availability of a contract management service creates a safe and secure way for

organisations to form Virtual Organisations (VOs) that provide new composite services (CSs).

Clearly there needs to be a common standard between organisations for specifying, publishing,

finding and composing CSs. Indeed, emerging Web services standards such as SOAP, UDDI,

WSDL etc, as well as grid related work on Open grid Services (OGSA) are steps in this

Summary and Future Work 165

direction. Unfortunately, they do not yet fully address issues of services that can be made

available, scalable and adaptive.

Some of these issues are being addressed by several industry led efforts at developing

standards for specifying, composing and coordinating the execution of CSs. These include

ebXMLlOASIS [EBXML], Web services architecture work at W3C [WSA], and Rosettanet

[RIFOO]. In any case, certain basic facilities for contract representation and monitoring will be

required. The work presented here provides a sound foundation for future developments.

Blank Page

[AEBOI]

[AGOI]

[AS85]

[AS03]

[BIZ]

[BMYOI]

[BP98]

[BPML]

[CFOO]

[CLOO]

[C099]

[CSP99]

[CSW02]

[D98]

References

Abrahams A.S., Eyers D.M., and Bacon J.M. Mechanical Consistency
Analysis for Business Contracts and Policies. Proc 5th International
Conference on Electronic Commerce Research (ICECR5), Montreal, Canada,
23-27 October 2002. Society 2001.

Angelov S, Grefen P. B2B eContract Handling-A Survey of Projects, papers,
and Standards. University of Twene, The Netherlands. 2001.

Alpern B, Schneider F.B, Defining liveness, Information Processing
Letters,Vol. 21, N. 4, Oct, 1985.

A Survey of Legal Issues Relating to the Security of Electronic Information.
http://canada.jLlstice.gc.ca/en/ps/ec/slImmarv.html. Department of Justice,
Canada.2003.

http://wwvv.biztalk.org

Bacon J, Moody K, and Yao W, Access Control and Trust in the use of
Widely Distributed Services, IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001), November 2001,
Heidelberg" Lecture Notes in Computer Science. VOL. 2218, pp. 300-315.

Ballin M S, Perritt H H Jr. Electronic contracting, publishing, and EDI law.
Wiley Law Publication: 6-7. 1998.

http://www-I06.ibm.com/deve loperworks/webservices/I ibrary /ws- bpe II

CrossFlow Project. http://www.crossflow.org/. 2000.

Chomicki J, Lobo J. A Logic Programming Approach to Conflict Resolution
in Policy Management. Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR2000), Breckenridge,
Colorado, USA, Morgan Kaufmann. 2000.

COSMOS Project.
http://vsys-ww\v.inf(mnatik.lIlli-ham burg.de/proj ects/cosJl1os/i ndex. phtl11l.
1999.

COSMOS Project.
http://vsys-www.informatik.lIni-ham burg.de/projects/ cosmos/i ndex. phtml.
1999.

Cook N, Shrivastava S.K, and Wheater S.M, Distributed Object
Middleware to Support Dependable Information Sharing between
Organisations, Proc. IEEE Int. Conf. on Dependable Systems. and Networks
(DSN-2002), Bethesda USA, June 2002.

Daoud F, A Business Contracting Model for TINA Architecture, Electronic
Markets, International Journal of Electronic Markets, Vol.8 No.3 1998,
University of St.Gallen, Switzerland.

167

http://canada.jLlstice.gc.ca/en/ps/ec/slImmarv.html.
http://wwvv.biztalk.org
http://www-I06.ibm.com/deve
http://www.crossflow.org/.
http://vsys-www.informatik.lIni-ham

[000] Daskalopulu A. Modelling Legal Contracts as Processes. Legal Information
Systems Applications, lIth International Conference and Workshop on
Database and Expert Systems Applications, IEEE C. S. Press, pp. 1074-1079,
2000.

[DBSL02] Damianou N, Bandara A.K, Sloman M, and Lupu E.C. A Survey of Policy
Specification Approaches. Department of Computing Imperial College. April
2002.

[0001] Damianou N, Dulay N.The Ponder Policy Specification Language. Policy
2001: Workshop on Policies for Distributed Systems and Networks, Bristol,
UK, Springer-Verlag. 2001.

[DDLSOl] Damianou N, Dulay N, Lupu E, Sloman M. The Ponder Policy Specification
Language. In Proc. Int. Workshop on Policies for Distributed Systems and
Networks (POLICY), Bristol, UK, Springer-Verlag LNCS 1995, Jan. 2001.

[DDMOl] Daskalopulu A, Dimitrakos T, and Maibaum T, E-Contract Fulfilment and
Agents' Attitudes. Proceedings of ERCIM WG E-Commerce Workshop on
The Role of Trust in e Business, Zurich, October, 2001.

[DDNS98] Dan A, Dias 0, Nguyen T, Sachs M, Shaikh H, King R, Duri S. The Coyote
Project: Framework for Multi-party E-Commerce, Proceedings of the 7th
Delos Workshop on Electronic Commerce, Crete, Greece, Sept. 21-23, 1998.

[ECO] http://eco.commerce.net

[EDI03] What is EDI?
http://www.xI2.orglxI2org/about/index.html?whatis.html. 2003.

[EBXML] http://www.ebxml.org

[EER] http://www.cs.sfll.ca/CC/354/zaiane/material/notes/Chapter2/nodel.html

[FHK95] Fox 0, Horster P, Kraaibeek P. Grundiiberlegungen zu Trust
Centern. In: Horster, P. (Ed.): Trust Center; DuD; 1995.

[FKNT02] Foster I, Kesselman C, Nick J, Tuecke S, The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration.
Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.

[FKTOl] Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International Journal of High
Performance Computing Applications, 15 (3). 200-222. 2001.
www.gl oblls.orglresearch/papers/ anatol11y. pdf.

,
[FSGOl] Ferraiolo D.F, Sandhu R, Gavrila S, Kuhn D.R, and Chandramouli R,

Proposed NIST standard for Role-Based Access Control, ACM transactions
on Information and System Security, Vol. 4, No.3, Aug. 2001.

[GBW98] Griffel F, Boger M, Weinreich H, Lamersdorf W, Merz M, Electronic
Contracting with COSMOS - How to Establish, Negotiate and Execute

http://eco.commerce.net
http://www.xI2.orglxI2org/about/index.html?whatis.html.
http://www.ebxml.org
http://www.cs.sfll.ca/CC/354/zaiane/material/notes/Chapter2/nodel.html
http://www.gl

References

[GGKS02]

[GJS99]

[GMOO]

[GRID]

[GSGOO]

[GSSOO]

[H91]

[H97]

[HLGGOO]

[IBMW]

[IS099]

[JS97]

[KBCSOO]

[KGVOO]

[L77]

169

Electronic Contracts on the Internet, Proceedings from 2nd Int. Enterprise
Distributed Object Computing Workshop (EDOC '98), 1998.

Gotschalk K, Graham S, Kreger H, and Snell J. Introduction to Web
Services Architecture. 2002. IBM Software Group. IBM Systems Journal,
vol. 41, No.2, pp. 170-177,2002.

Gisler M, Johri Y, Schopp B. Requirements on Secure Electronic
Contracts. University of St. Gallen Switzerland. 1999.

Goodchild A, Herring C, and Milosevic Z. Business Contracts for B2B.
Proceedings of the CA[SE*OO Workshop on Infrastructure for Dynamic
Business-to-Business Service Outsourcing, Stockholm, June 5-6,2000.

www.grid.org

Gisler M, Stanoevska-Slabeva K, Greunz M, Legal Aspects of Electronic
Contracts, Infrastructures for Dynamic Business-to-Business Service
Outsourcing (IDSO'OO), Stockholm, June 5-6, 2000.

Greunz M, Schopp B, Stanoevska-Slabeva K, Supporting Market
Transactions through XML Contracting Container, Proceedings of the Sixth
Americas Conference on Information Systems (AMCISS 2000), Long Beach,
CA USA, 10-13 August, 2000.

Holzmann GJ. Design and Validation of Computer Protocols. Prentice Hall,
512 pgs. 1991.

Holzmann GJ. Basic Spin Manual.
http://spinroot.com/spin/Man/Manllal.html. 1997.

Hoffner Y, Ludwig H, Gtilcti C, Grefen P. Architecture for Cross-
OrganisationalBusiness Processes, Proceedings 2nd International Workshop
on Advanced Issues of Ecommerce and Web-Based Information Systems,
Milpitas, CA, USA, 2000, pp. 2-11.

http://www.ibm.com/sot1ware/sollitions/webservices/resourccs.html

[SO/IEC. Information Technology - Open Distributed Processing Reference
Model - Enterprise Viewpoint. 1999.

Jajodia S, Samarati P. A Logical Language for Expressing Authorisations.
[EEE Symposium on Security and Privacy, Oakland, USA, IEEE. 1997.

Keen P, Balance C, Chan S, Schrump S, Electronic Commerce Relationships:
Trust by Design, Prentice Hall PTR, 2000.

Koetsier M, Grefen P, Vonk J. Contracts for Cross-Organizational Workflow
Management, Proceedings I st Intern~tional Conference on Electronic
Commerce and Web Technologies, London, UK, 2000, pp. 110-121.

Lamport L, Proving the correctness of multiprocess programs.

http://www.grid.org
http://spinroot.com/spin/Man/Manllal.html.
http://www.ibm.com/sot1ware/sollitions/webservices/resourccs.html

[L98]

[LOO]

[LFK]

[LN99]

[LTL]

[LR97]

[LR98]

[LRP97]

[LS97]

[LS98]

[LS99]

[LTSA99]

[MA096]

[MB95]

March 1977. IEEE Transactions on Software Engineering, SE-3(2).

Lee R.M, Towards Open Electronic Contracting, Electronic Markets,
International Journal of Electronic Markets, Vol.8 No.3 1998, University of
St. Gallen, Switzerland.

LEE M. Event and Rule Services for Achieving a Web-based Knowledge
Network. Computer and Information Science and Engineering, University of
Florida. 2000.

http://www.legal-forms-kit.com/

Lobo J R, Naqvi B S. A Policy Description Language. 1999. AAAI,
Orlando, Florida.

http://www.time-rover.com/ftp/tl.pdf

Lindemann M.A, Runge A. Non-Repudiation within the Electronic
Contracting Phase of Electronic Commerce Transactions. Conference
Proceedings of the First Overcoming Barriers to Electronic Commerce
Conference OBEC'97, Malaga, Spain, April 1997.

Lindemann M, Runge A. Electronic Contracting within the Reference Model
for Electronic Markets, Proceedings of the 6th European Conference on
Information Systems ECIS '98, Aix-en-Provence, France, June 4-6, 1998.

Lindemann M.A, Runge A, Permanent IT-Support in Electronic Commerce
Transactions, Electronic Market Architectures, International Journal of
Electronic Markets ,Vol. 7, No.1, 1997.

Lpupu, E. C, and Sloman M.S. Towards a Role Based Framework for
Distributed Systems Management. Journal of Network and Systems
Management 5(1): 5-30.1997.

Lindemann M, Schmid B.F. Elements of a Reference Model for Electronic
Markets, Proceedings of the 31st Annual Hawaii International Conference on
Systems Science HICCS'98, Vol. IV, pp. 193-201, Hawaii, January 6-9, 1998.

Lupu E. C, and Sloman M.S. Conflicts in Policy-Based Distributed Systems
Management. In IEEE Transactions on Software Engineering - Special Issue
on Inconsistency Management 25(6): 852-869. 1999.

Labelled Transition System Analyser.
http://www.doc.ic.ac.ukHnm/book/ltsaiLTSA.html. 1999.

Milosevic Z, Arnold D, O'Connor L. Inter-enterprise Contract Architecture
for Open Distributed Systems: Security :Requirements. WET ICE'96
Workshop on Enterprise Security, Stanford, USA, June 1996.

Milosevic Z, Bond A. Electronic Commerce on the Internet: What is Still
Missing? Proc. 5th Conf. of the Internet Society, pp.245-254, Honolulu, June
1995.

http://www.legal-forms-kit.com/
http://www.time-rover.com/ftp/tl.pdf
http://www.doc.ic.ac.ukHnm/book/ltsaiLTSA.html.

References 171

[MD02] Milosevic Z, Dromey R G. On Expressing and Monitoring Behaviour in
Contracts. In proceedings of the 6th International Enterprise Distributed
Object Computing Conference (EDOC2000), Lausanne, Switzerland, Sep.
17-20,2002.

[MMOl] Marjanovic 0, and Milosevic Z. Towards Formal Modelling of e-Contracts.
Proceedings of the Fifth IEEE International Enterprise Distributed Object
Computing Conference, Seattle, Washington, September 04-07,2001.

[MMUOl] Minsky N, Minsky Y, and Ungureanu V, Safe Tuplespace-Based
Coordination in Multi Agent Systems, in the Journal of Applied Artificial
Intelligence (AAI), January 2001 (Vol 15, No.1, pages: 11-33).

[MQ] MQSeries workflow.
http://www-J.ibm.com/so ftware/integration/wmgwfl.

[MSS03*] Molina-Jimenez C, Shrivastava S, Solaiman E, and Warne J. Run-time
Monitoring and Enforcement of Electronic Contracts. Submitted to ECRA
(Electronic Commerce Research and Applications) for publication.

[MSSW03*] Molina-Jimenez C, Shrivastava S, Solaiman E, and Warne J. Contract
Representation for Run-time Monitoring and Enforcement. Proc. IEEE Int.
Conf. on E-Commerce (CEC-2003), Newport Beach, California, June 2003.

[MUOO] Minsky N, Ungureanu V. Law-Governed Interaction: A Coordination &
Control Mechanism for Heterogeneous Distributed Systems. ACM
Transactions on Software Engineering and Methodology (TOSEM), (Vol 9,
No 3, pages: 273-305). July 2000.

[MUOI] Minsky N.H, Ungureanu V. Scalable Regulation of Inter-enterprise
Electronic Commerce, In Proceedings of the Second Ineternational
Workshop, WELCOM 2001 Heidelberg, Germany, November 2001. Lecture
Notes in Computer Science, Vol. 2232, Springer.

[NCOO] Naumovich G, Clarke L.A, Classifying Properties: An Alternative to the
Safety-Liveness Classification, In Proceedings of the Eighth International
Symposium on the Fundations of Software Engineering, Nov. 2000.

[OASIS] http://www.oasis-open.org

[OED I] Open EDI. http://www.euridis.nllweboutline/Web.OpenEDI.html. Erasmus
University, Netherlands.

[P02] Ponder: A Policy Language for Distributed Systems Management
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtmi. 2002.

[PROT] http://www.w3.org/Protocols/

[R98] Ranno F. A Language and Toolkit for the Specification. Execution and
Monitoring of Dependable Distributed Applications. PhD Thesis. The
University of Newcastle upon Tyne. 1998.

[RA98] Runge A, The Need for Supporting Electronic Commerce with Electronic
Contracting, Proceedings of the Conference on Information Systems and
Technology (INFORMS), Montreal, Canada, April 1998.

http://www-J.ibm.com/so
http://www.oasis-open.org
http://www.euridis.nllweboutline/Web.OpenEDI.html.
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtmi.
http://www.w3.org/Protocols/

[RL98]

[RM-ODP]

[RSKS99]

[SOl]

[S02]

[SCI003]

[SDOO]

[SLOl]

[SOAP]

[SMS*]

[SP03]

[SXMOl]

[TINA02]

[UMOO]

[UNCE]

[WSDL]

Ronald M. Lee. Towards Open Electronic Contracting, Electronic Markets.
International Journal of Electronic Markets, Vol.8 No.3 1998, University of
St. Gallen, Switzerland.

http://www.dstc.edu.aulResearch/Projects/ODP/ref_model.htmI

Runge A, Schopp B, Stanoevska-Slabeva K, The Management of Business
Transactions through Electronic Contracts, Proceedings for the of the 10th
International Workshop on Database and Expert Systems Applications
(DEXA'99), Florence, September 1999.

Sookman B. Computer, Internet and Electronic Commerce Law, Carswell
Thomson Publishing, 2001: 10-1.

Sakharuk D. History of Electronic Contracting.
http://www .kentlaw .edu/classes/rwarner/legalaspects ukraine/contracting/co
mmentary/history/history electronic contracting.htm. 2002.

SearchCIO.com Definitions
http://searchcio.techtarget.com/sDefinition/O,,sid 19 gci213925,00.html. 2003.

Steen M W A, Derrick J. ODP Enterprise Viewpoint Specification. Computer
Standards and Interfaces 22: 65-189. 2000.

Stanley Y W, LAM H, Minsoo L, Bai S, Shen Z. An Information
Infrastructure and E-services for Supporting Internet-based Scalable E-
business Enterprises. 5th IEEE Annual Enterprise Distributed Object
Conference (EDOC200 1), Seattle, WA, IEEE Computer Society. 2001.

http://www.w3.org/TR/SOAP/

Solaiman E, Molina-Jimenez C, Shrivastava S, Model Checking Correctness
Properties of Electronic Contracts. International Conference on Service
Oriented Computing (lCSOC03), Trento, Italy, December 2003.

Spin. http://spinroot.com/spin/whatispin.html. 2003.

Serban C, Xuhui A, and Minsky N, Establishing Enterprise Communities, In
Proc. of the 5th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2001), Seattle Washington, September 2001.

Telecommunications Information Networking Architecture consortium.
http://www.tinac.com. 2002.

Ungureanu V, and Minsky N, Establishing Business Rules for Inter-
Enterprise Electronic Commerce, In PrO'C. of the 14th International
Symposium on DIStributed Computing (DISC 2000), LNCS, No. 1914,
pages 179-193, Springer-Verlag, October 2000, Toledo Spain

http://www .uncefact.org

http://www. w3 .0rg/TRlwsdl

http://www.dstc.edu.aulResearch/Projects/ODP/ref_model.htmI
http://searchcio.techtarget.com/sDefinition/O,,sid
http://www.w3.org/TR/SOAP/
http://spinroot.com/spin/whatispin.html.
http://www.tinac.com.

References

[XMNUOO]

[YAW98]

[YMB02]

Note:

173

Xuhui A, Minsky N, Nguyen T, Ungureanu V, Law-Governed Communities
Over the Internet. In Proc. of Coordination' 2000: Fourth International
Conference on Coordination Models and Languages, LNCS, No. 1906, pages
133-147, Springer-Verlag, September2000, Limassol Cyprus.

Soon- Yong Choi, Dale O. Stahl, and Andrew B. Whinston, Intermediation,
Contracts and Micropayments in Electronic Commerce, Electronic Markets,
International Journal of Electronic Markets, Vol.8 No.1 1998, University of
St. Gallen, Switzerlan.

Yao W, Moody K, and Bacon J, A Model of OASIS Role-Based
Access Control and its Support for Active Security, ACM Trans. On
Information and System Security, 5, 4, November 2002.

References with the star [*] sign, are own publications.

